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ABSTRACT

Power system operation and planning relies heavily on computer
simulation programs such as load flow, transient stability, contingency analysis,
state estimation, short-circuit studies and optimal power flow. All of the above
mentioned methodologies for planning and operation involve simulation
programs which require the solution of numerous sets of simultaneous linear
equations, Ax=b, whose coefficient matrices are in general very large and
sparse. The main part of the computational effort involved in these algorithms
is dedicated to solving such systems of linear equations.

This thesis investigates the properties of the coefficient matrix A that
arises in power system analysis, as well as the application of more efficient
alternative solution techniques for Ax=b which exploit these special
properties. In particular, in this thesis, pre-conditioned conjugate gradient
(PCG) methods have been applied and extensively tested for the first time to
the solution of systems of linear equations arising in many power system
operations and planning tasks.

In this vein, first, it is theoretically proven that some important power
network coefficient matrices are positive definite and comply with the
requirements for the convergence of the PCG method.

The PCG algorithm is then applied to the Fast Decoupled load flow
and to the DC load flow. Its performance is numerically compared with a
Frontal band-width direct solver (Frontal solver) as well as with a Sparspak
solver {BS) with minimum degree ordering. The experimental results are
based on a wide spectrum of power networks up to 5000 buses and about
10000 lines for two different types of networks: grid-type networks and star-
type networks, These results demonstrate that the PCG method is clearly
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superior to direct solvers for certain types of large power networks.

The performance of the PCG solver within other load flow algorithms
is also numerically investigated.

A detailed investigation into the eigenvalue clustering effect of
alternative pre-conditioners which utilize the intrinsic properties of power
networks is also presented. In addition, the effect of their eigenvalue
clusterings on the convergence of the PCG algorithm is analyzed and
compared with that of the classical incomplete Cholesky pre-conditioner.

Furthermore, the usefulness of the PCG solvers is investigated for
complex or indefinite power network matrices. A modified PCG method was
applied to the IEEE test networks as well as to large synthetically generated
networks (up to 6500 buses and 13000 lines) for the solution of systems of
equations Y x = b, where Y is the complex admittance matrix. Comparison
with direct solvers is provided.

Finally, a new technique is developed to synthetically generate realistic
data sets which characterize power networks of arbitrary size and complexity.
While these networks are randomly generated, the software allows the user
to specify the system dimension, type of network, connectivity configurations
and other network characteristics. This software was developed to overcome
the difficulties associated with the collection of network data, especiaily for
large scale systems.



RESUME

L’exploitation et la planification des grands réseaux électriques fait
appel & de nombreux outils de simulation, tels la répartition de puissance, la
stabilité transitoire, I’analyse des contingences, I'estimation d’état, 'analyse de
court circuits et la répartition optimale de puissance. Pour toutes ces
méthodologies, on retrouve des algorithmes de résolution d’équations
linéaires, Ax = b, au coeur des implantations numériques. En fait, la majeure
partie du temps de calcul dans ces logiciels est consacré 2 la résolution des
équations linéaires. Typiquemnent la matrice A est trés grande et creuse.

Cette thése cherche d’abord & établir quelques unes des propriétés
fondamentales des matrices formées dans les problémes de réseaux
électriques. Elle propose ensuite des techniques de résolution, jusque-la
inutilisées dans le domaine, pouvant mieux exploiter ces propriétés. En
particulier, cette thése fait P’essai de la méthode du gradient conjugué pré-
conditionée (GCP) pour la résolution d’équations linéaires découlant de
problémes d’exploitation et de planification de réseau.

En un premier temps, on démontre que de nombreux types de matrices
de réseaux rencontrent les exigences imposées par la méthode GCP, dont en
particulier la condition d’étre définie positive.

En un deuxiégme temps, Palgorithme GCP est implanté dans deux
calculs de répartition de puissance, 'un complet utilisant la méthode
découplée, I'autre simplifié utilisant la méthode dite & courant continu. Ses
performances numériques sont comparées a celles de méthodes de résolution
directes souvent utilisées dans le domaine, soit la méthode Frontale, et la
méthode d'ordonnancement 2 degré minimal disponible dans le logiciel
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Sparspak. Les matrices affectées aux essais proviennent de réseaux de
differents types (grillage et étoile) et de differentes dimensions (allant jusqu’a
5000 barres et 10000 branches). Nos résultats démontrent la supériorité de la
méthodologie GCP pour certains types de matrices de réseaux.

Nous avons également vérifié I'emploi de la méthodologie CGP dans
d’autres algorithmes de répartition de puissance.

Cette thése explore aussi les mérites de plusieurs modules pré-
conditioneurs. Pour ce on évalue dans chaaue cas, et pour piusieurs matrices
de réseaux typiques, les regroupements des valeurs propres. Cela est
intimement liée aux propriétés de convergence. On compare les performances
de ces modules 2 celles du module préconditioneur classique de Cholesky.

De plus, un algorithme modifié CGP a servi a résoudre des systémes
d’équations indéfinies et des systémes & coefficients complexes. Des matrices
d’admittances complexes pour ces essais ont été tirées des réseaux tests de
I'EEE ainsi que de réseaux synthétiques de trés grandes tailles (allant jusqu’a
6500 barres et 13000 branches).

Enfin, une nouvelle méthodologie est proposée pour synthétiser des
réseaux fictifs & dimensions et & complexités arbitraires, comportant
néanmoins des parametres vraisemblables. Bien que la génération de ces
réseaux soit aléatoire, I'usager contrdle le processus en spécifiant le type de
résean, ses dimensions, des éléments de sa comnectivité, et d'autres
paramétres. Cela permet d’alimenter librement les algorithmes de calcul tout
en contourant les difficultés de collecter des données de réseaux,
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CHAPTER

ONE

INTRODUCTION

1.1 Background

The first power generation and transmission system was installed in
1882 at the Pear] Street Station in New York. It supplied a mere 30 kW to a
number of electric incandescent street lamps. During the intervening decades,
as a result of population growth and of the consumption-oriented culture of
modern day societies, the demand for electric energy sharply increased. In the
United States the annual electric energy production more than doubled every
ten years from 1920 to 1960 [1].

In conjunction with load growth, there arose a need to increase the
reliability of the supply and to reduce the high cost of spinning reserve, that
is, the reserve generation which runs at almost no load ready to very rapidly
respond to emergencies. One consequence of this need was the
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interconnection of local power networks into very large pools. As a result of
this trend, modern day power systems include thousands of interconnected
transmission lines and hundreds of generating plants and substations.

The main responsibility of an electric power company is to produce,
transmit and distribute energy to its customers at constant voltage and
frequency, acéording to their needs, at a reasonable cost and high reliability.
Typically, power requirements (amounts, duration and scheduling) are strongly
influenced by the type of consumer applications, social and economic structure
and locality and, therefore, demand can vary widely. In addition, power
networks are exposed to frequent equipment failures which may significantly
affect the ability of the network to meet its responsibilities.

Due to the high dependence of today’s societies on electric energy,
major interruptions such as the blackout in New York in 1977 can lead to
significant economic losses and social disruption {2]. Society today does not
accept such major power failures. Thus, power companies have been obliged
to take measures to ensure a highly reliable continuity of supply during all
possible disturbances of the networks.

So far, numerous investigations have been performed by the power
industry to try to meet these difficult objectives. Electrical technology has
progressed in a step-by-step fashion as a result of this research resulting in the
development of sophisticated systematic methodologies for power system
operation and planning [17, 24, 34], These methods rely heavily on computer
simulation programs such as load flow, transient stability, contingency analysis,
state estimation, short-circuit studies, optimal power flow and others [23, 26,
33]. Because of the large dimension of modern power networks, their highly
non-linear nature and the numerous possible disturbances and operating
states, the computational burden associated with the planning and operation
of power systems is huge. In fact, the high computational cost is 2 major
obstacle in the development of more advanced operation and planning
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methodologies. For this reason, an important research activity is being
directed at reducing this computational effort.

Most of the above mentioned methodologies for planning and
operation involve simulation programs which require the solution of numerous
sets of simultaneous linear equations, Ax=b, whose coefficient matrices are
in general very large and sparse. The size and complexity of the coefficient
matrix is closely tied to the power network size and its interconnections.
These systems of linear equations arise from the iterative solution of non-
linear algebraic and differential equations [11-18]. The main part of the
computational work involved in most of the above mentioned methodologies
is dedicated to solving such linear systems of equations. Due to this fact, we
have focused our investigation on the properties of the coefficient matrices
that arise in power system analysis and the application of more efficient
solution techniques. In particular, in this thesis, pre-conditioned conjugate
gradient methods have been applied for the first time to large power system
analysis problems.

1.2 The Present Thesis

The present thesis has investigated the application of pre-conditioned
conjugate gradient algorithms to the solution of systems of linear equations
arising in power system analysis problems. This required:

(a) detailed investigations of the properties of power network matrices,

(b) development of an algorithm to synthetically generate arbitrary
representative power network data,

(c) numerous tests of the Incomplete Cholesky pre-conditioned
conjugate gradient (PCG) algorithm on a wide spectrum of large scale power
networks,
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(d) an investigation of alternative pre-conditioning schemes exploiting
power system network properties.

The following sections briefly overview the motivation and contents of
the present thesis.

1.2.1 Motivation for thesis

Solving large, sparse systems of linear equations is at the heart of
several power system problems. These systems of linear equations that arise
in the planning, design and operation of power systems, are typically solved
using direct methods that involve variations of Gaussian elimination.

It has been shown by Sato and Tinney {38], Carpentier [25] and Tinney
et al. [26,50] that, through sparse programming and efficient ordering schemes,
extremely fast direct method solutions can be computed with a minimum of
memory requirements. Although these techniques are considered efficient for
many applications, due to the increasing size and complexity of power
networks, in cases involving repeated solutions such as security analysis, and
in real time centrol [27], such direct solvers may still not be sufficiently fast.

The present thesis is concerned with the potential of iterative
techniques in the solution of linear systems of equations that arise in many
power system problems. More specifically, the main objective of this research
has been to apply the semi-iterative pre-conditioned conjugate gradient (PCG)
algorithm to these problems. The following enumerates the motivations
underlying the present thesis:

i) The encouraging results of PCG in finite element analysis in
electromagnetics where speed improvements of 100 to 1 compared with direct
methods are not uncommon [28].
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ii) The critical need to speed up large-scale power system analysis and
simulation algorithms, such as security monitoring and control applications,
specially in a real time environment.

iti) The fact that PCG metho:is had not been systematically evaluated
in power system applications.

During this course of study a comparative investigation into the
potential value of different pre-conditioning matrices in power applications
was also conducted. This work was primarily motivated by:

iv) The impressive results of PCG with classical incomplete Cholesky
pre-conditioning for the DC and Fast Decoupled load flows, for which a very
high gain in speed is achieved compared with direct solvers [29].

v) The PCG performance gain is closely related to the eigenvalue
clustering effect introduced by pre-conditioning [102]. Therefore, constructing
more effective pre-conditioning matrices can reduce the number of iterations
resulting in faster convergence.

vi) To our knowledge, the eigenvalue clustering of power network
matrices using specially adapted pre-conditioning schemes had not been
extensively investigated or exploited.

vii) The above studies were based on a comparative investigation of a
wide spectrum of power networks up to 6500 buses and 13000 lines. Because
of the difficulty of obtaining data from representative networks, we were
motivated to develop an algorithm to synthetically create such networks.

An outline of this thesis is presented next.
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1.2.2 Outline of thesis

1.2.2.1 Chapter I

Chapter I presents introductory background material, motivation for
the thesis, a chapter by chapter outline of the thesis and a list of original

contributions.
1.2.2.2 Chapter II

Commonly used power system studies where numerous large systems
of linear equations must be solved are reviewed. These include load flow,
transient stability, contingency analysis, state estimation and short-circuit
analysis. In addition, recent advances for reducing the computation time of
such problems are reviewed briefly.

Also, the principal general iterative techniques for the soluticn of
systems of linear equations and their properties are reviewed. The conjugate
gradient approach and its pre-conditioned form are described. A comparative
investigation of the potential value of the i)re-conditioned conjugate gradient
algorithm versus direct solvers is performed.

1.2.2.3 Chapter III

In this chapter, first, it is theoretically proven that some important
power network matrices are positive definite and comply with the
requirements for the convergence-of the PCG method.

Then, the Incomplete Cholesky PCG algorithm is applied to the Fast
Decoupled load flow and to the DC load flow and numerically compared with
a Frontal band-width based direct solver (Frontal solver) as well as with a
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Sparspak solver (B5) with minimum degree ordering. The experimental results
are based on a wide spectrum of power networks up to 5000 buses and about
10000 lines for two different types of networks: multi-block grid networks and
multi-block star networks.

The performance of the PCG solver inside other load flow algorithms
is also investigated.

1.2.2.4 Chapter IV

This chapter describes the results of a detailed investigation into the
eigenvalue clustering effect of alternative pre-conditioners for power network
matrices. In addition, the effect of their eigenvalue clusterings on the
convergence of the PCG algorithm is analyzed and compared with that of the
classical incomplete Cholesky pre-conditioner.

1.2.2.5 Chapter V

In this chapter, an investigation into the application of PCG to complex
and indefinite power network matrices is presented. Modifications have been
made to the PCG algorithm to apply it to complex admittance matrices. The
modified PCG method has been applied to the IEEE test networks and
synthetically generated networks of large sizes for the solution of systems of
equations of the form Y x = b, where Y is the complex admittance matrix.

The computational cost of the new PCG algorithm is compared with
that of a standard direct solver and the advantages of PCG in the solution of

Y V = 1 as arising in load flow and transient stability are discussed.

1.2.2.6 Chapter VI

This chapter presents a new technique that synthetically generates
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realistic data for power networks of arbitrary size and complexity. While these
networks are randomly generated, the software allows the user to specify the
system dimension, type of network, connectivity configurations and other
network characteristics.

This software was developed to overcome the difficulties associated
with the collection of network data, especially for large scale systems.

1.2.2.7 CHAPTER VII

This chapter contains the concluding remarks, and recommendations
for extending the scope of the present research and its future direction.

1.2.3 Original contributions

To the author’s knowledge, the principal original contribution of this
thesis has been the application and systematic evaluation of Pre-conditioned
Conjugate Gradient (PCG) methods to power system problems.

This contribution includes the following parts:

i) The PCG method has been shown to be considerably more efficient
than direct solvers in certain types of power system problems with positive
definite real matrices arising from the DC and Fast Decoupled load flows.

ii) Extensive numerical tests were carried out to investigate the effect

of network size and topology on the relative performance of direct and PCG
methods.

ili) The eigenvalue clustering effect of different pre-conditioning
matrices and their effect on the convergence of the PCG algorithm has been
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investigated in power system problems. A more effective pre-conditioner
(Dominant Element Incomplete Cholesky) which exploits intrinsic properties
of power networks has been discovered to be more effective than the classical
incomplete Cholesky.

iv) The PCG method has been shown, through extensive numerical
tests, to have advantages over direct solvers not just for real positive définite
matrices, but also for complex network matrices such as the admittance
matrix.

v) A new technique has been presented that designs netwceks and

synthetically generates realistic data for power networks of arbitrary size and
complexity.



CHAPTER

TWO

COMMON POWER SYSTEM ANALYSIS
PROBLEMS AND RECENT ADVANCES
IN SOLUTION TECHNIQUES

2.1 Introduction

The objective of this chapter is to give the reader an overview of the
basic power system analysis problems and to demonstrate that the fast
solution of such problems depends very strongly on efficient techniques for
solving systems of linear equations.

Thus, commonly encountered power system problems which require
repeated solutions of large systems of linear equations are reviewed. In
addition, recent advances in the reduction of computational and memory
requirements relative to direct solvers such as sparse programming, ordering
schemes, matrix partitioning, compensation methods and parallel processing
are summarized.
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Then, general properties of iterative techniques for the solution of
large sparse systems of linear equations as well as the semi-iterative conjugate
gradient (CG) algorithm are described and compared with those of direct
solvers. Since the main objective of this thesis is the application of the pre-
conditioned conjugate gradient (PCG) method to power system problems,
special attention is directed toward the conjugate gradient (CG) and pre-

conditioned conjugate gradient (PCG) algorithms as alternatives to direct
solvers.

2.2 Load Flow Technigues

Load flow calculations are fundamental to most power system problems
[3-12]. These calculations which characterize the sinusoidal steady-state
behaviour of power networks are repeatedly carried out as part of system
planning, operational planning, optimization, contingency analysis and
transient stability studies. The load flow computation is the most time
consuming part of these studies.

The trend today in programs using load flow algorithms is to analyze
larger networks, to solve numerous repeated load flow cases, and do all this
in real time. To speed up the solution algorithms for the power flow problem
therefore becomes essential.

