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Abstract

The autonomous driving industry’s rapid growth highlights the necessity for advanced tech-
nologies to guarantee safety, comfort, and efficiency. This thesis focuses on three fundamental
aspects of autonomous driving systems: trajectory prediction, trajectory planning, and control
adaptation. The first contribution of this study is the introduction of a new technique for trajec-
tory prediction that utilizes spatial-temporal graphs to capture historical traffic interactions. The
use of a depthwise graph encoder network and sequential Gated Recurrent Unit decoder improves
vehicle trajectory prediction compared to other deep learning methods. Next, an innovative online
graph planner is introduced for generating feasible and comfortable trajectories. The planner cre-
ates a spatial-temporal graph that integrates the autonomous vehicle, nearby vehicles, and virtual
road nodes. The graph is then processed using a sequential network with a behavioral layer for
kinematic constraint compliance. Testing the planner on complex driving tasks demonstrates its
effectiveness, surpassing existing state-of-the-art approaches. Finally, a novel approach for on-
line learning in vehicle modeling and lateral control is introduced, using heterogeneous graphs and
Graph Neural Networks. This technique enables the vehicle model and lateral controller to adapt to
dynamic conditions, enhancing performance under perturbations. The self-learning model-based
lateral controller is evaluated on the CARLA simulator, showing promising results. These contri-
butions improve trajectory prediction, planning, and control adaptability, advancing autonomous
driving technology and enhancing safety and efficiency of autonomous vehicles.
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Sommaire

La croissance rapide du secteur de la conduite autonome met en évidence la nécessité de tech-
nologies avancées pour garantir la sécurité, le confort et l’efficacité. Cette thèse se concentre sur
trois aspects fondamentaux des systèmes de conduite autonome : la prédiction de trajectoire, la
planification de trajectoire et l’adaptation des commandes. La première contribution de cette étude
est l’introduction d’une nouvelle technique de prédiction de trajectoire qui utilise des graphes
spatio-temporels pour prendre en compte les interactions passées du trafic. L’utilisation d’un
réseau d’encodeurs de graphes profond et d’un décodeur d’unités récurrentes à portes séquentielles
améliore la prédiction de la trajectoire du véhicule par rapport à d’autres méthodes d’apprentissage
profond. Ensuite, un planificateur en ligne innovant est introduit pour générer des trajectoires réal-
isables et confortables. Le planificateur crée un graphe spatio-temporel qui intègre le véhicule
autonome, les véhicules à proximité et des nœuds routiers virtuels. Le graphe est ensuite traité
à l’aide d’un réseau séquentiel avec une couche comportementale pour le respect des contraintes
cinématiques. Le test du planificateur sur des tâches de conduite complexes démontre son effi-
cacité, dépassant les approches traditionnelles. Enfin, une nouvelle approche d’apprentissage en
ligne dans la modélisation de véhicules et le contrôle latéral est introduite, utilisant des graphes
hétérogènes et des réseaux de neurones en graphes. Cette technique permet au modèle de véhicule
et au contrôleur latéral de s’adapter aux conditions dynamiques, améliorant ainsi les performances
en cas d’incertitude. Le contrôleur latéral basé sur un modèle d’auto-apprentissage est évalué sur
le simulateur CARLA, montrant des résultats prometteurs. Ces contributions améliorent la prédic-
tion de trajectoire, la planification et l’adaptabilité du contrôle, faisant progresser la technologie de
conduite autonome et améliorant la sécurité et l’efficacité des véhicules autonomes.
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Subscript/Supercript

acc, dec Acceleration , Deceleration

rec, safe Recommended, safety

upper, lower Upper bound, lower bound

long, lat Longitudinal, Lateral

e,a Ego, actor

r, l Right and left side of ego

w Wheel of ego

r, f Rear end and front end of ego

m Vehicle model

c Vehicle controller
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Chapter 1

Introduction

Vehicle driving has been a common but somewhat demanding task humans have been doing for

more than a century. Since the advent of computers and control technology, it has been possible for

systems to assist human drivers up to the point of automating entirely the driving task. The levels of

automation in the driving task were defined by the Society of Automotive Engineers on a scale of

0 to 5 where Level 0 is unassisted human driving and Level 5 is fully autonomous driving unsuper-

vised by a human. The forefront of revolutionizing the transportation industry lies in autonomous

driving technology, aiming to achieve Level 5 autonomy. The promising level of autonomy be-

ing introduced is expected to improve road safety, enhance traffic efficiency, and provide mobility

solutions for diverse populations, including individuals who are incapable of driving. However,

the pursuit of Level 5 autonomy is burdened with complex challenges, particularly in the domains

of perception, decision-making, and control. The purpose of this thesis is to tackle some of these

challenges by devising advanced algorithms and models that allow vehicles to autonomously nav-

igate complex environments, thereby making a significant contribution to the overall objective of

fully autonomous driving.
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1.1 Motivation

The hype around self-driving cars has been growing over the past years and has sparked much

research. This is primarily because of the need and demand for safe and eco-driving which is a

segment of the many Sustainable Development Goals (SDG) set by the United Nations [2]. The

integration of sustainable transportation methods can contribute to both economic growth and in-

creased accessibility. By promoting sustainable transportation, we can achieve greater economic

integration, environmental conservation, social equity, stronger urban-rural connections, and in-

creased productivity in rural regions [3]. Autonomous cars (ACs) have significant potential to

tackle these issues because of the potential to achieve eco-driving, in contrast to human-driven

vehicles [4, 5], through the advancement of artificial intelligence (AI). Hence, it has become in-

evitable for tech companies to secure a place in the race to integrate autonomy in the transportation

system.

The sole contribution of the global transport system amounts to around one-quarter of energy-

related global greenhouse gas emissions [6]. Driving pattern strongly influences emissions [7, 8].

The driving pattern is commonly determined by the speed profile [7], which has an impact on

emissions. Nevertheless, frequent braking or constant shifts in speed result in elevated energy

consumption [7, 8]. The selection of the route plays a role in the emissions as well [7]. Traffic

congestion is another aspect that contributes to pollution [9, 10].

Moreover, Mobility on Demand (MoD) is transforming the future transportation services due to

an increase in urban population. At its core, MoD is based on the principle of treating transporta-

tion as a commodity, where different modes are assigned specific economic values [11]. These

values include a range of factors, such as cost, travel time, waiting time, number of connections,

convenience, and other pertinent attributes. With autonomous MoD systems, the current taxi de-

mand in New York City can be accomplished by using ACs numbering at approximately 70% of

the current taxi fleet [12]. In Singapore, the entire population’s personal mobility can be replaced

by one-third autonomous vehicles of the current number of passenger vehicles [12]. ACs can

significantly improve mobility and accessibility for people with disabilities [13], unable to drive
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traditional vehicles, making them more independent and confident in their daily activities. The

United Nations, therefore, suggests to allocate funding for development of assistive technologies

to improve the quality of life and autonomy of persons with disabilities [14].

