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Abstract—Wireless technologies are pervasive to support ubiq-
uitous healthcare applications. However, a critical issue of using
wireless communications under a healthcare scenario rests at the
electromagnetic interference (EMI) caused by RF transmission,
and a high level of EMI may lead to a critical malfunction
of medical sensors. In view of EMI on medical sensors, we
propose a power control algorithm under a non-cooperative game
theoretic framework to schedule data transmission. Our objective
is to ensure that the non-cooperative game of power control can
achieve a network-level objective—the optimal network capacity,
though the wireless users are selfish and only interested in
optimizing their own channel capacity. To obtain this objective,
we show that our proposed non-cooperative game is a potential
game, and propose the Best-response-dynamics algorithm which
can ensure that the game strategy of each user is induced to
the optimal solution to the problem of network-level optimal
capacity. Numerical results illustrate that the proposed algorithm
can achieve an enhancement of 8% of network performance than
the existing algorithm against the variations of mobile hospital
environments.

Index Terms—E-health, Mobile hospital, Power control, Game
theory, Nash equilibrium

I. INTRODUCTION

Recent developments in cellular networks have enabled
the innovative application of E-health anytime and anywhere.
However, RF transmission can result in electromagnetic inter-
ference (EMI) to all of medical sensors, and a high level of
interference can even cause malfunction of medical sensors
and potentially injure patients [1], [2]. Thus, the control of
EMI (e.g. through power control) is a critical issue to E-
health and should be addressed under the environment of
mobile hospital, which is defined as Internet of vehicles for
E-health applications in this paper. So throughout this paper,
we alternatively use the terms of mobile hospital and Internet
of vehicles for E-health applications.

There is a large body of works related to the application of
wireless networks to support health service [1]–[3]. Phond et
al. in [1], [2] present the issue of EMI under the scenario of a
wireless local area network (WLAN) for e-health applications

E-mail address: lindi@uestc.edu.cn, yutang@uestc.edu.cn,
fabrice.labeau@mcgill.ca, yaoyuanzhe@gmail.com, cimran@ksu.edu.sa,
vasilako@ath.forthnet.gr. This work was partially supported by National
Natural Science Foundation of China (No. 61370202) and partially supported
by a grant from the National High Technology Research and Development
Program of China (863 Program, No. 2012AA02A614).

within a hospital, but the technology of WLAN is not applica-
ble to our scenario, in which a mobile hospital covers a large-
scaled area (e.g., a city or a town). Qinghua et al. in [3] address
the possibilities of using wireless technologies in a medical
environment, and allocate power and rate according to the
channel conditions of users, and do not take the potential EMI
impact into account. In such a scenario, a wireless user who
stays close to a medical sensor could be allowed to transmit
data at a high level of power if only the user’s communication
channel is in good condition [4]. However, the RF transmission
at a high level of power would influence the operation of
medical sensors. Such an improper power allocation by these
algorithms may lead to the malfunction of EMI-sensitive
medical sensors, so the aforementioned algorithms cannot be
employed under the scenario of mobile hospital. Also the
abovementioned algorithms [1]–[3] are designed to maximize
the individual objective of each wireless user, instead of opti-
mizing a network-level objective (e.g., the network capacity).
However, usually the maximum of individual objective is
inconsistent with the maximum of network-level objective. The
importance of scheduling wireless transmission under a mobile
hospital scenario as well as the lack of efficient algorithms for
optimizing network-level objective motivate us to investigate
how wireless users can adjust their transmit power to achieve
certain goals, such as maximizing the network capacity while
ensuring the acceptable level of EMI on medical sensors over
Internet of vehicles for E-health applications.

