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ABSTRACT

Power system operation and planning relies heavily on computer

simulation prograrns such as load flow, transient stability, contingency analysis,

state estimation, short-circuit studies and optimal power flow. AIl of the above

mentioned methodologies for planning and operation involve simulation

programs which require the solution of numerous sets of simultaneous linear

equations, Ax=b, whose coefficient matrices are in general very large and

sparse. The main part of the computational effort involved in these algorithms

is dedicated to solving such systems of linear equations.

This thesis investigates the properties of the coefficient matrix A that

arises in power system analysis, as weil as the application of more efficient

alternative solution techniques for Ax= b which exploit these special

properties. In particular, in this thesis, pre-conditioned conjugate gradient

(PCG) methods have been applied and extensively tested for the first time to

the solution of systems of linear equations arising in many power system

operations and planning tasks.

In this vein, first, it is theoretically proven that sorne important power

network coefficient matrices are positive definite and comply with the

requirements for the convergence of the PCG method.

The PCG algorithm is then applied to the Fast Decoupled load flow

and to the DC load flow. Its performance is numerically compared with a

Frontal band-width direct solver (Frontal solver) as weil as with a Sparspak

solver (BS) with minimum degree ordering. The experimental results are

based on a wide spectrum of power networks up to 5000 buses and about

10000 lines for two different types of networks: grid-type networks and star­

type networks. These results demonstrate that the PCG method is clearly
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superior to direct solvers for certain types of large power networks.

iv

The performance of the PCG solver within other load flow algorithms

is also numerically investigated.

A detailed investigation into the eigenvalue clustering effect of

alternative pre-conditioners which utilize the intrinsic properties of power

networks is also presented. In addition, the effect of their eigenvalue

cIusterings on the convergence of the PCG algorithm is analyzed and

compared with that of the dassical incomplete Cholesky pre-conditioner.

Furthermore, the usefulness of the PCG solvers is investigated for

complex or indefinite power network matrices. A modified PCG method was

applied to the IEEE test networks as well as to large synthetically generated

networks (up to 6500 buses and 13000 lines) for the solution of systems of

equations Y x = b, where Y is the complex admittance matrix. Comparison

with direct solvers is provided.

Finally, a new technique is developed to synthetically generate realistic

data sets which characterize power networks of arbitrary size and complexity.

While these networks are randomly generated, the software allows the user

to specify the system dimension, type of network, connectivity configurations

and other network characteristics. This software was developed to overcome

the difficulties associated with the collection of network data, especially for

large scale systems.
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RESUME

L'exploitation et la planification des grands réseaux électriques fait

appel à de nombreux outils de simulation, tels la répartition de puissance, la

stabilité transitoire, l'analyse des contingences, l'estimation d'état, l'analyse de

court circuits et la répartition optimale de puissance. Pour toutes ces

méthodologies, on retrouve des algorithmes de résolution d'équations

linéaires, Ax = b, au coeur des implantations numériques. En fait, la majeure

partie du temps de calcul dans ces logiciels est consacré à la résolution des

équations linéaires. Typiquement la matrice A est très grande et creuse.

Cette thèse cherche d'abord à établir quelques unes des propriétés

fondamentales des matrices formées dans les problèmes de réseaux

électriques. Elle propose ensuite des techniques de résolution, jusque-là

inutilisées dans le domaine, pouvant mieux exploiter ces propriétés. En

particulier, cette thèse fait l'essai de la méthode du gradient conjugué pré­

conditionée (GCP) pour la résolution d'équations linéaires découlant de

problèmes d'exploitation et de planification de réseau.

En un premier temps, on démontre que de nombreux types de matrices

de réseaux rencontrent les exigences imposées par la méthode GCP, dont en

particulier la condition d'être définie positive.

En un deuxième temps, l'algorithme GCP est implanté dans deux

calculs de répartition de puissance, l'un complet utilisant la méthode

découplée, l'autre simplifié utilisant la méthode dite à courant continu. Ses

performances numériques sont comparées à celles de méthodes de résolution

directes souvent utilisées dans le domaine, soit la méthode Frontale, et la

méthode d'ordonnancement à degré minimal disponible dans le logiciel



Sparspak. Les matrices affectées aux essais proviennent de réseaux de

differents types (grillage et étoile) et de differentes dimensions (allant jusqu'à

5000 barres et 10000 branches). Nos résultats démontrent la supériorité de la

méthodologie GCP pour certains types de matrices de réseaux.
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Nous avons également vérifié J'emploi de la méthodologie CGP dans

d'autres algorithmes de répartition de puissance.

Cette thèse explore aussi les mérites de plusieurs modules pré­

conditioneurs. Pour ce on évalue dans chaque cas, et pour plusieurs matrices

de réseaux typiques, les regroupements des valeurs propres. Cela est

intimement liée aux propriétés de convergence. On compare les performances

de ces modules à celles du module préconditioneur classique de Cholesky.

De plus, un algorithme modifié CGP a servi à résoudre des systèmes

d'équations indéfinies et des systèmes à coefficients complexes. Des matrices

d'admittances complexes pour ces essais ont été tirées des réseaux tests de

l'IEEE ainsi que de réseaux synthétiques de très grandes tailles (allant jusqu'à

6500 barres et 13000 branches).

Enfin, une nouvelle méthodologie est proposée pour synthétiser des

réseaux fictifs à dimensions et à complexités arbitraires, comportant

néanmoins des paramètres vraisemblables. Bien que la génération de ces

réseaux soit aléatoire, l'usager ~ontrôle le processus en spécifiant le type de

réseau, ses dimensions, des éléments de sa connectivité, et d'autres

paramètres. Cela permet d'alimenter librement les algorithmes de calcul tout

en contourant les difficultés de collecter des données de réseaux.
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CHAPTER

ONE

INTRODUCTION

1.1 Background

The first power generation and transmission system was installed in

1882 at the Pearl Street Station in New York. It supplied a mere 30 kW to a

number of electric incandescent street lamps. During the intelVening decades,

as a result of population growth and of the consumption-oriented culture of

modern day societies, the demand for electric energy sharply increased. In the

United States the annual electric energy production more than doubled every

ten years from 1920 to 1960 [1].

In conjunction with load growth, there arose a need to increase the

reliability of the supply and to reduce the high cost of spinning reselVe, that

is, the reselVe generation which runs at almost no load ready to very rapidly

respond to emergencies. One consequence of this need was the



interconnection of local power networks into very large pools. As a result of

this trend, modern day power systems include thousands of interconnected

transmission lines and hundreds of generating plants and substations.

•
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The main responsibility of an electric power company is to produce,

transmit and distribute energy to its customers at constant voltage and

frequency, according to their needs, at a reasonable cost and high reliability.

Typically, power requirements (arnounts, duration and scheduling) are strongly

influenced by the type of consumer applications, social and econornic structure

and locality and, therefore, demand can vary widely. In addition, power

networks are exposed to frequent equipment failures which may significantly

affect the ability of the network to meet its responsibilities.

Due to the high dependence of today's societies on electric energy,

major interruptions such as the blackout in New York in 1977 can lead to

significant econornic losses and social disruption [2]. Society today does not

accept such major power failures. Thus, power companies have been obliged

to take measures to ensure a highly reliable continuity of supply during all

possible disturbances of the networks.

So far, nurnerous investigations have been perforrned by the power

industry to try to meet these difficult objectives. Electrical technology has

progressed in a step-by-step fashion as a result of this research resulting in the

development of sophisticated systematic methodologies for power system

operation and planning [17, 24, 34]. These methods rely heavily on computer

simulation programs such as load flow, transient stability, contingency analysis,

state estimation, short-circuit studies, optimal power flow and others [23, 26,

33]. Because of the large dimension of modern power networks, their highly

non-linear nature and the numerous possible disturbances and operating

states, the computatiollal burden associated with the planning and operation

of power systems is huge. In fact, the high computational cost is a major

obstacle in the development of more advanced operation and planning



methodologies. For this reason, an important research activity is being

directed at reducing this computational effort.•
CHAPTER J INTRODUCTION 3

•

Most of the above mentioned methodologies for planning and

operation involve simulation programs which require the solution of numerous

sets of simultaneous linear equations, Ax=b, whose coefficient matrices are

in general very large and sparse. The size and complexity of the coefficient

matrix is closely tied to the power- network size and its interconnections.

These systems of linear equations arise from the iterative solution of non­

linear algebraic and differential equations [11-18]. The main part of the

computational work involved in most of the above mentioned methodologies

is dedicated to solving such linear systems of equations. Due to this fact, we

have focused our investigation on the properties of the coefficient matrices

that arise in power system analysis and the application of more efficient

solution techniques. In particular, in this thesis, pre-conditioned conjugate

gradient methods have been applied for the first time to large power system

analysis problerns.

1.2 The Present Thesis

The present thesis has investigated the application of pre-conditioned

conjugate gradient algorithms to the solution of systems of linear equations

arising in power system analysis problems. This required:

(a) detailed investigations of the properties of power network matrices,

(b) development of an algorithm to synthetically generate arbitrary

representative power network data,

(c) numerous tests of the Incomplete Cholesky pre-conditioned

conjugate gradient (PCG) algorithm on a w!de spectrum of large scale power

networks,



(d) an investigation of alternative pre-conditioning schemes exploiting

power system network properties.•
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The following sections briefly overview the motivation and contents of

the present thesis.

1.2.1 Motivation for thesis

Solving large, sparse systems of linear equations is at the heart of

several power system problems. These systems of linear equations that arise

in the planning, design and operation of power systems, are typically solved

using direct methods that involve variations of Gaussian elimination.

It has been shown by Sato and Tinney [38], Carpentier [25] and Tinney

et al. [26,50] that, through sparse programming and efficient ordering schemes,

extremely fast direct method solutions can be computed with a minimum of

memory requirements. Although these techniques are considered efficient for

many applications, due to the increasing size and complexity of power

networks, in cases involving repeated solutions such as security analysis, and

in real time control [27], such direct solvers may still not be sufficiently fast.

The present thesis is concerned with the potential of iterative

techniques in the solution of linear systems of equations that arise in many

power system problems. More specifically, the main objective of this research

has been to apply the semi-iterative pre-conditioned conjugate gradient (PCG)

algorithm to these problems. The following enumerates the motivations

underlying the present thesis:

i) The encouraging results of PCG in finite element analysis in

electromagnetics where speed improvements of 100 to 1 compared with direct

methods are not uncommon [28].



ii) The criticaI need to speed up large-scaIe power system analysis and

simulation algorithms, such as security monitoring and control applications.

speciaIly in a real time environment.

•
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iii) The fact that PCG methods had not bet:n systematically evaluated

in power system applications.

During this course of study a comparative investigation into the

potentiaI vaIue of different pre-conditioning matrices in power applications

was aIse conducted. This work was primarily motivated by:

iv) The impressive results of PCG with c1assical incomplete Cholesk-y

pre-conditioning for the DC and Fast Decoupled load flows, for which a very

high gain in speed is achieved compared with direct solvers [29].

v) The PCG performance gain is closely related to the eigenvalue

c1ustering effect introduced by pre-conditioning [102]. Therefore, constructing

more effective pre-conditioning matrices can reduce the number of iteratiolls

resulting in faster convergence.

vi) To our knowledge, the eigenvalue clustering of power network

matrices using specially adapted pre-conditioning schemes had not been

extensively investigated or exploited.

vii) The above studies were based on a comparative investigation of a

wide spectrum of power networks up to 6500 buses and 13000 lines. Because

of the difficulty of obtaining data from representative networks, we were

motivated to develop an algorithm to synthetically create such networks.

An outline of this thesis is presented next.
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1.2.2 Outline of thesis

1.2.2.1 Chapter 1

INTRODUcnON 6

•

Chapter 1 presents introductory background material, motivation for

the thesis, a chapter by chapter outline of the thesis and a list of original

contributions.

1.2.2.2 Chapter II

Commonly used power system studies where numerous large systems

of linear equations must be solved are reviewed. These include load f1ow,

transient stability, contingency analysis, state estimation and short-circuit

analysis. In addition, recent advances for reducing the computation time of

such problems are reviewed briefly.

AIso, the principal general iterative techniques for the solution of

systems of linear equations and their properties are reviewed. The conjugate

gradient approach and its pre-conditioned form are described. A comparative

investigation of the potential value of the pre-conditioned conjugate gradient

algorithm versus direct solvers is performed.

1.2.2.3 Chapter III

ln this chapter, first, it is theoretically proven that sorne important

power network matrices are positive definite and comply with the

requirements for the convergence· of the PCG method.

Then, the Incomplete Cholesky PCG algorithm is applied to the Fast

Decoupled load flow and to the OC load flow and numerically compared with

a Frontal band-width based direct solver (Frontal solver) as well as with a



Sparspak solver (Bs) with minimum degree ordering. The experimental results

are based on a wide spectrum of power networks up to 5000 buses and about

10000 lines for two different types of networks: multi-block grid networks and

multi-block star networks.

•
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The performance of the PCG solver inside other load flow algorithms

is also investigated.

1.2.2.4 Chapter IV

This chapter describes the results of a detailed investigation into the

eigenvalue clustering effect of alternative pre-conditioners for power network

matrices. In addition, the effect of their eigenvalue clusterings on the

convergence of the PCG algorithm is analyzed and compared with that of the

classical incomplete Cholesky pre-conditioner.

1.2.2.5 Chapter V

ln this chapter, an investigation into the application of PCG to comp1f;x

and indefinite power network matrices is presented. Modifications have been

made to the PCG algorithm to apply it to complex admittance matrices. The

modified PCG method has been applied to the IEEE test networks and

synthetically generated networks of large sizes for the solution of systems of

equations of the form Y x = b, where Y is the complex admittance matrix.

The computational cost of the new PCG algorithm is compared with

that of a standard direct solver and the advantages of PCG in the solution of

y V = 1 as arising in load flow and transient stability are discussed.

1.2.2.6 Chapter VI

This chapter presents a new technique that syntheticaUy generates



realistic data for power networks of arbitrary size and complexity. While these

networks are randomly generated, the software allows the user to specify the

system dimension, type of network, conneetivity configurations and other

network characteristics.

•
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This software was developed to overcome the difficulties associated

with the collection of network data, especially for large scale systems.

1.2.2.7 CHAPTER VIT

This chapter contains the concluding remarks, and recommendations

for extending the scope of the present research and its future direction.

1.2.3 Original contributions

To the author's knowledge, the principal original contribution of this

thesis has been the application and systematic evaluation of Pre-conditioned

Conjugate Gradient (PCG) methods to power system problems.

This contribution includes the following parts:

i) The PCG method has been shown to be considerably more efficient

than direct solvers in certain types of power system problems with positive

definite real matrices arising from the De and Fast Decoupled load flows.

ii) Extensive numerical tests were carried out ta investigate the effect

of network size and topology on the relative performance of direct and PCG

methods.

iii) The eigenvalue clustering effeet of different pre-conditioning

matrices and their effect on the convergence of the PCG algorithm has been



investigated in power system problems. A more effective pre-conditioner

(Dominant Element Incomplete Cholesky) which exploits intrinsic properties

of power networks has been discovered to be more effective than the classical

incomplete Cholesky.

•
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iv) The PCG method has been shown, through extensive numerical

tests, to have advantages over direct solvers not just for real positive dèfinite

matrices, but aIso for complex network matrices such as the admittance

matrix.

v) A new technique has been presented that designs netwc,;ks and

synthetically generates realistic data for power networks of arbitrary size and

complexity.



•
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CHAPTER

TWO

COMMON POWER SYSTEM ANALYSIS
PROBLEMS AND RECENT ADVANCES

IN SOLUTION TECHNIQUES

2.1 Introduction

The objective of this chapter is to give the reader an overview of the

basic power system analysis problems and to demonstrate that the fast

solution of such problems depends very strongly on efficient techniques for

solving systems of linear equations.

Thus, commonly encountered power system problems which require

repeated solutions of large systems of linear equations are reviewed. In

addition, recent advances in the reduction of computational and memory

requirements relative to direct solvers such as sparse programming, ordering

schemes, matrix partitioning, compensation methods and parallel processing

are summarized.



Then, general properties of iterative techniques for the solution of

large sparse systems of linear equations as weil as the semi-iterative conjugate

gradient (CG) algorithm are described and compared with those of direct

solvers. Since the main objective of this thesis is the application of the pre­

conditioned conjugate gradient (PCG) method to power system problems,

special attention is directed toward the conjugate gradient (CG) and pre­

conditioned conjugate gradient (PCG) algorithms as alternatives to direct

solvers.

•
c.ïiAPTER 2 COMMON POWER SYSTEM ... 11

2.2 Load Flow Techniques

Load flow calculations are fundamental to most power system problems

[3-12). These calculations which characterize the sinusoidal steady-state

behaviour of power networks are repeatedly carried out as part of system

planning, operational planning, optimization, contingency analysis and

transient stability studies. The load flow computation is the most time

consuming part of these studies.

The trend today in programs using load flow algorithms is to analyze

larger networks, to solve numerous repeated load flow cases, and do ail this

in real time. To speed up the solution algorithms for the power flow problem

therefore becomes essential.