Basic to the understanding of the load flow problem is a mathematical
mode] of the network, which can be written based on Kirchhoff's current law,

I =YV @.n

where, I is the vector of injected currents, V is the vector of bus voltages and
Y represents the complex network admittance matrix.
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However, in a power flow problem, the power injections at different
buses are known instead of currents and, therefore, the steady state equations
are often expressed in terms of powers and voltages. Thus, to establish the
load flow equations, the complex power delivered to bus i is expressed as
follows,

S = VI @2)
or,
n
P, +jQ, =V, [Z Y, V, T (2.3)
1
where,
= ;s
Vo= Ve’ 2.4)
Y, = Y, eV

Now, equation 2.3 can readily be separated into real and imaginary parts as,

P, =V, Y Y,V cosd - 8, -8 (2.5)
j=1
n

Q=VY Y, Vsin@® -5 - 8) 2.6)
j=1

Finally, we are faced with the problem of obtaining a numerical
solution to the above systems of nonlinear algebraic equations for the
unknown voltage components.

Several alternative methods have been proposed in the literature for
the solution of the power flow equations. All of these different approaches
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essentially start with an initial guess for the complex nodal voltages, which in
turn is used in conjunction with the load flow equations to compute a new and
better estimate of the solution. This process is repeated in an iterative fashion
until the equations are satisfied.

Among the various solution algorithms, the methods based on the
Newton-Raphson approach [8] are the dominant ones. These numerical
methods are generally at their most efficient when they take advantage of the
physical properties of the power network being solved. This resulted in several
efficient and generally reliable load flow solution techniques such as the
Decoupled and Fast Decoupled load flow (FDLF) algorithms [11, 12, 31].
Some of the properties of these Newton-like algorithms are described in the
following sections and a brief comparison of the merits and demerits of these
methods based on the available literature is presented.

2.2.1 Newton-Raphson load flow algorithm

The Newton-Raphson method for the solution of equations 2.5 and 2.6
requires repeated solutions of systems of linear equations of the form,

[11 J2][A6]=[AP] @2.7)
B allav]T|lae |

where the sub-matrices making up the Jacobian matrix are given by,

Jl = .gg
3%
»n=22
oV (2.8)
3=
35
J4 = X
v

and where P, Q, 6, and V respectively represent vectors of real power
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injections, reactive power injections, bus voltage phase angles and magnitudes.
The index i represents the iteration number. After each iteration § and V
vectors are updated by adding the correction vectors A§ and AV, The vectors
of equation mismatches AP and AQ represent the difference between the
specified and the calculated power injections.

The coefficient matrix in this equation is the Jacobian matrix which is
a function of the latest voltage solution. The Newton-Raphson method is quite
robust and converges relatively fast as m- -isured by the number of repeated
solutions. For power flow studies that do not call for special adjustments such
as PV-PQ bus type switching, convergence to an acceptable accuracy will
usually be obtained in less than 5 iterations for large as well as small systems
[8, 32]. In their extensive studies Stagg and El-Abiad [33] have concluded that
the required number of iterations for convergence of the Newton-Raphson
method is independent of system size for well-behaved problems.

It is noteworthy to mention that the dimension of the system of
equations 2.7 is equal to nb+nl-1, where nb and nl represent the number of
buses and the number of load buses respectively. Equation 2.7 is partitioned
into four blocks, J1, J2, J3 and J4. Based on equation 2.8, the matrix elements
in each block of equation 2.7 can be written as below :

Non-diagonal elements for each block:

oP,

a5,

oP,

3 Qf 2.9)
J3;, = — = -V, ¥, V, cos(5,~5,-6,)

a5,

oQ ,
J4; = — = V, ¥, sin(8,-5,-6,)

,
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Diagonal elements for each block:

oP, n ,
J, = = =V, Y Y, V,sin(8,-6,-8,)  k#i

361 = 4

oP, n
J2; = 7 - V, Y, cos(®) + Y Y, V, cos(d,~5,-6,)

aQ: n =i (2.10)
J3; = —a"ai =¥, Y Y, V, cos(5,-5,-6,)

{ k=1
14—60‘-Vy in(8 +"YV'55
i = gy T Vi sin(8,) + ), ¥, V, sin(3,- 76

{ knl

It is observed from equations 2.9 and 2.10 that the Jacobian in its
original form is not symmetric and has almost the same sparsity structure as
the Y-matrix. In a real system, on the average, each bus may be connected to
about three or four of the remaining buses. This means that, on the average,
four or five of the elements in each row of the Y-matrix including the
diagonal elements will be non-zero. This implies that for large systems the Y-
matrix is very sparse. For example, for a typical 1000-bus power network the
sparsity of the Y-matrix is about 99 percent.

The Newton-Raphson method has the advantages of being reliable and
offering fast convergence, however, due to the need to update and factorize
the Jacobian matrix at each iteration (when using direct methods to solve
equation 2.7), the computational time of the solution increases rapidly with
system dimension. Due to this fact, certain modifications have been applied
to the Newton-Raphson method to reduce computational effort without
sacrificing its strong convergence properties. One example of this is to
maintain the same Jacobian matrix throughout all the iteration steps. Other,
more elaborate modifications are discussed below.
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2.2.2 Decoupled load flow algorithm

It is known that for a banded or Frontal Gaussian elimination linear
equation solver, with only the active part of the matrix stored in memory, the
total operation count and the storage requirements are respectively O(nm?)
and O(m?), where n is the system dimension and m is the matrix bandwidth
(the average width of non-zero elements about the diagonal) [46, 60]. This
indicates that as the dimension of the system increases, the computational
effort will grow as O(n") where 1 < @ < 2. Therefore the solution time of two
decoupled systems of linear equations with dimensions n; and n, is much
smaller than the solution time of one system of linear equations of size n,
where n is equal to the sum of n, and n,.

The decoupled load flow takes advantage of this property. It is based
on a simplified Newton algorithm by exploiting the real power/angle and
reactive power/voltage decoupling principle [11,32]. This principle states that,
generally, for small changes in the magnitudes of the bus voltages, the real
power bus injections do not change significantly. On the other hand, small
changes in the phase angles do not affect the reactive power injections
appreciably. This can also be concluded from equations 2.6 due to the fact
that, in power networks, 6; is usually close to 90 degrees and the angle
difference between the two end buses of a transmission line is generally small
(<30°). The decoupling principle can be interpreted to mean that the
elements of the sub-matrices J2 and J3 are numerically much smaller than
those of J1 and J4. Then, approximating J2 and J3 with zero matrices of the
same dimension, equation 2.7 reduces into two smaller systems of linear
equations 2.11 and 2,12,

J, . Ad = AP (2.11)

J, . AV = AQ (2.12)
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This modification can significantly reduce the computational time
involved in each iteration step, however in some cases due to this
approximation, the number of iterations required for convergence increases.

In spite of the decoupling simplification, the sub-matrices J1 and J4 are
non-symmetric matrices that need to be updated and refactored at each
iteration step. A further simplification of the Jacobian matrix results in the
Fast Decoupled load flow algorithm and is discussed next.

2.2.3 Fast Decoupled load flow algorithm

The Fast Decoupled load flow is the most commonly used algorithm
for solving the non-linear AC load flow [12]. It is based on a simplified
Decoupled load flow algorithm with a constant Jacobian matrix derived by
exploiting the fact that in typical power networks, the resistive portions of the
line impedances are small relative to reactive portions and thus can be
neglected {12]. This fact also allows the programmer to substitute ; by 90
degrees. In addition, if the power flows are small relative to the maximum
power carrying line capacity, then sin(é;-6;) is approximated by &;-5;.

Thus, in each iteration of the Fast Decoupled load flow, two matrix
equations need to be solved for ds and dV,

AP
V

B, A%

(2.13)

B" . AV

AQ (2.14)
v

In these equations B’ and B" are both real, sparse and constant
matrices. The equation mismatches, dP and dQ are updated at every iteration.
The matrix B" is a principal sub-matrix of B
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In this approach more iterations may be required for convergence
compared to full Newton approach. However, due to the fact that B’ and B"
are constant, only one factorization will be required for repeated solutions of
each of these two systems of linear equations. This is a very significant
property which has made the Fast Decoupled method the dominant approach
in power system studies.

2.2.4 DC load flow

The DC load flow is a widely implemented approximation of the
general AC load flow. The DC load flow is used to analyze highly meshed
power networks with short lines, low R to X ratios and angular differences
between adjacent buses not exceeding 30 degrees. It is formulated by,

P=B5 2.15)

where, P is the vector of net real power bus injections at all buses except for
the reference bus, while B is the DC load flow network matrix [34].

2.2.5 YV = ] based load flow algorithm

An iterative technique using the complex admittance matrix is another
approach to the solution of the power flow equations. The simplest way to
implement this algorithm is to approximate the loads as constant impedances
and the generator terminal currents L. + j I; as given node currents and to
adjust them iteratively until solution convergence is achieved. Experimental
investigations on this approach suggest, however, that this method frequently
fails to converge [13]. The convergence of the algorithm can be improved by
adding some fictitious slack buses behind the generator impedances [13]. This
method is frequently used for solving the steady state equations in transient
stability programs {13, 14].



CHAPTER 2 COMMON POWER SYSTEM .., 19

2.3 Transient Stability Analysis

Transient stability analysis deals with two simultaneous sets of
equations that must be solved repeatedly as time evolves [13-15]. The first
describes the steady state behaviour of the network, and includes steady state
models of the loads and algebraic equations of the generator,

g X,W) =0 (2.16)

while, the second set (differential equations) characterizes the dynamic
behaviour of the machines and their control circuits,

aw _ 2.17
= FXWy) 2.17)

There are different solution methods for the transient stability problem,
however, most approaches require iterative solutions of [13, 119],

[Y+Y,+Y,1.V=1 (2.18)

where, Y is the network admittance matrix, while, Y, and Y, represent the
loads and generators characteristics, The summation of these three matrices
has a much larger dimension than the network size, being closely tied to the
complexity of the associated models representing generators and loads [14]
(for example 4800 by 4800 for the Hydro-Quebec 700-bus network).

24 Contingency Analysis and Contingency Ranking

Security is an important feature that should be considered in the design
and operation of power systems, This implies that transmission networks must
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be designed and operated such that in case of the outage of one of the
network components, the remaining components should be able to continue
operating without overloading. This is necessary since, although the operator
can remotely control circuit breakers and other components, network changes
can be so fast that he or she may not be able to respond to an outage in time.

In order to design and operate power systems securely, contingency
analysis algorithms of different forms have been developed during the past
two decades [16-20]. These programs are based on the fast but approximate
simulation of the existing operating state and of the effects of possible
outages. They allow operators to predict what should be done in case of
potential emergencies to maintain system security.

Contingency analysis is mainly carried out by running fast load flow
algorithms such as the Fast Decoupled and DC load flow. However, because
of the large number of possible changes in a network, security analysis is still
a very time-consuming task. To reduce this computational burden, the list of
probable contingencies is typically ranked according to some simple-to-
calculate performance indices [16,17], and only the most severe ones are
analyzed in detail.

It is obvious that once again, in security analysis, we are confronted
with the difficulties of solving numerous large systems of linear equations.
Due to time constraints and to a wider spectrum of possible contingencies,
these difficulties are even more pronounced when dealing with on-line
applications.

2.5 State Estimation

Power companies have always been faced with the need to monitor and
control the operating conditions of their networks in real time, Nowadays,
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most of the control and dispatch centers are equipped with systems which
include measurement and transmission of critical data to dispatch centers
every few seconds.

The transmitted data has the following properties: (1) A direct
measurement of every important quantity is not always possible, (2) there are
more measurements than quantities to be monitored (redundancy), (3) due

to measurement errors and telemetry problems, the data can be inaccurate or
even wrong.

State estimation algorithms have therefore been developed to minimize
the effect of measurement errors and telemetry problems and to produce a
complete and reliable set of data for security analysis. These algorithms rely
on the solution of repeated systems of linear equations [21, 22, 78).

2.6  Short-Circuit Analysis

Short-circuits can occur in power systems whenever there is a failure
in the insulation of some part of the network, due to overvoltages, or as a
result of mechanical failures. Thus, short-circuit calculations must be
performed for selecting, setting and coordinating protective equipment such
as circuit breakers, fuses, relays and instrument transformers. These
computations rely on utilizing the short circuit algorithms in which, the bus
admittance matrix is the key to calculating the fault currents [23] :

YV=] 2.19)

Thus, again, we must deal with the solution of large systems of linear
equations (this time in the complex domain).
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2.7 Solution Techniques and Recent Advances in Power System

Analysis

It was demonstrated in previous sections that almost all power system
analysis algorithms rely heavily on the repeated solutions of large sparse
systems of linear equations. These solutions take up the bulk of the overall
computational effort [26, 40). Therefore, any attempt at making power system
analysis programs more efficient should first be directed at improving the
linear solver part.

Techniques to solve systems of linear equations may generally be
classified as direct, involving a fixed number of arithmetic operations, and
indirect or iterative methods, involving the repetition of certain steps. This
repetition is continued until the required accuracy is achieved.

Iterative methods, such as the classical successive over-relaxation
techniques [91, 92], are usually easy to program and need less storage but are,
generally, less reliable and less efficient. Thus, for the most part, these
techniques have been replaced by direct solvers in power system analysis [40].

2.7.1 Direct solvers

Direct solvers for the solution of Ax=b [46] are, typically,
variations of Gaussian elimination. They yield the exact solution in a finite
number of iterations and require O(n®) storage locations and O(n®) arithmetic
operations without sparsity exploitation. These solvers essentially utilize some
form of factorization of A into the product of a lower triangular (L) and an
upper triangular matrix (U),

LU (2.20)

o
"
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Then, the solution, x, is obtained by a forward and a backward substitution,

Ly
Ux

]
[~ o8

(2.21)

1]
-]

Direct solvers have been substantially improved over the years by the
incorporation of some special advanced developments namely, sparse
programming, ordering algorithms, matrix partitioning, compensation methods
and parallel processing. Nevertheless, the computation time of direct methods
can still be prohibitively high in cases involving very large systems, numerous

repeated solutions, and in highly meshed networks that are difficult to order
efficiently.

2.7.1.1 Sparse programming

It is well known that the solution of a system of n linear equations
involves dimensioning an n by n coefficient matrix with n? storage
requirements if the matrix is real and sparsity is not exploited. Obviously, even
powerful machines will have difficulties in solving simple problems if the
dimension is larger than a thousand. Thus, the symmetry and sparsity of the
coefficient matrix must be considered.

Some techniques for saving sparse matrices indicate and store each
matrix element with its column number and row number. Thus, the storage
requirement for the data is about three times the number of entries. It is also
clear that these data have to be unpacked for every operation which in turn
requires some computer time. Therefore, it may not be advantageous to use
sparse matrix techniques unless the density of non-zero elements is
considerably low. However, for most large power network applications,

sparsity is usually greater than 95% so that it pays substantially to exploit
sparsity.
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Due to the significant gain in computer storage for large sparse
matrices, sparsity oriented programming is a standard feature in most
industrial applications today, and much research has been devoted to this area
during the past decades [35-51]. These investigations have resulted in the
introduction of various kinds of storage schemes which differ in the way zeros
are exploited [35-43]. Some of these schemes explicitly store some zeros to get
a simpler storage scheme, while other schemes sacrifice simplicity in favour
of fewer storage locations. The choice of siorage scheme affects the solution
strategies and has obvious impact on the memory requirements and execution
time. Therefore, it can be considered as a tool for reducing computer storage,
computer execution time or a combination of both objectives.

Based on the high degree of sparsity in typical power system matrices
[47-49], sparsity programming has been extensively applied to power system
algorithms as in other fields. Improvements in sparsity techniques in the
power area are mainly due to Edelman, Sato, Walker, Tinney and Ogbuobiri
[38, 39, 40, 41).

In their later work Tinney et al. have extended sparsity exploitation to
vectors [50]. They have shown that sparse vector methods are very useful
techniques for solving systems of linear equations if the right hand side vector
is sparse or only a few elements in the unknmown vector have to be
determined. This aspect has been successfully exploited for on-line power
network security analysis [51).

2.7.1.2 Ordering algorithms

The computation time for the direct solution of a sparse system of
linear equations essentially depends on the total number of operations during
the triangularization of the coefficient matrix. This includes the number of
operations relating to non-zero elements of the coefficient matrix as well as
those related to additional non-zero terms introduced in the reduction to
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triangular form (fill-ins). It can be shown that, generally, this operation count
varies with the sequence in which the rows of the coefficient matrix are
processed. The order in which the Gaussian elimination is performed on
sparse matrices affects the total number of these newly introduced non-zero
elements. Thus, it is clear that the solution time will be essentially dependent
on the ordering scheme used for the elimination. Depending on the coefficient
matrix structure, some orderings can lead to a dramatic reduction in the
amount of fill-ins and hence in the total computation time. However, the task
of finding the best {or more realistically a good) ordering for a sparse solver
is not that easy. This is because it is very difficult to define what is meant by
best, and only heuristic algorithms are computationally feasible for large
sparse systems [52]. Some orderings may be very efficient but very costly to
compute, while another algorithm allowing more fill-ins but fewer
computations in the ordering algorithm itself may be more economical overall,
George and Liu, in their intensive study [37, 46], have shown that the
execution times required to implement different orderings can vary
dramatically. For these reasons, detailed investigations have been focused on
the performance of different ordering schemes and many practical algorithms
have been developed [53-70]. However, each ordering strategy has its own
objectives and thus it is very difficult to choose a single best ordering. Only
after extensive analysis and computational experiments is it possible to
identify those suitable for a special class of matrices while rejecting others.

