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Foreword
The present alIthor chnnses the marmscript-based thesis option according ta the following ,

thesis preparation guideline gi"en hy the Faculty of Graduate Studies and Researclr:

Canriùiaks haVI: th" option of inc/-uding, aS part of the thesi"" the te:ri of a paper(~)

s1!.bmittcd or to be submittcd for publication, or the clearly-duplicated text of a published

paper(s). Thp_,p' t,,:ris must be bound as an integral part of the thesis.

If this option is chosen, connec/ing texts that provide [ogical b'ridges between the dif­

ferent papers are, mandaiory. The thesis m'usi be written in such'a way that it is more

than a mere collectitm. of manuscripts: in other words. results of a' series of papers must

be integrated.

The thesis must still conform to all other requirements of the "Guidelines for Thesis

Preparatiori~. The thesis must include: A Table of Contents, an abstract in En.!lish and

French, an introduction which clearly states the"'rationale and objectives of the- study, a

comprehensive review of the literature, a final coAclusion and'summary, and 'a thorough

bibliography or reJt:1~.c" l~t.
.

Additional material must be provided where appropriate (e.g. in appendices) and in

sufficient detail ta allow a clèar and precise judgementdo be made of the importance and

originality of the nq;earch reported in the thesis.

ln the case of manuscripts co-authored by the candidate and others, th~ candidate is

required ta make an explicit st,atement in the thesis as ,ta who contributed ta such work and

ta what e:r/ent. Supermsors mustâttest ta the accuracy of such statements at the, doctoral

oral defense: Since the task of the examiner ismade n:ore difficult in these cases, it is in

the candidate's interests tomake perfectly clear the responSibilities of du the authors. of

co-authored papers. Under'no circumstances can a co-author of any corriponent of such

a thesis serve as an examiner for that thesis.
" ,

Contents of Chapters 2 and 3 of the presentthesis are adopted from the papers that

have been submitted, or ~vill be subnli'i:tedshortly for publication in scientific Journals
- :.

under normal supervisor of my research supervisor, Professor A.D.Rey, who is also the

co-author. "
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Pattern Formation III lVlesophase Carbon Fibers

Abstract

. The principles goyerning pattern fonnation in discotic nematic Iiquid crystaIIine libers
sllbjected to unia.,ial extensional flows are established. Computational and analytical
methods are used in conjunction '\\ith bifurcational techniques to simulate the structural
characteristics of the orientational patterns that arise by stretching discotic nematic
Iiquid crystalline materials. The analytical and numerical results are in excellent agree­
ment "ith actual cross-sectional liber textures obtained by melt spinning carbonaceous
mesophases. This work reproduces the main structural features of the o~cillatory zig­
zag pattern ,commonly observed in mesophase carbon fibers, and ideI::~llies the process
coMlitions that lead to thispeculiar liber te.'\."ture. In addition, the temperature driven
te:ll."ture transitions and the emergence of a random pattern also observed during the in­
dustrial manufacturing of mesophase carbon libers are captured by the simulations and
thoroughly e.'\.-plained using cIassical .iscoelastic theories of liquid crystalline materials.
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Arrangement moléculaire dans les Fibres lVlesophases de

Carbone

Résumé

Les principes qouvernant l'arrangement des molécules dans les fibres discotiques n,;mati­
ques cristallinsliquids soumisent à des écoulements unia.,ials extensionnels out ét,; ét.udié'S.
Des méthodes numériques et analytiques ont été utilisées m'ec l'aide de t.echniquL'S de bi­
furcation pour simuler les caractéristiques structurelles des arrangement moléculari,'S qui
suniennent lors de l'étirement des matériau., nématiques discotiques cristallins liquides.
Les résultats obtenus par les techniques ci-haut mentionnées sont en e.,celleut accord
avec ceu., des te.,1;ures de véritables fibres formées par le procédé de tournage de fibres
mésophases liquides de carbone. Cette étude reproduit les principales caractéristiques
structurelles de l'arrangement zigzag oscillatoire qui cont souvent observées dans les fi­
bres mésophases de carbone' et identifie les conditions de procédé qui mènent à cette
te.,1;ure particulière des fibres. En plus, l'effet de la température sur les changements de
te.,-tures et l'apparition d'arrangements aléatoires ont aussi été e~:pliqués en utilisant les
théories classiques des matériau., \iscoélastiques liquides cristallins.
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Chapter -1

Introduction

1.1 Carbon Fibers

The three different types of commercial carbon libers, manufactured from three different

precursor materials, are: rayon carbon libers, acrylic carbon fibers, and mesophase pitch­

based carbon libers [1] [2]. The rayon carbon libers have relatively'low tensile strength

and low Young's modulus, and have been used mainly as composites designed for use
'~' ;. "

in rocket and space shuttle applications. The aCrylic carbon libers commonly known as

PAN-based (poly-acrylonitrile) carbon libe~ are copolimers containing acryloni~ile in.

e.'i:cess of 85% along with other co-monomers which areused to improve processability.

.The PAN-based carbon libers have high strength, high modulus and semi-conducting

propertie5 and are usedin ~ wide variety of applications [2-5{ Pitch-based carbon libers

can be manufactured trom two different states of the same precursor material (coal or
, ~ .~ ,. .

petroleum pitches): the liquid crystalline (discotic) state or mesophase, and the isotropic

state. The isotropic pitch-based carbon libers have low modulus and strength. The

mesophase pitch-based carbon.libers have ultrahigh strength and inodulus, and'canbe

used in the same applications as PAN-basedcarbon libers. In, additi0!l, niesophase pitch-
......,

based carbon libers have hlgh7thermal and electrical conductivitiesand are often usedin

.high thermal transport applications. This thesis is restricted to the.study 'of mesophase

pitch7based carbon libers.

The industrial pr~duction of mesophase carbon libers uses theso called mel~spinning

1.
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process. Fig. 1-1 shows an. schematic of actual spinning process of mesopha.se carbon

libers [6J. Typically, theprecursor carbonaceous mesopha.se pitch is melted in an extruder

which then pumps the melt into the spin pack. The molten pitch is liltered to remove

solid impurities before being excruded through a spinnerette. The pitch is subjected to

high extensional and shear stresses as it approaches and flows through the spinnerette

capillaries. The associated flow-induced torques tend to orient the.molecules in a regular

transverse pattern. Upon emerging from the spinnerette capillaries, the as-spun libers

are drawn to improve axial orientation and are collected on a ","ind-up device. The basic

microstructure of libers is formed during the spinning and dra","ing processes.

NI.-

molten pitch

windingdrum

Figure 1-1: Schemâtic diagram of melt-spinning process of mesophase carbon libers

The ~bon libers melt~spun from mesophase, pitch through snch process exhibit a

variety of transverse textures. The microstructure of the libers is defined by the spatial

arrangement of the ,flat disc-like molecules' in the lib~rs; Figure 1-2 shows a scanning

electron micrograph ofthe cross-section of a mesophase carbon liber [7J. Thecharacter-

. istic feature of Fig.1~2 is the radial oscillatory orientation.' Other. P.iltterns,knO\\'Il as

.. radialpattem:onion pattern and random pattern are aIso observed in the cross-section

offibers.as shown in.Fig.1-3[S], These threepatterns areobserved on the cross-section

ofcarbonlibersspun at different temperatures~ Figure 1-'4 [9] shows the correlation

between temperature lUid thnadial, onion and random transverse te.'àures. AlI these

patterns corr~ond todifferent statE!S'of molecular order prevailing ~ that lIlesophase

2
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Figure 1-2: Scanningelectron micrograph of the ~ure surface of a mesoph~, carbotl.'
liber displaying a radial oscillatorytransversetexture, adopted [rom [il. '

, ....) ',' " ",
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Figure 1-3: (Top row) Micrographs of fracture surfaces ofas-spun mesophase pitch fibers
and (bottom row) polarized light photomicrographs of polished transverse sections of
radial, onion, and random structures, adopted from [8].

~

and thus represent different microstructJIreS of the fibers, but the origin of such patterns,
and the sel!!Ction mech<mism that promotes the formation of particular ,patterns'in the

fiber spinning of carbonaceous mesophases are currently not weIl understood. Since the

,cross-sectional patterns' of carbon libers are closely related to their physical propertiês.,
the control of the pattern formation in these fibers' is essential to optiniize the product

property profile., This ,thesis uses theory and simulation to reproduce and e.-q>lain the

basic ,microstructural features shown in th,e radial te."cture (Figure 1-2). and the radial,

rando~ and onion' patterns. sho'l\'1l in Fig. 1-3. The remainder of this introductory chap-

, ter presents the basic concepts and theories used to sirnulateand e."qllain the pattern
" ' '1'\ -,

formation in the melt-spinning of carbonaceous, mesophases. as described above.

'.\ ,',
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Figure 1-4: Variation of:mesophase liber te:cture ",;th me!t spinning temperature, adopted
from [9].

1.2 Discotic Nematic Liquid Crystals

•

•

For many organi<;:compounds the phase transition bern-een the solid state and liquid state

is not a single phase transition, an intermediate state called mesophase (i.e. intermediate
, Q

• phase) is developed in bern-een solid and liquid [11]. The mesomorphie materials possess

both liquid-like fiuidity and solid-likemolecular order. In solid crystals the center of mass

of the, molecules are located on a three dimensional periodie lattice, hence they have. '

,both orientational as well as positional order.' In the ease of isotropicliquids only short

range order among the molecular centers of mass is present. The ordering in mesophases,
. (mesomorphie or anisotropie liquids) lies betweenthat of a solid and that of an isotropie

liquid. Based on the partial ordering two basieally different types· of mesephases have

been observed.First type, shows ,a transition from a strongly ordered state to a ph~e

wheI;e each molecule commutesbetween se\'eral equivalent orientations. The positional. .
order isstill present~the orientational ord~r liis disappeared or is strongly reduced:

and ,this~ phase is called disordered Cf)'stal mesophases or plastie crystal. The second

type, shows a low temperature ph~e where the positional order is reduced or has even, '

eomplete!y disappeared but e."<hibit long range, orientational order, andthis phase is

calledordered fiuid mesophaseor TIquid crystal. At higher temperatures,liquid Cf)'sta!s
, :::':',. .', ' ' '" '

undergo a ~tion to a conventional (isotropie) liqûid. The shape of the molecule is an

important fâctor for mesomorphism tO,oecur. Two types of liquid crystalscompowids

5



•

•

charaeerized by the shapes of their molecules are most widely studied. the rod-Iike Iiquid

crystals and disk-like Iiquid Cr:l'"Sta1s, also known as discotic Iiquid Cr:l'"Sta!s.

Based on the classification by Friedel in 1922. Iiquid crystals are categorized according

to their molecular order into three major classes: nematic. cholesteric . and smectic. In

nematic Iiquid Cr:l'"Sta!s, considered in this thesis. the molecules tend to align parallel to

each other and along some common a."<ÏS called director. The director is a unit vector

n, and it gives the average preferred orientation. Long range orientational order and

eylindrical (unia.-aal) symmetry are often e;dübited by this type of Iiquid Cr:l'"Sta1 phase.

The center of gra.ity of the molecules are distributed at random. Therefore snch liquid·.

Cr:l'"Stals possess orientaional order Iike crystals and positi~naldisorder Iike .iscous phase.

When the constituent molecules are of disk-Iike shape, the resulting phase is called dis­

cotie nematic Iiquid crystal. Figure 1-5 shows a schematic of orientational ordering of

discotic nematic liquid cr:"Sta!s. The short arrows are the molecular unit normals to the

disc-Iike molecules, and they orient more or less parallel to the average orientation n .

.,
;

.:, ....

~ :

Figurel-5: Orientational ordering in the unia.-aal discotic nematic phase. The molecular .
normals of the' randomly positioned disk-like molecules partially orient'!llong the director
~ .' . . .' . J . . .

,,' . . . ~ :)

. .l'he carbonaceous mesophase studied in this thesis is a Unia.-aal discotic nematic liq--. , " ' ',' ","

uidcrystal1ine thermodynamic phase. which forms during the Iiquid phase pyrol}~ of .

.. 'coal or pe~rolelll)lpitches. When heating a non-volatile organic compound. snch as coal

or petroleum·pitch. in th~ absence ofai!. the thermodyri3mi~andstruetural change are
,.'" '. .' . " ' .

as follows. First .the organicsnbstancemeltson heating and becomes isotropicpitch or
~ ," '.

\ '
6."
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•

liquid_ .-\s the temperature rises owr about 3:30"C. optie,ùly anisotropie sphcrcs. klll)\\,n

as spherules, appear in the isotropie mairi., [13j..-\s the hydrogcnatiw polymcrization

reactions continues the molecules get larger and the mesophasc more yiseo\ls. \,"hcn

the molecules reach an ",-erage molecular weight of ap?roximately 2000 they arc snfli­

ciently large and fiat to fayor the formation of a liquid crystalline nematic phase e,ùled

carbonaceous mesophase.

The formation of the carbonaceous mesophase foIIo\\~ a nucleation ,md gro\\'th pro­

cess, typical of metastable thermodynamic systems. The droplets or spherules are cas­

ily observed because of their optical anisotropy. Attractiye -forces among the spherules

give rise to droplet coalescence and OyeraII growth of the mesophase. The structure of

the spherules and the molecular organization of the disc-like aroniatic molecules within

the spherules has been described by Brooks and Taylor (1965)[14]. The char.lcteristic

mesophase mechanisms that are involyed in establishing the mesophase morphology are

spherule precipitation, coalescence of spherules to form a bulk mesophase,. and distortiond ,-

of meS'ophase by mechanical deformation,

As described above, the carbonaceo\ls mesophase consists of disc-like molecules that

display long range orientational order, such that the molecules lie approximately pâraIIei
, ~

to each otherand there isno point-to-point registry between adjacent molecules. The
, : :

orientation of each molecule is defined by its unit nornial. The symmetry e~ementsorthe.

carbonaceous mesophase are [13]:

(a) any translation;

(b) any rotation about the unit normal to the disc-shape molec~e;
. ' :

(c) a rotation of "Ir radians. about any a.">;:ÏS parallel tothe plane of the molecule.

Although the degree of syillmetry is the same for a discotic ·nematic and a conventional

rod-Iike nematic crystiù the fact that for the discotic nematic the ,axïsof symnietry is
... ~ ...

normal to the long diniensions ofthemolecul~has an important c~nsequencesfor optical
, , ~ .

properties, the response to mechanical stress, and the aligiunent in e.:.eternal fields such .

aS e.'Ctensionai flows, electric fields, and magnetic fieldsJ10]:
v

7



• 1.3 Continuum Theory of Liquid Crystals

•

Liqllid crystals can be continuously defonned \\ithout fracture since they are fluids.

~Vhen subjected to dcfonn,ùion the ordered molecular orientation is affected by \'iscous

flo\\' torques acting on the disc-like IDolecuIes that fonn the Iiquid crystal phase. In

the presence of flo\\', viscous flo\\' torques perturb the equilibrium orientation, Ieading to

spatially non-unifonn non-equilibrium orientation, and creating counter-balancing orien­

. tation curvature elastic torques that generally balance the \iscous torques. The non-zero

elastic torques arise from a non-homogeneous orientation \\ithin the given domain, and

consequently, the orientation condition at the boundary must be specified to unambigu­

ously define a mechanical problem. A unique feature of the continuum theOl'Y of Iiquid

cryst;ùs is that the visco-e1astic torque balance.must be taken into' account in addition

to the usual Cauchy Iinear momentum balance equation that holds for isotropie liquids
~ ~' .

