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Abstract

In this thesis, the waveguide design characterization for wide-band T'i : LiNbO3 Mach-
Zehnder electro-optical interferometric intensity modulators (Z-cut substrate) has
been performed using a combination of the effective index method and the 2D finite-
difference vectorial beam propation method (FD-VBPM). For the passive aspect of
the device, to minimize the propagation loss, the coherent coupling effect of radiation
modes has been studied as well as the effectiveness of a cosine-generated Y-branch
and a notched Y-branch in comparison with the conventional sharp-bend Y-branch.
By making use of the coherent coupling effect on a notched Y-branch structure, a
propagation loss figure of 0.145 dB/cm has been achieved. For the active aspect
iuciuding the electro-optical effect, the minimum seperation of the two waveguide
arms in order to achieve an extinction ratio above 20 dB has been decided and the
corresponding modulation curve obtained. The best achieved extinction ratio is 21.8
dB with a 15 um seperation between the inner edges of two branching arms for a
80 G H z electrode design. Two different electrode structures have been design-tested
and compared. Tolerance of the alignment between the optical waveguides and the

electrodes has also been determined.



Résumé

Dans cette thése, un modéle de guide d’ondes utilisant des modulateurs d’intensité
Ti : LiNbO; (substrat de coupe Z), 4 bande passante large, électro-optiques et in-
terférométriques (Mach-Zehnder), a été caractérisé par une combinaison de la méthode
de 'index effectif et de la méthode par propagation de faisceaux vectoriels 2D différence
finie (FD-VBPM). En ce qui concerne les aspects passifs de cet appareil et afin de
minimiser les pertes propagatives, ['effet de couplage cohérent des modes radiatifs a
été étudié ainsi que 'efficacité d'une branche en Y cosinus-générée et d’une branche
en Y encochée en comparaison avec une branche en Y a courbure prononcée conven-
tionnelle. En utilisant l'effet de couplage cohérent, une perte propagative de 0.145
dB/cm a été réalisée. En ce qui concerne les aspects actifs incluant I'effet electro-
optique, la séparation minimale de deux bras du guide d'ondes, afin d’atteindre un
ratio d’extinction au dessus de 20 dB, a été choisie et la courbe de modulation y
correspondant a été obtenue. Le meilleur ratio d’extinction réalisé est de 21.8 dB
et ce ratio correspond a une séparation du bord interne de 15 um pour un modele
d’électrode 4 80 GHz. Deux structures d’électrodes ont été testées et comparées.
La tolérance sur I’'alignement entre les guides d’ondes et les électrodes a aussi été

déterminée.
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Chapter 1

Introduction

1.1 Background Overview

Optical fiber communication is being widely used nowadays mainly because of the
wide bandwidth offered by optical carrier frequencies, the fiber’s light weight, low loss
over large distances, immunity to electromagnetic interference compared to coaxial
cables, etc. To achieve a high performance optical fiber telecommunication system,
high speed modulation is an essential part. There are several kinds of modulation
techniques including intensity modulation, phase modulation, frequency modulation
and polarization modulation in the field of telecommunication. As to the optical
implementation, if phase modulation or frequency modulation is to be tried, there
will be large amount of dispersion due to the difficulty to get a stable phase and
narrow linewidth single mode source as well as extremely high quality single mode
fiber [1]. On the other hand, because of its simplicity, commercial optical fiber systems
tend to use intensity-modulated source with direct (envelope) detection although it
has a relatively low frequency. At the same time, coherent and nonlinear lightwave
communications are also being studied widely in order to make use of more efficient
modulation techniques [2].

There are two ways of achieving lightwave intensity modulation: by direct modu-

1



lation of laser source current or by external modulation of the laser beam [3]. In
direct modulation, the modulation bandwidth is limited by the presence of relaxation
oscillations and parasitic parameters in the laser {4]. Also, an increase in the carrier
concentration causes a reduction of the refractive index and so changes the laser mode
frequencies, so modulation of the drive current causes the output frequency to vary as
well as the power. This phenomena is usually called “chirp” [5]. This broadening of
line width will deteriorate the dispersion characteristic of the system [6]. Above two
GHz, the laser must be biased well above the threshold, so the stability and lifetime

of the laser will be sacrificed.

External modulation has been proved to be a very promising alternative. External
modulation generally has the following advantages compared with internal modula-
tion: 1) phase modulation becomes very easy; 2) easy to get 100 % modulation depth;
3) chirp free so that long distance and high bit rate communication is possible; 4)
being able to modulate a variety of optical sources including some which can not
be intensity-modulated at high frequencies [6]. The disadvantages of external mod-
ulation include added complexity, polarization sensitivity and additional insertion
loss. Fig. 1.1 shows two RF fiber-optic links using direct modulation and external

modulation respectively as an illustration of their different system configurations [7].

There are mainly two kinds of external modulators. Bulk modulators were developed
after the invention of laser several decades ago. They were external modultors at an
early stage. Diffraction effects prohibit making bulk modulators with both the small
lateral dimensions and long interaction length needed to achieve low drive power [8].
Another type is the waveguide version of modulators which use coplanar waveguides
to guide the optical wave in the interaction region. Waveguide modulators were
developed with the rapid reduction of loss in glass fibers in the late 1960’s. They have
good compatibility with fibers and have good integration potential. Also, the drive
power requirement is reduced compared with bulk modulators. Among the potential
materials to serve as substrates of waveguide modulators that can be used to achieve
both a wide bandwidth and a low driving power, T : LiNbO; and semiconductors
are good candidates. T7 : LiNbO; optical waveguide modulators are considered

to be the best candidate for near-future high-speed transmission systems for the

2
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Figure 1.1: RF Fiber-optic links. (a) direct modulation, (b) external modulation.

simplicity in both its structure and fabrication process and low insertion loss. On the
other hand, semiconductor optical waveguide modulators have their own attractive
features, including the possibility of monolithically integrating modulators and other

functional devices [9].

1.2 Mach-Zehnder Interferometric Intensity Mod-
ulator Design

The electro-optic Pockels effect of lithium niobate substrate forms the basis of T :
LiNbO; modulators. It can be described as a change in a material’s (electro-optical
crystal) refractive index proportional to the applied external electric field. For anisotropic
dielectric crystals, their responses to fields with different orientations or polarizations
can differ. Uniaxial crystals like lithium niobate are crystals with one axis of symme-
try and an index spheroid. The axis of symmetry is called the optical axis (denoted by
Z). Along this axis, the refractive index is called extraordinary index (n.) in contrast
with ordinary index (n,) on the X —Y plane. In practice, an external electric field is

3



mostly applied (by applying a voltage to the electrodes which are deposited over the
crystal surface) along the optical axis (Z) because the electrooptic coefficient is the
largest in this direction or along the z or y axis of the coordinate system (z represents
the propagation direction of the wave in the coordinate system which should not be
confused with the crystal axes).

Channel waveguides are formed in the substrate by titanium in-diffusion to guide
optical carrier wave. Planar electrodes can either be placed on either side of the
waveguide for X-cut Y-propagating (or Y-cut X-propagating) crystals, or one elec-
trode can be placed directly over the waveguide for Z-cut orientation crystals (which
will be the case to be studied in this project). In either case, the crystal orientation
is normally chosen to use the largest electrooptic coefficient. In the latter case, a thin
S;0, buffer layer is often used to minimize the optical loss and waveguide loading due
to the presence of the metal electrodes {10]. Sometimes buffer layers are employed
to maintain high electrode impedance. Often, light is chosen to be polarized along
the optical axis Z to take advantage of the extraordinary index and the stongest r3;
electrooptic coefficient. The electrooptically induced index change is [8]:
3

Aﬂe = —%7’33E (1.1)

which causes, consequently, a phase shift of the propagating light wave in the crystal:

ABz = wAnez

(1.2)

The Y-branch Mach-Zehnder interferometric intensity modulator is like two parallel
phase modulators. The input light is splitted into two equal parts and then after
passing the so-called “active region”, recombined into one beam of light. With no
applied voltage, there will be zero phase shift between the two branches and thus
the two will add and get the origional light intensity; with an applied voltage strong
enough to cause a 7 relative phase shift the two branches cancel and give zero output;
with a relative phase shift between zero and 7, the output intensity will be between
zero and maximum. So a 100 % modulation depth is possible [11]. A push-pull
structure as shown in Fig. 1.2 is often employed to improve efficiency. Since phase
shifts for the two branches will have different signs, a 7/2 phase shift for each branch

4



Y

— m\w‘;"—

N

Figure 1.2: Top view of a typical Y-branch M-Z modulator

will be enough to achieve a total output cancellation. The drive voltage requirement
is thus reduced by half.

The three-electrode structure as used in Fig. 1.2 is called a CPW (Coplanar Waveg-
uide) electrode configuration. Compared with other two configurations, namely the
CPS (Coplanar Strip) and ACPS (Asymmetric Coplanar Strip) which have large un-
metalized area, the CPW configuration will have a lower microwave loss [12] [13].
Also, the CPW electrode structure facilitates a good connection to an external mi-
crowave circuit (using coaxial cables usually) [14] which is necessary for a travelling
wave electrode type (The goal of the traveling-wave electrode is to make the electrodes
appear as an extension of the driving transmission line. As such, it should have the
same characteristic impedance as the source and cable. In this case, the modulator
speed is not limited by the electrode charging time as what happens with a lumped
electrode type and limits the potential modulation speed, but rather by the difference
in the transit times for the optical and modulating RF waves (8].)

In general, in order to achieve highly efficient integrated optical devices, rigorous
computer-aided modelling and simulation has to be conducted because it can min-
imize time and cost in realizing new designs [15]. For active components like T :
LiNbO; M-Z modulators, neither an electrode analysis nor a waveguide analysis can
expect to find any closed form analytical solutions. We must resort to using numeri-
cal techniques [16] which would yield accurate design results but demand the use of
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computers to perform extensive calculations.

There are basically four major characteristics of a T% : LiNbO3 M-Z intensity modu-
lator that have to be optimized during the design process, namely the bandwidth, the
drive power, the propagation loss and the extinction ratio. The bandwidth determines
the speed limit of the device and thus is the parameter with the most concern. As
we know, by using a single-mode fiber at or near the zero dispersion wavelength, the
effective bandwidth of the fiber is typically not a limiting factor in link performance
[7]. Also for the modulator itself, since the electrooptic effect is an electronic phe-
nomenon that has a subpicosecond response time, the achievable modulation speed
depends mainly upon the electrode design [17]. It has been found that the biggest fac-
tor that limits the bandwidth of the modulator is the velocity mismatch between the
optical waves (carrier) and microwave waves (signal) carried by the travelling-wave
electrodes [10] [3]. There are several velocity matching techniques in the literature:
1) thick electrodes with a thick buffer layer [18]; 2) an etched groove into substrate
[19}; 3) periodic (phase shifted) electrodes [20]; 4) a shield plane over the electrodes
[21}; 5) a ridge structure (with thick electrodes and a buffer layer) {14] [18] [22]. A
thorough study and analysis can be found in [23] as the part covering the electrode
design for Ti : LiNbO; Mach-Zehnder modulators done by Mr. F. Y. Gan in our

Guided-Wave Photonics Laboratory as his master’s project.

For optical waveguide characterization, since 3D waveguides surrounded by different
dielectric materials just support two families of hybrid modes (some times called TE-
like and TM-like depending upon whether the main electric field component lies in the
z or y direction) instead of pure TE and TM modes, the analysis of the waveguides is
much more complex than that of planar 2D waveguides, and no exact analytical modal
solutions are available. Also, in practical use, optical waveguide devices generally
require single-mode waveguides in which light is as strongly confined as possible to
minimize the scattering loss due to optical bending or branching [24], which means
only the lowest TE-like or TM-like mode exists. Among various numerical techniques
in tackling the simulation and design of single-mode 3D optical waveguides, the beam
propagation method has been proved to be a very powerful tool to simulate wave

propagation in structures of great complexity leading to accurate designs.
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The BPM method is very usful because: 1) it handles both the guided and the radia-
tion modes within the same simple formulas; 2) it can analyze devices with structural
variations along the propagation direction; 3) it provides detailed information about
the optical field. However, a three-dimensional BPM analysis of a typical device
usually requires a lot of computation power. It can be reduced by a factor of several
hundred if a 2D BPM can provide acceptable results. To perform the 2D BPM anal-
ysis of a channel waveguide device, one must transform the 2D transverse refractive
index profile of a channel waveguide into a 1D effective index profile. In this project,
an effective index method (EIM) based on a Runge-Kutta algorithm is to be used to
do this job.

Aiming at lowering the propagation loss and increasing the extinction ratio, an effi-
cient method to simulate T : LiNbO; waveguide from its fabrication parameters will
be used in this project, which can be summarized as: (1) a 2D refractive index profile
of waveguides is built; (2) the 2D transverse refractive index profile is transformed to
a 1D effective index profile and its effective modal field and propagation constant is
found using the same EIM method; (3) a 2D beam propagation method with appro-
priate boundary conditons is applied to the conventional Y-branch to find the output
optical field distribution; (4) structural propagation loss is evaluated and optimized
by adjusting the local dimensions of the waveguide; (5) other kinds of Y-branch struc-
tures will be tested to help further improve loss characteristic; (6) incorporating the
electro-optical effects with an externally applied voltage, the 2D refractive index pro-
file is remodelled, and steps 2) through 4) are performed once again to optimize the

extinction ratio parameter.

1.3 Chapter Description

In Chapter 2, the refractive index distribution of Ti diffused waveguide in LiNbO; is
first modelled based on the fabrication parameters and under certain approximations.
The 1D effective index profile as well as the effective propagation constant and modal

field of this resulting slab gradient index waveguide are found using a Effective Index
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Method that employs a Runge-Kutta scheme and the Secant root-search method.

Chapter 3 describes the famous “2D Finite-Different Beam Propagation Method”
along with the “Transparent Boundary Conditions” and uses them to simulate wave
propagation inside the waveguide. Detailed mathematical derivations are presented
as appendices. The propagation loss is evaluated and the coherent coupling effect
of radiation modes is observed and studied which leads to a non-classical way of

optimizing propagation loss.

Chapter 4 explores two types of Y-branches other than the traditional sharp-bend
Y-branch: the cosine-generated S-bend Y-branch and the notched Y-branch. The

effectiveness of each structure is studied.

Chapter 5 deals with the active aspect of the waveguide design, aiming at optimiz-
ing the extinction ratio and on-off voltage by changing the longitudinal waveguide

dimensions, electrode types and waveguide/electrode alignment.

Chapter 6 serves as a summary to all the work that has been done in the author’s

master’s project, and suggestions for future implementation are also made.
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Chapter 2

Modelling of a Ti: LiNbOg
Waveguide by the Effective Index
Method

To better outline the schemes used to model the T'i : LiNbO; waveguide in a Mach-
Zehnder intensity modulator, a schematic diagram of the cross-sectional view of such
a device is given for its active region (see Fig. 2.1). A coordinate system with z
as the propagation direction and y the depth direction is chosen. The device to be
studied uses a Z-cut LiNbOj3 substrate, and the externally applied electric field passes
through the waveguides in the depth direction along the optical axis. Therefore, the
extraordinary refractive index is seen by the electric field. Also, the optical field is

polarized along the depth (y) direction.

In the following descriptions, we will first assume that we are dealing with an isotropic
substrate with a bulk refractive index n. (the extraordinary refractive index of LiNbO;,
which is actually an anisotropic material). The formulas for anisotropic medium are
derived in Section 3.3.2 as a reference, which shows that for a reduced dimension
case (from 3D to 2D) and a TE, mode, there will be no risk in making the above
assumption because the simplifications lead to exactly the same formulas as those for

an isotropic case.
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Figure 2.1: A schematic diagram of the cross-sectional view of a Mach-Zehnder
Tt : LiNbO; waveguide intensity modulator on a Z-cut substrate

2.1 Modelling of Ti-diffused Channel Waveguide
in LiNbO;

To relate the refractive index profile of a T4 : LiNbO3; waveguide with fabrication con-
ditions and parameters, we have to start with the in—diffused titanium concentration
distribution. In most single mode T'i : LiNbO; waveguides, the maximum titanium
concentration is less than 2 percent of that of the pure titanium metal [4]. The tita-
nium concentration distrubution of the active part (with two parralel waveguides) in
a M-Z modulator can be expressed as (formed by diffusing two titanium strips with

a width w, a thickness , and a small gap d, into the substrate as shown in Fig. 2.2)

[5]:

Cley) =Gz -5 - 5,9) +Ga+ 3 +5.9) @)
where
Gla,3) = Lo B e (ULEEE) 4 erp(HL2E)) 22)

G(z,y) represents the transverse distribution profile of titanium in a single waveguide
and is called a double error function. Ds and Dg are the surface and bulk diffusion
lengths, respectively. Cy = 2ar//7- Dp is the normalization coefficient derived from

13



T s e e M

LiN bO3 substrate

Ty

Figure 2.2: Geometry of Ti strips used to fabricate a T¢ : LiNbO3 M-Z modulator
(the active part)

the law of conservation of matter [6] [7] [8], where a is the atomic density of the T
film [6]. The diffusion lengths Dg and Ds can be calculated from:

Dgs =2,/Drgrst (2.3)

where ¢t denotes the diffusion time and Drg and Drg are the surface and bulk diffusion
coefficients which are drawn from literature [4] [9] to be Drg = 2.18 x 10~'2em?s™!
and Drs = 1.36 x 10~'2cm2s~! under the fabrication condition of 1050°C, 5 hours,

and 500A strip thickness.

The corresponding transverse profiles for the extraordinary refractive indices can be
described by:

Ne(Z, ¥, A) = nep(A) + Ane(z,y,A) (2.4)
where ng,(A) is the bulk refractive index, and An.(z,y, A) is the change of refractive
index induced by the titanium diffusion. Measured wavelength dispersion of the bulk
refractive indices can be found in literature [10] [11], where at A = 1.3um, n, = 2.146,
and n, = 2.2205 (interpolated from [11]).

