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Abstract

We extend to fermionic conformal field theories (CFTs) a recent discovery in quantum

gravity, where an ensemble average of two-dimensional free boson CFTs over the Narain

moduli space gives rise to a theory of gravity in three-dimensional Anti-de Sitter (AdS)

space related to Chern-Simons theory. First, we review basic features of two-dimensional

CFTs, including the conformal group and algebra, the operator formalism of CFTs, and

the CFT Hilbert Space. Then, we focus on CFTs on the torus in two dimensions, study

their modular properties using the modular group of the torus, and compute the partition

functions of three CFTs that play important roles in this project: free bosons on a circle,

free bosons on a Z2 orbifold, and free fermions. We also review the AdS/CFT correspon-

dence and describe how CFT plays an important role in the study of quantum gravity.

In addition, we describe how the partition function of Chern-Simons gravity matches the

averaged partition function of an ensemble of compact free bosonic CFTs over the Narain

moduli space. To extend this result to fermionic CFTs, we apply bosonization to deter-

mine the fermionic moduli space, and build a map between moduli spaces of the c = 1

free boson and the c = 1 interacting fermionic CFTs known as the Thirring model. For

c = 1 Thirring CFTs, averaging over moduli space leads to a divergence in the averaged

partition function just as in the bosonic case.
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Abrégé

Cette thèse vise à trouver une version fermionique d’une découverte récente en gravité

quantique, soit le fait que la moyenne d’ensemble des théories conformes des champs

(TCCs) bosoniques libres en deux dimensions sur l’espace de modules de Narain est

liée à la gravité de Chern-Simons dans l’espace anti-de Sitter (AdS) en trois dimensions.

D’abord, il sera question des TCCs en deux dimensions. De ce fait, les groupes et les

algèbres conformes, le formalisme des opérateurs dans les TCCs ainsi que la représentation

des états dans un espace Hilbert TCC seront développés. Les propriétés modulaires TCCs

sur le tore en deux dimensions seront ensuite examinées par le biais du groupe modulaire

du tore. La fonction de partition pour trois exemples de TCC, soient le TCC des bosons

compacts libres sur un cercle, le TCC des bosons libres sur un orbifold Z2, et le TCC des

fermions libres, sera calculée. Il sera aussi question de la correspondance AdS/CFT afin

de démontrer l’utilité des TCCs dans l’étude de la gravité quantique et de présenter un

résultat sur l’équivalence entre la fonction partition de la gravité de Chern-Simons et celle

de la fonction partition moyenne d’un ensemble de TCCs bosoniques compacts libres sur

l’espace des modules de Narain. Afin de dériver une version fermionique de ce résultat,

l’espace des modules fermioniques sera caractérisé par le biais de la bosonization. De

plus, une application entre l’espace des modules des TCCs bosoniques libres c = 1 et

l’espace des modules des TCCs fermioniques interactives c = 1, nommé le modèle de

Thirring, sera construite. Le fait que la fonction partition obtenue en prenant la moyenne

sur l’espace des modules des TCCs Thirring c = 1 comprend une divergence tout comme

le cas bosonique sera également démontré.
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Chapter 1

Introduction

Understanding why quantum gravity matters is one of the most important starting

points in our search for a unified theory. One reason is that when we want to study, for

example, the beginning of the universe where the amount of energy is huge while the

size of the universe is compacted in a tiny region, we need both gravitational theory and

quantum theory. In physics on very small scales, quantum field theory (QFT) is the core

of elementary particle physics, which combines quantum theory, field theory, and special

relativity and also provides essential tools for condensed matter physics, nuclear physics,

atomic physics, and astrophysics.

A special family of QFTs in which the theories are invariant under conformal transfor-

mations is known as the set of conformal field theories (CFTs). In two dimensions, this

conformal invariance (angle preserving) property of CFT gives rise to an infinite numbers

of symmetries which is so powerful that finding exact solutions in the CFT context is pos-

sible. Compared to how difficult, if possible, it is to do so for a general QFT, this feature

makes CFTs one of the most important fields of research in high energy physics.

In the attempt to unify quantum and gravitational theories, the duality between grav-

ity in Anti de Sitter (AdS) space and CFTs, known as the AdS/CFT correspondence, was

discovered by Maldacena in the 90s [1]. This duality suggests that certain d-dimensional

strongly coupled quantum field theories and certain string theories in d+1 dimensions

are two sides of the same coin, i.e. they are the same theory.
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In recent studies of the AdS/CFT correspondence, disordering and averaging have

played an important role. On the one hand, the idea that gravity emerges from aver-

aging over many different configurations of the same theory has been somewhat well

established. For example, when studying black holes in a quantum theory of gravity,

geometrically describing an individual quantum microstate of a black hole can be very

difficult in the context of general relativity. However, when we coarse-grain over many

microstates, a gravitational description described by a black hole geometry emerges. On

the other hand, the idea of averaging over many different theories has also been explored.

For instance, in two dimensions, Jackiw-Teitelboim gravity emerges when one performs

some averaging procedure over a random ensemble of quantum mechanical systems [2].

Also, for three-dimensional gravity in AdS3 spaces, its continuous energy spectrum indi-

cates that this theory could be considered as an ensemble average [3], and it is recently

discovered that the three-dimensional Chern-Simons gravity in AdS3 is indeed dual to an

ensemble of bosonic CFTs [4, 5]. In addition, recent results manifest that the AdS5 × S5

supergravity is an ensemble average of type IIB string theories [6]. In a more recent pa-

per, it was shown that an ensemble average of two-dimensional large-c CFTs reproduces

semiclassical gravity in three dimensions [7].

The above results naturally lead to a question: whether this conjecture can be extended

to fermionic theories. A step towards answering this question is to determine the mod-

uli space for fermionic CFTs. In particular, we are interested in fermionic CFTs with a

four-fermion interaction. The reason why we focus on this particular family of CFTs is

that theories in this family are related to bosonic CFTs through bosonization, which is a

method that has been broadly applied in theoretical high energy physics and condensed

matter physics.

In quantum field theory, only specific models have exact non-perturbative results for

all correlators. Among these completely solvable models, Thirring discussed the first

such model describing a current-current interaction of massless fermions and constructed

the eigenstates of the Hamiltonian [8]. In 1967, Klaiber gave a complete quantum solu-

tion of the Thirring model and discussed its properties [9]. Later on, Coleman proved

the equivalence between the Thirring model and the quantum sine-Gordon model [10].
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In two-dimensions, this phenomenon where it is possible to write fermions in terms of

bosons is called bosonization, and this technique has been a powerful tool for studying

particle physics and condensed matter physics.

The idea that an ensemble average of different quantum theories gives rise to a gravi-

tational theory is closely related to black hole physics. As we know, black holes scramble

information, so the idea of quantum chaos, random matrices and random CFTs is natu-

rally related to studies of black holes. In addition, it is not unusual in condensed matter

physics that a strongly coupled system rearranges itself in some way that new weakly

coupled degrees of freedom emerge and the system is now better described by fields rep-

resenting the emergent excitation. For example, in spin glasses such technique is used to

study systems with quenched disorder. Therefore, this project also provides insights to

studies of disordered systems in condensed matter physics.

This thesis will focus on studying CFTs, introducing their applications in quantum

gravity, and present how gravity emerges when an ensemble of bosonic CFTs is averaged

over a moduli space. Then we will study how the bosonization technique leads to the

fermionic extension of this gravity as an ensemble average conjecture and we will discuss

how this extension is related to the Sachdev–Ye–Kitaev (SYK) model.

The structure of this thesis is the following. In Chapter 2, we will review basic knowl-

edge of conformal field theories in two dimensions, introduce the conformal group and

algebra, the operator formalism of conformal field theory including radial quantization

and the operator product expansion, and construct the CFT Hilbert space. In Chapter 3,

we will take a closer look at CFTs on the torus to study their modularity properties and

compute the partition functions of free bosons and free fermions. In Chapter 4, we will

first give a brief introduction to the AdS/CFT correspondence, then present the recent

discovery of the equivalence between gravity and averaged bosonic CFTs. Chapter 5 will

focus on studying the equivalence relation between bosons and fermions by introducing

the bosonization technique, then we will study how the Thirring model is related to the

free boson, then map out a relation between the moduli spaces of bosonic and fermionic

CFTs. We will conclude this thesis in Chapter 6 and discuss future directions in which

this project points.
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Chapter 2

Basics in Two Dimensional Conformal

Field Theory

The most basic approach to quantum field theory is to quantize Lagrangian action for

fields using canonical quantization or the path integral method. This approach requires

a known action of the theory, which, unfortunately, is not always available. Luckily, such

a prerequisite is unnecessary for conformal field theories. Unlike ordinary quantum field

theories, a CFT can be defined through operator algebras with their corresponding repre-

sentation theory and can even be solved exactly in certain cases by employing the sym-

metries of the theory and exploiting their consequences. In particular, we are interested in

two-dimensional CFTs due to a special property of this dimension. In two dimensions, the

algebra of infinitesimal conformal transformations is infinite dimensional. In this chapter,

we will give a relatively detailed review of the basic properties of conformal field theories

in two dimensions, including the conformal group and its algebra, the primary fields, the

energy-momentum tensor, and the operator product expansion. Then we will discuss the

CFT Hilbert space for free bosons and free fermions.

2.1 The Conformal Group and Algebra

A Conformal Field Theory is a field theory invariant under conformal transformations.

First, we will define mathematically what a conformal transformation is, which physically
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preserves the angle between two lines. Let M,M ′ be two smooth manifolds with metric

gµν and g′µν respectively, and let U ⊂ M , V ⊂ M ′ be open. Take x ∈ U and let x′ = φ(x) ∈

V , then a differentiable map φ : U → V is a conformal transformation if the metric tensor

gµν(x) transforms as

g′µν(x
′) =

∂x′α

∂xµ
∂x′β

∂xν
gαβ(x) = Λ(x)gµν(x). (2.1)

In other words, under a conformal transformation, the metric is unchanged up to a scale

factor Λ(x).

In the interest of this thesis, we will only consider CFTs on flat spacetimes with a

constant metric ηµν = diag(−1, . . . ,+1, . . . ). Then we can easily see that in our case, the

conformal transformations

ηµν −→ η′µν = Λ(x)ηµν (2.2)

form a group. In fact, the Poincaré transformation is a subgroup of this group with a scale

factor Λ(x) = 1.

Now let us study the conditions for conformal invariance. Let ε(x) � 1 be a small

parameter, and consider infinitesimal coordinate transformations x′µ = xµ + εµ(x), then

we have
∂x′α

∂xµ
∂x′β

∂xν
=

(
δαµ +

∂εα

∂xµ

)(
δβν +

∂εβ

∂xν

)
. (2.3)

Bringing Eq.(2.3) into Eq.(2.2) and we get

η′µν = ηµν +
(
∂µεν + ∂νεµ

)
. (2.4)

Then, for the transformation to be conformal, we require that (∂µεν + ∂νεµ) = K(x)ηµν

where K(x) is some function so η′µν can be written as Λ(x)ηµν with Λ(x) = 1 + K(x).

Contracting both sides with ηµν we determine the function K(x) to be 2(∂ · ε)/d where d

is the dimension of the flat spacetime, which leads to Λ(x) = 1 + 2(∂ · ε)/d. Therefore, the

condition for the transformation to be conformal is

∂µεν + ∂νεµ =
2

d
(∂ · ε)ηµν . (2.5)
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The conformal group consists of globally defined, invertible, and finite conformal trans-

formations, and its corresponding Lie algebra is called the conformal algebra. To determine

the conformal group for two dimensions, first we will focus on a flat spacetime with a

Euclidean metric ηµν = diag(+1,+1). In two dimensions d = 2, the condition shown in

Eq.(2.5) for the infinitesimal conformal transformation is given by the following,

when µ = ν = 0 : ∂0ε0 = +∂1ε1 ,

when µ = 0 and ν = 1 : ∂0ε1 = −∂1ε0 ,
(2.6)

which are the Cauchy-Riemann equations in complex analysis, that are satisfied by the

real and imaginary parts of a holomorphic function. Now let ε be such a holomorphic

function of z, we can define the following complex variables

z = x0 + ix1 , z = x0 − ix1 ,

ε = ε0 + iε1 , ε = ε0 − iε1 ,

∂z =
1

2
(∂0 − i∂1) , ∂z =

1

2
(∂0 + i∂1) .

(2.7)

Because the complex differentiation is linear, the sums of holomorphic functions are also

holomorphic, which leads to the holomorphic property of z′(z) = z + ε(z). We can easily

show that, as an infinitesimal conformal transformation, this function gives a scale factor

of
∣∣∂z′
∂z

∣∣2. In fact, a meromorphic function meets our requirements as long as it has isolated

singularities only outside some required open set. Therefore, we can generalize ε(z) to

such a meromorphic function.

Now let us move on to find the generators and determine the conformal algebra. To

do so, we will Laurent expand a meromorphic function ε(z) around z = 0,

ε(z) =
∑
n∈Z

εn(−zn+1) , ε(z) =
∑
n∈Z

εn(−zn+1) , (2.8)

where εn, εn are constant parameters. Recall that translation x′µ = xµ + aµ has generator

−i∂µ. Analogously, the generators corresponding to a transformation for each n are
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ln = −zn+1∂z , ln = −zn+1∂z . (2.9)

We see that there are infinitely many generators since n ∈ Z, which will lead to an infinite

dimensional algebra as mentioned at the beginning of this chapter. We will study this

algebra soon, but before that, let us discuss the well-definedness of these generators.

Customarily, we treat z, z as independent variables, so we are actually considering the

complex plane C2. However, when we take a better look at the generators {ln} and {ln},

we notice that neither of them is globally defined on C or on its extension, the Riemann

sphere S2 ' C ∪ {∞}, because both z = z = 0 and z = z = ∞ lead to ambiguities that

need to be fixed. To find generators of globally defined conformal transformations on

the Riemann sphere, let us consider the following. For z = 0, it is easily to see that zn+1

diverges for any n+ 1 < 0. Therefore, {ln} are well defined only for n ≥ −1, and the same

for {ln}. For z = ∞, we need to perform a change of variable first. Let z = −1/w, then

w → 0 when z =∞, and

dz =
1

w2
dw −→ ∂z = w2∂w . (2.10)

Bringing Eq.(2.10) back to Eq.(2.9) we get that

ln = −zn+1∂z = −
(
− 1

w

)n+1

w2∂w = −
(
− 1

w

)n−1

∂w . (2.11)

Then as w → 0, (−1/w)n−1 diverges for all n− 1 > 0. Thus, {ln} and {ln} are well defined

only for n ≤ +1 for z = ∞. Combining with the condition at z = 0, we conclude that the

only generators for globally defined conformal transformations on the Riemann sphere

are {l−1, l0, l+1} and {l−1, l0, l+1}. With only these generators, we can in fact obtain all four

conformal transformations. Operators

l−1 = −∂z , l−1 = −∂z (2.12)

clearly generate translations z 7→ z + b . Operators

l+1 = −z2∂z = −∂w , l+1 = −z2∂z = −∂w (2.13)

7



generate translations w 7→ w − c in w = −1/z and w = −1/z, which corresponds to the

special conformal transformations z 7→ z
cz+1

. For operators l0 and l0, we perform a change

of variable where z = reiφ and z = re−iφ , then we find

l0 + l0 = −r∂r , i(l0 − l0) = −∂φ , (2.14)

which generate dilations z 7→ az and rotations z 7→ zeiθ, respectively.

As we see above, in two dimensions the conformal transformations map z to az+b
cz+d

with

a, b, c, d ∈ C . We also require that ad − bc 6= 0 since these transformations are invertible.

Therefore, we determine the conformal group on the Riemann sphere S2 ' C∪{∞} to be

the Möbius group SL(2,C).

Now let us compute the commutators of the generators to determine the correspond-

ing algebra. Bring expressions of the generators given in Eq.(2.9) into the commutators,

we obtain the following commutation relationships,

[lm, ln] = (m− n)lm+n ,

[lm, ln] = (m− n)lm+n ,

[lm, ln] = 0 .

(2.15)

These are two copies of the so-called Witt algebra, which are infinite dimensional. It is this

property of the two-dimensional conformal group that makes conformal field theories in

two dimensions much richer than they are in higher dimensions.

As it turns out, a quantized system has a symmetry group that is a central extension

of a classical symmetry group. In our case, the Witt algebra is classical and its central ex-

tension with central charge c is the Virasoro algebra, denoted as Virc. The Virasoro algebra

is characterized by the following commutation relations,

[Lm, Ln] = (m− n)Lm+n + c p(m,n) ,

[Lm, c ] = [ c, c ] = 0 ,
(2.16)

where {Ln}with n ∈ Z are the elements of the central extension of the Witt algebra of {ln}
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and p(m,n) is a bilinear map which we will soon determine. Similarly, we have another

copy of Virasoro algebra of {Ln} with n ∈ Z and a central charge c associated with Witt

algebra of {ln}. In addition, just as in the Witt algebra, the generators of the Virasoro

algebra are also expressed in terms of independent complex variables z, z.

Now we will determine p(m,n) by observing Eq.(2.16), and notice that

•We require that p(m,n) = −p(n,m) since the commutator is anti-symmetric.

• Redefine L̂n := Ln + cp(n, 0)/n for n 6= 0 and L̂0 := L0 + cp(1,−1)/2. We see that

[L̂n, L̂0] = nL̂n and [L̂1, L̂−1] = 2L̂0, which tells us that by a redefinition, we can always

have p(1,−1) = 0 and p(n, 0) = 0.

• By computing the Jacobi identity [[Lm, Ln], L0]+[[Ln, L0], Lm]+[[L0, Lm], Ln] = 0 using

p(n, 0) = 0 and p(m,n) = −p(n,m) as shown in Eq.(A.1) we get that (m + n)p(n,m) = 0,

which implies that p(n,−n) with |n| ≥ 2 are the only non-zero central extensions.

• Let m = −n + 1 and replace 0 by −1 in the above Jacobi identity, and follow the

computation in Eq. (A.2) we reach the result that p(n,−n) = 1
12

(n3 − n).

Note that since p(m,n) = 0 for m,n = 0,±1, the generators {L−1, L0, L1} generate the

SL(2,C)/Z2 group just like the generators {l−1, l0, l1} do as we have shown. Based on our

observations and calculations, we conclude that, the Virasoro algebra Virc with central

charge c has the following commutation relations,

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 . (2.17)

We also note that what we have done in two-dimensional Euclidean space can be

carried out in two-dimensional flat spacetime with Lorentzian signature as well, simply

by performing a coordinate transformation where u = −t+x and v = t+x. We will again

see that its corresponding algebra is infinite dimensional.

2.2 Primary Fields and The Energy-Momentum Tensor

Before defining a primary field, let us first remind ourselves that the generators of the

Virasoro algebra are expressed in terms of two complex variables z, z ∈ C. Therefore,

9



instead of in a two-dimensional Euclidean space R2, we will study fields in a complex

plane C2.

Now let φ(z, z) be a field, it is called a primary field of conformal dimension (h, h) if it

transforms in the following way under conformal transformations z 7→ f(z),

φ′(z, z) =

(
∂f

∂z

)h(
∂f

∂z

)h
φ(f(z), f(z)) . (2.18)

A field is called quasi-primary field if Eq.(2.18) holds only for global conformal transforma-

tions, i.e. f ∈ SL(2,C)/Z2. If a field does not transformation as primary or quasi-primary

fields, it is called a secondary field. It is also useful to define two quantities, the scaling

dimension ∆ and the conformal spin J , where

∆ := h+ h , J := h− h , (2.19)

and we will discuss their physical meanings in the next section.

Now let us consider the map f(z) = z + ε(z) with ε(z) � 1, and see how a primary

field transforms under infinitesimal conformal transformations. Since ε(z) � 1, we can

ignore terms in second or higher order of ε(z) in our computation. As computed in the ap-

pendix (see Appendix A.2), we find that under infinitesimal conformal transformations,

a primary field φ(z, z) 7→ φ′(z, z) = φ(z, z) + δε,εφ(z, z) where the variation is given by,

δε,ε̄φ(z, z̄) =
(
h∂zε+ ε∂z + h̄∂z̄ ε̄+ ε̄∂z̄

)
φ(z, z̄) (2.20)

For a field theory, we need its energy-momentum tensor since this tensor encodes

the behavior of the theory under infinitesimal transformations in the metric. The energy-

momentum tensor is usually found by varying the action of the theory under infinitesimal

transformations in the metric. However, as we mentioned before, an explicit form of the

action is not required in two-dimensional CFTs since the infinite dimensional algebra in

two dimensions puts strong constraints on the theory. Therefore, the energy-momentum

tensor can be determined using only the Noether’s theorem. Recall that the Noether’s

theorem states that each continuous symmetry in a field theory corresponds to a con-
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served current jµ, i.e. ∂µjµ = 0. For a CFT with conformal symmetry xµ 7→ xµ + εµ(x), this

conserved current can be written as

jµ = Tµνε
ν , (2.21)

where the symmetric tensor Tµν is the energy-momentum tensor. Combining Eq.(2.18)

with conservation law ∂µjµ = 0 as computed in Appendix A.3, we get that in a CFT, the

energy-momentum tensor is traceless, i.e.

Tµ
µ = 0 . (2.22)

Now let us study what a traceless energy-momentum tensor tells us. To find expres-

sions of Tµν in z, z coordinates, we will change the coordinates from (x0, x1) to (z, z) by

inverting our definitions for z, z in Eq.(2.7) and use Tµν = ∂µx
α∂νx

βTαβ . We find that

(
Tzz Tzz

Tzz Tzz

)
=

(
1
2
(T00 − iT10) 0

0 1
2
(T00 + iT10)

)
. (2.23)

Then impose translational invariance ∂µTµν = 0, which is given by Eq.(A.4) and use the

fact that Tµµ = 0 to compute ∂zTzz and ∂zTzz, we get the following results as calculations

shown in Appendix A.4,

∂zTzz = 0 , ∂zTzz = 0 . (2.24)

Therefore, we conclude that the non-vanishing components of the energy-momentum

tensor are a chiral field Tzz(z, z) = T (z) and an anti-chiral field Tzz(z, z) = T (z).