[25J. ,Furthermé're, the constitutive.equations for the \iseo-elastie stress and torque eom-

ponents also tàke account of the faet that the material constants of liquid erystals are

highly anisotropie. "Vhether liquidcrystals are in statie or dynarnie conditions, they
~= , . .,
Silo\\' very different viseO:elastie responses when subjeeted to the sarne magnitude of

forces. \Vith different d4"ections. In summary, liquid crystals are anisotropie viseoe1astie
:'" ,

materials that, as shown in this theSis, behave nonlinearly even under very weak strains., '

,1.3.1 Orientational Ord~ing

:

:

(1.1)M:a=l,
" T
M=M"

The orientation of a dise-like moleelÙe ean be repr~ented by a unit veetor u normal

to the dise. Dise-like molecules of a nematie liquid crystals tend to aligu along some

eommon direction.. Due to theeentrosymmetry' or the equal probabilities ofbet\Veen u, .
and -u, the odd mOments ~f the orientation distribution function vanish. Thus,the

second order tensor M, representing the second order moment, bêcomes the leading .

variable to describe the èrientationalordering. By iÎs definition, M has the follo\ving

properties [Üi]:,
~ i:'

•
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• where cS is the Kronecker delta and p is an arbitrar:' wctor. ..\ more appropriate quantity

to describe the anisotropie mat.eriai properties excluding the isotropi" part is the second

order parameter tensor Q gi\"en by:

1 s 1.
Q(r) = - >(u n, - -0).y~ ,.., 3

~ :;:.1
( l.2)

where Nis the number of molecules in a small but maeroseopie \"olume at it" reprl'sl'n-

tative location r. Q has the following properties:

(1.3)

•

where Qi(i = 1,2,3) are the eigen\<ùues [15]. The number (k) of distinct eigem<ùues

.' represents different orientation states: k=l. k=2 andk'--3 rcpresent isotropie, unia:\:ial
. .

.nematic and bia.--cial nematic states, respecti\"ely. Second-rank tensor materi,ù properties

of liquid crystals, such as the anisotropie magnetic susceptibility, refracti\"c indices, etc.,

cau be described as .'!c function of Q [11].,.
For unia-cial orientational ordering, there is one preferred orientation along a unit

eigenvector (n, n· n = 1) called the director. Using n and a single measure of alignment "

(S):; the order parametertensor Q can bewritten as:
'~ , , '

:1 •

1
,Q = S(nn- -5)

. . 3

~ Ifwe choose n along the z a-cis, Qisgiven by:

l 0 0-3

Q=S 0 _1 03

0 0
:>. ~

:1

:

(104) .,

(b5) .'.

The degree of orientational ordering, S, is given by [11]: :
, . .

•
:

S~If((})(3c0s2(} -1)dS!
. .

9

.>
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where f is a distribution function, 0 is angle between n and u, and n is the solid an­

gle (dIt. = sin OdOd4»; f is independent of the azimuthal angle 4> under the cylindrical

symmetry about n. For a perfect a1ignment along and perpendicular to n, S = 1 and

S = -~, respectively. If there is no preferred orientation as in the isotropie state, S = O.

The present thesis is focused solely on unia.'ÔaI nematic liquid crystals of disc-like

molecules and assumes negligible variation of S so that the microstructure can be com­

peletly described by n. T'nis assumption is \-aIid for the e.,..tensional fiow considered

below. In the following sections, ,\oe use Cartesian tensor notation with Einstein summa-
,

tion convention, and a cOJllma followed by an inde., denotes ..partial differentiation with

respec! to the corresponding coordinate.

1.3.2 Frank Orientation Distortion Elasticity

, The simplest nematic state is that of a uniforrn orientation domain, known as mon­

odomain. This uniforrn orientation state is easily perturbed under the influence of

bounding ~-urface conditions and e."\.-ternal fields such as shear, electric, and magnetic

fields. \Vhen viewed und~ crossed polarizers, liquid crystals usually show iridescent te.,-
l'.

tures [18],: This optical characteristics cornes from the spatial variation oflocally ordered,
average orientation n(r), giving riseto spatial variations of the anisotropie optical prop-

erties. To deScribe the spatial variation of orientation, Frank [16] tleveloped a continuum

é theory of orientation distprtion elasticity by improving on the e.--dsting theory of Oseen

[li]. The distorteà orientationstate is des~ribed by
0
the orientation distortion energy

, ,

,.C: density F giVt;n !bY:'

'.'-. (Li)

(1.8)

•
where Eijk denotes the a1ternating tensor. In vector form, the above equation is:

".

­..-
.::: ;';

;,

10 .. ,:;
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Here, Kt. K z and K3 , correspond to the eIastic constants for'the three principal modes

of orientation distortion, the splay, twist and bend deformations. Figure 1-6 shows the

three principal modes of orientation deformations displayed by discotic nematic liquid

crystals.

Figure 1-6: Elastic defonnations of discotic nematié liquid c~tals.•

Splay (KU)

1.3.3 Leslie-Ericksen Continuum Theory /~t'~, , . ",

'. Ericksen first developed a continuum theorv for viscous str~ctured~~tinua in ;"hich its .
'. -:( .

microstructure is describedby a unit vector n. LeSJie inccl.porated the Frank orientation,
.. ~"

distortion elasticity to develop an anisotropic \;scoelastic continuum theory of nematic

liquid Cf)'Stals. which turned out to be the most successful theory by far,aridis usually

referred"toas Leslie-Éricksen' (L-E) continuum theory. The goveming equationsused in

thisthesis are derived from the L-E contmuum theory. The L-E 'equatipns are presented

below.

•
Go~erning Equations and Constraints '

The Cauchy linear momentum balance equation is given by:, J ,,', . " ' ·
. ..:7, '

pUi = Uji.j + fi (1.9) ,

11



• whcrc P, Vi, (1ji and fi represent the density, velocity, stress, and the body force per unit

volume, and the superposed dot denotes material time derivative. The director angular

momentum balance equation is given by:

Pmiii = Ci + 9i + lrji,j (1.10)

,
where Pm is the moment of inertia per unit volume, gi is the intrinsic director body force

per unit volume, Ci is the e."\.1;ernal director torque per unit volume and 1rji is the director'

stress tensor.

The length of director n and the incompressible total mass are conserved quantities,

which are e.>:pressed by the following constraints:

1li1li = 1, Vi,i = 0 (1.11)

• Constitutive Relations
::;

The constitutive relations for the stress tensor (1j" intrinsic director body force g"

and the director stress tensor 1rji are given by:

(1". J'

. . 8F .
- -POji - -8nk,i + o-ji,

nk,j

g. _ "1'17, _ {J ...... . _ 8F +g-.
• {.... J· ..,J81li "

8F
- {J·ni+--

J 81li,j

(1.12)

•

where 1 and {Ji are Lagrangian multipliers introduced to satisfy the unit director length

constmint. The. dissipative contributions,o-jiand y" arlgiven by:

12



• measures are defined by:

(1.15)

Ni, Aij and Wij are the corrotational time derivative of n, rate of defonnation tensor,

and rate of rotation tensor, respectively. The Leslie viscositics are related directly to

measurable quantities, the lVIiesm\icz viscosities (TJa, TJb, ''lc) [19], the rotational viscosity

71, and the elongationaI viscosity VI [U] as follows:

(1.16)

•
Usually, for discotic nematics the MiesO\vicz viscosity ordering is TJb > TJa > TJc [10]. Using

Onsager's reciprocal relations of irreversible thermodyn:unics [6], Parodi obtlùned the

folloWing relation [20]:

(1.17)

which reduces the Jl.umber of independent .Leslie viscosities from sL..... to five.

Visco-elastic Director Torques

Since in practica1' situations the inertia of the director is small [21], Pm' is, assumed

negligible small in equation (1.10). Then the cross product of equation (LlO) with n.

eliminates the Lagrangian multipliers (7, (3i) and yields, in the absence of external fields,
..

the following visco-elastic torque balance:

(1.18)

• .:,

ThÊ/vi~cous torque rm..= and the elastic torque relastic [U] acting on, the director n ar~
;.... - ~ ", .

given by:

.(1.19),
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• Equation (1.18) gives the director orientation in nematic Ilows. Since the extensional Ilow

is c10sely connected with the melt spinning of mesophase carbon libers, it is necessary to

examine the effect of such e..'Ctensional Ilo\\" on the director orientation.

1.4 Extensional Flow

,

,)

:1
'II

l'

i

•

Melt-spinning of carbonaceous mesophase consists of an e..'Ctremely complex thermal and

mechanical defo~ation sequence. Nevertheless as the discotic nematic liquid crystal '

exists the spinneret, it is subjected to a uniaxial extensional Ilow before solidification.

The uniaxial extensional Ilow is the basic structuring e1ement used in the fabrication

of nearly all organic synthetic libers, such as nylon, kevlar, and aCl"ylic libers. lt is

nowwide1y recognizedd?2] that the extensional Ilow is the most effective deformation to

promote molecular orientation that léad to the superior mechanical properties of these

libers. Thus in this thesis we also assume that the characteristic microstructural features

found in thé liber cross-section arise in the section of the spinnline where the material is

subjected t~ a unia:cial extensionalliow. Figure 1-ï shows the deformations of a unit cube

when subrnitted to a uniaxial e."<tensional in x direction. Since this e."<tension deformation

, will inevitably interfere with the director orientation in discotic nematics, it is necessary
.'

to understand 'the effect ''of such Ilow on the director [23].

.'

Uuit cube olDanaIic
Il lime tooO ,

i"

1 or

1

/" 1 '/
1

1
:

/" ' 1 '/

l,
1

'l.

)L, ,"

. . . ~, ',' .
Figure l,ï: Deformation of a unitcubesubjeetéd to uniaxial e."<tension deformations iil
x direction' " . '

,"-

•. '" ,"
" " ,1

,
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• Consider the simple inelastic case (K, == K 2 == K 3 == 0), where the discotic nematic

f10w becomes purely ,iscous. The Transversely Isotropie Fluid (TIF) model of Erickscn

[24] is applicable for a purely ,iscous nematic f1ow, and rcads:

(1.20)

•

here .4ij and Ci)ij are the rate of deformation tensor and thc ratc of rotation tcnsor as

defined above. À is the reactive number (À == _:1;:.), and for, discotic Hematies ,\ < 0 [10].
o 1'1 .

According to the coordinates of Fig. 1-i, the velocity field"'è~rresponding to thc"unia,ia!

c-"\.-tensional start-up f10w. is given bl' [25]: "

Vx - ixH(t);

vy - -~YH(t);
i ,'Ur - -2zH(t);

{ }' rH(t)
o t < 0

(1.21)- li
1 t ~ 0

:::

where i is the constant c-,tension rate. The non-zero components of the ,corresponding

deforrnation tensor A are: An == i;A22 == A33 == -~; this f1O\v is irrotationa! and the

rotational tensor Wij == O. A useful decomposition of the director field n and the rate of
"

deforrnation tensor Ais: ,

n - nl. +nil;

nl. - nyj + n:k;

nn n:ri;
,

-

=D A '0 3ip- ê--
2

(1.22)

•
: whereo' == ü +jj + kk, and P == jj + kk. Replacing equation (1.21) and (1.22) into

equation (1.20), we obtain the folIowing dimensionless nonlinearordinary :differential. . , .

15



• equation:

dn.:. .;3 ( 2
dé - 2), nl. -l)nL;

nx - sign(nx(t = 0)))1- nl (1.23)

where é = tt is the strain. The initial conditions are: e: = 0; n = no. Integration

of equation (1.23) gives the following e."\.-pression for the director rela."Œtion n(e:) forthe

unia.'àal e."'ctensionai start-up f1ow:
,

• and in corilponent form:

EUnjO
IE·nol'
njO = 71.;(0);

- exp{Aij 10< ),tk';

- A-.
4··-.....2- 2J - e

"\:

E=Ttxo Eyy"nyo Ezznzo
Ttx= ;"ny= ; n.,=

IE·nol IE·nol. -IE·nol

Eyy - Ezz . exp(-~ fa' ),tk'); Eij . 0 for '% =1 j

(1.24)

(1.25)

\ihere njois the jth component of the initial director orièntation n(O). Since), is a

co~stant, the ~bove equ~tlon cb be written as:

(1.26)

here ê = i is the strainand i is the e."\.i;ension rate. It is' clear from equation (1.26)

.. that since ), < 0 for discotic nematics, the x component of the director n will decrease

e.\.-ponentiaIly with time whilethe,y and z components of n will întrease. Therefore the

.reIa.'tation of the director n under e."\.i;ension, as in the'melt spinning f10w ofcarbonaceous

mesophases, :wiIl restrict n \vithin the plane normalto the fiber a.'às, which is exactly

thecross-section ,ofthe fiber.Thus we are led to the following significant conclusions: 1)

.'
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•

e:\.1;ensional viscous torques orient the director any\\"here on the plane perpendicular to

the e."\.1;ension a'cis; 2) any cross-sectional microstructure formation in cvlilldric,ù fibers. . .
subjected to e.-.-tensional flo\\" must arise due to the elastic torques (see equation (1.19)).

1.<> Thesis Scope

This thesi(; is devoted to simulation of the pattern formation of melt spun mcsophase

carbon fibers. The mesophase carbon fibers is approximated by a monodisperse unia'cia\

discotic nematic liquid crystal [12]; the melt spinning flo\\" is approximated by a steady,

isothermal, Ï!Jcompressible, unia'cial e."\.1;ensional flow [25]. Using cylindrical coordinates

(r,O,z), the fiber is approximated by the cavity between two concentric cylinders with

the z direction coincides with the fiber a'cis., The outer cylinder represents the surface of

the fiber, and the ioner cylinder represents the isotropic core along the fiber a'cis. From

, the results of the analysis on e.-.-tensional flow presented above, the director n is restricted

to the transvers~plane of the fiber. The main parameters considered inthis thesis are:the

Frank elastic constants KI and Ka, which represent the splay and berid defonnations of

the director orientation. Both fï.-.-ed and unrestrained surface orientation of the director
, '

1

are considered in this study., Emphasis is placed on the multiple solutions of the dire.ctor

field nCr, 0) when varying the elastic anisotropy conditions due to the changes in the ratio

of KI and Ka.

1.6 Thesis Objectives

The rnain objectives of this thesis are:

. ' ,.,' ,,' \
1) to reproduce planar te.'Ctures observea~ in

•

carbon fibers through numerical simulations, basedon well-established theocles ab()ut

discotic nemàtic liquid crystal materials, 2) to provide a comprehensive Charac::terlzation ~

ofplanar orie~tationpatterns of discotic nematics liquid crystals subjected to extensional

flow, 3) to identify the IhFtern selection mechanismin meltsp~gprocess ofmesophase
~ 1· , , ,_ • •

carbon fibers.

The thesisobjectives are directly motivated) by actuabmicrostructirral phenome~a
,

17 "



•

•

commonly observed during the fabrication of carbonaceous mesophase libers, as sho"l';n

in Fig. 1-2, 1-3, and 1-4.

1.7 Thesis Organization

This thesis is organized as follows:

Chapter 1 presented the necessary background concepts on the discotic nematic liquid

crystalline materials, including sorne preliminary analysis on the effect of melt spinning

fiow on director orientation.

Chapter 2 pres~ts the simulation and analysis of the pattern formation in liber

.spinning that è.'Cplains the planar oscillatory te.,..tures observed in the tnw:werse plane

of mesophase carbon libers (Fig. 1-2). An,analysis on the stability of the numerically

obtained director orientation is also included. The main effects of elastic anisotropy on

the pattern selection are shown using computatiànal bifurcation methods.

Chapter 3 presents simulation and analysis of the effect of temperature on the patt::..'"l1

formation in mesophase carbon libers. The various transverse patternl!, shown in Fig. 1­

3 and 14, in different temperature ranges are reproduced and e.,..plained using time-. . .

dependent .numerical simulations.

. Chapter 4 presents a s~ary ofthïs thesis, including conclusions and contributions

to e.'CÏsting theories on pattemformation in carbon libers.