It has been found that the extraordinary index change An, at a fixed wavelength

varies almost linearly with the titanium concentration [5] [10]:
Ane(z,y, A) = ae(Co, A)C(z,y) (2.5)
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where a,(Cy, A) represents a coefficient which is a near-linear function of wavelength
and C,. Inconsistant results have been reported in the literature about the coefficient
a. at a particular Cy and A. The inconsistency could have resulted from variations
in the crystal quality, sample preparation, diffusion process, density variations of the
deposited titanium films, and calibration procedures. Some efforts have been made
to get an interpolation formula to describe the dispersion of a, [9] [10], and in [10]
the linear relation has also been modified in the higher wavelength region (1.3-1.6
pm) which is of great interest in optical communications. However, the accuracy
and generality of these formulae have to be further proved though they are not very
complicated. Hence, in the initial design stage, the following simple refractive index

distribution will be used:

n(z,y) = ns + An, f(y)9(z) (2.6)

where f(y) is a Gaussian function and g(z) is a double error function which has
different forms in different regions of the M-Z waveguide, both of which form the
expression of C(z,y) (Eq. (2.1)). An, is the refractive index change at the crystal
surface. Strictly speaking, we have An, = a.(Co, A) x Cy. A good approximation of
this relation (especially at not too long a wavelength) can be found in many papers to
be An, = 0.66x Cy/c [5]. From the law of conservation we can obtain the relationship
between Cy/a and the fabrication parameters as Co/a = 27/+/7 - Dp, and the bulk
diffusion depth Dp is given by Dg = 2/Drgt. So, for 7 = 5004, t = 5hrs, and
1050°C, Cy/a = 0.01424 and An, = 0.0094; for 7 = 6004 and with other conditions
remaining the same, we get Co/a = 0.0156 and An, = 0.0103. Hence, a conclusion
could be drawn that under usual fabrication conditions, An, is always around 0.01,
more or less. Since our main focus will be on finding the structural effect rather than
changing fabrication conditions, an approximation of An, = 0.01 will be applied

during the computations that follow.

It could be found from later derivations that n2(z,y) is used more often than n(z, y),

so the following approximation is usually used (since An, < ny)

= n}+2mAn,f(y)g(z) + An?f2(y)g*(x) (2.7)
~ n}+2nAn,f(y)g(z) '
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With a perturbation introduced by an external electric field based on the electro-

optical effect along the optical axis, the refractive index distribution will become

n(z.y) = ma + An f(¥)ola) — BrsE(z,) 28)

n?(z,y) = n¢ + 2nyAn, f(y)g(z) — niyasE(z,y) (2.9)

To get the expression of g(z) for different longitudinal sections, we divide the whole
M-Z waveguide into seven regions where only the first four are significant and the last
three are simply some kinds of duplicates of the first three due to the device symmetry.
In Fig. 2.3, the first four sections and relating parameters are shown (some typical
parameters are chosen for computation simplicity from literature), where {; denotes
the input or output region, l;; denotes the taper region, l22 denotes the branching
region, and I3 denotes the active region with two parallel waveguides. The width of
a single waveguide w and the seperation between the two parallel ones d are chosen
in accordance with the electrode design which has already been performed in our

laboratory in previous thesis [12].

As for the expression of distribution function g(z) along the horizontal direction, for

the input and output region:

w/ +z w/2

9(z) —-[ rf(——=—) +erf(

%) (2.10)

For the taper region (from z ={; to {; + %, where d = (w +d)/2):

2+(z —ll)i+x 2+ (z- )"'—
1 2 i3 2 Iz
gla) = gler A5 D) 4 erf (A2 2B 0) (21
For the branching region (from z ={; + % to ly +lp):
z— (z h) -z (z 1)
o) = Herf(Eih) | onpBmsecnlf 212
+e f(———z”""“ D) 4 erp(A ,‘,‘s k)
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Figure 2.3: Schematic diagrams of the waveguide structure of a M-Z intensity mod-
ulator
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For the active region:

o(e) = Sirf C ) en p(U T |y ut 2l 2 A
(2.13)

The unique characteristic of the above modelling is that the taper and the branching
region are treated seperately with different expressions of the z-direction distribution,
not like that in reference [13] where they are treated as a whole and unfortrunately
discontinuity occured at the point where input region meets taper region. By using
the above modelling, the refractive index distribution along the propagation direction
is continuous and smooth (but the maximum value will not be constant), so that any

simulation afterwards based on it will surely be more accurate and making more sense.

First things first, before anything further could be done, we must find error function

values. The definition of an error function is:

erf(z) = % /o " et (2.14)

with a series expansion form of:

2 ©# % I
erf(x)_ﬁ(z_m_{,ﬁ_s._ﬁ_*....) (2.15)

which shows that the error function is odd and only numerical methods could be used
to get its discrete values. In this paper, the Simpson'’s integration rule is applied with
a step size 0.001 and symmetry of the function itself is used. In case the integration’s
upper limit is less than 0.001, or when an extra region is left at the upper end because
of the special requirement of the Simpson’s rule that the number of internal points
should be even, a trapezoidal rule is applied. The accuracy should not deteriorate
very much since the integration region covered by the trapezoidal rule is so small.
Tests prove that this combination is a farely fast way of obtaining error function
values.
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2.2 Effective Index Method Using a Runge-Kutta
Algorithm

In an early paper published in 1970 [1], Knox and Toulios first developed the ef-
fective index method (on rectangular waveguides), which is difficult to derive as an
approximation of an inherently exact mathematical procedure, but which has an ob-
vious intuitive appeal [2]. Comparisons of the results of the effective index method
with exact methods, in cases where such comparisons are possible, often show that
the effective index method is more accurate than might have been expected. Since
their work, essentially the same technique has been extended to optical waveguides
with an arbitrary transverse index distribution. However, in both [2] and [3], it has
been pointed out that even though the effective index method yields a very accurate
value for the modal propagation constant, it gives distorted values for the modal field.
Hence, we only use this method to calculate the 1D effective index distribution of a
transversely 2D channel waveguide before implementing a 2D FD-VBPM to find out
the field distribution.

2.2.1 General Methodology Description

Starting from the very original Maxwell’s equations, the following Helmholtz vector

wave equations for the electric field and for the magnetic field could be obtained
2
VE+V(E- %—) + k3n?E =0 (2.16)

v + ;lg(vn?) % (V x H) +k2n2f =0 (2.17)
where k3 = w?poep. If the second term in (2.16) and (2.17) are neglected, they
become scalar wave equations. With pactical systems, this will introduce little error,
especially when the variation of the dielectric constant is small in distances of the
order of the wavelength (this is almost always true, particularly for optical beams).
However, since we are going to use the vectorial beam propagation method in the
next stage of our waveguide design, in order to maintain enough accuracy so as not

to ruin the accuracy of the VBPM later on, we keep the second term here.
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If we consider the evolution of the transverse electric field in a channel waveguide (in
the case of a Z-cut M-Z intensity modulator on LiNbOj3, if the Cartesian coordinate
system is chosen so that y is along the depth direction, the optical field will always
be polarized and lauched in y direction, so only the E, component will be considered

like that in a TM mode) in space and time of the form
E, = tjye~Tkonos (2.18)

And the y component is:
E, = y, e Tkonoz (2.19)

Since our aim is to find the local effective index distribution of a channel waveguide,
we assume now that the only z dependent term of E, is the propagation term and
that ¥, depends on z and y only (we will not make this assumption when the VBPM
formulas are derived). Hence, writing out the y component of (2.16) and make use of

(2.19) and the above assumpsion, we have

2 2
Tl Th s e - oy + Dl Tl =0 (220
Let [14]
Yy(z,y) = F(z,y)G(z) (2.21)

and assuming that F(z,y) is a slowly varying function of z. Substituting (2.21) into
(2.20), we have
G 0*F _OFaG 0*F a1 6n

—_— — —_— 2,2 2
F312+Gax2+2azaz+cay + [k§n ﬂ]FG+G [ Fl=0 (2.22)

Defining n.ss(z) such that

F%;z- + [kBn2, (z) - F)FG =0 (2.24)

Substract (2.22) by (2.24), we have

@#F OF8G PF ., .,
G'gz—z— +2-a—;5£+Gay +[k2n (z,y) - one”(x JFG+G—

9 10w

5l gy F1=0 229)
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which can be reduced to a 1D problem in y direction for F(z,y) (with z as a pa-
rameter) by assuming that most of the variation in z is taken by G(z) and that the
first and second terms in (2.25) are negligible. Cancelling G in each of the remaining
terms, (2.25) becomes

6’F 9,1 0n?
a,y 6 [ n2 a F] +[k0n2(:z: y) On'ef[ .'L‘)]F 0 (226)
By solving (2.26), the local effective index n.ss(z) (along with F(z,y)) is found for
all the values of z and substituted into (2.23) (also a 1D waveguide problem) to yield
G(z) and the effective propagation constant 3 of the channel waveguide.

If the original two dimensional waveguide has an arbitrary refractive index profile
n(z,y) or n(z,y) is not one of the several forms which are known to lead to analytical
solutions, a numerical method must be applied and the effective index profile n.zs(z)
must be determined pointwise from (2.26), i.e., for each point z;, n.ss(z;) has to be
calculated numerically [14] [15].

From equation (2.26), it can be seen that for each z;, the problem is the same as
solving for the effective propagation constant Gy = koness(z;) for a (TMp) wave
travelling in a one-dimensional (y) slab waveguide having an inhomogeneous refractive
index profile n(z;,y) (which is Gaussian in the depth direction). After a pointwise
distribution of the effective index has been obtained along the x axis, the problem
changes to a (T E,) wave travelling in a one-dimensional (z) slab waveguide having a
symmetric gradient refractive index profile n.z;(z;). A diagram (Fig. 2.4) is drawn

to illustrate the physical meaning of such a process.

To solve the one variable second-order ordinary differential equation like (2.26) for the
effective index distribution or (2.23) for propagation constant and field distribution,
quite a few methods could be used including the Rayleigh-Ritz variational procedure
with Hermite-Gaussian basis functions [14], Vessell’s matrix formulism [15], and the
WKB method [16] [17] [18]. Here, we use the method presented by Kaul, Hosain and
Thyagrajan in [19] and Mishra and Shama in [20]. This method consists of trans-

forming the second-order differential equation into a first order differential equation
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Figure 2.4: A schemetic representation of the present method to determine the prop-
agation constant of the modes in a two dimensional waveguide with arbitrary cross-
sectional shape and refractive index profile.

22



by a suitable substitution, and then solving it by a Runge-Kutta algorithm [21].

For a Z-cut M-Z intensity modulator, in a coordinate system with y as the depth
direction, the input optical field is always polarized in the y direction in order to
coincide with the externally applied electric field and the optical axis of LiNbO;.
Thus, equation (2.26) has to be solved for T M, (as we will allow only single mode in
the waveguide). Since ¥,(z,y) = F(z,y)G(z), the function F will have all the same
distribution characteristics and fulfill the same boundary conditions as 1, or E;.

For a T M, mode in a slab waveguide, at the dielectric interface, the boundary condi-
tions demand the continuity of H; (and thereby of ¢E,) and of (1/n?)(8H,/8y) (and
thereby of E;) [22]. In order to use these conditions to solve (2.26), for each z;, let

¢(zi, y) = n(zi, y) F (2, y) (2.27)

and (2.26) can be transformed into (for each z;)

d’¢
a2 T ko (zay) +

1 d®n® 3,1 dn?

Ly (=0 (228)

The above equation is once again transformed, by defining

K(p) = -3 (2.29)

~ ¢dp
with p = y/a (a the effective depth of diffusion, a = Dp), to

aK _ 2 201 2 2 . 3idn22_1d2n2
= K* — a®ky[n*(zi, p) — ngpp(zi)] + 4(n2 P ) o2 d (2.30)
where
n?(z;, p) ~ n? + 2n,Anf(p) (2.31)
without electric field perturbation;
n?(z:, p) = 1§ + 2nyAnf(p) — raang By(z:, ap) (2.32)
with electric field perturbation; and
An = An,g(z;) (2.33)
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flp) =" (2.34)

For y < 0, equation (2.28) becomes:

d?
ﬁ — kya*[nl;, —nfle =0 (2.35)

with general solution:

¢(zi, p) = Crexp(koay/nZ;, — nlp) + Crexp(—koay/nl;; — n2p) (2.36)

where n. is the index of the cover region, for silicon dioxide its value is the square
root of 3.9, for air its value is 1.0. Since the modal field must vanish away from the

surface, i.e. when p = —o0, ¢ — 0, the second solution must be rejected, making

6(zi, p) < exp(Wep), p<0 (2.37)

where

We = ay/ 83 — k3n? = ako\/n?;, — n2 (2.38)

From (2.29), we know the solution of K in the cover region is

K(p)=W, p<0 (2.39)

For a large distance away from the surface into the substrate, say at p = p,, the
profile varies very slowly and the index is almost constant and equal to the substrate

index n. Therefore, beyond this point we can assume that the solution of (2.28) is

&(zi,y) ~ exp(~Wop), p 2 ps (2.40)
where
W, = ay/B3 — kin} = ako\/nZ,, — nZ (2.41)
and
K(p)=-Ws, p2ps (2.42)

The solutions in the three different regions, i.e., p < 0, 0 < p < p,, and p > p, are

connected through the boundary conditions mentioned above. For T My mode

¢ = ‘n,F ~ nEy ~o % (2.43)

24



1 H, N 1 3(ng)

Ex ~ .TFE— n2 ay (2.44)
Hence, the continuity of H, and F, means
1 d(n¢)
— 4
n¢ and 2 dp (2.45)
are continuous.
Ldng) _ 1dng)
n2 dp p=04 n2 dp p=0-
1 d(n¢) d¢ 1d¢ ¢dn _1ldg ¢ dn? nd,ldp 1 dn?
n? dp n2( p+¢dp) n dp-i-n2 dp ndp+2n3 dp Y (¢dp+2n2 dp )
Hence,
ng 1d¢+ 1 dn? n’y (1d¢ 1 dn? dn’y)
n2'gdp  2m2 dp ™ T nZ'@dp  2m? dp ' P=0-
Since
n¢|p=0+ = n¢|p=0-
1do
Klp=0, = 345 = o=0,
1, 1 1
_2|‘°=°+ T n2+2n,An n2,
1 dn? 1 dn?
2n2 dp 2 le=0s = 2n2 dp 2p e=0+
1,1
;17|n=0- = ‘TE
ld
Klmo. = 5 30lma. = We  (from (235)
1 dn? 1
i dp 7=0- =32 0=0
Thus,
1 1 dn? W,
;?;(Klﬂﬂ+ 2712 dp lﬂ_°+) = _2'
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1 dn?
o, dp "

with n,, = n |,=0,, namely, the peak refractive index at the surface of the waveguide.

Mim gy
K|p=0+ = n2 c— (246)
c

Similarly, from boundary continuities at p = p,, we get

n? 1 dn?
Klp=p,_ = —n—éwb - 2—71'?'2;|p=p,_ (2.47)

with ny = n |,=,, , namely, the refractive index at p = p,_.

Hence, we have obtained the initial and final values of K(p). Thus the transcendental

equation to be solved is

2 2

K(p)lp=p, = _';%Wb - T:ﬁ'%lﬂpn- (2.48)
and K(p)|{,=p, is obtained by solving (2.30) with the initial conditions (2.46), where a
Runge-Kutta method could be used. Boundary conditions and expanded expressions
involving n for situations with and without an electric field perturbation are listed in

the following two subsections.

Before solving the transcendental equation, one has to choose a value of p, and an
initial guess value (or two initial guess values if the Secant method is to be used to

find the root) of n.gs (or 34). The following steps can be followed:

1. Choose a p,, depending on the V value (smaller p, for larger V' values), say ps =
1 or 1.2, and two guess values of n.s; (between n; and ny + An). Use a Runge-
2
Kutta method to get K(p) at p = p, and thus K(p) |,=,, +%§Wb + ﬁyﬁilp:p,_
for each initial guess to see if they are close to 0.

2. Use the classic Secant root searching method to find a new value for n.;; which

is used as one of the two new guesses (the other one from the previous guesses).

3. Increase p, by a small step (this increase should be small enough to ensure the
whole convergency, and should differ according to difference cover materials; in
most of the computation a step size of 0.025 has been applied for SiO, cover),

and plug the two new guesses into Step 1. for better accuracy.
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4. The process from Step 1 to Step 3 is continued until the desired accuracy in
nesy is reached and further increase in the value of p, does not change the n.y,

value significantly.

Here, the classical fourth-order Runge-Kutta method is used:
1
Ko,.=K,+ ‘6‘(181 + 2k, + 2ka + ky)

ky = hL(pn, Ky)

h k
k2 = hD(pn + 5, Kn + 7‘)
k
ks =hr(pn+-;f,Kﬂ+§)
- P _
n=0,1,..., . 1

where ['(p, K) represents the right hand side of (2.30) [21] and A is the step size. The
associated truncation error is ~ h% to ~ h* when the whole process is convergent
(which is not necessarily true under certain situations when p, has been chosen too
large initially). It has been found through practice that a proper step size h can affect
the running speed very dramatically, and also this value should differ according to
different cover material in order to ensure convergence (in most of the computation

a step size of 0.025 has been applied for SiO, cover).

Fig. 2.5 shows the 3D distribution of the effective index distributions for both the
taper and the branching region obtained by the above described method. The com-

putation window is 40um and the z step size is 0.1 um.

2.2.2 Boundary Conditions Without an Applied Voltage

When there are no applied voltage, the boundary condtions for Section 2.2.1 are

n2, =n? +2n,An (2.49)
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Figure 2.5: 3D effective index distribution of the Y-branch alone (S;0; covered)
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dn?

rn lp=0,= —4npAnpe™ |0, =0 (2.50)
n} =n} + 2nyAne™? |,=p, (2.51)
dT?z lp=pa_ = —4nbAnpe'”2 lo=ps_ (2.52)
3 _1-17._3)2 _ 12n3(An)?p%ezp(—20%) (2.53)

4'n2dp’ ~ [nZ + 2npAnezp(—p?)]?
1 d*n® _ 2n,An(l — 2p%)exp(—p?) (2.54)

T2 dp? T n?+ 2nyAnexp(—p?)

2.2.3 Boundary Conditions With an Applied Voltage

When there is an applied voltage, the boundary conditions for Section 2.2.1 are

n?, = n? + 2nyAn — rygni E,(z;,0) (2.55)

c;_r:: |p=0+= -1‘33"23; |p=0 (2.56)

n}=nj + 2nyAne™ — ryniE, (i, p,) (2.57)

O oni= ~4mnpeA ~ rndE e, (258)

3 1dn? 7= 3 ( dnyAnpe? +ryniE,(zi ap) (2.59)
4'n2 dp 4'n? + 2nyAne=?* —~ rynp E, (z;, ap)

1 &®n? _ 8nyAnple — dnyAne? — rant E, (zi, ap) (2.60)

o2 dp> 2n2 + dnpAne~** — 2ryns E,(z;:, ap)
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2.3 Effective Propagation Constant and Modal
Field Distribution

2.3.1 Effective Propagation Constant

After reducing the 2D cross—sectional refractive index distribution into a 1D (x-
horizontal) effective index profile n,(z;) using techniques described in Section 2.2.1,
while making the step size Az enough small, we can apply the same technique again
to further find the propagation constant of this effective slab waveguide confined in
the z-direction with a refractive index distribution of n.ss(x). Though the subscript
i here has been eliminated because there are enough points obtained, during further
calculation, a pointwise numerical approarch will still be used.

