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Abstract

A unifying framework for all signals belonging to the Global Positioning System (GPS) and

Galileo system is presented and applied to assess the potential code tracking performance

of modernized satellite radionavigation signals. The framework reconciles, under a single

analytical formulation, subcarrier signaling schemes, including the Binary Offset Carrier

(BOC), Multiplexed Binary Offset Carrier (MBOC), and Alternative Binary Offset Carrier

(ALTBOC). The new formulation allows for the derivation of closed form equations for the

Auto-Correlation Function (ACF) and Power Spectral Density (PSD) containing, as special

cases, the corresponding functions for GPS and Galileo signals. The analytical expressions

are used to obtain new bounds on code tracking accuracy based on the Ziv-Zakai Bound

(ZZB). Although the code tracking performance of GPS and Galileo signals is typically

investigated using the Cramér-Rao Bound (CRB), the approach is heuristic. The CRB does

not adequately describe the potential code tracking performance of weak or wideband signals

and does not account for tracking biases. On the other hand, there are no such restrictions

for Bayesian bounds such as the ZZB. However, because the CRB is easier to evaluate,

it is advantageous to quantitatively identify when the CRB is a meaningful benchmark

before having to resort to the ZZB. Therefore, thresholds on signal energy are provided

to indicate necessary conditions for the use of the CRB. In agreement with information-

theoretic developments, the thresholds reveal that a large signal bandwidth cannot reliably

compensate for low signal energy in order to sustain code tracking performance.
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Sommaire

Un cadre unifié pour tous les signaux appartenant au système de positionnement global

(GPS) et au système Galileo est présenté et appliqué afin de révéler la précision potentielle

de la poursuite du code des signaux modernes de la radionavigation par satellite. Le cadre

réconcilie, sous une formulation analytique, les modulations codées du type BOC, MBOC et

ALTBOC (dites respectivement Binary Offset Carrier, Multiplexed Binary Offset Carrier et

Alternative Binary Offset Carrier). La nouvelle formulation permet d’obtenir des équations

fermées propres aux fonctions d’autocorrélation (ACF) et de densité spectrale de puissance

(PSD) contenant, à titre de cas spéciaux, les expressions correspondantes pour les signaux

GPS et Galileo. Ces expressions conduisent à de nouvelles limites pour la précision de la

poursuite du code basées sur la borne de Ziv-Zakai (ZZB). Quoique la performance de la

poursuite du code des signaux GPS et Galileo est ordinairement évaluée en utilisant la borne

de Cramér-Rao (CRB), l’approche n’est pas rigoureuse. La CRB n’est pas adéquate pour

des signaux faibles ou à large bande passante, et ne peut refléter le comportement d’une

poursuite biaisée. D’autre part, ces restrictions ne s’appliquent pas aux bornes bayésiennes,

telle la ZZB. Or, la CRB peut être évaluée plus aisément que la ZZB, ainsi il est avantageux

d’identifier concrètement les conditions supportant son utilisation avant d’avoir recours à

la ZZB. Pour délimiter la validité de la CRB, un seuil sur l’énergie des signaux est établi.

Soutenu par des développements basés sur la théorie de l’information, ce seuil révèle qu’une

large bande passante ne peut compenser avec fiabilité la piètre précision d’une poursuite de

signaux faibles.
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Chapter 1

Introduction

A Global Navigation Satellite System (GNSS) provides a continuous worldwide access to

radionavigation signals with the aim of delivering a passive positioning and timing solution.

Currently driven by the Global Positioning System (GPS) and the Galileo system, GNSS

modernization was initiated over a decade ago to fulfill civilian mass-market demands

and meet military security needs. Bandwidth consumption is a major concern for GNSS

modernization and entails a considerable increase in signal complexity. To spectrally separate

modernized signals from legacy signals while reusing frequencies well suited for space-based

radionavigation, the next generation GNSS employs Direct Sequence Spread Spectrum

(DSSS) modulations characterized by multilevel code symbols. The underlying multilevel

waveforms, known as subcarriers, afford various degrees of spectral disparity by variably

distributing signal power to the edges of the frequency bands, away from that of heritage

signals.

In providing efficient bandwidth usage, the subcarriers also yield variably sharp cor-

relation peaks, offering multipath resilience and high resolution code tracking [1]. On

the other hand, the enhanced modulations encumber receiver designs and performance

studies. Harnessing the precision offered by the next generation GNSS requires receivers

capable of accurate subcarrier synchronization, and depending on the modulation, markedly

different receiver performance may ensue. The subcarriers produce multiple correlation

peaks, albeit with a sharp center peak, that complicate unambiguous code (and subcarrier)
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tracking [2]. Typical receivers with code tracking loops driven by discriminator functions

based on correlation peak detection may falsely lock onto a side peak [2].

As such, the second-order statistical properties of the signals, such as the Auto-

Correlation Function (ACF) and Power Spectral Density (PSD), indicate spectral occupancy

and, importantly, describe code tracking performance. Currently, the most popular measure

for the potential code tracking accuracy of GNSS signals is the Cramér-Rao Bound (CRB) [3],

[4]. The CRB sets a lower bound on the variance of an unbiased time delay estimator [5].

However, the CRB is limited because it does not incorporate inherent tracking biases due

to the signal structures and prior time delay information [6], [7]. Of greater concern for

the practitioner, the literature has not indicated the necessary quantitative conditions for

the suitability of the CRB for GNSS. Therefore, performance comparisons and conclusions

obtained using the CRB remain theoretically ungrounded.

To address a system-wide evaluation of code tracking performance, a consolidated

mathematical theory of all GPS and Galileo signals and their statistical properties becomes

instrumental. However, due to the complexity of the modulations, precise analytical

expressions for the signal structures and the second-order statistical properties of the

signals are currently only known for simple cases [1], [8], [9], [10]. Other cases require

approximations [11], [12]. Consequently, system designers are faced with multiple case

specific formulations and approximations [13], [14].

The objective of this thesis is to provide a unified analytical statistical description of

GNSS signals and to leverage the resulting theory to reassess code tracking performance.

The approach employed to reach this objective has yielded the following chief contributions:

� A general analytical description of GNSS signal structures

Results presented in an antecedent publication by the author [15] have been extended

to obtain a mathematical framework that generalizes all existing signaling schemes

used by GPS and Galileo.

� Single equations for the ACF and PSD of GNSS signals

Single closed form equations have been derived to describe the ACF and PSD contain-

ing, as special cases, the corresponding functions for all GPS and Galileo signals.
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� A bound on the code tracking accuracy of GNSS signals

The Ziv-Zakai Bound (ZZB) has been used to obtain a lower bound on the time delay

estimation error for all GPS and Galileo signals. The ZZB is specially suited for time

delay estimation [16], [17] and more accurately describes the potential code tracking

accuracy when compared to the widely used CRB.

� Code tracking thresholds of GNSS signals

Closed form expressions have been derived to indicate the necessary conditions that

support the use of the CRB to describe the potential code tracking accuracy of GNSS

signals. The corresponding thresholds indicate that an increase in signal bandwidth

cannot compensate for low signal energy in order to provide accurate code tracking.

This thesis is organized as follows. In Chapter 2, we provide a mathematical overview of

all existing modulations used by GPS and Galileo. In Chapter 3, we generalize the GPS and

Galileo signal structures by combining all characteristics of the modulations. The integrated

analysis leads to a closed form description for the modulations, which include the Binary

Offset Carrier (BOC), Multiplexed Binary Offset Carrier (MBOC), and Alternative Binary

Offset Carrier (ALTBOC). We refer to the generalization as GNSS modulation. In Chapter

4, we provide a unified statistical description of GNSS modulation through the ACF and

PSD of the generalized signal. The agreement between the proposed theory and practice is

also illustrated. In Chapter 5, we provide measures that help generalize the code tracking

performance of signals in the presence of noise and interference. In Chapter 6, we derive an

information-theoretic model that assesses the potential code tracking accuracy of GNSS

modulation. We subsequently propose the ZZB as an improved benchmark for code tracking

performance. The ZZB accurately bounds time delay estimation errors and is employed

to obtain thresholds that delineate proper use of the CRB. Simulations are conducted to

compare the code tracking thresholds of all GPS and Galileo signals.
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Chapter 2

Background and Motivation

The goal of this chapter is to investigate the structures of the GNSS signals and to provide

descriptions for their corresponding modulations. In our treatment of these signals, we use

an unconventional, and to the best of our knowledge, new description for the modulations.

The new description will facilitate the transition to a general framework for the GNSS

signals. For mathematical convenience, to describe the GNSS signals, we resort to a signal

representation using analytic time functions [18], with all signals compactly defined via

complex envelopes1 and all filters defined in baseband.

2.1 Signal Components and Navigation Signals

We start by introducing the signal terminology which is used throughout this thesis. We

refer to GNSS signals as either signal components or navigation signals. Modernized GPS

(GPS II and III) and Galileo satellites will transmit a combination of 21 signal components

on 7 carrier frequencies. The purpose of the different signal components is to provide an

access to a diversified array of navigation services. The services can be arranged into five

groups: 1) Safety-of-Life (SOL), 2) Open Service (OS) or Standard Positioning Service (SPS),

3) Commercial Service (CS), 4) Public Regulated Service (PRS) or Precise Positioning Service

(PPS), and 5) Search-And-Rescue (SAR) [20]. Signal components contain data associated

1The specific definition of the complex envelopes used in this work is due to Zhang and Miller [19]. We
note that for GNSS signals, the complex envelope representation is valid because most signal power is
confined to a limited bandwidth.



Background and Motivation 5

to one particular service and are transmitted on either an Inphase (I) or Quadriphase (Q)

carrier; when multiplexed together, they form navigation signals [21]. The navigation signals

are simultaneously transmitted by different satellites and share the same frequency bands.

To differentiate the signal components, GPS and Galileo employ Code Division Multiple

Access (CDMA) where all signal components are phase-modulated by a unique spreading

code. The spreading codes allow a receiver to access different signal components transmitted

by the same satellite or similar components transmitted simultaneously by different satellites.

The spreading codes not only differentiate the signal components but also provide a means

of ranging. To determine the satellite-to-receiver distances, a receiver tracks the codes in

the signal components and thus estimates the signal propagation times. The data in the

navigation signals describes the position of the satellites and, with the ranging, provides the

necessary information to determine the position of the receiver [20]. The calculation of the

receiver position based on the information distilled from the navigation signals is outside

the scope of this thesis. The reader is referred to, e.g., Borre et al. [22], for a detailed

description of the positioning methods. Our goal here is to completely characterize the

GNSS signal structures and to investigate of the potential code tracking accuracy offered by

the corresponding modulations.

2.2 GNSS Signal Definition

Each GNSS signal component r(t) consists of three parts: 1) a data-carrying signal d(t), 2)

a spreading sequence c(t), and 3) a subcarrier s(t). Each of these signals is detailed below.

The real and imaginary parts of the waveform c(t) consist of Pseudo-Random Noise

(PRN) codes. The PRN codes are composed of time aligned chips of duration Tc and

polarity ±1, and each form a unique periodic signal of period MTc (M ∈ Z+). Similarly, the

real and imaginary parts of the data d(t) are composed of bits of duration DTc (D/M ∈ Z+)

and polarity ±1 which are time aligned with the PRN codes. The real and imaginary

parts of the data are, in that order, each multiplied by the real and imaginary parts of the



Background and Motivation 6

complex spreading sequence to produce a spread data signal given by

x(t) = �{c(t)}�{d(t)}+ j�{c(t)}�{d(t)} . (2.1)

In (2.1), j �
√
−1 represents the imaginary unit and the operators �(·) and �(·) extract

the real and imaginary parts, respectively. The GNSS signal components are characterized

by a subcarrier s(t) that is time-aligned with the PRN codes and is given by a combination

of quantized sinusoids:

s(t) = a0 sgn {cos(2nπfrt+ ϕ0)}+ a1 sgn {cos(2mπfrt+ ϕ1)}

+ a2 [sgn {cos(2mπfrt+ ϕ1 + ϕ2)}+ sgn {cos(2mπfrt+ ϕ1 − ϕ2)}] . (2.2)

In (2.2), sgn(·) is the signum function defined as sgn(b) � −1 if b < 0, or 1 if b ≥ 0 (b ∈ R).

A subcarrier of the form given by (2.2) is a 2-level or 4-level wave depending on the choices

of the weights ak ∈ R (k = 0, 1, 2) and phases ϕk ∈ [0, 2π) (k = 0, 1, 2). The parameter

m indicates the rate of the subcarrier, mfr, with respect to a reference frequency fr (the

frequency fr is set by convention to the legacy GPS SPS PRN code rate of 1.023 MHz [20]).

Similarly, the parameter n indicates the rate of the PRN codes, nfr, again with respect

to fr. Both parameters are real numbers satisfying the condition that 2m/n is an integer.

By convention, 1/(mfr) represents one subcarrier period (a full oscillation), while 1/(nfr)

represents one code chip Tc [1]. We note that the subcarrier rate may change over time;

for conciseness, the time dependency of the parameter m remains implicit. The subcarrier

described in (2.2) is the fundamental building block of the modulations used in GPS and

Galileo. In fact, the modulations are simply a formalized way of identifying the employed

subcarriers. Fig. 2.1 shows two examples of GNSS subcarriers produced by (2.2). The figure

shows how the different parameters of (2.2) yield subcarriers of different rate, phase, and

level structure.
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Fig. 2.1 Examples of subcarriers used by GPS and Galileo modulations:
(a) MBOC; (b) ALTBOC.

By modulating the subcarrier s(t) by the real or imaginary parts of the spread data

x(t), we obtain the signal component r(t), i.e.,

r(t) = �{x(t)} s(t) or r(t) = �{x(t)} s(t). (2.3)

Several signal components can be combined using a multiplexing scheme. The multiplexed

components form navigation signals which are transmitted over particular frequency bands.

2.3 GPS and Galileo Modulations

The modulations used by the GNSS navigation signals can be organized according to signal

structure and signal statistics. Three basic families exist: BOC, MBOC, and ALTBOC. In

this section, we separately describe the modulation families.
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2.3.1 Binary Offset Carrier Modulation

The BOC modulation is denoted by BOC(m,n). As described earlier, the parameter m

indicates the subcarrier rate, and the parameter n indicates the PRN code rate. The

signal component subcarrier is further described as sine-phased or cosine-phased (the cosine-

phased subcarrier is sometimes known as staggered-BOC [23], although, strictly speaking,

the original BOC formulation due to Betz [3] only considered a sine-phased subcarrier).

In this thesis, to resolve any ambiguity caused by the subcarrier phase, the notation

BOCsin(m,n) and BOCcos(m,n) is employed. The original sine-phased BOC modulation

is a generalization of the well known Manchester encoding scheme in which m = n. For

the case where 2m = n, the component modulation is equivalent, in terms of second

order statistics, to Binary Phase Shift Keying (BPSK) denoted by BPSK(n) [1], where n

indicates the PRN code rate. It is important to realize, however, that by the definition in

(2.2), BOC modulation always has an oscillating subcarrier (in agreement with the original

formulation [3]). The oscillation may be absorbed into the code chip polarities leading to

the aforementioned relation between BOC and BPSK modulation.

Mathematically, a BOC modulated signal can be expressed as

yBOC(t) = x(t)sBOC(m,n)(t). (2.4)

The spread data signal x(t) may take complex values to accommodate quadrature multiplex-

ing (the real and imaginary parts of (2.4) are the BOC signal components). In comparison

to a BPSK signal, the inclusion of a BOC subcarrier sBOC(m,n)(t) with 2m > n evenly

redistributes power from the main frequency band (centered around the carrier frequency)

to higher and lower sidebands, permitting spectral diversity. The extent of the power redis-

tribution and the separation among the sidebands is larger when a cosine-phased subcarrier

is employed instead of a sine-phased subcarrier [8], [9]. As an added benefit, the BOC

subcarrier produces signals with a sharper center ACF peak, which implies a wider Gabor

bandwidth and thus enhanced code tracking performance [24] and, particularly, robustness

to multipath [1]. However, a finer center peak comes at the price of more pronounced side

peaks, a situation that complicates receiver designs [2].
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2.3.2 Multiplexed Binary Offset Carrier Modulation

To enjoy the benefits of spectral diversity and multipath robustness while maintaining

compatibility with BOC receivers, MBOC modulation is used [25]. The MBOC modulation

employs a subcarrier formed by combining two sine-phased BOC subcarriers of different

rates so that the PSD of the resulting signal is a mixture of the BOC subcarrier power

spectra:

GMBOC(f) = pGBOCsin(m,n)(f) + (1−p)GBOCsin(n,n)(f), p ∈ (0, 1). (2.5)

The notation MBOC(m,n, p) specifies the multiplexing of a BOCsin(m,n) and BOCsin(n, n)

subcarrier with the fraction of power allocated to the former being p ∈ (0, 1). Although

various approaches may be used to obtain a time domain signal with a PSD described by

(2.5), two notably distinct methods have attracted most of the system designers’ interest.

These are the Composite Binary Offset Carrier2 (CBOC) and the Time Multiplexed Binary

Offset Carrier (TMBOC). The former is based on a weighted summation of two different

BOC subcarriers, while the latter is based on a temporal multiplexing of two different BOC

subcarriers.

The CBOC signal component modulation is denoted by either CBOC(m,n, p, +) or

CBOC(m,n, p, −). In this notation, ‘+’ and ‘−’ indicate, respectively, that the BOCsin(m,n)

subcarrier is added to, or subtracted from, the BOCsin(n, n) subcarrier. In this respect,

CBOC(m,n, p, +) subcarriers are known as in-phase, while CBOC(m,n, p, −) subcarriers

are known as anti-phase. In either case, the weighted sum of the two subcarriers yields a

4-level net subcarrier. By specifying the weights as
√
p and

√
1−p, the expression for the

subcarrier used by the CBOC signal component modulation is given by

sCBOC(m,n,p,±)(t) =
√
1−p sBOCsin(n,n)(t)±

√
p sBOCsin(m,n)(t). (2.6)

To achieve the PSD described by (2.5), it is necessary to form the MBOC signal from a

sum of two CBOC signal components, one with an in-phase subcarrier and another with

2CBOC belongs to a class of signaling schemes known as Composite Binary Coded Symbol (CBCS) [26].
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an anti-phase subcarrier. For this reason, MBOC can be used as a means for multiplexing

two different spread data signals, say x1(t) and x2(t) defined via (2.1), while producing a

constant envelope aggregate signal (required to minimize distortions caused by non-linear

satellite payload amplifiers). In this case, the MBOC modulated signal can be expressed

from CBOC signal components as

yMBOC(t) = x1(t)sCBOC(m,n,p,+)(t)− x2(t)sCBOC(m,n,p,−)(t). (2.7)

In (2.7), the spread data signals are real. It should be noted that, in practice, x1(t) is a

data signal, while x2(t) a pilot signal [27]. Employing this configuration, one obtains a

multiplexing scheme denoted by CBOC(m,n, p).

The TMBOC signal component modulation is similarly denoted by TMBOC(m,n, p).

