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i j @ pap
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- If this option is chosen, connecting texts that provide logical bridges between the dif-
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than a mere collection of menuscripts; i other words, results of a.‘l'series of papers must
be integrated. . |

The thesis must still conform to all other requirements of the “Guidelines for Thesis

Prepamtiori” The thesis must include: A Table of Contents, an abstract in English and

French, an mtro:iuctzon wfuch clearly states the mtzonale and objectives of the study. a

comprehensive review of the lztemtr.re, a final concluszon and’ summary, and a thorough
bibliography or reference iist. | _

‘Additional material must be provided where appropv':iate (e.g. iﬁ appendices) ‘an‘d‘ir;
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- In the case of manuscripts co-authored by the candidate and others, the candidate is
i_tequired ‘t'o make an ezplicit st,aterr'zeﬁt in the thesis as to who contributed to such work and
to what extent. Supehrisers must 'Ezttest to the accuracy of such statements at the doctoral
oral defense .S'mce the task of the ezeminer is made more d:ﬁ‘icult in these cases, it is in

the candidate’ s mterests to make perfectly clear the responszbzlztzes of all the authors of

“co-authored papers. Under‘no circumstances cen a co-author of any comiponent of such

a thesis serve as an ezaminer for that thesis. L S

Contents of’ Chapters 2 and 3 of tho present ‘thesis are adopted from the papers that

ha\e been submltted or wﬂl be submnted shortly for pubhcatlon in scientific Journa.ls
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Pattern Formation in Mesophase Carbon Fibers

Abstract

“The principles governing pattern formation in discotic nematic liquid crvstalline fibers

subjected to uniaxial extensional flows are established. Computational and analytical
methods are used in conjunction with bifurcational techniques to simulate the structural
characteristics of the orientational patterns that arise by stretching discotic nematic
liquid crystalline materials. The analytical and numerical results are in excellent agree-
ment with actual cross-sectional fiber textures obtained by melt spinning carbonacecus
mesophases. This work reproduces the main structural features of the ozcillatory zig-
zag pattern commonly observed in mesophase carbon fibers, and idertifies the process.
conditions that lead to this‘peculiar fiber texture. In addition, the temperature driven
texture transitions and the emergence of a random pattern also observed during the in-

" dustrial manufacturing of mesophase carbon fibers are captured by the simulations and

thoroughly explained using classical viscoelastic theories of liquid crystalline materials.
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Arrangement moléculaire dans les Fibres Mesophases de

Carbone

Résumé -

Les principes qouvernant arrangement des molécules dans les fbres discotiques némati-
ques cristallins liquids soumisent a des écoulements uniaxials extensionnels ont été étudiés.
Des méthodes numeériques et analyvtiques ont été utilisées avec 'aide de techniques de bi-
furcation pour simuler les caractéristiques structurelles des arrangement molécutaries qui
surviennent lors de I’étirement des matériaux nématiques discotiques cristallins liquides.

Les résultats obtenus par les techniques ci-haut mentionnées sont en excellent accord

avec ceux des textures de véritables fibres formées par le procédé de tournage de fibres
mésophases liquides de carbone. Cette étude reproduit les principales caractéristiques
structurelles de I’arrangement zigzag oscillatoire qui cont souvent observées dans les fi-
bres mésophases de carbone et identifie les conditions de procédé qui menent J cette

texture particuliére des fibres. En plus, l'effet de la température sur les changements de
textures et I'apparition d’arrangements aléatoires ont aussi €té expliqués en utilisant les

théories classiques des matériaux viscoélastiques liquides cristallins.
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Diréctor orientation S(rad.) as a function of dimentionless distance u, for
Au = 1, p = 001 and ¢(1) = $. Curve D denotes the PR solutions
while curves A, B, and C are members of PZRh family. The four solutions
correspond to the four intersections of the horizontal line C with the curve

in Fig. 2-11, for ¢'(0) > 0. The three mirror image oscillatory solutions.

are not shown.
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Chapter 1

Intro ductlon

i—;,i\

1.1 | Carbon Fibers

The three different types of commercial carbon fibers, manufactured' from three different -
precursor materials, are: rayon carbon fibers, acrylic ca.rbon ﬁbers and rnesophaée pi;tch-
based carbon fibers [1][2].- The rayon ca.rbon fibers have relatwelv low tensile strength
and low Youngs modulus, an_d have been used mainly as composites designed for use
in rocket and space shnttle apphcatlons The acrylic carbon fibers commonly known as
PAN-based (poly-acrylomtrﬂe) carbon ﬁbers are c0polymers containing acrylomtrrle in. -
excess of 85% along wrth other cO-monomers whrch are used to unprove processablhty
" The PAN-based carbon ﬁbers have hrgh strength ‘high modulus and semx-conductmg‘ |
.propertles and are used in a wide variety of apphcatrons [2 5] Pltch-ba.sed carbon fibers |
can be manufactured from two different states of the same precursor rnatena.l (coal or

petroleum pitches): the liquid crystalline (discotic) state or meSOphase, and the isotropic

- state. The 1sotrop1c pltch—based carbon ﬁbers have low modulus and strength The. '

\mesophase pitch-based carbon fibers have ultrahlgh strength and modulus, and can. be B

used in the same apphcatmns as PAN-based carbon fibers. In addxtlon mesophase pxtch— L

based ca.rbon ﬁbers have hlgb. thermal and electncal conductlvmes and are often used i in.

hlgh thermal transport. apphcatrons ThlS thesis is restncted to the study of mesophase Lo

.prtch-based carbon fibers.

The industrial productlon of mesophase carbon ﬁbers uses the 50 called melt-spmmng' o )

: 1'__
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process. Fig. 1-1 shows an schematic of actual spinning process of mesophase carbon
fibers [6]. Typically, the precursor carbonaceous mesophase pitch is melted in an extruder
which then pumps the melt into the spin pack. The molten pitch is filtered to remove
solid impurities before be_ing extruded through a spinnerette. The pitch is subjected to
high extensional and shear stresses as it approaches and flows through the spinnerette
capillaries. The associated flow-induced torques tend to orient the molecules in a reguiar
transverse Ig'attern. Upon emerging from the spinnerette capiilaries, the as-spun fibers
are drawn' to improve axial orientation and are collected on a wind-up device. The basic

microstructure of fibers is formed during the spinning and drawing processes.

| N‘_’_l_'"_. ‘

emolten pitch

L

~—fiber ,
_windingdum o

; _jF_igure 1-1: ,Schemati'e diagram of mellt-spinr;ing. proeese of mesophase ca.rbon '_ﬁbers

~

“The carbon ﬁbers melt-spun from mesophase pltch through such process exhibit a

‘ "‘vanetv of transverse r.extures The mxcrostructure of the fibers i is deﬁned by the spaual '.
.‘arrangement of the fat disc-like molecules in the ﬁbers Flgure 1-2 shows a scanmnc' :
. electron’ mmrograph of the cross-sectron of a mesophase carbon fiber f7}. ’I‘he character- :
| '.ﬂ‘lsuc feanure of Fxg 1-2 is the radra.l oscﬂlaton onencatzon. Other patterns, known as |
"‘f.radxal pa.ttern omion pattern and random pattern are a.lso obsened m the cross-section -
| ."'of ﬁbers. as shown in Flg 1 3 s} 'I'hese r.hree parcerns are observed on the cross-section |
o _of carbon ﬁbers spun at dxﬁ'erent temperatur&s Flgure 1:4 [9] shows the correlatron :
bet:ween temperature and the rad1a1 omon and random transverse texturm All these' -

il patterns correspond to dlﬁ'erent states of molecula.r order prevalhng m tha.t mesophase AT



»

b of the fracture surface of a mesophase carbon

dial oscillatory transverse texture, adopted from [7].. -

micrograp
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F igure 1-3: (Top row) Micrographs of fracture surfaces of as-spun mesophase pitch fibers
and (bottom row) polarized light photomxcrographs of polished transverse secuons of
" radial, onion, a.nd random structures, adopted from [8]

a.nd thus represent drﬁ'erent mlcrostructures of the fibers, but the ongm of such pattems ‘
and the selecnon mechanism that promotes the formation of pa.mcular patterns:in the
fiber spmmng of carbonaceous mesophases are currentlv not well understood Since the .
_ :cross-sectlonal patterns of carbon fibers are closely related to their ph\srcal propemes.
~ the control of the pattern format.on in these fibers is essennal t0 optimize t.he product

property proﬁle This theszs uses theory and sunulatlon to reproduce and explain the

basic m.rcrostructural featurw shown in the radial texture (F igure 1-2). and the radial, -

random and onion patterns. shown i in Fi 1g, 1-3. The rema.mder of this 1nrroductery chap- .
- ter presents _the'besic_'concebts and theories used to simulate and explain the pattern '

' forura.tion in the melt-spinning of carbonaceous mesophases, as described above.

-
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Figure 1-4: Variation of mesophase fiber texture with melt spinning temperature adopted
from [9].

1. 2 Discotic Nematic qumd Crystals

: For Imany organic: compounds the phase tranmuon berween the solid state and liquid state

is not a single phase transition, an intermediate state called mesophase (1 e. intermediate -

s Phase) is developed in between solid and liquid {11]. The mesomorphic materials possess ‘
both liquid-like finidity and solid-like molecular order In solid crystals the center of mass. -

of the molecules are located on a three dunensronal periodic lattlce hence they have

range order among the molecular centers of mass is present The ordenng in mesophases'
‘ (mesomorphrc or amsonropxc hqmds) lies between that of a solid and that of an LSOtrOplC
- liquid. Based on the partial ordenng two basrcallv d1ﬁ‘erent t.vpes -of mesophases have
been observed. Flrst tvpe shows a transition from a strongh ordered state toa pha.se.-. R
Hv»here each molecule commutes between se\eral equrvalent onentanons The posxtxonall
. order is still present “b.\the orientational order Has drsappeared or is strongly reduced.

"a.nd this. phase is called dlsordered cryvstal mesophases or plﬁmc crystal. . The second )
type shows a low remperature phase where t.he posmonal order is reduced or ha.s even, e

completelv disappeared but exhxblt long range onentatlonal order and t.hls phase 15"‘ SRR

N2

‘both orientational as nell as posmonal order In the case of isotropic hqmds only short .~

called ordered fluid mesophase or uqmd crvstal At hrgher temperatures, hqmd <:11-~sta.lsT SRR

undergo a transition to 2 convennonal (ISOtIOplC) hqmd The shape of the rnolecule isan -

o

- unportant factor for m&omorphrsm to oceur. Two tvpes of hqu:d crvstals compounds; S 8



'@

w4y

.

characerized by the shapes of their molecules are most widely studied. the rod-like liquid
crystéls and disk-like liquid crystals, also known as discotic liquid crystals.

Based on the classification by Friedel in 1922. liquid crystals are categorized according
to their molecular order into three major classes: nematic, cholesteric . and smectic. In
nematic liquid crystals, considered in this thesis, the molecules tend to align para.llel to
each other“a.o‘d along some common axis called director. The director is a unit vector
n, and ir. gives the average preferred orientation. Long range orientational order and |

cylindrical (uniaxial) symmetry are often exhibited by this type of liquid crystal phase.

The center of grantv of the molecules are distributed at random. Therefore such liquid .
| crvstals possess onentaxonal order like crystals and positional disorder like viscous phase.

When the constituent molecul&s are of disk-like shape, the resulting phase is called dis-

cotic nemanc liquid erystal. Figure 1-5 shows a schema.tlc of onentatmnal ordenng of

) dxscotxc nematic hqtud crystals. The short arrows are the molecular umt normals to the

disc-like molecules, and they orient more or l&m.parallel to the average oneutatxon n.

Figure 1-5: Orientational ordering in the uma:ua.l d;scotlc nematic phase.’ The molecula.r :
normals of the randomlv posmoned dlsk-hke molecules pa.rnalh onem:»a.long the duector

e .

) Rl

The cafbonaceous meiophase studied in this thesis is 2 uniaxial discotic nematic liq~

: -md crvstallme r.hermodvnannc phase whn:h forms durmg the hqmd phase pyrolysis of
coal or petroleum pltches When hea.tmg a non-volatlle orgamc compound such as coa.l o
..er petroleum pltch in t:he absence of air. the thermodvna.mc and structura.l change are

; “as follows. F1rst the orgamc substance melts on heatmg and becomes 1sotrop1c pltch or L



liguid. As the temperature rises over about 330°C. optically anisotropic spheres. known
as spherules, appear in the isotropic matrix {13]. As the hydrogenative polymerization
reactions continues the molecules get larger and the mesophase more viscous. When

the molecules reach an average molecular weight of approximately 2000 they are suffi-

ciently large and flat to favor the formation of a liquid crystalline nematic phase called

carbonacenus mesophase.

The formation of the carbonaceous mesophase follows a nucleation and growth pro-
cess, typical of metastable thermodynamic systems. The droplets or spherules are cas-
ily observed because of their optical anisotropy. Attractive forces among the spherules

give rise to droplet coalescence and overall growth of the mesophase. The structure of

the spherules and the molecular organization of the disc-like aromatic molecules within | |

the spherules has. been described by Brooks and Taylor (1965)[14]- \‘The characteristic
mesophase mecha.nisms that are involved in establishing the mesophase ﬁmrphology‘ are
spherule premplta.tlon coalescence of Spherules to form a bulk mebophabe, and distortion
of m&sophase by mechamcal deformatlon

As described above, the carbonaceous mesophase con51sts of disc-like moleculeb that

display long ra.nge onentatlonalorder, such that the molecules lie approx;mately parallel

to each other -and there is no point-to-point registry.behveen gidjacent rgibleézﬂes. The

orientation of each molecule is defined by its unit normal. The symnietry elements of .,the ‘

-
-

carbonaceous mesophase are [13]:
(a) any translation; |
(b) any rotation about the unit normal to the dlSC-Shape molecule,
~ (c) a rotation of 7 rax:ha.ns about any axis parallel to the plane of the molecule.
Although the degree of Symmetry is the same for a discotic nema.tlc and a conventlonal

*rod-like nematic crysta.l the fact that for the dlSCOth j;eggtlc the a.ms of svmmet;ry is

properties, the r&ponse to mechamcal stress, and' the a.hgnment in externa.l ﬁeldb such -
as extensional flows, electnc fields, and magnetic ﬁe.lds [10] |

]

‘norma.l to the long dimensions of the molecule has an u”ﬁf){r;ant consequences for optlcal S

-h

L2
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1.3 Continuum Theory of Liquid Crystals

Liquid crystals can be continuously deformed without fracture since they are Auids.
When subjected to deformation the ordered molecular orientation is affected by viscous
flow torques acting on the disc-like molecules that form the liquid crystal phase. In
the presence of flow, viscous flow torques perturb the equilibrium orientation, leading to

spatially non-uniform non-equilibrium orientation, and creating counter-balancing orien-

-tation curvature elastic torques that generally balance the viscous torques. The non-zero

elastic torques arise from a nm—homogeneoué orientation within the given domain, and
consequently, the oriéntanion"condition at the boundary must bg specified to unambigu-
chsly define a mechanical problem. A unique feﬁture of the continuum tl'.heor_\“ of liquid
crystals is that the visco-elastic torque balance must be taken into accoun}: in addition‘
to the uaual Cauchv linear momentum ba.la.nce equation that holds for isotropic liquids
[‘75] Furthermore. the constitutive equamons for the visco-elastic stress and torque com-
ponents also take account of the- fact that the material constants of hqmd crvsta.ls are

hlghly anisotropic. Whether liquid crvstals are in static or dvnamxc cond1t10ns. they
g

© Show. very different wsco—elastlc responses when subjected to the same magmtude of .

forces Wlth dxﬁ‘erent directions. In summa.rv liquid crystals a.re anisotropic \nscoelasmc

| matena.ls that, as shown in thlS thesxs beha.ve nonhnea.rly even under very weak strains.