Because the optical field is to be launched along the y-direction, we have to solve the
wave equation for T Ey mode now, instead of for T My mode as it was the case in the
last section. The process will be easier because the wave equation for T Ey mode is

simple compared to that for T M, mode. The wave equation to be solved is:

ZC +Kndy (@) - FIG =0 (261)

where 3 is the propagation constant of the slab waveguide, which could be regarded
as a very good representation of the propagation constant of the original channel
waveguide. Also, we define ng = (/ky, which will serve as the reference refractive
index in the FD-VBPM method that follows. To find n, and 3, we use the same
technique described in Section 2.2.1.

Let the two edge points be called z; and zz where the effective index goes to the
substrate index (strictly speaking, n.;; will approach n, as z goes to infinity, but in
numerical simulation, we have to set n.;; = n; once their difference is small enough.
In the program which calculates the effective index distribution, if Az is set to be
0.01, we have g = 5.16um and zp = —5.16pm.
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For z < z;, (2.61) becomes

%’: +k2(n2 —n2)G =0 (2.62)

General solution of the above equation is

G(z) = Clekovng"“g(z"'u) + Cze"‘o\/"g‘“g(z"'“) (2.63)

Since when z — —o00, G — 0, it must be

G(z) ~ ekov/ni—mplz+ze) (2.64)
Let 4G
1
J(z) = Gdz (2.65)

From (2.64) we obtain
J(2) lomz, = kay/nd =} (2.66)

and also (2.61) becomes
dJ _

- = —J* = K%y (@) — o) (2.67)
Similarly, for z > zp,
G(z) ~ e~FoV/mi-nia-zr) (2.68)

J(®) lamen= —koy/n§ — 2 (2.69)

Now that the two boundary conditions for soiving (2.67) are known, we are ready
to solve for ng and consequently J(z) and G(z) from (2.67) and (2.61) respectively.
Here, we slightly modify the steps described in Section 2.2.1. Instead of setting
the upper boundary initially at a low value for the Runge-Kutta method and later
relaxing it during each step within the Secant root searching, we directly use z as

the lower boundary and zp as the upper boundary because we know the exact upper
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boundary in this case. To keep the Runge-Kutta process convergent, initial guesses of
ng has to be chosen very carefully and deliberately. After some test run, the following
reference index has been found using double precision: no = 2.1475504268534. All
the significant figures have been kept for best accuracy.

2.0.1 Effective Modal Field Distribution

To compute modal field G(z), notice that the value of G at an arbitrary value of

can be written as [19]

G(z) = expl [ T(€)de] (2.70)

Once ng is determined, the quantity [ J(£)d§ is computed numerically, where the
integrand J(&) is obtained from the numerical solution of (2.67). Thus, the modal
field G(zr) can be plotted as a function of z, and compared with the Gaussian dis-
tribution which is sometimes used as an approximation of the excitation field. It is
known that loss will occur from the adjustment of light from a Gaussian distribu-
tion to the TEj modal field distribution. This loss will have nothing to do with the
branching structure of the waveguide and should be excluded either by getting P,
from a distance away from z = 0 after BPM program has been run, or by using the

modal field directly as the initial excitation.

Also the running time could be saved if symmetry of the field distribution is used.
In fact, we could start from z,; and use the Runge-Kutta method to compute J(z)
from z; to O with a step size of 0.01 and get the other half (from 0 to z) using the
symmetry (J(x) is in fact an odd function). Further, since G(x) is an even function,
we need to compute only half of the region (say, from 0 to £z) and get the other half
by symmetry. The distribution of G(z) beyond the boundary points can be obtained
using the exponentially decaying relation. The step sizes for computing J(z) and

G(z) are 0.01 and 0.04 respectively.

It has been found (see following figure) that a Gaussian distribution with a 1/e
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Figure 2.6: Comparison between modal field G(x) and Gaussian approximation with
a 1/e intensity diameter of 8um

intensity diameter of 8um, i.e., ezp[—(z/4.0)?], is very similar to the actual modal
distribution especially near the central region of the waveguide (W = 6um), and thus
may be used as an approximation under certain circumstances. Also, according to
[23] and [24], the near field intensity profile of a Corning 8um core single mode fiber
at A = 1.3um has a Tum 1/e intensity diameter, which is very close to the value
obtained by the above computation for a 6um wide T : LiNbO; waveguide. Thus,
this width is proved to be appropriate both to ensure a single-mode (according to

literature) and good coupling.
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Chapter 3

BPM Simulation and Design
Optimization of Propagation Loss

3.1 2D Finite-Difference Beam Propagation Method

3.1.1 General Methodology Description

In a pioneering paper [1], Feit and Fleck first proposed the beam propagation method
(BPM), also called the propagating beam method. This method has become the most
basic and powerful simulation technique in integrated optics for its good applicability

to the modeling of varies kinds of devices.

The BPM method was restricted by the conditions that reflected waves can be ne-
glected and that all refractive index differences are small [2]. It was concluded in [2]
and [3] that the BPM does not work well in cases where reflection of waves plays a
significant role (like a Y-branch with big angle); and its application is also limited
to weakly guiding structures where the polarization of waves can be neglected. How-
ever, with the development of vectorial BPM (VBPM) ([4]-[9]) the latter limitation
has already been broken. Also, by using a time domain BPM which is described in
[10]-[13], and takes into account the reflected waves, the first limitation can also be

overcome.
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In the original BPM scheme, the wave propagtion is modelled as a spectrum of plane
waves in the spectral domain and the effect of inhomogeneity in the medium is ac-
counted for as a phase correction in the spatial domain at each propagation step.
The Fast Fourier Transform (FFT) is used to provide the link between the spatial
and spectral domains. Hence, the method is named FFT-BPM [3]. The beam prop-
agation method that solves the paraxial wave equations (both scalar and vector) in
either a homogeneous or an inhomogeneous medium {even anisotropic [14]) using the
finite-difference method, called the finite-difference beam propagation method (FD-
BPM), has also been developed and assessed [4]-[6] [15]. For both high accuracy
and simplicity in our computations, the 2D standard (compared with other improved
methods) FD-VBPM scheme will be chosen in this project. In comparison with the
FFT-BPM the FD-VBPM is computationally more efficient and more robust as well

[5].

The applicability of the various BPM schemes has been discussed in great details by
several authors like in (3] [4] and [15]. Further, these schemes have been applied to
many waveguiding structures like electrooptic waveguide modulators [16], waveguide
crossings [17], directional couplers (5] (8] [18], polarizers [19], mode splitters {20}, ridge
waveguide linear-mode confinement modulators [21], and gratings {3] etc.

A lot of work has also been done in improving the standard BPM method. A mod-
ified finite-difference beam-propagation method based on the Douglas scheme was
proposed in [8] which could reduce the truncation error to (Az)* in the transverse
direction, whereas the error in the conventional FD-BPM is typically (Az)2. A cou-
ple of explicit finite-difference schemes have also been developed in [22] and {23].
Although explicit methods are much easier to implement, it has the risk of instability
under certain conditions (especially a strict requirement on the step-size Az along the
propagation direction, thus not feasible for long devices like a modulator). A couple
of refined BPM schemes especially dedicated to wide-angle applications can also be
found in [24] [25].
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3.1.2 Paraxial-Wave Vector Helmholtz Equations

Starting from the basic Maxwell’s equations, we can obtain the paraxial vetor Helmholtz

equations (all details in Section 3.3.1)

V2E +n?k3E = -V(Vine- E) (3.1)

If the refractive index varies slowly along z-axis and so does E, then only the trans-

verse field components are of interest and (3.1) becomes
V2E; +n?k3E, = —V,(V,Inn? . E,) (3.2)

where E, = E;i+E,j and V, = oz"‘*' 5y 2 ;. Seperating (3.2) into x and y components,

we have 5 31 \ 5 3lun?
2 22 -5 nn _ 9 onn
V°E; + n°k3E; = ( E;) az( 3 Ey) (3.3)
9 dlnn? 0 ,8lnn?
2 2;.2 - bl
V°E, + n’kyEy = 6y(_6:l: E;) 5 ( ; Ey) (3.4)

Now assume that these transverse fields can be represented by plane waves travelling

in a homogeneous medium where ng is a reference refractive index.

= Yy Tkono (3.5)

Making use of the slowly varying envelope approximation:

Bzwz

| (3.6)
We have:
e 1 Oy, 9 10 3 Py
i5, = 2noko[6'y2 + (n? —nd)k2y, + 32 \n? 3z —(n?yz)) + 3 ( ay( 2%))-3?3?;;
Lo.1 e
(3.8)
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When TM-like or TE-like waves are studied, which means either the y component or
the z component is zero (¥; # 0,%. # 0,9, =0 or ¥, # 0,9, # 0,9, = 0), the above

two paraxial-wave Helmholtz equations in isotropic media could be simplified to

B 1 Y, 3,18

J oz - 2n0k0[ ayz + (n2 - ntzl)kng + a—z ?%(nzw’))] (3.9)
: 1 @ 3,18
J%ﬁy - 2noko[ a;p: + (n* — n)kgdy + %‘(;5;(”27%))] (3.10)

In a 3-D problem like diffused channel waveguides, the above n should be written as
n(z,y, z). If we use the Effective Index Method to reduce a 3-D problem to a 2-D
problem, the above two Helmholtz equations could be further simplified (assuming
that the coordinates are chosen so that y is the depth direction and /3y = 0 by the

nature of the lateral index distribution):

_31,/):_ 1 2 Y i 1 _?_ 9
17 = Tnoko (ers (@ 2) = no)kgz + az(—nzf,(z, 75z "ers (= 2.))]  (3.11)

O 1 0%
J azv = 2ﬂoko[ azzy + (n‘fo(x’ Z) - ng)"%’/’y] (312)

An important issue related to the implementation of the FD-VBPM is the choice
of the reference refractive index ng. In the case of single-mode waveguides, the
reference index ng can be chosen as the effective index of the guided-mode (local
guided mode) ny = (/k, where § is the propagation constant of the fundamental
mode of the waveguide, which could be obtained by using the EIM method described

in the previous section.

A more rigorous formulism which has taken into consideration the anisotropic nature
of the LiNbO; crystal has been included in Section 3.3.£. For TE-like 2D (n(z, z))
waveguides, the simplified wave equations will be identical whether derived as in
Section 3.3.2 or through the process shown above (Equation (3.12) is the same as
the last equation in Section 3.3.2). This proves that it is safe to treat the LiNbO;
substrate as an isotropic medium having refractive index of n. (along y direction)

when TE-like 2D waveguides are studied.
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3.1.3 Finite-Difference Scheme

An implicit weighted finite-difference scheme for solving the above derived wave equa-
tions has been employed (details in Section $.9.3). Since in our particular case, only
the y component of the field is concerned, only the FD solution of equation (3.12) in
Section 3.1.2 will be derived in full detail. This corresponds to a TEy mode in a 2D
problem with an effective refractive index profile n.sf(z, z). Discretize a window in
the zz surface into a mesh and let the step size in the z and z direction be Az and
Az and use m and [ as the index in z and z coordinate grid respectively, the scheme

can be described by

Aﬁ,f1¢:,+l(m) +A£n ¢l+l(m+1) +A£:11 l+l(m - 1)

= AL yl(m) + AL wh(m+ 1) + ALyl (m - 1) (3.13)
where
+1 _ 2 212
Am =1- 2noko{(A.'B [n (m L+ 1) n’O]kO}
+1 _ wAz
£ JZnoko(A:z:)2
r_ (1-w)dz, 2  ,
A‘m =1 +7 2n0k0 {(AI)2 [n ( nO]kO}
! (1 -w)Az
Am:ﬂ —J 2Tlokq (A.’L‘)2

The stability criteria, the numerical dissipation and dispersion of the finite-difference
schemes have been analyzed in detail in [4], which could be used as a guidance when
the algorithm is implemented. According to the analyses, it is very important to
choose a good w and a small enough Az in order to fulfill the requirements of stabil-
ity, numerical dissipation and numerical dispersion. In computation afterwards, the
relaxation constant w is taken to be 0.51, while the step sizes along two directions
are Az = 2um and Az = 0.1um respectively. They are decided after various values
of these three variables have been tested and compared, not only to enssure stabil-
ity, enough accuracy, but also to restrict the computation time to a reasonable and
feasible limit.
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For the initial input field, although sometimes Gaussian approximation can be used
(the field distribution inside a fiber is Gaussian [29] and the modal field of a 3D
channel waveguide can be approximated by a Hermite-Gaussian function [26]), to
ensure unnecessary numerical loss, the modal field of the effective 2D waveguide
(which is to accommodate the T Ey mode) obtained by the EIM has been used. Strictly
speaking, even the exact eigenmode of the waveguide has to adjust itself at the initial
stage of the propagation in order to become the eigenmode of the discretized structure.
During this process, nonphysical radiation loss may occur, causing power attenuation
at the initial stage of propagation. To avoid this problem, either a sufficient fine mesh
over the transverse cross section should be used or one has to substract the transient
loss from the final results [4]. In the computations that follow, the field at about
the 10th step after the initial input is taken to serve as the “real” modal field of the

discretized structure.

3.1.4 Transparent Boundary Conditions

We can see that the 2D-FD-VBPM scheme results in the solution of a tridiagonal ma-
trix (a pentadiagonal matrix for a 3D problem) with a known initial field distribution.
This requires the pre-knowledge of the first and last elements because the number of
elements in the very first and very last equation is one less than that in other equa-
tions. In other words, not only do we have to set a finite computation window, but we
also have to determine the values of the two edge points of the window at each step
before the matrix can be solved. Since virtually all the branching structures stud-
ied for photonics applications scatter considerable amounts of radiation towards the
boundaries [28], the radiation tends to reflect from the problem boundaries back into
the solution region where it causes unwanted interference. In this project, a so-called
transparent boundary condition algorithm proposed by Hadley will be implemented
which simulates a nonexistent boundary. Radiation is allowed to freely escape the
problem boundary without appreciable reflection, whereas radiation flux back into the
problem region is also prevented [27] (28]. In contrast to the old absorber method,

where artificial absorption regions adjacent to the pertinent boundaries are inserted,
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this transparent boundary condition (TBC) employs no adjustable parameters, and
is thus problem independent. In addition, it is easily incorporated into a standard
Crank-Nicholson (or a weighted) finite-difference scheme in both two and three di-
mensions. It has been shown that this TBC is both accurate and robust for both 2D
and 3D problems compared with the absorber method, and it also saves the running

time and storage space.

This transparent boundary method is based on the assumpsion that the field depen-
dence near the boundary of interest is a complex exponential, i.e., the field amplitude

should satisfy (e™7“* time dependence assumed here for deriving the TBC)

wy = wyoejk=z (3.14)
or in the finite difference form
W (M) = Yt (M - 1)e*4" (3.15)

where 9,0 and k; are complex. It has been shown in [27] and [28] that as long as the
real part of k. is positive, the radiative energy can only flow out of the problem region.
The transverse wave vector k. is computed from the previous step by calculating the
ratio ¥, (M — 1) /¢;(M — 2). Prior to the application of the above equation, the real

part of k, must be restricted to be positive. If not, it has to be reset to zero.

This method is extended to two more general but complicated TBC schemes in [28].
k. is computed after the completion of the nth step, using various internal points near
the boundary (not restricted to the two immediate adjacent points), and then apply
this same value of k to the (n+1)th step. The determination of the two points depend
on the angle at which the wavefront impinges on the boundary and the relative mesh
spacing (refer to Fig. 1 of [28]). If the step-size Az is too large, the simple method
may lead to unwanted oscillations. Then, the complicated and complete algorithms

may be implemented.
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3.1.5 Visualization of BPM Simulations

By implementing the above-stated BPM method to a straight T : LiNbO3 channel
waveguide whose refractive index has already been reduced to 2D by the EIM method,
the field propagation pattern as shown in Fig. 3.1 was obtained. By using the method
described in Section 3.2.1 to evaluate propagation loss, the loss curve of a straight
guide has also been obtained and shown in Fig. 3.2. This figure reveals the numerical
loss introduced by the BPM method itself. Since the BPM method involves only the
information of the step by step change of the refractive index along the z-direction,
as long as there is no variation of refractive index along the z-direction, ideally, the
BPM should produce unchanged field distributions at each step and gives zero loss.
Physical losses due to scattering and absorption can not be shown by the BPM.
Hence, any loss from computations must be numerical loss. It can be seen that after
a certain distance, the numerical loss becomes stable in the range of 4 x 10~"dB
range. Compared with a typical propagation loss of 0.3 dB for a conventional M-Z
waveguide structure, this value is small enough to be neglected. Fig. 3.3 through Fig.
3.11 are some simulation results of wave propagation inside M-Z waveguide structures
of different arm seperations and different lengths of taper/branching regions (shorter

length corresponds to larger branching angles).

Fig. 3.3 to Fig. 3.7 are beam propagation patterns for structures with an arm
seperation of 10 um. Five differnt taper/branching lengths have been used in the
simulations: 400 pm, 600 pm, 1000 pm, 1200 um and 1500 pm, corresponding to
full branching angles ranging from 2.29° to 0.62°. Fig. 3.8 to Fig. 3.11 are beam
propagation patterns for structures with an arm seperation of 15 um. Four differ-
ent taper/branching lengths have been used in the simulations: 500 um, 1000 um,
1500 gm and 2000 um, corresponding to full branching angles ranging from 2.4° to
0.6°. Qualitatively, we see that the bigger the branching angle (which means more
significant longitudinal variation of refractive index), the worse the propagation. For
a taper/branching length of around 500 um (or a full branching angle of around 2°),
most of the input power can not get to the output waveguide. The radiation of energy

is very significant. For a taper/branching length that is greater than 1000 ym (or a
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full branching angle of less than 1°), most of the input power can be transported to
the output waveguide, though there is still obvious beating of modes during propaga-
tion. An interesting thing is that below 1°, any further decrease of the full branching
angle does not necessarily cause a smoother propagation pattern. In other words, the
tendancy of having a lower loss with a smaller angle is not monotonical. This can be
verified to be true and explained by the coherent coupling effect of radiation modes

which will be discussed in the following sections.
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3.2 Design Optimization of Propagation Loss

3.2.1 Evaluation of Propagation Loss

There are three primary loss components contributing to the fiber-T% : LiNbO,
waveguide throughput loss: 1) Fresnel loss due to reflections of the optical field at the
input and output interfaces, 2) propagation loss in the LiNbO; waveguide, and 3)
mode mismatch loss due to the single-mode fiber and the channel waveguide having
different mode sizes and shapes. These three kinds of losses can be isolated and esti-
mated seperately [29]. From the output field distribuiion obtained by a combination
of the EIM and FD-VBPM, the propagation loss can be calculated.