18
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•
Chapter 2

Pattern formation and nonlinear

phenomena in streched discotic

liquid crystal fibers

• 2.1 Sl1mmary

,This chapter presents"a nonlinear numerical and bifurcation analysis of pattern formation

phenomenain discotic nematic liquid crystal confined to annular cyli~drical cavities and

subjected to e.'\."tensional deformations. The,results are of direct relevance to understand-' '

ing the industrial melt spinning of mesophase carbon fibers, using discotic nematic liquid~ .

crystals precursor materials . Three types of orientation patterns are identified in this ,-
, ' ,

study:spatially constant (radial), monotonic (pinwheel), and oscillatory (zig-zag). Nu­

merical and closed form analytical rësults predicting continuous transformations between

the radial, pinwheel, and zig-zag radial orientation modes are presented. The bifurca- '

tion ~alysis provides a direct characterization of the parametric depenclence and the

transitions between these three basic patterns, and 'provides a complete understanding. ." ,

of themultistability phenomeÎ1a that is present in the oscillatory orientation patterns.

In general it is found that small fibers of nearly- elastically isotropic discotic nematic

• ,liquid crystals tend to adopt the classical ideal radial texture, while larger fibers with
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anisotropie elastic moduli tend to yield the zig-zag texture. Fi."œd arbitrary surface ori­

entation of interrnediat~ size and anisotropy tend to adopt the pinwheel te:'i:ture. The

theoretical results are able to e:x:plain the main features and rnechanisrns that leadto the

cOIllmonly observed cross-section textures of industrially spun mesophase carbon fibers.

2.2 Introduction

The industrial fabrication of rnesophase carbon fibers [1-3] is based on the melt spinning

of discotic nematic Iiquid crystals into micron-sized cylindrical filaments. As in other

'man-made organic fibers molecular orientation is a key parameter that dominates the

mechanical property profile. Fo( disk-like molecules the distinguishing molecular direc­

tion is the unit normal to the lliolecular disks,and the average orientation characteristic

ofnematic ordering arises from the close alignment of the molecular unit normals. Dur­

ing fiber spinning, a -unia."i:ÏaI e.'\:tensional stretching fiow orients the longest molecular

dimension of the disk-Iike molecules close to the e."i:tension (fiow direction), such that

the average molecular orientation is normal to this direction, and contained in the plane

norm:ù to the fiber mds. Thus any spun mesophase fiber cross-section displays a planar ..

, orientation. A variety of planar ()rientation patterns have been frequently reported in the ..

litem.ture, including the oni~n, radial, and zig-zag ~adial patterns, shown inFig.1 [4]. The

shown patterns contain a line defect along the fiber a."i:ÏS, while the surface orientation is ;J-~
~
~ planar for the onion pattern, homeotropic for the raillaI,' and arbitrary for the zig-zag.

It should be noted that in actua! fibers the defect gives rise to'a macroscopic isotropic

core, apparently much larger than the typical molecuIar size of nematic disclinations,[5].
. . - . ~. .

The radial zig-zag pattern observed in actual fibers [6] has a position dependent ampli-

tude and wave-Iength but the basic te.'\:turaI feature of interest is the radially oscillatory

trajectories of the moiecular planes.

The,'selection mechanisms that drive the pattern formation in mesophasefibers gpun
~ " .

, from discotic nematic liquid èrystals are at present not well understood, but due ,to strong

structure-properties correlations they are essential for product optîmization. On the other

hand,the closely related probl~ of pattern formation in cyllndrical cavities filled ',Vith
, ,
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•

Figure .2-1: Schematic representation of the molecular trajectories in tJie cross-section of
mesophase libres observee! during industrial spinning process (Peebles; Pencock et al.).

rod-like nematics is better understood [i, 8]. In the latter case, theoretical predictions

using energyminimizing models, are able to reproduce many observed patterns. Belo\\"

we show that similar elastic minimization mechanisrns are able to e.~lain the pattern

fo~ation phenomena in discotic nematic filaments subjected to ideal e."ttensional f1o\\"s.
:-; ,

Previous work [9], on pattern' formation Îl1- confined discotic nematic liquid Cl')"Stals

mainly focused on predictionS orthe radial and radial zig-zag patterns, using a simpli­

lied .linear analysis. The analysis predicted that oscillatory pattern arises dueto the
. ,

anisotropy that ch~cterizesthe planar elastic deformation modes, but only if the outer. '
~N

boundary conditions are not homeotropic. Thus the only transformationleading to a

zig-zag pattern invol-res a bifurcation of the JbwheeI patt~,~ known as the magic '
.' , ':"r

spiral [5], in which the molecular trajectories followoa pinwheeI pattern (see Fig.4) .. This

is obviously in disagreement with e.-q>eriments [6], where the surface orientation can be
- ,

arbitrary and in fact' it is ill-<iefined [6]. In addition, the linear analysis 0[[9J is only

valid for small director ~ortions, and it'also predicts unboundedoscillations for certain,

critical values of the liber radius, which is again unph)"SicàI. The aboveshoncomings

indicate an incomplete knowl~ge of what parameter envclopes lead to specific patterns ,

': in stretched discotic nematic liquid crystal IDaments. TOdevelop aromplete picrure of

pattern formation iD. confined discotic nematic liquid ci'ystals herewe focus on orienra­

tionpatterns that arise from' aIl po'Ssible continuoustransformations. of the ideal;radial ' '

pattern, in which themolecular dises follow radialtrajectories (seeFig. 4). !ri' addi~on
'. .." , " r, ,','

sincethe isotropic cores foundalong the liller axis are in practice of macroscopicsize; v,,-e' '
'l' ,', " , '," ' ~'

, study confinement in an annular ge6metry (6].
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For rod-like liquid crystals, previous work on planar te.'\.1;ures of confined nematics

in cylindrical cavities [10] proved the e."àstence of spatially oscillatory solutions to the

equilibrium equation, and also established the stability properties of the solutions. In [10]

it is predicted the e."àstence of an infinite number of osciIIatory solutions for homeotropic

boundary conditions when the two relevant splay-bend elastic constants are different,

which in general disagrees with the multiple bifurcation and muitistability phenomena

in cylindrical confined geometries ai shown be!ow. Analysis of the Iinearized model for

confined rod-like nematics in cylindrical cavities [11] shows oscillatory solutions for non­

homeotropic boundary conditions. However, due to the shortcomings of Iinearization,

the bifurcation and multistability phenomena, due to non-linearity of the elastic free

energy model, remained une.'\.-plored. In this chapter, we overcome the above mentioned

shortcomings of previous works and give a complete analysis ofplanar te.'\.1;ures ofconfined

nematics in cylindrical cavities. Non-planar pattern formation as well as planar pattern

formation ,vith off-a."às singulaiities in rod~Iike nematics confined to cylindrical cavities

have alsobeen charracterized using energy minimizationmodel [12]. Nevertheless these

works do not consider the planar patterns studied here.

The objective of this chapter is: 1) to ~eproduceand e.'\.-plain the main pattern forma-
:=;. , . ,

tionphenomena that are opserved during the' spinning of carli.onaceous mesophase using

weil established Iiquid crystal elasticity mode!s, 2) to provide à comprehensive charac­

terization of planar orientation patterns of ~cotic nematics liquid'crystais subjected to

e."<tensional f1ow, and 3) to establish the main bifurcàtional and non-Iinear phenomena

.present in discoticnematics in cylindrical cavitieS.

This chapter is organizecj. as foIIows. Section 3 deais with the elastic modes of discotic

nematics, and discusses the e!astic anisotropies in planar orientation patterns. Section 4

presEints the mathematical mode! that describes steadystate planar orientation patterns

in'Cylindricalcavities inthe presence offi.,ed boundary conditions. Equations that val­

idate, theplanll.rlty ~ption in the presenée of e."<ten~onal (fiber spinning) f10w are

p~esen~ed. S~ction 5 presents the numerical reSuIts and dis~on. The resU1ts are orga~

IlÎZed and classified along the values of the governingparameters. Closed'form bifurcation

threshblcis: bifurcation diagramS, and stability diagrams~e presented., ' A summa,ry o~
'.. " , " . ~.
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• the main features of the pattern formation phenomena is also included.

2.3 Elastic Modes of Discotic Nematics Liquid Crys­

taIs

•

In this section we describe the main features of nematic elasticity for discotic nernatics

in cylindrical cavities displaying planar (2D) te."\.'tures, and use them to identify the

e!astic modes in typical mesophase carbon fiber te."\.'tures. Figure 2c2 shows themolecular

geometry, positional disorder, and unia.'ÔaI orientational order of the mode! unia."\.;al

discotic nematic Iiquid crystal considered in this chapter [5]. The partial orientational

ordering of the molecular unit normals u is along the average orientation .or director
...... .:

n (n· n = 1), ànd differs from that of rodlike molecules in that u is along the shortest

molecular dimension. This geometric difference is the source of the reversal in the ordering. '

of viscoelastic [13, 14] as weIl as other propeities [2], that arise when comparing disk-like

• and rod-like unia.'Ôalncmatics. This chapter is restricted to the study ofplanar patterns,

. contaiI!:ing splay and bend deforrnations [5]. Figure 2-3 shows the splay modeofmoduhis

Kr,~d the bend mode of niodulus K 3• Note that in contrast to rod-like nematics,
JI ~. ~, "

'f~afsk-like nenldGics the bending disk'~ trajectories give rise to splaydeformation (lèft

figure), and the splaying disk's trajectories give rlsè to benddeformation (right figu~);

by disk trajectory we mean the curve locally orthog~~a1 to the director. Using a circular

cylindrlcal coordinate system' (r, 'If;, z), the z-coordinate is a10ng the fiber axis, and the

transverse planeis spanned by the azimuthal direction of ('If;) and the radial (r) direction;.

here 0 S'If; S 211" and rc S.r S ro, where. rc isthe isotropic core radius, and ro is the

outer radius which for typical mesophase carbon fibers is in the micron size range. In

tius cylindrical ge6met~, the ~ationary radiàlly crependent planar director field of Fig.l· .

can beparame~e4 as~(~) = (n,., n,p,n:)= (coslJ,sinlJ, 0); here n: '. 0 means plana;
, - !) '",','.'

orientatio,n and absence of twist deforrnations [5]..'figure 2-4 shows schematics. of a

radial transverse texture (left) and a ra&alzig-zagtexture(right), typically ,observed in
, .

mesophase carbon' fibers [4, 6]~ The fulllines indicate the disk's trajectories, which arè
.,' ',' ' .
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locaily orthogonal to the directors. Based on our previous discussion. it folIo\\"S that the

radial texture of a unia"rial discotic nematic, defined by n." (r) = 1 and rc ~ r ~ ro.

contaios a pure bend mode. On the other hand, a radial zig-zag te.-.:ture consists of a

mL-.:ed splay-bend deformation mode, and in addition n,ç(I) =;6 1. A comparison of the

two schematics shown in Fig. 2-4 indicates that if the radial zig-zag texture is selected

over the pure radial te.-.:ture then the trade-off of bend by splay in. the oscillatory pattern

must be energeticalIy favorable, as quantitatively shown below.

Figure 2-2: Orientationai ordering in the uniaxiai discotic nematic phase. The molecu­
lar normais u of the raodomly positioned diskIike molecules, partiaIly orient aIong the·
director n.. ." .' ,,'~'.

:'l .~

For low DÎ'olecular mass discotic nematics, thenry [13] and e.-.:perïment [15] show that
, ~.

~ , KI > K 3• An: increase in the molecular weight of disk-like nematics, justas for rod-

iike ,nematics [16], cao be e.-.:pectedto' reverse thé ordering of the elastic constants, so

that for highermolecular weight discotic nematics, like carbonacenus mesophases, we .

can e.-.:pect K 3 > KI, 'Thus, just as polymerie rods avoidthe splay of the radial texture
,',o . l'" '

by introducing director oscillatio~s[10,11];ipolymeric disks avoidthe bend of the radial

te.-.:tUreby a zig-zag.,oing director field [9].

2.4" Governing Equations "

, To eStablish. theorigin ofplanar orientation textures we first diScuss the effect of an

',e:"<ternaI~-.:tensionaifiowinthe z-direction on the texture formation in the 'Ij; - r plane.
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Figure 2-3: Schematics of the elastic splay deformation, (left) and bend deformation
(right) for unia:dal discotic nematics. Note that the splay (bend) mode involves bending
(splaying) of the disk's trajectories, in contrast to the case of unia'Ôal rod-like,nematics. '
A disk trajectory is a curve locally orthogonal to the director.

The non-zero components of the rate of deformation tensor .4i; for an extensional Bow

are [17J: A:: = -:-Arr = i, where i is the extension rate, and the vorticity tensor for

this irrotational flow il; W = 0, At steady state, the viscous torques r v acting on the '

director are r v = -n x (-Y2A·n), where the "Y2 is a torque coefficient [5]. As is welLknown

,[18J, in this Bow the stable director orientation is normal to th~ extensiondirectio~ (i.e;

t~erse 1ÏJ - r plane), and {herefore. r v =0. Thus the tlet effect.of the extensional Bow' .

on thé texture formation is to keep the director in the1ÏJ - r transverse plane. Therefore,
1 ",'

we may conclude that, given sufficient long processtimes às compared to reorientation

times, the transverse radial zig-zag;attemis selected by the minimization qf the splay.' "
, , " , " ,"'i .. '

bend elastic free energy per unit liber length; If theinequality in the time scales does,

not holdthe assumption of planarity do~ not generallybold. Inactualtypical liber

spinning proèess thereis ample evidence that showS that' the prl?cess tiine ,is greater than

the director reorientationtime, 50 that the planar orientation"assumPtio~is reali~ic, and '

always observed [4, 6J.
Sincethe viscous torques rVdueto. the extensionalflo~actingon ~hedirectorn

vanish with,planar orientation (n: " 0), the selection of thepaÙem~jùSt;dictatedbY,
• '""." .. " • ":" _, :" • .! .. ," .:.:' ,',: .... ,"J. ,'" _'.. ,::, ""," ','::"'.'

a. minimizationo~ the Frank [5J elastjc energ~" dueto,atmost, splay and bend modes.

27,
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•

PK PPW l'ZR,... ' r ..........:_' upie
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OIIm<TAnoN ct(r» - - -Clf.UAC'RlUSllCS 8.&:/1 .:rl.~. ~r)-'("r +1.)
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_ 1,.-r12
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IlUOllMAllON - ...., .... ...,. ....