The TMBOC subcarrier configuration is repetitive with a period BTc (M/B ∈ Z+). Within

each period, A (out of B) PRN code chips employ a BOCsin(m,n) subcarrier and the

remaining B − A chips employ a BOCsin(n, n) subcarrier. In this case, the parameter p

signifies the ratio A/B. Denoting by T1 the set of chips where the subcarrier is of the

BOCsin(m,n) kind and by T2 the set of chips where the subcarrier is of the BOCsin(n, n)

kind, the TMBOC subcarrier is given by

sTMBOC(m,n,A/B)(t) =

⎧⎨
⎩

sBOCsin(m,n)(t), �(tmod BTc)/Tc	 ∈ T1,

sBOCsin(n,n)(t), �(tmod BTc)/Tc	 ∈ T2.
(2.8)

In (2.8), mod denotes the modulo operator defined as amod b � a− b
⌊
a
b

⌋
(a,b ∈ R). The

subcarrier is then used to form the TMBOC version of the MBOC modulated signal. The

TMBOC modulated signal can be expressed as

yMBOC(t) = x(t)sTMBOC(m,n,p)(t). (2.9)

In (2.9), the spread data signal is real. By convention, the multiplexed signal described by

(2.7) and the signal component described by (2.9) are both defined as MBOC modulated

signals because their PSD adheres to (2.5).
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2.3.3 Alternative Binary Offset Carrier Modulation

As previously alluded to, BOC modulated signals can be used for quadrature multiplexing.

Particularly, in legacy GPS, each satellite can transmit up to two BPSK(n) signal components

over the same frequency band (one inphase and the other in quadriphase). This approach

to signal component multiplexing is equivalent to Quadrature Phase Shift Keying (QPSK)

denoted here by QPSK(n) [20], where n indicates the PRN code rate. Moreover, the

CBOC multiplexing scheme, described earlier, combines two signal components to carefully

increase bandwidth and facilitate tracking. However, to combine more than two signal

components while maintianing a constant envelope aggregate signal, the modernized GPS

and Galileo employ two other schemes: Interplex and ALTBOC modulation. Interplex

modulation is also referred to as Coherent Adaptive Subcarrier Modulation (CASM) and

is used to simultaneously transmit individually receivable signal components within the

same frequency band while providing a constant envelope and control of signal component

power [28], [29]. However, in the rest of this thesis, we will not consider Interplex modulation

because it is transparent to the receiver — this is illustrated by its omission in the Galileo

Open Service Signal-In-Space Interface Control Document (OS SIS ICD) [30]. On the

other hand, ALTBOC modulation produces a modular signal structure that, in addition to

providing Interplex-like transmission advantages, promotes flexible receiver designs. With

ALTBOC, one can choose to use simple designs for the reception of individual BPSK-like

signal components, or more complicated, but more accurate, wideband designs for the

reception of all signal components contained in the ALTBOC modulated signal [31], [32].

ALTBOC modulation employs finite-level subcarriers which are cosine-phased and sine-

phased. Such orthogonal subcarriers are combined to produce a Single Side Band (SSB)

waveform. Modulating SSB waveforms with spread data produces an effect that is very

similar to the frequency shift caused by multiplication with a complex exponential in the time

domain but suffers from harmonic distortion due to the finite levels of the subcarriers [32],

[33]. If (smooth) sine and cosine functions are used as the subcarriers3, the harmonics vanish

but the signal envelope is not constant. ALTBOC modulation reaches a middle ground by

3Sinusoidal subcarriers are used in a class of signaling schemes known as Linear Offset Carrier (LOC) [3].



Background and Motivation 12

employing 4-level subcarriers to create 8-ary Phase Shift Keying (8-PSK) SSB waveforms

that allow for a constant envelope and minimize spectral regrowth.

By using SSB waveforms, the spectra of the modulated signal components are translated

to either higher or lower frequencies. In contrast to BOC and MBOC, ALTBOC modulation

places different signal components on either side of the split-spectrum in the same I-Q phase

plane. The multiplexing technique provided by the ALTBOC modulation is preferable

over separately injecting signals on closely adjacent center frequencies because it eliminates

the use of narrowband filtering and thus reduces distortion within the desired band [32].

ALTBOC is given the designation ALTBOC(m,n), where, once again, the parameters m

and n indicate the subcarrier and code rates, respectively.

The ALTBOC subcarriers are formed by the sum of two differently quantized sinusoids

of the same rate [see (2.2) and Fig. 2.1(b)]. Like CBOC, the combination of waveforms

results in an in-phase or anti-phase subcarrier (in ALTBOC, the in-phase and anti-phase

subcarriers are sometimes known as single and product subcarriers, respectively [32]).

The ALTBOC subcarriers can be considered as special cases of the so-called Augmented

BOC (ABOC) subcarrier [15]. The ABOC subcarrier is a 4-level BOC subcarrier whose

extra (augmented) levels are adjustable in width. The generalization permitted by the

ABOC subcarrier is presented herein for the first time and, as we will see, is the first step

towards a generalized representation of all modulation families used in GNSS. The ABOC

subcarrier is denoted by ABOC(m,n, p/q, a1, a2, ±). The parameters a1 and a2 (a1, a2 ∈ R+)

parameterize the levels of the subcarrier. These levels are ±a1 with the possible addition of

±(a1+a2) or ±(a1−a2) levels, depending on whether the subcarrier is in-phase or anti-phase,

respectively. The parameter p/q ∈ (0, 1] (p/q ∈ Q+) signifies the fraction of the subcarrier

period for which the ±(a1 ± a2) levels are attained. As in BOC, the ABOC subcarrier may

be sine-phased or cosine-phased, and the disambiguation ABOCsin(m,n, p/q, a1, a2, ±) and

ABOCcos(m,n, p/q, a1, a2, ±) is employed when needed. For the ALTBOC modulation, most

ABOC parameters remain implicit; the parameter p/q is set to 1/2, while the parameters a1

and a2 are fixed to
√
2/8 and 1/4, respectively. The ALTBOC signal is formed from ABOC
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subcarriers as follows:

yALTBOC(t) = x1(t)
[
s
ABOCcos(m,n, 1

2
,
√
2
8
, 1
4
,+)
(t)− j s

ABOCsin(m,n, 1
2
,
√
2

8
, 1
4
,+)
(t)
]

+ x2(t)
[
s
ABOCcos(m,n, 1

2
,
√
2
8
, 1
4
,+)
(t) + j s

ABOCsin(m,n, 1
2
,
√
2
8
, 1
4
,+)
(t)
]

+ x3(t)
[
s
ABOCcos(m,n, 1

2
,
√
2
8
, 1
4
,−)(t)− j s

ABOCsin(m,n, 1
2
,
√
2

8
, 1
4
,−)(t)

]
+ x4(t)

[
s
ABOCcos(m,n, 1

2
,
√
2
8
, 1
4
,−)(t) + j s

ABOCsin(m,n, 1
2
,
√
2

8
, 1
4
,−)(t)

]
. (2.10)

In (2.10), the signals x1(t) and x2(t) are spread data signals which, in practice, both convey

ranging information and pilot signals in carrier phase quadrature. The last two signals,

x3(t) and x4(t), consist of intermodulation terms formed by the products of spread data

streams in x1(t) and x2(t). These redundant components ensure an overall constant envelope

signal4 [32], [34].

Below, Table 2.1 and Table 2.2 summarize the modulations used by GPS and Galileo.

Table 2.1 GPS and Galileo Modulations and Subcarriers

Modulation Multiplexing Signal component Example
family scheme modulation subcarrier

BOC(m,n)

QPSK(n) BPSK(n)

—
BOCsin(m,n)

BOCcos(m,n)

MBOC(m,n, p)
CBOC(m,n, p)

CBOC(m,n, p,+)

CBOC(m,n, p,−)

— TMBOC(m,n, p)

ALTBOC(m,n) ALTBOC(m,n)

ABOCsin(m,n, 12 ,
√
2
8 , 14 ,+)

ABOCsin(m,n, 12 ,
√
2
8 , 14 ,−)

ABOCcos(m,n, 12 ,
√
2
8 , 14 ,+)

ABOCcos(m,n, 12 ,
√
2
8 , 14 ,−)

4In general, an ALTBOC-type signal where p/q 
= 1/2 produces a constant envelope if the sum
of the values of p/q assigned to any sine-phased and cosine-phased ABOC subcarrier equals 1, e.g.,
ABOCsin(m,n, 1

3 , a1, a2,±) and ABOCcos(m,n, 2
3 , a1, a2,±).
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Table 2.2 GPS and Galileo Modulations and Services

Navigation Multiplexing Signal Signal component
Service

signal scheme component modulation

GPS II & III

L1 Interplex

L1Cd BOCsin(1, 1)
SPS

L1Cpa (pilot) TMBOC(6, 1, 4
33)

L1P(Y) BPSK(10) PPS

L1M BOCsin(10, 5) PPS

L1C/A BPSK(1) SPS

L2 Interplex
L2C BPSK(1) SPS

L2P(Y) BPSK(10) PPS

L2M BOCsin(10, 5) PPS

L5 QPSK(10)
L5-I

BPSK(10) SPS, SOL
L5-Q (pilot)

Galileo

E1
Interplex with E1-B CBOC(6, 1, 1

11 ,+) OS, CS,

CBOC(6, 1, 1
11) E1-C (pilot) CBOC(6, 1, 1

11 ,−) SAR, SOL

E1-A BOCcos(15, 2.5) PRS

L6 — L6b — SAR

E6 Interplex
E6-B

BPSK(5) CS
E6-C (pilot)

E6-A BOCcos(10, 5) PRS

E5b QPSK(10)
E5b-I

BPSK(10)
OS, CS,

E5b-Q (pilot) SOL

E5
ALTBOC(15, 10)

E5a-I
ABOCsin(15, 10,

1
2 ,
√
2
8 , 14 ,+)E5a-Q (pilot)

and
OS, CS,

E5b-I
ABOCcos(15, 10, 12 ,

√
2
8 , 14 ,+)

SOL
E5b-Q (pilot)

E5a QPSK(10)
E5a-I

BPSK(10) OS, CS
E5a-Q (pilot)

aL1Cp is transmitted with 3/4 of the total power of the L1C signals to produce a PSD that matches the
Galileo E1-B/E1-C multiplexed signal [35].

bL6 is a dedicated downlink to control stations; the signal details are omitted for receiver usage [27].
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Specifically, Table 2.1 shows the hierarchy of the modulations used by GPS and Galileo,

while Table 2.2 points out where each signal component modulation fits within the navigation

signals; a list of the particular navigation signals and signal components along with their

corresponding designations and services is also provided [20], [21], [27], [29], [31], [36].

2.4 Motivation for a General Framework

Because code tracking performance depends on the signal component modulation and

multiplexing scheme, it is advantageous to coalesce all previously described modulations

within a single framework. The goal of a generalized signal structure is to facilitate

the analytical characterization of the statistical properties of GNSS signals. In addition

to streamlining the study of code tracking performance, this has important practical

consequences. In particular, the analytical expressions for the statistical properties, such as

the ACF and PSD, are useful for incorporation within robust delay discriminator designs [37],

[38], [39] as well as for rapid receiver simulations [15], [13].

However, until now, little work has been devoted to a general signal theory for GPS and

Galileo. There have been a few attempts at a generalization but only for select GNSS signal

classes. Pratt and Owen [8], Hein et al. [9] and, especially, Lohan et al. [10] describe a

generalization for particular subcarrier modulations. As a result, receiver designs addressing

the ambiguity challenges posed by the new waveforms, i.e., false tracking of side peaks [2],

become applicable to a wider range of signals [38]. The existing theoretical formulations,

however, require approximations and specific extensions for particular modernized signaling

schemes [11], [12] and fall short in precisely incorporating the ALTBOC and MBOC

subcarriers. Consequently, recent works have resorted to approximate analytical formulations

to investigate code tracking performance [13], [14]. In the remainder of this section, we survey

the GNSS signal theories published by Lohan et al. [10], [11], [12]. Some of these theories

are applied in this thesis for comparison with the general framework that is developed in

later chapters.

Lohan et al. proposed a modulation family known as the Double Binary Offset Carrier

(DBOC) [10] and demonstrated its relationship to BOC modulation. The DBOC modulation
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employs a 2-level subcarrier that can be expressed as

sDBOC(N1,N2)(t) = Π

(
t

Tc/(N1N2)
− 1

2

)
�
∞∑

i=−∞

N1−1∑
j=0

N2−1∑
k=0

(−1)j+k δ

(
t− jTc

N1

− kTc

N1N2

− iTc

)
.

(2.11)

In (2.11), Π(t) is the unit-height rectangular pulse function of support [−1/2, 1/2), �

denotes convolution5, and δ(t) is the Dirac delta function. The subcarrier is represented as

a convolution between a rectangular function and a train of scaled Dirac delta functions.

The parameters N1 and N2 are nonzero positive integers referred to as modulation numbers

of the first and second stage, respectively. The modulation number of the first stage divides

the PRN code chips into N1 antipodal subchips, while the modulation number of the second

stage divides the subchips into N2 antipodal parts. For N1 = 2m/n and N2 = 1, the result

corresponds to a BOCsin(m,n) subcarrier. If instead N2 = 2, a BOCcos(m,n) subcarrier is

generated. The DBOC modulated signal can be expressed as

yDBOC(N1,N2)(t) = x(t)sDBOC(N1,N2)(t). (2.12)

In (2.12), the spread data x(t) may take complex values. The analytical expressions for the

ACF and PSD derived using (2.12) provide a good match to simulation results.

To accommodate complex subcarriers, Lohan et al. introduced the Complex Double

Binary Offset Carrier (CDBOC) [11]. The CDBOC modulated signal uses two DBOC

subcarriers and two complex spread data signals, so that

yCDBOC(N1,N2,N3,N4)(t) = x1(t)sDBOC(N1,N2)(t) + jx2(t)sDBOC(N3,N4)(t). (2.13)

In (2.13), the subcarriers are formed from different rectangular functions [cf. (2.11)]. This

complicates the derivation of the statistical properties of the signals. To express both

subcarriers using a fixed reference rectangular function, Lohan et al. adjusted the rate of

the train of Dirac delta functions in (2.11). If N3N4 is a divisor of N1N2, both subcarriers

5We adopt the following notation: x(t) � y(t) �
∫∞
−∞ x(λ)y(t− λ) dλ =

∫∞
−∞ x(t− λ)y(λ) dλ and thus

x(t) � y(−t) =
∫∞
−∞ x(λ)y(−t+ λ) dλ =

∫∞
−∞ x(λ+ t)y(λ) dλ (x(t), y(t) ∈ C).
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can be defined using a rectangular function of width Tc/(N1N2). In general, the subcarriers

used in CDBOC modulation can be expressed as

sCDBOC(N1,N2,N3,N4)(t) = Π

(
t

Tc/(N1N2)
− 1

2

)
�

∞∑
i=−∞

N3−1∑
j=0

N4−1∑
k=0

N1N2
N3N4

−1∑
l=0

(−1)j+k

× δ

(
t− jTc

N3

− kTc

N3N4

− lTc

N1N2

− iTc

)
. (2.14)

As a result, the CDBOC modulated signal is equivalently expressed as

yCDBOC(N1,N2,N3,N4)(t) = x1(t)sCDBOC(N1,N2,N1,N2)(t) + jx2(t)sCDBOC(N1,N2,N3,N4)(t). (2.15)

For distinct complex spread data signals x1(t) and x2(t), the statistical properties of a

CDBOC modulated signal can be used to approximate those of an ALTBOC modulated

signal. However, (2.15) does not match the ALTBOC signal definition provided by (2.10).

Contrary to ALTBOC, CDBOC uses 2-level subcarriers (as opposed to 4-level subcarriers)

and has no intermodulation terms. Therefore, the expressions for the ACF and PSD of the

ALTBOC modulated signal derived using (2.15) are approximations.

Lohan and Renfors later extended the CDBOC modulation theory to include MBOC [12].

They reasoned that the sum of two subcarriers, one scaled by
√
p and the other by

√
1−p

(p = A/B ∈ Q+), is statistically equivalent to time multiplexing, where the first subcarrier

occurs for A out of B PRN code chips. As a result, to derive the statistical properties, it

was claimed that an MBOC modulated signal can be generally modeled as [cf. (2.5)]

yMBOC(N1,N2,p)(t) = x(t)
[√

p sCDBOC(N1,1,N1,1)(t) +
√
1−p sCDBOC(N1,1,N2,1)(t)

]
. (2.16)

However, this expression does not provide an accurate statistical description for CBOC or

TMBOC modulated signals. For CBOC modulation, (2.16) does not include the anti-phase

component and, for TMBOC modulation, does not capture the temporal separation between

the multiplexed subcarrier variants, thus creating a false statistical dependence between the

subcarrier variants. Again, the expressions for the ACF and PSD of the MBOC modulated
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signal derived using (2.16) are approximations.

The statistical properties of the signals defined by Lohan et al. admit closed form

expressions. The authors obtained the ACF via the expected value of the finite-time

autocorrelation6 of the functions defined by (2.12), (2.15), and (2.16); the assumption

that the spread data is composed of uncorrelated zero mean code chips simplifies the

calculations [10], [11], [12]. The reference rectangular function [cf. (2.11) and (2.14)] allows

the ACF to be expressed as a summation of shifted triangular functions. Finally, the PSD

is calculated from the squared magnitude spectrum of the signals by applying the temporal

shift property to the Fourier transform of the reference rectangular function.

In summary, the works of Lohan et al. are important because they introduce a signal

representation using convolution which greatly facilitates the derivation of the statistical

properties of GNSS signals. However, for most existing GNSS signals, the published results

are case specific and provide only approximations. In this work, we seek to eliminate the

inaccuracies resulting from these approximations by deriving a highly modular GNSS signal

model based on the convolution approach that incorporates all subcarriers, data signals,

and combinations thereof.

2.5 GNSS Channel Model

Having introduced the modulations used by GPS and Galileo, we now characterize the

GNSS signal channel. The channel model presented here is used throughout this thesis

and establishes the fundamental assumptions required to investigate the code tracking

performance of next generation GPS and Galileo signals.

Let us consider the channel depicted in Fig. 2.2. In the figure, y(t) is an infinite

bandwidth reference signal intended for transmission by a GPS or Galileo satellite. The

signal y(t) consists of either a signal component or a multiplexed signal (a mathematical

description is provided later in the context of a general framework for the GNSS signals [see

Section 3.2]). Before transmission, the reference signal is filtered by the satellite transmitter

chain and then propagates through the channel which eventually produces the received

6In the original papers [10], [11], [12], the finite-time autocorrelation is sometimes referred to as a
convolution.
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a

b

t ∈ [0, T )

aThe effective filter contains the receive and transmit filters.
bThe noise and interference is shaped by the receive filter.

Fig. 2.2 Block diagram of the GNSS channel model.

Line-Of-Sight (LOS) signal. The LOS signal is of primary interest because it is what a

receiver ideally synchronizes to. In this work, we consider only the LOS component (with

negligible excess scattering delay) and thus assume that the channel exhibits flat-fading [40].

Furthermore, we assume that the Doppler-induced spectral broadening is minimal, and only

a Doppler shift caused by the relative motion of the transmitting satellites is considered.

Under such conditions, the channel exhibits slow-fading [40]. Consequently, the channel

parameters are assumed fixed (or change very slowly) over an observation interval [0, T ).

In this respect, the transmitted signal undergoes a time delay t0, complex attenuation α0,

and phase shift φ0. In this work, t0 is the channel parameter of interest. The time delay is

sometimes referred to as the code delay because it is estimated by the receiver as it tracks

the PRN code (and subcarrier) of the received signal. We assume that T is sufficiently

large to produce an interval in which the delay can be unambiguously distinguished [see

Section 4.1].