There are generally two basic objectives for ordering algorithms. One
focuses on strategies to control numerical accuracy through pivoting schemes,
while the other aims at conservation of the matrix sparsity. In power system
problems, due to the nature of the network matrices and to the numerical
accuracy of modern computers, Ogbuobiri, Tinney and Walker concluded that
exploitation of sparsity is the main objective [40].

Among the ordering strategies which attempt to reduce the number of
fill-ins, there are two approaches. One is to minimize the number of fill-ins
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regardless of their position in the matrix [65]. The other confines the non-zero
elements to a small region. Several different forms have been proposed for
this group of ordering schemes, among which matrix banding schemes have
received the most attention [53-62].

The objective of banding schemes is to find a permutation of the
matrix such that its non-zero elements are clustered in a narrow band about
the major diagonal [38] or about the minor diagonal [57]. If no row or column
interchanges are performed, this banded form is retained in the corresponding
Cholesky factor or during Gaussian elimination. This type of ordering has
found several practical applications [57-61]. We usually say that a matrix has
bandwidth 2m + 1 and semi-bandwidth m if m is the smallest integer such that
a; = 0 for any |i5j| > m. In the use of band methods all zeros outside thie
defined band are ignored, while those located within the bandwidth are
usually stored and treated as entries.

More sophisticated algorithms referred to as variable band (also called
profile or envelope) schemes have shown to be more advantageous over
simple band methods [53-62]. A widely used ordering algorithm of this type
was proposed by Cuthill and McKee [53]. They designed their algorithm to
reduce the bandwidth of a sparse symmetric matrix. Many other orderings
proposed since then, have not offered significant advantages over this
algorithm. However, George [62] in his study of the envelope methods found
that reversing the Cuthill-McKee scheme often yields significant improvement
in the total storage requirements within the envelope and in the number of
arithmetic operations. Later Liu and Sherman [63] proved that the reverse
algorithm is always superior to the original Cuthill-McKee as far as the total
envelope storage and operation counts are concerned.

Apart from the matrix-banding schemes, Tinney and Walker [64] have
introduced three other schemes which aim at the optimum conservation of
matrix sparsity during Gaussian elimination, These are usually referred as
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scheme 1, scheme 2 and scheme 3 ordering algorithms. These schemes are
briefly explained below:

Scheme 1 : In this scheme, the rows of the coefficient matrix are
numbered based on the number of its off-diagonal non-zero elements. The
rows having the fewest non-zero elements are numbered first and if two rows

have equal off-diagonal non-zero elements, either of them may proceed the
other.

Scheme 2 : By far this scheme is the most popular fill-reducing
algorithm proposed by Tinney and Walker in 1967 [64] and explained by
Tinney in 1969 [65]. This scheme, sometimes referred to as the minimum
degree algorithm [66], basically corresponds to the Markowitz scheme [67]
introduced for unsymmetric matrices in 1957. In this scheme, the strategy is
that at any elimination step the row which has the fewest number of off-
diagonal non-zero elements is eliminated first,

The key to implement this algorithm efficiently, is to avoid the explicit
storage of the fill-ins. This objective was popularized outside the power system
area by Rose [68] and by George and Liu [37)].

Scheme 3 : During the elimination of a node, new paths are added to
the graph of the matrix as a result of the elimination process. In this scheme,

the nodes generating the fewest number of newly generated paths are
eliminated first.

Each of these three ordering schemes have been shown to be very

helpful when applied to power network problems, However, it is also possible,
in rare cases, that the schemes give a poor ordering,

In conclusion, ordering schemes are basic to the solution of large
sparse systems of linear equations and have been extensively applied to sparse
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matrices in electrical power problems [69, 70}. Of these, Tinney scheme 2

appears to be the most efficient one in terms of computation time and storage
{40}

2.7.1.3 Matrix partitioning

Matrix partitioning is another method for reducing the computational
effort for certain classes of problems [71-74, 77]. In this approach, a huge
problem may be subdivided into smaller systems of equations and then sparse
matrix techniques may be applied to these sub-problems. One strong feature
of the partitioned approach appears when the subsystems associated with the
coefficient matrix have some special characteristics that can be easily solved.
George [71] describes some examples on partitioned factorization.

It is well known in the power system area that some control actions
and small disturbances mainly affect the operating state of only a small
portion of the power network electrically "close" to the disturbance area. Thus,
it is possible to improve the performance of power system analysis problems
by partitioning a power network (matrix) into strongly connected sub-networks
(sub-matrices) and utilizing the partitioning aspect [74].

2.7.1.4 Compensation methods

In power system analysis, it is frequently required to modify the
coefficient matrix of related linear systems of equations. These modifications
normally do not involve changing a large number of elements, as in
contingency analysis where usually only one line at a time is removed. In these
cases, refactoring the coefficient matrix is rarely efficient. Instead,
compensation methods [75] can be applied to available factors of the base
case coefficient matrix to get the solution to the system more economically.
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Compensations methods are essentially different interpretations of the
Matrix Inversion lemma [75, 76, 112]. In this approach, the modified
coefficient matrix is represented as,

Al = A + M [A4] M? (2.22)

where A is the base case n by n coefficient matrix, AA is an m by m matrix
containing modifications to A and M is an n by m connection matrix.

Compensation methods have been successfully applied to power system
problems [75, 76] and have been shown to be very efficient for applications
involving a series of network changes [76], specially for applications where the
number of changes is small and the modifications are not permanent.

2.7.1.5 Parallel processing

The computer architecture is a2 fundamental factor affecting the
efficiency of different algorithms. Unfortunately, so far, there are only a few
investigations comparing different architectures for common problems.
However, it is evident that with the rapidly changing computer technology
toward vector processors and parallel architectures, possible gains are
expected for some problems by parallelizing parts of the solution. For
example, an advantage of parallel processors is their ability to perform
calculations on full matrices efficiently. Another advantage appears when
several different systems are to be solved simultaneously {117-119].

Thus, one new trend seems to be the application of parallelizing
techniques to direct solvers [117-119] as well as indirect ones [79, 80]. In this
vein, it has been shown that the Cholesky decomposition problem for a large
dense system can be reduced to p independent smaller decomposition
problems [81].



CHAPTER 2 COMMON POWER SYSTEM ... 30

The potential of parallel processing architectures in power system
studies has been investigated by some researchers during the past decade [86].
Its potential impact on load flow {82, 83] and contingency analysis [84, 85]
seems to be very promising.

2.7.2 Indirect solvers

Indirect solvers iteratively approach the desired solution from an initial
guess x, through a sequence of vectors,

. (2.23)

2o~ *my " *p)

The computation involved in each iteration step for these methods is
essentially comparable to the multiplication of matrix A with a vector, a
computational effort which is relatively modest if A is sparse. The
convergence rate, however, is typically linear and thus, many iterations may
be required to obtain an accurate solution. Furthermore, convergence is not
guaranteed even with exact arithmetic. These general characteristics of
iterative methods do not apply to conjugate gradient algorithms which are
guaranteed to converge to the exact solution in a finite number of arithmetic
operations for positive definite matrices. For this reason, some refer to this
technique as semi-iterative.

2.7.2.1 Basic iterative techniques

In the following we describe some basic iterative and semi-iterative
methods: Jacobi, Gauss-Seidel, successive overrelaxation (SOR), conjugate
gradient (CG) and pre-conditioned conjugate gradient (PCG) methods.
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The first three of these methods may be expressed in the form,
Bx ., +A-B)x, =b (2.24)
or,
x., =U-B'A) x, + B (2.25)
Assuming (I-B'A)=G and B'b=k, we can write,

X, =CGx, +k (2.26)
where G is called the iteration matrix for the method.

From equation 2.26, it is clear that all of these methods are linear as
both G and k are constant and do not depend on x,. These methods are also
of first degree, since x,,, depends explicitly on x, and not on x4, ... , Xo. Such
iteration methods, were first considered by Withmeyer in 1936 [87]. In this
class of iterative techniques, each choice of a non-singular matrix B in
equation 2.24 leads to a potential iterative method.

To choose the B matrix appropriately, it must satisfy the following
conditions [88] :

i)  The system of equations 2.25 can be solved easily for x™*1,

if) The eigenvalues of I-B™A (the iteration matrix) have moduli which are
as small as possible and smaller than one,

The better B agrees with A, the more likely the latter condition will be
true and the better the algorithm will convergence, but at the expense of a
heavier computational burden for B,
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The first three iterative methods mentioned above differ from each
other according to the selection of the B matrix. These differences are
described in Appendix A.

2.7.2.2 Conjugate gradient

The conjugate gradient scheme (CG) [99-101] is an important semi-
iterative technique when the coefficient matrix is positive definite. This
method was first presented by Hestenes and Stiefel in 1952 [99]. However, for
various reasons, the CG method was not widely used for years after its
appearance until the mid-1960s [100-104).

In the absence of rounding errors, in contrast to other iterative
techniques, the CG method terminates with the exact solution in at most n
steps [99-101]. Because of rounding errors, however, additional iteration steps
may be required [88].

The basis of the method comes from the fact that the function,

R(x) = % XAx-xb @.27)

is minimized by x=A"b. In other words, finding the minimum point of F will
give us the solution to the linear system of equations Ax=b if A is positive
definite,

There are various ways of finding the minimum of F. Conjugate
gradient algorithms use a sequence of linear search directions (p) starting

from an initial guess x, and, at each iteration, a better estimate of the solution
is obtained, such that,
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o1 = % Y & Py (2.28)

where q; is a scalar.

Thus, the final solution can be expressed as a linear function of the
search directions,

X=0 P ¥ 0Pyt . * &, P, (2.29)

where, m is guaranteed to be no larger than the matrix size n and mainly
depends on the distribution of the eigenvalues of the coefficient matrix [102].
It has been shown that the algorithm will converge in significantly fewer than
n iterations if the eigenvalues of the A matrix are located in clusters [102].
The details of the CG algorithm are described in Appendix B.

One drawback of this method is that it is not guaranteed to converge
for non-positive definite matrix problems [106]. On the other hand, it has the
advantage that a sufficiently good approximation may be found after only a
few steps in certain cases. Furthermore, when the eigenvalues of A form c
clusters, then the solution will be obtained after O(c) iterations.

In contrast to other iterative techniques beginning with an initial guess,
the convergence of the CG algorithm is not affected very much by the choice
of the initial guess [97].

The amount of computational effort per iteration is about equal to that
of multiplying the matrix A by a vector [88, page 572). Thus, the method is

not recommended for dense matrices or for very banded matrices where
direct solvers are faster.
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2.7.2.3 Pre-conditioned conjugate gradient algorithm

The CG method in its initial form proposed by Hestenes and Stiefel
[99] is not competitive with modern fast direct solvers utilizing efficient
sparsity and ordering techniques. However, as it was mentioned earlier, the
algorithm will converge in significantly fewer than n iterations if the
eigenvalues of the coefficient matrix are located in clusters [102].

The idea of pre-conditioning [100-101], in essence, is to apply a linear
transformation to the system of linear equations Ax=b as follows,

Ay =b, @27
where,

Ap = [ K—l A (K-l)f] (2.31)

b, = Kb (2.32)

y=[K'x] (2.33)

such that the eigenvalues of A, are grouped into a small number of clusters,
thereby substantially improving the convergence and speed of the CG
algorithm. The matrix K is termed the pre-conditioning matrix (also called the
pre-conditioner). Obviously, the pre-conditioning step must be very efficient
from the computational and storage points of view for the overall scheme to
be superior to a straight CG approach.
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A highly effective pre-conditioning matrix K can be obtained using
approximations of the Cholesky factor L, where,

A=LL"! (2.349)

A more detailed discussion on the choice of K is given in Chapter 1V.

The pre-conditioned conjugate gradient (PCG) algorithm normally
starts with a diagonal scaling and normalization of the original system of
linear equations with respect to the largest absolute value of the right-hand-
side entries to yield A x = b. Then, the PCG algorithm can be expressed as
follows:

1) Initialization
a) Initialize ¢
b) Guess x.
c)Form r=b-Ax
d) Form p = Hr, where H = (K K')".

While Ir I > ¢ do

2) Form § = A p.

3) Forma =p'r.

4) Form a = a / (p' S).

5) Updatex = x + a p.

6) Updater = r- a S.

7) Form h = K'r.

8) FormpB=hh/oc

9) Updatep = K'h + B p.

It should be noted that K is not formed explicitly in the PCG solver.
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Instead, whenever matrix-vector products involving (K)* or (K*)! appear, it
is more efficient to perform a forward elimination or back substitution (F/B)
as required.

The number of iterations required for convergence of the pre-
conditioned conjugate gradient (PCG) algorithm depends on the distribution
spectrum of the eigenvalues of A, as well as the rounding errors [107]. In
practice, if the eigenvalues of A, form ¢ clusters (groups of eigenvalues close
to one another), then the solution will be obtained in O(c) iterations [102,
107). The better the eigenvalues are clustered, the lower the number of
iterations required for convergence.

2.7.2.4 Theoretical comparison of PCG and direct solvers

Experience demonstrates that the PCG algorithm generally converges
in O(n®?) iterations {116]. For power networks this convergence property is
even more favourable as discussed in Chapter IIl. In addition, the PCG
algorithm requires sn operations per iteration, assuming an average of s non-
zeros per row. This then gives a total operation count of O(sn*®). The storage
requirement is O(ns).

For a banded or Frontal Gaussian elimination solver, with only the
active part of the matrix stored in memory, the corresponding figures are
O(nm?) operations and O(m®) storage elements, where m is the matrix
bandwidth (the average width of non-zero elements about the diagonal). This
indicates that for large matrices (i.e. large n) with a bandwidth, m, which is
not too small (m?>n"), the PCG method will need fewer operations than a
direct solver, If we consider the case that the bandwidth of the matrix, m, is
of order n® then the ratio of arithmetic operations between the direct method
and the PCG is O(n®®). If the bandwidth, m, is linear in n then this ratio is of
order n'”.
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To compare the performance of the PCG algorithm with direct solvers
two different criteria should be considered.

Repeated solutions of the form,

Ax, =b (x_) k=12,. (2.35)

such as those found in the fast decoupled load flow, represent a case where
the direct solver has its greatest advantage over PCG methods. This is
because the principal time consuming component of the direct solver, which
is the matrix decomposition into its lower and upper factors, needs to be done
only once for the entire sequence of solutions. Each solution is then found by
the comparatively cheap step of a forward and backward substitution for each
different right-hand-side b,. The PCG method, on the other hand, applies the
same algorithm for each k requiring the same computational effort for each
new problem in the sequence. In the PCG method, no major improvement
can be gained by taking advantage of the fact that A is constant. The reason
being that finding the pre-conditioning matrix, K, is a relatively cheap part of
the PCG solver for large systems. However, as will be shown in the next
chapter, even in this type of sequence, where the direct solver has its greatest
advantage, the PCG method can be much faster, if the number of load flow

iterations is not too large or if the A matrix has a sufficiently wide
bandwidth, m,

In cases where repeated solutions of the form,

Ayx, =b, k=12, (2.36)

are required, the speed advantages of PCG over direct solvers are enhanced
further, since for each new k, the coefficient matrix A, must be refactored or
its factors must be updated through compensation methods (75, 76] (if the
matrix modification is of low rank). Such cases frequently occur in power
system security analysis where the behaviour of the power network relative to
numerous possible equipment outages has to be analyzed.
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In security analysis where the outages being considered involve several
pieces of equipment, the corresponding Jacobian matrix modification will not
be of low rank and compensation methods lose their efficiency. In this case
the direct solver approach requires a complete refactorization for each k, thus
making the PCG method even more advantageous.

Another advantage of PCG is the ability to stop iterating after an
acceptable solution error is obtained without necessarily reaching the final
solution. This can have important applications in contingency ranking where
a reasonable approximation of the effect of a contingency may be sufficient
to analyze the relative effect of a set of contingencies.

A limitation of the PCG algorithm is that it has been extensively and
successfully tested primarily when dealing with positive-definite matrices only.
The practical application of PCG methods to indefinite or semi-definite
matrices is yet to be as widely exploited.