To calculate the propagation loss which is defined as Loss = —10log(Poue/Pin), We

must find the output optical power and normalize it to the input optical power. The

accurate way of calculating output power can be expressed as [30] [31]
| [ ¥} (z,0)y(x, 2)dz |?

(| ¥y(z, 0} |2 dz)(J | ¥y(z, 2) |? d)

where 1, (z,0) is the eigen mode of the 2D single waveguide found by the effective

index method and v,(z, z) represents the field distribution at the output end. It is
obvious that using this formula, the input power is unity already which means the

normalization is done simultaneously during the evaluation of the output power.

Althongh outside the scope of this project, it is worth mentioning that while the struc-
ture of the Y-branch can affect the propagation loss greatly, the waveguide fabrication
parameters also play an important role in controlling both the propagation losses and
coupling losses. This is studied in Ref. [32]. It is concluded that factors influencing
waveguide optical losses are Ti-strip thickness, strip width, diffusion temperature,
diffusion time, and crystal anisotropy. The T thickness changes the refractive index
proportionally. A large refractive index change is preferable for obtaining high optical
confinement in the waveguide. However, the diffusible T thickness is restricted by
diffusion conditions, and non-diffused residual 70, film on the waveguide causes a
large scattering loss. The diffusible 7'z thickness at 1000-1050°C for 5h is 400-600A.
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The diffusion temperature severely affects optical losses and is a most useful factor for
controlling waveguide parameters. The strip width factor is effective in controlling the
mode number. Total coupling losses are mostly influenced by vertical misalignment
in the near—field pattern. Optimum fabrication parameters for achieving the lowest
propagation and coupling losses for both Z-cut and Y-cut LiNbO; are summarized
in [32].

3.2.2 Coherent Coupling Effect of Radiation Modes

In an ideal case, only the fundamental guided mode will exist inside the waveguide of
the interferometer and any higher order modes and radiation modes can be ignored.
Consequently, the propagation loss should increase monotonically with the decrease
of L, and does not have much to do with the variation of L. But in fact, since the
optical guiding is relatively weak, any small axial variation in the structure results in
a coupling of a great amount of energy to the radiation modes. The radiation modes
may be coupled coherently to the guided modes at another optical discontinuity,
resulting in a reduction, or an increase, of the structure losses depending on the
phase conditions satisfied at the second discontinuity [36]. This kind of coupling
effect between the radiation modes and the guided mode has been studied in [33]-
[36]. Among them, [36] is especially dedicated to M-Z electrooptic modulators in
GaAs, although the data are less complete and the modulation characterization is

much less accurate compared to what have been reported in this thesis.

Here, in this project, the coherent coupling of radiation modes is studied by using
the 2D-FD-VBPM method for a Ti : LiNbO; M-Z modulator. Since the BPM is a
non-modal technique which takes into account the propagation of both the radiation
and guided modes, it is expected to give satisfactory resuits. Unlike [36] which only
considered the effect of the length of the active region L3 in computing the total
propagation loss, both variations of L, and L3 have been taken into consideration
in this thesis with sufficient data to show more thoroughly that this coupling occurs

both in the branching region and in the active region.

58



Fig. 3.12 and Fig. 3.13 give a rough idea about huw the coupling of radiation modes
can affect the output power through a small variation of L3 from 9600um to 9800um
for a structure of Ly = Ls = 500um, L, = Ly = 11000um, W = 6um and d = 15um.
For L3 = 9600um, the total propagation loss is . ldB, while for Ly = 9800um, the
total propagation loss is 0.58dB. From Fig. 3.1:. we can see clearly that near the
entrance of the second Y-branch, a bigger portion vl energy is lost than what happens
in Fig. 3.12. While it can not affect significantly cither the bandwidth or the driving
power of the device, a 200um change in the lengrh of the active region will give rise

to a big difference in the propagation loss.

From Fig. 3.12-3.13 and those 3D figures listed in the previous subsection, it can be
seen that the maximum of the electric field oscillar~ about the center of the waveguide
in both the two-arm section and the branching -ection of the interferometer. As
the coupling length of the interferometer arms i~ in the order of centimeters, this
oscillatory behavior could not be attributed to tli coupling between the two arms.
This oscillation could be explained by the interfercnce between the guided mode and
a group of higher-order asymmetric radiation modes in each guide. These modes
could be treated as an effective asymmetric mode [36]. According to the length of
L, and L3, the phase condition at the input of the second Y junction may favor the
excitation of the guided or the radiation modes of the output guide. Therefore, the
losses of the interferometer are expected to be an oscillatory function of the length
L; and L,.

Extensive computation has proved the above explanation. Two different seperation
distances d = 10um and d = 15um were chosen. For each structure, different L,
lengths were studied when for each length of L. the length of L3 was varied from
1000um to 20000um. A mathematical mean value was calculated for each L, in
this Ly variation range. This value was taken as the average propagation loss for
a specific L, length. Tables 3.1 and 3.2 show rhe average propagation losses and
minimum achievable losses for each of the two structures, respectively. Detailed loss
data for the d = 15um structure is attached in Table 3.3 and Table 3.4 shows the
relation between L, and branching angle. The dara for the d = 10um structure is of
less importance and has not been included becausc from the work done in Chapter 5,
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it has been shown that this seperation is not sufficient to give good extinction ratio

and thus can not be used in any future design.

Fig. 3.14 to 3.21 follow show that the fluctuation of loss with regard to L; is severe
and has a large value for a small L, which corresponds to a big branching angle.
This fluctuation tends to become smaller and less significant with the increase of
L,. However, this change is not monotonic. When L, reaches a certain value (for
d = 15um this value is approximately 1000um and for d = 10um this value is
approximately 1200um), the average loss rises with the increase of L, until it reaches
a maximum, and starts to decrease again with a further increase in L,. Hence, it

shows that the loss with L, is also a oscillatory function (Fig. 3.22 to 3.24).

The above-discussed results provide us with a special way to design a device with both
a short transition length and small propagation loss. As can be seen from both the
figures and the tables, for a structure with d = 15um, a length L, = 2000um can offer
a propagation loss of less than 0.1dB no matter how L; is chosen. However, in case
a short device length is desired, which is usually the case when designing integrated
optical circuits, we can also choose L, = 1000um and by delibrately setting a good
Ly length, a propagation loss of around 0.1¢B can also be obtained without much
difficulty and effect on other design characteristics. From Fig. 3.22 and Fig. 3.23, it
can be seen that the minimum achievable loss is much smaller than the average loss

for any value of L,.
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Figure 3.17: Propagation loss vs. L3 in a structure of L1=L5=500 pm, L2=L4=1500
pm, W=6 ym and d=10 um
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Figure 3.19: Propagation loss vs. L3 in a structure of L1=L5=500 um, L2=14=1000
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Figure 3.23: Average and minimum propagation loss (L3=1000 um to 20000 zm) for
different L2 lengths in a structure of L1=L5=500 pm, W=6 um and d=15 um
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Figure 3.24: Comparison of average propagation losses (L3=1000 um to 20000 pm)
for different L2 lengths between d=10 um and d=15 um in structures of L1=L5=500
pum, W=6 um
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Table 3.1: Average and minimum achievable losses for different 1.2’s with L3 from
1000 pm to 20000 pm (L1=L5=500 pm, W=6 um and d=10 um)

L2 (um) Average Loss (dB) Minimum Achievabie Loas (dB)
200 10.543 1.934
300 10.229 1.512
400 8.890 1.539
500 8.027 0.581
600 3.445 0.483
700 1.872 0.278
800 1.001 0.1985
900 0526 __0.067
1000 0.277 0.080
1100 0.147 0.055

1200 0.102 0.019
1300 0.134 0.022
1400 0.215 0.045
1500 0.300 0.030
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Table 3.2: Average and minimum achievable losses for different L2’s with L3 from
1000 pm to 20000 gm (L1=L5=500 ym, W=6 um and d=15 pm)

(2 (um) Averaga Loss (dB) Minimum Achievable Loss (dB)
100 9.476 1.698
150 9.799 1.677
200 10.270 1,576
300 11.073 2.045
400 10.730 2.195
500 7623 2.256
600 3.908 0.968
700 1.830 0.504
800 0.748 0.181
900 0.355 0.041
1000 _0.327 0.071
1100 0.453 0.100
1200 0.618 0.186
1300 0.763 0.175
1400 0.872 0.135
1500 0.912 0.094
1600 0.854 0.157
1700 0.704 0.170
1800 0.502 0.081
1900 0.296 0.038
2000 0.133 0.027
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Table 3.3: Propagation loss (dB) vs. different L2’s and L3’s for L1=L5=500 um,
W=6 um, and d=15 pym

G2 100 150 200 300 400 500_ 600
1000 8.810 8.306 8.991 18.303 9.213 5.293 3.666
1200 9.448 13.061 13.061 9.133 16,036 11.265 3931
140( 8.208 7.483 7.107 9.634 9.575 6.967 4916
160( 7.196 8.188 10.343 16.728 30.747 9.744 3.747
1800 11811 13.854 19.761 13.302 6.253 2.018 1789 |
2000 19.238 19.699 17.440 8.383 7102 10.688 7497 |
2200 12.798 10.104 7.700 7.900 10144 5.850 2.568
2400 7.245 7.767 8.065 5.658 3509 2818 2700
2600 6.421 241 4512 5.387 10753 12252 6.024
2600 4.883 191 6.952 14.767 23.534 8.908 3119
3000 6.846 933 8.866 10.498 7.684 4.158 2.688
3200 7.647 336 7.856 7.037 9,101 10.995 6412
3400 7.645 110 8.845 12.182 15.554 6.783 2.948
3600 3.107 797 10.039 11.232 9.694 7.173 3.662
3800 12.464 16.862 22.054 50.508 13.394 6.937 3.605
4000 27.603 25.403 19.226 20.706 3.274 7.975 5.521
4200 18.875 21582 | 31.606 13.964 18.082_ 9.685 3271
4400 17.237 14.568 12133 7.56: 4,092 2.256 1.832
4600 12.065 9.962 7.483 5.34: 8.007 11.488 6.748
4800 8.354 7.883 8.467 9.644 13225 7.882 3501
5000 7.813 8.116 8.756 10.442 9.025 .587 3.068
5200 8.971 10.144 12.027 11.828 8486 .205 4.949
5400 11.028 9.504 8.027 10.378 18.060 .869 2.780
5600 7.848 8.970 11.577 17.718 11.418 7.209 4833
5800 11.802 13.624 17.250 22490 | 25232 13.401 4.961
6000 18.494 19.639 19.885 13.135 5.980 2277 0.966
6200 25.567 19.153 12.732 6.065 5.086 8.531 5.616
8400 12.740 9.353 7.796 7.929 12.769 10.747 4.800
3600 7754 7.163 6.720 7.557 9.067 7.263 3514
6800 6.542 7.524 10.918 16.810 7.910 4.019 2116
7000 10.616 11,455 11.061 9.733 8.344 6.613 4.521
7200 8.363 8.185 8.520 11.521 14.965 19.456 6453
7400 6.993 7.981 8.314_ 728 4972 3.194 1.569
7600 5.994 5.394 4.795 5018 4.708 3.000 2494
7800 4.262 4.840 6148 | 5727 7.024 12.928 7.883
8000 3.662 3.468 3576 | 5476 7.037 5572 2
8200 2.623 3266 2378 2045 | 2185 3.010 3.634
8400 1.698 1.677 1.576 3.602 12.135 11.386 4.025
8600 1.791 2.804 4522 13.775 13.136 6.008 2967
8800 4.230 6.647 10.360 20.852 21.778 12.563 6.445
9000 7.418 9.090 12117 20312 9.175 4.820 2.497
9200 11.390 14.545 11.199 7.955 7.154 5.231 3.164
9400 8.432 8.877 9.221 10.725 18172 10.352 4.776
9600 7.162 7.499 8.280 13.892 18.887 10.638 4.799
8800 7.283 ).393 12.965 12.892 7.859 4.890 3.036
10000 9.923 ).996 8.925 7954 | 9584 7.126 3.043
10200 7423 7.461 7720 16.141 12.016 7.047 4912
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G2 100 150 200 300 400 500 800
10400 7177 11246 | 18149 | 13.901 17142_| 12628 4.975
10600 9.760 10003 _| 10770 9.355 5.224 2.384 1174
10800 9.006 9.048 7.476 4.365 3714 5.160 5,633
11000 5.724 4.939 4.425 4814 9.268 11.239 688
11200 3.508 3767 3506 | 3561 4.008 2.913 116
11400 2.775 3.374 4,173 5728 | 9318 9.923 5.607
11600 4,452 5358 7.404 19.384 17.173 9517 3785
11800 7.685 9.913 10.320 | 11.586 10.792 5.330 2.684
12000 7.562 8.159 9.737 2528 11.149 8.158 4.938
12200 11424 | 13231 15248 | 18323 | 22384 8.437 3.91
12400 14254 | 14.388 17.047 | 19.608 643 7.424 3.85¢
12600 20.618 4253 | 28.964 | 32577 101 7.235 3.164
12800 24.434 7408 | 25367 | 18728 0.002 5.509 3927
13000 28.879 7471 2573 | 12144 2068 | 17.780 5.148
13200 19507 | 13.286 9.637 7.082 020 2963 1.943
13400 10.812 9.092 7.684 7.018 8.335 8.568 5.400
13600 10.934 11118 10.572_| 11.410 17.909 7.750 3135
13800 9.784 9.781 11.260 | 14.353 10.175 8.071 3750
14000 12.568 | 14,501 15849 | 15.606 16563 | 11.484 5.621
14200 16366 | 17683 | 19085 | 20789 12129 5.027 1879
12400 17.181 17.044 7.365 12.225 7.801 4.787 3019
14600 26373 | 20072 | 17.133 | 16.139 11584 | 16.237 8224
14800 18.266 | 10452 | 12.410 6.727 5.821 3.568 1.541
5000 9.698 7.845 8.415 4.794 3874 3.710 2964
5200 7.562 6.868 5.869 6.959 15543 | 10.185 4.607
5400 5.854 6.898 7.959 14559 | 22082 | 11885 5.77¢
15600 6.876 8.941 12306 | 13.604 9.695 5.308 2.38%
15800 9.144 10.073 9.861 6.741 4816 2.504 1.770
16000 7.204 7122 | 7.850 6582 | 5.784 10.659 7.73
16200 5.852 5.525 4.0} 3.575 7.181 8.714 3.24¢
16400 2,615 3011 3.912 5.589 5.560 3713 2.251
16600 3.445 4.308 5.306 8.306 6.093 8.444 4.928
16800 3.886 4223 4.667 6.101 14273 | 10.646 3.400
17000 3.002 3314 4.108 6.822 7.789 5.755 4.481
17200 3513 44N 5.732 9.878 23602 | 10.082 4,036
17400 6.049 8.647 5077 | 14.942 7.242 3.274 1.352
17600 1839 | 2762 5.004 12.847 7.548 7.549 6.389
17800 11,500 | 13.143 | 11840 7.386 9.307 8.235 3,881
18000 7.696 8.707 6.078 5.627 5.490 4.511 2.601
18200 5717 5.774 6.341 9.410 10,836 5.738 3.066
18400 5.926 7407 9.700 12.800 3.056 562 5.465
18600 6.505 7553 10.011 10.165 11,695 3,639 4.317
18800 6.822 6410 5.970 7.562 8.117 4.860 2137
9000 5.767 6.807 9.108 10.050 5.864 4.185 3501
9200 7118 7485 7.063 6.863 11404 | 19,150 6.635
8400 467t 5.088 5912 6.566 8.710 4.203 1.611
9600 4.161 4.469 4.788 3735 2455 2.963 3882
19800 3.688 3124 2.356 3,426 9.296 18.041 4.848
X 2364 2855 3.447 5.961 6.974 3.750 2015
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L2 700 800 900 1000 1100 1200 1300
1000 1.861 0.626 0.421 0.602 0.673 0.736 1.044
1200 1.661 0.795 0.372 0.249 0.411 0.703 0.742__|
1400 2,653 0.865 0.34¢ 0.239 0.303 0.238 0.222
1600 1269 | 0472 0.297 0.351 0.428 0.727 1.125
1800 1.458 1.010 0529 0.486 0.725 0.964 1.128
2000 3044 | 0804 0.257 0.213 0.358 0.454 0.414
2200 0.782 0.318 0.225 0.368 0.379 0.33 0.560
2400 2106 1.256 0.665 0.256 0.344 0.770 1.047
2600 2.700 0.785 0.176 0.448 0.778 0.860 0.957
2800 0.788 0.202 0.286 0.287 0.342 0517 0.569
3000 2.034 1.184 0.552 0.352 0.384 0.366 0.521
3200 2,679 0.955 0.259 0.200 0.356 0.78 1169
3400 242 0.431 0.329 0.471 0832 | 0869 0.702
3800 1.674 0.714 0433 0.410 0.232 0.27% 0.587
3800 1.867 0.673 0352 | 000 0.384 0.748 0.940
4000 2814 0.831 0.254 0.406 0.508 0.611 0.622
4200 1.010 0.440 0.379 0.446 0.615 0.702 0.860
400 1568 0.807 0.520 0.308 0.297 0.571 0.829
4600 2803 0.893 0.163 0.156 0.482 0.652 0.643
4800 1.265 0518 0.484 0.486 0471 0.542 0.808
5000 1.585 1.076 0.536 0.334 0477 0.744 0.748
5200 1.924 0.558 0.125 0.287 0.464 0.541 0.832
5400 1.088 0.489 0.396 0.282 0.420 0.766 0.877
5600 3122 1.380 0.498 0.430 0.485 0.419 0471
5800 1542 0.399 0.255 0.206 0.371 0.850 0.917
6000 0.679 0.480 0.3%3 0.496 0.630 0.714 0.853
6200 2.868 1222 0.452 0.183 0.298 0579 0.840
6400 2.160 .71 0.307 0.362 0532 0.605 0.558
6600 1.354 0.563 0.315 0.343 0.380 0.482 0.581
8800 1.160 0.708 0.473 0.386 0.564 0.807 1.281
7000 2,753 1.026 0.254 0.218 0.388 0.754 0.748
7200 2232 0.640 0.243 0.336 0.536 0.330 0.175
7400 0.700 0.473 0.550 0.436 0.234 0.506 1.049
7600 2.156 1.220 318 0.218 0.699 1.076 1.143
7800 2564 0.488 0.195 0.346 0429 0.480 0.568
8000 0.896 0.813 0.452 0.387 0.360 0.428 0.408
8200 2.601 1.271 0.506 0.251 0.262 0.490 0.856
8GO 1,368 0.290 0.114 0.31: 0.714 1.143 1.341
8600 1.548 0.741 0.428 0.462 0480 0.441 0.3%9
8800 2833 1103 0.481 0177 0.180 0.296 0.412
9000 1.208 0.488 0.193 0.355 0495 0.736 1.068
9200 1.568 0.728 0432 0.344 0.671 0.970 1.041
3400 2318 0.854 0.391 0.456 0423 0.427 0.604
9600 1.912 0.806 0.258 0.071 0.215 0.448 0.3
9800 1.504 0.648 0.409 0.480 0.564 0573 0.870
10000 1.417 0.722 0412 0.343 0525 1.037 1.393
10200 2,863 0.952 0.29 0.254 0.562 0.503 0.273
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) 700_ 800 900 1000 1700 1200 1300
10400 1579 0.406 0.242 0278 0.136 0.201 0.444
1060X 1,01 0.836 0.555 0.350 0583 0.875 1.200
1080C 3.31 1017 0.330 0.318 0539 0.849 0.534
1100 0.903 0.181 0,081 0.385 0568 0.498 04851
1120 1.487 011 0.852 0.248 0.100 0.261 0531
1140 2.67: 103 0.285 0.27 0590 0.858 1.087
11600 1126 0233 0217 0.41 0.608 0.830 0932
11800 1.464 0.750 0.490 0.382 0.444 0.423 0.390
12000 2498 1.014 0.320 0.171 0.145 0.368 0811
12200 1.780 0.640 0.299 0.261 0,660 0.980 0917
12400 1.742 0.650 0.351 0.805 0556 0.489 0.686
12600 1.324 0.754 0.391 0.141 0.314 0.664 0.868
12800 2558 0918 0.274 0.286 0.38% 0.468 0517
13000 1.668 0.581 0.315 0.333 05K 0.604 0,698
13200 1.377 0815 0.558 0.478 0.5% 0.654 0.856
13400 2.412 0.776 0.153 0.152 0.358 0.574 0.81¢
13600 1.167 0422 0.322 0.364 0.462 0.530 0.51¢
13800 2.406 1.204 572 0.326 0382 0.663 0.746
14000 2.191 0.702 0.177 0.353 0.602 0.585 0682
14200 0.504 0.18 330 0.250 0337 0.677 0.950
14400 2.3%0 1.321 0.485 0.339 0516 0.570 0.651
14600 2748 0.770 0.287 0207 0302 0.561 0734
14800 0.632 0.318 0.286 0.483 0,661 0,68 0.641
15000 177 0.910 0.483 0.277 0.288 0.525 0.984
15200 2 0.853 0.286 0.228 10540 0.851 0.601
15400 2.204 0.732 0.247 0.367 0.357 0.347 0.242
15600 0.897 0.543 0.498 0.381 0.452 0573 0.906
5800 1.650 0.908 377 0.291 0421 0.860 1.208
16000 2822 0.806 0.143 0,198 0.600 0.855 0.46%
16200 1,154 0.451 0464 0.507 0.268 0.236 0482
16400 1,664 1106 0.462 0.187 0416 | 077 0.926
18600 2.246 0533 0.186 346 0587 0.768 1074
16800 1.134 0.467 0.303 0.359 0.487 0.685 0.647
17000 2.608 1.345 0.544 0.308 027 0.186 245
17200 1471 0.400 0.208 0.212 0.37: 0.771 1126
17400 0.811 0.546 331 0.482 0.760 0.904 1032
17600 3.069 1.126 0.470 0243 | 0287 0.454 0521
1780K 1.667 0586 0.192 0.291 0.367 0.384 0.441
1600 1312 0626 | 0437 0.271 0362 0.868 0.696
18200 1.763 0.791 0.396 0454 0896 0.904 1250
18400 2.327 0829 0.234 0.168 0.330 0.569 0.463
18800 1828 0622 0.33 0.342 0.387 022 | 020
18800 1.079 0.687 0472 0.347 0.307 0.708 1.331
19000 2.361 1.064 0.33% 0.287 0792 1.086 0.973
18200 2.045 0.368 0.151 0.384 0315 0.254 0.310
19400 0.728 0.676 0.504 0.242 0295 0.439 0616
560X 3.064 1256 0.488 0290 | 0367 0.767 1.028
980K 1336 | 0249 0.041 0.36) 0.779 0.953 1017
20000 1.098 0.643 0548 0412 0.301 0.285 0.348
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32 1400 1500 1600 1700 1800 1600 2000
1000 1.356 1210 0.718 0.388 0291 0.197 0.061
1200 0493 0.253 0.319 0488 0470 0.267 0115
1400 0.402 0.839 1.148 1.003 0628 0.354 0.194
1600 1.564 1614 1.231 0.811 0577 0.41€ 0201
1800 0.981 0.718 0.578 0.568 0479 0225 0.035
2000 0422 0.582 0.747 0691 0357 0.171 0.091
2200 0.868 1.086 0.999 0.699 0483 0.379 0236
2400 1.158 1.115 0.898 0.770 0.689 0.451 0.167
2600 0.984 0.887 0.902 0.862 0568 0225 0053
2600 0.570 0.756 0.831 0.564 0.258 0.126 0.081
3000 0.801 1.030 0.782 0.569 0.491 0.403 0218
3200 1.128 0.891 0.844 0.89C 0.755 0.458 0.190
3400 0.684 0.936 1.009 0.903 0.539 0.221 0.051
3600 0.998 1.084 0.827 0.516 0.275 0.138 0.084
3600 0.861 0.683 0.608 0.547 0.466 0.368 0215
4000 0.687 0.884 0.950 0.859 0.706 0457 0.181
4200 1.143 1172 1.07¢ 0.83 0.645 0.202 0.086
4400 0.840 0.859 0.847 0.615 0.271 0.076 0.046
4600 0.805 0.884 0.710 0438 0.329 0336 0221
4800 0.883 0.760 0.678 0.746 0.786 0.541 0.211
5000 0.791 0.983 1.201 1177 0.743 0.261 0.050
5200 1.158 1.295 1102 0.584 0.1% 0.036 0.066
5400 0.822 0.658 0.360 0170 274 0.369 0218
5600 0.562 0.568 0.660 0.925 0947 0.555 0.188
5800 1.020 232 1.508 1.310 0.679 0222 0.080
6000 1.140 340 0.986 0.366 0.061 0.056 0.060
6200 0.894 0.532 0.161 0.176 0378 0.389 0202
6400 0.371 0.389 0.793 1121 0857 0519 0.198
6600 0.963 1569 1.686 1177 0.569 0213 0.080
6800 1.620 1.300 0.718 0.302_ 0.153 0.125 0.078
7000 0.376 0.144 0.167 0.304 0.390 0322 0.159
7200 0.366 0.768 065 1,085 0.869 0.509 218
7400 1.436 1.561 429 1.066 0.619 0.274 0.103
7600 1.135 1.026 0.756 0423 0.187 0.092 0.044
7800 0.554 0433 0.321 0.297 336 309 0.174
8000 0.469 0.641 0.867 0.994 0878 0533 0222
8200 1.251 1.538 1.518 1.180 0.650 0.249 0.086
8400 1.343 1133 0.788 0.374 0.142 S 114 0.078
8600 0.3% 0.287 0.204 0.238 0.363 0312 0.140
8800 0.608 0.755 0.968 1.129 0913 0.501 021