2.3 The Operator Formalism for 2D CFTs

2.3.1 The Radial Quantization

To study the operator formalism for two-dimensional CFTs, we will first discuss quan-

tization in these theories. Our setup for the CFTs will be on the two-dimensional Eu-

clidean space, with time direction x0 and space direction x1, then we compactify the

11



Figure 2.1: Mapping a cylinder of infinite length to the complex plane.

space direction x1 on a unit circle to obtain a cylinder of infinite length. For the cylin-

der, we define the following complex coordinate w = x0 + ix1 with w = w + 2πi and

then let z = ew. We see that, as shown in Figure 2.1 [11], it maps an infinitely long cylin-

der labelled by x0, x1 to the complex plane labelled by z. This mapping relates the time

translations x0 7→ x0 + a to complex dilation z 7→ eaz and relates the space translations

x1 7→ x1 + b to rotations z 7→ zeib.

Recall that in the previous section, by Eq.(2.14) and the equality L0 = l0 due to a

vanishing central extension at n = 0, we have that L0 + L0 = −r∂r and i(L0 − L0) = −∂φ.

This mapping is useful in the sense that it allows us to reach the following conclusion,

H = L0 + L0 ,

P = i(L0 − L0) ,
(2.25)

because the Hamiltonian generates time translations, which are mapped to complex dila-

tion, and the momentum generates the space translations, which are mapped to rotations.

To quantize primary fields φ(z, z) with conformal dimensions (h, h), we perform a

Laurent expansion around z = z = 0,

φ(z, z) =
∑
n,n∈Z

z−n−hz−n−hφn,n , (2.26)

where the Laurent modes φn,n are promoted to operators as we do to Lorentz modes in

ordinary field theories when we quantize a field, and these Laurent modes are given by
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φn,n =
1

(2πi)2

∮
dzdz zn+h−1zn+h−1φ(z, z) . (2.27)

This quantization is the so-called radial quantization which was introduced by Fubini, Han-

son, and Jackiw [12].

2.3.2 The Operator Product Expansion

Now let us study the operator product expansion and develop the operator formalism

for two-dimensional CFTs. To do so, let us first revisit the energy-momentum tensor.

Since the preserved conformal symmetry is associates to the current given in Eq.(2.21) the

conserved charge can be expressed as Q =
∫
dx1j0 at constant x0 just as we have seen in

ordinary QFTs. Now by the mapping shown in Figure 2.1, a constant x0 is mapped to

constant |z|, therefore, the integral over x1 now becomes a contour integral over z and

z. Thus, we can write down a generalized expression for the conserved charge as the

following,

Q =
1

2πi

∮
C
dzT (z)ε(z) +

1

2πi

∮
C
dzT (z)ε(z) . (2.28)

For an operator A, we have the relation where δA = [Q,A] since the conserved charge

generates symmetry transformations for operator A. We can determine the infinitesimal

transformation of a primary field φ(z, z) generated by the conserved charge Q, which is

given by

δε,εφ(w,w) =
1

2πi

∮
C
dz[T (z)ε(z), φ(w,w)] +

1

2πi

∮
C
dz[T (z)ε(z), φ(w,w)] . (2.29)

where w,w ∈ C. Note that we need to consider the two situations where w,w are inside

and where w,w are outside the contour C. Taking these two situations into consideration,

Eq.(2.29) becomes

δε,εφ(w,w) =
1

2πi

∮
|z|>|w|

dzT (z)ε(z)φ(w,w)− 1

2πi

∮
|z|<|w|

dzφ(w,w)T (z)ε(z)

+
1

2πi

∮
|z|>|w|

dzT (z)ε(z)φ(w,w)− 1

2πi

∮
|z|<|w|

dzT (z)ε(z)φ(w,w) .

(2.30)
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In this case, it is useful to define the radial ordering of two operators as the following

R(A(z)B(w)) :=

A(z)B(w) for |z| > |w| ,

B(w)A(z) for |z| < |w| .
(2.31)

Note that for fermionic fields, there is a minus sign for the |z| < |w| case due to the

fermionic nature of the fields, that is to say that because the fields are Grassmann variables

and follow anti-commutation relations, R(A(z)B(w)) = −B(w)A(z) for |z| < |w|.

Then with this definition we can rewrite Eq.(2.30) as

δε,εφ(w,w) =
1

2πi

∮
C(w)

dzε(z)R
(
T (z)φ(w,w)

)
+

1

2πi

∮
C(w)

dzε(z)R
(
T (z)φ(w,w)

)
. (2.32)

where C(w) and C(w) are contours centered at w and w, respectively. Recall that, in the

previous section, we have found that the transformation of a primary field under in-

finitesimal conformal transformations takes the form of Eq.(2.20). Remind ourselves the

Cauchy formula in complex analysis, which is given by

f (n−1)(a) =
(n− 1)!

2πi

∮
C
dz

f(a)

(z − a)n
, (2.33)

where f(z) is an infinitely differentiable function defined on the complex plane and f (n)(z)

is its n-th derivative. Then we obtain the following identities,

∂wε(w) =
1

2πi

∮
C(w)

dz
ε(z)

(z − w)2
,

ε(w) =
1

2πi

∮
C(w)

dz
ε(z)

z − w
.

(2.34)

Now we can bring these expressions back to Eq.(2.20) and compare them with Eq.(2.20),

then reach the conclusion that

R
(
T (z)φ(w,w)

)
=

h

(z − w)2
φ(w,w) +

1

z − w
∂wφ(w,w) + non-singular terms ,

R
(
T (z)φ(w,w)

)
=

h

(z − w)2
φ(w,w) +

1

z − w
∂wφ(w,w) + non-singular terms ,

(2.35)
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The above expansion defines an algebraic product structure on the space of quantum

fields, and it is called the operator product expansion (OPE).

Using this expression, we now give an alternative definition to primary fields, which

is that a field φ(z, z) is a primary field with conformal dimension (h, h) if the OPE between the

energy-momentum tensor and φ(z, z) takes the form given by Eq.(2.35). That is to say, a field

φ(z, z) transforming under conformal transformations as Eq.(2.18) has an OPE of energy-

momentum tensor with φ(z, z) which takes the form of Eq.(2.35).

With this alternative definition of a primary field, it is natural to ask if the energy-

momentum tensor itself is a primary field. To answer this question, let us study the OPE

of the energy-momentum tensor with itself. We claim that the OPE takes the following

form,

R
(
T (z)T (w)

)
=

c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ . . . , (2.36)

where c is the central charge of the theory and |z| > |w|. To verify this statement, we first

Laurent expand T (z) in the following way,

T (z) =
∑
n∈Z

z−n−2Ln where Ln =
1

2πi

∮
dzzn+1T (z) . (2.37)

Note that when we choose a conformal transformation ε(z) = −εnzn+1 as a term in

Eq.(2.8) and bring the Laurent expansion of T (z) into the expression for chiral part of the

conserved charge Eq.(2.28), we have the following result,

Qn =
1

2πi

∮
dzT (z)(−εnzn+1) = −εn

∑
m∈Z

δmnLm = −εnLn . (2.38)

By identifying the Laurent modes of the energy-momentum tensor and the generators

of infinitesimal conformal transformation, we can compute the commutation relation

[Lm, Ln] as shown in Eq.(A.7) and conclude that Eq.(2.36) indeed reproduces the Virasoro

algebra Eq.(2.17) as we found before. Therefore, the statement of the OPE is verified.

We notice that in our claim, the OPE for the energy-momentum tensor with itself does

not take the form of the OPE for the energy-momentum tensor with a primary field, which

means that for non-vanishing central charges, the energy-momentum tensor is NOT a
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primary field. In fact, it transforms under conformal transformations f(z) as,

T ′(z) =

(
∂f

∂z

)2

T
(
f(z)

)
+

c

12
S
(
f(z), z

)
,

S(f(z), z) =
1

(∂zf)2

(
(∂zf)(∂3

zf)− 3

2
(∂2
zf)2

)
,

(2.39)

where S(w, z) is called the Schwarzian derivative. Let us consider infinitesimal trans-

formations f(z) = z + ε(z). Then apply Eq.(2.32), the transformations in the energy-

momentum tensor is given by

δεT (z) =
c

12
∂3
z ε(z) + 2T (z)∂zε(z) + ε(z)∂zT (z) . (2.40)

Now we can compare this expression with Eq.(2.39), we get that for infinitesimal trans-

formations f(z) = z + ε(z), we have

S(z + ε(z), z) =
1

(1 + ∂zε)2

(
(1 + ∂zε)(∂

3
z ε)−

3

2
(∂2
z ε)

2

)
≈ ∂3

z ε . (2.41)

For a chiral primary field φ(z), we Laurent expand it similarly as in Eq.(2.26) and

Eq.(2.27),

φ(z) =
∑
n∈Z

z−n−hφn where φn =

∮
dz

2πi
zn+h−1φ(z) . (2.42)

Then following the computation in Eq.(A.8), we find that the holomorphic part of the

OPE for a chiral field φ(z) is given by

[Lm, φn] = [(h− 1)m− n]φm+n (2.43)

for all m,n ∈ Z. Note that for a quasi-primary field, the above holds only when m takes

the value of −1, 0,+1.

2.3.3 The OPE of Quasi-Primary Fields

We would also like to introduce the operator algebra of quasi-primary fields and

their OPE. Before we start, we will note that from now on we will write R(A(z)B(w))
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as A(z)B(w) to simplify the notation since we will always assume radial ordering for a

product of fields. To start, let us consider the two-point function 〈φi(z)φj(w)〉 = g(z, w) as

a function of z and w. By requiring invariance under translations generated by L−1, we

see that the function takes the form of g(z − w). The invariance under dilations z 7→ λz

generated by L0 leads to the relation λhi+hjg(λ(z − w)) = g(z − w), and we find that the

funtion g(z − w) ∼ (z − w)−(hi+hj). The function is also invariant under transformations

z 7→ −1/z generated by L1, and it leads to the conclusion hi = hj as one can check by set-

ting z−2hiw−2hjg(−1/z+1/w) equal to g(z−w). Therefore, we conclude that the two-point

function of two quasi-primary fields is fixed by the SL(2,C)/Z2 conformal symmetry by

〈φi(z)φj(w)〉 =
dijδhi,hj

(z − w)2hi
, (2.44)

where dij is a structure constant. Following the same arguments as above, the three-point

function of chiral quasi-primary fields is fixed by the SL(2,Z)/Z2 conformal symmertry

and it is given by

〈φi(zi)φj(zj)φk(zk)〉 =
Cijk

z
hi+hj−hk
ij z

hj+hk−hi
jk z

hi+hk−hj
ik

, (2.45)

where zij ≡ zi − zj and Cijk is again a structure constant.

Based on what we just found for the two-point and three-point functions, we can

deduce a general form of the OPE of two-quasi primary fields. Let φi(z) be quasi-primary

fields with conformal dimension hi, where the subscript denotes different fields, we state

that the OPE of two-quasi primary fields involves only other quasi-primary fields and

their derivatives [13]. We will present the result here, the general form is given by

φi(z)φj(w) =
∑
k,n≥0

anijk
n!

Ck
ij

(z − w)hi+hj−hk−n
∂nφk(w)

with coefficients anijk =

(
2hk + n− 1

n

)−1(
hi − hj + hk + n− 1

n

)

and Cijk = C l
jkdlk ,

(2.46)
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where the coeffiecients are determined using results for the two-point and three-point

functions. We will also present the very useful algebra of the Laurent modes φi,m of quasi-

primary fields φi(z) =
∑

m z
−m−hiφi,m with conformal dimension hi,

[φ(i)
m , φ

(j)
n ] =

∑
k

Ck
ijpijk(m,n)φk,m+n + dijδm+n,0

(
m+ hi − 1

2hi − 1

)
,

with pijk(m,n) =
∞∑

r,s=0
r+s=hi+hj−hk−1

Cijk
r,s

(
−m+ hi − 1

r

)(
−n+ hj − 1

s

)
,

where Cijk
r,s = (−1)r

(2hk − 1)!

(hi + hj + hk − 2)!

s−1∏
t=0

(2hi − 2− r − t)
r−1∏
u=0

(2hj − 2− s− u) .

(2.47)

Before moving on to the next section, we will also present an application of the OPE of

two-quasi primary fields by introducing a definition of the so-called current algebra. This

will be an essential ingredient for studying bosonic and fermionic CFTs as we will see in

the next chapter. In a two-dimensional CFT, a current is defined as a chiral field j(z) with

conformal dimension h = 1 (or an anti-chiral field j(z) with h = 1). Assume we have

a CFT with N quasi-primary currents ji(z) =
∑

n∈Z z
−n−1ji,m where i ∈ {1, . . . , N}, the

algebra of the Laurent modes is given by

[j(i)
m , j

(j)
n ] =

∑
k

Ck
ijp111(m,n)jk,m+n + dijmδm+n,0 , (2.48)

where the polynomial p111(m,n) = 1 as one can compute using the expression above and

Ck
ij = −Ck

ji since the commutator is anti-symmetric. We will employ this algebra when

we discuss bosonic and fermionic CFTs.

2.4 The Hilbert Space of CFT

In this section, our goal is to explore the CFT Hilbert space in two-dimensions. To do

so, we will first discuss the ordering prescription for two-dimensional CFTs. Similar as

in ordinary quantum field theories, for operators we need an ordering prescription for
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products of fields at the same point in spacetime. For this purpose, we define the normal

ordering which brings creation operators to the left. In this section, we will show how the

normal ordering for the product fields arises from the regular part of an OPE. To do so,

let us first determine the annihilation operators in a CFT, then find the creation operators

in the theory.

Recall that on the cylinder of infinite length as shown in Figure 2.1, the infinite past

labelled by x0 = −∞ is mapped to z = z = 0. Then it is natural to define an asymptotic

in-state of the form |φ〉 = lim
z,z→0

φ(z, z) |0〉. Recall that we have the Laurent expansion for

a field φ(z, z) as given by Eq.(2.26). For this expression to be non-singular at z = 0, we

require that φn,n |0〉 = 0 for n > −h and n > −h, which means that these operators can

be interpreted as annihilation operators. Therefore, an asymptotic in-state can be simply

written as

|φ〉 = lim
z,z→0

φ(z, z) |0〉 = φ−h,−h |0〉 . (2.49)

With similar reasoning, an asymptotic out-state can be written as

〈φ| = lim
w,w→∞

w2hw2h 〈0|φ†(w,w) = 〈0|φ+h,+h , (2.50)

for a detailed derivation, see Appendix A.6. Recall that the Hamiltonian can be written as

H = L0 +L0, then let us calculate the eigenvalue of L0, which is called the ”chiral energy”,

for a chiral primary,

L0φn |0〉 = (L0φn − φnL0) |0〉 = [L0, φn] |0〉 = −nφn |0〉 , (2.51)

where we used L0 |0〉 = 0 and Eq.(2.43). Since the annihilation operators φn,n |0〉 = 0 for

n > −h and n > −h, the only values that the chiral energy can take are n ≤ −h. Therefore,

we conclude that the creation operators are operators φn with n ≤ −h. Similarly, the anti-

chiral energy is given by L0φn |0〉 = −nφn |0〉 with n ≤ −h, and the creation operators are

φn with n ≤ −h.

Now that we determined the creation operators in a CFT, we can define the normal

ordering to be the prescription where we put all creation operators to the left, and we
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denote the normal ordering as N(χφ) or : χφ :. In fact, the regular part of an OPE gives

rise to normal ordered products naturally, which can be written as

φ(z)χ(w) = singular part +
∞∑
n=0

(z − w)n

n!
N(χ∂nφ)(w) . (2.52)

For n = 0, we have the normal ordered product for two operators. To find how the normal

ordered product can be expressed in terms of the Laurent modes of fields χ and φ, we will

do the following. First, we pick out this term by performing
∮
dz[2πi(z − w)]−1 on both

sides of Eq. (2.52), then the contour integral vanishes for all terms with n 6= 0, which gives

us the equality

∮
C(w)

dz

2πi

φ(z)χ(w)

z − w
= N(χφ)(w) . (2.53)

Now we Laurent expand N(χφ)(w) as usual and get

N(χφ)(w) =
∑
n∈Z

w−n−h
χ−hφN(χφ)n ,

where N(χφ)n =

∮
C(w)

dw

2πi
wn+hχ+hφ−1N(χφ)(w) .

(2.54)

Then, by bringing Eq.(2.53) back into the expression for Laurent modesN(χφ)n we obtain

the result

N(χφ)n =
∑
k>−hφ

χn−kφk +
∑
k≤−hφ

φkχn−k . (2.55)

A detailed computation can be found in Appendix A.7. As we can see in the above ex-

pression, the annihilation operators φk with k > −hφ are on the right in the first term,

and the creation operators φk with k ≤ −hφ are on the left in the second term. Thus, this

expression indeed satisfies the definition for a normal ordered product.

After finding the normal ordered product of two fields, we will also introduce two

useful formulas obtained using the Laurent expansion for ∂φ(z) as

∂φ(z) =
∑
n∈Z

(−n− h)z−n−h−1φn , (2.56)
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and performing similar calculations as in Appendix A.7. In addition, we can also find

terms in Eq.(2.52) with higher n following similar procedure. The formulas are

N(χ∂φ)n =
∑

k>−hφ−1

(−hφ − k)χn−kφk +
∑

k≤−hφ−1

(−hφ − k)φkχn−k ,

N(∂χφ)n =
∑
k>−hφ

(−hφ − n+ k)χn−kφk +
∑
k≤−hφ

(−hφ − n+ k)φkχn−k ,
(2.57)

The normal order product can be generalized to quasi-primary fields, just like what

we will do for the OPE. We will not present it in the thesis but a reference for more details

can be found in [11] or [14].

Using the tools we introduced above, we now can study the CFT Hilbert space in

two-dimensions. Recall that in Eq.(2.37) we have the Laurent expansion for the energy-

momentum tensor, then it implies that its asymptotic in-state is given by L−2 |0〉 and the

asymptotic in-state of ∂T (z) is given by L−3 |0〉 by Eq.(2.49). Then we can write the normal

ordered product of the energy-momentum tensor with itself as

N(TT )(z) =
∑
n∈Z

z−n−4N(TT )n ,

where N(TT )n =
∑
k>−2

Ln−kLk +
∑
k≤−2

LkLn−k

(2.58)

as shown in Eq.(2.55). We see that in the z → 0 limit, the only well-defined term has the

mode with n = −4. In addition, the first term vanishes when we act this operator on the

state |0〉 and in the second term, all n − k > −2 components vanish as well. Therefore,

the only term that contributes to the Laurent expansion of N(TT ) is the Laurent mode

N(TT )−4 = L−2L−2, and the state can be written as L−2L−2 |0〉. Similarly, we find that the

normal ordered product N(T∂T ) is given by L−3L−2 |0〉 using Eq.(2.57).

As we see in the above examples, the states are expressed in terms of creation opera-

tors — Laurent modes Ln of the energy-momentum tensor — acting on the vacuum |0〉.

We define the space of all such states as a Verma module {Lk1 . . . Lkn |0〉 : ki ≤ −2}. For a

state |Φ〉 in the Verma module, we can find a field F ∈ {T, ∂T, . . . , N(TT ), N(T∂T ), . . . }

such that lim
z→0

F |0〉 = |Φ〉.
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To define a conformal family of a primary field, we consider primary field φ(z) with

conformal dimension h, and denote the state emerges from this field as |h〉 = φ−h |0〉.

Then by Eq.(2.43) and the fact that φn |0〉 = 0 for all n 6= −h we get Ln |h〉 ∼ φ−h+n |0〉 = 0

for n > 0. For n = 0, we get the chiral energy of this state, i.e. L0 |h〉 = h |h〉.

What is more interesting are the states Ln |h〉 with n < 0. In fact, for each primary

field φ(z), there is a corresponding infinite set of fields by taking derivatives and taking

the normal ordered products with the energy-momentum tensor. We denote the conformal

family of a primary φ(z) as

[
φ(z)

]
:=
{
φ, ∂φ, ∂2φ, . . . , N(Tφ), N(T∂φ), N(∂Tφ), . . .

}
,

or
[
φ(z)

]
:=
{
Lk1 . . . Lknφ(z) : ki ≤ −1

}
,

(2.59)

where fields in the family are called descendant fields.

In this chapter, we introduced basic knowledge needed to study conformal field the-

ories in two dimensions. In particular, we presented two-dimensional CFTs using the

operator algebras instead of the usual Lagrangian formulation used for ordinary quan-

tum field theories. Later on, we will make connections with the usual method and study

the bosonic and fermionic conformal field theories.
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Chapter 3

Conformal Field Theory on the Torus

In the previous chapter, we studied conformal field theories on the Riemann sphere

S2 ' C ∪ {∞}, on which the chiral and anti-chiral sectors decouple and thus can be

treated independently. Such theories on the Riemann sphere correspond to the tree-level

contribution in the perturbation expansion of string theory, because in string theory, a

tree-level amplitude diagram for string interactions is topologically a sphere augmented

with states at infinity where the legs are located on the string worldsheet, as shown in

Figure 3.1. The first row is the perturbative expansion of string theory for four closed

string interactions as a sum of tree level, one-loop level, and higher loop level diagrams,

and the second row is a topological equivalence of the first row, where crosses represent

the legs, i.e. the states at infinity. In addition, loop-level contributions in the perturbative

expansion of string theory are described by CFTs on higher genus Riemannian surfaces.

In this chapter, we will consider the one-loop level and discuss conformal field theories

defined on a torus T 2. We will first introduce properties of the torus, in particular, the

modular group. Then, we will determine the partition function of a two-dimensional

CFT using these properties. Also, we will study the bosonic and the fermionic CFTs on

the torus in more detail.
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Figure 3.1: The perturbation expansion of string theory for four closed string interactions

and its topological equivalence.

3.1 The Modular Group of the Torus

Recall that in the previous chapter, we discussed the mapping z = ew = ex
0+ix1 , which

maps the complex plane to a cylinder of infinite length. To form a torus, we can cut

out a finite piece of the infinitely long cylinder and identify the boundaries of this finite

piece. Another similar way to form a torus skips the intermediate cylinder mapping,

instead we define a torus by identifying points w = x0 + ix1 on the complex plane C as

w ∼ w + mω1 + nω2 with a complex pair (ω1, ω2) and m,n ∈ Z, the corresponding lattice

is shown in Figure 3.2 [15]. The shaded region is the fundamental domain of the torus

generated by (ω1, ω2), and the torus is formed by identifying opposite edges. We define

the complex structure or the modular parameter as

τ =
ω2

ω1

= τ1 + iτ2 , (3.1)

and this quantity describes the shape of the torus.

