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Abstract

Tracking is frequently performed using multiple sensor platforms, with measurements being

relayed to a fusion centre over a wireless network. This can lead to some measurements

being delayed when adverse environmental conditions cause packet losses to occur. These

delayed measurements are called “out-of-sequence measurements (OOSMs)”. Simply dis-

carding the delayed OOSMs can waste important information and lead to much poorer

tracking performance. This thesis proposes a novel algorithm for delay-tolerant particle

filtering that is computationally efficient and has limited memory requirements. The algo-

rithm estimates the informativeness of the OOSMs and immediately discards uninformative

measurements. More informative measurements are then processed using the storage effi-

cient particle filter, which is relatively computationally simple. If the measurement induces

a dramatic change in the current filtering distribution, the particle filter is re-run to in-

crease the accuracy. From our simulation results, we observe that our novel algorithm only

processes a relatively small portion of the OOSMs, but it performs almost as well as much

more computationally-complex techniques that have larger storage requirements.
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Abrégé

Le suivi est souvent effectué à l’aide de plates-formes composées de multiples capteurs où

les mesures sont retransmises à un centre de fusion via un réseau sans fil. Lorsque des

conditions environnementales défavorables entrâınent des pertes de paquets, la transmis-

sion de ces mesures peut être retardée. Ces dernières sont appelées mesures déclassées

(OOSM). Jeter ces OOSMs peut gaspiller des informations importantes et peut affecter

négativement la performance de l’algorithme de suivi. Cette thèse propose un nouvel algo-

rithme de filtrage de particules tolérantes au délai (delay-tolerant) qui n’est pas gourmand

ni en temps de calcul, ni en mémoire. L’algorithme estime la quantité d’information des

OOSMs et rejette immédiatement les mesures inutiles. Les mesures contenant suffisam-

ment d’information sont ensuite traitées à l’aide au filtre à particules. Si la mesure induit

un changement radical dans la distribution de filtrage actuelle, le filtre à particules est

ré exécuter pour augmenter la précision. Nos résultats de simulation indiquent que notre

nouvel algorithme ne traite qu’une petite fraction des OOSMs, mais il performe presque

aussi bien que de nombreuses techniques qui requièrent des calculs plus complexes et qui

ont de plus importants besoins de stockage.
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Chapter 1

Introduction

1.1 Motivation

Wireless sensor networks consist of spatially distributed sensors that are able to interact

with their environment by sensing or controlling physical parameters, such as temperature,

sound, motion or pollutants. Usually, these sensors have to cooperatively work to fulfill their

tasks, thus they use wireless communication to enable this collaboration [1, 2]. Wireless

sensor networks are now widely used in many industrial and civilian applications, including

environment monitoring [3], habitat monitoring [4], medicine and healthcare applications

[5, 6], fire detection, and traffic monitoring [2, 7].

Target tracking is one of the most important tasks in wireless sensor networks that

perform functions such as surveillance, guidance or obstacle avoidance. For example, these

networks can be used to track a robot over a wide wild area. For traffic management,

tracking techniques can help the traffic police track and catch vehicles involved in traffic

offences. Tracking algorithms take their input measurements from sensors and then process

the measurements together to estimate the state of a target (or multiple targets) at each

point in time. The state represents important attributes of the target such as position

and velocity. Successive estimates at regular intervals provide the real-time tracks which

describe the trajectory of the desired target(s).
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1.2 Thesis Problem Statement

In many multi-sensor tracking systems, all the sensors send their measurements to a fusion

centre that executes the tracking algorithm. If a measurement can arrive at the fusion centre

in the same interval when it is measured, the fusion centre can process it and determine

the current estimated state. However, in some cases, some measurements do not arrive

at the fusion centre on time; they are received after a few intervals delay. Such delayed

measurements are called “out-of-sequence measurements” (OOSMs) in the literature. They

can be caused by a number of specific effects. Wireless communication delays can arise

when packets are transmitted from the sensor to the fusion centre. Delays can also arise

due to different data processing times at different sensors (for example, the sensor could be

a rotating radar with measurement-specific time stamps).

The problem is how to incorporate efficiently these out of sequence measurements into

the current state estimates. Several algorithms have been previously proposed for address-

ing this problem [8–12]. These methods differ in their tracking performance and modeling

assumptions, but also in their memory requirements and computational complexity. Our

goal is to find an algorithm with the best trade-off between performance and computational

and memory requirements.

1.3 Thesis Contribution and Organization

Chapter 2 provides the background necessary to understand tracking problems in wireless

sensor networks. We first introduce Bayesian tracking, a general theoretical framework for

tracking problems and describe two popular practical methods: the Kalman filter and the

particle filter. Then we focus on the issue of out-of-sequence measurements and review

several proposed particle filtering algorithms addressing the problem of OOSMs.

Chapter 3 proposes two novel particle filtering algorithms addressing the OOSM prob-

lem. These two algorithms both reduce the memory requirements by storing the Gaussian

approximation (the mean and covariance matrix) of the particles. The first algorithm

re-runs the particle filter from the time step when the OOSM is measured. The second

algorithm is a novel delay-tolerant particle filtering algorithm that is more computation-

ally efficient. We propose a selection rule to estimate the informativeness of each OOSM

and immediately discard any measurements which are deemed uninformative. The more
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informative measurements are processed using the storage efficient particle filter proposed

by Orguner et al. in [12]. This algorithm is usually accurate, but it can fail when a delayed

measurement is extremely informative. Our algorithm applies a second test to detect these

highly-informative OOSMs, and incorporates them by re-running the particle filter from

the time-step when the OOSM was produced. At the end of Chapter 3, we describe the

results of Matlab simulations that compare the performance of the proposed algorithms.

Chapter 4 focuses on multiple model tracking with the problem of OOSMs. We first

review the proposed algorithms for multiple model tracking and describe two representa-

tive methods: interacting multiple model (IMM) filters and multiple model particle filter

(MMPF). Then we follow the idea of the proposed algorithms in Chapter 3 and propose

four particle filtering algorithms for multiple model tracking with OOSM problems. At the

end of this chapter, we analyze the performance of our proposed algorithms using Matlab

simulations of a manoeuvring target.

Chapter 5 summarizes our work and discusses potential future work.

1.4 Published Work

A paper based on some of the content presented in this thesis will be published in the

following conference proceedings.

• Xuan Liu, Boris N. Oreshkin and Mark J. Coates, Efficient delay-tolerant particle

filtering through selective processing of out-of-sequence measurements, in Proceedings

of 13th International Conference on Information Fusion, Edinburgh, UK, Jul. 2010,

accepted.
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Chapter 2

Literature Review

Tracking techniques have been widely used in many fields, such as traffic management, se-

curity surveillance systems and military systems. As a result of their widespread practical

applications, there has been considerable amount of research on developing tracking algo-

rithms. This chapter provides the background necessary to understand tracking problems

in wireless sensor networks. We first present a mathematical model of tracking problems,

and then we briefly describe a selection of efficient tracking algorithms and discuss the

advantages and disadvantages of each. We focus in particular on particle filters, which

have been demonstrated to achieve good tracking performance in wireless sensor networks,

even when the dynamics of the moving targets are highly non-linear or the noise in the

system is far from Gaussian. Section 2.1 formulates the tracking problem in a state-space

framework and describes the Bayesian approach. The second half of the chapter provides

a more detailed discussion of the previous literature that has addressed the problem of

out-of-sequence measurements (OOSMs) in tracking. The primary objective of this thesis

is to introduce new methods for incorporating measurements that are delayed due to the

network operating conditions, so this literature is particularly relevant. Section 2.2 provides

a mathematical formulation of the OOSM problem, discusses the potential impact on the

performance of standard tracking algorithms and examines several approaches that have

appeared in the literature for making better use of the delayed measurements.
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2.1 Bayesian Tracking

The tracking problem is essentially an estimation task. The objective is to estimate over

time the evolving state of one or more moving targets, where the state represents properties

of interest such as position and velocity. The Bayesian framework provides a systematic,

general methodology for dynamic state estimation problems. The basic idea of Bayesian

approaches is to estimate the posterior probability density function (pdf) of the state vector

based on all of the past states and the available observations. The optimal estimation of

the current state can be achieved using this pdf, which summarizes all of the available

knowledge about the state vector.

In many cases, the state dynamics can be captured well using a linear model with

innovations governed by Gaussian noise. The observations can be accurately modeled as a

linear function of the state with Gaussian noise. For this scenario, the posterior distribution

is a Gaussian and can thus be represented with the mean and covariance matrix. The

Kalman filter [13] provides an analytic solution for Bayesian tracking when these types of

models are applicable. However, for many practical applications, estimation algorithms

for nonlinear/non-Gaussian systems are needed. The Extended Kalman Filter (EKF) [14]

and Unscented Kalman Filter (UKF) [15] can be used when mildly nonlinear models are

accurate.

These methods begin to fail when the nonlinearity becomes more pronounced or the

noise (observation or innovation) is highly non-Gaussian. Particle filters are capable of

successfully tracking in systems with such properties. These techniques, which belong to

the more general category of Sequential Monte Carlo Methods, comprise a set of flexible

simulation-based methods used to sequentially estimate Bayesian models. The key idea is

to simulate the required pdf using a weighted pointwise approximation, with each random

sample being considered as a “particle”. State estimates can then be formulated in terms

of the state-values of these samples and the associated weights. If the number of samples

is large enough, this Monte Carlo approximation becomes an accurate representation of

the posterior pdf and thus leads to good estimates. There are numerous particle filtering

algorithms [16], but the underlying principles are the same. In this section we describe

the Sequential Importance Sampling (SIS) filter [17], one of the simplest particle filtering

algorithms. We briefly discuss the limitations of this algorithm and review an algorithm

— Sampling Importance Resampling (SIR) filter [18], that has been proposed to address
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the deficiencies.

2.1.1 Problem Statement

We employ a state-space model to capture the dynamics of the target(s) and the nature

of the observations. We assume that the system is Markovian, but the dynamics may be

nonlinear and the noises may be non-Gaussian.

The state vector {xk; k ∈ N} (N denotes non-negative integers) is represented as a

Markov process with transition probability p(xk|xk−1). The initial distribution of {xk} is

p(x0). The measurements {yk; k ∈ N∗} (N∗ denotes positive integers) are assumed to be

conditionally independent given the states {xk; k ∈ N}. The model can be represented by

a state transition equation (i.e., the system dynamics) and a state measurement equation

(i.e., the system observation):

xk = fk|k−1(xk−1, vk|k−1) (2.1)

yk = hk(xk, sk), (2.2)

where yk ∈ Rny denotes the output measurement at time k, xk ∈ Rnx denotes the state

vector of the system at time k, vk|k−1 ∈ Rnv is the process noise and sk ∈ Rns is the

measurement noise. nx, ny, nv, ns are the dimensions of the respective vectors. The

mappings fk|k−1 : Rnx × Rnv → Rnx and hk : Rnx × Rns → Rny represent the transition

process and measurement model.

We denote by x0:k , {x0, . . . , xk} the state vector trajectory (a set of state vectors)

and y1:k , {y1, . . . , yk} the measurement vector trajectory up to time k. In the Bayesian

framework, our aim is to estimate recursively in time the posterior distribution p(x0:k|y1:k),

or its marginal distribution p(xk|y1:k) (known as the filtering distribution). Also of interest

are expectations of the form

I(gk) =

∫
gk(x0:k)p(x0:k|y1:k) dx0:k, (2.3)

where gk is some function of interest. From Bayes’ theorem, the posterior distribution can

be represented as

p(x0:k|y1:k) =
p(y1:k|x0:k)p(x0:k)∫

p(y1:k|x0:k)p(x0:k) dx0:k

. (2.4)



2.1 Bayesian Tracking 7

Due to the Markov property of xk and the conditional independence of yk , we can derive

a recursive formula for this joint distribution p(x0:k|y1:k).

p(x0:k|y1:k) = p(x0:k−1|y1:k−1)
p(yk|xk)p(xk|xk−1)

p(yk|y1:k−1)
. (2.5)

For our tracking applications, the interest lies primarily in estimating the state xk

conditioned on all of the measurements y1:k. Thus, we focus on the marginal posterior

distribution p(xk|y1:k). We develop a recursive algorithm, so we assume that we have (an

estimate of) p(xk−1|y1:k−1) available. Initiating the algorithm requires the knowledge of

p(x0). The estimation procedure consists of two steps: a prediction step and an updating

step. In the first step, we predict the current state xk by forming an estimate of the

predictive posterior p(xk|y1:k−1). This can be achieved by combining the posterior from the

previous iteration p(xk−1|y1:k−1) and the transition probability p(xk|xk−1) as in Equation

(2.6). The second step incorporates the information from the new measurement yk. The

posterior distribution p(xk|y1:k) can be updated by multiplying the prediction distribution

p(xk|y1:k−1) by the likelihood function p(yk|xk) and normalizing, as in Equation (2.7). The

combined process of recursive state estimation (filtering) is then:

Prediction : p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1) dxk−1, (2.6)

Updating : p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1) dxk

. (2.7)

The above recursive formulae suggest the possibility of sequential estimation, but in most

cases the integrals involved in the expressions are not analytically tractable.

The Kalman filter [13] provides an analytical solution when (i) the new state xk is a

linear function of the previous state xk−1 with additive Gaussian noise (this implies that the

update distribution p(xk|xk−1) is Gaussian); and (ii) the observation yk is a linear function

of xk with additive Gaussian noise (this implies that the likelihood is Gaussian). In practical

tracking scenarios, it is often the case that these conditions do not hold. The Extended

Kalman Filter (EKF) [14] and the Unscented Kalman Filter (UKF) [15] were introduced to

address the case where non-linear models were required to adequately capture the dynamics

or observations. The following section provides a brief summary of the Kalman filter and

the Extended Kalman filter.
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2.1.2 Kalman Filter and Extended Kalman Filter

The Kalman Filter [13] applies when a linear/Gaussian model can accurately capture the

system dynamics and observations:

xk = Fk|k−1xk−1 + vk|k−1 (2.8)

yk = Hkxk + sk. (2.9)

Here Fk|k−1 and Hk are matrices representing linear functions, vk|k−1 and sk are Gaussian

noises with distribution N (vk|k−1; 0, Vk|k−1) and N (sk; 0, Qk). Since the posterior density

at every time step is assumed to be Gaussian, it can be parameterized by a mean and

covariance matrix. These can be updated analytically at each time step. The prediction

and updating steps for the mean and covariance matrix are:

prediction : xk|k−1 = Fk|k−1xk−1|k−1 (2.10)

Pk|k−1 = Fk|k−1Pk−1|k−1F
T
k|k−1 + Vk|k−1 (2.11)

updating : Sk = HkPk|k−1H
T
k +Qk (2.12)

Kk = Pk|k−1H
T
k S
−1
k (2.13)

xk|k = xk|k−1 +Kk(yk −Hkxk|k−1) (2.14)

Pk|k = (I −KkHk)Pk|k−1, (2.15)

where xk|k−1 and Pk|k−1 denote the predicted mean and covariance of state xk (conditioned

on all past observations), and xk|k and Pk|k denote the updated mean and covariance.

The Kalman Filter is an optimal solution to the tracking problem and its calculation

is very efficient. Unfortunately, the modeling assumptions are overly restrictive for many

practical tracking tasks. The Extended Kalman Filter (EKF) [14] is a generalization that

is applicable to nonlinear models with additive Gaussian noises. The EKF uses a first

order Taylor series expansion of the nonlinear transition and measurement functions to

approximate the current state and measurement. The transition and measurement models

are described with nonlinear functions fk|k−1 and hk as follows:

xk = fk|k−1(xk−1) + vk|k−1 (2.16)

yk = hk(xk) + sk. (2.17)
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The derivation of the EKF requires that both fk|k−1 and hk are differentiable functions.

Let Fk|k−1 and Hk denote the Jacobian matrices of partial derivatives of fk|k−1 and hk with

respect to x as follows:

Fk|k−1 =
∂fk|k−1(x)

∂x
|x = xk−1|k−1 (2.18)

Hk =
∂hk(x)

∂x
|x = xk|k−1. (2.19)

Then we can derive the prediction and updating steps of the Extended Kalman Filter:

prediction : xk|k−1 = fk|k−1(xk−1|k−1) (2.20)

Pk|k−1 = Fk|k−1Pk−1|k−1F
T
k|k−1 + Vk|k−1 (2.21)

updating : Sk = HkPk|k−1H
T
k +Qk (2.22)

Kk = Pk|k−1H
T
k S
−1
k (2.23)

xk|k = xk|k−1 +Kk(yk − hk(xk|k−1)) (2.24)

Pk|k = (I −KkHk)Pk|k−1. (2.25)

The EKF preserves the light computational overhead of the Kalman filter and it is more

generally applicable and useful in many real-world problems. There are however, important

tracking problems in which the modeling assumptions do not hold. The EKF requires that

the posterior distribution p(xk|y1:k) is Gaussian or can be accurately approximated as such.

If this condition doesn’t hold, for example, the true distribution is bi-modal or skewed, then

the EKF will perform poorly. If the non-linearities are not mild (so that the first order

Taylor series expansion is not a good approximation) or they are non-differentiable, then

it is necessary to employ more computationally intensive techniques, such as the particle

filters described in the following section.

2.1.3 Sequential Monte Carlo Methods (Particle Filters)

To address nonlinear/non-Gaussian tracking problems, one approach is to employ approx-

imations for the distributions in equations (2.6) and (2.7) using Monte Carlo methods.

Monte Carlo methods are computational algorithms that approximate the distributions of

interest by using a large set of random samples. When we have a large enough number
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of samples drawn from the required posterior distributions, it is possible to approximate

the intractable integrals appearing in equations (2.6) and (2.7) using summations over the

sampled state values.

Real-time tracking applications require that the estimation at each time step can be

performed on-line. Sequential Monte Carlo Methods employ a recursive formulation, build-

ing on the computations that have been performed during previous time steps in order to

reduce the computational overhead. These methods are also called particle filters, with

each sample from the posterior being labeled as a “particle”. In this section, we intro-

duce a few representative methods from the developing history of Sequential Monte Carlo

Methods.