Due to this comparison and the fact that PCG has been very
successfully applied to problems in other fields such as finite element
electromagnetics [28], we were motivated to investigate the algorithm in
typical power system analysis problems.

2.7.2.5 Necessary conditions for fast convergence of the
PCG algorithm

It was mentioned in section 2.7.2.2 that the only condition for the
convergence of the CG algorithm with no rounding errors is that the
coefficient matrix A should be positive definite. Therefore, in the PCG
algorithm, the pre-conditioning of A as shown in equation 2.31, must ensure
that the pre-conditioned coefficient matrix A, remains positive definite.
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To comply with the requirements of fast convergence, attention should
be paid to two main properties :

i) A good pre-conditioner should be used to meet the requirements
necessary for good clustering of the coefficient matrix eigenvalues. In
this regard, Chapter IV discusses variations of the Incomplete Cholesky
pre-conditioner.

ii) Precautions should include the influence of rounding errors. In
practice, rounding errors may have substantial effect on the
convergence properties of PCG. Van der Vorst in his studies has
shown that rounding errors may severely deteriorate the convergence
behaviour that would have been superior with exact arithmetic [107].
Double-precision is therefore recommended.



CHAPTER

THREE

EXPERIMENTAL RESULTS ON THE

APPLICATION OF A PRE-CONDITIONED

CONJUGATE GRADIENT ALGORITHM
TO THE LOAD FLOW PROBLEM

3.1 Introduction

As mentioned in the previous chapter, the incomplete Cholesky pre-
conditioned conjugate gradient (PCG) algorithm is a very powerful semi-
iterative solver with proven significant speed advantages over direct methods
in the area of finite element electromagnetic analysis. It was also stated that

the convergence of the PCG algorithm requires that the coefficient matrix A
should be positive definite.

This chapter begins by showing that the coefficient matrices arising in
the Fast Decoupled and DC load flow algorithms are positive definite and,
thus, comply with the requirements necessary for the convergence of PCG
algorithm. The performance of PCG within the Fast Decoupled and DC load
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flows is then experimentally analyzed by running extensive simulations on
various types and sizes of power networks using both the PCG and direct
methods. More specifically, the computation time of the PCG algorithm with
classical incomplete Cholesky pre-conditioning is compared with that of two
standard direct solvers, namely a bandwidth based Frontal solver [60] and the
Sparspak-B5 solver with minimum degree ordering [110, 111] also known as
the Tinney-2 method. This comparison is performed on a wide spectrum of
power networks of up to 5000 buses and 10000 lines. The results of our
experiments indicate that for certain classes of large sparse systems or for
repeated solutions with matrix modifications, the PCG method is significantly

more efficient than direct techniques and offers important savings in CPU
time.

In this chapter, the effect of certain network parameters on the
performance of PCG and direct solvers is also investigated. These parameters
include the relative ordering of sub-networks (blocks) within the network, as
well as the range of values of line reactances.

Finally, in section 3.5, some possible new load flow algorithms which
make use of the PCG algorithm are numerically investigated.

3.2 Positive Definite Matrices in Power System Analysis

The DC load flow algorithm described in section 2.2.4 is formulated
by a system of linear equations (2.15) whose coefficient matrix, B, is positive
definite, a fact which can be shown as follows :

The B matrix is completely analogous to an equivalent conductance
matrix, G, in a purely resistive grounded network if we make the following
associations:
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i) The reactance, x;, of the line between buses { and j becomes the
analogous line resistance.

ii) The vector of power injections, P, becomes the analogous vector of
current injections, I.

iii)  The vector of phase angles, 8, becomes the equivalent voltage vector,
V.

From energy conservation considerations, a connected and grounded
network with positive resistances in all branches including the branch to
ground has a positive definite G matrix. To see this consider a resistive
network represented by its admittance matrix G. Then, if the network is
excited by any set of nodal voltages expressed by the vector V, the input
power to the network will be greater than or equal to zero,

P

input

20 G.0)

Thus,

P

o = VI =VGV 20 3.2)

Now, as the network is fully resistive and grounded, it is evident that for any
non-zero vector V, at least one of the resistive elements in the circuit will
have a non-zero current flow. This, then, implies that for any non-zero vector
of voltages, the input power of the circuit will be greater than zero,

ViG>0 (33)

and, therefore, it can be concluded that the network admittance matrix G is
positive definite.

This, then, implies that the B matrix is also positive definite and,
therefore, that the DC load flow can be solved by a PCG method.

As examples of this result, the eigenvalues of the B matrices of the
standard IEEE power networks with 14, 35, 57 and 118 buses were calculated.
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Table 3.I: Range of the eigenvalues of IEEE standard power networks with
14, 30, 57 and 118 buses

IEEE sample elgenvalue range
networks
minimum maximum

14-bus I 0.6657 80.8529

30-bus 0.2382 113.5110
57-bus 0.2088 168.4240

118-bus “ 0.0559 582.5873

Table 3.1 shows the range of these eigenvalues which are all real and positive.

Another instance of positive definite matrices occurring in power
system analysis is the Fast Decoupled load fiow (FDLF) matrices B* and B”
(see section 2.2.3). The matrix B” is identical to the B matrix of the DC load
flow, while B” is a principal sub-matrix of B”. Clearly, since B is positive
definite, so are B” and B”. Thus, in each iteration of the FDLF, we are
dealing with two sets of linear equations whose coefficient matrices are

positive definite and therefore, can be solved by using either a direct solver
or the PCG.

Finally, matrices arising in state estimation [21, 22, 30] are also positive

definite. These algorithms are, thus, suitable candidates to use the PCG
solver.

3.3 Numerical Comparison of the Performance of the Pre-
Conditioned Conjugate Gradient and Frontal Solvers

In this section, the performance of the pre-conditioned conjugate
gradient (PCG) algorithm with classical incomplete Cholesky pre-conditioning
is experimentally compared with that of the standard bandwidth based Frontal
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direct solver [60]. This solver attains its highest efficiency when applied to
systems of linear equations whose coefficient matrices are narrow banded. In
section 3.4 the PCG solver is compared to another direct solver utilizing the
Tinney-2 ordering method.

Both the PCG and Frontal algorithms are applied to solve systems of
linear equations arising in the Fast Decoupled and DC load flow calculations.
The computation time of the PCG algozithm is compared with that of the
Frontal solver for a wide spectrum of networks of up to 5000 buses and 10000
lines. The impact of network size and topological connectivity on the relative
performance of the PCG and Frontal solvers is also numerically investigated.

3.3.1 Criteria of comparison

To evaluate the time requirements for the solution of the FDLF, we
have taken the conservative view that, for typical well-behaved power
networks, starting from a flat voltage profile, 7 P and Q-iterations are
required to converge on the average. Then, to evaluate the performance of
the two solvers in the FDLF, the CPU time of one complete direct solution
(one factorization and one F/B substitution) and the CPU time of seven
complete PCG solutions (seven incomplete Cholesky factorizations and seven
executions of the PCG algorithm) are compared. This conservative

comparison places our results on the safe side,

For the DC load flow one complete solution of the PCG is compared
with one complete direct solver solution.

The results of extensive comparisons of the above nature are shown in
Figures 3.3 to 3.6 in the form of CPU time ratios versus network size.
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block 1 block 2 block 3
block 4 block 35
block 6 block 7 block 8

Figure 3.1: Block interconnections of the networks

3.3.2 Test networks

In all the examples tested, the networks were composed of sparse
blocks of varying sizes which are, themselves, interconnected by a sparse
network, an example of which appears in Figure 3.1. Figure 3.2 illustrates a
typical sparsity structure of the corresponding network B matrix. The number
of lines for all networks was about twice that of the number of buses.

The test networks were randomly generated using special software
developed during the course of this research that designs realistic power
networks of different sizes, topologies and line data (see Chapter VI for more
details about this special network generation software). This software allows
the user to specify the power network dimension and other characteristics,
producing a series of random networks with the general specified properties.
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Figure 3.2: Sparsity structure of an example network

There is no limit on the size of the network that can be thus generated. The
test cases produced here range up to 5600 buses and 10000 lines.

Although .hese networks are simulated, we have made them as realistic
as possible by ensuring that the topology, line and bus data are similar to
those of actual power networks.

As the Frontal solver is a bandwidth based solver and due to the fact
that it gains its efficiency for narrow banded matrices, in these series of
experiments, the input data for the solvers were generated in an ordered
manner to have the minimum possible bandwidth around the major diagonal

as indicaied in Figure 3.2, This choice of data favours the performance of the
Frontal soiver.
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Figure 3.3: CPU time ratio of direct and PCG solvers
(Largest sparse block has 100 buses)

3.3.3 Discussion of results

The results are summarized according to four different network
categories defined by the size of the largest sparse block in the network. In
essence, we are comparing networks with different matrix bandwidths (the size
of the diagonal band wherein most of the non-zero entries are located). For
each category, we compare the ratio of CPU times of one direct solver (1
decomposition and 1 F/B substitution) versus the CPU time of seven PCG
solutions (7 incomplete Cholesky factorizations and 7 applications of the PCG
algorithm) for the FDLF. This assumes that the FDLF converges in seven
iterations on the average. The results are shown in Figures 3.3 to 3.6 each of
which shows two curves. The upper curves show the CPU time ratio for the
DC load flow where one direct solution is compared to one PCG solution.
The lower curves display the corresponding comparison for the FDLF,
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Figure 3.4: CPU time ratio of direct and PCG solvers
(Largest sparse block is one tenth the network size)

A) In the first category, experiments were carried out on networks of
different sizes where the largest sparse block contains 100 buses. Other
blocks in the network have random sizes ranging between 6 and 100 buses.
The CPU times obtained from test results are compared in Figure 3.3.

Comparison of the two methods indicates that, for this category of
narrow-banded networks, the direct solver is more efficient for the FDLF
while, for the DC load flow, the PCG shows a slight advantage.

B) In the second category, networks with the largest sparse block equal to
one tenth the size of the network were examined. The relative CPU times
are plotted in Figure 3.4.
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Figure 3.5: CPU time ratio of direct and PCG solvers
(Largest sparse block is one fifth the network size)

We see here that, for systems of more than 5750 buses (extrapolated)
(with corresponding largest blocks of size 575 or more), the pre-conditioned
conjugate gradient becomes more efficient for the FDLF. Still, no substantial
advantage (more than 2) is gained by using the PCG for this category of
network in the FDLF unless one goes to dimensions above 7000 buses. For
the DC load flow, the PCG shows an advantage for networks above n=600.

C) In the third category of network, the biggest block has a size equal to
one fifth the network size. The test resuits for these cases are plotted in
Figure 3.5.

In this case, in the FDLF, the PCG method becomes more efficient
than the direct method for systems larger than 2050 buses (i.e. a largest block
of 410 or more buses). The advantage of the PCG method becomes even
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Figure 3.6: CPU time ratio of direct and PCG solvers
(Network is composed of only one block)

more pronounced for larger systems. For example, at n=5000, the ratio of
CPU times is about 4. The advantage of PCG in the DC load flow is even
more pronounced reaching the ratio of 24 at n=5000.

D) In the last group of experiments, the solvers were applied to networks
composed of only one block, that is, a wide band sparse network (Figure 3.6)
where the number of lines is as before about twice the number of buses.

For this type of network, the PCG method is considerably more
efficient than the direct method in both the FDLF and the DCLF. The cross-
over point where PCG becomes faster than direct methods starts near n=300
for the FDLF. At n=2000 buses, for example, the PCG solver is about 60
times faster for the FDLF and 420 times faster for the DU __.d flow.
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Figure 3.7: CPU times (Sun SPARC station 2, 32 Mb RAM) versus
network size for two solvers

(largest sparse block is one fifth the network size)

As illustrated in Figure 3.7, and predicted by the theory presented in
section 2.7.2.4, the CPU time for the PCG algorithm varies as O(n'®) whereas
the time for the direct method varies as O(nm?). It was also observed, that the
largest block size (matrix bandwidth) affects the PCG solver performance but
not significantly. What is most important in the PCG performance is the
clustering of the eigenvalues of the pre-conditioned matrix. In fact, in some
cases, we have observed that the PCG solver actually took less CPU time for
a larger system than for a smaller one due to the fact that the larger system
was better clustered and converged in fewer iterations. For the direct solver,
however, the solution time was observed to increase according to nm?, where
m is the dimension of the largest block. The size of the biggest block has a
dominant effect on the CPU time of the direct solver (See Table 3.II). This
is because a larger block generally results in a wider bandwidth and therefore
more fill-in elements in the factorization.
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Table 3.1: CPU times (sec) of the two solvers for n=2000 and variable largest
block size, m (Sun SPARC station 2, 32 Mb RAM)

network size (n) = 2000

matrix bandwidth (m)

400 2000 "

Frontal 3.83 6.09 14.81 438.39
PCG 240 2.60 2.15 0.98

Table 3.III: CPU time (sec) of the Frontal solver for different block
arrangements (Sun SPARC station 10, 64 Mb RAM)

ize of the block arrangements

network Random
200 0.090 0.096
600 || 0719 0.859
1000 2.270 2.294
1400 5.680 5.690
1800 12.360 11.760
2200 18.560 20.010
2400 24.490 24.940
2800 36.220 36.600
3000 36.170 37.130
3500 70.780 69.630
4000 114.020 109.90
4500 139.160 136.160

=5000 170.710 170.660
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3.3.4 Effect of block arrangement on the solution time

To investigate the effect of block arrangement, in another series of
experiments, network blocks were connected in two different manners. First,
they were reordered such that smaller ones proceed larger ones along the
major diagonal and, second, they were ordered from larger to smaller ones.
The experimental results for networks of different sizes from 200 up to 5000
buses whose biggest block has a size equal to one fifth of the network size
demonstrate that neither the performance of the PCG nor the performance
of the Frontal solver is affected significantly by block arrangement. I{owever,
it was observed that for networks of smaller sizes, the Frontal solver shows a
small speed advantage for those networks which have the blocks arranged
from big to small (see Table 3.III).

3.3.5 Impact of variations of line parameters on eigenvzlue

clustering and convergence properties of the PCG algorithm

It is clear that the magnitudes of line reactances directly affect the
magnitudes of the non-zero elements of the DC and Fast Decoupled load flow
matrices. In the previously mentioned results, these values were chosen to be
as realistic as possible. However, to investigate the effect of line parameter
variations on the PCG, several cases were run where the network reactances
were varied over several ranges of values.

The experiments were performed for networks of 2000 and 5000 buses
composed of blocks ranging from 10 buses to one fifth of the network size.

First, it was observed that reactance variations do not affect the
performance of tlie direct solver. This resuit is expected due to the fact that
reactance variations do not change the matrix non-zero elements topology and
thus do not have any impact on the number of fill-ins introduced during the
factorization. On the other hand, it was observed that the bigger the variation
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Table 3.IV: CPU time (sec) and iteration steps of the PCG solver for different
line reactance variations (Sun SPARC station 10, 64 Mb RAM)

Line reactance variations
100% 5000%
CPU | NI || CPU | NI

2000 buses [ 108 [ 40 [121] a3 [[155] s6

5000 buses | 347 ] 20 [ 421 [ 60 [ 472 ] 6

Size of the

network

|

i

of line reactances, the greater the number of PCG iterations (NI) and thus the
more CPU time is required for PCG to converge (Table 3.IV). This can be
explained by the fact that wide reactance values can broaden the eigenvalue
spectrum of the coefficient matrix, thereby worsening the PCG convergence.

3.4 Numerical Comparison of the Performance of the
Pre-Conditioned Conjugate Gradient and Sparspak Solvers

As discussed in chapter II, the minimum degree ordering scheme
(Tinney-2) has been efficiently applied in power system problems. Thus, we
were motivated to evaluate the performance of the PCG algorithm compared
with efficient direct solvers other than the Frontal solver, particularly the one
utilizing the Tinney-2 ordering algorithm. These efficient solvers were selected
from the well known Sparspak package of sparse direct solvers [110, 111]. This
package offers a collection of different approaches grouped as Sparspak-A
solvers and an enhancement ;o it called Sparspak-B. For all of the variations

in this package, the system of linear equations is solved through the following
basic steps:

1) The non-zero structure of the coefficient matrix A is supplied to the
package.
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2) The original problem is reordered using a permutation P and then
proper storage allocation is performed for the triangular factors as,

PAP'=LU 3.4

3) The values of the non-zero elements of the coefficient matrix are
supplied to the package.

4) 'The triangular factors L and U are computed.
5) The right-hand-side vecter is supplied to the package.
6) The solution vector x is found using F/B substitutions.

In addition, the package disregards the numerical stability due to any
permutation matrix P. This means that, the software assumes that for any
permutation matrix P, an acceptably accurate factorization can be obtained.
This is true for positive definite and diagonally dominant coefficient matrices
[110] such as matrices arising in the Fast Decoupled and DC load flow
algorithms. On the other hand, our PCG algorithm cares about diagonal
scaling and stability problems. Therefore, this puts our experimental
compariion with the PCG solver on the safe side as there is no CPU time
dedicated by the Sparspak solvers for this consideration.