Figure 2-4: Schematics of a planar radial pattern (PR), the planar pinwheel pattern
(PPW), and the planar zig-zag radial pattern (PZRi; i=h: homeotropic, i=n:. non­
homeotropic). The text below the schematics summarizes the main features of éach

pattern. \

The equilibrium equation for the director of discotic nematic Iiquid crystals is derived,ç-J
from the e:d;remum condition of the free energy. Since there are no twist deformations

•inplanarorientation, the Frank elastic energydensityreducesto [5]: ,

(2.1)

her~ n is the director. Note that saddle-splay elasticity (K12 ) playsno role in planar

patterns. Thus the total free energy is given by:

F =ln/du (2.2)

where n is the total volume. Expressing the director n in terms of independent variables

. qi, and.takùig the first variation of the total free energy integral, Weobtain theEuler-

Lagrange equilibrium equation: . "

.. ~F. a/a! .
-=--\1·-=0
~n an,an'

,
28
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• where the \J = a8 and nt = aan . vVe assume that the pattern is rotationallv snumctricq. q.. ~ ~

in the cross-section 7/J - r plane, such that the director n would be only a function of the

radial distance (r) from the a.'Ôs of rotational symmetry. The tot,ù free energy is:

(2.·1)

(2.5)

·where

Fu = 2.1:: frdr = 2. LU. f (n, ~:' u) du.

is ,the free energy per unit length, and 'U =ln (:.J Equation (2.4) and (2.5) show that

the numerical value of the total free energy per unit length depends on f. In polar

~ coordinates, the director n is c-'\.llressed by the polar angle tf:i as:

where tf:i is position dependent, tf:i = .p(u), and the uriit length restriction n . n = 1 is

satisfied. In terms of the generalized variable u, the equilibrium equation becomes
•

n(tf:i) = (cos tf:i, sin tf:i, 0) (2.6)

(2.7)

where the prime denotes differentiation with respect to u. This i~ the governing equation

in this analysis. Using the expr~ion of n of (2.6) in (2.3), we have,

f = ~ { cos2 tf:i - 2tf:it sin tf:i cos tf:i + tf:it2 sin2 tf:i}

+ ~ {sin2 tf:i + 2tf:i' sin tf:i cos tf:i + tf:ii:! cos2 tf:i} (2.8) ,

Taking the 'variation of above expression of the free energy 'density, we. obtain the
, .'-

sin tf:icos tf:i{-K1 + Ka}+sintf:icostf:i{-1Çl + Ka}tf:it2
,::, ,',

+ FK1 5in2 tf:i...:. Ka cos2 tf:i}tf:i" 0•
equilibrium equation, ,~

(2.9)
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• Scaling with K 3 we get:

here Jl- = %-. The boundary conditions studied here are:

7r
u(O) =-

2
u(uo) = ifJo (2.11)

•

The solution to (2.10, 11) is ifJ(u) and the parameter vector is P = (Jl-, ifJ(uo) , .6.u). The

deviation of Jl- from 1 denotes elastic anisotropy, the deviation of ifJ(uo ) from ifJ(O) intro­

duces asymmetric boundary conditions, and.6.u is a scale offiber size sucb that increasing

(decreas.ing) .6.u represents smaller (Iarger) fiber cavities.

The equilibrium equation (2.10) is a nonIinear second order ordinary differential equa­

.tion. For symmetric boundary conditions of ifJ(O) = ifJ(uo) = ~ (ifJ(O) = ifJ(uo) = 0), the

trivi31 solutions of ifJ . ~ (ifJ = 0) e:cists for ail values of Jl-. For asymmetric boundary

.conditions, Le. ifJ(O) # ifJ(I), previous work [9] has shown the ..existence ofoscillatory

solutions when the elastic constants are not equal (Jl- # 1), using a linearized equilibrium

equation. Here we complete this work, by carrying out a full analysis of the nonIinear

equation (2,10).

Give~ the poss~biIityof multistability and solution multiplicities, generic in nonIinear .

equations, we compute ail equilibriuin points of equation (2.9) using an efficient root

finder based on the shooting method [19]. Briefly, we rewrite the governing equation

(2.10) as twa first arder differential equations system:

The boundary conditions are:

•

::
ifJ' -

'!/J' -

'!/J
(-f.L+ 1) sin ifJcos ifJ(1+ '!/J2) =

Jl- sin2 ifJ + cos2 ifJ ., ..\

7r
ifJ(O) = 2

30
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• 0(0) - p (2.13) .

where p = .p'(O) is a new parameter. By introducing the new parameter p, we consider

the value of .p(uo) as a function of p, once Ji. is fixed. We next perform a numeric,ù study

using a fourth order Ronge-Kutta method [19]. By soh·ing for p for a gi\'Cn value of .p('llo ) ,

we are able to find all the stable as weil as unst~ble solutions of equation (2.10). The
; ~

numerical study identified all the solution branchesand their parametric dependencies

on the outer boundary condition.p(uo), and elastic anisotropy Ji., for a given value ofu•.

2.5 N umerical Results and Discussions

•

•

... The numerical solutions found in this study are naturally classified and cbaracterized by

the symmetry properties of the director fièld. Figure 2-4 summarizes the classifications

of the three classes of planar patterns arising in discotic nematics in.annular cylindrical

cavities \vith surface orientation at the inner radius lbœd at ~. Below eacb descriptive

name (radial, pinwheel, zig-zag) we show a sketcb of the orientation profiles, and the

main signatures of eacb pattern. The planar radial (PR) pattern has a pure bend de­

formation and the outer bo~dary condition is homeotropic (.p(uo) = ~). The planar
. ',~ , , -

pinwheel (PPW) pattern, also known as the magic spiral [5), has monotonie splay-bend

deformations, and arise \vith non-homeotropic (.p(u~) =1 ~) boundary conditions. The
., - . ,

planar zig-zag radial (PZRi) pattern has periodic splay-bend defo~ations and may o'ccur,
\vithhomeotropic (i=h) or non-homeotropic (i=n) outer boundary condition~. Figu~e 2-5

shows· a block diagram that summarizes the transformation paths between the three ori­

entation patterns. The- figure shows that the radial pattern canbe transformed into the
~' , ' '

Pmwheelpattern by cbanging the outer surface orientation (Tl)' .The radial pattern can.

also he transfo~ed into the homeotropic zig-zag radial pattern (PZRh) by temperatur~
~. .. .' . . ..
cbanges (increase inelastic anisotropy) or by increasing the ratio betwe-en the outer and

the inner radius (~u). Similarly, the pinwhe-el (PPW) pattern can be transformedinto ..

a non-homeotropic zig-zag radial.pattern (PZRn) by thecbange in temperature and by

increasing ~u. The transformation between homeotropic and non-homeotropic patterns
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• are achieved by changing the outer surface orientations.

PR

PPW

Ti

PZRh

•
Ti PZRrl

i=2,3

.'

•

Figure 2-5:. Blockdiagram of the, transformaiaon paths between planar radial (PR),
planar pinwheel. (PPW), and planar zig-zag radial (PZR) patterns. Tl corresponds to
surface orientation change, T2 corresponds to temperature change, and T3 to liber radius
change.

Figure 2-6 shows a summary ofnumerical simulation results of the orientation tf>(rad.)

as a function of diÎnensionless distance u, for .!lu. = 1. These results summarize. the Tl
. ,. .', , ,.... . " .'~, ,

and T2 trailsformations. Starting.from the top left, the panels towards the right cor~

: respond ta increasing elastic' anisotropy (p. = ~) and the panels towards the bottom
,. . 3

correspond toiIicreasing values ofouter cylinder surface orientation (tf>(uo)). The ori-

entation changes in the different' panels of ~he. ligure c1early refiect the transformation
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Figure 2-6: Su=ary of representative solutions to equation (2.9) for tlu = l, and dif~

ferent parametric conditions.. Symmetric boundary conditions (top row), asymmetric
boundary conditions of 4>(1) = 1.9(rad) (middle row) and asymmetric boundary .condi- \i ~

tions of </>(1) = "Ir (bottom row), For e1astic anisotropy, J.L > 1 (left colunin), J.L = 1. (left
middle column), 1 > J.L > J.Lc,l (right middle cohimn), and J.L <; J.Lc,l (right column)..
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.. Figure 2-ï: Summary of representative solutions to equation (2.9) for .6.u ~ l (left
colùmn) and .6.u = 3 (right colurnn) , for different outer boundary orientation, </J(uo)-~
(upper row) and </J(uo)l.ïï(rad) (lowerrow). Here J.L = 0.15 is fi:"ed for ail cases.
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paths shown in Fig. 2-5. l\Ioving towards the left in the top row corresponds ta the T ~

transformation of the radial pattern (PR) into the homeotropic zig-zag radial pattern

(PZRh). Moving towards the left in the middle and the bottom ro\\'s correspond to the

T2 transformation paths of planar pinwheel pattern (PPW) into non-homeotropic zig-,

zag radial pattern (PZRn). Moving down corresponds to the TI transformation between

(PR) and (PPW) patterns(left column), and also.the TI transformation betweén (PZRh)

and (PZRn) patterns (right column).

Figure 2-7 shows the corresponding summary of the TI :md T3 transformations. In

Fig. 2-7 the elastic anisotropy is fixed at J1. = 0.15, and left column represent the patterns

for .!lu = l, while the right column represents the patterns for ,6.'11 = 3. Moving from

top to bottom in the left column corresponds to the ,TI transformation between (PR)

and (PPW) pattern, and moving vertically' on the right column corresponds to the Tl

transformation between (PZRh) and (PZRn) pattern. Moving on the top row corresponds

to the transformation T3 between (PR) and (PZRh) patterns. Moving along the bottom

row corresponds to the transformationi13 between (PPW) and (PZRn) patterns.

2.5.1 Solutions with symmetric boundary conditions

Withsymmetric homeotropic boundary condition of c/>(O) = 4>(1) = i, the radial (PR)

solution (c/> -:- ~) e.:cists for all J1., as ~ho\Vn in the previous section. For J1. > l, J1. = 1 and '

1 > J1. > J1.c, the trivial solution is the unique solution of the equation, where J1.c denotes '
~) , ' ,

a critical value of elastic anisotropy. The stability of the radial solution will be discussed

later in this se~tion.

Multiple oscillatory solutions, representing the homeotropic zig-zag' radial pattern .' .

(PZRh)" are f01md when the ratio e:\."ceeds a certain value of J.Lc' For,6.ù = l, we round

the critical value of J.Lc = 0.092.

Figure 2c8 shows a section of the bifurcationdiagram, pres~ted as the orient,ation

amplitude (ma:"Ic/>D as a function of the elastic ànisotropy of J.L. The. horizontal (zero

amplitude) line represents the radial (PR) soluti09- and the five curves represent members

of the PZRh fainily.. ThefuSt bifurcation branch A represents an oscillatory solution
;

,with half-wavelength. The bifurcation occurs at J.L = 0.092, and the amplitude of the
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• Figure 2-8: Bifurcation diagram. Amplitude of oscillatory solutions as a function of the
elasti~anisotropyJL, for .6:u = 1 and <,1>(1) '~. It shows multiple solution branching
and finite àmplitude growth as JLdecreases. Thë horizontalline corrèsponds to the ideal
mdial (PR) te.'\."ture, while the bifurcation branches correspond to the oscillatory zig-zag
radial (PZRh) te.'\."ture. For JL < 0.092 the PR ,solution iS unstable. ,For JL < 0,028 there
are multiple oscillatory solutions.

solution grows as JL dectease1!. At JL. 0.025, the system bifurcates again and genemtes

anew oscillatory solution 'branch B with one~ wavelength. As JL decreases'further,

more branches are"generated, representingsolution~ with 6ne-:half~\vaverengthC,o:~v<>c_.
,r. . . , ,

wavelength, two-half~~vavel'ength and so on. Figure 2-8 clearly shows the strong non-linear
. '.

features of the model, with typical multiple bifurcàtions of the spatially constant solution

.. (PR)into a farnily of sp~tiallY oscillat~ry solutioJii,3(PZRh) at critical values of elastic
. . : ,

anisotropy ratio JLc,n (n =1;2, ...) • For' a given JL, the number of the intersections
, . " , ,

. of the amplitude curves with a vertical line gives the number of solutions, which' for

" , ~u = 1 consists of PR and PZRh pà.ttern~. , The figuré also impliesthat JLc,n- JLc,n+l
. . ' -'"

is a nionotonïcally decre3sing function of n, 'and the lirii,,400 JLc,n =O,indicating that
P" '. .' , • '

~ thenumber of oscillatory soluti0IJ!l diverges as the elastic anisotropy' vanishes. Another

,
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• important feature of the figure is the amplitude ordering and amplitude growth \\'ith

decreasing J1.. The amplitude of the shorter waw leng"th mode is smallcr than the bigger

wave length mode. As typical of non-linear systems the amplit.udc growth is bOlllldl'd.

Figure 2-9 shows the director orientation d> as a fun~Ùou of u. for Il = 0.01. iu which

tÀ.ere are three solutions ofPZRh:(A,B,C) and oue solution of PR (0). Figure 2-10 shows

the eleven solutions for J1. = 0.001. As the figures show, by chaugiug J1. from 0.01 to 0.001,

the number of the oscillatory soluti".nshas incrcased from four to eleven. One C,Ul e.'i:pect

that as Il approaches zero, the nurnber of branches will increase to infinity, rneauing there

will be infinite solutions to the equation, Ho\\'ever, Olt any given finite \-aIue of J1.. ther~

are only fi.nite number of solutions to the system. Note that Fig. 2-9 and Fig. 2-10 show

that the solution with higher frcquency has

•

•
Figure 2-9: Director orientation <I>(rad;) as a function' of dimentionless distance u, for
..6.u =1,. p. . 0:01 and <1>(1) = ~'. <::tirve D denotesthe PR solutionswhile, curves
A, B, andC are members of PZRh family. The four solutions corréspond to j;hefour
intersections of the horizontalli.ne C with thecurve'in Fig. 2~11, for<l>'(O) > O. Thethree
mirror image osciUatory solutions are not shown.. .

.smaller amplitude than those with lower frequ~cy, whichisa 'very important feature of. '

37.
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Figure 2-10: Director orientation ,p(rc.d.) as a function of dimentionless distance u, for,
.6.u - 1, JI. = 0.001 and,p(l) = ~. For this reIativeIy smallvalue of JI. there are ten
oscillatory solutions (PZRh) and the radial (PR) solution. Again, the mirror image
oscillatbry solutions are not shown for clarity. Note the significant increase in the number
of solutions as JI. changes from O:Ol(Fig. 2-9) to 0.001.' '" '

the syStem.

,As described inthe previous s~ction, the solutions are found by solving the e....."tended

system of eqù~tions (2:12) and initial conditions (2.13): Inorder to findall the sol~tions
~; the syStem, we plot in Fig. 2~11 the functi~nal dependence of ,pel) -,p(0) on ,p'CO),

" for JI. ' O.OI.The various horizontallines correspond to various valu~ of,p(l) - ,p(O).'

The line C repreSents the symmetric boundary conditions studied in this .section Cline A '
, " . ,

and B are discUssed below), for whicli ,pel) = ,p(0) =~. To find the numberofsolutions ,

'bne can.SÏlnplYcount the intersections of the horizontallines With ~he,curve. For,line C,
.: ',_,- .', .,"', '.'. c.., " . .; :::

' ,thèrear,eseven solutions: one trivial solution (PR), three oscillatory solutions (PRZh)
:', "7 ',' ',- ,., . ',:'

,vith positive initial slop, aridtheir three mirrof'iIDages. (For brevity, we only show the'
, \,.,',' },.:, ,.'.,-",", ",o' .',' . "',', ,_ ,',', ' • '", • ,",

oscillat0rYsolutions with,p~(O) > 0 in Fig. 2-9). It is dear from Fig. 2~11 that the above
" .:.,'.: :': _:,:> ,",', ,r! ~:",., .. 01,: ':" .. , ,', ' ',', _". . " "', .' , ' .

solutions aJ:'e allthesl)lutions of equation (2.9) for JI. = 0.01 and symmetriè boundary

38, -.;::::::.~
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conditions.

To compare simulations v.ith actual fiber te."\.-tures (see for e.,ample Fig. 2-1 and

[3, 4, 6]), it is useful to plot the mojecular trajectories, i.e., the curves that are orthogonal

to the local discotic director field. Siinilar to the streamline in fluid dynamics, the

trajectory satisfies the geometrical relation: tan(oif:) ~; = r, where 'if: = if> -~. To find the

trajectory 9(r) we integrate the above differentiaÎ equation using the previously computed

director field if>(r). Here 9 is the usual polar angle in cylindrical coordinates. Figure 2-12

shows the scientific visualizations of the curves A, B, C and D in Fig. 2-10. The presence

of spatial oscillations are clearly seen. In visualization A it js seen that the disk start

with zero angle, indicating that the director angle is~. The trajectory shows an increase

and then decrease of the director angle, ending at the outer boundary \y;.th the srime

angle al! 1/>(0). In visualization B, corresponding to the solution with one full wave-Ien'gth

in Fig. 2-10, the oscillation is more visible: In visualizations C and D; there are more

oscillatilills but with smaller ampli;ude.