Sequential Importance Sampling (SIS) Method

The Sequential Importance Sampling (SIS) algorithm [17] is an intrinsic component of many

of the more advanced Sequential Monte Carlo methods. It is an extended version of the

“importance sampling method” [19]. In general, it is not possible to sample directly from

the posterior distribution. The SIS algorithm circumvents this problem by drawing random

samples (particles) from an alternative “importance” distribution. An importance weight

is then associated with the particle; this weight represents the ratio of the probability of

drawing the sample from the posterior distribution to the probability of drawing it from the

importance distribution. State estimates can then be expressed as weighted summations

over the collection of particles. If the number of samples is large enough to accurately

represent the posterior pdf, the SIS filter approaches the optimal Bayesian estimate [16].

The importance sampling procedure is formulated in a sequential fashion. Denote the

importance sampling distribution at time step k by π(x0:k|y1:k). Each particle has an

importance weight:

ωk =
p(x0:k|y1:k)

π(x0:k|y1:k)
. (2.26)

We can formulate the following expression for I(gk):

I(gk) =

∫
gk(x0:k)ωkπ(x0:k|y1:k) dx0:k∫

ωkπ(x0:k|y1:k) dx0:k

. (2.27)

Then, if we can simulate N i.i.d. particles {x(i)
0:k; i = 1, . . . , N} for each state according to
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π(x0:k|y1:k), a possible Monte Carlo approximation of I(gk) is

ÎN(gk) =
1
N

∑N
i=1 gk(x

(i)
0:k)ω

(i)
k

1
N

∑N
i=1 ω

(i)
k

=
N∑
i=1

gk(x
(i)
0:k)ω̃

(i)
k , (2.28)

where the normalized importance weights ω̃
(i)
k are given by

ω̃
(i)
k =

ω
(i)
k∑N

i=1 ω
(i)
k

. (2.29)

From the discussion in [16], we can see that ÎN(gk) is biased (ratio of two estimates) when

N is finite, but asymptotically, under weak assumptions, the strong law of large numbers

applies, that is, ÎN(gk)
a.s−−−→

N→∞
I(gk) [19].

Returning to the sequential case, we usually acquire the new measurement yk at time

k, so we need a recursive formula for updating π(x0:k|y1:k) and ω
(i)
k . Hence the importance

distribution is chosen to satisfy

π(x0:k|y1:k) = π(x0:k−1|y1:k−1)π(xk|x0:k−1, y1:k) (2.30)

= π(x0)
k∏

m=1

π(xm|x0:m−1, y1:m). (2.31)

By substituting (2.5) and (2.30) into (2.26), it is clear that this importance function allows

us to evaluate the importance weights recursively in time:

ω
(i)
k ∝

p(x
(i)
0:k−1|y1:k−1)p(yk|x(i)

k )p(x
(i)
k |x

(i)
k−1)

π(x
(i)
0:k−1|y1:k−1)π(x

(i)
k |x

(i)
0:k−1, y1:k)

(2.32)

∝ ω
(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1, y1:k)

. (2.33)

SIS is an attractive method, but unfortunately, a common problem is the degeneracy

phenomenon. Practically, after several time steps, very few particles have non-negligible

importance weights. It can be shown that the variance of the importance weights can

only increase over time [20]. The algorithm, consequently, fails to represent the posterior

distributions of interest adequately after some number of time steps. The degeneracy can
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be mitigated to some extent by choosing a good importance function (one that matches, as

closely as possible, the posterior). The other common approach is to introduce a resampling

step, which is employed periodically to eliminate particles with small weights and replicate

particles with large weights.

Choice of Importance Distribution

The optimal choice of the importance distribution is that minimizes the variance of the

importance weights. Doucet et al. discuss the choice of importance distributions in [20],

and explain that the optimal choice is p(xk|x(i)
k−1, yk), as introduced in [21]:

π(xk|x(i)
0:k−1, y1:k)optimal = p(xk|x(i)

k−1, yk)

=
p(yk|xk, x(i)

k−1)p(xk|x(i)
k−1)

p(yk|x(i)
k−1)

. (2.34)

Substituting (2.34) into (2.33), we obtain the following update equation for the weights:

ω
(i)
k ∝ ω

(i)
k−1p(yk|x

(i)
k−1) (2.35)

∝ ω
(i)
k−1

∫
p(yk|x

′

k)p(x
′

k|x
(i)
k−1) dx

′

k. (2.36)

This choice has two major drawbacks in practical implementation. It requires the

ability to sample from p(xk|x(i)
k−1, yk) and to calculate the integral in (2.36), which will

have no analytic form in general cases. There are two cases when the optimal importance

distribution can definitely be used. The first case is when xk is a member of a finite set such

that the integral in (2.36) becomes a sum of finite members and sampling from p(xk|x(i)
k−1, yk)

is possible. This approach is illustrated in [22]. The second case is the example of Gaussian

state space model with non-linear transition function and linear measurement function, as

described in [20].

However, it is impossible to get such analytic evaluation for many other models with

nonlinear measurement functions. In such cases, an approach that performs well is to

construct a suboptimal importance distribution by using local linearization [20].

In practical settings, one must consider whether the performance improvement obtained

by choosing a complicated importance distribution justifies the additional computational
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cost of constructing it. The most common method is to adopt the prior distribution as

the importance distribution. This generally leads to a simple sampling operation and an

efficient procedure for updating the weights,

π(x0:k|y1:k) = p(x0:k) = p(x0)
k∏

m=1

p(xm|xm−1) (2.37)

ω
(i)
k ∝ ω

(i)
k−1p(yk|x

(i)
k ). (2.38)

Sequential Importance Resampling (SIR) Method

Introducing an additional selection step, resampling, counteracts the degeneracy phe-

nomenon. This leads to the Sequential Importance Resampling method [18]. The key idea

of resampling is to eliminate particles with small weights and to concentrate on particles

with large weights. Douc et al. describe four popular resampling methods [23]: multinomial

resampling [17], residual resampling [24], stratified resampling [25] and systematic resam-

pling [25], and also discuss the advantages of these methods. From the analysis in [23], we

can see that systematic resampling is the simplest to implement. But residual and stratified

resampling methods are shown to have lower conditional variance for all weights. Moreover,

central limit theorems hold with the residual resampling approach in more general cases

than stratified resampling [23].

Thus, the residual resampling scheme is widely used in particle filtering applications.

Here, we describe it in Algorithm 1. We also use it in our simulations in the following

chapters.
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Algorithm 1: Residual Resampling

Recalculate the weights1

ω̄i =
Nωi − bNωic

N −R
, i = 1, . . . , N (2.39)

where N is the number of particles, b c denote the integer part, and

R =
∑N

i=1bNωic.
Calculate the deterministic component2

N i
d = bNω̄ic. (2.40)

Calculate the multinomial component: {N i
m} are distributed according to the3

multinomial distribution Mult(N −R; ω̄1, . . . , ω̄n).

N i = N i
d +N i

m , N i is the number of copies of particle x
(i)
k .4

Basic Particle Filters

In order to provide a more complete illustration of how a particle filter operates, we now

provide a complete algorithmic description. We choose the bootstrap filter [17], which is an

SIR algorithm that employs the prior distribution as the importance function. Algorithm

2 describes the operation of a basic bootstrap particle filter. Note that in equation (2.41),

ω
(i)
k−1 does not appear because the particles x

(i)
k−1 have uniform weights after the resampling

step at time k − 1.

In conclusion, particle filters are methods to solve complex nonlinear, non-Gaussian on-

line estimation problems. Due to their statistical nature, these methods are applicable to

a very large class of models and are straightforward to implement in practical applications.

2.2 Out of Sequence Measurement Problem

Wireless sensor networks can be used in many application domains for target tracking. In

multi-sensor tracking systems, all the sensors send their time-stamped measurements to

the fusion centre, which combines all the information available at the current time step and

determines the current estimated state. However, wireless transmissions frequently experi-
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Algorithm 2: Bootstrap Filter

Initialization, k = 0.1

Sample the particles x
(i)
0 ∼ p(x0), (i = 1, . . . , N);2

for k = 1 . . . T do3

• Propagate particles x̃
(i)
k ∼ p(xk|x(i)

k−1), (i = 1, . . . , N);4

• Evaluate the importance weights:5

ω
(i)
k ∝ p(yk|x̃(i)

k ); (2.41)

• Normalize the importance weights:6

ω̃
(i)
k =

ω
(i)
k∑N

i=1 ω
(i)
k

; (2.42)

• Resample N particles (x
(i)
k ; i = 1, . . . , N) from the set (x̃

(i)
k ; i = 1, . . . , N)7

according to the importance weights ω̃
(i)
k ;

endfor8

ence significant delays, especially in adverse environmental conditions. This problem can

easily lead to situations where measurements from some sensors arrive at the fusion centre

with substantial delay, which means the collected measurements are out of sequence. Such

“out-of-sequence measurements” (OOSMs) are common in practical multi-sensor tracking

systems. Simply discarding such measurements can waste important information and lead

to much poorer tracking performance than if they are incorporated into the tracking algo-

rithm [9,12].

Several strategies and algorithms have been proposed in the literature for incorporating

out-of-sequence measurements when the fusion centre receives them. These vary in their

tracking performance but also in their computational and memory requirements. In this

section, we introduce some related work on the task of incorporating OOSMs and investigate

existing particle filtering algorithms. We discuss the advantages and disadvantages of each

approach.
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2.2.1 Related Work

There has been a substantial amount of research addressing tracking with out-of-sequence

measurements in the last twenty years. The simplest approach is to record all of the filter

variables and the measurements for the window of time over which OOSMs are considered

useful. The filter can then be restarted at the time step immediately prior to the time step

associated with an OOSM and re-run to the current time step. This approach can be used

for the Kalman filter, EKF, or the particle filter. The undesirable aspect of this method

is that there is a substantial overhead, both in memory and computation. Much of this

computation appears wasteful, because a filter has already processed most of the measure-

ments. In a real-time tracking scenario with a resource-constrained tracking platform, it

may be impossible to adopt this “re-run” filtering approach, especially for the particle filter

which already has significant computational and memory requirements. Nevertheless, the

performance of such an algorithm provides a benchmark for other methods that strive to

reduce the storage requirements or the computation time.

The initial work on this topic focuses on tracking systems with linear state and mea-

surement models with one-lag OOSMs. The challenge is how to efficiently include a mea-

surement produced at the last time step k − 1 into a track that has just been updated with

current measurement at time step k. The simplest approach is presented in [26], which

solves this problem approximately by “backward prediction” or “retrodiction”, neglecting

the process noise for simplicity. This approach “predicts” the state at time k − 1 from the

current state at time k by using the backward transition equation without process noise.

Then the residual error between the prediction and the delayed measurement (OOSM) is

used to update the state at the current time step k.

Hilton et al. propose an algorithm that accounts partially for the process noise in [8]

(see [27] for an outline of the algorithm and further discussion). Bar-Shalom describes an

algorithm that provides exact compensation of the process noise in [28], but this is only

suitable for the one-lag OOSM problem. Mallick et al. present an extension of the approach

of [28] to multiple lags in [29]. Subsequently, Bar-Shalom et al. propose a one-step solution

[9] for the general multiple lags problem, which involves replacing all the measurements by

an equivalent measurement. This brings the benefit of lower storage requirements but leads

to a very small degradation of mean-square error (MSE) performance. Another approach,

which addresses the multi-lag OOSM updating by augmented state smoothing, is discussed



2.2 Out of Sequence Measurement Problem 17

in [30,31]. Zhang et al. propose two general optimal algorithms to process OOSMs for the

cases with linear state and measurement functions in [32]. Both algorithms are optimal

in the linear minimum mean-square error (LMMSE) sense and they use different storage

information: the first algorithm stores all necessary information but the second one only

stores the information available at the current time.

OOSM problems were first considered in connection to particle filters and more general

filtering problems in [11]. Orton et al. propose an approach that employs the sets of

particles before and after the time step of the delayed measurement to update the current

weights of particles. This method is improved with a Markov chain Monte Carlo (MCMC)

smoothing step to mitigate the potential problem of degeneracy in [33]. The OOSM particle

filters proposed in [11, 33] need to store all of the particles of the last l steps, where l is

the predetermined maximum number of lags. When a large number of particles is needed

for accurate tracking, this can lead to an excessive consumption of storage resources. To

address this, Mallick et al. propose an approximate OOSM particle filter that only stores

the mean and covariance matrix of all the particles [34]. When the filter receives an OOSM,

it retrodicts (predicts backwards) the particles to the time step generating the OOSM and

calculates the likelihood to update the weights of current particles.

These three OOSM particle filtering algorithms are only applicable if the system dy-

namics can be modeled by a linear system. The methods rely on “backwards prediction”

to predict the state [11, 33] or particles [34] at the time step associated with the OOSM

from the particles at subsequent time steps. This requires an inversion of the system dy-

namics, which is only possible for linear state dynamics. In subsequent work, both for

OOSM processing [12] and particle smoothing [35], researchers have identified procedures

for approximate inversion for some non-linear systems; it is possible to incorporate these

techniques to extend the applicability of the algorithms in [11,33,34].

In [12], Orguner et al. focus on developing strategies to reduce both the memory

requirements and computational complexity of OOSM particle filters. They propose a

number of “storage efficient particle filters” for out-of-sequence measurement processing.

These particle filters only store statistics (single mean and covariance) of the particle set,

rather than the particles themselves, at previous time steps. Auxiliary fixed point smoothers

are then employed to determine the likelihood of the delayed measurement conditioned on

each particle in the current set, and this likelihood is used to update the weight of each

particle. The authors compare the performance of the algorithms using three types of
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smoothers: Extended Kalman Smoother (EKS), Unscented Kalman Smoother (UKS) and

Particle Smoother (PS). The authors observe in their simulation experiments that the

EKS performs at least as well as the more computationally complex PS, so advocate its

use. These experiments address highly non-linear filtering problems where the extended

Kalman filter often fails to track the target. The EKS is successful because the particle

filter provides it with very valuable side-information.

2.2.2 Problem Statement

We now provide a mathematical formulation of the filtering problem when OOSMs are

possible. We consider the scenario when the state dynamics are Markovian and (possibly)

non-linear with additive Gaussian noise. The observations are described by (possibly) non-

linear functions of the current state with additive Gaussian noise. At each time step k, there

is an active set of distributed sensors, Vk, that make measurements. These measurements

are relayed to the fusion centre. A subset of them Sk experience minimal delay and can

be processed at time k. Other measurements are delayed and only become available for

processing at later timesteps. Measurements that are delayed by more than l timesteps are

considered to be lost and are ignored.

The system is described by the following equations:

xk = fk|k−1(xk−1) + vk|k−1 (2.43)

yjk = hjk(xk) + sjk (∀j ∈ Vk) (2.44)

Yk = {ySkk : Sk ⊆ Vk} (2.45)

Zk = {yDk−l,kk−l , y
Dk−l+1,k

k−l+1 , . . . , y
Dk−1,k

k−1 }. (2.46)

Here {xk} denotes the state sequence, which is a Markov process with initial distribution

x0 ∼ p(x0), and {yjk} denotes the measurement sequence at the j-th sensor. vk|k−1 is the

transition noise with Gaussian distribution N (0, Vk|k−1), and sjk is the measurement noise

with Gaussian distribution N (0, Qj
k). The functions fk|k−1(.) and hjk(.) are the transition

and measurement functions. Yk denotes the set of non-delayed measurements received at

time k. Zk denotes the set of OOSMs received at time k. The set Dτ,k is the subset of

active sensors at time τ whose measurements are received at time step k; y
Dk−l,k
k−l is the set

of measurements made at time k − l that arrive at the fusion centre at time k.



2.2 Out of Sequence Measurement Problem 19

Let W̃ i:j
k denotes the set of measurements generated in the interval [i, j] available at the

fusion centre by time k. This includes all the non-delayed measurements Yi:j = ∪jm=iYm
and OOSMs {yDτ,mτ ∈ Zm : τ ∈ [i, j],m ∈ [1, k]}. We also denote W i:j

k = W̃ i:j
k \ Zk, i.e. the

set of all measurements available at time k except those in Zk. Lastly, let Wj
k ≡ W

j:j
k and

W̃j
k ≡ W̃

j:j
k .

The OOSM filtering task is to form an estimate of the posterior distribution p(xk|W̃1:k
k )

(and hence an estimate of the state xk). Fig.2.1 illustrates the OOSM tracking problem.

The top line represents the time sequence when measurements are produced, and the bot-

tom line represents the time sequence when measurements are received by the fusion centre.

The measurement yτ produced at time τ arrives at the fusion centre at time k. Thus, yτ is

called the “out-of-sequence measurement” in this case.

kτ k-1

k-1 kτ +1τ -1

τ +1
Measurement 

produced 

sequence 

Measurement 

received 

sequence 

τ -1

Fig. 2.1 An illustration of the OOSM tracking problem.

2.2.3 OOSM Particle Filters

Algorithm 3 summarizes a generic OOSM particle filtering algorithm. If there are no

OOSMs at time k, we write Zk = ∅. Denote, respectively, by ξk ≡ {x(i)
k , (i = 1, . . . , N)},

ωk ≡ {ω(i)
k , (i = 1, . . . , N)} the sets of the values and weights of particles at time k. We

save the particles or their statistics in the last l time steps into the stored set Ωk. The

received measurements available up to time k are stored in W̃k−l:k
k , which includes Zk and

Yk.
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Algorithm 3: Generic OOSM Particle Filter

At time k1

Input: ξk−1, ωk−1, Ωk−1, W̃k−l:k
k

if Zk = ∅ then2

(ξk, ωk) ← ParticleFilter(Yk, ξk−1, ωk−1) ;3

(Ωk) ← Save(ξk, ωk, Ωk−1) ;4

else5

(ξk, ωk, Ωk ) ← ProcessOOSM(ξk−1, ωk−1, Ωk−1, W̃k−l:k
k ) ;6

endif7

In the above algorithm, the function ParticleFilter can be any SIR filter. As men-

tioned before, several methods have been proposed for addressing the OOSM problem using

augmented particle filters. These techniques differ in storage requirements (function Save

and the stored set Ωk) and also in how they incorporate the out-of-sequence measurements

Zk, i.e. in the nature of the function ProcessOOSM. Function Save stores the particles or

the statistics of current particles into the stored set Ωk. Function ProcessOOSM updates

the current particles and the stored set by the OOSMs in Zk. In the following sections,

we provide more detailed description of three candidate methods. The first is the most

intuitive method, which we call the “OOSM re-run particle filter”, which reprocesses all

the measurements since the associated time-step of the OOSM. The other two algorithms

operate by using OOSMs to adjust the weights of the current particles. The backwards

prediction algorithm is proposed in [11] and extended in [12]. The storage efficient particle

filter is proposed in [12].