In this paper, we address the problem of dynamically
scheduling wireless transmission for wireless users’ networks
under a mobile hospital environment. The objectives of this
paper are to i) maximize certain goals (e.g., network capacity)
of network and ii) protect the medical sensors from harmful
interference. In this paper, we propose a game of power control
in a mobile hospital environment and address a robust power
control algorithm, which is shown to converge to the Nash
equilibrium of game. To the best of our knowledge, this is the
first work which presents a power control algorithm under
a wireless network for E-health applications. The primary
contributions of this paper rest at the following issues: i)
addressing the framework of data transmission over Internet
of vehicles for E-health applications; ii) establishing a game
model of power control to achieve the maximum of network
capacity in consideration of EMI on medical sensors; iii)
proposing a numerical algorithm which can converge to the
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Nash equilibrium of the proposed game.

II. RELATED WORK OF EMI ON MEDICAL SENSORS

The earliest research on EMI in hospital environments
mainly focuses on the immunity of medical equipments to
mobile phones. Tan et al. in [5] firstly propose that some
types of medical equipments, such as ventilators, infusion
pumps, and ECG monitors, are quite sensitive to the EMI from
cellular phones. Then, an EMI susceptibility test is carried
out by the Medicines and Healthcare Products Regulatory
Agency (MHRA) of U.K. [6]; this test includes testing the
EMI of mobile phones and personal communication networks.
The test results show that external pacemakers, anesthesia
machines, respirators, defibrillators are also susceptible to
EMI. Trigano et al. in [7] and Calcagnini et al. in [8] study
the EMI of GSM mobile phones on pacemakers and infusion
pumps, respectively. Their results show that infusion pumps
and pacemakers are inhibited due to the EMI of GSM mobile
phones. With the implementation of 3G mobile phone systems
in the United States, Japan, Hong Kong etc., the research
of EMI effects on medical equipments in the 3G band has
appeared [9], [10]. In 2007, the International Electrotechnical
Committee (IEC) publishes the EN60601-1-2 standard, and
the immunity levels are recommended as 3V/m and 10V/m
for life-supporting equipments (e.g., blood pressure moni-
tors and infusion pumps) and non-life-supporting equipments
(e.g., defibrillators), respectively. In view of the advances
of electromagnetic compatibility (EMC) technologies, some
hospitals in Singapore and the U.K. relax the EMI restric-
tion recommended in the EN60601-1-2 standard, and mobile
phones are permitted to use in some areas of hospitals [11].
Chi-Kit et al. in [12] discuss the EMI test in view of the
recently developed EMC of medical equipments, and the test
takes into account the EMI of GSM900, PCS1800, and 3G
mobile communication systems. The testing results show that
ECG monitors, radiographic systems, audio evoked potential
systems, and ultrasonic fetal heart detectors are sensitive
to EMI [12]. Based on the previous literature, it can be
concluded that the medical equipments sensitive to cellular
phones include fetal monitors, infusion pumps, syringe pumps,
ECG monitors, external pacemakers, respirators, anesthesia
machines, and defibrillators [13].

Another stream of research focuses on the EMI from devices
which access to a wireless local area network (WLAN),
which usually works at the frequency band around 2.4GHz.
This frequency band is different from the frequency band
which mobile phones work at, and the amount of EMI on
a medical equipment is related to frequency bands. Given
these reasons, the research on EMI in the scenario of wireless
healthcare monitoring starts. Krishnamoorthy et al. in [14]
measure the EMI on medical equipments from patient and
doctor devices, which work around the 2.4 GHZ frequency
bands; the measurement is undertaken in two hospitals. The
results show that the maximal EMI record is 0.552V/m, which
is within the acceptable EMI range recommended by the
EN60601-1-2 standard. However, the measurement in [14]
has not considered the QoS of data transmitted by patient