Ne."\.-t we discuss the solution branching and .te.,ture behaviour of the PZRh pattern,

for ~u : 2. Since u(rc) = 1, this increment of ~u corresponds.to a larger outer l'lldius..

Figuï-e 2-13 shows thedirector orientation as a function ofu, for IL = 0.005, corresponding ... ,."

to four members of the PZRh familY. The figure shows that the main features of the" .
" ,::",,{.. :,""

oscillatory solutions remain invariant. For this parametric value we show· four penodic

solutions, again with higher amplitude corresponding' to longer wave-Ienith. Comparing
;::

the solution A in Fig. 2-13 to solution Cin Fig. 2~10, it is seen that incieasing~u results

in amplitude growth. Again, to compare the theoretical rCS1ùts to actually patterns, we

use visualizations, computèd as described abôve. We notè that in the visualization we '

.have,withoutloss of information, kept the outer radius fixed: Figure 2-14 shows.four

: visualizations (A,B,C,D) of members of t~e PZR.h family, corresponding té> the' director

profiles shown in Fig. 2~13. The multiple solutions suggest multiple configurations for.

the same set ot elastic constantsK1 ~d K3: which in reality would meanabundant

. os~illatory patterns. In these disktrajectories,we cânseethe finite amplitudêoscillation

th~t ~ertainlycaptures thebasicfea.tures of the cro~s~tioriofa ni~6~hase carbon fiber

diSpliying a. r1t.dial zig-za~ texture (seeFi~~ 2-1 and Figi7 of[6])~ ~ •
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. FigUre 2-11: FunctionaI relation of the outer boundary orientation </>(u.) and the initial
slop </>'(0), for ~u = land p. = 0.01. </>(1) - </>(0): O(fullline Cl; 0.120(long dashed line
B)j 0.298(short dashed line A). Solutions to any value of outer boundary orientation can
be found by drmVing Il horizontalline at the.given value of </>(u.) , the initial slop of the
solutions are given by the intersection of the !iD.e.and the curve.
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To .establish the actual observability of the predicted spatially. oscillatory radial zig­

zag patterns, we:.have to deterrnine the stability properties of the ·numerical solutions to

equation (2.9). The1.most efficient \vay to e.,amine the stàbility of the solutions obtained

is .to compute the second variation of the free energy integral [20]. By setting </>(u) =

</>'(u) + <5</>(u) and e.\.llanding thefreeenergy Fin power series of <5</>(u) up to the second'

ord!lr, we get .

•
.where

~ ::::

~F =! [/( </>' + <5ifJ, </>.' + <5ifJ') - I(ifJ', cP")]du = (<5F) l '+ (<5Fh + '"

. ôf d al
(<5F)l = ![acP - du aifJ,]q;=<t>·du,

40.
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Figure 2-12: Directol' orientation t/>(ra~a?function of diment.ionlessdistance u,for
. .6.u = 1, J.t= 0.01 andt/>(l) = r Curve D denotes the PR s~lutionswhile curyes
. A, B, and C.are members of PZRh famiIy. The four solutions correspond to the four
intersections ofthehorizontalline.C with the curve in Fig. 2-11, for t/>'(O) ;:: O. The three·
mirror image oscillatory solutions are not shown.:· . : .,
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Figure 2-13: Director orientation rf>(rad.) as a function of dimentionless distance u, for
.6.u ,-:- l, J.L = 0.001 and rf>(1) = ~ .. For this relatively small value of J.L there are ten
oscillatory solutions (PZRh)and the radial (PR) solution. Again, the mirror image
oscillatory solutions are not shown for clarity. Note the significant increase in the number
of solutions as J.L changes from O.Ol(F~g. 2"9) ta 0.001.

and

. (2.16)

where (oFh is the first variation of the free energy, and (oFh is the second variation. By

letting (oFh = 0, we find the e.'\.'tremum free energy configuration rf>*. Therefore, the sign

of the. Increment .6.F coincides with the sign of (oFh.Replacing f froni equation (2.8),

we obtain the following integral: .

•
(oF)~ = f {[K3- KI)(cos2rf> - 2rf>' sin2rf> - 4P' cos 2rf»(orf>? .

~ +[K3 --: KI)(~cos2rf> ~2rf>' sin2rf»orf>orf>'

+(KI sin2 rf> + K3 cos2 rf»(orf>')2}du

(2.17)
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Figure 2-14: S~entific visualizat!ons of disk trajectories for the oscillatory zig-zag (PZRh)
solutions A, B~C, and D, shown in Fig. 2-10. The trajectories represent lines (of constant
orientation) parallel to the molecular disks. MuitipleoscillatioIis are visible .in, B; C, and'
D. ' , "
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Evaluating the integral for each of the numerical solutions, we compute the second varia­

tion of the free energy and thus are able to determine the free energy increment induced by

an arbitrary small perturbation. Fig. 2-15 shows the second variation (oFh as a function

of the amplitude of an oscillatory solution belonging to the PZRh patterns. The pararnet­

ric conditions are {.L = 0.001 and t:;:u = 1. The dots in Fig. 2-15 are second variations of

. theoscillatory solutions whose director profiles are shown in Fig. 2-10. The figure shows

that the second variation is always positive. Therefore, based on the argument above,

all the oscillàtory solutions are locally stable to small perturbations. We may' conclude '

that the oscillatory trajectories' are the stable configurations for this type of boundary

condition, thus proving abundant multistability. As in ?ther non-linear systems that

exhibit multistability, a specific member of the PZRh farnily will be selected if the initial
, '

conditions are included in the domain of attraction of that particular solution. Since

the domain of attractions orthe varioùs•.solutions are function of ({.L, .6.u, q,(uo) - q,(0)), a",..... " ,

particular initial te:\.'i;ure may evolve to chfrerent members of tl).e PZR farnily, according

, to the governing,parameter values.

The second variation method is successful in estabilishing ,the stability of the oscil-
, '. ' . , ,

latory solutions, however, it fails for the trivial solution. In the integral (2.16), one

cau see that substituting the trivial solution gives q,* = canstant, oq, = 0, and oq,' = 0,

and thus theintegral will be zero. In fact, for the trivial solution any variàtion will be

identically zero. Therefore we cao not determine the stability of trivial solution under

anygiven parametric conditions using'this method and have to use another analytical

method. Consider a small perturbation on the constant solution [10],

,.

'Ir
q,(u) = 2" + o(u),

~~here o(u)is a small perturb~tion which satisfies
, ;:;,

. 0(0) = 0(1)= O.

,
. (2.18)

(2.19)

• ~ubstitute (2.18)into, equation (2;8) and e.....:pand 'the result, then the energy density,
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Figure 2-15: Second variation 6F2 of the free energy as a function of the amplitude for the
oscillatory zig-zag (PZRh) solutions shown in Fig. 2-10. Since 6F2 > 0 the oscillatory zig- :
zàg solutions~alllocally stable, thus proving the presence of multistability phenomena.

difference to second order is given by:'

(2.20)

•

Applying the above e.,:pression in the free energy integral, using integration by parts, and

taking into account the boundary condition of 6(u), the difference of the total free. energy

will he

b..F = Jj2du . .

- ~J{Kï (62 + 266' ~é)~ [(3(-&2 - 206')}du;

- ~ J{{K1 - K3)6 - K 16"}6du =

, . .
If the above integral is positive, then the configurationis stable to sÏnall perturbations. If

,
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• the integral is positive, it means any small perturbation will increase the total free energy,

thus the constant solution would be a local minimum of the free energy and therefore is

stable to any perturbation. To determine if the integral is positive, we therefore consider

the following eigerivalue problem:

(2.22)

with the boundary conditions of 0(0) = 0(1) = O. "ViThen the above eigenv-alue problem

has positiv!;;eigenvalues, that is À > 0, then the free energy integraI hecômes
"_. ..'

which is positive definite, and we can then determine the stability of the configuration

based on the previous argument. Solving the eigenvalue equation, we obtain:

• l{K' 'K K (,mr)2} (' 2 3 )À = -2' l' - 3 + ! 1\ ,; n = l, , , ...
, .:.>.u /)

, '~

(2.23)

(2.24)

It follo\\'8 that if À < 0, the p,ure bend(radial) structure ,vill be unstable to an~ small

perturbation. We find the stability tbreshold of the radial' te."{ture is:

1 " '
Il < Ile,n =1 + (~)2; (n = 1,2,3, ...) (2.25)

1:

Putting .!lu = 1 and n = 1 in the above inequaIity, we find Ile,! = 0.092, which is equal to

the value of Il corresponding to the bifurcation point found numericaIly, reported above

in this section, A comparison of analytical vaIues and the uumerical vaIues of Ile,n is

shown in the Table I.
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Table 1: Elastic anisotropy (f.L) thresholds for birth of oscillatory modes

J-Lc,n theoretical value numerical value

n=1 0.09199 0.09200

n=2 0.024iO 0.02500

n=3 0.01113 0.0112i

n=4 0.006293 0.006265

n=5 0.004036 0.003999

The. e.,cellent agreement validates the correctness of the numerical results.

According to the general theory of eigenvalue problems, the eigenvaIues obtained

for equation (2.22) present the vaIues of Àn at which nontrivial solutions Ciill be found.

The e.'\:Îstence of nontrivial solutions for these vaIues of Àn , which corresponds to the

values of f.Lc,n, arise from the bifurcations of the constant solution branch at these points.

The e.,act correspondence between the eigenvaIues and the bifurcations is the reason

behind the consistency between analytical and numerical results, as shown in Table 1.

In addition, the small amplitude oscillatory solutions can be closely approximated by
. ,

the corresponding eigenfunctions derived above. A discussion giving the mathematicai
. è

details of the eigenvaIue problem cÏs given in the AppendL,.

.According to the inequàlity (2.25), Ge vaIue of f.Lc,l depends on !:lu. For all !:lu, lic,l

is always a posi~ive number and f.Lc,l :5 k, where k < 1. This means the bifurcation

will not occur as soon as K l < Ka, instead, the trivial solution will still be stii.bleu~til

the ratio ~ e.,ceeds a certain critical threshold f.Lc,l' .tu;!:lu increases, Pc,l increases
~' .

accordingly. So, for !:lu > 1, ·the critical vaIue of f.Lc,l can be very close to 1. Therefore

for crelatively large libers, a smag elasticanisotropy of the type studied he~e (/1/< 1,
~ .

that is, the bend constant larger than the splay constant) will induce a bifurcation in

the equation (2.9), correspondiIig toa transformation between the radial texture and ~he

zig-zag radial te.'Cture. This is a reason for the frequent observation ofoscj)latory zig-zag
.. .. ~~ ..

te.'\.1;ures in actual mesophase libers [6J. .. b .

Although this chapter is restrlcted. to. patterns that arise from continuous 'transfor-·
.' J, " , " • ,

mations ofthe·ideai pure bend planar radial.pattern, here we briefly dis.cuss asigtificant
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<P = o(U) (2.26)

•
with boundary condition of 0(0) = 0(1) = O. Then to second order, the perturbed energy

is given by:

Thus we obtain:

(2:28)

Similarly, we consider the eigenvalue problem of

, :,.-

(2.29)

with boundary condition of 0(0) = 0(1) = O. Theeigenvalue8 now aregiven by:
':d

(2.30)

•
It follows that,if K 1 < K 3 , when,the radial oscillat6ry patterns are often observed, the

eigenv-alues in (2.30) will always be positive, and the onion 'pattern will be· stable to

anysmall p~urbations. Therefore, there is no oscillatory sol~tion to the equilibnum

equation: under this type of boundary and elastic anisotropy conditions. Hence there will

"-:.: .
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be no os~illations to the pure splay mode, any perturbations to this pattern will decay

to zero, and a zig-zag onion pattern would never occur, which is in agreement with the

faets.

2.5.2 Solutions with asymmetric boundary conditions
'".

In this section we analyze the new features arising from non-symmetric boundary con­

ditions: </>(0) = ~, </>(1) = 0:, with ~ < 0: < 7i". The first important feature is that

. the PR pattern does not e:'\:ist, and its roll' is taken up by the planar pinwheel pattern
-

PPW. Instabilities deduced by elastic anisotropies lead to bifurcations involving PPW
. 'v'

and PZRn branches, here PZRn stands for planar non-homeotropic zig-zag radial pattern

(sel' Fig. 2-4).
. "
As shown in the second row of Fig. 2-6, for </>(1) = 1.869, the solution for Jl > 1

is unique and ,monotonic. For?L = 1, the solùtion is linear. We l'an derive this linear

solution analytically. By setting /(1 = /(3 in the equilibrium equation, we find

(2.31)
"

and the equation has' a unique linear solution for /(1 = /(3'

for Jl < l, similar to the situation with syIJ:Uiietric boundary conditions, the bifur-. -
cation will ~ot occur until ?L e.'Cceeds the critical value, of ?Le,!> but now ?Lc,1 wilLbe a

function of </>(Uo) as weil as of .6.u. Figure 2-16 shows the computed bifurcation diagram

in'the (Jl,</>(uo)) plane. The full.line denotes the bifurcation fo~.6.iJ. =1; for symmetric

,boUndary conditioIf,. i.e. </>(1) = </>(0) = ~, the bifurcation occurs at Jlc.I = 0.092,' As

.p(l) increases, the critical value of bifurcation Jlc,l decreases. Above the,fullline, equa­

tion (2.9) has a unique locally stable monotonic solution (PPW), and bélow the fullline

"the equationhas multiple locally stable solutions (PZRn). The daslied line ~~otes the

bifurcation between PPWand PZRn, for.6.u =2. Note thesignificant incre~e or Jlcas

.6.u increases. For.6.u = 2 with symmetric boundary conditions, the bifurcation occurs at

Jl = 0.285. When substituting .6.u = 2 into the inequality (2.25), we obtain Jlc = 0.288,

. which agrees with the numerical results. Again above the dashed line the locally stable
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FigUre 2-16: Bifurcation diagram in the elastic-anisotropy JI. outer bounda.& condition
plane. Fibersize.6.u =: 1 (fuliline), 2 (daslied line): The full (dashed) line divides the
parametriê plane into two:solution regions. The one above the line is where equation (2.9).
has a unique solution, and the one' below' the line .as well as the Jine itseIf is' where' ~Iie
equation has multiple oscillatory solutions., 0- ' ,.

> solutions are PPW solutions; while"below the dashedlinll there are multiple locally stable
~, ' .. ' " <

, PZRn solutions. ;, 0' , ,

. . ' . ~ .,:~: ,

, For Jl.o 1 .( JI. < IF the equation has a unique nonlinear monotonic' solution, repr~, . : ' ~ , ,

senting the PPW ~a~tern._The-clifferendhetweensolutions for JI. < :;: and solutions fo1',.,
;>.,', ,,", '-', ... -, .. ' ~ ,-: .,' ..•. . '

, p. > 1 is thèir concavity, as shown in the. panels of the middle row of' Fig. 2-6. The. ,

change of concavity is due to the change of elastic constants which make splaydeforma-

': tion more' favorable"for K l <K3,and benddeformation fav~rable.:forK l > K 3:Below ... ,..''''
, .

the dashéd line,~~vhen tl < JI.~,h the system ,viii have mUltiple solutions. The functional
~, ~... " .' . ."

rels.'tion of<l>'(O)'and '</>(1) Shown in Figure 2-11 can also be ilsed to find the, sohitions fo!".
" l '.;' , .' ' ' ,', " . .::~~ ,

". ,asymmetric' boundary conditions; line A corresp()uds to </>(1) = 1.868761, and lineB to. ." '. '" .