Sparspak solvers differ mainly from each other due to the various
algorithms applied for choosing P, the corresponding storage methods and
whether the coefficient matrix is considered symmetric or not. The
effectiveness of these variations still is not well understood and mainly
depends on the type of problem {111]. Due to these different characteristics,
thhe performance of these solvers were numerically investigated for power
system problems, We observed that Sparspak-BS, utilizing minimum degree
ordering (Tinney scheme-2), is the most efficient for matrices arising in power
system problems. Therefore, in our experimental investigation, the PCG
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algorithm and the Sparspak-BS solver including minimum degree ordering
algorithm were used to solve systems of linear equations arising in DC load
flow and Fast Decoupled load flow algorithms for networks of varying sizes
from 100 buses to 4900 buses.

These experiments were carried out for two different types of networks,
simple grid networks and more complicated star networks. In both cases, the
number of lines is the same, that is, both grid and star networks have the
same degree of sparsity.

a) Grid networks: This type represents networks which have the form of a
matrix whose elements represent the nodal points of the network. In this
category each bus is connected to adjacent buses only (Figure 6.2, chapter
VI).

b) Star networks: In this type, first all of the nodes are laid on a ring of
transmission lines to assure connectivity of all buses to the network. Then,
extra random connections between the different nodes are created (Figure 6.3,
chapter VI).

3.4.1 Discussion of the results

The performance of the PCG and Sparspak-B5 solvers has been
experimentally investigated for the above mentioned types of networks. For
each group, we compare the CPU time of one PCG solution with the CPU
time required for one factorization and the Tinney-2 ordering scheme.

A) Grid networks: The experimental results for this group are presented in
Table 3.V.

Comparison of the two methods indicate that, for grid networks, the
Sparspak-B5 direct solver is comparable to that of the PCG., 1t is noteworthy
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Table 3.V: CPU time comparison of PCG and Sparspak-BS for grid-type
networks (33 MHz, 486, 32 Mb RAM)

CPU time (Sec)
Size of the — . o
Sp;a{spak-BS
network .
Ordering _Factorization | Total
<1 15 <25
1600 <1 3 < 4
2500 <1 4 <5
3600 1 6 7
4900 | 1 7 8

Table 3,VI: CPU time comparison of PCG and Sparspak-B5 for star-type
networks (33 MHz, 486, 32 Mb RAM)

CPU time (Sec)
size of the
network Sparspak-B5

L Factorization Total
- 400 <1 <1 <1 ~1
625 <1 <1 <3 ~3

900 ~1 ~1 S ~6

15 17

33 36

60 65

125 132

230 240

345 359

670 687

850 877
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Figure 3.8: CPU time versus network size for ordering algorithm of the
Sparspak-B5 solver (33 MHzg, 486, 32 Mb RAM)

to mention that the stopping criterion for the PCG algorithm in all these
experiments was a residual smaller than 10 where the right hand side of the
equation has been normalized to one.

In all cases analyzed in this group of grid networks, as shown in Table
3.V, the CPU time devoted to ordering was equal to or smaller than one
second.

B) Star networks: As in the grid networks, in this type, each bus is connected

(on average) to four other buses. Test results for these cases are presented in
Table 3.V1L.

In this case, the PCG method becomes more efficient than the direct
method for systems larger than 400 buses for the DC load flow. If we assume
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CPU time (sec)
g 85888
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Figure 3.9;: CPU time versus the network size for the factorization
process in the Sparspak-BS solver (33 MHz, 486, 32 Mb RAM)

the same criterion of comparison described in section 3.3.1 for the Fast
Decoupled load flow, it can be observed that PCG shows marked advantages
over Sparspak-B35 only for systems of 900 buses or larger.

It is also important to mention that in this table the F/B substitution
time for the direct solver is not included, This is due to the fact the this time

is very small compared with the factorization time. This puts our comparison
on the safe side.

To get a better feeling about the performance of the direct solver, the
CPU times required for ordering and for factorization are plotted versus the
network size in Figures 3.8 and 3.9 respectively. As these Figures indicate, the
CPU times in both cases increase very rapidly with network size.
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We also examined the relative performance of the two solvers in one
DC load flow solution for a real network of 688 buses and 920 lines. Both
methods took less than one second to compute one solution. One noteworthy
comment relative to the PCG method is that the number of PCG steps
required to converge was less than one third of the theoretically expected
number (7 instead of 26 iterations).

3.5 Alternative Load Flow Soiution Algorithms Using PCG

This section describes an investigation into the convergence of other
load flow algorithms using the PCG solver. These experiments can be
classified into turee different classes.

A) In the first class of experiments, the PCG algorithm was used to get the '
solution of systems of linear equations whose coefficient matrix is the polar
(or rectangular) full load fiow Jacobian matrix, {Jac]. This class of experiments
was applied to the IEEE test networks of 5, 14, 30, 57 and 118 buses. None
of these examples converged to the right solution. This was not unexpected
since the Jacobian matrix is indefinite. The experiments simply serve to
confirm our expectation,

B)  In the second group of tests, the PCG algorithm was applied in the
context of the load flow to solve systems of linear equations, Ax=b, where,

A=[Jac] [Jacl - (3.5)

and [Jac] represents the full Jacobian matrix in polar coordinates. These
experiments were conducted for the IEEE example networks of 5, 14, 30 and
57-bus systems. The PCG algorithm converged to the right solution for all
cases as expected since A is positive definite. However, due to the fact that
the resultant coefficient matrix is not well-conditioned and that its eigenvalues
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Table 3.VII: Convergence properties of PCG algorithm for a system of linear
equations whose coefficient matrix is A=[Jac] x [Jac]”

IEEE PCG
Iy cond(A) Eigenvalues range

System steps

S-bus 7 (0.0127-5.077)x10° 1

14-bus 25 (0.005-5.334)x10° 17

30-bus 53 247320 (0.0000-1.2412)x10*

57-bus 106 1.0215 x 108 (0.0001-1.6678)x10° || |

are distributed over a wide spectrum, the PCG algorithm did not show good
convergence properties as indicated in Table 3.VII compared to the Fast
Decoupled Ioad flow. In this table, the dimension of the Jacobian matrix (n),
the condition number of A [cond(A)], the range of eigenvalues, and the
number of PCG steps required for convergence of the algorithm based on a
residual smaller than 10" per unit are shown. The number of PCG steps also
appears to be higher than the number expected from better conditioned
matrices, that is, of the order of n®® steps. It appears that the approach of
converting the coefficient matrix to a positive definite one through

premultiplication by its transpose is not competitive in the full Newton polar
power flow.

C) In the final experimental approach, the Jacobian matrix in polar
coordinates was replaced by the matrix A where,

A= L@E]_;_Uﬂ' (3.6

Table 3.VIII shows the number of iteration steps required for the
convergence of CG and PCG algorithms for a stop criterion based on
residuals (r) smaller than 102 and 10 per unit.
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Table 3.VIII: CG and PCG iteration steps for the solution of a system of
linear equations whose coefficient matrix is A=([Jac] + [Jac’])/2

IEEE Size of r < 103 r < 10°
S-bus 7 7 3 7 3

14-bus 25 21 10 26 12
30-bus 13

53 45
__118-bus 192 " 115 28

Tests on the IEEE 5, 14, 30 and 118-bus systems show that the PCG
approach converges in all cases. The number of PCG iterations is somewhat
greater than the expected value (of the order of n®%), but it is still much less
than the system dimension and considerably less than the CG method. It was
also observed that the load flow algorithm with this approximate Jacobian
does in fact converge, a result which is not obvious. However, we also noted
an increase in the number of load flow iterations (each of which can be solved

by the PCG method) of about 50% compared with the Newton-Raphson load

flow algorithm using the conventional Jacobian. If this load flow convergence
behaviour extends to large systems, then we expect the PCG method to be
competitive in this approach.

3.6 Concluding Remarks

(1) The Incomplete Cholesky pre-conditioned conjugate gradient (PCG)
algorithm can be applied to solve systems of linear equations arising in power
system problems such as the DC load flow, the Fast Decoupled load flow,
contingency analysis, state estimation, and a modified version of the full
Newton polar load flow. It is shown here that these types of problems satisfy

the requirement of our present PCG algorithm that the A matrix be positive
definite.
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(2) Tests comparing the PCG and a bandwidth based Frontal solver in power
systems with up to 5000 buses and 10000 lines show that for lorge, sparse
networks, with not too small bandwidth, substantial gains in computational
speed (e.g. 65:1 for wide band networks of 20060 buses) can be achieved for

the fast decoupled load flow. Even greater gains are obtained in the DC load
flow.

(3) The relative efficiency of the PCG method compared with the bandwidth
based direct solvers improves exponentially with the size of the network and
even more rapidly with the size of the largest sparse matrix block.

(4) The tests on different orderings of network blocks show that the
arrangement of the blocks does not have a significant affect on the
performance of either the PCG or the Frontal solver. The size of the biggest
block is the dominant factor on the efficiency of the Frontal solver.

(5) Experimental comparisons of the PCG and the Sparspak-BS5 direct solver
including minimum degree ordering algorithm (Tinney scheme-2) for power
network matrices with up to 4900 buses and 9800 lines indicate that for grid-
type networks, the PCG and direct solver are comparable, However, for large
sparse star-type networks, substantial gains in con-putational speed can be
achieved for the DC and the Fast Decoupled load flow.

(6) The performance of the PCG, unlike direct solvers, does not depend on
the bandwidth of the network matrix appreciably. It depends mainly on the

degree of sparsity and how tightly clustered the eigenvalues become after pre-
conditioning.

(7) Our experiments on power networks have shown that the incomplete
Cholesky pre-conditioning matrix is cheap to find, requires low storage, and
clusters the eigenvalues tightly.
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(8) The gains made by PCG are only in the solver component of the load flow
and not in related parts such as input/output or mismatch evaluations. Since
experience [26] indicates that the solver is the most time consuming part of
load flow analysis, the gains made by the PCG should have an important
impact in reducing the overall computation time of load flow algorithms.

(9) The PCG method should be seriously considered in power system analysis
to revisit old algorithms or develop new ones where repeated modifications
of the A matrix are needed. The use of direct methods has created a tendency
to avoid such algorithms, even if they converge in fewer iterations and are
more robust. This is because of the need to refactor the A matrix in these
algorithms, which usually cancels out any speed gains. For example, in the
load flow problem with control adjustments, in order to avoid refactoring the
Jacobian, a large additional number of iterations are needed. This could
possibly be avoided through the use of the PCG method whose performance
is not affected by the modification of the Jacobian.

(10) Further investigation into the applications of PCG in power system
computation are addressed in the following chapters including: more efficient
pre-conditioning taking advantage of particular power network properties and
applications to complex matrices.



CHAPTER

FOUR

INVESTIGATION OF EIGENVALUE

CLUSTERING BY MODIFIED INCOMPLETE

CHOLESKY DECOMPOSITION IN POWER
NETWORK MATRICES

4.1 Introduction

It was mentioned in chapter II that a very fast method for computing
the solutions of large sparse systems of linear equations when positive definite
matrices are involved, is the pre-conditioned conjugate gradient (PCG)
algorithm, In chapter ITII, PCG with classical incomplete Cholesky (CIC) pre-
conditioning was shown to be remarkably efficient in the load flow problem.
Specifically, it was demonstrated that PCG with CIC pre-conditioning can
yield substantial gains in the computational performance of the Fast
Decoupled load flow algorithm [29].

So far, the eigenvalue clustering of power network matrices using
specialized pre-conditioning schemes has not been extensively investigated or
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exploited. This chapter presents the results of a comparative investigation into
the potential of different pre-conditioning matrices. The clustering efficiency
of two competitive pre-conditioning schemes are compared with and ranked
against that of the CIC approach. Experiments based on IEEE pover
networks of 14, 30, 57 and 118-bus systems show that superior pre-
conditioning can be a-iieved if the intrinsic properties of the power networks
are exploited. Thus, faster convergence for PCG can be cbtained, which in
turn, will reduce the CPU time required for the solution of power system
problems.

4.2 Classical Incomplete Cholesky Pre-conditioning Matrix

A highly effective pre-conditioning matrix K (see 2.7.23) can be
obtained using approximations of the Cholesky factor L, where,

A=LLT 4.1)

In the common approach, called the classical incomplete Cholesky
(CIC) decomposition [101], only the entries of L. which correspond to non-
zero entries of A are compuied, thus preserving the original matrix sparsity
structure. In large sparse systems, this approximation sharply reduces the
computational effort required to find K as well as any operations involving
K. In addition, the storage requirements for K are drastically decreased.
Experience in many fields, such as finite element electromagnetic analysis [28,
108] and power system analysis [29] indicates that this type of pre-conditioning
matrix K, although much cheaper to compute than L, is nevertheless a very
good pre-conditioning matrix for A and clusters its eigenvalues efficiently.
However, thus far, not much success has been reported on modifications of

the pre-conditioning matrix, K, designed to improve its PCG accelerating
effeci.
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Figure 4.1: Eigenvalue distribution for IEEE-57 bus system without pre-
conditioning

43 Clustering Eifect of the CIC Pre-conditioning Matrix

Figures 4.1 and 4.2 illustrate the effect of the CIC pre-conditioning on
the eigenvalue distribution of the B matrix for the IEEE 57-bus network. The
eigenvalues are normalized with respect to their maximum and minimum
levels. In this example, the effect of pre-conditioning is quite apparent,
clustering the majority of the eigenvalues (24 out of 56) around the 30% level.

The number of iterations required for convergence of the conjugate
gradient algorithm was measured for the solution of the system of linear

equations Ax=b in both the original form and the pre-conditioned case. In
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Figure 4.2: Eigenvalue distribution for IEEE-57 bus system with

CIC pre-conditioning

Table 4.I: Number of iterations required for convergence of CG and PCG

algorithms

CG

| 5-bus system \

| Number of iterations
IEEE example networks

&
e

PCG
algorithm

14-bus system 11 6
30-bus system 23 9
57-bus system 41 11

118-bus system || 68

22
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Figure 4.3: Convergence behaviour of CG and PCG algorithms for
IEEE 14-bus network matrix

these examples, the A matrix corresponded to the B matrix (see chapter III)
of the standard IEEE power networks [30]. Table 4.1 shows the number of
iterations required for these cases to converge to a solution resulting to a
residual smaller than 10, As the results indicate, the number of iterations
needed for convergence in the pre-conditioned case compared with the
general CG, tends to decrease as the system size increases. For the IEEE 5-
bus network, the PCG algorithm with CIC pre-conditioning converges in one
iteration to the exact solution. This is due to the fact that, in this case the CIC
factor is equal to the complete Cholesky factor.
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Figure 4.4: Convergence behaviour of CG and PCG algorithms for
IEEE 30-bus network matrix

44 Investigation of the Convergence Properties of CG and PCG
with CIC

To compare the convergence properties of CG and PCG algorithms
with CIC pre-conditioning, the impact of the number of conjugate gradient
steps on the norm of the residual vector for the solution of Ax=b, was
numerically investigated for the IEEE example networks of 5, 14, 30, 57 and
118 buses. It was observed that all the experimental cases show a similar
convergence pattern. In all test cases the residual corresponding to PCG with
CIC pre-conditioning descends toward zero much faster than the CG
algorithm. As examples, the norm of residual versus iteration number are
plotted in figures 4.3 to 4.5 for IEEE 14, 30 and 57-bus systems.
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Figure 4.5: Convergence behaviour of CG and PCG algorithms for
IEEE 57-bus network matrix

4.5 Experimental Comparison of CIC and Modified Incomplete

Cholesky Pre-conditioners
4.5.1 Incomplete Cholesky modifications

In general, the true Cholesky factor is not as sparse as the original
matrix, however, it has been observed that if only some important non-zero
elements of the Cholesky factor are preserved, the resultant sparser matrix
can still be a good pre-conditioning matrix.

Two classes of modifications are investigated. The first class of

modifications puts more weight on those elements located near the diagonal
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of the factor, while the second approach weighs more heavily the dominant
elements of the factor regardless of their relative location. In both approaches,

the clustering effect of the resultant pre-condiiioning matrices are comnpared
with that of CIC,

In all of the experiments, the matrices to be pre-conditioned, were the
B matrices of the IEEE test networks.

All modifications were applied to IEEE standard network matrices in
both scaled and non-scaled cases. The matrices are scaled such that they have
unit diagonal elements. This type of scaling is sometimes called Evan’s pre-
conditioning [113]. To avoid confusion, it should be noted that Evan’s pre-
conditioning is intended to provide numerical stability to the PCG algorithm,
and not to produce a clustering effect. The experimental results confirm that
scaling does not affect the clustering condition, but only puts the eigenvalues
in a tighter spectrum. However, to minimize stability problems in this

investigation, these studies mainly focus on scaled matrices.

