
USING INTER-PROCEDURAL SIDE-EFFECT INFORMATION IN JIT
OPTIMIZATIONS

by

Anatole Le

School of Computer Science

McGill University, Montreal

February 2005

A THESIS SUBMITTED TO McGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE

Copyright © 2005 by Anatole Le

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-12484-9
Our file Notre référence
ISBN: 0-494-12484-9

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Side-effect analysis gives information about the set of locations that a statement may

read or modify. This analysis can provide information useful in a compiler for performing

aggressive optimizations. The impact of the use of side-effect analysis in compiler opti

mizations has been studied for programming languages such as Modula-3 and C, but no

thorough investigation for Java has been done. We present a study of whether side-effect

information improves performance in Java just-in-time (JIT) compilers, and if so, what

level of analysis precision is needed. We also analyze the optimizations and benchmarks

that benefit most from side-effect analysis.

We used SPARK, the inter-procedural analysis component of the SOOT Java analysis

and optimization framework, to compute side-effect information and encode it in class files.

We modified Jikes RVM, a research JIT, to make use of side-effect analysis in various local

and global analyses and optimizations such as local common sub-expression elimination,

heap SSA, redundant load elimination and loop-invariant code motion. On the SpecJVM98

benchmarks, we measured the static number of memory operations removed, the dynamic

counts of memory reads eliminated, and the execution time.

Our results show that the use of side-effect analysis increases the number of statie op

portunities for load elimination by up to 98%, and reduces dynamic field read instructions

by up to 27%. Side-effect information enabled speedups of up to 20% for sorne bench

marks. The main cause of the speedups is the use of side-effect information in load elimi

nation. Finally, among the different levels of precision of side-effect information, a simple

side-effect analysis is usually sufficient to obtain most of these speedups.

ii

Résumé

Les analyses inter-procédures tel que l'analyse d'effets secondaires peuvent fournir de

l'information utile pour effectuer des optimisations agressives. Nous présentons une étude

qui a pour but de vérifier si l'utilisation de l'analyse d'effets secondaires peut améliorer

les performances de compilateur juste-à-temps (JIT) , et si tel est le cas, quel niveau de

précision de l'analyse est requiert.

Nous avons utilisé SPARK, la composante d'analyse inter-procédure de SOOT, un cadre

d'anal yse et d'optimisation pour Java, pour faire l'analyse d'effets secondaires et l'encoder

dans les fichiers class Java. Nous avons modifié Jikes RVM, un JIT de recherche, afin que

l'analyse d'effets secondaires soit utilisée dans l'élimination de sous-expression commune,

dans le heap SSA, dans l'élimination de charge redondante et dans le déplacement de code

boucle-invariable. Sur les programmes standards de SpecJVM98, nous avons mesuré le

nombre statique d'opérations de mémoire diminué, les comptes dynamiques d'instructions

de lecture de mémoire éliminés, et le temps d'exécution.

Nos résultats démontrent que l'utilisation de l'analyse d'effets secondaires augmente

jusqu'à 98% le nombre statique d'opportunité d'élimination d'opérations de charge, et

réduit jusqu'à 27% le nombre dynamique d'instructions de lecture de champ. L'utilisation

d'information sur les effets secondaires a produit une montée en vitesse de jusqu'à 20%

pour certain programmes. La cause principale de ce résultat est l'utilisation de l'analyse

d'effets secondaires dans l'optimisation de l'élimination de charge. Finalement, parmi les

différents niveaux de précision de l'information sur les effets secondaires, une analyse rela

tivement simple est habituellement suffisante pour obtenir la plupart des montées en vitesse.

iii

iv

Acknowledgments

1 am very grateful to my advisor, Professor Laurie Hendren, for her help, guidance and

encouragements throughout the completion of this thesis. 1 learned a lot from her high

level view, criticisms, many advices and suggestions, and her insights in compilers. 1 also

very appreciated her financial support towards the end of my studies.

1 would like to thank Professors Laurie Hendren, Clark Verbrugge, Prakash Panan

gaden and former Professor Karel Driesen for the courses that they taught in programming

languages and that helped me accomplish this work. 1 am also very grateful to many pro

fessors and the Co-op pro gram at the University of Waterloo, which provided me a solid

foundation in Mathematics and Computer Science during my undergraduate studies.

1 would also like to thank aIl members of the Sable Compiler and Concurrency Lab that

made the environment stimulating, and also friendly. In particular, 1 cannot thank enough

Ondrej Lhotak for aIl the help, explanations, comments and suggestions that he provided. 1

also thank Feng Qian and the people on the Jikes RVM mailing li st for answering questions

related to Jikes RVM. 1 thank Lin Wang, who was my partner in the compiler peephole

optimization contest, and Marc Lanctot for his help on PowerPC machines.

1 really enjoyed my graduate studies at McGill, and the time that 1 spent with the tennis

team. 1 also met reaIly good friends. Thanks to my friends and family, in particular, Marcia,

my sister and my parents, who aIl supported me with encouragements during good as weIl

as difficult times.

Finally, this research has been funded in part by FQRNT and McGill Graduate Studies

feIlowships.

v

vi

Contents

Abstract

Résumé

Acknowledgments

Contents

List of Figures

List of Tables

1 Introduction

1.1 Motivation.

1.2 Contributions

1.2.1 Side-Effect Analysis in Soot

1.2.2 Implementation

1.2.3 Experiments
1.2.4 Analysis of Speedups .

1.3 Thesis Organization

2 Related Work

2.1 Summary Information of Procedures

2.1.1 Early Algorithms

2.1.2 Banning's Decomposition of the MOD Problem .

vii

iii

v

vii

xi

xiii

1

1

2

3

3

4

5

6

7

7

7

8

2.1.3 Improving Banning's Framework

2.2 Side-Effects for Languages with Pointers

2.2.1 Evaluating Points-to Analyses . .

2.2.2 Impact of Side-Effect Analysis in Optimizations

3 Background

3.1 Call Graph Construction

3.2 Points-to Analysis ..

3.3 Side-Effect Analysis

3.4 Encoding Side-Effects in Class File Attributes .

3.5 Analysis Variations

4 Optimizations Enabled in Jikes RVM

4.1 Local Common Sub-Expression Elimination .

4.2 Redundant Load Elimination

4.3 Loop-Invariant Code Motion

4.4 Using Side-Effect Information for Inlined Bytecode .

5 Experimental Framework

5.1 Systems

5.2 Jikes RVM and Related Tools .

5.3 Benchmarks..

5.4 Measurements.

6 Impact on Optimizations

6.1 Local Optimizations .

6.2 Global Optimizations

6.2.1 Redundant Load Elimination (RLE)

6.2.2 Loop-Invariant Code Motion (UCM)

6.2.3 Dynamic Measurements

viii

9

10

11

14

19

19

21

22

23

24

31

31

32

39

40

43

43

44

45

49

51

51

59

59

62

65

7 Analysis of Speedups

7.1 Compress........................

7.1.1 Methods and Optimizations Causing Speedups

7.1.2 Original Code. . . .

7.2 Mpegaudio

7.2.1 Local Optimizations

7.2.2 Global Optimizations .

7.3 RaytracelMtrt

7.4 Summary . .

8 Conclusions and Future Work

8.1 Conclusions.

8.2 Future Work .

8.2.1

8.2.2

8.2.3

8.2.4

Experimenting with a Fast PowerPC Machine .

Using Context-Sensitive Analyses .

Computing Side-Effects at Runtime

Investigating Secondary Effects . .

Appendices

A Miscellaneous Tables

Bibliography

IX

73

73

73

81

85

85

87

92

93

95

95

97

97

97

97

98

99

103

x

List of Figures

3.1 Side-Effect Attribute Format ... 24

3.2 Example of Side-Effect Attribute . 25

3.3 Code Examples 26

3.4 Relative Precision of Analysis Variations . 27

4.1 Original Local Common Sub-Expression Aigorithm in Jikes RVM 33

4.2 Local Common Sub-Expression Example 34

4.3 Before Scalar Replacement 34

4.4 After Scalar Replacement 35

4.5 Before Redundant Load Elimination 37

4.6 After Redundant Load Elimination . 38

4.7 Before Loop-Invariant Code Motion 39

4.8 After Loop-Invariant Code Motion 40

4.9 Before Inlining 41

4.10 After Inlining 42

7.1 Part of Method Compressor. compress () 83

7.2 Part of Method Decompressor. decompress () 84

7.3 Code of Class Runner in Benchmark Ray trace . . . 94

xi

XlI

List of Tables

5.1 Benchmark Description

5.2 Benchmarks Load Density Property at Level1 .

5.3 Benchmarks Load Density Property at Level2 .

5.4 Profiling Information for Benchmark Compress on Intel System

5.5 Profiling Information for Benchmark Ray trace on Intel System .

5.6 Profiling Information for Benchmark Mtrt on Intel System ...

5.7 Profiling Information for Mpegaudio on Intel System at Levell

5.8 Profiling Information for Mpegaudio on Intel System at Level2

45

46

46

47

47

47

48

48

6.1 Levell Static Counts for Local CSE with % Increase Using Side-Effects 53

6.2 Levell Dynamic Load Counts with % Reduction Using Side-Effects . 54

6.3 Levell Dynamic Total Counts with % Reduction Using Side-Effects . 55

6.4 Level 1 Running Time on Intel . . . 56

6.5 Level 1 Running Time on AMD .. 57

6.6 Level 1 Running Time on PowerPC 58

6.7 Level2 Static Counts for RLE with % Increase Using Side-Effects 60

6.8 Level2 Static Total Count for RLE with % Increase Using Side-Effects 61

6.9 Level2 Static Counts for LICM with % Increase Using Side-Effects . . 63

6.10 Level2 Static Total Count for LICM with % Increase Using Side-Effects . 64

6.11 Level 2 Dynamic Counts for getfield and getstatic Instructions with % Re-

duction Using Side-Effects .. 66

6.12 Level 2 Dynamic Count for aload Instructions with % Reduction Using

Side-Effects .. 67

6.13 Level 2 Dynamic Loads Total Count with % Reduction Using Side-Effects. 68

X1l1

6.14 Level2 Running Time on Intel .

6.15 Level2 Running Time on AMD

6.16 Level 2 Running Time on PowerPC

7.1 Level 2 Runtime without Side-Effects in Selected Methods of Compress on

69

70

71

Intel . 75

7.2 Level2 Runtime without Side-Effects in Selected Methods of Compress on

AMD 76

7.3 Level 2 Runtime without Side-Effects in LCSE and RLE for Compress on

Intel . 77

7.4 Level 2 Runtime without Side-Effects in LCSE and RLE for Compress on

AMD 78

7.5 Level2 Static Counts without Side-Effects in LCSE and RLE for Compress 79

7.6 Level 2 Dynamic Counts without Side-Effects in LCSE and RLE for Com-

press. .. 80

7.7 Level1 Runtime without Side-Effects in Local CSE for Mpegaudio on Intel 86

7.8 Level1 Runtime without Side-Effects in Local CSE for Mpegaudio on AMD 86

7.9 Level1 Static Counts without Side-Effects in Local CSE for Mpegaudio. 86

7.10 Level1 Dynamie Counts Using Side-Effects in Local CSE for Mpegaudio 87

7.11 Level 2 Runtime without Side-Effects in Selected Methods of Mpegaudio

on Intel 89

7.12 Level2 Runtime without Side-Effects in Selected Methods of Mpegaudio

onAMD 90

7.13 Level2 Runtime without Side-Effects in LCSE and RLE for Mpegaudio on

Intel .. 90

7.14 Level2 Runtime without Side-Effects in LCSE and RLE for Mpegaudio on

AMD 91

7.15 Leve12 Statie Counts without Side-Effects in LCSE and RLE for Mpegaudio 91

7.16 Level2 Dynamic Counts without Side-Effects in LCSE and RLE for Mpe-

gaudio .. 92

xiv

A.1 Level2 Runtime without Side-Effects in LICM for Compress on Intel. . 99

A.2 Level2 Runtime without Side-Effects in LICM for Compress on AMD . . 100

A.3 Level2 Runtime without Side-Effects in LICM for Mpegaudio on Intel . 100

A.4 Level2 Runtime without Side-Effects in LICM for Mpegaudio on AMD .. 101

xv

1.1 Motivation

Chapter 1

Introduction

Over the past several years, just-in-time (JIT) compilers have enabled impressive improve

ments in the execution of Java code, mainly through local and intra-procedural optimiza

tions, speculative inter-procedural optimizations, and efficient implementation techniques.

However, JITs do not generalIy make use of whole-program analysis information, such as

conservative calI graphs, points-to information, or side-effect information, because it is too

costly to compute it each time a program is executed.

Side-effect analysis provides an approximation of the set of memory locations that each

instruction may read orwrite. This analysis can optimize code by eliminating redundant

loads and stores in the presence of method calIs. It can also improve precision of other

intra-procedural analyses, which in tum may enable various other optimizations. Since aIl

non-trivial data types in Java are objects which are always accessed through indirect ref

erences (pointers), one would expect optimizations using side-effect information to enable

significant further improvements in the performance of Java programs.

The purpose of the study presented in this thesis is to answer three key questions. First,

is side-effect information useful for the optimizations performed in a modem JIT, and can

it significantly improve performance? Second, what level of precision of the side-effect

information and the underlying analyses used to compute it is required to obtain the se per

formance improvements? Third, which optimizations bene fit most from side-effect analysis

1

Introduction

and where in the code does it make a difference?

To study the se questions, we used the SOOT [VRGH+OO] bytecode analysis, opti

mization, and annotation framework, which implements a system consisting of various

ahead-of-time inter-procedural side-effect analyses. SOOT supports three intermediate rep

resentations that can be used for transforming bytecode at different abstraction levels. The

side-effect analyses computed in SOOT uses Jimple as its intermediate representation. The

simplest, least precise side-effect analysis computed in Soot uses Class Hierarchy Anal

ysis (CHA) [DGC95] for an approximation of the call graph and method summaries of

fields read and written. More precise (though more expensive) side-effect analyses make

use of caU graph and points-to information computed by SPARK [Lho02, LH03]. SPARK

is the points-to analysis framework component of SOOT that is used to estimate the set of

locations in memory that a Java reference variable can point to.

The SOOT framework also supports the embedding of user-defined attributes in Java

class files through its annotation framework [PQVR+Ol]. These attributes are used to en

code optimization information that is determined during a statie analysis of the program.

JIT compilers have in the past used such information in optimizations such as array bounds

check elimination and null pointer check elimination. In this thesis, we are interested in

encoding side-effect information in class file attributes, and apply it in various optimiza

tions of a JIT compiler. We chose the Jikes Research Virtual Machine (RVM) [AAB+OO],

an open source research software written in Java that can execute Java programs, as the JIT

for our study.

1.2 Contributions

The contributions of this thesis are the following:

• We review in detail the different side-effect analyses implemented in SOOT, and

the caU graph and points-to analyses computed by SPARK that a side-effect analysis

relies on .

• To our knowledge, this is the first study of the run-time performance improvements

obtainable by taking advantage of side-effect information in a range of optimizations

2

1.2. Contributions

in a Java JIT.

• We present empirical evidence that the availability of side-effect information in a

Java JIT can enable significant performance improvements of up to 20%.

• We present an analysis of the speedups obtained by pointing out the optimizations

that benefit most from side-effect information and where in the code the se optimiza

tions achieve speedups.

In the following subsections, we de scribe in more detail each of these contributions.

1.2.1 Side-Effect Analysis in Soot

We first review the two inter-procedural analyses that a side-effect analysis depends on in

SOOT:

• Call Graph Construction (Section 3.1)

• Points-to Analysis (Section 3.2)

We then explain how Soot computes side-effect analysis in Section 3.3. We present

how side-effect information is encoded in class file attributes and the method it uses to

reduce the attribute's size in Section 3.4. We de scribe the different side-effect variations

and their relative precision, and show examples of optimizations that can be performed

with the different analyses in Section 3.5.

1.2.2 Implementation

To take advantage of side-effect analysis, we made several modifications to Jikes RVM. We

added code to read in the side-effect information produced in our analysis. We then modi

fied the following analyses and optimizations to take advantage of side-effect information:

• Local Common Sub-Expression Elimination (Section 4.1)

• Heap Array SSA Construction (Section 4.2)

3

In troducti on

• Redundant Load Elimination (Section 4.2)

• Loop-Invariant Code Motion (Section 4.3)

We provide a description of each of these analyses and optimizations in Sections 4.1

to 4.3, and explain how these can bene fit from side-effect analysis. We de scribe the modifi

cations that we made and show examples of improvements enabled by the use of side-effect

information in the optimizations adapted. We explain how we dealt with method inlining

when using side-effect information in Section 4.4. FinaIly, to measure the effect of the

availability of side-effect analysis in the se optimizations, we inserted instrumentation code

in Jikes RVM both to count the static opportunities for performing optimizations, and the

dynamic effects on the improved optimizations.

1.2.3 Experiments

We performed experiments on the use of side-effect information in local and global opti

mizations on three different architectures (Intel, AMD and PowerPC). The different sys

tems and benchmarks used in our experiments are described in detail in Chapter 5.

The results for local optimizations (only local CSE makes use of side-effect analysis)

are presented in Section 6.1. Our experiments show that static opportunities for load elim

ination increased by up to 41 %, but only resulted in a decrease of up to 0.87% of dynamic

loads. This produced speedups in mpegaudio of 1.08x and 1.06x on our Intel and AMD sys

tems, and 1.02x for raytrace on both of these systems. On PowerPC, the use of side-effect

information did not en able speedups. Finally, the different side-effect variations produced

identical static and dynamic counts, and as expected, similar execution times. A simple,

inexpensive side-effect analysis thus appears sufficient in local optimizations.

For global optimizations (Section 6.2), aIl of the optimizations that we modified make

use of side-effect information. The results of the experiments show that the use of side

effect analysis increased the number of statie opportunities for load elimination by up to

98%, and reduces dynamic field read instructions by up to 27%. Side-effect information

enabled speedups of up to 20% for benchmarks compress, raytrace/mtrt and mpegaudio.

4

1.2. Contributions

Our results also show that although precise analyses provide significantly more optimiza

tion opportunities when counted staticaUy, most of the dynamic improvement is obtainable

even with relatively simple, imprecise analyses. In particular, a side-effect analysis based

on a caU graph constructed using an inexpensive Class Hierarchy Analysis (CHA) already

provides a very significant improvement over not having any side-effect information at

aU. This confirms what has been discovered for other languages such as Modula-3 or

C [GH98,DMM98].