OOSM Re-run Particle Filter (OOSM-rerun)

Re-running the particle filter is the most obvious method to process OOSMs. This particle

filter needs to save all the particles ξk−l−1:k in the last l + 1 time steps into Ωk and all the

available measurements in the last l time steps into W̃k−l:k
k , where l is the predetermined

maximum number of delayed steps. When it receives Zk 6= ∅ at time k, it returns to

the time step τ̃k − 1 (let τ̃k denotes the earliest time step of all OOSMs in Zk), then it

propagates the particles from ξτ̃k−1 to the time step τ̃k and runs the filter as a standard

particle filter using all stored measurements W̃ τ̃k:k
k . At each time step, it updates all the
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particles stored in Ωk.

Algorithm 4 provides pseudocode for the function ProcessOOSM of the OOSM re-run

particle filter. In this algorithm, the function ParticleFilter can be any SIR filter. Thus

we also assume that all the particles are resampled at the end of each time step (all the

particles have equal weights) and we can only store the values of particles into Ωk. The

function SaveParticles stores the updated particles into the stored set Ωk.

The OOSM re-run particle filter has high storage requirements (l∗N particles) and high

computational cost. On the other hand, it exhibits the best tracking performance among

on-line OOSM particle filters. It thus acts as a useful benchmark for other methods that

reduce computational overhead or memory requirements.

Algorithm 4: ProcessOOSM by OOSM-rerun

Input: ξk−1, ωk−1, Ωk−1, W̃k−l:k
k

τ̃k = min
τ
{τ : yτ ∈ Zk} ;1

ξτ̃k−1 from Ωk−1 ;2

ω
(i)
τ̃k−1 = 1/N, i = 1 . . . N ;3

for j = τ̃k, . . . , k do4

(ξj, ωj) ← ParticleFilter(W̃j
k, ξj−1, ωj−1);5

(Ωk) ← SaveParticles(ξj) ;6

endfor7

OOSM Particle Filter using Particle Smoothing (OOSM-PS)

This approach is proposed in [11] for systems with linear dynamics and extended in [12] to

(mildly) nonlinear systems. In this case, we consider only a single OOSM arriving at time

k, Zk = {yτ ≡ y
Dτ,k
τ }. The basic idea is that only the particles immediately before and

after the time step τ of the OOSM are used to form an estimate of the distribution of xτ

instead of reprocessing all the particles from τ to k. The details are as follows.

Consider a scenario where all measurements from time 1 to time k have been received,

except for yτ . Denote this measurement set as y1:k,τ̄ . The joint posterior density of the

target trajectory p(x0:k|y1:k) can be written into factorized form due to the Markovian
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property of xk and the conditional independence of yk:

p(x0:k|y1:k) = p(x0)p(x1|x0, y1)p(x2|x1, y2) . . . p(xk|xk−1, yk) (2.47)

= p(x0)
k∏

m=1

p(xm|ym, xm−1). (2.48)

Denote by a and b the time-steps immediately before and after τ , respectively. Employ-

ing Bayes’ Theorem, we can derive the following expression:

p(x0:k,τ̄ |y1:k,τ̄ ) =

{
p(x0)

b−1∏
m=1

p(xm|ym, xm−1)

}
p(xb|yb, xb−1)

× p(xa|ya, xb)

{
k∏

m=a+1

p(xm|ym, xm−1)

}
(2.49)

= p(x0:b−1|y1:b−1)
p(yb|xb)p(xb|xb−1)

p(yb)

× p(ya|xa)p(xa|xb)
p(ya)

p(xa+1:k|ya+1:k). (2.50)

Here x0:k,τ̄ denotes the state sequence from time 0 to k, skipping over the state value at τ .

Similarly, the posterior distribution p(x0:k|y1:k), which incorporates the measurement and

state at time τ , can be expanded to the following form:

p(x0:k|y1:k) = p(x0:b|y1:b)
p(yτ |xτ )p(xτ |xb)

p(yτ )

p(ya|xa)p(xa|xτ )
p(ya)

p(xa+1:k|ya+1:k) (2.51)

=
p(yτ |xτ )p(xτ |xb)p(xa|xτ )

p(xa|xb)p(yτ )
p(x0:b|y1:b)p(xa:k|ya:k) (2.52)

=
p(yτ |xτ )p(xτ |xb)p(xa|xτ )

p(xa|xb)p(yτ )
p(x0:k,τ̄ |y1:k,τ̄ ) (2.53)

∝ p(xτ |xb, xa)p(yτ |xτ )p(x0:k,τ̄ |y1:k,τ̄ ). (2.54)

If a particle filter was executed using the measurements y1:k,τ̄ , then the result would be a

particle distribution at time k with weights ω
(i)
k,τ̄ . In [11], Orton et al. proposed a procedure

for updating these weights to take into account yτ , based on (2.54). Recall that π(x0:k|y1:k)
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denotes the importance distribution. The updating formula for the particle weights is then:

ω
(i)
k = ω

(i)
k,τ̄

p(yτ |x(i)
τ )p(x

(i)
τ |x(i)

b , x
(i)
a )

π(x
(i)
τ |x(i)

0:k, y1:k)
. (2.55)

Based on the discussion in [20], p(xτ |x(i)
b , x

(i)
a , yτ ) is the optimal importance distribution

for this update, in the sense that it minimizes the variance of the importance weights.

However, this choice of importance function does not lead to a practical sampling scheme.

The choice of p(xτ |x(i)
b , x

(i)
a ) leads to a simple weight update formula:

ω
(i)
k = ω

(i)
k,τ̄ p(yτ |x

(i)
τ ). (2.56)

The remaining challenge is sampling from p(xτ |x(i)
b , x

(i)
a ). Orton et al. present a method

in [11,33] for the case of linear state updates and Gaussian noise, where the transition can

be described as:

xk = Fk|k−1xk−1 + V
1/2
k|k−1uk. (2.57)

Here Fk|k−1 is the transition matrix from time k − 1 to k, Vk|k−1 is the covariance matrix for

the transition noise, and uk is a Gaussian vector. The special structure of these dynamics

allow for the construction of reverse dynamics, so that we can write:

xτ = FBxb + FAxa + V 1/2
τ uτ , (2.58)

where

Vτ = (V −1
τ |b + F T

a|τV
−1
a|τ Fa|τ )

−1 (2.59)

FB = VτV
−1
τ |b Fτ |b (2.60)

FA = VτF
T
a|τV

−1
a|τ . (2.61)

Generating samples from p(xτ |x(i)
b , x

(i)
a ) can then be easily achieved by applying (2.58).

Orguner et al. propose a method for generalizing this scheme in [12]. The approach is

suitable for systems with dynamics of the form:

xk = fk|k−1(xk−1) + vk|k−1,
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where fk|k−1 is a non-linear continuously differentiable function and vk|k−1 is the innovation

noise. If vk|k−1 is Gaussian, i.e., of the form vk|k−1 = V
1/2
k|k−1uk, then the EKF or the

UKF can be used to generate samples xτ . The technique can be applied even if vk|k−1

is not Gaussian, but this then involves approximating the distribution using a Gaussian,

introducing another potential source of approximation error.

In the case where vk|k−1 is Gaussian, the following relationship holds:

p(xτ |x(i)
b ) = N (xτ ; fτ |b(x

(i)
b ), R

(i)
τ |b) (2.62)

R
(i)
τ |b = F

(i)
τ |bVτ |bF

(i)
τ |b

T
+ Vτ |b (2.63)

F
(i)
τ |b =

∂

∂x
fτ |b(x)|

x=x
(i)
b
. (2.64)

Following [12], this allows one to derive the following expression based on EKF update

equations:

p(xτ |x(i)
b , x

(i)
a ) = N (xτ ;µ

(i)
τ , R

(i)
τ ), (2.65)

where

µ(i)
τ = fτ |b(x

(i)
b ) +K(i)

τ (x(i)
a − fa|τ (fτ |b(x

(i)
b ))) (2.66)

R(i)
τ = R

(i)
τ |b −K

(i)
τ (F

(i)
a|τR

(i)
τ |bF

(i)
a|τ

T
+ Va|τ )K

(i)
τ

T
(2.67)

K(i)
τ = R

(i)
τ |bF

(i)
a|τ

T
(F

(i)
a|τR

(i)
τ |bF

(i)
a|τ

T
+ Va|τ )

−1 (2.68)

F
(i)
a|τ =

∂

∂x
fa|τ (x)|

x=fτ |b(x
(i)
b )
. (2.69)

Sampling from the Gaussian distribution in (2.65) is then a relatively simple task.

The OOSM particle filter using particle smoothing requires the storage of all particles

over the last l+1 steps. Thus it needs the same amount of storage as OOSM re-run particle

filter. The computational requirements are approximately equivalent to running a particle

filter for two time steps, so there is a reduction compared to the re-run particle filter, where

each OOSM requires a particle filter to be run for k − τ + 1 time steps.
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Storage Efficient Particle Filter with Extended Kalman Smoother (SEPF-EKS)

In [12], Orguner et al. propose “storage efficient OOSM particle filters”. These particle

filters only store the statistics (single mean and covariance) of the previous particle sets,

rather than the particles themselves. Denote, respectively, by ξk, ωk the sets of the values

and weights of particles at time k, and let µk, Rk denote their mean and covariance. The

stored information then include all the available measurement up to current time step k,

Wk−l:k
k and

Ωk = {µk−l−1:k, Rk−l−1:k}, (2.70)

which stores the means and covariances of previous particle sets for l+ 1 time steps (where

l is the predetermined maximum number of delayed steps).

The computational requirements are also reduced, compared to the re-run particle fil-

ter, by using an auxiliary fixed point smoother to update the weights of current particles

by the OOSMs. Orguner et al. explore the use of three kinds of smoothers: the Extended

Kalman Smoother (EKS) [36], the Unscented Kalman Smoother (UKS) [37] and the Par-

ticle Smoother (PS) [12]. Based on the simulation results reported in [12] and our own

experiments, the EKS approach is the best choice, achieving good tracking performance

and not imposing a substantial computational burden. We now review the storage efficient

OOSM particle filter that employs EKS, as presented in [12]. In this case, we consider only

a single OOSM arriving at time k, Zk = {yτ ≡ y
Dτ,k
τ }. Thus all measurements from time 1

to time k have been received, except for yτ . Denote this measurement set as y1:k,τ̄ .

The approach is based on the following expression for the posterior:

p(xk|y1:k) =
p(yτ |xk, y1:k,τ̄ )

p(yτ |y1:k,τ̄ )
p(xk|y1:k,τ̄ ). (2.71)
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Substituting the particle approximation of p(xk|y1:k,τ̄ ) into it, we have:

p(xk|y1:k) =
N∑
i=1

p(yτ |x(i)
k , y1:k,τ̄ )

p(yτ |y1:k,τ̄ )
ω

(i)
k,τ̄δ(xk − x

(i)
k ) (2.72)

=
N∑
i=1

ω
(i)
k δ(xk − x

(i)
k ), (2.73)

where ω
(i)
k ∝ p(yτ |x(i)

k , y1:k,τ̄ )ω
(i)
k,τ̄ . (2.74)

The remaining challenge is to form an approximation of the likelihood p(yτ |x(i)
k , y1:k,τ̄ ).

This likelihood can be expressed as:

p(yτ |x(i)
k , y1:k,τ̄ ) =

∫
p(yτ |xτ )p(xτ |x(i)

k , y1:k,τ̄ ) dxτ (2.75)

=

∫
p(yτ |xτ )p(xτ |x(i)

k , y1:k−1,τ̄ ) dxτ . (2.76)

Here, (2.75) follows from (2.76) because x
(i)
k already incorporates the information provided

by yk.

Assume that p(xτ |x(i)
k , y1:k−1,τ̄ ) can be approximated by a single Gaussian (this assump-

tion is likely to hold in many cases because the density is conditioned on future mea-

surements as well as a future state value, which often acts to eliminate any multi-modal

structure). Denote this approximating Gaussian as:

p(xτ |x(i)
k , y1:k−1,τ̄ ) ≈ N (xτ ;µ

x
τ |1:k−1,τ̄ ;k(i) , R

x
τ |1:k−1,τ̄ ;k(i)). (2.77)

Here µx
τ |1:k−1,τ̄ ;k(i) and Rx

τ |1:k−1,τ̄ ;k(i) denote, respectively, the mean and covariance of the

approximating Gaussian (the subscript notation is used to denote that these are based on

measurements y1:k−1,τ̄ and the state (particle) x
(i)
k ).

An EKF approximation of p(yτ |xτ ) can now be employed to construct an estimate of

the likelihood:

p(yτ |y1:k,τ̄ , x
(i)
k ) = N (yτ ;µ

y

τ |1:k,τ̄ ;k(i) , R
y

τ |1:k,τ̄ ;k(i)), (2.78)
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where

µy
τ |1:k,τ̄ ;k(i) = hτ (µ

x
τ |1:k−1,τ̄ ;k(i)) (2.79)

Ry

τ |1:k,τ̄ ;k(i) = HτR
x
τ |1:k−1,τ̄ ;k(i)H

T
τ +Qτ (2.80)

Hτ =
∂

∂x
hτ (x)|x=µx

τ |1:k−1,τ̄ ;k(i)
. (2.81)

The final task is then to obtain the approximation in (2.77). By partitioning y1:k−1,τ̄ ,

we can write p(xτ |x(i)
k , y1:k−1,τ̄ ) as:

p(xτ |x(i)
k , y1:k−1,τ̄ ) =

p(x
(i)
k , yτ+1:k−1|xτ )

p(x
(i)
k , yτ+1:k−1|y1:τ−1)

p(xτ |y1:τ−1). (2.82)

We can interpret (2.82) as a Bayesian update equation where both yτ+1:k−1 and the particle

x
(i)
k are considered as measurements related to the state xτ .

Recall that Wτ :m
k is the set of measurements made at time steps ranging from τ to m

that have been received at the fusion centre by time step k except for the OOSMs received

at time k (in this single case, just yτ ). The storage efficient particle filter maintains a

Gaussian approximation of p(xm|Wτ :m
k ) for all m in the range k − l − 1, . . . , k. We denote

these distributions by N (µm|m, Rm|m). Here the standard predictive/update notation is

employed, i.e. µm|m is the estimate of the mean at time m using Wτ :m
k .

Since we store the means and covariances of previous particles in Ωk, with these Gaussian

approximations in hand, the storage efficient particle filter can readily form an approxima-

tion of p(xτ |y1:τ−1) by applying the state equations describing the dynamics of the system.

Incorporating the information in {x(i)
k , yτ+1:k−1} to obtain p(xτ |x(i)

k , y1:k−1,τ̄ ) can now be

identified as a fixed point smoothing problem, and standard techniques from the literature

can be applied.

In Appendix A.1, we present a complete algorithmic description of function ProcessOOSM

for the storage-efficient OOSM particle filter that employs the Extended Kalman Smoother

(EKS) approach, which was originally described in [36]. The Unscented Kalman Smoother

(UKS) or the Particle Smoother (PS) are alternatives and their application is described

in [12].

This approach saves much storage by representing the distribution of particles by Gaus-

sian approximation. Moreover, it reprocesses the mean and covariance matrix instead of
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reprocessing all the particles. Thus, the computational complexity is less than the OOSM

re-run particle filter in most cases. However, it is difficult to efficiently extend the SEPF-

EKS algorithm to process batches of OOSMs. We have to use loops to process them

separately. In each cycle, we can get the updated weights based on only one OOSM.

Therefore, the computational savings diminish when it is common for multiple OOSMs to

arrive in a given time step.

Another point worth noting is that this algorithm is vulnerable to highly informative

OOSMs. After processing an OOSM that should lead to a major change in the filtering

distribution, the effective number of particles (measured by 1/
∑

(ω(i))2) can be greatly

diminished. This reduces sample diversity in the particle filter and can cause significant

performance deterioration, which will be discussed in more detail in the next chapter.
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Chapter 3

Efficient Delay-tolerant Particle

Filter through Selective Processing of

Out-of-sequence Measurements

(OOSMs)

In this chapter, we propose two new OOSM particle filters. The first algorithm uses Gaus-

sian approximations to construct a storage-efficient version of the re-run particle filter.

The second algorithm uses Gaussian approximations to reduce the memory requirements

and employs selective processing of OOSMs to reduce the high computational cost. We

propose a selection rule based on mutual information to estimate the informativeness of

the OOSMs and immediately discard uninformative measurements. The more informative

measurements are processed using the storage efficient particle filter proposed by Orguner

et al. in [12]. This filter sometimes fails when a measurement is extremely informative,

so our algorithm applies a second test to detect these highly-informative OOSMs, and

incorporates them by re-running the particle filter from the time-step of the OOSM.

Subsequently, we use a simulation scenario to compare the performance of the proposed

algorithms and some of the methods surveyed in Chapter 2. Our simulation experiments

provide an example tracking scenario where the proposed algorithm processes only 30-40%

of all OOSMs using the storage efficient particle filter and 1-3% of OOSMs by rerunning

the particle filter. By doing so, it requires less computational resources but achieves greater
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accuracy than the storage efficient particle filter proposed in [12]. Finally, we examine the

computational complexity of each algorithm by comparing the running time in MATLAB.