Basic to the understanding of the load flow problem is a mathematical

model of the network, which can be Written based on Kirchhoffs current law,

1 = y V (2.1)

where, 1 is the vector of injected currents, V is the vector of bus voltages and

y represents the complex network admittance matrix.



However, in a power flow problem, the power injections at different

buses are known instead of currents and, therefore, the steady state equations

are often expressed in terms of powers and voltages. Thus, to establish the

load flow equations, the complex power delivered to bus i is expressed as

follows,

•
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or,

where,

ft

PI + jQ/ = VI [L Yu JIj r
1-1

(2.2)

(2.3)

(2.4)

Now, equation 2.3 can readily be separated into real and imaginary parts as,

ft

PI = VI L Yu JIj cos(a l - a} - Bu>
jo1

ft

Qi = VI L Yu JIj sin(a i - a} - Bu>
}-1

(2.5)

(2.6)

•

Finally, we are faced with the problem of obtaining a numerical

solution to the above systems of nonlinear algebraic equations for the

unknown voltage components.

Several alternative methods have been proposed in the literature for

the solution of the power flow equations. AIl of these different approaches



essentially start with an initial guess for the complex nodal voltages, which in

tum is used in conjunction with the load flow equations to compute a new and

better estimate of the solution. This process is repeated in an iterative fashion

until the equations are satisfied.

•
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Among the various solution algorithms, the methods based on the

Newton-Raphson appro:?ch [8] are the dominant ones. These numerical

methods are generallyat their most efficient when they take advantage of the

physical properties of the power network being solved. This resulted in severai

efficient and generally reliable load flow solution techniques such as the

Decoupled and Fast Decoupled load flow (FDLF) algorithms [11, 12, 31].

Sorne of the properties of these Newton-like algorithms are described in the

following sections and a brief comparison of the merits and demerits of these

methods based on the available literature is presented.

2.2.1 Newton-Raphson load flow algorithm

The Newton-Raphson method for the solution of equations 2.5 and 2.6

requires repeated solutions of systems of linear equations of the form,

[
JI
J3

J2] [àô] [t:.p]
J4 i t:. V i = t:. Q i

(2.7)

where the sub-matrices making up the Jacobian matrix are given by,

JI = ap
aô

J2 = ap
av

J3 = aQ
aô

J4 = aQ
av

(2.8)

and where P, Q, 6, and V respectively represent vectors of real power



injections, reactive power injections, bus voltage phase angles and magnitudes.

The index i represents the iteration number. After each iteration 0 and V

vectors are updated by adding the correction vectors /!" 0 and /!" V. The vectors

of equation mismatches /!"P and /!"Q represent the difference between the

specified and the calculated power injections.

•
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The coefficient matrix in this equation is the Jacobian matrix which is

a function of the latest voltage solution. The Newton-Raphson method is quite

robust and converges relatively fast as m ':sured by the number of repeated

solutions. For power flow studies that do not calI for special adjustments such

as PV-PQ bus type switching, convergence to an acceptable accuracy will

usually be obtained in less than 5 iterations for large as well as small systems

[8, 32]. In their extensive studies Stagg and El-Abiad [33] have concluded that

the required number of iterations for convergence of the Newton-Raphson

method is independent of system size for well-behaved problems.

It is noteworthy to mention that the dimension of the system of

equations 2.7 is equal to nb+nl-l, where nb and ni represent the number of

buses and the number of load buses respectively. Equation 2.7 is partitioned

into four blocks, Il, J2, J3 and J4. Based on equation 2.8, the matrix elements

in each block of equation 2.7 can be written as below :

Non-diagonal elements for each block:

(2.9)
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Diagonal elements for each block:
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hi

n

+ E Yik Vk sin(ô j -ôj -61}
';:-1

(2.10)

It is observed from equations 2.9 and 2.10 that the Jacobian in its

original form is not symmetric and has almost the same sparsity structure as

the Y-matrix. In a real system, on the average, each bus may be connected to

about three or four of the remaining buses. This means that, on the average,

four or five of the elements in each row of the Y-matrix including the

diagonal elements will be non-zero. This implies that for large systems the y.

matrix is very sparse. For example, for a typical 1000-bus power network the

sparsity of the Y-matrix is about 99 percent.

The Newton-Raphson method has the advantages of being reliable and

offering fast convergence, however, due to the need to update and factorize

the Jacobian matrix at each iteration (when using direct methods to solve

equation 2.7), the computational time of the solution increases rapidly with

system dimension. Due to this fact, certain modifications have been applied

to the Newton-Raphson method to reduce computational effort without

sacrificing its strong convergence properties. One example of this is to

maintain the same Jacobian matrix throughout ail the iteration steps. Other,

more elaborate modifications are discussed below.
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2.2.2 Decoupled load flow algorithm
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It is known that for a banded or Frontal Gaussian elimination linear

equation solver, with only the active part of the matrix stored in memory, the

total operation count and the storage requirements are respectively 0(nrn2)

and 0(m2), where n is the system dimension and m is the matrix bandwidth

(the average width of non-zero elements about the diagonal) [46, 60]. This

indicates that as the dimension of the system increases, the computational

effort will grow as O(n") where 1 < Cl < 2. Therefore the solution time of two

decoupled systems of linear equations with dimensions n1 and n2 is much

smaller than the solution time of one system of linear equations of size n,

where n is equal to the sum of n1 and n2'

The decoupled load flow takes advantage of this property. It is based

on a simplified Newton algorithm by exploiting the real power/angle and

reactive power/voltage decoupling principle [11,32]. This principle states that,

generaIly, for small changes in the magnitudes of the bus voltages, the real

power bus injections do not change significantly. On the other hand, small

changes in the phase angles do not affect the reactive power injections

appreciably. This' can also be concluded from equations 2.6 due to the fact

that, in power networks, 8ij is usually close to 90 degrees and the angle

difference between the two end buses of a transmission line is generally small

(<30'). The decoupling principle can be interpreted to mean that the

elements of the sub-matrices J2 and J3 are numerically much smaller than

those of JI and J4. Then, approximating J2 and J3 with zero matrices of the

same dimension, equation 2.7 reduces into two smaller systems of linear

equations 2.11 and 2.12,

(2.11)

(2.12)
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This modification can significantly reduce the computational time

involved in each iteration step, however in sorne cases due to this

approximation, the number of iterations required for convergence increases.

In spite of the decoupling simplification, the sub-matrices JI and J4 are

non-symmetric matrices that need to be updated and refactored at each

iteration step. A further simplification of the Jacobian matrix results in the

Fast Decoupled load flow algorithm and is discussed next.

2.2.3 Fast DecoupJed Joad flow aJgorithm

The Fast Decoupled load flow is the most commonly used algorithm

for solving the non-linear AC load flow [12]. It is based on a simplified

Decoupled load flow algorithm with a constant Jacobian matrix derived by

exploiting the fact that in lypical power networks, the resistive portions of the

line impedances are small relative to reactive portions and thus can be

neglected [12]. This fact also allows the programmer to substitute 6ij by 90

degrees. In addition, if the power flows are small relative to the maximum

power carrying line capacity, then sin(eS î 9 is approximated by eSj-eS j •

Thus, in each iteration of the Fast Decoupled load flow, two matrix

equations need to be solved for deS and dV,

B' . /lô /lP
=-

V
(2.13)

B" . /l V = /lQ
V

(2.14)

In these equations B' and B" are both real, sparse and constant

matrices. The equation mismatches, dP and dQ are updated at every iteration.

The matrix B" is a principal sub-matrix of B'.



ln this approach more iterations may be required for convergence

compared to full Newton approach. However, due to the fact that B' and B"

are constant, only one factorization will be required for repeated solutions of

each of these two systems of linear equations. This is a very significant

property which has made the Fast Decoupled method the dominant approach

in power system studies.
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2.2.4 De load flow

The DC load flow is a widely implemented approximation of the

general AC load flow. The DC load flow is used to analyze highly meshed

power networks with short !ines, low R to X ratios and angular differences

between adjacent buses not exceeding 30 degrees. It is formulated by,

P=Bô (2.15)

where, P is the vector of net real power bus injections at ail buses except for

the reference bus, while B is the DC load flow network matrix [34].

2.2.5 Y V = 1 based load flow algorithm

An iterative technique using the complex admittance matrix is another

approach to the solution of the power flow equations. The simplest way to

implement this algorithm is to approximate the loads as constant impedances

and the generator terminal currents I,. + j li as given node currents and to

adjust them iteratively until solution convergence is achieved. Experimental

investigations on this approach suggest, however, that this method frequently

fails to converge [13]. The convergence of the algorithm can be improved by

adding sorne fictitious slack buses behind the generator impedances [13]. This

method is frequently used for solving the steady state equations in transient

stability programs [13, 14].
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2.3 Transient Stability Analysis
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Transient stability analysis deals with two simultaneous sets of

equations that must be solved repeatedly as time evolves [13-15]. The first

describes the steady state behaviour of the network, and includes steady state

models of the loads and algebraic equations of the generator,

g (X,W) = 0 (2.16)

while, the second set (differential equations) characterizes the dynamic

behaviour of the machines and their control circuits,

d; = f (X,W,t) (2.17)

There are different solution methods for the transient stability problem,

however, most approaches require iterative solutions of [13, 119],

[ y + Yc + Yg ] • V = Ir (2.18)

where, Y is the network admittance matrix, while, Yc and Yg represent the

loads and generators characteristics. The surnmation of these three matrices

has a much larger dimension than the network size, being closely tied to the

complexity of the associated models representing generators and loads [14]

(for example 4800 by 4800 for the Hydro-Quebec 700-bus network).

2.4 Contingency Analysis and Contingency Ranking

Security is an important feature that should be considered in the design

and operation of power systems. This implies that transmission networks must



be designed and operated such that in case of the outage of one of the

network components, the remaining components should be able to continue

operating without overloading. This is necessary ~ince, a1though the operator

can remotely control circuit breakers and other components, network changes

can be 50 fast that he or she may not be able to respond to an outage in time.

•
CHAPTER 2 COMMON POWER SYSTEM ... 20

•

In order to design and operate power systems securely, contingency

analysis algorithms of different forms have been developed during the past

two decades [16-20]. These programs are based on the fast but approximate

simulation of the existing operating state and of the effects of possible

outages. They allow operators to predict what should be done in case of

potential emergencies to maintain system security.

Contingency analysis is mainly carried out by running fast load flow

algorithms such as the Fast Decoupled and DC load f1ow. However, because

of the large number of possible changes in a network, security analysis is still

a very time-consuming task. To reduce this computational burden, the Iist of

probable contingencies is typically ranked according to sorne simple-to­

calculate performance indices [16,17], and only the most severe cnes are

analyzed in detail.

It is obvious that once again, in security analysis, we are confronted

with the difficulties of solving numerous large systems of Iinear equations.

Due to time constraints and to a wider spectrum of possible contingencies,

these difficulties are even more pronounced when dealing with on-Iine

applications.

2.5 State Estimation

Power companies have always been faced with the need to monitor and

control the operating conditions of their networks in real time. Nowadays,
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most of the control and dispatch centers are equipped with systems which

include measurement and transmission of critical data to dispatch centers

every few seconds.

The transmitted data has the following properties: (1) A direct

measurement of every important quantity is not always possible, (2) there are

more measurements than quantities to be monitored (redundancy), (3) due

to measurement errors and telemetry problems, the data can be inaccurate or

even wrong.

State estimation algorithms have therefore been developed to minimize

the effect of measurement errors and telemetry problems and to produce a

complete and reliable set of data for security analysis. These algorithms rely

on the solution of repeated systems of linear equations [21, 22, 78].

2.6 Short·Circuit Analysis

Short-circuits can occur in power systems whenever there is a failure

in the insulation of sorne part of the network, due to overvoltages, or as a

result of mechanical failures. Thus, short-circuit caiculations must be

performed for seleeting, setting and coordinating protective equipment such

as circuit breakers, fuses, relays and instrument transformers. These

computations rely on utilizing the short circuit algorithms in which, the bus

admittance matrix is the key to calculating the fault currents [23] :

y V = 1 (2.19)

•
Thus, again, we must deal with the solution of large systems of linear

equations (thi, time in the complex domain).



2.7 Solution Techniques and Recent Advances in Power System
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It was demonstrated in previous sections that almost ail power system

analysis algorithms rely heavily on the repeated solutions of large sparse

systems of linear equations. These solutions take up the bulk of the overail

computational effort [26, 40]. Therefore, any attempt at making power system

analysis programs more efficient should first be directed at improving the

linear solver part.

Techniques to solve systems of linear equations may generally be

c1assified as direct, involving a fIXed number of arithmetic operations, and

indirect or iterative methods, involving the repetition of certain steps. This

repetition is continued until the required accuracy is achieved.

Iterative methods, such as the classical successive over-relaxation

techniques [91, 92], are usually easy to program and need less storage but are,

generally, less reliable and less efficient. Thus, for the most part, these

techniques have been replaced by direct solvers in power system analysis [40].

2.7.1 Direct solvers

Direct solvers for the solution ofAx= b [46] are, typically,

variations of Gaussian elimination. They yield the exact solution in a finite

number of iterations and require 0(n2) storage locations and 0(n3) arithmetic

operations without sparsity exploitation. These solvers essentially utilize sorne

form of factorization of A into the product of a lower triangular (L) and an

upper triangular matrix (U),

•
A=LU (2.20)



Then, the solution, X, is obtained by a forward and a bad..ward substitution,•
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Ly=b

U:c=y
(2.21)

Direct solvers have been substantially improved over the years by the

incorporation of sorne special advanced developments namely, sparse

prograrnming, ordering algorithrns, matrix partitioning, compensation methods

and parallel processing. Nevertheless, the computation time of direct methods

can still be prohibitively high in cases involving very large systems, numerous

repeated solutions, and in highly meshed networks that are difficult to order

efficiently.

2.7.1.1 Sparse programming

It is well known that the solution of a system of n linear equations

involves dimensioning an n by n coefficient matrix with n2 storage

requirements if the matrix is real and sparsity is not exploited. Obviously, even

powerful machines will have difficulties in solving simple problerns if the

dimension is larger than a thousand. Thus, the syrnmetry and sparsity of the

coefficient matrix must be considered.

Sorne techniques for saving sparse matrices indicate and store each

matrix element with its column number and row number. Thus, the storage

requirement for the data is about three times the number of entries. It is also

clear that these data have to be unpacked for every operation which in turn

requires sorne computer time. Therefore, it may not be advantageous to use

sparse matrix techniques UIÙess the density of non-zero elements is

considerably low. However, for most large power network applications,

sparsity is usually greater than 95% so that it pays substantially to exploit

sparsity.



Due to the significant gain in computer storage for large sparse

matrices, sparsity oriented programming is a standard feature in most

industrial applications today, and much research has been devoted to this area

during the past decades [35-51]. These investigations have resulted in the

introduction of various kinds of storage schemes which differ in the way zeros

are exploited [35-43]. Sorne of these schemes explicitly store sorne zeros to get

a simpler storage scheme, while other schemes sacrifice simplicity in favour

of fewer storage locations. The choice of storage scheme affects the solution

strategies and has obvious impa-::t on the memory requirements and executioll

time. Therefore, it can be considered as a tool for reducing computer storage,

computer execution time or a combination of both objectives.
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Based on the high degree of sparsity in typical power system matrices

[47-49], sparsity programming has been extensively applied to power system

algorithms as in other fields. Improvements in sparsity techniques in the

power area are mainly due to Edelman, Sato, Walker, Tinney and Ogbuobiri

[38, 39, 40, 41].

In their later work Tinney et al. have extended sparsity exploitation to

vectors [50]. They have shown that sparse vector methods are very useful

techniques for solving systems of linear equations if the right hand side vector

is sparse or only a few elements in the unknown vector have to be

determined. This aspect has been successfully exploited for on-line power

network security analysis [51].

2.7.1.2 Ordering algorithms

The computation time for the direct solution of a sparse system of

Iinear equations essentially depends on the total number of operations during

the triangularization of the coefficient matrix. This includes the number of

operations relating to non-zero elements of the coefficient matrix as weIl as

those related to additional non-zero terrns introduced in the reduction to



triangular form (fill-ins). It can be shown that, generally, this operation count

varies with the sequence in which the rows of the coefficient matrix are

processed. The order in which the Gaussian elimination is perforrned on

sparse matrices affects the total number of these newly introduced non-zero

elements. Thus, it is c1ear that the solution time will be essentially dependent

on the ordering scheme used for the elimination. Depending on the coefficient

matrix structure, some orderings can lead to a dramatic reduction in the

amount of fill-ins and hence in the total computation time. However, the task

of finding the best (or more realistically a good) ordering for a sparse solver

is not that easy. This is because it is very difficult to define what is meant by

best, and only heuristic algorithms are computationally feasible for large

sparse systems [52]. Some orderings may be very efficient but very costly to

compute, while another algorithm allowing more fill-ins but fewer

computations in the ordering algorithm itself may be more economical overail.