1.2.4 Analysis of Speedups

For local optimizations where only local CSE makes use of side-effect analysis, a signifi

cant speedup was obtained only for benchmark mpegaudio on our Intel and AMD systems.

We show in which method the additional loads eliminated using side-effect information

improved execution times.

For global optimizations, we show that the availability of side-effect information was

mostly beneficial in the redundant load elimination optimization for the speedups obtained

for benchmarks compress, raytrace/mtrt and mpegaudio. For each of these benchmarks, we

report the methods in which the use of side-effect analysis made a difference. We present

static and dynamic counts, and execution times of runs when not using side-effect infor

mation in these methods, and compare them with our results in Chapter 6. For benchmarks

compress and mpegaudio, more precise side-effect analyses improved speedups over our

simple (CHA) side-effect analysis. We point out where in the code the redundant load elim

ination optimization took advantage of more precise side-effect information. We show that

the additionalloads eliminated is due to an improved precision of side-effect information

on array elements. FinaUy, we note that adding a type-based analysis on array elements in

our simple, inexpensive, side-effect analysis would find these load removal opportunities,

and as a result, would pro duce speedups similar to our most precise side-effect analysis.

5

Introduction

1.3 Thesis Organization

The remainder of this thesis is organized as follows. The next chapter discusses related

work. Chapter 3 is devoted to our side-effect analysis in SOOT, the call graph and points

to analyses that it depends on, issues with encoding its result in c1ass file attributes, and

the precision variations that we experimented with. In Chapter 4, we de scribe how we

modified the optimizations in Jikes RVM to take advantage of side-effect information. We

present in Chapter 5 the benchmarks that we used, properties about the benchmarks, and

the environment in which we conducted our experiments. We report our empirical results,

inc1uding static and dynamic effects of side-effect information usage in the optimizations

that we modified, and execution times improvements for local and global optimizations in

Chapter 6. We provide an analysis of the speedups obtained in Chapter 7, showing which

optimizations benefited most from side-effect information and where in the code it made a

difference. We conc1ude with Chapter 8 and discuss future work.

6

Chapter 2

Related Work

In this chapter, we present a survey of the previous work on side-effect analysis. The

first section discusses the computation of summary information for method caUs for lan

guages withoutpointers, covering the early algorithms of the 1970's and Banning's solution

to the side-effect problem which became the convention al framework on which other re

searchers worked on to improve in the 1980's. The second section presents recent work

done in the 1990's and 2000's on side-effect analysis for languages with general-purpose

pointer usage. This section also discusses the use of side-effect information as a metric in

comparing points-to analyses, and the impact it has staticaUy and dynamicaUy in program

optimizations.

2.1 Summary Information of Procedures

2.1.1 Early Aigorithms

Early summary information algorithms for procedure caUs dates back to the 1970's [Spi71,

AU74, Ros75, Bar78] and were mainly targeted for the FORTRAN programming language.

This analysis was defined as an inter-procedural dataftow analysis used to summarize the

semantic effects associated with subroutine caUs and permitting global ftow analysis to

more effectively propagate information through programs. Each statement s in a program

was annotated with MOD and REF sets defined as:

7

Related Work

• MOD(s): set containing those variables whose values can be changed as a result of

executing s .

• REF(s): set containing those variables whose values can be used as a result of exe

cuting s.

Summary information was used in various intra-procedural transformations, optimiza

tions and paraUelization. The early algorithms for computing this information differed on

the language features they supported, the information that they computed, the precision

of the analysis, their complexity, and whether they used one or multiple passes over the

program. Sorne analyses ignored recursion or parameter aliasing [Spi71,AU74], were inef

ficient [Ros75], or did not support the nesting of procedures [HS75,AU77]. The most pow

erful techniques worked with languages with recursion and sharing of variables through

reference parameters, and was precise up to symbolic computation [Bar78]. The use of

pointers was not supported. AU of these techniques were based on sorne form of transitive

closures of various relationship. A comparison of these algorithms for computing summary

information can be found in Barth's PhD dissertation [Bar77].

2.1.2 Banning's Decomposition of the MOD Problem

Several researchers worked on the improvements of the early algorithms for computing

summary information in both complexity and precision [Lom77, Ros79, Ban79]. Ban

ning [Ban79] presented basic methods, using one pass, to find flow-insensitive side-effects

and possible aliases of variables. He represented the MOD problem as a dataflow prob

lem over the program's caU multi-graph, which could be solved by efficient techniques

developed for global dataflow analysis. His algorithm was more efficient than previous

work, handled recursion and reference parameters, and was precise up to symbolic com

putation. The basic methods for computing MOD could also be extended to summarize

flow-sensitive side-effects and cover other features and constructs present in programming

languages. The extensions are covered in Banning's PhD thesis [Ban78].

To perform the MOD analysis, Banning decomposed the problem into two separate

components:

8

2.1. Summary Information of Procedures

• alias analysis, and

• side-effect computation.

To compute MOD, Banning first computed a set GMOD(p) for every procedure or func

tion p representing the generalized MOD of p. Secondly, he calculated a set DMOD(s) for

every statement s representing the direct MOD of s. Thus, GMOD sets applied to proce

dures, and DMOD sets to statements. MOD was then computed using the combination of

the se two sets. MOD(s) was simply derived from DMOD(s) by considering the potential

aliases l due to reference parameters.

2.1.3 Improving Banning's Framework

Banning's work on MOD analysis became the conventional framework on which other re

searchers have worked on its improvements in the 19S0's [MyeSO, MyeS1, BurS4, Bur90,

CKS4, BCS6, CRS7, CKSSb]. Cooper and Kennedy [CKS4] presented improvements in the

complexity of computing fiow-insensitive summary information by breaking the problem

into two subproblems, a computation for global variables and one for caU-by-reference

formaI parameters. Combining the solutions to these subproblems solved the original

MOD problem. Using known efficient techniques to solve each of these subproblems,

the MOD analysis could be computed in almost linear time. A few years later, Cooper and

Kennedy [CKSSb], again, presented new methods to solve each of the two subproblems by

using a data structure, known as the binding multi-graph, to achieve a linear time complex

ity. Burke [Bur90] then showed that the two subproblems on globals and formaIs could be

solved more effectively by a similar problem decomposition.

Burke and Cytron [BCS6], Triolet, Irgoin, and Feautrier [TIFS6] , and CaUahan and

Kennedy [CKSSa] were interested in automaticaUy restructuring sequential programs on

paraUel architectures to improve performance, mainly by scheduling loop iterations con

cUITently on multiple processors. When an array element was modified by a procedure

caU, CUITent inter-procedural side-effect analyses conservatively assumed that the entire

ITwo variables are potentially aliased to each other if the analysis considers that they could access the
same memory location through a reference to either of them at a given point in the execution of a pro gram.

9

Related Work

array could be modified by the caU. Within a loop, in this case, aU elements of an array ap

peared to be referenced in each iteration. This much restricted the parallelization of loops

containing calls. Studies were thus conducted to integrate subscript analysis with alias

ing and to implement inter-procedural dataftow analysis to compute side-effects of method

caUs on subscripted references (individual array elements).

Ryder and Carroll [CR87] studied incremental algorithms for large, complex, and dy

namically evolving systems. They presented an incremental interval algorithm for MOD

analysis that could compute an updated side-effects solution in response to a change in the

system rather than recalculating it in its entirety.

2.2 Side-Effects for Languages with Pointers

Existing techniques for the computation of side-effect information could handle call-by

reference induced aliasing but did not support the use of pointers. This was insufficient to

perform aggressive transformations and optimizations in languages with general-purpose

pointer usage. Choi, Burke and Carini [CBC93] were the first to show that conventional

methods for side-effect analysis based on the decomposition in Banning's framework could

not handle the presence of pointers correctly. They illustrated with ex amples that side

effect analysis could not be performed separately from alias analysis for languages with

pointers. They mentioned an algorithm that could compute side-effects and that supported

pointers, inc1uding passing of pointers as reference or value parameters. However, they did

not provide a description of the algorithm or present implementation results. Landi, Ryder

and Zhang [LRZ93] were the first to present a complete design and implementation of an

inter-procedural modification side-effects algorithm for C programs that could handle the

presence of general-purpose pointers.

Early side-effect analyses for languages with pointers by Choi, Burke and Carini [CBC93]

and Landi, Ryder and Zhang [LRZ93] made use of may-alias analysis to distinguish reads

and writes to locations known to be different. These analyses were mainly targeted at anal

ysis of C, so the calI graph was assumed to be mostly static. Therefore, in comparison with

our work, in that setting, the information about pointers was most important, while the caU

10

2.2. Side-Effects for Languages with Pointers

graph was much easier to compute.

While prior work used the notion of alias-pairs analysis, Hendren et al. took a different

approach and introduced the points-to abstraction in their McCAT C Compiler [HDE+93,

EGH94]. This method computes relationships between abstract memory locations. This

analysis can provide points-to information based on the reads and writes abstract locations

computed, and can be used directly in other transformations and optimizations. The fol

lowing section discusses previous work on points-to analyses that used side-effect analysis

to evaluate its precision and effectiveness.

2.2.1 Evaluating Points-to Analyses

To evaluate and compare the precision of various point-to analyses, researchers measured

its effect on the precision of side-effect information, a client analysis, by reporting the size

of the points-to sets at indirect memory access instructions (i.e. *p=) [EGH94, Ruf95,

RROl, RMROl, MRR02]. Other points-to analysis work [LRZ93 , Oli97, MSH97, SRLZ98,

HPOO, RLS+Ol] takes this evaluation one step further, by also computing read and write

sets summarizing the effects of entire methods, rather than just individual statements, and

propagating this information along the caU graph. This is similar to the read and write set

computation we mention in Section 3.3.

Landi, Ryder and Zhang [LRZ93] measured the average and maximum number of side

effects found per assignment through pointer dereference (*p=), per procedure and per

caU site. They found that for their set of C programs, the number of locations assigned

values per assignment statement through dereference pointer variable was on average 1.2.

Thus, in most cases, there was only one alias for such variable at a given pro gram point.

However, their analysis excluded certain features of the C programming language such

as union types, casting, pointers to functions, exception handling, setjump and longjump.

In our experiments, we found that performing a context-insensitive points-to analysis to

distinguish different objects in our set of Java benchmarks provided little benefit. This

result also leads us to believe that on average, the number of possible aliases for a given

variable is low.

11

Related Work

Emami, Ghiya and Hendren [EGH94] presented the points-ta abstraction implemen

tation and results in the McCAT C Compiler framework [HGMS91]. They also showed

how to compute the program's call graph and points-to analysis together. Their points-to

analysis was context-sensitive, including recursive and mutually-recursive calling contexts,

and handled general function pointers in C. They measured possible and definite points-to

information at indirect references. For their set of benchmarks, their results showed that

the overall average number oflocations pointed to by a dereference pointer was 1.13, indi

cating that their points-to analysis was very precise.

Ruf [Ruf95] studied the empirical benefits of context-sensitive points-to analyses over

context-insensitive ones. He calculated points-to pairs reaching the location of inputs of

indirect memory reads or stores. His results showed that context-sensitivity offered no

benefit or improved precision on his set of C benchmarks programs. However, Ruf warned

that this result, somewhat surprising, might only apply to his set of benchmarks and that

for larger programs, context-sensitive analyses may be beneficial.

Olivar [Oli97] implemented a side-effect analysis based on the type inference points-to

algorithm by Steensgaard [Ste96] in the McCAT C compiler framework [HGMS91]. She

compared the read and write sets computed using this algorithm with the context-sensitive

points-to analysis [EGH94] implemented in McCAT. Her results showed that having a sim

ple side-effect analysis over having none was very beneficial. The benefits of having a more

precise side-effect analysis over a simple one were smaller. This result agrees with our run

time measurements, where we found that our simple side-effect analysis was sufficient to

obtain most of the speedups.

Shapiro and Horwitz [MSH97] studied the effects of the relative accuracies of different

points-to analysis algorithms on various subsequent analyses including MOD analysis. To

determine whether and how much the choice of points-to analysis affects MOD analysis,

they measured the sum of the sizes of the MOD sets for each function and the time to

perform the MOD analysis. Their results showed that the size of MOD sets increased by

about 70% when the size of points-to sets doubled on average. They also observed that a

more precise points-to analysis leads to a faster MOD computation (since points-to sets are

smaller). Still, the total time to perform both points-to analysis and side-effect computation

was smaller using an imprecise but fast points-to algorithm.

12

2.2. Side-Effects for Languages with Pointers

Stocks, Ryder, Landi and Zhang [SRLZ98,RLS+01] reported comparative experiments

on the effectiveness of a context-sensitive flow-sensitive points-to analysis versus a context

insensitive flow-insensitive one with respect to precision and scalability on the modification

side-effects problem for C. On a large set of C programs, they gathered empirical mea

surements of the precision of the analysis at pointer dereference statements (*p=) and at

function caU statements. They noted that although the loss in accuracy of using a context

insensitive flow-in sensitive analysis is a strong concem, the analysis provides a significant

gain over worst-case assumptions and can be adequate for certain applications. Our run

time measurements confirm this result. They also concluded that a context-sensitive flow

sensitive analysis yields significant precision improvements at the expense of much greater

complexity.

Hind and Pioli [HPOO] compared the effectiveness offive pointer analysis algorithms on

C programs. The analyses were context-insensitive and varied in their use of control flow

and alias data structures. They measured the precision of the analyses and how the com

puted solution affects various client analyses of pointer information including side-effect

analysis. Their empirical experiments reported the average MOD and REF size sets at each

nodes in the control flow graph. Their results showed that the difference in precision of the

side-effect information resulting from the various context-insensitive analyses was mini

mal. In our experiments, we also found that the various context-insensitive flow-in sensitive

points-to analyses used to compute side-effect information were about equivalent.

More recent work on the Java programming language also measured the precision of

points-to analyses by reporting the size of the points-to sets at field read and write instruc

tions [RMR01,MRR02]. Rountev and Ryder [RR01] evaluated their points-to analysis for

precompiled libraries in this way. Rountev, Milanova and Ryder [RMR01] presented a

points-to analysis for Java based on Andersen's points-to analysis for C [And94] using an

notated inclusion constraints. Their results on a large set of Java programs showed that the

points-to analysis solution has a significant impact on which objects may be read or writ

ten by program statements (object read-write information). Later, they performed similar

measurements to evaluate object-sensitivity, a new form of context-sensitivity for flow

insensitive points-to analysis for Java [MRR02]. The precision improvements of object

sensitivity analysis over context-insensitive analysis significantly improved the precision

13

Related Work

of MOD information by reducing the number of modified objects per statement. The im

pact on execution time of using context-sensitive side-effect analysis in JIT optimizations

is one of our areas for future work.

2.2.2 Impact of Side-Effect Analysis in Optimizations

When evaluating the effectiveness of points-to analyses, most researchers have used the

common metric of average points-to set size at indirect read or write statements or at func

tion caUs. This metric only provides statie results. This measure is thus not sufficient to

understand the impact of using these analyses in optimizations has on achievable run-time

performance improvements. Studies measuring the actual run-time impact of code opti

mized using side-effect information are surprisingly rare. We discuss them below.

Clausen's [Cla97] side-effect analysis for Java was based on a caU graph constructed

with a CHA-like analysis, but it did not use any pointer information. This analysis com

puted read and write information for each field, ignoring which specific object contained

the field read or written. In comparison with our work, Clausen's analysis is most similar

to our CHA-based side-effect analysis. Clausen applied his analysis results in an ahead

of-time early Java bytecode optimizer to a similar set of optimizations as we did: dead

code removal, loop invariant removal, constant propagation, and common sub-expression

elimination. For one benchmark, he obtained a speedup of 25%. However, his experiments

were run using JDK 1.0.2, one of the earliest Java virtual machines which did not have a

just-in-time compiler to perform aggressive optimizations like modem JVMs have today.

Ghiya and Hendren [GH98] measured the effectiveness of side-effect information on

the run-time efficiency of code produced by an optimizing compiler for C. They used

side-effect analysis in traditional analyses like common sub-expression elimination, loop

invariant removal, location-invariant removal (similar to the scalar replacement technique

for array references), and array dependence testing. On a set of pointer intensive C bench

marks, they obtained up to 10% speedups. They observed that a reduction in memory

references and instructions executed always translated into a speedup, but that there was

no direct correlation between this reduction and the percentage of performance improve

ments. Our results also showed that the speedups obtained for our set of benchmarks is not

14

2.2. Side-Effects for Languages with Pointers

in proportion with the percentage of dynamic loads eliminated.

Diwan, McKinley and Moss [DMM98] studied a version of redundant load elimination

(RLE) which combines loop-invariant code motion and common sub-expression elimina

tion of memory references in Modula-3. They used dec1ared types to conservatively ap

proximate aliasing relationships, and method read/write set summaries. They obtained up

to 8% speedups when using their most precise type-based alias analysis. They noted that

they expect RLE to be a profitable optimization since loads are expensive on modern ma

chines and architects expect they will only get more expensive [HP95]. In our experiments,

we found that using side-effect information in RLE had the largest impact on benchmarks

with high load densities. The results of Diwan et al. on Modula-3 and Ghiya et al. on C are

comparable to ours on Java. In particular, all three studies show that significant mn-time

improvements are possible, and that even simple, imprecise alias information enables many

of the improvements. They show that for a type-safe languages like Modula-3 and Java, a

fast and simple alias analysis may be sufficient for many applications.

Debray, Muth and Weippert [DMW98] presented an alias analysis and evaluated their

algorithm by measuring the percentage reduction in dynamic loads when using this analy

sis in a redundant load elimination optimization. However, they did not provide execution

time measurements. Their results showed that local alias analysis provided none to small

improvements, but for global alias analysis, it produced a reduction of up to 7% of dy

namic loads. Similarly, we conc1uded that side-effect analysis has little impact on local

optimizations, but improves significantly global optimizations.

Razafimahefa [Raz99] performed loop invariant code motion using side-effect infor

mation on Java in an ahead-of-time bytecode optimizer, and reported mn-time speedups

comparable with ours on an early-generation Java VM (up to 20%). He observed that

many invariant expressions were not moved due to the context-insensitive nature of the

analysis, and that a context-sensitive side-effect analysis would be beneficial.