It is easy to see that there are different choices of (ω1, ω2) giving the same lattice and the

same torus, and to determine how these choices are related, let us consider the following.
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Figure 3.2: The vertices represent the periods mω1 + nω2, and the fundamental domain of

the torus generated by (ω1, ω2) is the shaded region.

Assume that (ω1, ω2) and (ω′1, ω
′
2) describe the same lattice, then by Theorem 1.2 in [15],

there exists a 2× 2 matrix with integer entries a, b, c, d ∈ Z and determinant ad− bc = ±1

such that

(
ω′1

ω′2

)
=

(
a b

c d

)(
ω1

ω2

)
, where the matrices are elements of SL(2,Z). Also,

it is obvious that (ω1, ω2) and (−ω1,−ω2) describe the same lattice as shown in Figure 3.2

and thus we can divide out the group Z2. Therefore, the equivalent pairs (ω1, ω2) and

(ω′1, ω
′
2) are related by the SL(2,Z)/Z2 transformations and we conclude that the modular

group of the torus acts on the modular parameter τ as

τ 7→ aτ + b

cτ + d
with

(
a b

c d

)
∈ SL(2,Z)/Z2 . (3.2)

The original fundamental domain is shown in Figure 3.2, but now we label the lattice

with modular parameter τ instead of the complex pair (ω1, ω2). Now, let us consider the

following modular transformations.

• The modular T-transformation T : τ 7→ τ + 1, as shown in Figure 3.3 a) [11].

• The modular U-transformation U : τ 7→ τ
τ+1

, as shown in Figure 3.3 b) [11].

• The modular S-transformation S : τ 7→ − 1
τ
. It is related to the above two transfor-

mations by S = UT−1U and (ST 3) = I, and with itself it satisfies S2 = I.
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In fact, it is sufficient to consider only the T and S transformations since they are the

generators of the modular group SL(2,Z)/Z2.

Figure 3.3: The fundamental domain transforms under a) a modular T-transformation,

and b) a modular U-transformation.

3.2 The Partition Function on the Torus

Now let us consider the partition function for conformal field theories on the torus. We

choose Reτ = τ1 to be the space direction and Imτ = τ2 to be the time direction and define

the partition function in a similar way as we define the partition function in statistical

mechanics,

Z(τ1, τ2) = TrH

(
exp(−2πτ2H + 2πτ1P )

)
(3.3)

where the trace is taken over all states in the Hilbert space H, H is the Hamiltonian gen-

erating time translations and P is the momentum operator generating space translations.

Recall that, on the complex plane, H,P can be expressed as in Eq.(2.25), but since now

we are on a torus, we need to write L0, L0 in cylinder space as a torus can be formed

by cutting out a finite piece of the infinite cylinder and identifying the boundaries. To

determine (Lcyl)0, we recall that L0 is the 0-th Laurent mode of the energy-momentum

tensor, for which we know how it transforms under transformation z = ew = f(w) as in

Eq.(2.39), using S(f(w), w) = −1
2

and we get

Tcyl(w) =

(
∂f(w)

∂w

)2

T
(
f(w)

)
+

c

12
S
(
f(w), w

)
= z2T (z)− c

24
. (3.4)
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Then we Laurent expand the energy-momentum tensor on the cylinder and obtain

Tcyl(w) =
∑
n∈Z

z−nLn −
c

24
=
∑
n∈Z

(
Ln −

c

24
δn,0

)
e−nw , (3.5)

which tells us that the 0-th Laurent mode on the cylinder is given by (Lcyl)0 = L0− c
24

and

similarly, (Lcyl)0 = L0 − c
24

, where c, c denote the central charges. Thus, the Hamiltonian

is given by

Hcyl = (Lcyl)0 + (Lcyl)0 = L0 + L0 −
c+ c

24
,

Pcyl = i
(

(Lcyl)0 − (Lcyl)0

)
= i

(
L0 − L0 −

c− c
24

)
,

(3.6)

and the ground state energy is given by E0 = 〈Tcyl00〉 = − c+c
24

. Then we let q = e2πiτ ,

q = e−2πiτ and write the partition function as

Z(τ, τ) = TrH

(
qL0− c

24 qL0− c
24

)
. (3.7)

In addition, the partition function Z(τ, τ) has to be invariant under the action of the mod-

ular group since the torus is unchanged under SL(2,Z)/Z2 transformations. This is what

we will use to study the modularity of two-dimensional CFTs in this section.

Now that we found the partition function for conformal field theories on the torus,

we will study the partition functions for bosonic and fermionic CFTs in more detail in the

following sections. So far, we studied the structures of conformal field theories without

using their Lagrangian, but since Lagrangian formalism is the approach that appears nat-

urally in string theory, in the following sections, let us consider bosonic and fermionic

CFTs with given Lagrangian actions.

3.3 Free Bosons

Let us consider a massless scalar field X(z, z) compactified on a one-dimensional

torus, i.e. a circle of radius R. Consider the following action
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S =
1

2πα′

∫
dzdz

√
|g|gab∂aX∂bX

=
1

2πα′

∫
dzdz ∂X · ∂X ,

(3.8)

where the metric gab =

(
0 1

2zz

1
2zz

0

)
, and 1

2πα′
is the string tension and the constant α′ is

called the Regge slope for which we conventionally choose to be 2. This action in fact has a

connection to the action of a massless scalar field on a cylinder in string theory, which is

obtained through mapping the cylinder to the complex plane with a change of variables

where z = ex
0+ix1 .

By setting δXS = 0 as we do in the Appendix A.8, we get the equation of motion for

the above action to be ∂∂X(z, z) = 0. Therefore, we conclude that the currents

j(z) = i∂X(z, z) =
∑
n∈Z

z−n−1jn ,

j(z) = i∂X(z, z) =
∑
n∈Z

z−n−1jn

(3.9)

are chiral and anti-chiral, respectively. Also, the action S being invariant under conformal

transformations implies that the field X(z, z) has conformal dimensions (h, h) = (0, 0) as

one can check by taking X ′(z, z) = X(y, y) under the transformation z 7→ f(z) = y. Thus,

we conclude that j(z) and j(z) are primary fields with conformal dimensions (1, 0) and

(0, 1) respectively.

The current algebra for a free boson is the so-called U(1) algebra, which we have pre-

sented in the previous chapter. When we have only one current field j(z), Eq.(2.48) thus

gives the following current algebra,

[jm, jn] = mδm+n,0 . (3.10)

In addition, we can integrate Eq.(3.9) to find the field X(z, z), which is given by

X(z, z) = x0 − i
(
j0 ln z + j0 ln z

)
+ i
∑
n 6=0

1

n

(
jnz
−n + jnz

−n
)
, (3.11)
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where X0 is a constant. From there, let us now study the consequences of the field being

compactified on a circle of radius R.

3.3.1 Free Bosons Compactified on a Circle

For a free boson on a circle of radiusR, we identify the fieldX(z, z) withX(z, z)+2πRn

with n ∈ Z, which means we have the relation where X(e2πiz, e−2πiz) = X(z, z) + 2πRn.

Solve this equation using Eq.(3.11), we find that on a circle of radius R, the 0-th current

modes for chiral and aniti-chiral fields satisfy j0− j0 = nR with n ∈ Z, which implies that

under j0, j0 the ground state is non-trivially charged. For n ∈ Z, denote the ground state

as |Γ, n〉, where we use Γ to label the eigenvalue of j0 acting on this state, then we have

j0 |Γ, n〉 = Γ |Γ, n〉 and j0 |Γ, n〉 = (Γ− nR) |Γ, n〉. We will soon determine the value for Γ.

To find the partition function, we need the 0-th Laurent mode of the energy-momentum

tensor, so let us now study the energy-momentum tensor in the bosonic case. We define

the energy-momentum tensor for the action S as

Tab = 4πγ
δS√
|g|δgab

, (3.12)

where γ is another normalization constant which we will determine soon. Then we use

δ
√
|g| = −1

2

√
|g|gabδgab to compute entries of Tab, we find the following results,

Tab =

(
γ∂X∂X 0

0 γ∂X∂X

)
, (3.13)

where a, b = z or z. Detailed computations can be found in [16]. Note that it is important

to take the normal ordered expression for Tab since for a quantum theory, the expectation

value of Tab vanishes. Therefore, the chiral part of the energy-momentum tensor is

Tzz = T (z) = γN(∂X∂X)(z) = γN(jj)(z) , (3.14)

and similarly, the anti-chiral part is given by T (z) = γN(jj)(z).
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Now we can determine γ using the fact that j(z) is a primary field of conformal di-

mension h = 1. We Laurent expand both sides of T (z) = γN(jj)(z) and find

Ln = γN(jj)n = γ
∑
k>−1

jn−kjk + γ
∑
k≤−1

jkjn−k . (3.15)

Then the commutator [Lm, jn] = −2γnjm+n as shown in Appendix A.9. Recall that the

Laurent modes of a primary field satisfies [Lm, φn] Eq.(2.43), therefore, with the choice of

α′ = 2 we conclude that γ = 1
2
. Also, we claim that the CFT of a free boson has central

charge c = 1 and we will verify this statement in the Appendix A.10.

Now we have the key ingredient to compute the partition function, taking n = 0 in

Eq.(3.15), we get the 0-th Laurent mode of the chiral part T (z) of the energy-momentum

tensor, which is

L0 =
1

2

∑
k>−1

j−kjk +
1

2

∑
k≤−1

jkj−k =
1

2
j0j0 +

∑
k≥1

j−kjk (3.16)

where we let index l = −k for the second term. Since the Hilbert space of a free bosonic

CFT consists states generated by the current modes j−k, j−l for k, l ≥ 1 and the chiral

and anti-chiral parts of a field decouple, we can express the states for the chiral part as

|n1, n2, n3, . . .〉 = jn1
−1j

n2
−2j

n3
−3 . . . |Γ, n〉 with ni ≥ 0 where |Γ, n〉 is the ground state. Now we

can act the 0-th Laurent mode of the energy-momentum tensor on states in the Hilbert

space following calculations in the Appendix A.11, then we obtain the result

L0 |n1, n2, n3, . . .〉 =

(
1

2
Γ2 +

∑
k≥1

nkk

)
|n1, n2, n3, . . .〉 ,

L0 |n1, n2, n3, . . .〉 =

(
1

2

(
Γ− nR

)2
+
∑
k≥1

nkk

)
|n1, n2, n3, . . .〉 .

(3.17)

Then we can bring our results for L0, L0 into Eq.(3.7) and compute the partition function

of a free boson compactified on a circle of radius R as shown in the Appendix A.11. Let
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q = e2πiτ and q = e−2πiτ , we get that the partition function is given by

Zboc(τ, τ) =
1

|η(τ)|2
∑
Γ,n

q
1
2

Γ2

q
1
2

(Γ−nR)2 . (3.18)

where we sum over n ∈ Z and discrete values of Γ. In the above expression, η(τ) is the

Dedekind η-function, which is defined as

η(τ) ≡ q
1
24

∞∏
n=1

(1− qn) , (3.19)

which behaves under the T -transformations and S-transformations as

η(τ + 1) = e
πi
12η(τ) , η

(
− 1

τ

)
=
√
−iτη(τ) . (3.20)

One can find a detailed verification of these two relations in [15].

Now let us determine the value of Γ using the modular invariance of the partition

function and the modular properties of the Dedekind η-function. For the modular T -

transformation τ 7→ τ + 1 we have

Z(τ, τ) 7→ Z(τ + 1, τ + 1) =
1

|η(τ)|2
∑
Γ,n

q
1
2

Γ2

q
1
2

(Γ−nR)2e2πin(RΓ− 1
2
nR2) , (3.21)

and we see that modular invariance implies that RΓ − nR2

2
= m with m ∈ Z which gives

Γ = m
R

+ nR
2

. Thus, we can label a ground state as |m,n〉 with m,n ∈ Z, and it has chiral

ground state charge m
R

+ nR
2

and anti-chiral ground state charge m
R
− nR

2
. Here integers m

and n are called the momentum and winding numbers, respectively. Our final result for

the partition function of a free boson on a circle of radius R is given by

Zboc(τ, τ) =
1

|η(τ)|2
∑
m,n∈Z

q
1
2

(
m
R

+nR
2

)2
q

1
2

(
m
R
−nR

2

)2
=

1

|η(τ)|2
∑
m,n∈Z

exp

{
− πτ2

(
2m2

R2
+
n2R2

2

)
+ 2πiτ1mn

}
,

(3.22)

where the modular parameter τ = τ1 + iτ2 as we have seen before.
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We can also show that the partition function is modular invariant under the modular

S-transformations, that is to say

Zboc
(
− 1

τ
,−1

τ

)
= Zboc(τ, τ) , (3.23)

and this is a straightforward calculation which is shown in the Appendix A.12.

An interesting property of the partition function Eq.(3.22) of a free boson on a circle of

radius R is that it remains unchanged when we replace R by α′/R, where α′ = 2 in our

case. This amounts to switch the momentum and winding numbers, and this is known

as the T-duality. Thus, in string theory, we cannot distinguish whether the radius of the

circle is R or 2/R for a closed string propagating in a circular background. The radius

R =
√

2 is called the self-dual radius.

3.3.2 Free Bosons on Z2 Orbifold

In the previous subsection, we discussed the case of a free boson compactified on a

circle, and in the following let us consider a variantion of it, which is a boson compactified

on a Z2-orbifold of a circle with radius R, and the bosonic field X(z, z) is identified with

both X(z, z) + 2πR and −X(z, z). Denote this Z2 symmetry as the orbifold action R :

X(z, z) 7→ −X(z, z), focusing on the chiral part, then the boundary condition can be

expressed as

X(z +mω1 + nω2) = e2πi(mµ+nν)X(z) , (3.24)

where µ, ν take the value of either 0 or 1
2
, which denote ”untwisted” and ”twisted” bound-

ary conditions, repectively. Note that here the four boundary conditions (µ, ν) come from

the topological structure of the space on which the bosonic field lives, and their root is

different from the root of the boundary conditions allowed by the nature of fermionic

fields, which we will discuss in section 3.4.

Denote the partition function for a free boson with boundary condition (µ, ν) as Zµ,ν ,

then we have the following partition functions for each boundary conditions
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Z0,0 = TrH

(
qL0− 1

24 qL0− 1
24

)
, Z0, 1

2
= TrH

(
RqL0− 1

24RqL0− 1
24

)
,

Z 1
2
,0 = TrH

(
qL0− 1

48 qL0− 1
48

)
, Z 1

2
, 1
2

= TrH

(
RqL0− 1

48RqL0− 1
48

)
,

(3.25)

where the Hilbert spaceH contains only states that are invariant underR.

To find the partition functions of free bosons on Z2-orbifold, all that is left to do is

to determine how this orbifold action R acts on a general state, then following the same

calculations carried out in the previous subsection, we will reach our results. Choose the

action R such that the ground state |Γ, n〉 is left invariant, consider the orbifold action

R : X(z, z) → −X(z, z) acting on a state jk |Γ, n〉, we see that Rjk = −jkR. Then for a

general state |n1, n2, n3, . . .〉, we have

R|n1, n2, n3, . . .〉 = Rjn1
−1j

n2
−2j

n3
−3 . . . |Γ, n〉 = (−1)n1+n2+n3+... |n1, n2, n3, . . .〉 . (3.26)

Follow the similar calculations as we did for a free boson on a circle with the above ex-

pression, it is easy to find the partition function Z0,0.

Z0,0 = Zboc(τ, τ) , Z0, 1
2

= 2

∣∣∣∣∣ η(τ)

ϑ2(τ)

∣∣∣∣∣ ,
Z 1

2
,0 = 2

∣∣∣∣∣ η(τ)

ϑ3(τ)

∣∣∣∣∣ , Z 1
2
, 1
2

= 2

∣∣∣∣∣ η(τ)

ϑ4(τ)

∣∣∣∣∣ ,
(3.27)

where partition functions Z0, 1
2
, Z 1

2
,0 and Z 1

2
, 1
2

follow similar calculations for fermionic par-

tition functions ZR,NS, ZNS,NS and ZNS,R respectively, which are done in the next section,

except in the orbifold boson case the boson numbers nk at each mode can be any natural

number, while in the fermionic case the fermion number nk at each mode is restricted

to 0 and 1 due to the nature of fermions. As we have discussed, the partition function

needs to be modular invariant. Taking the modularity properties of theta functions into

consideration, the total partition function of a free boson on a Z2-orbifold is the sum of

Z0,0, Z0, 1
2
, Z 1

2
,0 and Z 1

2
, 1
2
,

Zorb(τ, τ) =
1

2
Zboc(τ, τ) +

∣∣∣∣∣ η(τ)

ϑ2(τ)

∣∣∣∣∣+

∣∣∣∣∣ η(τ)

ϑ3(τ)

∣∣∣∣∣+

∣∣∣∣∣ η(τ)

ϑ4(τ)

∣∣∣∣∣ , (3.28)
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where the factor of 1
2

comes from projecting states onto orbifold invariant states, i.e. the

states that are invariant under the orbifold action R, because the Hilbert space contains

only orbifold invariant states.

Then we can use the relation between theta functions and the Dedekind η-function as

shown in Appendix B.2 to write the partition function as

Zorb(τ, τ) =
1

2

(
Zboc(τ, τ) +

|ϑ2(τ)ϑ3(τ)|
|η(τ)|2

+
|ϑ2(τ)ϑ4(τ)|
|η(τ)|2

+
|ϑ3(τ)ϑ4(τ)|
|η(τ)|2

)
. (3.29)

3.4 Free Fermions

In this section, let us consider the CFTs of a free fermion on the torus. For a free

Majorana fermion Ψ =

(
ψ(z, z)

ψ(z, z)

)
, the spinors ψ(z, z), ψ(z, z) are both real fields, i.e.ψ† =

ψ and ψ
†

= ψ. Consider the following action

S =
1

2πα′

∫
dzdz

√
|g|2Ψ†

(
∂ 0

0 ∂

)
Ψ

=
1

2πα′

∫
dzdz(ψ∂ψ + ψ∂ψ) ,

(3.30)

where the metric gab =

(
0 1

2

1
2

0

)
and α′ is chosen to be 2 as before.

By setting δψS = δψS = 0 as we do in the Appendix A.13, we get the equation of

motion of the above action to be ∂ψ(z, z) = ∂ψ(z, z) = 0, which implies that ψ(z, z) = ψ(z)

is a chiral field and ψ(z, z) = ψ(z) is a anti-chiral field. By requiring the action S to

be invariant under conformal transformations, we get that the field ψ(z) has conformal

dimension (h, h) = (1
2
, 0) and the field ψ(z) has conformal dimension (h, h) = (0, 1

2
).

One can easily verify this statement by taking ψ′(z, z) =
(
∂y
∂z

)1/2
ψ(y, y) and ψ

′
(z, z) =(

∂y
∂z

)1/2
ψ(y, y) under the transformation z 7→ f(z) = y, and check the invariance of the

action. In addition, we know that fermionic fields have two possible behaviours under

2π rotations, to distinguish these possibilities, let us define the following. On the complex
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plane, for the chiral part we have the Neveu-Schwarz sector (NS) ψ(e2πiz) = +ψ(z) and

the Ramond sector (R) ψ(e2πiz) = −ψ(z). Laurent expand the field ψ(z), we get

ψ(z) =
∑
r

z−r−
1
2ψr where ψr =

∮
dz

2πi
zr−

1
2ψ(z) . (3.31)

We see that when r ∈ Z + 1
2

the field behaves as the NS sector does, and when r ∈ Z the

field behaves as the R sector does on the complex plane. Note that this is the opposite

of the case on a cylinder, where the NS sector is ψ(w + 2πi) = −ψ(w) and the R sector is

ψ(w+ 2πi) = ψ(w). The fundamental domain of a torus has two periods as we have seen,

i.e. space period ω1 and time period ω2, and we can write the boundary conditions as

ψ(z +mω1 + nω2) = e2πi(mµ+nν)ψ(z) , (3.32)

where µ, ν take values of either 0, the periodic (R) boundary condition, or 1
2
, the anti-

periodic (NS) boundary condition. Thus, a fermionic field on a torus has four types of

periodicity conditions or spin structures: (NS, NS), (NS, R), (R, NS), and (R,R), and we

need to specify them when computing the partition function. Also, invariance under

modular transformation which preserves the spin structure requires that the chiral and

anti-chiral parts of a fermion have the same spin structure.

Recall that we introduced the radial ordering in section 2.3, and for fermionic fields it

is defined as,

R(ψ(z)θ(w)) :=

+ψ(z)θ(w) for |z| > |w| ,

−θ(w)ψ(z) for |z| < |w| .
(3.33)

where the minus sign is due to the fermionic nature of the fields. Then we can determine

the OPE of the product of two fermionic fields by calculating the propagator 〈Ψi(x)Ψj(y)〉

with i, j = 1, 2 [14], we get that

ψ(z)ψ(w) =
α′/2

z − w
+ non-singular terms ,

ψ(z)ψ(w) =
α′/2

z − w
+ non-singular terms ,

(3.34)
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with α′ = 2 as chosen. With this expression we will then determine the Laurent mode

algebra by bringing Eq.(3.33) into the anti-commutator of the Laurent modes {ψr, ψs} as

shown in Appendix A.14, and we get

{ψr, ψs} = δr+s,0 . (3.35)

In the NS sector, r ∈ Z + 1
2
, but in the R sector, r ∈ Z and we see that there exists a 0-th

mode, with ψ2
0 = 1

2
and since ψkψ0 |0〉 = 0 for k > 0, we have that ψ0 |0〉 is degenerate to a

vacuum |0〉.

Our goal is to find the partition function of a free fermionic CFT on the torus. Similar

as what we did for bosonic fields, in order to find the 0-th Laurent mode of the energy-

momentum tensor, let us first study the canonical energy-momentum tensor for a theory

with fields φi (where in our case the two fields are φ1 = ψ, φ2 = ψ) and Lagrangian L,

which is defined as

Tµν = 4πα′γ

(
− ηµνL+

∑
i

∂L
∂(∂µφi)

∂νφi

)
, (3.36)

where γ is again some normalisation constant to be determined. One can easily find the

energy-momentum tensor to be

Tab =

(
γψ∂ψ −γψ∂ψ

−γψ∂ψ γψ∂ψ

)
=

(
γψ∂ψ 0

0 γψ∂ψ

)
, (3.37)

where the off diagonal entries vanish by the equations of motions ∂ψ = ∂ψ = 0. Now

let us focus on the chiral part and write it using the normal ordered expression as Tzz =

T (z) = γN(ψ∂ψ)(z). We have that for fermionic fields the normal ordered product of two

fields is given by

N(ψθ)m = −
∑
k>−hθ

ψm−kθk +
∑
k≤−hθ

θkψm−k .