3.1 OOSM Gaussian Approximation Re-run Particle filter

(OOSM-GARP)

This particle filter is a storage-efficient version of the OOSM re-run particle filter. To reduce

memory requirements, we use Gaussian approximations to represent the estimated posterior

distributions of particles at previous time steps, in a similar way as the storage efficient

particle filter of [12]. Thus, this particle filter only saves the mean µm and covariance

matrix Rm of the particles ξm = {x(i)
m , i = 1, . . . , N} at each time step from k − l − 1 to

k, where l is the predefined maximum delay. The stored information then includes all the

available measurements up to current time step k, Wk−l:k
k , and Ωk, where

Ωk = {µk−l−1:k, Rk−l−1:k}. (3.1)

The algorithm needs much less storage resources than the OOSM re-run particle filter,

which must store all the particles from k − l − 1 to k. Recall that Zk denotes the set of

received OOSMs at time k. When OOSM-GARP receives Zk at time k, it returns to the

time step τ̃k − 1 (let τ̃k denotes the earliest time step of all OOSMs in Zk). It samples

particles from N (µτ̃k−1, Rτ̃k−1), propagates them to the time step τ̃k and runs the filter

as standard particle filter using W̃ τ̃k:k
k , which denotes all the available measurements up

to time k and generated in the interval [τ̃k, k]. At each step, it updates the mean and

covariance matrix in the stored set Ωk as described in Algorithm 5. In this algorithm,

the function ParticleFilter can be any standard SIR filter. If the set of non-delayed

measurements Yk = ∅, ParticleFilter only propagates the particles and skips the mea-

surement processing step. The function SaveGauss uses the maximum likelihood estimator

of the mean and covariance given the weighted sample set ξk, ωk:

µk =
N∑
i=1

ω
(i)
k x

(i)
k (3.2)

Rk =
N∑
i=1

ω
(i)
k (x

(i)
k − µk)(x

(i)
k − µk)

T . (3.3)
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Algorithm 5: ProcessOOSM-GARP

Input: Ωk−1, W̃k−l:k
k

τ̃k = min
τ
{τ : yτ ∈ Zk} ;1

{x(i)
τ̃k−1}Ni=1 ∼ N (xτ̃k−1, µτ̃k−1, Rτ̃k−1) ;2

ω
(i)
τ̃k−1 = 1/N, i = 1 . . . N ;3

for j = τ̃k, . . . , k do4

(ξj, ωj) ← ParticleFilter(W̃j
k, ξj−1, ωj−1);5

(Ωk) ← SaveGauss(ξj, ωj) ;6

endfor7

In most cases, Gaussian approximation can adequately represent the statistics of particle

clouds 1, so OOSM-GARP can achieve similar performance as the OOSM re-run particle

filter but with much less storage. However, OOSM-GARP still requires high computational

cost since it needs to reprocess all the particles from the time step when the earliest OOSM

was measured.

3.2 Efficient Delay-tolerant Particle Filter through Selective

Processing of OOSMs (EDPF-SP)

In [12], Orguner et al. mentioned that the storage efficient particle filters have one critical

problem that, at some times, an OOSM update would cause significant performance deteri-

oration when it greatly reduced the effective number of particles (measured by 1/
∑

(ω(i))2).

In [12], the storage efficient particle filters choose to discard such OOSMs. However, after

more investigation by simulation experiments, we find that such OOSMs are highly infor-

mative. When the fusion center always can get informative measurements from sensors (see

3.3.3 Example 1), this operation of discarding an OOSM is reasonable; the performance

of the SEPF-EKS is similar to that of the OOSM re-run particle filter. However, when

the fusion center cannot always get sufficient measurements (see 3.3.3 Example 2), discard-

ing such OOSMs leads to a significant deterioration in performance. The storage efficient

particle filter can fail when a measurement is extremely informative, because it does not

change the locations of particles but just updates their weights. It thus cannot address

1It is important to remember that the Gaussian is only used as an initialization distribution of the
re-running process.
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situations in which the current particle filter distribution should be changed significantly

because of the new out-of-sequence measurement. In such settings, it is better to use the

re-run particle filter to reprocess the particles.

Algorithm 6: ProcessOOSM-SP

Input: Ωk−1, W̃k−l:k
k

(ξk, ωk) ← ParticleFilter (Yk, ξk−1, ωk−1) ;1

(Ωk) ← SaveGauss(ξk, ωk) ;2

EKSfailed = 0;3

for yτ ∈ Zk do4

Iyτ ← CalcMI(yτ , µτ , Rτ , Hτ) ;5

if Iyτ < γ1 then6

discard yτ ;7

else8

Nprior
eff = 1/

∑N
i=1(ω

(i)
k )2 ;9

(ξk, ωk) ← ProcessOOSM-EKS(yτ , ξk, ωk, Ωk) ;10

Npost
eff = 1/

∑N
i=1(ω

(i)
k )2 ;11

if Npost
eff /Nprior

eff < γ2 then12

EKSfailed = 1 ;13

break ;14

else15

(Ωk) ← SaveGauss(ξk, ωk) ;16

endif17

endif18

endfor19

if EKSfailed then20

(ξk, ωk, Ωk) ← ProcessOOSM-GARP(W̃k−l:k
k , Ωk) ;21

On the other hand, some OOSMs are uninformative — discarding them does not affect

the performance of the algorithm. Thus, we think it is worthwhile to process the OOSMs

according to their informativeness. We now propose a simple but effective two-stage al-

gorithm that processes only the informative OOSMs, leading to significantly increased

computational efficiency. The first stage of the algorithm estimates the informativeness of

an OOSM and discards those deemed uninformative. In the second stage, the informa-
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tive OOSMs are processed by SEPF-EKS (Section 2.2.3). If significant reduction of the

effective sample size is detected after the application of SEPF-EKS, we choose to apply

OOSM-GARP. The approach combines the advantages of OOSM-GARP and SEPF-EKS in

order to achieve a satisfactory tradeoff between performance and complexity. We describe

the proposed approach ProcessOOSM-SP in Algorithm 6. Here, we assume that there are

potentially multiple OOSMs in Zk, any yτ ≡ y
Dτ,k
τ ∈ Zk.

In this algorithm, the function CalcMI is used to estimate the informativeness of a

measurement, and it is discussed in more detail below. The thresholds γ1 and γ2 gov-

ern the trade-off between computational complexity and accuracy. The first threshold γ1

determines the proportion of OOSMs that are declared uninformative and immediately

discarded. The more informative OOSMs are processed by the function ProcessOOSM-EKS

(Appendix A.1). The second threshold γ2 defines the proportion of informative OOSMs

that are processed using ProcessOOSM-GARP (Algorithm 5), which reruns the particle fil-

ter from the time τ when the OOSM was measured. In our experiments we observe that

ProcessOOSM-GARP can be invoked rarely and yet this substantially improves the overall

quality of tracking in some cases.

3.2.1 OOSM Selection Rule

We propose two metrics for assessing the “informativeness” of OOSMs, both based on

information-theoretic concepts. For the first metric, the OOSM is treated as a random

variable Yτ , so the metric and decision do not depend on the actual measured value

yτ ≡ y
Dτ,k
τ ∈ Zk. The first metric is the mutual information between the OOSM Yτ

and the state Xk, I(Yτ , Xk|W1:k
k ,Zk,τ̄ ). The mutual information is conditioned on all re-

ceived measurements in W1:k
k and the recently received OOSMs in Zk except yτ , denoted

by Zk,τ̄ = Zk \ {yτ}.
The second metric is the Kullback-Leibler divergence (KL-divergence) [38] between the

distribution at time k, conditioned on all measurements except for yτ , and the distribution

at time k conditioned on all measurements including yτ . This KL-divergence is denoted by

D(p(xk|W1:k
k ,Zk,τ̄ )‖p(xk|W1:k

k ,Zk)).
Our goal is to estimate the metric quickly and relatively accurately in order to decide

whether to process the OOSM. We therefore employ Gaussian approximations to the dis-

tributions of interest and use the extended Kalman filter to calculate their parameters. We
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now discuss the individual metrics and the procedures used for their estimation.

Mutual Information Metric

The mutual information is defined between measurement Yτ and state Xk as follows:

I(Yτ , Xk|W1:k
k ,Zk,τ̄ )

=

∫
log(

p(yτ , xk|W1:k
k ,Zk,τ̄ )

p(yτ |W1:k
k ,Zk,τ̄ )p(xk|W1:k

k ,Zk,τ̄ )
)p(yτ , xk|W1:k

k ,Zk,τ̄ ) dyτ dxk. (3.4)

Thus to calculate the mutual information based test statistic it is sufficient to know the

joint distribution p(yτ , xk|W1:k
k ,Zk,τ̄ ). The mutual information can also be expressed in

terms of conditional entropies H:

I(Yτ , Xk|W1:k
k ,Zk,τ̄ ) = H(Xk|W1:k

k ,Zk,τ̄ )−H(Xk|Yτ ,W1:k
k ,Zk,τ̄ ). (3.5)

We choose to approximate the joint distribution by a Gaussian distribution:

p(yτ , xk|W1:k
k ,Zk,τ̄ ) ≈ N (

(
xk

yτ

)
;

(
µxk
µyτ

)
,

(
Rxk Rxkyτ

Ryτxk Ryτ

)
). (3.6)

Let us define Rxk|yτ = Rxk − RxkyτR
−1
yτ Ryτxk . Standard Gaussian marginalization and

conditioning formula lead to the following relationships:

H(Xk|W1:k
k ,Zk,τ̄ ) =

1

2
log |2πeRxk | (3.7)

H(Xk|Yτ ,W1:k
k ,Zk,τ̄ ) =

1

2
log |2πeRxk|yτ | (3.8)

I(Yτ , Xk|W1:k
k ,Zk,τ̄ ) =

1

2
log

|Rxk |
|Rxk −RxkyτR

−1
yτ Ryτxk |

. (3.9)

We can devise the following technique for estimating I(Yτ , Xk|W1:k
k ,Zk,τ̄ ). We assume

that the measurement equation at time τ can be reasonably accurately linearized around

the estimate of the state. Defining Hτ = ∂
∂x

hτ (x)|x=µxτ , this implies that yτ ≈ Hτxτ + sτ .

See [39] for further discussion about this assumption.

Commencing with the saved distribution at time τ , p(xτ |W1:τ
k ) ≈ N (xτ ;µτ , Rτ ) and

using the linearization assumption, we can calculate the Gaussian approximation of the
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joint distribution at time τ :

p(yτ , xτ |W1:τ
k ) ≈ N (

(
xτ

yτ

)
;

(
µxτ

µyτ

)
,

(
Rxτ Rxτyτ

Ryτxτ Ryτ

)
), (3.10)

where we set µxτ = µτ , µyτ = hτ (µτ ); Rxτ = Rτ , Ryτ = HτRτH
T
τ + Qτ , Rxτyτ = RτH

T
τ ,

Ryτxτ = RT
xτyτ .

We now apply a forward EKF recursion from τ to k − 1, augmenting the state x with

the measurement yτ , denoted by z with its covariance P . The EKF recursion consists of a

prediction step:

zm+1|m =

(
µxm+1|m

µyτ

)
=

(
fm(µxm)

µyτ

)
(3.11)

Pm+1|m =

(
Fm 0

0 I

)(
Rxm Rxmyτ

Ryτxm Ryτ

)(
F T
m 0

0 I

)
+

(
Vm+1|m 0

0 0

)
, (3.12)

and an update step:

rm+1 = ỹm+1 − h̃m+1(µxm+1|m) (3.13)

Km+1 = Pm+1|mH̃
T
m+1(H̃m+1Pm+1|mH̃

T
m+1 + Q̃m+1)−1 (3.14)

zm+1 = zm+1|m +Km+1rm+1 (3.15)

Pm+1 = (I −Km+1H̃m+1)Pm+1|m. (3.16)

In these update equations,

ỹm+1 =

 · · ·yjm+1

· · ·


is the vector of varying dimensionality that contains stacked measurements from time m+1

available at time k, i.e. ỹm+1 contains yjm+1 if yjm+1 ∈ Wm+1
k ∪ Zk. Likewise, h̃m+1(·) is

the corresponding non-linear vector function defined similarly to ỹm+1. However, H̃m+1 =
∂
∂x

h̃m+1(x)|x=zm+1|m is its linearization with augmented state. Q̃m+1 is the block-diagonal

matrix which describes noise terms corresponding to components yjm+1 of vector ỹm+1.

Repeated application of the recursion up to time k permits estimation of the joint dis-
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tribution p(yτ , xk|W1:k
k ,Zk,τ̄ ) and this allows us to estimate the mutual information metric

I(Yτ , Xk|W1:k
k ,Zk,τ̄ ) using the expressions above.

KL-divergence Metric

The KL-divergence between p(xk|W1:k
k ,Zk,τ̄ ) and p(xk|W1:k

k ,Zk) is calculated using the

following formula:

D(p(xk|W1:k
k ,Zk,τ̄ )‖p(xk|W1:k

k ,Zk))

=
1

2
log

(
|R̂k|
|Rk|

+ tr(R̂−1
k Rk) + (µ̂k − µk)T R̂−1

k (µ̂k − µk)− dx

)
, (3.17)

where dx is the dimensionality of the state xk. In Algorithm 6 we use the symmetrized

KL-divergence:

Iyτ =
D(p(xk|W1:k

k ,Zk,τ̄ )‖p(xk|W1:k
k ,Zk)) +D(p(xk|W1:k

k ,Zk)‖p(xk|W1:k
k ,Zk,τ̄ ))

2
. (3.18)

We estimate the KL-divergence using Gaussian approximations:

p(xk|W1:k
k ,Zk,τ̄ ) ≈ N (xk, µk, Rk) (3.19)

p(xk|W1:k
k ,Zk) ≈ N (xk, µ̂k, R̂k). (3.20)

Both distributions are obtained by applying forward EKF recursions starting from time τ .

To obtain the latter distribution, we first apply a measurement update step at time τ and

then calculate standard EKF recursion. The former distribution is obtained by calculating

the standard EKF recursion and excluding the measurement yτ .

3.3 Simulations

In this section, we present a performance comparison of several OOSM particle filters

described in previous sections. We consider the scenario of bearings-only target tracking

and examine tracking performance in two cases, one where the OOSMs are informative and

another where they are substantially less informative.
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3.3.1 Simulation Scenario

We use same experimental scenario as in [12]. In this two-dimensional scenario, a single

target makes a clockwise coordinated turn of radius 500m with a constant speed 200km/h.

It starts in the y-direction with initial position [−500m, 500m] and is tracked for 40 seconds.

The true trajectory is displayed in Fig. 3.1.

−800 −600 −400 −200 0 200 400 600 800
−200

0

200

400

600

800

1000

1200

X(m)

Y
(m

)

True Trajectory

S2S1

S3

Fig. 3.1 Example 1 and 2 : Target trajectory and the sensors.

The target motion is modeled in the filters by the nearly coordinated turn model [40]

with unknown constant turn rate and cartesian velocity. The state of the target is given

as xk = [pxk, p
y
k, v

x
k , v

y
k , ωk]

T , where p, v and ω denote the position, velocity and turn rate

respectively. In the simulations, we select the standard deviations for the position, speed

and turn rate as σp = 30m, σv = 10m/sec, σω = 0.1rad/sec 2. At the beginning, we

assume that all the filters know very little about the initial state of the target and therefore

they are initialized with the state value x0 = [0, 0, 0, 0, 0]T and a large covariance R0 =

diag([10002, 10002, 302, 302, 0.12]) in order to cover the real position of the target.

2These values represent reasonable, if somewhat large, levels of uncertainty given the true motion of
the target.
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The dynamic model is:

xk+1 = fk+1|k(xk) + vk+1|k, (3.21)

where the coordinated turn (CT) fk+1|k(.) is

xk+1 =


1 0 sin(ωk∆t)

ωk

cos(ωk∆t)−1
ωk

0

0 1 1−cos(ωk∆t)
ωk

sin(ωk∆t)
ωk

0

0 0 cos(ωk∆t) − sin(ωk∆t) 0

0 0 sin(ωk∆t) cos(ωk∆t) 0

0 0 0 0 1

xk (3.22)

and vk+1|k is Gaussian process noise with a distributionN (0, Vk+1|k). The covariance matrix

Vk+1|k = diag([302, 302, 102, 102, 0.12]) for any k. ∆t = 1 is the sampling period.

There are three sensors S1, S2 and S3 sending measurements to a common fusion centre

in this scenario. The locations of the three sensors are [Sx1 , S
y
1 ] = [−200, 0], [Sx2 , S

y
2 ] =

[200, 0], [Sx3 , S
y
3 ] = [−750, 750] (Fig. 3.1). The measurements are with additive Gaussian

noise with zero mean and standard deviation σm = 0.05rads for all sensors with the sam-

pling period ∆t = 1. The observation model with measurement function of bearings-only

tracking is

yk = hk(xk) + sk (3.23)

hk(xk) = arctan(
pyk − S

y
j

pxk − Sxj
), j = 1, 2, 3 (3.24)

where sk ∼ N (0, Qk) and Qk = diag([σ2
m, σ

2
m, σ

2
m]) for any k .

An OOSM arrives at the fusion center with probability posm and delay td. The proba-

bility posm characterizes the reliability of OOSM delivery (a portion of the OOSMs are lost

on the way to the fusion centre). The delay td is uniformly distributed in the interval [0, l],

where l is the predefined maximum delay.

3.3.2 Cramér-Rao Lower Bound

In tracking problems, the Cramér-Rao lower bound (CRLB) provides an indication of

performance limitations [41]. In our results, we construct a Cramér-Rao lower bound
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based on the derivation in [41], which presented a simple derivation of the posterior CRLB

for discrete-time multidimensional nonlinear filtering problems.

Let x̂k be an estimate of a real state vector xk. The Cramér-Rao bound specifies a lower

bound on the covariance of x̂k:

E[(x̂k − xk)(x̂k − xk)T ] ≥ J−1
k . (3.25)

Here Jk is the d× d Fisher information matrix ( d is the dimensionality of the state xk ),

Jk = E[(∇xk log p(xk, yk))(∇xk log p(xk, yk))
T ]. (3.26)

The Fisher information matrix can be evaluated using the following recursive equation

in [41]:

Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k , (3.27)

where Dij
k are given by

D11
k = E{F T

k+1|kV
−1
k+1|kFk+1|k}

D12
k = −E{F T

k+1|k}V −1
k+1|k = (D21

k )T (3.28)

D22
k = V −1

k+1|k + E{HT
k+1Q

−1
k+1Hk+1}.