George and Liu, in their intensive study [37, 46], have shown that the

execution times required to implement different orderings can vary

dramatically. For these reasons, detailed investigations have been focused on

the performance of different ordering schemes and many practical algorithms

have been developed [53-70]. However, each ordering strategy has its own

objectives and thus it is very difficult to choose a single best ordering. Only

after extensive analysis and computational experiments is it possible to

identify those suitable for a special class of matrices while rejecting othcrs.

•
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•

There are generally two basic objectives for ordering algorithms. One

focuses on strategies to control numerical accuracy through pivoting schemes,

while the other airns at conservation of the matrix sparsity. In power system

problems, due to the nature of the network matrices and to the numerical

accuracy of modern computers, Ogbuobiri, Tinney and Walker concluded that

exploitation of sparsity is the main objective [40].

Among the ordering strategies which attempt to reduce the number of

fill-ins, there are two approaches. One is to minimize the number of fill-ins



regardless of their position in the matrix [65]. The other confines the non-zero

elements to a small region. Several different forms have been proposed for

this group of ordering schemes, among which matrix banding schemes have

received the most attention [53-62].

•
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The objective of banding schemes is to find a permutation of the

matrix such that its non-zero elements are clustered in a narrow band about

the major diagonal [38] or about the minor diagonal [57]. Ifno row or column

interchanges are performed, this banded form is retained in the corresponding

Cholesky factor or during Gaussian elimination. This type of ordering has

found several practical applications [57-61]. We usually say that a matrix has

bandwidth 2m+1 and semi-bandwidth m if m is the smallest integer such that

aij =0 for any 1i-j 1 > m. In the use of band methods all zeros outside tl,e

defined band are ignored, while those located within the bandwidth are

usually stored and treated as entries.

More sophisticated algorithms referred to as variable band (also called

profile or envelope) schemes have shown to be mûte advantageous over

simple band methods [53-62]. A widely used ordering algorithm of this type

was proposed by Cuthill and McKee [53]. They designed their algorithm to

reduce the bandwidth of a sparse symmetric matrix. Many other orderings

proposed since then, have not offered significant advantages over this

algorithm. However, George [62] in his study of the envelope methods found

that reversing the Cuthill-McKee scheme often yields significant improvement

in the total storage requirements within the envelope and in the number of

arithmetic operations. Later Liu and Sherman [63] proved that the reverse

algorithm is always superior to the original Cuthill-McKee as far as the total

envelope storage and operation counts are concemed.

Apart from the matrix-banding schemes, Tinney and Walker [64] have

introduced three other schemes which aim at the optimum conservation of

matrix sparsity during Gaussian elimination. These are usually referred as



scheme 1, scheme 2 and scheme 3 ordering algorithms. These schemes are

briefly explained below:
•
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Scheme 1 : In this scheme, the rows of the coefficient matrix are

numbered based on the number of its off-diagonal non-zero elements. The

rows having the fewest non-zero elements are numbered first and if two rows

have equal off-diagonal non-zero elements, either of them may proceed the

other.

Scheme 2 : By far this scheme is the most popular fill-reducing

algorithm proposed by Tinney and Walker in 1967 [64] and explained by

Tinney in 1969 [65]. This scheme, sometimes referred to as the minimum

degree algorithm [66], basically corresponds to the Markowitz scheme [67]

introduced for unsymmetric matrices in 1957. In this scheme, the strategy is

that at any elimination step the row which has the fewest number of off­

diagonal non-zero elements is eliminated first.

The key to implement this algorithm efficiently, is to avoid the explicit

storage of the fill-ins. This objective was popularized outside the power system

area by Rose [68] and by George and Liu [37].

Scheme 3 : During the elimination of anode, new paths are added to

the graph of the matrix as a result of the elimination process. In this scheme,

the nodes generating the fewest number of newly generated paths are

eliminated first.

Each of these three ordering schemes have been shown to be very

helpful when applied to power network problems. However, it is also possible,

in rare cases, that the schemes give a poor ordering.

In conclusion, ordering schemes are basic to the solution of large

sparse systems of linear equations and have been extensively applied to sparse



matrices in electrical power problems [69, 70]. Of these, Tinney scheme 2

appears to be the most efficient one in terms of computation time and storage

[40].
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2.7.1.3 Matrix partitioning

Matrix partitioning is another method for reducing the computational

effort for certain classes of problems [71-74, 77]. In this approach, a huge

problem may be subdivided into smaller systems of equations and then sparse

matrix techniques may be applied to these sub-problems. One strong feature

of the partitioned approach appears when the subsystems associated with the

coefficient matrix have sorne special characteristics that can be easily solved.

George [71] describes sorne examples on partitioned factorization.

It is well known in the power system area that sorne control actions

and small disturbances mainly affect the operating state of only a small

portion of the power network electrically "close" to the disturbance area. Thus,

it is possible to improve the performance of power system analysis problems

by partitioning a power network (matrix) into strongly connected sub-networks

(sub-matrices) and utilizing the partitioning aspect [74].

2.7.1.4 Compensation methods

In power system analysis, it is frequently required to modify the

coefficient matrix of related linear systems of equations. These modifications

normally do not involve changing a large number of elements, as in

contingency analysis where usually only one line at a time is removed. In these

cases, refactoring the coefficient matrix is rarely efficient. Instead,

compensation methods [75] can be applied to available factors of the base

case coefficient matrix to get the solution to the system more economically.



Compensations methods are essentially different interpretations of the

Matrix Inversion lemma [75, 76, 112]. In this approach, the modified

coefficient matrix is represented as,

•
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AI = A + M [,u] Mt (2.22)

where A is the base case n by n coefficient matrix, !:J.A is an m by m matrL"

containing modifications to A and M is an n by m connection matrix.

Compensation methods have been successfully applied to power system

problems [75, 76] and have been shown to be very efficient for applications

involving a series of network changes [76], specially for applications where the

number of changes is small and the modifications are not permanent.

2.7.1.5 Parallel processing

The computer architecture is a fundamental factor affecting the

efficiency of different algorithms. Unfortunately, so far, there are only a few

investigations comparing different architectures for common problems.

However, it is evident that with the rapidly changing computer technology

toward vector processors and parallel architectures, possible gains are

expected for sorne problems by parallelizing parts of the solution. For

example, an advantage of parallel processors is their ability to perform

calculations on full matrices efficiently. Allother advantage appears when

several different systems are to be solved simultaneously [117-119].

Thus, one new trend seems to be the application of parallelizing

techniques to direct solvers [117-119] as weil as indirect ones [79, 80]. In this

vein, il has been shown that the Cholesky decomposition problem for a large

dense system can be reduced to p independent smaller decomposition

problems [81].



The potential of parallei processing architectures in power system

studies has been investigated by sorne researchers during the past decade [86].

115 potential impact on load flow [82, 83] and contingency analysis [84, 85]

seerns to be very promising.
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2.7.2 Indirect solvers

Indirect solvers iteratively approach the desired solution from an initial

guess x(O) through a sequence of vectors,

(2.23)

The computation involved in each iteration step for these methods is

essentially comparable to the multiplication of matrix A with a vector, a

computational effort which is relatively modest li A is sparse. The

convergence rate, however, is typically linear and thus, many iterations may

be required to obtain an accurate solution. Furthermore, convergence is not

guaranteed even with exact arithmetic. These general characteristics of

iterative methods do not apply to conjugate gradient aIgorithms which are

guaranteed to converge to the exact solution in a finite number of arithmetic

operations for positive definite matrices. For this reason, sorne refer to this

technique as semi-iterative.

2.7.2.1 Basic iterative techniques

In the following we describe sorne basic iterative and semi-iterative

methods: Jacobi, Gauss-Seidel, successive overrelaxation (SOR), conjugate

gradient (CG) and pre-conditioned conjugate gradient (PCG) methods.



The first three of these methods may be expressed in the form,•
CHAPTER2 COMMON POWER SYSTEM .,. 31

(2.24)

or,

(2.25)

Assuming (I-B-IA)=G and B-Ib=k, we can write,

(2.26)

where G is called the iteration matrix for the method.

From equation 2.26, it is clear that ail of these methods are linear as

both G and k are constant and do not depend on lCm. These methods are also

of first degree, since lCm+1 depends explicitly on xm and not on xm_I, ... ,Xo. Such

iteration methods, were first considered by Withmeyer in 1936 [87]. In this

class of iterative techniques, each choice of a non-singular matrix B in

equation 2.24 leads to a potential iterative method.

To choose the B matrix appropriately, it must satisfy the following

conditions [88] :

i) The system of equations 2.25 can be solved easily for xm+1,

ii) The eigenvalues ofI-B-IA (the iteration matrix) have moduli which are

as small as possible and smaller than one.

The better B agrees with A, the more likely the latter condition will be

true and the better the algorithm will convergence, but at the expense of a

heavier computational burden for B-I.



The first three iterative methods mentioned above differ from each

other according to the selection of the B matrix. These differences are

described in Appendix A.
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2.7.2.2 Conjugate gradient

The conjugate gradient scheme (CG) [99-101] is an important semi­

iterative technique when the coefficient matrix is positive definite. This

method was first presented by Hestenes and Stiefel in 1952 [99]. However, for

various reasons, the CG method was not widely used for years after its

appearance until the mid-1960s [100-104].

In the absence of rounding errors, in contrast to other iterative

techniques, the CG method terminates with the exact solution in at most n

steps [99-101]. Because of rounding errors, however, additional iteration steps

may be required [88].

The basis of the method cornes from the fact that the function,

F(x) = .! Xl A X - Xl b
2

(2.27)

is minimized by x=A-lb. In other words, finding the minimum point of F will

give us the solution to the linear system of equations Ax=b if A is positive

definite.

There are various ways of finding the minimum of F. Conjugate

gradient algorithms use a sequence of linear search directions (P) starting

from an initial guess Xo and, at each iteration, a better estimate of the solution

is obtained, such that,
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where ai is a scalar.

(2.28)

Thus, the final solution can be expressed as a linear function of the

search directions,

(2.29)

where, m is guaranteed to be no larger than the matrix size n and mainly

depends on the distribution of the eigenvalues of the coefficient matrix (102].

It has been shown that the algorithm will converge in significantly fewer than

n iterations if the eigenvalues of the A matrix are located in clusters [102].

The details of the CG algorithm are described in Appendix B.

One drawback of tbis method is that it is not guaranteed to converge

for non-positive definite matrix problems [106]. On the other hand, it has the

advantage that a sufficiently good approximation may be found after only a

few steps in certain cases. Furthermore, when the eigenvalues of A form c

clusters, then the solution will be obtained after O(c) iterations.

ln contrast to other iterative techniques beginning with an initial guess,

the convergence of the CG algorithm is not affected very much by the choice

of the initial guess [97].

The arnount of computational effort per iteration is about equal to that

of multiplying the matrix A by a vector [88, page 572]. Thus, the method is

not recommended for dense matrices or for very banded matrices where

direct solvers are faster.



2.7.2.3 Pre-conditioned conjugate gradient algorithm•
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The CG method in its initial form proposed by Hestenes and Stiefel

[99] is not competitive with modem fast direct solvers utilizing efficient

sparsity and ordering techniques. However, as it was mentioned earlier, the

algorithm wiU converge in significantly fewer than n iterations if the

eigenvalues of the coefficient matrix are located in clusters [102].

The idea of pre-conditioning [100-101], in essence, is to apply a linear

transformation to the system of linear equations Ax=b as follows,

(2.27)

where,

y = [ Kr Je]

(2.31)

(2.32)

(2.33)

such that the eigenvalues of~ are grouped into a small number of clusters,

thereby substantially improving the converg~nce and speed of the CG

algorithm. The matrix K is termed the pre-conditioning matrix (also called the

pre-conditioner). Obviously, the pre-conditioning step must be very efficient

from the computational and storage points of view for the overall scheme to

be superior to a straight CG approach.



A highly effective pre-conditioning matrix K can be obtained using

approximations of the Cholesky factor 1.., where.•
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A = L L' (2.34)

•

A more detailed discussion on the choice of K is given in Chapter IV.

The pre·conditioned conjugate gradient (PCG) algorithm normally

starts with a diagonal scaling and normalization of the original system of

Iinear equations with respect to the largest absolute value of the right-hand·

side entries to yield A x = b. Then, the PCG algorithm can be expressed as

follows:

1) Initialization

a) Initialize e

b) Guess x.

c) Fonn r = b - A x.

d) Fonn p = H r, w/zere H = (K ~r/.

Wllile /1 r Il > e do

2) Fonn S = A p.

3) Fonn cr =p' r.

4) Fonn CI = cr / (p' S).

5) Updatex = x + C1p.

6) Update r = r • CI S.

7) Fonn /z = K'/ r.

8) Fonn f3 = /zr Il / cr.

9) Update p = K' h + f3 p.

It should be noted that K'] is not formed explicitly in the PCG solver.



Instead, whenever matrix-vector products involving (K)"I or (Kt)"1 appear, it

is more efficient to perform a forward elimination or back substitution (F/B)

as required.
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The number of iterations required for convergence of the pre­

conditioned conjugate gradient (PCG) algorithm depends on the distribution

spectrum of the eigenvalues of~ as weIl as the rounding errors [107]. In

practice, if the eigenvalues of~ form c clusters (groups of eigenvalues close

to one another), then the solution wiIl be obtained in O(c) iterations [102,

107]. The better the eigenvalues are clustered, the lower the number of

iterations required for convergence.

2.7.2.4 Theoretical comparison of PCG and direct solvers

Experience demonstrates that the PCG algorithm generally converges

in O(n°.5) iterations [116]. For power networks this convergence property is

even more favourable as discussed in Chapter m. In addition, the PCG

algorithm requires sn operations per iteration, assuming an average of s non­

zeros per row. This then gives a total operation count of O(snl .5). The storage

requirement is O(ns).

For a banded or Frontal Gaussian elimination solver, with only the

active part of the matrix stored in memory, the corresponding figures are

0(nm2
) operations and 0(m2) storage elements, where m is the matrix

bandwidth (the average width of non-zero elements about the diagonal). This

indicates that for large matrices (i.e. large n) with a bandwidth, m, which is

not too small (m2>n°.5), the PCG method will need fewer operations than a

direct solver. If we consider the case that the bandwidth of the matrix, m, is

of order n°.5 then the ratio of arithmetic operations between the direct method

and the PCG is O(n°.5). If the bandwidth, ID, is linear in n then this ratio is of

order nl .5.



To compare the performance of the PCG algorithm with direct solvers

two different criteria should be considered.
•
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k = 1,2,... (2.35)

such as those found in the fast decoupled load flow, represent a case where

the direct solver has its greatest advantage over PCG methods. This is

because the principal time consuming component of the direct solver, which

is the matrix decomposition into its lower and upper factors, needs to be done

only once for the entire sequence of solutions. Each solution is then found by

the comparatively cheap step of a forward and backward substitution for each

different right-hand-side bk• The PCG method, on the other hand, applies the

same algorithm for each k requiring the same computational effort for each

new problem in the sequence. In the PCG method, no major improvement

can be gained by taking advantage of the fact that A is constant. The reason

being that fincling the pre-conditioning matrix, K, is a relatively cheap part of

the PCG solver for large systems. However, as will be shown in the next

chapter, even in this type of sequence, where the direct solver has its greatest

advantage, the PCG method can be much faster, if the number of load flow

iterations is not too large or if the A matrix has a sufficiently wide

bandwidth, m.

In cases where repeated solutions of the form,

k = 1,2,... (2.36)

are required, the speed advantages of PCG over direct solvers are enhanced

further, since for each new k, the coefficient matrix Ak must be refactored or

its factors must be updated through compensation methods [75, 76] (if the

matrix modification is of low rank). Such cases frequently occur in power

system security analysis where the behaviour of the power network relative to

numerous possible equipment outages has to be analyzed.



In security analysis where the outages being considered involve several

pieces of equipment, the corresponding Jacobian matrix modification will not

be of low rank and compensation methods lose their efficiency. In this case

the direct solver approach requires a complete refaetorization for each k, thus

making the PCG method even more advantageous.
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Another advantage of PCG is the ability to stop iterating after an

acceptable solution error is obtained without necessarily reaching the final

solution. This can have important applications in contingency ranking where

a reasonable approximation of the effect of a contingency may be sufficient

to analyze the relative effect of a set of contingencies.

A limitation of the PCG algorithm is that it has been extensively and

successfully tested primarily when dealing with positive-definite matrices only.

The practical application of PCG methods to indefinite or semi-definite

matrices is yet to be as widely exploited.

Due to this comparison and the fact that PCG has been very

successfully applied to problerns in other fields such as finite element

electromagnetics [28], we were motivated to investigate the algorithm in

typical power system analysis problerns.

2.7.2.5 Necessary conditions for fast convergence of the

PCG algorithm

It was mentioned in section 2.7.2.2 that the oniy condition for the

convergence of the CG algorithm with no rounding errors is that the

coefficient matrix A should be positive definite. Therefore, in the PCG

algorithm, the pre-conditioning of A as shown in equation 2.31, must ensure

that the pre-conditioned coefficient matrix Ap remains positive definite.