There are several factors restricting the standardization of a Level 5 AC to fit the industrially

realistic prototype. When human drivers make decision to navigate through roadways, they try

to ensure safety without violating traffic laws. ACs deployed on roadways will also face similar

situations to humans, and thus, must demonstrate similar navigational skills like humans, if not

better. However, a huge concern is the ability of ACs to achieve the desired goals safely without

violating traffic laws and comfortably in situations characterized by uncertainty. General road-

users will always be skeptical of accepting ACs on roads unless manufacturing companies can

effectively demonstrate that ACs are as safe at least as a average human driver [15].

1.2 Problem Statement

The potential impact of autonomous driving technology on transportation is immense, as it can

bring about significant advantages such as reduced traffic accidents, enhanced mobility for various

populations, and increased efficiency in transportation systems. Nevertheless, the ability of ACs to

perform well depends on the robustness and reliability of their AI systems. The presence of a robust

AI system is crucial in effectively managing a vast range of unpredictable real-world scenarios,

enabling autonomous vehicles to safely navigate intricate environments and promptly respond to

dynamic changes. Moreover, the inclusion of online learning capabilities is of utmost importance

for ACs to enhance their performance by effectively responding in real-time to emerging situations

and new data. The continuous learning process improves the system’s capacity to address new

challenges and maintain high safety standards. Moreover, it is of great importance to prioritize

responsible AI practices to ensure that self-driving vehicles comply with road regulations and

provide passengers with a comfortable and enjoyable ride. Thorough attention to these aspects is

critical for the establishment of public confidence, the attainment of regulatory endorsement, and
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Figure 1.1: The high-level framework of the traditional autonomous driving system

the facilitation of the widespread integration of autonomous driving technology.

Despite significant advancements in autonomous driving technology, there are several crucial

gaps that have yet to be addressed. Presently, artificial intelligence systems frequently show a defi-

ciency in their ability to effectively navigate a wide range of real-life driving situations, especially

those that involve rare or unforeseen events. The limitations of many existing models stem from

their reliance on static datasets, which impedes their ability to adapt to new conditions or learn

from ongoing experiences. This inadequacy highlights the need for improved integration of online

learning methods that support ongoing improvement. In addition, there is an urgent necessity to

construct frameworks that ensure the responsible operation of ACs, which includes adherence to

road regulations, ethical decision-making, and passenger comfort. Most existing research has cen-

tred on isolated elements of autonomous driving, such as perception or control, with inadequate

attention given to the holistic incorporation of robustness, online learning, and responsibility. The

aim of this research is to address these disparities through the development and evaluation of com-

prehensive AI systems that integrate these essential aspects, thus advancing the state-of-the-art

in autonomous driving technology. Broadly speaking, the traditional automated driving system

(ADS) has two main components: (1) the perception and scene recognition block, and (2) the deci-

sion making and planning block, as shown in Figure 1.1. The former is responsible for sensing the

environment and providing an accurate representation of the scene [16]. The task of the latter is to

plan future motion and generate control commands [17]. In this thesis, the focus is on the decision

making and planning block, more particularly, the following sub-modules: (i) the trajectory pre-
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diction module, (ii) the trajectory planning module, and (iii) the vehicle control module (subblocks

3, 4 and 5 in Figure 1.1). This research aimed to develop AI techniques for autonomous driving

with the following goals:

1. Robust and learning AI – Robust and learning AI equips ACs with the capability to smoothly

maneuver through complex environments, efficiently respond to dynamic changes, and pri-

oritize safety in decision-making. Robustness is vital in autonomous driving for effectively

handling unpredictable real-world situations, enhancing safety and reliability. The integra-

tion of online learning allows AI to continuously update and improve its models based on

new data, enhancing its ability to adapt to new scenarios and challenges in real-time.

2. Responsible AI – Ensuring the inclusion of responsible AI in autonomous driving is vital to

guarantee that vehicles operate in accordance with legal and ethical boundaries, demonstrate

respect for road regulations, and prioritize passenger comfort and safety. It involves devel-

oping systems that adhere to traffic laws and make decisions in all situations. Furthermore,

responsible AI places emphasis on delivering a seamless and comfortable travel experience

through the consideration of factors such as speed limits, road conditions, and passenger

preferences. Responsible AI ensures trust and seamless integration of autonomous vehicles

by prioritizing safety, legality, and comfort.

It is important to acknowledge that there are modules that combine both blocks and utilize an

end-to-end learning framework for the final decision-making [17, 18, 19]. An end-to-end learn-

ing framework refers to a system that directly maps raw sensor data to control outputs through

a single learning process, without the need for task-specific modules. A comparative analysis

of end-to-end and traditional modular approaches in autonomous driving reveals distinct advan-

tages and challenges inherent to each technique. The traditional modular approach divides the

driving pipeline into discrete, task-specific components such as perception, planning, and control.

Thus, this design facilitates our interpretation, inspection and debugging of each module’s output

[18, 19]. The modular nature of these systems permits the integration of task-specific algorithms,
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enhancing their reliability within controlled contexts [18]. Nevertheless, this method is susceptible

to the propagation of errors, whereby inaccuracies in a single module, such as misclassifications in

perception, can cascade in subsequent stages, including planning and control [18, 19]. In addition,

modular systems often exhibit redundant calculations in the absence of a unified optimization goal,

which can contribute to inefficiencies in both computational resources and system performance as

a whole.

Alternatively, the end-to-end approach optimizes the system by directly mapping raw sensor

data to control outputs through a single learning process, employing techniques such as imitation

and reinforcement learning [18, 19]. This strategy minimizes error propagation by concurrently

optimizing the entire system for the primary driving task, thus aligning all components towards a

unified objective [19]. End-to-end systems contribute to simplified development by eliminating the

need for task-specific module design and enabling direct learning from extensive datasets [18, 19].

The interpretability of these systems has been improved by recent advancements, which involve the

integration of auxiliary outputs such as attention maps and cost functions. However, there is still

a long road to cover for these advancements to be acceptable in practice. For example, in a very

recent work [20], Araluce et al. used frontal camera images to make decisions for the self-driving

car, and their results show that even though the decision results are better than the ones in the

dataset, the explanation performance decreased from that obtained in the dataset. Atakishiyev, in

his thesis [21] related to autonomous vehicles, used a Video-Language Transformer to determine if

the model can provide correct explanation when prompted with a question from the user. However,

in several instances, incorrect explanations were given, which could negatively impact user trust in

a self-driving vehicle’s explanations and decision-making, thereby limiting the suitability of these

models as a trustworthy automotive user interface. Therefore, despite these advances in end-to-

end models for interpretability, significant barriers to broader adoption remain, including a lack

of transparency in decision-making, difficulties in debugging, and the computationally demanding

nature of the extensive training required.