9000 1.271 1.498 1.546 1.092 0546 0.249 0.1

9200 1.182 1132 | 0668 0.279 0.183 0.158 0.063
9400 0.559 0.273 0.224 0427 0495 0318 0.138
9600 0.352 0.689 1.128 1.125 0740 0.400 0.204
9600 1.468 1785 1.430 0.870 0525 0.330 0.148
10000 1.231 0.765 0.455 0.392 0.356 0207 0.081
10200 0.153 0.298 0.558 0.635 0447 0216 0085
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L2 1400 1500 1600 1700 1800_ 1900 2000
[ 10400 0.843 .18 | 1.160 0.868 0.583 0.410 0.240
10600 1.358 1.248 1.005 0.795 0.639 0.400 0.151
10800 0.873 0.794 0.743 0.669 0.435 0.170 0.033
11000 0.565 0.670 0.727 0.568 330 0.205 0.129
11200 0.757 0.938 0.856 0.676 553 0.402 0.207
11400 1.267 1172 1.036 0.935 0.724 0.426_ 0.169
11600 0.813 0.822 0.863 0.698 0.411 0.168 0.044
11800 0.632 0.839 0.740 0.518 0.337 0.199 0.100
12000 0.988 0.868 0.762 0.681_ 0.541 0.380 0.218
12200 0.835 0.944 1.014 0.875 0.670 0.428 0.174
12400 1.005 1.102 0.937 0.753 0.518 0.226 0.050
12600 0.840 0.738_ 0.728_ 0.613 0.345 0.152 0.083
12800 0.640 0.852 0.829 0.568 0.392 0328 | 0.200
13000 1111 1.039 0.823 0.757 0.737 0.51¢ 0.212
13200 0.810 0.805 0.956 0.983 0.652 0219 0.027
13400 0.817 1.083 1.059 0.630 0.200 0.070 0.078
13600 1.011 0.869 0.527 0.282 0.335 0.387 0.235
13600 0.641 0,576 0.650_ 0.873 0.887 0.531 0.176
14000 0.917 1.177 1.396 1.216 0.638 0.167 0.050
14200 1A 1.197 0.916 0.375 0.073 0.071 0.088
14400 0.770 0.602_ 0.292 0.254 0.419 0.414 0.205
14600 0.629 0.556 0.800 1.082 0.930 0.503 0.191
4800 0.854 338 1.549 1023|0543 0.190 0.058
5000 1.400 300 0.741 0.288 0.114 0.097 0.07¢
5200 0.616 0.271 0218 0.352 0.457 0.354 0.20¢
15400 0.300 0.662 1.009 1.077 0.845 0.471 0.182
15600 1.420 1.627 1.455 1.061 0.604 0.257 0.094
15800 1.130 0.911 0.658 0.357 0.138 0.066 0.048
16000 0.438 0.449 373 0.338 0.380 0.358 0.195
16200 0.658 0.741 0.876 0.999 0.891 0.526 0.207
16400 1.106 1.377 1.476 1.170 0.626 0223 0068 |
16600 1,294 1,200 0.795 0.327 0.079 0.066 0.068
16800 0.470 0.272 0.157 0.220 0.395 0.389 0.183
17000 0.421 0.668 0.962 1.168 0.955 0.487 0.179
17200 1.418 1.631 1.618 1.130 0.530 0.220 0112 _|
17400 1.11 1.016 0.585 0.182 10.081 0.11¢ 0.057
17600 0.47 0267 0.174 0.372 0.514 0.37- 0.162
17800 0.47 0.704 1.148 1.231 0,846 0.434 0.201
18000 1,307 1.728 1.500 0. 0.452 0.246 0.112
16200 1.359 0.903 0.43- 0.278 0272 0.193 0.068
18400 0.135 0.094 0.356 0.557 0.476 0.270_ 0.127
18600 0.610 1.138 1.306 1.047 0.698 0.431 0.221
18800 1.645 1475 1.101 0.788 0552 0.328 0.137
18000 0.768 0.640 0.585 0.514 0.351 0.154 0.031
19200 0.448 0.587 0.635 0.540 0.374 0.241 0.139
19400 0.819 0.961 0.968 0.838 0.671 0.454 0227
19600 1,222 1,257 1.119 0.910 0.622 0,324 0.115
18600 0.975 0.864 0.757 0.568 0.344 0.176 0.067
20000 0.420 0.548 0.560 0.469 0.362 0.223 0.106
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Table 3.4: Relationship between the length of L2 and corresponding full branching
angle for d=15 um (2.0 x tan~'(10.5/L2))

Length of L2 (um) | Full Branching Angle 20 (degree)
100 11.99
150 8.01
200 6.01
300 4.01
400 3.01
500 241
600 2.01
700 1.72
800 1.50
900 1.34
1000 1.20
1100 1.09
1200 1.00
1300 0.93
1400 0.86
1500 0.80
1600 0.75
1700 0.71
1800 0.67
1900 0.63
2000 0.60
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3.3 Appendices

3.3.1 Vector Helmholtz Equations in Isotopic Media

We begin with the basic Maxwell's equations in a linear, nonconducting, nonmagnetic

and isotropic medium:

V x H = jweE (3.15)
V x E = —jupcH (3.16)
V-(eE)=0 (3.17)
V-H=0 (3.18)

and also assuming a time dependent term exp(jwt) for both electric and magnetic
fields. Do curl on (3.16) and make use of (3.15), we have

V x (V x E) = —jwpe(V x H) = —jwpg(jweE)

V x (V x E) = w?ugeE (3.19)

Using vector identity
V x(VxE)=V(V-E)-VE (3.20)

V-(E)=eV -E+Ve-E

By equation (3.17), we can get

V. B=-Y . F=—Vine § (3.21)

€

Using (3.19), (3.20) and (3.21), we get
V(Vine-: E) + V2E + w?peE =0 (3.22)
with € = n?, and k2 = w?eq, (3.22) could be rewritten as
V2E +n?k2E = -V(Vne - E) (3.23)
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If the refractive index varies slowly along z-axis (refer to Fig. 2.1 for the co-ordinate
system used) and so does E, then only the transverse field components are of interest
and (3.23) becomes

V2E, + n?k2E; = —V(V,Inn® - E)) (3.24)
where E, = E,i +E’y3 and V, = %iﬁ-%}' . Seperating (3.24) into x and y components,
we have 5 ol 5 lun?

2 2,2 _g n’ _ g gnn
V°E; + n°k3E, = x( pm E;) 6:::( 3y E,) (3.25)
8 O8lnn? d dlnn?
2 2;.2
v EU +n kUEy a ( ot :r) a ( ay ) (3'26)

Now assume that these transverse fields can be represented by plane waves travelling

in a homogeneous medium where nq is a reference refractive index.

-

E; = e~ konoz (3.27)

For the £ component:
E. =1, e ~ikonoz

OE: _ %e*ﬂm"“- —6E’ 31,/1,, g ~Tkonoz. __BE,,. = %e'jkw“ — jkongy,ekonoz

oz oz " Oy By 0z

32Ez 61,11,_k z a'l/) —jkonoz 61/) —knz 2,2 ~jkonoz
__3_;5_ azz — e JKong. ]k nOTe Jkano ]k no a JRon0 konowze JKono
62Ez 32 z . a T —jkonoz
2 = a;/; = Zkana z;bz ~ kongbz)e e

Making use of the slowly varying envelope approximation:

. ,
1202 < 2konol 32| (3.28)
We have: 2E
= (~2itana = — Kinr)e 329

Substituting (3.29) into (3.25) and cancelling out the exp(—jkongz) terms on both

sides, we have

P 0P,
-52—2- + == 3y — 27kong

z a 6ln 0 ,0ln
Z'/) k2n0¢z +ﬂ2k2'¢/)z = "'-"( nt Ye) — a.'L'( 6yn %)

(3.30)
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Note that
2 a¢z

3,42, \_ on?
_;(n %)———% +n oz
d ,1 dn? a,1 a 2 a,1 23«,0,
8z 'n? 3z 2 = or -n_zaa:( nYe)) - B:r:(n2 oz .
0,1 0n? 6 1a,, 0,0
az(nz az 1»()1:) - nzaz( wz)) - E_)

Similarly,
8,1 0n? a,19

Py,
3z 'n? By Ty = 3z 'n? ay(

2¢F)) azay

Thus (3.30) becomes

oY, 1 Y, 9 g,190 a,1 2 _ 0%y,
137 = 9nake [a =+ (n? *ng)ko¢z+a (=5, n*yz)) + 6_(_2%( n*yy)) Ba:ay]
(3.31)

Similarly (3.26) becomes
Oy _ 1 3y, a,19 n? 8, 19, 5, \ %
-7 Bz 2noko[322 +( "o)kowy ay( ay( w}l)) ( 261'( ¢=)) ?ggg)]

When TM-like or TE-like waves are concerned, which means either the y component
or the z component is zero (¥; # 0,9, # 0,%, = 0 or ¥, # 0,9, # 0,9 = 0, refer
to Fig. 2.1 for the co-ordinate system used), the above two paraxial-wave Helmholtz

equations in isotropic media could be simplified to
ja¢t = 1 [azwz
0z 2110]90 6y2

N 1 0%y, 2 _ . 2\2
TE : i3, = 2noko[31:2 + (n® — ng)kgy

™ : O ) (333)

d,1
+( "-o)ko% a_(—f
0

—(—=—(n? .34
In a 3-D problem like diffused channel waveguides, the above n should be written as
n(z,y,z). If we use the Effective Index Method to reduce a 3-D problem to a 2-D
problem, the above two Helmholtz equations could be further simplified ( assuming

that the coordinates are chosen so that y is the depth direction and d/dy = 0):

. 310: 1 2 .2 i 1 —a- 9
T™: i3 =gt [(n2y(z, z) ~ ng)k3v= + aa:(—niﬂ(x, o (n2f4(T, 2)%z))]

(3.35)
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By, 1 By, a2
TE: i, = 2noko[az2 + (ness (2, 2) — ng)kgy] (3.36)

3.3.2 Vector Helmholtz Equations in Anisotopic Media

In a number of technologically important materials, such as LiNbOj3, responses to
fields with different orientations can differ; that is, they are anisotropic [37]. This
anisotropy may be either in the response to the electric field or to the magnetic field.
In the former case, the permittivity must be represented by a matrix, an array of nine
scalar quantities. This can be called electrical anisotropy [38]. In such crystals, since
permittivity is no longer a constant, the material equation D = ¢E will no longer
hold. Consequently, while in isotropic media it can be deduced from V - D = 0 that

V . E =0, in anisotropic media such conclusion can not be drawn.