Upon reception, the transmitted signal is filtered by the receiver front-end. The combi-

nation of the receive and transmit filters is modeled by the impulse response z(t). Therefore,
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in the absence of noise and interference, the received signal is given by

ŷ(t, t0) =

∫ ∞

−∞
α0e

jφ0y(λ− t0)z(t− λ) dλ. (2.17)

The explicit inclusion of t0 in the function ŷ(t, t0) underlines the fact that we are especially

interested in the time delay. We remark that the observation interval is sufficiently large

so that the contribution of the reference signal y(t) to (2.17) is negligible outside of the

interval. Furthermore, the Fourier transform of ŷ(t, t0) computed over the time interval

[0, T ) is equivalent to that computed over any interval of the same length [41]. Consequently,

ŷ(t, t0) has a power spectrum given by

Gŷ(f) =
κ

T
|Y (f)Z(f)|2. (2.18)

In (2.18), the attenuation coefficient scales the total signal power with κ � |α0|2. In addition,

Y (f) is the Fourier transform of y(t) computed over [0, T ), and Z(f) is the Fourier transform

of z(t) which implements a lowpass filter that makes Gŷ(f) negligible outside of a bandwidth

[−W/2,W/2]. In addition to bandlimiting the signal, the effective filter degrades the power

of the received signal. For a bandlimited GNSS signal, the output power of the receiver

front-end is largely due to the subcarriers. The subcarriers are implicitly included in ŷ(t, t0)

and contribute an aggregate power of PS. The power of the signal due to the subcarriers

and the attenuation coefficient is defined as the carrier power:

C � 1

2
κPS. (2.19)

By convention, the carrier power is associated to the bandpass (as opposed to baseband)

signal7. The power degradation due to the filtering is referred to as the correlation loss8 [10],

[42] defined via

ψ � 1

2C

∫ W/2

−W/2

Gŷ(f) df. (2.20)

Fig. 2.3 illustrates the correlation loss by comparing the ACF of a bandlimited signal to

7By definition, complex envelope signals have twice the power of their bandpass counterparts [19].
8Note that the term “loss” refers to a decibel scale.
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Fig. 2.3 Example of the ACF of a bandlimited signal component:
CBOC(6, 1, 1

11 ,−).

the ACF of an infinite bandwidth signal (both normalized to 2C). In (2.20), ψ represents

the power containment, i.e., the fraction of carrier power C available beyond the receiver

front-end. The unit-power spectrum can then be defined as

Ğŷ(f) �
1

2ψC
Gŷ(f). (2.21)

The use of the unit-power spectrum permits a separate treatment for the correlation loss,

carrier power, and signal spectrum.

Referring again to Fig. 2.2, the transmitted signal is corrupted by noise and interference

w(t). The signal w(t) is the outcome of a stationary circular symmetric (zero mean) complex

Gaussian process [43] with a PSD denoted by Gw(f) that implicitly incorporates the filtering

due to the receiver front-end. We assume that w(t) has real and imaginary parts that are

independent at all times. In addition, over the receiver front-end bandwidth, we assume

that there are no frequencies for which Gw(f) is zero. The Gaussian noise and interference

is added to ŷ(t, t0) to form the received signal. The result, as shown in Fig. 2.2, is given by

ỹ(t) = ŷ(t, t0) + w(t). (2.22)

In order to investigate the statistical properties of GNSS signals, it will be necessary to
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consider the ensemble of all possible outcomes of (2.22), where select channel and signal

parameters are random. As a convention, in this work we denote random variables and

processes using the underlining (Van Dantzig) notation, e.g., ỹ(t) is a realization of the

random process ỹ(t).

2.6 Cramér-Rao Bound

The common approach to study the potential code tracking accuracy of GNSS signals

(irrespective of receiver designs) is to evaluate the CRB. The CRB sets a lower bound on

the error, in terms of variance, of any unbiased parameter estimator. For simplicity, let us

consider a time delay estimate, say t̂0, obtained by observing ŷ(t, t0) in the presence of ideal

bandlimited white Gaussian noise with Gw(f) = 2N0 over the band of interest [19]. We

note that N0/2 is the double-sided PSD of the additive white Gaussian noise corrupting the

bandpass signal from which arises the complex envelope9. In this case, the CRB can be

expressed as [18]

[σ2
t̂0
]CRB =

N0

4π2T
∫W/2

−W/2
f 2Gŷ(f) df

. (2.23)

The CRB is inversely related to the power and spread of the frequencies in ŷ(t, t0). This

indicates that signals with spectral power concentrated at the band edges potentially provide

better code tracking accuracy. However, as discussed in following section, the CRB has

several important limitations.

2.7 Motivation for Improved Code Tracking Bounds

The main feature of the modulations used by the modernized GPS and Galileo is the flexible

distribution of the signal power across the frequency bands. Specifically, modernized signals

manifest split-spectra which help reduce the amount of frequency overlap between signals

in common bands and provide accurate code tracking [3]. In comparison to legacy GPS

9It has been shown that the complex envelope of white noise with a double-sided PSD of N0/2 is, itself,
not white [44] but is circularly symmetric with a PSD of 2N0u(f + f0), where u(·) is the unit step function
and f0 is the central frequency of the bandpass signal [45]. However, as long as W ≤ 2f0, it is correct to
say that over the band of interest Gw(f) = 2N0.
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signals, the improvement in code tracking accuracy is due to the concentration of power on

the sidebands, which suggests that frequency spread is inversely related to the Mean Square

Error (MSE) of the time delay estimator. This is consistent with signals of sufficiently high

energy observed in the presence of ideal bandlimited white Gaussian noise because the MSE

adopts the form of the CRB [17]. In fact, existing receiver designs have been shown to

achieve a performance close to the CRB [46].

However, the CRB is restricted to an unbiased parameter estimator and assumes that

the receiver maintains code tracking lock [47]. In addition, the CRB does not account for

the ambiguity introduced by the multi-peak ACF of the modernized GNSS signals [6], nor

does it consider prior time delay information. As a result, exclusive use of the CRB has

lead to theoretically ungrounded conclusions on potential code tracking accuracy, especially

for weak wideband signals [48], [49]. Consequently, practical receiver performance can

significantly depart from the CRB [50].

To overcome the limitations of the CRB, it becomes essential to establish a baseline

that more closely describes the potential code tracking accuracy and to quantitatively

determine the conditions required for the suitability of the CRB. This can be accomplished

via Bayesian bounds such as the ZZB. The ZZB has been used extensively to evaluate the

performance of time delay estimation [7], [16], [17]. However, to the author’s knowledge, it

has never been employed to characterize the code tracking performance of GNSS signals.

The ZZB is mentioned by Krasner [50] in the context of legacy GPS signals but is not

applied to obtain results.

This work proposes the use of the ZZB as a new benchmark for the code tracking

performance of GNSS signals. Because combined noise and interference is a major contributor

to the GNSS error budget, and the ambiguity caused by the ACF side peaks is a leading

obstacle for practical code tracking loop designs, our goal is to extend the ZZB to the

case of colored Gaussian noise and to incorporate the signal structures in the theoretical

development.
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Chapter 3

Generalized GNSS Signal Structure

This chapter presents an analytical framework that describes the GNSS signals using a

systematic convolution approach. The derivation primarily focuses on incorporating all

characteristics of the existing modulation families (BOC, MBOC, and ALTBOC) and leads

to a generalized signal that corresponds to the infinite bandwidth reference signal y(t)

considered in the last chapter. In addition to avoid dealing with separate case specific

formulas, the analytical framework provides a stronger understanding of GNSS signal

structures, as well as provision for accurately investigating other signals not yet defined, e.g.,

an ALTBOC variant with parameter p/q 
= 1/2. From here on, we consider the modulation

families under a unification designated as GNSS modulation [15].

3.1 Generalized Subcarrier

Let us first analytically describe the subcarriers used in GNSS modulation. Although we

have already introduced a generalized subcarrier in (2.2), the expression does not lend itself

well to the mathematical investigation of the statistical properties of the GNSS modulation

signal. Instead, the mathematical description of the ABOC subcarrier sABOC(m,n, p
q
,a1,a2,±)(t)

can be modified to describe all subcarriers.

Without loss of generality, we consider a single segment of the ABOC subcarrier over an

interval [0, Tc) denoted by the majuscular notation SABOC(m,n, p
q
,a1,a2,±)(t). This segment has

4 levels: {±a1,±(a1 + a2)} or {±a1,±(a1 − a2)}, depending on whether the subcarrier is in-
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phase or anti-phase, respectively. The ratio of the subcarrier and code rate, N = 2m/n ≥ 1,

is known as a modulation number [15], [11] and represents the number of subcarrier half-

periods present in the interval [0, Tc). Consistent with the definition in (2.2), N also indicates

whether two consecutive subcarrier segments are the same (even N) or antipodal (odd N) [3].

We recall that the rational number p/q relates to the width of the ±(a1 ± a2) (augmented)

levels added to a subcarrier with ±a1 levels. In provision for an augmented subcarrier, we

introduce two other modulation numbers, η and η′, set to q and p (in the ABOC case),

respectively. The modulation number η is an integer greater than or equal to 1 which evenly

divides the subcarrier half-periods into time intervals of length Tc/(2ηN). These intervals

are the widest possible such that over their span, the subcarrier levels remain constant. In

conjunction with the ABOC parameter p/q, for every subcarrier half period, 2η′ intervals

(out of 2η) form the augmented levels. Fig. 3.1 exemplifies the modulation numbers.

Having partitioned the general subcarrier waveform into segments of width Tc/(2ηN), we

SABOCsin(m,n, p
q
,a1,a2,+)(t)

SABOCcos(m,n, p
q
,a1,a2,+)(t)

Fig. 3.1 Synthesis of the ABOC subcarrier segment:
(a) ABOCsin(m,n, pq , a1, a2,+); (b) ABOCcos(m,n, pq , a1, a2,+).
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can now express the subcarrier segment as a train of shifted and scaled rectangular pulses of

width Tc/(2ηN). It is well known that this procedure may be carried out as a convolution

between a rectangular pulse and a sequence of appropriately positioned and scaled Dirac

delta functions. The required set of impulses can be described separately for the upper

and lower halves of the ABOC subcarrier segment denoted by U(t) and L(t), respectively.

In this regard, examples are shown in Fig. 3.1, where the upper subcarrier halves appear

as shaded and the lower halves as non-shaded. As for the GNSS modulation subcarriers

introduced in the previous chapter, we employ the phase disambiguation Lsin(t) and Lcos(t),

or Usin(t) and Ucos(t). The impulses defining the lower non-shaded region of the sine-phased

subcarrier segment of Fig. 3.1(a) can be described by

Lsin(t) = a1

N−1∑
n=0

η−1∑
m=0

(−1)n

[
δ

(
t− nTc

N
− mTc

2ηN

)
+ δ

(
t− nTc

N
− Tc

2N
− mTc

2ηN

)]
, (3.1)

while those defining the upper shaded regions of Fig. 3.1(a) can be described by

Usin(t) = a2

N−1∑
n=0

η′−1∑
m=0

(−1)n

[
δ

(
t− nTc

N
− mTc

2ηN
− (η − η′)Tc

2ηN

)
+ δ

(
t− nTc

N
− Tc

2N
− mTc

2ηN

)]
.

(3.2)

On the other hand, the impulses defining the lower non-shaded region of the cosine-phased

subcarrier segment of Fig. 3.1(b) can be described by

Lcos(t) = a1

N−1∑
n=0

η−1∑
m=0

(−1)n

[
δ

(
t− nTc

N
− mTc

2ηN

)
− δ

(
t− nTc

N
− Tc

2N
− mTc

2ηN

)]
, (3.3)

while those defining the upper shaded regions of Fig. 3.1(b) can be described by

Ucos(t) = a2

N−1∑
n=0

η′−1∑
m=0

(−1)n

[
δ

(
t− nTc

N
− mTc

2ηN

)
− δ

(
t− nTc

N
− Tc

2N
− mTc

2ηN
− (η − η′)Tc

2ηN

)]
.

(3.4)

A GNSS modulation signal is formed from several subcarrier segment halves of possibly
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different modulation numbers and amplitudes. Therefore, it is beneficial to encapsulate all

subcarrier segment halves into a single parameterized expression. Conveniently, the ABOC

subcarrier segment halves described by equations (3.1) – (3.4) are analytically similar,

and thus can be consolidated. The general expression for the set of impulses defining any

subcarrier segment half is given by

W
(l)
h,j(t) = a

(l)
h,j

N
(l)
h,j−1∑
n=0

[
ζZη

(l)
h,j

N
(l)
h,j

η
(l)
h,1

]
−1∑

z=0

1∑
m=0

(−1)n+m(1+νh)

× δ

⎛
⎝t− nTc

N
(l)
h,j

− mTc

2N
(l)
h,j

−
[m(1− 2νh) + νh] (η

(l)
h,1 − η

(l)
h,j)Tc

2η
(l)
h,1N

(l)
h,j

− zTc

2ζZ

⎞
⎠ . (3.5)

In the above equation, the subcarrier phase is related to the index h through the indicator

function given by

νh =

⎧⎪⎨
⎪⎩
1, h even (sine-phased subcarrier),

0, h odd (cosine-phased subcarrier).
(3.6)

Moreover, we have considered that a GNSS modulation signal may simultaneously employ

up to four different subcarriers (h = 1, 2, 3, 4), each of which consist of two time multiplex

variants (l = 1, 2) produced by the sum of two subcarrier segment halves (j = 1, 2).

Therefore, the modulation numbers are parameterized as N
(l)
h,j and η

(l)
h,j, and the subcarrier

levels are parametrized as a
(l)
h,j. In (3.5), the parameters Z and ζ regularize the rate of

the resulting impulse train and are set to any common multiples of the required1 values of

N
(l)
h,j (h = 1, 2, 3, 4, j = 1, 2, and l = 1, 2) and η

(l)
h,1 (h = 1, 2, 3, 4 and l = 1, 2), respectively.

Although we refer to Z and ζ as a parameters, we must emphasize that they are, in fact,

functions of other parameters. As we will see later, the time multiplexing structure is

required to form the complete subcarriers. As mentioned previously, this information is

conveyed by the ratio A/B where, over a period BTc, A (out of B) PRN code chips employ

an l = 1 subcarrier and the remaining B − A chips employ an l = 2 subcarrier.

For conciseness, we can store the subcarrier parameters as entries in vectors ϑ and �
(l)
h .

1In many cases, the subcarriers are sufficiently described without having to specify all modulation
numbers (see footnote a in Table 3.1).
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The parameter vector ϑ ∈ R3 contains variables specific to the overall GNSS modulation

signal and is defined as

ϑ �
[
A

B
, ζ, Z

]
, (3.7)

while the parameter vector �
(l)
h ∈ R6 is unique to each subcarrier making up the overall

signal and is defined as

�
(l)
h �

[
N

(l)
h,1, N

(l)
h,2, η

(l)
h,1, η

(l)
h,2, a

(l)
h,1, a

(l)
h,2

]
. (3.8)

To reinforce the fact that the set of impulses defining any subcarrier segment is generally

produced by the sum of two W
(l)
h,j(t) waveforms (j = 1, 2), the parameters indexed by j

are explicitly listed in the same �
(l)
h vector. Effectively, the present formulation ensures

that W
(l)
h,1(t) takes the form of L(t) and that W

(l)
h,2(t) takes the form of either U(t) or L(t).

In the first case, the sum of W
(l)
h,1(t) and W

(l)
h,2(t) results in an ABOC subcarrier segment,

while in the second case, the sum results in a CBOC subcarrier segment. Moreover, when

considered alone, W
(l)
h,1(t) represents a BOC or TMBOC subcarrier segment. Consequently,

the novel formulation depicted by (3.5) allows us to formulate a generalized subcarrier

segment, referred to as the Generalized Binary Offset Carrier (GBOC) subcarrier segment:

S
GBOC(ϑ,�

(l)
h )

(t) = Π

(
t

Tc/(2ζZ)
− 1

2

)
�

2∑
j=1

W
(l)
h,j(t). (3.9)

Each GNSS subcarrier segment is a special case of the GBOC subcarrier segment obtained

by specifying the parameter vectors ϑ and �
(l)
h . Table 3.1 lists the specific parameter vectors

required to describe all subcarriers used by GPS and Galileo signals.

3.2 Generalized Signal

In the previous section, we obtained a general expression for any GNSS modulation subcarrier

over the interval [0, Tc). This was defined as the GBOC subcarrier segment. We now consider

the whole GNSS modulation signal.

As shown in Fig. 3.2, the GNSS modulation signal is a linear combination of shifted and
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Table 3.1 GNSS Modulation Parameters

Modulation
Parameter vectors

ϑ = [AB , ζ, Z] �
(l)
h = [N

(l)
h,1, N

(l)
h,2, η

(l)
h,1, η

(l)
h,2, a

(l)
h,1, a

(l)
h,2]

a

Component modulation

BPSK(n) ϑ = [1, 1, 1] �
(1)
2 = [1,�, 1,�, 1, 0]

BOCsin(m,n) ϑ = [1, 1, 2mn ] �
(1)
2 = [2mn ,�, 1,�, 1, 0]

BOCcos(m,n) ϑ = [1, 1, 2mn ] �
(1)
1 = [2mn ,�, 1,�, 1, 0]

CBOC(m,n, p,+) ϑ = [1, 1, 4mn ] �
(1)
2 = [2, 2mn , 1, 1,

√
1−p,

√
p]

CBOC(m,n, p,−) ϑ = [1, 1, 4mn ] �
(1)
2 = [2, 2mn , 1, 1,

√
1−p,−√

p]

TMBOC(m,n, p)
b

ϑ = [p, 1, 4mn ]
�
(1)
2 = [2mn ,�, 1,�, 1, 0]

�
(2)
2 = [2,�, 1,�, 1, 0]

ABOCsin(m,n, pq , a1, a2,+) ϑ = [1, q, 2mn ] �
(1)
2 = [2mn , 2mn , q, p, a1, a2]

ABOCsin(m,n, pq , a1, a2,−) ϑ = [1, q, 2mn ] �
(1)
2 = [2mn , 2mn , q, p, a1,−a2]

ABOCcos(m,n, pq , a1, a2,+) ϑ = [1, q, 2mn ] �
(1)
1 = [2mn , 2mn , q, p, a1, a2]

ABOCcos(m,n, pq , a1, a2,−) ϑ = [1, q, 2mn ] �
(1)
1 = [2mn , 2mn , q, p, a1,−a2]

Multiplexing modulation

QPSK(n)
c

ϑ = [1, 1, 1]
�
(1)
2 = [1,�, 1,�, 1, 0]

�
(1)
4 = [1,�, 1,�, 1, 0]

CBOC(m,n, p)
ϑ = [1, 1, 4mn ]

�
(1)
2 = [2, 2mn , 1, 1,

√
1−p,

√
p]

�
(1)
4 = [2, 2mn , 1, 1,−

√
1−p,

√
p]

ALTBOC(m,n)
ϑ = [1, 2, 2mn ]

�
(1)
1 = [2mn , 2mn , 2, 1,

√
2
8 , 14 ]

�
(1)
2 = [2mn , 2mn , 2, 1,

√
2
8 , 14 ]

�
(1)
3 = [2mn , 2mn , 2, 1,

√
2
8 ,−1

4 ]

�
(1)
4 = [2mn , 2mn , 2, 1,

√
2
8 ,−1

4 ]

aThe parameter vectors not contributing to the signal assume the form �
(l)
h = [�,�,�,�, 0, 0] (nulling

the subcarrier) and are omitted from the table; the symbol � represents nonzero “don’t-care” values.
bTo exactly construct the TMBOC signal from the GBOC subcarrier segment, the time multiplexing

sets T1 and T2 are needed. Note that the statistical properties of the TMBOC signal depend not on T1 and
T2, but rather on the cardinalities |T1| and |T2| contained in p = A/B = |T1|/(|T1|+ |T2|).

cQPSK(n) is sufficiently described by the parameters of BPSK(n).
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scaled complex subcarrier segments. The complex subcarrier segments generalize the SSB

waveforms present in the ALTBOC signal and are given by

ς(l)(t) = S
GBOC(ϑ,�

(l)
h )

(t)± j S
GBOC(ϑ,�

(l)

h′ )
(t). (3.10)

A complex subcarrier segment is made from a selection of GBOC subcarrier segments, as

indicated by h and h′ (h = 1, 2, 3, 4 and h′ = 1, 2, 3, 4), and incorporates time multiplex

variants, as indicated by l (l = 1, 2). Non-overlapping shifted copies of ς(l)(t) are appropri-

ately scaled by the spread data signal x(t) to form the (baseband) GNSS modulation signal.