~
PAN

 The orientation of a disc-like molecule can be 'représented by a unit vector u normal
to the disc. Disc-like molecules of a nematic liquid crystalé tend to align ’a.long some |

'common direction. . Due to the centrosvmmetrv or. the equal probabxhtles of between u

a.nd -, the odd moments of the onentatlon dlstnbutlon functmn vamsh 'I'hus the

' 'second order tensor M, representmg the second order moment, becomes the leadmg'
. variable to de:,cnbe the onenta.tmnal ordenng By its deﬁmtlon, M has the followmg
CpopemiesSE e o

- M=M, M:é=1, é.Mflp'sol | SRR ¢ 3N

o .-
-
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where J is the Kronecker delta and p is an arbitrary vector. A more appropriate quantity
to describe the anisotropic material properties excluding the isotropic part is the second
order parameter tensor Q given by:

N

Q=g Y w0 (1.2)

N

=1

where IV is the number of molecules in a small but macroscopic volume at its represen-

al

tative location r. Q has the following properties:
Q+Q2+Q3=0, -153Q:<2 o (1.3)

where Q;(: = 1.2,3) are the eigenvalues [15]. The number (k) of distinct eigenvalues
represents different orientation ‘s_r.ates: k=1, k=2 and k=3 represent isotropic, unj:r_tial
:nematic and biaxial nematic states, respectively. Second—mnk tensor material proi)erties ‘
of hqmd crvsta.ls such as the amsot;roplc magnet‘.lc SUbCEpthlhtV refractive llldlct".b etc
can be described as a function of Q [11] |
' For uniaxial onentatmnal ordermg there is one preferred onentatlou along 2 unit
Ielgem'ector (n,n-n = 1) called the du'ect;or Usmg nanda smglc measure of ahgnment

(S the Qrder parameter tensor Q can be wntten as:

If we choose n along the z axis, le given by:

(-1 o o :
Q=S| 0o -1 ; (15)
Lo o ¥ '
The degree of orientational ordering, S, is given by [11}: . .
> 17 | - . o :. | N
S=.,;f‘-f(9)(3cos.26—1)d§2- L e

it
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where f is a distribution function, 8 is angle between n and u, and § is the solid an-
gle (dQ = sinfdfdeo); f is independent of the azimuthal angle ¢ under the cylindrical

symmetry about n. For a perfect alignment along and perpendicular to n, S = 1 and

S = —%, respectively. If there is no preferred orientation as in the isotropic state, § =0. -

The present thesis is focused solely on uniaxial nematic liquid crystals of disc-like
moiecules_ and assumes negligible variation of S so that the microstructure can be com-

peletlydescribed by n. This assuniption is valid for the extensional flow considered

below. In the following sections, we use Cartesian tensor notation with Einstein summa-
-~ tion convention, and a comma followed by an index denotes .partial differentiation with

: respef:i; to the corresponding coordinate.

1. 3 2 Frank Orxentatlon Distortion Elast101ty

The sunplest nematlc state is that of a umform orientation domain, known as mon-
Qdomzun. This uniform onentatlon state is easr.ly_perturbed under the influence of

bdundin‘g'sﬂrface conditions and- external ﬁelds such as shear, eleciric, and magnetic

fields. _“Wh‘en viéwed under croésed polarizers, liquid crystals ﬁsually show iridescent tex-

" tures [18): ‘ This optica.l: characteristi'cs comeé from the spatial variation of locally ordered

a.verage onentatlon n(r) gwmg rise to spatial variations of the amsotroplc optlcal prop-

. ertles To describe the spatla.l variation of orientation, Frank [16] developed a continuum
theory of onentatlon dlStOI‘thn elast1c1ty by improving on the exlstmg theory of Oseen B ‘
 [17]. The distorted orientation sta.te is descnbed by the orientation distortion energy |
- dens1ty F gwen by -

AF = Kl (nk,ka +'K2(e,-jknkjm)2 + Kglﬁi}cmnkdlz" ‘ .l ' ‘ (1.7)

= where €ijk dendtes the alternatﬁ;g tensor. In: vector form, the; above equation is:

K

AL

a0

2F = A (v n) +K2(n vxn) +K (nxvxn)2 (1.8)



Here, K. K2 and Kj, correspond to the elastic constants for'the three principa! modes
of orientation distortion, the splay, twist and bend deformations. Figuré 1-6 shows the

three principal modes of orientation deformations displaved by discotic nematic liquid

~ crystals.

1.3.3  Leslie-Ericksen Continuum Theory {\

Splay (K

Figure 1-6: Elastic deformations of dlscotxc nematic liquid crz;'§t;als. o

-

A

o : o L - L o S Jwarn
. Ericksen first-developed a continuum theory for viscous striictured’tontinua in which its .

- microstructure is described by a unit vector n. Lesh\e\zlgcp:-borated the Frank orientation,

distortion elasticity to develop an anisotropic viscoelastic continuum theory of nematic

‘liquid crystals which turned out to' be the most successful theofy b} far.: and is ﬁsuzﬂly o

referred.to as Leslie-]fric'ksen"(L-E') continuum theorf. T_h'é governing equat:ioh_sused‘ in

this thesis are derived from the L-E continuum theory. The L-E equations are pr'esented'

~ below.

. Governing Equations and Constraints

The Ca.uch% linear mqi}lentum balance eqﬁ_étion is given by:

B b

R N (O R
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where p,v;,0;; and f; represent the density, velocity, stress, and the body force per unit
volume, and the superposed dot denotes material time derivative. The director angular '

momentum balance equation is given by:
 pmi = Gi+ g + w5 . (1.10)

where p,, is the moment of inertia per unit volume, g; is the intrinsic director body force

per unit {rdlume, G} is the external director torque per unit volume and 7;; is the director:

- _stress tensor.

The length of director n and the incompressible total mass are conserved quantities,

which are expressed by the folldwing'constraihts:

mm=l, wi=0 - .

Constitutive Relations o o ; :

-

The constitutive relations for the stress tensor cr;,-, intrinsic director body force g;,

and the director stress tensor 7; are given by:

O = -—_’paji - mnk,‘- -+ 0

. | oo | N N
% = 'm,—ﬁjni,,--—-—fz-%-g,-, o (1.12)

. -Jr.. —3 .ni + ..

A ,ﬁj " Oni;
-whére v and ; are Lagrangien multipliers introduced to satisfy the unit director length
constraint. The dissipative contributions, &3 and ;, a.ré‘g'iven by:

_— a'ji = a1nkn,j§lkpnjni +a2n_.,M -+ aaN_.,-ni + 05414.31. + a_sn_,-nk_Ak; +a5mnkAicj, . (1.13)

~

2 =1+ YAk, N =03 _—0'2, Te=0s—as (1.14)

A

e "w'h'e;te the set a,, i= -1_,‘.__.":5_,_6‘is‘ known as the Léslie viscosity cqeiﬁcient's.“ Kinematic

»

12



measures are defined by:
Ny =1 —wpng, 245 = vij + v, 2w = vy — Uy (1.15)

Ni, Aj; and wy; are the corrotational time derivative of n, rate of deformation tensor,
and rate of rotation tensor, respectively. The Leslie viscositics are related directly to
measurable quantities, the Miesowicz viscosities (7q.m.7.) [19], the rotational viscosity

71, and the elongational viscosity 1, [11] as follows:

M=oy, 2y =3+ oykas 2= —Optaqtos,

V=3 — e, 20 = +ay -+ 61;5 + . (1.16)

- Usually, for discotic nematics the Miesowicz viscosity ordering is 7, > 7, > 7 [10]. Using
Onsager’s recaproca.l rela.tmns of irreversible thermodyna.nncs [6], Parodi obtained the

followmg relation [20]:
otz =0g—Q5, OF Mp—1.= Yo E | 3 (1'17).

“jhich reduces the number of independent Leslie viscosities from $ix to five.

Visco-elastlc Director Torques | - |
| Since in practical situations the mertla. of the dxrector is small [21] p,,, 1s absumed |
| neghglble small in equatmn (1.10). Then the cross product of equation (1 10) W1t;h n.
elunmates the Lagrangian multipliers (7, §;) and yields, in the absence of external fields, -

the follomng visco-elastic torque. balance:
0 = eyuns(ge + mg) = TPscms pglostic (118

"The Viscous torque I"’"““’ a.nd the elastlc torque 1"““"""' [11] actlng on the dn'ector n are

given by

:;1)_‘-“ v

°

13
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r:m cous = —G:,kng(')'sz-!-'}’zmAzk) I's °"“"I°— —e,,knj( Bn —( ) ,t) . (119) .. .
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Equation (1.18) gives the director orientation in nematic flows. Since the extensional flow

is closely connected with the melt spinning of mesophase carbon fibers. it is necessary to

examine the effect of such extensional flow on the director orientation.

1.4 Extensional Flow

Melt-spinning of carbonaceous mesophase consists of an extremely complex thermal and
mechanical deformation sequence. Nevertheless as the discotic nematic liquid crvstal .
exists the spinneret, it is subjected to 2 uniaxial extensional flow before solidification.
The uniaxial extensional flow is the basic structuring element used in the fabrication
of ﬁea;ly all organic synthetic fibers, such as nylon, kevlar, and acrylic fibers. It is
now widely recognizedész] that the extensional ﬂq:w is the most effective défornial:ion to,
prom.ote molecular orientation that lead to the superior mechanical properties of these“

fibers. Thus in this thesis we also assume that the cha.racteristic microstructural features

. found in the fiber cross-section arise in the section of t.he spinnline where the matena.l is

subjected toa uma.xzal extensional flow. F igure 1-7 shows the deformations of a unit cube

- when subnutted to a uniaxial extensmnal in z direction. Since this extensxon deformation
| w111 mev:tablv mterfere thh the du'ector orientation in discotic nematlcs, it 1s necefsan

“to understa.nd the effect "of such ﬂaw on the chrector {23].

1 4 _
' ' .
. i Umwbeofnﬂmhl:
' a:nmeb-o
ll .
TT 7
s
. i . ) .'

Fxgure 1-7: Deformanon of a umt cube subjected to umaxzal extenszon deformanons m'

:z:dlrectlon E
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Consider the simple inelastic case (K; = Rs = K3 = 0), where the discotic ncmatic
flow becomes purely viscous. The Transversely Isotropic Fluid (TIF) model of Ericksen
[24] is applicable for a purely viscous nematic flow, and reads:

dn; ‘
d—:z: = Wity -+ /\(."1,‘jnj - (.-'-lgk'nmk)n;-) (120)

here A;; a.nd wj; are the rate of deformation tensor and the rate of rotation tensor as

defined above. A is the reactive number A=— ), and for discotic nematics A < 0 {10].

According to the coordinates of Flg 1-7, the welocn:v ﬁeId co*respondmg to the’ unm.\ml
extensional start-up flow. is given by [25]: .

vz = EzH(t);
w o= —SyH@; -
v = -g-zH(t);‘ " - \
Hy = 0PSOl | (L2
1t>0

where ¢ is the constant extension rate. The non-zero components of the corresponding

deformatioﬁ tensor A are: Ay = s'; Aow = Ass =“——£'- this flow is irrotationa.l' and the

rotational tensor wj; = 0. A useful decomp051t10n of the director field n and the rate of

deforma.tlon tensor A is:

n = n-+n;

72

n, = n,j+nk;
:.n” = n,,i; :

A = 55—3_EP ey

(2]
)

where § = i +Jj + kk,a.nd P =jj+ kk Replacing equatlon (1. 21) ‘and. (1 22) 1nto o

equation (1. 20) we obta.m the followmg chmensxonl&s nonhnea.r ordmary dlfferenmal |

Te
L

RN



equation:

dn. 3
e ,§A(ni —1)n;

n, = sign(nz(t‘ =0))y1-n% (1.23)

where € = £t is the strain. The initial conditions are: ¢ = 0; n = mg. Integration -

of equation (1.23) gives the following expression for the director relaxation n(g) for the

" uniaxial extensional start-up flow:

E,-jnjo
. 8 ——-——-;
n-:( ) |E X nOl
njo = 1:(0)
Ey(s) = exp{d; f Ae';
L An _
and in corr:rponent form: ~
. . : 2
’lﬁ\ c - E::::nzro - Ey‘ynyﬂ o E“‘n'o C
L N = = N
| Bl T E-nl T Em

; g E --Ae:cp(j—\.kde) E —E.-—e:z:p(——] )\ds'),I:?,J =0 forz;é_? ) (1.25)

where n,g is the jth component of the initial drrector onentatlon n(0). Smce Ais a

. ‘constant ‘the above equation can be wntten as:
N B —e“‘ Eyy _E.- —:e“f;E;j =0fori#j ., = (1.26)

here € ‘= £ is the strain and € 1s the extension ra.te It is clea.r from equatmn (1.26) |
| 'that since A < 0 for discotic nematrcs, the T component of the d1rector n will decrease
'e.\'ponentlally with t1me while the. -y and z components of n will increase. Therefore the

- .,rela.\atron of the drrector n under extension, as in the melt spmmng flow of carbonaceous
_ .mesophases, will restnct n w1th1n the pla.ne normal to the fiber a:ns whrch is eztactly

| '. the cross-section of the fiber. Thus we are led to the followmg significant conclusrons 1)

16
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1.6 Thesis Objectives

extensional viscous torques orlent the director anywhere on the plane perpendicular to
the extension axis; 2) any cross-sectional microstructure formation in cvlindrical fibers

subjected to extensional flow must arise due to the elastic torques (see equation (1.19)).

1.5 Thesis Scope

This thesis is devoted to simulation of the pattern formation df niclt spun mesophase
carbon fibers. The mesophase carbon fibers is approximated by a monodisperse uniaxial
discotic nematic liquid crystal [12]; the melt spinning flow is approximated by a steady,
isothermal, incompressible, uniaxial e.\'tensional'ﬂbw [25]. Using cylindrical coordinates

(r,8,z), the fiber is approximated by the cavity between two concentric cylinders with

thez direction coincides with the fiber axis.. The outer cylindér represents the surface of
tile fiber, and the inner cylinder represents the isotropic core along the fiber axis.. From
. the results of thé analysis on extensional flow presented above, the director n is restricted
to the transverse plane of the fiber. The main parameters coumdered in-this thesis are the
Frank elastic constants K and K3, which represent the splay and bend defonnatlons of

the director orientation. Both fixed and unrestrained surface onentat;pn of the director

. . | ! X .
are considered in this study. Emphasis is placed on the multiple solutions of the director

 field n('r 8) when varying the elastic a.msotropy COIIdltIOnS due to the changes in the ratlo :
of K1 and Aa | |

a

The main objectives of this thesis are: 1) to reproduce planar textures observedszin

" carbon fibers throug’h ‘numerical ‘simﬁlations based on well-established .theor"‘ies about
discotic nematic hqmd crystal materials, 2) to prowde a comprehenswe cha.ractenzatlon =
of pla.nar onenta.tmn patterns of dlSCOtIC nematics hqmd crystals subJected to extensnona.l ‘ s
ﬂow 3) to 1dent1fy the p\attern selectlon mechanism in melt spmmng process of ma;ophase P ‘

carbon fibers.

b

17

The thesis 'objectiveé are directly motivated by actnakmicrostructiral phenomena. )

er



s

commonly observed during the fabrication of carbonaceous mesophase fibers, as shown

in Fig. 1-2, 1-3, and 1-4.

1.7 Thesis Organization

This thesis is organized as follows:
- Chapter 1 presented the necessary background concepts on the discotic nematic liquid

crystalline materials, including some preliminary analysis on the effect of melt spinning

‘flow on director orientation.

Chapter 2 preseiit’s the simulation and analysis of the pattern formation in fiber

_spinning that explains the planar oscillatory textures observed in the {Taisverse plane

of mesophase ca.;bon fibers (Fig. 1-2). An-analysis on the stability of the numerically

obtained director orientation is also included. The main effects of elastic anisotropy on
the pattern selection are shown using computational bifurcation methods. J

Chapter 3 presents simulation and aﬁajysis of the effect of temperature on the pattern
formation in mesophase carbon ﬁbers The various transverse patterns, shown in Fig. 1-
3 and 14, in dlﬂ‘erent temperatu:e ranges are reproduced and explamed using time-
dependent numenca.l Slmula.tlons . V

- Chapter 4 presents a summary of thm thesm, including conclusmns and contributions

to emstmg theories on pattern formatmn in carbon fibers.

o
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Chapter 2

Pattern formation and nonlinear

phenomena in streched dlscotlc

'11qu1d crystal ﬁbers

2.1 Summary e

_This chapter ﬁresents a nonlinear numerical and bifurcatien analysis of pettern.'forrﬁation"

~ phenomena'in discotic nematic liquid crystzﬂ confined to annular cyliﬁdrica,l cavities and |

subjected to extensional defornqaﬁons. The results are of direct relevance to understand-
ing the indu_stria_llmelt spinning of mesophase carbon fibers, using discotic nematic liquid 3

crystals precursor materials . Three types of onenta.tlon patterns are 1dent1ﬁed in this

study: spatially constant (radial), monotonic (pmwheel), and oscillatory (zig-zag). Nu-

merical and closed form analytical résults predicting continuous transformations between

the radial, pinwheel, and zig-zag radial orientation modes are presented. The bifurca- -

tion enalysis provides ‘a direct characterization of the parametric dependence and the

transitions b'Etween these three basic patterns, and provides a cqmplet;e' understanding

of the. multista.bility phenomena that is present in the oscillatory orientatioii pcittenis

. In general it 1s found that small fibers of nearly elastically 1sotroplc discotic nematic = B
: ,hqmd crystals tend to adopt the classma.l 1dea.1 radial texture, whﬂe la.rger ﬁbers with
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anisotropic elastic moduli tend to vield the zig-zag texture. Fixed arbitrary surface ori-
entation of intermediate size and anisotropy tend to adopt the pinwheel texture. The
theoretical results are able to explain the main features and mechanisms that lead to the

commonly observed cross-section textures of industrially spun mesophase carbon fibers.