Cheng and Hwu [CHOO] performed a study of the impact of memory disambiguation

on optimizations such as redundant load and store elimination, loop-invariant memory ac

cess migration, and load and store scheduling. They performed experiments on numerous

C benchmarks using full y resolved pointers and function side-effects. Their empirical re

sults using the SPECcint92 and SPECcint95 benchmarks suite produced a reduction of up

15

Related Work

to 40% of dynamie loads, and speedups of 42% on average (in large part due to the load

and store scheduling optimization). The performance gains that they obtained were over

programs compiled without pointer analysis, side-effect analysis and memory access op

timizations. Although we obtained smaller speedups on our set of Java programs (up to

20%), we note that the base that they used for comparison is much more conservative than

ours. Our base includes sorne form of memory disambiguation using types and global value

numbering.

Ghiya, Lavery and Sehr [GLS01] evaluated the benefits of a complete memory dis

ambiguation framework in transformations and optimizations, and its impact on program

performance. Their framework includes numerous techniques including pointer analysis,

and MOD and REF analyses for function calls. They compared performance improve

ments achievable using several memory disambiguation techniques and obtained up to 26%

speedups on the SPECcint2000 C benchmarks. They also concluded that there was no di

rect correlation between the static improvements and the performance gains.

Pechtchanski and Sarkar [PS02] presented a preliminary study of a framework which

allows programmers to provide annotations indicating absence of side-effects. Like our

side-effect information, these annotations are communicated to Jikes RVM in class file at

tributes and used to improve the redundant load elimination and loop-invariant code motion

optimizations. Only limited, preliminary, empirical results of the effect of these annotations

are provided, and verification of the correctness of the programmer-provided annotations

has yet to be done.

Chowdhury, Djeu, Cahoon, Burrill and McKinley [CDC+04] studied the effect of alias

analysis precision on the number of optimization opportunities for a range of scalar op

timizations. However, they only measured the statie number of optimizations performed

(rather than their mn-time effect), and their benchmarks are mostly pointer-free C pro

grams, sorne translated directly from FORTRAN, so they found, unsurprisingly, that alias

analysis precision had little effect. Other work studying the effect of alias analysis on

scalar optimizations also suggests that a simple alias analysis may be sufficient [DLFR01,

DMM01].

In summary, existing work on other languages largely agrees with our findings on Java.

16

2.2. Side-Effects for Languages with Pointers

Sorne side-effect information is useful for real ron-time improvements from compiler op

timizations. Although precision of the underlying analyses tends to have large effects on

statie counts of optimization opportunities, the effects on dynamie behaviour are much

smaller; even simple analyses provide most of the improvement. Distinctions of our work

from previous work are that we provide a study of ron-time effects of side-effect infor

mation on Java, and that we show how to communicate analysis results from an off-line

analyzer to a JIT.

17

Related Work

18

Chapter 3

Background

In this chapter, we review the implementation of side-effect analysis in SOOT [VRGH+OO],

a framework for analyzing, optimizing, and annotating Java bytecode. The side-effect anal

ysis depends on two other inter-procedural analyses, caU graph construction and points-to

analysis. We de scribe the construction of the caU graph in SOOT in Section 3.1. An im

portant difference from most other work on caU graph construction is that to obtain a con

servative side-effect analysis, the caU graph must include aU methods invoked, including

those invoked implicitly by the Java VM. In Section 3.2, we briefly explain the output of

the SPARK points-to analysis framework [Lho02, LH03]. Section 3.3 explains how the

information from these two analyses is put together to pro duce side-effect information.

In Section 3.4, we briefly note sorne issues with encoding the side-effect analysis results

in class file attributes to communicate them to the JIT. Pinally, in Section 3.5, we describe

how variations in the precision of the caU graph and points-to analyses affect the side-effect

information.

3.1 Cali Graph Construction

To perform an inter-procedural analysis on a Java program, information about the possible

targets of method calls is required. This information is approximated by a caU graph, which

maps each statement s to a set cg(s) containing every method that may be called from s.

Constructing a caU graph for a Java pro gram is complicated by the fact that most caUs in

19

Background

Java are virtual, so the target method of the caU depends on the run-time type of the receiver

object.

In our study, we compared two different methods in SPARK of computing caU graphs.

First, we used caU graphs computed using Class Hierarchy Analysis (CHA) [DGC95],

an inexpensive method which considers only the static type of each receiver object, and

does not require any inter-procedural analysis. Second, we used SPARK points-to analysis

(discussed in the next section) to compute the run-time types of the objects that the receiver

of each caU site could point to, and to determine the target method that would be invoked

for each run-time receiver type.

Several important, but subtle, details of the Java virtual machine (VM) complicate the

construction of a conservative caU graph suitable for side-effect analysis. In a Java program,

methods may be invoked not only due to explicit invoke instructions, but also implicitly due

to various events in the VM. Whenever a new class is first used, the VM implicitly caUs its

static initialization method. The set of events that may cause a static initialization method

to be caUed is specified in [LY99, Section 2.17.4]. The SPARK analysis assumes that any of

these events could cause the corresponding static initialization method to be invoked. Each

static initialization method is executed at most once in a given run of a Java program. There

fore, SPARK uses an intra-procedural flow-sensitive analysis to eliminate spurious caUs to

static initialization methods which must have already been caUed on every path from the be

ginning of the method. In addition, the standard class library often invokes methods using

the dopri vileged methods of java. securi ty. AccessController. SPARK

models the se with caUs of the run method of the argument passed to dopri vileged.

Methods may also be invoked using reflection. In general, it is not possible to determine

staticaUy which methods will be invoked reflectively, and SPARK's analysis only issues a

waming if it finds a reachable caU to one of the reflection methods. However, caUs to the

newlnstance method of java. lang. Class are so common that they merit special

treatment. This method creates a new object and caUs its constructor. SPARK conser

vatively assumes that any object could be created, and therefore any constructor with no

parameters could be invoked.

To partiaUy verify the correctness of the computed caU graph by SPARK, we instru

mented the code to ensure that aU methods that are executed at run time were included in

20

3.2. Points-to Analysis

the call graph and reachable from the entry points. To do this, we computed the set of

methods that are not reachable from the entry points through the call graph, and modified

them to abort the execution of the benchmark if they do get invoked at run time. Although

this does not prove that every possible run-time call edge is included in the computed call

graph, it does guarantee that every executed method is considered in call graph construc

tion. To further check that our overall optimizations were conservative on the benchmarks

studied, we verified that the benchmarks produced identical output in all configurations,

including with the optimizations disabled.

3.2 Points-to Analysis

We use the SPARK [Lho02, LH03] points-to analysis framework to compute points-to in

formation. For each pointer p in the pro gram, SPARK computes a set pt(p) of objects to

which it may point. The most common kind of pointer is a local variable of reference type

in the Jimple representation of the code. Local variables appear in field read and write

instructions as pointers to the object who se field is to be read or written, and in method

invocation instructions as the receiver of the method call, which determines the method to

be invoked. In addition, pointers are introduced to represent method arguments and retum

values, statie fields, and special values needed in simulating the effects on pointers of na

tive methods in the standard class library. Typically, an object is an allocation site; SPARK

models all run-time objects created at a given allocation site as a single entity. In addition,

special objects must be included for run-time objects without an allocation site, such as

objects created by the VM (the argument array to the main method, the main thread, the

default c1ass loader) and objects created using reftection. For sorne of these special objects,

the exact run-time type may not be known. Therefore, SPARK conservatively assumes that

their run-time type may be any subtype of their declared type.

SPARK performs a ftow-insensitive, context-insensitive, subset-based points-to analysis

by propagating objects from their allocation sites through all pointers through which they

may ftow. SPARK has many parameters for experimenting with variations of the analy

sis that affect analysis efficiency and precision. In this study, we experimented with four

21

Background

points-to analysis variations. We explain the variations in more detail in Section 3.5.

3.3 Side-Effect Analysis

SOOT's side-effect analysis consists of two steps, which are discussed in this section. First,

a read and write set for each statement is computed. Second, the read and write sets are

used to compute dependencies between all pairs of statements within each method.

For each statement s, SPARK computes sets read(s) and write(s) containing every static

field sf read (written) by s, and a pair (0,/) for every field f of object 0 that may be read

(written) by s. These sets also inc1ude fields read (written) by all code executed during

execution of s, inc1uding any other methods that may be called, directly or transitively. The

read and write sets are computed in two steps. In the first step, only the direct read and write

sets for each statement in the pro gram are computed, ignoring any code that may be called

from the statement. The result of the points-to analysis is used to determine the possible

objects being pointed to by the pointer in each field read or write instruction. In the second

step, the read and write sets of each method are continually aggregated and propagated to

all call sites of the method, until a fixed-point is reached. During the propagation, the call

graph is used to determine the caU sites of each method.

Once the read and write sets for all statements have been computed, for each method,

an interference relation between all the read and write sets in the method is computed:

int(m) = {(setI,set2) 1 setl nset2 =J. 0}. The interference relation is mapped on read and

write sets to four dependence relations between statements (read-read dependence, read

write dependence, write-read dependence, write-write dependence). For example, there is

a read-write dependence between statements SI and S2 if (read(sI), write(s2)) E int(m). It

is the dependences between statements that are encoded in c1ass files for the JIT to use in

performing optimizations.

22

3.4. Encoding Side-Effects in Class File Attributes

3.4 Encoding Side-Effects in Class File Attributes

AH of the SPARK analyses described in the preceding sections are performed on Jimple,

the three-address intermediate representation (IR) used in SOOT. In order to communicate

the analysis results to a JIT, SPARK must convert them to refer to bytecode instructions

during the translation of Jimple to bytecode. SOOT includes a universal tagging frame

work [PQVR+Ol] that propagates analysis information through its various IRs, and en

codes it in class file attributes. An important complication in this process is that one Jimple

statement may be converted to multiple bytecode instructions. However, Jimple is low

level enough that whenever a Jimple instruction has side-effects, exactly one of the byte

code instructions generated for it has those side-effects. Therefore, for each type of Jimple

instruction, SPARK identifies the relevant bytecode instruction to the tagging framework,

and it attaches the side-effect information to that instruction.

Another complication in communicating the side-effect information is that sorne meth

ods have a large number of statements with side-effects. Since the dependence relations

may have size quadratic in the number of instructions with side-effects, a naive encoding

of the dependence relations is sometimes unacceptably large. However, many of the read

and write sets in the method are identical. Therefore, a level of indirection is added. In

stead of expressing the dependence relations in terms of statements, SPARK enumerates aU

distinct read and write sets, and expresses the dependence relations between those sets. For

each statement, SPARK indicates which set it reads and writes. The resulting encoding has

size 8(m2 + n), where n is the number of statements, and m is the number of unique sets.

In his M.Sc. thesis [Lho02, Sections 6.2.2 and 6.2.6], Lhotâk observed that this encoding

limits the annotation size to acceptable levels.

Figure 3.1 shows the side-effect attribute format in class files. Each method is asso

ciated with two attributes. The first one, SideEffectAttribute, maps each byte

code that has side-effects to a read and write set. The extra byte contains a bit that indi

cates whether a bytecode explicitly or implicitly invokes a native method, and other bits

for future use. For our purpose, we did not use this extra byte. The second attribute,

DependenceGraph, denotes which sets interfere.

23

SideEffectAttribute:

BytecodeOffset

(2 bytes)

DependenceGraph:

Set Set

ReadSet WriteSet

(2 bytes) (2 bytes)

(2 bytes) (2 bytes)

Figure 3.1: Side-Effect Attribute Format

Background

ExtraByte

(1 byte)

In Figure 3.2, we show sample code and the resulting encoding of side-effect infor

mation. Method f 00 contains instructions that, once compiled, would be represented

by a putfield and two invokevirtual bytecodes at offset 2, 6 and 10. Since only the put

field and invokevirtual bytecodes at offset 2 and 6 have side-effects (a. nothing () has

none), only two entries appear in the SideEffectAttribute of method foo. For

both of these, the read set value is -1 (they do not read anything), and their write set values

are 0 and 1 respectively. Since these two write sets interfere (both contain field f), the

DependenceGraph attribute denotes a write-write dependence between sets 0 and 1.

3.5 Analysis Variations

In our empirical study presented in Chapter 6, we compare the effectiveness of six

variations of side-effect analyses in Soot. In this section, we explain the differences be

tween these variations. In Figure 3.3, we present examples of code that distinguishes the

variations: it may be optimized only if the information provided by specifie variations is

available. In line 28, the code writes a constant to the field b . f. In line 30, the constant is

read out again. Our goal is to optimize away the constant field read. If we substitute each

of the code snippets (a) through (e) on the right of Figure 3.3 for line 29, the resulting code

will never change the value (4) loaded in line 30. However, analyses of different precision

are required to prove that the code snippets do not have side-effects affecting the value of

24

3.5. Analysis Variations

class A {

int f;

void setF(int n) { this.f = n; }

void nothing() {}

void foo(A a {

a.f = 4; Il Offset 2 :

a.setF(3) ; Il Offset 6 :

a.nothing() ; Il Offset 10:

}

}

SideEffectAttribute (method foo):

Offset ReadSet WriteSet

2 -1 0

6 -1 1

DependenceGraph (method foo) :

Set Set

o 1

putfield

invokevirtual

invokevirtual

Figure 3.2: Example of Side-Effect Attribute

25

class Box

A a;

4 abstract class A {

int f;

6 abstract void nothing();

abstract void rnaybe () ;

abstract void setF () ;

abstract A id () ;

JO }

Il class B extends A {

12 void nothing () {}

13 void rnaybe() { this.f = 1; }

14 void setF() { this.f = 2; }

15 A id() { return this; }

16

n class C extends A {

18

19

void nothing() {}

void rnaybe() {}

20 void setF() { this.f = 3; }

21 A id () { return this; }

22 }

23 class Main {

24 public static void rnain(String[] args) {

25 new Main() .run(new B() 1 new C());

26 }

27

28

void run(A b , A c) {

b.f = 4;

29 III insert possible side-effect herel

~ int n = b.f; Il elirninate this load

31 }

32 }

Figure 3.3: Code Examples
26

Background

(a)

(b)

Ic.nothing () ;

(c)

1 c . rnaybe () ;

(d)

Box b1

Box b2

4 b1.a = c;

b2.a = b;

c = b1.a;

c.setF() ;

new Box();

new Box();

(e)

c

b

c.id() ;

b.id() ;

c .rnaybe () ;

3.5. Analysis Variations

b . f. Figure 3.4 gives an overview of the relative precision of the variations, with precision

increasing from bottom to top. After each variation, we list the subset of the code snippets

that can be optimized using the information provided by the variation.

/tf-f~de}

Otf-fl~,~~d} yot-fs {abce}

aOl-f6{ abc}

CHA {ab}

no~e {a}

Figure 3.4: Relative Precision of Analysis Variations

For the first variation, none, we compute no side-effect information at aIl, and rely only

on the internaI analysis in the Jikes RVM JIT for optimizations. In this case, Jikes RVM is

able to remove the read in li ne 30 only when the empty snippet (a) is inserted at line 29.

The JIT determines that the field being loaded is the same as the field to which the constant

was written, and since no statements have been executed since the write, the value could

not have been affected. However, as soon as we insert any method call between the write

and read (in each of the code snippets (b) through (e)), the JIT cannot optimize the read,

because it knows nothing about the side-effects of the method caUed.

Our second variation, CHA, is to compute side-effects using a call graph, but without

performing any points-to analysis. We construct the caU graph using CHA, as described in

Section 3.1. In this case, we can optimize code snippet (b), because the analysis determines

that the caU c. nothing () caUs the method nothing () in either class B or C, and

neither of the se methods write to field f. However, for the caU to maybe () in snippet (c),

CHA cannot tell which of the two maybe () methods will be invoked. Since B . maybe ()

writes to field f, the analysis conservatively assumes that b. f may be overwritten, and

prevents the optimization.

The remaining variations aU take advantage of points-to analysis information to com

pute side-effects. The differences between them are whether the points-to analysis is

27

Background

field-based (fb) or field-sensitive (f8), and whether it uses a caU graph computed ahead-of

time (aot), or whether it computes its own caU graph on-the-fly (otf). AU of the points-to

analysis variations determine that c can only be of run-time type B. Therefore, the caU to

c . maybe () does not write to field f, so the read in line 30 can be optimized when code

snippet (c) is inserted into line 29.

The distinction between a field-based and field-sensitive analysis defines how the points

to analysis treats pointer flow through fields of heap objects. In a field-based analysis, each

field is treated as a pointer with a single points-to set, i.e. the object to which a field belongs

to is not considered. Thus, it is assumed that any ob ject stored into a field f (regardless

of the object it is part of) may be retrieved from field f of any object. On the other hand,

a field-sensitive analysis computes a separate points-to set for each pair (ob ject ,field).

Therefore, if an ob ject is written to bl . a and a different object is written to b2 . a, and if

bl and b2 are known to not be aliases, then a field-sensitive analysis determines that bl . a

and b2 . a point to different objects. In contras t, a field-based analysis does not make this

distinction because it considers only the field a, and ignores the objects (bl and b2). This

is illustrated by code snippet (d). In the code, c is stored and later on read out of bl . a, and

b is stored into b2 . a. A field-based points-to analysis cannot distinguish between the field

a of the two different boxes bl and b2, and therefore assumes that c and b could point to

the same object, so b . f could be written to at the end of the code snippet. A field-sensitive

analysis, on the other hand, proves that when c read out of field a of box bl, it is distinct

from b, and so the caU to c. setF () does not affect the value ofb. f.

In order to propagate points-to sets inter-proceduraUy, a points-to analysis requires an

approximation of the caU graph. However, the points-to analysis can be used to build the

caU graph. One solution to this circular dependency is to build an imprecise caU graph

ahead-of-time using CHA, only for the use of the points-to analysis. After the points-to

analysis completes, the points-to information is used to construct a more precise caU graph

to be used in the side-effect analysis. The other alternative is to build the caU graph on

the-fly as the points-to analysis proceeds: as points-to sets grow, edges are added to the

caU graph. Results from prior work [LH03] show the latter approach to be more costly, but

to produce more precise results. The difference in precision is illustrated by code snippet

(e). In the code, c and b are passed through identity methods that return themselves. An

28

3.5. Analysis Variations

ahead-of-time CHA-based calI graph says that each id () method calIs may caU either

of the two id () methods, so both objects end up in the points-to sets of both c and b.

Therefore, the analysis cannot de termine that the caU to c. maybe () will not change

b. f. However, if the analysis builds the calI graph on-the-fty, the calI graph only contains

the single correct target method for each of the id () method calIs, and the object pointed

to by b does not ftow into the points-to set of c. The analysis therefore determines that the

calI to c. maybe () does not write to b. f, and the load may be eliminated.