We assume the relation between D and E to have the simplest form which can account
for anisotropic behaviour, namely one in which each component of Dis linearly related
to the components of E:

D: = € E:+eyE, +6,.E,;

€y Bz + €y Ey + €, E, (3.37)
D, = €zE:+¢eyEy+e, . E,

)
|

The nine quantities €z, €y, ... are constants of the medium, and constitute the di-
electric tensor, the vector D is the product of this tensor with E [38]. It can be
proved that the dielectric tensor must be symmetric and there exists a coordinate
system fixed in the crystal called the principal dielectric azes such that the material

equations take the simple forms
D, = ¢ E; Dy = nyy; D, =¢,E; (338)

€z, €y, €, are called the principal dielectric constants (or principal permittivities). It
may be seen from the formula that D and E will have different directions, unless
E coincides in direction with one of the principal axes, or the principal dielectric

constants are all equal [38].
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In practical use, either Y-cut (or X-cut) Z propagation or Z-cut Y propagation (or
X propagation) crystals of LiNbO; are chosen which means coincidence between
actual geometric coordinates and principal dielectric axes is always satisfied. The
electrical field E is also delibrately polarized along one of the principal axes. In
such cases, it could be considered that the wave is travelling in an isotropic medium.
Nevertheless, more general and exact formulas of paraxial Helmholtz equations are
sometimes needed for waves travelling in an anisotropic medium. The final result
will show that for the specific case where we only have E, in a 2D waveguide, the

equation will end up to be the same as that in an isotropic medium.

Use € to represent the dielectric tensor, and assume the crystal axis orientation are

arranged properly:

n2 0 0
é=| 0 n2 0 (3.39)
0 0 n?

From the Maxwell’s equations:
V x E = —jwugH
VxH= waEOE
a full-vectorial wave equation can be derived as [14] (details in Section 3.3.1):

V2E + &3E =V(V - E)

The transverse component of the above equation is:

OFE,

VzE-"t + é.gkgE-;g = Vg(Vt . Eg + az

) (3.40)
where the subscript “t” stands for the transvers components and
2
- n2 0 )
t = (3.41)
(%
is the transverse components of the dielectric tensor. Using the Gauss’s law:
V-@E)=0
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we can get:

on? 29E: OE,
0z *0z

Ve (@B)+ g (niE) = V.- (6B + =0 (342)

If the refractive index n,(x, y, z) varies slowly along the propagating direction z, which
is valid for most photonic guided-wave devices, then (8n2/8z)E, is much smaller than
the other two terms in the above equation. Thus,

OE, 1 - A
32 >~ *-ﬁivt . (GgEt) (343)

By substituting (3.43) into (3.40), the wave equation for the transverse electric fields
can be derived:
- - - e 1 ~ -
VzEg + égk%Eg = Vg[Vc . Et - ;V; . (GtEg)] (344)
z

Writing out the £ component:

3 a a - - 1 a - a -~ “
V2E, +n2kiE, = 6:::[(3 i+ 6yj) (Exi+ E,j) — -—2(5-z+ Ey—_]) (n2Exi +n2E,j)]
0 JF. 0E, 120 10
2 2,.2p _ 9,908 OBy 1 1o, ,
\v) Ez +n,_.koE, = 6$ az + ay n2 61' (n Ez) ng ay(nyEy)]
BZE, azE, azE 22 _62E &E, 9,10 a .19, ,
3y2 + nakoEe oz? 6:1:3y 63:[71.2 oz "’EI)]"az[ng 6y(n”Ey)]

(3.45)

Assume that the transverse electric fields can be represented as plane waves travelling
in a homogeneous medium where ng is a reference refractive index: E; = e~ Tkomoz
and for the z component: E; = e 7%m0% a5 in Section 3.3.1, substituting all the

derivatives of E, into (3.45), we have:

é;;bzz —jkonoz + ( 2.7k0n0 %‘p” kgnng)e’jkonoz + niknge-jkonoz
621[}!! —Jkoﬂuz a 1 3 2 —jkonaz 3 1 3 2 —jkonoz
axay 32[1?.2 or z'llbz)]e - 5; ;Eé;(nywy)]e

Cancelling all the exp(—jkongz) terms on both sides

s 0= Py, 0.1 9 a.10
ayz 2]k0ﬂo oz kgﬂ%’lﬁz +nik§¢z ﬁ 'a; ?3{8 z'pz] 9z [nz ay( y‘IIbV)]
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Rearranging the above equation

Oz _ s a 1 a 10 P
(3.46)
Following the same procedure, we get
3% azzpy N 6 1 6 2 3 1 6 n _ 0%y,
(3.47)

When TM-like or TE-like waves are concerned, which means either the y field compo-
nent or the z field component is zero (¥; # 0,%, # 0,9, =0o0r ¥, # 0,9, # 0,9 =
0, refer to Fig. 2.1 for the co-ordinate system used), the above two paraxial-wave

Helmholtz equations in anisotropic media could be simplified to

M Y, d.19

TM: 2jkono—— 9z = o + (n2 — n3)kiyz + [ 23 (n24)] (3.48)
. Oy, 0% .10

TE: 2Jkono~5j'- o = + (n2 — nd)k3y, + [ o2 ay (n2y,)] (3.49)

In a 3-D problem like diffused channel waveguides, the above n,, n, and n, should be
written as n.(z,y, 2), ny(z,y, 2) and n.(z,y, z). If we use the Effective Index Method
to reduce a 3-D problem to a 2-D problem, the above two Helmholtz equations could
be further simplified ( assuming that the coordinates are chosen so that y is the depth
direction and d/dy = 0):

L Oy 9, 1
™ : 2.7"’50710'5;~ = (ni(z, 2) — nd)kgyz + ax[maz( 2z 2)w:)]  (3.50)
9
TE : 2Jkono%1€v = Bw; +(n2(1: z) — nd)kip, (3.51)

It should also be noted that LiNbO; is a so called uniazial crystal, and there exists a
relation n; = n; # n, and also n, = n., when a Z-cut Y-propagation crystal is chosen
(here z,y, z are used to represent the coordinate and X,Y, Z are used to represent
the axes of the crystal, refer to Fig. 2.1).
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3.3.3 Finite-Difference Schemes

In Section 3.3.1 , we have derived the paraxial-wave vector Helmholtz equations in
isotropic media. Now we develop a finite—difference scheme for solving these equa-
tions. Since in our particular case, only the y component of a field is concerned, only
the FD solution of equation (3.36) in Section 3.3.1 will be derived in full detail. This

corresponds to a TEy mode in a 2D problem with an effective refractive index profile

neﬂ(z, Z).

Rewrite equation (3.36) in Section 3.3.1 and move all terms to the left hand side, we
have

- J2mkoa;y 5 2 Y+ [n?(zi, 2) — ndlkiw, =0 (3.52)

Since it would be a numerical solution, we discretize a window in the zz surface into
a mesh. Let the step size in the z and z direction be Az and Az and use m and [ as
the index in z and z coordinate grid respectively. We can write the above equation
into an implicit weighted finite-difference formula (with a weight w)
Yrim) - jm), (= ) m) + )

Az (Az)?
+{(1 = )[n(m, 1) — nZlKZw, (m) + wln(m, 1 + 1) — ]R3yt (m)} =0 (3.53)

—72ngko{

where
82w m)) = Y (m — 1) - 29} (m) + ¥(m + 1) (3.54)
if the T Ey mode is considered (7] [8] Rearrange (3.53)

—j2nok,
{ JAZO 0 2}¢i+1

{—]2noko 2(1
- Az + (Az)?

+w(n?(m,l+1)—n2]ki - (A [Wir (m+1)+yt (m—1)]

w
) B

9) _ (1w){n(m, 1)k} (m ((1 ) b (m 1)+ (m—1)]
(3.55)

Devide the two sides of (3.55) by —j2ngko/Az, we finally obtain the implicit weighted
finite-difference scheme which will lead to a tridiagonal system of linear equations:

Ayt (m) + AL it (m + 1) + AL pHm—1)
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where

= Aty (m) + A 19y (m + 1) + A 9 (M - 1) (3.56)

1, wAz 2 2 212
Am =1 J 2‘noko { (A.’B)2 [n (m,l + 1) n’O]kO}
1 _ . whz
Am:ﬂ _J2noko(A$)2
L _ (1-w)Az 2 (2 212
Am =1 +7J 2n0kﬂ {(A.‘B)2 [n (m’ l) nO]kO}
(1-w)Az

{ T e ] ————————
Am:tl - J2noko(A.’B)2

If w = 1/2, the above scheme is equal to a standard Crank-Nicholson method. Formu-

lae for TM modes are more complicated since the reflections of the field at dielectric

interface of refractive index discontinuities have to be taken care of. The exact FD

equation could be found in (7).
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Chapter 4

Investigation of Loss Reduction

4.1 Literature Review of Methods to Reduce Prop-
agation Loss

There are various methods in the literature to reduce propagation losses introduced
by either the waveguide bends or branchings in Y junction structures (power dividers,
modulators, etc.). Ref. (1] to [18] represent most of these typical schemes. In this re-
view, these different methods have been classified into five major categories according

to their basic principles of design.

The first category tries to make further use of the coherent coupling effect as men-
tioned above. Instead of just optimizing the length of L, and L3 in a conventional
Y-branch to take advantage of the beat between the radiation modes and the guided
mode, the two methods in Ref. [1} and [2] both redesigned the geometry of the
branching part so as to control the power conversion and reconversion of the radi-
ation wave with the guided waves to reduce loss. Ref. [1] used coherently coupled
bends (the branching section is divided into three sections with two more bends, in
other words, the branching is split into 2 steps), and Ref. [2] goes to the extreme
by designing the branching part in a serpentine shape. While this type of method

may be efficient in reducing loss, the geometric complexity that is involved will make
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the design procedure very complicated. Further more, the higher requirement to

fabrication torlerance that may arise puts this kind of method in doubt.

The second category involves the double diffusion or extra diffusion of Mg. Ref. (3]
shows a reduction of mainly the coupling loss between the channel guide and the
optical fiber by double diffusing T and Mg during the waveguide fabrication (the
waveguide depth index profile is symmetrized). Ref. [4] further apply the Mg diffusion
to several selected areas beside the channel waveguides to increase the bend radius
of curvature without extra bending losses, and decrease seperation of the modulator
arms (a S-bend branching structure is also employed). It is obvious that this type of
method brings about more steps and control requirement to the fabrication process,
and also the simulation becomes difficult to perform (especially the modelling of

refractive index distribution).

The third category replaces the conventional angle bends of a Y junction structure
with some kind of S-bend profile to try to make the bending more smooth and giv-
ing less radiation loss. There are primarily three kinds of S-bend profiles, the sine-
generated S-curve, the cosine-generated S-curve, and the S-curves generated by two
circular arcs. Ref. [5] deals with the sine-generated curve, while Refs. [6] and (7]
show that in fact a cosine-generated curve will be the best choice. Ref. [6] has even
developed an optimized S-bend structure and showed that the cosine-generated one
is the closest to the optimal design. Ref. [8] combines the cosine S-curve with the ap-
plication of the coherent coupling effect (simultaneous optimization of the lengths of
L, and L,). While this type of method may only have limited efficiency in improving
the propagation loss, its simplicity both geometrically and experimentally makes it a

good choice, especially when it is combined with the coherent coupling effect.

The fourth category can be called notched Y-junctions. A square notch as in Ref. [9]
is made at the branching area for better mode confinement. In this type of design,
the branches are linear (according to the author, in the curved-branch Y-junction the
retilting of the branches to the original signal flow direction will cause an additional
radiation loss) and the Y-junction is based on a two-refractive-index structure that

can be fabricated in a single-step process. Although it has benifits to have several
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degrees of freedom (both the width and the depth of the notch can be adjusted) in the
design, it will also make the modeling and the optimization process more complicated.

The fifth category is the largest and consists of many slightly different approaches
[10]-{18]. But their basic principle is the same, by introducing a third or even fourth
refractive index area in an appropriate position, to try to get a better control of the
wavefront at the junction and thus reduce loss. Among these methods, several typical
ones are: phase-front accelarator, antenna coupled Y-junction, integrated microprism
and a combination of the first two. This type of method is both complicated in design
and requires two or even more steps of fabrication process. According to the reported
results, improvement may be significant for large branching angles (usually by several

dB), but the lowest achievable loss at small angles is not that attractive.

As suggested in the above descriptions, each of the five kinds of methods has its
advantages and disadvantages. When a large angle operation is definitely necessary,
the third and fouth category seem to be better choices because they require less
fabrication and design complexities compared to the other three categories. Acturally
for a M-Z modulator instead of a power divider, this necessity is much less urgent
because of its unique structure, especially when the coherent coupling effect has been
used and an overall propagation loss of around 0.1 — 0.3dB can be achieved with no
difficulty.

4.2 Effect of a Cosine-Generated S-Bend Y-Branch

In the literature, there are several S-bend Y-branches which are used in place of the
sharp-bend straight Y-branch (the traditional structure). Among them the cosine-
generated and sine-generated S-bends are the most popular ones, and sometimes
people use double arc bends as well. Fig. 4.1 shows a simple comparison of the
branching part structural variation of a conventional Y-branch, a cosine-generated
Y-branch and a sine-generated Y-branch. From the figure, it looks very obvious that
if the traditional Y-branch is called a linear structure, the cosine-generated Y-branch
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would then have a medium degree of non-linearity, and the sine-generated Y-branch
has the largest degree of non-linearity. According to Ref. [9], because of such a
constant change of the wave path in the branching region, the constant retilting of

the branches (to the original wave propagation direction) can cause an additional loss.

Although several publications have shown that in certain cases, the use of a cosine-
generated Y-branch can be beneficial in reducing loss and also a cosine bend is always
better than a sine bend (Refs. [5] to [8]), they are only helpful when the branching
angle is relatively large (like that in a power divider case). However, none of the
reports studied the weakly guided gradient index channel waveguide fabricated by
titanium diffusion in lithium niobate. Hence, this kind of structure seems to have
inherent disadvantages in dealing with a small angle structure which has a gradient

index.

In this section, a cosine-generated Y-branch will be studied to determine whether it
will be of any help or it will do any harm in reducing the propagation loss in the
structure of our interest. First, the longitudinal refractive index distribution will be
modelled for this specific branching structure and then wave propagation through the

whole waveguide will be simuiated and propagation loss calculated.

4.2.1 Modelling of Refractive Index Variations

Fig. 4.2 is a schematic diagram of a cosine-generated Y-branch. The whole branching
region can be divided into two parts called /5; and I3, respectively. The relationship

between z and z is:

r= %[1 - cas(ﬂz—l}l-ll)] (4.1)

To determine at what point section l; stops, we let £ = w/2 and substitute into the

above equation to get:

Iy
n = Zeos™ (1 - g) (4.2)
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Using the very similar modelling technique as we used when modelling the refractive
index distribution of a conventional structure, we can find different expressions for

the function g(z) for section l;; and section /5> seperately.

For section [y;:

o(a) = slerf(2S it 'cg(@)) L L2 1 —coDs(—i—l" el
S ’ (4.3)

For section l5;:

$+2-L(1-cos(Hhl)) 2+ (1 - cos(XZhL))
) +erf( 2 )
D, Ds
L4+z+ %(1 - cos(@)) 3 2(1 - cos(xet) )

o )+ erf(A——Ep ) 44

o(a) = 3ler

+erf(

The expression for the function f(y) which is a Gaussian will not change. The same
technique based on the Runge-Kutta method has been applied here again to get the

effective index along the z-direction for each step along the z-direction.

4.2.2 Effect on Propagation Loss

Three different lengths of L, (L; = I +l22) have been tried: 600, 1000 and 2000 zm.

A comparison of loss results is shown in Table 4.1.

It is seen that a cosine-generated Y-branch will not improve propagation loss for
any branching length in this study (all of which actually correspond to relatively
small total branching angles). On the contrarary, very significant deteriorations have
been observed for all three cases in comparison with the results of corresponding

conventional Y-branches.

This result is in a sense much expected, although it is somewhat different to those
in some publications. As already stated above, the constant retilting of the branches
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will definitely cause excessive loss for any S-bend Y-branch. While for a step-index
case which involves a large branching angle and relatively long branching length,
this effect may not seem to be significant, for a gradient-index case which involves a
relatively short branching length and small branching angle, it can be very serious.
It is imaginable that with a constant change in the propagation path, more radiated
modes can be excited, especially for a weakly guiding gradient-index structure, which

will obviously cause more loss than usual.

Figures 4.3 to 4.8 show some wave patterns in both the cosine-generated Y-branches
and conventional Y-branches. These are BPM simulation results. From these 3D
figures, we can see very clearly that compared to linear branches, cosine ones generate
more radiation and thus the wave forms look more irregular. The beating of radiation

modes are more obvious for the cosine-generated Y-branches.

We can thus draw such a conclusion that for our gradient-index channel waveguide
structure in the M-Z intensity modulator on a lithium niobate substrate which has
a typical total branching angle of around 1°, the effort to reduce propagation loss
using a cosine-generated S-bend Y-branching will cause a totally contrary result and

a S-bend should not be considered in future design work.

4.3 Effect of a Notched Y-Branch

The idea of a notched branching structure was first brought up in Ref. [9]. It was
stated in that paper that there are two basic mechanisms which contribute to the radi-
ation loss in the vicinity of the Y-junction: a wave-front mismatch due to the sudden
tilt and the change of the modal field distribution along the seperating branches.
The first mechanism dominates at small branching angles and depends on the guid-
ing strength. The weaker the guidance the more significant this loss mechanism is,
owing to the longer exponential mode tails. In the paper, to reduce the tilt effect on
the modal tails the junction region is tapered and furthermore the two branches run
parallel to each other along some distance before being tilted, thus a better modal
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Figure 4.7: Field pattern at the first branching region of a conventional Y-branch of
length 2000 pm, 20 = 0.6°
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of length 2000 ym
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Figure 4.9: Schematic diagram of a notched Y-branch
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confinement (and consequently a lower device loss) is achieved in each of the two

branches before tilting takes place.

The structure studied in that reference is a dual mode Y-branch power divider (pla-
nar) with an input waveguide width of 6 yum and a branch width of 3 ym and no
original taper region before the tilting. It is somewhat different from the structure
which is studied in this project: a single mode Y-branch (gradient-index channel
guide) for an intensity modulator with both an input waveguide width and a branch
width of 6 um and there exists a taper region before the tilting. Taking into con-
sideration this difference, no other taper structure will be introduced because the
construction can be complicated and no significant contribution in loss reduction can
be expected. Only a notch will be formed at the point of the Y-junction in a way that
its bottom rests at the point where the internal boundaries of the two tilted branches
of a conventional Y-branch meet, as shown in Fig. 4.9. It is expected to give a better

wavefront confinement and thus fewer radiation modes will be excited.