- 2.2 Imtroduction

The industrial fabrication of mesophase carbon fibers [1-3] is based on the melt spinning
of discotic nematic liquid ei-ysta.ls into micron-s_ized cylindrical filaments. As in other
cman-made organic fibers molecular orientation is a key parameter that dominates the
mechanical property profile. For‘{ disk-like molecules the distinguishing molecular direc-
tion is the unit normal to the molecula.r disks, and ﬁhe average orientation characteristic
of nematic ordering arises from the close ahgnmeni: of the molecular unit normals. Dur-
ing fiber spinbing, a unjaxial extensional stfetehing flow orients the loﬁgest molecular

dimension of the disk-like molecules close to the extension (fow direction), such that

the average molecular orientation is normal to this direction, and contained in the plane o

normal to the fiber axis. Thus any spun mesophdse fiber cross-section displays a planar X

onentamon A variety of pla.nar onentatlon pattems have been frequently reported in the
 literature, including the onion, radla.l and zig-zag radJal patterns shown in Fig.1 [4 ] The

. Shown patterns contam a line defect anng the ﬁber axis, while the surface orientation is

2 pla.na.r for the onion pattem homeotroplc for the radml a.nd arbitrary for the zig-zag.

It should be noted that in actual fibers the defect gwes rise to 2 macroscopic’ 1sotrop1c
. core, apparently much Iarger than the tvp1ca.l molecular sme of nematic chschnatmns [5]-

The radial zig-zag pa.ttern obsened in actua.l ﬁbers [6] has a posxtlon dependent ampli-

tude a.nd wave-length but the basic te.\'tural feature of mterest is the racha.lly oscﬂlatory

trajectories of the molecula.r planes.

'I'he selection’ mecha.msms that dme the pa.ttem formatlon in mesc)phase ﬁbers spun |
from dlSCOtIC nematlc liquid crvsta.ls are at prese.nt not well understood but due to strong -
structure-propertles correlatxons they are eesentla.l for product Optlmmatlon. On the other

hand, the closel_v related p_r‘oblem‘pf pattern formation in cyhndr_lcal cavities filled mth' ‘

1
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- zig-zag pattem mwolm a blfurca.non of the ﬁm\\ sheel pa.l:tern, a.lso known as the magxc e

.f}‘

Radial Onion Zig-Zag
Figure 2-1: Schematic representation of the molecular trajectories in the cross-section of

mesophase fibres observed during industrial spinning process (Peebles, Pencock et al.).

rod-like nematics is better understood {7, 8. In the latter case, theoretical predictions

using energy minimizing models, are able to reproduce many observed patterns. Below

‘we show that similar elastic minimization mechanisms are able to explain the pattern

formation phenomena in discotic nematic filaments subjected to ideal extensional flows.
- Previous work [9]:on pattern- formation in confined discotic nematic liquid crystals
mainly focused on predictions of the radial and radial zig-zag patterns, using a simpli-

fied linear analysis. The analysis predlcted that-décillatory pattern arises due to the

- anisotropv that characterizes the planar elast.ic deformation modes, but only if the ou'i:er

boundarv condmons are not homeot.ropxc Thus the only transformauon leadmg to a

spiral [3], in which the molecular tra_]ectones follow.a pumheel pattem (see Fxg 4). This
is obviously in msagreement with experiments [6] where the surface onentatwn can be.
arbitrary and in fact it is lll-deﬁned [6]. In addition. the hnear ana.Ivsxs of [9] is only

 valid for small dlrector distortions, and it also predicts unbounded oscxllatlons for certmn ) |

critical values of the fiber radius, which is aga.m unphysical. The above shortcomxngs X

mdxcate an incomplete knowledge of what parameter emeIOpes lead to specific patterns f'? "
in stretched discotic nematic hqmd crvstal filaments. To’ de\elop a complete pxcture of

pattern formatzon m conﬁned dxscouc nematzc hqmd crvstals here we focus on onem:a-‘ '

'mon patterns that anse from'all poamble contmuous transformanons of :he 1dea1 racha.l & __
pattern, in which che molecular discs follow radial trajectones (see Flg -l) o addmon. - e
since the i xsotroplc cores found- along the ﬁber axis are in pracnce of macroscoplc sxze, we"' B s

-"'studv confinement in an a.nnula.r geometrv ’61
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For rod-like liquid crystals, previous work on planar textures of confined nematics
in cylindrical cavities [10] proved the existence of spatially oscillatory solutions to the
equilibrium equation, and also established the stability properties of the solutions. In [10] .
it is predicted the existence of an infinite number of oscillatory solutions for homeotropic
boundary co'nditions when the two relevant splay-bend elastic constants are different,
which in general disagrees with the’multiple bifurca.tion and multistability phenomena
in cylindrical confined geometries as shown helow. Analysis of the linearized model for

confined rod-like nematics in cylindrical cavities [11] shows oscillatory solutions for non-

homeotropic bounda.ry conditions. However, due to the shortcomings of linearization,

the b‘ifurcation_ and multistability phenomena, due to non-linearity of the elastic free
energy model, remained unexplored. In this chapter, rv-e overcome the above mentioned
shortcornings of previous works and give a complete analysis of planar te.\'tures of conﬁned
ne'lnatics in cylindrical cavities. Non—planar pattern formation as well as planar pattern

formation with off-axis smgula.ntles in rod-like nema.tlcs confined to cylindrical ca.vxtles .

* have also’ been charracterized using energy minimization model [19] Neverthel&ss these

. works do not consider the planar patterns studied here.

" The objective'of thl's'chapl:er is: 1) to reproduce and e\'plein the main pattern forma- -
tion phenomena that are observed dunng the spmmng of carbonaceous mesophase usmg

well establxshed hqmd crystal ela.stlcxty models, 2} to prowde a comprehenswe charac-

‘ tenzatlon of pla.na.r onentatlon patterns of dlscot1c nematics 11qu1d crystals sub;ected to
‘extensional ﬂow and 3) to establish the main blfurca.tmna.l a.nd non—lmea.r phenomena

- present in discotic nematlcs in cylindrical cavities.

ThlS chapter is orga.mzed as follows. Sectlon 3 dea.ls w1th the elastic modes of discotic ’

s ‘nematxcs and discusses the elastlc amsotroples in planar onenta.tlon patterns Section 4
| . ~presents the mathematlcal model that descnbes steady state. pla.na.r orientation patterns |
. _‘ i in cylmdnca.l ca.vxtles in the prosence of ﬁ}red bounda.ry condltlons Equations that val-
| lldate the plananty assumptmn m the presence of extens:onal (ﬁber spmmng) flow are
A presented Sectzon 5 presents the numerical results and dxscussmn The results are orga- |
o f_mzed and classxﬁed a.long the values of the governmg pa.rameters Closed'form bifurcation ‘
- thresholds bxfurcamon dxagra.ms, a.nd stablhty d1agra.ms are presented A summa.ry of o

2



the main features of the pattern formation phenomena is also included.

2.3 Elastic Modes of Discotic Nematics Liquid Crys-
tals

In this section we describe the main features of nematic elasticity for discotic nematics

in cylindrical cavities displaying planar (2D) textures, and use them to identify the

~ elastic modes in typical mesophase carbon fiber textures. Figure 2-2 shows the molecular

geometry, positional disorder, and uniaxial orientational order of the model uniaxial |
discotic nematic liquid crystal considered in this chapter {5]. The partial orientational
orderi_ng of the molecular unit normals u is along the average orientation or director
n (n-n = 1), and differs from that of rodlike molecules in that u is along the shortest

molecular dimension. This geometric difference is the source of the reversal in the ordering

of viscoelastic [13, 14] as well as other properties [2], that arise when comparing disk-like

and rod-like unia_'\'ial-nematics_. "This chapter is restrieted to the study of planar patterns,

' containing splay and bend deformations [5]- Fignre 2-3 shows the splay mode 6f rnodulns_

KI,\fmd the bend mode of modulus K;. Note that in contrast to rod-hke nematrcs,
“for- tuslx-hlxe nem’;mcs the bendmg dlsk’s tra_]ectones gwe rise to splay deforma.tlon (left |

ﬁgure) and the splaymg disk’s trajectories: gwe nse to bend- deformatxon (nght ﬁgure) ;

by dlSk trajectory we mean the curve locally orthogona.l to the dlrector Usmg a crrcular S
. cylindrical coordma.te system (r ¢, z), the z-coordinate i is along the fiber axis, and the

transverse plane is spanned by the aznnutha.l dlrectron of (¥) a.nd the radial (r) dlrectlon,‘

here 0< P < 27 and 7. S r < 7, where Te 1s the rsotroprc core radms, and r,, 1s the .

~ outer radius which for typ1ca.l mesophase ca.rbon fibers is in the micron size range. In :

thls cylmdncal geometry, the statrena.ry rachally dependent planar dlrector ﬁelcl of Fig. 1 o

. can be parametXized as n(r) (n,,n,;,,n-) = (cosf,sin 6, 0), here . =0 means pla.nar‘ . | -

| orientation and absence of twist deformatrons [5] Flgure 24 shows schematxcs ofa R
radial transverse texture (left) and a radial mg—zag texture(nght) typlcally observed in -
mesophase ca.rbon ﬁbers [4, 6] The full lines mdrcate the disk’s trajectones, wh1ch are_'_‘-_' L
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o texture: bv a ng—zaggmg duector ﬁeld [9]

2 4 Govermng Equatlons

locaily orthogonal to the directors. Based on our previous discussion. it follows that the
radial texture of a uniaxial discotic nematic, defined by ny(r) = land re £ 7 < 7o,
contains a pure bend mode. On the other hand, a radial zig-zag texture cousists of a
mixed splay:-bend deformation mode, and in addition n,(1) # 1. A comparison of the
two schemancs shown in Fig. 24 mdlca.tes that if the radial zig-zag texture is selected
over the pure radial texture then the tradesoff of bend by splay in the oscillatory pattern

must be energetically favorable, as quantitatively shown below.

Fxgure 2-2: Orientational ordeting in the uma.x]al discotic nematic phase. The molecu— "
-lar normaJs u of the randomly posmoned dlskhke molecul&s partially orient along the-
dn'ector n. : :

E For low molecula.r mass dxscotlc nematics, theory [13] and expenment [la] show that

Ky > Kg An increase in- the molecular weight of disk-like nematics, just as for rod—
like nematlcs [16] can be ecpected to: reverse the ordenng of the elastic constants, so

:‘that for hxgher molecula.r weight discotic nema.tlcs, hke carbonaceous mesophases, we
o can expect Kg > In Thus Just as polvmenc rods avoid: the spla\ of the radlal texture

by mtroducmg director oscﬂlat:ons 10,11}, ‘polymeric disks avoid the bend of the radxal

o To estabhsh the ongm of planar onentatlon textures we: first discuss the eﬁ'ect of an- ‘ |

N extema.l extensxonal ﬁow in the ,.-dn'ectzon on the t.exture formamon in the Y7 plane.' "

HE N
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Figure 2-3: Schematics of the elastic splay deformation . (left) and bend deformation
(right) for uniaxial discotic nematics. Note that the splay (bend) mode involves bending

(splaying) of the disk’s trajectories, in contrast to the case of uniaxial rod-like nematics. .

A disk trajectory is a curve locally orthogonal to the director.

The non-zero components of the rate of deformatron tensor A;; for an extensronal ﬂow

are {17} A--‘ = -4, =§ where £ is the extension rate, and the vortrcrty tensor for

| this u-rotatronal flow i is W =0, At steadv sta.te, the vrscous torques I'” acmng on the -
dlrector are I ™= -nx (1A n), where the " is a torque coeﬁicrent [5] Asis welI known :
| [18] in this flow the stable drrector onentatron is normal to the extensron drrecnon (1 e - "‘ :
transverse ¥ —r plane), and thGIEfOre I"’ =0. Thus the net effect of the extens:onal ﬂow ks ‘
on the texture formation is to keep the drrector in the xb— r. transverse plane. Therefore, B L B
" we may conclude that, given sufﬁcrent long process tlmes as compared to reonentatxon ” |
| tunes, the transverse radial zrg—zag pa.ttern is selected by the mrnumza.tron of the splav-' ,:'
bend elastic free energy per unit fiber length If the mequahtv in the time scales does o |
 not h°ld the assumptron of planantv does not genera.llw hold In ‘actual tvprcal ﬁber;__, ot

‘ spmmng process there is ample evidence that shows that the process tune 1s greater than"

the drrector reorientation trme, so that the planar onentatxon assumptlon is realrstrc. and; LI

""'a.lwavsobserved [4, 6] C

Since the viscous' torques I"’ due’ to the extensronal ﬂow ax:tmg on the drrector n;"
; "vamsh with planar onentatron (n. = 0), the selectxon of t.he pattern rs Just drctated byif o

a mmxmrzatron of the Frank lo] elastxc energ:- due to a: most splav a.nd bend modes i

W
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Figure 2-4: Schematrcs‘ of a planar radral pattern (PR), the planar pinwheel pattern

(PPW), and the planar zig-zag radial pattern (PZRi; i=h: homeotropic, i=n: non-
‘homeotropic). The text below the schematics summanzes the main features of each

pattern.

. The iequilibriurn equetiorr for the director of discotic hemé.tic liquid crystals is derived |
~ from the extremum condition of the free energy Smce there are no twist deformatlons/J
in plana.r onentamon, the Frank elastrc energy densrtv reduces to [5] R .

f——{Kl(V n)2+K3(nxvxn)2} | B '(2.1‘) .

_ here n rs the curector \Tote that saddle-splav elasticity (Kn) plays no ) role in planar _

patterns "Thus the tocal free energy is g1ven bv.

_F=Lﬂw.” R 22

+ o whereQis the total volume Expressmg the drrector nin terms of mdependenr, vanableﬁ

o ‘_,'.:.q,T and: t.akmg the ﬁrst vanatlon of the total free energ} mtegral we, obtam the Euler-:

s I_agra.nge equrhbnum equatron o o o
w;wf foooe

[}
.
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where the 7 = 5% and n' = %‘%. We assume that the pattern is rotationally symmetric
£ T . -~ )
in the cross-section 7> — r plane, such that the director n would be only a function of the

radial distance (r) from the axis of rotational symmetry. The total free energy is:

F= /L Foudr | | (2.4)

“where

m’ ! . .
Foy =2 fﬂc frdr =2 [uc e (n, d—n,u) du. ey

du

is the free energy per unit lengthl; and u = in (i) Equation (2.4) and (2.5) show that
the numerica.l'va.lue"of the total free energy per unit length depends on f. In polar

coordinates, the director n is expressed by the polar angle ¢ as:

a@) = (cosdsing,0) - (20)

where ¢ is positien dependent, ¢ = qb(u), and the unit length restriction n-n =1 is

‘satisfied. In terms of the generalized variable u, the ét;uilibrium equation beco_mes

af d of
0¢ dudg’

where the pnme denotes differentiation w1th respect t0 1. Thxs 1s the govermng equation

L Lo @D

in this analysis. Usmg the expression of n of (2.6) in (2.3), w.e‘have, .