29

Background

30

Chapter 4

Optimizations Enabled in Jikes RVM

The JIT compiler that we modified to make use of side-effect information is the Jikes

Research Virtual Machine (RVM) [AAB+OO). Jikes RVM is an open source research plat

form for executing Java bytecode. It includes three levels of JIT optimizations: level 0

(dataftow basics), level 1 (ftow-insensitive, inlining, commoning) and level 2 (advanced).

We adapted three optimizations in Jikes RVM to make use of side-effect information. The

first one is local common sub-expression elimination (CSE), a level 1 optimization, and the

other two are redundant load elimination (RLE) and loop-invariant code motion (LICM),

both level 2 optimizations. Sections 4.1 to 4.3 de scribe each of these optimizations and

the changes that we made. Because side-effect information refers to the original bytecode

of a method, bytecodes that come from an inlined method need to be treated specially.

Section 4.4 describes how we dealt with this case.

4.1 Local Common Sub-Expression Elimination

The first optimization in Jikes RVM that we modified to make use of side-effect information

is local CSE. This optimization is only performed within a basic block. The algorithm

for performing CSE on fields is described in Figure 4.1. A cache is used to store the

available field expressions. The algorithm iterates over aU instructions in a basic block,

and processes them. There are two parts in this process. The first is to try to replace

each getfield or getstatic instructions encountered by an available expression. If one is

31

Optimizations Enabled in Jikes RVM

available, it is assigned to a temporary variable and the getfield or getstatic instruction is

replaced by a copy of the temporary. If none is available, a field expression is added to the

cache for the getfield or getstatic instruction. For every putfield and putstatic instruction,

an associated field expression is also added to the cache. The second part is to update the

cache according to which expressions the current instruction kills. A putfield or putstatic

instruction of a field, say X, will remove any expression in the cache associated with field

X (the algorithm conservatively assumes that any object references may be aliased). A caU

or synchronization instruction kills aU expressions in the cache.

In this algorithm, we used side-effect information to reduce the set of expressions killed

(lines 20 and 22 in Figure 4.1). When the current instruction is a putfield, putstatic or a caU,

we only remove from the cache entries that have a read-write or write-write dependence

with the current instruction in the side-effect analysis.

An example is shown in Figure 4.2. Without side-effect information, the compiler

would conservatively assume that statement obj 2 . x = 10 could write to memory loca

tion obj 1 . x and that the caU to nothing () could write to any memory location. In

contrast, the side-effect analysis would specify that there is no dependence between these

instructions, and thus enable the replacement of the load of obj 1 . x on line 7 by an avail

able expression (line 4).

4.2 Redundant Load Elimination

The redundant load elimination algorithm relies on extended Array SSA (also known as

Heap Array SSA or Heap SSA) [FKSOO) and Global Value Numbering [AWZ88). We

explain the general idea of the algorithm below. For a detailed description, please refer

to [FKSOO).

The algorithm transforms the IR into heap SSA form. A heap array is created for each

object field. The object reference is used as the index into this heap array. For example, in

the code of Figure 4.3, there are two heap arrays, X and Y. On line 4, "heap Array X [a) =
exp]" means that a store is performed in heap array X at index a (the object reference).

After the transformation to heap SSA form is completed, global value numbers are

32

4.2. Redundant Load Elimination

1: for each basic block bb do

2: cache = createNewEmptyCacheO;

3:

4: for each instruction s in bb do

5: if is VolatileFieldLoadOrStore(s) then

6: continue

7:

8: Il Part l: try to replace s by an available expression, and update cache

9: if isGetField(s) or isGetStatic(s) then

10: if cache.availableExpression(s) then

11: T = findOrCreateTemporary(expression(s))

12: replace s by copyTemporarylnstruction(T)

13: else

14: add expression(s) to cache

15: el se if isPutField(s) or isPutStatic(s) then

16: add expression(s) to cache

17:

18: Il Part 2: remove cache entries that s kills

19: if isPutField(s) or isPutStatic(s) of sorne field X then

20: remove aU expressions with field X from cache (excluding expression(s »
21: else if sis a caU or synchronization then

22: remove aU expressions from cache

23:

Figure 4.1: Original Local Common Sub-Expression Algorithm in Jikes RVM

33

6

Optimizations Enabled in Jikes RVM

A obj1 = new A();

A obj2 = new A();

i = obj1.x;

obj2.x = 10;

nothing();

j = obj1.x;

Figure 4.2: Local Common Sub-Expression Example

a = new A () ;

b = new A () ;

a.x = exp1 -> heap Array X [a] = exp1

a.y = exp2 -> heap Array Y [a] = exp2

b.x = exp3 -> heap Array X [b] = exp3

n = a.x -> n = heap Array X [a]

Figure 4.3: Before Scalar Replacement

34

4.2. Redundant Load Elimination

computed. The global value numbering algorithm computes definitely-different (DD) and

definitely-same (DS) relations for object references. The DD relation distinguishes two

object references coming from different allocation sites, or when one is a method parameter

and the other one is the result of a new statement. The DS relation retums true when two

object references have the same value number (one is a copy of the other). In Figure 4.3,

since a and b are the results of different allocation sites (lines 1 and 2), DD(a, b) = true

and DS(a, b) = false.

Once global value numbers are computed, index propagation is performed. The index

propagation solution holds the available indices into heap arrays at each use of a heap

array. Scalar replacement is performed using the sets of available indices. Note that in the

algorithm, these sets actually contain value numbers of available indices. For simplicity,

we consider sets of available indices.

In Figure 4.3, after a . x is assigned on line 4, the set of available indices for heap Array

X is {a}. Similarly, {a} is available for heap Array Y after the assignment to a . y on line 5.

For the store of b. x on line 6, since global value numbering tells us that DD(a, b) = true,

we have {a, b} available for heap Array X after line 6. If DD(a, b) had retumed false, we

would have conservatively assumed that a store to heap Array X [b] could have overwritten

heap Array X [a], and thus, only {b} would have been available after line 6. On line 7,

heap Array X is used at index a. Since a is available, a new temporary is introduced and

scalar replacement is performed. Figure 4.4 shows the resulting code.

a = new A() ;

b = new A() ;

T = exp1

a.x = T -> heap Array X [al = T

a.y = exp2 -> heap Array Y [al = exp2

b.x = exp3 -> heap Array X [bl = exp3

n = T

Figure 4.4: After Scalar Replacement

35

Optimizations Enabled in Jikes RVM

For increasing the number of opportunities for load elimination, we used side-effect

information during the heap SSA transformation and in the DD relation. During the heap

SSA construction, without side-effect information, each caU instruction is annotated with

a definition and a use of every heap array. With side-effect information we annotate a

caU with a definition of a heap array, say X, only if there is a write-read or write-write

dependence between the caU and the instruction using heap array X. Similarly we annotate

a caU with a use of a heap array if there is a read-read or read-write dependence. We also

use side-effect information when the DD relation retums false. Two instructions having no

data dependence is equivalent to DD(a, b) = true, where a and b are the object references

used in the instructions.

In Figure 4.5, without side-effect information, since a and b are both method param

eters, DD(a, b) = false. Thus, only {b} is available after line 3. This aUows the load of

b. x on line 9 to be eliminated. Since it is conservatively assumed that caUs can write to

any memory location, the available index set after nothing () on line 10 is the empty

set. Line 13 represents a merge point of the available index sets after lines 7 and 10. The

intersection of these two sets is the empty set. After the load of a . x on line 16, {a} is

available. Since DS(a, b) = false, the load of b . x on line 17 cannot be eliminated. Thus,

without side-effect analysis, the aigorithm only finds one opportunity for Ioad elimination

in this example.

Using side-effect analysis, since a. x has no dependence with b. x (lines 2 and 3) the

available index set after line 3 is {a, b}. Thus, loads of a . x and b . x on line 7 and 9 can

be eliminated. The available index set after line 7 is {a, b}, and after line 10, it is aiso

{a, b}, since nothing () has no side-effect. The intersection at the merge point (li ne 13)

results in the set {a, b}. The load of a . x can then be removed on line 16. The available

index set after li ne 16 is { a, b}, aUowing load elimination of b . x on line 17. Thus, having

side-effect information aUowed three additionailoads to be eliminated. The resulting code

after performing load elimination is shown in Figure 4.6.

36

4.2. Redundant Load Elimination

int foo(A a, A b , int n) {

a.x = 2;

4

b.x = 3;

int i;

if(n > 0) {

l = a.x;

} el se {

i = b.x;

w nothing();

Il }

12

13 Il Merging point: a phi is

M Il placed here in heap SSA

15

16 int j = a.x;

n int k = b.x;

18

~ return i + j + k;

20 }

21

22 public static void main (String [] args) {

23 foo (new A () 1 new A () 1 1);

24 }

Figure 4.5: Before Redundant Load Elimination

37

Optimizations Enabled in Jikes RVM

int foo(A a, A b, int n) {

tl = 2;

a.x = tl;
4

t2 = 3;

6 b.x = t2;

int l;

9 if (n > 0) {

10 i = tl;
11 } el se {

12 i = t2;

13 nothing () ;

14 }

15

16 Il Merging point: a phi is

n Il placed here in heap SSA

18

19 int J = tl;

20 int k = t2;

21

22 return i + j + k;

23 }

24

25 public static void main (String [] args) {

u foo(new A(), new A(), 1);

27 }

Figure 4.6: After Redundant Load Elimination

38

4.3. Loop-Invariant Code Motion

4.3 Loop-Invariant Code Motion

The LICM algorithm in Jikes RVM is an implementation of the Global Code Motion algo

rithm introduced by Click [Cli95] and is adapted ta handle memory operations. As such, it

requires the IR to be in heap SSA form. We provide the basic idea of the algorithm below.

For more details, see [Cli95].

The algorithm schedules each instruction early, i.e. finds the earliest legal basic black

that an instruction could be moved ta (aIl of the instruction's inputs must dominate this

basic black). Similarly, it finds the latest legal basic block for each instruction (this block

must dominate aIl uses of the instruction's result). Instructions such as phi, branch or

return cannat be moved due to control dependences. Between the earliest and latest legal

basic blacks, the heuristic to choose which basic block to place instructions is ta pick the

one with the smallest loop depth. Global Code Motion differs from standard loop-invariant

code motion techniques in that it moves instructions after, as weIl as before, loops.

do {

i = i + a.x;

j = l + a.y;

nothing() ;

} while(i < n);

Figure 4.7: Before Loop-Invariant Code Motion

In Figure 4.7, the compiler first transforms the code into heap SSA form and without

side-effect information assumes that method nothing () can read and write any memory

location. As a result, the compiler will be unable to move the loads of a . x and a . y outside

of the loop. With side-effect information, knowing that method nothing () does not read

or write to a . x or a . y, the loads of a . x and a . y will be moved before and after the loop

respectively, resulting in the code in Figure 4.8.

39

Optirnizations Enabled in Jikes RVM

t = a.Xi

do {

]. = i + tj

4 nothing()i

} while(i < n)i

J = i + a.Yi

Figure 4.8: After Loop-Invariant Code Motion

4.4 Using Side-Effect Information for Inlined Byte

code

The side-effect attribute of each rnethod provides information about data dependences be

tween instructions. The attribute refers to a bytecode instruction by using its offset in the

rnethod it is part of. When a rnethod is inlined, bytecodes are added in the current cornpiled

rnethod. Since the side-effect analysis is cornputed ahead-of-tirne, and thus is not aware of

the JIT inlining decisions, the side-effect attribute does not have entries for inlined byte

codes. In this section, we show an exarnple and explain how we dealt with this special

case.

In Figure 4.9, let's assume that caUs to foo () and bar () are inlined, resulting in the

code in Figure 4.10. Since an inlined bytecode is associated with its original offset in the

IR, it is in general incorrect to retrieve side-effect information for an inlined bytecode in the

current rnethod. For exarnple, in the side-effect attribute ofrnethodmain () in Figure 4.10,

information about offset Ois associated with bytecode bO, not bl or b2.

To handle this case, we keep track of inlining sequences for each instruction. When

cornparing two bytecodes, we retrieve the least cornrnon rnethod ancestor of the two byte

code inlining sequences, and use the side-effect information associated with that rnethod.

If a bytecode originally cornes frorn that cornrnon rnethod, we use its offset. Otherwise, we

retrieve the invoke bytecode that it cornes frorn in the cornrnon rnethod, and use the offset

associated with this invoke bytecode.

For exarnple, in Figure 4.10, the least cornrnon rnethod ancestor for bytecodes bO and

40

4.4. Using Side-Effect Information for Inlined Bytecode

Offset main () {

0 main bO

1 main invoke foo

4 }

foo () {

0 foo bl

1 foo invoke bar

}

10

11 bar() {

12 0 bar b2

13 1 bar b3

14 }

Figure 4.9: Before Inlining

41

Optimizations Enabled in Jikes RVM

b1 is main () . Since bO originally cornes from main () , we use its offset (i.e. 0). Since

b1 was not originally part of main () , we retrieve the invoke bytecode that it cornes from

in main () , i.e. invoke foo. We then use the offset associated with this invoke bytecode

(i.e. 1). Thus, when inquiring about data dependences between bytecodes bO and b1,

we lookup information for offsets 0 and 1 in the side-effect attribute of method main () .

Similarly, for bytecodes b1 and b2, we lookup offsets 0 and 1 in the side-effect attribute of

method foo (), the least common method ancestor of b1 and b2. The same result holds

for b1 and b3. For bytecodes b2 and b3, since they both come from method bar () , we

lookup their original offsets, 0 and 1 respectively, in the side-effect attribute of method

bar().

Offset

o main

4 0 foo

o bar

1 bar

main () {

bO

b1

b2

b3

}

Il inlining sequence: main

Il inlining sequence: main->foo

Il inlining sequence: main->foo->bar

Il inlining sequence: main->foo->bar

Figure 4.10: After Inlining

42

Chapter 5

Experimental Framework

This chapter gives a description of the environment, the systems, and the various tools

that were used in our experiments, and the measurements that we computed. The next

section describes the different systems used for our experiments. Section 5.2 describes

the Jikes RVM configuration and related tools that it relies on. In Section 5.3, we specify

the benchmarks that we used, and provide sorne properties for each benchmark. Finally,

Section 5.4 discusses our static and dynamic measurements.

5.1 Systems

We used three systems with different architectures in our experiments to see whether we

would get similar trends in our results. AlI three systems run Linux Debian Stable (kemel

2.4.20). The three systems are listed below:

• Intel system

- Pentium 4 1.80GHz CPU

- 512Mb ofRAM .

• AMD system

- Athlon MP 2000+ 1.66GHz CPU (dual-processor)

43

Experimental Framework

- 2GbofRAM

• PowerPC system

- 533MHzCPU

- 1152Mb of RAM

5.2 Jikes RVM and Related Toois

We used the development version of SOOT (revision 1621) to perform the side-effect anal

ysis and annotate class files. We modified Jikes RVM version 2.3.0.1 to read in the side

effect attributes and use it in the optimizations described in the previous chapter. We used

the production configuration (namely FastAdaptiveCopyMS) in Jikes RVM with the JIT

only option (every method is compiled on first invocation and no recompilation occurs

thereafter). For our experiments, Jikes RVM was configured to run on a single processor

machine.

To build Jikes RVM, various third-party tools are required. Below is a li st of the ver

sions that we used:

• cl as spath 0.06

• Sun JDK 1.4.2-b28 (for Intel and AMD systems)

• JRE Blackdown-1.3.l-02b-FCS (for PowerPC system)

• jikes 1.15

• gcc 2.95.4

• g++ 2.95.4

44

5.3. Benchmarks

1 Benchmark Il Description

compress Lempel-Ziv compressor/uncompressor

jess A Java expert shell system based on NASA's CLIPS system

raytrace Ray tracer application

db Performs several database functions on a memory-resident database

javac JDK 1.0.2 Java compiler

mpegaudio MPEG-3 audio file compression application

mtrt Dual-threaded version of raytrace

jack A Java parser generator with lexical analyzers (now Java CC)

Table 5.1: Benchmark Description

5.3 Benchmarks

For our experiments, we used the SpecJVM98 [spe] benchmarks. A description of the

benchmarks is given in Table 5.1.

We ran each benchmark using size 100 with Jikes RVM at optimization level 1 and 2

using the six side-effect variations described in Section 3.5. Tables 5.2 and 5.3 show, for

each benchmark at optimization level 1 and 2 respectively, the load density measure (num

ber of memory reads performed per second). This metric shows how important memory

operations are for each benchmark. We expect the benchmarks with high load densities,

compress, raytrace, mtrt and mpegaudio, to benefit most from side-effect analysis. For

the se benchmarks, we also show profiling information gathered using Jikes RVM profiling

option on our Intel system in Tables 5.4 to 5.8. We see in Table 5.4 that for compress, the

first two methods account for over 70% of the execution time for both level 1 and 2. For

raytrace and mtrt (Tables 5.5 and 5.6), the four methods shown account for about half of

the runtime. Profiling information for mpegaudio at level 1 and 2 is split into two tables

since the methods are different (Tables 5.7 and 5.8).