~(l)= 1.692094~ As shown in Figure 2-11,thereare ~vo solutions for </>(1) = 1.868761, .

and four solutions 'for </>(1) . ~.692694. Figure 2-17 shows the director orientation </> as
, '~'

~

~': :',.
" ~ , '

=

'. -:;:;>:::.-=

',~
-"~:;.
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Figure 2-1ï: Director orientation q,(rad.) as a function of 'U, for .6.u = l, J.L = 0.01· and
q,(1) , 1.868. The two solutions are membcrs of the PZRn family: They correspond to
the two intersections of line A with the curve in Fig. 2-11.

, ' :•
0.0 0.2 0.4

u
0.6 0.8 1.0

•

a function of 'U, for q,(1) - l.868ï61 and J.L = 0.01, corresponding tothc solutions found

from line A in Fig. 2-11. Thet\~o solutions are ~embers of the PZRn family, withthe
,

upper curve represe;nting thefum mode and t~e lower curve the second mode. Figure 2- 0

18 shows the directo~orientation q, as a function of u, for q,(1) = 1.692094 and J.L = 0.01,- ,: - , ,

corresponding 1.0 the solutions}ound from line B in. Fig. 2-1l.The four solutions are ,

members of the PZRn f~y.. Followin~ the visualization methodology presented above,

Fig. 2-19 shows the disk trajectories forthe four solutions (A,B,C,D) shown in Fig.. 2-18.

Since solutio~ A andD in,Fig. 2-18 display incomplete oscillations, thecorresponding,

. disktrajectories aIsodisplay incomplete oscillation. For solution Band èin Fig:'i-18,
~

.the oscillations in the~ trajectories are C!earer. . ~

. ;' Again here we wish to e."\.-plore the role of fiber size on the main features of the

. bifurcation and multistability bi plqtting the trajectories· of PPW and PZRn pattems.

Figure 2-2~ shows four solutions for .6.u = 2,'J.L = 0.~05, and q,(2) ...:. l.S(rad.), wJrlch 0
: :: .''.

,
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FigÙre 2-18: Director orientation ,p(rad.) as a function of u, for !::lu = 1, JI. = 0.01 and
,p(1) = 1.692. The four solutions are members of the PZRn family. They correspond to
the foÛr intcm;cctions of line B with the curve in Fig. 2-11..

bèlong to the PZRn family. The corresponclL"Ig visualization ofdisk trajectoties are shoWn
. \~ .

in Fig. 2-21. Here, as in the previous section,"an increase in !::lu brings an increase in the
: _, . " ::' ' , .::(;

amplitude in.. the oscillations. For the disk traj~c!-ories rcpresenting solutioi B and C in

. Fig. 2-20; one can clearly see the oscillations to a~oid free energy costs.
. .:: -' ;: ~

.In the following we e.,..plorc· the maindifference that .arise in the solutionbehaviour

and multistability phenomena, in the presence of symmetric and asymmetric boundary

.condi~.ions. Figure 2-11 shows that the SI'JJrons a:e notsymmetric 'as in the case
// -, .

of symmetric boundary conditions. For solutions \Vith ,p(1) = 1.692094, the ririrror
, ~::: r.:.~ . '
configurations are the solutions at ,p(l)miTTDr = 'Ir-,p(1). Another featurethatls different

from the case with symmetric boundary condition,. is that as JI. decrease further, the

number ofsolutions will increase te a certain finite value, which depends on the value
- " '-

of boundary orientation at the outer cylinder, aS opposed to the monotonic ihcrease in .
". " ~'" l'\ ': "

.the number of solutions (PZRh) for symmetric bounoary conditions. The reaSon is that
-. , '. ' 1

: 1
:5 .1
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A

c

B

D

. Figure 2-19: Scientific VÏstializations of disk traj~ctories for the oscillatory zig-zag (PZRn)
solutions A, B, C,ànd D, shownin'Fig 2-18. Finite amplitude oscillations are.. visible
in B and C.6l'he different spiral directions in A,anci' D are due to the different values of
4>'(0) fqr solution A and D in Fig. 2-18.
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Figure 2-20: Directorori~~tation ,p(rad.) as a function of u, for .6.u = 2, Ji. =0.005 and
,p(2) = ~. The solutions aie members of the PZRn family: Note the amplitude increase

;for thesè solutions in comparison tb the PZRn solutions with the same wave numbers
but smaller .6.u(.6.u='1) shown in Fig. 2-18. .

foroscillatory PZRn and PZRh solutions, the solution amplitudehas to be larger than

,p(uo) - ,p(0). However, since a solution with higher frequency has smaIler amplitude,

and the lpwest possible amplitude would be ,p(uo) - ,p(0), therefore even if IL continues

to decrell.!'p., there will be no new solutions ~d the number of solutions withamplitude

larger than ,p(uo) - ,p(0) 'TIll therefore always be linite.
=

2.5.3 Solutions for asYmmetric boundary conditions 'Yith large
=

asymmetry
. ,
In this section we briefly e.\.-plore the new phenomena that arise due to large asymmetry

in the boundaryconditions, and report on the representative case of ,p("/fo) ='Ir. For the

case with boundary condition of,p(O) = i, ,pei) = 'Ir, we find only one solution for aIl

different value of ,1, as' shown in the third row of Fig. 2-6. Again, the concavity of the .
, .' ,
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Figure 2-21: Scientific visualizations of disk trajectories for the oscillatory zig-zag (PZRn)
solutions A, B, C, and D, .shown in Fig. 2-20.
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• solution wiII change as 1-' changes from 1-' > 1 to 1-' < 1. As 1-' diverges (1-' ....:,~ 00) the

solution is boundary-layer like, ,vith the boundary layer located ne.."\."t to u ',,,= 1. vVhiIe

when 1-' vanishes (1-' -+ 0) the boundary layer is located ne:l.."t to u = O. Figure 2-22 shows

the director orientation 1> as a function of u, for three different vallies of 1-': 1000 (dashed),

1 (dotted), and 0.001 (full). The linear solution is obtained for KI = K 3 (1-' = 1), and

the concavity of the other two curves is in agreement with the expected boundary layer

mode that minimizes the free energy.

o
M

0.0 0.2 '0.4
u

0.6, 0.8 1.0

•

Figure 2-22: Director orientation 4>(rad.) as a function of u, for!1u = 1 and 4>(1) = 11",

for p.: 0.001 (full line); 1 (dotted line); 1000 (dashed line). For P.I = 1 (KI = K 3 ) the
solution is linear, for J1.1 « 1 (KI « K 3)' the solution is concave down, and for J1.1 ~ 1
(KI ~ K 3 ) ,concave up, as dictated by energy minimization. ,

For this type of boundary condition, there are no bifurcation in the equiIibriurn equa­

tion (2.9). As shown above, the amplitude orany osciIlatory solution has to be larger or

equal to 4>(uo) - 4>(uc), which in the present case is ~. However, since the increase offre-
, , . . " . c

. quenc~ of anysolution ,vill result in a decrease in amplitude and the e..'Ôsting monotonic
]

..solution ,has an amplitude of ~, any osciIlatory solution would have to have an amplitude
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less than ~, yet it has to have a ma.'(Îmum of <p(uo ) = ,. in order to satisfy the bound'l.ry

condition at the outer cvIinder. The contradiction makes the e.'(Îstence of oscillatorv so-. .
lutions impossible. Therefore we can condude that for this type of boundary conditions,

there e.'(Îsts no oscillatory solutions to equation (2.9) at any value of Jl.
,

In this section we have presented numerical results for three types of bot·ndary con-
. ~

ditions. A summary of the r~ults is shown in Table II. In genera:~rnetric type

of boundary conditions of <p(ue) = .p(uo) = ~, equation (2.9) has a unique constant so-
"

lution for Jl > Jle;!.' When Jl < Jle,\' the constant solution becomes unstable to small

perturbations, the system undergoes a ,bifurcation and generates a family of branches of

oscillatory solutions (PRZh). For symmetric boundary condition of .p('Ile) = .p(uo) = 0, "

we have shown that while Jl < 1 there is only constant solution to the equation. For ,

asymmetric boundary conditions with .p(ue) = ~ and .p(uo) <'" the equation has a

unique monotonie solution (PPW) for Jl > Jle' Partièularly, at 1(1 = 1(3, the equation

has a unique Iinear solution. As Jl < fic, the system will bifurcate and generate brandies

of oscillatorysolutions (PZRn). For asymmetricboundary condition of .p('uo ) = 7r, therc

is a unique monotonie solution (PPW) to the equation for all value of p.•
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Table II: Summary of parametric ranges and stability properties of orientation te..,,-tures

K
,

BoundanJ condition Jl =]G Solution type Figures

<p(0) = ~

<p(uo ) = ..~ Jl>l PR 2-6
,

stable

Jl=l PR 2-6

stable

ile<Jl<l PR 2-6

stable

Jl < Jle PZRh 2-9,2-10,2-13

stable

~ < <p(uo) < 11" W>l PPW 2-6

" concaving up, stable

Jl=l PPW 2-6

stable ..

..

Jle<Jl<l PPW" 2-6
.. concaving clown, stablè

Jl < Jle PZRh 2-17,2-18,2-20,
stable

,p(uo ) - 11" Jl>l PPW 2-22

, concaving up, stable

Jl=l
..

PPW 2-22

.. stable

JL<l PPW 2-22

concaving down, stable
..

PR: planar radial pattern, PZRh: homeotropic planar zig-zag radial pattern, PZRn: non-homeotropic ..
, .. ..

planar zig-zag radial pattern, PPW: planar pinwheel pattern.

58



• 2.6 Conclusion

•

•

In summary, we have presented a cletailed nllmerical analysis to a model that is suffi­

ciently accurate to provide plausible e:"planation to the pattern formation process that

arises during the industrial melt liber spinning of carbonaceous mesophases, using discotic

nematic liquid crystal precursors. In addition, a comprehensive analysis of pattern forma­

tion in discotic nematics confined to an annular geometry has been present~cl. Numerical

studies of the solution types to the equilibrium equation (2.9) derived from Frank'selastic

energy model indicate that t}:le equilibrium equation displays a wide variety of solution

types in the parametric space spanned by the elastic anisotropy, the liber diarneter, and

the boundary conditions. The basic planar patterns with singular cores are the, raclial

pattern, the pinwheel pattern, and the zig-zag radial pattern. Only the zig-zag radial

pattern e."'I:hibit mnltistability. Multistability of oscillatory solutions displaying the radial

zig-zag patterns are found for: larger elastic anisotropy (K3 > Kil, weaker bounclary

condition asymmetries, and larger libers.

Numerical as weil as analytical resnlts show' that the occurrence of oscillations in

radial patterns is due to the elastic splay-bend anisotropy. )l'his is because the energy

minimizatio~ process of the free energy would select the~~st cost-effective pattern to

lower the total free energy. Therefore, as the bend configuration becomes costly, .the

system will naturally select splay deformation over the bene! deformat.ions. Another

point to be noticed is the effect of liber size on the radial patterns. It is shown that

larger libers have a much greater tendency than smaller libers to generate oscillatory

radial patterns under the same elastic anisotropy conditions. In this case, the pattern

selected by the frce energy minimization process, is resisted by the effect of boundary

orientation constraints that is in favor of an energy costly mocle. This is also the reason

. why oscillatory patterns will not arise as soon as .the elastic constants become different.

Instead, the driving force minimizing the free energy due tb elastic anisotropy has to

overcome' the resistance due to the boundary orientation constraint. As the libersize

becomes larger, the effect of such boundaryconstrain~ isweakened... Tberefore in larger

libers the boundary orientation will have smaller effect on pattern selection, andelastic
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anisotropy will have a stronger influence. Thus, oscillatory radial patterns "ill be easier

to be observed in larger libers than in small libers. As for the non-homeotropic case, in

which the outer boundary orientation is different from the inner boundary orientation,

because the pattern consists of a splay-bend mode, the selection of oscillatory patterns

would have much less effect on minimizing the free energy than it has on pure bend

mode, for the same elastic :anisotropy. Therefore, for the same geometric conditions,

non-homeotropic boundary orientations would require a stronger elastic anisotropy to

induce oscillatory patterns, as shown in this chapter.

To determine the stability of any solution, we computed the corresponding second

variation of the elastic energy. The oscillatory solutions (PZRi, i=n,h) to the equilibrium

equation are shown to be locally stable, ,vhereas the stability of t~e tri,ial solution would

depend on the ratio of the elastic constants and the ratio of the radii of the outer cylinder

and th"'-in~nder,as shown by analytical methods.

The. interpretation of the numerical results using classical Iiquid crystal physi(;l; leads

toe.'-lllanations ofpattem fonnation phenomena.that arise in aii:industrial process. The

elastic anisotropy, which is characterized by the ratio .of the two elastic constants KI

and K 3 , representing the splay and bend defonnations, is shown to be the driving force .
ç

behind thè pattern selection mechanism, that leads to the fonnation of the planar zig-zag

pattern, frequently observed during liber spinning.

.;
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Chapter 3

Pattern selection mechanism' in

'~mesophase carbon fibers

3.1 Summary

Carbonaceous mesophases are spun into high perfonnance carbon libers using the melt
, ' '.

spinning process. The spinning process produces a wide range of different liber te;"tures

whose origins are not weil understood. The cross-section liber te;,,"ture isa strong function

of temperature, such that at lower temperatures the selected pattern is ,known as radial,

while at higher temperatures it is known as onion. More intriguing and une.'l:pêcted is the

random pattern that is found at intennediate temperature range. This dlapter use theory

and simulation to reproduce the liber te.'l:tures, and to identify the selection mechanisms .

that e.'\:plain the origin of the actually observed patterns.

3.2 Introduction
,

.'
~ ....

Carbonaceous mesophase, such as coal tar anc:fpetroleum pitches ,are used in the indus-

trial manufacturing of~esophasecarbonlibers, using:the melt,spinning process [1]. The

relatively newercarbon liber manufacturing process results in libers whose property pro­

files are competitive \Vith those obtained from the conventional process 'based on acrylic

precursors. The thermodynaIriic 'phase that describes carbonaceous mesophases is the



•

. '

discotic nematic liquid crystal state. Liquid crystals are intermediate (i.e. mesophase)

phases, typically found for anisotropic organic molecules, that exists between the higher

temperature isotropic liquid state and the lower temperature crystalline state. (Detailed

properties of nematÎC liquid crystals are pro,ided in the classic te.'l:tbooks on liquid crys­

tal physics [2,3]). Carbonaceous mesophases are composed of disc-like molecules that

align their unit-normals (i.e. vector perpendicular to the disc-like molecules) along a

common direction, known as director n; see Figure 3-1. The name discotic distinguishes

the molecular geometry and the name nematic identifies the type of Iiquid crystalline

orientational order.

Figure 3-1: Orientational ordering in the uniaxial discotic nematic phase. The molecular
normals of the raildornly positioned disklike molecules partially orient along the'director
n.

The industrial fabrication of mesophase carbon :libers using the conventional melt

spinning process [1] typically produces micrometer-sized cylindrical filaments whose cross­

sectional area displays a variety of transverse te.'l:tures, that is, different spatial arrange­

ments of the average orientation-n on the plane perpendicular to the liber a.'I:ÎS. The

correlations between transverse te.'l:tures and processing conditions, material properties.

and geometry is a fundamental area of ongoing research in this field [4,5]. :\mong all

the physical processing conditions, temperature is a fundamental factor that has been. .

shown to have a significant effect on pattern selection [6].. Figure 3-2 shows a represen~

tative schematic of the orientation of liber transverse te.'ttures adopted from [6], as weil

as some defining terminology to be discussed below. The left schematic shows that at
. .
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higher temperatures the liber pattern adopts what is known as the onion textnre. whcft,

the molecules are ciriemed in concentric circles. The right schematie shows that al. lowcr

temperatures the liber pattern adopts what is knowll as the radial texture. ln this tc..,,­

ture the average moleeular orientation follows radial trajectories. On the other hlUld. the

.. middle schematic shows that at intennediate temperatures the pattern is isotropie ;Uld

random.