Here Fk+1|k and Hk+1 are the Jacobian matrices of the transition function fk+1|k(x) and

measurement function hk+1(x), respectively, and Vk+1|k and Qk+1 are covariance matrices

of process noise and measurement noise. The Jacobian of the coordinated turn (CT) model

is

Fk+1|k =



1 0 sin(ωk∆t)
ωk

cos(ωk∆t)−1
ωk

∂pxk+1

∂ωk

0 1 1−cos(ωk∆t)
ωk

sin(ωk∆t)
ωk

∂pyk+1

∂ωk

0 0 cos(ωk∆t) − sin(ωk∆t)
∂vxk+1

∂ωk

0 0 sin(ωk∆t) cos(ωk∆t)
∂vyk+1

∂ωk

0 0 0 0 1


(3.29)
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∂pxk+1

∂ωk
=
ωk∆t cos(ωk∆t)− sin(ωk∆t)

ω2
k

vxk −
ωk∆t sin(ωk∆t) + cos(ωk∆t)− 1

ω2
k

vyk (3.30)

∂pyk+1

∂ωk
=
ωk∆t sin(ωk∆t) + cos(ωk∆t)− 1

ω2
k

vxk −
ωk∆t cos(ωk∆t)− sin(ωk∆t)

ω2
k

vyk (3.31)

∂vxk+1

∂ωk
= −∆t sin(ωk∆t)v

x
k −∆t cos(ωk∆t)v

y
k (3.32)

∂vyk+1

∂ωk
= −∆t cos(ωk∆t)v

x
k −∆t sin(ωk∆t)v

y
k . (3.33)

The Jacobian of hk(x) is

Hk =


−(pyk−S

y
1 )

(pxk−S
x
1 )2+(pyk−S

y
1 )2

pxk−S
x
1

(pxk−S
x
1 )2+(pyk−S

y
1 )2 0 0 0

−(pyk−S
y
2 )

(pxk−S
x
2 )2+(pyk−S

y
2 )2

pxk−S
x
2

(pxk−S
x
2 )2+(pyk−S

y
2 )2 0 0 0

−(pyk−S
y
3 )

(pxk−S
x
3 )2+(pyk−S

y
3 )2

pxk−S
x
3

(pxk−S
x
3 )2+(pyk−S

y
3 )2 0 0 0

 . (3.34)

Our simulations are carried out using a fixed trajectory and thus the expectation operators

in (3.28) vanish and the required Jacobians can be calculated using the true trajectory.

The recursion in (3.27) is initialized by J0 = R−1
0 , where R0 is the initial covariance matrix

of the state x0.

3.3.3 Simulation Results

We have implemented seven different particle filters, all based on the Sampling Importance

Resampling (SIR) filtering paradigm [17]. The prior distribution is used as the importance

function. The filters were implemented in MATLAB and the code was highly optimized.

• PFall : a SIR particle filter which collects all the measurements from all the sensors.

There are no OOSMs in this case.

• PFmis : a SIR particle filter which discards all the OOSMs and therefore only pro-

cesses the measurements that are not delayed.

• OOSM-rerun: a SIR particle filter which processes the OOSMs by re-running the

particle filter starting using the saved particle cloud at the time step producing the

OOSM. (See Section 2.2.3)
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• OOSM-GARP : a SIR particle filter which processes the OOSMs by re-running the

particle filter starting with the saved Gaussian approximation of the particle cloud

at the time step producing the OOSM. (See Section 3.1)

• SEPF-EKS : a SIR particle filter equipped with the extended Kalman smoother pro-

posed in [12], which stores all the Gaussian approximations of the particle clouds.

(See Section 2.2.3)

• SP-MI : Selective OOSM processing based on the mutual information metric. (See

Section 3.2)

• SP-KL: Selective OOSM processing based on the KL-divergence metric. (See Sec-

tion 3.2)

We use the root mean-squared (RMS) position error to compare the performance of particle

filters. Let (pxk
(i), pyk

(i)) and (p̂xk
(i)
, p̂yk

(i)
) denote the true and estimated target positions at

time step k for the i-th of M Monte-Carlo runs. The RMS position error at k is calculated

as

RMSk =

√√√√ 1

M

M∑
i=1

(p̂xk
(i) − pxk(i))2 + (p̂yk

(i)
− pyk

(i))2. (3.35)

The CRLB indicates the best possible performance that we can expect for a given scenario

and a set of parameters. Let J−1
k [i, j] denotes the ij-th element of the inverse information

matrix. The corresponding CRLB for the RMS position error as in [42] is given by

CRLB(RMSk) =
√
J−1
k [1, 1] + J−1

k [2, 2]. (3.36)

We compare the computational complexity of each filter by computing average running

time of a Monte-Carlo run for tracking 40s in MATLAB. The complexity versus accuracy

trade-off can be tuned by adjusting the thresholds γ1 and γ2. We illustrate this in our

experiment, where we vary the computational complexity of the proposed algorithms SP-

MI and SP-KL by varying the respective thresholds and plot the RMS vs. Average running

time curves measured in MATLAB. The values of γ1 will be shown in each example and

γ2 is fixed to 2.5% for SP-MI and SP-KL in both examples. We show the relationship
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between complexity and performance for the proposed algorithms SP-MI and SP-KL with

ten values of the first stage threshold γ1 and results of 10 simulations for other algorithms.

Each simulation involves 1000 Monte Carlo runs. We compare the performance of all

particle filters when they use 2000 particles. The results are run on a Dell laptop with

Genuine Intel(R) CPU T2400 1.83GHz, 0.99GB RAM and Win-XP OS.

The overall performance of a filter can be evaluated using the root time-averaged mean

square (RTAMS) error as [42]. This is defined as

RTAMS =

√√√√ 1

(tmax − ta)×M

tmax∑
k=ta+1

M∑
i=1

(p̂xk
(i) − pxk(i))2 + (p̂yk

(i)
− pyk

(i))2, (3.37)

where tmax is the duration of tracking time and ta is a time index after which the averaging

is carried out. M is the total number of Monte Carlo runs.

Example 1

S1 and S2 are standard sensors without OOSMs, which means that all the measurements

from S1 and S2 arrive at the fusion centre without delay. The sensor S3 generates OOSMs.

The OOSMs arrive at the fusion centre with probability posm. If they do arrive, they arrive

with delay td. In our simulations, the delay td is uniformly distributed in [0, 5] and posm is

set to 0.7. In this example, the ten values of first stage thresholds are γ1 = 0 : 0.06 : 0.54

for SP-MI and γ1 = 0 : 0.15 : 1.35 for SP-KL.

We first plot RMS position errors of PFall, PFmis, OOSM-rerun, OOSM-GARP, SEPF-

EKS and CRLB, which is shown in Fig. 3.2. We can see that by processing OOSMs,

SEPF-EKS, OOSM-rerun and OOSM-GARP all improve tracking performance signifi-

cantly. Moreover, SEPF-EKS can achieve almost similar performance compared to the

two re-run OOSM particle filters. The performance of PFall is close to the CRLB, which

indicates that 3 sensors is sufficient to give satisfactory performance in this scenario.
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Fig. 3.2 Example 1: RMS position errors for PFall, PFmis, OOSM-rerun,

OOSM-GARP and SEPF-EKS.

The RMS at time step k vs Average running time of one MC run curves are shown

in Fig. 3.3. In this example, ten diamond points on the red curve represent the results of

SP-MI with different γ1 from 0 to 0.54 with step size 0.06 (from right to left). Ten square

points on the blue curve represent the results of SP-KL with different γ1 from 0 to 1.35

with step size 0.15 (from right to left). When the thresholds are chosen so that the selective

processing filters have the same fixed RMS error performance as SEPF-EKS, the selective

processing algorithms reduce the computation time by approximately 15%.
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(b) N = 2000, k = 20

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
30

40

50

60

70

80

90

100

Average Running Time of One MC Run, sec

P
os

iti
on

 R
M

S
, m

 

 

SP−MI
SP−KL
OOSM−GARP
SEPF−EKS
PFmis
PFall

γ
1
=0.3

γ
1
=0.12

(c) N = 2000, k = 30

Fig. 3.3 Example 1: RMS vs Average running time of one MC run from 10

simulations with different γ1 for SP-MI (from 0 to 0.54) and SP-KL (from 0 to

1.35). We select three timesteps, k = 10, 20, 30 for filters with 2000 particles.



3.3 Simulations 45

From Fig. 3.3, SP-MI with γ1 = 0.12 and SP-KL with γ1 = 0.3 can achieve similar

performance as re-run filters but with least average running time. In Fig. 3.4, we plot the

RMS position performance for 40s of the algorithms with these settings. SP-MI and SP-

KL can achieve similar performance as SEPF-EKS and OOSM-GARP. From the results,

the number of individual OOSMs processed by the EKS after the first threshold γ1 is

32.77% for SP-MI and and 22.91% for SP-KL. After the second threshold the number

of most informative OOSMs processed by rerunning the particle filter is 0.11% for SP-

MI and 0.16% for SP-KL. Though the selective processing algorithms cannot improve the

performance of SEPF-EKS, they still reduce the complexity of it by discarding a portion

of OOSMs. The SEPF-EKS rarely fails, since in this situation only sensor S3 generates

OOSMs. The received OOSMs are rarely highly informative measurements because the

non-delayed measurements from sensors S1 and S2 have provided substantial information

for the estimation.
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Fig. 3.4 Example 1: RMS position errors with γ1 = 0.12 for SP-MI and

γ1 = 0.3 for SP-KL.

The boxplot figures are shown in Fig. 3.5. This figure shows the variation of position

RMS error for SEPF-EKS, OOSM-GARP, SP-MI and SP-KL. The box has lines at the
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Fig. 3.5 Example 1: Errorbars showing the variation of position RMS errors
for SEPF-EKS, OOSM-GARP, SP-MI (γ1 = 0.12) and SP-KL(γ1 = 0.3).

lower quartile, median, and upper quartile values. An outlier (marked by ’+’ sign ) is

defined as a value that is more than 4 times the interquartile range away from the top

or bottom of the box. The distributions of errors are similar for the four OOSM particle

filters, implying that they have similar robustness to outlying measurements.

We show the RTAMS error, average running time of each filter tracking 40s and the

number of divergent tracks in Table 3.1. In this case, ta in Equation (4.40) is set to 5, since

the averaging is carried out by the timestep 5. By defining the track with RTAMS error

larger than 150m as a divergent track, we can calculate the number of divergent tracks out

of 1000 tracks for each filter. In this example, SEPF-EKS, SP-MI and SP-KL can achieve

similar RMS performance as OOSM-GARP and OOSM-rerun, but with almost half the

complexity. There are no divergent tracks for any of the algorithms since we have two

standard sensors S1 and S2, which provide non-delayed measurements to the fusion centre.
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Table 3.1 Example 1: Performance comparison of RTAMS error, running

time and the number of divergent tracks
Algorithm Time (s) RTAMS (m) Divergent tracks

PFall 0.4558 42.1909 0

PFmis 0.4327 81.5491 0

OOSM-rerun 1.2204 68.9698 0

OOSM-GARP 1.1582 69.2617 0

SEPF-EKS 0.7662 68.5650 0

SP-MI (γ1 = 0.12) 0.6680 69.6772 0

SP-KL(γ1 = 0.3) 0.6810 70.91 0

Example 2

In the second example, we test the particle filters in a different situation from Example 1–

all 3 sensors generate OOSMs. As in Example 1, the OOSMs arrive at the fusion centre

with probability posm. If they do arrive, they arrive with delay td. In the simulations, td

is uniformly distributed in the range [0, 5] and posm is set to 0.7. In this example, the ten

values of first stage thresholds are γ1 = 0 : 0.2 : 1.8 for SP-MI and γ1 = 0 : 0.5 : 4.5 for

SP-KL.

We first plot RMS position errors of PFall, PFmis, OOSM-rerun, OOSM-GARP, SEPF-

EKS and CRLB, which is shown in Fig. 3.6. In this figure, SEPF-EKS performs much

worse than OOSM-rerun and OOSM-GARP. The reason is that more measurements arrive

at the fusion centre with delay compared to Example 1. If the fusion centre receives an

OOSM after missing measurements for a few time steps, this OOSM can be very informative

and will greatly change the distributions of particles. Then SEPF-EKS fails to process such

highly informative OOSMs because it does not change the locations of particles but just

updates their weights.

The RMS at time step k vs Average running time of one MC run curves are shown in

Fig. 3.7. In this example, ten diamond points on the red curve represent the results of SP-

MI with different γ1 from 0 to 1.8 with step size 0.2 (from right to left). Ten square points

on the blue curve represent the results of SP-KL with different γ1 from 0 to 4.5 with step

size 0.5 (from right to left). When the thresholds are chosen so that the selective processing



48
Efficient Delay-tolerant Particle Filter through Selective Processing of

Out-of-sequence Measurements (OOSMs)

5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

t, sec

P
os

iti
on

 R
M

S
 e

rr
or

, m

 

 

CRLB
OOSM−rerun
OOSM−GARP
SEPF−EKS
PFmis
PFall

Fig. 3.6 Example 2: RMS position errors for PFall, PFmis, OOSM-rerun,
OOSM-GARP and SEPF-EKS.

filters have the same computational complexity as SEPF-EKS they achieve significantly

better tracking performance. Alternatively, for the same fixed RMS error performance, the

selective processing algorithms reduce the computation time by approximately 40%.
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(b) N = 2000, k = 20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

50

100

150

200

250

300

350

400

Average Running Time of One MC Run, sec

P
os

iti
on

 R
M

S
, m

 

 

SP−MI
SP−KL
OOSM−GARP
SEPF−EKS
PFmis
PFall

γ
1
=0.4

γ
1
=0.5

(c) N = 2000, k = 30

Fig. 3.7 Example 2: RMS vs Average running time of one MC run from 10

simulations with different γ1 for SP-MI (from 0 to 1.8) and SP-KL (from 0 to

4.5). We select three timesteps, k = 10, 20, 30 for filters with 2000 particles.
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Fig. 3.8 Example 2: RMS position errors with γ1 = 0.4 for SP-MI and
γ1 = 0.5 for SP-KL.

From Fig. 3.7, SP-MI with γ1 = 0.4 and SP-KL with γ1 = 0.5 can achieve similar per-

formance as re-run filters but with least average running time. In Fig. 3.8, we plot the RMS

position performance for 40s of the algorithms with these settings. In this example, SEPF-

EKS performs much worse than OOSM-rerun and OOSM-GARP, but SP-MI and SP-KL

can achieve similar performance as OOSM-rerun and OOSM-GARP. The selective process-

ing algorithms process highly informative OOSMs by OOSM-GARP in order to avoid the

deterioration. This additional operation only leads to a slight increase in complexity since

it only occurs for a very small portion of the OOSMs. From the results, the fraction of

individual OOSMs processed by the SEPF-EKS after the first threshold γ1 is 30.57% for

SP-MI and 35.67% for SP-KL. After the second threshold, the fraction of most informative

OOSMs processed by rerunning the particle filter is 1.42% for SP-MI and 3.13% for SP-

KL. Comparing the two proposed algorithms, SP-MI performs a little more efficient than

SP-KL, because SP-MI processes less OOSMs but achieves similar performance as SP-KL.
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Fig. 3.9 Example 2: Errorbars showing the variation of position RMS errors

for SEPF-EKS, OOSM-GARP, SP-MI (γ1 = 0.4) and SP-KL(γ1 = 0.5).

The boxplot figures are shown in Fig. 3.9. This figure shows the variation of position

RMS error for SEPF-EKS, OOSM-GARP, SP-MI and SP-KL. In these figures, an outlier

(marked by ’+’ sign ) is defined as a value that is more than 6 times the interquartile

range away from the top or bottom of the box. In this example, the distributions of

the errors of SEPF-EKS are severely diffused, whereas the other three particle filters have

stable performance. For SEPF-EKS, we can deduce that there are probably some divergent

tracks in the simulation (see Table 3.2). Comparing SEPF-EKS and selective processing

algorithms, the operation of reprocessing particles by OOSM-GARP prevents the divergent

trend of SEPF-EKS and results in a major performance improvement.

We show the RTAMS error, average running time of each filter tracking 40s and the

number of divergent tracks in Table 3.2. In this case, ta in Equation (4.40) is set to 5, since

the averaging is carried out by the timestep 5. By defining the track with RTAMS error



52
Efficient Delay-tolerant Particle Filter through Selective Processing of

Out-of-sequence Measurements (OOSMs)

larger than 500m as a divergent track, we can calculate the number of divergent tracks out

of 1000 tracks for each filter. In this example, SP-MI and SP-KL can achieve similar RMS

performance as OOSM-GARP and OOSM-rerun, but with less complexity. SEPF-EKS

performs worse than the re-run particle filters and there are some divergent tracks in the

simulations. There are no divergent tracks for SP-MI and SP-KL since the second stage

detects the situation when SEPF-EKS fails to process highly informative OOSMs.

Table 3.2 Example 2: Performance comparison of RTAMS error, running

time and the number of divergent tracks
Algorithm Time (s) RTAMS (m) Divergent tracks

PFall 0.4654 42.6357 0

PFmis 0.196 365.0253 43

OOSM-rerun 1.5671 109.3645 0

OOSM-GARP 1.4301 110.6551 0

SEPF-EKS 1.0349 178.3266 14

SP-MI (γ1 = 0.4) 0.8002 135.342 0

SP-KL(γ1 = 0.5) 0.9425 128.1042 0
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Chapter 4

Multiple Model Tracking with

OOSMs

In practical scenarios, we often cannot accurately capture the dynamics using a single

model. For example, a target may move along a straight-line with constant velocity, or it

may execute a manoeuvre for a short period to turn to another direction. Therefore, we

usually need multiple models to capture the dynamics of manoeuvring targets. Multiple

model tracking poses a more complicated problem, since the system can switch between

different models. This implies the need for some form of adaptive filter model. In this

chapter, we first introduce related work on multiple model tracking with OOSMs. Then

we propose four candidate algorithms for multiple model cases based on the algorithms

introduced in Chapter 3 for single model cases: the OOSM re-run multiple model par-

ticle filter, the OOSM Gaussian approximation re-run multiple model particle filter, the

multiple model particle filter with interacting multiple model extended Kalman smoother

(IMM-EKS), and the efficient delay-tolerant multiple model particle filter through selective

processing of OOSMs. Finally, we use a scenario with a manoeuvring target to test the

performance of our proposed methods.