45

Experimental Pramework

Load density in 1000's

Levell

Benchmark AMD Intel PowerPC

compress 207383 206708 95041

jess 56371 46199 21226

raytrace 106271 67351 41054

db 7140 7273 5394

javac 21645 13906 8792

mpegaudio 82137 57285 30721

mtrt 92599 61446 36338

jack 14632 8460 5506

Table 5.2: Benchmarks Load Density Property at Levell

Load density in 1000's

Level2

Benchmark AMDI Intel 1 PowerPC

compress 138570 126339 86146

jess 68353 55210 26617

raytrace 127806 79806 49914

db 11776 12081 9161

javac 19208 12532 7738

mpegaudio 179070 114851 79647

mtrt 122821 75566 47422

jack 15240 8761 5761

Table 5.3: Benchmarks Load Density Property at Level2

46

5.3. Benchmarks

% of Execution

Method Level1 Level2

void Compressor.compressO 53.8 % 50.5 %

void Decompressor.decompressO 20.7 % 20.8%

void Compressor.output(int) 7.4 % 7.4 %

int Decompressor.getcodeO 6.0% 6.0%

Table 5.4: Profiling Information for Benchmark Compress on Intel System

1

% of Execution 1

Method Level 1 1 Level 2

OctNode OctNode.Intersect(Ray, Point, fioat) 21.5 % 18.4 %

boolean PolyTypeObj.Intersect(Ray, IntersectPt) 20.8 % 17.5 %

OctN ode OctN ode.PindTreeN ode(Point) 15.4 % 11.1 %

boolean IntersectPt.PindNearestlsect(OctNode, Ray, int, int, OctNode) 3.2% 2.9%

Table 5.5: Profiling Information for Benchmark Ray trace on Intel System

1

% of Execution 1

Method Level 1 1 Level 2

OctNode OctNode.Intersect(Ray, Point, fioat) 19.9 % 17.2 %

boolean PolyTypeObj.Intersect(Ray, IntersectPt) 19.8 % 17.2 %

OctNode OctNode.PindTreeNode(Point) 13.9 % 11.1 %

boolean IntersectPt.PindNearestIsect(OctNode, Ray, int, int, OctNode) 2.5 % 2.3 %

Table 5.6: Profiling Information for Benchmark Mtrt on Intel System

47

Experimental Framework

1

% of Execution 1

Method Level 1

void q.m(ftoat[], ftoat[]) 29.6%

boolean ub.(g) 4.7%

void p.e(int[], g, short[][], int) 3.2%

boolean cb.(g) 2.8 %

void tb. T(ftoat[], ftoat[], ftoat[]) 2.4 %

void d.I(int[], int, int, ftoat[], int) 2.2 %

int lb.read(byte[], int, int) 1.7 %

Table 5.7: Profiling Information for Mpegaudio on Intel System at Level1

1

% of Execution 1

Method Level 2

int q.l(short[], int) 27.8%

void tb. T(ftoat[], ftoat[], ftoat[]) 13.3%

void q.m(ftoat[], ftoat[]) 12.3 %

void p.e(int[], g, short[][], int) 3.2 %

boolean cb.(g) 3.0%

boolean ub.(g) 2.7 %

void tb. S(ftoat[], ftoat[]) 2.7 %

void tb. W(ftoat[], ftoat[]) 2.3 %

int lb.read(byte[], in t, int) 2.1 %

void d.I(int[], int, int, ftoat[], int) 1.8 %

void p.g(int[], g, int[], cb[]) 1.4 %

int q.o(short[], int, ftoat[][], ftoat[][]) 1.2 %

Table 5.8: Profiling Information for Mpegaudio on Intel System at Level2

48

5.4. Measurements

5.4 Measurements

Our primary goal for this study was to see whether side-effect information could improve

performance in JITs, and if so, our secondary objective was to de termine the level of preci

sion of side-effect information required. To obtain accurate answers to these questions, we

measured for each run the statie number of loads removed in local CSE and in the redun

dant load elimination optimization, and the statie number of instructions moved in the loop

invariant code motion phase. These numbers provide us details on how much improvement

each optimization achieves statically using side-effect information. We also measured dy

namic counts of memory load operations eliminated and execution times (best of four runs,

not including compilation time). The architecture-independent dynamie counts help us see

whether a direct correlation exists between a reduction in memory operations performed

and speedups. Our third objective was to find out in the code where side-effect analysis

makes a difference. We thus looked at the benchmarks that benefited from side-effect anal

ysis, and in the methods that account for a high percentage of the execution time (given

by the profiling information in the previous section), we disabled the use of side-effect

information in those methods only and computed running times. We analyzed the differ

ence in speedups, as weIl as static and dynamie counts, and looked at the methods and

optimizations that made a difference. Chapter 7 provides a detailed analysis.

It should be noted that although we used the JIT-only option in Jikes RVM where no

method recompilation is expected, sorne optimizations such as inlining can cause invalida

tion and recompilation. In this case, for our static numbers, we only counted the number of

statie loads eliminated (in local CSE or load elimination) or instructions moved (in LICM)

in the last method compilation before execution.

To examine the effect of side-effect analysis in both local and global optimizations, we

ran our benchmarks using Jikes RVM at optimization level 1 and 2. For level 1, only local

CSE uses side-effect information. For level 2, local CSE, redundant load elimination and

loop-invariant code motion use side-effect analysis. In the next two chapters, we present

our results for local and global optimizations.

49

Experimental Framework

50

Chapter 6

Impact on Optimizations

In this Chapter, we show our static and dynamic measurements of the use of side-effect

information in JIT optimizations. Sections 6.1 and 6.2 discuss our results for local and

global optimizations.

6.1 Local Optimizations

Level 1 optimizations in Jikes RVM include standard optimizations such as local copy

propagation, local constant propagation, local common sub-expression elimination, null

check elimination, type propagation, constant fol ding, dead code elimination, inlining, etc.

Among these, only local CSE uses our side-effect analysis for eliminating redundant get

field and getstatic instructions.

When running our benchmarks with Jikes RVM at optimization levell (which also in

cludes an level 0 optimizations), the use of the five side-effect variations (CHA, aot-tb,

aot-ts, ott-tb and ott-ts) produced identical static and dynamic counts, and similar run

times. To avoid repeating identical results, we grouped the se five side-effect variations

under the name any in the side-effect column of Tables 6.1 to 6.3. As expected, the exe

cution times of runs using these five side-effect variations were almost identical. We thus

also grouped them under any in the second column of Tables 6.4 and 6.5, and reported

the average execution times of runs using the se five side-effect variations. The values in

brackets in the se tables denote the percentage increase in static opportunities (Table 6.1) or

51

Impact on Optimizations

the percentage decrease in dynamic counts (Tables 6.2 and 6.3) when compared with the

none side-effect variation.

The last column of Table 6.1 shows that using side-effect information in local CSE

increased the total number of static opportunities for load elimination by 2% to 41 %. We

note that most of these eliminated loads are getfields. Except for mpegaudio, there is only

o or 1 getstatic instructions eliminated for each benchmark using the original local CSE

algorithm, and 1 to 3 addition al ones eliminated using side-effect information. Local CSE

thus affects mostly getfield instructions. Since it has little impact on getstatic instructions,

not surprisingly, the use of side-effect analysis had little effect on these instructions as weIl.

In Table 6.2, we see that the additional loads eliminated using side-effect analysis in

local CSE resulted in a decrease of up to 0.90% of dynamic getfields, 0.0% of getstatic

instructions, and 0.87% in total (Table 6.3). As a result, most benchmarks have similar

execution times with or without side-effect analysis. However, the use of side-effect in

formation produced speedups of 1.08x and 1.06x for mpegaudio on our Intel and AMD

systems, and 1.02x for raytrace on both of these systems (Tables 6.4 and 6.5). Although

the dynamic counts show a reduction in load instructions, we note small slowdowns for

compress andjess on our Intel system, andjavac on both Intel and AMD machines. These

slowdowns were reproducible, and are possibly due to secondary effects such as register

pressure or cache behaviour. On our PowerPC system, the use of side-effect information

had no effect on runtime (Table 6.6). We note from Table 5.2 that the load density property

on our PowerPC system is significantly smaller than on our AMD and Intel systems, and

thus we conclude that the removal of loads is less beneficial on this slower machine.

These results show that the simplest side-effect analysis, CHA, is sufficient for level 1

optimizations in Jikes RVM. Only local CSE uses side-effect analysis, and since it is only

performed on basic blocks (typically small in Java programs), the effect is minimal.

52

6.1. Local Optimizations

Local CSE Performed
Benchmark Side-effect

getfield getstatic Total

none 108 1 109
compress

112 (3.70 %) 2 (100.00 %) 114 (4.59 %) any

none 229 0 229
jess

245 (6.99 %) 1 246(7.42%) any

none 166 0 166
raytrace

188 (13.25 %) 1 189 (13.86 %) any

none 130 0 130
db

any 133 (2.31 %) 3 136 (4.62 %)

none 415 0 415
javac

431(3.86%) 1 432 (4.10 %) any

none 340 174 514
mpegaudio

347 (2.06 %) 176(1.15%) 523 (1.75 %) any

none 166 0 166
mtrt

any 188 (13.25 %) 1 189 (13.86 %)

none 470 1 471
jack

663 (41.06 %) 2 (100.00 %) 665 (41.19 %) any

Table 6.1: Level1 Static Counts for Local CSE with % Increase Using Side-Effects

53

Impact on Optimizations

1 Benchmark Il Side-effect 1 getfield 1 getstatic

none 1871398009 33418641
compress

1871397929 (0.00 %) 33418641 any

none 209404162 2326905
jess

209402840 (0.00 %) 2326905 any

none 287993152 1359
raytrace

287979508 (0.00 %) 1359 any

db
none 160088294 96012

any 160087709 (0.00 %) 96012

none 149595624 4028976
javac

149407295 (0.13 %) 4028946 (0.00 %) any

none 456136442 52215347
mpegaudio

455026631 (0.24 %) 52215346 (0.00 %) any

none 291501667 2063
mtrt

any 291474379 (0.01 %) 2063

none 50029731 1534965
jack

49579043 (0.90 %) 1534977 (0.00 %) any

Table 6.2: Level1 Dynamic Load Counts with % Reduction Using Side-Effects

54

6.1. Local Optimizations

1 Benchmark Il Side-effect 1 Total

none 1904816650
compress

1904816570 (0.00 %) any

none 211731067
jess

211729745 (0.00 %) any

none 287994511
raytrace

287980867 (0.00 %) any

db
none 160184306

any 160183721 (0.00 %)

none 153624600
javac

153436241 (0.12 %) any

none 508351789
mpegaudio

507241977 (0.22 %) any

none 291503730
mtrt

any 291476442 (0.01 %)

none 51564696
jack

51114020 (0.87 %) any

Table 6.3: Level1 Dynamic Total Counts with % Reduction Using Side-Effects

55

Impact on Optimizations

1 Benchmark Il Side-effect 1 Time (s) 1 Speedup 1

none 9.215
compress

9.395 0.98x any

none 4.583
jess

4.615 0.99x any

none 4.276
raytrace

4.198 1.02x any

db
none 22.023

any 22.054 1.00x

none 11.047
javac

11.215 0.99x any

none 8.874
mpegaudio

8.219 1.08x any

none 4.744
mtrt

any 4.727 1.00x

none 6.095
jack

6.108 1.00x any

Table 6.4: Level 1 Running Time on Intel

56

6.1. Local Optimizations

1 Benchmark Il Side-effect 1 Time (s) 1 Speedup 1

none 9.185
compress

9.184 1.00x any

none 3.756
jess

3.77 1.00x any

none 2.71
raytrace

2.662 1.02x any

db
none 22.434

any 22.453 1.00x

none 7.097
javac

7.177 0.99x any

none 6.189
mpegaudio

5.85 1.06x any

none 3.148
mtrt

any 3.087 1.02x

none 3.524
jack

3.509 1.00x any

Table 6.5: Levell Running Time on AMD

57

Impact on Optimizations

1 Benchmark Il Side-effect 1 Time (s) 1 Speedup 1

none 20.069
compress

20.089 1.00x any

none 9.975
jess

9.974 1.00x any

none 6.985
raytrace

6.991 1.00x any

db
none 29.851

any 29.762 1.00x

none 17.537
javac

17.467 1.00x any

none 16.552
mpegaudio

16.557 1.00x any

none 7.454
mtrt

any 7.446 1.00x

none 9.397
jack

9.387 1.00x any

Table 6.6: Level 1 Running Time on PowerPC

58

6.2. Global Optimizations

6.2 Global Optimizations

The more advanced and expensive analyses and optimizations in Jikes RVM are level 2 op

timizations. They include redundant branch elimination, heap SSA construction, redundant

load elimination, coalescing after heap SSA, expression folding, loop-invariant code mo

tion, global CSE, transforming while into untilloops, and loop unrolling. As described in

Chapter 4, we used side-effect information in the heap SSA construction, RLE and LICM.

Our benchmarks were run at optimization level 2 in Jikes RVM (allievei 0 and 1 op

timizations are also performed), and produced identical counts and similar runtimes for

the side-effect variations aot-fb, aot-fs, otf-fb and ott-fs (except for one case in compress

where the static number of loads eliminated is 388 for aot-fb and aot-fs, and 389 for otf-fb

and ott-ts). Thus, we grouped these four variations of side-effect analysis that are based on

points-to analysis under the name PIA in Tables 6.7 to 6.16 of this chapter. In Tables 6.7

to 6.10, the value in brackets represents the percentage increase in static opportunities (the

base is the value for the none side-effect variation). For Tables 6.11 to 6.13, it is the per

centage reduction in dynamic loads. In Tables 6.14 to 6.16, the reported time for PIA is

the average runtime of the four variations above.

The following three sections present our static and dynamic measurements. Sections 6.2.1

and 6.2.2 discuss the static counts for the RLE and LICM optimizations. In Section 6.2.3,

we present our dynamic results which include the speedups obtained.

6.2.1 Redundant Load Elimination (RLE)

Table 6.7 shows that the use of side-effect information improved the removal of getfield

instructions by up to 79% statically. It also significantly increased the static number of

opportunities for eliminating aload (array load) bytecodes for benchmarks jess, raytrace,

javac, mpegaudio and mtrt. However, as was the case for local optimizations, RLE does

not affect many getstatic instructions, and thus there were very few improvements for re

moving these operations using side-effect analysis. Table 6.8 shows that using side-effect

information in RLE increased the total number of load eliminations performed by 7% to

98%. Interestingly, PIA improved over CHA for aU benchmarks exceptjack.

59

Impact on Optimizations

Benchmark Side-effect
Load elimination performed

getfield getstatic aload

none 359 4 0

compress CHA 386 (7.52 %) 5 (25.00 %) 0

PTA 388 (8.08 %) 5 (25.00 %) 0

none 722 1 129

jess CHA 1050 (45.43 %) 2 (100.00 %) 149 (15.50 %)

PTA 1106 (53.19 %) 3 (200.00 %) 196 (51.94 %)

none 342 1 32

raytrace CHA 613 (79.24 %) 2 (100.00 %) 84 (162.50 %)

PTA 613 (79.24 %) 2 (100.00 %) 127 (296.88 %)

none 243 1 2

db CHA 274 (12.76 %) 4 (300.00 %) 2

PTA 274 (12.76 %) 4 (300.00 %) 3 (50.00 %)

none 1519 26 90

javac CHA 1842 (21.26 %) 30 (15.38 %) 101 (12.22 %)

PTA 1847 (21.59 %) 30 (15.38 %) 108 (20.00 %)

none 706 212 367

mpegaudio CHA 804 (13.88 %) 216 (1.89 %) 370 (0.82 %)

PTA 804 (13.88 %) 216 (1.89 %) 426 (16.08 %)

none 342 1 32

mtrt CHA 613 (79.24 %) 2 (100.00 %) 84 (162.50 %)

PTA 613 (79.24 %) 2 (100.00 %) 127 (296.88 %)

none 678 2 69

jack CHA 999 (47.35 %) 16 (700.00 %) 69

PTA 999 (47.35 %) 16 (700.00 %) 69

Table 6.7: Leve12 Static Counts for RLE with % Increase Using Side-Effects

60

6.2. Global Optimizations

Benehmark Side-effeet
Load elimination performed

Total

none 363

eompress CHA 391 (7.71 %)

PTA 393 (8.26 %)

none 852

jess CHA 1201 (40.96 %)

PTA 1305 (53.17 %)

none 375

raytrace CHA 699 (86.40 %)

PTA 742 (97.87 %)

none 246

db CHA 280 (13.82 %)

PTA 281 (14.23 %)

none 1635

javae CHA 1973 (20.67 %)

PTA 1985 (21.41 %)

none 1285

mpegaudio CHA 1390 (8.17 %)

PTA 1446 (12.53 %)

none 375

mtrt CHA 699 (86.40 %)

PTA 742 (97.87 %)

none 749

jaek CHA 1084 (44.73 %)

PTA 1084 (44.73 %)

Table 6.8: Level2 Statie Total Count for RLE with % Inerease Using Side-Effeets

61

Impact on Optimizations

6.2.2 Loop-Invariant Code Motion (LlCM)

In Tables 6.9 and 6.10, we show static counts of instructions moved during LICM. In Ta

ble 6.9, we have counts for getfield, getstatic and putfield instructions. The table does

not contain information for putstatic, aload or astore bytecodes since none of these were

moved during LICM. We see that the use of side-effect analysis enabled an increase in the

number of moved getfields by up to 19%, and in one case of a putfield. Table 6.10 shows

the total number of instructions moved when LICM is performed on high-Ievel (HIR) and

low-Ievel (LIR) intermediate representation in Jikes RVM. The table illustrates that using

side-effect analysis increased the total number of HIR instructions moved by up to 14%.

For one benchmark (jess), using PTA side-effect analysis allowed more instructions to be

moved than CHA. Since memory instructions are not moved during LICM on LIR, and

that in sorne cases we see an increased in LIR instructions moved, this suggests that, in

terestingly, the use of side-effect information in HIR optimizations enabled sorne other

transformations that allowed sorne instructions to be moved during LICM on LIR.

We note that since RLE is performed before LICM, improved side-effect information

can cause loads that would have been moved in LICM to be removed in RLE. Therefore, to

measure the impact of side-effect information on LICM, we disabled RLE when collecting

the static LICM counts. We do not show static counts for local CSE, which are minimal

because redundant load elimination is performed before local CSE.

62

6.2. Global Optimizations

1 Benehmark Il Side-effeet 1 getfield 1 getstatic 1 putfield

none 87 0 1
eompress

90 (3.45 %) 0 1 any

none 139 0 0

jess CHA 144 (3.60 %) 0 0

PTA 161 (15.83 %) 0 0

none 87 0 47
raytrace

96 (10.34 %) 0 47 any

db
none 61 0 0

any 64 (4.92 %) 0 0

none 44 0 5
javae

48 (9.09 %) 0 6 (20.00 %) any

none 128 27 1
mpegaudio

152 (18.75 %) 27 1 any

none 87 0 47
mtrt

any 96 (10.34 %) 0 47

jaek
none 23 0 2

any 23 0 2

Table 6.9: Level 2 Statie Counts for LICM with % Inerease Using Side-Effeets

63

Impact on Optimizations

1 Benchmark Il Side-effect 1 Total HIR 1 Total UR

none 118 29
compress

122 (3.39 %) 29 any

none 280 250

jess CHA 287 (2.50 %) 251 (0.40 %)

PTA 309 (10.36 %) 255 (2.00 %)

none 184 54
raytrace

210 (14.13 %) 56 (3.70 %) any

db
none 88 31

any 92 (4.55 %) 32 (3.23 %)

none 116 479
javac

121 (4.31 %) 479 any

none 299 98
mpegaudio

327 (9.36 %) 102 (4.08 %) any

none 184 55
mtrt

any 210 (14.13 %) 57 (3.64 %)

none 39 58
jack

39 58 any

Table 6.10: Level2 Static Total Count for UCM with % Increase Using Side-Effects

64

6.2. Global Optimizations

6.2.3 Dynamic Measurements

Tables 6.11 and 6.12 show that side-effect analysis enabled a reduction in dynamic getfield

operations by up to 27%, but only reduced getstatic and aload instructions by up to 3%.