devices and healthcare staff devices. The policy on mobile
phone utilization, such as turning off mobile phone, cannot
be applicable for patient devices and healthcare staff devices
in a wireless healthcare monitoring system [15]. In wireless
healthcare monitoring systems, healthcare staff and patients
should employ wireless devices for data transmission and
communication, and the restriction on transmit power may
reduce the quality of service (QoS) of data transmission,
which may increase the risk of medical data loss. Therefore,
a contradiction between transmit power restriction and QoS
requirements exists in wireless healthcare monitoring systems.
In addition, when multiple patient devices and healthcare staff
devices transmit data simultaneously, the aggregated signals
at medical equipments would cause a higher level of EMI
to medical equipments, including life-supporting equipments
(e.g., blood pressure monitors and infusion pumps) and non-
life-supporting equipments (e.g., defibrillators) [1]. Phond et
al. in [1] discuss the EMI in hospital environments, in view of
the QoS of patient devices and healthcare staff devices. The
conclusion is that EMI on most medical equipments is within
the unacceptable range if the transmit power of a WLAN
device is larger than 10mW.

All the abovementioned research does not consider the
vehicular scenarios for healthcare applications, which are
interesting to this paper, and thus the medical sensors in
the test may not be vehicle-mounted and wearable medical
sensors. In Section III.A., we address a detailed experiment
which includes the test of EMI impact on types of vehicle-
mounted and wearable medical sensors.

III. MOBILE HOSPITAL ENVIRONMENT

A typical mobile hospital environment is composed of
vehicles for e-health applications, and these vehicles are
mounted with a few medical devices which can help doctors
to monitor the condition of patients. On the vehicle for e-
health applications, doctors, healthcare staff, and the relatives
of patients may use mobile phones due to these two issues:
(1) Doctors and nurses on the same ambulance must report
the conditions of patients over phone to the staff in a hospital
or in a medical center to arrange the medical actions which
will be taken at the arrival of patients. (2) Patients or their
relatives need to contact their family members over mobile
phone about the change of clinical situations as well as
important information. However, the use of mobile phones
may lead to EMI impact on nearby medical devices [16].
EMI refers to the disturbance of electrical circuits due to
electromagnetic induction or electromagnetic radiation which
are emitted from an external source [17]. The disturbance
may cause the degradation of circuit’s performance, and the
degradation can lead to a total loss of data.

In the following, we first present the model of EMI impact
in this paper as a constraint of network-capacity optimization
problem, which is detailed in Section III.A. Then, we address
an experiment to verify the model of EMI on medical devices.

A. Model of EMI impact
A typical vehicle for e-health applications consists of both

life-support and non-life-support medical devices (shown in
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Fig. 1. The Figure illustrates the Internet of vehicles for e-health applications.

Fig. 1). The medical data which are collected by medical
devices are required to send to the doctors, who are staying
in a hospital to make the plan of taking actions on the patient
once the vehicle arrives at the hospital. Also the medical staff
on the vehicle need to report the condition of patients over
phone to doctors, and the use of mobile phone may lead to
EMI on medical devices which are located nearby. The life-
support medical devices contain electronic components which
are sensitive to EMI, so they are more sensitive to the impact
of EMI than non-life-support devices. Life-support medical
devices include Ultrasonograph devices, etc., and non-life-
support medical devices include holters and blood pressure
devices, etc.

Both life-support devices and non-life-support devices may
have different requirements on the transmit power of a wireless
user to ensure that the user’s RF transmission causes an
acceptable level of EMI on medical devices. The maximal
potential transmit power of each wireless user should satisfy
all of these requirements. To the best of our knowledge, Phond
et al. in [1] firstly address how to model the EMI effects on
medical devices and calculate the maximal potential transmit
power of a wireless user subject to the EMI constraints.
Mathematically, the constraints on the transmit power of a
wireless user can be shown in equation (1) and equation (2),
for life-support medical devices and non-life-support medical
devices, respectively [1].∑

i∈U

µ1

√
Pi

Di(p)
≤ ENLS(p), for p ∈M1 (1)

∑
i∈U

µ2

√
Pi

Di(q)
≤ ELS(q), for q ∈M2 (2)

where ENLS(p) and ELS(q) are the acceptable EMI levels
for a non-life-support device p and a life-support device q,
respectively; Pi is the transmit power of a wireless user i;
Di(p) is the distance between a transmitter of user i and non-
life-support device p or life-support device p; µ1 and µ2 are
constant, and their values suggested by IEC 60601-1-2 are 7
and 23, respectively [1]. U represents the set of wireless users
over the Internet of vehicles. M1 represents the set of non-life-
support devices, while M2 represents the set of life-support
devices.