Datasets pose significant challenges to end-to-end autonomous driving systems due to limited
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diversity, imbalances, and inadequate annotations. The tendency of such systems to overfit specific,

non-diverse datasets limits their ability to generalize to conditions they have not encountered pre-

viously [19]. Because the model is trained on too many examples of common driving maneuvers

like driving straight, it may struggle with uncommon but critical situations, leading to performance

issues. Moreover, datasets typically provide action labels (e.g., "stop") but lack explanation-level

annotations (e.g., "red light ahead"), essential for training explainable AI systems [22]. Many also

omit finer-grained labels like object proximity data, limiting the model’s ability to capture evolving

dynamics in driving scenes [23]. To address these limitations, we require datasets that are diverse,

balanced, and richly annotated, to improve the robustness and explainability of the model.

The modular approach continues to be favoured in specific contexts due to its transparency,

ease of debugging, and robustness in scenarios requiring strict adherence to safety and regulatory

standards [18, 19]. The modular design ensures that critical safety checks can be performed at

each stage, and failures can be identified and addressed without compromising the entire system.

This justifies using the modular approach in environments where reliability, explainability, and

compliance are paramount, such as urban driving or public transportation. The modular approach

benefits from reduced dependency on large, diverse datasets, as each module can be trained inde-

pendently using task-specific data. This flexibility allows leveraging smaller, specialized datasets

tailored to individual components, simplifying data collection and improving robustness in specific

tasks. Even though the end-to-end approach shows promise for future scalability and efficiency,

the functionality of such a model is like a black box, and thus lacks explainability because of its

complex architecture [24]. This presents an issue and impedes the progress of ACs being socially

accepted on the roads – the key factor driving technological advancements is social acceptance

[25]. The modular approach remains indispensable for building trust and ensuring safety in the

current landscape of autonomous driving [18, 19].

As the perception module is beyond the scope of this thesis, it is assumed that the perception

module provides the vehicle states, road structure, and regulations. An example of a highly accu-

rate perception module is the NVAutoNet [26], developed by NVIDIA. This module is designed
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to be computationally efficient, compatible with onboard chips, and adaptable to a wide range of

vehicle types.

Sensor noise is an issue that leads to increased uncertainty. However, it is common to introduce

safety margins to help counteract errors from sensor noise and enhance the system reliability.

For example, Duan et al. improved the robustness of automatic emergency braking systems by

adjusting safety distances [27]. Though sensor noise was not a factor in experimentation conducted

in this thesis, a safety gap is incorporated in the trajectory planner module as a proactive measure

to mitigate potential noise-related risks.

1.3 Methodology

Driving scenarios indicate graph-like structures, as seen in Figure 1.2 [1]. Graphs have been proven

to be effective in a multitude of applications, e.g., social networks [28], medicine [29], etc. The

graph neural network (GNN) [30] is an excellent solution for ACs because of its effectiveness in

capturing complex relational data, which plays a crucial role in solving driving problems. Clas-

sical neural networks, limited by their reliance on fixed-size feature spaces, encounter substantial

difficulty in handling the inherent complexity and variability present in road geometries and traffic

scenarios [31]. GNNs enable the integration of heterogeneous data sources, including sensor data

and map information, thereby improving decision-making for autonomous vehicles [31, 32]. This

improves the system’s ability to manage varied driving situations and increases its overall reliabil-

ity. Also, the graph-based architecture of GNNs enables scalable and adaptable representations of

traffic scenes, accommodating varying number of agents and diverse environmental factors [33].

Scalability and adaptability are critical to the effective implementation of autonomous systems

across different settings. Furthermore, intuition plays a significant role in strategic decision mak-

ing [34] which is an indispensable trait for driving. The prediction, planning and control problems

are formulated by combining intuition with spatial-temporal (space-time) graphs and solved using

GNNs.
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Figure 1.2: A graph-like structure depiction of vehicles on road (figure used under a Creative
Commons 4.0 license) [1]

1.3.1 Trajectory Prediction

This module estimates the future positions of all the objects around the autonomous car in the

current timeframe based on their histories [35]. However, in real-time, it can pose significant

challenges given the dynamic and uncertain nature of roadways and the objects themselves. For

the thesis, we propose a trajectory prediction model that uses a graph depicting the interactions

between vehicles. While embedding interactions into graphs is common in the literature, we have

also integrated the temporal (time) aspect into the graph that makes it distinct from other works.

1.3.2 Trajectory Planner

This module plans a future feasible trajectory of the AC given information on its surroundings [36].

The future trajectory must be feasible, safe, and respect constraints. In this work, a novel online

trajectory planner is developed that projects the trajectory planning problem as a graph comprising

road and kinematic constraints and processes it through a graph neural network architecture to

find the desired trajectory. The novelty of the work lies in the intuitive approach to integrate road

regulations, vehicle constraints and comfort aspect into the graph.
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1.3.3 Vehicle Control

This module generates the steering command (lateral control) and the throttle command (longi-

tudinal control) for the AC to follow the desired trajectory [37]. For this thesis, a novel online

graph-based lateral controller (GLC) is developed for ACs – the first of its kind. The core novelty,

besides the network architecture, is in the formulation of the graph – an intuitive representation of

a vehicle transitioning from its current state to its future desired state.

1.4 Thesis Structure

Chapter 2 presents an exposition of the fundamental theoretical concepts that serve as the frame-

work for this thesis. In this chapter, concepts such as the GNN are discussed, to provide a solid

theoretical framework that is crucial for understanding the subsequent, more specific applications

in the later chapters. In Chapter 3, the first problem under scrutiny, specifically trajectory pre-

diction, is addressed. This chapter focuses on the methods and algorithms used to predict the

future paths of surrounding vehicles. Chapter 4 focuses on an online trajectory planner, specif-

ically discussing the process of formulating it. Chapter 5 is dedicated to the development of a

lateral controller utilizing graph neural networks. This chapter examines the novel implementation

of graph neural networks in the online lateral control of ACs, ensuring robustness in the face of

disturbances. Finally, Chapter 6 concludes the thesis.

1.5 Claims of originality

Chapter 3 introduces a novel approach called AiGem (Agent-Interaction Graph Embedding) that

formulates historical traffic interactions as spatial-temporal graphs to predict trajectories around

autonomous vehicles. Additionally, AiGem combines a graph encoder network with a Gated

Recurrent Unit decoder and Multilayer Perceptron output network. The technique has received

acceptance for publication in [38].
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Chapter 4 brings originality by introducing a new online spatial-temporal graph trajectory

planner. It generates safe and comfortable trajectories for autonomous vehicles by considering

surrounding vehicles, road constraints, and kinematic constraints within a comprehensive graph

structure. Moreover, this approach distinguishes itself by incorporating a behavioral layer to deter-

mine kinematic constraints and by developing a unique potential function for training the network.

The publication of this work can be found in [39]. A provisional patent application for the planner

has been filed with the US Patent and Trademark Office.

The uniqueness of Chapter 5 is highlighted by the creation of an innovative online learning

approach for vehicle modeling and lateral control, employing heterogeneous graphs and Graph

Neural Networks. Compared to traditional controllers, this innovative method enhances perfor-

mance by adapting dynamically to changing conditions and environments. Currently, the work is

undergoing review for publication [40].