. J = 521- cos® ¢ — 2¢'sin ¢ cos  + ¢ sin® @}
Taking fhe‘_variatidn of above éxpressiop of the free energjr"ci_epsity,' we obtain the

equilibn'um' equé.tjoi;, . ' L L

| sm¢cos¢{—K1 + K3}+sm¢cos¢{—K1+Ka}¢ 2

+ {-—Klsm ¢ Kgcos"’qb}tﬁ =0 (29

4

toey

29

{ ‘
{sm2 q5 + 2¢' sin ¢ cos ¢ + ¢ cos? o} . ‘ .(2-3) ‘l
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Scaling with K3 we get:

singcos ¢{(1 — p)(1 + ¢”%)} ~ {cos® ¢ + usin® ¢}4” = 0 (2.10)
here = —E-;— The boundary conditions studied here are:
wep
u(uo) = o \ (2.11)

The solution to (2.10, 11) is ¢(u) and the parameter vector is p = (u, é(u,), Au). The

deviation of x from 1 denotes elastic anisotropy, the deviation of ¢(u,) from #(0) intro-

- duces asymmetric boundary conditions, and Aw is a scale of fiber size such that increasing

(decreas_ing) Awu represents smaller (lméa) fiber cavities.

The equilibrium equation (9 10) is a nonlinear second order ordinary diﬁ‘erentiel equa-

lthn For symmetric bounda.ry conditions of 4;5(0) (u,,) = (¢(O) é(u,) = 0}, the
trivial solutions of 6= Z(6=0) exists for all values of p- For asymmemc boundary

" conditions, i.e. ¢(0) # ¢(1), previous work [9] has shown the existence of oscillatory

solutions when the elastic constants are not equal (u # 1) using a linearized ethbnum

N equatlon Here we complet;e th;ls worL by can'ymg out a full analysis of the nonhnear
' equa.tlon (2.10). | ' L |

leen the posmblhty of multlstabﬂxty a.nd solutlon multlphmtles genenc m nonlmea.r ’

o equa.tlons we compute all equilibrium pomts of equation (2.9) using an efficient root
 finder based on the shooting method [19]. Briefly, we rewrite the governing equation

(2 10) as two first order differential equations svstem

[§]

& = v

o = ('—ﬂ+1)-slin¢cos¢(1‘+¢2”) . ) .2
v psin®g+cos?g . (21 )
. "_[‘he'_boum‘:la.r:,.r conditions a_'ré;
' T
¢(0) = -
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¢(0) = p (213) |

where p = ¢'(0) is a2 new parameter. By introducing the new parameter p, we consider
the value of ¢(u,) as a function of p. once p is fixed. We next perform a numerical study
using 2 fourth order Ronge-Kutta method {19]. By solving for p for a given value of ¢(u,),
we are able to find all the stable as well as unstalgle solutions of equation (2.10). The
numerical stud\ identified all the solution branches and thcll‘ parametric dependencies

on the outer boundary condition ¢(u,), and elastic anisotropy p, for a given value of u,.-

2.5 Numerica_l Res_ults and Discussions |

"+ The numerical solutions found in this study are naturally classified and characterized by

the syminetry properties of the director field. Figure 2-4 summarizes the classifications -
of the three classes of planar patterns arising in discotic nematics in annular cylindrical
cavities with surface orientation at the inner radius i’r.ted at 3. Below each descriptivc' '
name (radial, pmwheel zig-zag) we show a sketch of the onentatlon proﬁlcs, a.nd the

main signatures of each pattern The planar rad1a1 (PR) pattern has a  pure bend de-

forma.tron and the ‘outer bounclary condition is homeotmplc ($(uo) = ) The plana.r' L

pinwheel (PPW) pattern, also known as the ma.gle sp:ral (5], has monotonic splay-bend
deformatrons and arise wrth non—homeotmprc (d(us) # 3) boundary cond1t10ns The
pla.uar z1g-zag radial (PZRI) pattern has periodic Splay-bend deformatrons and may oceur
with ‘homeotropic (i=h) or non—homeotroplc (1-n) outer bounda.ry condltlons Figure 2—5.
shows a block d1agram that summarizes the transformatron paths between the three ori-
enta,tlon patterns. The figure shows that the rad1a1 pattern can be transformed into the
pmwheel pattern by changing the outer surface orientation (T1). The radial pattern ca.n‘
also be tra.nsformed into the homeotropm mg-zag radxal pattem (PZRh) by temperature _

\ .
changes (mcrease in elastic amsotr0py) or by i mcreasmg the ratxo between the outer and -

" the inner radms (Aw). Srmrla.rly, the pinwheel- (PPW) pattern can be tra.nsformed into
. a non-homeotroplc zig-zag radial pattern. (PZRn) by the cha.nge in temperature and by

' mcreasmg Au. The tra.nsforma.tlon between homeotroprc and non~homeotrop1c patterns )

31



’ are achieved by changing the outer surface orientations.

R
f

PR

PPW

PZRn

=23

. Figuré 2-5: Block;diagfam of the transformation paths b:etween plariar radial (PR),
planar pinwheel (PPW), and planar zig-zag radial (PZR) patterns. T; corresponds to

- . surface orientation change, T corresponds to temperature change, and T3 to fiber radius
change. - _ = : | :

Figure 2-6 shows a summary of numerical simulation results of the orientation ¢(rad.) |
as a funf;_tion of dimensionless distance u, for Au = 1. These fesults summarize the T; -
a.nd T, transformations. S'ta.tting‘from'the top left, the panels fdwa.rds the right cor-

-respond to increasing elasti_c'a.t_ﬁs_,otropy (u = £} and the panels towards the bottom
. "~ tcorrespond to increasing values of ’dut;er cylinder surface orientation (¢(t,)). The ori-
" entation cha.ngés in the aiﬁ'erent'panels of phe:ﬁgure clearly reflect the transformation -
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Figure 2-6: Summary of representative solutions to equation (2.9) for Au = 1, and dif-
ferent parametric conditions. Symmetric boundary conditions (top row), asymmet:nc
boundary conditions of ¢(1) = 1.9(rad) (middle row) and asymmetric boundary condi- §
tions of ¢(1) = = (bottom row). For elastic anisotropy, p > 1 (left column), p'=1. (left
middle column), 1 > u > pic; (right middle column), and g < g,y (right column)..
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column) and Az = 3 (right column), for different outer boundary orientation, ¢(us) = Z
(upper row) and ¢(u,) = 1.77(rad) (lower row). Here p = 0.15 is fixed for all cases. .
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paths shown in Fig. 2-5. Moving towards the left in the top row corresponds to the Tw
transformation of the radial pattern (PR) into the homeotropic zig-zag radial pnttern
(PZRh). Moving towards the left in the middle and the bottom rows correspond to the
Ts transformation paths of planar pinwheel pattern (I:’P\}r ) into non-homeotropic zig-
zag radial pattern (PZRn). Moving down corresponds to the T, transformation between
(PR) and (PPW) patterns(left column), and also.the T, trnnsfornmtien between (PZRh)
and {PZRn) patterns (right column). | |

Figure 2-T shows the corresponding summary of the Ty and Tj transformations. In
Fig. 2-7 the elastic anisotropy is fixed at p = 0.15, and left column represent the patterns
for Au = 1, while the right column represents the patterns for Au = 3. Moving from
top to bottom in ithe left column corresponds to the T, transformation between (PR)
and (PPW) pattern, and moving vertically on the right column corresponds to the T,

transformation between (PZRh) and (PZRu) pattern. Moving on the top row corresponds

to the transformatlon T3 between (PR) and (PZRh) patterns. Moung along the bottom )
Tow corresponds to the transformation: T;-, bet\\een (PPVV) and (PZRn) patterns.

a7

2.5.1 Solutlons W’l’th symmetrlc boundary condltlons

With symmetric homeotrop1c bounda.ry condltxon of ¢(0) ‘qb(l) = Z, the mchal (PR)

solution (¢ = %) exists for all g, as shown in the prevmus section. Forp>1,p=1and"

1> ® > U, the tnwa.l solution is the umque solution of the equatlon where pe denotes :

a cntlcal value of elastic a.msotropy The stability of the radial solutlon will be d.lscussed o

later in this sect1on

Multiple ‘oscillatory solut.iolns,'. representing the homeotropic zig—zagira.dial: pattern . °. |
(PZRh) are found when the ratio exceeds a certain value of u.. For Au = 1, we' found
‘"the cntzca.l value of p. = 0. 092, , .
’ Flgure 2-8 shows a section of the bifurcation diagram, presented as the onentatlon = :1
amplitude (max|¢|) as a function of the elastic Znisotropy of j. The. horizontal (z_ero . B
a:mplitude) line rebresents the raaie.l (PR) solution'an'd'the five curves represent memb'ers o
_of the PZRh fa.mﬂv. The first blfurcanon branch A represents an oscﬂlatory solution ‘
w1th half-wa.velength The blfurca.tlon occurs at u = 0.092, and the amphtude of the -
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Flg—ure 2-8: Bifurcation dlagra.m -’mehtude of oscﬂlatory solutions as a functron of the

' elastic anisotropy u, for Au = 1 and ¢(1) = Z. It shows multiple solution branching

and finite amplitude growth as iz decreases The hOnzontal line corrésponds to the ideal
radial (PR) texture, while the brfurcatlon branches correspond to the oscillatory zig-zag -
radial (PZRh) texture. For p < 0. 092 the PR solutmn is unstable. For 1 < 0. 0‘78 t;here o

.are multiple oscillatory solut1ons

| solutron ETOWS as i decreaaes. At ,u = (. 095 the system blfurcates agam a.nd generates ’
a new osc:lla.tory solution branch B with one, full wavelength. As u decreases further,

‘more branches are generated representmg solutrons with one-ha.lf-wavelength C,: two- .

wavelength, two-half-wa.\ elength and so on. Frgure 2-8 clea.rly shows the strong non—lmea.r

featureb of the model w1th tvpxca.l multlple b1furcat1ons of the spatla.lly constant solutron
. '(PR) into a famllv of :,pamaJJy oscx]latorv solutlons’(PZRh) at critical va.lues of elastic

amsotropv ratio ;.z,,,,, (n = 1,.., .) . For a gnen By the number of the mtersectlons-

. of the amphtude cunes w1th a vertlca.l line gives the number of solutlons, which’ for
" Au = 1 consists of PR and PZRh pa.tte.rns The figure also implies tha.t Hen = ,uc,,,.,.l |
'1s a monotomcalh decreasmg functmn of- n, and the hm,,_m Hen = 0, mdlcatmg that L

* the number of oscx]latorv SOhlthD.S dnerges as the elastlc anisotropy vanishes. Another

“.)
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important feature of the figure is the amplitude ordering and amplitude growth with
decreasing u. The amplitude of the shorter wave length mode is smaller than the bigger
wave length mode. As typical of non-linear systems the amplitude growth is bounded.

Figure 2-9 shows the director orientation ¢ as a function of u, for ;2 = 0.01. in which

there are three solutions of PZRh (A,B,C) and one solution of PR (D). Figure 2-10 shows

the eleven solutions for x4 = 0.001. . As the figures show, by changing p from 0.01 to 0.001,
the number of the oscillatory solutiens has increased from four to eleven. One can expect

that as u approaches zero, the number of branches will increase to infinity, meaning there |

will be infinite solutions to the equation. However, at any given finite value of pt. there

- are only finite number of solutions to the system. Note r.han F1g 2.9 and Fig. 2-10 show

that the solution with h1gher frequency has

(=]
ST A
@ |
= B
g- © - ‘C
S ' = ¢
<] -
o | -
00. .02 04 06 08 - 10 s

n
[ -

. Figure 2-9: Director onentatlon ¢('rad) as a functuon of dlmentlonless dlsta.nce u, for '
Au =1, g4 = 0:01 and ¢(1) = Z. Curve D denotes the PR solutions while curves

A, B, and C are members of PZRh famﬂy The four solutions correspond to the four

intersections of the horizontal line C with the curve’in Flg. 211, for f,b'(O) > 0 'I‘he t.hree :

: mm-or 1mage oscﬂla.tory solutlons are not shown. e

. '- ‘:)'

'smaller a.mplitil_de than those with :lower ﬁequéﬂty, which is a very important feature of N
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. o Figu‘lr'e 2-10: Director 6rien1:é.tion d(red.) as a fuﬁction of dimentionless distance u, for

. “Au =1, p = 0.001 and $(1) = %. For this relatively small value of u there are ten
. oscillatory solutions (PZRh) -and the radial (PR) solution. Again, the mirror image

oscillatory solutions are not shown for clarity. Note the significant increase in the number

~ of solutions as y changes from 0.01(Fig. 2-9) to 0.001. .

. thesystem.

'As desciibed in'the previous _s‘ectiO'I:I, th_é_soiutions are found by solving the extended

. system of equations (2.12) and initial conditions (2.13): In order to find all the solutions
T e il:he‘s'ystem, we plot in Fig. 2-11 the functional dependence of (1) — (0) on ¢'(0), ’.

Y

T for p'= 0.01. 'I'he various horizontal lmes édrrespond to various values of $(1) — .¢(O)."
o : The liné C rgpreééntslthe symmetfic ‘bounda;"y conditions s_tudiéd mthls section (line A
g a.nd B are dxscussed below), for which ¢€(1) = l¢(0) = %. To find the nﬁhlber'of $olut_ions )
;':.;""‘:-_--‘_ g one can sunplycountthe iﬁfe‘réeétibns_bf the horizontal lines with the.curve. For line C,

therea.reseven slolutipnsi.:_on‘e .trivia.l“so'l.ufion (PR), three oscillatory soiutioz_ig (PRZh) :

" with positive initial slop, anid their three mirror images. (For brevity, we only show the’

" oscillatory sblutions with ¢/(0) > 0 in Fig. 2-9): Tt is clear from Fig. 2-11 that the above

- solutions are all the solutions of equation (2.9) for 4 = 0.01'and symmetric boundary

A

-~ . . . o
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- “dlspla.ymg 2 radaal mg-zag texture (see Fig. 2-1 a.nd Fig: 7 of [6])

conditions. o

To compare simulations with actual fiber textures (see for example Fig. 2-1 and
[3, 4, 6]), it is useful to plot the molecular trajectories, i.e., the curves that are orthogonal
to the local discotic director field. Siinilar to the streamline in fluid dynamics, the
trajectory satisfies the geometrical relation: tan(y)% =r, where ¢ = ¢ — %. To find the
trajectory 8(r) we integrate the above diﬂ'erentiai equation using the previously computed
director field #(r). Here 8 is the usual polar angle in cylindrical coordinates. Figure 2-12

shows the scientific visuahzations of the curves A, B, C and D in Fig. 2-10. The presence

- of spatial oscillations are clearly seen. In visualization A it is seen that the disk start

With Zero angle indicating that the director angle is E' The trajectory shows an increase
and then decrease of the director angle, ending at the outer boundary with the same
a.ngle as ¢(0). In ﬂsua.hza.tlon B, corresponding to the solutlon with one full wa.ve-length
in Fig. 2~10 the oscillation is more visible. In visualizations C a.nd D, there are. more‘
oscﬂlatlens hut with smaller a.mph*ude ‘

- Next we discuss the solution branching a.nd texture beha\nour of the PZRh pattern
for Au = 2. Since u(rc) =1, this increment of Au corresponds to a larger outer radms .

Fxgure 2—13 shows the dll‘ECtOI' onentatlon as a function of u, for = 0. 005 correspondmg _

g0 four members of the PZRh family. ‘The figure shows that the main features of thc.‘:.;.:.‘_.:: L
‘ 'rosc1llatory solutlons remain invariant. For this parametnc va.lue we show four penodlc ..

| ‘ solutlons, agam with higher a.mphtude correspondmg to Ionger wave-length Companng

the solutlon A in Fig. 2-13 to solutlon Cin F1g 2-10, it is seen that i increasing Au results

in a.mphtude growth Aga.m to compa.re the theoret1cal results to actually patterns, we‘l i

use wsuahzatmns, computed as descnbed above. ‘We note tha.t in the \nsuahzatlon we

- "have, mthout loss of mforma.tmn kept the outer- radxus ﬁxed Flgure 2_14 sh ows four__'_."; s

visualizations (A,B C D) of members of the PZRh fa.mlly, correspondmg to the dlrector _';‘r ,:_': |
lPIOﬁleS ShOWIl il Flg 2-13 The multlple solutlons suggest multlple conﬁguratmns for, ::"5‘ i

| .. fthe same set of elastic constants K and K3, wh.lch in reahty would mean’ abunda.nt',;l‘y:"_;.:'f

| oscﬂlatory patterns. In those dlSk tra.;ectones, we can see the ﬁmte amphtude oscxllatlonf e

“ that certa.mly captt.res the basm featurw of the cross-sectlon of a mesophase carbon ﬁber
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Figure 2-11: Functional relation of the outer boundary orientation ¢(u,) and the initial

slop ¢'(0), for Au =1and p = 0.01. ¢(1) — $(0): O(full line C); 0.120(long dashed line
B); 0.298(short dashed line A). Solutions to any value of outer boundary orientation can -
be found by drawing a horizontal line at the:given value of ¢(u,), the initial slop of the

solutions are given by the.intersection of the line and the curve.