Let

A =



µ1

D1(1) · · · µ1

Dn(1)

· · · · · · · · ·
µ1

D1(m1) · · · µ1

Dn(m1)
µ2

D1(1) · · · µ2

Dn(1)

· · · · · · · · ·
µ2

D1(m2) · · · µ2

Dn(m2)


and xi =

√
Pi, we can represent (1) and (2) as

AX ≤ B, (3)

where X = [x1, · · · , xm1
, xm1+1, · · · , xm1+m2

]T , B =
[ENLS(1) · · ·ENLS(m1), ELS(1) · · ·ELS(m2)]T , m1 is the
cardinality of M1, m2 is the cardinality of M2.

Remark 3.1: When the number of rows of A equals to n,
i.e. m1 + m2 = n, then, we can obtain the unique solution
X = A−1B.

Remark 3.2: When the number of rows of A is less than n,
i.e. m1+m2 < n, then, the linear equation is underdetermined.
We select the optimal one from infinite solutions subject to the
maximization of

∑
i∈U

Pi.

Remark 3.3: When the number of rows of A is larger than
n, i.e. m1 + m2 > n, then, the linear equation is overdeter-
mined. We relax the constraints of (1) and (2) with the best
approximation, i.e. min

X
|AX −B|. So X = (ATA)−1ATB.

Remark 3.4: Given the set of wireless users U , the maximal
transmit power of any wireless user i (denoted as P̄i) can
ensure that all of medical devices are free from EMI effects
when m1 +m2 ≤ n (see Remark 2.1 and 2.2), and also ensure
that the total amount of EMI on medical devices is minimized
when m1 + m2 > n (see Remark 2.3), since under the latter
scenario, the power allocation can ensure min

X
|AX −B|.

Definition 1: The maximal potential transmit power of user
i (i.e. P̄i) to minimize the total amount of EMI on medical
devices, as obtained from Remark 2.4, is defined as the
maximal effective transmit power (METP).

The METP (i.e. P̄i for user i) will be employed to establish
the problem of (5) in IV.A.

B. Experiment of testing EMI effects

In this experiment, we test the EMI impact on 50 types of
vehicle-mounted medical equipments and wearable medical
devices from the cellular phones operated by China Mobile,
China Unicom, China Telecom. These cellular phones are with
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the technologies of GSM-900/1800, CDMA2000, TD-LTE,
and their average transmit power is 0.8W.

The test is carried out in an anechoic chamber in order to
exclude EMI impact from the other sources of RF emission,
such as from telecommunication systems. The test procedures
are detailed as follows: a) Tabletop devices are placed on
a table 80cm above the floor, and floor-standing devices
are placed on the floor; b) One investigator who operates
a mobile phone controls the maximal power output (0.8W),
while another investigator monitors the working status of
medical devices; c) The mobile phone is gradually brought
closer to the medical device. If the degradation of performance
of devices occurs, the mobile phone is turned off to check if
the performance degradation ceases, which shows whether the
degradation is reversible or irreversible; d) The EMI impact
on medical devices, reversible or irreversible, as well as the
distance between medical devices and mobile phones at the
degradation of performance are recorded.

Test result shows that EMI from cellular phones causes
the performance degradation of 68% of medical equipments
or devices within a 2m distance away from the cellular
phones. Typical degradation in the test includes: a) Artifact
in images of ultrasound, X-ray, CT equipments; b) Noise
on biomedical signals, such as ECG and EEG; c) Sensor
malfunction in infusion pumps, syringe pumps, ventilators; d)
Change of operating mode of external pacemakers, such as
from aynchronized to fixed rate. This result is in line with the
model proposed in [1].