The objective ofthis chapter is to use theOl'Y and simulation to reproduce lUld exphùn

.the sequence of temperature-driven liber patterns transitions in melt-spun carbonaceous

mesophases, as reported in [6], and shown in Fig. 3-2.

In order to specify the onion, radial and random patterns we ne.."t define SOIlle èoncepts:o

and introduce the required tenninology. In this chapter the mesophase carbon liber is

approximated by a monodisperse unia.."ial discotic nematic liquid crystal [2], ;Uld the

liber spinning process is app!oximated by a steady, isothermal, incompressible; unia.'àlù

e.,tensional fiow [il. Using cylindrical coordinates (r, 0, z), the z a.'às is along the liber

a.'às and the transverSe plane..is the (r, 0) plane. Here 0 < 0< 211", and ri < r, < r0'

where riisthe'rarliusofthe inner core and ro is the.radius of the liber. The inner core

radius ri represents the disclination line defect thatruns along the liber a.'às [3]. The

triâd(e~o,eS denotes the unit vectors in eylindrical coordinates, and the directorlield

is: n = (n,., no, nzl. Following previous study on siInilar pattern formation on discotic

nematic liquid crystals [8], we assume that the director vector n has uo z component.

Thal. is, the director field n(r,O) is entirely confined within the (er,eo) plane, n, =

e,.cos(t,b) + eosin(t,b), here t,b(r,O) is the director angle. Discoticnematics are elastic

materials, wher~nergymay bec stored by orientation strains, this means that when

'i7n f: 0, elastic energy is stored. The two planar deformations for discotic nematics,

identified as splay deformationand bend· defonnation, are characterized by two elastic

constants K 1 and K 3 , respectively. The radial te.,ture ofunia.'àaldiscotic nematics, shown
" -

in Fig. 3-2, is defined by no = 1(t,b , i), and containS a· pure bend mode. Sîmilarly, the

.onion structure, shown in Fig. 3-2,1s defined byn,. = 1(t,b = 0), and contains apure splay

mode.

. A fundamental feature of nematic elllf'ticity is it,s anisotropy, which in this chapter
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Mode

Elastic c'

cModulus

Onion

splay

Random

mixed

Radial

·bend

, :.:

Increasing tempa;ature
~~

Figure S:2: Schematics of the temperature dependence~ftransverse textures of actual
. mesophase carbon fibeÏS, adopted fiom [6]. The radial pattern (left) is obseri-ed in fibers
spun at IOll"er temperatures, the oDion pattern (right) at .higher temperatures. and the
random pattern (middle)in theintermediate temperature range. The elastic modulus
and deformationmqdeareindicated beloweaœ p;lttern.The radial Pattern conSists
ofpure bend defonÎlation (K3), the onion pattern of pure splay (KIl, and, the _random
pattern 'of a mi"<ture of splav-bend deformation modes.

, . ,- .. , ' .
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f = 2"(\7' n) + 2"(nx \7 x n)

•
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•

reduces to the statement KI "" K 3 • Since the elastic free energy is proportional to these

moduli, and since these are temperature dependent, it is thus clear -that temperaturc

has a strong influence on the fiber pattern selecti~n, if kinetic efIects do not ;'1'.~rfere

with thennodynamics drhing forces. The thermodynamics dri\ing force in fiper te.xture

selection is the minimization of the elastic free energy by avoidance of the high-modulus

elastic mode. For e.xample, ifKI > 1(3, elasticity selects the radial(bend) pattern over the

onion(splay) pattern. Kinetic efIects that may interfere with elaSticity driven mechanisms

are due to the viscous nature of liquid crystals, and hence ~ith the required reorientation

time TR as compared with the available process time Tp. If Tp < TR the initial te.,1;ure may

not reach the pattern selected by thermodynarnics because there is simply not enough

available time to achieve the required reorientation process.

•f\.s mentioned above the objective of this chapter is to reproduce and explain the

origin of the pattern transitions shown in Fig. 3-2, as reported in [6]. The theory is

based in the well-established classical equations of liquid crystal elasticity [3], known as

Frank elasticity. This. chapter is organized as follo\vs.. Section 2 presents the govern- .

ing equations, discusses the temperature dependence of the parameters involved, and

briefiy describes the .computational methods.. Section 3 presents the numerical results

and discussions. Finally, conclusions are presented.

3.3 Theory and formulation

In this section we present the basic equations that describe nematic liquid crystalline

viscoelasticity, and follow the classical approach pr~ented in [3]. The presentation is

restricted to spatially homogeneous temperatures, incompreSsibility, and planar 2-D ori­

entation (i.e. n = (nr, no, 0)). For planar orientation, the nematic free energy density is
,.

given by: Pl
--

...
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• where KI and K 3 are elastic constants defined above. In absence of e.,.-ternal fields, the

director field n is found by solving the torque balance equation [3]:

0= rtscous + r:lastic~ (i = 'r, B, z) (3.2)

where the viscous torque vector per unit volume rviscous and the elastic torque vector per

unit volume re/est;c are given by:

and B =nx \7 x n. Since n = (coscP, sin cP, 0), the z-component of the Niscous torque

vector r~scous is given by:

h -

•

. dn / t·FCOUS = -n x (,I dt ), r e as 'c = -n x h

hen: h is the molecular field vector [3],

61
6n

- KI \7 ('i7' n) +K 3 [B x \7x n + \7 x (n xB)],

(3.3)

(3.4)

(3.5)

.,)

For planar orientation the torques \vith respect· to e,. and eo play no role, and therefore
~ . .

the balance .of elastic and viscousic torques leads to the 'single equation:

(3.6)

•

which is thegoveming equation in our study that describes the pattern selection process.

FollO\ving Fig. 3-2, and without loss of generality we assume radial dependence, n(r, t) =

(cos cP, sin cP, 0), \vith cP = cP(r, t). In such case equation (3.6) becomes:

.'. dl/> '(c . 2 . 2 )(éP.p 1ôcP) , ( . (1 (ÔcP)2)' )
1/ dt = Kl sml/>+K3 coscP ôr2+;:ôr + KI-K3)sml/>cosl/>r2+ ôr (3.7,

As Fig. 3-2 ~hciws, the actual pattern selection is driven by temperature eff~cts on material

parâmeters..Hence ta eliminate, boundary constraints as sources of texture transitions,
, .
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• we use the follo\\ing Neumann type of boundary conditions: :I=r; = :I=r.. = o.
ln ail computations an initial random orientation is adopted. To generate the random

orientation, we use a in-buiIt random number generator to produce the director angle 4>.

Although the actual director orientation at the beginning of the spinnline is not known,

the random state adopted here eliminates any bias or preference of one te..'i:ture over

another, thus helping to elucidate the operating driving force for pattern fotmation in

the spinnline.

The essential hypothesis of this cbapter that is sufficient and necessa..·y to e..'i:plain the

pattern transition shown in Fig. 3-2 is that the elastic constants e..'i:hibit a cross-over at

an intermediate temperature Tc at whicb the material is elastically isotropie. Thus we
, ;"

assume that:

•
T<Tc (3.8)

(3.9)

(3.10)

Sucb temperature driven cross-over of Frank élastic constants has been measured for

rod-like nematic liquid crystals [10]. The situation for disc-like nematies (carbonaceous

mesophases) is identical with that of rods ifwe reverse themeanùÏg of /(1 and /(3, since
~ :

bending (splaying) dises correspond to splaying(bending) rods. Thus the temperature

dependence and cross-over adopted in this cbapter is perfectly consistent with actual

measurements.

Thedimensionless form of equation (3.7) is obtained by dividing both sides with (~).
• ~. .' 0

Equation (3.7) then becomes:

(3.11)

:

•
where T is the dimensionless radius (T = :'), and t is the dimensionless time (! = ~),

. ( is the reorientation time constant given by ç = J'j, ex = KJï/" and f3 = .!ft" For
, - .

simplicity, in what follows we drop the tildes and use r to represent T, and t to represent
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In the equation (3.11), we separate the linear terrns from the nonlinear terrns and

rewrite cquation (3.11) as:

d</> 82</> 18</» [ . 2 (~</> 18</>. ( 1 (8<iJ 2 ]- =(3(- + -- + a sm </> - + --) + sm </>cos</> - + -) )
dt ar2 r (p 8r2 r 8r r2 8r

(3.12)

•

The dimensionless equation (3.12) is a nonlinear parabolic partial differential equation

that gives the director orientation as a function of position and time, for a given set of

parameters: </> = </>(r, t, a, (3), where -00 < a < 00 and (3 > o. We can now restrict

equation (3.12) to the three representative cases shown in Fig. 3-2:

(i) Radial pattern: KI > K 3 , a > 0;

(ii) Random pattern: KI = K 3 , a = 0;

(iii) Onion pattern: KI < K 3 , a < O.

In the case of elastic isotropy a = 0, equation (3.12) becomes linear. The right hand

side ofthis equation ((3~:'(r~)) represents the driving force that at steady state leads

to minimization of the free energy for'Kl = K 3 :

(3.13)

Thus when the material is elastically isotropie (KI:'" K 3) the pattern will evolve to

minimize the divergence and thecurl of n, and elasticity, in the absence of boundary

constraints, will select the onion pattern or the radial pattern with equal probability

since in both cases the total free energy are the same, and it is given by:

(3.14)

•

. ,

On the other hand, the actual case is that of elastic anisotropy a # O. Now the elastic

anisotropy introduces nonlinear terrns (the second part of the right hand side in equa­

tion (3.12)) that leads, as shown below, to a distinction between the energetic contexts

of the onion and radial patterns, and thusprovides a driving force for pattern selection.

We have. numerically integr~ted equation (3.12) using the Galerkih Finit~ Element
'P ,-;
tf-' .
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• method [9], \\ith a corrector-predictor adaptiye time intef:Tation step. The spatial dis­

cretization uses 100 quadratic elements. The discretized equation were sohed using

Newton-Raphson iteratiollS. To e:.-timate the time required to reach steady state \ve pro­

ceed as follows. The time steps are determined according to the change of director field.

measured by the norm of the difference of the director field yector at consecutiye time

steps ~r/> = III<,!Jn+III-II<,!Jnlll. When the norm is sufficiently small (here the threshold is

given bl' ~r/> < 10-6), we consider that the system has reached the steady state, and thus

calculate the estimated time in which the director field changes from a random initial

state to the final steadl' state. We denote this time by T", where the subscript a 'indicates

that T" is a function of the parameter 0; TU corresponds to 0 = 0, that is when T = Tc

(see equation (9)).

3.4. Results and discussions

•...=,",-'O=='I'hïs 'se...-tio:J. presents the solutions to equation (3.12), and discusses them in reference

to Fig. 3-2. The results are naturally presented in three categories for three representa­

tive temperature ranges, taking into account the elastic constant inequalities shown in

equations (3.8-3.10). The:.:computed numerical results of the director orientation angle

r/>(r, t) profiles are converted into scientific visualizations, shown as thin Hne segments

(as in Fig~ 3,-2). Each segment represents at the given (r, t) the average disc orientation.

Without loss of generality we assume a linear dependence of the elastic constants on

temperature. The cross over of the two dimensionless elastic constants (lft,!ft) as a

function of dimensionless temperature :::. is shown in Fig. 3-3..The thermal sensitivity

ofthe elastic anisotropy shown in Fig. 3-3 contains the necessary· and sufficient features
. . ~ .

identified in equations (3.8-3.10). '~q?

(i) Radial pattern.

The radial pattern consists of pure bend deformation (</> = ~,no~ 1). This pattern

is selected when KI > Ka, a > O. This is clear when comparing the total free energyof

•
71



• ;iir------------------------,

.....~..
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I=~I

Figure 3-3: A simplilied linear representation of the scaled elastic constànts (1ft, !ft)
cross-over as a function of dimensionless temperature :::. The constants KI and K3 are
scaled \~th K, which is the cross point of KI and [(3. the temperature is scaled by the
transitional temperature Tc at which KI = K 3• Such temperature dependence has been
found in rod-like nematic liquid crystals [10].

-"

•
0.96 0.98 1.00 1.02

Dimensionless Temperature, :f
1.04

the onion FO and radial F patterns:

FO - K I 7l" In(O)
ri

Fr - K37l'ln(O)
ri

(3.15)

(3.16)

•

Thus it is clear that when KI > E 3 , F < FO and the radial pattern is energetically

favorable. Figure 3-4 shows a computed visualization of one fourth of the liber cross­

sectio~ te.....-ture for aD. initially random orientation (left schematic) and at steady state

(rightschematic), for Cl< = 0.1 and{3 = 1. ·The ligure clearly shows the selection the radial

pattern from anj~tiall~' random state when KI > K 3 •

(ii) Onïon pattern

i ., ï2
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Figure 3-4: Computed scientilic visualization of the cross-section liber te..'Cture. for a =.
0.1,13 = 1. "Vhen KI > K 3 , the most favorable elastic deformation is bend, the system
will evolve to radial (pure bend) pattern at equilibrium.

•
The onion pattern consists ofa pure splay deformation (t/l =0, nr =1) and is naturally

selected for an initially random state whenever KI < K 3 (a < 0). For the assumed

temperature dependence given in equations (3.8-3.10), this occurs at relatively higher

temperatures. Figure 3-5 shows a visualization of one fourth of the liber croSS'-section

te."<ture for a = -0.1 and ,8 =:: 1. The ligure shows that the steady state solution to

equation (3.12) for KI < K 3 is the onionpattern.

(iii) Random pattern
:

As'.:r approaches zero from either below or above, the numerical solutions remain
1

either pure splay or pure bend, according to the different vall!~:of a, but the convergence
d/ .

rate slows down drastically as a ~ O. :'-1evertheless, as lon~ KI andK3 remain different

from each other. the steady state solution always reflects the lowest free energy mode

in accordance with the" elastic anisotropie condition. From the numerical solutions of

equation (3.12) presented above, we may conclude that due to the elastïc anisotropy, the

free energy mininiization Will réarrange the director orientation suchthatthe director lield

•
,.

atequilibrium will have the lowest free energy.. In general, the results are in agreement

With the e.xperimental observation shown in Fig. 3-2. However, the origin of the random

p~ttern observed in thetransitional temperature range remains unclear. Toexplain the
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Figure 3-5: Computed scientific visualization of the cross-section fiber texture, for Cl< =
-0.1,,8 = 1. '<Vhen.K1 < Ka, the most favorable elastic deformation is splay, therefore
the system will evolve to the onion (pure splay) pattern at equilibrium.

•
::. origin of the random pattern. we take in account the kinetics of the system characterized

by Ta (defined in the previous section).

Figure 3-6 shows the computed dimensionless director reorientation time ~ as a

function of dimensionless temperature f. As Cl< -+ 0 (T -+ Te), the simulations .show

that the time needed for the director field to reach the equilibrium increases significantly.

Figure 3-i shows the one dimensional visualizationof the change of director orientation

in the radial direction as a function of dimensionless tirne t, for Cl< = -0.1. At t = 11.58

the system undergoes very little change .from the previous time step and therefore we

conclude that the system has reached equilibrium. Figure 3-8 shows the one dimensional

visualization of the director orientation for Cl< = -0.01. By comparing Fig. 3-i with

Fig. 3-8. we can see the director reorientation slows down by a factor of 10..~t Cl< = 0,

equation(3.12) becomes:

(3.1i)

Solving the above equation. we obtain the director field d> as a function of t and r:

•
oc: .