1.6 Contributions of authors

Three papers [38, 39, 40] provide support for this thesis, with Mr. Jilan Samiuddin listed as the

first author, and Prof. Benoit Boulet and Dr. Di Wu mentioned as the second and last authors,

respectively. Mr. Samiuddin deserves credit for the research planning and execution in this thesis,

while Prof. Boulet and Dr. Wu provided guidance and suggestions to enhance the research work.
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Chapter 2

Theoretical Background

In this chapter, theoretical concepts that have been used in developing and formulating the works

for this thesis are introduced. The graph neural network (GNN) and some of its variants are at the

core. Thus, theories of GNNs are presented in details in this chapter. Furthermore, in the thesis,

the Frenet coordinate frame is used in several instances replacing the traditional global coordinate

frame for the formulation of the problem. Model predictive control is also briefly reviewed.

2.1 Graph Neural Network

Neural networks that operate on graphs are called graph neural networks [30].

2.1.1 Graphs

Graphs are used as means of illustrating real-world problems. More particularly, graphs can cap-

ture the interactions between agents and how these agents evolve because of their involvement in

a neighborhood. The agents in a graph are called the nodes and the interactions between them are

presented using edges and this is shown in Figure 2.1. Formally, a graph G = (V,E) is a collection

of node features V and edge connections E in which the edges may or may not have features. These

features are often known physical or meaningful attributes of the nodes and edges. The edges can
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Figure 2.1: A graph containing six nodes (in black) with edges (in red) showing the connections
between the nodes

be of three types:

1. Undirected edge: This defines a connection between two nodes whose relationship is mutual,

i.e., the edge can traverse in both directions equally. For example, in a social network graph,

an undirected edge may represent a mutual friendship between two people (the two nodes).

2. Unidirectional edge: This defines a one-way relationship from one node to the other, i.e., the

edge can traverse in the direction defined. For example, in a web graph, an unidirectional

edge may represent a hyperlink from one webpage to another (the two nodes).

3. Bidirectional edge: This is similar to an undirected edge defining a two-way relationship

between two nodes with the direction of the edges explicitly defined, i.e., edge traversal is

possible in both the directions. For example, in a transportation network graph, a bidirec-

tional edge may represent a two-way street between two locations (the two nodes).

2.1.2 Graph Classifications

Based on the types or labels associated with nodes and/or edges which indicate their different roles

or semantics, graphs can be broadly divided into two categories:

1. Homogeneous graphs: The nodes are of same type and the edges are of same type in a

homogeneous graph. This implies that the feature array of every single node and edge have

the same physical interpretation. For example, in a simple social network graph, all nodes

represent individuals and all edges represent friendship (connection) between them.
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2. Heterogeneous graphs: Either the nodes or the edges or both are of different types in a

heterogeneous graph. Thus, the feature array will also have different physical interpretation.

For example, in a publication network graph, nodes can represent the authors and the papers,

while the edges can represent relations such as “authored” and “cited”.

In this thesis, heterogeneous graphs are used to represent all the autonomous driving tasks.

Based on the graph structure over time, graphs can also be classified into two categories:

1. Static graphs: Over time, the graph structure does not change, i.e., the nodes and the edges

do not change. The graph of a map is a simple example of a static graph in which the

destinations (i.e., nodes) connected by roads (i.e., edges) do not change over time.

2. Dynamic graphs: The graphs structure changes over time representing the evolution of rela-

tions between the nodes. This can either be in the form of nodes and/or edges being added

and/or removed. For example, in a complex social network graph, where nodes represent

users and edges represent their interactions (e.g., friendships, follows, or messages), the

structure changes continuously as the users join or leave the network and as they modify

their interactions with other users.

Figure 2.2 shows examples of a static graph and a dynamic graph. Autonomous driving problems

are generally dynamic in nature where the problem structure changes over time. However, in this

thesis, both static and dynamic graphs have been used for problem representation. Particularly,

Chapter 3 and Chapter 4 use dynamic graphs, and, Chapter 5 uses static graphs.

2.1.3 Applications of GNNs

A GNN can be used for several types of tasks. On a general level, the tasks can be classified into

four categories as follows:

1. Graph-level tasks: This involves making predictions or inferences about graphs as a whole

(e.g., classifying graphs into categories, etc.), and also extends to generating new graphs.
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Figure 2.2: Examples of a static graph and a dynamic graph

For example, a GNN can be trained to predicting properties of molecules, represented by a

graph.

2. Subgraph-level tasks: This involves making predictions or inferences about a specific sub-

graph within a larger graph. Identifying a community or a cluster within a social network is

an example of such tasks.

3. Node-level tasks: This involves making predictions or inferences about individual nodes in

a graph (e.g., node classification, node regression, etc.). For example, in a social network,

users can be categorized based on their roles and attributes.

4. Edge-level tasks: This involves making predictions or inferences about edges between the

nodes in a graph (e.g., link prediction, edge classification, etc.). Predicting future friendship

between two users in a social network is an example of such tasks.

The tasks are illustrated in Figure 2.3. In this thesis, only node-level tasks have been performed

using GNNs in all the works since the nature of the formulation of the problems demands so. Thus,
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Figure 2.3: Different types of tasks of GNNs

in the rest of the chapter, the operation of a GNN will be explained for node-level inferences.

2.1.4 Graph Convolutional Network

A Graph Convolutional Network (GCN) is a GNN that extends the concept of a convolutional

neural network (CNN). While a CNN can operate only on structured data, a GCN can operate on

non-Euclidean structures like graphs. GCN is fundamental in understanding the basic functioning

of a GNN. For the sake of simplicity, homogeneous graphs will be used for explanation.

For node representation, the GCN maps nodes of a homogeneous graph to a matrix Rn×m,

where, n is the number of nodes and m is the output dimensionality of the features of the nodes.

For the target node (i.e., the node of interest) p, the GCN aggregates information from its neighbors

(e.g. averages the messages from its neighbors) and then applies a neural network in several layers

[41]:

h(i+1)
p = σ

Wi ∑
q∈N (p)

h(i)q

|N (p)|︸ ︷︷ ︸
message aggregation

+Bih
(i)
p

 , (2.1)

∀i ∈ {0,1, . . . ,L−1}, where, h is the embedding of a node, σ is a nonlinear activation function, Wi

and Bi are the weights and biases of the ith layer, respectively, N (p) is the neighborhood of the

target node p, and L is the total number of layers. Equation (2.1) is illustrated in Figure 2.4. Note

that the input embedding of a node when i = 0, is its original input features.
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Figure 2.4: (a) The input graph with node 1 being the target node. (b) The target node aggregates
information from its neighbors with L = 2

2.1.5 Graph Attention Network

Graph Attention Network (GAT) [34] is a GNN that integrates attention so that the learning is

focused on more relevant segments of the input. The network learns the importance (also called

the attention coefficient epq) of the neighbors of a node as it aggregates information from them.