4.3.1 Modelling of Refractive Index Variations

The width of the notch is named now and the depth of the notch is named nod. Since
the bottom of the notch is place at the specific point described above, there is actually
only one degree of freedom, which is the width of the notch. By simple geometry,
we can find that the depth of the notch is related to the width of the notch by the
following expression:

nod = now - LY (4.5)

2d
where Il = Iy + Iy is the total length of the taper/branching region as indicated
in the figure, and {3 = ‘%V- is the same as that of the conventional structure. The
whole region between the input part and the active part is divided into three sections
instead of two as has been done for a conventional structure, namely I, IT and III,

each in a circle as shown in Fig. 4.9.

Using the very similar modelling technique as we used when modelling the refractive
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index distribution of a conventional structure, we can find different expressions for

function g(z) for section I, II and section III seperately.

For section I:

d w YRY
o) = erp EEET LT o BHEMEE
For section II:
now v _ - i
ole) = JerfE ) +er 2252
w L —p _ now
+erf(2 +Z+D(: h) ’)+erf(_.£5;_2_)] 4.7
For section III
1 stz—(z- )lz -—:1:+(z-—l[)‘{
o(a) = gler FA—p 2ty 4 erf(2—21 )
24z (z-0)L 8 _z—(z-h)L
+erf(Ar g ) + e (3= (48)

The expression of function f(y) which is a Gaussian will not change. The same
technique based on the Runge-Kutta method has been applied here again to get the

effective index along z direction for each step along z direction.

4.3.2 Effect on Propagation Loss

Since it has been found by previous work that the average (for different lengths of
Ls, Fig. 3.23 and Table 4.2) propagation loss is at a minimum near L, = 1000um
for a conventional Y-branch due to the coherent coupling effect of radiation modes,
this length of L, has been chosen to test the notched structure to see if there can
be any further improvement. According to Table 4.2, at certain notch widths, the
propagation loss has been lowered considerablly. But if the notch is too wide or too
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narrow, it will result in a contrary effect, i.e., the loss will actually increase. Hence,
the optimization of the notch width is of the utmost importance in the design process
of a notched Y-branch.

It is very natural to think of using this notched Y-branch to bring down the loss
as much as possible for even larger branching angles. Based on this consideration,
a structure with L, = 600um was also tested and the result is shown in Table 4.3.
We can see that compared with the loss of a conventional Y-branch, although the
loss of a notched Y-branch can be smaller when the notch width is chosen properly,
this reduction is far from being enough to bring the loss quantity to a comparable
range with that of a L, = 1000um structure. As a conclusion, although the notched
Y-branch is a relatively effective way of improving propagation loss, nothing very
drastic can be expected for larger angle branchings. Of course this conclusion is
again based on our gradient index, weakly guiding channel waveguide structure used

for M-Z modulators.

Fig. 4.10 shows loss variation according to the change of the active region length
L; from 14500pum to 15500um, length L, = 1000um. The loss curves of several
structures with different notch widths as well as that of a conventional Y-branch
have been shown at the same time for comparison. The significance of studying this
range of active length extensively is that from the electrode design work done by a
previous graduate student Mr. F. Y. Gan [19], an active length of around 15000um
is needed to achieve a 80G Hz bandwidth device with a 1.2um buffer layer, a 10um
electrode thickness, a 15um central electrode width and an electrode gap of 6um.
Detailed loss data can be found in Table 4.4.

While the minimum achievable loss in this range of L3 of a conventional Y-branch is
about 0.182dB (L3 = 15100um), the minimum achievable loss for a notched Y-branch
of a notch width of 1.5um can be as low as 0.145dB (L3 = 15080um). What is more
important, with a 1.5um notched structure, the coherent coupling is less significant.
This is reflected by less vibration of its corresponding loss curve. This can make the
fabrication process of the waveguide have a better tolerance of the fabrication error

in the active length.
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L2=1000 um, loss variation vs. L.3
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Figure 4.10: Comparison of losses of conventional Y-branch and notched Y-branches
with notch width of 1 pm, 1.5 um, 2 pym and 3 gm
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Table 4.1: Comaprison of propagation losses of conventional Y-branches and cosine

generated S-bends of different lengths

L2 (um) | Loss for Conventional Y-Branch (dB) | Loss for Cosine S-Bend (dB)
600 4.697 17.004
1000 0.228 1.442
2000 0.203 9.484

Table 4.2: Propagation loss for notched Y-branches of total taper/branching length
1000 um with different notch widths (L1=500 um, L3=1000 zm)

Loss (dB)
Conventional Y-Branch 0.602
Notch Width 1 um 0.507
Notch Width 1.5 um 0.448
Notch Width 2 um 0.436
Notch Width 3 um 0.624
Notch Width 4 um 1.033
Notch Width 6 um 1.822

Table 4.3: Propagation loss for notched Y-branches of total length 600 pm with
different notch widths (L1=500 pm, L3=1000 yxm)

Loss (dB)
Conventional Y-Branch 3.666
Notch Width 2 um 2.995
Notch Width 3 ym 2.577
Notch Width 4 ym 2.353
Notch Width 5 pm 2.391
Notch Width 6 ym 2.718
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. Table 4.4: Propagation loss (dB) vs. L3 ranging from 14500 to 15500 um for a
conventional Y-Branch and several notched structures of different notch widths, all
with L1=L5=500 um, L.2=L4=1000 um

L3 Conventional Y | Notched lum | Notched 1.5um | Notched 2um Notched 3um
14500 0.353 0.289 0.245 0.231 0.353
14520 0.327 0.269 0.231 0.222 0.353
14540 0.206 0.246 0.215 0.214 0.359
14560 0.263 0.222 02 0.209 0.374
14580 0.232 0.2 0.187 0.208 0.388
14600 0.207 0.183 0.18 0.213 0432
14620 0.19 0.173 0.179 0.224 0.473
14640 0.186 0.171 0.184 0.24 0.519
14660 0.194 0.18 0.196 0.258 0.561
14680 0.216 0.197 0.212 0.277 0.593
14700 0.251 0.224 0.234 0.295 0.612
14720 0.295 0.258 0.259 0.311 0.617

‘ 14740 0.344 0.296 0.286 0.327 0.609
14760 0.385 0.335 0.313 0.341 0.596
14780 0.443 0.372 0.34 0.355 0.58
14800 0.483 0.404 0.361 0.365 0.565
14820 0.513 0.427 0.378 0.371 0.55
14840 0.529 0.438 0.382 0.369 0.535
14860 0.531 0.438 0.377 0.359 0.516
14880 0.518 0.426 0.363 0.342 0.493
14900 0.482 0.403 0.34 0.317 0.468
14920 0.456 0.372 0.312 0.29 0.442
14940 0.413 0.3368 0.28 0.261 0419
14960 0.366 0.297 0.247 0.234 0.403
14980 0.32 0.258 0.217 0.212_ 0.397
15000 0.277 0.223 0.19 0.196 0.401
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L3 Conventional Y | Notched 1 um | Notched 1.5um | Notched 2um Notched 3 um
15020 0.241 0.183 0.169 0.186 0.417
15040 0.213 0.171 0.154 0.182 0.445
15080 0.195 0.1568 0.147 0.185 0.482
15080 0.184 0.15 0.145 0.183 0.524
15100 0.182 0.1 0.148 0.203 0.564
15120 0.185 0.156 0.155 0.213 0.596
15140 0.193 0.165 0.1685 0.221 0.614
15160 0.204 0.177 0.176 0.227 0.615
15180 0.216 0.19 0.186 0.231 0.599
15200 0.228 0.201 0.195 0.233 0.572
15220 0.241 0.211 0.202 0.232 0.536
15240 0.253 022 0.208 0.23 0.496
15260 0.265 0.227 0.211 0.227 0.456
15280 0.278 0.234 0.214 0.223 0417
15300 0.292 0.242 0.216 0.219 0.382_
15320 0.306 0.249 0.219 0.216 0.352
15340 _0.322 0.258 0.221 0.213 0.325
15360 0.338 0.267 0.224 0.21 0.304
15380 0.353 0.276 0.228 0.209 0.287
15400 0.367 0.285 0.232 0.209 0.2717
15420 0.379 0.294 0.237 0.212 0.275
15440 0.388 0.303 0.245 0.219 0.282
15460 0.394 0.311 0.254 0.23 0.299
15480 0.398 0.319 0.265 0.245 G.328
15600 0.398 0.325 0.277 0.263 0.365
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Chapter 5

Design Characterization of the
Active Aspect

In order to make an active modulator, after the fabrication of the titanium diffused
waveguide, a buffer layer as well as the electrodes have to be deposited on the sub-
strate. Schematic diagrams can be found in the Introduction and Chapter 2 of this
thesis with certain notations that have been used. Relatively thick buffer layer and
electrodes are necessary in order to increase the bandwidth of the device [1]. For
a Z-cut LiNbO; substrate, the center electrode has to be deposited just above one
waveguide in the active region and the other waveguide is underneath the ground
electrode, being aligned near the edge. First, a narrow center electrode structure
with a wide gap will be studied with the width of the center electrode the same as the
width of a waveguide arm (6 ym in our case). Then, a wide center electrode structure

with a narrow gap will be design-tested in the third section of this chapter.

5.1 Determination of Minimum Seperation of Two
Waveguide Arms

It is known that when two waveguide arms are close enough, energy coupling can

happen between them. When the refractive index distribution of these two arms
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and thus the propagation constants of them are different due to electro-optic effect,
energy can be expected to exchange from one arm to the other if they are close enough
because of their different abilities to retain light inside them. To effectively use a M-Z
modulator, we would like to have approximately equal energy inside each arm at the
point when they are combined, so a minimum seperation between the two waveguide
arms has to be decided in order to prevent significant coupling. Based on design
parameters in Refs. (2] [3] [4], two different values of the seperation of 10 and 15

microns between the two inner edges of the branching arms will be examined.

The simulation of the electrooptic effect of a Mach-Zehnder interferometric intensity
modulator could be done either by considering the spatial variation of the modulation
field or by using the uniform field approximation [5]. The uniform field approximation
is accurate if its strength is calculated from the overlap interal [6]. The uniform
field can also be evaluated at the peak of the optical mode, but the accuracy will
be sacrificed. It has been proved that the most computer-efficient method is to

incorporate the spatially varying modulation field directly into 2D BPM ([5].

5.1.1 Calculation of Electric Field Distribution

In order to understand what effect the electric field generated by the electrodes will
have on the refractive index of our waveguides, the distribution of the electric field
has to be known. A scheme based on Fourier Series Method has been applied here
[7] (program developed by F. Y. Gan in his M.Eng. thesis [1]). The fieid component
and also its first order derivative and second order derivative can be calculated by

the following formulae:

200
Ey(z,y) =Y. n-s(n) . e mrkw/R sin(%i) . (EI-I%) (5.1)
n=l1
dEv = 2 ~nrkw/R | ;o (AT mky 2
rm lz=— nX_Zl n®-s(n)-e ' Sm(T) . (T) (5.2)
ot lz0)= u; n’-s(n)-e - Sm(-ﬁ-) ' (—R—) (5.3)
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where R = G, + G, + Wy + Wa + W3, W, (width of the center electrode) is taken to
be 6um (the same as that of a single waveguide), W, = W3 = 100um, and G, = G,
is taken to be 10um or 15um in later computations. Also, k;, = \/fm, where
gz = 43.0 and ¢, = 28.0 are two dielectric constants of lithium niobate. The origin
of the coordinate is at the very left end of the total width R on the buffer layer
and substrate boundary. To incorporate this computation into the effective refractive
index calculation where the center of the z axis is at W; + G + W, + G, /2 away from
the very left end of the total width R, some arrangement to shift the coordinate has

been made.

The electric field distribution will be substituted into the refractive index expression
with external perturbation (see Chapter 2, Eqn. 2.9), and by using the effective index
method (also see Chapter2) the effecitve index distribution of the active region will

be obtained under a certain center electrode voltage.

5.1.2 Extinction Ratio Evaluation

Based upon the re-modelling of the effective index distribution of the active region
(the index distributions in the input, output, taper and branching regions remain the
same), the 2D-FD-VBPM method is used once again to simulate beam propagation
under a specific modulation voltage. A modulation curve can thus be obtained by
changing the voltage from zero to a certain value in steps (it should be a cosine like
curve in the end) and the output power percentage corresponding to each discrete
voltage value can be calculated. The extinction ratio can be evaluated as:

ER= —mzog(fﬁ"—tﬂ'ﬂ‘l‘ﬂ) = L0SSmazimum(dB) — L08Sminimum(dB)  (5.4)

Pout nazimum

where the way of ouput power evaluation has been introduced in Section 3.2.1. The
maximum power output obviously occurs at zero voltage, and the minimum power
output occurs at a certain voltage called the on-off voltage V, (causes a 180° phase
shift between the optical beams in the two branching arms before they re-combine, so
that they cancel each other [9]). In order to compare the effects of different seperation
widths between two waveguide arms, two seperation values 10um and 15um have been
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Modulation curve for L2=1000um, L3=15200um, W=6um, d=15um
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Figure 5.1: Output end percentage of light under different voltages in a conventional
Y-branch structure of L1=L5=500 pm, L2=L4=1000 pm, L3=15200 pm, W=6 zm
and d=15 ym

chosen in the calculation of the modulation curve. For the structure with a 15um
gap width, Fig. 5.1 and Fig. 5.2 show the modulation curves in percentage output
and in dB loss respectively. Fig. 5.3 is the simulation result of the beam propagation
inside this structure. Loss data have been listed in Table 5.1. For the structure with

a 10um gap width, results are shown in Fig. 5.4 to Fig. 5.6 and Table 5.2.

From the figures, we can see very clearly that for a separation width of 15um, the
modulation depth is very satisfying and the extinction ratio can be seen in Table 5.4
to be as high as 22 dB under a 6.64 volt voltage for an active length of 15200um (L, =
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Loss under applied voltage curve for L2=1000um, L3=15200um, W=6um, d=15um
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Figure 5.2: Output end loss in dB under different voltages in a conventional Y-branch
structure of L1=L5=500 pum, L2=L4=1000 um, L3=15200 ym, W=6 um and d=15
pm
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Table 5.1: Propagation loss vs. different applied voltages for L1=L5=500 um,
L2=L4=1000 pgm, L3=15200 um, W=6 um, and d=15 uym, conventional Y-branch
structure

Voltage (v) | Output Percentage (P,/P;) | Attenuation (—10log(P,/P;)) (dB)
0.0 0.9488 0.228
0.5 0.9366 0.285
1.0 0.8984 0.466
1.5 0.8366 0.775
2.0 0.7546 1.223
3.0 0.5489 2.605
4.0 0.3273 4.850
5.0 0.1398 8.546
5.5 7.19e-2 11.432
6.0 2.67e-2 15.733
6.2 1.56e-2 18.078
6.4 8.55e-3 20.680
6.5 6.61e-3 21.795
6.6 9.73e-3 22,417
6.64 5.67e-3 22.461
6.7 5.91e-3 22.288
6.8 7.13e-3 21.467
7.0 1.27e-2 18.951
7.5 4.47e-2 13.501
8.0 0.1004 9.981
9.0 0.2699 5.688
10.0 0.4834 3.156
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Beam propagation pattemn for L2=1000um, L3=15200um, d=15um, V=6.64v
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Figure 5.3: Beam propagation loss under 6.64V voltage in a conventional Y-branch
structure of L1=L5=500 um, L2=L4=1000 pgm, L3=15200 um, W=6 ym and d=15
gm
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Figure 5.3: continued from the proceding page
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Modulation curve for L2=1000um, L3=10800um, W=6um, d=10um
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Figure 5.4: Output end percentage of light under different voltages in a conventional

Y-branch structure of L1=L5=500 pm, L2=L4=1000 ym, L3=10800 ym, W=6 ym
and d=10 gm
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Loss under applied voltage curve for L2=1000um, L3=10800um, W=6um, d=10um
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Figure 5.5: Output end loss in dB under different voltages in a structure of
L1=L5=500 pm, L2=L4=1000 gm, L3=10800 pm, W=6 pum and d=10 um
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Beam propagation pattern for L2=1000um, L3=10800um, d=10um, V=9v
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Figure 5.6: Beam propagation l%oss under 9V voltage in a conventional Y-branch

structure of L1=L5=500 um, L2=L4=1000 xm, L3=10800 yum, W=6 um and d=10
pm
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Table 5.2: Propagation loss vs. different applied voltages for L1=L5=500 um,
L2=L4=1000 pm, L3=10800 pm, W=6 um, and d=10 pm, conventional Y-branch
structure

Voltage (v) | Output Percentage (P,/P;) | Attenuation (—10log(P,/P;)) (dB)
0.0 0.9531 0.209
1.0 0.9269 0.330
2.0 0.8531 0.690
3.0 0.7407 1.304
4.0 0.6036 2.192
5.0 0.4582 3.389
6.0 0.3230 4.908
7.0 0.2138 6.699
8.0 0.1440 8.418
9.0 0.1218 9.142
10.0 0.1501 8.236

1000um, conventional Y-branch structure), while in the 3D visualization figures, there
is virtually no significant coupling between the two arms and the cancellation at the
output end is complete and clear. On the contrary, for a seperation width of 10um,
the modulation depth is very shallow and the best extinction ratio is less than 10 dB
(from Table 5.2, substract the loss at 9.0v by the loss at Ov), while in the 3D figures,
there is very obvious coupling from one arm to the other, causing the recombination

to be very incomplete.

From these simulation results, such a conclusion can be drawn that to ensure an
extinction ratio of at least 20 dB, the seperation between two optical waveguide
arms should be at least 15um. Theoretically, a wider seperation can give a higher
extinction ratio, while demanding a higher on-off voltage and thus a higher drive
power (which could be very critical), and also larger dimensions of the whole device.
Since thereotically an extinction ratio of about 15 dB is generally acceptable [9],
taking into consideration of the potential fabrication-induced deterioration, a design
value of over 20 dB should be achieved. Based on this consideration, a seperation
width of 15 to 20 um will be reasonable (equal width of the two arms can not be
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ensured during fabrication and thus measured extinction ratio normally is expected

to be worse than the design value).