To comply with the requirements of fast convergence, attention should

be paid to two main properties :
•
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•

i) A good pre-conditioner should be used to meet the requirements

necessary for good clustering of the coefficient matrix eigenvalues. In

this regard, Chapter IV discusses variations of the Incomplete ChoIes]..")'

pre-conditioner.

ii) Precautions should include the influence of rounding errors. In

practice, rounding errors may have substantial effect on the

convergence properties of PCG. Van der Vorst in his studies has

shown that rounding errors may severely deteriorate the convergence

behaviour that would have been superior with exact arithmetic [107].

Double-precision is therefore recornmended.



• CHAPTER

THREE

EXPERIMENTAL RESULTS ON THE
APPLICATION OF A PRE-CONDITIONED
CONJUGATE GRADIENT ALGORITHM

TO THE LOAD FLOW PROBLEM

3.1 Introduction

As mentioned in the previous chapter, the incomplete Cholesky pre­

conditioned conjugate gradient (PCG) algorithm is a very powerful semi­

iterative solver with proven significant speed advantages over direct methods

in the area of finite element electromagnetic analysis. It was also stated that

the convergence of the PCG algorithm requires that the coefficient matrix A

should be positive definite.

This chapter begins by showing that the coefficient matrices arising in

the Fast Decoupled and DC load flow algorithms are positive definite and,

thus, comply with the requirements necessary for the convergence of PCG

algorithm. The performance of PCG within the Fast Decoupled and DC load



flows is then experimentally analyzed by running extensive simulations on

various types and sizes of power networks using both the PCG and direct

methods. More specifically, the computation tirne of the PCG algorithm with

classical incomplete Cholesky pre-conditioning is compared with that of two

standard direct solvers, namely a bandwidth based Frontal solver [60] and the

Sparspak.B5 solver with minimum degree ordering [110, 111] also known as

the Tinney-2 method. This comparison is performed on a wide spectrum of

power networks of up to 5000 buses and 10000 !ines. The results of our

experiments indicate that for certain classes of large sparse systems or for

repeated solutions with matrix modifications, the PCG method is significantly

more efficient than direct techniques and offers important savings in CPU

time.
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In this chapter, the effect of certain network parameters on the

performance of PCG and direct solvers is also investigated. These parameters

include the relative ordering of sub-networks (blocks) within the network, as

weil as the range of values of !ine reactances.

Finally, in section 3.5, some possible new load flow algorithms which

make use of the PCG algorithm are numerically investigated.

3.2 Positive Definite Matrices in Power System Analysis

The DC load flow algorithm described in section 2.2.4 is formulated

by a system of linear equations (2.15) whose coefficient matrix, B, is positive

definite, a fact which can be shown as follows :

The B matrix is completely analogous to an equivalent conductance

matrix, G, in a purely resistive grounded network if we make the following

associations:
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The reactance, Xij' of the line between buses i and j becomes the

analogous line resistance.

The vector of power injections, P, becomes the analogous vector of

current injections, 1.

The vector of phase angles, e, becomes the equivalent voltage vector,

V.

From energy conservation considerations, a connected and grounded

network with positive resistances in ail branches including the branch to

ground has a positive definite G matrix. To see this consider a resistive

network represented by its admittance matrix G. Then, if the network is

excited by any set of nodal voltages expressed by the vector V, the input

power to the network will be greater than or equal to zero,

Thus,

P/nPUI ~ 0

P = V' 1 = V' G V ~ 0
InpUI

(3.1)

(3.2)

Now, as the network is fu11y resistive and grounded, it is evident that for any

non-zero vector V, at least one of the resistive elements in the circuit will

have a non-zero current flow. This, then, implies that for any non-zero vector

of voltages, the input power of the circuit will be greater than zero,

V' G V>O (3.3)

•

and, therefore, it can be concluded that the network admittance matrix G is

positive definite.

This, then, implies that the B matrix is also positive definite and,

therefore, that the DC load flow can be solved by a PCG method.

As examples of this result, the eigenvalues of the B matrices of the

standard IEEE power networks with 14, 35, 57 and 118 buses were calculated.



CHAPTER3 EXPERIMENTAL RESULTS ON ... 43

Table 3.1: Range of the eigenvalues of IEEE standard power networks \Vith
14, 30, 57 and 118 buses

IEEE sample elgenvalue range
networks

minimum maximum

14-bus 0.6657 80.8529

30-bus 0.2392 113.5110

57-bus 0.2088 168.4240

118-bus 0.0559 582.5873

Table 3.1 shows the range of these eigenvalues which are all real and positive.

Another instance of positive definite matrices occurring in power

system analysis is the Fast Decoupled load flow (FDLF) matrices B' and B"

(see section 2.2.3). The matrix B' is identical to the B matrix of the DC load

flow, while B" is a principal sub-matrix of B'. Clearly, since B is positive

definite, so are B' and BU. Thus, in each iteration of the FDLF, we are

dealing with two sets of linear equations whose coefficient matrices are

positive definite and therefore, can be solved by using either a direct solver

or the PCG.

Finally, matrices arising in state estimation [21, 22, 30] are also positive

defmite. These a1gorithms are, thus, suitable canàidates to use the PCG

solver.

3.3 Numerical Comparison of the Performance of the Pre­

Conditioned Conjugate Gradient and Frontal Solvers

In this section, the performance of the pre-conditioned conjugate

gradient (PCG) a1gorithm with classical incomplete Cholesky pre-conditioning

is experimentally compared with that of the standard bandwidth based Frontal



direct solver [60]. This solver attains its highest efficiency when applied to

systems of linear equations whose coefficient matrices are narrow banded. In

section 3.4 the PCG solver is compared to another direct solver utilizing the

Tinney-2 ordering method.
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Both the PCG and Frontal algorithms are applied to solve system:; of

linear equations arising in the Fast Decoupled and DC load flow calculations.

The computation time of the PCG algorithm is compared with that of the

Frontal solver for a wide spectrum of networks of up to 5000 buses and 10000

lines. The impact of network size and topologicaI connectivity on the relative

performance of the PCG and Frontal solvers is aIso numerically investigated.

3.3.1 Criteria of comparison

To evaIuate the time requirements for the solution of the FDLF, we

have taken the conservative view that, for typicaI well-behaved power

networks, starting from a fiat voltage profile, 7 P and Q-iterations are

required to converge on the average. Then, to evaIuate the performance of

the two solvers in the FDLF, the CPU time of one complete direct solution

(one factorization and one F/B substitution) and the CPU time of seven

complete PCG solutions (seven incomplete Cholesky factorizations and seven

executions of the PCG aIgorithm) are compared. This conservative

comparison places our results on the safe side.

For the DC load flow one complete solution of the PCG is compared

with one complete direct solver solution.

The results of extensive comparisons of the above nature are shown in

Figures 3.3 to 3.6 in the form of CPU time ratios versus network size.
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block 1 block 2 block 3

I~ /
block 4 block 5

/ ~
block 6 block 7 block 8

Figure 3.1: Block interconnections of the networks

3.3.2 Test networks

In all the examples tested, the networks were composed of sparse

blocks of varying sizes which are, themselves, interconnected by a sparse

network, an example of which appears in Figure 3.1. Figure 3.2 illustrates a

typical sparsity structure of the corresponding network B matrix.The number

of Unes for all networks was about twice that of the number of buses.

The test networks were randomly generated using special software

developed during the course of this research that designs realistic power

networks of different sizes, topologies and Une data (see Chapter VI for more

details about tbis special network generation software). This software allows

the user to specify the power network dimension and other characteristics,

producing a series of random networks with the general specified properties.



•
CHAPTER3 EXPERIMENTAL RESULTS ON ... 46

Figure 3.2: Sparsity structure of an example network

There is no limit on the size of the network that can be thus generated. The

test cases produced here range up to 5000 buses and 10000 lines.

Although :.hese networks are simulated, we have made them as realistic

as possible by ensuring that the topology, line and bus data are similar to

those of actual power networks.

As the Frontal solver is a bandwidth based solver and due to the fact

that it gains its efficiency for narrow banded matrices, in these series of

experiments, the input data for the solvers were generated in an ordered

manner to have the minimum possible bandwidth around the major diagonal

as indica\ed in Figure 3.2. This choice of data favours the performance of the

Frontal solver.
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Figure 3.3: CPU time ratio of direct and PCG solvers
(Largest sparse block has 100 buses)

3.3.3 Discussion of results

The resuIts are summarized according to four different network

categories defined by the size of the largest sparse block in the network. In

essence, we are comparing networks with different matrix bandwidths (the size

of the diagonal band wherein most of the non-zero entries are located). For

each category, we compare the ratio of CPU times of one direct solver (1

decomposition and 1 FlB substitution) versus the CPU time of seven PCG

solutions (7 incomplete Cholesky factorizations and 7 applications of the PCG

algorithm) for the FDLF. This assumes that the FDLF converges in seven

iterations on the average. The results are shown in Figures 3.3 to 3.6 each of

which shows two curves. The upper curves show the CPU time ratio for the

DC load fiow where one direct solution is compared to one PCG solution.

The lower curves display the corresponding comparison for the FDLF.
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Figure 3.4: CPU time ratio of direct and PCG solvers
(Largest sparse block is one tenth the network size)

A) In the first category, experiments were carried out on networks of

different sizes where the largest sparse block contains 100 buses. Other

blocks in the network have random sizes ranging between 6 and 100 buses.

The CPU times obtained from test results are compared in Figure 3.3.

Comparison of the two methods indicates that, for this category of

narrow-banded networks, the direct solver is more efficient for the FDLF

while, for the DC load flow, the PCG shows a slight advantage.

B) In the second category, networks with the largest sparse block equal to

one tenth the size of the network were examinedo The relative CPU times

are plotted in Figure 3.4.
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Figure 3.5: CPU time ratio of direct and PCG solvers
(Largest sparse block is one fifth the network size)

We see here that, for systems of more than 5750 buses (extrapolated)

(with corresponding largest blocks of size 575 or more), the pre-conditioned

conjugate gradient becomes more efficient for the FDLF. Still, no substantial

advantage (more than 2) is gained by using the PCG for this category of

network in the FDLF unless one goes to dimensions above 7000 buses. For

the DC load flow, the PCG shows an advantage for networks above n=600.

C) In the third category of network, the biggest block has a size equal to

one fifth the network size. The test results for these cases are plotted in

Figure 3.5.

In this case, in the FDLF, the PCG method becomes more efficient

than the direct method for systems larger than 2050 buses (Le. a largest block

of 410 or more buses). The advantage of the PCG method becomes even
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Figure 3.6: CPU time ratio of direct and PCG solvers
(Network is composed of only one block)

more pronounced for larger systems. For example, at n=SOOO, the ratio of

CPU times is about 4. The advantage of PCG in the DC load flow is even

more prol1ounced reaching the ratio of 24 at n=SOOO.

D) In thl'last group of experiments, the solvers were applied to networks

composed of only one block, that is, a wide band sparse network (Figure 3.6)

wh(~re the number of lines is as before about twice the number of buses.

For this type of network, the PCG method is considerably more

efficient than the direct method in both the FDLF and the DCLF. The cross­

over point where PCG becomes faster than direct methods ~tarts near n=300

for the FDLF. At n=2000 buses, for example, the PCG solver is about 60

times faster for the FDLF and 420 times faster for the DL ..~~d flow.
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As illustrated in Figure 3.7, and predicted by the theory presented in

section 2.7.2.4, the CPU time for the PCG algorithm varies as O(nl .5) whereas

the time for the direct method varies as O(nm2). It was also observed, that the

largest block size (matrix bandwidth) affects the PCG solver performance but

not significantly. What is most important in the PCG performance is the

clustering of the eigenvalues of ,he pre·conditioned matrix. In fact, in sorne

cases, we have observed that the PCG solver actually took less CPU time for

a larger system than for a smaller one due to the fact that the larger system

was better clustered and converged in fewer iterations. For the direct solver,

however, the solution time was observed to increase according to nm2
, where

m is the dimension of the largest block. The size of the biggest block has a

dominant effect on the CPU time of the direct solver (See Table 3.11). This

is because a larger block generally results in a wider bandwidth and therefore

more fill·in elements in the factorization.



Table 3.11: CPU times (sec) of the two solvers for n=2000 and variable largest
block size, m (Sun SPARC station 2, 32 Mb RAM)•
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1
network size (n) = 2000

1

matrix bandwidth (m)
Solver

100 200 400 2000

Frontal 3.83 6.09 14.81 438.39

PCG 2.40 2.60 2.15 0.98

Table 3.1II: CPU time (sec) of the Frontal solver for different block
arrangements (Sun SPARC station 10, 64 Mb RAM)

Size of the block arrangements

network Random small to big to
big small

200 0.090 0.096 0.085

600 0.719 0.859 0.660

1000 2.270 2.294 1.860

1400 5.680 5.690 5.400

1800 12.360 11.760 12.020

2200 18.560 20.010 18.320

2400 24.490 24.940 23.390

2800 36.220 36.600 34.020

3000 36.170 37.130 33.710

3500 70.780 69.630 65.560

4000 114.020 109.90 108.440

4500 139.160 136.160 132.01

5000 170.710 170.660 171.89



3.3.4 Effect of block arrangement on the solution time•
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To investigate tbe effect of block arrangement, in another series of

experiments, network blocks were connected in two different manners. First,

they were reordered sucb that smaller ones proceed larger ones along the

major diagonal and, second, they were ordered from larger to smaller ones.

The experimental results for networks of different sizes from 200 up to 5000

buses wbose biggest block has a size equal to one fiftb of the network size

demonstrate that neitber the performance of the PCG nor the performance

of the Frontal solver is affected significantly by block arrangement. However,

it was observed tbat for networks of smaller sizes, the Frontal solver shows a

small speed advantage for those networks which have the blocks arranged

from big to small (see Table 3.ffi).

3.3.5 Impact of variations of Hne parameters on eigenv2lue

clustering and convergence properties of the PCG algorithm

It is c1ear that the magnitudes of !ine reactances directly affect the

magnitudes of the non-zero elements of the DC and Fast Decoupled load flow

matrices. In the previously mentioned results, these values were chosen to be

as realistic as possible. However, to investigate the effect of Hne parameter

variations on the PCG, several cases were run where the network reactances

were varied over several ranges of values.

The experiments were performed for networks of 2000 and 5000 buses

composed of blocks ranging from 10 buses to one fifth of the network size.

First, it was observed that reactance variations do not affect the

performance of tlle direct solver. This result is expected due to the fact that

reactance variations do not change the matrix non-zero elements topology and

thus do not have any impact on the number of fil1-ins introduced during the

factorization. On the other hand, it was observed that the bigger the variation



Table 3.IV: CPU time (sec) and iteration steps of the PCG solver for different
line reactance variations (Sun SPARC station 10, 64 Mb RAM)•
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•

Line reactance variations
Size of th('

10% 100% 5000%

network CPU 1 NI CPU 1 NI CPU 1 NI

1
2000 buses Il 1.08

1
40 Il 1.21

1
43 Il 1.55 1 56

1

1
5000 buses Il 3.47 1 49 Il 4.21 1 60 Il 4.72

1 69 1

of line reactances, the greater the number of PCG iterations (NI) and thus the

more CPU time is required for PCG to converge (Table 3.IV). This can be

explained by the fact that wide reactance values can broaden the eigenvalue

spectrum of the coefficient matrix, thereby worsening the PCG convergence.

3.4 Numerical Comparison of the Performance of the

Pre·Conditioned Conjugate Gradient and Sparspak Solvers

As discussed in chapter II, the minimum degree ordering scheme

(Tinney-2) has been efficiently applied in power system problerns. Thus, we

were motivated to evaluate the performance of the PCG algorithm compared

with efficient direct solvers other than the Frontal solver, particularly the one

utilizing the Tinney-2 ordering algorithm. These efficient solvers were selected

from the weil known Sparspak package of sparse direct solvers [110, 111]. This

package offers a collection of different approaches grouped as Sparspak-A

solvers and an enhancement ,Cl it called Sparspak.B, For ail of the variations

in this package, the system of linear equations is solved through the following

basic steps:

1) The non-zero structure of the coefficient matrix A is supplied to the

package.



2) The original problem is reordered using a permutation P and then

TJroper storage allocation is performed for the triangular factors as,
•
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P A P' = LU (3.4)

3) The values of the non-zero elements of the coefficient matrix are

supplied to the package.

4) 'i'he triaI'lgular factors L and U are computed.

5) The right-hand-side vector is supplied to the package.

6) The solution vector x is found using FlB substitutions.

In addition, the package disregards the numerical stability due to any

permutation matrix P. This means that, the software assumes that for any

permutation matrix P, an acceptably accurate factorization can be obtained.

This is true for positive definite and diagonally dominant coefficient matrices

[110] such as matrices arising in the Fast Decoupled and DC load Dow

algorithms. On the other hand, our PCG algorithm cares about diagonal

scaling and stability problems. Therefore, this puts our experimental

compari;;on with the PCG solver on the safe side as there is no CPU time

dedicated by the Sparspak solvers for this consideration.