N(ψ∂θ)m = −
∑

k>−hθ−1

(−hθ − k)ψm−kθk +
∑

k≤−hθ−1

(−hθ − k)θkψm−k .
(3.38)
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The derivation of this equation is similar to what we have done for the bosonic case

as shown in Appendix A.7, the difference is that we will now use the radial ordering

Eq.(3.34) for fermions, which leads to a minus sign for the first term.

By Laurent expanding both sides of the equation T (z) = γN(ψ∂ψ)(z) and applying

the method used to derive Eq.(2.57), we find

Lm = γN(ψ∂ψ)m = γ
∑
k>− 3

2

(
k +

1

2

)
ψm−kψk − γ

∑
k≤− 3

2

(
k +

1

2

)
ψkψm−k . (3.39)

To determine the constant γ, we will compute the commutator [Lm, ψr]. We do the calcu-

lation in Appendix A.15 and find the following

[Lm, ψr] = γ(−m− 2r)ψm+r . (3.40)

Recall that the invariance of the fermionic action leads to the statement that the chiral part

ψ(z) is a primary field with conformal dimension h = 1
2
, then by comparing the above

result with Eq.(A.8) where we found that for a primary field with conformal dimension h

satisfies the commutation relation [Lm, φn] = [(h− 1)m− n]φm+n, we get that the constant

γ = 1
2
, which is the same as what we found in the bosonic case.

For the CFT of a free fermion, its central charge is c = 1
2

and we will verify this claim

in Appendix A.16.

To compute the partition functions for a free fermion on a torus using the operator

formalism, it is important to take time-ordering into consideration for the same reason

in any QFT. Due to the nature of fermionic fields, a minus sign is generated after each

reordering of two fermions. To preserve this feature, we introduce an operator (−1)F

where F := F0 +
∑

k>0 ψ−kψk is the world-sheet fermion number (distinguish from the space-

time fermion number) in the chiral sector. F0 is defined in the periodic case in space di-

rection, and equals 0 or 1 when acting on |0〉 or ψ0 |0〉, respectively. Similarly, we have

operator (−1)F for the anti-chiral sector with F := F 0 +
∑

k>0 ψ−kψk. We insert this op-

erator into the definition of the partition function to the time-periodic case only because

the time-antiperiodic case keeps this time-ordering feature naturally. That is to say, these
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operators are inserted into the partition functions with the (NS, R) and (R, R) boundary

conditions, and the partition function is defined as

Z · ,R = TrFX ((−1)F qL0− 1
48 (−1)F qL0− 1

48 ) , (3.41)

where · is taken to be NS or R.

Now let us compute the partition function for a free fermion CFT. To do so, we want

the 0-th mode of the energy-momentum tensor. First we will consider the NS sector, by

taking m = 0 in Eq.(3.39), we obtain the 0-th Laurent mode, which is given by

L0 =
1

2

∑
k>− 3

2

(
k +

1

2

)
ψ−kψk +

1

2

∑
k≥ 3

2

(
k − 1

2

)
ψ−kψk

=
1

2
ψ− 1

2
ψ 1

2
+
∑
k≥ 3

2

kψ−kψk

=
∞∑
k= 1

2

kψ−kψk

(3.42)

where k ∈ Z + 1
2

and in the first line we replaced k by −k in the second term. We see

that the NS sector has zero vacuum energy by computing the expectation value of T (z) =

1
2
N(ψ∂ψ)(z) and using the normal ordering prescription as in ordinary QFTs

〈T (z)〉 =
1

2
lim
ε→0

(
ψ(z + ε)∂ψ(z)− 〈ψ(z + ε)∂ψ(z)〉

)
= 0 , (3.43)

where ψ(z + ε)∂ψ(z) = 1
ε2

by Eq.(3.34) and the expectation value 〈ψ(z + ε)∂ψ(z)〉 = 1
ε2

is

computed in Appendix A.17.

For the R sector, it is more interesting since we will see that the vacuum energy is

non-zero. Due to the ambiguity in the normal ordering at the 0-th mode ψ0ψ0, we need to

be careful and take the expectation value of the energy density into consideration when

computing L0. To obtain the vacuum energy density, we compute the expectation value

of 〈T (z)〉 in the following, using what we found for 〈ψ(z + ε)∂ψ(z)〉 in the R sector in

Appendix A.17,

38



〈T (z)〉 =
1

2
lim
ε→0

(
ψ(z + ε)∂ψ(z)− 〈ψ(z + ε)∂ψ(z)〉

)

=
1

2
lim
ε→0

[
1

2ε2

(
2−

√
z

z + ε
−
√
z + ε

z

)
+

1

4z
√
z(z + ε)

]

=
1

2
lim
ε→0

[
− 1

8z2
+O(ε) +

1

4z
√
z(z + ε)

]
=

1

16z2
,

(3.44)

where we Taylor expand
√

1 + x and 1√
1+x

around x = 0 in the second line with x = ε
z
.

By Eq.(2.37), we see that L0 is the coefficient of the z−2 in the mode expansion of the

energy-momentum tensor. Thus, we find the 0-th Laurent modes to be

L0 =
∞∑
k= 1

2

kψ−kψk with k ∈ Z +
1

2
for the NS sector,

L0 =
∞∑
k=1

kψ−kψk +
1

16
with k ∈ Z for the R sector.

(3.45)

Then by Eq.(3.6), we see that the chiral part of the Hamiltonian on the cylinder is given

by HNS = − 1
48

, and HR = 1
24

.

The Hilbert space of the free fermion CFT is the Fock space generated by ψ−r, ψ−s

for r, s ≥ 1
2

and each mode appears at most once due to the Fermi-statistics. For the

NS sector, a general chiral state in this Hilbert space can be written as |n 1
2
, n 3

2
, . . .〉 =

(ψ− 1
2
)n1/2(ψ− 3

2
)n3/2 . . . |0〉, with nk = 0 or 1 due to Fermi-statistics, and the action of L0 on

the state gives

L0 |n 1
2
, n 3

2
, . . .〉 =

∞∑
k= 1

2

k
(
ψ− 1

2

)n 1
2 . . . nk

(
ψ−kψkψ−k

)
. . . |0〉 =

∞∑
k= 1

2

nkk |n 1
2
, n 3

2
, . . .〉 . (3.46)

For the R sector, a general chiral state is given by |n0, n1, . . .〉 = (ψ0)n0(ψ−1)n1 . . . |0〉 with

nk = 0 or 1 for the same reason, and we get

L0 |n0, n1, . . .〉 =

(
∞∑
k=1

nkk +
1

16

)
|n0, n1, . . .〉 =

(
∞∑
k=0

nkk +
1

16

)
|n0, n1, . . .〉 . (3.47)
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Using the above expressions we will compute the partition function of a free fermion

with the (NS, NS) boundary coundition. Recall that the central charge is given by c = 1
2

for a fermionic CFT, and we have

TrFNS(qL0− c
24 ) = q−

1
48

1∑
n 1

2
=0

1∑
n 3

2
=0

. . .
〈
n 1

2
, n 3

2
, . . .

∣∣∣e2πiτL0

∣∣∣n 1
2
, n 3

2
, . . .

〉
(3.48)

= q−
1
48

1∑
n 1

2
=0

1∑
n 3

2
=0

· · ·
∞∑
l=0

(2πiτ)l

l!

〈
n 1

2
, n 3

2
, . . .

∣∣∣(L0)l
∣∣∣n 1

2
, n 3

2
, . . .

〉

= q−
1
48

1∑
n 1

2
=0

1∑
n 3

2
=0

· · ·
∞∑
l=0

(2πiτ)l

l!

( ∞∑
k= 1

2

nkk

)l〈
n 1

2
, n 3

2
, . . .

∣∣∣n 1
2
, n 3

2
, . . .

〉

= q−
1
48

1∑
n 1

2
=0

1∑
n 3

2
=0

· · ·
∞∏
k= 1

2

qnkk

= q−
1
48

∞∏
k= 1

2

(
1 + qk

)

= q−
1
48

∞∏
k=0

(
1 + qk+ 1

2

)
≡

√
ϑ3(τ)

η(τ)
,

where ϑ3(τ) is the Jacobi theta function defined in Eq.(B.18). Note that the second equality

is a special case of the Jacobi triple product identity, which is proved in Appendix B.1.

Similarly, for the anti-chiral part we have

TrFNS(qL0− c
24 ) =

√
ϑ3(τ)

η(τ)
. (3.49)

Thus, the partition function of a free fermion with the (NS, NS) spin structure is simply

the product of the traces,

ZNS,NS = TrFNS(qL0− 1
48 qL0− 1

48 ) =

∣∣∣∣∣ϑ3(τ)

η(τ)

∣∣∣∣∣ . (3.50)
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For the space-periodic and time-antiperiodic case, i.e. the (R, NS) boundary condition,

we bring in the expression for L0 given in Eq. (3.47) and do similar calculation as above,

and get

1√
2
TrFR(qL0− c

24 ) =
1√
2
q−

1
48

1∑
n0=0

1∑
n1=0

. . . 〈n0, n1, . . . |e2πiτL0|n0, n1, . . .〉 (3.51)

=
1√
2
q

1
24

∞∏
k=0

(
1 + qk

)
=

√
ϑ2(τ)

η(τ)
,

where the 1/
√

2 is a convention due to the definition of the modular function ϑ2(τ) as

stated in Eq.(B.17). which is obtained by taking ω = q−
1
2 in the Jacobi triple product iden-

tity Eq. (B.1). Then we obtain the partition function with (R,NS) boundary condition,

ZR,NS = 2TrFR(qL0− 1
48 qL0− 1

48 ) =

∣∣∣∣∣ϑ2(τ)

η(τ)

∣∣∣∣∣ , (3.52)

where the factor of 2 is conventional and we will see the reason to include this factor

when studying the modular properties of these partition functions.

For the (NS, R) boundary condition, recall that the operator (−1)F is needed since

periodic time condition fails to capture the time-ordering feature. Apply the partition

function defined in Eq.(3.41) and write (−1)F = e−πiF , we have

TrFNS((−1)F qL0− c
24 ) = q−

1
48

1∑
n 1

2
=0

1∑
n 3

2
=0

. . .
〈
n 1

2
, n 3

2
, . . .

∣∣∣e−πiF e2πiτL0

∣∣∣n 1
2
, n 3

2
, . . .

〉

= q−
1
48

1∑
n 1

2
=0

· · ·
∞∑
l=0

(2πiτ)l

l!

(
∞∑
k= 1

2

(
nkk −

nk
2τ

))l〈
n 1

2
, . . .

∣∣∣n 1
2
, . . .

〉

= q−
1
48

1∑
n 1

2
=0

1∑
n 3

2
=0

· · ·
∞∏
k= 1

2

(−1)nkqnkk

= q−
1
48

∞∏
k=0

(
1− qk+ 1

2

)
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≡

√
ϑ4(τ)

η(τ)
, (3.53)

where the theta function ϑ4(τ) is defined in Eq.(B.19). Then we obtain the partition func-

tion with (NS,R) boundary condition:

ZNS,R = TrFNS((−1)F qL0− 1
48 (−1)F qL0− 1

48 ) =

∣∣∣∣∣ϑ4(τ)

η(τ)

∣∣∣∣∣ , (3.54)

Finally, for the case with periodic boundary condition in both time and space direction,

i.e. the (R, R) boundary condition, we bring in the expression for L0 given in Eq. (3.47)

and do similar calculation as above, and get

TrFR(qL0− c
24 ) = q−

1
48

1∑
n0=0

1∑
n1=0

. . . 〈n0, n1, . . . |e−πiF e2πiτL0|n0, n1, . . .〉 (3.55)

= q
1
24

∏
k≥0

(
1− qk

)
= 0 ,

from this we reach the following result,

ZR,R = TrFR((−1)F qL0− 1
48 (−1)F qL0− 1

48 ) = 0 . (3.56)

Taking modular invariance and the properties of theta functions as shown in Ap-

pendix B.3 into consideration, we see that for the fermionic partition function to be modu-

lar invariant, either it satisfies the (R, R) boundary condition, where the partition functino

vanishes, or it is a combination of the rest three cases, where the partition function is

given by

Z = ZR,NS + ZNS,NS + ZNS,R =

∣∣∣∣∣ϑ2(τ)

η(τ)

∣∣∣∣∣+

∣∣∣∣∣ϑ3(τ)

η(τ)

∣∣∣∣∣+

∣∣∣∣∣ϑ4(τ)

η(τ)

∣∣∣∣∣ , (3.57)

which means that all three fields must be present in a modular invariant fermionic theory.
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Chapter 4

Exploit Conformal Field Theory to

Understand Quantum Gravity

Physicists have been attempting to find the connection between quantum field the-

ory and gravitational theory for decades, and the difficulty in renormalizing the gravity

theory has been one of the biggest issues. To get rid of the infinities arising in general rel-

ativity, string theory quickly drew the attention of both physicists and mathematicians.

With the help of extra dimensions and the introduction of supersymmetry, perturbative

string theory brought revolutionary insights to our understanding of quantum gravity.

Later on, non-perturbative aspects of string theory began to emerge in 1990s. Among

these non-perturbative aspects, the AdS/CFT correspondence discovered an unexpected

relation between quantum field theory and gravity theory in one higher dimension, and

has been a useful toolkit in fields of theoretical physics such as particle and condensed

matter physics. In recent developments in the AdS/CFT correspondence, the averaging

procedure has drawn more attention. For example, the 2D Jackiw-Teitelboim gravity is

the dual of an ensemble average of random quantum mechanical systems [2]. It is natu-

ral to ask whether this duality holds in higher dimensions. To answer this question, we

will study how 3D AdS gravity emerges from the averaging procedure of an ensemble of

bosonic CFTs [4]. In this chapter, we will first give a brief introduction to the AdS/CFT

correspondence. Then we will present how gravity emerges from the ensemble averaging

procedure.
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4.1 The AdS/CFT Correspondence

This section will give a very brief introduction to the AdS/CFT correspondence with-

out going into mathematical details as its main purpose is to provide background knowl-

edge on the formulation of the partition function of a gravitational theory in three dimen-

sions.

The AdS/CFT correspondence, also known as gauge/gravity duality or holography,

was proposed by Maldacena in 1997 [1]. It is a duality relating the classical dynamics of

gravity to quantum physics of strongly coupled systems in one lower dimension. The

original formulations related the geometry of a five-dimensional Anti-de Sitter space (in

the bulk) to a four-dimensional CFT (on the boundary) [1, 17, 18]. More precisely, this

equivalence between the type IIB string theory on asymtotically AdS5×S5 and the N = 4

supersymmetric Yang-Mills theory with SU(N) gauge group is indicated by the following

relation,

ZCFT [φ0] ≡
〈
e−

∫
d4xφ0(x)O(x)

〉
= Zstring[φ|∂ = φ0] , (4.1)

where O(x)’s are operators of the field theory and in the gravity theory, source fields

φ(x, z) = φ0(x) when evaluated on the boundary of the bulk. We can consider the holo-

graphic duality as a geometrization of the quantum dynamics of a system, which is de-

scribed by the renormalization group flow, and we can identify couplings of the field

theory with values of bulk fields in the gravity theory at the boundary of the bulk. In

particular, a fixed point of the renormalization group flow, i.e. at which the β-function

vanishes, corresponds to a theory with conformal invariance. This feature makes ge-

ometrizing CFTs much easier compared to how difficult it is in general to find a geometry

associated to a QFT.

Since dual theories share the same Hilbert space and dynamics, the AdS/CFT corre-

spondence is highly useful as we can translate one question to the dual perspective where

the problem is, hopefully, less complicated to solve. In order to understand this duality

better, we will first see how to match the degrees of freedom of the QFT and the dual

gravity theory. As we know, the entropy of a system counts its degrees of freedom. In

QFT, the entropy is extensive, thus it is proportional to the spatial volume. For example,
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in a d-dimensional spacetime with one temporal dimension, the QFT entropy satisfies the

following relation,

SQFT ∝ vol
(
Rd−1

)
. (4.2)

On the other hand, in a gravity theory with a d+ 1-dimensional spacetime, we know that

the entropy of a system within a given size has an upper bound which is the entropy of a

black hole fitting in this volume. The Bekenstein-Hawking formula tells us that this black

hole entropy is proportional to its surface area,

SGR ∝ area
(
∂Rd

)
= vol

(
Rd−1

)
, (4.3)

which is exactly the entropy in the context of quantum field theory. This relation is why

entropy also plays a crucial role in the study of the holographic duality.

In fact, there are three classical solutions that satisfy the relation in Eq.(4.1): small black

holes, large black holes, and thermal AdS. The transition between the black hole phase

and the thermal AdS phase is known as the Hawking-Page phase transition. Therefore,

our approach above which relates entropy in QFT and that in general relativity is straight-

forward but actually incomplete. Below the Hawking-Page phase transition, where ther-

mal AdS is the solution, the entropy of the gauge theory entropy is not captured by the

black hole entropy but the thermal entropy. We will not go into details as it is not the

focus of this thesis.

Now let us take a brief look at a more specific example. In the AdS3/CFT2 correspon-

dence, for the case where the conformal boundary is a genus one surface, it is shown that

the bulk partition function should be expressed as a sum over handlebodies [3]. These

handlebodies can be obtained from decomposing the genus one surface into S1 × S1 and

filling in the first S1 to make it a two-dimensional disk D2. Different decompositions gen-

erate different handlebodies, and they are related by some modular transformations. In

fact, given any handlebody obtained from the above decomposing-filling procedure, all

of the rest handlebodies with the same boundary can be obtained by performing a modu-

lar transformation on the boundary. Then we can label each handlebody with an element
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of the modular group SL(2,Z). In addition, we know that elements in the group

P =

{(
1 n

0 1

)
: n ∈ Z

}
⊆ SL(2,Z) (4.4)

leave the handlebody invariant, so after removing this subgroup from SL(2,Z), we are left

with modular transformations that generate only unique handlebodies. In other words,

all inequivalent handlebodies can be obtained by performing a modular transformation

γ ∈ SL(2,Z)/P on one handlebody D2 × S1. In the next section, we will see how this

expression for the partition function of quantum gravity in three-dimensions is related to

the partition functions of two-dimensional CFTs. Note that for higher genus cases, non-

handlebodies also contribute to the sum for the full partition function expression, which

we will not consider in this thesis.

The AdS/CFT correspondence has been a success since it was discovered. First of

all, it reveals the relationship between quantum field theory and string theory. Also,

it provides an almost background independent representation of quantum gravity. We

need to make a note here that this independence of the background metric holds almost

everywhere except on the asymptotic boundary. That is to say that the definition of such a

theory only requires the asymptotic boundary conditions to be fixed but the interior needs

not. Even though a full non-perturbative definition of quantum gravity has not yet been

found, the holographic duality serves a great method. When we study quantum gravity

on an arbitrary curved space with AdS asymptotics using the AdS/CFT correspondence,

non-perturbative results are obtained because one does not need to decompose a curved

target space metric into a background (flat) metric and fluctuations, while the ordinary

definition of string theory requires such decomposition.

In addition, The AdS/CFT correspondence brings new insights into quantum field

theory, such as in integrability aspects, scattering amplitudes, correlation functions, etc.

It also serves as an important step towards understanding a quantum version of gravi-

tational theory. For example, through this relation we can identify microstates of certain

black holes to pure states in a dual CFT.
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Although it was originally discovered in the context of string theory, the AdS/CFT

correspondence has been extended to very broad range of fields in physics. Not only

does it have applications in the physics of black holes and quantum gravity, but it also

helps to develop research in quantum chromodynamics, and in condensed matter physics

such as superconductivity and quantum phase transition, etc. For reviews on different

applications of the holographic duality, please see [19–21].

4.2 Gravity as an Ensemble Average

In this section, we will first determine the Narain moduli space exploiting the modu-

larity properties of the CFT partition functions, and derive the averaged partition function

of free bosonic CFTs over the Narain moduli space focusing on genus one. Finally, we will

discuss the interpretation of this averaged CFT in the context of a gravitational theory.

4.2.1 The Narain Moduli Space for Bosonic CFT

In 1986, Narain gave a formulation of toroidal compactifications of heterotic string

theory [22, 23], which also applies to CFTs of compactified bosons. We will first give an

introduction to moduli spaces for CFTs, then we will present the derivation of the Narain

moduli space for bosonic CFTs.

Let us consider the simplest case: a single boson compactified on a circle with a radius

R as we discussed in Chapter 2, where different radiusR ∈ (0,∞) gives different theories.

For each theory, i.e. for a theory with a certain radiusR, states of the boson are labelled by

momentum number m’s and winding numbers n’s. In the lattice language in the context

of abstract algebra, all states of a theory form a lattice, where lattice elements represent

different states of the theory, and each is labelled by m and n. Then we can write the

partition function in terms of m’s and n’s as a sum over all elements in the lattice just like

the expression of the partition function of a boson compactified on a circle with radius R

shown in Eq.(3.22). Now consider the set of all such compactified free bosonic theories

with different parameter R ∈ (0,∞), these theories form a moduli space.

47



Consider a sigma-model ofD free bosons with a target space of aD-dimensional torus

with fields Xp where p ∈ {1, . . . , D} as the coordinates, and a symmetric target space

metric Gpq and an anti-symmetric tensor Bpq. On a Euclidean worldsheet with flat metric,

the action of the theory is given by

S =
1

2πα′

∫
dzdz

(
Gpq∂X

p∂Xq +BpqdX
p ∧ dXq

)
. (4.5)

Now let us construct the Narain moduli spaceMD for D free bosons. Consider vertex

operators eik·X+ik·X as we discussed in Section 5.1. The spectrum of momenta (k, k) form

a lattice in a 2D-dimensional momentum space RD,D, and denote this lattice as L. Note

that in this case, the chiral and anti-chiral central charges are equal, i.e. c = c = D. The

OPE of two vertex operators id given by

: eik·X(z)+ik·X(z) :: eik
′·X(0)+ik

′·X(0) : ∼ zk·k
′
zk·k

′
: ei(k+k′)·X(0)+i(k+k

′
)·X(0) : . (4.6)

For a boson compactified on a circle, the vertex operator is required to satisfy that the

product picks up a phase of e2πi(k·k′−k·k′) = 1 when one vertex operator circles the other.