Level 2 optimizations using side-effect information reduced total dynamic load operations

in the range of 1 % to 19% (Table 6.13). For most benchmarks, using PTA side-effect

information allowed a larger reduction of dynamic loads than CHA.

Tables 6.14 and 6.15 show speedups achieved for compress, raytrace, mtrt andmpegau

dio. For these benchmarks, the speedups vary from 1.08x to 1.17x on our Intel system, and

from 1.02x to 1.20x on our AMD machine. On both systems, mpegaudio has the largest

speedup. These benchmarks are also the ones with the highest load densities (Table 5.3),

and the ones that we expected would benefit the most from side-effect information. For our

PowerPC system, we did not obtain any speedup (Table 6.16). However, we note that the

load density value of each benchmark (Table 5.3) is much smaller for our PowerPC ma

chine than for our AMD and Intel systems, and thus the removal of loads has less impact

for this slower machine.

A higher level of precision of side-effect information made a difference in perfor

mance for compress and mpegaudio. Using PTA side-effect analysis vs CHA increased

the speedup of compress from 1.08x to 1.11x on our Intel system, and 1.02x to 1.05x on

our AMD one. For mpegaudio, it went from 1.11x to 1.17x on our Intel machine and from

1.15x to 1.20x on our AMD machine.

These results show that using side-effect analysis in global optimizations improved op

portunities for load elimination and moving instructions, reduced dynamic load operations,

and improved performance in runtimes. Benchmarks with higher load densities benefited

most from side-effect information. The results also show that points-to analysis improves

side-effect information and produced in sorne cases improvements in runtime performance

compared to only using CHA, our simple side-effect analysis variation that does not make

use of points-to information. FinaIly, the differences between points-to analysis variations

are negligible.

65

Impact on Optimizations

1 Benchmark Il Side-effect 1 getfield 1 getstatic

none 836681238 29585886

compress CHA 713879612 (14.68 %) 29585886

PTA 694156483 (17.03 %) 29585886

none 193400124 2326905

jess CHA 177280681 (8.33 %) 2326905

PTA 141340271 (26.92 %) 2326572 (0.01 %)

none 278990954 1359

raytrace CHA 217369769 (22.09 %) 1359

PTA 217369769 (22.09 %) 1359

none 160085986 96012

db CHA 154814883 (3.29 %) 96012

PTA 154814883 (3.29 %) 96012

none 129704466 3728755

javac CHA 123962720 (4.43 %) 3726381 (0.06 %)

PTA 123962933 (4.43 %) 3726306 (0.07 %)

none 258084245 16092989

mpegaudio CHA 254421559 (1.42 %) 16075411 (0.11 %)

PTA 254421559 (1.42 %) 16075411 (0.11 %)

none 282145314 2063

mtrt CHA 220136202 (21.98 %) 2063

PTA 220136202 (21.98 %) 2063

none 46154208 1534965

jack CHA 42805654 (7.26 %) 1530924 (0.26 %)

PTA 42805654 (7.26 %) 1530924 (0.26 %)

Table 6.11: Level 2 Dynamic Counts for getfield and getstatic Instructions with % Reduc

tion Using Side-Effects

66

6.2. Global Optimizations

1 Benchmark Il Side-effect 1 aload

none 450569851

compress CHA 450569851

PTA 450569851

none 74199530

jess CHA 74197591 (0.00 %)

PTA 74188965 (0.01 %)

none 70558731

raytrace CHA 70189162 (0.52 %)

PTA 70125938 (0.61 %)

none 113165950

db CHA 113165950

PTA 113165950

none 3947221

javac CHA 3947158 (0.00 %)

PTA 3947133 (0.00 %)

none 796126083

mpegaudio CHA 794492856 (0.21 %)

PTA 773557981 (2.83 %)

none 71578275

mtrt CHA 71124467 (0.63 %)

PTA 70998019 (0.81 %)

none 5727775

jack CHA 5727775

PTA 5727775

Table 6.12: Level 2 Dynamic Count for aload Instructions with % Reduction Using Side

Effects

67

Impact on Optimizations

1 Benchmark Il Side-effect 1 Total

none 1316836975

compress CHA 1194035349 (9.33 %)

PTA 1174312220 (10.82 %)

none 269926559

jess CHA 253805177 (5.97 %)

PTA 217855808 (19.29 %)

none 349551044

raytrace CHA 287560290 (17.73 %)

PTA 287497066 (17.75 %)

none 273347948

db CHA 268076845 (1.93 %)

PTA 268076845 (1.93 %)

none 137380442

javac CHA 131636259 (4.18 %)

PTA 131636372 (4.18 %)

none 1070303317

mpegaudio CHA 1064989826 (0.50 %)

PTA 1044054951 (2.45 %)

none 353725652

mtrt CHA 291262732 (17.66 %)

PTA 291136284 (17.69 %)

none 53416948

jack CHA 50064353 (6.28 %)

PTA 50064353 (6.28 %)

Table 6.13: Level2 Dynamic Loads Total Count with % Reduction Using Side-Effects

68

6.2. Global Optimizations

1 Benchmark Il Side-effect 1 Time (s) 1 Speedup 1

none 10.423

compress CHA 9.635 1.08x

PTA 9.386 l.l1x

none 4.889

jess CHA 4.945 0.99x

PTA 4.872 l.OOx

none 4.38

raytrace CHA 3.93 l.l1x

PTA 3.905 1.12x

none 22.625

db CHA 22.605 1.00x

PTA 22.471 LOIx

none 10.962

javac CHA 11.138 0.98x

PTA 11.142 0.98x

none 9.319

mpegaudio CHA 8.41 1.11x

PTA 7.932 1.17x

none 4.681

mtrt CHA 4.201 1.11x

PTA 4.208 1.11x

none 6.097

jack CHA 6.122 1.00x

PTA 6.101 1.00x

Table 6.14: Level2 Running Time on Intel

69

Impact on Optimizations

1 Benchmark Il Side-effect 1 Time (s) 1 Speedup 1

none 9.503

compress CHA 9.316 1.02x

PTA 9.03 1.05x

none 3.949

jess CHA 3.962 l.OOx

PTA 4.002 0.99x

none 2.735

raytrace CHA 2.607 1.05x

PTA 2.615 1.05x

none 23.212

db CHA 23.222 l.OOx

PTA 23.141 l.OOx

none 7.154

javac CHA 7.21 0.99x

PTA 7.231 0.99x

none 5.977

mpegaudio CHA 5.175 l.15x

PTA 4.987 1.20x

none 2.88

mtrt CHA 2.788 1.03x

PTA 2.796 1.03x

none 3.505

jack CHA 3.47 l.Olx

PTA 3.51 1.00x

Table 6.15: Level2 Running Time on AMD

70

6.2. Global Optimizations

1 Benchmark Il Side-effect 1 Time (s) 1 Speedup 1

none 15.446

compress CHA 15.53 0.99x

PTA 15.375 1.00x

none 9.829

jess CHA 9.817 1.00x

PTA 9.841 1.00x

none 6.878

raytrace CHA 6.916 0.99x

PTA 6.914 0.99x

none 29.695

db CHA 29.649 1.00x

PTA 29.668 1.00x

none 17.69

javac CHA 17.887 0.99x

PTA 17.729 1.00x

none 13.503

mpegaudio CHA 13.485 1.00x

PTA 13.464 1.00x

none 7.325

mtrt CHA 7.333 1.00x

PTA 7.362 0.99x

none 9.795

jack CHA 9.811 1.00x

PTA 9.788 1.00x

Table 6.16: Leve12 Running Time on PowerPC

71

Impact on Optimizations

72

Chapter 7

Analysis of Speedups

In this chapter, we analyze the benchmarks where significant speedups were obtained in

local and global optimizations (Chapter 6). We look at the methods causing these speedups

and where in the optimizations the use of side-effect information benefited. The following

three sections discuss speedups obtained for the benchmarks compress, mpegaudio and

raytrace/mtrt.

7.1 Compress

In Section 6.2, we saw that the use of side-effect information resulted in speedups of up to

1.11x for benchmark compress. The following section provides an analysis of the meth

ods and optimizations producing these speedups. Section 7.1.2 shows the changes in the

original code that caused these runtime improvements.

7.1.1 Methods and Optimizations Causing Speedups

In Table 5.4 of Chapter 5, profiling information is shown for the benchmark compress.

From this table, we see that for level2 optimizations, methods Compressor. compress ()

and Decompressor. decompress () account for more than 70% of the execution

time. To find out where in the code the use of side-effect information produced speedups for

compress in the range of 1.08x to 1.11x on Intel and 1.02x to 1.05x on AMD (Tables 6.14

73

Analysis of Speedups

and 6.15), we disabled the use of side-effect analysis in these two methods and computed

runtime.

Table 7.1 shows that when the use of side-effect analysis is disabled in both methods

Compressor. compress () and Decompressor. decompress (), the speedups on

Intel go down from 1.08x to 1.01x and 1.l1x to 1.01x for the CHA and PTA side-effect vari

ations respectively (first row compared with second row). On AMD, the speedups decrease

from 1.02x to 1.00x and 1.05x to 1.00x (Table 7.2). Thus, as expected by the profiling in

formation, using side-effect information in these two methods is responsible for most of the

speedups. When side-effect analysis is disabled only in method Compressor. compress () ,

we get speedups of 1.0lx and 1.02x on Intel, and O.99x and 1.02x on AMD (third row in Ta

bles 7.1 and 7.2). When it is disabledonly in methodDecompressor. decompress (),

the speedups are 1.08x on Intel and 1.04x on AMD (fourth row). These results show

that having side-effects in method Compressor. compress () is the main cause of the

speedups. Since the speedups are the same for the CHA and PTA side-effect variations

when they are disabled in method Decompressor. decompress (), this method is re

sponsible for the difference in speedups between these two side-effect variations (1.08x

versus 1.l1x on Intel, 1.02x versus 1.05x on AMD).

Local CSE, redundant load elimination and LICM are the three optimizations that were

modified to take advantage of side-effect information. To find out which ones are responsi

ble for the speedups, we disabled the use of side-effect analysis in these optimizations sepa

rately formethods Compressor. compress () and Decompressor . decompress ().

For LICM, our results showed that the speedups stayed about the same 1. Thus, having

side-effect information in LICM does not affect the speedups obtained for compress. This

is also confirmed by the static and dynamic counts that were unchanged. Tables 7.3 and 7.4

show the speedups when not using side-effect analysis in both local CSE and RLE. In this

case, we see from these two tables that the loads eliminated using side-effect analysis in

local CSE and RLE affect significantly the speedups. Comparing the first row with the third

row in these two tables shows that having side-effect information in local CSE and RLE

for method Compressor. compress () caused most of the speedups. The fourth row

Ifull results are in Appendix A, Tables A.I and A.2

74

7.1. Compress

Methods without Side-effect used

side-effects in other methods Time(s) Speedup

none 9.751

none CHA 9.049 1.08x

PTA 8.769 l.llx

none 9.747
void Compressor.compressO

CHA 9.678 l.Olx
void Decompressor.decompressO

PTA 9.654 l.Olx

none 9.742

void Compressor.compressO CHA 9.657 l.Olx

PTA 9.544 l.02x

none 9.757

void Decompressor.decompressO CHA 9.01 1.08x

PTA 9.05 1.08x

Table 7.1: Level 2 Runtime without Side-Effects in Selected Methods of Compress on Intel

75

Analysis of Speedups

Methods without Side-effect used

side-effects in other methods Time(s) Speedup

none 9.514

none CHA 9.312 1.02x

PTA 9.026 1.05x

none 9.516
void Compressor.compressO

CHA 9.505 1.00x
void Decompressor.decompressO

PTA 9.491 1.00x

none 9.532

void Compressor.compressO CHA 9.64 0.99x

PTA 9.356 1.02x

none 9.504

void Decompressor.decompressO CHA 9.144 1.04x

PTA 9.137 1.04x

Table 7.2: Level 2 Runtime without Side-Effects in Selected Methods of Compress on

AMD

76

7.1. Compress

of these tables shows that the difference in speedups between the CHA and PTA side-effect

variations is due to loads eliminated in method Decompressor. decompress () (since

when the use of side-effects is disabled in local CSE and RLE for this method, speedups

for these two variations are the same).

Methods without Side-effect used

side-effects in LCSE & RLE in other methods Time(s) Speedup

none 9.751

none CHA 9.049 1.08x

PTA 8.769 1.11x

none 9.797
void Compressor.compressO

CHA 9.776 1.00x
void Decompressor.decompressO

PTA 9.759 1.00x

none 9.811

void Compressor.compressO CHA 9.722 1.0 Ix

PTA 9.536 1.03x

none 9.805

void Decompressor.decompressO CHA 9.05 1.08x

PTA 9.042 1.08x

Table 7.3: Level2 Runtime without Side-Effects in LCSE and RLE for Compress on Intel

In Tables 7.5 and 7.6, we show the effect of disabling side-effect analysis on the static

counts of loads eliminated in the redundant load elimination optimization and on the dy

namic counts of getfields performed. Counts for getstatic and aload instructions are not

shown since they are not affected. The third row compared with the first row in Table 7.5

shows that when side-effect information is disabled in method Compres sor. compress () ,

there is a reduction of five getfields eliminated statically (381 versus 386 for CHA and

383 versus 388 for PTA). This results in a decrease of dynamic getfields eliminated from

14.68% to 6.80% and 17.03% to 9.16% for the CHA and PTA side-effect variations (Ta

ble 7.6, row 1 and 3). Since we saw that the effect on speedups is a decrease from 1.08x

to 1.01x and from 1.11x to 1.03x for CHA and PTA on Intel (Table 7.3, row 1 and 3) , and

77

Analysis of Speedups

Methods without Side-effect used

side-effects in LCSE & RLE in other methods Time(s) Speedup

none 9.514

none CHA 9.312 1.02x

PTA 9.026 1.05x

none 9.459
void Compressor.compressO

CHA 9.544 0.99x
void Decompressor.decompressO

PTA 9.532 0.99x

none 9.461

void Compressor.compressO CHA 9.726 0.97x

PTA 9.427 1.00x

none 9.467

void Decompressor.decompressO CHA 9.113 1.04x

PTA 9.105 1.04x

Table 7.4: Level2 Runtime without Side-Effects in LCSE and RLE for Compress on AMD

78

7.1. Compress

1.02x to 0.97x and 1.05x to 1.00x on AMD (Table 7.4, row 1 and 3), the removal of only

few additional getfields (five statically) is responsible for almost all of the speedups.

In Table 7.5, we note that, when comparing row 1 and 4, using side-effect information

in method Decompressor. decompress () allowed the elimination of 1 and 3 more

loads for the CHA and PTA variations respectively. The two additionalloads eliminated

using the more precise side-effect variation (PTA) resulted in a larger reduction of dynamic

getfield instructions from 14.68% to 17.03% (Table 7.6, row 1), and produced an increase

in speedups from 1.08x to 1.11x on Intel (Table 7.3, row 1), and from 1.02x to 1.05x on

AMD (Table 7.4, row 1).

Side-effect

Methods without in other

side-effects in LCSE & RLE methods getfield getstatic aload

none 359 4 0

none CHA 386 5 0

PTA 388 5 0

none 359 4 0
void Compressor.compressO

CHA 380 5 0
void Decompressor.decompressO

PTA 380 5 0

none 359 4 0

void Compressor.compressO CHA 381 5 0

PTA 383 5 0

none 359 4 0

void Decompressor.decompressO CHA 385 5 0

PTA 385 5 0

Table 7.5: Level2 Static Counts without Side-Effects in LCSE and RLE for Compress

79

Analysis of Speedups

Side-effect

Methods without in other

side-effects in LCSE & RLE methods getfield

none 836681238

none CHA 713879612 (14.68 %)

PTA 694156483 (17.03 %)

none 836681238
void Compressor.compressO

CHA 789621577 (5.62 %)
void Decompressor.decompressO

PTA 789621577 (5.62 %)

none 836681238

void Compressor.compressO CHA 779760012 (6.80 %)

PTA 760036882 (9.16 %)

none 836681238

void Decompressor.decompressO CHA 723741182 (13.50 %)

PTA 723741182 (13.50 %)

Table 7.6: Level2 Dynamic Counts without Side-Effects in LCSE and RLE for Compress

80

7.1. Compress

7.1.2 Original Code

In Figure 7.1, we show part ofthe original code ofmethod Compressor. compress () .

In the previous section, we saw that there were five additionalloads eliminated using side

effect information in this method that was the main cause of the speedups. We list them

below:

• getfield to Input at line 12 is eliminated by a copy of the Inpu t getfield at line 3

• getfield to htab at line 16 is eliminated by a copy of the htab getfield at line 9

• getfield to htab at line 20 is eliminated by a copy of the htab getfield at line 16

• methods htab. of (i) and htab. set (i 1 fcode) (lines 16 and 20) are both

inlined and contain a getfield to a tab field; the second load (in htab. set (i 1

fcode)) is eliminated by a copy of the first one (in htab. of (i))

• getfield to in_count at line 22 is eliminated by a copy of the in_count getfield

at line 13

Figure 7.2 shows part of method Decompressor. decompress (). We saw that

having side-effects in this method allowed one more load to be eliminated using CHA and

three more with PlA:

• getfield to Ou tpu t at line 24 is eliminated by a copy of the Ou tpu t getfield at line 3

(any side-effect variation finds this)

• both caUs to method Output. putbyte (..) at lines 3 and 24 are inlined and

contain getfields to OutBuff and OutCnt fields, both of which are eliminated in

the second occurrence of the call (only PlA finds this)

In our side-effect analysis, the elements of an array are considered a (special) field.

Without points-to analysis, it is not possible to distinguish different methods writing to dif

ferent arrays. Since methods Output. putbyte (..) (line 3) andde_stack. push (..)