Sparspak solvers differ mainly from each other due to the various

algorithms applied for choosing P, the corresponding storage methods and

whet\Jer the coefficient matrix is considered symmetric or not. The

effectiveness of these variations still is not well understood and mainly

depends on the type of problem [111]. Due to these different characteristics,

the performance of these solvers were numerically investigated for power

system problems. We observed that Sparspak-B5, utilizing minimum degree

ordering (Tinney scheme-2), is the most efficient for matrices arising in power

system problems. Therefore, in our experimental investigation, the PCG



algorithm and the Sparspak-BS solver including minimum degree ordering

algorithm were used to solve systems of linear equations arising in DC load

flow and Fast Decoupled load flow algorithms for networks of varying sizes

from 100 buses to 4900 buses.

•
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These experiments were carried out for two different types of networks,

simple grid networks and more comp!icated star networks. In both cases, the

number of !ines is the same, that is, both grid and star networks have the

same degree of sparsity.

a) Grid networks: This type represents networks which have the form of a

matrix whose elements represent the nodal points of the network. In this

category each bus is connected to adjacent buses only (Figure 6.2, chapter

VI).

b) Star 'letworks: In this type, first ail of the nodes are laid on a ring of

transmission !ines to assure connectivity of ail buses to the network. Then,

extra random connections between the different nodes are created (Figure 6.3,

chapter VI).

3.4.1 Discussion of the results

The performance of the PCG and Sparspak-BS solvers has been

experimentally investigated for the above mentioned types of networks. For

each group, we compare the CPU time of one PCG solution with the CPU

time required for one factorization and the Tinney-2 ordering scheme.

A) Grid networks: The experimental results for this group are presented in

Table 3.V.

Comparison of the two methods indicate that, for grid networks, the

Sparspak-BS direct solver is comparable to that of the PCG. It is noteworthy



Table 3.V: CPU time comparison of PCG and Sparspak-B5 for grid-type
networks (33 MHz, 486, 32 Mb RAM)•
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CPU time (Sec)
Size of the

Sparspak-B5

network PCG
Ordering Factorization Total

900 -1 < 1 1.5 < 2.5

1600 -2 < 1 3 <4

2500 5 < 1 4 < 5

3600 8 1 6 7

4900 10 1 7 8

Table 3.VI: CPU time comparison of PCG and Sparspak-B5 for star-type
networks (33 MHz, 486, 32 Mb RAM)

CPU time (Sec)
size of the

network Sparspak-B5
PCG

Ordering Factorization Total

400 < 1 < 1 < 1 -1

625 < 1 < 1 < 3 -3

900 -1 -1 5 -6

1225 -1 2 15 17

1600 <2 3 33 36

2025 <2 5 60 65

2500 <2 7 125 132

3025 -2 10 230 240

3600 -3 14 345 359

4225 <4 17 670 687

4900 -4 27 850 877
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Figure 3.8: CPU time versus network size for ordering algorithm of the
Sparspak-B5 solver (33 MHz, 486, 32 Mb RAM)

to mention that the stopping criterion for the PCG algorithm in all these

experiments was a residual smaller than 10-6 where the right hand side of the

equation has been normalized to one.

In all cases analyzed in this group of grid networks, as shown in Table

3.V, the CPU time devoted to ordering was equal to or smaller than one

second.

B) Star networks: As in the grid networks, in this type, each bus is connected

(on average) to four other buses. Test results for these cases are presented in

Table 3.VI.

In this case, the PCG method becomes more efficient than the direct

method for systems larger than 400 buses for the DC load flow. If we assume
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Figure 3.9: CPU time versus the network size for the factorization
process in the Sparspak-B5 solver (33 MHz, 486, 32 Mb RAM)

the same criterion of comparison described in section 3.3.1 for the Fast

Decoupled load flow, it can be observed that PCG shows marked advantages

over Sparspak-B5 only for systems of 900 buses or larger.

It is also important to mention that in this table the FlB substitution

time for the direct solver is not included. This is due to the fact the this time

is very smaU compared with the factorization time. This puts our comparison

on the safe side.

To get a better feeling about the performance of the direct solver, the

CPU times required for ordering and for factorization are plotted versus the

network size in Figures 3.8 and 3.9 respectively. As these Figures indicate, the

CPU times in both cases increase very rapidly with network size.



We also examined the relative performance of the two solvers in one

DC load flow solution for a real network of 688 buses and 920 lines. Both

methods took less than one second to compute one solution. One noteworthy

comment relative to the PCG method is that the number of PCG steps

required to converge was less than one third of the theoretically expected

number (7 instead of 26 iterations).

•
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3.5 Alternative Load Flow Solution Aigorithms Using PCG

This section describes an investigation into the convergence of other

load flow algorêthms using the PCG solver. These experiments can be

c1assified into t.lree different classes.
\ 1

A) In the first class of experiments, the PCG algorithm was used ta get the \, r/)J~11 "
solution of systems of linear equations whose coefficient matrix is the polar \ () IV'
(or rectangular) full load fiow Jacobian matrix, [Jac]. This class of experirnents \~

wfashapPlied to tlhe IEEE test netwhor~hof 5'11~, 30'Th5~ and 118 buses. Nonde '.1\ ,1 ,1"'1.

o t ese examp es converged ta t e ng t so utlOn. IS was not unexpecte Y;\ l ',.

since the Jacobian matrix is indefinite. The experiments simply serve to .lv;.:'~··[
confirm our expectation.

, .-----

B) In the second group of tests, the PCC; algorithm was applied in the

context of the load flow to solve systems of linear equations, Ax=b, where,

A=[Jae] [Jae]' (3.5)

and [Jac] represents the full Jacobian matrix in polar coordinates. These

experiments were conducted for the IEEE example networks of 5,14,30 and

57-bus systems. The PCG algorithm converged to the right solution for all

cases as expected since A is positive definite. However, due to the fact that

the resultant coefficient matrix is not well-conditioned and that its eigenvalues
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Table 3.VII: Convergence properties of PCG algorithm for a system of linear
equations whose coefficient matrix is A=[Jac] x [Jac]'

IEEE D EJcond(A) Eigenvalues range
system steps

5-bus 7 400.57 (0.0127-5.077)x1Q3 1

14-bus 25 19413 (0.005-5.334)x1Q3 17

30-bus 53 247320 (0.0000-1.2412)x104 33

57-bus 106 1.0215 x lOS (0.0001-1.6678)x1OS 87

are distributed over a '\'ide spectrum, the PCG algorithm did not show good

convergence properties as indicated in Table 3.VII compared to the Fast

Decoupled load flow. In this table, the dimension of the Jacobian matrix (nj)'

the condition number of A [cond(A)], the range of eigenvalues, and the

number of PCG steps required for convergence of the algorithm based on a

residual smaller than 10'3 per unit are shown. The number of PCG steps also

appears to be higher than the number expected from better conditioned

matrices, that is, of the order of nOs steps. It appears that the approach of

converting the coefficient matrix to a positive definite one through

premultiplication by its transpose is not competitive in the full Newton polar

power flow.

C) In the final experimental approach, the Jacobian matrix in polar

coordinates was replaced by the matrix A where,

A = [lac] + [lac]'
2

(3.6)

Table 3.vm shows the number of iteration steps required for the

convergence of CG and PCG algorithms for a stop criterion based on

residuals (r) smaller than 10-3 and 10-5 per unit.



Table 3.VIII: CG and PCG iteration steps for the solution of a system of
Iinear equations whose coefficient matrix is A=([Jac] + (Jac'])j2•
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IEEE 01 r < 10-3

Il
r < 10-5 1svstem CG 1 PCG CG 1 PCG

5-bus 7 7 3 7 3

14-bus 25 21 10 26 12

30-bus 53 45 13 58 16

U8-bus 192 ~15 28 138 33

Tests on the IEEE S, 14, 30 a".d U8-bus systems sbow that the PCG

approach converges in al! cases. The number of PCG iterations is somewhat

greater than the expected value (of the order of n°.5), but it is still much less

than the system dimension and considerably less than the CG method. It was

also observed that the load f10w algorithm with this approximate Jacobian

does in fact converge, a result wbich is not obvious. However, we also noted

an increase in the number of load flow iterations (eacb of which can be solved

.by the PCG method) of about 50% ~ompared with the Newton-Rapbson load

flow algorithm using the conventional Jacobian. If this load flow convergence

behaviour extends to large systems, then we expect the PCG metbod to be

competitive in this approach.

3.6 Concluding Remarks

(1) The Incomplete Cbolesky pre-conditioned conjugate gradient (PCG)

algorithm can be applied to solve systems of linear equations arising in power

system problems such as the DC load flow, the Fast Decoupled load flow,

contingency analysis, state estimation, and a modified version of the full

Newton polar load flow. It is shown bere that these types of problems satisfy

the requirement of our present PCG algoritbm that the A matrix be positive

definite.



(2) Tests comparing the PCG and a bandwidth based Frontal solver in power

systems with up to 5000 buses and 10000 lines show that for l~.rge, sparse

networks, with not too small bandwidth, substantial gains in computational

speed (e.g. 65:1 for wide band networks of 2000 buses) can be achieved for

the fast decoupled load flow. Even greater gains are obtained in the DC load

flow.

•
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(3) The relative efficiency of the PCG method compared with the bandwidth

based direct solvers improves exponentially with the size of the network and

even more rapidly with the size of the largest sparse matrix block.

(4) The tests on different orderings of network blocks show that the

arrangement of the blocks does not have a significant affect on the

performance of either the PCG or the Frontal solver. The size of the biggest

block is the dominant factor on the efficiency of the Frontal solver.

(5) Experimental comparisons of the PCG and the Sparspak-B5 direct solver

including minimum degree ordering algorithm (Tinney scheme-2) for power

network matrices with up ta 4900 buses and 9800 !ines indicate that for grid­

type networks, the PCG and direct solver are comparable. However, for large

sparse star-type networks, substantial gains in cOIl'putational speed can be

achieved for the DC and the Fast Decoupled load flow.

(6) The performance of the PCG, unlike direct solvers, does not depend on

the bandwidth of the network matrix appreciably. It depeuds mainly on the

degree of sparsity and how tightly clustered the eigenvalues become after pre­

conditioning.

(7) Our experiments on power networks have shown that the incomplete

Cholesky pre-conditioning matrix is cheap ta find, requires low storage, and

clusters the eigenvalues tightly.
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(8) The gains made by PCG are only in the solver component of the load flow

and not in related parts such as input/output or mismatch evaluations. Since

experience [26] indicates that the solver is the most time consuming part of

load flow analysis, the gains made by the PCG should have an important

impact in reducing the overall computation time of load flow algorithms.

(9) The PCG method should be seriously considered in power system analysis

to revisit old algorithms or develop new ones where repeated modifications

of the A matrix are needed. The use of direct methods has created a tendency

to avoid such algorithms, even if they converge in fewer iterations and are

more robust. This is because of the need to refactor the A matrix in these

algorithms, which usually cancels out any speed gains. For example, in the

load flow problem with control adjustments, in order to avoid refactoring the

Jacobian, a large additional number of iterations are needed. This could

possibly be avoided through the use of the PCG method whose performance

is not affected by the modification of the Jacobian.

(10) Further investigation into the applications of PCG in power system

computation are addressed in the following chapters including: more efficient

pre-conditioning taking advantage of particular power network properties and

applications to complex matrices.



CHAPTER

FOUR

INVESTIGATION OF EIGENVALDE
CLUSTERING BY MODIFIED INCOMPLETE
CHOLESKY DECOMPOSITION IN POWER

NETWORK MATRICES

4.1 Introduction

It was mentioned in chapter II thut a very fast methocl for com~uting

me solutions of large sparse systems of linear equations when positive definite

matrices are involved, is the pre-conditioned conjugate gradient (PCG)

algorithm. In chapter ID, PCG with classical incomplete Cholesky (CIC) pre­

conditioning was shown to be remarkably efficient in the load flow problem.

Specifically, it was demonstrated that PCG with CIC pre-conditioning can

yield substantial gains in the computational performance of the Fast

Decoupled load flow algorithm [29].

50 far, the eigenvalue clustering of power network matrices using

specialized pre-conditioning schemes has not been extensively investigated or



exploited. This chapter presents the results of a comparative investigation into

the potential of different pre-conditioning matrices. The clustering efficienC'j

of two competitive pre-conditioning schemes are compared with and ranlœd

against that of the CIC approach. Experiments based on IEEE pOHer

networks of 14, 30, 57 and U8·bus systems show that superior pre­

conditioning can be a'::lieved if the intrinsic properties of the power networks

are exploited. Thus, faster convergence for PCG can be obtained, which in

tum, will reduce the CPU time required for the solution of power system

problems.
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4.2 Classical Incomplete Cholesky Pre-conditioning Matrix

A highly effective pre-conditioning matrix K (see 2.7.2.3) can be

obtained using approximations of the Cholesky factor 1., where,

A = L L T (4.1)

In the common approach, called the classical incomplete Cholesky

(CIe) decomposition [101], only the entries of L which correspond to non­

zero entries of A are computed, thus preserving the original matrix sparsity

structure. In large sparse systems, this approximation sharply reduces the

computational effort required to find K as well as any operations involving

K-1
• In addition, the storage requirements for K are drastically decreased.

Experience in many fields, such as finite element electromagnetic analysis [28,

108] and power system analysis [29] indicates that this type ofpre-conditioning

matrix K, although much ch~aper to compute than 1., is nevertbeless a very

good pre-conditioning matrix for A and clusters its eigenvalues efficiently.

However, thus far, not much success has been reported on modifications of

the pre-conditioning matrix, K, designed to improve its PCG accelerating

effec!.
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eigenviue range 100%

Figure 4.1: Eigenvalue distribution for IEEE-57 bus system without pre­
conditioning

4.3 Clustering Eifect of the CIC Pre-conditioning Matrix

Figures 4.1 and 4.2 illustrate the effect of the CIe pre-conditioning on

the eigenvalue distribution of the B matrix for the IEEE 57-bus network. The

eigenvalues are normalized with respect to their maximum and minimum

levels. In this example, the effect of pre-conditioning is quite apparent,

clustering the majority of the eigenvalues (24 out of 56) around the 30% level.

The number of iterations required for convergence of the conjugate

gradient algorithm was measured for the solution of the system of linear

equations Ax=b in both the original form and the pre-conditioned case. In
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Figure 4.2: Eigenvalue distribution for IEEE-57 bus system with
crc pre-conditioning

Table 4.1: Number of iterations required for convergence of CG and PCG
algorithms

Nurnber of iterations
IEEE exarnple networks

CG PCG
algorithm algorithm

5-bus system 4 1

14-bus system 11 6

3D-bus system 23 9

57-bus system 41 11

U8-bus system 68 22
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Figure 4.3: Convergence behaviour of CG and PCG algorithms for
IEEE 14·bus network matrix

these examples, the A matrix corresponded to the B matrix (see chapter III)

of the standard IEEE power networks [30]. Table 4.1 shows the number of

iterations required for these cases to converge te a solution resulting to a

residual smaller than 10'3. As the results indicate, the number of iterations

needed for convergence in the pre-conditioned case compared with the

general CG, tends to decrease as the system size increases. For the IEEE 5­

bus network, the PCG algorithm with CIC pre-conditioning converges in one

iteration to the exact solution. This is due to the fact that, in this case the CIe

factor is equal to the complete Cholesky factor.
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Figure 4.4: Convergence behaviour of CG and PCG algorithms for
IEEE 3D-bus network matrix

4.4 Investigation of the Convergence Properties of CG and PCG

with CIe

To compare the convergence properties of CG and PCG algorilhms

with CIC pre-conditioning, the impact of the number of conjugale gradient

steps on the norm of the residual vector for the solution ofAx =b, was

numerically investigated for the IEEE example networks of 5, 14, 30, 57 and

118 buses. It was observed that ail the experimental cases show a similar

convergence pattern. In all test cases the residual corresponding to PCG with

CIC pre-conditioning descends toward zero much faster than the CG

algorithm. As examples, the norm of residual versus iteration number are

plotted in figures 4.3 to 4.5 for IEEE 14, 30 and 57-bus systems.
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4.5 Experimental Comparison of CIC and Modified Incomplete

Cholesky Pre-conditioners

4.5.1 Incomplete Cholesky modifications

In general, the true Cholesky factor is not as sparse as the original

matrix. h.owever, it has been observed that if only sorne important non-zero

elements of the Cholesky factor are preserved, the resultant sparser matrix

can still be a good pre-conditioning matrix.

Two classes of modifications are investigated. The first class of

modifications puts more weight on those elements located near the diagonal



of the factor, while the second approach weighs more heavily the dominant

elements of the factor regardless of their relative location. In both approaches,

the cIustering effect of the resuItant pre-condi'doning matrices are compared

with that of CIC.

CHAPTER 4
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In aIl of the experiments, the matrices to be pre-conditioned, were the

B matrices of the IEEE test networks.