Both types of pre-conditioning modifications were compared with the

CIC approach according to their clustering effects and convergence properties.
4.5.1.1 Diagonal dominant incomplete cholesky factor (DDIC):

in this class, the incomplete Cholesky factors are obtained by
preserving only the non-zero elements of the complete Cholesky factors

located within a specified diagonal band (nd).

Figures 4.6, 4.7 and 4.8 compare the eigenvalue spectrum of the pre-
conditioned matrices obtained by preserving only the nd-diagonal non-zero

elements. The number of non-zero elements preserved in each case is
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Figure 4.6: Comparison of eigenvalue range for IEEE-14 bus system
(diagonal dominant pre-conditioning)

specified as nz. These test results show that as nd grows, the clustering effect
improves and more eigenvalues group around the unity value. This is expected
because, as the band of diagonals preserved increases, the approximated pre-
conditioning matrix approaches the complete Cholesky factor L. However, this
also implies that more computational effort is dedicated to the computation
of the K factor. The results for all the systems considered also confirm that
many of the eigenvalues of the pre-conditioned matrices tend to be clustered
in one large group located around unity. This performance is similar to that
of the CIC pre-conditioning. Table 4.II shows the total number of eigenvalues
(and % in parenthesis) in the largest cluster (nc) located within a bandwidth
of 1% of the eigenvalue range. The number of non-zero elements (nz)
preserved in the pre-conditioning matrices is also shown for comparison.

These numbers show that a modified Cholesky factor of this type, with almost
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Figure 4.7: Comparison of eigenvalue range for IEEE-30 bus system
(diagonal dominant pre-conditioning)

Table 4.I1: Total number of eigenvalues clustered in the biggest group, for
CIC and DDIC pre-conditioning matrices

DDIC
Example CIC
networks nd =1 nd =2 nd =3
IEEE nc(%) 5 (38) 3(23) 4 (31) 7 (54)
14
buses 25 33 40

IEEE | nc(%) 8 (28) ‘_4(14) T e (41) ‘ 15 (52)
30
buses | 56 . 78 | 92

IEEE nc(%) 23 (41) [_3 @3) | 2442 | 2442

bEZes “ || 139 161
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Figure 4.8: Comparison of eigenvalue range for IEEE-57 bus system
(diagonal dominant pre-conditioning)

the same number of non-zero entries as a classical incomplete Cholesky
factor, will provide a near identical clustering pattern. As observed in Table
4 I1, for the IEEE 14-bus system with DDIC pre-conditioning, four eigenvalues
are located in the largest cluster, while, for the CIC pre-conditioning with the
same number of non-zero elements (33), this number (nc) will be five. This
implies that this type of pre-conditioning may require more iterations for
convergence when compared with the CIC pre-conditioning. Table 4.III shows
the number of iterations required for the convergence of the PCG method
with DDIC pre-conditioning compared with the number of iterations required
with CIC pre-conditioning, for the IEEE 14, 30, 57 and 118-bus systems. In
this table, nd and nz represent the number of diagonals preserved from the
Cholesky factor and the total number of non-zero elements respectively,

These data demonstrate that this type of pre-conditioning is not as efficient



CHAPTER 4 INVESTIGATION OF EIGENVALUE CLUSTERING ... 76

. Table 4.II1: Number of iterations required for convergence of PCG
r DDIC pre-conditioning CIC pre-conditioning
network
number of number of
nd nz iterations nz iterations
1 25
14-bus 5 33 ]
system I_ 3 40
1 56
30-bus 5 73
system " 3 92 |

|| 1 1
>7-bus 2 139 17
| system | 3 168 17 .
o '— 1 228 49
118-bus

system "

22

r

as the CIC pre-conditioning. As an indication, it can be easily seen that the
PCG with DDIC pre-conditioning even with more non-zero elements than the

CIC pre-conditioner, is not as fast as the PCG with CIC pre-conditioning.

4.5.1.2 Dominant element incomplete cholesky factor (DEIC):

This type of modified incomplete Cholesky factor involves measuring
the relative importance of the dominant Cholesky factor elements. In this
case, the modification is controlled by a weighting factor w. If the magnitude

. of an off-diagonal element in L is smaller than w, it is replaced by the 0 value.
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Figure 4.9: Comparison of eigenvalue range for IEEE 14 bus system
(dominant element pre-conditioned case)

If 1,, is the average valve of the off-diagonal non-zero elements of L, then w

is defined as:

w o o 4.2)
f

where f is a scaling factor,
The pre-conditioning effect of incomplete factors of this type was

examined for different scaling factors ranging from 0.4 to 3, for the IEEE 14,
30, 57 and 118-bus systems.

Table 4.1V illustrates the clustering effect for this class of Cholesky

modifications. In this table the number of eigenvalues contained in the largest
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figure 4.10: Comparison o ¢igenvalue range for IEEE 30 bus system
(dominant element pre-conditioned case)

cluster, located within a bandwidth of 1% of the eigenvalue range, are shown

for scaling factors f varying from 0.6 to 1.8. These numbers imply that better
clustering is achieved as f increases.

Table 4.IV: Total number of eigenvalues clustered in the biggest group, for
DEIC pre-conditioning matrices

Number of eigenvalues in biggest cluster

Scaling
factor f IEEE 14-bus IEEE 30-bus IEEE 57-bus
0.6 \I 1 I 5 ] 22
1 2 8 23
1.8 4 | 12 25

|
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Figure 4.11: Comparison of eigenvalue range for IEEE 57 bus system
(dominant element pre-conditioned case}

Figures 4.9, 4.10, and 4.11 illustrate some examples of the clustering
effect provided by DEIC pre-conditioning for the IEEE 14, 30 and 57-bus
network matrices. They show that a larger scaling factor f (more computed
non-zero elements), yields a better clustering effect. As it is shown later in this

section, this also results in faster convergence,

Tables 4.V to 4.VII show the number of iterations required for the
convergence of the PCG algorithm with this type of pre-conditioning for the
1EEE 30, 57 and 118-bus systems as an indication. In these tables the number
of non-zero elements of the pre-conditioning matrices are shown for scaling
factors f varying from 0.4 to 3. These data demonstrate that, as the clustering

effect improves, the number of iterations required for convergence decreases.
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Table 4.V: Number of iterations required for convergence of PCG
(IEEE 30-bus network)

pre-conditioning
matrix (K)

DEIC

£=0.5 I

number of
Nnon-zeros

number of
iterations

| & T o |
—

11
f=0.8 64 9
f=0.9 65 8
f=1.0 || 70 8
5
4

£=2.0 93
£=3.0 " 105

Figures 4.9, 4.10 and 4.11 also indicate that, for the same number of

non-zero elements, DEIC pre-conditioning yields better clustering than the

classical incomplete Cholesky method. To show this advantage more clearly,

the number of iterations required for convergence of the PCG with classical

incomplete Cholesky pre-conditioning is compared with those required with

DEIC pre-conditioning including fewer or equal non-zero elements in Table

Table 4.V1: Number of iterations required for convergence of PCG
(IEEE 57-bus network)

pre- condltlonmg
rnatm (K)

|

number of
non-zeros

number of
iterations

" 11

114 11
130 9
= | 187 s
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Table 4.VII: Number of iterations required for convergence of PCG
(IEEE 118-bus system)

pre-conditioning " number of number of
matrix (K) NON-ZETOS iterations

L CIC 294 22
=04 255 21

£=0.7 . 326 13

f=1.0 371 10

f=14 417 9

DEIC f=17 450 8
f=2.0 477 7

f=3.0 520 7

4. VIIL It is noteworthy to mention that the cost of computing the pre-
conditioning matrices roughly corresponds to the number of non-zero
elements computed. As indicated in this table for the IEEE 57-bus system, the
PCG with DEIC pre-conditioning, with the same number of non-zero
elements as the CIC pre-conditioner, converges faster than the PCG with CIC

Table 4.VIII: Number of iterations required for the convergence of the PCG
with CIC and DEIC pre-conditionings

number of non-zeros I number of iterations
DEIC DEIC
57-bus | 130 | 130 I-l
[ iisbus | bus [ usbus || 294 | ||__22_“

IEEE networks




CHAPTER 4 INVESTIGATION OF EIGENVALUE CLUSTERING ... 82

pre-conditioning. Furthermore, even in the case where the DEIC pre-
conditioner has fewer non-zeros than the CIC pre-conditioner, the number of

iterations required for convergence is still lower for the DEIC case (IEEE 30
and 118-bus systems).

This result can be interpreted by the fact that the classical incomplete
factorization corresponds to a L LT factorization only in those locations where
B has non-zero elements (b;; is non-zero). These locations imply that buses i
and j are connected to each other directly, However, this approach can ignore
some dominant elements in the Cholesky factor and preserve some trivial
ones. It can be seen that L; will be dominant if there are some indirect
connections with low impedances between buses i and j through other buses,
even though by is zero. On the other hand, Ly will be trivial if the line
connecting i and j has a high impedance. This is because the L LY
factorization process is essentially a sequence of linear transformations for the
elimination of the lower triangular (upper triangular) elements of B to be able
to perform backward (forward) substitution. In this process, to eliminate by
from the ith row, -b;/by, times of kth row (b, = 0 for | < k) is added to the
ith row of the B matrix. This process fills any zero position (i,m) of the ith
row, with the non-zero element -(b; by, }/by if by, is not equal to zero
resulting in a new non-zero location. In general, as by is small compared with
by Ly Will be small. However, if b;; and b,,, are not small compared with by,
or, if there are many lines connected to bus i or m, resulting in a high
admittance between i and m, then L, will not be trivial, and may be a

dominant element in the Cholesky factor,

The results of these studies indicate that in general, CIC is an effective
approximation to the Cholesky factor for accelerating PCG convergence.
However, these results also show that by making use of the topological

configuration of power networks, modified Cholesky factors with the same
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sparsity degree can be constructed giving better clustering and faster

convergence of the PCG algorithm.

4.6 Concluding Remarks

(1) Pre-conditioning matrices based on approximations to the Cholesky factor
seem to be a promising approach to obtain a better clustering of the system

eigenvalues.

(2) Comparison of the clustering effect of the classical incomplete Cholesky
(CIC) factor, with those of diagonally dominant incomplete Cholesky (DDIC)
factors indicate that the DDIC pre-conditioning is not as efficient as CIC pre-
conditioning if an equal number of non-zero elements are preserved in each

factor (equal computational effort is dedicated to both).

(3) Pre-conditioning with the dominant element incomplete Cholesky (DEIC)
factor can yield an improved clustering of the system eigenvalues and, thus,
faster convergence for PCG, when the physical properties of the network

matrices are taken into account to construct the pre-conditioning matrix.

(4) If solution results of lower accuracy are acceptable, a small number of
iterations is sufficient for convergence. This is an interesting property of
iterative techniques which can be utilized in certain types of power system

algorithms such as contingency ranking,

(5) The experimental 1csults show that pre-conditioning of power network
matrices with any of the incomplete Cholesky factors (CIC, DDIC or DEIC)

will cluster many of the eigenvalues in a large group located around unity.
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FIVE

GENERALIZATION OF THE PRE-
CONDITIONED CONJUGATE GRADIENT
METHOD FOR COMPLEX MATRICES
ARISING IN POWER SYSTEM ANALYSIS

5.1 Introduction

It was experimentally demonstrated in chapter III that the pre-
conditioned conjugate gradient (PCG) algorithm can be significantly more
efficient than direct techniques and can offer important savings in CPU time
for the load flow problem. This conclusion was shown to hold for power
system algorithms requiring repeated solutions of large sparse systems of
linear equations with positive definite matrices. However, it is known that
other important power system analysis problems such as transient stability and
short circuit studies essentially depend on the repeated solution of systems of
linear equations whose coefficient matrices are complex (see chapter II) and
similar to the network admittance matrix.

In this chapter, an investigation of the potential of PCG solvers for
complex admittance power network matrices is presented. In section 5.2, the
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modified complex PCG method is applied to the IEEE test networks (14, 30,
57 and 118-bus systems) for the solution of systems of linear equations of the
form Yx=Db, where Y is the complex admittance network matrix.

In section 5.3, the complex PCG algorithm and the modified complex
direct solvers are applied to synthetically generated networks of large sizes.
The computation time of the complex PCG is compared with that of the
standard direct solver. The comparison is performed for a wide spectrum of
power networks of different topologies up to 6500 buses and 13000 lines.
Furthermore, the effect of the size of the largest block in the network as well
as the effect of the size of the network, on the performance of the two solvers
are experimentally investigated. The results of our experiments show that the
complex PCG algorithm converges to the correct solution for all experimental
cases. This comparison also indicates that, for certain classes of large sparse
systems, especially when repeated solutions with matrix modifications are
required, the new PCG is significantly more efficient than the direct
technique.

5.2 Application of the PCG Method to Complex Network Matrices

As explained in chapter II, many power system algorithms such as short
circuit studies and transient stability analysis rely on the repeated solutions of
systems of linear equations whose coefficient matrices are complex admittance
matrices. In certain types of algorithms such as the transient stability problem,
these types of linear systems of complex equations are much larger than the
network dimension and need to be solved repeatedly. To limit the huge
computational time of the factorization process in these algorithms, the
coefficient matrix is updated and refactored only every few iterations [13].
This, in turn, may result in a higher number of iterations for the whole
algorithm to converge. Therefore, we were motivated to examine the complex
PCG algorithm as an alternative solver where a new updated admittance
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matrix is applied at every integration step and every iteration of the stability
algorithm.

The complex PCG algorithm is essentially identical to the real case
used in Chapter III except that all numbers are complex. While experience in
numerical electromagnetics suggests that CG algorithms for indefinite, non-
symmetric and complex systems [122-127] are computationally too expensive
to compete with direct methods, experimental tests with complex symmetric
systems, have shown very encouraging results (Table 5.I).

As a first set of tests, numerical results applied to the IEEE standard
networks showed convergence to the exact solutions for all cases. Table 5.1
gives information on the number of iterations required for the solution of
systems of linear equations Yx” =b" and Bx=b, where Y and B are complex
and real matrices respectively. These results suggest that:

1) Although the required number of iterations for convergence of the PCG
in the complex case is a little higher than that of the real case, it still can be
effectively applied to systems of complex linear equations arising in power
system analysis.

Table 5.I: Number of iterations required for convergence of CG and PCG
algorithms for the solution of systems of linear equations

IEEE test Complex real
networks l G PCG 1 CE P_CG |
14-bus i 12 7 B IF _5 ]
30-bus 20 11| 18 7
57-bus 42 16 32 10
| 118-bus 55 23 57 19
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2) Based on the comparison of the number of iterations required for PCG and
CG to converge, it is expected that PCG would outperform direct solvers for
complex matrix equations corresponding to large sparse power networks. This,
then, may result in substantial.computational performance improvement
specially for the transient stability problem.

Due to these results, the performance of the PCG algorithm was next
compared with a complex Frontal based direct solver for large sparse
admittance matrices of synthetically generated networks of different sizes and
varying topologies. Again, although the theory predicts PCG convergence only
for positive definite matrices, it was nevertheless observed in all the
experimental cases that the PCG converges to the right solution in a
competitive number of iterations.

The admittance matrix Y, in essence, can be written as the summation
of two real matrices G and B where,

Y=G-JB (S.1)

where each of these two real matrices bave similar topologies with dominant
elements located on the major diagonal. Although, this property does not
prove convergence, it may suggest an explanation for the observed
convergence of the algorithm in all tested cases.

5.3 Numerical Comparison on the Performance of PCG and
Frontal Solvers for Complex Network Matrix Equations

In this section, the performance of the PCG with classical incomplete
Cholesky pre-conditioning is experimentally compared with that of the Frontal
(Sparspak does not have a complex direct solver) direct solver [60]. In this
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vein, first both algorithms were modified to complex solvers. Then, they were
applied to solve systems of complex linear equations similar to those arising
in power system problems such as short circuit and transient stability
algorithms. The computation time of the two solvers were then compared with
each other for a wide spectrum of network admittance matrices up to 6500
buses and 13000 lines. The impact of the network size and topological
connectivity on the relative performance of the two solvers were also
numerically investigated.

To compare the performance of the two solvers, the ratio of the
corresponding CPU times is displayed as a function of the network size in
Figures 5.1 to 5.4. The results indicate that the PCG can be advantageously

applied to certain types of complex linear systems of equations arising in
power system studies.

5.3.1 Test networks

In these series of experiments, the networks were composed of sparse
blocks of varying sizes. These blocks, themselves, are interconnected by a
sparse network. The buses in each block are connected to each other in a
random fashion and have the star-type connection explained in chapter I1I.
Each bus in the network is (on average) connected to four transmission lines
and thus, the total number of the lines in the network add up to about two
times of the total number of the buses in the network (Further information
on the test networks can be found in chapter VI). The test network generated
for these series of experiments range up to 6500 buses and 13000 lines.