The attention coefficient between the target node p and its neighbor q is computed by applying

a common linear transformation W to the features (h) of both p and q, followed by a shared

attentional mechanism (att) as follows:

epq = att
(
Whp,Whq

)
(2.2)

A single-layered feed-forward neural network is used for att [34] as shown in Figure 2.5. To

compare the neighboring nodes properly, epq is normalized using the softmax function:

αpq =
exp
(
epq
)

∑k∈N (p) exp
(
epk
) (2.3)
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Figure 2.5: Attentional mechanism applied in a Graph Attention Network

Using the attention coefficients to weigh the importance of the neighboring nodes, the final output

features of every node is obtained as follows:

h̄p = σ

(
∑

q∈N (p)
αpqWhq

)
(2.4)

To ensure stability of the learning process of self-attention, [34] applies multi-head attention, i.e.,

K independent attention mechanisms of equation (2.4) are executed and then their features are

either concatenated or averaged. If concatenation is applied, then the equation for the final output

features of every node is as follows:

h̄p =
Kn

k=1

σ

(
∑

q∈N (p)
α

k
pqW khq

)
(2.5)

where,
f

represents concatenation, αk
pq are normalized attention coefficients computed by the kth

attention mechanism (attk), and W k is the corresponding input linear transformation’s weight ma-

trix. If averaging is applied, then the equation for the final output features of every node is as

follows:

h̄p = σ

(
1
K

K

∑
k=1

∑
q∈N (p)

α
k
pqW khq

)
(2.6)

As discussed earlier, because of the differences in type and dimensionality in a heterogeneous

graph, a single node or edge feature tensor is unable to accommodate all the node or edge features
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of the graph. PyTorch libraries are available to process heterogeneous graphs [42]. The com-

putation of messages and update functions is conditioned on node or edge type. Thus, standard

message-passing GNNs cannot be applied to heterogeneous graphs. PyTorch offers three different

approaches to create models on heterogeneous graph data. For this thesis work, the automatic con-

version approach of a homogeneous GNN to a heterogeneous GNN model was used, the details of

which can be found in [42].

2.2 Gated Recurrent Unit

Gated Recurrent Unit (GRU) [43, 44] aims to solve the vanishing gradient problem typically found

in a recurrent neural network (RNN). The GRU architecture shares similarities with the LSTM

(Long Short-Term Memory [44, 45]) and is specifically designed to capture sequential data by

facilitating selective retention and erasure of information as time progresses. Despite this, the

GRU exhibits a simpler design in contrast to the LSTM, featuring a lower parameter count. This

attribute simplifies the training process and enhances computational efficiency.

In terms of functionality, the key difference between a GRU and an LSTM lies in how they

handle the memory cell state. The LSTM model incorporates a mechanism in which the memory

cell state is maintained separately from the hidden state, and it is updated through the input gate,

output gate, and forget gate. The GRU model employs a candidate activation vector ĥt to replace

the conventional memory cell state, and this vector is updated through the reset gate and the update

gate. The update gate ut and the reset gate rt are responsible for determining the flow of information

to the output.

To elaborate further, the reset gate is responsible for deciding how much of the previous hidden

state should be ignored. The previous hidden state and the current input are used as input, which

then produces a vector of numerical values between 0 and 1. These values serve to govern the level

of "reset" applied to the previous hidden state at the current time step. The update gate determines

how much of the candidate activation vector should be blended with the new hidden state. It
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accepts the previous hidden state and the current input as its input and generates a vector of values

ranging from 0 to 1. These values determine the extent to which the candidate activation vector

is integrated into the new hidden state. Figure 2.6 shows the architecture of GRU that takes the

current state xt and the previous hidden state ht−1 as inputs. Following are the steps to obtain the

current output state yt and the hidden state ht :

1. The reset gate is computed using xt and ht−1

rt = σ (Wrxxt +Wrhht−1) , (2.7)

2. The update gate is also computed using xt and ht−1

ut = σ (Wuxxt +Wuhht−1) , (2.8)

3. By utilizing the current input xt and a modified version of the previous hidden state which is

reset by the reset gate, the candidate activation vector is computed

ĥt = tanh
(
Wĥxxt +Wĥh (rt ∗ht−1)

)
, (2.9)

4. The update gate determines the weighting of the candidate activation vector and the previous

hidden state, which are then combined to compute the new hidden state

ht = ut ∗ht−1 +(1−ut)∗ ĥt , (2.10)

5. Finally, the output of GRU is calculated

yt = σ (Wyht) , (2.11)

where, Wrx, Wrh, Wux, Wuh, Wĥx, Wĥh, Wy are weights, and the operator ∗ is the Hadamard product.
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Figure 2.6: GRU architecture

For further information on the GRU and its functional distinctions from an LSTM, readers are

encouraged to refer to [44].

2.3 Frenet Coordinates

Frenet coordinate system [46] is used to describe the location of a point relative to a reference

curve. More particularly, the Frenet coordinates s and d represent the longitudinal and the lateral

distances of the point of interest with respect to the curve from a starting point. Figure 2.7a shows

the Frenet coordinates inside a Cartesian coordinate frame with respect to a reference curve.

(a) (b)

Figure 2.7: (a) A snapshot of road presented in the Cartesian coordinate frame showing the Frenet
framework formulation with respect to the reference curve (in blue), and, (b) Frenet coordinate
frame of the snapshot with the ego (blue circle).

It is important to note that any road structure (curved, straight, etc.) in the Cartesian coordinate
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framework can be presented as a straight line in the Frenet coordinate framework as shown in

Figure 2.7b. Thus, presenting an autonomous driving task in the latter domain is much simpler.

2.3.1 Frenet Planner

In Frenet path planning algorithms, first the current position and the velocity of the ego are trans-

formed from the Cartesian coordinates to Frenet coordinates. Next, the algorithm generates can-

didate trajectories defined by a set of polynomial equations. These equations define the Frenet

coordinates as a function of time t. Different polynomial functions can be utilized. Fourth-order

(quartic) polynomial

s = b5t4 +b4t3 +b3t2 +b2t +b1 (2.12)

or fifth-order (quintic) polynomial

d = c6t5 + c5t4 + c4t3 + c3t2 + c2t + c1 (2.13)

are used for trajectory planning. The parameters in equations (2.12) and (2.13) are optimized for

each trajectory for given objectives, e.g., longitudinal and lateral distances to travel, final velocity,

planning horizon.

The candidate trajectories are assessed against the future positions of the surrounding vehicles

for safety and the unsafe ones are eliminated. The cost of each candidate of the remaining safe

candidates is then calculated using a suitable cost function. The trajectory with the lowest cost is

finally selected.

2.4 Model Predictive Control

Model Predictive Control (MPC) [47, 48], alternatively referred to as Receding Horizon Con-

trol (RHC), is a widely employed control strategy in various domains including process control,

robotics, and automotive systems. It involves optimizing a cost function (J), such as penalties for
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Figure 2.8: Block diagram of an MPC

deviation from desired trajectories or states and for control effort by solving an open-loop problem

at each time step. In this optimization problem, the dynamics of the system is taken into account,

constraints are imposed on states and controls, and predictions are made about future states based

on a system model. The system model, in the case of a linear MPC, is a linear discrete-time system

model:

Xk+1 = AXk +BUk (2.14)

with time-step k, states X , control input U , and matrices A ∈ Rn×n, B ∈ Rn×m with n being the

number of states and m being the number of inputs. For the states and the inputs, the following

constraints hold

Xk ∈X ,Uk ∈U ∀k ∈ N0 (2.15)

where, N0 denotes the set of all non-negative integers. Once the optimization problem is solved,

MPC only uses the initial control input from the computed sequence to control the system. During

the next time step, the system’s current state is measured or estimated. Then, the optimization

problem is solved again over a new prediction horizon, with the updated state as the starting point.
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The utilization of the receding horizon approach in MPC guarantees the constant adaptation of

control actions based on the most recent information while enabling explicit constraint handling.