AlI modifications were applied to IEEE standarJ network matrices in

both scaled and non-scaled cases. The matrices are scaled such that they have

unit diagonal elements. This type of scaling is sometimes called Evan's pre­

conditioning [113]. To avoid confusion, it should be noted that Evan's pre­

conditioning is intended to provide numericaI stability to the PCG algorithm,

and not to produce a cIustering effect. The experimental results confirm that

scaIing does not affect the cIustering condition, but only puts the eigenvalues

in a tighter spectrum. However, to minimize stability problems in this

investigation, these studies mainly focus on scaled matrices.

Both types of pre-conditioning modifications were compared with the

CIC approach according to their cIustering effects and convergence properties.

4.5.1.1 Diagonal dominant incomplete cholesky factor (DDlC):

~n this c1ass, the incomplete Cholesky factors are obtained by

preserving only the non-zero elements of the complete Cholesky factors

located within a specified diagonal band (nd).

Figures 4.6, 4.7 and 4.8 compare the eigenvalue spectrum of the pre­

conditioned matrices obtained by preserving only the nd-diagonal non-zero

elements. The number of non-zero elements preserved in each case is
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Figure 4.6: Comparison of eigenvalue range for IEEE-14 bus system
(diagonal dominant pre-conditioning)

specifir.d as nz. These test results show that as nd grows, the clustering effect

improves and more eigenvalues group around the unity value. This is expected

because, as the band of diagonals preserved increases, the approximated pre­

conditioning matrix approaches the complete Cholesky factor L. However, this

also implies that more computational effort is dedicated to the computation

of the K factor. The resu1ts for ail the systems considered also confmn that

many of the eigenvalues of the pre-conditioned matrices tend to be clustered

in one large group located around unity. This performance is similar to that

of the CIC pre-conditioning. Table 4.11 shows the total number of eigenvalues

(and % in parenthesis) in the largest cluster (nc) located within a bandwidth

of 1% of the eigenvalue range. The number of non-zero elements (nz)

preserved in the pre-conditioning matrices is also shown for comparison.

These numbers show that a modified Cholesky factor of this type, with almost
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Figure 4.7: Comparison of eigenvalue range for IEEE-3D bus system
(diagonal dominant pre-conditioning)

Table 4.11: Total number of eigenvalues clustered in the biggest group, for
CIC and DDIC pre-conditioning matrices

G DDIC

1

Example
nd = 1

1
nd = 2 lTId =3networks

IEEE nc(%)

~
3 (23) 4 (31) 7 (54)

14
buses nz 33 25 33 40

IEEE nc(%) ffi 4 (14) 12 (41) 15 (52)
30

buses nz 68 56 78 92

IEEE nc(%) 23 (41) 13 (23) 24 (42) 24 (42)
57

buses nz 130 111 139 161



•
CHAPTER 4 INVESTIGATION OF EIGENVALUE CLUSTERING ... 75

7

6

60

.• LegeDd
•••

* oc ,uz-l30
c

.D. nd - l, DZ"111•
• c• 0 ud - 2. nz-139

'S .
• c 0 nd - 3, uz-161

5020 30 40
eigenvalue number

o 10

Figure 4.8: Comparison of eigenvalue range for IEEE-57 bus system
(diagonal dominant pre-conditioning)

the same number of non-zero entries as a classical incomplete Cholesky

factor, will provide a near identical clustering pattern. As observed in Table

4.II, for the IEEE 14-bus system with DDIC pre-conditioning, four eigenvalues

are located in the largest cluster, while, for the CIC pre-conditioning with the

same number of non-zero elements (33), this number (nc) will be five. This

implies that this type of pre-conditioning may require more iterations for

convergence when compared with the CIC pre-conditioning. Table 4.m shows

the number of iterations required for the convergence of the PCG method

with DDIC pre-conditioning compared with the number of iterations required

with CIC pre-conditioning, for the IEEE 14, 30, 57 and lIB-bus systems. In

this table, nd and nz represent the number of diagonals preserved from the

ChoIes!..")' factor and the total number of non-zero elements respectively.

These data demonstrate that this type of pre-conditioning is not as efficient
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DOIC pre-conditioning CIC pre-conditioning
network

number of number of
nd nz iterations nz iterations

1 25 8
14-bus

2 33 7 33 6
system 3 40 7

1 56 16
3D-bus

2 78 12 68 9
system 3 92 10

1 111 20
57-bus

2 139 17 130 11
system 3 168 17

1 228 49
118-bus

2 303 38 294 22
system 3 356 33

as the CIC pre-conditioning. As an indication, it can be easily seen that the

PCG with DDIC pre-conditioning even with more non-zero elements than the

CIC pre-conditioner, is not as fast as the PCG with CIC pre-conditioning.

4.5.1.2 Dominant element incomplete cholesky factor (DEIC):

This type of modified incomplete Cholesky factor involves measuring

the relative importance of the dominant Cholesky factor elements. In this

case, the modification is controIIed by a weighting factor w. If the magnitude

of an off-diagonal element in L is smaller than w, it is replaced by the 0 value.
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Figure 4.9: Comparison of eigenvalue range for IEEE 14 bus s:v~tem

(dominant element pre-conditioned case)

If lav is the average value of the off-diagonal non-zero elements of L, then w

is defined as:

where f is a scaling factor.

lav
W =-

f
(4.2)

The pre-conditioning effect of incomplete factors of this type was

examined for different scaling factors ranging from 0.4 ta 3, for the IEEE 14,

30, 57 and 11S-bus systems.

Table 4.IV illustrates the clustering effect for this class of Cholesky

modifications. In this table the number of eigenvalues contained in the largest
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cluster, located within a bandwidth of 1% of the eigenvalue range, are shown

for scaling factors f varying from 0.6 to 1.8. These numbers imply that belter

clustering is achieved as f increases.

Table 4.IV: Total number of eigenvalues clustered in the biggest group, for
DEIC pre-conditioning matrices

Number of eigenvalues in biggest c1uster
Scaling

IEEE 14-bus IEEE 3D-bus IEEE 57-busfactor f

0.6 1 5 22

1 2 8 23

1.8 4 12 25
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Figures 4.9, 4.10, and 4.11 illustrate sorne examples of the clustering

effect provided by DEIC pre-conditioning for the IEEE 14, 30 and 57-bus

network matrices. They show that a larger scaling factor f (more computed

non-zero elements), yields a better cIustering effect. As it is shown later in this

section, this also results in faster convergence.

Tables 4.V to 4.VII show the number of iterations required for the

convergence of the PCG algorithm with this type of pre-conditioning for the

IEEE 30, 57 and IlS-bus systems as an indication. In these tables the number

of non-zero elements of the pre-conditioning matrices are shown for scaling

factors f varying from DA to 3. These data demonstrate that, as the cIustering

effect improves, the number of iterations required for convergence decreases.



Table 4."\: Number of iterations required for convergence of PCG
(IEEE 30-bus network)•
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pre-conditioning number of number of
matrix (K) non-zeros iterations

1 CIe Il 68 1 9 1

f=0.5 53 11

f=0.8 64 9

f=0.9 65 8

DEIC f=1.0 70 8

f=2.0 93 5

f=3.0 105 4

Figures 4.9, 4.10 and 4.11 also indicate that, for the same number of

non-zero elements, DEIC pre-conditioning yields better cIustering than the

cIassicai incomplete Cholesky method. To show this advantage more cIearly,

the number of iterations required for convergence of the PCG with cIassical

incomplete Cholesky pre-conditioning is compared with those required with

DEIC pre-conditioning including fewer or equal non-zero elements in Table

Table 4.VI: Number of iterations required for convergence of PCG
(IEEE 57-bus network)

pre-conditioning number of number of
matrix (K) non·zeros iterations

1 CIC Il 130
1

11 1

f=O.4 114 11

DEIC f=0.6 130 9

f=1.8 187 5



Table 4.VJ.I: Number of iterations required for convergence of PCG
(IEEE lIS-bus system)•
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pre-conditioning number of number of
matrix (K) non-zeros iterations

1 CIC Il 294 :J 22 1

f=O.4 255 21

f=0.7 326 13

f=1.0 371 10

f=1.4 417 9

DEIC f=1.7 450 8

f=2.0 477 7

f=3.0 520 7

4.VIII. II is noteworthy to mention that the cost of computing the pre­

conditioning matrices roughly corresponds to the number of non-zero

elements computed. As indicated in this table for the IEEE 57-bus system, the

PCG with DEIC pre-conditioning, with the same number of non-zero

elements as the CIC pre-conditioner, converges faster than the PCG with CIC

Table 4.VIII: Number of iterations required for the convergence of the PCG
with CIC and DEIC pre-conditionings

number of non-zeros number of iterations 1
IEEE networks

~ 1
CIC DEIC CIC DEIC

1
3D-bus Il 68 65 9 ]1 8

1

1 57-bus Il 130 130 11 Il 9
1

1 118-bus Il 294 255 22 Il 21 1



pre-conditioning. Furthermore, even in the case where the DEIC pre­

conditioner has fewer non-zeros than the CIC pre-conditioner, the number of

iterations required for convergence is stilllower for the DEIC case (IEEE 30

and lIS-bus systems).
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This result can be interpreted by the fact that the classical incomplete

factorization corresponds to a L LT factorization only in those locations whcre

B has non-zero elements (bjj is non-zero). These locations imply that buscs i

and j are connected to each other directly. However, this approach can ignore

sorne dominant elements in the Cholesky factor and preserve sorne trivial

ones. It can be seen that Ljj will be dominant if there are sorne inùirect

connections with low impedances between buses i and j through other buscs,

even though bij is zero. On the other hand, L,j will be trivial if the line

connecting i and j has a high impedance. This is because the L LI"
factorization process is essentially a sequence oflinear transformations for the

elimination of the iower triangular (upper triangular) elements of B to be ahle

to perform backward (forward) substitution. In this process, to eliminate hij

from the ith row, -bj/bkk times of kth row (bkl = 0 for 1 < k) is added to the

ith row of the B matrix. This process fills any zero position (i,m) of the ith

row, with the non-zero element -(b jj bkm )/bkk if bkm is not equal ta zero

resulting in a new non-zero location. In general, as bjj is small compared with

bkk, Lmi will be small. However, if bjj and bkm are not small compared with bkk

or, if there are many lines connected to bus i or m, resulting in a high

admittance between i and m, then L,m will not be trivial, and may he a

dominant element in the Cholesky factor.

The results of these studies indicate that in general, CIC is an effective

approximation to the Cholesky factor for accelerating PCG convergence.

However, these results also show that by making use of the topological

configuration of power networks, modified Cholesky factors with the same



sparsity degree can be constructed giving better clustering and faster

convergence of the PCG algorithm.
•
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4.6 Concluding Remarks

(1) Pre-conditioning matrices based on approximations to the Cholesky factor

seem to be a promising approach to obtain a better clustering of the system

eigenvalues.

(2) Comparison of the clustering effect of the classical incomplete Cholesky

(CIC) factor, with those of diagonally dominant incomplete Cholesky (DDIC)

factors indicate that the DDIC pre-conditioning is not as efficient as CIC pre­

conditioning if an equal number of non-zero elements are preserved in eacb

factor (equal computational effort is dedicated to both).

(3) Pre-conditioning with the dominant element incomplete Cholesky (DEIC)

factor can yield an improved clustering of the system eigenvalues and, thus,

faster convergence for PCG, when the physical properties of the network

matrices are taken into account to construct the pre-conditioning matrix.

(4) If solution results of lower accuracy are acceptable, a small number of

iterations is sufficient for convergence. This is an interesting property of

iterative techniques which can be utilized in certain types of power system

algorithms such as contingency ranking.

(5) The experimental Ic:sults show that pre-conditioning of power network

matrices with any of the incomplete Cholesh.-y factors (CIC, DDIC or DEIC)

will cluster many of the eigenvalues in a large group located around unity.
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FIVE

GENERALIZATION OF THE PRE­
CONDITIONED CONJUGATE GRADIENT
METHOD FOR COMPLEX MATRICES
ARISING IN POWER SYSTEM ANALYSIS

5.1 Introduction

It was experimentally demonstrated in chapter III that the pre­

conditioned conjugate gradient (PCG) algorithm can be significantly more

efficient than direct techniques and can offer important savings in CPU time

for the load fIow problem. This conclusion was shown to hold for power

system algorithrns requiring repeated solutions of large sparse systems of

linear equations with positive definite matrices. However, it is known that

other important power system analysis problems such as transient stability and

short circuit studies essentially depend on the repeated solution of systems of

linear equations whose coefficient matrices are complex (see chapter II) and

similar to the network admittance matrix.

In this chapter, an investigation of the potential of PCG solvers for

complex admittance power network matrices is presented. In section 5.2, the



modified complex PCG method is app!ied to the IEEE test networks (14, 30,

57 and l18·bus systems) for the solution of systems of !inear equations of the

form Yx=b, where Y is the complex admittance network matrix.
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In section 5.3, the complex PCG algorithm and the modified complex

direct solvers are app!ied to synthetically generated networks of large sizes.

The computation time of the complex PCG is compared with that of the

standard direct solver. The comparison is performed for a wide spectrum of

power networks of different topologies up ta 6500 buses and 13000 !ines.

Furthermore, the effect of the size of the largest block in the network as weil

as the effect of the size of the network, on the performance of the two solvers.
are experimentally investigated. The results of our experiments show that the

complex PCG algorithm converges to the correct solution for all experimental

cases. This comparison also indicates that, for certain classes of large sparse

systems, especially when repeated solutions with matrix modifications are

required, the new PCG is significantly more efficient than the direct

technique.

5.2 Application of the PCG Method to Complex Network Matrices

As explained in chapter II, many power system algorithms such as short

circuit studies and transient stability analysis rely on the repeated solutions of

systems of !inear equations whose coefficient matrices are complex admittance

matrices. In certain types of algorithms such as the transient stability problem,

these types of !inear systems of complex equations are much larger than the

network dimension and need to be solved repeatedly. Ta limit the huge

computational time of the factorization process in these algorithms, the

coefficient matrix is updated and refactored only every few iterations [13].

This, in turn, may result in a higher number of iterations for the whole

algorithm to converge. Therefore, we were motivated to examine the complex

PCG algorithm as an alternative solver where a new updated admittance



matrix is applied at every integration step and every iteration of the stahility

algorithm.•
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The complex PCG algorithm is essentia11y identical to the real case

used in Chapter III except that ail numbers are complex. While experience in

numerical electromagnetics suggests that CG algorithms for indefinite, non·

symmetric and complex systems [122-127] are computationa11y too expensive

to compete with direct methods, experimental tests with complex symmetric

systems, have shown very encouraging results (Table 5.1).

As a first set of tests, numerical results applied to the IEEE standard

networks showed convergence to the exact solutions for ail cases. Tahle 5.1

gives information on the number of iterations required for the solution of

systems of linear equations Yx' =b' and Bx=b, where Y and B are complex

and real matrices respectively. These results suggest that:

1) Although the required number of iterations for convergence of the PCG

in the complex case is a little higher than that of the reaI case, it still can be

effectively applied to systems of complex linear equations arising in power

system analysis.

Table 5.1: Number of iterations required for convergence of CG and PCG
algorithms for the solution of systems of linear equations

IEEE test Complex

1

real

1

networks
CG PCG CG

1
PCG

14·bus 12 7 10 5

3D·bus 20 11 18 7

57·bus 42 16 32 10

118·bus 55 23 57 19



2) Based on the comparison of the number of iterations required for PCG and

CG to converge, it is expected that PCG would outperform direct solvers for

complex matrix equations corresponding to large sparse power networks. This,

then, may result in substantial. computational performance improvement

specially for the transient stability problem.
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Due to these results, the performance of the PCG algorithm was next

compared with a complex Frontal based direct solver for large sparse

admittance matrices of syntheticaUy generated networks of different sizes and

varying topologies. Again, although the theory predicts PCG convergence only

for positive definite matrices, it was nevertheless observed in aU the

experimental cases that the PCG converges to the right solution in a

competitive number of iterations.

The admittance matrix Y, in essence, can be written as the summation

of two real matrices G and B where,

Y=G-JB (5.1)

where each of these two real matrices bave similar topologies witb dominant

elements located on the major diagonal. Although, this property does not

prove convergence, it may suggest an explanation for the observed

convergence of the algorithm in all tested cases.

5.3 Numerical Comparison on the Performance of PCG and

Frontal Solvers for Complex Network Matrix Equations

In this section, the performance of the PCG with classical incomplete

Cholesky pre-conditioning is experimentally compared with that of the Frontal

(Sparspak does not have a complex direct solver) direct solver [60]. In this



vein, first both algorithms were modified to complex solvers. Then, they were

applied to solve systems of complex linear equations similar to those arising

in power system problems such as short circuit and transient stability

algorithms. The computation time of the two solvers were then compared with

each other for a wide spectrum of network admittance matrices up to 6500

buses and 13000 lines. The impact of the network size and topological

connectivity on the relative performance of the two solvers were also

numerically investigated.
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To compare the performance of the two solvers, the ratio of the

corresponding CPU times is displayed as a function of the network size in

Figures 5.1 to 5.4. The results indicate that the PCG can be advantageously

applied to certain types of complex linear systems of equations arising in

power system studies.