Most problems of performance degradation are due to
the component parasitics, and it represents the stray reactive
elements which have been found in every component, whether
a passive or active component. Capacitors have series induc-
tance, which can lead to a series resonant circuit. Wound
inductors have interwinding capacitance, which can lead to
a parallel resonant circuit. These circuits resonate at the
frequencies from 5MHz to 1000 MHz. Besides the issue of
component parasitics, the other issues which may lead to the
performance degradation of medical devices include ground
impedance, poor cable shielding, stray internal coupling paths,
etc. [18]–[21].

IV. MODEL OF NETWORK-CAPACITY GAME

A. Model of game for optimal individual objective

In this subsection, we consider the model of non-cooperative
game with a linear pricing factor, and the utility of each
wireless user (i.e. the channel capacity of wireless user) 1 is
shown as

ui(Pi) = log(
Pihii∑

j 6=i Pjhji +N0
)− λiPi, (4)

1Our work focuses on 3G wireless technologies, which have dominated the
3G mobile technologies. Actually, the primary 3G standards (CDMA2000,
W-CDMA, TDS-CDMA) are all based on the technology of CDMA. In the
E-health application, mobile phones must be smart phones, since a few mobile
APPs must be installed on the smart phones for medical data analysis. In
the smart-phone market, 3G overtakes 2G and 4G sales. Thus, CDMA-based
technologies dominate the market of smart phones for E-health applications.
The model and results of our work can be widely appropriate in real life.

where Pi denotes the transmit power by user i; hji denotes
the channel condition between user i and j; N0 denotes the
power spectral density of additive white Gaussian noise; λi is
the pricing factor.

Given the abovementioned utility, the game is denoted as

max
0≤Pi≤P̄i

ui(Pi) i = 1, 2, ..., N (5)

where P̄i is the METP defined in Definition 1.

B. Model of game for optimal network-level objective

In this section, we consider optimizing the network-level
objective, i.e. max

P
U(P) =

∑
i

ui(Pi). In the game of (5),

each wireless user is selfish and only interested in maximizing
his/her utility (i.e. channel capacity) [22]–[25]. Thus, the
summation of utility of self-interested users at the Nash
Equilibrium is usually not equal to the optimal network utility,
i.e.

U(P∗) =
∑
i

ui(P
∗
i ). (6)

usually does not hold, where P∗ = arg max
P

U(P) and P ∗i =

arg max
Pi

ui(Pi).
In the following, we show that the game of (5) is a potential

game and equation (6) holds under the scenario of game (5),
i.e. the self-interested users will be induced to contribute to
maximizing the network utility U(P):

max
P

U(P) (7)

where P = [P1, ..., PN ] given N users over the Internet of
vehicles for E-health applications, and U(P) =

∑
i

ui(Pi).

C. Properties of potential game

In this subsection, we address a few properties of potential
game to familiarize readers. Firstly, we present the definition
of potential game.

Definition 2: A game g = 〈N, {ui}i∈N , {Pi}i∈N 〉 is defined
to be a potential game if there exists a function f : P −→ R
satisfying

f(Pi,p−i)− f(P̂i,p−i) = ui(Pi)− ui(P̂i)

for every i = 1, · · ·, N , Pi, P̂i ∈ Pi, P−i ∈ P−i.
Lemma 1: Let g = 〈N, {ui}i∈N , {Pi}i∈N 〉 be a game in

which the strategy sets are intervals of real numbers. Suppose
that the utility function ui is continuously differentiable. Then
f : P −→ R is a potential function for g if and only if f is
continuously differentiable, and satisfies

∂ui(Pi)

∂Pi
=
∂f(P)

∂Pi

Proof: Refer to Proposition 1 of [26].
Lemma 2: A potential game has a unique Nash equilibrium

if its potential function is strictly concave and continuously
differentiable over a convex strategy space. In such a scenario,
the Nash equilibrium of potential game coincides with the
maximizer of the potential function.