To explicitly incorporate the specific time multiplexing configuration [36], we introduce the

indicator function given by

λ(l)(t) =

⎧⎪⎨
⎪⎩
1, �(tmod BTc)/Tc	 ∈ Tl,

0, otherwise.
(3.11)

In (3.11), the binary transitions are time aligned with those of the spread data signal, and

Tl indicates the set of PRN code chips for which the lth time multiplex variant is in effect.

∞∑
k=−∞

2∑
l=1

x̂(l)(kTc)ς
(l)(t− kTc)

ς(2)(t) x̂(2)(t)

ς(1)(t) x̂(1)(t)

Fig. 3.2 Synthesis of the GNSS modulation signal component.
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A spread data signal with periodic nulling can then be expressed as

x̂(l)(t) = λ(l)(t) x(t), (3.12)

where x(t) is given by (2.1). As illustrated in Fig. 3.2, the time multiplex subcarrier variants

ς(l)(t) and the spread data with periodic nulling x̂(l)(t) are combined to produce a GNSS

signal component.

In general, a GNSS modulation signal is composed of K complex subcarrier segments and

spread data signals denoted by ς
(l)
i (t) (i = 1, . . . , K) and x̂

(l)
i (t) (i = 1, . . . , K), respectively.

To mathematically describe the GNSS modulation signal, the complex subcarrier segments

and spread data are first stacked as vector-valued functions defined as

ς(l)(t) �
[
ς
(l)
1 (t), . . . , ς

(l)
K (t)

]T
and x̂(t) �

[
x̂1(t), . . . , x̂K(t)

]T
. (3.13)

In the above definitions, (·)T is the transpose operator. The length of the vectors in (3.13)

depends on the specific GNSS modulation, e.g., K = 1 for a BPSK modulated signal, while

K = 4 for an ALTBOC modulated signal. Finally, we can express the generalized GNSS

modulation signal as

y(t) =
∞∑

k=−∞

2∑
l=1

x̂(l)(kTc)
Tς(l)(t− kTc). (3.14)

Note that (3.14) implicitly incorporates all possible subcarrier segments and time multiplex

variants via ς(l)(t) but only reveals the effective subcarriers (that result from the time

multiplexing) by exploiting the periodic nulling provided by x̂(l)(t). In this work, y(t) is the

infinite bandwidth baseband reference GNSS signal [see Section 2.5].
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Chapter 4

Statistical Properties of GNSS

Signals

Having derived a general expression that describes the GNSS modulation signal, we now

study the statistical properties of interest, namely the ACF and PSD. We will see that the

ACF of the GNSS modulation signal contains a well defined dominant term. An analytical

expression for this dominant term allows one to investigate the code tracking performance

provided by GNSS modulation and can be used to improve receiver code tracking accuracy.

As we will demonstrate, the Fourier transform of the dominant ACF term corresponds to

the envelope of the PSD. An analytical expression for this envelope allows one to investigate

the spectral occupancy of the GNSS modulation signal and is useful for filter design. In

this chapter, we derive the analytical expressions that describe the dominant ACF term

and the PSD envelope of the GNSS modulation signal.

4.1 Stochastic Signal Definition

To characterize the statistical properties of the GNSS modulation signal, we must first

define the received signal. The received signal follows the description given in the previous

chapters and is summarized by the block diagram in Fig. 4.1. In the figure, y(t) is the infinite

bandwidth reference signal that consists of either a signal component or a multiplexed

signal. The reference signal is formed by spreading the real and imaginary parts of the



Statistical Properties of GNSS Signals 33

Fig. 4.1 Block diagram of the GBOC modulator and channel model.

data signal di(t) (i = 1, . . . , K) with the real and imaginary parts of the spreading sequence

ci(t) (i = 1, . . . , K). In this chapter, the real and imaginary parts of the data are modeled

as realizations of independent and identically distributed (iid) bits, while the real and

imaginary parts of the codes consist of deterministic (pseudorandom) chips. The resulting

spread data xi(t) (i = 1, . . . , K) modulates the deterministic GBOC subcarriers to produce

the reference signal y(t) that is filtered by the satellite transmitter chain and receiver

front-end (these filtering operations are comprehensively represented by a single impulse

response z(t)) and is transmitted across the channel. The channel parameter of interest for

code tracking is the time delay t0. Since usually there is no prior knowledge regarding the

time delay, it is appropriate to assume that t0 is chosen uniformly over a range in which it

can be resolved unambiguously with respect to some reference, e.g., the data bit transitions.

The range of the possible delays is given by [0, T ), where T = LTc and LTc is set to an

integer multiple of the data bit period DTc. Since we are concerned with signals of fixed

power, we assume that the complex attenuation α0 is finite and deterministic. In addition,
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the initial phase of the specular component contained within φ0 is chosen uniformly over

[0, 2π) and is independent from the phases of the accompanying diffuse waves. We note

that all random quantities are drawn independently from the noise and interference w(t).

Referring to (2.22), the resulting random process can be expressed as

ỹ(t) = ŷ(t, t0) + w(t). (4.1)

Since (4.1) incorporates the filtering of y(t− t0) [see (2.17)], the implicit stochastic integral is

interpreted in the mean square sense; its existence is due to the properties of Asymptotically

Mean Stationary (AMS) processes [see Section 4.3] [51], [52].

4.2 Auto-Correlation Function

The ACF of the received GNSS modulation signal ỹ(t) is given by

Rỹ(t1, t2) = E{ỹ(t1) ỹ(t2)∗}. (4.2)

In (4.2), E(·) is the expectation operator and (·)∗ denotes the conjugate. Equivalently, the

ACF of the received signal can be expressed in terms of the ACF of the delayed signal and

the ACF of the noise and interference. By employing the signal model described by (4.1)

and referring to (2.17) and results from linear systems with stochastic inputs [51], we obtain

Rỹ(t1, t2) = κRy̌(t1, t2) � z(t1) � z(t2)
∗ +Rw(t1 − t2). (4.3)

In (4.3), κ = |α0|2, Rw(t1 − t2) is the ACF of w(t), and Ry̌(t1, t2) is the ACF of y(t− t0).

The latter is given by equation (A.3) in Appendix A.1 and can be expressed as

Ry̌(t1, t2) = E

{ ∞∑
m=−∞

∞∑
k=−∞

2∑
l1=1

2∑
l2=1

tr
⎧⎩x̂(l1)(kTc +mTc)x̂

(l2)(kTc)
H

× ς(l2)(t2 − kTc − t0)
∗ς(l1)(t1 −mTc − kTc − t0)

T
⎫⎭}

. (4.4)
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In (4.4), tr(·) denotes the trace and (·)H is the conjugate transpose operator. By propagating

the expectation inside the summations and evaluating with respect to t0, we obtain

Ry̌(t1, t2) =
∞∑

m=−∞

∞∑
n=−∞

2∑
l1=1

2∑
l2=1

tr

⎧⎪⎪⎪⎪⎩E
{
x̂(l1)(kTc +mTc)x̂

(l2)(kTc)
H
}

× 1

LTc

∫ LTc

0

ς(l2)(t2 − kTc − t0)
∗ς(l1)(t1 −mTc − kTc − t0)

T dt0

⎫⎪⎪⎪⎪⎭. (4.5)

The integral in (4.5) is evaluated element-wise on the matrix integrand. By employing the

substitution ξ = t2 − kTc − t0, we obtain

Ry̌(t1, t2) =
∞∑

m=−∞

∞∑
k=−∞

2∑
l1=1

2∑
l2=1

tr

⎧⎪⎪⎪⎪⎩E
{
x̂(l1)(kTc +mTc)x̂

(l2)(kTc)
H
}

× 1

LTc

∫ t2−kTc

t2−kTc−LTc

ς(l2)(ξ)∗ς(l1)(t1 − t2 −mTc + ξ)T dξ

⎫⎪⎪⎪⎪⎭. (4.6)

By using the identity provided by (A.4) in Appendix A.2 while exploiting the linearity of

(4.6) and replacing t1− t2 by τ and t2 by t, the ACF of the delayed signal can be expressed as

Ry̌(τ, t) =
∞∑

m=−∞

2∑
l1=1

2∑
l2=1

tr

⎧⎪⎪⎪⎪⎩
∫ ∞

−∞
E

{
L−1∑
k=1

x̂(l1)(mTc + kTc − LTc + t)x̂(l2)(kTc − LTc + t)H

+ x̂(l1)(mTc − LTc + t)x̂(l2)(−LTc + t)H [u(ξ − tmod Tc)]

+ x̂(l1)(mTc + t)x̂(l2)(t)H [1− u(ξ − tmod Tc)]

}

× 1

LTc

ς(l2)(ξ)∗ς(l1)(τ −mTc + ξ)T dξ

⎫⎪⎪⎪⎪⎭. (4.7)

In (4.7), u(·) represents the unit step function.

A difficulty arises in further evaluating (4.7) because we cannot express the behavior of

the deterministic spreading codes within x̂(l)(t) (l = 1, 2) analytically. Instead, we resort to

the basic properties of the spread data used in GNSS. In doing so, it is possible to extract

the tractable terms from (4.7). Any term is tractable if it does not depend on correlations of

the spread data and therefore is analytically expressible. Thus, the tractable terms in (4.7)
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occur only when m = 0 and therefore l = l1 = l2; in such a case, the product of like PRN

code chips and data bits contained in the real and imaginary parts of x̂(l)(t) is always 1. By

grouping the remaining terms into a function called ε(τ, t), the ACF of the delayed signal is

given by

Ry̌(τ, t) =
1

LTc

2∑
l=1

tr

⎧⎪⎪⎪⎪⎩E

{
L−1∑
k=0

x̂(l)(t− kTc)x̂
(l)(t− kTc)

H

}∫ ∞

−∞
ς(l)(ξ)∗ς(l)(τ + ξ)T dξ

⎫⎪⎪⎪⎪⎭
+ ε(τ, t). (4.8)

For a nonzero spread data vector1, the diagonal entries of x̂(l)(t − kTc)x̂
(l)(t − kTc)

H

correspond to the modulus of the entries in the spread data vectors, ρ (ρ = 1 or 2, depending

on whether the spread data is real or complex, respectively). Conversely, the off-diagonal

entries only consist of spread data correlation-dependent cross-terms and have no fixed

real component. This ensures a predominant ACF center peak (a desirable property for

code tracking) and is due to the pseudorandom nature of the spreading codes in x̂(l)(t). In

evaluating
∑L−1

k=0 x̂
(l)(t− kTc)x̂

(l)(t− kTc)
H, the spread data spans L/B time multiplexing

repetition periods each containing |Tl| PRN code chips (| · | denotes set cardinality) and the

spread data correlation-dependent cross-terms are expected to combine mostly destructively,

again, due to the properties of the PRN codes. Therefore, the dominant contribution is

given by the diagonal entries of the resulting matrix which are equal to ρ|Tl|L/B. By

redefining ε(τ, t) from (4.8) so that it includes the remaining intractable terms, we obtain

Ry̌(τ, t) =
2∑

l=1

ρ|Tl|
BTc

tr

⎧⎪⎪⎪⎪⎩
∫ ∞

−∞
ς(l)(ξ)∗ς(l)(τ + ξ)T dξ

⎫⎪⎪⎪⎪⎭+ ε(τ, t). (4.9)

The tractable term in (4.9) consists of a linear combination of finite-time cross-correlations

of the subcarrier segments found in ς(l)(t). A simplification is possible by writing the

inner-product of the complex subcarrier segments as

ς(l)(τ + ξ)Hς(l)(ξ) = γ
4∑

h=1

S
GBOC(ϑ,�

(l)
h )

(ξ)S
GBOC(ϑ,�

(l)
h )

(τ + ξ), γ ∈ Z+. (4.10)

1Recall that x̂(l)(t) is nonzero if and only if the lth time variant is in effect, i.e., λ(l)(t) = 1.
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Combined with (4.9), the simplification provided by (4.10) is consistent with existing modula-

tions and holds due to the presence of subcarrier complex conjugate pairs in ς(l)(t) [cf. (2.10)].

Therefore, the tractable term of (4.9) can be expressed as an autocorrelation coefficient

defined as

RS(τ) �
ργ

PSTc

4∑
h=1

2∑
l=1

(
l − 1− (−1)l

A

B

)
S
GBOC(ϑ,�

(l)
h )

(τ) � S
GBOC(ϑ,�

(l)
h )

(−τ). (4.11)

In (4.11), we have explicitly shown the set cardinality |Tl| in terms of the time multiplexing

parameter A/B. The correlation in (4.11) ensures the maximum value RS(0) = 1 (the

scaled power PS/(ργ) is defined below [see (4.21)]). Conversely, the intractable contribution

to (4.9) is referred to as the parasitic correlations. The parasitic correlations are deeply

related to the phenomenon of self-noise that corrupts the output of finite-time correlators

(or delay discriminators) used in practical receivers [24], [53]. The ACF of the received

GNSS modulation signal can be obtained, from (4.3), (4.9), and (4.11), in terms of the

subcarrier autocorrelation coefficient:

Rỹ(τ, t) = κ [PSRS(τ) � z(τ) � z(−τ)∗ + ε(τ, t)] +Rw(τ). (4.12)

In (4.12), ε(τ, t) is again redefined from (4.9) to incorporate any filtering due to z(t). The

tractable behavior of Rỹ(τ, t) is described by the autocorrelation coefficient RS(τ ). Actually,

RS(τ) is the dominant analytical term portraying the ACF within the interval2 [−Tc, Tc].

The expression for RS(τ) is examined in greater detail in the sections that follow. The

intractable term of Rỹ(τ, t) is described by ε(τ, t). Although ε(τ, t) contains the parasitic

correlations, it is given no analytical description. Qualitatively, the parasitic correlations

are primarily composed of a linear combination of distorted finite-time autocorrelations

of the subcarrier segments centered at τ = mMTc (m being a nonzero integer), where the

distortion is due to the distribution of the data bits. Long PRN codes (large values of M)

minimize the occurrence of these finite-time autocorrelations. Moreover, ε(τ, t) also consists

of a superposition of small distorted finite-time cross-correlations of the subcarrier segments

2The ACF delay interval [−Tc, Tc] is the interval of interest when tracking a GNSS modulation signal.
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centered at τ = nTc (n ∈ Z). Good PRN codes suppress these finite-time cross-correlations.

The notion of the parasitic correlations enunciates two general statistical features of the

GNSS PRN codes. First, codes chosen for a non-multiplexed scheme (where A = B and

λ(2)(t) = 0) do not behave the same as for a multiplexed scheme; this was also mentioned

by Rushanan [35] and Hein et al. [25]. Indeed, the correlation behavior of the PRN codes

largely depends on the time multiplexed code portions rather than on the whole code

sequences. Secondly, signals employing subcarriers with odd N
(l)
h,1 require that the PRN

codes incorporate periodic phase flips with period Tc. The phase flips are needed to fulfill the

original subcarrier definition [3], [54]. Therefore, to limit the contribution of the parasitic

correlations, the PRN codes must account for time multiplexing and phase flips, although

the latter have little effect on the ACF because they cancel in the dominant contribution.

In fact, for ideal codes (where ε(τ, t) = 0) periodic phase flips have no impact on the second

order statistics of the GNSS modulation signal [1].

4.3 Power Spectral Density

The nature of the parasitic correlations suggests that the GNSS modulation signal is not a

stationary random process. However, since the process is steady enough over time (bounded

and not converging to zero), the asymptotic time average (mean) of its statistical properties

exist and is not everywhere zero [52]. This concept is summarized in the following theorem.

Theorem 4.3.1 Let ỹ(t) be a GNSS modulation signal with a time varying ACF Rỹ(τ, t).

Then ỹ(t) is Asymptotically Mean Stationary (AMS) in the wide sense, that is, there exists

a nonzero time average given by

R̄ỹ(τ) = lim
T→∞

1

T

∫ T/2

−T/2
Rỹ(τ, t) dt. (4.13)

Proof See Appendix B.1. �

We have seen that the GNSS modulation signal employs periodic time multiplexing

with period BTc, periodic PRN codes with period MTc, and iid data bits with period DTc.

Therefore, it is not surprising that this periodic nature manifests itself in the probabilistic
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descriptions. It is important to note that in the absence of a random delay t0, the GNSS

modulation signal is wide sense cyclostationary with period DTc. This means that if L = D,

the presence of t0 makes the GNSS modulation signal ỹ(t) wide sense stationary [52]. For

the general case where L 
= D, the signal ỹ(t) is wide sense cyclostationary with period LTc.

The AMS property is needed to define the PSD of the GNSS modulation signal.

Corollary 4.3.1 The PSD Gỹ(f) of a GNSS modulation signal ỹ(t) is given by the Fourier

transform of the asymptotic time averaged ACF R̄ỹ(τ) of ỹ(t):

Gỹ(f) =

∫ ∞

−∞
R̄ỹ(τ)e

−j2πfτ dτ. (4.14)

Proof The above relation follows by noting that the PSD of a signal is defined as the

expectation of its average energy spectrum per unit time as time grows infinitely large [52],

[55]. Note that if ỹ(t) is wide sense stationary, then Ry̌(τ, t) = R̄y̌(τ) ∀t and (4.14) reduces

to the Wiener-Khinchin Theorem. �

The asymptotic time averaged ACF of the GNSS modulation signal can be expressed in

terms of the dominant ACF term RS(τ) and the time average of the parasitic correlations

over an interval [0, LTc) defined as ε̄(t), i.e.,

R̄ỹ(τ) = κ [PSRS(τ) � z(τ) � z(−τ)∗ + ε̄(τ)] +Rw(τ). (4.15)

Finally, the PSD of the GNSS modulation signal can be obtained, analogously to (4.12), in

terms of a subcarrier power spectrum:

Gỹ(f) = κ
[
PSGS(f) |Z(f)|2 + F {ε̄(τ)}

]
+Gw(f). (4.16)

In (4.16), F (·) denotes Fourier transformation, GS(f) represents the power spectrum of

the GBOC subcarrier, i.e., GS(f) = F{RS(τ)}, and Gw(f) represents the PSD of the

noise and interference, i.e., Gw(f) = F{Rw(τ)}. The tractable behavior of Gỹ(f) is

described by the spectrum GS(f). Actually, GS(f) is the unit-power envelope (where∫∞
−∞GS(f) df = RS(0) = 1) of the PSD of the GNSS modulation signal. The expression for
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GS(f) is examined in greater detail in the sections that follow. The intractable behavior

of Gỹ(f) is described by F{ε̄(τ)}. Qualitatively, for infinite bandwidth signals (where

z(t) = δ(t)), the contribution of F{ε̄(τ )} to the PSD corresponds to closely spaced spectral

lines. These spectral lines are separated by a frequency of 1/MTc and have amplitudes

approximately following the envelope described by GS(f). In fact, due to the presence of

small finite-time correlations centered at τ = nTc (n ∈ Z) in ε̄(τ), the PSD is formed from

a sequence of lines whose magnitudes are sometimes superior or inferior to GS(f) [24].