5.3.1 Test networks

In these series of experiments, the networks were composed of sparse

blocks of varying sizes. These blocks, themselves, are interconnected by a

sparse network. The buses in each block are connected to each other in a

random fashion and have the star-type connection explained in chapter Ill.

Each bus in the network is (on average) connected to four transmission lines

and thus, the total number of the lines in the network add up to about two

times of the total number of the buses in the network (Further information

on the test networks can be found in chapter VI). The test network generated

for these series of experiments range up to 6500 buses and 13000 lines.

It was described in chapter II that the Frontal solver is a bandwidth

based solver. Thus, to ensure that the network data are not biased against the

direct solver, the input data (admittance matrices) were generated such that

the matrix has its minimum possible bandwidth around the major diagonal.
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Figure 5.1: CPU time ratio of direct and PCG complex solvers versus the
network size
(I..argest sparse block has 100 buses)

5.3.2 Discussion of the results

The results of this section are grouped into four diffe,'ent network

categories defined by the size of the largest sparse block in the network. In

fact, the effect of the size of the network as weil as the effect of the largest

block in the network (matrix bandwidth) on the performance of the two

solvers are evaluated. For each category, the ratio of the CPU time of one

complete solution by direct solver and the CPU time of one complete solution

by the PCG solver is plotted versus the network size in Figures 5.1 to 5.4.

A) In this group, the effect of the size of the network on the

performance of the two solvers is investigated. This investigation is performed

based on the evaluation of the performance of the two solvers on networks
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Figure 5.2: CPU time ratio of direct and PCG complex solvers versus the
size of the largest sparse block in the network
(Each network contains 2000 buses and 4000 lines for ail cases)

of varying sizes whose largest sparse blocks contain only one hundred buses

of the network. Other blocks in the networks have random sizes varying from

6 to 100 buses. The CPU time ratio for the two solvers in this group of

experiments are plotted in Figure 5.1.

Comparison of the two methods for the solution of the systems of

complex linear equations indicate that for networks with sizes smaller than

3000 buses, the direct solver is advantageous, while, for the networks of larger

sizes, the PCG shows a speed advantage over the direct solver. However, for

cases involving many repeated solutions with a constant coefficient matrix, this

advantage will be reduced. This is due to the fact that for these types of

problerns, only one factorization is necessary for ail the repeated solutions.
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Figure 5.3: CPU time ratio of direct and PCG complex solvers versus the
network size
(Largest sparse block is one tenth of the network size)

B) In the second category, the effect of the size of the largest block

(matrix-bandwidth) in the network is investigated. Thus, the solvers were

applied to networks of equal sizes containing 2000 buses, while the sparsity

degree is the same for ail these networks. Figure 5.2 shows the CPU time

ratio for the two solvers versus the size of the largest block.

As indicated in Figure 5.2, for tbis type of network, the relative

efficiency of the PCG over direct solver increases very rapidly with the size

of the largest block. The cross-over point where the PCG becomes faster than

direct methods starts near a block size of 200. As an example, for a 2000-bus

network composed of only one block, the PCG solver is about 275 times faster

than the direct solver.
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Figure 5.4: CPU time ratio of direct and PCG complex solvers versus Ihe
network size
(Largest sparse block is one fifth of the network size)

C) In the third category, networks with the largest sparse block equal

to one tenth of the size of the network were investigated. Figure 5.3 shows the

relative CPU times of the two solvers.

We see here that, for systems of more than about 2000 buses where,

the size of the largest block is about 200, the PCG becomes more efficient.

For a system of 6500 buses of this type of networks, the PCG shows a speed

advantage about five times that of the direct solver.

D) In the last group of experiments, the PCG and Frontal solvers were

applied ta networks of varying sizes whose largest black has a size equal ta

one fifth of the network size. The test results for these cases are plotted in

Figure 5.4. This group of networks is similar ta the one described in the third

category except that the largest black is twice the size.
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Figure 5.5: CPU time ratio of the Frontal solver for the solution of
networks whose largest block is one fifth of the network size over those
whose largest block is one tenth of the network size

In this case, the PCG method is considerably more efficient than the

direct method compared with the previous case and becomes more efficient

than the direct solver for systems larger than about 800 buses.

Figures 5.5, 5.6, 5.7 and 5.8 give a better understanding of the effect

of the largest block in the network on the relative behaviour of the two

solvers.

Figure 5.5 measures the effect of the largest block in the network on

the performance of the direct solver for network matrices of the same size

and sparsity degrees. This effect is shown in the figure by the CPU time ratio

of the direct solver for networks whose largest block is one fifth the size of

the network (Fron-b5) over thuse whose largest block is one tenth of the



•
CHAPTER5

800

700

600

~500
Q)

.~ 400

~ 300

200

GENERALIZATION OF THE PRE·CONDITIONED ... 94

Frontal

100

800 1200
largest block size

1600 2000

Figure 5.6: CPU time (Sun SPARC station 10, 64 Mb RAM) for the
solution by direct solver versus the size of the largest sparse block in the
network (Each network contains 2000 buses and 4000 Hnes for ail cases)

network size (Fron-bIO). 1t is illustrated that although this time ratio is about

one for small networks, it approaches four for very large networks. The latter

is a predicted value for the Frontal solver by the theory which establishes that

the CPU time for the solver is 0(nm2
) where, m is the size of the largest

black (matrix bandwidth). Figure 5.6 supports this result. This figure shows the

CPU time (on a Sun station SPARC 10) required by the Frontal solver for the

solution of network equations of the same size (2000 buses) and sparsi ty

degree (4000 lines) whose largest blacks vary in size. As illustrated in this

figure, for networks of constant sizes, the solution time increase is

almost O(m2).

On the other hand, Figures 5.7 and 5.8 evaluate the effect of the

largest black on the performance of the complex PCG solver for matrix
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Figure 5.7: CPU time ratio of the PCG solver for the solution of
networks whose largest block is one fifth of the network size over those
whose largest block is one tenth of the network size

equations of power networks. Figure 5.7 shows the CPU time ratio of the

complex PCG solver fOl those networks whose largest block is one fifth of the

size of the network (PCG-b5) over those whose largest block is one tenth of

the network size (PCG-blO). It is observed that, contrary to the direct solver,

the ratio does not increase. In fact, as Figure 5.7 shows, this ratio decreases

as network size increases. As an example, the PCG solution speed for a

network of 6500 buses with a largest block of 1300 buses will be about 33%

faster than for a network of the same size and sparsity degree whose largest

block contains ooly 650 buses. The explanation for this surprising result may

be seen in Table 5.II which shows the number of PCG steps for these two sets

of networks. From this table, it can be observed that, in case of large

networks the number of PCG iterations for a network whose largest block is

one fifth of the network is generally smaller than that of a network with a
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Figure 5.8: CPU time (Sun SPARC station 10, 64 Mb RAM) for Ihe
solution by PCG versus the size of the largest sparse block in the network
(Each network contains 2000 buses and 4000 lines for aU cases)

largest block of one tenth the network size. It is clear that this behaviour

implies that the larger the block the better the clustering effect of the pre­

condilioning. However, il is still unclear why this phenomenon occurs.

It was also observed, that for networks having a large bandwidth

(largest block), the number of PCG steps tends to be much smaUer than the

anticipated value of 0(n05). This, in turn, indicates that for very large

networks whose largest blocks are not Vf'ry smal1, the PCG method will be

faster than expected. To iIIustrate this conclusion, the number of actual

iterations required for convergence of the PCG for networks of 2000 buses

whose largest blocks vary in size are shown in Table S.III. These range from

66 to 12 iterations, depending on the size of the block, compared to the

anticipated value of 4S.



Table S.II: Number of iterations required for convergence of complex PCG
solver for networks of different sizes•
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Size of Size of the largest block in the network
the

network one tenth the one fifth the
network size network size

200 22 25

400 31 33

600 39 35

8Ca 37 40

1000 47 44

1200 55 42

1400 55 43

1600 61 42

1800 71 44

2000 61 45

2200 81 49

2400 74 43

2600 74 45

2800 76 45

3000 90 54

3500 102 44

4000 80 40

4500 102 50

5000 99 48

5500 91 55

6000 92 46

6500 95 58



Table 5.111: Number of iterations required for convergence of complex rCG
solver for 2000-bus networks whose largest blocks vary in size•
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Size of the Number of Size of the Number of
largest block iterations largest block iterations

200 66 1200 21

400 41 1400 17

600 29 1600 16

800 25 1800 17

1000 20 2000 12

The CPU time for the solution of this type of network is plotled in

Figure 5.8. It is illustrated in this figure that the CPU time required by the

PCG solver for the solution of networks of the same size whose largest blocks

vary in size, exponentially decreases as the size of the largest block increases.

As an exarnple, while the time for a network of 2000 buses whose largest

block contains only 200 buses is 8.21 seconds, it decreases to 2.71 seconds for

a 2000-bus network composed of only one block.

5.4 Concluding remarks

(1) The incomplete Cholesky pre-conditioned conjugate gradient (PCG)

algorithm can be efficiently applied to solve systems of complex linear

equations whose coefficient matrices have the sarne topology as the

admittance matrix. These types of equations arise in power system analysis

such as short circuit and transient stability studies.

(2) Our experimental evaluation of the performance of the modified complex

PCG solver as compared with that of the Frontal direct solver for networks



of up ta 6500 buses and 13000 lines indicates that, for large sparse networks,

with not tao smaII a bandwidth, substantial gains in computational speed can

be achieved.
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(3) The relative efficiency of the new PCG, compared with the Frontal direct

solver, improves exponentially with the size of the network and even more

rapidly with the size of the largest black.

(4) The performance of the PCG, un1ike direct solvers, is not as significantly

affected by the bandwidth of the network matrix. However, for power network

matrix equations, in contrast to the direct solver, it is observed that the

number of iterations required for convergence decreases with the size of the

largest block for networks of equal size and sparsity. This phenomenon

suggests that the larger the bandwidth the better the eigenvalues are clustered

by the pre-conditioning process.

(5) The complex PCG method should be seriously considered in power system

analysis where repeated solutions of systems of complex linear equations are

required.
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SIX

ARTIFICIALLY SYNTHESIZING NETWORK
DATA FOR POWER SYSTEM ANALYSIS

6.1 Introduction

To evaluate the performance and robustness of new power system

analysis algorithms, extensive numerical tests are required. Thus, it is essential

to have realistic data for a large set of power networks of various types and

sizes. Testing such algorithms on a few individual networks, as is often the

case, may not clearly identify ail its advantages or disadvantages.

It is evident that there are many difficulties associated with the

collection of real network data, especially for very large scale systems. These

difficulties are both techIÙcal and due to confidentiality reasons. Numerical

testing is therefore often restricted to the relatively small IEEE test networks

or to a limited set of special power networks whose data are not available to

the general research commuIÙty. In other fields, such as finite element



electromagnetic analysis, to alleviate the difficulty of collecting realistic data,

synthetically generated data are commonly used for many investigations [114,

115].
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This chapter presents an approach to synthetically generate realistic

data [121] Ïor power networks of arbitrary size and complexity.

We were motivated to develop this software by:

(i) The critical need for network data to investigate and test many

power system analysis methods (previous chapters).

(ii) The difficulty of gathering sufficient network data representative

of different topologies and sizes.

(iii) The fact that, to our knowledge, there in no widely availabIe

systematic method for producing arbitrary network data for power system

analysis.

(iv) The ability to be able to control the various network parameters

which may impact on the performance of the algorithm being tested (e.g. size,

topology, line and bus data).

This technique was used in the numericaI investigations described in

the previous chapters. It was found to be very valuable in the present thesis

but it should also find numerous applications in other power network anaIysis

areas where testing of algorithms is necessary on large scale systems.

6.2 Data Specification in the Power Flow Problem

In this chapter, the emphasis is essentially on the generation of realistic

data for the power f10w probIem. However, this data also serves to test



algorithms related to other types of power system analysis such as short circuit

studies, transient stability and contingency analysis. Thus, sorne of the

conclusions of this section also apply to other types of power system analysis

problerns.
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The power flow problem is formulated by a set of nonlinear algebraic

equations describing the behaviour of the complex power flows and voltages

throughout the network under steady state conditions (see Chapter II). To

formulate a load flow problem, three basic sets of data are required: the

topological, the line parameter and the bus data.

Topological data is defined by two index vectors describing holV the

buses are tied to each other through transmission lines or transformers. This

is a very important set of data having a major impact on the speed and

storage requirements of a load flow algorithm. In essence, network topology

defines the number of non-zero elements to be stored and numerically

manipulated during the solution. This point is discussed more thoroughly later

on in this chapter.

We define a local network (or block) as a sub-network composed of a

sub-set of the total number of nodes. Normally these local networks are

interconnected to each other through sorne tie lines resulting in bulk

interconnected networks.

Normally, transmission lines and transformers are modelled by lumped

1T-models. In this type of model each transmission line or transformer located

between two nodal points is characterized by its series impedance (composed

of series resistance, R and series reactance, X) together with its shunt

admittanœ elements, G (resistive) and B (capacitive).

Bus data describes generators and loads as power sources and sinks

respectively connected to the nodal points of the power network. They are

divided into three categories:



a) Generation Buses (Voltage Controlled Buses): At these buses, the

real power injections PiS and the magnitudes of the voltages ViS are given as

input data. The reactive power injections QiS and the voltage angles oiS are

computed by the power flow program.
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b) Load buses: PiS and QiS are known as the input data, and the

magnitudes and the angles of the voltages are to be computed.

c) Slack Bus: The slack bus is a reference bus for which the voltage

amplitude and angle are given as input data. Typical values are one per unit

and zero radians respectively. The load flow program computes the

corresponding injected powers P and Q at this bus.

In summary, the formulation of the load flow problem needs input data

consisting of the topological connectivity index vectors, the line and

transformer admittance values, as weil as the specified P, Q and V values for

the various bus types.

6.3 The Synthetic Network Generator Aigorithm

6.3.1 The general approach

The algorithm starts by assigning the total number of buses to the

network as per the user input data. Theo, realistic random voltage magnitudes

and angles are ascribed to each of these nodes (section 6.3.4). Based on the

selected network types and connectivity, these nodes are connected to each

other following a constrained random process related to the specified topology

of the network (section 6.3.2). For networks construeted from a set of local

blocks, interconnections between the local networks are determined in a

similar random manner (section 6.3.2). Then, the power injections in the

complete network are computed to complete the input data for the load flow



problem. Finally, user constraints are iteratively imposed to force the injection

data to lie \vithin the prescribed ranges. Figure 6.1 shows a basic flow chart

for the algorithm.
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6.3.2 Network configuration

The networks created by the developed software are composed of a

single block or multiple interconnected local blocks.

6.3,2.1 Single block networks

In this category, the power system consists of a local sparse network

with no external interconnections. There is no limit to the size of this single

block network and the number of buses can be any integer greater than two.

These single block networks may have two different topologies:

a) Star Networks: In this type, first, ail of the network buses are

connected to ~ach other through a ring of transmission Iines to assure

cOlmectivity of all buses. Then, extra connections among different buses are

created randonùy (Figure 6.2). The number of the connections from any bus

is based on a random integer, typically four connections per bus on average

(this generates twice as many lines as buses on average). This average value

is an input to the prograrn and can be controlled by the user. The buses to

which the randomly generated lines are connected are also chosen randomly.

Double circuit lines can be excJuded by the program if the user 50 desires.

This type of star network has been shown to be more difficult to order

efficiently for computations using direct solvers (see chapter III).

b) Grid Networks: For this type, the network has the form of a matrix,

whose elements represent the nodal points of the network (Figure 6.3). The

width of the network will be nw buses, where nw is the greatest integer less

than nb05 , where nb is the total number of the buses in the block. The last

column may consist of fewer nodes than nw.
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Figure 6.1: A basic flow chart for the network generator algorithm
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Figure 6.2: An example of an B-bus star-type power network

In this category of networks, the peripheral points are first connected

to each other, and then the adjacent nodes along each colurnn are connected

to each other to assure that no bus is isolated from the body of the network.

Finally, additional random connections between nij and nri' are created,

where i (i') represents the row number andj (j') denotes the column number

of the grid. In our algorithm, generally 1i-i' 1 s 1. However, Ij-r 1 can be

greater than one, if the generated network is expected to have non-planar

lines. The total number of transmission Hnes connected to any bus is

constrained to be within a realistic range. In the aIgorithm, the default ratio

of the number of Hnes to the number of buses has been selected by inspection

of the available real networks and IEEE example systems. However, the user

has control over this ratio. Thus, networks with varying sparsity may be

created.
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Figure 6.3: An example of a 28-bus grid-type power network

6.3.2.2 Multi·block networks

Networks in this category are composed of sparse blocks of varying

sizes. The block sizes are random integers within a user specified range. The

blocks themselves are interconnected into a sparse network. The inter-block

connections are similar to the nodal point connections in each individual

block, and therefore have the same topology. As an example, Figure 3.1

(chapter III) shows a star-type block interconnection for a multi-block network

composed of eight blocks of varying sizes which is similar to the star-type

network of Figure 6.2. Figure 3.2 (chapter III) shows the sparsity structure of

the B matrix of a synthetically generated network of this type. The algorithm

allows the user to number and connect blocks to each other either in a

constrained random fashion, or according to a specifie ordering.