It was described in chapter II that the Frontal solver is a bandwidth
based solver. Thus, to ensure that the network data are not biased against the
direct solver, the input data (admittance matrices) were generated such that
the matrix has its minimum possible bandwidth around the major diagonal.
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CPU time ratio (Direct/PCG)
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Figure 5.1: CPU time ratio of direct and PCG complex solvers versus the
network size
(Largest sparse block has 100 buses)

5.3.2 Discussion of the results

The results of this section are grouped into four different network
categories defined by the size of the largest sparse block in the network. In
fact, the effect of the size of the network as well as the effect of the largest
block in the network (matrix bandwidth) on the performance of the two
solvers are evaluated. For each category, the ratio of the CPU time of one
complete solution by direct solver and the CPU time of one complete solution
by the PCG solver is plotted versus the network size in Figures 5.1 to 5.4.

A) In this group, the effect of the size of the network on the
performance of the two solvers is investigated. This investigation is performed
based on the evaluation of the performance of the two solvers on networks
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Figure 5.2: CPU time ratio of direct and PCG complex solvers versus the
size of the largest sparse block in the network
(Each network contains 2000 buses and 4000 lines for all cases)

of varying sizes whose largest sparse blocks contain only one hundred buses
of the network. Other blocks in the networks have random sizes varying from
6 to 100 buses. The CPU time ratio for the two solvers in this group of
experiments are plotted in Figure 5.1.

Comparison of the two methods for the solution of the systems of
complex linear equations indicate that for networks with sizes smaller than
3000 buses, the direct solver is advantageous, while, for the networks of larger
sizes, the PCG shows a speed advantage over the direct solver. However, for
cases involving many repeated solutions with a constant coefficient matrix, this
advantage will be reduced. This is due to the fact that for these types of
problems, only one factorization is necessary for all the repeated solutions.
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Figure 5.3: CPU time ratio of direct and PCG complex solvers versus the
network size

(Largest sparse block is one tenth of the network size)

B) In the second category, the effect of the size of the largest block
(matrix-bandwidth) in the network is investigated. Thus, the solvers were
applied to networks of equal sizes containing 2000 buses, while the sparsity
degree is the same for all these networks. Figure 5.2 shows the CPU time
ratio for the two solvers versus the size of the largest block.

As indicated in Figure 5.2, for this type of network, the relative
efficiency of the PCG over direct solver increases very rapidly with the size
of the largest black. The cross-over point where the PCG becomes faster than
direct methods starts near a block size of 200. As an example, for a 2000-bus

network composed of only one block, the PCG solver is about 275 times faster
than the direct solver.
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Figure 5.4: CPU time ratio of direct and PCG complex solvers versus the
network size

(Largest sparse block is one fifth of the network size)

C) In the third category, networks with the largest sparse block equal
to one tenth of the size of the network were investigated. Figure 5.3 shows the
relative CPU times of the two solvers.

We see here that, for systems of more than about 2000 buses where,
the size of the largest block is about 200, the PCG becomes more efficient.
For a system of 6500 buses of this type of networks, the PCG shows a speed
advantage about five times that of the direct solver.

D) In the last group of experiments, the PCG and Frontal solvers were
applied to networks of varying sizes whose largest block has a size equal to
one fifth of the network size. The test results for these cases are plotted in
Figure 5.4. This group of networks is similar to the one described in the third
category except that the largest block is twice the size.
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Figure 5.5: CPU time ratio of the Frontal solver for the solution of
networks whose largest block is one fifth of the network size over those
whose largest block is one tepth of the network size

In this case, the PCG method is considerably more efficient than the
direct method compared with the previous case and becomes more efficient
than the direct solver for systems larger than about 800 buses.

Figures 5.5, 5.6, 5.7 and 5.8 give a better understanding of the effect
of the largest block in the network on the relative behaviour of the two
solvers,

Figure 5.5 measures the effect of the largest block in the network on
the performance of the direct solver for network matrices of the same size
and sparsity degrees. This effect is shown in the figure by the CPU time ratio
of the direct solver for networks whose largest block is one fifth the size of
the network (Fron-b5) over those whose largest block is one tenth of the
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Figure 5.6: CPU time (Sun SPARC station 10, 64 Mb RAM) for the
solution by direct solver versus the size of the largest sparse block in the
network (Each network contains 2000 buses and 4000 lines for all cases)

network size (Fron-b10). It is illustrated that although this time ratio is about
one for small networks, it approaches four for very large networks. The latter
is a predicted value for the Frontal solver by the theory which establishes that
the CPU time for the solver is O(nm?) where, m is the size of the largest
block (matrix bandwidth). Figure 5.6 supports this result. This figure shows the
CPU time (on a Sun station SPARC 10) required by the Frontal solver for the
solution of network equations of the same size (2000 buses) and sparsity
degree (4000 lines) whose largest blocks vary in size. As illustrated in this

figure, for networks of constant sizes, the solution time increase is
almost O(m?).

On the other hand, Figures 5.7 and 5.8 evaluate the effect of the
largest block on the performance of the complex PCG solver for matrix
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Figure 5.7: CPU time ratio of the PCG solver for the solution of
networks whose largest biock is one fifth of the network size over those
whose largest block is one tenth of the network size

equations of power networks. Figure 5.7 shows the CPU time ratio of the
complex PCG solver fo: those networks whose largest block is one fifth of the
size of the network (PCG-b5) over those whose largest block is one tenth of
the network size (PCG-b10). It is observed that, contrary to the direct solver,
the ratio does not increase. In fact, as Figure 5.7 shows, this ratio decreases
as network size increases. As an example, the PCG solution speed for a
network of 6500 buses with a largest block of 1300 buses will be about 33%
faster than for a network of the same size and sparsity degree whose largest
block contains only 650 buses. The explanation for this surprising resuit may
be seen in Table 5.IT which shows the number of PCG steps for these two sets
of networks. From this table, it c.';m be observed that, in case of large
networks the number of PCG iterations for a network whose largest block is
one fifth of the network is generally smaller than that of a network with a
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Figure 5.8: CPU time (Sun SPARC station 10, 64 Mb RAM) for the
solution by PCG versus the size of the largest sparse block in the network
(Each network contains 2000 buses and 4000 lines for all cases)

largest block of one tenth the network size. It is clear that this behaviour
implies that the larger the block the better the clustering effect of the pre-
conditioning. However, it is still unclear why this phenomenon occurs.

It was also observed, that for networks having a large bandwidth
(largest block), the number of PCG steps tends to be much smaller than the
anticipated value of O(n®%). This, in turn, indicates that for very large
networks whose largest blocks are not very small, the PCG method will be
faster than expected. To illustrate this conclusion, the number of actual
iterations required for convergence of the PCG for networks of 2000 buses
whose largest blocks vary in size are shown in Table 5.1II, These range from
66 to 12 iterations, depending on the size of the block, compared to the
anticipated value of 45.
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Table 5.]I: Number of iterations required for convergence of complex PCG

solver for networks of different sizes

Size of the largest block ir; the network
one tenth the one fifth the
network size network size

200 22 25
400 31 33
600 39 35
860 37 40
1000 f 47 44
1200 55 42
1400 55 43
1600 61 42
1800 71 44
2000 61 45
2200 81 49
2400 74 43
2600 74 ' 45
2800 76 i 45
3000 90 54
3500 102 44
4000 80 40
4500 102 50
5000 | 99 48
5500 I 91 55
6000 | 92 46
6500 || 95 T
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Table 5.III: Number of iterations required for convergence of complex PCG
solver for 2000-bus networks whose largest blocks vary in size

Size of the Numbeiu Size of the Number of ‘
Jligest blic_k_ iterations largest block iterations
200 66 1200 21
400 41 1400 17
600 29 1600 16
800 25 1800 17
1000 20 “ 2000 12

The CPU time for the solution of this type of network is plotted in
Figure 5.8. It is illustrated in this figure that the CPU time required by the
PCG solver for the solution of networks of the same size whose largest blocks
vary in size, exponentially decreases as the size of the largest block increases.
As an example, while the time for a network of 2000 buses whose largest
block contains only 200 buses is 8.21 seconds, it decreases to 2,71 seconds for
a 2000-bus network composed of only one block.

5.4 Concluding remarks

(1) The incomplete Cholesky pre-conditioned conjugate gradient (PCG)
algorithm can be efficiently applied to solve systems of complex linear
equations whose coefficient matrices have the same topology as the
admittance matrix. These types of equations arise in power system analysis
such as short circuit and transient stability studies.

(2) Our experimental evaluation of the performance of the modified complex
PCG solver as compared with that of the Frontal direct solver for networks
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of up to 6500 buses and 13000 lines indicates that, for large sparse networks,
with not too small a bandwidth, substantial gains in computational speed can
be achieved.

(3) The relative efficiency of the new PCG, compared with the Frontal direct
solver, improves exponentially with the size of the network and even more
rapidly with the size of the largest block.

(4) The performance of the PCG, unlike direct solvers, is not as significantly
affected by the bandwidth of the network matrix. However, for power network
matrix equations, in contrast to the direct solver, it is observed that the
number of iterations required for convergence decreases with the size of the
largest block for networks of equal size and sparsity. This phenomenon
suggests that the larger the bandwidth the better the eigenvalues are clustered
by the pre-conditioning process.

(5) The complex PCG method should be seriously considered in power system
analysis where repeated solutions of systems of complex linear equations are
required.
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SIX

ARTIFICIALLY SYNTHESIZING NETWORK
DATA FOR POWER SYSTEM ANALYSIS

6.1 Introduction

To evaluate the performance and robustness of new power system
analysis algorithms, extensive numerical tests are required. Thus, it is essential
to have realistic data for a large set of power networks of various types and
sizes. Testing such algorithms on a few individual networks, as is often the
case, may not clearly identify all its advantages or disadvantages.

It is evident that there are many difficulties associated with the
collection of real network data, especially for very large scale systems. These
difficulties are both technical and due to confidentiality reasons. Numerical
testing is therefore often restricted to the relatively small IEEE test networks
or to a limited set of special power networks whose data are not available to
the general research community. In other fields, such as finite element
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electromagnetic analysis, to alleviate the difficulty of collecting realistic data,
synthetically generated data are commonly used for many investigations [114,
115).

This chapter presents an approach to synthetically generate realistic

data [121] for power networks of arbitrary size and complexity.
We were motivated to develop this software by:

(i) The critical need for network data to investigate and test many
power system analysis methods (previous chapters).

(ii) The difficulty of gathering sufficient network data representative
of different topologies and sizes.

(iii) The fact that, to our knowledge, there in no widely available
systematic method for producing arbitrary network data for power system
analysis,

(iv) The ability to be able to control the various network parameters
which may impact on the performance of the algorithm being tested (e.g. size,
topology, line and bus data).

This technique was used in the numerical investigations described in
the previous chapters. It was found to be very valuable in the present thesis
but it should also find numerous applications in other power network analysis
areas where testing of algorithms is necessary on large scale systems.

6.2 Data Spccification in the Power Flow Problem

In this chapter, the emphasis is essentially on the generation of realistic
data for the power flow problem. However, this data also serves to test
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algorithms related to other types of power system analysis such as short circuit
studies, transient stability and contingency analysis. Thus, some of the

conclusions of this section also apply to other types of power system analysis
problems.

The power flow problem is formulated by a set of nonlinear algebraic
equations describing the behaviour of the complex power flows and voltages
throughout the network under steady state conditions (see Chapter 1I). To
formulate a load flow problem, three basic sets of data are required: the
topological, the line parameter and the bus data.

Topological data is defined by two index vectors describing how the
buses are tied to each other through transmission lines or transformers. This
is a very important set of data having a major impact on the speed and
storage requirements of a load flow algorithm. In essence, network topology
defines the number of non-zero elements to be stored and numerically
manipulated during the solution. This point is discussed more thoroughly later
on in this chapter.

We define a local network (or block) as a sub-network composed of a
sub-set of the total number of nodes. Normally these local networks are
interconnected to each other through some tie lines resulting in bulk
interconnected networks.

Normally, transmission lines and transformers are modelled by lumped
w-models. In this type of model each transmission line or transformer located
between two nodal points is characterized by its series impedance (composed
of series resistance, R and series reactance, X) together with its shunt
admittance elements, G (resistive) and B (capacitive).

Bus data describes generators and loads as power sources and sinks
respectively connected to the nodal points of the power network. They are
divided into three categories:
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a) Generation Buses (Voltage Controlled Buses): At these buses, the
real power injections P;s and the magnitudes of the voltages Vs are given as
input data. The reactive power injections Q;s and the voltage angles é;s are
computed by the power flow program.

b) Load buses: Ps and Q;s are known as the input data, and the
magnitudes and the angles of the voltages are to be computed.

¢) Slack Bus; The slack bus is a reference bus for which the voltage
amplitude and angle are given as input data. Typical values are one per unit
and zero radians respectively. The load flow program computes the
corresponding injected powers P and Q at this bus.

In summary, the formulation of the load flow problem needs input data
consisting of the topological connectivity index vectors, the line and
transformer admittance values, as well as the specified P, Q and V values for
the various bus types.

0.3 The Synthetic Network Generator Algorithin
6.3.1 The general approach

The algorithm starts by assigning the total number of buses to the
network as per the user input data. Then, realistic random voltage magnitudes
and angles are ascribed to each of these nodes (section 6.3.4). Based on the
selected network types and connectivity, these nodes are connected to each
other following a constrained random process related to the specified topology
of the network (section 6.3.2). For networks constructed from a set of local
blocks, interconnections between the local networks are determined in a
similar random manner (section 6.3.2). Then, the power injections in the
complete network are computed to complete the input data for the load flow
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problem. Finally, user constraints are iteratively imposed to force the injection
data to lie within the prescribed ranges. Figure 6.1 shows a basic flow chart
for the algorithm.

6.3.2 Network configuration

The networks created by the developed software are composed of a
single block or multiple interconnected local blocks.

6.3.2.1 Single block networks

In this category, the power system consists of a local sparse network
with no external interconnections. There is no limit to the size of this single
block network and the number of buses can be any integer greater than two.
These single block networks may have two different topologies:

a) Star Networks: In this type, first, all of the network buses are
connected to cach other through a ring of transmission lines to assure
connectivity of all buses, Then, extra connections among different buses are
created randomly (Figure 6.2). The number of the connections from any bus
is based on a random integer, typically four connections per bus on average
(this generates twice as many lines as buses on average). This average value
is an input to the program and can be controlled by the user. The buses to
which the randomly generated lines are connected are also chosen randomly.
Double circuit lines can be excluded by the program if the user so desires.
This type of star network has been shown to be more difficult to order
efficiently for computations using direct solvers (see chapter III).

b) Grid Networks: For this type, the network has the form of a matrix,
whose elements represent the nodal points of the network (Figure 6.3). The
width of the network will be nw buses, where nw is the greatest integer less
than nb%, where nb is the total number of the buses in the block. The last
column may consist of fewer nodes than nw.
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Figure 6.2: An example of an 8-bus star-type power network

In this category of networks, the peripheral points are first connected
to each other, and then the adjacent nodes along each column are connected
to each other to assure that no bus is isolated from the body of the network.
Finally, additional random connections between n; and n;. are created,
where i (i") represents the row number and j (j*) denotes the column number
of the grid. In our algorithm, generally |i-i’| < 1. However, |j-j"| can be
greater than one, if the generated network is expected to have non-planar
lines. The total number of transmission lines connected to any bus is
constrained to be within a realistic range. In the algorithm, the default ratio
of the number of lines to the number of buses has been selected by inspection
of the available real networks and IEEE example systems. However, the user
has control over this ratio. Thus, networks with varying sparsity may be
created.
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Figure 6.3: An example of a 28-bus grid-type power network
6.3.2.2 Multi-block networks

Networks in this category are composed of sparse blocks of varying
sizes. The block sizes are random integers within a user specified range., The
blocks themselves are interconnected into a sparse network. The inter-block
connections are similar to the nodal point connections in each individual
block, and therefore have the same topology. As an example, Figure 3.1
(chapter III) shows a star-type block interconnection for a multi-block network
composed of eight blocks of varying sizes which is similar to the star-type
network of Figure 6.2. Figure 3.2 (chapter III) shows the sparsity structure of
the B matrix of a synthetically generated network of this type. The algorithm
allows the user to number and connect blocks to each other either in a
constrained random fashion, or according to a specific ordering.



CHAPTER 6 ARTIFICIALLY SYNTHESIZING NETWORK ... 108

6.3.3 The values assigned to line parameters

In the algorithm, line parameters are chosen to have random values
within a certain range around their specified base values. These base values,
which are in per unit, have been determined by inspection of real networks
and IEEE example systems. They have been chosen to be not very far from
the average values of these networks (typically within 209).