4.4 Extension to Bandpass

Since our analysis has been conducted using complex envelopes, it is desirable to mention

how the results apply to a bandpass signal. Representing the carrier frequency of the

GNSS modulation signal by f0 and the maximum Doppler shift by fD, we note that for

GNSS fD 
 1/Tc 
 f0 [20]. Therefore, the dominant ACF term of the bandpass signal

incorporates the fine structure of the carrier under an envelope approximately given by

RS(τ). In this case, the ACF normalization is with respect to the physical subcarrier

power, as opposed to that of its complex envelope. Therefore, the corresponding unit-power

bandpass PSD envelope can be approximated by adding symmetrically shifted (±f0) copies

of GS(f) and scaling the result by 1/2. We note that the extension to bandpass is not needed

for the study of coherent code tracking loops [24] since the complex envelope represents a

carrier-stripped signal.

4.5 Analytical Description of the ACF and PSD

Until now, we have based the statistical properties of GNSS modulation on the dominant

ACF term and PSD envelope. However, we have not yet provided explicit analytical

expressions for these functions. The chief results of the foregoing theory are the analytical

expressions for the dominant ACF term and PSD envelope of the GNSS modulation signal.

The dominant ACF term is obtained by defining a scaled subcarrier power P̌S � PS/(ργ)

and combining expressions (3.5), (3.9), and (4.11). The parameterized expression for the
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dominant ACF term of the GNSS modulation signal is given by

RS(τ) =
1

2P̌SζZ

4∑
h=1

2∑
l=1

2∑
j=1

2∑
j′=1

(
l − 1− (−1)l

A

B

)
a
(l)
h,ja

(l)
h,j′ Ω

(j,j′)
(ϑ,�

(l)
h )

(τ), (4.17)

where

Ω
(j,j′)
(ϑ,�

(l)
h )

(τ) =

N
(l)
h,j−1∑
n=0

N
(l)

h,j′−1∑
n′=0

[
ζZη

(l)
h,j

N
(l)
h,j

η
(l)
h,1

]
−1∑

z=0

[
ζZη

(l)

h,j′
N

(l)

h,j′η
(l)
h,1

]
−1∑

z′=0

1∑
m=0

1∑
m′=0

(−1)(n+n′)+(m+m′)(νh+1)

× Λ

(
τ

Tc/(2ζZ)

− Zζ

N
(l)
h,jη

(l)
h,1

[
ζm+ 2ζn+ zN

(l)
h,j/Z + [m(1− 2νh) + νh](η

(l)
h,1 − η

(l)
h,j)

]

+
Zζ

N
(l)
h,j′η

(l)
h,1

[
ζm′ + 2ζn′ + z′N (l)

h,j′/Z + [m′(1− 2νh) + νh](η
(l)
h,1 − η

(l)
h,j′)

])
.

(4.18)

In (4.18), Λ(τ ) is the unit-height triangular function of support [−1, 1). The above equation

indicates that RS(τ ) can be formed from a sum of shifted and scaled triangular functions as

exemplified in Fig. 4.2.

Fig. 4.2 Synthesis of the GNSS modulation signal ACF.

The PSD envelope results from the Fourier transform of the dominant ACF term provided

by (4.17) which amounts to evaluating Υ
(j,j′)
(ϑ,�

(l)
h )

(f) = F
{
Ω

(j,j′)
(ϑ,�

(l)
h )

(τ)
}
. The parameterized
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expression for the PSD envelope of the GNSS modulation signal is given by

GS(f) =
1

4P̌STcπ2f 2

4∑
h=1

2∑
l=1

2∑
j=1

2∑
j′=1

(
l − 1− (−1)l

A

B

)
a
(l)
h,ja

(l)
h,j′ Υ

(j,j′)
(ϑ,�

(l)
h )

(f), (4.19)

where

Υ
(j,j′)
(ϑ,�

(l)
h )

(f) = e
−jπfTcνh

[
(1−η(l)h,j/η

(l)
h,1)/N

(l)
h,j−(1−η

(l)

h,j′/η
(l)
h,1)/N

(l)

h,j′
]

×
(
1− (−1)νhe−jπfTc[1+(1−2νh)(1−η(l)h,j/η

(l)
h,1)]/N

(l)
h,j

)
×
(
1− (−1)νhe

jπfTc[1+(1−2νh)(1−η(l)h,j′/η
(l)
h,1)]/N

(l)

h,j′
)

×
(
1− (−1)N

(l)
h,je−j2πfTc

)(
1− e−jπfTcη

(l)
h,j/(η

(l)
h,1N

(l)
h,j)

)(
1 + e−j2πfTc/N

(l)
h,j

)−1
×
(
1− (−1)

N
(l)

h,j′ej2πfTc

)(
1− e

jπfTcη
(l)

h,j′/(η
(l)
h,1N

(l)

h,j′ )
)(

1 + e
j2πfTc/N

(l)

h,j′
)−1

. (4.20)

The motivation for using complex exponentials to express the PSD is clear if we consider that

(4.20) is obtained by evaluating the summation in (4.18) after subjecting the constituent

spectrum F
{
Λ(τ)

}
= (1− ej2πf )(1− e−j2πf )/(2πf)2 to the linearity, scaling, and shifting

properties of the Fourier transform. The PSD is strictly real and symmetric since it arises

from the Fourier transform of a real and symmetric function. We note that singularities

occur at frequencies f = nN
(l)
h,j/Tc where n ∈ {0,m−1/2} (m ∈ Z) for all N

(l)
h,j (h = 1, 2, 3, 4,

j = 1, 2, and l = 1, 2) not assigned to “don’t-care” values in Table 3.1. If required, the PSD

at these points can be evaluated separately.

The normalized subcarrier power P̌S must also be expressed analytically. Considering

the general subcarrier segment of (3.9) and the dominant ACF term provided by (4.11), it

can be determined that

P̌S =
4∑

h=1

2∑
l=1

(
l − 1− (−1)l

A

B

){(
a
(l)
h,1

)2

+
η
(l)
h,2

η
(l)
h,1

(
a
(l)
h,2

)2

+
η
(l)
h,2

η
(l)
h,1

(
a
(l)
h,1a

(l)
h,2

)

× 2

[(
1−N

(l)
h,2 modN

(l)
h,1

)
mod

2N
(l)
h,1

N
(l)
h,2

]}
. (4.21)

By using equations (4.17) – (4.21) with the parameters in Table 3.1, the dominant term of

the ACF and the PSD envelope of all GPS and Galileo signals can be generated precisely.
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4.6 Simulation of the GNSS Modulation Theory

This section describes the validation of the proposed analytical expressions for the dominant

ACF term and the PSD envelope of the GNSS modulation signal.

4.6.1 Simulation Methodology

The simulation model used to verify the statistical theory developed in this work employs

existing Gold codes and subcarriers to construct segments of real GPS and Galileo signals3.

Following common practice, the signal segments are noise-less, data-less, carrier-stripped,

and sampled at a suitable rate4 υs. An ideal lowpass filter then limits the bandwidth of the

simulated signal segments and the statistical properties are obtained using time averages.

The empirical ACF [52] is obtained from the circular autocorrelation of the simulated

signal segment of length MTc. When normalized with respect to the maximum magnitude,

the empirical ACF can be compared with the analytical result provided by (4.17) for delays

within [−Tc, Tc]. This congruity is due to the the dominant ACF term.

The empirical PSD [52] is obtained from the MTcυs-point Discrete Fourier Transform

(DFT) of the normalized empirical ACF. When multiplied by 1/υs (relating the magnitude of

the DFT to that of the Fourier transform), the empirical PSD is implicitly scaled with respect

to twice the physical carrier power 2C = κPS and can be compared with the analytical

result provided by (4.19) for frequencies within [−υs/2, υs/2]. However, in practice, the PSD

is composed of a sequence of spectral lines whose magnitude fluctuates about the analytical

envelope. This fluctuation is due to a frequency power reshuffling caused by the PRN codes;

since we ignored the effect of the parasitic correlations, the fluctuation does not appear

in the analytical result. Therefore, it suffices to offset the simulated PSD to obtain a fair

comparison with the theory. Experimental results show that Gold codes (with M = 1023)

produce spectra that can be consistently adjusted by −6 dB (although strong spectral lines

3The codes are GPS PRN1-4 [20] where M = 1023, and the subcarriers are simulated using (2.2) where,
for BOC subcarriers, a0 = a2 = 0, a1 = 1, and ϕ1 = 0, 3π/2; for CBOC subcarriers, a0 =

√
1−p, a1 = ±√

p,
a2 = 0, and ϕ0 = ϕ1 = 3π/2; for TMBOC subcarriers, a0 = a2 = 0, a1 = 1, and ϕ1 = 3π/2; and for
ALTBOC subcarriers, a0 = 0, a1 =

√
2/8, a2 = ±1/8, ϕ1 = 0, 3π/2, and ϕ2 = π/4.

4A suitable sampling rate is one where the aliasing effects are considered negligible; the simulations use
υs = 511.5 MHz.
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can overshoot the envelope by about 8 dB). Although the PSD envelope offset is known [15],

[24], past theoretical frameworks [11], [54] omit its mention.

4.6.2 Results

The developed statistical theory of GNSS modulation is verified here for a select number of

infinite bandwidth GNSS signal components and navigation signals. The theoretical and

simulated ACF and PSD of select CBOC and ALTBOC multiplexed (navigation) signals are

shown in Fig. 4.3 and Fig. 4.4, while those of select TMBOC and CBOC signal components

are shown in Fig. 4.5 and Fig. 4.6. For select ABOC signal components (specifically those

Fig. 4.3 Statistical properties of the CBOC(6, 1, 1
11) multiplexed signal.

Fig. 4.4 Statistical properties of the ALTBOC(15, 10) multiplexed signal.
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Fig. 4.5 Statistical properties of the TMBOC(6, 1, 4
33) signal component.

Fig. 4.6 Statistical properties of select CBOC signal components:
(a) CBOC(6, 1, 1

11 ,+); (b) CBOC(6, 1, 1
11 ,−).

necessary for the ALTBOC multiplexing scheme), the comparison between theory and

simulation is made in Fig. 4.7.



Statistical Properties of GNSS Signals 46

Fig. 4.7 Statistical properties of select ABOC signal components:

(a) ABOCcos(15, 10, 12 ,
1
2 ,
√
2
2 ,+); (b) ABOCsin(15, 10,

1
2 ,

1
2 ,
√
2
2 ,+);

(c) ABOCcos(15, 10, 12 ,
1
2 ,
√
2
2 , -); (d) ABOCsin(15, 10,

1
2 ,

1
2 ,
√
2
2 , -).

In the figures, the normalized magnitude of the ACF is unit-less and the magnitude

of the PSD has a unit5 of dBr/Hz. It can be seen that the analytical model agrees with

5The unit dBr/Hz measures decibels relative to 2C. If 2C corresponds to 1 W, then dBr/Hz is equivalent
to dBW/Hz.
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the simulated results. In general, this congruity can be verified for all existing GPS and

Galileo signals. To the author’s knowledge no other theoretical formulation is capable

of simultaneously (and precisely) describing the ACF and PSD of ALTBOC, CBOC and

TMBOC signals. Moreover, the constituent statistics of the ALTBOC multiplexed signals,

i.e., the ACF and PSD of the ABOC signal components, are herein illustrated for the first

time — widening our perspective on the wideband ALTBOC signal.

The statistical theory of GNSS modulation is also verified for bandlimited signals by

accounting for the filtering effect on the dominant ACF term in (4.12). The theoretical and

simulated ACF of the Galileo ALTBOC signal is shown in Fig. 4.8 for ideal bandlimiting.

The deviation of the result from the infinite bandwidth case is due to the correlation loss.

Fig. 4.8 ACF of the ALTBOC(15, 10) multiplexed signal of select bandwidths:
(a) 30 MHz; (b) 50 MHz; (c) 90 MHz (double-sided).
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Finally, it is important to compare the proposed theory with prior analytical formula-

tions [11], [12]. In Fig. 4.9, we demonstrate the accuracy of the GNSS modulation theory in

describing the dominant ACF term of the Galileo ALTBOC and MBOC modulated signals.

While the proposed theory closely follows the simulations, prior analytical formulations are

less accurate because they contravene the signal definitions [see Section 2.4]. In investigating

code tracking performance, the use of prior analytical expressions may lead to discrepant

results and, in practice, may hinder receiver designs that employ ACF replicas [56], [38].

Until now, ALTBOC and MBOC modulation were the two (out of three) modulation families

with approximate theoretical statistical descriptions.

In the remainder of this thesis, we use the GNSS modulation theory to study the

potential code tracking accuracy inherent in the GNSS modulation signal.

[11] [12] [12]

Fig. 4.9 Comparison of analytical formulations describing the ACF:
(a) ALTBOC(15, 10); (b) TMBOC(6, 1, 4

33); (c) CBOC(6, 1, 1
11).
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Chapter 5

Code Tracking Performance

Measures

In this chapter, we derive the signal characteristics that are useful to study the code tracking

performance of the GNSS modulation signal. Two ostensibly different characteristics are re-

sponsible for accurate time delay estimation: 1) the Carrier-to-Noise Density Ratio (CNDR),

that measures the quality of the received signal with respect to noise and interference, and

2) the Gabor Bandwidth (GB), that describes the frequency spread of the received signal.

These characteristics help define the CRB. The CRB sets a lower bound on the error, in

terms of variance, of an unbiased time delay estimator. The CNDR, GB, and CRB are the

code tracking performance measures that are discussed in this chapter. These measures

are all considered for signals in the presence of noise and interference. The inclusion of

interference in our study is possible due to an important theorem that is described at the

onset of this chapter.

5.1 Generalization of Signals in the Presence of Noise and

Interference

In the remainder of the thesis, we consider, without loss of information, a discrete version

of the received signal ỹ(t). The signal ỹ(t) is sampled with a sampling period1 Ts = 1/W

1Recall that ỹ(t) is bandlimited to [−W/2,W/2].
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over the time interval [0, T ). The resulting N samples (N = T/Ts) are stacked in the vector

given by

ỹ = ŷ(t0) +w. (5.1)

In accordance with the continuous time description, the noise and interference w is drawn

from a stationary circular symmetric Gaussian process with covariance2 Σ ∈ RN×N . The

vector ỹ is observed by the receiver over the time interval [0, T ), where T is also known

as the integration time of the receiver. The explicit inclusion of t0 in the vector-valued

function ŷ(t0) emphasizes the importance of the time delay.

Consider that T is much larger than the coherence time of w so that the covariance

matrix Σ is well approximated by a circulant matrix3 [57]. As a result, hermitian inner

products of the derivatives of ŷ(t0) with respect to t0 computed under the metric4 Σ−1

establish a relationship with the spectral moments of the frequency distribution of ŷ(t0).

The following theorem ensues.

Theorem 5.1.1 Let ŷ(t0) ∈ CN be m-times differentiable at t0 ∈ R and contain the Nyquist

samples of a bandlimited signal with time delay t0 and power spectrum Gŷ(f) ( |f | ≤ W/2).

Let the signal be observed in the presence of wide sense stationary bandlimited noise with

a PSD Gw(f) ( |f | ≤ W/2), and let the noise samples have an invertible covariance

Σ ∈ RN×N . Then, for a sufficiently large sample size N ,

[
∂m

∂tm0
ŷ(t0 + τ)

]H
Σ−1

[
∂m

∂tm0
ŷ(t0)

]
� N

W

∫ W/2

−W/2

(2πf)2m
Gŷ(f)

Gw(f)
ej2πfτ df. (5.2)

Proof See Appendix B.2. �

The covariance matrix Σ is invertible [see footnote 4], and thus can be decomposed as

Σ = V ΛV H. (5.3)

2The covariance is real because the real and imaginary parts of w are assumed independent [see
Section 2.5], [45].

3In a circulant matrix, each column is a downward cyclic shift of the column to its left.
4Here, the covariance matrix is invertible because it is circulant, and the PSD of the noise process is

always nonzero [see Section 2.5], [57].
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In (5.3), V ∈ CN×N is a unitary matrix and Λ ∈ RN×N is a diagonal matrix with positive

diagonal entries. Therefore, the Mahalanobis (whitening) transformation exists and is given

by [57]

ỹ′ = V Λ−
1
2V Hỹ = ŷ′(t0) +w′. (5.4)

The above transformation converts ŷ(t0) into ŷ′(t0) by changing the signal basis so that the

samples of the combined noise and interference are uncorrelated and have unit variance.

With this transformation, the left hand side of (5.2), called the mth order hermitian inner

product, is defined as

R(m)(τ) �
[
∂m

∂tm0
ŷ′(t0 + τ)

]H [ ∂m

∂tm0
ŷ′(t0)

]
. (5.5)

The definition provided by (5.5) reveals that Theorem 5.1.1 is due to Parseval’s theorem

where TsGŷ(f)/Gw(f) is the power spectrum of the whitened signal ŷ′(t, t0) whose samples

correspond to the entries in ŷ′(t0) [see the alternative proof of Theorem 5.1.1 in Appendix B.3].

In this respect, the whitening transformation is done by power spectrum inversion, i.e.,

Gw(f)
− 1

2 is the whitening filter.

By employing the definition provided by (5.5), Theorem 5.1.1 can be used to describe

the code tracking performance of the GNSS modulation signal. Indeed, as we will see in the

following sections, Theorem 5.1.1 provides a general description for the CNDR, GB, and

CRB in the presence of noise and interference.

5.2 Effective Carrier-to-Noise Density Ratio

In order to obtain a general measure for the quality of the GNSS modulation signal observed

in the presence of bandlimited noise, we are typically interested in the ratio of the received

signal energy to noise PSD. In the presence of ideal bandlimited white noise with a PSD5

of 2N0 over a finite double-sided bandwidth, the ratio of signal energy to noise density is

given by ψTC/N0, where C/N0 is referred to as the CNDR [20], and we recall that C is the

5Recall that the complex envelope of bandlimited white noise with a double-sided PSD of N0/2 has a
PSD of 2N0 over the band of interest [45].
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carrier power and ψ corresponds to the correlation loss. According to Theorem 5.1.1, the

CNDR is proportional to the norm of the transformed vector6 ŷ′(t0) [58]. Therefore, an

effective measure for signal quality in the presence of noise and interference can be obtained

from the norm of the signal vector, considered in a basis where the samples of the combined

noise and interference are uncorrelated and have unit variance, and is given by the 0th

hermitian inner product described by (5.5), i.e.,

R(0)(0) � ψTC/Nw. (5.6)

In (5.6), Nw is the effective noise density which can be defined in terms of the unit-power

spectrum Ğŷ(f) of the GNSS modulation signal:

Nw �
[
2

∫ W/2

−W/2

Ğŷ(f)

Gw(f)
df

]−1
. (5.7)

The effective noise density indicates the density of the ideal bandlimited white noise required

to obtain the same CNDR as produced by arbitrary noise and interference. Therefore, we

refer to C/Nw as the effective CNDR.