(li ne 14) both write to arrays, the CHA side-effect analysis thus conservatively assumes that

81

Analysis of Speedups

there is a write-write dependence between these two caUs. Thus, the loads to OutBuff

and Outent fields can only be eliminated using the PTA variation. However, we note that

these two caUs write to arrays of different and unrelated types. The write-write dependence

could thus be removed if a type analysis on arrays would be added to the CHA side-effect

computation. In this case, it would make CHA as good as PTA in finding load removal

opportunities.

82

7.1. Compress

public void compress() {

ent = Input.getbyte ()

hshift = 0;

for (fcode = htab.hsize(); fcode < 65536; fcode *= 2)

10

hshift++;

hshift = 8 - hshift;

hsize_reg = htab.hsize();

htab.clear() ;

Il next_byte:

12 while ((c = Input.getbyte()) != -1) {

13 in_count++;

14 fcode = (((int) c «maxbits) + ent);

15 i = ((c « hshift) A ent);

16 int temphtab = htab. of (i);

17

18 if (free_ent < maxmaxcode) {

19 codetab.set(i, free_ent++);

w htab.set(i, fcode);

21 }

22 else if ((in_count >= checkpoint) && (block_compress != 0))

23 cl_block ();

24 }

25

26 }

Figure 7.1: Part of Method Compressor. compress ()

83

Analysis of Speedups

public void decompress() {

Output.putbyte((byte)finchar);

4 while ((code = getcode()) > -1

if ((code == Compress.CLEAR) && (block_compress != 0)) {

tab-pr efix.clear(256) ;

clear_flg = 1;

free_ent = Compress.FIRST - 1;

9 if ((code = getcode ()) == -1

10 break;

Il

12 incode = code;

13 if (code >= free_ent) {

14 de_s tack. push ((byte) f inchar) ;

~ code = oldcode;

16 }

17 while (code >= 256) {

18 de_stack.push(tab_suffix.of(code));

19 code = tab-prefix.of(code);

20

21 de_stack.push((byte) (finchar tab_suffix.of(code))) ;

22

23 do

24 Output.putbyte (de_stack.pop());

25 while (! de_stack. is_empty ()) ;

26

27

28

Figure 7.2: Part of Method Decompressor. decompress ()

84

7.2. Mpegaudio

7.2 Mpegaudio

In Section 6.1, we saw that we obtained speedups of up to 1.08x for mpegaudio in local

optimizations. For global optimizations, the use of side-effect information in local CSE,

RLE and LICM enabled speedups of up to 1.20x. The following two sections discuss the se

speedups. Section 7.2.1 provides an analysis of the methods causing speedups in local

CSE. Section 7.2.2 discusses which methods and which optimizations benefited from side

effect analysis, and where in the code the use of the most precise side-effect analysis (PTA)

produced better runtime improvement over the basic side-effect analysis (CHA).

7.2.1 Local Optimizations

In Section 6.1, we saw that having side-effect information in local optimizations resulted in

speedups of 1.08x and 1.06x on our Intel and AMD systems (Tables 6.4 and 6.5). To

find out where the use of side-effect analysis in local CSE produced these results, we

disabled side-effects in the most frequently executed methods. Table 5.7 shows profil

ing information for the seven methods that account for the highest percentage of the ex

ecution time. Surprisingly, disabling side-effect analysis in these methods did not affect

speedups. We thus disabled side-effects in more methods incrementally and found that

method q. 0 (short [] 1 int 1 float [] [] 1 float [] []), which account for less

than 1 % of the execution time, is responsible for all of the speedups. We see in Tables 7.7

and 7.8 (second row) that the speedups on Intel and AMD become null without side-effects

in local CSE for method q . 0 (••) . The statie counts in Table 7.9 show that this behaviour

is due to a single getfield that is not eliminated (346 without side-effects versus 347 with).

This causes a reduction of dynamic getfield instructions by 0.18% compared to 0.24% orig

inally (Table 7.10). Thus, the changes in static and dynamie counts are very minimal, but

the impact on runtime is quite large. This is likely due to secondary effects such as cache

behaviour or register pressure. Finally, for legal reasons, we are unable to show the original

code.

85

Analysis of Speedups

Methods without Side-effect used

side-effects in LCSE in other methods Time(s) Speedup

none 8.874
none

any 8.219 1.08x

none 8.878
int q.o(short[], int, ftoat[][], ftoat[][])

8.839 1.00x any

Table 7.7: Levell Runtime without Side-Effects in Local CSE for Mpegaudio on Intel

Methods without Side-effect used

side-effects in LCSE in other methods Time(s) Speedup

none 6.189
none

any 5.85 1.06x

none 6.208
int q.o(short[], int, ftoat[][], ftoat[][])

6.187 1.00x any

Table 7.8: Levell Runtime without Side-Effects in Local CSE for Mpegaudio on AMD

Side-effect

Methods without in other

side-effects in LCSE methods getfield getstatic

none 340 174
none

any 347 (2.06 %) 176(1.15%)

int q.o(short[], int, ftoat[][], ftoat[][])
none 340 174

any 346 (1.76 %) 176(1.15%)

Table 7.9: Levell Static Counts without Side-Effects in Local CSE for Mpegaudio

86

7.2. Mpegaudio

Side-effect

Methods without in other

side-effects in LCSE methods getfield

none 456136442
none

any 455026631 (0.24 %)

none 456136442
int q.o(short[], int, float[][], float[][])

455307827 (0.18 %) any

Table 7.10: Level1 Dynamic Counts Using Side-Effects in Local CSE for Mpegaudio

7.2.2 GlobalOptimizations

In Section 6.2, we saw that we obtained speedups for mpegaudio in the range of 1.11x to

1.17x on Intel and 1.15x to 1.20x on AMD using side-effect analysis. In a similar manner to

the previous section, we incrementally disabled side-effects in the most frequently executed

methods, and found that the two methods that caused the speedups are q. 0 (short [] 1

int, float[] [] 1 float[] []) andq.m(float[] 1 float[]). Theprofiling

information in Table 5.8 shows that q . m (f 1 oa t [] 1 f 1 oa t []) account for 12.3% of

theexecutiontime,butq.o(short[] 1 int, float[] [J, float[] []),account

for less than 1 % (not shown in the table).

Analysis of Method q. 0 (short [] 1 int 1 float [] [] 1 float [] [])

We see in the second row of Table 7.11 that on Intel, disabling side-effects in q. 0 (••)

resuIts in a slowdown of 0.70x and 0.66x for the CHA and PTA side-effect variations re

spectively. On our AMD system, the speedups decrease from 1.15x to 1.02x and from

1.20x to 1.01x (Table 7.12, row 1 and 2). The impact ofnot using side-effect information

in q . 0 (••) is thus much larger on the Intel architecture. To see whether this behaviour

was caused by LICM or load elimination, we disabled side-effects in each of these opti

mizations separately. Doing so in LICM made no difference since speedups stayed about

the same 2. However, Tables 7.13 and 7.14 (second row) show that disabling side-effects in

2full results are in Appendix A, Tables A.3 and A.4

87

Analysis of Speedups

local CSE and RLE resulted in the same large slowdowns that was obtained in Tables 7.11

and 7.12. Thus, it is the load elimination optimization that is responsible for the slow

downs. Comparing the first and second rows in the static results of Table 7.15 show that

only 778 getfields are eliminated without using side-effect information in q. 0 (..) versus

804 with side-effects. Note that getstatic and aload instructions are unaffected. Note that

there is no column for getstatic since the counts did not change for any rows. The effect on

dynamic counts is a reduction by 0.79% of getfields versus 1.42% originally (Table 7.16,

row 1 and 2). Thus, the removal of additionalloads using side-effect analysis in q. 0 (..)

has a large impact on runtime. Since the changes statically and dynamically are small, this

is likely due to secondary effects such as register pressure or cache behaviour.

Analysis of Method q. ID (fI oa t [] 1 fI oa t [])

Tables 7.11 and 7.12 (third row) show that for method q. ID (float [] 1 float []), the

speedups for CHA and PTA on Intel are 1.11 x and 1.1 Ox respectively, and on AMD they are

l.15x and 1.16x. Since the speedups are about the same for CHA and PTA when the use of

side-effects is disabled in q . ID (fI oa t [] 1 fI oa t []) , having more precise side-effect

information in this method is responsible for the better runtime improvement by PTA (l.17x

on Intel, 1.20x on AMD) versus CHA (l.l1x on Intel, 1.15x on AMD). To see whether

this is due to LICM or load elimination, we disabled side-effects in these optimizations

separately and computed runtime. Our results show that having or not having side-effects

in LICM did not affect the speedups 3. However, when disabling side-effects in local CSE

and RLE, the speedups are 1.10x on Intel and 1.16x on AMD (Tables 7.13 and 7.14, third

row). It is thus the load elimination optimization in q.ID (float [] 1 float []) that

caused the difference in the original speedups between CHA and PTA. In Table 7.15 (row

3), the statie results show that the getfield instruction counts are unaffected by not using

side-effects in q. ID (float [] 1 float []) (same counts as original ones). Though, for

aload instructions, there are 407 eliminated versus 426 originally with PTA (row 1 and

3). For CHA, having or not having side-effects in q . ID (fI oa t [] 1 fI oa t []) did not

affect the aload counts (370 in both cases). Thus, not using the most precise side-effect

3full results are in Appendix A, Tables A.3 and A.4

88

7.2. Mpegaudio

analysis PTA in q. m (fI oa t [] f fI oa t []) reduced by 19 statically the number of

aloads eliminated. As a result, the reduction dynamically is 1.49% versus 2.83% originally

(Table 7.16, row 1 and 3 for PTA). Since the speedups are about the same for CHA and PTA

when the use of side-effects is disabled in q. m (fI oa t [] f fI oa t []), and originally

it was 1.11x versus 1.17x on Intel and 1.15x versus 1.20x on AMD, the use of most precise

side-effect analysis (PTA) in this method is responsible for this difference.

Methods without Side-effect used

side-effects in other methods Time(s) Speedup

none 9.319

none CHA 8.41 1.11x

PTA 7.932 1.17x

none 9.22

int q.o(short[], int, float[][], float[] []) CHA 13.177 0.70x

PTA 13.917 0.66x

none 9.224

void q.m(float[], float[]) CHA 8.303 1.11x

PTA 8.411 1.10x

Table 7.11: Level 2 Runtime without Side-Effects in Selected Methods of Mpegaudio on

Intel

89

Analysis of Speedups

Methods without Side-effect used

side-effects in other methods Time(s) Speedup

none 5.977

none CHA 5.175 1.15x

PTA 4.987 1.20x

none 5.976

int q.o(short[], int, float[][], float[][]) CHA 5.882 l.02x

PTA 5.895 l.OIx

none 5.977

void q.m(float[], float[]) CHA 5.201 1.15x

PTA 5.131 1.16x

Table 7.12: Level 2 Runtime without Side-Effects in Selected Methods of Mpegaudio on

AMD

Methods without Side-effect used

side-effects in LCSE & RLE in other methods Time(s) Speedup

none 9.319

none CHA 8.41 l.Ux

PTA 7.932 1.17x

none 9.223

int q.o(short[], int, float[][], float[][]) CHA 13.182 0.70x

PTA 13.914 0.66x

none 9.222

void q.m(float[], float[]) CHA 8.412 1.10x

PTA 8.402 1.10x

Table 7.13: Level2 Runtime without Side-Effects in LCSE and RLE for Mpegaudio on

Intel

90

7.2. Mpegaudio

Methods without Side-effect used

side-effects in LCSE & RLE in other methods Time(s) Speedup

none 5.977

none CHA 5.175 1.15x

PTA 4.987 1.20x

none 5.977

int q.o(short[], int, ftoat[][], ftoat[][]) CHA 5.88 1.02x

PTA 5.886 1.02x

none 5.974

void q.m(ftoat[], ftoat[]) CHA 5.153 1.16x

PTA 5.139 1.16x

Table 7.14: Level 2 Runtime without Side-Effects in LCSE and RLE for Mpegaudio on

AMD

Side-effect

Methods without in other

side-effects in LCSE & RLE methods getfield aload

none 706 367

none CHA 804 (13.88 %) 370 (0.82 %)

PTA 804 (13.88 %) 426 (16.08%)

none 706 367
int q.o(short[], int,

CHA 778 (10.20 %) 370 (0.82 %)
ftoat[][], ftoat[][])

PTA 778 (10.20 %) 426 (16.08%)

none 706 367

void q.m(ftoat[], ftoat[]) CHA 804 (13.88 %) 370 (0.82 %)

PTA 804 (13.88 %) 407 (10.90 %)

Table 7.15: Leve12 Static Counts without Side-Effects in LCSE and RLE for Mpegaudio

91

Analysis of Speedups

Methods without Side-effect

side-effects in other

inLCSE&RLE methods getfield aload

none 258084245 796126083

none CHA 254421559 (1.42 %) 794492856 (0.21 %)

PTA 254421559 (1.42 %) 773557981 (2.83 %)

none 258084245 796126083
int q.o(short[], int,

CHA 256046247 (0.79 %) 794492856 (0.21 %)
fioat[] [], fioat[] [])

PTA 256046247 (0.79 %) 773557981 (2.83 %)

none 258084245 796126083

void q.m(fioat[], fioat[]) CHA 254421559 (1.42 %) 794492856 (0.21 %)

PTA 254421559 (1.42 %) 784243429 (1.49 %)

Table 7.16: Level2 Dynamic Counts without Side-Effects in LCSE and RLE for Mpegau

dio

7.3 Raytrace/Mtrt

In this section, we analyze where side-effect information produced speedups for the bench

marks raytrace and mtrt. Since mtrt is a multi-threaded version of raytrace, and that we

found that the cause of the speedups was the same for both benchmarks, we will only

discuss raytrace here. The same analysis applies for mtrt.

In Section 6.2, we saw that using side-effect information improved runtime for raytrace

in the range of 1.11x to 1.12x on Intel and 1.05x on AMD (Tables 6.14 and 6.15). To

find out where the use of side-effect information resulted in these speedups, we disabled

it in the hot methods given by the profiling information of Table 5.5. To our surprise, the

speedups stayed the same. We thus incrementally added methods with side-effects disabled

and narrowed our search to method run () , which is part of the Runner class in the file

RayTracer.java. We note that Runner is a thread, and that for benchmark raytrace, only

one Runner thread is created to render the scene, whereas two threads are used for mtrt.

The code of the Runner class is shown in Figure 7.3. When we disabled side-effect

information in method run (), we found that the main cause of the speedups was the

92

7.4. Summary

removal of the getfield to the parent field on line 17. (The paren t . threadCoun t -

statement on line 17, when transformed to bytecode, performs a getfield to a RayTracer

object, parent, in order to decrement the threadCount counter.) With side-effect

analysis, this load to parent can be eliminated by a copy of this field (li ne 13). When

leaving this getfield instruction on line 17 (i.e. not replacing it with a cached copy) and

applying side-effect analysis everywhere else as originally, the speedups went down from

1.11x to 1.02x on Intel and 1.05x to 1.00x on AMD. We also obtained similar results

when removing the entire statement paren t . threadCoun t - - (line 17). Although we

cannot explain this behaviour, we note that this getfield instruction is performed to retrieve

an object and decrement the threadCount counter, which can be manipulated by both

the Runner and the main threads. This behaviour may thus be due to the way Jikes RVM

handles shared objects.

7.4 Summary

In this chapter, we analyzed the methods of the benchmarks where significant speedups

were obtained. We found that for compress, only five additional loads eliminated using

side-effect information was the main cause of the speedups. For mpegaudio, we noted

that the removal of few additional loads likely caused secondary effects such as register

pressure and/or cache behaviour to produce the performance improvements. Finally, for

raytrace/mtrt, we found that the cause of the speedups was mainly due to an additional

load eliminated to a shared object.

93

class Runner extends Thread {

RayTracer parent;

int section;

int nsections;

Analysis of Speedups

public Runner(RayTracer parent, int section, int nsections)

10

Il

this.parent = parent;

this.section

this.nsections

section;

nsections;

12 public void run ()

13 new Scene(parent.name) .RenderScene(parent.canvas,

u parent.width,

~ section,

16 nsections) ;

~ parent.threadCount--;

18 }

19

Figure 7.3: Code of Class Runner in Benchmark Ray trace

94

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This research presented a study of whether the use of inter-procedural side-effect analy

sis in Java just-in-time (nT) compilers improves performance. Our experiments showed

that relatively simple analyses are sufficient for significant improvements. Our results also

showed that the benchmarks with high load densities benefited the most from side-effect

information. Among the optimizations adapted to use side-effects, load elimination was

the one causing the speedups.

In this thesis, we first reviewed how side-effect analysis is computed ahead-of-time

in SOOT, based on different caU graph constructions and various points-to analyses. We

explained the difference in precision of the various side-effect analyses that we experi

mented with, and how they can be communicated to nT compilers through Java class files

attributes.

The three optimizations in Jikes RVM that were modified to take advantage of side

effect information are local common-sub-expression, redundant load elimination and loop

invariant code motion. The last two optimizations use the Heap SSA construction [FKSOO],

which we also adapted to use side-effect analysis. For each of these optimizations, we ex

plained the algorithms, the changes that were made, and showed examples of improvements

that are possible with the knowledge of side-effects. We also discussed how nT inlining

decisions affect the use of ahead-of-time side-effect information.

95

Conclusions and Future Work

In our experiments, we ran the SpecJVM98 benchmarks on three different architec

tures (Intel, AMD and PowerPC). In local and global optimizations, we gathered various

measurements including static counts of instructions moved during UCM, and the statie

number of loads eliminated in local CSE and RLE. We also measured the dynamic effects

of using side-effect information by computing the reduction in memory reads operations

and execution times.

For local optimizations, side-effect analyses had little impact on the static and dynamic

counts. Except for one benchmark, the effect on performance was negligible. Since local

optimizations are only performed within basic blocks, typicaIly smaIl in Java programs,

this behaviour was expected.

In global optimizations, our results showed an increase of up to 98% of static opportu

nities for load removal and up to 18% of memory reads moved, a reduction of up to 27% of

the dynamic fields reads, and execution time speedups of up to 17% on our Intel system and

up to 20% on our AMD machine. On PowerPC, no speedups were obtained. However, we

noted that our PowerPC machine is significantly slower than our Intel and AMD systems.

The load density property of the benchmarks on PowerPC is thus considerably smaIler than

on Intel and AMD, making the use of side-effect analysis less effective.