4.1 Related Work

The multiple model tracking approach was originally presented in [43] for Gaussian state-

space models; the algorithm is referred to as the static multiple model estimator in [40]. The

static multiple model estimator operates several Kalman filters in parallel. Each filter is
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matched to a possible motion model and then the estimates of the state and the covariance

matrix are calculated as a weighted sum of the estimate from each filter. The weights are

determined by the posterior probability of each model, which is attained from the likelihood

of the current measurements for each filter. This algorithm does not adequately address

the switching behavior of manoeuvring targets, where one of a number of candidate models

accurately portrays the dynamics at any given time instant. This mode switching behavior

is frequently modeled as a Markov process with known transition probabilities. The Markov

switching of models is discussed in [44–46]. In [40], the dynamic multiple model estimator is

proposed; it achieves optimal performance, since it keeps track of all the possible branches

of mode history. It is obviously impractical owing to the exponential growth with time in

the number of possible branches. In order to develop practical algorithms, one can resort

to a suboptimal technique that involves maintaining a constant number of Kalman filters.

At each time step, only those with the largest probabilities are retained, and the mode

probabilities associated with the retained filters are renormalized so that they sum up to

unity.

The generalized pseudo-Bayesian (GPB) approaches are proposed in [47, 48]. GPB

approaches only consider all possible branches in the last several time steps. The first-

order GPB1 (described in [40]) considers all possible models for one time step only. It then

combines the state estimates after the measurement update and uses the combined estimate

as the input for all the filters in the next step. The second-order version GPB2 [40, 49]

considers all the possible models for two time steps. Thus GPB1 and GPB2 require r and

r2 filters respectively to operate in parallel, where r is the number of possible models.

The interacting multiple model filter (IMM-filter) [50, 51] was proposed by Blom et al.

by merging the estimates after the hypothesis branching step and using r hypotheses as the

inputs of r filters. Therefore, mixing of the estimates before entering into filters is the key

idea that yields r hypotheses with r filters, rather than r2 filters as in the GPB2 algorithm.

The IMM-filter is computationally efficient and in many cases performs well. In [52], there

is a detailed survey of existing IMM methods for maneuvering tracking problems.

In order to address multiple-model behavior for highly nonlinear and non-Gaussian

systems, McGinnity et al. extended the bootstrap particle filter to the multiple-model

estimation problem in [53]. Their algorithm adds a variable associated with the index of

model into the state vector of each particle, and employs resampling method to implement

the mode transition. In [54], Ristic et al. develop a multiple model particle filter (MMPF)
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for angle-only tracking following the idea in [53] and compare its performance with the IMM

extended Kalman filter (IMM-EKF) and the IMM unscented Kalman filter (IMM-UKF)

in an example with CT and CV models1. Arulampalam and Ristic conduct a comparison

of the MMPF, the auxiliary MMPF (AUX-MMPF) [55] and the jump Markov system PF

(JMS-PF) in [42].

There are only a few papers about out-of-sequence measurements in multiple model

tracking problems. Recall Section 2.2.1, the Bl1 approach proposed in [9] is the one-

step implementation of the update with a multistep lagged OOSM. Bar-Shalom et al. then

incorporate OOSMs into the nonlinear IMM estimator via the Bl1 approach. The algorithm

described in [10] uses state retrodiction within the IMM estimator in a decoupled manner

for each of the models using the procedure of [9]. When multiple OOSMs in clutter are

presented, the probabilistic data association (PDA) technique can be used to calculate the

association probabilities for each validated measurement at the current time to the target of

interest. The AS-IMM-PDA algorithm [56] incorporates the probabilistic data association

(PDA) technique into an augmented state IMM (AS-IMM) filter for multiple model target

tracking in clutter using OOSM. The AS-IMM-PDA algorithm is an extension of AS-

PDA algorithm in [30], which addresses the multi-lag OOSM updating by augmented state

smoothing for single model cases. In [57], Maskell et al. review several existing approaches

in a common Bayesian framework for multi-target multi-model tracking with OOSMs.

These approaches are all based on the IMM Kalman filter or IMM-EKF and IMM-

UKF for linear or mildly non-linear models. To deal with more practical tracking problems

with highly non-linear models and OOSMs, we need new algorithms to handle OOSMs in

multiple model particle filters.

4.2 Problem Statement

In the multiple model system, we use a general parameterized state-space representation:

xk = f αk|k−1(xk−1) + vk|k−1 (4.1)

yk = hαk (xk) + sk, (4.2)

1CT: coordinated turn model; CV: constant velocity model.
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where f αk|k−1 and hαk are the parameterized state transition function and measurement func-

tion for model α at time k, respectively. xk denotes the state vector of the system at time

k. yk denotes the output measurement at time k. vk|k−1 is the process noise and sk is the

measurement noise. Suppose there are r possible models in the system, then α denotes the

index of model at time k. The model transition is modeled as a Markov process with the

initial distribution p(α0) and transition probability pβ|α (from model α to model β), for

α, β ∈ {1, . . . , r}.

4.3 Multiple Model Filters

In this section, we introduce the interacting multiple model extended Kalman filter (IMM-

EKF) [50, 51] and the multiple model particle filter (MMPF) [53]. IMM-EKF is computa-

tionally efficient because it executes only r extended Kalman filters by merging the states

and covariance matrices estimates after the hypothesis branching step. This avoids the

exponential growth with time in the number of possible branches. MMPF is a relatively

simple extension of the particle filter for multiple model problems.

4.3.1 Interacting Multiple Model Extended Kalman Filter (IMM-EKF)

The IMM-filter is summarized in [40] and [58]. We describe this method again here for

completeness. It consists of three major steps: interaction(mixing), filtering and combina-

tion. In the interaction step, we obtain the mixing probability and combined inputs for

the current step. This step accounts for the possibility of model transition. In the filtering

step, the input of each filter is processed by the corresponding filter separately and then

we obtain the estimates of the state and covariance from each filter. In the final step, we

compute the likelihoods of the measurements to evaluate the probability of each model. We

formulate a final estimate by calculating a weighted combination of all the estimates from

all the filters. The weights are equal to the posterior probabilities of the model associated

with each filter. The interacting multiple model extended Kalman filter (IMM-EKF) uses

EKFs in the filtering step to allow for mild nonlinearities. The details of each step of the

IMM-EKF are as follows and also illustrated in Fig. 4.1:

1. Interaction(mixing): The mixing probabilities ϕ
β|α
k , (α, β = 1, . . . , r) denote the prob-
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abilities of transition from model α to model β and are calculated as:

ϕ
β|α
k =

1

c̄β
pβ|αϕ

α
k−1 (4.3)

c̄β =
r∑

α=1

pβ|αϕ
α
k−1, (4.4)

(4.5)

where ϕαk−1 is the probability of model α at the time step k−1 and c̄β is a normalizing

factor.

Then we can calculate the mixed inputs for each filter :

µ0β
k−1 =

r∑
α=1

ϕ
β|α
k µαk−1|k−1 (4.6)

R0β
k−1 =

r∑
α=1

ϕ
β|α
k × {R

α
k−1|k−1 + [µαk−1|k−1 − µ

0β
k−1][µαk−1|k−1 − µ

0β
k−1]T}, (4.7)
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where µαk−1|k−1 and Rα
k−1|k−1 are the estimates of state and covariance for model α at

time step k − 1.

2. Filtering: in this step, the inputs of r filters are processed by each filter separately.

[µβk|k−1, R
β
k|k−1] = EKFp(µ

0β
k−1, R

0β
k−1) (4.8)

[µβk|k, R
β
k|k] = EKFu(µ

β
k|k−1, R

β
k|k−1, yk), (4.9)

where EKFp and EKFu denote the prediction and update steps of extended Kalman

filter (see details in Section 2.1.2). In addition to the above operation, we also compute

the likelihood of the measurement for each filter:

Λβ
k = N (yk; h

β
k (µβk|k−1), Sβk ), (4.10)

where Sβk is the covariance of the measurement residual.

3. Combination: in the final step, we first compute the probability of each model at

time step k :

ϕβk =
1

c
Λβ
k c̄β (4.11)

c =
r∑

β=1

Λβ
k c̄β, (4.12)

where c is a normalizing factor. Then we combine the estimates from all the filters

together:

µ̂k|k =
r∑

β=1

ϕβkµ
β
k|k (4.13)

R̂k|k =
r∑

β=1

ϕβk × {R
β
k|k + [µβk|k − µ̂k|k][µ

β
k|k − µ̂k|k]

T}. (4.14)

4.3.2 Multiple Model Particle Filter (MMPF)

The key idea of the MMPF [53] is to add a discrete variable Ak into the state vector, which

is augmented as {xk, Ak}. xk is the original state vector and Ak labels the index of the
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current model. Therefore, the propagation step of particle filter can be described as:

p(xk, Ak|xk−1, Ak−1) = p(xk|Ak, xk−1, Ak−1)p(Ak|Ak−1). (4.15)

Since {Ak} is a Markov process with transition probability p(Ak|Ak−1), we can obtain the

index A
(i)
k for the i-th particle from p(Ak|A(i)

k−1). Then we can propagate the particles to

current states x
(i)
k by corresponding models determined by A

(i)
k . We compute the likelihood

function of the measurements p(yk|x(i)
k , A

(i)
k ) to update the weight of each particle and

resample the particles at the end of each recursion. The details are shown in Algorithm 7.

Algorithm 7: Multiple Model Particle Filter

Initialization, k = 0.1

Sample the particles x
(i)
0 ∼ p(x0), (i = 1, . . . , N) and A

(i)
0 ∼ p(α0) ;2

for k = 1 . . . T do3

Model switching : draw A
(i)
k ∼ p(Ak|A(i)

k−1) ;4

Propagate particles :5

x
(i)
k = f

A
(i)
k

k|k−1(x
(i)
k−1) + vk|k−1; (4.16)

Update and normalize weights:6

ω
(i)
k = p(yk|x(i)

k , A
(i)
k ) (4.17)

ω̃
(i)
k =

ω
(i)
k∑N

i=1 ω
(i)
k

; (4.18)

Resampling Step: resample N particles (x
(i)
k , A

(i)
k ; i = 1, . . . , N) according to the7

importance weights ;
endfor8

4.4 OOSM Multiple Model Particle Filters (OOSM-MMPF)

Here, we investigate OOSM problems in multiple model particle filter and propose four

kinds of OOSM multiple model particle filter: the OOSM re-run multiple model parti-

cle filter, the OOSM Gaussian approximation re-run multiple model particle filter, the

multiple model particle filter with interacting multiple model extended Kalman smoother
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(IMM-EKS), and the efficient delay-tolerant multiple model particle filter through selective

processing of OOSMs.

4.4.1 OOSM Re-run Multiple Model Particle Filter (OOSM-rerunMM)

OOSM-rerunMM is an extension of the OOSM-rerun algorithm for multiple model cases.

This method is a close-to-optimal solution which simply reprocesses all the OOSMs in an

ordered sequence using the MMPF. However, this method needs to save all the particles

ξk−l−1:k in the last l + 1 time steps into Ωk and all the available measurements in the last

k time steps into W̃k−l:k
k , where l is the predetermined maximum number of delayed steps.

Here, the particles include the state vectors and indices of models, which are denoted as

ξk ≡ {x(i)
k , A

(i)
k ; (i = 1, . . . , N)}. Thus the requirement of memory and computation can be

excessive.

Algorithm 8 provides pseudocode for the function ProcessOOSM of the OOSM re-run

multiple model particle filter, which is very similar to Algorithm 4 in Section 2.2.3. The

only difference is the use of function MMParticleFilter (refers to Algorithm 7) to process

particles in each step. The function SaveParticles stores the updated particles into the

stored set Ωk.

Algorithm 8: ProcessOOSM by OOSM-rerunMM

Input: ξk−1, ωk−1, Ωk−1, W̃k−l:k
k

τ̃k = min
τ
{τ : yτ ∈ Zk} ;1

ξτ̃k−1 from Ωk−1 ;2

ω
(i)
τ̃k−1 = 1/N, i = 1 . . . N ;3

for j = τ̃k, . . . , k do4

(ξj, ωj) ← MMParticleFilter(W̃j
k, ξj−1, ωj−1);5

(Ωk) ← SaveParticles(ξj) ;6

endfor7

The OOSM re-run multiple model particle filter involves a high memory and high com-

putational cost. On the other hand, it exhibits the best tracking performance among on-line

OOSM multiple model particle filters. It acts as a useful benchmark for other methods that

reduce computational overhead or memory requirements.
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4.4.2 OOSM Gaussian Approximation Re-run Multiple Model Particle Filter

(OOSM-GARP-MM)

Based on OOSM-GARP in Section 3.1, the OOSM Gaussian approximation re-run MMPF

is a storage-efficient version of the OOSM re-run MMPF, which only saves the statistics of

the particles. For state vectors x
(i)
k , only the mean µk and covariance matrix Rk are saved.

For the variable A
(i)
k , only the probability of each model p(Ak = α), α = 1, . . . , r are stored

as

p(Ak = α) ≈ n(A
(i)
k = α)

N
, (4.19)

where n(A
(i)
k = α) denotes the number of particles with A

(i)
k equal to α and N is the total

number of particles. Therefore, the stored information needs to be Ωk = {µk−l−1:k, Rk−l−1:k},
the probability of each model from time step k− l−1 to time step k, {p(Am = α)}α=1:r

m=k−l−1:k

and all the available measurements up to current time step W̃k−l:k
k . The details of this al-

gorithm are described in Algorithm 9. When the filter is re-run from a previous time step

upon arrival of an OOSM, it first needs to sample the state vector for each particle using

the mean and covariance. It also samples the index of the model associated with each par-

ticle. The function SaveMMGauss computes the stored statistics using Equation (3.2), (3.3)

and (4.19). Here, we only store the mean and covariance of all the particles (not for each

model) for simplicity.

Algorithm 9: ProcessOOSM-GARP-MM

Input: Ωk−1, W̃k−l:k
k

τ̃k = min
τ
{τ : yτ ∈ Zk} ;1

{x(i)
τ̃k−1}Ni=1 ∼ N (xτ̃k−1, µτ̃k−1, Rτ̃k−1) ;2

Sample A
(i)
τ̃k−1 from {p(Aτ̃k−1 = α)}α=1:r ;3

ω
(i)
τ̃k−1 = 1/N, i = 1 . . . N ;4

for j = τ̃k, . . . , k do5

(ξj, ωj) ← MMParticleFilter(W̃j
k, ξj−1, ωj−1);6

(Ωk, p(Ak = α)) ← SaveMMGauss(ξj, ωj) ;7

endfor8
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In most cases, OOSM-GARP-MM can achieve performance similar to that of the OOSM

re-run MMPF but with much less storage. The two filters have similar computational

complexity since the basic steps of processing the OOSMs are very similar.

4.4.3 Multiple Model Particle Filter with IMM-EKS (MMPF-IMM-EKS)

The multiple model particle filter with interacting multiple model extended Kalman smoother

(MMPF-IMM-EKS) is an extension of the storage efficient particle filter with extended

Kalman smoother in [12]. It runs a multiple model particle filter and deals with the

OOSMs using IMM-EKS. This filter also only stores the statistics of particles, similar to

OOSM-GARP-MM, to reduce the memory requirement. To reduce the computational com-

plexity, we use IMM-EKS to reprocess the mean and covariance of particles from the time

step generating the OOSM to the current time step for updating the weights of current

particles. The detailed description of the algorithm is provided in Appendix A.2. After

an OOSM update using IMM-EKS, we check the effective number of particles before and

after the update, denoted by Npost
eff and Nprior

eff respectively. If Npost
eff � Nprior

eff , this update

will be discarded (in our experiments we check the condition Npost
eff < Nprior

eff /100).

4.4.4 Efficient Delay-tolerant Multiple Model Particle Filter through Selective

Processing of OOSMs (EDMMPF-SP)

In some cases, the multiple model particle filter with IMM-EKS has the same weakness

as the storage efficient particle filter with EKS (see Section 2.2.3). MMPF-IMM-EKS

can discard some highly-informative measurements because they lead to an OOSM update

greatly reducing the effective number of particles. In this section, we extend the efficient

delay-tolerant particle filter through selective processing of OOSMs (EDPF-SP) (see Sec-

tion 3.2) to the multiple model case. The key idea of this algorithm is to process the

OOSMs according to their informativeness. The first stage of the algorithm estimates the

informativeness of an OOSM ( two metrics below) and discards those considered uninfor-

mative. In the second stage, the informative OOSMs are processed by MMPF-IMM-EKS.

If the OOSM update by MMPF-IMM-EKS significantly reduces the effective sample size,

we employ OOSM-GARP-MM. The approach reduces the computational complexity by

the first stage and improves the performance by applying OOSM-GARP-MM as a backup

when MMPF-IMM-EKF fails. We describe the proposed approach ProcessOOSM-MMSP in
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Algorithm 10. Here, we assume that there are potentially multiple OOSMs in Zk, any

yτ ≡ y
Dτ,k
τ ∈ Zk.

Algorithm 10: ProcessOOSM-MMSP

Input: Ωk−1, W̃k−l:k
k

(ξk, ωk) ← MMParticleFilter (Yk, ξk−1, ωk−1) ;1

(Ωk, p(Ak = α)) ← SaveMMGauss(ξk, ωk) ;2

EKSfailed = 0;3

for yτ ∈ Zk do4

Iyτ ← CalcMI(yτ , µτ , Rτ , Hτ) ;5

if Iyτ < γ1 then6

discard yτ ;7

else8

Nprior
eff = 1/

∑N
i=1(ω

(i)
k )2 ;9

(ξk, ωk) ← ProcessOOSM-IMMEKS(yτ , ξk, ωk, Ωk) ;10

Npost
eff = 1/

∑N
i=1(ω

(i)
k )2 ;11

if Npost
eff /Nprior

eff < γ2 then12

EKSfailed = 1 ;13

break ;14

else15

(Ωk, p(Ak = α)) ← SaveMMGauss(ξk, ωk) ;16

endif17

endif18

endfor19

if EKSfailed then20

(ξk, ωk, Ωk) ← ProcessOOSM-GARP-MM(W̃k−l:k
k , Ωk) ;21

In this algorithm, the function MMParticleFilter (Algorithm 7) is to process non-

delayed measurements in Yk. The function SaveMMGauss computes the stored statistics

using Equation (3.2), (3.3) and (4.19). The function CalcMI is used to estimate the in-

formativeness of a measurement in multiple model case, and it is discussed in more detail

below. The thresholds γ1 and γ2 govern the trade-off between computational complexity

and accuracy. The first threshold γ1 determines the proportion of OOSMs that are declared

uninformative and immediately discarded. The informative OOSMs are first processed by

function ProcessOOSM-IMMEKS (Section A.2). The second threshold γ2 defines the propor-

tion of informative OOSMs that are processed using ProcessOOSM-GARP-MM (Algorithm 9)

which reruns the filter from the time τ when the OOSM is measured. In our experiments
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we observed that ProcessOOSM-GARP-MM can be invoked rarely and yet this substantially

improves the quality of tracking in some cases.