5.3 Effective Gabor Bandwidth

Better code tracking performance is expected when the GNSS modulation signal allocates

more power to frequencies located on the edges of the occupied bands. A measure for the

spread of the frequencies over the signal bandwidth is given by the GB. The GB is also

referred to as the Root Mean Square (RMS) bandwidth and provides a measure for the

standard deviation of the PSD; it is typically expressed as β0 =
√∫W/2

−W/2
f 2Ğŷ(f) df [1], [10].

In general, according to Theorem 5.1.1, the GB can be related to the 1st order hermitian

inner product described by (5.5), i.e.,

R(1)(0) � 4π2β2
wR

(0)(0). (5.8)

6In general, for a fixed carrier power and time delay, the norm of ŷ′(t0) corresponds to max
t∈R

|ŷ(t,t0)|2
E{|w(t)|2} .
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In (5.8), βw is the effective GB. The effective GB is defined for signal vectors placed in a

basis where the combined noise and interference samples are uncorrelated and have unit

variance, so that

βw �
[
2Nw

∫ W/2

−W/2

f 2 Ğŷ(f)

Gw(f)
df

] 1
2

. (5.9)

The effective GB incorporates the combined noise and interference spectrum to obtain a

measure for the spread of frequencies.

5.4 Generalized Cramér-Rao Bound

In describing the code tracking performance of the GNSS modulation signal, the main use of

Theorem 5.1.1 is for the derivation of the CRB. Under the assumption of small fluctuations

due to noise and interference, the signal vector ỹ can be linearized about an arbitrary time

delay. If ỹ is linearized in the vicinity of the true time delay, an estimate for the time

delay, say t̂0, can be obtained by using the Best Linear Unbiased Estimator (BLUE). In

fact, typical delay lock loop discriminators are based on a linearized model [24], [47]. Then,

provided that the obtained estimate lies within the linear region, the variance of the BLUE

is given by7 [5]

[σ2
t̂0
]BLUE =

1

2R(1)(0)
. (5.10)

Theorem 5.1.1 reveals that the variance of the BLUE does not depend on the actual value

of the time delay t0. Therefore, in the case of Gaussian noise, (5.10) corresponds to the

CRB [5], [59]. Finally, by evaluating (5.10) via (5.6) and (5.8), we obtain a convenient

expression for the CRB [cf. (2.23)]:

[σ2
t̂0
]CRB � 1

8π2ψTβ2
wC/Nw

. (5.11)

The CRB indicates that the ranging potential of the GNSS modulation signal depends on

signal quality and frequency content but not on the detailed structure of the signal. The

CRB is well known for Gaussian white noise [3], [58], [60], yet remains largely undisclosed

7The factor of 1/2 in the variance of the BLUE is due to the estimation of a real parameter from complex
observations.
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in the case of colored noise [41]. The strategy presented herein allows for a generalization

in terms of the effective noise density and the effective GB.

The CRB establishes a lower bound for the code tracking error of receivers operating

within a linear region, and thus only gives a local measure of the estimator variance. However,

due to its relevance in practice, a linearized model is often assumed [24], [46]. As a result, the

CRB has become the de facto performance standard when describing code tracking accuracy

in GNSS [3], [4]. However, if a signal is falsely detected and is linearized about a point far

removed from the true time delay, the CRB may no longer describe optimal performance.

Furthermore, if the time delay search interval is finite, the estimator is biased [7], and

again the CRB may fail to indicate true performance. Therefore, unwarranted use of the

CRB may easily lead to ungrounded conclusions, especially when applied to conditions

that challenge the linearized model, such as weak and/or wideband signal tracking. These

conditions are foreseeable in the next generation GNSS [32], [48], and thus it is important

to employ a benchmark that more accurately describes the potential code tracking accuracy

of the GNSS modulation signal. In the next chapter, we propose the use of an alternative

benchmark for the code tracking performance of the GNSS modulation signal. This new

benchmark will allow us to quantitatively specify when the CRB can be used.
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Chapter 6

Code Tracking Information

In this chapter, we develop an information-theoretic description for the quantity of time

delay information contained in the GNSS modulation signal. Based on the quantity of time

delay information, we will see that the code tracking performance is markedly categorized

into two regimes, one where the time delay estimation error is small and another where it is

large. To delimit the code tracking regimes, we define thresholds on the CNDR. Our study

remains independent of code tracking implementation.

6.1 Code Tracking Regimes

In this section, we are primarily concerned with the code tracking performance of constant

power signals and consider the ensemble produced by (5.1) where only the time delay and

noise and interference are random. As in Chapter 4, we assume that the time delay t0 is

uniformly distributed over [0, T ) and is independent from the noise and interference w.

Therefore, the probability density function (pdf) of t0 can be expressed as

p(t0) =
1

T
[u(t0)− u(t0 − T )], (6.1)

where u(·) is the unit step function. The initial uncertainty in the time delay can also be

measured using the entropy defined as h(t0) � −E{ln (
p(t0)

)} = ln
(
T

)
. Naturally, the larger

the observation interval, the greater the uncertainty.
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Suppose that the true time delay is given by ť0. In reality, ť0 remains hidden from direct

observation, and only the signal ỹ = ŷ(ť0) + w is observed. Because the time delay is

modeled as a random variable t0, we wish to obtain the realization t0 that corresponds to ť0.

By invoking the Gaussianity of w, the joint pdf of the entries in ỹ, conditioned on t0, is

given by

p(ỹ| t0) =
1

πN |Σ|e

(
−[ỹ−ŷ(t0)]HΣ−1[ỹ−ŷ(t0)]

)
. (6.2)

In (6.2), | · | denotes the determinant of the matrix argument, and we recall that N is

the number of samples in ỹ and that Σ is the covariance matrix of w. By spectrally

decomposing Σ as in (5.3) and invoking (5.4), the above pdf can be written as

p(ỹ| t0) =
1

πN |Σ|e

(
−ỹ′Hỹ′−ŷ′(t0)Hŷ′(t0)+2�{ỹ′Hŷ′(t0)}

)
. (6.3)

Next, by employing Bayes’ theorem and absorbing any terms not depending on t0 into a

normalization constant K, the posterior time delay pdf can be expressed as

p(t0| ỹ) = K[u(t0)− u(t0 − T )]e

(
2�{ỹ′Hŷ′(t0)}

)
. (6.4)

A clairvoyant form of the posterior time delay pdf can be obtained by expressing ỹ′ in terms

of the true time delay, i.e., ỹ′ = ŷ′(ť0) +w′, and evaluating (6.4) via (5.5):

p(t0| ỹ) = K[u(t0)− u(t0 − T )]e

(
2�{R(0)(ť0−t0)}+χ(t0)

)
. (6.5)

The first term in the exponent of (6.5) is the finite-time ACF of the GNSS modulation signal

computed under the metric of the inverse noise covariance and is provided by Theorem 5.1.1.

For ideal bandlimited white Gaussian noise, the finite-time ACF is well described by lowpass

filtering and scaling the function described by (4.17). This term reaches a maximum given

by 2ψTC/Nw at t0 = ť0 [see (5.6)] to indicate the location of the true time delay. The second

term in the exponent of (6.5) is a noise function denoted by χ(t0). Adversely, χ(t0) tends

to displace the global maximum away from t0 = ť0. Hence, in (6.5) the finite-time ACF and
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noise function assume opposing roles. The posterior uncertainty in the time delay can be

measured by the conditional entropy defined as h(t0| ỹ) � −E{ln (
p(t0| ỹ)

)}. Consequently,
the average reduction of uncertainty in the time delay due to the observation of ỹ is given

by the Mutual Information (MI) I(t0; ỹ) = h(t0) − h(t0| ỹ) that signifies the maximum

quantity of information about the time delay that can be reliably retrieved after observing ỹ.

Rate distortion theory states that in order to increase the fundamental accuracy of any

time delay estimator, the observations must deliver more information concerning t0 [61].

Unfortunately, direct evaluation of the MI is cumbersome, requiring a multi-dimensional

integration over the unspecified normalization constant K.

To circumvent the computational complexity introduced by the posterior time delay

pdf, we adopt a statistical interpretation that describes the behavior of the time delay

information at high and low effective CNDR. By considering the posterior time delay pdf

over an ensemble of ỹ in which ť0 is invariant, χ(t0) can be modeled as a realization of a

random variable defined as

χ(t0) � 2�{w′Hŷ′(t0)}. (6.6)

Because w′ is a circular symmetric Gaussian random vector, the argument of �(·) in (6.6)

is a complex Gaussian random variable with iid real and imaginary parts [43]. Therefore,

χ(t0) is normally distributed with zero mean and variance given by half that of the latter.

The variance of χ(t0) can be expressed as1 σ2
χ = 2R(0)(0) and, by referring to Theorem 5.1.1,

is given by

σ2
χ � 2ψTC/Nw. (6.7)

We note that σ2
χ is equal to the maximum value of the ACF term in (6.5). In practice,

although the expected value of χ(t0) is zero, χ(t0) may produce values that displace the

global maximum of (6.5) away from ť0. However, if the maximum value of the finite-time

ACF sufficiently exceeds the standard deviation of the noise function, then the noise peaks

no longer pose an ambiguity for the time delay estimation [60]. As a reference, we can

1In general, χ(t0) has an ACF given by 2�{R(0)(τ)}.
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define a minimum (MIN) effective CNDR threshold for which σχ = σ2
χ, resulting in

[C/Nw]MIN =
1

2ψT
. (6.8)

Therefore, the ACF term dominates the exponent of (6.5) whenever C/Nw � [C/Nw]MIN and,

conversely, the ACF term is swamped by the noise function whenever C/Nw 
 [C/Nw]MIN.

Consequently, there exist two distinct regimes of time delay estimation. In one case, the

effective CNDR is high and the maximum of the posterior time delay pdf accurately indicates

the true time delay. In the other case, the effective CNDR is low and ambiguous peaks

severely hinder accurate detection. The first case is known as the small-error regime, and

the second case is known as the large-error regime. Fig. 6.1 provides an example for the

posterior time delay pdf in the two code tracking regimes as well as in the transition between

the regimes2. In the example, the multi-peak ACF structure is not apparent due to the

bandlimiting, the presence of the noise function, and the exponentiation in (6.5). Moreover,

the transition is abrupt [58]. The remainder of this section is divided into two parts which

are devoted to the small-error regime and the large-error regime.

Fig. 6.1 Code tracking regimes:
(a) large-error regime; (b) transition; (c) small-error regime.

2In Fig. 6.1, the correlated noise function χ(t0) [see footnote 1] is simulated using the method presented

by Beaulieu et al. [62] and the ACF R(0)(τ) is that of the example in Fig. 2.3.
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6.1.1 Small-Error Regime

In the small-error code tracking regime, the posterior time delay pdf ps(t0| ỹ) can be

expressed by neglecting the effect of the noise function in (6.5), so that

ps(t0| ỹ) = Ks[u(t0)− u(t0 − T )]e

(
2�{R(0)(ť0−t0)}

)
. (6.9)

By using Theorem 5.1.1, �{R(0)(ť0 − t0)} can be expressed as

�{R(0)(ť0 − t0)} � 2ψTC

∫ W/2

−W/2

Ğŷ(f)

Gw(f)
cos(2πf [ť0 − t0]) df. (6.10)

Moreover, due to the concave nature of the ACF, the exponentiation in (6.9), and the

small-error assumption, it is appropriate to employ the second degree series expansion

cos(2πf [ť0 − t0]) � 1− 2π2f 2[ť0 − t0]
2 in (6.10). Therefore, as an approximation, we have

ps(t0| ỹ) � Ks[u(t0)− u(t0 − T )]e

(
4ψTC

∫W/2
−W/2

Ğŷ(f)

Gw(f)
(1−2π2f2[ť0−t0]2) df

)
. (6.11)

Finally, by evaluating the integral in the exponent using (5.9) and (5.11) while absorbing

any terms not depending on t0 into the normalization constant Ks, the small-error posterior

time delay pdf can be expressed as

ps(t0| ỹ) � Ks[u(t0)− u(t0 − T )]e

(
− (t0−ť0)

2

2[σ2
t̂0

]CRB

)
. (6.12)

The small-error posterior time delay distribution resembles a Gaussian with a mean given

by the true time delay and a variance given by the CRB. For large effective CNDR, the

time delay uncertainty is well described by the entropy of a Gaussian random variable with

variance [σ2
t̂0
]CRB [58], i.e.,

hs(t0| ỹ) �
1

2
ln

(
2πe[σ2

t̂0
]CRB

)
. (6.13)

Naturally, the larger [σ2
t̂0
]CRB, the greater the uncertainty. By using the prior time delay

entropy ln
(
T

)
with (5.11) and (6.13), the MI between the time delay and the observed
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GNSS modulation signal in the small-error regime is given by

Is(t0; ỹ) �
1

2
ln

(
4πe−1ψT 3β2

wC/Nw

)
. (6.14)

The time delay information is pumped through the channel at a logarithmic rate with

respect to the effective CNDR and the effective GB. In the small-error regime, the time

delay is already known quite precisely and increases in the effective CNDR and effective GB

only provide diminishing returns in time delay information [58]. This information limits the

time delay estimation error in accordance with the CRB.

6.1.2 Large-Error Regime

In the large-error code tracking regime, the posterior time delay pdf p�(t0|ỹ) can be

approximated by neglecting the ACF term in (6.5), so that

p�(t0|ỹ) = K�[u(t0)− u(t0 − T )]eχ(t0). (6.15)

In this case, a linearization of the signal [see Section 5.4] may not be practical due to the

signal detection ambiguity caused by the noise function. To further evaluate the posterior

time delay pdf, a fixed normalization constant K� (not depending on ỹ) can be adopted

as an approximation [60]. A fixed K� is appropriate whenever the observation interval is

large enough to produce an adequate sample of the variations of the posterior time delay

pdf [see Fig. 6.1(a)] and is reinforced at a low effective CNDR, where the variations are

moderate and the resulting pdf is nearly uniform. If a fixed K� is assumed, then the average

of the posterior time delay pdf evaluated over the ensemble of observations must yield the

prior time delay pdf. The average posterior time delay pdf can be expressed as

E{p�(t0| ỹ)} =

∫ ∞

−∞
K�[u(t0)− u(t0 − T )]eχ(t0)

e

(
−χ(t0)

2

2σ2
χ

)
√
2πσχ

dχ(t0). (6.16)

By completing the square of the exponential arguments and employing the substitution

λ = (χ(t0)/σχ − σχ)/
√
2, the Gaussian integral

∫∞
−∞ e−λ

2
dλ =

√
π [63] can be used to
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obtain

E{p�(t0| ỹ)} = K�[u(t0)− u(t0 − T )]e
1
2
σ2
χ . (6.17)

This represents the uniform time delay pdf with a normalization constant given by

K� =
1

T
e−

1
2
σ2
χ . (6.18)

Finally, by substituting (6.18) into (6.15), an approximation for the large-error posterior

time delay pdf is given by

p�(t0|ỹ) �
1

T
[u(t0)− u(t0 − T )]e

(
χ(t0)− 1

2
σ2
χ

)
. (6.19)

As originally postulated, (6.19) is increasingly uniform for vanishing effective CNDR [cf. (6.7)].

The large-error time delay uncertainty is described by the entropy given by

h�(t0| ỹ) = −
∫ T

0

∫ ∞

−∞
ln

(
K� e

χ(t0)
)
K� e

χ(t0)
e

(
−χ(t0)

2

2σ2
χ

)
√
2πσχ

dχ(t0) dt0. (6.20)

To evaluate (6.20), we use the fact that the realization χ(t0) does not depend on the

particular value of t0. Furthermore, for a fixed K�, expanding the logarithm allows us to

use the Gaussian integral, as in (6.16), to obtain

h�(t0| ỹ) � −TK�

[
ln

(
K�

)
+ σ2

χ

]
e

1
2
σ2
χ + TK�

∫ ∞

−∞

[
σ2
χ − χ(t0)

]
eχ(t0)

e

(
−χ(t0)

2

2σ2
χ

)
√
2πσχ

dχ(t0). (6.21)

In (6.21), the integral equals zero because the integrand is antisymmetric over the integration

region. Finally, by referring to (6.18), we obtain

h�(t0| ỹ) � ln
(
T

)
− 1

2
σ2
χ. (6.22)

By using the prior time delay entropy ln
(
T

)
with (6.7) and (6.22), the MI between the

random time delay and the observed GNSS modulation signal in the large-error regime is
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given by

I�(t0; ỹ) � ψTC/Nw. (6.23)

When considered in a basis in which the noise samples are uncorrelated, the information

rate described by (6.23) is the maximum possible rate sustainable by the channel3 [58], [60].

In this respect, at low effective CNDR the channel conveys about as much information as it

can support. As a result, by operating deeply in the large-error regime, the system quenches

the time delay uncertainty with increasing effective CNDR. It does so at a faster rate than

in the small-error regime. Here, the concern is detection rather than estimation, a situation

which does not benefit from the frequency distribution of the signal.

6.1.3 Mutual Information Threshold

There are several ways to define the start of the small-error regime. One way is to find the

value of the effective CNDR required to yield the same amount of time delay information in

the small-error regime than in the large-error regime [58]. The effective CNDR at which

this occurs is called the MI threshold. It is obtained by intersecting (6.14) with (6.23), i.e.,

ψTC/Nw =
1

2
ln

(
4πe−1ψT 3β2

wC/Nw

)
. (6.24)

In solving for C/Nw, we note that (6.24) has several solutions, but the solution of interest can

be obtained by recalling that the small-error regime requires C/Nw � [C/Nw]MIN [see (6.8)].

Consequently, the threshold can be expressed as

[C/Nw]MI = − 1

2ψT
W−1

(
−e

2πT 2β2
w

)
. (6.25)

In (6.25), W−1(·) is the secondary real valued branch of the Lambert W function W (z),

defined as the inverse function of wew = z where w = W (z) ≤ −1 (−e−1 ≤ z < 0) [65].

Here, the MI threshold also requires Tβw ≥ e/
√
2π which is usually satisfied. To describe

the code tracking potential using the CRB, the time delay estimator must operate in the

3For an arbitrarily large bandwidth, the capacity of an ideal bandlimited white Gaussian noise channel
is lim

W→∞
W ln

(
1 + Cψ

WNw

)
= Cψ

Nw
with Nw/2 being the double-sided noise power spectral density and Cψ the

received physical carrier power [64].
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small-error regime. Therefore, a necessary (although insufficient) condition that supports

the use of the CRB is C/Nw > [C/Nw]MI.

6.2 Code Tracking Mean Square Error

Up to this point we have described the amount of time delay information that is provided

by the GNSS modulation signal and have described a boundary separating the small-error

regime from the large-error regime. We now consider the error resulting from the time delay

estimator.

The code tracking performance of the GNSS modulation signal can be quantified by

the MSE, E{|t̂0 − t0|2}, between the time delay estimator t̂0 and the time delay t0. It is

well known that when the time delay estimator is the conditional mean, i.e., t̂0 = E{t0| ỹ},

then the MSE is minimized. Consequently, an asymptote for the MSE lower bound in the

small-error regime can be obtained by considering (6.12), so that4

lim
C/Nw→∞

E{|t̂0 − t0|2} = lim
C/Nw→∞

[σ2
t̂0
]CRB. (6.26)

This asymptote was first obtained by Woodward [60] and thus (2.23) is sometimes referred

to as the Woodward Equation [67]. In the large-error regime, the lower bound for the MSE

is provided by the asymptote [see footnote 4]

lim
C/Nw→0

E{|t̂0 − t0|2} = σ2
t0
=

T 2

12
. (6.27)

In (6.27), T 2/12 is the variance corresponding to the prior uniform distribution of the time

delay and the limit is evaluated using (6.19). For very low effective CNDR, the observed

signal may not provide enough information to produce a better estimate than what is

already possible without making an observation in the first place.