. d> = L A"Jo('\"r)e-.\·t
=1

. (3.18)
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1.040.98 1.00 1.02
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Figure 3-6: Dimensionless reorientation time ~ as a function of dimclIsiolllcss tem­
perature f, corresponding to the temperature dependence shown in Fig. 3-3. The di­
mensionless reorientation. time TQ is scaled by the reorientation time at the transtional
temperature Tc. The reorientation time sharply increases as the temperature difference
IT - Tel decreases. At T =Te the reorientation is the slowest.

•

•

here An is the coefficients, Jo is zeroth order Bessel function. The eigenvailles Àn arc

determined by the boundary condition at r = 1, and are the zero points of the first order

Bessel function JI (Àn ) = O. The linear tenns in the above equation represents the mini­

mizing of divergence (\7' n) and cur! (\7 x n) terms of the free energy at /(1 = /(3. This

minimizing process is independent of the elastic anisotropy and exists in all cases. TC>­

gether with the elastie anisotropy,répresented by the non1inearterms in equation (3.12),

they eonsist of the driving force behind the pattern selection mechanism in fiber spinning .

process. If we consider the the.state of liquid crystal material ta be random, under the.

influence of the driving force described above, the fiber will rearrange its director field'

to reduce the free energy while at the same time being cooled down. Such microscopic

process is normally sufliciently fast in the process time scale. However, as Cl! ...' 0, .the
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•

Figure 3-7:. One dimensional sdentific visualization of the director field in the radial·
direction for 0< = 0.1. The initial state is given by a random director angle. Director

.. fields are shownfor several increasing times. For 0< = 0.1, the final equilibrium is the
onion pattern, wh}~agreesv.ith the result from steady state solutions.

. ~..

kinetics of ~he s)"Stem undergoes a significant slo\\ing down , that is, the time needed to

·rearrange· ~h~ director field to reach the equilibrium state becomes much longer as th~
~. ,

. system approaches· the transitional temperature Tc. The reason for such slo\\ing dO\\"Il

is that because ai the· transitional. temperature Tc the elastic anisotropie is very weak

(0<::::: Dl, the ~nergetic superiority of onedeformation mode over the other becomes very

small. which greatly weakens the drhing force effect of elastic anisotropy o.n the pattern

selection..Because of the sl~\ving dO\\"Il. the effect of miiùmizing the divergence and curl

of the director orientation J~d becomes the major contributor tothe pattern selection.

The effect of such minimization is of small magnitude when compared with the effect of
~' , " '
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Figure 3-8: One dimensional scientificvisualization of the director field in the radial
direction for Cl< = 0.01. The initial state is given by a random director angle. Director
fields are shown for several increasing times. Comparing to the director reorientation
process shown in Fig; 3-ï, the reorientation time has incr~ased by a factor of ten as Cl<

decreases from 0.1 to 0.01. The final equilibrium is the onion pattern, which agrees with
the resultfrom steady state solutions. ' ,

the elastic anisotropy that exists when the temperature T is sufficietly different fromTr..

As a result, driven mostly by this minirnizadon force. the director reorientation process'

=
ï7



• 3.5 Conclusion

•

•

In summary, we have presented a simple analysis to a complex process that is able to

explain, using weil known theory of liquid crystal materials, the formation of transverse

textures observed at different temperatures in the e.,perimental liber spinning process of

cabonaceous mesophases. The numerical results presented above show that the pattern

formation in the liber spinning process is e.,plained by the minimization of elastic free

energy. The cross-over of the elastic constants changes the most favorable free energy

. mode from bend at lower temperatures to splay athigher temperatures, and causes

the switch from the radial pattern to the onion pattern. However, as the temperature

approaches the transitional temperature at which the material is elastically isotropie,

.the director reorientation tirne increases sharply and e.,ceeds the liber spinning process

time, and thus structuring does not occur, and hence no distinctive pattern arises. The

random pattern is the result of such. slowing down in the director reorientation.
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,Chapter 4

Conclusion

. resolved by mechanisrns arising from the elastic nature of the simulatcd discotic nematic
~.

liquid crystalline materia1. AlI numerical and analytical results presented in this tÏ1esis

show that the factor governing the sele<:tion of distinct liber struct'uresin e;"tensional

fiows is indu~ed by the minimizatioll of the el~ic free energy. AIl the results presentcd .

in this thesis ,vere validated using e.'\."tensively available e.'\.-perimental data, representative

of actuallibers produced duringthe industrial spinning of carbonaceous mesophases. The

validation p~ocess is based on a comparison of the scientilic visualization of the model
'f;

output variables with micrographs of liber cross-sectional textures. The results of the val­

idation process indicatedthat the simulations are ~ple te capture and e.'l:plain the origin
~ ,

of the most common liber te.'\."tures observed in the indllstrial spinning of carbonaceous

mesoph~es. Below we summarize details of the findings for the specilic patterns that
:',,~ : , .

:
were successfully reproduced in this study.

The oscillatory zig~zag liber te.xture has been f~und to emerge.as a preferredôpattem

whenever tb,e elasticanisotropyfavors splay defonnations whilethe boundary orientation .

favors bimd deformations~ Under such conditions bÈmd deformations are avoided by the

80
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•
c .

•

appparaI1(:(~ of orientation osc:illations~ which succcssfully replace bend by splay. l·sing

computational bifnrcar.iou methods as well 'L~ fuuctional analysis techniques we identified

the spatially oscillawry solutions as solution branches arising from unstable spatially

homogeneous solutions. The multi-branching sequence al. the multiple-eigem-alues of

the bifurcation equation was captured using both analysis and numerical simulation.

Bifurcation, amplitude, and stability diagrams prO\ide T.he correlations between process

conditions, material properties: and selected fiber texture. The second major contribution

of this thesis is the elucidation of the mechanisms that control the temperature-driven

fiber texture tran~itions invoh'ing the radial, onion, and random patterns, The present

work has shown that for materials that exhibit a cross-over in the splay and bend elastic

constants as a function of temperature "ill exhibit the te."\."l.ure transitions indicated above,

Far m\<lY from the transition point minimization of the elastic free ener~' is an efficient

driving force that g:ives rise 1.0 the selection of onion pattern al. higher t~peratures and

: radial pattern at lower temperatu;es, In addition, il. is shown that suffidently close 1.0

the temperature al. which the material beeomes elastieally isotropie, the kinetics of the

pattern selection proeess slows down signifieantly. The lack of ",..-ailable time for a definite

pattern:strueture to.emerge, thusresults in a random pattern. The thermodynamie and

kinetie mechanisms thus e.,plain th!> origin of the patterns and the transition of te."\.1;ures,

observed duiing,the industrial spinning of carbonaeeous mesophases.

;

: ,.,
"
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•
Appendix A

The objective of this appendix is 1.0 present the m~thematical:lnalysis that corrclatcs the
. -

eigenvalue problem (2.22) with the bifurcations of equation (2.9). First ,ye intro<!ucc the

required nonlineàr functiol'al analvsis concepts. CA nonlinear mapping G from a Banach

space li 1.0 K is said ta be Fréchet differentiable at a point l' provi<!cd there is a boun<!cd

linear operator A from H 1.0 K such that the quantity R(l'; h) = G(l'.J.. h) - G(v) - Ah

is o(h) as " --+ 0; th~ is

• . Il R(l'; h) Il
lun = O.

IIhll"'O Il h Il (A.l)

We denotethe Fréchet deuvative of G iit l'by G'(v) or biG.; when il. l'-xists il. may be
, .. ~

= found by the usual fonnula of .

G '(' )h -lim G(v + th) - G(v) _ d G···C· . h) 1v - - - v + t '-0 .
....0· t dt· .. -

For a nonlinear equation

G(.p,t') =0

(A.2)

(A.3)

•

where G is a differentiable mapplng between two Banach spaces H and K, that is,

G : H x A --+ K, where A is a finite dimensional parameter space. Suppose the operator
>

Gbas an equilibrium solution of {.po, /-le) al. which

(A.4) .

:

Whèther, the' solution (<Po, t'c}' is a bifurcation point is givenbythe' follO\~ing Implicit
," .' ~ .

Function Theorem [21].
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• Implicit Function Theorem 1 With the definition of the Banaeh "pace H. K and

the oJ,,;mtor G !li",n above we a"."mle that G is Fréchet differentiable. The Frichet

t1<:nvative of G at (90.11,), de.,ignated by Go(90.lle) is a linear mapping Go : H --+ K.

If Go(?o, Il,) possesses a bounded inverse, then loeally for 1/1- l'cl suffieient smalL there

exisL, a differentiable mapping 0(11) from A to H. with (6(1'), /1) c H X A, saeh that

G(?(/1), Il) = O. Furthermore, in a suffieient smallneighborhood of (60 , /1e), (9(/1), /1) is

the only solution fo G = O.

From the Implicit }'unction Theorem, it follows that if G vanishes at (9o, /1e) and

G.. is invertible there, then there is a locally smooth curve t/>(/1) throllgh (9o, /1e), and

this curve of t/>(/1) is the u~ique solution of G at this point. Therefore a bifurcation can

only occur, if the linilar mappingof G.., evaluated at (t/>o, Ile), is singular and hencefor

a linear mapping A := G..(90, /1e) : H -+ K there is no inverse. If the above condition

is met, one can conclude that the solution (t/>o, /1e) is a bifurcation point. We rewrite the

equation (2.9) as•

,

G('" )= '''- (-/1+ 1) sin t/> cos t/>(1 +t/>I2) =0
'l', l' f/> • 2 '" ~ '"/1 sm '1' + COS"'1'

~=

with the boundary conditions:

Introduéing thé linear transformation t/> = 11 + 8, we have

:

with homogeneous boundar/conditions

15(0) = e5(uo) = O.

. (A.5)

(A.6)

(A.i)

(A.8)

,

••
. .

The above equation h~ a trivial solution. of 15o = 0, for al! values of p.. To e.:":al:ni.ne the
, ,t ..'

stability.ôf the trivial solution 80, we shan find values of p., for which the.linear mapping

A . G(co,p.) does not have ~ inverse. Hence wemust look for'the no~trivial solution
',' "
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(..\.10)

• of the corresponding eigem-alue problem, TIlt' linear operator is obtaitll'd by takin" th,'

Fréchet derÏ\,ni\"(' of (.0\., i)

"'-G (X ),_." 2(1+<5~2)(1-2.11+ll2-cos(2<5")+1,2coS(2".,)).
• ''V - "U". Il cl - cl - ( • '" ,1.

. 1 + l' - cosl2Ô.,) + l'Cllsl2Ô.,))-

Inserting the tri'ial solution <5., = a iuto this equation. wc obtain the linear eigem,üue

problem

Go(O, p)<5 = <5" + (~ - 1)<5 = 0
l'

\\ith the bci::';ldary conditions <5(0) = <5(uo ) = O. The general solution of the eigem,llue

problem is given b~':
"

The boundary condition 8(0) = 0 impliesihat B = 0, so e5(uo ) =0 gives the eigenvalue

•
~vhich gives

8(u) = BCOS(J~ -, lu) + DSin(J~ -lu)
l' p

1 _ (mr)2--1- -
ft '!lu

1 "
Jle,n = '(n,,)?,(n = 1,2,. ..)1+ -Il.-u • "

(..\.11)

(:\.12)

(A.13)

,(A.14)

,-
and the corresponding eigenfunctions are '

r;:: e5n =Dn sint ~1l' u), ~ = 1,2, ...).
,-,u \

Here Dn ~e arbitrary constants which can not Je determined fr~m the conditions givcn '
; ,

above. Now we considerequation (2.22)

which when dividing by K 1 gives:

• , .
XII . { 2,\ ( 1)}
u +-~ 1-~ 6=0
, K1 . p.

, (A.15)

(A.16) "

- .



• Sinec "'c "rc looking ror ,\ > O. the eritical "alncs of Pc are to be fonnd by setting

). = O. Then the abon., eqnation becomes identical to eqnation (.-\.10). So we pro"ed that

.,qnat.ion (2.22) is the Fréchet derivatiw of equation (2.9) after the linear transformation

(2.18). Following the Implicit. Fnncti<:>n Theorem and the discussion. we can now conclude

t.hat. the brandI of t.he r.ri,·ial solution (0 = 0, or ç) = 2~) has multiple bifurcations at

the eigènvalnes shown abo\·e. At the eigermùnes. the linear mapping of Go in (A.10)

becomes -singnlar and doesn't have an inverse. It follows that the nonlinear operar.or of

:G will have riontrivial solutions in the neighborhood of )i.e.no At the bifurcation points

P.c,n, the nontrivial solution to the linear mapping of Go are the eigenfunctions (A.14)

then we have
7i . ." n7ï 7ï ~

</>é= On + ? = Dnsm( 1\ _'il) + ?' (n = l,:', ...)._ '-'-u_

For n = l, Lj,·u = 1 and Jle,l = 0.092, we have the nontri,;al solution of

(A.1i)

•
(A.18) ,

:

which has halfwave length and matches the numerical solution found at P.c,l' Continuing

this process for larger n, we find that each eigenfunction matches the numerical solution

at that point of!'c,n' Usingthe Ljapunov-Schmidt method [21], we can decompose 8 in

the form:

•

where

~ . (n7' )
(Je = qsm A 'U

" .:.>'U

and

8, - h(q, 'U)
"

In (A.20), q is the amplitude orthe oscillatory solution. And h= O(i) [21].

Linearizing equation (A.i) aIld projecting it onto'the eigenfunctions, we find:
, ,

, ' \

.' ruo[8"+ À(8 + 8812
)] sin( ~7l''U)du = 0\\Jo ' "'.:.>'U :
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(A.20)

(A.21)

(A~22)
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• Here ,\ = (t - 1). Sub:itituting (.·\.19) into thc aboyc intt'gral. wc find:

If we substitute ,\ ='\n, the linear terrns in q in (.-\.23) \-anish. FurthemlOre. since il is

orthogonal to the eigenfunctions. we haye:

j,UO" ~ n7i
(h + Àil) sm(-'u)du = 0

o .6.u

Therefore, after neglecting higher order temls, the integr,ù (A.23) beconlès:

(A.2.1)

•
(UO[q( _ (~,~-;r)~, +À) sine ~" u)

Jo L1.u - ' ~'U
., ,

3 n'"'7ï . nrr ,., nii . 'nit" •
+,\(q (A )., SIll( A u) cos-l" u))] SIll( A u)du = 0

L1.'U ... LJ.u LJ.u, !..l.U

After integrating, we have:

"

,
~

(A.25)

. (A.26)

Therefore in a small neighborhood of ~(À::::: >.;.), the solution amplitude q,md ,\ have
_/,' "

the following relationship: ·.C·

~ ,

o

q = )2(>' - >.,;),(n = 1,2, .. :) (A.27)

Since >.= (~-1), wefindthatsufficiently close to the bifurcation point, the amplitude
.' ,

, q and the elastic anisotropy J.L are related by:

q= 2J.Le.n - J.L (. 1? ),n= ,_,..~.

J!'f.J.c,n
(A.28)

•
. , . " 1

Equation (A.28) predictsthat close to a bifurcation of order n, the amplitude of the
, ' , . ,. ".\. '

nth modegrowsat a faster(slower) rate for larger(smalle~)n. This is in agr(;ement with

thenumerical results sh~wn in Fig.8; by comparing curve A (n ~ l)with curve C (n '. 3) ..
, :~' " , '

..
86

:; ,

, ';)."



•

•

•

we Spp i.hat thC' a.ulplitllde grows [aster in the latter c~c.

ln summary, the contents of this appendil' shows the mathematical analysis that

l'l'plains the multiple bifurcations at eigem-alues. By applying the Ljapunov-Schmidt

lIlethod [21). we also derive the relationshipbetween the solution amplitude and the

clastic anisotropy.
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