Compared with the half-wave voltage given in F. Y. Gan’s thesis [1], which is around
4.0 v for a similar structure of a 14.7um gap width, a 5.9um center electrode width
and a 14962um active length, the on-off voltage obtained by BPM simulation in this
report is much higher (6.66 v). A very important reason is that a different approach
has been taken in F. Y. Gan’s thesis to evaluate the on-off voltage:

V, gA

™= n2r331"L3 (5.5)

where g is the gap between electrodes on each optical channel waveguide, L3 is the
active electrode length, A the optical wavelength, r33 and n, the largest electrooptic
coefficient and the extraordinary optical refractive index of LiNbO3, respectively. The
most important factor in the above formula is the overlap integral between the optical
field and the modulation electric field I', whose calculated value heavily depends on the
mode sizes w; and w, of the optical channel waveguide (Gaussian in z and Hermite-
Gaussian in y direction of the optical field has been assumed). In his thesis, w, = 5.6
and w, = 4.8um have been used. According to results from the literature [10] {11] [12]
[13] , a titanium diffused channel guide under the fabrication condition of 5 hours,
1050°C and a 6um wide 600 — 700nm thick titanium strip does not have the above
assumed mode sizes. Since relatively large deviation in I’ can be caused by not very
large differences in the mode sizes, the difference between the two methods on the
on-off voltage is natural because the BPM scheme does not involve the mode size
evaluation step. It is estimated that the BPM simulation result may be closer to

experimental results, though the 3D to 2D transformation can also cause errors.
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5.2 Modulation Curve for the Optimized Notched
Y-Branch Structure

In Section 5.1, it has been shown that for conventional Y-branch structures, a seper-
ation between the inner edges of the two branching arms has to be at least 15um in
order to ensure a design-value of the extinction ratio to be greater than 20 dB. Since
in Chapter 4, a notched Y-branch structure with an optimized width of 1.5 um has
been shown to have superior loss performance than a conventional Y-branch struc-
ture, it will be a favorite choice for real device fabrication. The modulation curves
(one showing the light output percentages, the other showing the corresponding dB
values) with external voltages ranging from 0.0 volt to 10.0 volts have been plotted as
shown in Fig. 5.7 and Fig. 5.8. Detailed data are included in Table 5.3. The lengths
of the waveguide sections (L2=L4=1000 pym, L3=15080 um, L1=L5=500 um) have
been chosen to give a minimum propagation loss of 0.145 dB without modulation
(refer to Table 4.4) for a bandwidth design-value of around 80 GHz.

From Table 5.3, we can observe that the minimum output power occur at a voltage
of 6.64-volt which is thus the on-off voltage. By substracting the loss value at zero-
voltage from the loss value at 6.64-volt, we can find the extinction ratio to be 21.7
dB for the above design parameters. The modulation curve shown in Fig. 5.7 is
actually very much similar to Fig. 5.1 for a conventional Y-branch structure with
quasi-optimized longitudinal section-lengths, with similar on-off voltage values and
similar extinction ratio values. From this comparison, it is seen that while being able
to give a relatively improved loss character, the optimized notched Y-branch structure

will not significantly affect the modulation character of a device.
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Modulation curve for L2=1000um, L3=15080um, W=6um, d=15um
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Figure 5.7: Qutput end percentage of light under different voltages in a 1.5um wide
notched Y-branch structure of L1=L5=500 um, L2=L4=1000 um, L3=15080 um,
W=6 ym and d=15 um
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Loss under applied voltage curve for L2=1000um, L3=15080um, W=6um, d=15um
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Figure 5.8: Output end loss in dB under different voltages in a 1.5um wide notched

Y-branch structure of L1=L5=500 um, L2=L4=1000 pum, L3=15080 um, W=6 um
and d=15 um
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Table 5.3: Propagation loss vs. different applied voltages for L1 = L5 = 500um,
L2 = L4 = 1000um, L3 = 15080pum, W = 6um, and d = 15um, notched Y-branch
structure with 1.5um width

Voltage (v) | Output Percentage (P,/P;) | Attenuation (—10log(P,/P;)) (dB)
0.0 0.967 0.145
0.5 0.954 0.207
1.0 0.914 0.391
1.5 0.851 0.702
2.0 0.767 1.149
3.0 0.559 2.523
4.0 0.335 4.745
5.0 0.145 8.383
5.5 7.58e-2 11.200
6.0 2.92e-2 15.344
6.2 1.75e-2 17.569
6.4 9.93e-3 20.029
6.5 7.73e-3 21.119
6.6 6.58e-3 21.818
6.62 6.48¢-3 21.885
6.64 6.42e-3 21.926
6.66 6.40e-3 21.936
6.68 6.43e-3 21.919
6.7 6.50e-3 21.873
6.8 7.47e-3 21.265
7.0 1.26e-2 18.999
7.5 4.35e-2 13.614
8.0 9.86e-2 10.060
9.0 0.268 5.713
10.0 0.485 3.145
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5.3 Variation of ER and V; with Longitudinal Struc-
tural Parameters

Considering the paossible effect of the coherent coupling of radiation modes on the
electro-optical aspect of the device, several different values of the active length have
been tried for calculating the corresponding extinction ratio and on/off voltage. Table
5.4 shows the results for a conventional Y-branch and Table 5.4 shows the results for a
notched Y-branch. It has been found that the on/off voltage is not affected much and
the value of V- Ls is fairly constant as it should be for both cases. The extinction ratio
can go up for certain active length values where the propagation loss also suffers a
deterioration. Hence, there is a trade-off between the two parameters due to coherent
coupling of radiation modes: for the lowest possible loss, the extinction ratio is the

worst; for the best extinction ratio, the propagation loss is the worst.

Different taper/branching lengths have also been tried (L, = 800um, 2000um). Sim-
ilar results as reported above have been obtained (see Table 5.6) showing that the
shorter the active length L3, the higher the on-off voltage; the higher the loss without

an electric field, the higher the extinction ratio for a specific active length.

This result is somewhat different from that reported in [14] (In that paper, it was
found that by carefully chosing the length of the active region and the taper/branching
region, a low on-off voltage as well as a short length can be achieved. This is an
abnormal phenomenon.) probably because it was a GaAs step-index structure being
studied (also a M-Z modulator) in that paper which has different performance than
titanium-diffused gradient-index waveguide in lithium niobate studied here.
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Table 5.4: Variation of on-off voltage (V;) and extinction ratio (ER) for different
active lengths (L;) of a conventional Y-branch with L,=1000 pm, W=6 um and

=15 ym, 20 = 1.2°
L3 (um) | V¢ (volt) | ON loss (dB) | OFF loss (dB) | ER (dB) | V5 - L3
14600 6.88 0.207 21.872 21.665 | 100448
14640 6.88 0.186 22.055 21.869 | 100723
14860 6.70 0.531 26.212 25.681 | 99562
15100 6.64 0.182 21.548 21.366 | 100928
15200 6.64 0.228 22.461 22.233 | 100566

Table 5.5: Variation of on-off voltage (V,) and extinction ratio (ER) for different
active lengths (L3) of a notched (notch width 1.5 um) Y-branch with L,=1000 zm,
W=6 um and d=15 gm, 26 = 1.2°

L; (um) | V; (volt) | ON loss (dB) | OFF loss (dB) | ER (dB) | V, - L
14620 | 6.88 0.179 22.836 92.657 | 100586
14840 | 6.72 0.382 25.114 34.732 | 99725
15080 | 6.66 0.145 21.936 91.791 | 100433

Table 5.6: Variation of on-off voltage (V;) and extinction ratio (ER) for different
active lengths (L3) of conventional Y-branches with L, = 800um and L, = 2000um,
d=15 um, W=6 um

L, (pm) | L3 (um) | V; (volt) | ON loss (dB) | OFF loss (dB) | ER (dB) [ V; - L,
800 14760 6.84 0.288 19.171 18.883 | 100958
800 15080 6.66 0.984 27.566 26.582 | 100433
2000 | 14880 6.76 0.033 21.838 21.805 | 100589
2000 | 15200 6.60 0.203 24.113 23910 | 100320
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5.4 Comparison of Two Types of Electrode Struc-
tures

A structure with a wide center electrode and a narrow gap has also been design-
tested in comparison with the above structure with a narrow center electrode and a
wide gap. Fig. 5.9 shows a schematic diagram of a wide center electrode structure.
Table 5.7 shows that the increase of the width of the center electrode (the gap width
decreases to ensure that the width of the center electrode plus the total width of
the two gaps remain the same which is 36um) has very little effect on the on/off
voltage and virtually no effect on the extinction ratio. This means that there is little
difference between the efficiency of a wide center electrode and narrow gap structure
and that of a narrow center electrode and wide gap structure in the active region. The
latter one is more promising and should be employed because a 50 2 characteristic

impedance can be achieved which is very important in obtaining a wide bandwidth

[3].

Gl Wl
' |
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Figure 5.9: Schematic diagram of a wide center electrode narrow gap electrode stuc-
ture

5.5 Tolerance Study on the Electrode/Waveguide
Alignment

We know that the design simulation process will serve as a good simulation and

provide accurate guidance for real fabricaiton. Since during fabrication there will
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inevitably exist some misalignment between the optical waveguide and the traveling-
wave electrodes from ideal designs when aluminum or gold electrodes are deposited,
it is necessary to explore the tolerance of the alignment to make the design work
complete.

Fig. 5.10 shows a certain shift § from the ideal alignment between the waveguide
and the electrodes (for a narrow center electrode structure only: one waveguide arm
underneath the center electrode sharing the same symmetry axis (see the dotted line
in Fig. 5.10), the other waveguide arm underneath the right-side ground electrode
with their inner edges aligned). The value of § can be either positive or negative.
Several values have been tested ranging from -2 to +2 um. Table 5.8 shows that the
tolerance of alignment is around 1 to 2 microns for a 6 micron wide waveguide and
center electrode to ensure no significant rise in the on/off voltage and drive power.
The extinction ratio almost does not change at all even for a large shift. This result
coincide well with that reported in [3] when the buffer layer is sufficiently thick. For
a +2um misalignment, we can see that the on-off voltage will increase by about 0.8

volt.

”
electrode '7:; '/ j

buffer layer

NN

i
!
'J':::*::-
!

substrate

o
o

Figure 5.10: Schematic diagram of the mis-alignment between electrodes and waveg-
uides

As a conclusion, we can predict based on the above simulation results that during
the fabrication process, some misalignment between the optical waveguide and the

deposited electrodes can be tolerated as long as the shift is within +1um range.
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Table 5.7: Effect on on-off voltage and extinction ratio of different central electrode
widths and gaps (total width of central electrode and two gaps remains the same)

Central Electrode Width (um) { Gap Width (um) | V;, (volt) | ER (dB)
6 15 6.66 22.233
12 12 6.22 22.432
16 10 6.30 22.558

Table 5.8: Effect on on-off voitage and extinction ratio of different alignment shifts
between electrodes and waveguides; waveguide dimensions: W=6um, d=15um,
L,=1000pm and L3;=15200um

Aligr.rent Shift  (um) | V, (volt) | ER (dB)
0 6.66 | 22.233
1 680 | 22.225
3 738 | 22.028
5} 6.84 | 22.246
) 750 | 22.271

136



Bibliography

[1] F. Y. Gan, Traveling Wave Electrode Design For High Speed LiNbO; Intensity
Modulators, Master’s Thesis, McGill University, 1996

[2] P. Danielsen, “T'wo-Dimentional Propagating Beam Analysis of an Electrooptic
Waveguide Modulator”, IEEE J. of Quantum Electronics, Vol. QE-20, No. 9,
pp. 1093-1097, 1984

(3] N. Zhu and Z. Wang, “Comparison of two coplanar waveguide electrodes for
Ti : LiNbO; interferometric modulators”, Optical and Quantum Electronics,
Vol. 67, pp. 607-615, 1995

[4] M. Rangaraj, T. Hosoi and M. Kondo, “A Wide-Band T% : LiNbO; Optical
Modulator with a Conventional Coplanar Waveguide Type Electrode”, IEEE
Photonics Technology Letters, Vol. 4, No. 9, pp. 1020-1022, 1992

[5] F. S. Chu and P. L. Liu, “Simulation of Ti : LiNbO; Waveguide Modulators —
A Comparison of Simulation Techniques”, J. of Lightwave Tech., Vol. 8, No. 10,
pp. 1492-1496, 1990

[6] C. M. Kim and R. V. Ramaswamy, “Overlap Integral Factors in Integrated Optic
Modulators and Switches”, Journal of Lightwave Technology, Vol. 7, No. 7, pp.
1063-1070, 1989

(7] W. Boyu, X. Guangjun and J. Xiaomin, “Travelling wave electrode optimization
for high speed electro-optic modulators using the Fourier series method”, IEE
Proc. -Optoelectron., Vol. 141, No. 6, pp. 381-390, 1994

137



8]

(9]

[10]

[11]

[12]

[13]

[L4]

H. Jin, M. Belanger and Z. Jakubczyk, “General Analysis of Electrodes in
Integrated-Optics Electrooptic Devices”, IEEE Journal of Quantum Electron-
1cs, Vol. 27, No. 2, pp. 243-251, 1991

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Transactions on
Microwave Theory and Techniques, vol. MTT-30, No. 8, pp. 1121-1137, 1982

S. K. Korotky, et al., “Mode Size and Method for Estimating the Propaga-
tion Constant of Single-Mode T'i : LiNbO; Strip Waveguides”, IEEE Journal of
Quantum Electronics, Vol. QE-18, No. 10, pp. 1796-1801, 1982

R. Alferness, et al., “Efficient Single-Mode Fiber to Titanium Diffused Lithium
Niobate Waveguide Coupling for A = 1.32um”, IEEE Journal of Quantum Elec-
tronics, Vol. QE-18, No. 10, pp. 1087-1813, 1982

Haeyang Chung, William S. C. Chang, Eric L. Adler, “Modeling and Optimiza-
tion of Traveling-Wave LiNbO; Interferometric Modulators,” IEEE J. of Quan-
tum Electronics, vol. 27, no. 3, pp. 608-617, 1991

P. G. Suchoski and R. V. Ramaswamy, “Minimum-Mode-Size Low-loss T; :
L;NyO; Channel Waveguides for Efficient Modulator Operation at 1.3 um”,
IEEFE Journal of Quantum Electronics, Vol. QE-23, No. 10, pp. 1673-1679, 1987

D. A. M. Khalil and S. Tedjini, “Coherent Coupling of Radiation Modes in Mach-
Zehnder Electrooptic Modulators”, IEEE Journal of Quantum Electronics, Vol.
28, No. 5, pp. 1236-1238, 1992

138



Chapter 6

Conclusion

To combine with the traveling-wave electrode design done previously in our labora-
tory to form a complete device design for high speed T% : LiNbO3 Mach-Zehnder
electro-optical intensity modulators in long-haul wide-band optical fiber communica-
tion system applications, two major characteristics of the Y-branch Mach-Zehnder
optical waveguide of such a device have been studied, namely the propagation loss
and the extinction ratio under modulation, and optimization of structural parame-
ters has been tried (in terms of each section length of the waveguide and under the
condition that drive voltage is restricted to 6 to 7 volts which determines the 15 um

seperation between the two arms) in this paper.

The effective-index method combined with a 2D finite-difference beam propagation
method have been used for the device simulation and proved effective. The refrac-
tive index distribution of the conventional Y-branch channel waveguide has first been
modelled in a way that the values are continuous along the longitudinal direction
(Instead of using one expression for function g(z) for both the taper region and the
branching region, two different expressions have been used. See Eqn. 2.11 and Eqn.
2.12 for reference.) and the effective-index distribution obtained for different sections
of the device with and without an electric field. Aiming at reducing the propaga-
tion loss while keeping a short overall device length, the coherent coupling effect of
radiation modes have been studied. By deliberately selecting both the length of the

139



active region and the length of the taper/branching region, even for a conventional
sharp-bend Y-branch structure, a propagation loss due to the axial variation of the
waveguide of lower than 0.2 dB can be achieved for a length in the active region of
around 1.5 cm and an overall length of around 1.8 cm. With a thickness of electrode
and that of the buffer layer of 10 um and 1.2 um, respectively, a bandwidth of about
80 GHz can be achieved according to the electrode design. This non-classical scheme
does not involve any geometric change in the structure nor any requirement for a
two-step-fabrication, in comparison with the loss improvement methods that have

been reviewed.

To further reduce the loss and stabilize the beat between the guided-mode and radi-
ation modes, a notched Y-branch should be used in combination with the coherent
coupling effect, which can result in a loss value of about 0.15 dB for a 1000 um
taper/branching region. Further, this structure helps to reduce the beating between
guided modes and radiation modes and make the loss curve less sensitive to the change
in the length in the active region. The key factor in the design of a notched struc-
ture is the optimization of the width of the notch. The widely used cosine-generated
Y-branch has been proved to have a negative effect for our specific waveguide device,
due to the constant change of the wave path in the branching region, leading to an
increase in the number of radiation modes. Depending on the requirement of real
application, more complicated loss reduction methods can be used to further improve

the loss character of the device (refer to Section 4.1).

By increasing the modulation voltage and monitoring the output power, a modulation
curve can be obtained from which we can get both the extinction ratio and the on-off
voltage information. To get an extinction ratio of over 20 dB needed for practical
applications while taking into consideration the fabrication tolerance, an inner edge
seperation between the two waveguide arms at the active region has to be greater
than 15 ym which can effectively prevent coupling. A larger seperation can result in
a higher extinction ratio, but the drive-power requirement has to be increased corre-
spondingly. The on-off voltage obtained will easily differ from the values predicted
by estimating the overlap integral of the electric and the optical fields because the

latter method is very sensitive to the mode sizes which can not be decided very accu-
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rately from the waveguide fabrication conditions. The abnormal effect of varying the
active-region length and taper/branching length on the variation of the on/off volt-
age (i.e., getting a lower value of on/off voltage while reducing the length) which has
been reported in other publications has not been observed in the simulations. It has
also been established that there is virtually no difference in the resulting extinction
ratio and on/off voltage values whether a narrow center electrode/wide gap electrode
structure or a wide center electrode/narrow gap electrode structure is used. There
is reasonable tolerance in the misalignment between the optical waveguide and the

electrodes.

For future work, of course the experimental realization of a T4 : LiNbO3 Mach-
Zehnder interferometric intensity modulator should be done based upon both the
electrode design and the optical waveguide design. To achieve certain specifications
of a device, some parameter modifications and recalculations may be needed. After
the device is fabricated, its bandwidth, drive power, insertion loss, extinction ratio
and on-off voltage have to be measured in order to compare with the predicted design
values to verify the effectiveness and accuracy of the initial design works. Since
inevitably there are certain assumptions and approximations in the original design, it
will be important to further improve the simulation process based on the experimental
experience. For example, the effectiveness of BPM method in predicting the on-off
voltage needs to be tested and see whether it should be used to replace the traditional
overlap integral approach. For a device to be packed and function stably, some times
its temperature characteristic has also to be taken into consideration because the
DC drift of the bias point caused by an ambient temperature change (introduced
mainly by the microwave source) can affect the modulation characteristics. Accessary
temperature control can be added if necessary. During the fabrication process, the
realization of a thick buffer layer and electrodes can also consume some effort and the
limitations in the fabrication techniques may eventually make modifications to the

original design parameters inevitable.
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