The asymptotic analysis reveals that the lower bound for the MSE undergoes a transition

from σ2
t0
to [σ2

t̂0
]CRB with increasing effective CNDR. The transition is due to the change from

4 The convergence towards the asymptote for a bounded MSE is due to the Dominated Convergence
Theorem (DCT) [66].
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the large-error regime to the small-error regime and is concurrent with the MI transition.

Obtaining a description for the minimum MSE at a moderate effective CNDR requires an

exact expression for the posterior time delay pdf and some involved integration. Instead,

we draw on an existing lower bound specifically tailored for the problem of time delay

estimation called the ZZB [16], [17].

6.2.1 Ziv-Zakai Bound

Let us consider a time delay detection problem that consists of choosing between two

equiprobable hypotheses defined as

H0 : ť0 = t0,
(6.28)

H1 : ť0 = t0 + τ .

Above, τ is a nonnegative constant such that t0 + τ ∈ [0, T ). Let us consider two different

detection strategies: an optimal one and a suboptimal one, whose corresponding probabilities

of detection error are denoted by Pe,o(τ, t0) and Pe,s(τ, t0), respectively. By definition, the

optimal strategy minimizes the probability of detection error, i.e., Pe,o(τ, t0) serves as a

lower bound to Pe,s(τ, t0). Ziv and Zakai [16] used this fact to derive a lower bound, called

the ZZB [6], [7], [17], on the MSE of the time delay estimator by relating the MSE to the

probability of detection error of a (suboptimal) detector. In the rest of this section, we

outline the derivation of the ZZB for the case of the GNSS modulation signal with a time

delay characterized by a uniform prior distribution and where the signal is observed in the

presence of Gaussian noise and interference.

First, we investigate the optimal detection strategy. The optimal detection strategy

consists of choosing the most probable time delay hypothesis given the received signal. The

test statistic is given by

Vo(ỹ) =
p(ỹ | t0)

p(ỹ | t0 + τ)
, (6.29)

and we decide that H1 is true if Vo(ỹ) ≤ 1. By expressing the test statistic in logarithmic

form, the probability that (6.29) fails to detect the correct time delay hypothesis over the
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ensemble of received signals is given by

Pe,o(τ, t0) = P
{
H0

}
P
{
ln

(
Vo(ỹ)

)
≤ 0 |H0

}
+ P

{
H1

}
P
{
ln

(
Vo(ỹ)

)
> 0 |H1

}
. (6.30)

In (6.30), P(·) denotes the probability. By evaluating (6.29) using (6.3), the log-likelihood

function taken over the ensemble of ỹ is given by

ln
(
Vo(ỹ)

)
= 2�

{
ỹ′H[ŷ′(t0)− ŷ′(t0 + τ)]

}
. (6.31)

The conditional probabilities in (6.30) can then be evaluated by inserting ť0 = t0 and

ť0 = t0 + τ into ỹ′ = ŷ′(ť0) +w′ for H0 and H1, respectively. By using Theorem 5.1.1 and

assuming equiprobable hypothesis, the minimum probability of error can be expressed as

Pe,o(τ, t0) =
1

2

(
P
{
�{R(0)(0)−R(0)(τ)} ≤ ζ(t0)

}
+ P

{
�{R(0)(τ)−R(0)(0)} > ζ(t0)

})
.

(6.32)

In (6.32), ζ(t0) is a random variable defined as

ζ(t0) � �
{
w′H[ŷ′(t0 + τ)− ŷ′(t0)]

}
. (6.33)

Because w′ is a circular symmetric Gaussian random vector, ζ(t0) is Gaussian with zero

mean and variance given by half that of the argument of �(·) in (6.33), i.e.,

σ2
ζ = �{R(0)(0)−R(0)(τ)}. (6.34)

Because ζ(t0) is a normal random variable, we can express (6.32) using the Gaussian Q

function defined as Q(x) � 1√
2π

∫∞
x

e−
1
2
λ2
dλ [63], i.e.,

Pe,o(τ) = Q
(
�{R(0)(0)−R(0)(τ)} 1

2

)
. (6.35)

In (6.35), we have used the symmetry of the pdf of ζ(t0) and dropped t0 from the notation
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because the minimum probability of error does not depend on t0.

Next, we consider the suboptimal detection strategy. The suboptimal detection is made

by first obtaining an estimate t̂0 ∈ [0, T ) for the time delay and to choose the hypothesis

that corresponds to a time delay that is closer to t̂0. The test statistic is given by

Vs(t̂0) =
|t̂0 − t0 − τ |
|t̂0 − t0|

, (6.36)

and we decide that H1 is true if Vs(t̂0) ≤ 1. Over the ensemble of estimates, the probability

that (6.36) fails to detect the correct hypothesis is given by

Pe,s(τ, t0) = P{H0}P{Vs(̂t0) ≤ 1 |H0}+ P{H1}P{Vs(̂t0) > 1 |H1}. (6.37)

With equiprobable hypotheses, it follows that

Pe,s(τ, t0) =
1

2

(
P
{
t̂0 − t0 >

τ

2

}
+ P

{
t̂0 − t0 − τ < −τ

2

})
. (6.38)

In (6.38), we have employed the continuity of t̂0 to write the events as strict inequalities.

To determine a lower bound for the MSE of any time delay estimator, we need the

following lemma.

Lemma 6.2.1 The MSE between the time delay t0 and the estimator t̂0 is lower bounded

such that

E{|̂t0 − t0|2} ≥
∫ T

0

∫ T−τ

0

τ

T
Pe,s(τ, t0) dt0 dτ, (6.39)

where Pe,s(τ, t0) is the probability of detection error of a (suboptimal) detector [see (6.38)].

Proof See Appendix B.4. �

In this case, we note that the MSE bound depends on the particular estimator. To obtain a

bound that applies to any estimator, we can replace Pe,s(τ, t0) by the minimum probability

of error Pe,o(τ). The lower bound for the MSE can then be expressed as

E{|̂t0 − t0|2} ≥
∫ T

0

τΛ
( τ

T

)
Pe,o(τ) dτ. (6.40)
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In (6.40), Λ(τ) is the unit height triangular function of support [−1, 1). Finally, explicit

application of (6.35) produces the final bound:

E{|̂t0 − t0|2} ≥
∫ T

0

τΛ
( τ

T

)
Q
(
�{R(0)(0)−R(0)(τ)} 1

2

)
dτ. (6.41)

We note that the ZZB captures the multi-peak nature of the ACF via R(0)(τ).

6.2.2 Mean Square Error Threshold

To more easily visualize the behavior of the ZZB, we can approximate (6.41) by loosening

the inequality under the assumption that the effective CNDR is either very large or very

small and that the GB is large. The approximation is verified for all GPS and Galileo

signals via simulations in a subsequent section. The derivation of this approximation is

lengthy and is relegated to Appendix A.3. The result is provided by (A.16) and is given by

E{|̂t0 − t0|2} � 2σ2
t0
Q
(√

ψTC/Nw

)
+ [σ2

t̂0
]CRBP3/2

(
ψTC/Nw

)
. (6.42)

In (6.42), Pa(x) denotes the incomplete Gamma function of a with upper limit x (a, x ∈ R)

defined as Pa(x) � 1
Γ(a)

∫ x

0
e−λλa−1 dλ, where Γ(a) �

∫∞
0

e−λλa−1 dλ [63]. Specifically, (6.42)

indicates that for a low effective CNDR the MSE is largely due to σ2
t0
, while for a high

effective CNDR the MSE is dominated by [σ2
t̂0
]CRB. For moderate effective CNDR the MSE

lies between σ2
t0
and [σ2

t̂0
]CRB; the transition from σ2

t0
to [σ2

t̂0
]CRB is mostly due to the first

term on the right hand side of (6.42) which is controlled by the large-error MI [cf. (6.23)].

The effective CNDR for which the ZZB nearly coincides with the CRB is given by the

MSE threshold. Mathematically, the MSE threshold can be defined as the effective CNDR

that results when the MSE is 3 dB above5 [σ2
t̂0
]CRB [6]. By using (5.11), (6.27), and (6.42),

and considering that near the threshold P3/2 (ψTC/Nw) � 1, the MSE threshold is obtained

by setting
T 2

6
Q
(√

ψTC/Nw

)
=

1

8π2ψTβ2
wC/Nw

. (6.43)

5Similarly, the MIN threshold defined by (6.8) also occurs when the MSE is about 3 dB below σ2
t0 . It

can be obtained by setting T 2

6 Q
(√

ψTC/Nw

)
= T 2

24 .
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The MSE threshold must occur in the small error regime, i.e., C/Nw > [C/Nw]MI. Therefore,

by using Q
(√

ψTC/Nw

)
� e−

1
2ψTC/Nw√

2πψTC/Nw

, the MSE threshold can be expressed as

[C/Nw]MSE = − 1

ψT
W−1

(
−9

8π3T 4β4
w

)
. (6.44)

It is not surprising that the MSE threshold adopts the same form as the MI threshold

given by (6.25). The larger exponent (4 instead of 2) on Tβw in (6.44) emphasizes that

the MSE threshold must occur well inside the small-error regime. Both (6.25) and (6.44)

illustrate that increasing the power containment and integration time significantly decreases

the effective CNDR required to operate in the small-error regime and triggers the suitability

of the CRB. On the other hand, the GB is (in practice) ancillary to the location of the code

tracking thresholds. Consequently, although a large GB is often associated with accurate

code tracking due to the CRB, the time delay estimation error may be underestimated by

the CRB due to an insufficient effective CNDR. As a result, wideband signals intended

for accurate code tracking may provide no benefit when it comes to high attenuation

environments.

6.3 Simulation of the GNSS Code Tracking Bounds

This section illustrates the theoretical limits on the code tracking accuracy of the GNSS

modulation signal. A brief reference is made to the ZZB, but the focus is the code tracking

thresholds.

6.3.1 Simulation Methodology

The results used to illustrate the code tracking behavior of the GNSS modulation signal are

obtained for an ideal bandlimited white Gaussian noise channel. To accommodate the wide

range of GPS and Galileo signals, a double-sided front-end bandwidth of 8 MHz, 24 Mhz,

and 96 MHz is used. Unless specified otherwise, the receiver employs a coherent integration

time of 20 ms, corresponding to an observation interval that is equal to the data bit period

of the legacy GPS SPS signal. Finally, it is assumed that parasitic correlations are negligible
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so that the subcarriers dominate the statistical properties of the GNSS modulation signal.

The ZZB is simulated using (6.41). In order to evaluate (6.41), the finite-time ACF of

the bandlimited GNSS modulation signal is computed using the function provided by (4.17).

The function is then bandlimited using an ideal lowpass filter and scaled by TC/N0.

The code tracking thresholds are obtained from (6.8), (6.25), and (6.44). The thresholds

depend on the signal characteristics that include the correlation loss and GB. The correlation

loss and GB are computed via (2.20) and (5.9), respectively, by employing the PSD envelope

function provided by (4.19).

6.3.2 Results

The fundamental code tracking performance of the GNSS modulation signal is described in

the figures that follow. For select multiplexed signals, the ZZB is shown in Fig. 6.2, while

for select signal components, the ZZB is shown in Fig. 6.3.

The ZZB curves illustrate that the RMS time delay error decreases abruptly from the

prior time delay standard deviation to the one-sigma error provided by the CRB. Fig. 6.4

explicitly shows the CRB and highlights the location of the MIN, MI, and MSE threshold.

Fig. 6.2 ZZB of select CBOC and ALTBOC multiplexed signals:
(a) CBOC(6, 1, 1

11); (b) ALTBOC(15, 10), for precorrelation bandwidths:
(i) 8 MHz; (ii) 24 MHz; (iii) 96 MHz (double-sided).
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Fig. 6.3 ZZB of select BOC and TMBOC signal components:
(a) BOCcos(10, 5); (b) TMBOC(6, 1, 4

33), for precorrelation bandwidths:
(i) 8 MHz; (ii) 24 MHz; (iii) 96 MHz (double-sided).

Fig. 6.4 Code tracking thresholds of the ALTBOC(15, 10) multiplexed signal.

The sharp transition between the MI and MSE threshold indicates that efforts to increase

the signal quality past the receiver front-end (e.g., by minimizing implementation losses)

considerably reduce the time delay estimation errors when code tracking takes place between
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the thresholds. Conversely, small decreases in CNDR may force the receiver out of code

tracking lock. However, once the CRB is reached, further increases in CNDR provide

diminishing returns; code tracking accuracy is then relegated to the GB.

The main results of this chapter are summarized in Fig. 6.5. In the figure, the minimum

CNDR required to achieve the CRB is illustrated for all modulations used by GPS and

Galileo. Simulations using the ZZB (like those shown previously) are conducted to locate

the MSE threshold which is compared to the threshold given by (6.44). The simulations and

theoretical results agree well. This indicates that the multi-peak nature of the ACF of the

GNSS modulation signal does not considerably disturb the MSE threshold. The large-error

regime, as indicated by the MI threshold, is also highlighted.

Fig. 6.5 Required CNDR to achieve the CRB for GPS and Galileo modulations.
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In most cases, the empirical 30 dB-Hz level often associated with the code tracking

threshold of a conventional receiver (a typical worst case scenario) [68], lies between the MI

and MSE threshold. In addition, typical strong signals of 40 – 45 dB-Hz [30], [68], [69], have

no trouble achieving the CRB for a sufficiently large precorrelation bandwidth. However,

attenuated and bandlimited signals are subject to the threshold effects.

For a small precorrelation bandwidth, the location of the MI and MSE threshold is

predominantly due to the correlation loss. In Fig. 6.5, signals with a small precorrelation

bandwidth (8 MHz) are numbered according to decreasing power containment. The trend

predicted by the theory is that a large correlation loss increases the thresholds [see (6.25)

and (6.44)]. Moreover, for a large precorrelation bandwidth, most of the carrier power

passes the receiver front-end and the location of the MI and MSE threshold continues to

increase with increasing GB. However, as we have previously pointed out, typical values for

the GB produce a nearly constant MI and MSE threshold. As a result, further displacement

of the threshold is due to the integration time. Fig. 6.6 summarizes this threshold behavior.

We note that over a wide range of values for the GB and integration time, the separation

between the thresholds remains nearly constant.

Fig. 6.6 Variation of code tracking thresholds:
(i) MSE threshold; (ii) MI threshold; (iii) MIN threshold.
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As a reference, Fig. 6.7 shows the ranging error at the MSE threshold. For a large

precorrelation bandwidth (96 MHz), the results are numbered with increasing GB to show

the effect of bandwidth on code tracking once the MSE threshold is reached.

The results presented here show that efforts to achieve a high code tracking accuracy at

a low CNDR by choosing a modulation that produces a large GB are futile. If the CNDR is

below the MI threshold, the GB has a negligible impact on the time delay estimation error.

This contrasts with recent claims that modulations employing high subcarrier and code

rates produce signals apt for indoor tracking [48]. To track attenuated signals, one must

minimize the correlation loss and maximize the integration time. Finally, an increase in GB

for signals operating beyond the MSE threshold improves accuracy, even if the resulting

signals fall behind the MSE threshold.

Fig. 6.7 Ranging error at the MSE threshold for GPS and Galileo modulations.
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Chapter 7

Conclusion

The first part of this thesis developed an analytical framework for next generation satellite

radionavigation signals. The proposed theory of GNSS modulation generalizes the signal

structures used by the modernized GPS and Galileo. Because subcarriers take a central role

in the signal structures, a significant consequence of the GNSS modulation theory is the

GBOC subcarrier. The GBOC subcarrier is a time multiplexed multilevel waveform that

generalizes the existing subcarriers. To facilitate the use of the framework, we provided

a collection of parameters under which the GBOC subcarrier defines the BOC, CBOC,

TMBOC, and the recently proposed ABOC component modulation, as well as the CBOC

and ALTBOC multiplexing schemes. In addition, we used the analytical framework to

obtain single equations for the ACF and PSD of all signal components and multiplexed

signals. Simulations have confirmed the accuracy of the theory, and when compared to

previous approaches, our model not only offers better accuracy, but applies to a wider range

of signals.

Our statistical description suggests that the GNSS modulation signal, subject to slow flat

fading, is generally nonstationary. Since the PSD is only defined for a wide sense stationary

process, the result suggests that no fixed PSD exists. We solved this problem by showing

that the GNSS modulation signal is AMS and thus possesses a convergent time averaged

ACF and PSD. Moreover, we have shown that the ACF and PSD depend mostly on the

GBOC subcarrier and are functions of its parameters.
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The second part of this thesis applied the statistical description of GNSS modulation

to provide an accurate assessment of the potential code tracking accuracy of all GPS and

Galileo signals. To characterize the code tracking performance in the presence of bandlimited

noise and interference, we obtained expressions for the effective CNDR and effective GB.

By using the code tracking performance measures, we derived closed form expressions for

the MI and MSE code tracking thresholds, which define, respectively, the necessary CNDR

for the time delay estimator to operate in the small-error regime and for the CRB to serve

as a meaningful benchmark.

Our information-theoretic analysis reveals that the code tracking thresholds depend

primarily on the correlation loss and observation interval, while the specific signal structure

does not significantly influence the code tracking thresholds. We have shown that the

code tracking thresholds decrease with power containment and integration time, which are

limited, respectively, by the receiver front-end bandwidth and the channel coherence time.

Finally, we have shown that the CRB, which decreases with the effective GB, is precarious

for small power containment and integration time. Therefore, the potential code tracking

accuracy offered by wideband signals is only appreciable for signals of adequate strength.

In addition to noise and interference, multipath is a major contributor to the GNSS error

budget. Although, the channel model employed in this thesis does not allow for multipath,

as future work we intend to apply the GNSS modulation theory to extend the investigation

of code tracking bounds to the case of multipath. Finally, it should be mentioned that

receiver architectures have not been addressed in this work. We have also left it for future

work to investigate the merits of the GNSS modulation theory to obtain code tracking loops

for next generation satellite radionavigation receivers.
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Appendix A

Derivation of Select Results

A.1 Delayed GNSS Modulation Signal ACF

In this appendix, we compute the ACF of the delayed GNSS modulation signal y(t− t0).

The delayed GNSS modulation signal can be expressed as [cf. (3.14)]

y(t− t0) =
∞∑

k=−∞

2∑
l=1

x̂(l)(kTc)
Tς(l)(t− kTc − t0). (A.1)

The ACF of y(t− t0) is given by

Ry̌(t1, t2) = E {y(t1 − t0) y(t2 − t0)
∗}

= E

{[ ∞∑
k1=−∞

2∑
l1=1

x̂(l1)(k1Tc)
Tς(l1)(t1 − k1Tc − t0)

]

×
[ ∞∑
k2=−∞

2∑
l2=1

x̂(l2)(k2Tc)
Tς(l2)(t2 − k2Tc − t0)

]∗}

= E

{ ∞∑
k1=−∞

∞∑
k2=−∞

2∑
l1=1

2∑
l2=1

x̂(l2)(k2Tc)
Hς(l2)(t2 − k2Tc − t0)

∗

× ς(l1)(t1 − k1Tc − t0)
Tx̂(l1)(k1Tc)

}
. (A.2)

By employing the substitutions m = k1 − k2 and k = k2 (the end effects of the re-indexing

with m vanish due to the infinite extent of k) and using the identity xHAy = tr(yxHA)
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(x,y ∈ CN , and A ∈ CN×N), we obtain

Ry̌(t1, t2) = E

{ ∞∑
m=−∞

∞∑
k=−∞

2∑
l1=1

2∑
l2=1

tr
⎧⎩x̂(l1)(kTc +mTc)x̂

(l2)(kTc)
H

× ς(l2)(t2 − kTc − t0)
∗ς(l1)(t1 −mTc − kTc − t0)

T
⎫⎭}

.