Thus, all elements k,k′ ∈ L must meet the following requirement,

〈k,k′〉 ≡ k · k′ − k · k′ ∈ Z . (4.7)

Recall the definition of the dual of a lattice. Let L be a lattice, its dual lattice L∗ defined as

L∗ ≡ { v ∈ span(L) | ∀w ∈ L , f(v,w) = 〈v,w〉 ∈ Z } . (4.8)

We see that the condition Eq.(4.7) is equivalent to say that L ⊂ L∗ .

We have also shown in Section 3.3 that the partition function of the theory is modular

invariant under T and S transformations. Let us investigate what constraints modular

invariance imposes on the lattice L. Under T transformation τ → τ + 1, the invariance

requires the difference between chiral and anti-chiral 0-th Laurent mode to be an integer,
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i.e. L0 − L0 ∈ Z. That is equivalent to say that ∀ k ∈ L,

〈k,k〉 = f(k) ∈ 2Z , (4.9)

which is exactly the definition of even lattices L.Under S transformation τ → −1/τ , ex-

tend Eq.(3.18) the partition function for D compactified bosons is given by

ZD,L(τ) =
1

|η(τ)|2D
∑
k∈L

eπiτk
2−πiτk2 (4.10)

We apply the Poisson resummation formula as we did proving modular invariance in

Section 3.3, ∑
k′∈L

δ(k′ − k) =
1

VL

∑
k′′∈L∗

e2πik′′·k , (4.11)

where VL is the volume of a unit cell of lattice L. Then we obtain the following

ZD,L∗
(
− 1

τ

)
=

1

|
√
−iτη(τ)|2D

∑
k′′∈L∗

e−πik
′′2/τ+πik

′′2
/τ

=
1

|
√
−iτη(τ)|2D

∑
k′′∈L∗

∫
d2Dkd2Dk′′ e2πik′′·ke−πik

′′2/τ+πik
′′2
/τ (4.12)

=
1

|
√
−iτη(τ)|2D

(−iτ)D/2(iτ)D/2
∑

k′′∈L∗

∫
d2Dk e2πik′′·keπiτk

2−πiτk2

=
1

|η(τ)|2D
∑

k′′∈L∗

∫
d2Dk e2πik′′·keπiτk

2−πiτk2

=
VL

|η(τ)|2D
∑
k′∈L

∫
d2Dk δ(k′ − k)eπiτk

2−πiτk2

=
VL

|η(τ)|2D
∑
k′∈L

eπiτk
′2−πiτk′2

= VLZD,L(τ) .

By modular invariance, we get that the unit cell has volume VL = 1, which means the

determinant of the Gram matrix of the lattice is 1. This is exactly the definition of a uni-
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modular (self-dual) lattice. Therefore, we conclude that the lattice L has to be self-dual,

L = L∗ . (4.13)

Therefore, the modular invariance of the partition function of compactified bosons

requires the Narain lattice L defining a compactified bosonic theory with D bosons to be

an even self-dual (unimodular) lattice in RD,D, represented by Eq.(4.9) and Eq.(4.13).

We notice that if L is an even self-dual lattice, then when a O(D,D,R) transformation

Λ acts on the lattice, the new lattice

L′ = ΛL (4.14)

remains even and self-dual. That is to say that the evenness and self-duality conditions

are invariant under Lorentz boosts of the 2D-dimensional space, O(D,D,R) transforma-

tions. In fact, all even self-dual lattices of a given Lorentzian signature can be obtained by

actingO(D,D,R) transformations on any single lattice, and most of these transformations

produce inequivalent theories.

Also, a transformation O(D,R) × O(D,R) acting on k, k separately leaves the mass-

shell condition and operator products involving k · k′ and k · k′ invariant. In other words,

redefining a vector k ∈ L as k′ = Uk with an element U ∈ O(D,R) × O(D,R) leaves the

partition function of compactified bosons unchanged, thus these transformations produce

equivalent theories. Therefore, the moduli space is reduced to O(D,D,R)/O(D,R) ×

O(D,R).

In addition, there is some subgroup of O(D,D,R) that permutes elements of a lat-

tice in the above moduli space but leaves the lattice itself unchanged. This subgroup

is O(D,D,Z), which corresponds to the over-counting due to the T-duality symmetry

R→ α′/R.

Thus, we conclude that the moduli space of inequivalent compactified bosonic theo-

ries is given by removing subgroups O(D,R) × O(D,R) and O(D,D,Z) from the space

obtained by acting O(D,D,R) transformations on a single lattice, written as

MD = O(D,D,Z)\O(D,D,R)/O(D,R)×O(D,R) . (4.15)
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When one performs an averaging procedure, it is important to define a measure of the

moduli space that is being considered. The natural metric on a moduli space is defined by

the kinetic term of the bosonic theory. For the Narain moduli space, the natural measure

is the Zamolodchikov metric

ds2 = GmnGpq(dGmpdGnq + dBmpdBnq) , (4.16)

where a detailed derivation can be found in [24].

4.2.2 An Averaged Partition Function over the Narain Moduli Space

For each CFT in the moduli space MD, its partition function can be expressed as a

sum of Siegel-Narain theta functions over lattice points as we will shown in later this

section. To compute the average of the Siegel-Narain theta function over MD, we will

apply the Siegel-Weil formula [25–27]. In number theory, the Siegel-Weil formula is an

identity between an integral of a theta function and an Eisenstein series, it allows us to

express the above average in terms of a real analytical Eisenstein series as we will discuss

in the following.

In this subsection, we will derive the averaged partition function of free bosonic CFTs

over the Narain moduli space focusing on genus one. First, let us consider the case D = 1

in Eq.(4.5), i.e. a free bosonic CFT on a moduli space M1 parametrized by the radius

of a 1-torus R ∈ (0,∞), this is just a circle of circumference 2πR. Due to the symmetry

R → α′/R, we only need the range of R ∈ [
√
α′,∞). The reason why we discuss the

D = 1 case separately is that this case is special compared to its D > 1 friends as we will

see shortly. The action is given in the following

S =
R2

2πα′

∫
dzdz ∂X∂X , (4.17)

and the Zamolodchikov metric and the measure of the moduli spaceM1 are

ds2 = 4
dR2

R2
, µ(R) = 2

dR

R
. (4.18)
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For arbitrary curvilinear coordinates in N -dim (v1, . . . , vN) with metric tensor gµν , the

Laplace operator can be expressed as

∆ =
1√
det g

∂

∂vµ

(√
det ggµν

∂

∂vν

)
. (4.19)

Recall that the natural metric of the upper half planeH which is given by

ds2 =
dτ 2

1 + dτ 2
2

τ 2
2

, (4.20)

Thus the Laplacian of the moduli spaceM1 and the Laplacian on the upper half plane H

are given by

∆M1 =
1

4

(
R
∂

∂R

)2

, ∆H = τ 2
2

(
∂2

∂τ 2
1

+
∂2

∂τ 2
2

)
. (4.21)

For a free boson on a circle of radius R, with momentum number m and winding

number n, its partition function is given by Eq.(3.22). Define

Θ(R, τ) =
∑
m,n∈Z

Q(m,n;R, τ) ,

Q(m,n;R, τ) = exp

{
− πτ2

(
α′m2

R2
+
n2R2

α′

)
+ 2πiτ1mn

}
,

(4.22)

where Θ(R, τ) is the Siegel-Narain theta function for D = 1. Then we can write the

partition function Eq.(3.22) as

Zboc(R, τ) =
Θ(R, τ)

|η(τ)|2
. (4.23)

It is easy to verify that Q(m,n;R, τ) with modular parameter τ = τ1 + iτ2 satisfies the

following differential equation,

(
τ 2

2

(
∂2

∂τ 2
1

+
∂2

∂τ 2
2

)
+ τ2

∂

∂τ2

− 1

4

(
R
∂

∂R

)2
)
Q(m,n;R, τ) = 0 . (4.24)
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Then trivially we get the following differential equation for Θ(R, τ), which can be ex-

pressed as the following equation,

(
∆H + τ2

∂

∂τ2

−∆M1

)
Θ(R, τ) = 0 . (4.25)

Before we solve the differential equation to find a solution to Θ(R, τ), let us make a

few observations first. Define a function F1(τ) overM1 as

F1(τ) = 2

∫ ∞
√
α′

dR

R
Θ(R, τ) . (4.26)

Then by Eq.(4.25) we have

(
∆H + τ2

∂

∂τ2

)
F1(τ) = ∆M1F1(τ) =

R

2

∂Θ(R, τ)

∂R

∣∣∣∣R=∞

R=
√
α′
. (4.27)

We notice that the symmetry R → α′/R gives Θ(R) = Θ(α′/R), i.e. Θ(R) is symmetric

about R =
√
α′. Then, ∂RΘ|R=

√
α′ = 0. Therefore, the value of the right hand side of the

above equation goes to 0 if the term also vanishes at R =∞.

However, in the D = 1 case, the above equation does not vanish for R→∞. Thus, let

us move on to cases with D > 1.

For D free bosons, we will parametrize the moduli spaceMD with a symmetric con-

stant metric Gpq and an anti-symmetric 2-form Bpq, and also denote moduli as m. For

D > 1, the measure µ(m) of the moduli space can be normalized since when D > 1 the

volume of the moduli space is finite, i.e. vol(MD) < ∞ (a more detailed explanation

can be found in Appendix A.19). Then the partition function for D free bosons can be

expressed as

ZD(m, τ) =
Θ(m, τ)

|η(τ)|2D
, (4.28)

where the Siegel-Narain theta function Θ(m, τ) is a sum over integer-valued momentamp

and winding numbers nq,

Θ(m, τ) =
∑

mp,np∈ZD
exp

{
− πτ2

α′

(
Gpqvpvq +Gpqn

pnq
)

+ 2πiτ1mpn
q

}
, (4.29)
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where vp = α′mp+Bpqn
q. From the above expression we can see that limτ2→∞Θ(m, τ) = 1.

In addition, the Siegel-Narain theta function Θ(m, τ) obeys

(
∆H +Dτ2

∂

∂τ2

−∆MD

)
Θ(m, τ) = 0 , (4.30)

where the Laplacian on the Narain moduli spaceMD deduced from the metric Eq.(4.16)

is given by

∆MD
= GmnGpq

(
∂̂Gmp ∂̂Gnq +

1

4
∂Bmp∂Bnq

)
+Gmn∂̂Gmn ,

where ∂̂Gmn =
1

2
(1 + δmn)∂Gmn .

(4.31)

Now we will average Θ(m, τ) overMD. Define

FD(τ) =

∫
MD

dµ(m) Θ(m, τ) . (4.32)

Then, the following differential equation holds

(
∆H +Dτ2

∂

∂τ2

)
FD(τ) = ∆MD

FD(τ) = 0 . (4.33)

Note that even though the volume of the moduli space vol(MD) < ∞ for D > 1, FD(τ)

converges only for D > 2 due to the behaviour of Θ(m, τ) at infinity.

Also, as we have seen above, since limτ2→∞Θ(m, τ) = 1, we have limτ2→∞ FD(τ) = 1.

In addition, since the partition function is modular invariant, the modular invariance

property of FD(τ)|η(τ)|−2D gives that FD(τ) has weights (D/2, D/2) under modular trans-

formations, since we have f(τ) = |η(τ)|2 has modular weights (1/2, 1/2).

Given that the function f(τ) = τ2 has modular weights (−1,−1), let us define the

following modular invariant function,

WD(τ) ≡ τ
D/2
2 FD(τ) , (4.34)

then it is trivial that limτ2→∞WD(τ) = τ
D/2
2 .
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Also, we see that WD(τ) is an eigenfunction of the upper half plane Laplacian ∆H

with the eigenvalue of D/2(D/2− 1) as shown in Appendix A.20. Therefore, the function

WD(τ) for D > 2 satisfies the following conditions:

1. It is modular-invariant;

2. It behaves as the function τD/22 as τ2 →∞;

3. It is an eigenfunction of ∆H with eigenvalue D/2(D/2− 1).

As it turns out, the non-holomorphic Eisenstein series of weight D/2 satisfies the re-

quirements above,

ED/2(τ) =
∑

(c,d)=1
c,d∈Z

τ
D/2
2

|cτ + d|D
, (4.35)

where the sum is over c, d ∈ Z which are coprimes up to a sign.

Therefore, the average of genus 1 partition function over the Narain moduli spaceMD

is found to be

〈ZD(m, τ)〉 =
ED/2(τ)

τ
D/2
2 |η(τ)|2D

. (4.36)

4.2.3 Averaged Bosonic CFT and the Chern-Simons Theory

TheD free boson CFT is highly symmetric withU(1)2D global symmetry, which should

correspond to a bulk gravitational theory with U(1)2D gauge symmetry according to the

AdS/CFT correspondence. Three-dimensional general relativity is a topological theory

that can be written as the Chern-Simons theory at the level of perturbation, so let us

consider the U(1)2D Chern-Simons theory with fields Ak, Bk and the following action,

SCS =
D∑
k=1

1

2π

∫
M

Ak ∧ dBk , (4.37)

then we can compute the perturbative partition function of one handlebody M = D2×S1

by computing the trace Tr exp(−βH) in the Hilbert space of states obtained from quan-
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tizing the disk D2 [3], then this partition function is given by

ZCS,M(τ) =
1

|η(τ)|2D
. (4.38)

For the reasons we explained at the end of section 4.1, to find the full partition function

of the theory, we need to sum the above partition functions Eq.(4.38) over all inequivalent

handlebodies obtained from modular transform M , we get the following expression of

the full partition function

ZCS(τ) =
∑

γ∈SL(2,Z)/P

1

|η(γτ)|2D
,

with P =

{(
1 n

0 1

)
: n ∈ Z

}
⊆ SL(2,Z) and P ∼= Z .

(4.39)

The set of matrices P is removed since elements in P leave =(τ) invariant.

As we have discussed in previous subsection, because |η(τ)|2 and =(τ) have modular

weight (1/2, 1/2) and (−1,−1), respectively, the function f(τ) = =(τ)1/2|η(τ)|2 is modular

invariant, i.e. f(γτ) = f(τ). Thus we can decompose the full partition function Eq.(4.39)

into two parts with one of which being the modular invariant function f(τ)D,

ZCS(τ) =
∑

γ∈SL(2,Z)/P

=(γτ)D/2

=(γτ)D/2|η(γτ)|2D
=

∑
γ∈SL(2,Z)/P

=(γτ)D/2

=(τ)D/2|η(τ)|2D
, (4.40)

In fact, the non-holomorphic Eisenstein series ED/2(τ) we introduced in the previous sub-

section can also be written as the sum over all modular images of the function =(τ)D/2 as

expressed in the following equation,

ED/2(τ) =
∑

γ∈SL(2,Z)/P

=(γτ)D/2 , (4.41)

therefore, the full partition function of the U(1)2D Chern-Simons theory can be written as

ZCS(τ) =
ED/2(τ)

τ
D/2
2 |η(τ)|2D

= 〈ZD(m, τ)〉 , (4.42)
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which is exactly the averaged partition function of bosonic CFTs with D free bosons over

the Narain moduli space in Eq.(4.36). Thus we conclude that an averaged bosonic CFT

indeed has a gravitational interpretation.

We will not go into details for higher genus cases, but similar result holds except that

the corresponding Eisenstein series diverges when the number of genus g is larger than

D − 1. In other words, the Siegel-Weil formula fails when g > D − 1 as explained in [4].

Before we move on to the next chapter, we would like to make a comment here about

the traditional AdS/CFT correspondence. Consider the original case in the traditional

holographic paradigm, individual N = 4 super Yang-Mills (SYM) theories are dual to

type IIB string theory on asymtotically AdS5×S5. In fact, the AdS5×S5 supergravity is

also the classical limit of ensemble averaged type IIB string theory. These two dualities

hold simoutaneously as discussed in [6].
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Chapter 5

Relations between the Bosonic and the

Fermionic Theories

In the previous chapter, we presented how gravity emerges from the averaging proce-

dure over the Narain moduli space for an ensemble of free bosonic CFTs using knowledge

of CFT reviewed in chapter 2. Since all particles are either bosons or fermions, it leads to

the following question: does an ensemble of fermionic CFTs give rise to some gravita-

tional theory when it is averaged over some moduli space? Furthermore, what about an

ensemble of supersymmetric CFTs? To investigate the first question, a key step is to deter-

mine the moduli space of fermionic CFTs. Due to the Grassmannian nature of fermions,

fermionic CFTs are more complicated to study. One way to circumvent this difficulty is to

exploit an equivalence between bosonic and fermionic theories known as bosonization.

Inspired by the two-dimensional quantum field theory interpretation of a mathematical

identity, the equivalence between free bosonic and fermionic theories was extended to an

interacting fermionic theory by Coleman [10] and Mandelstam [28] in 1975. Besides in

particle physics where applications of bosonization to string theory have been explored,

bosonization has also been studied in parallel in the context of condensed matter physics,

which we will not focus in this thesis.

In this chapter, we will discuss bosonization for complex fermions in the context of

conformal field theory, where the building blocks are the exponential of bosonic fields

known as vertex operators. Then, we will give an introduction to the theory of a massless
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fermionic field with a self-interaction which is called the Thirring model [8], and we will

show how it is related to bosonic theories. In the end of this chapter, we will discuss how

the couplings in c = 1 bosonic CFT and c = 1 fermionic CFT are related to each other [29],

then build a map between bosonic and fermionic moduli spaces.

5.1 Vertex Operators and Bosonization

Before we study bosonization for complex fermions, let us first go back to a free

bosonic CFT and present the concept of vertex operators, which were first introduced

by Fubini and Veneziano [30]. The vertex operator is a primary field of conformal dimen-

sion (h, h) = (α2/2, α2/2) and it is defined as Vα(z, z) ≡: eiαX(z,z) :, where : · · · : denotes

the normal ordering. Such a construction is possible since a bosonic field X(z, z) has van-

ishing conformal dimensions as we found before. One can easily verify the conformal

dimension of the vertex operator by bringing Eq.(3.11) into the Vα(z, z) and computing

the commutator [L0, Vα(z, z)] of the 0-th Laurent mode and the vertex operator, and we

will skip the verification here. Also, by evaluating the commutator [j0, Vα(z, z)] we obtain

that the eigenvalue of j0 for the vertex operator is given by α.

For a free boson compactified on a circle of radius R, we require the vertex operator to

satisify Vα =: eiαX :=: eiα(X+2πRn) := Vαe
2πiαRn, thus we have

α =
m

R
with m ∈ Z . (5.1)

Now consider a special case where α = ±1, then the vertex operator V±1(z, z) becomes

a primary field of conformal dimension (h, h) = (1/2, 1/2). Focusing on the chiral part

of the vertex operator, we will write the current as j±(z) =: e±iX(z) : and determine the

current algebra of j±(z). Recall that for quasi-primary fields, the current algebra is deter-

mined as [j±m, j
±
n ] = 0 and [j+

m, j
−
n ] = δm+n,0 using Eq.(2.48) where Ck

ij can be found by the

three-point function Eq.(2.45) and pijk(m,n) can be found by Eq.(2.47). Then we combine
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these commutation relations with the current algebra for j(z) = i∂X(z), and get

[jm, jn] = mδm+n,0 , [Lm, jn] = −njm+n ,

[jm, j
+
n ] = +j+

m+n , [jm, j
−
n ] = −j−m+n ,

[j+
m, j

−
n ] = δm+n,0 , [j+

m, j
+
n ] = [j−m, j

−
n ] = 0 .

(5.2)

On the other hand, let us consider a system with a complex chiral fermion Ψ(z) and

its conjugate Ψ†(z) where

Ψ(z) =
1√
2

(
ψ(1)(z) + iψ(2)(z)

)
,

Ψ†(z) =
1√
2

(
ψ(1)(z)− iψ(2)(z)

)
,

(5.3)

with two real chiral fermions ψ(1)(z) and ψ(2)(z). Laurent expand Ψ(z) and Ψ†(z) as we

did for real chiral fermions, we get Ψ(z) =
∑

r Ψrz
−r− 1

2 and Ψ†(z) =
∑

r Ψ†rz
−r− 1

2 . The

Laurent modes satisify the following relations,

{Ψr,Ψs} = {Ψ†r,Ψ†s} = 0 ,

{Ψr,Ψ
†
s} = δr+s,0 ,

(5.4)

and one can verify the above relations using {ψ(i)
r , ψ

(j)
s } = δijδr+s,0, which is a more gen-

eral anti-commutation relation than Eq.(3.35). Since Ψ(z) and Ψ†(z) are chiral fields of

conformal dimension h = 1/2, we can construct a chiral field of conformal dimension

h = 1 in the following way,

j(z) = −N(ΨΨ†)(z) = iN(ψ(1)ψ(2))(z) . (5.5)

Then when we Laurent expand both sides of the equation we have the following relation

for the Laurent modes,

jn = iN(ψ(1)ψ(2))n = −i
∑
k∈Z+ 1

2

ψ
(1)
n−kψ

(2)
k , (5.6)
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where a detailed calculation can be found in Appendix A.18. Using the above expression

and Eq.(3.40), we find that

[Lm, jn] =
∑
k∈Z+ 1

2

[L(1)
m + L(2)

m ,−iψ(1)
n−kψ

(2)
k ] (5.7)

= −i
∑
k∈Z+ 1

2

(
[L(1)

m , ψ
(1)
n−k]ψ

(2)
k + ψ

(1)
n−k[L

(2)
m , ψ

(2)
k ]

)

= −i
∑
k∈Z+ 1

2

((
− m

2
− n+ k

)
ψ

(1)
m+n−kψ

(2)
k +

(
− m

2
− k
)
ψ

(1)
n−kψ

(2)
m+k

)

= −i
∑
k∈Z+ 1

2

((
− m

2
− n+ k

)
ψ

(1)
m+n−kψ

(2)
k +

(
− m

2
− k +m

)
ψ

(1)
m+n−kψ

(2)
k

)

= ni
∑
k∈Z+ 1

2

ψ
(1)
m+n−kψ

(2)
k

= −njm+n .

It implies that j(z) is a primary field of conformal dimension h = 1 by comparing [Lm, jn] =

−njm+n to Eq.(2.43), and therefore we conclude that j(z) is a current. Now we will deter-

mine its current algebra by computing the commutator [jm, jn] using Eq.(5.6).