Proof: Refer to Proposition 2 of [26].
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D. Best-response-dynamics algorithm of the game

In this subsection, we show that the game of (5) is a
potential game, in such that the Nash equilibrium of (5) can
be consistent with an optimal solution to the maximization of
network utility of (7), i.e. each of self-interested users can be
induced to contribute to maximizing total utility at the network
level.

We rewrite the utility function of (5)

max
0≤Pi≤P̄i

ui(Pi) i = 1, 2, ..., N

and show that the game with such a utility is a potential game.
Theorem 3: A game g = 〈N, {ui}i∈N , {Pi}i∈N 〉 is a

potential game with the potential function of

f(P) =
∑
i

(log(Pi)− λiPi) (8)

Proof: Both f(P) and ui(P) are continuously differen-
tiable, and f(P) satisfies

∂ui(Pi)

∂Pi
=
∂f(P)

∂Pi
=

1

Pi
− λi.

According to Lemma 1, g is a potential game.
Theorem 4: The potential game g in Theorem 3 has a unique

Nash equilibrium.
Proof: Note that f(P) is strictly concave and contin-

uously differentiable. And P is a convex space which is a
subset of one-dimensional Euclidean space of real numbers.
According to Lemma 2, g has a unique Nash equilibrium.

Theorem 5: At the Nash equilibrium of potential game g, the
pricing factor λi satisfies λi = 1

P∗i
, given the Nash equilibrium

of potential game g as Pi∗.
Proof: Consider the first partial function of ∂ui(P)

∂Pi
=

1
Pi
− λi = 0. The proof follows.

Remark 4.1: Denote the Nash equilibrium of potential game
g as Pi∗. We consider the set of pricing factor λi as λi = 1

Pi
∗ .

Each wirelss user is only interested in optimizing individual
utility, but in the proposed potential game, the Nash Equilib-
rium of game in (5) can be induced to the optimal network
utility, i.e. each consumer who is interested in maximizing
individual utility can contribute to the optimization of overall
utility at the network level.

In the following, we address the specific algorithm which
can lead the Nash Equilibrium of game (5) to the optimal
network-level utility. Best response dynamics represent the
strategies which can produce the most favorable results for
a player in the next round, given the other players’ strategies.
We first address the best response dynamics of a wireless user
with respect to the game of (5). Also we compare the best
response dynamics with the optimal operating point, which is
defined in the following.

Definition 3: The optimal operating point O(P) is defined
as the optimal solution to the problem of (7), i.e. O(P) =
arg max

P
U(P).

Remark 4.2: The optimal operating point is the global
optimum which can maximize a network-level objective in
(7). Note that the optimal solution can only be achieved under
the assumption that a centralized scheduler is able to access to

complete information of users and can control the strategies of
users. This assumption is not implementable in a distributed
network, such as Internet of vehicles for E-health applications.
Thus, we only use the optimal operating point as a benchmark
to measure the performance loss with our proposed potential-
game approach.

Definition 4: The best response dynamics of the game with
pricing g = 〈N, {ui}i∈N , {Pi}i∈N 〉 of (5) is denoted as

θi(P−i) = arg max
Pi

ui(Pi) (9)

with the update of Pi ←− Pi + δ(θi(P−i)−Pi), given the step
size of δ.

Theorem 6: With the setting of pricing factor λi as Remark
3.1, the best response θi of game (5) converges to O(P).

Proof: According to (8), game (5) is a potential. Thus,
the best response θi of game (5) which converges to the Nash
equilibrium also converges to O(P) by Lemma 2.

Definition 5: Given the best response θi of game (5) as well
as the optimal operating point O(P), the relative performance
loss is defined as η = |U(θi(P−i))−U(O(P))|

U(O(P)) .
Remark 4.3: According to Theorem 6, the relative perfor-

mance loss η converges to 0 with the best response θi of
game (5). The reasons of defining performance loss rest at:
(1) investigating the dynamics of η at each round of game;
(2) comparing the performance loss of our potential game with
the other games in publication.