6.3.4 Voltage magnitudes and angles

A random magnitude is assigned to the voltage at any node, which is

within a user specified range provided as input. Typical values vary from 0.95
to 1.1 per unit.

The angles are chosen to lie within a user specified range, however the
probable values within this angle range is not uniform. This is done to ensure
that the algorithm produces a smaller number of buses with high angles
compared to buses with low angles. Generally, buses with higher angles
correspond to generation buses which are fewer in number than load buses
which typically have lower angles.

6.3.5 Bus type determination

Power flows in all transmission lines (transformers) are computed
based on the assigned values for the line (transformer) parameters and bus
voltages and the load flow equations. Then, the injected real and reactive
powers are calculated at all buses. The determination of generator and load

bus types is based on these injected power quantities. The slack bus number
and its voltage is user selected.
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6.4 Control Actions Applied to the Algorithm

During the development of the algorithm, it was observed that some
generated networks did not show good load flow convergence. It was found
that this undesirable behaviour occurred when the real and imaginary power
injections at adjacent buses varied very rapidly. This is an indication that the
voltage profile (both in magnitude and angle) selected is not sufficiently
smooth. Thus, some control operations were implemented in the algorithm to
alleviate this problem,

6.4.1 Real power adjustment

The program checks the computed input power injected into any nodal
point. If the absolute value is not within a specified range, the angle value of
the voltage at this bus is shifted toward the average value of the angles for
those buses which are directly connected to it. After each change in the
network, the power flows and injections are re-computed. These adjustments
may be repeated several times until the injections are within the specified
range. The selected power injection range must be reasonable in the sense
that adjacent buses do not have sharp differences in power injections relative
to the capacity of the network to transmit this power.

6.4.2 Imaginary power adjustment

Imaginary power adjustment is similar to real power adjustment,
However, in this process the magnitudes of the voltages rather than the angles
are adjusted due to the high sensitivity of the imaginary power to voltage
magnitudes. Here, however, the adjustments are made to try to keep the
injected reactive power within 509 of the real power injection.
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6.4.3 Output data file

The output data used for the load flow program can be written and
saved directly as an ASCII file in any standard format, including the IEEE
standard.

6.4.4 Applications

The data produced by the developed program are useful for analytical
investigations in many power system studies. We have found this technique to
be valuable in the numerical investigation of new solvers for the load flow
problem [29], and in a numerical investigation of the eigenvalue properties of
network matrices [120].

Since the user has control over base parameters such as, system size,
number of transmission lines and their connectivity, and line coefficients, this
program can be used for numerical comparison of the convergence rate,
robustriess and the validity of different algorithms as well as the relative
impact of these parameters. This type of analysis is essential in planning and
operations planning,

6.5 Concluding Remarks

A new algorithm has been developed that gencrates synthetic power
networks with the following characteristics:

(1) The program can create networks with different types of dimensions,
configurations and connectivities.

(2) The program allows the user to specify the base parameter values for lines
and transformers.
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(3) The program can constrain the randomly created data such as the power
injections, voltage magnitudes and angles to lie within specified ranges.

(4) There is no limit on the size of the network that can be generated.

(5) The network configurations and the assigned values of the network
elements can be controlled by the user to make the system as realistic as
required.

(6) The network data are written directly into ASCII files in any standard
format, including the IEEE standard.

Based on the above noted properties and on our own research, this
program is an extremely useful tool for research and development of new or
improved power system analysis algorithms,



CHAPTER

SEVEN

CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE RESEARCH

7.1 Conclusions

The majority of power system analysis studies essentially rely on the
repeated solutions of large sparse systems of linear equations. The principal
objective of this research has been to investigate the potential of the pre-
conditioned conjugate gradient (PCG) algorithm to solve systems of linear
equations arising in power system studies. Although PCG solvers have
replaced the standard direct methods in various areas of engineering such as

finite element analysis, such comparisons had never been attempted in power
system problems up to now.

As part of this investigation, first it was proven (chapter III) that the
B and B” matrices arising in the DC and Fast Decoupled load flow
algorithms are positive definite and, thus, comply with the convergence
requirements of the PCG algorithm. Then, for the first time, the PCG
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algorithm was applied to the solution part of the DC and Fast Decoupled load
algorithms. The PCG approach was tested on the IEEE standard networks of
14, 30, 57 and 118 buses as well as on a large number of synthetically
generated power networks up to 5000 buses and 10000 lines, The performance
of the PCG for these series of experiments was evaluated and compared
against two types of sparse matrix direct solvers: the bandwidth-based Frontal
solver and the minimum degree ordering Sparspak-B5 solver (Tinney-2
algorithm).

More specifically, this thesis has numerically examined the effect on
the performances of the PCG and direct methods of the following parameters:
the size of the network, the size of the largest block in the network, the block
arrangements in the network, the type of network configuration and its
connectivity.

The results of this experimental evaluation reveal a significant speed
advantage of the PCG solver over direct solvers in the analysis of very large
sparse power networks. This speed advantage is even more pronounced in the
analysis of networks which are not very narrow banded (i.e., networks which
have at least one large sparse block) specially in comparison with the Frontal
solver. This is due to the fact that the efficiency of the Frontal solver
decreases for networks with large blocks. On the other hand, the performance
of the PCG is not affected considerably by the matrix bandwidth. In fact, the
PCG shows improved convergence behaviour for networks with larger
bandwidths but with the same sparsity. This advantageous behaviour of the
PCG can be attributed to a better clustering of the matrix eigenvalues for
networks with larger bandwidth (although a clear fundamental reason for this
general behaviour is not yet known).

It was also observed that, while the PCG performance is not
significantly affected by the network type, direct solvers are very sensitive to
the type of connectivity, For example, Sparspak-B5, which is one of the most
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commonly used direct solvers and ordering schemes in power system analysis,
is much slower for star-type as compared with grid-type networks. This
behaviour is due to the fact that direct solvers are very sensitive to ordering
algorithms.

The convergence of the PCG algorithm in the solution of power
networks also proved to be faster than expected from previous experiences in
the application of PCG methods. Convergence usually occurred in fewer
iterations than the typical value of n®* reported in the literature. This may be
primarily due to the fact that power network matrices are essentially
diagonally dominant and, when pre-conditioned, very good clustering of the
eigenvalues is achieved.

Most of the above mentioned results relate to the Fast-Decoupled
Load Flow, however, the possible use of the PCG in other load flow
algorithms such as the Full Newton method were also investigated in this
thesis. The results show that this type of load flow algorithm is difficult to
adapt to the requirements of the PCG method and no advantage was
observed in replacing direct solvers by the PCG.

In chapter IV, two new types of pre-conditioners were experimentally
investigated. The performance of these two types of pre-conditioners was
compared with that of the classical incomplete Cholesky (CIC) pre-
conditioner. This comparison was based on the clustering effect of the
eigenvalues of the resultant coefficient matrices as well as on the number of
iterations required for the PCG to converge. This investigation showed that
different pre-conditioning schemes based on approximations to the Cholesky
factor seem to be the most promising approach to cluster the system
eigenvalues efficiently. This study also indicates that superior pre-conditioning
can be achieved if the intrinsic properties of power networks are exploited.
This, then implies that more specialized and faster PCG algorithms could be
developed which utilize the physical properties of power networks.
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In chapter V, the PCG algorithm was modified such that it could be
applied to systems of complex linear equations. It was demonstrated that the
algorithm converges to the correct solution for systems of linear equations
whose coefficient matrix is equal to the complex admittance matrix of a power
network. The performance of the PCG for these types of problems was
evaluated for power networks of different topologies and various sizes up to
6500 buses and 13000 lines. The evaluation was based on the comparison of
the PCG with the standard bandwidth based Frontal direct solver. The
encouraging results of this investigation suggest that the new PCG algorithm
should also be seriously considered to replace direct solvers in transient
stability and short-circuit studies involving the solution of complex systems of
equations,

Finally, to be able to support our experimental conclusions by adequate
test results, it was highly desirable to have access to a broad range of realistic
data characterizing power networks of various types and sizes. Thus, a new
technique was developed that generates realistic data from power networks
of arbitrary size and complexity. While, these networks are randomly
generated, control adjustments have been implemented in the software to
make the generated networks as realistic as possible. The software allows the
user to specify the system dimension, type of network, connectivity
configurations and other network characteristics. This program has proven to
be a very useful tool, not only for the application of this thesis, but it should
also find numerous uses to thoroughly test any new power system planning
and operation algorithms.

7.2 Recommendations for Future Research

Even though, this thesis has demonstrated the advantage of the
application of the PCG method over direct solvers in power system studies,
the potential of the PCG algorithm in all areas of power system operation and



CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS ... 116

planaing is yet to be fully explored. Therefore, future work should be directed
tuwards new applications of PCG in various power system studies. The main
recommendations for future research are:

1) Further study should be devoted to explore the intrinsic properties
of power network matrices. Thus, more specialized pre-conditionings may be
possible for certain types of networks. This suggests that each utility may
utilize a specific PCG algorithm for its own applications to enhance the
efficiency of its power system algorithms.

2) Investigations should be also directed to modify the PCG algorithm
such that it would converge to the solution for systems of linear equations
whose coefficient matrix is not positive definite.

3) More detailed investigation should be directed toward the use of
PCG solvers in the transient stability problem.

4) The power system state estimation problem should be considered
as a good candidate for application of the PCG algorithm.

5) The potential application of the PCG algorithm to the optimal load
flow problem, especially, for on-line computations should be investigated.

6) Parallel processing approaches appears to be promising in the PCG
algorithm to enhance the efficiency of the overall computation.



APPENDIX

A

JACOBI, GAUSS-SEIDEL AND SUCCESSIVE
OVERRELAXATION ITERATIVE METHODS

These methods were first considered by Withmeyer in 1936 [87]. All
of these three methods are linear, first degree iterative techniques for the

solution of systems of linear equations. In the following we describe these
three iterative methods {88, 90, 95].

It was mentioned in chapter II that all these three methods may be
expressed in the form,
Bx™ +(4-B)x™ = b (1)
or,
x™1 = (I-B~4) x™ + B (a.2)
Assuming (I-B?A)=G and B'b=k, we can write,

™l o Gx™ 4+ k (a.3)

where G is called the iteration matrix for the method. In this class of iterative
techniques, each choice of a non-singular matrix B (equation a.2) leads to a
potential iterative method.

In the Jacobi iterative method [89] (sometimes called total step
method), one chooses,

B=D (ad)
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where,

D = diag { a,, a,,, .. , a,, } (a.5)

nn

Now, we decompose matrix A in the standard decomposition form,

A = D-E-F (2.6)

such that E and F are respectively lower and upper triangular n by n matrices.
One thus obtains from equation a.2,

x"t = DV (E+F) x™ + k (.7)

The matrix D}(E+F) in equation a.7, is called the point Jacobi matrix
associated with the matrix A. From this equation, the ith component of the
x vector in its scalar form can be expressed as,

.1 “ aif K fem i
xrl = SN (L (Agisn, j+i) (a.8)
= au aa

It is clear from equation a.8 that in this iterative technique, all the
components of the vector x™ must be saved during the computation of the new
vector x™*1. However, it seems advantageous to use the latest estimates xj"’”
of the components x; (0<jsi) to calculate x;,,"*' component. This idea will
result in the computation of the solution vector components as below,

i-1

g e 3 (S E( A dgian, e @9)

j=1 aii Juivl if aﬂ

In this approach called point Gauss-Seidel or point single step iterative
method [90], it is not necessary to save two approximations x™*! and x™
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during the computational process. Equation a.9 can be expressed in matrix
notation as,

xm*l = (D_E)—lFxm + (D"‘E)—lk (3.10)

where, (D-E) in this equation, is a non singular lower triangular matrix and
(D-E)'F is called the point Gauss-Seidel matrix associated with the matrix A,

Another iterative method for solving systems of linear equations closely
related to the Gauss-Seidel method, is called the point successive
overrelaxation (SOR) method {91]. In this approach, x™*! is a weighted mean
m+1:

in the point Gauss-Seidel method. Thus, the components x,™*!
of this methods are defined as,

of x,™ and x;

e xg e 0 R - xD) = (1-0) x50 + o xB (a.11)
where, xg™ and xg™*! are the two successive estimations for the solution
vector in the Gauss-Seidel iterative method and the quantity  is called the
relaxation factor. It is clear that the two weighting factors (1-w) and w depend
only on w and for 0Sw<1 both weights are non-negative. In this approach if
w>1, we will refer to it as overrelaxation, while w<1 corresponds to
underrelaxation.

One can combine two equations a.9 and a.11 to conclude,

m+l m el a «1 . a k,
X0 =x v o (D™ - Y (D s = -4 al2)
4 i1 G ay

This method like Gauss-Seidel method needs the storage of only one
solution vector during the computation process. This algorithm in matrix form
can be expressed as,
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(D-0E) x™ = {l-0) + @ U} x™ + wk (a.13)
Assuming L=D'E and U=D"'F, equation a,13 will be reduced to,

x™! = (-0l ) {1-0)] + oU &™ + o(-oL)'D 'k (a.14)

The convergence of this method is dependent on the relaxation factor

@ [92-94]. For ©=1, this method reduces to point Gauss-Seidel iterative
method.

These iterative techniques have the advantage of less memory
requirements when compared with direct solution methods. However, due to
their frequent slow convergence, none of them are recommended for power
system algorithms where reliable fast convergence is vital.
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B

CONJUGATE GRADIENT ALGORITHM

The conjugate gradient scheme (CG) [99-104] is an important semi-
iterative technique when the coefficient matrix is positive definite. This
method was first presented by Hestenes and Stiefel in 1952 [99].

In the absence of rounding errors, in contrast to other iterative
techniques, the CG method terminates with the exact solution in at most n
steps [99-101]. Because of rounding errors, however, additional iteration steps
may be required [88).

The basis of the method comes from the fact that the function,

F() = % x4 x - x'b (b.1)

is minimized by x=Ab. Thus, finding the minimum point of F will give us the
solution to the linear system of equations Ax=b if A is positive definite.
Conjugate gradient algorithms use a sequence of linear search directions (p)
starting from an initial guess xy and, at each iteration, a better estimate of the
solution is obtained, such that,

X =X+ e p, (b.2)

Thus, the final solution can be expressed as a linear function of the
search directions,

X=0,p +t 0Pt O, P (b.3)
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where, m is guaranteed to be no larger than the matrix size n and mainly

depends on the starting direction p, and on the distribution of the eigenvalues
of the coefficient matrix [102].

The main feature of this scheme is that any two search directions are

conjugate. Two directions p; and p; are said to be conjugate with respect to
matrix A if,

p; A pj =0 (b.4)
Thus, assuming that all p vectors are mutually conjugate and
premuitiplying equation b.3 by p!A, we will have,
piAle,p +apy+ ..+, p,1=pb (b.5)
from which, we can conclude,

P: b
o, =

(b.6)
pi AP

Hence, to find the solution vector x in equation b.3, one has to find the
conjugate directions p,. Having these search vectors along with the terms «;
then yields the solution.

Generally, in this algorithm,
pp=b-4Ax (b.7)
is a good value for the starting search direction. Now, all one has to do is to
proceed updating the solution vector using equation b.2. Now, assume that we

are at step i of the iterative process. Then, from equation b.3, the error vector
at this step can be calculated as,
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e =x-x'=a,p + e, Pyt (b.8)
The residual vector, r,, can be written as,
Ae, = Ax-Ax' =b-Ax' =1 (b.9)

Then, from equations b.8 and b.9 one can write,

rp=A(e, p;p + o Pyt ) (b.10)

Premultiplying equation b.10 with p;' and applying the conjugacy property of
equation b.4, we can conclude,

i
o, = Pih (b.11)

Pi‘ Ap,

After calculating o; from equation b.11, we may update the solution vector to
x"*1 (equation b.2).

In this algorithm the search direction in subsequent iterative steps are
calculated as,

Pig =Ta * pi D (b.lZ)

The first term of this expression is the residual at the last step which
corresponds to the gradient of the function to be minimized. The second term
is added to adjust p;,, so that it can be conjugate to p, Thus to ensure

conjugacy of two successive search directions, using equations b.4 and b.12
one will obtain,

4
_FP Ar,

(b.13)
t
i 4 p

B; =

Choosing the search directions based on the above mentioned
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procedure, it may be shown that p,,, is mutually conjugate to any of the
preceding search directions.

The above mentioned equations together will define the pgeneral
conjugate gradient algorithm as follows :

1) Initialization:

a) Initialize ¢

b) Guess x.

c) Formr =b-Ax
While H > & do :
2) Form o = p'p / p'4p.
3) Updatex = x + ap.
4) Updater = b - A x.
5} Form g = -PAr / p'Ap.
6) Updatep = r- g p.
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