[jm, jn] = −
∑

r,s∈Z+ 1
2

[ψ
(1)
m−sψ

(2)
s , ψ

(1)
n−rψ

(2)
r ]

= −
∑

r,s∈Z+ 1
2

(
ψ

(1)
m−sψ

(2)
s ψ

(1)
n−rψ

(2)
r − ψ

(1)
n−rψ

(2)
r ψ

(1)
m−sψ

(2)
s

)
∗
= −

∑
r,s∈Z+ 1

2

(
− ψ(1)

m−sψ
(1)
n−rψ

(2)
s ψ(2)

r + ψ(2)
r ψ(2)

s ψ
(1)
n−rψ

(1)
m−s

)
∗∗
=

∑
r,s∈Z+ 1

2

(
ψ

(1)
m−sψ

(1)
n−rψ

(2)
s ψ(2)

r + ψ
(1)
m−sψ

(1)
n−rψ

(2)
r ψ(2)

s − ψ(2)
r ψ(2)

s ψ
(1)
m−sψ

(1)
n−r − ψ(2)

r ψ(2)
s ψ

(1)
n−rψ

(1)
m−s

)

=
∑

r,s∈Z+ 1
2

(
ψ

(1)
m−sψ

(1)
n−r{ψ(2)

s , ψ(2)
r } − ψ(2)

r ψ(2)
s {ψ

(1)
m−s, ψ

(1)
n−r}

)

=
∑
r∈Z+ 1

2

(
ψ

(1)
m+rψ

(1)
n−r − ψ(2)

r ψ
(2)
m+n−r

)
,

(5.8)
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where in ∗ and ∗∗we used {ψ(i)
m , ψ

(j)
n } = δijδm+n,0. For the first term in Eq.(5.8), we find

∑
r∈Z+ 1

2

ψm+rψn−r =
∑

r≤n− 1
2

ψm+rψn−r +
∑

r≥n+ 1
2

ψm+rψn−r

=
∑

r≤n− 1
2

ψm+rψn−r −
∑

r≥n+ 1
2

ψn−rψm+r +
∑

r≥n+ 1
2

{ψm+r, ψn−r}

∗
=
∑

r≤n− 1
2

ψm+rψn−r −
∑

r≤−m− 1
2

ψm+rψn−r +
∑

r≥n+ 1
2

δm+n,0

=

n− 1
2∑

r=−m+ 1
2

ψm+rψn−r +
∑

r≥n+ 1
2

δm+n,0 (5.9)

= ψ 1
2
ψn+m− 1

2
+ ψ 3

2
ψn+m− 3

2
+ · · ·+ ψn+m− 3

2
ψ 3

2
+ ψn+m− 1

2
ψ 1

2
+
∑

r≥n+ 1
2

δm+n,0

∗∗
= ψ 1

2
ψn+m− 1

2
+ ψ 3

2
ψn+m− 3

2
+ · · · − ψ 3

2
ψn+m− 3

2
− ψ 1

2
ψn+m− 1

2
+
∑

r≥n+ 1
2

δm+n,0

=
∑

r≥n+ 1
2

δm+n,0

where in ∗ we replaced r by n −m − r and in ∗∗ we used the anti-commutation relation

for fermions. Similarly, the second term in (5.8) is given by

∑
r,∈Z+ 1

2

ψrψm+n−r =
∑

r≥m+n+ 1
2

δm+n,0 , (5.10)

Combine the above two results, we find that

[jm, jn] =
∑

r≥n+ 1
2

δm+n,0 −
∑

r≥m+n+ 1
2

δm+n,0 =

m+n− 1
2∑

r=n+ 1
2

δm+n,0 = mδm+n,0 . (5.11)

Recall that a current satifying the above algebra is a U(1) current as we mentioned

in the discussion of a free boson. In addition, we will determine the U(1) charge of the

complex fermion Ψ(z) in the following,

[jm,Ψs] =
∑
r∈Z+ 1

2

[−iψ(1)
m−rψ

(2)
r ,

1√
2

(ψ(1)
s + iψ(2)

s )] (5.12)
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=
1√
2

∑
r∈Z+ 1

2

(
[−iψ(1)

m−rψ
(2)
r , ψ(1)

s ] + [−iψ(1)
m−rψ

(2)
r , iψ(2)

s ]

)

=
1√
2

∑
r∈Z+ 1

2

(
− iψ(1)

m−rψ
(2)
r ψ(1)

s + iψ(1)
s ψ

(1)
m−rψ

(2)
r + ψ

(1)
m−rψ

(2)
r ψ(2)

s − ψ(2)
s ψ

(1)
m−rψ

(2)
r

)

=
1√
2

∑
r∈Z+ 1

2

(
i{ψ(1)

m−r, ψ
(1)
s }ψ(2)

r + ψ
(1)
m−r{ψ(2)

r , ψ(2)
s }
)

=
1√
2

∑
r∈Z+ 1

2

(
iδm+s−r,0ψ

(2)
r + ψ

(1)
m−rδr+s,0

)

=
1√
2

(
ψ

(1)
m+s + iψ

(2)
m+s

)
= +Ψm+s ,

thus Ψ(z) has U(1) charge +1. Similarly, the commutation relation [jm,Ψ
†
s] = −Ψ†m+s tells

us that the U(1) charge of the conjugate fermion Ψ†(z) is -1.

Combine the above results we found, we have the following commutation and anti-

commutation relations,

[jm, jn] = mδm+n,0 , [Lm, jn] = −njm+n ,

[jm,Ψk] = −Ψm+k , [jm,Ψk] = −Ψm+k ,

{Ψm,Ψn} = δm+n,0 , {Ψm,Ψn} = {Ψm,Ψn} = 0 .

(5.13)

by comparing the above relations with Eq.(5.2), we see that the current algebra of a com-

plex fermion and the current algebra of a free boson are the same.

To further prove the equivalence between the theory of two free complex fermions

and the theory of a free boson compactified on a circle of radius R = 1 (or its dual radius

R = 2), let us compare the patition functions for these two theories. Let w = e2πiz and

define a charged character χ(τ, z) as

χ(τ, z) = TrH

(
qL0− c

24wj0
)
. (5.14)

For a free boson compactified on a circle of radius R, the primary fields for this theory

are given by the vertex operators V±m
R

(z) =: e±imX/R : with the j0 charge α = m
R

and the
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conformal dimension h = m2

2R2 where m ∈ Z. The states in the Hilbert space can be written

as

|α, n1, n2, . . .〉 = lim
z,z→0

jn1
−1j

n2
−2 . . . Vα(z, z) |0〉 , (5.15)

with ni ≥ 0. Then following similar calculations we did for the free boson on a circle case,

for any α, the 0-th modes L0 and j0 acting on this state gives

L0 |α, n1, n2, . . .〉 =

(∑
k≥1

knk +
α2

2

)
|α, n1, n2, . . .〉 ,

j0 |α, n1, n2, . . .〉 = α |α, n1, n2, . . .〉 ,

(5.16)

Then we bring these results to the character and get

χX(τ, z) =
1

η(τ)

∑
m∈Z

q
m2

2R2w
m
R . (5.17)

Now let us consider the system of a complex chiral fermion Ψ(z) and its conjugate

Ψ†(z). Since their Hilbert spaces are independent of each other, we perform the same

calculations as we did in subsection 3.4 for a free fermion, then for the character we get

χΨ,Ψ†(τ, z) = χΨ(τ, z)χΨ†(τ, z) = q−
1
24

∏
k≥0

(
1 + qk+ 1

2w

)(
1 + qk+ 1

2w−1

)
. (5.18)

By the Jacobi triple product identity Eq.(B.1), we see that the following relation holds

when the radius R0 = 1,

χX(τ, z) = χΨ,Ψ†(τ, z) , (5.19)

and the same relation holds for the anti-chiral part, i.e. χX(τ , z) = χΨ,Ψ†(τ , z). Therefore,

the partition function Zboc for a free boson on a circle with radius R = 1 and the partition

function Zfot for a free complex fermion on the torus equal, which leads to the conclusion

that these two theories are indeed equivalent.

Therefore, we can express CFTs of complex fermions in term of CFTs of bosons, and

this is called the bosonization of a complex fermion. This special equivalence between a

theory of a boson and a theory of two fermions in CFTs has applications in string theory,
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for example in the covariant lattice approach, which is used to construct fermionic string

theories in maximal dimensions and below [31, 32].

In this section, we discovered the equivalence between a compact free bosonic CFT at

a certain radius R0 and a free fermionic CFT through studying their current algebra and

partition functions. In the next section, we will further the exploration in bosonization

and discuss the equivalence between the free bosonic theory to an interacting fermionic

theory, which is known as the Thirring model.

5.2 The Thirring Model and the Free Bosonic Theory

Let us consider the massless Thirring model and discuss how this theory is related

to the free bosonic theory. The Thirring model consists of a massless Dirac fermion with

a current-current (or quartic-self, four-fermion) interaction as defined in the following

Lagrangian,

LThirring = iΨγµ∂µΨ− g

2
jµjµ ,

where jµ = ΨγµΨ ,

(5.20)

with g being the Thirring coupling. As we have seen before, Ψ = Ψ†γ0 is the Dirac adjoint

of a complex fermion Ψ =

(
ψ

ψ

)
. The equations of motion for Ψ and Ψ are determined

to be

iγµ∂µΨ− gjµγµΨ = 0 ,

i∂µΨγµ + gjµΨγµ = 0 ,
(5.21)

respectively. Then we find that the conservation law is given by

∂µj
µ = εµν∂µjν = 0 . (5.22)
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Let X be a scalar field on a circle with radius R, and define its dual field X̃ as

∂µX̃ = εµν∂
νX , (5.23)

then the current can also be written as jµ ∼ ∂µX̃ since the curl of the gradiant of a scalar

field vanishes.

Solutions of the equations of motion Eq.(5.21) can be written as the following form

Ψ(x) =

√
µ

2π
: exp

{
i
π

λ
X̃(x) + iλγ5X(x)

}
:

(
1

1

)
, (5.24)

where µ is the IR regulator mass of the scalar field X . Such a construction comes from

taking two symmetries into consideration, which rotate the individual phases of the left

and right-moving fields. For Dirac fermions, they are given by ψ → eiaψ and ψ → eiaγ
5
ψ.

This is called the chiral symmetry which preserves the numbers of the left or right-moving

fermions. Using the expression Eq.(5.24), we can determine the exact form of the current

jµ, which is given by

jµ =
λ

π
εµν∂

νX . (5.25)

In addition, since we have the equivalence relation between the free fermion and the

compact free boson at a certain radius, we can easily verify that the kinetic term in the

Lagrangian of the Thirring model and the kinetic term in the Lagrangian of the compact

free boson on a circle are related by a factor of 1/2.

Rewrite the Thirring model Lagrangian in terms of the scalar field X , it becomes

LThirring =
λ2

2π
∂µX∂

µX , (5.26)

which is exactly the Lagrangian for a free boson compactified on a circle with radius

R = 2λ/
√
π.

Now let us bring the expression for the fermionic field Ψ stated in Eq.(5.24) into the

equation of motion, through a straightforward calculation we find the following relation,
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λ2

π
=

π

π + g
. (5.27)

Replace λ by the radius R of the circle of a compact free bosonic theory, the relation

Eq.(5.27) becomes
R2

4
=

π

π + g
, (5.28)

which tells us how the Thirring coupling g relates to the compact free boson coupling (the

radius R of the circle) in the equivalence between an interacting fermion and a compact

free boson. Also, we see that this relation can be reduced to the equivalence we found in

section 5.1. When the Thirring coupling vanishes, i.e. g = 0, the Thirring model becomes

simply the free Dirac fermion. On the other hand, the radius of the equivalent compact

free boson corresponding to g = 0 is R = 2, which, through the T-duality, is dual to the

R = 1 case (recall that we have chosen α′ = 2). Therefore, the above relation reduces the

duality we discussed in the previous section.

For more details on the equivalence between the Thirring model and the compact free

boson, please see Coleman’s paper [10] or this book on non-perturbative methods in two-

dimensional quantum field theory [33].

5.3 Relation between the moduli spaces of c = 1 bosonic

and fermionic CFTs

We have seen how a compact free boson is equivalent to the Thrring model through a

relation between their couplings given in Eq.(5.28), in fact some examples of such a dual-

ity between bosonic and fermionic theories have been studied in two dimensions. Such

equivalence emerges through coupling one side of the duality by a dynamical Z2 gauge

field [29]. Note that dynamical Z2 gauge fields are different from background Z2 gauge

fields, but a background gauge field can be promoted to a dynamical one by being cou-

pled to another background gauge field. Table 5.1 gives a list of the dualities in quantum

field theory. As we can see in this Table, equivalent theories through the bosonization
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fermionic side of the duality bosonic side of the duality
Majorana Ising model / Z2

Majorana / Z2 Ising model
Dirac (Ising model / Z2)2

Dirac / Z2 XY-model

Table 5.1: Four sets of dual theories discussed in [29].

technique require either the bosonic theory or the fermionic theory to be coupled to a

dynamical Z2 gauge field. In fact, this statement also holds for conformal field theories.

Let us now build a map of couplings for bosonic and fermionic CFTs with central charge

c = 1.

The moduli space for c = 1 bosonic CFTs has been discussed in [34]. In Figure 5.1a),

the horizontal axis Rc represents the radius of the circle on which a bosonic theory is

compact, and the vertical axis Ro is the radius of the bosonic orbifold. Due to the T-

duality R → α′/R with the conventional choice of the Regge slope α′ = 2, we can omit

the portion of both axes with Rc, Ro ∈ [0,
√

2) where R =
√

2 is known as the self-dual

radius. At the point Rc = 2, we have shown in section 5.1 that by bosonization, the theory

is equivalent to a free Dirac fermionic CFT. In addition, the Rc axis and the Ro axis meet

at a certain point, where the free bosonic theory on a circle is atRc = 2
√

2 and the orbifold

free bosonic theory is at Ro =
√

2. This equality between the partition function of a free

boson orbifold given in Eq.(3.28) and the partition function of a free boson on a circle

given in Eq.(3.22) holds due to the equivalence between the reflection X → −X and the

half-period translation X → X + πR at the self-dual radius [35, 36], that is to say that we

have

Zorb
(
Ro =

√
2
)

= Zboc
(
Rc = 2

√
2
)
. (5.29)

An extra note we would like to make is that the above intersection point is known as

the Kosterlitz-Thouless point, due to the fact that the partition function at this point corre-

sponds to the Kosterlitz-Thouless point of the XY-model on the torus.

To construct the moduli space for c = 1 fermionic CFTs, let us refine the description

of Coleman’s original bosonization, which relates the Thirring coupling g of the Thirring

model to the radius R of a compact free boson through Eq.(5.28). To keep track of the
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Figure 5.1: The moduli space of a) c = 1 bosonic CFTs, and b) c = 1 fermionic CFTs.

chiral symmetries of the Dirac fermion, couple it to two background fields corresponding

to reflection ZR2 and charge conjugation ZC2 symmetries. Karch, Tong, and Turner [29]

showed that at the self-dual radius Rc =
√

2, i.e. at the green point in Figure 5.1a), the

compact boson is equivalent to a Dirac fermion coupled to a dynamical Z2 gauge field

obtained through gauging the background reflection symmetry ZR2 . Then starting from

this duality, they re-obtained the ungauged free Dirac fermion by coupling a dynamical

Z2 gauge field to the bosonic side of the equivalence:

Dirac/Z2 ↔ compact boson =⇒ Dirac↔ compact boson/Z2 . (5.30)

An essential change as a consequence of gauging the compact free boson is that now there

is a shift in the T-duality by a factor of 2. That is to say,

original T-duality: R 7→ 2

R
,

new T-duality: R 7→ 4

R
.

(5.31)

This change also shifts the self-dual point in the Thirring coupling g as one can check by

replacing R with g using Eq.(5.28), we get that

original T-duality: g 7→ 3π − g
1 + g/π

with self-dual point g = π ,

new T-duality: g 7→ − g

1 + g/π
with self-dual point g = 0 .

(5.32)
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Therefore, even though the Thirring coupling g has the range of [−π,∞), the new T-

duality allows us to omit the part where g ∈ (0,∞) as shown in Figure 5.1b). The g

axis depicts the moduli space of the Thirring model of one Dirac fermion with Thirring

coupling g.

We can also considered an intermediate case where either one of the two Majorana

fermions consisting the Dirac fermion is coupled with a Z2 gauge field through gauging

the background charge conjugation symmetry ZC2 . In other words, The intermediate case

consists one Majorana fermion and one copy of the Ising model following the second

duality in Table 5.1:

Majorana ×Majorana =⇒Majorana ×Majorana/Z2 ↔Majorana × Ising . (5.33)

The moduli space of the Thirring coupling g1 is shown in Figure 5.1b) as the g1 axis. In

this case, the T-duality is shifted by a factor of 2 as well, thus we only need to consider

where g1 ∈ [−π, 0].

In addition, we can couple the two Majorana fermions with two Z2 gauge fields. The

subtlety here is that we have two options. One is to gauge the ZR2 symmetry for both

Majorana fermions, the other way is to gauge the ZR2 symmetry for one fermion and gauge

the ZC2 symmetry for the other fermion:

Majorana ×Majorana =⇒


(
Majorana/Z2

)2 ↔
(
Ising

)2
,(

Majorana ×Majorana
)/(

Z2 × Z2

)
.

(5.34)

For the first way of gauging, at the orbifold radiusRo = 2, i.e. at the orange point in Figure

5.1a), the orbifold free boson is dual to two copies of dynamical Z2 gauged Majorana

fermions obtained through the first way. The second way of gauging produces a similar

but different dual theory from the Z2 gauged compact boson in Eq.(5.30), but its dual

bosonic theory is not exactly the orbifold boson shown in Figure 5.1a) either. In fact, its

dual theory is the compact boson with switched coupling gauge fields ZS2 : X → X + πR

and ZC2 : X → −X . At the self-dual radius Ro =
√

2, there is a symmetry S ↔ C. For the
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second way of gauging, the moduli space of the Thirring coupling g2 is depicted by the

g2 axis in Figure 5.1b). This theory still has the original T-duality R 7→ 2/R, therefore the

self-dual point remains at g2 = π and we omit g ∈ (π,∞).

In the previous three paragraphs, we have sketched out the moduli spaces for the

three c = 1 fermionic CFTs, namely the Thirring model, the Majorana × Ising theory, and

the two Majorana gauged by two Z2 theory. However, at this stage, even though we have

been referring to Figure 5.1b) in our description of each moduli space, we have not yet

determined whether they intersect. To do so, we simply need to find the couplings at

which these theories share the same partition function. Without going into details, we

will explain the main idea of the calculation. The key of this calculation is to exploit the

above dualities and express the fermionic partition function in terms of the dual bosonic

partition function with a term involving the Arf invairant which captures the effect of Z2

gauge fields on a theory [37, 38]. The results are given in the following,

Z(Maj×Maj)/(Z2×Z2)

(
g2 = π

)
= ZDirac

(
g = −π/2

)
,

ZMaj×Maj/Z2

(
g1 = −π/2

)
= Z(Maj×Maj)/(Z2×Z2)

(
g = −π/2

)
,

(5.35)

which are exactly the results Karch, Tong, and Turner found plus that we applied the

new T-duality to the Dirac theory and the Majorana × Ising theory, which tells us that

g = −π/2 is dual to g = π. The reason why we choose to shift the intersections through

the new T-duality is to draw a map between the moduli spaces of the c = 1 bosonic and

fermionic CFTs, which is given in Figure 5.2.

To conclude this section, we will give a summary of how the c = 1 bosonic and

fermionic moduli spaces are related, which also services as an instruction on how to read

the map shown in the following diagram.

• Grey axes and black axes correspond to bosonic and fermionic moduli spaces, re-

spectively.

• Rc and Ro labels theories with T-duality R 7→ 2/R, g2 labels a theory with T-duality

g 7→ 3π−g
1+g/π

, and g and g1 label theories with T-duality g 7→ − g
1+g/π

.

• A portion of each axis is omitted due to T-duality.
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Figure 5.2: A map between the moduli spaces of c = 1 bosonic and fermionic CFTs.

• The Thirring coupling and the radius are related by Eq.(5.28).

• Duality between moduli spaces labelled by g and Rc with examples connected by a

dashed line: Dirac/Z2↔ compact boson or Dirac↔ compact boson/Z2 .

• Duality between moduli spaces labelled by g2 and Ro with examples connected by a

dot-dashed line: (Maj × Maj)/(Z2 × Z2)↔ compact boson/Z2 with ZS2 and ZC2 switched

or (Maj/Z2) × (Maj/Z2)↔ orbifold boson .

Therefore, using the equivalence between the moduli spaces of c = 1 bosonic and

fermionic CFTs, we see that when c = 1, results we found in the bosonic version hold in

the fermionic case as well. More specifically, when we average the CFTs of two interacting

Majorana fermions over its moduli space, the result diverges like it is in the bosonic case.

This makes sense since the bosonic CFTs of one compact free boson and the fermionic

CFTs of two interacting Majorana fermions are related by bosonization/fermionization.
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Chapter 6

Conclusion

In this thesis, to find a fermionic version of the duality between a gravitational theory

and an ensemble average of c ≥ 1 bosonic CFTs, we reviewed fundamentals in CFT and

the AdS/CFT correpondence. Then we presented how the partition function of Chern-

Simons gravity matches with the averaged partition function of an ensemble of compact

free bosonic CFTs over the Narain moduli space in the case where the target space is a

torus. Then we studied bosonization, and developed a relation between the couplings of

the compact free bosonic CFT and the Thirring couplings of the interacting fermionic CFT.

Using bosonization, we fermionized the moduli space of the c = 1 bosonic CFTs, and built

a map between it and the c = 1 fermionic moduli space. Then we found that, for c = 1

fermionic CFTs of two Majorana fermions with a four-fermion interaction, averaging over

the moduli space leads to a divergence in the averaged partition function just like it does

in the bosonic case.

To continue this project, we want to carefully determine the moduli space for c > 1

fermionic CFTs. We can consider an interacting theory with N Majorana fermions with

four-fermion interactions. In QFT, this model is known as the random Thirring model.

To determine which theories in the random Thirring model are conformally invariant, we

set the beta functions of the Thirring couplings to zero and solve for conditions on the

couplings which make the theory a CFT. From there, we can determine the moduli space

of the random Thirring CFTs. This method seems more complicated than applying the

bosonization trick but it is powerful because it applies to arbitrary dimensions, even when
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bosonization cannot be applied (as bosonization has not yet been found in dimensions

other than one or two).