V. SIMULATION AND DISCUSSION

We gather the data on Internet of vehicles from [27], in
which a connection of network represents a transmit-receive
pair of wireless users. In the simulation, we randomly select
the position of 50 vehicles (terminals) within an area of 1000
meters × 1000 meters. Each terminal has a probability of
0.1 using the mobile phone and is moving with an arbitrary
direction at a speed of 10m/s (36km/h). Please note that in
cities, when an ambulance is close to densely populated areas,
it is possible that 50 terminals have EMI impact on medical
devices at the same time. We clarify the characteristics of
channel models in Section V.A. Also we normalize the level
of EMI ELS or ENLS (see (1) and (2)) to unity, and perform
about 100000 Matlab-based experiments to present the results.

A. Characteristics of channel models

We select the commonly used set of empirical channel
models, which is specified in ITU-R recommendation M.1225
[28], for simulation. ITU-R M.1225 model is applicable for
the test scenarios in urban and suburban areas outside the high
rise core where the buildings are of nearly uniform height [28]:

L = 40(1−4×10−3∆h)logR−18log∆h+21logf+80 (10)

where R[km] represents the distance between base station and
mobile station; f [MHz] represents the carrier frequency; h[m]
represents the base station antenna height, which is measured
from the average rooftop level.

Each terrestrial test environment can be modelled as a
channel impulse response model based on a tapped-delay line.
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Tap Relative Average Doppler
delay (ns) power (dB) spectrum

1 0 0.0 Rayleigh
2 310 -1.0 Rayleigh
3 710 -9.0 Rayleigh
4 1090 -10.0 Rayleigh
5 1730 -15.0 Rayleigh
6 2510 -20.0 Rayleigh

TABLE I
PARAMETERS OF PROPAGATION MODELS IN ITU-R RECOMMENDATION

M.1225 [28]

The model is characterized by the number of taps, the time
delay relative to the first tap, the average power relative to
the strongest tap, and the Doppler spectrum of each tap. A
majority of time-delay spreads are relatively small, while a
few “worst case” multipath characteristics cause much larger
delay spreads. Table I identifies the propagation model for each
of 6 vehicular test cases. In all of these test cases, we consider
the strength and relative time delay of signal components as
well as Doppler shift, and assume that each of 6 vehicular
test cases occurs with the same probability. Specifically, the
primary parameters to characterize each of propagation models
include:

– Time delay-spread, its structure, and its statistical vari-
ability (e.g. probability distribution of time delay spread);

– Multipath fading characteristics (e.g. Doppler spectrum,
Rician vs. Rayleigh) for the envelope of channels.

B. Performance of proposed algorithm across networks

In this section, we compare the convergence rate of our
algorithm (9) under the scenarios of different random networks
(shown in Fig. 2) with the algorithm proposed in [4], in which
the EMI on medical devices is not considered. The game in
[4] can be modelled as

max
Pi

ûi(Pi) i = 1, 2, ..., N (11)

where ûi(Pi) = log( Pihii∑
j 6=i Pjhji+N0

) − λPi, in which λ is
constant.

From Fig. 3, we observe that the potential-game approach
can achieve a much lower level of performance loss than the
approach in [4] does under various scenarios of networks.
Indeed, the level of performance loss with potential-game
approach keeps zero, while the level with approach in [4]
is around 8%. In line with [4], it is observed from Fig. 3
that lower performance loss can be achieved by Exponential
network, in which wireless users have only a single or few
transmit/receive pairs, than by Erdös-Rényi network in which
users have multiple transmit/receive pairs. This is because a
user establishs transmit-receive pairs with most of the other
users in Erdös-Rényi network, and thus data transmission is
easily influenced by the interference from the other transmis-
sions. However, in the Exponential network, the users establish
transmit-receive pairs with only a single or few other users,
and they suffer little interference from the other transmissions.
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Fig. 2. The Figure illustrates representative vertex degree distributions for
Erdös-Rényi (left) with p = 0.3, Exponential (center) with α = 2.5, and
preferential attachment (scale-free) graphs (right) with γ = 15. All graphs
have size 105 and edges 107 to ensure a single component (with high
probability) for the chosen parameterizations of these graphs. f(D(G)) is
the frequency of the vertex degree D(G).
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Fig. 3. The Figure illustrates the rate of convergence to the fixed point of our
algorithm under different random networks. Blue line with ‘4’ represents
Exponential network; Red line with ‘?’ represents preferential attachment
(scale-free) network; Dark line with ‘o’ represents Erdös-Rényi network.