To estabhsh the actual observabmty of the predicted spat.lally oscxllatory radlal zig-

zag patterns, we- have to determine the stability propertles of the numerical solutmns to

fequatm_n (2.9). The most efficient way to examine the sta.blhty of the solutions obi;amed -

order,weget o - ' o , B

is to compute the second variation of the free energy integral [20] By setting ¢(u) =

¢ (u) +5¢(u) and e.\'pandmg the free energy F' in power series of §¢(u) up to the second

ot

AF = f (6" +66,6" + 54) - (8", ¢ Ndu= (BF) + (F)+--- . (214),

where o
| of daf, . . _ .
(6F)1 jﬂ[ag e, . @1

- £
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Figure 2-12: Director orientation qb(racL_);__a_;:f function of dimentionless distance u, for =~

"Au =1, p = 0.01 and ¢(1) = %. Curve D denotes. the PR solutions while curves

.~ A, B, and C .are members of PZRh family. The four solutions correspond to the four

intersectjons of the horizontal line C with the curve in Fig. 2-11, for cﬁ'(O) >0. Thelt‘hr.ee g

mirror image oscillatory solutions are not shown.

-
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" Figure 2.13: Director orientation ¢(red.) as 2 function of dimentionless distance u, for
cAw =1, p=0. 001 and ¢(1) = Z. For this relatively small value of x there are ten

' and :

oscﬂlatory solutions (PZRh) and the radial (PR) solution. Again, the mirror image
oscillatory solutmns are not shown for clarity. Note the mgmﬁcant increase m the number
of solutions as u cha.nges from 0.01(Fig. 2- 9) to 0.001.

82f
8604

where (6F)1 is the ﬁrst vanatlon of the free energy, and (JF)z is the second variation. By

2
6¢6¢+3f

(P = /[ (6¢)2+2 6 et i 19)

“;Iettmg (6F)1 =0, we find the extrerum free energy conﬁguratlon ¢*. Therefore, the sign

- of the’ increment AF coincides with the 51gn of (é'F) ‘Replacing f. from equation (2.8),

- we obtam the followmg mtegra.l

| (J_F)é = f{[K3 ~ K](cos 26 — 24/ sin2g — ¢ c0s28)(G9 |
\1&{/2 +[K3 - Ki](zcos 2¢ —'42¢;b'siﬁ'2¢)6¢6¢' o (2.17)
R +(K1 ¢ + K cos? ) (545 )2}du _'

i
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Figuié 2-14: Sgientiﬁc visualizations of disk trajectoﬁés for the oscillatory zig-zag (PZRh) |
solutions A, B, C, and D, shown in Fig. 2-10. The trajectories represent lines (of constant

‘orientation) parallel to the molecular disks. Multiple oscillations are visible in B, .C,;a.nd_;

D.
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Evaluating the integral for each of the numerical solutions, we compute the second varia-
tion of the free energy and thus are able to determine the free energy increment induced by
an arbitrary small perturbation. Fig. 2-15 shows the second variation (6F); as a function
of the amplitude ef an oscillatory solution belonging to the PZRh patterns. The paramet-

ric conditions are z2 = 0.001 and Au = 1. The dots in Fig. 2-15 are second variations of

. the oscillatory solutions whose director profiles are shown in Fig. 2-10. The figure shows

that the second variation is always positive. Therefore, based on the argument above,

all the oscillatory solutions are locally stable to small perturbations. We ma.y; conclude -

that the oscillatory trajeétories‘are the stable configurations for this type of boundary

condition, thus proving abundant multistability. As'in other non-linear systems that

exhibit multistability, a specific member of the PZRh family will be selected if the initial

conditions are included in the domain of attraction of that particular solution. Since

- the domain of attractlons of the vanou:\solutlons are function of (p, Au, gb(u,,) 43(0)),

particular Initial texture may evolve to different members of the PZR fa.mﬂy, accordmg

' to the govermng parameter values.

The second Va.natlon method is successful in establhshmg the stablllty of the oscil-

'latory solutions, however, it fails for the trivial solution. In the mtegral (9 16) one

ca.n see that substltutmg the tmnal solution glves ¢" = constant, d¢ = 0 and é¢’ = 0,
a.nd thus the mtegra.l will be zero In fact, for the tnvxal solutlon any variation wﬂl be

: 1dent1cally zero. Therefore we can not determine the sta.b1hty of trivial solution under

any given pa.ra.metnc condltmns usmg this method and have to use a.nother ana.lytmal o

method. Consider 2 small perturbatmn on the constant solution [10],

8w =T +50w),

Iz

(218)
.{vl;ere d(u)is a small pertufbetiOn which_setisﬁes
5(0) =0 . @)

- Sft‘xbstitut_e}(2.18) into equation (2:8) ‘and expand :the result, then the energy density |
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Figure 2-15: Second variation §F of the free energy as a function of the a.inpliﬁudc for the

. oscillatory mg—zag (PZRh) solutions shown in Fig. 2-10. Since §F, > 0 the oscillatory zig- T
. zag solutlons 25e all Iocally stable, thus provmg the presence of multlsta.blhty phenomena.

dlfference to second order is gwen by:

- K‘(52+25'6+5'2)+K3(-62 w) . (220)

Applying the above expressioﬁ in the freé energy 'integ'ral, using integration by parﬁs, and'

taking into account the bounda.ry condition of ¢ (u ) the difference of the total free energy

 will be

AF

[ fzdu

[

vty

= -2 [ (& - K)d - chS"}Jdu

o Ifthe above mtegral is positive, then the conﬁguratlon is stable to small perturbatxons If

¥ P

s

..:'_45

= / {K (62+266' 5'2)+K3(-62;256')}du _'(2.‘72'1)

r



the integral is posi.tive, it means any small perturbation will increase the total free energy,
thus the constant solution would be a local minimum of the free energy and therefore is
stable to any perturbation. To determine if the integral is positive, we therefore consider
the following eigenvalue problem:

K~ K;
—

§— %la" = A, ' C(222)

with the boundary conditions of §(0) = §(1) = 0. When the above eigenvalue problem

o

has positivg eigenvalues, that is A > 0, then the free energy integral becomes
17, o |
=3 [ {(By ~ Ks)6 — Kad"}odu = [ Wie - (223)

which is positive definite, and we can then determine the stability of the configuration

based on the previous argument. Solving the eigenvalue equation, we obtain:

= l{K — K +H (lh (=12, 3,--!) | (229

a

It follows that if A < 0, the pure bend (radlal) structure wﬂl be unstable to any sma.ll :
| perturba.tmn We' ﬁnd the stablhty threshold of the radial’ te.\ture is:

{',

.1 ..
1 + (2’;)2 ’
| Puttmg Au = 1 and n» = 1 in the above mequa.hty, we find p; = 0.092, which is equal to
the va.lue of 7] correspondmg to the bifurcation point found numenca.lly, reported above
in this sectlon A compa.nson of ana.lytlca.l values a.nd the numenca.l values of Hen s

shownmtheTableI o ;

{5
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Table I: Elastic anisotropy () thresholds for birth of oscillatory modes

len | theoretical value | numerical velue
n=1 0.09199 0.09200
n=2 0.02470 0.02500
= 0.01113 0.01127
n= 0.006293 0.006265
n= 0.004036 0.003999

The excellent agreement validates the correctness of the numerical results.

According to the general theory of eigenvalne problems, the eigenvalues obtained

for equation (2.22) present the values of A, at which nontrivial solutions can be found. -

The e.\'istence of nontrivial solutions for these values of )., which corresponds to the

valnes of pi¢qn, arise from the bifurcations of the constant solution branch at these pomts

The exact correspondence between the eigenvalues and the blfnrcatlons is the reason
behind the consistency between a.na.lytlca.l and numerical results, as shown in Table I.
In addltlon the small a.mphtude oscﬂla.tor}r solutions can be closely epproumated by-
“the correspondlng elgenfunctlons denved above. A dlscussmn giving the ma.thematlca.ll.

details of the eigenvalue problem ds gwen in the Appendl.\ - .
Accordmg to the inequality (2.25), tne value of pic, depends on Au For all Au, ,uc,

is always a posmve number and picy < k, where k<1 This means the bifurcation

will hot occur as soon as K, < Kj, instead, the trmal solutlon will still be stable untxl
the ratio —-‘- exceeds a certain cntxca.l threshold #:,1 ‘As Au mcreases, }tc1 increases
accordingly. So, for Au > 1, 'the critical va.lue of pcy can be very close to\} Therefore
for relatwely la.rge ﬁbers, a small elastic amsotropy of the type studied here (,u < 1,

- that is, the bend constant larger than the 5play constant) will induce a blfurcatlon m‘ o
 the equation (2. 9) correspoudmg toa transformatlon between the radial texture and the o

"mg—zag rachal texture. Th1s is a reason. for the frequent observa.tmn of oscllletory zxg-zagl

te.\'tures in actual mesophase fibers [6] B : R

A.lthough this chapter is restncted to patterns that arise from contmuous transfor—"
ma.tlons of the ideal pure bend pla.na.r radial. pattern here we bneﬂy dlscuss 2 mgmﬁcant_
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trivial solution,

is given by:

fact regarding the stability of the onion patterns in the presence of u < 1 (see Fig. 2-1)
since this has direct relevance to our objectives. In contrast to the frequently observed
zig-zagging in radial patterns, oscillations and zig-zagging of the onion patterns have
apparently not been reported. It is thus important to explain this absence, and at the
same time establish that our criteria that lead to'the frequently observed PZRh patterns
would not lead to zig-zagging in the onion texture, thus adding validity to our analysis.
The onion pattern is found for symmetric boundary conditions: ¢(0) = ¢(1) = 0. The
trivial solution for this type of boundary condition is ¢ = 0. This type of configuration

represents a pure splay mode, that is, the concentric texture. To determine its stability,

“we follow the same method elaborated above, and add a small perturbation é(u) to the

6 = 8(u) r | (2.26)

~ with boundm'y_ condition of §(0) = §(1) = 0. Then to second order, the perturbed energy

fo= {;_1( — 25'8) + K (6‘ +28'8 + &%) | - (227)
Thus we obtain: ‘ , :
. ‘ 1 | ) s > ol ; . .
aF= [ fdu=3 [{I—K)S - Ked"bodu  (229)
Similarly, we consider the eigenvalue problem of | |
K3 - Kl K3 _ o = .
S (2.29)
with bounda.r} condition of ] (0) 8(1) = 0. The elgenvalues now are given by:
| 1 f L ops > | nﬂ. . ' , ) - o
A= E{Ix - K, + .I\.3(E)2}., (ﬂ. = 1? .2, 3,:. .) “ : (2.30) |

It follows that, if K . < Ix;-,, when -the rad1a.1 osmﬂatory pa.tte.ms are often observed the
exgenvalueb in (2. 30) wﬂl always be positive, and the omon pattern 'vxll be stable to

any small perturbatxons Therefore there is no oscﬂla’cory solut1on to the equilibrium

" equation under this type of Eboundary ax;d elastic amsotropy oondltmns. Hence there will

FC
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be no oscillations to the pure splay mode. any perturbations to this pattern will decay

to zero, and a zig-zag onion pattern would never occur, which is in agreement with the

facts.

2.5.2 Solutions with asymmetric boundary conditions

In this section we analyze the new features arising from non-symmetric boundary con-

ditions: ¢(0) = 3,6(1) = «, with § < o < 7. The first imp’ortant feature is that

the PR pattern does not exist, and its role is taken up by the planar pinwheel pattern

PPW. Instabilities deduced by elastic anisotropies lead to bifurcations involving PPW

and PZRxn branches, here PZRn stands for pl;ihar ‘non-‘homeotropic zig-zag radial p:ittgh
(see Fig. 2-4). o o ] |

As shown in the second row of Fig. 2-6, for ¢(1) = 1.869, the solution for p'> 1
is unique and monotonic. For u = 1, the solution is linear. We ca.n derive this linear

solution analytically. By setting K, = Kj in the equilibrium equation, we find

Kl(f)"=0 o | : (231)

and the equa.tlon has a ‘unique linear Solutlon for K1 = Kj;.

ey

For u< 1 similar to the sxtuatlon with symmetnc boundary condmons the bifur-

ca.tlon will not oceur untﬂ p exceeds the critical value. of 1, but now ,um will : be a

functxon of ¢(u,) as well as of Au. Figure 2-16 shows the computed bifurcation dmgram

in the (u, ¢(u,)) plane. The full line denotes the bifurcatioﬁ for Au = 1; for synimetfic e
bou?'ndary condition; i.e. ¢(1) = ¢(0) = %, the bifurcation occurs at e, = 0.092. As’

q&(l) increases, the cntma.l value of blfurcatlon M, decreases _Above the fuIl line, equa-

 tion (29) hasa umque locally stable monotonic solution (PPW), and below the full lme
" the equation ‘has multiple locally stable solutions (PZRn). The dashed line denotes the

blfurca.tlon between PPW a.nd PZR.n for Au= 2. Note the sxgmﬁcant increase B"f He.aS

Awu Increases. For Au = 2 with symmetnc bounda.ry condxtlons, the bifurcation occurs at

p = 0.285. ‘When substituting Au = 2 mto the. mequa.hty (2 25), we obtain pe = 0. 288 '
w]:uch agrees with the numencal results. Aga.m above the dashed line the Ioca.lly stable’

)
_4
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Fxgure 2.16: Bifurcation dlagra.m in the elastic a.msotropy u outer bounda.rv condition
~ plane. Fiber size Au =1 (full line}, 2 (dashed line): The full (dashed) line divides the

pa.rametnc plane into two:solution regions. The one above the line is where equation (2.9).

~has a unique solution, and the one below’ the line as well as the line itself is where the
equa.tlon has multlple oscillatory solutlons :

s solut:ons are PPW solutlons whlle below the dashed. hne there are multlple locally sta.ble

PZR.n solutions. . ] oL e

N "
-~ Nt
et

For ,uc1 < ,u. < 1 . the equa’mon has a umque nonlinear monotomc solution, repre-

e sentmg the PPW paftern. The dlﬂ'erence between solutions for p < iand solutlons for: |

AN

,u > 1 is their concawty, as shown in the pa.nels of the mxddle row of F1g 9—6 The
' cha.nge of conca\nty is due to the cha.nge of elastic consta.nts whlch make splay deforma~
" tion more favorable for K1 < I\ ‘and bend deformatlon favorable. for K1 > K3 Below‘

£

the dashed lme, when 1< pets the system. will have mult1p1e solutlons The functional o |

relo:txon of ¢ (0) and’$(1) shown in Flgure 2-11 can also be used to find the solutlons for .
asvmmetnc boundary condmons, line A corresponds to qb(l) = 1.868761, a.nd lineB to |
o(l) = 1.602004. .As shown in F:gure 2-11, there are two solutions for ¢(1) =1.868761, .

- , a.nd four solumons for ¢(1) = 1. 69‘7094 F1gure 2-17 shows the duector onentatlon qb as
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:J' disk tra.Jectones also dlsplay mcomplete oscillation. For solutlon B ahd Cin Flg 2-18

¢ (rad.)