Figure 2.8 shows the block diagram of an MPC.
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Chapter 3

Trajectory Prediction for Autonomous

Driving

In this chapter, we consider the problem of predicting the trajectories of the detected vehicles,

referred to as actors, around the car of interest driving itself autonomously, referred to as the ego

(block 3 in the autonomous driving framework of Figure 1.1). These actor trajectory predictions

are required as inputs to the next module in the autonomous driving system, i.e., the trajectory

planner discussed in Chapter 4, whose role is to compute an appropriate trajectory for the ego that

can handle traffic around it.

3.1 Introduction

Human drivers continuously predict the maneuvers of other vehicles on the road to plan a safe

and efficient future motion. Similarly, to ensure its safety and the safety of other agents on the

road, the Autonomous Driving System (ADS) must predict the motion of the surrounding agents

in the future with high accuracy. High accuracy in prediction will also improve the capability of

the autonomous car to infer future situations [49, 50] and consequently enhance decision-making

to enrich ride quality and efficiency [51, 52].

Trajectory prediction in real-time can pose significant challenges given the dynamic and un-
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certain nature of roadways [53]. Although traditional prediction models such as the Kalman filter

[54], car-following models [55], and kinematic and dynamic models [56, 57] are hardware effi-

cient, they become unreliable in long-term predictions when the spatial-temporal interdependence

is ignored [58]. To mitigate that, Ju et al. [59] combined Kalman filter (KF), kinematic models

and neural networks and obtained better performance than the traditional ones. Predicting multiple

possible trajectories and ranking them based on probability distribution of the prediction model are

also found in the literature [60, 52]. However, these approaches are inherently less pragmatic in

real-time scenarios [53].

With significant developments in deep learning, particularly successful implementations of

LSTM in capturing temporal dependencies, several works have been conducted for trajectory pre-

diction. In [61] and [62], LSTM is used to extract the vehicle features and then utilized to predict

driver intentions. To predict multi-modal trajectories, [63] uses an encoder-decoder LSTM to

generate parameters for a weighted Gaussian Mixture Model. Using the modal with the high-

est probability, the predicted trajectories are then clustered. Kawasaki et al. [64] also predict

multi-modal trajectories by combining LSTM with KF using a novel lane feature representation

technique. They also incorporate a vehicle motion model constraint that improves the prediction

accuracy. For multi-modal trajectory prediction, Deo and Trivedi [65] utilize an LSTM encoder to

encode the history, six different LSTM decoders for six different maneuvers, and a separate LSTM

decoder to predict the probability of each of the six maneuvers.

Hyeon et al. [66] encodes the historical trajectory using an LSTM encoder and predicts the K

most likely future trajectories using an LSTM decoder. Xin et al. [67] use one LSTM to predict the

target lane of the vehicle and another LSTM to predict its trajectory based on its current state and

the earlier predicted lane. A similar approach is proposed by Zhang et al. [68] that uses multiple

LSTM-based framework for predicting intention and trajectory at intersections.

A convolutional neural network (CNN) is believed to be a better choice for trajectory prediction

than recurrent neural network (RNN) models since trajectories have strong spatio-temporal conti-

nuity [69]. However, most of the literature utilize the bird-eye-view image as an input to the CNN
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framework. Using the vehicle state and the raster image as inputs, [52] generates multiple pos-

sible future trajectories and determines the trajectory with the highest probability from semantic

features. Strohbeck et al. [70] apply a CNN to the rasterized image and a temporal convolutional

network (TCN) to the historical trajectories, and the extracted features are concatenated with the

current state to determine the future trajectory. In [71], Gilles et al. apply CNN to generate a

heatmap representing the agent’s possible future.

Transformers, a neural network that incorporates attention mechanism, although initially uti-

lized for machine translation in natural language processing (NLP) [72], have been proved effective

in trajectory prediction. Quintanar et al. [73] apply a modified transformer to the past trajectories

as its input to predict the future trajectory. Liu et al. [74] apply stacked transformers and use

features from past trajectories, social interaction and road data as inputs for multi-modal trajectory

prediction. Spatio-temporal transformer networks (S2TNet) is used in [75] to capture both spatio-

temporal interactions and temporal sequences. Huan et al. [76] propose trajectory prediction using

a multi-head attention transformer layer to model the interaction between agents. In [77], Gao et

al. show the relation between the intention and the trajectory of the target vehicle using a dual

transformer model.

This chapter proposes a trajectory prediction method for autonomous driving using agent-

interaction graph embedding (AiGem). AiGem first constructs a heterogeneous graph from the

historical data that encapsulates the interactions between the agents required for trajectory predic-

tion of these agents. A graph encoder network then processes the graph to find embedding of the

target vehicles at the current time stamp which is fed through a sequential GRU encoder network

for trajectory prediction with the aid of an multilayer perceptron (MLP)-based output network.

The results show that AiGem has higher accuracy in longer prediction horizons in contrast to the

existing state-of-the-art methods with comparable accuracy for lower predictions horizons. The

size of the model is much lighter than that of the compared methods except for [78].
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3.2 Related Works

Despite obtaining high accuracy, techniques discussed earlier for trajectory prediction do not in-

clude the interactions between the vehicles. Deo et al. [60] addresses this shortcoming by modeling

the spatial interactions between the vehicles with a social tensor and then further extracting fea-

tures using a convolutional social pooling techniques. However, the social tensor only preserve the

spatial interaction of the last time stamp of the history, and thus, the spatial-temporal relation is

not captured.

Li et al. proposes GRIP++ [79] that capture the spatial-temporal relation using fixed and dy-

namic homogeneous graphs. They offer two different types of edges – spatial and temporal – to

capture the environmental dynamics. This is similar to what is proposed in this chapter, except that

in this work, a single heterogeneous graph is used to feed through the graph convolutional model.

Furthermore, an encoder GRU network is used in [79], whereas, in the proposed scheme, the graph

convolutional model acts as the encoder network. As a result, the model size of GRIP++ is signifi-

cantly larger than the proposed model. Sheng et al. [78] also proposes a similar graph-based tech-

nique in which they stack spatial graphs from each time step in the past to form a spatial-temporal

homogeneous graph. They use two different modules for extracting the spatial dependency and

then extract the temporal dependency. However, since in this work, both the spatial and temporal

aspects are included in the construction of the graph itself, the graph convolutional model alone is

sufficient.