The random Thirring model can be considered a 1 + 1 dimensional generalization

of the Sachdev–Ye–Kitaev (SYK) model, [39, 40] an exactly solvable strongly interacting

system of N Majorana fermions in 0 + 1 dimensions. In the IR, the SYK model exhibits

approximate conformal symmetry, and this nearly conformal feature is similar to the sit-

uation where we consider near extremal black holes which develop a nearly AdS2 region.

Also, in the SYK model, the out-of-time-order correlators grow in a way which indicates

chaotic dynamics [40], and it matches with the growth expected in a gravitational theory

at relatively low energies. Thus it is worth to determine how the random Thirring CFTs,

as a generalization of the SYK model, are related to quantum chaos. Therefore, studying

random Thirring CFTs also leads to studies in black hole physics in AdS3.

Due to similarities between the random Thirring model and the SYK model, we can

apply techniques developed in the SYK context to the random Thirring case. Because

black holes scramble information and back hole physics is naturally related to ideas of

quantum chaos, random matrices, and random CFTs, future explorations of an ensemble

average of the random Thirring CFTs using these techniques will contribute to black hole

physics and quantum information theory.

Moreover, ensemble averaging also appears in condensed matter physics where it is

related to quenched disorder in spin glasses, and some recent explorations indicate that

the SYK model, spin glasses, and holography are closely related [41–44]. This is another

reason why further investigations of the ensemble average of the random Thirring CFTs

will deepen our understanding of the above connection and contribute to quantum grav-

ity and studies of disordered systems in condensed matter physics.

We can also carry out the averaging procedure in two-dimensional rational confor-

mal field theories (RCFTs). Two-dimensional RCFTs and Chern-Simons theory in three

dimensions have a profound relationship, and this connection was in fact one of the first

examples of the AdS/CFT correspondence. An important example of two-dimensional

RCFTs is the Wess–Zumino–Witten (WZW) model. This model is related to bosonization

as well. When applied to non-Abelian theories, the bosonization technique becomes more
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complicated because the symmetry transformations of the fermionic theory are non-local

with respect to the bosonic fields. The work of Polyakov, Wiegmann [45, 46] and Wit-

ten [47] provided remarkable progress on non-Abelian bosonization. They started from

different points of view and arrived at an equivalent bosonic action involving the action

of the principal sigma model with a Wess-Zumino term. In addition, the Chern-Simons

action plays a important role in the generalization of the boson-fermion equivalence to

three-dimensional spacetime. Therefore, continued work on the averaging procedure

in RCFTs will provide further insights into the AdS/CFT correpondence, string theory,

condensed matter theory, and quantum computing as the WZW model has numerous

applications in these fields.

Furthermore, we can return to the original starting point of this project and ask whether

an ensemble of superconformal field theories (SCFTs) gives rise to some theories in grav-

ity/supergravity when it is averaged over some moduli space. Moduli spaces of SCFTs

are more or less well established, and it is a goal for further research.
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Appendix A

Detailed Computations

A.1 Compute the following Jacobi identity using p(n, 0) = 0 and p(m,n) = −p(n,m)

0 = [[Lm, Ln], L0] + [[Ln, L0], Lm] + [[L0, Lm], Ln]

= [(m− n)Lm+n + cp(m,n), L0] + [nLn + cp(n, 0), Lm]

+ [−mLm + cp(0,m), Ln]

= (m− n)(m+ n)Lm+n + (m− n)cp(m+ n, 0)

+ n(n−m)Lm+n + ncp(n,m)−m(m− n)Lm+n −mcp(m,n)

= (m+ n)p(n,m) .

(A.1)

0 = [[L−n+1, Ln], L−1] + [[Ln, L−1], L−n+1] + [[L−1, L−n+1], Ln]

= [(1− 2n)L1 + cp(−n+ 1, n), L−1] + [(n+ 1)Ln−1

+ cp(n,−1), L−n+1] + [(n− 2)L−n + cp(−1,−n+ 1), Ln]

= 2(1− 2n)L0 + (n+ 1)(2n− 2)L0 + (n+ 1)cp(n− 1,−(n− 1))

− (n− 2)2nL0 + (n− 2)cp(−n, n)

= (n+ 1)cp(n− 1,−(n− 1))− (n− 2)cp(n,−n) (A.2)

=⇒ p(n,−n) =

(
n+ 1

n− 2

)
p(n− 1,−(n− 1))

=

(
n+ 1

n− 2

)(
n

n− 3

)
p(n− 2,−(n− 2))
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= · · ·

=
(n+ 1)n(n− 1) · · · 4

(n− 2)(n− 3)(n− 4) · · · 1
p(2,−2)

=
1

6
(n+ 1)n(n− 1)p(2,−2)

=
1

12
(n+ 1)n(n− 1) .

Conventionally, we take p(2,−2) = 1
2

so the central charge for free bosons is c = 1.

A.2 To determine how a primary field transforms under infinitesimal conformal transfor-

mations f(z) = z + ε(z) with ε(z)� 1,

φ′(z, z) =

(
∂f

∂z

)h(
∂f

∂z

)h
φ(f(z), f(z))

= (1 + ∂zε(z))h(1 + ∂zε(z))hφ(z + ε(z), z + ε(z))

= (1 + h∂zε(z) + h∂zε(z))(φ(z, z) + ε∂zφ(z, z) + ε∂zφ(z, z))

= φ(z, z) +
(
h∂zε+ ε∂z + h̄∂z̄ ε̄+ ε̄∂z̄

)
φ(z, z̄) .

(A.3)

A.3 To determine conditions on the energy-momentum tensor of a CFT, let us first con-

sider when the conformal symmetry xµ 7→ xµ + εµ(x) has constant εµ(x), we see that by

using the conservation law and Eq.(2.18), in this case

0 = ∂µjµ = ∂µ(Tµνε
ν) = (∂µTµν)ε

ν , (A.4)

which implies that ∂µTµν = 0. Now consider a general transformation εµ(x), we have

∂µjµ = (∂µTµν)ε
ν + Tµν(∂

µεν)

=
1

2
Tµν(∂

µεν + ∂νεµ)

=
1

2

2

d
Tµνηµν(∂ · ε)

=
1

d
(∂ · ε)Tµµ = 0 .

(A.5)

Since the transformation εµ(x) is arbitrary, we conclude that Tµµ = 0.
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A.4 Show that ∂zTzz = 0

∂zTzz =
1

4
(∂0 + i∂1)(T00 − iT10)

=
1

4
(∂0T00 + ∂1T10 + i∂1T00 − i∂0T10)

∗
=

1

4
(∂0T00 + ∂1T10 − i∂1T11 − i∂0T01)

=
1

4
(∂µTµ0 − i∂µTµ1)

= 0 ,

(A.6)

where in the equality ∗ we used Eq.(A.5) and the symmetry property of Tµν = Tνµ. The

last equality is obtained by the translational invariance Eq.(A.4).

A.5 In section 2.3 we stated the the OPE of the energy-momentum tensor, and we will

verify the claim by computing the following commutation relations:

[Lm, Ln] =

∮
dz

2πi

∮
dw

2πi
zm+1wn+1[T (z), T (w)] (A.7)

=

∮
C(0)

dw

2πi
wn+1

∮
C(w)

dz

2πi
zm+1R

(
T (z)T (w)

)
=

∮
C(0)

dw

2πi
wn+1

∮
C(w)

dz

2πi
zm+1

(
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w

)

=

∮
C(0)

dw

2πi
wn+1

(
c

12
m(m2 − 1)wm−2 + 2(m+ 1)wmT (w) + wm+1∂wT (w)

)
=

c

12
(m3 −m)

∮
dw

2πi
wm+n−1 + 2(m+ 1)

∮
dw

2πi
wm+n+1T (w) +

∮
dw

2πi
wm+n+2∂wT (w)

=
c

12
(m3 −m)δm+n,0 + 2(m+ 1)

∮
dw

2πi
wm+n+1T (w)

+

∮
C(0)

dw

2πi
∂w

(
wm+n+2T (w)

)
− (m+ n+ 2)

∮
C(0)

dw

2πi
wm+n+1T (w)

=
c

12
(m3 −m)δm+n,0 + [2(m+ 1)− (m+ n+ 2)]

∮
dw

2πi
wm+n+1T (w)

= (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 .
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[Lm, φn] =

∮
C(0)

dw

2πi
wn+h−1

∮
C(w)

dz

2πi
zm+1R

(
T (z)φ(w)

)
=

∮
C(0)

dw

2πi
wn+h−1

∮
C(w)

dz

2πi
zm+1

(
hφ(w)

(z − w)2
+
∂wφ(w)

z − w

)

=

∮
C(0)

dw

2πi
wn+h−1

(
h(m+ 1)wmφ(w) + wm+1∂wT (w)

)
= h(m+ 1)

∮
dw

2πi
wm+n+h−1φ(w) +

∮
dw

2πi
wm+n+h∂wφ(w)

= h(m+ 1)

∮
dw

2πi
wm+n+h−1φ(w)

+

∮
C(0)

dw

2πi
∂w

(
wm+n+hφ(w)

)
− (m+ n+ h)

∮
C(0)

dw

2πi
wm+n+1φ(w)

= [h(m+ 1)− (m+ n+ h)]

∮
dw

2πi
wm+n+h−1φ(w)

= [(h− 1)m− n]φm+n .

(A.8)

A.6 To determine an asymptotic out-state, the complex coordinate z = ex
0+ix1 has the

hermitian conjugate z 7→ 1
z
, where we identify z with the complex conjugate z∗, then we

will define the hermitian conjugate of the field φ(z, z) to be the following and Laurent

expand it,

φ†(z, z) = z−2hz−2hφ(
1

z
,
1

z
)

= z−2hz−2h
∑
n,n∈Z

zn+hzn+hφn,n

=
∑
n,n∈Z

zn−hzn−hφn,n .

(A.9)

Compare this expression with Eq.(2.26) we get that (φn,n)† = φ−n,−n, now let w = 1/z and

w = 1/z, then we can write the asymptotic out-state as

〈φ| = lim
z,z→0

〈0|φ†(z, z) = lim
w,w→∞

w2hw2h 〈0|φ(w,w) , (A.10)

for this state to have non-singular at w,w → ∞, we require that 〈0|φn,n = 0 for all n < h

and n < h. Therefore, we reach the result Eq.(2.50).
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A.7 To determine the Laurent modes of the normal ordered product of two fields χ and

φ, we bring Eq. (2.53) into N(χφ)n,

N(χφ)n =

∮
C(0)

dw

2πi
wn+hχ+hφ−1

∮
C(w)

dz

2πi

φ(z)χ(w)

z − w

=

∮
C(0)

dw

2πi
wn+hχ+hφ−1

(∮
|z|>|w|

dz

2πi

φ(z)χ(w)

z − w
−
∮
|z|<|w|

dz

2πi

χ(w)φ(z)

z − w

)
=

∮
C(0)

dw

2πi
wn+hχ+hφ−1(I1 − I2) .

(A.11)

We will first compute I1 and Laurent expand fields χ and φ in the expression

I1 =

∮
|z|>|w|

dz

2πi

1

z − w
∑
k,l∈Z

z−l−h
φ

w−k−h
χ

φlχk

=

∮
|z|>|w|

dz

2πi

1

z

∞∑
p=0

(
w

z

)p ∑
k,l∈Z

z−l−h
φ

w−k−h
χ

φlχk

=

∮
|z|>|w|

dz

2πi

∞∑
p=0

∑
k,l∈Z

z−l−h
φ−p−1w−k−h

χ+pφlχk

=
∞∑
p=0

∑
k,l∈Z

δl+hφ+p,0w
−k−hχ+pφlχk

=
∞∑
p=0

∑
k∈Z

w−k−h
χ+pφ−hφ−pχk ,

(A.12)

where we used 1
z−w = 1

z(1−w/z) = 1
z

∑
p(
w
z
)p. Then the contour integral on C(0) is computed

in the following,

∮
C(0)

dw

2πi
wn+hχ+hφ−1I1 =

∮
C(0)

dw

2πi

∞∑
p=0

∑
k∈Z

wn+hφ−k+p−1φ−hφ−pχk

=
∞∑
p=0

δk−hφ−n−p,0φ−hφ−pχk

=
∞∑
p=0

φ−hφ−pχhφ+n+p

=
∑
s≤−hφ

φsχn−s ,

(A.13)
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where in the last equality we let s = −hφ − p. Similarly, for I2, we write 1
z−w = 1

w(z/w−1)
=

− 1
w

∑
p(

z
w

)p, then we obtain

I2 =
∞∑
p=0

∑
k∈Z

w−k−h
χ−p−1χkφ−hφ+p+1∮

C(0)

dw

2πi
wn+hχ+hφ−1I2 =

∑
s>−hφ

χn−sφs .

(A.14)

Therefore, we conclude that the Laurent modes N(χφ)n is given by Eq.(2.55).

A.8 Obtain the equation of motion for the action Eq.(3.8) by varying the action S with

respect to the field X , we get

δXS =
1

2πα′

∫
dzdz

(
∂(δX) · ∂X + ∂X · ∂(δX)

)
=

1

2πα′

∫
dzdz

(
∂(δX · ∂X)− δX · ∂∂X

+ ∂(∂X · δX)− ∂∂X · δX
)

= − 1

πα′

∫
dzdz δX(∂∂X)

set to
= 0 ,

(A.15)

since δX is an arbitrary variation, by setting δXS = 0, the equation of motion is ∂∂X = 0.

A.9 Compute the following commutator

[Lm, jn] = γ[N(jj)m, jn]

= γ
∑
k>−1

[jm−kjk, jn] + γ
∑
k≤−1

[jkjm−k, jn]

= γ
∑
k>−1

(
jm−k[jk, jn] + [jm−k, jn]jk

)
+ γ

∑
k≤−1

(
jk[jm−k, jn] + [jk, jn]jm−k

)
= γ

∑
k>−1

(
kjm−kδk+n,0 + (m− k)δm−k+n,0jk

)
+ γ

∑
k≤−1

(
(m− k)jkδm−k+n,0 + kδk+n,0jm−k

)
(A.16)
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= γ
∑
k∈Z

(
(m− k)δm−k+n,0jk + kδk+n,0jm−k

)
= −2γnjm+n ,

where we applied the current algebra as stated in Eq.(3.10) for N = 1 [11] and α′ = 2,

[jm, jn] =
α′

2
mδm+n,0 . (A.17)

A.10 Recall the commutation relation Eq.(2.17) for the Virasoro algebra with central charge

c, then take m = 2, n = −2 and use Ln |0〉 = 0 for n > −2, we get the following

〈0|L2L−2|0〉 = 〈0|[L2, L−2]|0〉 =
c

2
. (A.18)

Then we apply Eq.(3.15) to express 〈0|L2 and L−2 |0〉 in terms of modes jn, and we find

〈0|L2 =
1

2
〈0| (j2j0 + j1j1) =

1

2
〈0| j1j1 ,

L−2 |0〉 =
1

2
j−1j−1 |0〉 ,

(A.19)

where we used [jm, jn] = α′

2
mδm+n,0 [11] with α′ = 2. Now let us rewrite Eq.(A.17) as

c

2
= 〈0|L2L−2|0〉

=
1

4
〈0|j1j1j−1j−1|0〉

=
1

4
〈0|j1[j1, j−1]j−1|0〉+

1

4
〈0|j1j−1j1j−1|0〉

=
1

4
〈0|j1j−1|0〉+

1

4
〈0|j1j−1[j1, j−1]|0〉+

1

4
〈0|j1j−1j−1j1|0〉

=
1

2
〈0|[j1, j−1]|0〉+

1

2
〈0|j−1j1|0〉

=
1

2
,

(A.20)

where we also used jn |0〉 = 0 for n > −1 and 〈0| jn for n < 1. Therefore, we conclude that

for a free boson CFT, the central charge c = 1.
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A.11 Compute the eigenvalue of the 0-th Laurent mode of the energy-momentum tensor

acting on a state in the Hilbert space of a free boson CFT. Applying Eq.(A.17) we have

[j−kjk, j
nk
−k] = j−k[jk, j

nk
−k] + [j−k, j

nk
−k]jk = j−k[jk, j

nk
−k] , (A.21)

then we will prove [jk, j
nk
−k] = nkkj

nk−1
−k by induction. For nk = 0, it is trivial that [jk, 0] = 0.

Assume that the equality holds for integer nk = m > 0, for which we have the equality

[jk, j
m
−k] = mkjm−1

−k , then consider when nk = m+ 1, we have

[jk, j
m+1
−k ] = jm−k[jk, j−k] + [jk, j

m
−k]j−k

= kjm−k +mjm−1
−k j−k

= (m+ 1)kj
(m+1)−1
−k .

(A.22)

Therefore, we have [j−kjk, j
nk
−k] = nkkj

nk
−k. Now let us compute L0 acting on a state

|n1, n2, n3, . . .〉 = jn1
−1j

n2
−2j

n3
−3 . . . |Γ, n〉 in the bosonic CFT Hilbert space,

L0 |n1, n2, n3, . . .〉 =

(
1

2
j0j0 +

∑
k≥1

j−kjk

)
jn1
−1j

n2
−2j

n3
−3 . . . |Γ, n〉

=
1

2
j0j0j

n1
−1j

n2
−2j

n3
−3 . . . |Γ, n〉+

∑
k≥1

jn1
−1j

n2
−2 . . . (j−kjk)j

nk
−k . . . |Γ, n〉

=
1

2
Γ2jn1
−1j

n2
−2j

n3
−3 . . . |Γ, n〉+

∑
k≥1

jn1
−1j

n2
−2 . . . [j−kjk, j

nk
−k] . . . |Γ, n〉

+
∑
k≥1

jn1
−1j

n2
−2 . . . j

nk+1
−k jk . . . |Γ, n〉

=

(
1

2
Γ2 +

∑
k≥1

nkk

)
jn1
−1j

n2
−2 . . . j

nk
−k . . . |Γ, n〉

=

(
1

2
Γ2 +

∑
k≥1

nkk

)
|n1, n2, n3, . . .〉 .

(A.23)

where we used j0 |Γ, n〉 = Γ |Γ, n〉. Also, following similar computations and replacing jk

by jk, we find that L0 |n1, n2, n3, . . .〉 =
(

1
2
(Γ−nR)2 +

∑
k≥1 nkk

)
|n1, n2, n3, . . .〉. Now bring

these results back to the expression for the partition function, and remind ourselves that
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the central charge c = 1 for a bosonic CFT, we get

Tr(qL0− c
24 ) = q−

1
24

∑
Γ,n

∞∑
n1=0

∞∑
n2=0

. . . 〈n1, n2, . . . |e2πiτL0|n1, n2, . . .〉 (A.24)

= q−
1
24

∑
Γ,n

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑
l=0

(2πiτ)l

l!

〈
n1, n2, . . .

∣∣∣(L0)l
∣∣∣n1, n2, . . .

〉
= q−

1
24

∑
Γ,n

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑
l=0

(2πiτ)l

l!

(
1

2
Γ2 +

∞∑
k=1

nkk

)l
〈n1, n2, . . . |n1, n2, . . .〉

= q−
1
24

∑
Γ,n

∞∑
n1=0

∞∑
n2=0

. . . q
1
2

Γ2
∞∏
k=1

qnkk

= q−
1
24

(
∞∏
k=1

∞∑
nk=0

(
qk
)nk)∑

Γ,n

q
1
2

Γ2

= q−
1
24

∞∏
k=1

1

1− qk
∑
Γ,n

q
1
2

Γ2

=
1

η(τ)

∑
Γ,n

q
1
2

Γ2

,

where n ∈ Z, Γ is summed over discrete values, and we used 1
1−x =

∑∞
n=0 x

n. η(τ) is the

Dedekind η-function as defined in Eq.(3.20). Similarly, the anti-chiral part is given by

Tr(qL0− c
24 ) =

1

η(τ)

∑
Γ,n

q
1
2

(Γ−nR)2 . (A.25)

Before the final step to reach the partition function, let us remind ourselves that for

two operators A,B acting on different factors of a tensor product, the trace of the product

equals to the product of traces, i.e. Tr(AB) = Tr(A)Tr(B). Therefore, we find the partition

function to be

Zboc(τ, τ) = Tr(qL0− c
24 )Tr(qL0− c

24 ) =
1

|η(τ)|2
∑
Γ,n

q
1
2

Γ2

q
1
2

(Γ−nR)2 . (A.26)

A.12 We have shown that the partition function of a boson compactified on a circle of ra-

dius R is invariant under the modular T -transformation in our discussion, which in turn

determines the value of Γ. Now, we would also like to verify that the partition function

84



Eq.(3.18) is invariant under the modular S-transformation, using the Poisson resummation

formula ∑
n∈Z

exp
(
− πan2 + bn

)
=

1√
a

∑
k∈Z

exp

(
− π

a

(
k +

b

2πi

)2
)
. (A.27)

For more details about this formula, please see Appendix B.3.

We will apply this formula twice to the partition function as shown below,

Zboc
(
− 1

τ
,−1

τ

)
=

1

|η(−1/τ)|2
∑
Γ,n

exp

(
− πiΓ2

τ
+
πi(Γ− nR)2

τ

)
(A.28)

=
1

|
√
−iτη(τ)|2

∑
Γ

exp

(
− πiΓ2

τ

) ∑
Γ−nR

exp

(
πi(Γ− nR)2

τ

)

=
1

|
√
−iτη(τ)|2

√
−iτ
√
iτ
∑

Γ

exp
(
πiτΓ2

) ∑
Γ−nR

exp
(
− πiτ(Γ− nR)2

)
=

1

|η(τ)|2
∑
Γ,n

q
1
2

Γ2

q
1
2

(Γ−nR)2

= Zboc(τ, τ) ,

which shows the invariance under S-transformation.