OOSM Selection Rule

We extend our proposed two metrics in the previous chapter. The first metric is the mutual

information between the OOSM Yτ and the state Xk, I(Yτ , Xk|W1:k
k ,Zk,τ̄ ). The mutual in-

formation is conditioned on all received measurements in W1:k
k and the recently received

OOSMs in Zk except yτ , denoted Zk,τ̄ = Zk \ {yτ}. The second metric is the Kullback-

Leibler divergence (KL-divergence) [38] between the distribution at time k, conditioned on

all measurements except for yτ , and the distribution at time k conditioned on all measure-

ments including yτ , denoted by D(p(xk|W1:k
k ,Zk,τ̄ )‖p(xk|W1:k

k ,Zk)). In the multiple-model

case, we use IMM-EKF to calculate the mutual information instead of EKF.

4.5 Simulations

4.5.1 Simulation Model — Example 3

In this scenario, the target starts at initial position [−200m, 0m]. It performs a straight-

line motion with constant velocity 60m/s for 5 seconds, then an anti-clockwise coordinated

turn of radius 320m with a constant speed for another 30 seconds. It then continues with

straight-line motion for 5 seconds, makes a clockwise coordinated turn of radius 320m with

a constant speed for another 30 seconds and then continues with straight-line motion for

the last 5 seconds. The true trajectory is displayed in Fig. 4.2.

Therefore, we have to model the target motion in the filters by two models : the con-

stant velocity (CV) model and the nearly coordinated turn (CT) model [40] with unknown

constant turn rate and cartesian velocity. The initial model distribution is set to [0.9, 0.1],

and the Markovian transition probabilities for model switching 2 are

Pswitch =

(
0.8 0.2

0.2 0.8

)
. (4.20)

The state of the target is given as xk = [pxk, p
y
k, v

x
k , v

y
k , ωk]

T , where p, v and ω denote the

2The parameters of model transition are chosen following the tradition for this problem in the literature,
such as [16].
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Fig. 4.2 Example 3: Target trajectory and the sensors.

position, velocity and turn rate respectively. In the simulations, we select the standard de-

viations for the position, speed and turn rate as σp = 30m, σv = 10m/sec, σω = 0.1rad/sec.

At the beginning, all the filters to be run are assumed to know very little about the initial

state of the target and therefore they are initialized with the state value x0 = [0, 0, 0, 0, 0]T

and a large covariance R0 = diag([5002, 5002, 302, 302, 0.12]) in order to cover the real posi-

tion of the target.

The dynamic model is :

xk+1 = f αk+1|k(xk) + vk+1|k (α = 1, 2). (4.21)
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The dynamic model for the constant velocity (CV) model f 1
k+1|k(.) is

xk+1 =


1 0 ∆t 0 0

0 1 0 ∆t 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

xk. (4.22)

The dynamic model for the coordinated turn (CT) model f 2
k+1|k(.) is

xk+1 =


1 0 sin(ωk∆t)

ωk

cos(ωk∆t)−1
ωk

0

0 1 1−cos(ωk∆t)
ωk

sin(ωk∆t)
ωk

0

0 0 cos(ωk∆t) − sin(ωk∆t) 0

0 0 sin(ωk∆t) cos(ωk∆t) 0

0 0 0 0 1

xk. (4.23)

vk+1|k is Gaussian process noise with a distribution N (0, Vk+1|k) and the covariance matrix

Vk+1|k = diag([302, 302, 102, 102, 0.12]) for any k. ∆t = 1 is the sampling period.

There are three sensors S1, S2 and S3 sending measurements to a common fusion

center in this scenario. The locations of the three sensors are [Sx1 , S
y
1 ] = [−600,−600],

[Sx2 , S
y
2 ] = [600, 0], [Sx3 , S

y
3 ] = [−600, 600] (See Fig. 4.2). All the sensors are measuring the

angle of the target. The measurements are with additive Gaussian noise with zero mean

and standard deviation σm = 0.1rads for all sensors with sampling period ∆t = 1. The

measurement function of bearings-only tracking is

yk = hk(xk) + sk (4.24)

hk(xk) = arctan(
pyk − S

y
j

pxk − Sxj
), j = 1, 2, 3 (4.25)

where sk ∼ N (0, Qk) and Qk = diag([σ2
m, σ

2
m, σ

2
m]). An OOSM arrives at the fusion center

with probability posm and delay td. The probability posm characterizes the reliability of

OOSM delivery (a portion of the OOSMs are lost on the way to the fusion centre). The

delay td is uniformly distributed in the interval [0, l], where l is the predefined maximum

delay.
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4.5.2 Cramér-Rao Lower Bound

For the multiple model case, a Cramér-Rao lower bound was presented in [42] as an indi-

cation of performance limitations. We describe it here again.

This bound assumes that the true model history of the target trajectory is known a

priori :

H∗k = {A∗1, A∗2, . . . , A∗k}. (4.26)

Let x̂k be an estimate of a real state vector xk. The Cramér-Rao bound is specified as a

bound on the covariance of x̂k:

E[(x̂k − xk)(x̂k − xk)T ] (4.27)

≥E[(x̂k − xk)(x̂k − xk)T |H∗k] (4.28)

≥[J∗k ]−1, (4.29)

where the mode-history-conditioned information matrix J∗k is

J∗k = E[(∇xk log p(xk, yk))(∇xk log p(xk, yk))
T |H∗k]. (4.30)

Following the development in [41] as in Equation (3.27), the mode-history-conditioned

information matrix can be evaluated using the following recursive equation:

J∗k+1 = D22
k −D21

k (J∗k +D11
k )−1D12

k , (4.31)

where Dij
k are given by

D11
k = E{(F (A∗k+1)

k+1|k )TV −1
k+1|kF

(A∗k+1)

k+1|k }

D12
k = −E{(F (A∗k+1)

k+1|k )T}V −1
k+1|k = (D21

k )T (4.32)

D22
k = V −1

k+1|k + E{HT
k+1Q

−1
k+1Hk+1.}

Here F
(A∗k)

k+1|k and Hk+1 are the Jacobian matrices of the transition function f
A∗k+1

k+1|k(x) and

measurement function hk+1(x), respectively, and Vk+1|k and Qk+1 are covariance matrices

of process noise and measurement noise. The Jacobian of the constant velocity (CV) model
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is

F
(1)
k+1|k =


1 0 ∆t 0 0

0 1 0 ∆t 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , (4.33)

The Jacobian of the coordinated turn (CT) model is

F
(2)
k+1|k =



1 0 sin(ωk∆t)
ωk

cos(ωk∆t)−1
ωk

∂pxk+1

∂ωk

0 1 1−cos(ωk∆t)
ωk

sin(ωk∆t)
ωk

∂pyk+1

∂ωk

0 0 cos(ωk∆t) − sin(ωk∆t)
∂vxk+1

∂ωk

0 0 sin(ωk∆t) cos(ωk∆t)
∂vyk+1

∂ωk

0 0 0 0 1


(4.34)

∂pxk+1

∂ωk
=
ωk∆t cos(ωk∆t)− sin(ωk∆t)

ω2
k

vxk −
ωk∆t sin(ωk∆t) + cos(ωk∆t)− 1

ω2
k

vyk (4.35)

∂pyk+1

∂ωk
=
ωk∆t sin(ωk∆t) + cos(ωk∆t)− 1

ω2
k

vxk −
ωk∆t cos(ωk∆t)− sin(ωk∆t)

ω2
k

vyk (4.36)

∂vxk+1

∂ωk
= −∆t sin(ωk∆t)v

x
k −∆t cos(ωk∆t)v

y
k (4.37)

∂vyk+1

∂ωk
= −∆t cos(ωk∆t)v

x
k −∆t sin(ωk∆t)v

y
k . (4.38)

The Jacobian of hk(x) is

Hk =


−(pyk−S

y
1 )

(pxk−S
x
1 )2+(pyk−S

y
1 )2

pxk−S
x
1

(pxk−S
x
1 )2+(pyk−S

y
1 )2 0 0 0

−(pyk−S
y
2 )

(pxk−S
x
2 )2+(pyk−S

y
2 )2

pxk−S
x
2

(pxk−S
x
2 )2+(pyk−S

y
2 )2 0 0 0

−(pyk−S
y
3 )

(pxk−S
x
3 )2+(pyk−S

y
3 )2

pxk−S
x
3

(pxk−S
x
3 )2+(pyk−S

y
3 )2 0 0 0

 . (4.39)

Our simulations are carried out using a fixed trajectory and thus the expectation operators

in (4.32) vanish and the required Jacobians can be calculated using the true trajectory.

The recursion in (4.31) is initialized by J0 = R−1
0 , where R0 is the initial covariance matrix

of the state x0.



4.5 Simulations 69

4.5.3 Simulation Results

We have implemented nine different multiple model filters. All the particle filters are based

on the Multiple Model Particle Filter (MMPF) with 2000 particles (Section 4.3.2). The

filters were implemented in MATLAB and the code was highly optimized.

• MMPFall : a SIR multiple model particle filter which collects all the measurements

from all the sensors. There are no OOSMs in this case. (See Section 4.3.2)

• MMPFmis : a SIR multiple model particle filter which discards all the OOSMs and

therefore only processes the measurements that are not delayed. (See Section 4.3.2)

• IMM-EKF all : an interacting multiple model extended Kalman filter which collects

all the measurements from all the sensors. There are no OOSMs in this case. (See

Section 4.3.1)

• IMM-EKF mis : an interacting multiple model extended Kalman filter which discards

all the OOSMs and therefore only processes the measurements that are not delayed.

(See Section 4.3.1)

• OOSM-rerunMM : a SIR multiple model particle filter which processes the OOSMs by

re-running MMPF starting with the saved particle cloud at the time step producing

OOSM. (See Section 4.4.1)

• OOSM-GARP-MM : a SIR multiple model particle filter which processes the OOSMs

by re-running particle filter starting with the saved Gaussian approximation of the

particle cloud at the time step producing OOSM. (See Section 4.4.2)

• MMPF-IMM-EKS : a SIR multiple model particle filter equipped with the extended

Kalman smoother, which stores all the Gaussian approximations of the particle

clouds. (See Section 4.4.3)

• EDMMPF-MI : multiple model particle filter through selective OOSM processing

based on the mutual information metric. (See Section 4.4.4)

• EDMMPF-KL: multiple model particle filter through selective OOSM processing

based on the KL-divergence metric. (See Section 4.4.4)
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In this example, all 3 sensors generate OOSMs. The OOSMs arrive at the fusion centre

with probability posm. If they do arrive, they arrive with delay td. In the simulations, td

is uniformly distributed in the range [0, 10] and posm is set to 0.7. We set ten values of

first stage thresholds as γ1 = 0 : 0.1 : 0.9 for EDMMPF-MI and γ1 = 0 : 0.2 : 1.8 for

EDMMPF-KL. γ2 = 10% for both of them. The simulation of each threshold shows the

average of 1000 Monte Carlo runs.
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Fig. 4.3 Example 3: RMS position errors for MMPFall, MMPFmis, OOSM-

rerunMM, OOSM-GARP-MM and MMPF-IMM-EKS.

We first plot RMS position errors of MMPFall, MMPFmis, OOSM-rerunMM, OOSM-

GARP-MM, MMPF-IMM-EKS and CRLB, which are shown in Fig. 4.3. In this figure,
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MMPF-IMM-EKS performs much worse than OOSM-rerunMM and OOSM-GARP-MM.

The reason is that many measurements arrive at the fusion centre after a substantial delay.

If the fusion centre receives an OOSM after missing measurements for a few time steps,

this OOSM can be very informative and can greatly change the distributions of particles.

MMPF-IMM-EKS fails to process such highly informative OOSMs because it does not

change the locations of particles but just updates their weights.

The RMS at time step k vs Average running time of one MC run curves are displayed

in Fig. 4.4. In this example, ten diamond points on the red curve represent the results

of SP-MI with different γ1 from 0 to 0.9 with step size 0.1 (from right to left). Ten

square points on the blue curve represent the results of SP-KL with different γ1 from 0

to 1.8 with step size 0.2 (from right to left). When the thresholds are chosen so that the

selective processing filters have the same computational complexity as MMPF-IMM-EKS,

they achieve significantly better tracking performance. Alternatively, for the same fixed

RMS error performance, the selective processing algorithms reduce the computation time

by approximately 20− 40%.

In this case, we do not show the results of IMM-EKF mis and IMM-EKF all in the

figures, since they are totally divergent due to the long period of nonlinear trajectory.

From Fig. 4.4, EDMMPF-MI with γ1 = 0.2 and EDMMPF-KL with γ1 = 0.4 can

achieve similar performance as re-run filters but with least average running time. In

Fig. 4.5, we plot the RMS position performance for 75s of the algorithms with these set-

tings. In this example, MMPF-IMM-EKS performs much worse than OOSM-GARP-MM,

but EDMMPF-MI and EDMMPF-KL can achieve similar performance as OOSM-GARP-

MM. The selective processing algorithms process highly informative OOSMs by OOSM-

GARP-MM in order to avoid the deterioration. This additional operation only leads to a

small increase in complexity since it only relevant for a very small portion of the OOSMs.

From the results, the fraction of individual OOSMs processed by the MMPF-IMM-EKS

after the first threshold γ1 is 27.9% for EDMMPF-MI and 40.9% for EDMMPF-KL. After

the second threshold, the fraction of informative OOSMs processed by rerunning the par-

ticle filter is 4.8% for EDMMPF-MI and 11.3% for EDMMPF-KL3. In the multiple model

case, EDMMPF-MI is obviously more efficient than EDMMPF-KL because EDMMPF-MI

processes less OOSMs but achieves similar performance as EDMMPF-KL.

3This fraction means the percentage of original received OOSMs.
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(b) N = 2000, k = 30
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(c) N = 2000, k = 40
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(d) N = 2000, k = 50
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(e) N = 2000, k = 60
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(f) N = 2000, k = 70

Fig. 4.4 Example 3: RMS vs Average running time of one MC run from 10

simulations with different γ1 for EDMMPF-MI (from 0 to 0.9) and EDMMPF-

KL (from 0 to 1.8). We select six timesteps, k = 20, 30, 40, 50, 60, 70 for filters

with 2000 particles.
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Fig. 4.5 Example 3: RMS position errors ( γ1 = 0.2 for EDMMPF-MI and

γ1 = 0.4 for EDMMPF-KL).

The boxplot figures are shown in Fig. 4.6. These figures show the variation of position

RMS error for MMPF-IMM-EKS, OOSM-GARP, EDMMPF-MI and EDMMPF-KL. In

these figures, an outlier (marked by ’+’ sign ) is defined as a value that is more than 5

times the interquartile range away from the top or bottom of the box. In this example, the

distributions of the errors of MMPF-IMM-EKS are severely diffused, whereas the other

three particle filters have similarly stable performance. For MMPF-IMM-EKS, we can de-

duce that there are probably some divergent tracks in the simulation (See Table 4.1). When

there are many significantly-delayed OOSMs, the distributions of current particles cannot
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represent the real posterior distribution. The performance of MMPF-IMM-EKS becomes

poorer because it does not change the locations of the particles but just updates their

weights. We need to reprocess the particles and update the stored statistics of particles.

Comparing MMPF-IMM-EKS and selective processing algorithms, the operation of repro-

cessing particles by OOSM-GARP-MM prevents the divergent trend of MMPF-IMM-EKS

and results in a major performance improvement.
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Fig. 4.6 Example 3: Errorbars showing the variation of position RMS er-

rors for MMPF-IMM-EKS, OOSM-GARP-MM, EDMMPF-MI (γ1 = 0.2) and

EDMMPF-KL(γ1 = 0.4).
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The overall performance of a filter can be evaluated using RTAMS error as [42]. This

is defined as

RTAMS =

√√√√ 1

(tmax − ta)×M

tmax∑
k=ta+1

M∑
i=1

(p̂xk
(i) − pxk(i))2 + (p̂yk

(i)
− pyk

(i))2, (4.40)

where tmax is the duration of tracking time and ta is a time index after which the averaging

is carried out. M is the total number of Monte Carlo runs. In this case, tmax = 75s and

we select ta = 0. By defining the track with RTAMS error larger than 500m as a divergent

track, we can calculate the number of divergent tracks out of 1000 tracks for each filter.

We show the RTAMS error, average running time of each filter tracking 75s and number

of divergent tracks in Table 4.1. In this table, IMM-EKF all and IMM-EKF mis are

almost always divergent because the EKF cannot satisfactorily track the highly nonlinear

dynamics. EDMMPF-MI balances well the trade-off between performance and complexity.

EDMMPF-KL consumes more time since it invokes the OOSM-GARP-MM more frequently

than EDMMPF-MI. When there are frequent batches of OOSMs, the efficiency of MMPF-

IMM-EKS decreases because it needs to individually process the OOSMs generated at

different time steps. On the other hand, the efficiency of OOSM-GARP-MM increases

since it can process each batch of OOSMs by calling the function once.