Lin et al. [51] uses spatial-temporal attention mechanisms with LSTM for trajectory prediction

with primary focus on the explainability of their models. Katariya et al. [53] focuses on model

complexity and size for faster performance and lower memory requirement. They use depthwise

TCN-based (Temporal Convolutional Networks) encoder instead of LSTMs reducing the overall

model size. The performances of both [51] and [53] are comparable, even though not the best, to

other existing state-of-the-art methods. In this work, attention is integrated in the depthwise graph

convolutional network by graph attention networks (GAT) to capture the importance of neighbor-

ing vehicles. Pishgu is proposed in [80] for trajectory prediction that utilizes graph isomorphism
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Past trajectories

Predicted trajectories

Figure 3.1: The trajectory prediction problem – given the past trajectories (solid black line) of the
ego (in blue) and the actors (in red), the trajectory prediction block estimates the future trajectories
(solid red line) of the actors. In this example, KH = 4, KF = 4 and NKH = 3

network (GIN) to extract interdependencies of all agents in a scene and further applies attention-

based convolutions to underline the important interdependencies.

3.3 Problem Formulation

The trajectory prediction module is responsible to estimate the future positions of all the actors in

the current frame based on their trajectory histories given by their global coordinates x and y with

respect to the autonomous agent (also known as the ego) at the current time step KH , their heading

θ , and the velocity v. Formally, the trajectory histories over τH seconds, with a sampling time ts

(i.e., over KH = τH
ts
+1 time steps), of all the observed actors can be shown as follows

H = [X1,X2, . . . ,XKH ] (3.1)
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Figure 3.2: Proposed network architecture AiGem with KH = 3, KF = 3. Modules (GRUs and
MLPs) inside the networks with the same color share the same weights. The number within paren-
thesis represents the output dimension of the module.

where, Xk =
[
x1

k ,y
1
k ,θ

1
k ,v

1
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Nk
k ,yNk

k ,θ Nk
k ,vNk

k

]
with Nk being the number of actors observed at

the kth step. The task of the prediction module is to predict the future positions over a prediction

horizon τF (i.e., over KF = τF
ts

time steps) of all the NKH observed actors:

F = [YKH+1,YKH+2, . . . ,YKH+KF ] (3.2)

where, Yk =
[
x1

k ,y
1
k ,x

2
k ,y

2
k , . . . ,x

NKH
k ,y

NKH
k

]
. Note that position with respect to the ego at the current

time step KH infers that the position of the ego
(
xe

KH
,ye

KH

)
at present is set to (0,0) and the coor-

dinate frame is shifted as such. This, to some extent, prevents outliers for positional features to

occur during training that could lead to poor accuracy [81]. The trajectory prediction problem is

illustrated in Figure 3.1.

3.4 Proposed Methodology

In this section, a novel method is proposed to articulate the trajectory prediction problem as a se-

quence of connected graphs based on the historical data. Essentially, the proposed method uses

agent-interaction graph embedding (AiGem) – a heterogeneous graph from the historical data en-
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Figure 3.3: (a) An example scenario of an ego (in blue) surrounded by actors (red) of which actors
1, 2, and 3 are in its sensing area (gray circle), and, (b) Graph formulation with ego connected to
the sensed actors via bidirectional spatial edges.

capsulates the interactions between the agents. A graph encoder network then processes the graph

to find embedding of the target vehicles at the current time stamp which is fed through a sequential

GRU encoder network for trajectory prediction with the aid of an MLP-based output network. The

proposed network architecture, as shown in Figure 3.2, illustrates the three network components

forming a coherent structure for solving the trajectory prediction. The three components are (1)

graph encoder network, (2) sequential GRU decoder network, and (3) output network.

3.4.1 Graph Formulation

First, the spatial graph Gk for each time step in the past, i.e., k = 1,2, . . . ,KH , is generated. Figure

3.3(a) shows an example scenario at the kth time step where the ego is surrounded by four actors

of which three actors (1, 2 and 3) are in its sensing area, while the fourth actor is not in that range.

Note that the sensing area in this work is defined to be a circle of radius around the ego. In the

formulation of the graph as shown in Figure 3.3(b), alongside the ego (referred to as node e), an

actor i is considered as a node of graph G if the inequality on the right-hand side of the following

equation is met:

Inode (ik) =


1, if dei ≤ 50

0, otherwise
, (3.3)



CHAPTER 3. TRAJECTORY PREDICTION FOR AUTONOMOUS DRIVING 32

where, I is an indicator function and dei is the euclidean distance between the ego and the ith actor.

Each node ek, ik ∈Nk, where Nk is the set of all nodes present at the kth time step, has the following

feature vector:

ze/i
k =

[
xk yk θk vk

]
∈ R4 (3.4)

The ego e always shares a bidirectional edge with a detected actor i.

Iea
(
Es

ek←→ik

)
=


1, if Inode (ik) = 1

0, otherwise
(3.5)

In the example shown in Figure 3.3, the ego and the first three actors are part of the graph

with bidirectional spatial edges (i.e., dei is set as the edge feature) between the ego and the actors.

Furthermore, two of the detected actors ik and jk share bidirectional edges between themselves if

the euclidean distance di j between them is less than or equal to a predefined threshold dmin = 25m.

Iaa
(
Es

ik←→ jk

)
=



1, if Inode (ik) = 1

and Inode ( jk) = 1

and di j ≤ dmin

0, otherwise

(3.6)

In the example shown in Figure 3.3, while actors 1 and 2, and, 2 and 3 share an edge between

themselves, actors 1 and 3 do not have an edge between them since d13 > dmin. Because of these

spatial edges, Gk is referred to as a spatial graph.

Next, the temporal aspect is incorporated to generate the heterogeneous graph G . The temporal

unidirectional edge is defined as follows:
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Figure 3.4: Graph encoder network with L number of layers. GAT modules with the same color
share same weights and linear modules with the same color share same weights. The integers
within parenthesis represent the layer number and the integers without the parenthesis represent
the output dimension of the particular block.

Itemp

(
Et

ik→ik+1

)
=


1, if Inode (ik) = 1

and Inode (ik+1) = 1

0, otherwise

, (3.7)

i.e., if actor i is within the sensing area during both the kthand (k+1)th time frames, they are con-

nected by a temporal unidirectional edge. Intuitively, the temporal edges encapsulate the sequential

aspect of the historical data H . The edge attribute is set to be the sampling time ts. Needless to

say, the temporal edge for the ego always exists between the kth and (k+1)th time steps.

For example, as shown in the heterogeneous graph G of Figure 3.2, from G1 to G2, there exist

temporal edges for actors 1 and 2 since both these actors were within the sensing area in both

frames. However, actors 3 and 4 do not have the temporal edges since at k = 2, the former is not

in the sensing area anymore while the latter materialized into the sensing area for the first time.

From G2 to G3, nothing changed in the sensing area, and thus, all the three actors (1, 2 and 4) have

temporal edge connections. Note that the two different types of edges (spatial and temporal) in the

formulation of G makes it a heterogeneous graph.