A.13 We will obtain the equation of motion for the action Eq.(3.30) by varying the action

S with respect to the field ψ, we get

δψS =
1

2πα′

∫
dzdz

(
δψ∂ψ + ψ∂(δψ)

)
=

1

2πα′

∫
dzdz

(
δψ∂ψ + ∂(ψδψ)− (∂ψ)δψ

)
=

1

πα′

∫
dzdz δψ∂ψ

set to
= 0 ,

(A.29)

where we used the anti-commutation property of fermions. Since the variation δψ is ar-

bitrary, thus, we find the equation of motion for field ψ is ∂ψ = 0. Similarly, the equation

of motion for field ψ is found to be ∂ψ = 0.
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A.14 Compute the following anti-commutation relation for the Laurent modes of a fermionic

field using the OPE of the product of two fermionic fields,

{ψr, ψs} =

∮
dz

2πi

∮
dw

2πi
{ψ(x), ψ(w)}zr−

1
2ws−

1
2

=

∮
dw

2πi
ws−

1
2

(∮
|z|>|w|

dz

2πi
ψ(z)ψ(w)zr−

1
2 −

∮
|z|<|w|

dz

2πi
− ψ(w)ψ(z)zr−

1
2

)
=

∮
dw

2πi
ws−

1
2

∮
C(w)

dz

2πi
R(ψ(z)ψ(w))zr−

1
2

=

∮
dw

2πi
ws−

1
2

∮
C(w)

dz

2πi

α′/2

z − w
zr−

1
2

=
α′

2

∮
dw

2πi
wr+s−1

=
α′

2
δr+s,0 ,

(A.30)

where we choose the Regge slope to be α′ = 2.

A.15 Calculate the following commutator using Eq.(3.35), we have

[Lm, ψr] = γ
∑
k>− 3

2

(
k +

1

2

)
[ψm−kψk, ψr]− γ

∑
k≤− 3

2

(
k +

1

2

)
[ψkψm−k, ψr] , (A.31)

where we can compute the commutator [ψm−kψk, ψr] and [ψkψm−k, ψr] using Eq.(A.30)

[ψm−kψk, ψr] = ψm−kψkψr − ψrψm−kψk

= ψm−kψkψr + ψm−kψrψk − ψm−kψrψk − ψrψm−kψk

= ψm−k{ψk, ψr} − {ψm−k, ψr}ψk

= ψm−kδk+r,0 − ψkδm−k+r,0 ,

(A.32)

and similarly we have [ψkψm−k, ψr] = ψkδm−k+r,0 − ψm−kδk+r,0. Now bring these expres-

sions back into [Lm, ψr] and we get the following,

[Lm, ψr] = γ
∑
k>− 3

2

(
k +

1

2

)(
ψm−kδk+r,0 − ψkδm−k+r,0

)
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− γ
∑
k≤− 3

2

(
k +

1

2

)(
ψkδm−k+r,0 − ψm−kδk+r,0

)
(A.33)

= γ

(
− r +

1

2

)
ψm+r − γ

(
m+ r +

1

2

)
ψm+r

= γ

(
−m− 2r

)
ψm+r .

A.16 Recall the commutation relation Eq.(2.17) for the Virasoro algebra with central charge

c, then take m = 2, n = −2 and use Ln |0〉 = 0 for n > −2, we get the following

〈0|L2L−2|0〉 = 〈0|[L2, L−2]|0〉 =
c

2
. (A.34)

Then we apply Eq.(3.39) to express 〈0|L2 and L−2 |0〉 in terms of modes ψr, and we find

〈0|L2 =
1

2
〈0|
(
ψ 3

2
ψ 1

2
+ 2ψ 1

2
ψ 3

2

)
=

1

2
〈0|
({
ψ 3

2
, ψ 1

2

}
+ ψ 1

2
ψ 3

2

)
=

1

2
〈0|ψ 1

2
ψ 3

2
,

L−2 |0〉 =
1

2
ψ− 3

2
ψ− 1

2
|0〉

(A.35)

where we used [ψr, ψs] = α′

2
δr+s,0 with α′ = 2. Now let us rewrite Eq.(A.17) as

c

2
= 〈0|L2L−2|0〉

=
1

4
〈0|ψ 1

2
ψ 3

2
ψ− 3

2
ψ− 1

2
|0〉

=
1

4
〈0|ψ 1

2

{
ψ 3

2
, ψ− 3

2

}
ψ− 1

2
|0〉 − 1

4
〈0|ψ 1

2
ψ− 3

2
ψ 3

2
ψ− 1

2
|0〉

=
1

4
〈0|ψ 1

2
ψ− 1

2
|0〉 − 0

=
1

4
〈0|
{
ψ 1

2
, ψ− 1

2

}
|0〉 − 1

4
〈0|ψ− 1

2
ψ 1

2
|0〉

=
1

4
,

(A.36)

where we also used ψr |0〉 = 0 for r > −1
2

and 〈0|ψr for r < 1
2
. Therefore, we conclude

that for a free fermion CFT, the central charge c = 1
2
.
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A.17 We will compute the expectation value of ψ(z + ε)∂ψ(z) in the following,

〈ψ(w)∂zψ(z)〉 = ∂z 〈ψ(w)ψ(z)〉

= ∂z

( ∑
k,l∈Z+ 1

2

w−k−
1
2 z−l−

1
2 〈ψkψl〉

)

= ∂z

(
∞∑
k= 1

2

w−k−
1
2 zk−

1
2

)

= ∂z

[
1

w

∑
n∈N

(
z

w

)n]

= ∂z

(
1

w − z

)
=

1

(w − z)2
,

(A.37)

where we used 〈ψkψl〉 = δk+l,0 with k > 0 and 0 otherwise, and let n = k − 1
2

in the third

line, and 1
1−x =

∑
n∈N x

n. Then we let w = z + ε and get 〈ψ(z + ε)∂ψ(z)〉 = 1
ε2

.

L0 =
1

2

∑
k>− 3

2

(
k +

1

2

)
ψ−kψk +

1

2

∑
k≥ 3

2

(
k − 1

2

)
ψ−kψk

= −1

4
ψ1ψ−1 +

1

4
ψ0ψ0 +

3

4
ψ−1ψ1 +

∑
k≥ 3

2

kψ−kψk

= −1

4
{ψ1, ψ−1}+

1

8
+ ψ−1ψ1 +

∑
k≥ 3

2

kψ−kψk

=
∞∑
k=1

kψ−kψk −
1

8
.

(A.38)

For the R sector, the Laurent modes take k ∈ Z, we have

〈ψ(w)∂zψ(z)〉 = ∂z 〈ψ(w)ψ(z)〉

= ∂z

(∑
k,l∈Z

w−k−
1
2 z−l−

1
2 〈ψkψl〉

)
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= ∂z

[
1

2
√
zw

+
1√
zw

∞∑
k=1

(
z

w

)k]
(A.39)

= ∂z

(
1

2
√
zw

w + z

w − z

)

=
−w2 + 4zw + z2

4z
√
zw(w − z)2

,

where we used 1+x
1−x = 1 + 2

∑∞
n=1 x

n, now let w = z + ε, then we have

〈ψ(z + ε)∂zψ(z)〉 =
1

2ε2

(√
z

z + ε
+

√
z + ε

z

)
− 1

4z
√
z(z + ε)

, (A.40)

then we will bring this result back to 〈T (z)〉 to find the vacuum expectation value.

A.18 Construct a chiral field of conformal dimension h = 1 as j(z) = −N(ΨΨ†)(z) =

iN(ψ(1)ψ(2))(z), To find an expression for the Laurent mode jn we will first prove the

following relation

N(ψ(a)ψ(b))n = −
∑
k>− 1

2

ψ
(a)
n−kψ

(b)
k +

∑
k≤− 1

2

ψ
(b)
k ψ

(a)
n−k (A.41)

k→n−k
=

∑
k≥n+ 1

2

ψ
(b)
n−kψ

(a)
k −

∑
k<n+ 1

2

ψ
(a)
k ψ

(b)
n−k

=
∑
k>− 1

2

ψ
(b)
n−kψ

(a)
k −

∑
k≤− 1

2

ψ
(a)
k ψ

(b)
n−k −

n− 1
2∑

k>− 1
2

ψ
(b)
n−kψ

(a)
k −

n− 1
2∑

k>− 1
2

ψ
(a)
k ψ

(b)
n−k

= −N(ψ(b)ψ(a))n −
n− 1

2∑
k>− 1

2

{ψ(a)
k , ψ

(b)
n−k}

= −N(ψ(b)ψ(a))n −
n− 1

2∑
k>− 1

2

δabδn,0

= −N(ψ(b)ψ(a))n ,

where the last equality holds since we have
∑b

k=a f(k) = 0 for b < a. Using the above

relation, we can write the Laurent mode jn as
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jn = iN(ψ(1)ψ(2))n

= −i
∑
k>− 1

2

ψ
(1)
n−kψ

(2)
k + i

∑
k≤− 1

2

ψ
(2)
k ψ

(1)
n−k

= −i
∑
k>− 1

2

ψ
(1)
n−kψ

(2)
k − i

∑
k≤− 1

2

ψ
(1)
n−kψ

(2)
k

= −i
∑
k∈Z+ 1

2

ψ
(1)
n−kψ

(2)
k .

(A.42)

A.19 Consider the case D = 2, since locally SO(2, 2,Z) ∼= SL(2,Z) × SL(2,Z)/Z2 and

SO(2, 2,R) ∼= SL(2,R)× SL(2,R)/Z2, then the Narain moduli space is given by

M2 = SO(2, 2;Z)\SO(2, 2,R)/SO(2)× SO(2)

=
(
SL(2,Z)× SL(2,Z)/Z2

)∖(
SL(2,R)× SL(2,R)/Z2

)/
U(1)× U(1)

=
(
SL(2,Z)\SL(2,R)/U(1)

)
×
(
SL(2,Z)\SL(2,R)/U(1)

)
,

(A.43)

where SL(2,Z)\SL(2,R)/U(1) = SL(2,Z)\HwithH being the upper half plane is isomor-

phic to the moduli space of a genus 1 Riemann surface. Thus the Narain moduli spaceM2

is two copies of the moduli space of the compact torus, which has finite volume. When D

increases, the volume converges faster.

A.20 Let us show that the function WD(τ) = τ
D/2
2 FD(τ) is an eigenfunction of the upper

half plane Laplacian ∆H with eigenvalue of D/2(D/2− 1).

∆HWD(τ) = τ 2
2

(
∂2

∂τ 2
1

+
∂2

∂τ 2
2

)
τ
D
2

2 FD(τ)

= τ 2
2

(
τ
D
2

2

∂2

∂τ 2
1

+
∂

∂τ2

(
D

2
τ
D
2
−1

2 + τ
D
2

2

∂

∂τ2

))
FD(τ)

= τ 2
2

(
τ
D
2

2

∂2

∂τ 2
1

+
D

2

(
D

2
− 1

)
τ
D
2
−2

2 +Dτ
D
2
−1

2

∂

∂τ2

+ τ
D
2

2

∂2

∂τ 2
2

)
FD(τ)

= τ
D
2

2

(
∆H +Dτ2

∂

∂τ2

)
FD(τ) +

D

2

(
D

2
− 1

)
τ
D
2

2 FD(τ)

4.33
=

D

2

(
D

2
− 1

)
WD(τ) .

(A.44)
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Appendix B

Theta Functions and Their Properties

B.1 Jacobi Triple Product Identity

We will prove the beautiful Jacobi triple product identity in the following. The Jacobi

triple product identity is given by

∏
r≥0

(
1− qr+1

)(
1 + qr+

1
2w

)(
1 + qr+

1
2w−1

)
=
∑
m∈Z

q
m2

2 wm , (B.1)

where |q| < 1 and w 6= 0. To prove this identity, we will first derive the Eulers’ formulas

stated below, my derivation is inspired by a derivation in [48]. The Euler’s formulas are

given by

∏
n∈N

(
1 + xnw

)
=
∑
n∈N

xn(n−1)/2wn

(1− x) . . . (1− xn)
with |x| < 1 ,

∏
n∈N

(
1 + xnw

)−1

=
∑
n∈N

(−1)nwn

(1− x) . . . (1− xn)
with |x| < 1, |w| < 1 ,

(B.2)

and then simply let q = x
1
2 . Let

f(w) =
N−1∏
k=0

(1 + xkw) , (B.3)
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then it is easy to see that

f(w) = (1 + w)
N−1∏
k=1

(1 + xkw) = (1 + w)
N−2∏
k=0

(
1 + xk(xw)

)
=

1 + w

1 + xNw
f(xw) , (B.4)

or we can express it as (1 + xNw)f(w) = (1 + w)f(xw). On the other hand, we can write

f(w) as a power series of w with coefficients given by a function of x,

f(w) =
N∑
n=0

an(x)wn , (B.5)

let an(x) = 0 for n < 0, then Eq.(B.4) gives

(1 + xNw)
N∑
n=0

an(x)wn = (1 + w)
N∑
n=0

an(x)xnwn ,

N∑
n=0

an(x)wn +
N∑
n=0

an(x)xNwn+1 =
N∑
n=0

an(x)xnwn +
N∑
n=0

an(x)xnwn+1 ,

N∑
n=0

(
an(x) + an−1(x)xN

)
wn =

N∑
n=0

(
an(x)xn + an−1(x)xn−1

)
wn ,

(B.6)

comparing the coefficient of wn, we get the recursion relation

an(x) =

(
1− xN−n+1

1− xn

)
xn−1an−1(x)

=

(
1− xN−n+1

1− xn
1− xN−n+2

1− xn−1
. . .

1− xN

1− x

)(
xn−1 . . . x0

)
a0(x)

=
(1− xN−n+1) . . . (1− xN)

(1− x) . . . (1− xn)
xn(n−1)/2

≡ (1− xN)!!! xn(n−1)/2

(1− xn)!!!(1− xN−n)!!!
,

(B.7)

where a0(x) = 1 by the definition of f(w), and we denote (1− xn) . . . (1− x) = (1− xn)!!!

for convenience. Therefore, we get

N−1∏
k=0

(1 + xkw) =
N∑
n=0

(1− xN)!!! xn(n−1)/2wn

(1− xn)!!!(1− xN−n)!!!
. (B.8)
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By taking N →∞ then xN → 0 since |x| < 1, we obtain the first formula in Eq.(B.2).

For the second Euler’s identity, we let w = −1 in Eq.(B.8) and multiply both sides by

(−1)N−2n[(1− xN)!!!]−1, then we get

0 =
N∑
n=0

xn(n−1)/2(−1)N−n

(1− xn)!!!(1− xN−n)!!!
for N ≥ 1 . (B.9)

Now let

g(w) =
∞∑
n=0

(−1)n

(1− xn)!!!
wn =

∞∑
n=0

gn(x)wn ,

h(w) =
∞∑
n=0

xn(n−1)/2

(1− xn)!!!
wn =

∞∑
n=0

hn(x)wn ,

(B.10)

then the product g(w)h(w) can be expressed as

g(w)h(w) =
∞∑
N=0

fN(x)wN where f0(x) = 1 ,

and fN(x) =
N∑
n=0

gn(x)hN−n(x) =
N∑
n=0

xn(n−1)/2(−1)N−n

(1− xn)!!!(1− xN−n)!!!
= 0 for N ≥ 1

(B.11)

by Eq.(B.9), then we have g(w)h(w) = 1 and thus h(w) = 1/g(w). We notice that

h(w) =
∑
n∈N

xn(n−1)/2wn

(1− xn)!!!
=
∏
n∈N

(
1 + xnw

)
(B.12)

by the first Euler’s identity, therefore, we have

∞∑
n=0

(−1)n

(1− xn)!!!
wn = g(w) =

∏
n∈N

(
1 + xnw

)−1

, (B.13)

which is exactly the second Euler’s identity in Eq.(B.2).

Now that we have proved the Euler’s identities, we will use them to verify the Jacobi

triple product identity by a simple calculation. To do so, we replace x by x2 and replace
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w by xw, the first Euler’s identity can be written as

∏
n∈N

(
1 + x2n+1w

)
=
∑
n∈N

xn(n−1)xnwn

(1− x2) . . . (1− x2n)

=
∑
n∈N

xn
2

wn
∏

k∈N(1− x2k+2+2n)∏
k∈N(1− x2k+2)

∗
=
∏
k∈N

(
1− x2k+2

)−1∑
n∈Z

xn
2

wn
∏
k∈N

(
1− x2k+2+2n

)
∗∗
=
∏
k∈N

(
1− x2k+2

)−1∑
n∈Z

xn
2

wn
∑
m∈N

(−1)mxm(m−1)x(2n+2)m

(1− x2) . . . (1− x2m)

=
∏
k∈N

(
1− x2k+2

)−1 ∑
m∈N

(−1)m(xw−1)m

(1− x2) . . . (1− x2m)

∑
n∈Z

x(n+m)2wn+m

=
∏
k∈N

(
1− x2k+2

)−1∏
j∈N

(
1 + x2j+1w−1

)−1∑
n∈Z

xn
2

wn

(B.14)

where in ∗ all terms of the sum with n < 0 are zero, in ∗∗ we applied the first Euler’s

identity with x replaced by x2 and we let w = x2n+2, and in the last equality we applied

the second Euler’s identity with x → x2 and w → −xw−1 and replace n + m by n in the

last sum over n ∈ N. Then we obtain the equality

∏
k∈N

(
1− x2k+2

)(
1 + x2k+1w

)(
1 + x2k+1w−1

)
=
∑
n∈Z

xn
2

wn , (B.15)

which is exactly Eq.(B.1) with q = x2, thus the proof is complete.

B.2 Relation between Theta Functions and the Dedekind

η-function

The Jacobi Theta functions are modular functions defined as the following,

ϑ1(τ) ≡ −i
∑

n∈Z+ 1
2

(−1)n−
1
2 q

n2

2 = −iη(τ)q
1
12

∞∏
k=0

(
1− qk

)(
1− qk+1

)
, (B.16)
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ϑ2(τ) ≡
∑

n∈Z+ 1
2

q
n2

2 = η(τ)q
1
12

∞∏
k=0

(
1 + qk

)(
1 + qk+1

)
=

1

2
η(τ)q

1
12

∞∏
k=0

(
1 + qk

)2

, (B.17)

ϑ3(τ) ≡
∑
n∈Z

q
n2

2 = η(τ)q−
1
24

∞∏
k=0

(
1 + qk+ 1

2

)2

, (B.18)

ϑ4(τ) ≡
∑
n∈Z

(−1)nq
n2

2 = η(τ)q−
1
24

∞∏
k=0

(
1− qk+ 1

2

)2

, (B.19)

where the second equality in each line comes from the Jacobi triple product identity and

the Dedekind η-function is defined in Eq.(3.19). Compute the product of the last three

Theta functions and we get

ϑ2ϑ3ϑ4(τ ; q) =
1

2
η3(τ)

∞∏
k=0

(
1 + qk

)2(
1 + qk+ 1

2

)2(
1− qk+ 1

2

)2

= 2η3(τ)
∞∏
k=1

(
1 + qk

)2(
1− q2k−1

)2

= 2η3(τ)

(
∞∏
k=1

(
1 + qk

)2
)(

∞∏
k=1

(
1− q2k−1

)2
)

= 2η3(τ)

(
∞∏
k=1

(
1 + q2k−1

)2(
1 + q2k

)2
)(

∞∏
k=1

(
1− q2k−1

)2
)

= 2η3(τ)
∞∏
k=1

(
1 + q2k

)2(
1− q4k−2

)2

,

(B.20)

by comparing the second and the last lines we see that ϑ2ϑ3ϑ4(τ ; q) = ϑ2ϑ3ϑ4(τ ; q2). Then,

from ϑ2ϑ3ϑ4(τ ; 0) = 2η3(τ) we obtain that ϑ2ϑ3ϑ4(τ ; q) = 2η3(τ) if |q| < 1. Therefore, we

have the following identity,

ϑ2(τ)ϑ3(τ)ϑ4(τ) = 2η3(τ) . (B.21)

B.3 Modular Transformations of Theta Functions

As we have seen, partition functions of CFTs on the torus can be expressed using

theta functions, and to better study their modularity properties, let us now investigate

the behaviour of theta functions under the modular transformations. First of all, let us
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consider the shift τ → τ + 1. Recall that q = e2πiτ , use Eq.(B.17, B.18, and B.19) and

modular properties of the Dedekind η-function as shown in Eq.(3.19), we have

ϑ2(τ + 1) =
1

2
e
πi
12η(τ)e

πi
6 q

1
12

∞∏
k=0

(
1 + e2πikqk

)2

= e
πi
4 ϑ2(τ) , (B.22)

ϑ3(τ + 1) = e
πi
12η(τ)e−

πi
12 q−

1
24

∞∏
k=0

(
1 + e2πik+πiqk+ 1

2

)2

= ϑ4(τ) , (B.23)

ϑ4(τ + 1) = e
πi
12η(τ)e−

πi
12 q−

1
24

∞∏
k=0

(
1− e2πik+πiqk+ 1

2

)2

= ϑ3(τ) . (B.24)

Before we study the behaviours of theta functions under the modular transformation

τ → −1/τ , we will first introduce the Poisson summation formula, which is a useful tool

in studying modular properties of functions. It relates the sum of a function over a lat-

tice and the sum of its Fourier transformation over Fourier modes. The formula can be

expressed as the following,

∑
n∈Z

exp(−πan2 + bn) =
1√
a

∑
k∈Z

exp

(
− π

a

(
k +

b

2πi

)2
)
. (B.25)

Take a = −iτ and b = iπ, we have

∑
n∈Z

(−1)n exp
(
πiτn2

)
=

1√
−iτ

∑
k∈Z

exp

(
− πi

τ

(
k +

1

2

)2
)
, (B.26)

then bring the above expression into theta functions and the transformation is straight-

forward to see using Euler’s formula,

ϑ2

(
− 1

τ

)
≡
∑

n∈Z+ 1
2

exp

(
− πin2

τ

)
=
√
−iτ

∑
n∈Z

(−1)n exp
(
πiτn2

)
=
√
−iτϑ4(τ) . (B.27)

Take a = −iτ and b = 0, we have

∑
n∈Z

exp
(
πiτn2

)
=

1√
−iτ

∑
k∈Z

exp

(
− πik2

τ

)
, (B.28)
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then we get

ϑ3

(
− 1

τ

)
≡
∑
n∈Z

exp

(
− πin2

τ

)
=
√
−iτ

∑
n∈Z

exp
(
πiτn2

)
=
√
−iτϑ3(τ) . (B.29)

For ϑ4(τ), we just need to apply modular transformation to Eq.(B.27) one more time, then

we get

ϑ4

(
− 1

τ

)
=

1√
i/τ

ϑ2

(
− 1

− 1
τ

)
=
√
−iτϑ2(τ) . (B.30)

These modular transformation properties of theta functions will be handy for computing

CFTs partition functions on a torus.
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