0.0 02 04 06 - 08 1.0

F1gure 2-17: Director orientation ¢(rad.) as a functlon of u, for Au =1, u = 0.01 and

~ ¢(1) = 1.868. The two solutions are members of the PZRn fa.mﬂy They correspond to

the two intersections of line A with the curve in Fig. 2-11.

a function of u, for ¢v(1) = 1. 868(61 and p = 0. 01 corr%pondmg to the solutlonb found

from line A in Fig. 911 The two solutions are members of the PZRn fa.mﬂy, with the

upper curve representmg theﬁrst mode and the lower curve the second mode. Fxgure 2-

18 shows the director onentatlon ¢ as a function of u, for ¢(1) = 1 69"094 a.nd p=0. 01

con'espondmg to the solutlons found from line B in Fig. 2-11. The four solutions are

R members of the PZRn falmly Followmg the v:sua.hzatlon methodology presented above

Flg 2-19 shows the dxsl-. tra_]ectonw for the four solutlons (A B C ,D) shown in Fig: 2-18.
Since solutlons A a.nd D m.Fig. 2- 18 chsplay incomplete oscillations, the r:orrespondmg~

L
™

the oscﬂlatlons in the dlsk fra_]ecton&s are clea.rer

Agam here we vmsh to e.\-plore the role of ﬁber size on the 1 main fea.tures of the
b1furca.t1on and mult1stab1hty by' plqttmg the trajectonee of PPW a.nd PZRn pa.ttems :'_
Flgure 9—20 shows four solutlons for Au= 2 Ju = 0 005 a.nd ¢(2) = 1.8(rad) wh1d1

[

. a}..
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¢ (rad.)

00 = o

2 0.4 . 0.6 08 10

u
Figtiré 2-18: Direetor' orientation ¢(rad.) as a function of u, for Au =1, u = 0.01 and
#(1) = 1.692. The four solutions are members of the PZRn fa.mﬂy They correspond to

. 'the four mtersectlons of lme B with the curve in Fig. 2-11.°

_ belong to the PZR.n fa.mﬂy The correspondmg wsuahzatron of dlSk traiectoues are shown |

in F1g -21. Here as in the previous sect1on a.n mcrease in Au bnngs an mcrea.se in the

. amphtude in the oscxllatlons For the disk tra_lectones representmg solutxon Band Cin

- Fig. 2 0 one can clea.rly see the osc1llat10ns to av01d free energy costs

In the followmg we explore the main dlﬁ'erence that arise 1n the solution behaviour

and multrstablhty phenomena, in the presence of symmetnc and asynmetnc boundary

-condltlons Figure 2-11 shows that the se‘.n{rons are not symmetnc ‘as m the case -

‘of symmetnc bounda.ry conditions. For solutrons with #(1) = 1.692094, the mirror

[ ¢

conﬁguratlons are the solutions at ¢(1),,.,,.,,,, =7— c;b(l) Another feature that is different

from the case with symmetnc boundary COD.dlthn, 1s that as p decrease further, the

number of solutions mll increase to 2 certain ﬁmte value, whmh depends on the value

. .the number of solutlons (PZRh) for symmetnc bound'a.ry conditions. The reason is that

z ‘ 'l

F o |

27

of boundary onenta.tlon at the outer cvhnder as opposed to the monotomc mcrease in

A



‘ Flgure 2-19: Scientific wsua.hzatlons of disk trajectones for the oscillatory zig-zag (PZRn) |

‘solutions A, B, C, and D, shown in Fig 2-18. Finite amplitude oscillations are. visible

aN'E

L

Y

. in B and C.<The different spiral directions in A.an@D are due to the dlfferent valu&; of : o

¢'(0) for solution A and'D i in F1g 2-18..
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¢ (rad.)

00 05 10 15 2.0

-

Fxgure 2—20 Dlrector onentatlon p(rad.) as a functlon of u, for Au =2, ' =0.005 and

~ #(2) = §. The solutions are members of the PZRn family: Note the amplitude increase

‘for these solutions in comparison tO the PZRn solutions with the same wave numbers

~ but smaller Au{Au =1) shown i in Fig. 2~18

for oscillatory PZRn and PZRh solutions, the solution amplitude has to be larger than
¢(u,,) - ¢(0). | However, since a solution with higher frequency has smaller amplitude,

_and the lowest possrble amplitude would be (b(uo) — ¢(0), therefore even if b contmues

- to decrea.se, there will be no new solutions and the number of solutlons w1th amphtude

'larger than d:(u,,) - ¢(0) wrll therefore alwa.vs be ﬁmte

-

| 2'.5”.3 | Solutions for asjmmetrieblounda.ry conditions with Iarge ‘

aSymmetry‘ :

In thlS section we bneﬂy explore the new phenomena that arise due to la.rge asymmetry |

| m the boundary condmons and report on the representative case of ¢(uo) =T. For the
| ‘ ca.se with boundary condxtxon of: 4‘;(0) % z ¢(1) =, we find only one solution for all |
 different value of 4 4, as shown in the third row of Fig. 2-6. Again,l the concavity of the .
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o Fliguré 2-21: Scientific visualizations of dis_k trajectories for the
solutions A, B, C, and D, shown in Fig. 2-20.
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solution will change as',u changes from p > 1 to ¢ < 1. As p diverges (1 — oo) the

solution is boundary-layer like, with the boundary laver located next to u'= 1 While

when g vanishes (¢ — 0) the boundary layer is located next to = 0. Figure 2-22 shows

the director orientation ¢ as a function of u, for three different values of u: 1000 (déshed),
1 (dotted), and 0.001 (full). The linear solution is obtained for K; = K3 (1 = 1), and
the concavity of the other two curves is in agreement with the e:cpectgd boundary layer

mode that minimizes the free energy. ' s

-
-

a

¥

¢ (rad.)

00 - 02 04 . .06 0.8 1.0

Fig'ure‘2-22: Director orientation qb(fad.) as a function of u, for Au =1 and. (l)=m,
- for p: 0.001 (full line); 1 (dotted line); 1000 (dashed line). For 43 =1 (K; = K3) the

solution is linear, for p; <1 (K < K3) the solution is concave down, a.nd for 3 > 1
(K1 > Kj) concave up, as dictated by energy mmumzatlon ' |

-
-

- For this type' of bdundary conditiqﬁ,' there are no bifurcation in the equilibrium equa-

‘tion (2.9).- A's'shqwn_ above, the ampiitude of any oscillatory solution has to be ‘lérger or -
: equé.l to ¢(u,) — é(t@;), which in the present case is Z. However, since the increase of fre-
' q_ﬁency of é.ny'soliition will result in a decrease in amplitude and the existing monotonic

. solution has an a_xliplit;ude of Z, any oscillatory solution would have to have an amplitude
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less than %, yet it ha$ to have a maximum of ¢(u,) = 7 in order to satisfy the boundary
condition at the outer cylinder. The contradiction makes the existence of oscillatory so-
lutions impossible. Therefore we can conclude that for this type of bounda.r\ conditions,
there exists no oscillatory solutions to equation (2.9) at any vaIue of p. \

_In this'section we have presented numerical results for three types of bound'lr\ con-

dltlons A summary of the results is shown in Table II. In generaixfor svmmet.nc type

~r
_./

of boundary conditions of ¢(uc) = é(u.) = 3, equation (2.9) has a unique constant so-
lution for g > pu. 1- ‘When p < p.1, the constant solution becomes unstable to small

perturbations, the system undergoes a 2 bifurcation and generates a family of branches of

oscillatory solutlons (PRZh). For symmetric bounda.ry condition of ¢(u.) = ¢(1,) = 0,

we have shown that whﬂe ¢ < 1 there is only consta.nt solution to the equation. For

asymmetnc boundary conditions with q&(uc) = % and ¢(u,) < 7, the equation has a
unique monotonic solution (PPW) for i > p.. Particularly, at K, = Kj, the equation

has a unique linear solution. As z < ﬁc, the system will bifurcate and generate branches

of oscillatory solutions (PZRn). For 'asymmetric'.boundary condition of ¢(u,) =, there

is a unique monotonic solution (PPW} to the eqiuation for all value of p.

=

(
)

(Y]

1



Table IT: Summary of parametric ranges and stability properties of orientation textures

, conmﬂg down, stable

Boundary condition | p = %ﬂ; Soluf,z'on type Figures
$(0) =3
dlu,) = % pw>1 PR 2-6
T stable
p=1 PR 2.6
stable
ge<p<1|PR - 2.6
| stable
nu<p. | PZRh 2-9,2-10,2-13
stable
Z<ofu)<m u>1 PPW _ 2-6
: ' concaving up, stable
p=1 PPW 2-6
stable
pe<p<l|PPW’ 2-6
- concaving down, stable
@< e PZRh 2-17,2-18,2-20
| stable - .
Bup) =7 p>1 PPW 2-22
' concaving up, stable - |
p=1 PPW 2.92
| fsta.ble-,
p<l PPW 9-92

———————

PR: planar mdml pattem, PZRh homeotroplc pla.na.r zig-zag radial pattem, PZRn non—homeotroplc :

—

pla.nar z:g-zag md1a1 pattern, PPW: planar pinw heel pattern. ‘

it



2.6 Conclusion

~In summary, we have presented a detailed numerical analysis to a model that is suffi-
ciently accurate to provide plausible explanation to the pattern formation process that
arises during the industrial melt fiber spinning of carbonaceous mesophases, using discotic
nematic liquid crystal precursors. In addition, a comprehensive analysis of pattern forma—
tion in discotic nematics confined to an annular geometry has been presented. Numericai
studies of the solution types to the equilibrium equation (2.9) derived from Frank's elastic
energy model indicate that the equilibrium equation displays a wide variety of solution
types in the parametric space spanned by the elastic anisotropy, the ﬁber diameter, and
the boundary conditions. The basic planar patterns with singular cores are the, radial
pattern, tbe prnwheel pattern, and the zig;zag radial pattern. Only the zig-zag radial
patﬁerﬁ exhibit multistability. Multistability of oscillatory solutions displaying the radial
zig—iag patterns are found for: larger elaStic anisotropy (K3 > K)), weaker boﬁndnry
condition asymmetnes and larger fibers. ' . G or
Numerical as well as analytrcal results show that the occurrence of oscrllatlons in
ra.chal patterns. is due to the elastlc SpIa.y-bend anisotropy. ~This is because the energy
‘mlmmlzatmn process of the free energy would select the n;ost cost-effective pattern to
lower the total free energy. Therefore, as the bend conﬁgura.tron becomes coatly, the
system will naturally select splay deforma.tlon over the bend deformatlone Another
point to be noticed is the effect of fiber size on the radial patterns It is shown that
larger ﬁbers have a much greater tendency than sma.ller fibers to generate osclllatory
radial patterns under the same elastlc amsotropy condxtlons In this case,’ the pattern
. selected by the free energy minimization process, is resisted by the eﬁ‘ect of boundary
- orientation constraints that is in favor of an energy costly mode. This is also the reason
~why osczllatory patterns will not a.nse as soon as the elastic constants become drfferent
Instead, the driving force m1mm1zmg the free energy due to elastlc anisotropy has to
overcome the res1stance due to the boundary onentatlon constramt As the ﬁber sme'-
’ becomes larger, the effect of such boundary constra.mts is weakened. Therefore in la.rger,

fibers the. boundary orientation will ha.ve smaller eﬁ'ect on pattem seIectlon, and -elast;:c |
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anisotropy will have a stronger influence. Thus, oscillatery radial patterns will be easier
to be observed in lérger fibers than in small fibers. As for the non-homeotropic case, in
which the outer boundary orientation is diﬁ'erént from the inner boundaf_v orientation,
because the pattern consists of a splay-bend mode, the selection of oscillatory patterns
would have much less effect on minimizing the free energy than it has on pure bend
mode, for the same elastic -anisotropy. Therefore, for the same geometric conditions,
non-homeotropic bdunda:y orientations would require a stronger elastic anisotropy to
induce Qscillntory patterns, as shown in this chapter. ‘

To determine the stability of any solution, we computed the corresponding sepond
‘variation of the elastic energy. The oscillatory solutions (PZRi, i=n.h) to the equilil;rium
equation are shown to be locally stable, whereas the stability of the trivial solution would
depend on the ratio of the elastic constants and the ratio of the radi of the outer cylinder
and thtt;ta...“"“-,_:\ﬂhnder, as shown by analytlcal methods. |

The interpretation of the numerical results using classical liqﬁid crystal physics leads
to'expla.nations of pattern formation phenomenzi that arise in an- industrial prooéss The
elastic amsotropy, whlch is characterized by the ratio of the. two elastlc constants K
‘and K3, representmg the Spla.y and bend deformations, is shown to be the dnvmg force .
" behind the pattern selection mechamsm that leads to the formatlon of the planar zig-zag

pattern frequently observed durmg ﬁber splnmng

r

)
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Cf"xapter 3

Pattern selection mechanism in

“mesophase carbon fibers

3.1 Sumi:nary

Carbonaceous mesophases are spun into high performance carbon ﬁbers ‘using the melt

spinning process. The spinning process produces a w1de range of dlfferent fiber textures

whose ongms are not well understood. The cross—sectlon fiber texture isa strong functlon -
of ;emperature, such that at lower temperatures the selected pattern is known as radial, |
while at higher temperatures it is khpwn as onion. More intriguing"aridj unexpe&éd- is the -
" random pattern that is found aﬁl- intermedia.té température fa.nge This chapter use thcof}'

and simulation to reproduce the fiber textures, and to 1dent1fy the selectlon mechanisms

that explain the ongm of the actua.lly observed patterns

3.2 In_frodut:tion |

"\.

Carbonaceous mesophase, such as coal tar and’ petroleum pltches are used in the indus-

trial manufactunng of mesophase carbon fibers, usmg the melt. spmmng process [1] The

relatively newer carbon fiber manufacturing process r_esults in fibers whose property pro-

files are competitive with those obtained from the conventional process‘based on acrylic

Precursors. The-thermodynaﬂiic ‘phase that’ describes carbonaceous mesophases is the -

3
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discotic nematic liquid crystal state. Liquid crystals are intermediate (i.e. mesophase)
phases, typically found for anisotropic organic molecules, that exists between the higher

temperature isotropic liquid state and the lower temperature crystalline state. (Detailed

properties of nematic liquid crystals are provided in the classic textbooks on liquid crys-

tal physics [2,3]). Carbonaceous mesophases are composed of disc-like molecules that .

align their unit-normals (i.e. vector perpendicular to the disc-like molecules} along a

common direction, known as director n; see Figure 3-1. The name discotic distinguishes

.the molecular geometry and the name nematic identifies the type of liquid crystalline

orientational order.

=l

oSS
K

<ro

Fxgure 3-1: Onenta.nonal ordering in the uma.:qal dxscotlc nematic phase. ‘The molecular

normals of the randomly posxtloned disklike molecu]as pamall*- orient along the du-ector
n. - : : ‘

The mdustnal fabncanon of mesophase carbon ~ﬁbers usmg the conventional melt

Spmmng process f1] tvplcall\. produces mlcrometer-sxzed cvhndncal filaments w hose Cross-

sect:onal area dISplaVS a variety of r.ransxerse textures‘ that is, different spanal arrance-

menns of the average onentauon 1 on the plane perpendicular to the fiber axis. The
correlanons between transmerse textures and processmg conditions, material properties.

and geometry is a fundamem;al area of ongomg research in this field [4 3]. Amopg all

' the phvs:cal processing cond1t1ons temperature is a fundamental factor that has been
shown to have a sxgmﬁcant eﬁ'ect on pattern selecnon [6].. Figure 3-2 shows a represen— _‘ |
' tatwe schemanc of the onentamon of fiber’ transverse textures adopted from [6], as well

 as some deﬁmng termmology to be d15cussed below The left schematlc shows that. an |
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higher temperatures the fiber pattern adopts what is known as the onion texture, where
the molecules are oriented in concentric circles. The right schematic shows that at lower

temperatures the fiber pattern adopts what is known as the radial texture. In this tex-

- ture the average molecular orientation follows radial trajectories. On the other hand, the

-, middle schematic shows that at intermediate temperatures the pattefn is isotropic and
random.

The objective of this chapter is to use theory and simulation to reproduce and explain
‘the sequence of temperat;ure-dn'vén fiber patterns transitions in melt-spun carbonaceous

mesophases, as reported in [6], and shown in Fig. 3-2.