6.3.3 The values assigned to Hne parameters•
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In the algorithm, line parameters are chosen to have random values

within a certain range around their specified base values. These base values,

which are in per unit, have been determined by inspection of real networks

and IEEE example systems. They have been chosen to be not very far from

the average values of these networks (typically within 20%).

6.3.4 Voltage magnitudes and angles

A random magnitude is assigned to the voltage at any node, which is

within a user specified range provided as input. Typical values vary from 0.95

to 1.1 per unit.

The angles are chosen to lie within a user specified range, however the

probable values within this angle range is not uniform. This is done to ensure

that the algorithm produces a smaller number of buses with high angles

compared to buses with low angles. Generally, buses with higher angles

correspond to generation buses which are fewer in number than load buses

which typically have lower angles.

6.3.5 Bus type determination

Power flows in all transmission !ines (transformers) are computcd

based on the assigned values for the !ine (transformer) parameters and bus

voltages and the load flow equations. Then, the injected real and reactive

powers are calculated at all buses. The determination of generator and Joad

bus types is based on these injected power quantities. The slack bus number

and its voltage is user selected.



6.4 Control Actions Applied to the Algorithm•
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During the development of the algorithm, it was observed that sorne

generated networks did not show good load flow convergence. It was found

that this undesirable behaviour occurred when the real and imaginary power

injections at adjacent buses varied very rapidly. This is an indication that the

voltage profile (both in magnitude and angle) selected is not sufficiently

smooth. Thus, sorne control operations were implemented in the algorithm to

alleviate this problem.

6.4.1 Real power adjustment

The program checks the computed input power injected into any nodal

point. If the absolute value is not within a specified range, the angle value of

the voltage at this bus is shifted toward the average value of the angles for

those buses which are direetly conneeted to it. After each change in the

network, the power flows and injections are re-computed. These adjustments

may be repeated several times until the injections are within the specified

range. The selected power injection range must be reasonable in the sense

that adjacent buses do not have sharp differences in power injections relative

to the capacity of the network to transmit this power.

6.4.2 Imaginary power adjustment

Imaginary power adjustment is similar to real power adjustment.

However, in this process the magnitudes of the voltages rather than the angles

are adjusted due to the high sensitivity of the imaginary power to voltage

magnitudes. Here, however, the adjustments are made to try to keep the

injected reactive power within 50% of the real power injection.
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6.4.3 Output data file
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The output data used for the load f10w program can be writlen and

saved directly as an ASCII file in any standard format, including the IEEE

standard.

6.4.4 Applications

The data produced by the developed program are useful for analylical

investigations in many power system studies. We have found this technique to

be valuable in the numerical investigation of new solvers for the load f10w

problem [29), and in a numerical investigation of the eigenvalue properties of

network matrices [120).

Since the user has control over base parameters such as, system size,

number of transmission Hnes and their connectivity, and line coefficients, Ihis

program can be used for numerical comparison of the convergence rate,

robustness and the validity of different algorithms as weil as the relative

impact of these parameters. This type of analysis is essential in planning and

operations planning.

6.5 Concluding Remarks

A new algorithm has been developed that generates synthetic power

networks with the following characteristics:

(1) The program can create networks with different types of dimensions,

configurations and connectivities.

(2) The program allows the user to specify the base parameter values for lines

and transformers.



(3) The program can constrain the randomly created data such as the power

injections, voltage magnitudes and angles to lie within specified ranges.•
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(4) There is no limit on the size of the network that can be generated.

(5) The network configurations and the assigned values of the network

elements can be controlled by the user to make the system as realistic as

required.

(6) The network data are written directly into ASCII files in any standard

format, including the IEEE standard.

Based on the above noted properties and on our own research, this

program is an extremely useful tool for research and development of new or

improved power system analysis algorithms.
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SEVEN

CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE RESEARCH

7.1 Conclusions

The majority of power system analysis studies essentially rely on the

repeated solutions of large sparse systems of Iinear equations. The principal

objective of this research has been to investigate the potential of the pre­

conditioned conjugate gradient (PCG) algorithm to solve systems of lincar

equations arising in power system studies. Although PCG solvers have

replaced the standard direct methods in various areas of engineering such as

finite element analysis, such comparisons had never been attempted in power

system problems up to now.

As part of this investigation, first it was proven (chapter III) that the

B' and BU matrices arising in the DC and Fast Decoupled load flow

algorithms are positive definite and, thus, comply with the convergence

requirements of the PCG algorithm. Then, for the first time, the PCG



algorithm was applied to the solution part of the DC and Fast Decoupled load

algorithms. The PCG approach was tested on the IEEE standard networks of

14, 30, 57 and 118 buses as well as on a large number of synthetically

generated power networks up to 5000 buses and 10000 lines. The performance

of the PCG for these series of experiments was evaluated and compared

against two types of sparse matrix direct solvers: the bandwidth-based Frontal

solver and the minimum degree ordering Sparspak-B5 solver (Tinney-2

algorithm).
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More specifically, this thesis has numerically examined the effect on

the performances of the PCG and direct methods of the following parameters:

the size of the network, the size of the largest block in the network, the block

arrangements in the network, the type of network configuration and its

connectivity.

The results of this experimental evaluation reveal a significant speed

advantage of the PCG solver over direct solvers in the analysis of very large

sparse power networks. This speed advantage is even more pronounced in the

analysis of networks which are not very narrow banded (Le., networks which

have at least one large sparse block) specially in comparison with the Frontal

solver. This is due to the fact that the efficiency of the Frontal solver

decreases for networks with large blocks. On the other hand, the performance

of the PCG is not affected considerably by the matrix bandwidth. In fact, the

PCG shows improved convergence behaviour for networks with larger

bandwidths but with the same sparsity. This advantageous behaviour of the

PCG can be attributed to a better clustering of the matrix eigenvalues for

networks with larger bandwidth (although a clear fundamental reason for this

general behaviour is not yet known).

It was also observed that, while the PCG performance is not

significantly affected by the network type, direct solvers are very sensitive to

the type of connectivity. For example, Sparspak-B5, which is one of the most



commonly used direct solvers and ordering schemes in power system analysis,

is much slower for star-type as compared with grid-type networks. This

behaviour is due to the fact that direct solvers are very sensitive to ordering

algorithms.
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The convergence of the PCG algorithm in the solution of power

networks also proved to be faster than expected from previous experiences in

the application of PCG methods. Convergence usually occurred in fewer

iterations than the typical value of nOs reported in the literature. This may be

primarily due to the fact that power network matrices are essentially

diagonally dominant and, when pre-conditioned, very good clustering of the

eigenvalues is achieved.

Most of the above mentioned results relate to the Fast-Decoupled

Load Flow, however, the possible use of the PCG in other Joad flow

algorithms such as the Full Newton method were also investigated in this

thesis. The resuJts show that this type of Joad flow algorithm is difficult to

adapt to the requirements of the PCG method and no advantage was

observed in repJacing direct soJvers by the PCG.

In chapter IV, two new types of pre-conditioners wcre experimentally

investigated. The performance of these two types of pre-conditioners was

compared with that of the classical incompJete Cholesky (CIC) pre­

conditioner. This comparison was based on the clustering effect of the

eigenvalues of the resultant coefficient matrices as weil as on the number of

iterations required for the PCG to converge. This investigation showed that

different pre-conditioning schemes based on approximations to the ChoJesky

factor seem to be the most promising approach to cluster the system

eigenvaJues efficiently. This study also indicates that superior pre-conditioning

can be achieved if the intrinsic properties of power networks are expJoited.

This, then implies that more specialized and faster PCG algorithms couId be

developed which utilize the physical properties of power networks.



In chapter V, the PCG algorithm was modified such that it could be

applied to systems of complex line<ü equations. It was demonstrated that the

aIgorithm converges to the correct solution for systems of linear equations

whose coefficient matrix is equal to the complex admittance matrix of a power

network. The performance of the PCG for these types of problems was

evaluated for power networks of different topologies and various sizes up to

6500 buses and 13000 lines. The evaluation was based on the comparison of

the PCG with the standard bandwidth based Frontal direct solver. The

encouraging results of this investigation suggest that the new PCG algorithm

should also be seriously considered to replace direct solvers in transient

stability and short-circuit studies involving the solution of complex systems of

equations.
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Finally, to be able to support our experimental conclusions by adequate

test results, it was highly desirable to have access to a broad range of realistic

data characterizing power networks of various types and sizes. Thus, a new

technique was developed that generates realistic data from power networks

of arbitrary size and complexity. While, these networks are randomly

generated, control adjustments have been implemented in the software to

make the generated networks as realistic as possible. The software allows the

user to specify the system dimension, type of network, connectivity

configurations and other network characteristics. This program has proven to

be a very useful tool, not ooly for the application of this thesis, but it should

also find numerous uses to thoroughly test any new power system planning

and operation algorithms.

7.2 Recommendations for Future Research

Even though, this thesis has demonstrated the advantage of the

application of the PCG method over direct solvers in power system studies,

the potential of the PCG algorithm in al! areas of power system operation and



plaming is yet to be fully explored. Therefore, future work should be directed

tuwards new applications of PCG in various power system studies. The main

recommendations for future research are:
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1) Further study should be devoted to e"lllore the intrinsic properties

of power network matrices. Thus, more specialized pre-conditionings may be

possible for certain types of networks. This suggests that each utility may

utilize a specifie PCG aIgorithm for its own applications to enhance the

efficiency of its power system algorithms.

2) Investigations should be also directed to modify the PCG algorithm

such that it would converge to the solution for systems of linear equations

whose coefficient matrix is not positive definite.

3) More detailed investigation should be directed toward the use of

PCG solvers in the transient stability problem.

4) The power system state estimation problem should be considered

as a good candidate for application of the PCG aIgorithm.

5) The potentiai application of the PCG algorithm to the optimalload

flow problem, especiaIly, for on-line computations should be investigated.

6) Parailei processing approaches appears to be promising in the PCG

aIgorithm to enhance the efficiency of the overall computation.
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A

JACOBI, GAUSS-SEIDEL AND SUCCESSIVE
OVERRELAXATION ITERATIVE METHODS

These methods were first considered by Withmeyer in 1936 [87]. AlI

of these three methods are linear, first degree iterative techniques for the

solution of systems of linear equations. In the following we describe these

three iterative methods [88, 90, 95].

It was mentioned in chapter II that all these three methods may be

expressed in the form,

B x"'+\ + (A-B) x'" = b

or,

Assuming (I-B'\A)=G and B'\b=k, we can write,

x"'+\ = G x'" + k

(a.!)

(a.2)

(a.3)

where G is called the iteration matrix for the method. In this class of iterative

techniques, each choice of a non-singular matrix B (equation a.2) leads to a

potential iterative method.

ln the Jacobi iterative method [89] (sometimes called total step

method), one chooses,

B=D (a.4)
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where,

JACOBI. GAUSS SEIDEL AND ...

D = diag { an' a22, ••• , aM }
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(a.5)

Now, we decompose matrix A in the standard decomposition forro.

A = D-E-F (a.6)

such that E and Fare respectively lower and upper triangular n by n matrices.

One thus obtains from equation a.2,

(a.7)

The matrix D-1(E+ F) in equation a.7, is called the point Jacobi matrix

associated with the matrix A. From this equation, the ith component of the

x vector in its scalar forro can be expressed as,

xm+ 1
i

n a
= - L, (--!!-Jxt

J-1 ail
(a.8)

It is clear from equation a.8 that in this iterative technique, ail the

components of the vector xm must be saved during the computation of the new

vector xm+1• However, it seems advantageous to use the latest estimates xt+ 1

of the components xj (O<jsi) to calculate Xi+1
mt

\ component. This idea will

result in the computation of the solution vector components as below,

(ls;is;n,j~i) (a.9)

In this approach called point Gauss··Seidel or point single step iterative

method [90], it is not necessary to save !Wo approximations xj
mtl and Xjm



during the computational process. Equation a.9 can be expressed in matrix

notation as,•
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(a.l0)

where, (D-E) in this equation, is a non singular lower triangular matrix and

(D-E)"IF is called the point Gauss-Seidel matrix associated with the matrix A.

Another iterative method for solving systems oflinear equations closely

related to the Gauss-Seidel method, is called the point successive

overrelaxation (SOR) method [91]. In this approach, X;m+1 is a weighted mean

of Xjm and Xjm+I in the point Gauss-Seidel method. Thus, the components Xjm+I

of this methods are defined as,

(a.ll)

where, xGi
m and xGi

m
+1 are the two successive estimations for the solution

vector in the Gauss-Seidel iterative method and the quantity e.> is called the

relaxation factor. 1t is clear that the two weighting factors (1-e.» and e.> depend

onlyon e.> and for 0$e.>$1 both weights are non-negative. In this approach if

e.> > 1, we will refer to it as overrelaxation, while e.> <1 corresponds to

underrelaxation.

One can combine two equations a.9 and a.lI to conclude,

k.
+-'

au
_ xml

1
(a.12)

This method like Gauss-Seidel method needs the storage of only one

solution vector during the computation process. This algorithm in matrix form

can be expressed as,



(D-UlE ) X"' l = {(l-Ul)l + Ul U} x" + Ulk (a.Dl•
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Assuming bD"IE and UeD'lF, equation a.13 will be reduced to,

The convergence of this method is dependent on the relaxation factor

fu [92-94]. For fu =1, this method reduces to point Gauss-Seidel iterative

method.

These iterative techniques have the advantage of less memory

requirements when compared with direct solution methods. However, due to

their frequent slow convergence, none of them are recommended for power

system algorithrns where reHable fast convergence is vital.
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B

CONJUGATE GRADIENT ALGORITHM

The conjugate gradient scheme (CG) [99-104] is an important semi­

iterative technique when the coefficient matrix is positive definite. This

method was first presented by Hestenes and Stiefel in 1952 [99].

In the absence of rounding errors, in contrast to other iterative

techniques, the CG method terminates with the exact solution in at most n

steps [99-101]. Because ofrounding errors, however, additional iteration steps

may be required [88].

The basis of the method cornes from the fact that the function,

F(x) = 1. xiA x - x'b
2

(b.l)

is minimized by x=A-lb. Thus, finding the minimum point of F will give us the

solution to the linear system of equations Ax=b if A is positive definite.

Conjugate gradient algorithms use a sequence of linear search directions (p)

starting from an initial guess Xo and, at each iteration, a better estimate of the

solution is obtained, such that,

(b.2)

Thus, the final solution can be expressed as a linear function of the

search directions,

(b.3)



where, m is guaranteed to be no larger than the matrix size n and mainly

depends on the starting direction Pl and on the distribution of the eigenvalues

of the coefficient matrix [102].

•
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The main feature of this scheme is that any two search directions are

conjugate. Two directions Pi and Pj are said to be conjugate with respect to

matrix A li,

P;' A P
j

= 0 (bA)

Thus, assuming that aU P vectors are mutuaUy conjugate and

premultiplying equation b.3 by PilA, we will have,

P;' A [al Pl + az Pz + .., + am Pm ] = P;' b (b.5)

from which, we can conclude,

(b.6)

Hence, to find the solution vector x in equation b.3, one has to find the

conjugate directions Pi' Having these search vectors along with the terms (Xi

then yields the solution.

GeneraUy, in this algorithm,

(b.7)

is a good value for the starting search direction. Now, ail one has to do is to

proceed updating the solution vector using equation b.2. Now, assume that we

are at step i of the iterative process. Then, from equation b.3, the error vector

at this step can be caleulated as,
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(b.8)

The residual vector, rj, can be written as,

Ae = A x-A Xi = b-A Xl = 71 1

Then, from equations b.8 and b.9 one can write,

(b.9)

(b.l0)

Premultiplying equation b.l0 with Pi' and applying the conjugacy property of

equation bA, we can conclude,

(b.U)

After calculating ai from equation b.U, we may update the solution vector to

xi
+] (equation b.2).

In this algorithm the search direction in subsequent iterative steps are

calculated as,

(b.12)

The first term of this expression is the residual at the last step which

corresponds to the gradient of the function to be minimized. The second term

is added to adjust Pj+l so that it can be conjugate to Pi' Thus to ensure

conjugacy of two successive search directions, using equations b.4 and b.12

one will obtain,

t
P, A 71+1t:l = --C..--=.

l'1 t
PI A P,

(b.13)

Choosing the search directions based on the above mentioned



procedure, it may be shown that Pi+! is mutually conjugate to any of the

preceding search directions.
•
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The above mentioned equations IOgether will define the genenl\

conjugate gradient algorithm as follows :

1) Initialization:

a) Initialize e.

b) Guess x.

c) Fonn r = b - Ax.

While /;'U > "do:

2) Fonn a = p'p / p'Ap.

3) Updatex = x + ap.

4) Update r = b - A x.

5) Fonn f3 = -rAr / p'Ap.

6) Update p =r - f3 p.



•
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