Table 4.1 Example 3: Performance comparison of RTAMS error, running

time and the number of divergent tracks
Algorithm Time (s) RTAMS (m) Divergent tracks

MMPFall 1.1633 68.8634 0

MMPFmis 0.4384 568.9295 246

IMM-EKF all 0.2632 1.5× 1010 962

IMM-EKF mis 0.1891 1.0× 109 903

OOSM-rerunMM 6.3546 196.1403 0

OOSM-GARP-MM 5.7713 196.6750 0

MMPF-IMM-EKS 5.5796 263.5673 10

EDMMPF-MI (γ1 = 0.2) 4.0286 222.3772 0

EDMMPF-KL(γ1 = 0.4) 6.0261 214.9070 0
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Chapter 5

Conclusion

5.1 Summary and Discussion

In this thesis, we have proposed and analyzed several particle filtering algorithms that

can efficiently incorporate out-of-sequence measurements while tracking targets in wireless

sensor networks. Our work focuses on balancing the trade-off between the complexity and

accuracy of the methods.

Chapter 2 reviews the general Bayesian tracking framework and introduces two popular

algorithms. The Kalman filter is a simple and effective algorithm for tracking problems

with linear dynamics and measurement function and Gaussian process and measurement

noises. Generalization of this algorithm, such as the Extended Kalman Filter (EKF) and

the Unscented Kalman Filter (UKF), can track targets with mildly nonlinear dynamics.

Particle Filters (PF), which belong to another category — Sequential Monte Carlo (SMC)

methods, are applicable to more practical tracking problems with highly non-linear target

dynamics and non-Gaussian noises. The latter half of the chapter focuses on the out-of-

sequence measurement (OOSM) problem in tracking and provides a detailed mathematical

model to describe this situation.

We review three existing methods in Chapter 2. The OOSM Re-run Particle Filter

(OOSM-rerun) is an obvious approach for tracking in the presence of OOSMs, but it re-

quires exorbitant memory resources. It must store all the past particles and has high

computational complexity because it must reprocess all the particles for several time steps.

The algorithm does provide an accuracy benchmark for other approaches in this thesis. The

OOSM Particle Filter using Particle Smoothing (OOSM-PS) in [11] has reduced computa-
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tional complexity, but it still requires large memory to store past particles. The Storage

Efficient Particle Filters (SEPF) proposed in [12] reduce the memory requirements by only

storing a Gaussian approximation (the mean and covariance matrix) of the particles for

each past time-step. Auxiliary fixed point smoothers are employed to determine the like-

lihood of a delayed measurement conditioned on each particle in the current set, and this

likelihood is used to update the weight of the particle. The Storage Efficient Particle Fil-

ters with Extended Kalman Smoother (SEPF-EKS) works well in many cases, especially

when the fusion centre seldom receives highly informative OOSMs. However, in some cases,

SEPF-EKS fails to deal with highly informative delayed measurements and this leads to

performance deterioration.

In Chapter 3, we propose two candidate algorithms. The OOSM Gaussian Approxima-

tion Re-run Particle filter (OOSM-GARP) is a storage-efficient version of OOSM-rerun and

can achieve similar performance. It reduces the memory requirements by storing a Gaus-

sian approximation of the particles, but still needs to reprocess the particles for several

time steps. Our novel efficient delay-tolerant particle filter through selective processing of

OOSMs (EDPF-SP) is proposed to reduce the computational complexity. The most im-

portant idea of our algorithm is selective processing of OOSMs based on their information

content. We propose a computationally-simple selection rule to determine the informa-

tiveness of OOSMs. The algorithm immediately discards uninformative OOSMs and then

uses the relatively computationally-simple SEPF-EKS to process the informative OOSMs.

If significant reduction of the effective particle number is detected after application of

SEPF-EKS, we choose to apply OOSM-GARP. The approach combines the advantages of

OOSM-GARP and SEPF-EKS in order to achieve a satisfactory tradeoff between accuracy

and complexity. From the simulation results of two examples, EDPF-SP only processes

30− 40% of all OOSMs using SEPF-EKS and 1− 3% of OOSMs using OOSM-GARP, but

it can achieve similar performance as the two re-run particle filters.

In Chapter 4, we extend our novel algorithm to the more complicated multiple model

tracking case. In the Multiple Model Particle Filter with IMM-EKS (MMPF-IMM-EKS),

we use multiple model particle filter (MMPF) as our standard filter to process non-delayed

measurements and also employ IMM-EKS to tackle the OOSMs. We also propose an

efficient delay-tolerant multiple model particle filter through selective processing of OOSMs

(EDMMPF-SP) to reduce the computational complexity and improve the performance

of MMPF-IMM-EKS. From a simulation example with long periods of highly nonlinear
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dynamics and substantially-delayed OOSMS, we can see the advantages of EDMMPF-SP

over existing methods.

5.2 Future Work

We observed that it is difficult to efficiently extend the SEPF-EKS algorithm to process

batches of OOSMs, so the computational savings diminish when it is common for multiple

OOSMs to arrive in a given time step. Further investigation of how to improve the efficiency

of SEPF-EKS to process batches of OOSMs is warranted. On the other hand, the OOSM-

GARP algorithm readily accommodates such batches of OOSMs. It is possible to evaluate

the number of individual OOSMs in the received batch to decide which approach is more

efficient. This detection would improve the speed of our selective processing methods,

especially in the case with many batches of OOSMs.

In our algorithms, the thresholds γ1 and γ2 are important parameters which determine

the complexity and performance of the methods. From the simulation results, the best

values vary in different situations. Therefore, another issue is how to adjust these thresholds

automatically and preferably on-line. We plan to develop an adaptive process that modifies

the thresholds during operation until a satisfactory balance between computational load

and accuracy is achieved.
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Appendix A

A.1 Algorithm Description of Storage Efficient Particle Filter

with Extended Kalman Smoother

In this section, we provide a detailed description of the storage efficient particle filter that

employs an extended Kalman smoother, as described in [12]. The algorithm is described

for the case when all measurements are available from time steps 1 to k, except for a

measurement at time step τ , Zk = {yτ ≡ y
Dτ,k
τ }.

There is one aspect of the following algorithm that is worth noting. The storage efficient

particle filter maintains a Gaussian approximation of p(xm|Wτ :m
k ) for all m in the range k−

l− 1, . . . , k. We denote these distributions by N (µm|m, Rm|m). When processing an OOSM

yτ at time step k using the algorithm presented below, the algorithm only updates µk and

Rk in Ωk, while the Gaussian approximations of p(xm|Wτ :m
k ), denoted by N (µm|m, Rm|m),

are not updated. This means that the approximations at earlier time-steps m < k can

become significantly poorer if several informative OOSMs with generation times before m

are processed by the algorithm.

Algorithm: SEPF-EKS

Function: ProcessOOSM-EKS

Input: ξk−1, ωk−1, W̃k−l:k
k , Ωk−1 = {µk−l−2:k−1, Rk−l−2:k−1}

1. (ξk, ωk) ← ParticleFilter(Yk, ξk−1, ωk−1).
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2. Approximate p(xτ |y1:τ−1) as N (xτ ;µτ |τ−1, Rτ |τ−1), where

µτ |τ−1 = fτ |τ−1 (µτ−1|τ−1) (A.1)

Rτ |τ−1 = Fτ |τ−1Rτ−1|τ−1F
T
τ |τ−1 + Vτ |τ−1 (A.2)

Fτ |τ−1 =
∂

∂x
fτ |τ−1(x)|x=µτ−1|τ−1

(A.3)

µτ−1|τ−1 = µτ−1 ∈ Ωk−1, Rτ−1|τ−1 = Rτ−1 ∈ Ωk−1. (A.4)

3. Define the initial state and covariance of an augmented system as:

zτ =

(
z1
τ

z2
τ

)
=

(
µτ |τ−1

µτ |τ−1

)
, Pτ =

(
Rτ |τ−1 Rτ |τ−1

Rτ |τ−1 Rτ |τ−1

)
. (A.5)

Extended Kalman Smoother: from m = τ + 1 to m = k − 1

Prediction:

zm|m−1 =

(
fm|m−1(z1

m−1)

z2
m−1

)
, Pm|m−1 = FmPmF

T
m + Ṽm (A.6)

Fm =

(
∂
∂x

fm|m−1(x)|x=z1
m−1

0

0 I

)
, Ṽm =

(
Vm|m−1 0

0 0

)
. (A.7)

Updating:

τ + 1 6 m 6 k − 2 :

Km = Pm|m−1H
T
m(HmPm|m−1H

T
m + Q̃m)−1 (A.8)

zm = zm|m−1 +Km(ym − hm(z1
m|m−1)) (A.9)

Pm = (I −KmHm)Pm|m−1, (A.10)

where Hm =
∂

∂x
hm(x)|x=z1

m|m−1
, Q̃m = Qm. (A.11)
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m = k − 1:

Km = Pm|m−1H
T
m(HmPm|m−1H

T
m + Q̃m)−1 (A.12)

z
(i)
k−1 = zm|m−1 +Km

(
ym − hm(z1

m|m−1)

x
(i)
k − fm+1|m(z1

m|m−1)

)
(A.13)

P
(i)
k−1 = (I −KmHm)Pm|m−1, (A.14)

where Hm =

(
∂
∂x

hm(x)|x=z1
m|m−1

∂
∂x

fm+1|m(x)|x=z1
m|m−1

)
(A.15)

Q̃m =

(
Qm 0

0 Vk|k−1

)
. (A.16)

4. Obtain the smoothed density

p(xτ |x(i)
k , y1:k−1,τ̄ ) = N (xτ ;µ

x
τ |1:k−1,τ̄ ,k(i) , R

x
τ |1:k−1,τ̄ ,k(i)) (A.17)

µxτ |1:k−1,τ̄ ,k(i) = z
(i),2
k−1 : lower block of z

(i)
k−1 (A.18)

Rx
τ |1:k−1,τ̄ ,k(i) = P

(i),22
k−1 : bottom-right block of P

(i)
k−1. (A.19)

5. Evaluate the likelihood

p(yτ |x(i)
k , y1:k,τ̄ ) = N (yτ ;µ

y

τ |1:k,τ̄ ,k(i) , R
y

τ |1:k,τ̄ ,k(i)) (A.20)

where µy
τ |1:k,τ̄ ,k(i) = hτ (µ

x
τ |1:k−1,τ̄ ,k(i)) (A.21)

Ry

τ |1:k,τ̄ ,k(i) = HτR
x
τ |1:k−1,τ̄ ,k(i)H

T
τ +Qτ (A.22)

Hτ =
∂

∂x
hτ (x)|x = µxτ |1:k−1,τ̄ ,k(i) . (A.23)
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6. Update and normalize weights:

ωk
(i) = ω̃

(i)
k,τ̄ × p(yτ |x

(i)
k , y1:k,τ̄ ) (A.24)

ω̃k
(i) =

ωk
(i)∑N

i=1 ωk
(i)

(A.25)

Nprior
eff = 1/

N∑
i=1

(ω̃
(i)
k,τ̄ )

2 (A.26)

Npost
eff = 1/

N∑
i=1

(ω̃k
(i))2. (A.27)

If Npost
eff /Nprior

eff > 1
100

, the weights are updated by ω̃k
(i), otherwise, the weights ω̃

(i)
k,τ̄

are remained.

7. Resample particles according to the updated weights, calculate the mean µk and the

covariance matrix Rk and store them into the set Ωk .
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A.2 Algorithm Description of Multiple Model Particle Filter

with IMM-EKS

In this section, we provide a detailed description of the multiple model particle filter with

IMM-EKS ( Section 4.4.3 ). The algorithm is described for the case when all measurements

are available from time steps 1 to k, except for a measurement at time step τ , Zk = {yτ ≡
y
Dτ,k
τ }.

There is one aspect of the following algorithm that is worth noting. The MMPF-IMM-

EKS maintains a Gaussian approximation of p(xm|Wτ :m
k ) for all m in the range k − l −

1, . . . , k. We denote these distributions by N (µm|m, Rm|m). When processing an OOSM

yτ at time step k using the algorithm presented below, the algorithm only updates µk and

Rk in Ωk, while the Gaussian approximations of p(xm|Wτ :m
k ), denoted by N (µm|m, Rm|m),

are not updated. This means that the approximations at earlier time-steps m < k can

become significantly poorer if several informative OOSMs with generation times before m

are processed by the algorithm.

Algorithm: MMPF-IMM-EKS

Function: ProcessOOSM-IMMEKS

Input: ξk−1, ωk−1, W̃k−l:k
k , Ωk−1 = {µk−l−2:k−1, Rk−l−2:k−1}, {p(Am = α)}α=1:r

m=k−l−1:k

1. (ξk, ωk) ← MMParticleFilter(Yk, ξk−1, ωk−1).

2. Approximate p(xτ |y1:τ−1) as N (xτ ;µτ |τ−1, Rτ |τ−1), where

µατ |τ−1 = f ατ |τ−1(µτ−1|τ−1), (α = 1, . . . , r) (A.28)

Rα
τ |τ−1 = Fα

τ |τ−1Rτ−1|τ−1F
α
τ |τ−1

T + Vτ |τ−1 (A.29)

Fα
τ |τ−1 =

∂

∂x
f ατ |τ−1(x)|x=µτ−1|τ−1

(A.30)

µτ−1|τ−1 = µτ−1 ∈ Ωk−1, Rτ−1|τ−1 = Rτ−1 ∈ Ωk−1 (A.31)

ϕ
α|β
τ |τ−1 =

1

c̄α
pα|βϕ

β
τ−1 (A.32)

c̄α =
r∑

β=1

pα|βϕ
β
τ−1. (A.33)
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3. Define the initial state and covariance of an augmented system as:

zατ =

(
µατ |τ−1

µατ |τ−1

)
, Pα

τ =

(
Rα
τ |τ−1 Rα

τ |τ−1

Rα
τ |τ−1 Rα

τ |τ−1

)
, ϕατ = ϕ

α|β
τ |τ−1. (A.34)

4. Run IMM-Extended Kalman Smoother from m = τ+1 to m = k−2 with augmented

dynamic and measurement systems, where zαm−1
1 and zαm−1

2 denote upper block and

lower block in zαm−1:

zαm =

(
f αm|m−1(zαm−1

1)

zαm−1
2

)
(A.35)

ηαm = hαm(zαm
1). (A.36)

(1)Interaction(mixing): the mixing probabilities ϕ
β|α
k , (α, β = 1, . . . , r) denote the

probabilities that transition from model α to model β and are calculated as:

ϕβ|αm =
1

c̄β
pβ|αϕ

α
m−1 (A.37)

c̄β =
r∑

α=1

pβ|αϕ
α
m−1, (A.38)

where ϕαm−1 is the probability of model α at the time step m−1 and c̄β is a normalizing

factor.

Then we can calculate the mixed inputs for each filter :

z0β
m−1 =

r∑
α=1

ϕβ|αm zαm−1 (A.39)

P 0β
m−1 =

r∑
α=1

ϕβ|αm × {Pα
m−1|m−1 + [zαm−1|m−1 − z

0β
m−1][zαm−1|m−1 − z

0β
m−1]T}, (A.40)

where zαm−1 and Pα
m−1 are the estimates of state and covariance for each filter at time

step m− 1.
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(2)Filtering: in this step, the inputs of r filters are processed by each filter separately.

[zβm|m−1, P
β
m|m−1] = EKFp(z

0β
m−1, P

0β
m−1) (A.41)

[zβm, P
β
m] = EKFu(z

β
m|m−1, P

β
m|m−1, η

β
m). (A.42)

In addition to above operation, we also compute the likelihood functions correspond-

ing to each filter by using the measurement residual and its covariance Sβm:

Λβ
m = N (ηβm; hβm(zβm|m−1

1
), Sβm). (A.43)

(3)Combination: in this step, we compute the probability of each model at time step

m:

ϕβm =
1

c
Λβ
mc̄β (A.44)

c =
r∑

β=1

Λβ
mc̄β, (A.45)

where c is a normalizing factor. Here, we do not need combined estimates, so the

step of combining estimates can be skipped.

5. At the last time step m = k − 1, we use particles x
(i)
k as part of measurements with

following function:

ηαm =

(
hαm(zαm

1)

f αm+1|m(zαm
1)

)
. (A.46)

Operate the interaction and filtering step, then we calculate the likelihood for each

model and then combine them with Λβ
k−1. In each model with index β = 1, . . . , r,

(Here, we do not add index β for simplicity)
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(1)Get the smoothed density

p(xτ |x(i)
k , y1:k−1,τ̄ ) = N (xτ ;µ

x
τ |1:k−1,τ̄ ,k(i) , R

x
τ |1:k−1,τ̄ ,k(i)) (A.47)

µxτ |1:k−1,τ̄ ,k(i) = z
(i),2
k−1 : lower block of z

(i)
k−1 (A.48)

Rx
τ |1:k−1,τ̄ ,k(i) = P

(i),22
k−1 : bottom-right block of P

(i)
k−1. (A.49)

(2)Evaluate the likelihood

p(yτ |x(i)
k , y1:k,τ̄ ) = N (yτ ;µ

y

τ |1:k,τ̄ ,k(i) , R
y

τ |1:k,τ̄ ,k(i)) (A.50)

where µy
τ |1:k,τ̄ ,k(i) = hτ (µ

x
τ |1:k−1,τ̄ ,k(i)) (A.51)

Ry

τ |1:k,τ̄ ,k(i) = HτR
x
τ |1:k−1,τ̄ ,k(i)H

T
τ +Qτ (A.52)

Hτ =
∂

∂x
hτ (x)|x = µxτ |1:k−1,τ̄ ,k(i) . (A.53)

(3)Combine the likelihood of each model:

p(yτ |x(i)
k , y1:k,τ̄ ) = pβ(yτ |x(i)

k , y1:k,τ̄ ) ∗ Λβ
k−1. (A.54)

6. Update and normalize weights:

ωk
(i) = ω̃

(i)
k,τ̄ × p(yτ |x

(i)
k , y1:k,τ̄ ) (A.55)

ω̃k
(i) =

ωk
(i)∑N

i=1 ωk
(i)

(A.56)

Nprior
eff = 1/

N∑
i=1

(ω̃
(i)
k,τ̄ )

2 (A.57)

Npost
eff = 1/

N∑
i=1

(ω̃k
(i))2. (A.58)

If Npost
eff /Nprior

eff > 1
100

, the weights are updated by ω̃k
(i), otherwise, the weights ω̃

(i)
k,τ̄

are remained.

7. Resample particles according to the updated weights, calculate the mean µk and the

covariance matrix Rk and store them into the set Ωk.
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