In order to specify the onion, radial and random patterns we next define some i:oncepts:

and introduce the required terminology. In this chapter the mesophase carbon fiber is
approximated by a monodisperse uniaxial discotic nematic liquid crystal {2], and the
fiber spinning process is approximated by a steady, isothermal, incompressible, uniaxial

extensional flow (7]. Using cylindrical coordinates (r, 6, z), the = axis is along the fiber

axis and the transverse plane.is the (r,§) plane. Here 0 <'# < 2m, and 1y < 1. < To,

where r; is ‘the:radius of the inner core and To is the radius of the fiber. The inner core.

radms 7; represents the dJschnatlon lme defect that runs along the fiber axis [3]. The .
tri (9«\8_9, e.) denotes the umt vectors m cvhndnca.l coordmates, and the director field
is: n= (., g, n_._.). Following prevxous sr.udy on similar pattern formation on discotic . )

nematic liquid crystals [§], we assume that the director vector n has no = component. -

That ‘is,' the dﬁector_ field n(r, 9') is .gntirély confined within the (e,,e;) plane, n. =

.ercos(¢) + egsin(e), here ¢(r,8) is the director angle. Discotic 'nematics are elastic

‘materials, wherazgnergr may be.stored by onentatxon stra.ms thls mea.nb that when

vn # 0, elastic energy is stored The two planar deformations for discotic nematxcs -

identified as splay deformatlon and bend deformation, are cha.ractenzed by two elastxc

constants K and K3, m‘spectwely The radial texture of uma..\laldxsconc nemamcs, shown

in Fig. 3-2, is defined by ng = 1(¢ = —) and coutams a pure bend mode Sumlarly, the

Iomon structure, shown in F1g 3-2,i is defined by N, = (¢ = 0) and contains a pure splay'
mode. _ o . o S Cs :

' A fundamental feature of nematic elasticity is its anisotropy, which in this c}iapter
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Random 'Radial

. | _ Mode

-;Elastic 8 ‘Kl R KK - Ky o
Modulus o . - ‘ 3

.

&

Increasing temperature’
' R ' :
S Fxgure 32 Schematics of the tempera.t:ure dependence of transverse textures of actual
s meSOpha.se carbon fibers, adopted from [6]. The radial pattern (left) is observed in fibers
_spun at lower temperatures, the onion. pattern (right) at. hzghnr temperatures, and the
+ random pattern (mddle) in the intermediate temperature range. The elastic modulus
« and deformation mode: are indicated below. each pattern. The radial pattern consists
- of pure bend deforma.tlon (Ks), the onion pattern of pure splay (K), and the random
L pattern of a mixture of splav-bend deformatlon modes. ‘ '
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reduces to the statement K, # R3. Since the elastic free energy is proportional to these
moduli, and since these are temperature dependent, it is thus clear that temperature
has a strong influence on the fiber pattern selectic;n, if kinetic effects do not *=v.arfere
with thermodynamics driving forces. The thermodynamics driving force in fiber texture
selection is the minimization of the elastic free energy by aveidance of the high;modulus
elastic mode. For example, if K7 > Kj, elasticity selects the radial(bend) pattern over the
onion(splay) pattern. Kinetic effects that may interfere with elasticity driven mechanisms
are due to tho viscous nature of liquid clryst;a.ls, and hence t';'ith the required reorientation
time Tz as compared with the available process time 7p. If 7 < 7g the initial telxtu{e mdy
not reach the pattern selected by thermodynamics because there is simply not enough
available time to achleve the required reorientation process.

- As mentioned above the objective of this chapter is to reproduce and e\pla.m the
origin of the pattern transitions shown in Fig. 3-2, as reported in [6]. The theory is
based in the well-established classical equations of liquid crystal elasticity [3] known as
. Frank elastmty This chapter is organized as follows Sectlon _presents the govern-
. ing equations, discusses the temperature dependence of the parameters involved, and
briefly describes the:computatrional‘method.s. Section 3 presents the numerical results

and discussions. Finally, conclusions are presented. . R

3.3 Theory and formulation

In this section we preéeot the basic equations that describe nematic liouid c:ystolline
ﬁscoelasticity, and follow the classical é.pproach pre§ented in [3] The presentation is
restricted to spatially homogeneous temperatures, incompreésibility, and planaf 2.D ori- -
" entation (i.e. n = (n,,ny,0)). For planar orientation, the nematic free energy density is

gvenby: T -

s
~ b4

BB e

Ty
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where K; and K3 are elastic constants defined above. In absence of external fields, the

director field n is found by solving the torque balance equation [3]:
0 = [F™ + T (i = 1,6, 2) (32)

where the viscous torque vector per unit volume I'***¢*s and the elastic torque vector per

unit volume I'“®**¢ are given by:

I-mz'scoua = —n x (71i_1tl)7 re!astic =-nxh (33)

"here h is the molecular field vector [3],

o of
h=-c - |
Kyv(Vv-n)+KBxyxn+yx(@xB)] © . (34

and B =nxvxn Smce n = (cos¢,sin @, 0), the z-component of the viscous torque

vector I“’““’“’ is given by
d¢ -
dt

[riseous -'-fn (3.5)

‘ For planar orientation the torqu&s w1th respect to e,. and €p play no role, and therefore |

o the balance of elastlc and v1sc0us1c torques leads to the smgle equatlon

e

_ﬁd—fﬁu(nxh)l,:o, | - (36

)

 which is the governing equation in our study that describes the pattern selection process.

- Followmg Flg 3-2, and mthout loss of generality we assume radial dependence, n(r t)=

(cos ¢, sxn o, 0) w1th ¢ é(r, t) In such case equatlon (3 6) becomeS'

1ﬁ=('msin'2¢+xac§s?¢)(af 16¢)+(K1 Ka)smqbcostﬁ(rz-i-( )2) (3 7).

- As F1g 3-2 shows, the actual pattem selectlon is driven by temperature eﬂ'ects on matenal.

o para.meters Hence to ehmma.te bounda.ry constra.mts as sources of texture tra.nmtlons,'

s
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we use the following Neumann type of boundary conditions: %“'],:,i = %’*" r=r, = 0.
In all computations an initial random orilentation is adopted. To generate the random
orientation, we use a in-built random number generator to produce the director angle ¢.
Although the actual director orientation at the beginning of the spinnline is not known,
the random state adopted here eliminates any bias or preference of one texture over
another, thus helping to elucidate th_e operating driving force for pattern formation in
the spinnline.

The essential hypothesis of this c‘hapter that is sufficient and necessary to explain the

pattern transition shown in Fig. 3-2 is that the elastic constants exhibit a cross-over at

an intermediate temperature 7. at which the material is elastically isotropic. Thus we

assume that:

T< Tc 3 Kl > Kg ' ‘ . (3.8)
T=T, , K=K=K ' (3.9)
T>T. , Ki<Ks = O (310)

Such tempei-a.ture driven cross-over of Frank e]éstic constants has been measured for
rod-like nematic liquid crystals [10]. The situation for disc-like nematics (carboﬁaccous_
" - mesophases) is identical with that of rods if we reverse the mea.nmg of K and K;;, smce '_
bending (spla.vmg) discs correspond to splaying (bending) rods. Thus the temperature -

dependence and cross-over adopted in this chapter is perfectly consistent. wn;h actual

measurements.

The dxmenmonless fo::m of equation (3 7) is obta.med by dlwdmg both sides with ( —,—)
Equatlon (3.7 then becomes: ‘

a%s 1 a¢>

-———(asm ¢+ﬁ)(——'+:5:)+asm¢cos¢(_2+( )2) ' (3.11) ;
where 7 is the dimensionless radius (7 =. =) a.nd fis the dlmensxonless time (_ |
. ‘g is ‘the reorientation time constant given by ¢ = 37'{'21 o= and g = For_ :

~ simplicity, in what follows we drop the tlldes and use r to represent 7, and ¢ to repre-‘ent':

I 69

0

el



In the equation (3.11), we separate the linear terms from the nonlinear terms and

rewrite cquation (3.11) as:

d¢ 82¢

dt

%ié) + afsin® ¢( 6%’ 1?_9_5_) + sin ¢ cos ¢:( - (Zﬁ ] (3.12)

=85a o ¥ ar

_ The dimensionless equation (3.12) is 2 nonlinear parabolic partial differential equation
that g{ves the director orientation as a function of position and time, for a given set of
parameters: ¢ = ¢(r,t,c, 3}, where ~co < a < o0 and § > 0. We Can noOw restrict
equation (3.12) to the three representative cases shown in Fig. 3-2:
(i) Radial pattern: K} > K3, a > 0;
(ii) Random pattern: Ky = Kz, @ = 0;
(ii1) Omon pattern: K; < K3, a <0.

In the case of elastic Isotropy o = 0, equation (3.12) becomes linear. The right hand
side of this equation (Bt a,_(rgf)) represents the driving force that at steady state leads

_' to minimization of the free energy for Ky = K;:

K
F=5
Thus ‘\\"}ien‘the material is elastically isotropic (K; = K3) the pattern will evolve to
minimize the divergence and the curl of n, and elasticity, in the absence of boundary
‘constraints,” will select the onion pattern or the radial pattern with equal probability

since in both cases the total frée energy are the same, and it is given by:

T=T, F;Kﬂ'ln('% L (3.14)

~ On the other hand, the aétua_l case is that of elastic anisotropy o # 0. ‘Nt_:awl the elastic
anisotropy introduces nonlinear terms (the second part of the right hand side in equa-

-tion (3.12)) that leads, as shbwn below, to a distinction between the energetic contexts

‘of the onion and radial patterns, and thus prowdes a driving force for pattern selection.

We have numencally mtegrated equation (3. 12) using the Ga.lerkm Flmte Element‘_

\W
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method [9], with a corrector-predictor adaptive time inte;r.;ration step. The spatial dis-
cretization uses 100 quadratic eiements. The discretize(i' equation were solved using
Newton-Raphson iterations. To estimate the time required to reach steady state we pre-
ceed as follows. The time steps are determined according to the change of director field.
measured by the norm of the difference of the director field vector at consecutive time
steps Ag = |]|¢"‘;‘1”“— ll6|ll- When the norm is sufficiently small {here the threshold is
given by A¢ < 107), we consider that the system has reached the steady state, and thus
calculate the estimated time in which the director field changes from a random initial

state to the final steady state. We denote this time by 7, where the subscript o indicates

‘that 7, is a function of the parameter o; 7 corresponds to o = 0, that is when T =T,

(see equation (9))-

3.4 Results and discussions

—‘—"-f‘--—‘;'This Section presents the solutions to equation (3.12), and discusses them in reference

to Fig. 3-2. The results are naturally presented in three categories for three representa-

tive temperature ranges, taking into account the elastic constant inequalities shown in

equations (3.8-3.10). The’computed numerical results of the director orientatiori angle

#(r,t) profiles are converted into scientific visualizations, shown as thin line aegment.s‘
(2s in Fig. 3—2) Each segment represents at the gwen (r,t) the average disc orientation.
Wlthout loss of generality we assume a linear dependence of the elastic constants on

temperature The cross over of the two dimensionless elastic constants (&, -’-ff) as a,

.functlon of dimensionless temperature = L. is shown in F:g 3-3. The thermal sensitivity

- of-the elastlc anisotropy shown in Fig. 3- 3 contams the necessaryand sufﬁme/nt features

1dent1ﬁed in equa.tlons (3.8-3. 10) - : ‘ S N w\‘f'?f‘
(i) Radial pattern.

b

The radial pattern con51sts of pure bend deformatlon (¢=%n0= 1) This pattern

is selected when K; > Kj, a>0. This is clea.r when comparing the total free energy of
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Figure 3-3: A simplified linear representation of the scaled elastic constants (5}\1-,-’}})
cross-over as a function of dimensionless temperature 7 . The constants K, and i3 are
scaled with K, which is the cross point of K, and K. The temperature is scaled by the
 transitional temperature T, at which K; = Kj. Such temperature dependence has been

found in rod-like nematic nquld crystals [10]

the onion F*° and radial £~ pa.ttenis:‘

Fo = leﬂ'ln(:") / (3.15)
Fro= Kgrﬁln(f) . (3.6)

A [

Thus it is clear tl:lat. when K; > Kj; F7 < F° and the radial pattém‘is.energetically\
favorable. Figuré 3-4 shows a computed viSua.lization of one fourth of the fiber cross-
* section texture for an 1mt1ally random Onentatlon (left schemat1c) and at steady state
-‘(nght schematic), for o =0.1and 8 =1. The ﬁgure clearly shows the selectmn the radial |

. 'pattern from a.n 1n1t1a11v random state when K; > Kj;.

(i) Onion pattern
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Figure 3-4: Computed scientific visualization of the cross-section fiber texture, for a =
0.1,3 = 1. When K} > Kj3, the most favorable elastic deformation is bend, the system
will evolve to radial (pure bend) pattern at equilibrium.

The onion ﬁattem consists of a pure splay deformation (¢=0,n, =1} andis naturaliy |
selected for an initially random state whenever K; < Kj (@ < 0). For the assumed
temperature dependence given in equations (3.8-3.10), this occurs at relatively higher
temperatures Frgure 3-5 shows a visualization of one fourth of the fiber cross-section
texture for & = —0.1 and 8= 1 The figure shows that the steady state solution to
equation (3.12) for K; < Kj is the onion pattern. ' |

(iif) Random pattern

As"-ii'approaches'zero from eithier below or above, the numerical‘solutions remain
either pure splay or pure bend, according to the different va.hvc«é of o, but the convergence
rate slows down drastically as o = 0. Nev ertheless, as long.as /\Al and R remain different
from each other. the steady state solution always reﬂecfs\the lowest free energy mode
in accordance with the. elastic anisotmpic condition. From the numerical solutions of
equatron (3.12) presented aboue, we may conclude that due to the elastic a.msor.rOpv the
free energy minimization wxll rearrange the director oriéntation such: that the drrector field .

at equrhbnurn will have the lowest free energ'_v In general, the results are'in agreement

with the e:cpenmenta.l observatxon shown i in Fig. 3-2. Hov«.ever the ongm of the random

pattern observed in the,tra.nsrtronal -rernperature ra.nge_rernams unclear. To e;cplam the

-
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Figure 3-3: Computed scientific visualization of the cross-section fiber texture, for a =

—0.1,3 = 1. When X) < Kj, the most favorable elastic deformation is splay, therefore
the system will evolve to the onion {pure splay) pattern at equilibrium.

- origin of the random pattern. we take in account the kinetics of the system characterized
by T, (defined in the previcus section).
" Figure 3-6 shows the computed dimensionless director reorientation time 2 as a

.functlon of dimensionless temperature =. As a — 0 (T — T.), the simulations show

that the time needed for the director ﬁeld to reach the equilibrium increases significantly.

Figure 3-7 shows the one dimensional visualization of the change of director orientation.

in the radial direction as a function of dimensionless time ¢, for & = ~0.1. At t = 11.58

the system undergoes very little change from the previous time step and therefore we
| conclude that the system'has feached éhuilibrium. Figuré 3-8 shows the one dimensional

visualization of the director orientation for & = ~0.01. Bv comparing Fig. 3-7 with

. Fi ig. 3-8. we can see the dlrector reorientation slows down by a factor of 10. Ata=0,

equation (3.12) becomeS‘

do 3"’::),160 S : l. -
E e B

Solving the above equation. we obtain the director field ¢ as a function of ¢ and r:

n=1

ZA Jg(z\,,r)e Ant. | L (318)

Lxs
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Figure 3-6: Dimensionless reorientation time % as a function of dimensionless tem-

perature %, corresponding to the temperature dependence shown in Fig. 3-3. The di-
~ mensionless reorientation time 7, is scaled by the reorientation time at the transtional.

‘temperature T,.. The reorientation time sharply increases as the temperature drﬂ‘erencc N
|T — T¢| decreases. At T ‘T, the reorientation is the slowest

here A, is the coefficients, Jyp is zeroth order Bessel furlction. The cigényﬁlues A, are
deterrrlined by the boundary condition at 7 = 1, and are the Zero points of the first order |
Bessel function Jl(/\ ) =0. The linear terms i in the above equa.tron represents the mini-

mizing of drvergence (v ' n) and curl {7 x n) terms of the free energy at I} = Kj. This
| minimizing process is independent of the elastic a.msotropy and exists in all cases. To-
_gether with the elastrc amsotropv represented by the nonlinear terms in equation (3. 12)

they consist of the driving force behind the pattern selectlon mechamsm in fiber spinning .

process. If we consxder the the state of hqmd crystal matenal to be raudom, under the

mﬂuence of the driving force descnbed above, the fiber will rearrange. its director field
to reduce the free energy whrle at the same time being cooled down Such mxcroscopxc

process is normally sufﬁcrently fast in the process time scale However, as o — 0 the
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Figure 3-7:. One dimensional scientific visualization of the director field in the radial .
direction for & = 0.1. The initial state is given bv a random director angle. Director

_.‘ﬁeldq are shown for several increasing times. For ¢ = 0.1, the final equilibrium is the o

: ‘omon pattern, whl’\ yagrees with the result from steady state solutions.

o kinetics of the system undergoes a significant slowing down , that is, the tune needed 1o |
'rearra.nge the dlrector ﬁeld to reach the equilibrium state becom& much longer as the:

' system approaches the transitional cemperature T.. The reason for such slowmg down ‘

- is that because at the ‘transitional. temperature T, the elastic amsotropxc is very weak

(o = 0) t.he enervenc superiority of one deformation mode over the other becomes verv = .