Also we observe from Fig. 3 that the algorithm of (9)
under the networks with highly concentrated transmit/receive
nodes (e.g., Exponential network) quickly converges to the
fixed point2, while the algorithm under the networks without
highly concentrated transmit/receive nodes (e.g., Erdös-Rényi
network) converges to the fixed point at a low rate. Indeed,
the algorithm under the Exponential network reaches the fixed
point after 7000 iterations, while its convergence appears after
12000 iterations under the Erdös-Rényi network.

2With the Intel Core i7-2760QM processor, the running time of each
iteration is around 0.00014s, so the total time of running the algorithm with
6000 iterations is 0.84s. Given that the ambulance is moving at a speed of
10m/s, the algorithm is feasible when the channel conditions are assumed to
be invariant within a distance of 8.4m. In a fast-varying mobile environment,
we can use a more powerful processor to run the algorithm to ensure its
feasibility.
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Fig. 4. The Figure illustrates the impact of pricing parameter on the values
of utility under different random networks. Blue line with ‘4’ represents
Exponential network; Red line with ‘?’ represents preferential attachment
(scale-free) network; Dark line with ‘o’ represents Erdös-Rényi network.

C. Impact of pricing factor λ

We first study the impact of pricing on the utility for
the various random networks listed above. We normalize the
pricing factor λ to ensure that the maximum of λ is 1. Also
we normalize the utility function so that the maximum value
of utility is 1. Fig. 4 depicts the value of utility across various
values of the pricing factor λ.

It is shown in Fig. 4 that higher utility can be captured with
a lower value of λ (i.e. a lower price) in the Exponential net-
work, in which a wireless user communicates with few other
users. The utility is quite low even at a high value of λ in the
Erdös-Rényi network in which a wireless user communicates
with multiple other users. This is because the interference is
low when one or few users communicate with each other in
the network with highly concentrated transmit/receive nodes
(e.g., Exponential network), while wireless users suffer large
amount of confusion when they communicate with multiple
users (e.g., Erdös-Rényi network). These conclusions are in
line with the recent publications [29] and [30].

CONCLUSION

We addressed a potential game to maximize the utility of
wireless users by controlling their transmit power under a
mobile hospital scenario. We proposed the power control algo-
rithm and showed that the algorithm would globally converge
to a unique Nash equilibrium of game, which is the optimal
network-level capacity. Some of the key inferences drawn are
• The potential-game approach can lead the Nash equi-

librium of game to the optimal network-level strategy of
scheduling data transmission within the Internet of vehicles
for E-health applications.
• Proposed power control algorithm could dramatically

improve the utility of wireless users and reduce the amount of
EMI on medical sensors than current algorithm in [4], which
is the most widely-used power control algorithm under non-
medical settings.

• Under the networks with users who have highly con-
centrated transmit/receive pairs, the power and rate control
algorithm can converge to the fixed point at a higher rate than
under the networks in which transmit/receive pairs are evenly
distributed among wireless users.
• Networks with users who have highly concentrated trans-

mit/receive pairs can achieve a higher utility than the networks
in which transmit/receive pairs are evenly distributed among
wireless users .

We are extending our results to the settings in which
wireless users can be of different priorities. We would also like
to extend our results to a dynamic setting, i.e. the structure of
Internet of vehicles is dynamically changing over time.
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