(A.3)

A.2 Summation of Overlapping Integrals

In this appendix, we prove the identity

∞∑
k=−∞

fk

∫ b−kTc−BTc

a−kTc−ATc

S(t) dt =

∫ ∞

−∞

( �b/Tc	−�a/Tc	−B+A−1∑
k=1

fk+�a/Tc	−A

+ f�a/Tc	−A [u(t− amod Tc)]

+ f�b/Tc	−B [1− u(t− bmod Tc)]

)
S(t) dt. (A.4)

In (A.4), fk represents a discrete function of k, S(t) is an integrable function of support

[0, Tc), a, b ∈ R, and A,B ∈ Z. Let us consider the integral on the left hand side of (A.4).

Since S(t) has a finite support, the integral is nonzero for only select values of k. These

values of k belong to one of the following cases:

1) �a/Tc	 − A+ 1 ≤ k ≤ �b/Tc	 − B − 1

2) k = �a/Tc	 − A

3) k = �b/Tc	 − B

By considering these cases individually, the left hand side of (A.4) can be expressed as

∞∑
k=−∞

fk

∫ b−kTc−BTc

a−kTc−ATc

S(t) dt =

�b/Tc	−B−1∑
k=�a/Tc	−A+1

fk

∫ ∞

−∞
S(t) dt

+ f�a/Tc	−A

∫ ∞

amod Tc

S(t) dt+ f�b/Tc	−B

∫ bmod Tc

−∞
S(t) dt.

(A.5)
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Alternatively, we can write the above in terms of a single integral by modifying the integrands

using unit step functions. After interchanging the order of summation and integration, we

obtain

∞∑
k=−∞

fk

∫ b−kTc−BTc

a−kTc−ATc

S(t) dt =

∫ ∞

−∞

( �b/Tc	−B−1∑
k=�a/Tc	−A+1

fk S(t)

+ f�a/Tc	−A S(t)[u(t− amod Tc)]

+ f�b/Tc	−B S(t)[1− u(t− bmod Tc)]

)
dt, (A.6)

which, after redefining index k on the right hand side, is equivalent to (A.4).

A.3 Simplified ZZB

In this appendix, we obtain a simplifying approximation for the ZZB. The ZZB is given by

(6.41) and is repeated here for convenience:

E{|̂t0 − t0|2} ≥
∫ T

0

τΛ
( τ

T

)
Q
(
�
{
R(0)(0)−R(0)(τ)

} 1
2

)
dτ. (A.7)

Let R(0)(τ ) be negligible for |τ | > α (1/(πβw) < α < T ) so that the integral in (A.7) can be

separated as

E{|̂t0 − t0|2} ≥
∫ α

0

τΛ
( τ

T

)
Q
(
�
{
R(0)(0)−R(0)(τ)

} 1
2

)
dτ

+

∫ T

α

τΛ
( τ

T

)
Q
(
�
{
R(0)(0)

} 1
2

)
dτ. (A.8)

By using Theorem 5.1.1, �{R(0)(τ)} can be expressed as

�
{
R(0)(τ)

}
� 2ψTC

∫ W/2

−W/2

Ğŷ(f)

Gw(f)
cos(2πfτ) df. (A.9)

By employing the inequality cos(2πfτ) ≥ max
τ∈R

{1 − 2(πfτ)2,−1}, the right hand side of

(A.9) can be lower-bounded; applying (5.7) and (5.9) to the bound, �{R(0)(τ)} can be
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expressed as

�{R(0)(τ)} � ψTC/Nw

⎧⎪⎨
⎪⎩
1− 2(πβwτ)

2, |τ | < 1/(πβw),

−1, elsewhere,

(A.10)

By employing (A.10) to replace the expression for �{R(0)(0)} in (A.8) and by virtue of the

(decreasing) monotonicity of the Gaussian Q function, we obtain

E{|̂t0 − t0|2} �
∫ 1/(πβw)

0

τΛ
( τ

T

)
Q
(
πβwτ

√
2ψTC/Nw

)
dτ

+

∫ α

1/(πβw)

τΛ
( τ

T

)
Q
(√

2ψTC/Nw

)
dτ

+

∫ T

α

τΛ
( τ

T

)
Q
(√

ψTC/Nw

)
dτ, (A.11)

By performing integration by parts on the first integral (using the fact that dQ(x)
dx

= −e− 1
2x2√
2π

)

and evaluating the other integrals directly, we obtain

E{|̂t0 − t0|2} � T 2

6
Q
(√

ψTC/Nw

)
+

α2

2
Λ

(
2α

3T

)[
Q
(√

2ψTC/Nw

)
−Q

(√
ψTC/Nw

)]

+

∫ 1/(πβw)

0

τ 2

2
Λ

(
2τ

3T

)
βw

√
πψTC/Nw e

(
−(πβwτ)2ψTC/Nw

)
dτ. (A.12)

Next, by employing the substitution λ = (πβwτ)
2ψTC/Nw we obtain, after some algebra,

E{|̂t0 − t0|2} � T 2

6
Q
(√

ψTC/Nw

)
+

α2

2
Λ

(
2α

3T

)[
Q
(√

2ψTC/Nw

)
−Q

(√
ψTC/Nw

)]

+

∫ ψTC/Nw

0

e−λ

2π
5
2β2

wψTC/Nw

(√
λ

2
− λ

3πβwT
√
ψTC/Nw

)
dλ. (A.13)
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The integral in the above expression can be evaluated using the incomplete Gamma function

Pa(x) =
1

Γ(a)

∫ x

0
e−λλa−1 dλ, where Γ(a) =

∫∞
0

e−λλa−1 dλ (a, x ∈ R) [63]. The result is

E{|̂t0 − t0|2} � T 2

6
Q
(√

ψTC/Nw

)
+

α2

2
Λ

(
2α

3T

)[
Q
(√

2ψTC/Nw

)
−Q

(√
ψTC/Nw

)]

+ P3/2 (ψTC/Nw)

[
1

8π2β2
wψTC/Nw

]

− P2 (ψTC/Nw)
16

3
√
2πT

[
1

8π2β2ψTC/Nw

] 3
2

. (A.14)

By expressing the above in terms of the CRB and prior time delay variance, we obtain

E{|̂t0 − t0|2} � 2σ2
t0
Q
(√

ψTC/Nw

)
+

α2

2
Λ

(
2α

3T

)[
Q
(√

2ψTC/Nw

)
−Q

(√
ψTC/Nw

)]
+ [σ2

t̂0
]CRB P3/2 (ψTC/Nw)−

16

3
√
2πT

[σ3
t̂0
]CRB P2 (ψTC/Nw) . (A.15)

Comparison can be made with the results obtained by Chazan et al. [17] and Bell et al. [7]. By

assuming a sufficiently large or small effective CNDR (which is appropriate for determining

thresholds), the second term on the right hand side of (A.15) is negligible. Moreover, for a

sufficiently large effective GB (which is in agreement with practice), the last term is also

negligible. Therefore, an approximation for the ZZB is given by

E{|̂t0 − t0|2} � 2σ2
t0
Q
(√

ψTC/Nw

)
+ [σ2

t̂0
]CRB P3/2

(
ψTC/Nw

)
. (A.16)
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Appendix B

Miscellaneous Proofs

B.1 Proof of Theorem 4.3.1

In this appendix we show that the received GNSS modulation signal ỹ(t) is AMS. We note

that the delayed signal y(t− t0) is AMS because there exists an asymptotic time averaged

ACF given by

R̄y̌(τ) = lim
T→∞

1

T

∫ T/2

−T/2
Ry̌(τ, t) dt. (B.1)

The latter exists because Ry̌(τ, t) is a bounded function and is periodic over t with period

DTc [see (4.7)]. By using this fact we can show that the received signal ỹ(t) must also be

AMS, i.e., there exists an asymptotic time averaged ACF given by [52]

R̄ỹ(τ) = lim
T→∞

1

T

∫ T/2

−T/2
E
{
ỹ
(
t+

τ

2

)
ỹ
(
t− τ

2

)∗}
dt. (B.2)

In terms of the effective channel filter z(t), the time averaged ACF is given by [cf. (2.17)]

R̄ỹ(τ) = lim
T→∞

κ

T

∫ T/2

−T/2
E

{[∫ ∞

−∞
z
(
t− u+

τ

2

)
y(u− t0) du

][∫ ∞

−∞
z
(
t− v − τ

2

)
y(v − t0) dv

]∗}
dt

= lim
T→∞

κ

T

∫ T/2

−T/2

∫ ∞

−∞

∫ ∞

−∞
z
(
t− u+

τ

2

)
z
(
t− v − τ

2

)∗
Ry̌(u, v) du dv dt. (B.3)
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By introducing the change variables t′ = t− (u+ v)/2 and τ ′ = v − u (with unit Jacobian),

the time averaged ACF can be expressed as

R̄ỹ(τ) = lim
T→∞

κ

T

∫ T/2

−T/2

∫ ∞

−∞

∫ ∞

−∞
z

(
t+

τ

2
−
[
t− t′ − τ ′

2

])
z

(
t− τ

2
−
[
t− t′ +

τ ′

2

])∗

×Ry̌

(
t− t′ − τ ′

2
, t− t′ +

τ ′

2

)
dt′ dτ ′ dt. (B.4)

Above, the integrand is bounded and thus the DCT [66] allows us to interchange the limit

and integration to obtain

R̄ỹ(τ) = κ

∫ ∞

−∞
Rz(τ + τ ′)R̄y̌(τ

′) dτ ′, (B.5)

where Rz(λ) =
∫∞
−∞ z (t′ + λ/2) z (t′ − λ/2)∗ dt′. Finally, because R̄y̌(τ) exists, R̄ỹ(τ) also

exists. Therefore, ỹ(t) is AMS. �

B.2 Proof of Theorem 5.1.1

In this appendix, we evaluate the hermitian inner product defined as

R(m)(τ) �
[
∂m

∂tm0
ŷ(t0 + τ)

]H
Σ−1

[
∂m

∂tm0
ŷ(t0)

]
. (B.6)

The vector ŷ(t0) ∈ CN contains N entries corresponding to the samples of a bandlimited

signal ŷ(t, t0) with a time delay t0 obtained over an observation interval of length T in the

presence of bandlimited stationary circular symmetric noise with covariance Σ ∈ RN×N .

For a sufficiently large T (large N), the noise covariance admits a circulant form and thus

has a spectral decomposition given by [57]

Σ � V ΛV H, (B.7)

where the nth (n = 0, . . . , N − 1) column of the unitary matrix V ∈ CN×N consists of the

eigenvector given by

vn =
1√
N

[
1, ej2πn/N , . . . , ej2πn(N−1)/N

]T
, (B.8)
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and the nth diagonal entry of the diagonal matrix Λ ∈ RN×N is the eigenvalue given by

λn =
1

Ts

∞∑
h=−∞

Gw

(
n

T
+

h

Ts

)
. (B.9)

In (B.9), Gw(f) (|f | ≤ W/2) is the PSD of the continuous time noise process from where

originate the noise samples and Ts = 1/W is the sampling period of the entries in the signal

vectors. We note that there is no aliasing in (B.9) because Gw(f) is bandlimited. The

hermitian inner product can then be expressed as

R(m)(τ) �
[
∂m

∂tm0
ŷ(t0 + τ)

]H
V Λ−1V H

[
∂m

∂tm0
ŷ(t0)

]

=
N−1∑
n=0

λ−1n

[
∂m

∂tm0
ŷ(t0 + τ)

]H
vnv

H
n

[
∂m

∂tm0
ŷ(t0)

]
. (B.10)

The adjacent hermitian inner products on the right hand side of (B.10) each implement

the DFT. Indeed, by writing the hermitian inner products in terms of the vector entries we

obtain

R(m)(τ) �
N−1∑
n=0

λ−1n

[
1√
N

N−1∑
k1=0

∂m

∂tm0
ŷ(k1Ts, t0 + τ) e−j2πk1n

Ts
T

]∗

×
[

1√
N

N−1∑
k2=0

∂m

∂tm0
ŷ(k2Ts, t0) e

−j2πk2nTs
T

]
. (B.11)

Since the DFT is a sampled and scaled version of a periodically extended Fourier transform,

(B.11) can be expressed in terms of the signal spectra, so that

R(m)(τ) � 1

N

N−1∑
n=0

[
1

Ts

∞∑
h1=−∞

Gw(f)
∣∣∣
f= n

T
+

h1
Ts

]−1

×
[
α0e

jφ0

Ts

∞∑
h2=−∞

Y (f)Z(f)
∂m

∂tm0
e−j2πft0

∣∣∣
f= n

T
+

h2
Ts

]

×
[
α0e

jφ0

Ts

∞∑
h3=−∞

Y (f)Z(f)
∂m

∂tm0
e−j2πf(t0+τ)

∣∣∣
f= n

T
+

h3
Ts

]∗
. (B.12)
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In (B.12), F{ŷ(t, t0)} = α0e
jφ0Y (f)Z(f)e−j2πft0 , and Z(f) incorporates the filtering used

to produce the observed signal from an infinite bandwidth reference signal characterized

by the spectrum Y (f) [see (2.17) and cf. (2.18)]. If Z(f) and Gw(f) are bandlimited to

|f | ≤ W/2, for each value of the index n, only one value of the index hi (i = 1, 2, 3) actually

contributes to (B.12). Therefore, it is possible to set h1 = h2 = h3 = h and consolidate the

summations to produce

R(m)(τ) � κ

T

N−1∑
n=0

∞∑
h=−∞

∣∣∣ ∂m

∂tm0
e−j2πft0

∣∣∣2 |Y (f)Z(f)|2
Gw(f)

ej2πfτ
∣∣∣
f= n

T
+ h

Ts

=
N−1∑
n=0

∞∑
h=−∞

(2πf)2m
Gŷ(f)

Gw(f)
ej2πfτ

∣∣∣
f= n

T
+ h

Ts

. (B.13)

In (B.13), κ = |α0|2 and we have used (2.18) to introduce the power spectrum Gŷ(f). The

above equation can be simplified by exploiting the periodic extension of the spectra to

eliminate the index h by redefining the index n. The result is

R(m)(τ) �
N/2−1∑
n=−N/2

(2πf)2m
Gŷ(f)

Gw(f)
ej2πfτ

∣∣∣
f= n

T

. (B.14)

Finally, for a sufficiently large T , the summation in (B.14) can be replaced by an integral,

i.e.,

R(m)(τ) � T

∫ W/2

−W/2

(2πf)2m
Gŷ(f)

Gw(f)
ej2πfτ df, (B.15)

which, for T = N/W , proves Theorem 5.1.1. �

B.3 Alternative Proof of Theorem 5.1.1

In this appendix we give an alternative proof of Theorem 5.1.1 which is based on Parseval’s

theorem. We employ the same notation that is used in Appendix B.2. Let us consider the

signal vector ŷ′(0) ∈ CN obtained by transforming the samples of the signal ŷ(t, 0), i.e.,

ŷ′(0) = V Λ−
1
2V Hŷ(0). (B.16)
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The entries in ŷ′(0) can also be obtained by sampling the signal ŷ′(t, 0). By expanding

(B.16), the nth (n = 0, . . . , N − 1) entry of ŷ′(0) is given by

ŷ′(nTs, 0) =
1

T

N−1∑
k=0

∞∑
h=−∞

Ŷ ′(f) ej2πkn
Ts
T

∣∣∣
f= k

T
+ h

Ts

, (B.17)

where

Ŷ ′(f) =
α0e

jφ0Y (f)Z(f)√
WGw(f)

. (B.18)

By definition, (B.17) is an inverse DFT which indicates that the Fourier transform of ŷ′(t, 0)

is Ŷ ′(f). Now, for large N , the Whittaker-Shannon interpolation formula can be used to

obtain the following hermitian inner product:

R(m)(τ) =
[
∂m

∂tm0
ŷ′(t0 + τ)

]H [ ∂m

∂tm0
ŷ′(t0)

]
� W

∫ ∞

−∞

[
∂m

∂tm0
ŷ′(t, t0 + τ)

]∗ [ ∂m

∂tm0
ŷ′(t, t0)

]
dt. (B.19)

By applying Parseval’s theorem and using (B.18), we obtain

R(m)(τ) � W

∫ ∞

−∞

[
Ŷ ′(f)

∂m

∂tm0
e−j2πf(t0+τ)

]∗ [
Ŷ ′(f)

∂m

∂tm0
e−j2πft0

]
df

= T

∫ W/2

−W/2

(2πf)2m
κ

T

|Y (f)Z(f)|2
Gw(f)

ej2πfτ df. (B.20)

Finally, by using (2.18), we obtain

R(m)(τ) � T

∫ W/2

−W/2

(2πf)2m
Gŷ(f)

Gw(f)
ej2πfτ df, (B.21)

which, for T = N/W , proves Theorem 5.1.1. �
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B.4 Proof of Lemma 6.2.1

To prove Lemma 6.2.1, we first prove the identity

E{|̂t0 − t0|2} =

∫ 2T

0

τ

2
P
{
|̂t0 − t0| >

τ

2

}
dτ. (B.22)

The right hand side of (B.22) can be written using the cumulative distribution function

(cdf) of |̂t0 − t0| defined as F (τ) � P
{
|̂t0 − t0| ≤ τ

}
, so that

∫ 2T

0

τ

2
P
{
|̂t0 − t0| >

τ

2

}
dτ =

∫ 2T

0

τ

2

[
1− F

(τ
2

)]
dτ. (B.23)

By employing the substitution ξ = τ/2 and integrating by parts (defining f(ξ) � dF (ξ)
dξ

and

recognizing that F (T ) = P{|̂t0 − t0| ≤ T} = 1), we obtain

∫ 2T

0

τ

2
P
{
|̂t0 − t0| >

τ

2

}
dτ =

∫ T

0

ξ2 f(ξ) dξ. (B.24)

Because f(ξ) is the pdf of |̂t0 − t0|, the right hand side of (B.24) is the MSE and thus we

have shown (B.22). Next, we relate the MSE to the probability of detection error of the

suboptimal test statistic (6.36). We can re-express (B.22) by obtaining the mean of the

probabilities conditioned on the realizations t0 and t0 + τ drawn from uniform distributions.

The result is

E{|̂t0 − t0|2} =

∫ 2T

0

τ

2

(
P
{
t̂0 − t0 >

τ

2

}
+ P

{
t̂0 − t0 < −τ

2

})
dτ

=

∫ 2T

0

τ

2T

(∫ T

0

P
{
t̂0 − t0 >

τ

2

}
dt0 +

∫ T−τ

−τ
P
{
t̂0 − t0 − τ < −τ

2

}
dt0

)
dτ.

(B.25)

Because the integrands in (B.25) are nonnegative, we obtain the following result by employing

(6.38):

E{|̂t0 − t0|2} ≥
∫ T

0

∫ T−τ

0

τ

T
Pe,s(τ, t0) dt0 dτ, (B.26)

which proves Lemma 6.2.1. �
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