‘small w lnch greatly weakens the driving force effect of elastic anisotropy on the pattern' .
" selection. Because of the slowmg down the effect of rmmxmzmg the dwergence and curl

.of the du'ector orientation dd becomes the maJor contnbutor to the pa.r.tern selection. =

The eﬁ'ect of such minimization is of Small magmtude when compa.red with the effect of | o



oo NN/
=o.000s3 N //ANLAIANIZ/AV/
eI WAVZ N7 V7
e=zzzos NV
R T
eraeas (TR TTR R

o Figure 3-8: One dimensional scientific ‘visualization of the director field in t.he radial

direction for @ = 0.01. The initial state is given by a random director angle. Director
~ fields are shown for several increasing times.. Comparing to the director reorientation
process shown in Fig: 3-7, the reorientation time has increased by a factor of ten as a
decreases from 0.1 to 0.01. The final equlhbnum is the onion pattern, which agrees with
- the result from stead\ state solutions.

- the elastic anisotropy that exists when the temperature T is suﬁcietly different from 7.

- Asa result, driven mostlv by this mlmrmzation force, the director reorientation process’ -

.becomes much slovser Since the ﬁber spmmng process time is fixed for all temperatur& R

the director reorientation t:une at the transmonal temperature would becorne much longer. ...

than the fiber spinning process time. Suﬁicxentlv close to the transition tempera.mre the *

uﬁber is sohdlﬁed before it ca.n teach an. orderlv pa.tt.ern and the ra.ndOm pawf 15 then- o

obsen ed



3.5 Conclusion

In summary, we have presented a simple analysis to 2 complex process that is able to
explain, using well known theory of liquid crystal materials, the formation of transverse
textures observed at different temperatures in the experimental fiber spinning process of
cabonaceous mesophases. The numerical results presented above show that the pattern
formqtion in the fiber spinning procéss is explained by the minimization of elastic free
energy. The cross-over of the elastic constants changes the most favorable free energy
_ mode from bend at lower temperatures to splay at higher temperatures, and causes
the switch from the radial pattern to the onion pattern. However, as the temperature
~approaches the transitional temperature at which the métgrial is elastically isotropic,
‘the director reorientation time increases shzirply and exceeds the fiber spinning process
time, and thﬁs structuring does not occur, and hence no ‘distinctive pattern arises. The

random pattern is the result of such slowing down in the director reorientation.

i _.(’)

i
€3

n

(4.1

"

N



Bibliography

[1] Peebles L.H.Jr., Carbon Fibers-Formation, Structure. And Properties {CRC Press,
Boca Raton, 1995).

2] Chandrasekhar S., Liquid Crystals, 2nd ed..(Cambridge University Press, Cam-
bridge, 1992). ' '

[3] de Gennes P.G. and Prost J., The Phy.szca of quuzd Crye-tal:., 2nd ed. (Clarendo,
Oxford, 1993) ' '

[4] Fatholahi B. and White J.L., J-Rheol. 38, 1051(1994).
[5] McHugh J.J. and Edie D.D., Liquid Crystals 18, 327(1995).

[6] Otani S. and Ova A., Progress of pitéhed-bésed carbon fiber in Japan Petroleum.
_ Denved Carbons Bacha J D, Newman J W and White J L, Eds., ACS S\ mp. Ser.
No. 303, Amenca.n Chemlcal Society, Washington, D.C., 322, 19S6.

[7] Bird R.B., Curtlss C F . Armstrong R.G. a.nd Hasager 0, Dﬂmmzw of Polynienc
- Liquids (\Vﬂey, \Ie\\ York 1987) \'ol 1.

_[81 Rey A.D., Phys. Rev. E, 51, 6‘778(1990)

19 Carey G. and Oden 1. T Fzmte Elements (Prentlce-Hall Eny,lewood Cliffs, \TJ :
1983). |

[10] Karat P.P. and Madhusudana N.V., Mol. Cryst. Liq. Cryst. 40, 239(1677).

79



[$]

L
> .lt

' ‘were successfully reproduced in thls study

Chapter 4

Conclusion

This thesis presents a2 comprehensive characterizatién of orientation development in the

cross-section of discotic nematic liquid crystalline fibers subjected to isothermal, incom-

' pressiblé, uniaxial extensional (spinning) flow, using theory and simulation. The thesis

shows that the main structuring effect arising from the extensional flow is to produce a

degenerate planur_ orientation. The degenerate flow-induced plunar orientation pattern is

- resolved by mechanisms arising from the elastic nature of the siraulated discotic nematic

~ liquid crystailine material. All numerical and a.ualytical results presented in this thesis

show that the factor governing the selection of distinct fiber structures in extensional

flows is induced by the minimization of the ela.etio free euergy All the results presented

in this thesis were validated usmg e.\‘t:enswely a.va.lla.ble e.\'penmental data., representa.twe'

_ of actual fibers produced during the industrial spmmng of ca.rbonaceoue mcsophasos The
validation proc&;s is based on a comparison of the scientific wsuahzatxon of the model
' output variables mth micrographs of fiber cross-sectlonal textures The results of the val--‘
' idation process mchcateql that the sunula.t;ons are %ble to capture and explain the origin .
of the most common fiber textures observed in the industrial spinniug of carboneceous

mesophas& Below we summa.nze detaxls of the ﬁndmgs for the specxﬁc patterns that o

-

The oscﬂlatory zig-zag fiber texture has been found to emerge as a preferred pa.ttt.rn L
wheneve er the elast1c anisotropy favors splay deformatlons wh1le the boundary onenta.tlon RS 3

 favors bend deformatlons Under such conchtlons bend deformatlons are avoided by the
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appearance of orientation osciflations, which successfully replace bend by splay. Using
computational bifurcation methods as well as functional analvsis techniques we identified
the spatially oscillatory solutions as solution branches arising from unstable spatially
homogeneous solutions. The multi-branching sequence at the multiple-eigenvalues of
the bifurcation equation was captured using both analyvsis and numerical simulation.
Bifurcation, amplitude, and stability diagrams provide the correlations between process
conditions. material pfop.erties,‘ and selected fiber texture. The second major contribution
of this thesis is the elucidation of the mecha;_nisms that control the temperature-driven
fiber texture transitions involving the radié.l, onion, and raﬁdom patterns. The present
work has shown that for ;nateﬁals that exhibit a cross-over in ;he splay and bend elastic
constants as a function of temperature will exhibit the texture transitions indicated above.
Far a“:ay from the transition point minimization of the elastic free energy is an efficient
driving force that gives ﬁse to the selection of orion pattern at highe; temperatures and

radial pattern at lower temperatures. In addition, it is shown that sufficiently close to

the temperature at which the material becomes elastically isotropic, the kinetics of the

pattern selection process slows down sighiﬁcanily'. The lack of available time for a definite

paittern:structure to.emerge, thus results in a random pattern. The thermodynamic and
kihéti_c mechanisms thus explain the origin of the patterns and the transition of textures,

observed dﬁﬁng:the industrial spinning of carbonaceous mesophases.
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is o(k) as b = 0; thzk is

Appendix A

The objective of this appendix is to present the mathematical analysis that correlates the

eigenvalue problem (2.22) with the bifurcations of equation (2.9). First we introduce the
required nonlinear functioral analvsis concepts. “A nonlinear mapping G from a Banach
space H to K is said to be Fréchet differentiable at a point v provided there is 2 bounded

linear operator A from H to K such that the quantity R(i:; h) = G(v k) — G{v) — Ah

|| R{v; h) I

im =0. | : (Al
e A o &

We denote the Fréchet dexivative of G iat v by G'(v) or_by:' G,; when it exists it may be

found by the usual formula of

G(v+th) - G(v) _ d

G'(o)h =lim ——— S+t . (A2
- For 2 nonlinear equation ' - ,
| G(p,1) =0 | (A3)

where G is a differentiable mapping between two Banach spaces H and K, that is,

G:Hx A — K, where A is a finite dlmensmnal parameter space. Suppoz,e the. operator ‘

" G has an equlhbnum SOlU.tIOIl of (q&o, pc) at Wthh

'.,G(¢u,uc)=:o_' ) e

' Whether: the solumon (¢o,pc) is a blfurcatlon point is gwen by the followmg Implzczt
Function Theorem [21]-
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Implicit Function Theorem 1 With the definition of the Banach space H. K and
the operator G giren above we assume that G is Fréchet differentiable. The Fréchet
derivative of G at (0q. 1), designated by Ga(oo. ) s a linear mapping G, : H = K.
If G,{0q, 1) possesses a bounded inverse, then locally for |p — u.} sufficient small. there
exists a differentiable mapp'érz_q. o{u) from A to H. with (o(u).u) € H x A, such that
G(é(,u),,u) = (. Furthermore, in a suﬁicfent small neighborhood of (do. e). ((f). 1) is
the only solution t0 G = 0.

From the Implicit Tunction Theorem it follows that if G vanishes at (Oo #c) and
G,, is mvemble there, then there is a loca]h smooth curve o(u) throufrh (cpo te)s ‘and
this curve of ¢(u) is the umque solution of G at this point. Therefore a bifurcation can
only occur, if the linear mappxng of G¢, evaluated at (oo, itc), Is singular and hence for
a linear niapping A = Gy, pc) : H — K there is no inverse. If the above condition
is met, one can conclude that the solution (¢y, u,) is a bifurcation point. We rewrite the
equation (2.9) as |

-
w

_ (=p+1)sinpcoso(l + ¢")

— ! — _-
Glg,u) =9 Ty 0 . (A3B)

-with the boundary 'conditionS' ’
| _ 00 = o) = 5. (48)

mtroducmg the hnea.r transformatmn ¢ =z + §,webave =~
" ( u—i—l) sxn5c056(1 +6’2) - :
Su =46 + 7
G( H) ; ,ucos26+51 6 : =0 ‘ (A-‘)
© with hom(;geneous boundaryaconditiéns_
5(0) = 6(u,) = 0. !

The abové'ec’;ué.tion‘ has a triviai solution of & = = 0, for all values of . To e.'ﬂca.inine the

| -stabxhtv of the trivial solution 60, we sha.ll find values of ,u., for which the lmea.r mapping | L

A= G (50, ,u) does not ha.»e an unerse Hence we ‘must look for ‘the nontrivial solution
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‘ of the corresponding eigenvalue problem. The linear operator is obtained by raking the

Fréchet derivative 'of (AT

16 = Gyl )0 = o7 — L IEUL = 2 1 — cos(h) + e cos W) o
i - g ! - - v v .y . il TR
ot (1 + = cos(2dp) + g cos(20y))? ‘ (A3

Inserting the trivial solution dy = 0 into this equation. we obtain the linear cigenvalue .

probiém
Gs(0. p)d = 8" + (i- 1§ =0 (A.10)

with the bezndary conditions §(0) = d(u,) = 0. The general solution of the eigenvalue

problem is gi\"en by -

| O(u) = Bcos(d% - lu) —!—.Dﬁsin( ;1; —1u) _‘ = (A.11)

The boundary condition §(0) = 0 impliés that B =0, so §(u,) = 0 gives the eigenvalue

e

: 1 nT o, ‘
a ' C - —1=(—) ' : All2
v L B (A12)
" which gives :
e = T (=12, | (A13
1+ (%5)° ( e ) & -- )
- . 7 and the corresponding eigenfunctions are \
w : , . ]
: : VL ‘ : '
I: ‘ - — - £y 2 LN ) ! ' -
. | . . .6n Dn Sln( Auu), (1{?’ 17 ) ) . B (A 14)
, \\. Here D, are arbitrary constants wlhich can not _li'e determined fr;)m the conditions given'.
*  above. Now we consider equation 222y T |
K=K K, L aus)
3 _5‘—,25 =X L (A.15):
. w}.uch when dividing by th gwes |
® - '5:,4{'21\ - Lyso T ai

s,
———
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Since we are looking for A > 0. the critical values of u, are to be found by setiing
A = 0. Then the above equation becomes identical to equation {A.10). So we proved that
equation (2.22) is the Fréchet derivative of equation (2.9) after the linear transformation
(2.18). Foliowing the Implicit Function Theorem and the discussion, we can now conclude
that the branch of the trivial solution (& =0.0r¢ =:§) has multiple bifurcations at
the eigenve alues shown above. At the eigenvalues, the linear mapping of Gs in {A.10)
becomes singular and doehn t have an inverse. It follows that the nonlinear operator of
| G will have nontrivial solutions in the neighborhood of u.,. At the bifurcation points
Len, the nontrivial solution to the linear mapping of Gy are the eigenfunctions (A.14)
then we have

“nw

=D, SID(A—-J) +

-
2

]

]
;g:‘n
lvl =

] A

(n=12..). (A.17)

Forn =1, Au =1 and p; = 0.092, we have the nontrivial soluticn of

-.l‘

¢1 D blll(u U) - - : ‘ | (-A"]‘S) -

which has half wave length and matches the numerical solution found at ttea. Continuing
this process for larger n, we find that each eigenfunction matches the numerical solution

at that pomt of Hen meg the Ljapunow Schrmdt method [21], we can decompose 6 in

,the form: , o o |
§=0.+6, | (A.19)
~ where ‘
Je —qsm(—Z—“—u). L . o (A.20)
and S T
; 6 = (q,u) ] T (A21)

. In (A...O) q is the a.mphtude of the oscﬂlatorv solutlon And h= O(q"’) [21]

- Lmeanzmg equatlon (A.7) and prcuectmg it onto the e:genfunctlons we ﬁnd

-

N

: ;”. _‘ i ) o . E . _ ‘\ o s - o ‘."
‘Lﬂ5+A@+§)HMAfM":°V, (a22)
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Here A = (% — 1). Substituting (A.19) into the above integral. we find:-

—

/u i = A) sin ik ™+ N
' e — | o« N - _- -:_/
; g4 (_\ RE ( N a) + h” !

¥

T?"“ I Im

+\(¢? (A;" :;m.-; i) cos* (L—u)) + olg )ism(—iu)dr: =1 (A23)

If we substitute A = A, the linear terms in ¢ in (A.23) vanish. Furthermore. since h is

orthogonal to the eigenfunctions, we have:

fu ‘o(h"-é-/\h)sin(g%u)du-:() | (A1)

‘Therefore, a.fter neglecting higher order terms, the mtewml (A.23) becomes:

I

» "

j[(u3+)m(ur

nw

-

,—’&'fter int_egrziting,l we have: . : o
: ‘ Q(A_/\n) I\_-QS'; 3 b v o
B

- Therefore in a small nelghborhood of /\.,,, ()\ Az)s the solutlon amphtude q ‘and A h:we
N the followmg relatlonshlp o

N . -

B

Since' A= ( — 1), we find that sufﬁmently close to the blfurcatxon point, the a.mphtudc
q and the elastlc a.msotropy i are related bv

24"':.11“‘#- ( i
.lu'uc,n

-

'q=

Equatlon (A. 28) predxcts that close to a blfurcatlon of order n, the amphtude of the
nth mode grows at a faster(slower) ra.te for Iarger(smaller) n. This is in agreement with N

-the numenca.l re;ults shown in Fxg 8; by comparing curve A (n = 1) with eurve C (n= 3) :

W

\ 86

£

+A(g (_\;)- '( —u} cos” (—;-u))]bln(——u)du 0 : _(fi.zs)

ey
,/o(,\ An) (n_1,-,-.".- ‘,: ) -(Al'é_"")

JFL%J ;”NL' (a28)

e - .
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elastic anisotropy.

we see that the amplitude grows faster in the Iatter case.
In summary. the contents of this appendix shows the mathematical analysis that
explains the multiple bifurcations at eigenvalues. By applying the Ljapunov-Schmidt

method [21], we also derive the relationship between the solution amplitude and the
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