Finally, we analyzed the methods and optimizations that were the cause of the speedups

obtained for compress, mpegaudio and raytrace/mtrt. We found that for aIl of these bench

marks, the optimization that was responsible for the speedups was load elimination (UCM

had little effect on runtime). We noted that only few additional important loads eliminated

(staticaIly) using side-effect analysis was the main cause of the runtime improvements. We

also found that the difference in speedups between the CHA and PTA side-effect variations

was due to the analysis precision on array reads and writes. For our set of benchmarks,

adding a type analysis on arrays would make CHA as good as PTA in finding load removal

opportunities.

96

8.2. Future Work

8.2 Future Work

8.2.1 Experimenting with a Fast PowerPC Machine

The first step in continuing this work would be to perform our experiments and gather

measurements on a fast PowerPC machine to see whether we would get speedups compa

rable to the ones obtained on our Intel and AMD systems. Obtaining significant runtime

improvements would strengthen the belief that the use of side-effect information is more

effective on fast machines, and thus for benchmarks with high load densities.

8.2.2 Using Context-Sensitive Analyses

In this thesis, the side-effect analyses used were computed using a flow-insensitive, context

insensitive, subset-based points-to analysis. Context-sensitive points-to analyses can pro

duce much more precise information than context-insensitive ones. In an object-oriented

language that encourages encapsulation, such as Java, the information lost due to context

insensitivity is especially significant [Lho02]. Context-sensitive points-to analysis is planned

to be included in the SOOT framework in the near future [Lho05]. An area for future re

search would be to perform a similar set of measurements using context-sensitive points-to

analyses to compute side-effect information, which would be more precise than our PTA
analysis. In the analysis of speedups, we saw that only few additionalloads eliminated was

responsible for the runtime improvements. Thus, a more precise side-effect analysis may

en able the removal of further key loads, leading to even bigger performance gains.

8.2.3 Computing Side-Effects at Runtime

The feasibility of performing side-effect analysis inside the JIT is also a topic for future

research. The dynamic call graph construction presented in [QH04, QH05] is a first step in

this work. A simple side-effect analysis, similar to our CHA analysis, could be computed

using this dynamic call graph to build method summaries of fields read and written. A

simple type analysis could be implemented to distinguish reads and writes to unrelated

arrays.

97

Conclusions and Future Work

8.2.4 Investigating Secondary Effects

In Chapter 7, we found that for benchmark mpegaudio, secondary effects such as register

pressure and/or cache behaviour likely was the main cause of the performance gains us

ing side-effect information. Studying whether and how the impact of load elimination on

caches and register allocation contributed to performance variations is a topic for further

investigation.

98

Appendix A

Miscellaneous Tables

In the following tables, full results are shown for benchmarks that do not make use of

side-effects in LICM. Since the speedups stay about the same, side-effect information in

LICM has little effect.

Methods without Side-effect used

side-effects in LICM in other methods Time(s) Speedup

none 9.751

none CHA 9.049 1.08x

PTA 8.769 1.11x

none 9.815
void Compressor.compressO

CHA 9.196 1.07x
void Decompressor.decompressO

PTA 8.954 1.10x

none 9.822

void Compressor.compressO CHA 9.109 1.08x

PTA 8.967 1.10x

none 9.807

void Decompressor.decompressO CHA 9.131 1.07x

PTA 8.93 1.10x

Table A.l: Level2 Runtime without Side-Effects in LICM for Compress on Intel

99

Miscellaneous Tables

Methods without Side-effect used

side-effects in LICM in other methods Time(s) Speedup

none 9.514

none CHA 9.312 1.02x

PTA 9.026 1.05x

none 9.471
void Compressor.compressO

CHA 9.301 1.02x
void Decompressor.decompressO

PTA 9.004 1.05x

none 9.485

void Compressor.compressO CHA 9.309 1.02x

PTA 9.03 1.05x

none 9.487

void Decompressor.decompressO CHA 9.298 1.02x

PTA 9.023 1.05x

Table A.2: Level2 Runtime without Side-Effects in LICM for Compress on AMD

Methods without Side-effect used

side-effects in LICM in other methods Time(s) Speedup

none 9.319

none CHA 8.41 1.11x

PTA 7.932 1.17x

none 9.222

int q.o(short[], int, float[][], float[][]) CHA 8.329 1.11x

PTA 7.984 1.16x

none 9.221

void q.m(float[], float[]) CHA 8.32 1.11x

PTA 7.897 1.17x

Table A.3: Level2 Runtime without Side-Effects in LICM for Mpegaudio on Intel

100

Methods without Side-effect used

side-effects in LICM in other methods Time(s) Speedup

none 5.977

none CHA 5.175 1.15x

PTA 4.987 1.20x

none 5.978

int q.o(short[], int, ftoat[][], ftoat[][]) CHA 5.16 1.16x

PTA 4.963 1.20x

none 5.976

void q.m(ftoat[], ftoat[]) CHA 5.155 1.16x

PTA 4.924 1.21x

Table A.4: Level 2 Runtime without Side-Effects in LICM for Mpegaudio on AMD

101

Miscellaneous Tables

102

Bibliography

[AAB+OO] B. Alpem, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi,

A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvi

nov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.

Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The

Jalapefio virtual machine. IBM Syst. J., 39(1):211-238,2000.

[AC76]

[A1l74]

[And94]

[AU77]

[AWZ88]

F. E. Allen and J. Cocke. A pro gram data flow analysis procedure. Commun.

ACM, 19(3):137, 1976.

F.E. Allen. Interprocedural data flow analysis. In Proceedings of the 1974

IFIPS Congress, pages 398-402. North Holland Publishing Company, Ams

terdam, 1974.

L. Andersen. Program Analysis and Specializationfor the C Programming

Language. PhD thesis, DIKU, University ofCopenhagen, 1994.

A.V. Aho and J.D. Ullman. Principles of Compiler Design. Addison-Wesley,

1977.

B. Alpem, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables

in programs. In Proceedings of the 15th ACM SIGPIAN-SIGACT symposium

on Princip les ofprogramming languages, pages 1-11. ACM Press, 1988.

103

[Ban78]

[Ban79]

[Bar77]

[Bar78]

[BC86]

[Bur84]

[Bur90]

[CBC93]

Bibliography

John P. Banning. A Method for Determining the Side Effects of Procedure

CaUs. PhD thesis, Stanford University, 1978.

John P. Banning. An efficient way to find the side effects of procedure caUs

and the aliases of variables. In POPL '79: Proceedings of the 6th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages,

pages 29-41. ACM Press, 1979.

J.M. Barth. A practical interprocedural dataflow analysis algorithm and its

applications. PhD thesis, University of Califomia, Berkeley, May 1977.

Jeffrey M. Barth. A practical interprocedural data flow analysis algorithm.

Commun. ACM, 21(9):724-736,1978.

Michael Burke and Ron Cytron. Interprocedural dependence analysis and

paraUelization. In SIGPLAN '86: Proceedings of the 1986 SIGPLAN Sym

posium on Compiler Construction, pages 162-175. ACM Press, 1986.

M. Burke. An interval analysis approach toward interprocedural data flow.

Technical report, IBM T.J. Watson Research Center RC 10640, July 1984.

Michael Burke. An interval-based approach to exhaustive and incremen

tal interprocedural data-flow analysis. ACM Trans. Program. Lang. Syst.,

12(3):341-395, 1990.

Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive

interprocedural computation of pointer-induced aliases and side effects. In

Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 232-245. ACM Press, 1993.

[CDC+04] Rezaul Alam Chowdhury, Peter Djeu, Brendon Cahoon, James H. BurriU,

and Kathryn S. McKinley. The limits of alias analysis for scalar optimiza

tions. In Evelyn Duesterwald, editor, Compiler Construction, 13th Inter

national Conference, cc 2004, volume 2985 of Lecture Notes in Computer

Science, pages 24-38. Springer, 2004.

104

Bibliography

[CHOO]

[CK84]

[CK88a]

[CK88b]

[Cla97]

[Cli95]

[CR87]

[DGC95]

Ben-Chung Cheng and Wen-Mei W. Hwu. Modular interprocedural pointer

analysis using access paths: design, implementation, and evaluation. In PLDI

'00: Proceedings of the ACM SIGPLAN 2000 conference on Programming

language design and implementation, pages 57-69. ACM Press, 2000.

Keith D. Cooper and Ken Kennedy. Efficient computation offtow insensitive

interprocedural summary information. SIGPLAN Not., 19(6):247-258, 1984.

David Callahan and Ken Kennedy. Analysis of interprocedural side effects in

a parallel programming environment. J. ParaUel Distrib. Comput., 5(5):517-

550,1988.

K. D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear

time. In PLDI '88: Proceedings of the ACM SIGPLAN 1988 conference

on Programming Language Design and Implementation, pages 57-66. ACM

Press, 1988.

Lars R. Clausen. A Java bytecode optimizer using side-effect analysis. Con

currency: Practice and Experience, 9(11):1031-1045, November 1997.

Cliff Click. Global code motion/global value numbering. In Proceedings of

the ACM SIGPLAN 1995 conference on Programming language design and

implementation, pages 246-257. ACM Press, 1995.

Martin Carroll and Barbara G Ryder. An incremental algorithm for software

analysis. In SDE 2: Proceedings of the second ACM SIGSOFT/SIGPLAN

software engineering symposium on Practical software development envi

ronments, pages 171-179. ACM Press, 1987.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object

oriented programs using static class hierarchy analysis. In ECOOP '95,

object-oriented programming: 9th European Conference, volume 952 of

Lecture Notes in Computer Science, pages 77-101, 1995.

105

Bibliography

[DLFR01] Manuvir Das, Ben Liblit, Manuel Fähndrich, and Jakob Rehof. Esti

mating the impact of scalable pointer analysis on optimization. In SAS '01:

Proceedings of the 8th International Symposium on Statie Analysis, pages

260-278, London, UK, 2001. Springer-Verlag.

[DMM98] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based alias

analysis. In Proceedings of the ACM SIGPLAN '98 Conference on Program

ming Language Design and Implementation, pages 106-117. ACM Press,

1998.

[DMM01] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Using types to

analyze and optimize object-oriented programs. ACM Trans. Program. Lang.

Syst., 23(1):30-72, 2001.

[DMW98] Saumya Debray, Robert Muth, and Matthew Weippert. Alias analysis of

executable code. In POPL '98: Proceedings of the 25th ACM SIGPLAN

SIGACT symposium on Principles ofprogramming languages, pages 12-24.

ACM Press, 1998.

[EGH94]

[FKSOO]

[GH98]

[GLS01]

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive in

terprocedural points-to analysis in the presence of function pointers. In PLDI

'94: Proceedings of the ACM SIGPLAN 1994 conference on Programming

language design and implementation, pages 242-256. ACM Press, 1994.

Stephen J. Fink, Kathleen Knobe, and Vivek Sarkar. Unified analysis of

array and object references in strongly typed languages. In Statie Analysis

Symposium, pages 155-174,2000.

Rakesh Ghiya and Laurie J. Hendren. Putting pointer analysis to work. In

Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 121-133. ACM Press, 1998.

Rakesh Ghiya, Daniel Lavery, and David Sehr. On the importance of points

to analysis and other memory disambiguation methods for C programs. In

106

Bibliography

Proceedings of the ACM SIGPLAN'Ol Conference on Programming Lan

guage Design and Implementation, pages 47-58. ACM Press, 2001.

[HDE+93] Laurie J. Hendren, C. Donawa, Maryam Emami, Guang R. Gao, Justiani, and

B. Sridharan. Designing the mccat compiler based on a family of structured

intermediate representations. In Proceedings of the 5th International Work

shop on Languages and Compilers for ParaUel Computing, pages 406-420.

Springer-Verlag, 1993.

[HGMS91] Laurie J. Hendren, Guang R. Gao, Chandrika Mukerji, and Bhama Sridharan,

Introducing McCAT - The Mc Gill Compiler Compiler-Architecture Testbed.

ACAPS Technical Memo 27, School of Computer Science, McGill Univer

sity, Montreal, Quebec, September 1991.

[HP95]

[HP98]

[HPOO]

[HS75]

[LH03]

John Hennessy and David Patterson. Computer Architecture: A Quantitative

Approach. Morgan-Kaufmann, 1995.

Michael Hind and Anthony Pioli. Assessing the effects of ftow-sensitivity

on pointer alias analyses. In SAS '98: Proceedings of the 5th International

Symposium on Static Analysis, pages 57-81. Springer-Verlag, 1998.

Michael Hind and Anthony Pioli. Which pointer analysis should l use? In

Proceedings of the 2000 ACM SIGSOFT international symposium on Soft

ware testing and analysis, pages 113-123. ACM Press, 2000.

M.S. Hecht and J.B. Shaffer. Ideas on the design of a 'quad improver' for

simpl-t, part i: Overview and intersegment analysis. Technical report, TR-

405, University of Maryland, College Park, Maryland, August 1975.

Ondrej Lhotâk and Laurie Hendren. Scaling Java points-to analysis using

Spark. In G. Hedin, editor, Compiler Construction, 12th International Con

ference, volume 2622 of LNCS, pages 153-169, Warsaw, Pol and, April 2003.

Springer.

107

[Lho02]

[Lho05]

[Lom77]

[LRZ93]

[LY99]

[MRR02]

[MSH97]

[Mye80]

[Mye81]

Bibliography

Ondrej Lhotak. Spark: A flexible points-to analysis framework for Java.

Master's thesis, Mc Gill University, December 2002.

Ondrej Lhotak. Program Analysis using Binary Decision Diagrams. PhD

thesis, School of Computer Science, McGill University. In preparation,

September 2005.

D.B. Lomet, Data Flow Analysis in the Presence of Procedure Calls. IBM

Journal of Research and Development, 21(6), page 559-571, November,

1977.

William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural modifi

cation side effect analysis with pointer aliasing. In Proceedings of the ACM

SIGPLAN 1993 Conference on Programming Language Design and Imple

mentation, pages 56-67. ACM Press, 1993.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison-Wesley, Reading, MA, USA, second edition, 1999.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object

sensitivity for points-to and side-effect analyses for Java. In Proceedings of

the 2002 ACM SIGSOFT international symposium on Software testing and

analysis, pages 1-11. ACM Press, 2002.

II Marc Shapiro and Susan Horwitz. The effects of the precision of pointer

analysis. In SAS '97: Proceedings of the 4th International Symposium on

Statie Analysis, pages 16-34. Springer-Verlag, 1997.

E. Myers. A precise and efficient algorithm for detennining existential sum

mary data flow infonnation. Technical report, CU-CS-175-80, University of

Colorado at Boulder, Department of Computer Science, 1980.

Eugene M. Myers. A precise inter-procedural data flow algorithm. In POPL

, 81: Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on Princi

pies ofprogramming languages, pages 219-230. ACM Press, 1981.

108

Bibliography

[Oli97] Guirlyn Olivar. Fast points-to and side-effect analysis for the McCAT C

compiler. M.Sc. project, McGill University, http: / / ci teseer. ist.

psu. edu/350797 . html, April 1997.

[PQVR+Ol] Patrice Pominville, Feng Qian, Raja Vallée-Rai, Laurie Hendren, and Clark

Verbrugge. A framework for optimizing Java using attributes. In Compiler

construction: 10th International Conference, CC 2001, volume 2027 of Lec

ture Notes in Computer Science, pages 334-354, 2001.

[PS02]

[QH04]

[QH05]

Igor Pechtchanski and Vivek Sarkar. Immutability specification and its ap

plications. In Proceedings of the 2002 Joint ACM-ISCOPE Conference on

Java Grande, pages 202-211. ACM Press, 2002.

Feng Qian and Laurie J. Hendren. Towards dynamic interprocedural analysis

in jvms. In Virtual Machine Research and Technology Symposium, pages

139-150,2004.

Feng Qian and Laurie Hendren. A study of type analysis for speculative

method inlining in a JIT environment. In Compiler Construction, 14th Inter

national Conference, cc 2005, Lecture Notes in Computer Science, pages

255-270, Edinburgh, Scotland, April 2005.

[Raz99] Chrislain Razafimahefa. A study of side-effect analyses for Java. Master's

thesis, McGill University, December 1999.

[RLS+Ol] Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, and

Rita Altucher. A schema for interprocedural modification side-effect analysis

with pointer aliasing. ACM Transactions on Programming Languages and

Systems, 23(2):105-186, March 2001.

[RMR01] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis

for Java using annotated constraints. In Proceedings of the OOPSLA '01

Conference on Object-Oriented Programming Systems Languages and Ap

plications, pages 43-55. ACM Press, 2001.

109

[Ros75]

[Ros79]

[RR01]

Bibliography

B.K. Rosen. Data flow analysis for recursive plli programs. Technical re

port, RC5211, IBM T.J. Watson Research Center, Yorktown Reights, N.Y.,

January 1975.

Barry K. Rosen. Data flow analysis for procedural languages. J. A CM,

26(2):322-344, 1979.

Atanas Rountev and Barbara G. Ryder. Points-to and side-effect analyses

for programs built with precompiled libraries. In Compiler construction:

JOth International Conference, cc 2001, volume 2027 of Lecture Notes in

Computer Science, pages 20-36,2001.

[Ruf95] Erik Ruf. Context-insensitive alias analysis reconsidered. In PLDI '95: Pro

ceedings of the ACM SIGPLAN 1995 conference on Programming language

design and implementation, pages 13-22. ACM Press, 1995.

[spe] SPEC JVM98 benchmarks. http://www . spec. org/osg /jvm98/.

[Spi71] T.c. Spillman. Exposing side-effects in a pl/i optimizing compiler. In Pro

ceedings of the 1971 IFIPS Congress, pages 376-381. North Rolland Pub

lishing Company, 1971.

[SRLZ98] Philip A. Stocks, Barbara G. Ryder, William A. Landi, and Sean Zhang.

[Ste96]

[TIF86]

Comparing flow and context sensitivity on the modification-side-effects

problem. In Proceedings of ACM SIGSOFT international symposium on

Software testing and analysis, pages 21-31. ACM Press, 1998.

Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL '96:

Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles

ofprogramming languages, pages 32-41. ACM Press, 1996.

R. Triolet, F. lrigoin, and P. Feautrier. Direct parallelization of calI state

ments. In SIGPLAN '86: Proceedings of the 1986 SIGPLAN Symposium on

Compiler Construction, pages 176-185. ACM Press, 1986.

110

Bibliography

[VRGH+OO] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice

Pominville, and Vijay Sundaresan. Optimizing Java bytecode using the Soot

framework: is it feasible? In Compiler Construction, 9th International

Conference (CC 2000), volume 1781 of Lecture Notes in Computer Science,

pages 18-34,2000.

111