3.4.2 Graph Encoder Network

The idea of the graph encoder network is to capture the context from the history H presented

as a spatial-temporal heterogeneous graph G . The graph encoder network consists of a series of
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GAT convolutional networks in parallel with a series of linear layers as shown in Figure 3.4. The

heterogeneous graph G = (Z,E) is forwarded to get the final encoded embedding Z̄L of all the

nodes in the graph, where Z is the feature array of all nodes in G and E is the edge connection

array between these nodes and the corresponding edge attributes. If the total number of nodes in

G is NG , then Z ∈ RNG×4 and thus, Z̄L ∈ RNG×64 as indicated by Figure 3.4 Formally, the forward

pass can be defined using the following equations:

Z̄1 =GAT(1) (Z,E)+Linear(1) (Z)

Z̄l =GAT(l) (Z̄l−1,E)+Linear(l) (Z̄l−1) ,

∀l = 2, . . . ,L−1

Z̄L =GAT(L) (Z̄L−1,E)+Linear(L) (Z̄L−1)

=

[
Ḡ1 Ḡ2 . . . ḠKH

]
(3.8)

where, Ḡk contains the node embedding of the nodes of the spatial graph Gk. In the above dis-

cussed example, Z̄L ∈ R12×64 and Ḡ1, Ḡ2, Ḡ3 ∈ R4×64. However, only the embedding ḠKH ∈ Z̄L

if of interest – this fixed-size representation contains meaningful features about the entire input

sequence due to the unidirectional temporal edges.

3.4.3 Sequential GRU Decoder Network

The task is to predict the trajectory of actor iKH ∈NKH . Without any loss of generality, actor iKH will

be referred as i for simplicity. The task of the decoder is to generate a decoded state based on the

current hidden state and the previously generated decoded state. Needless to say, at the beginning,

the sequential GRU decoder network takes as inputs the initial hidden states hi
KH

(initialized as

zeros) and

z̄i
KH

= f
(
ḠKH , i

)
∈ ḠKH (3.9)
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where, f
(
ḠKH , i

)
is a function that extracts the corresponding embedding of actor i from ḠKH .

A residual connection is also applied similar to [82] to the output g of the GRU as it allows to

leverage previously learned representations. Thus, the forward pass in the network can be defined

as follows: (
gi

KH+1,h
i
KH+1

)
=GRU

(
z̄i

KH
,hi

KH

)
(
gi

KH+2,h
i
KH+2

)
=GRU

(
z̄i

KH
+gi

KH+1,h
i
KH+1

)
(
gi

k,h
i
k
)
=GRU

(
gi

k−1 +gi
k−2,h

i
k−1
)
,

for k = KH +3, . . . ,KH +KF

(3.10)

3.4.4 Output Network

For the prediction horizon k = KH + 1, . . . ,KH +KF , the output network consists of a MLP that

takes gi
k as input to predict the trajectory of actor i. The output of the MLP △Y i

k is the change

in position in both the x and y coordinates with respect to the previous actual or the estimated

position. Thus, the final predicted position Ŷ i
k for the prediction horizon is obtained as follows:

Ŷ i
KH+1 =MLP

(
C
(
gi

KH+1,Y
i
KH

))
+Y i

KH

Ŷ i
k =MLP

(
C
(
gi

k,Ŷ
i
k−1
))

+ Ŷ i
k−1,

for k = KH +2, . . . ,KH +KF

(3.11)

where, Y i
KH

is the current position of actor i and C is a concatenation function. Note that AiGem

does not simultaneously predict trajectories of the NKH actors, rather predicts trajectories of each

actor at a time.
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3.5 Experiment Setup and Results

3.5.1 Datasets

NGSIM datasets [83, 84], collected by the Federal Highway Administration of the U.S. Department

of Transportation, are used to evaluate the performance of the proposed model. In this work,

the datasets for highways US-101 [84] and I-80 [83] are used. The NGSIM datasets consist of

45 minutes of vehicle trajectories transcribed from videos – these videos are obtained through

synchronized cameras mounted on top of adjacent buildings of the highway of interest. Many deep-

learning techniques [60, 79, 51, 53, 78, 80] use these two datasets for performance assessment.

3.5.2 Data Processing

The data in NGSIM were recorded at 10 frames per second, i.e., the sampling time is 0.1 second.

However, to make a fair comparison with other techniques [60, 79, 51, 53, 78] which downsampled

the data to 0.2 second, the same is done in this work. The trajectories are then segmented into 8

seconds blocks so that the first 3 seconds can be used as historical observation, and the remaining

5 seconds can be used as prediction ground truth. Similar to [51, 53], the dataset is split into 70%

training data, 10% validation data, and 20% test data. Note that in the NGSIM datasets, the heading

values θ of the vehicles are not provided. However, given the history of a vehicle’s trajectory, θ

can be easily calculated for this past trajectory using basic trigonometry.

MinMax scalers are applied on the features of the graphs. The range for scaling the positions

and the heading is (−1,1) and the range for scaling the velocity and the distance between the

vehicles (spatial edge) is (0,1). However, scaling is not applied on the temporal edges.

3.5.3 Baselines

Recently, several deep-learning techniques have conducted the task of trajectory prediction on the

NGSIM data. The following models for comparing the performance of the proposed AiGem:
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(1) CS-LSTM [60]: It utilizes an LSTM encoder-decoder model with a social pooling layer for

feature extraction.

(2) GRIP++ [79]: It utilizes a LSTM encoder-decoder model with fixed and dynamic graphs to

capture the environmental dynamics.

(3) STA-LSTM [51]: It combines spatial-temporal attention with LSTM and increases the inter-

pretability of the predictions.

(4) DeepTrack [53]: It provides a light-weight prediction model by introducing temporal and

depthwise convolutions for capturing vehicle dynamics.

(5) GSTCN [78]: It utilizes a graph-based spatial-temporal convolutional network to first learn the

spatial features and then extract the temporal features. Finally, GRU is used for prediction using

the extracted features.

(6) BAT [85]: It comprises behavior-aware, interaction-aware, priority-aware, and position-aware

modules and is capable of both perceiving and understanding the underlying interactions and man-

aging the uncertainty and variability in predictive modeling.

Pingshu [80] is a more recent work. However, it excludes trajectories of vehicles going for

exits and merging lanes, and thus, ignoring predictions of vehicles which are more dynamic in

general. Since such constraints are not applied for data processing in this work, it is fair to exclude

[80] from the comparison.

3.5.4 Evaluation Metrics

The proposed model, AiGem, is compared against existing deep-learning techniques using differ-

ent metrics. The followings are commonly used as a measure of prediction accuracy and perfor-

mance of the system:

Average displacement error (ADE): It is the average euclidean distance between the predicted

positions Ŷk and the ground truth Yk for k = KH +1, . . . ,KH +KF and for NKH actors:

ADE =
∑

NKH
n=1 ∑

KH+KF
k=KH+1

∥∥Ŷ i
k−Y i

k

∥∥
2

KFNKH

(3.12)
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Figure 3.5: Comparison of performance of AiGem for different values of dmin

Final displacement error (FDE): It is the average euclidean distance between Ŷk and Yk for the

last predicted step k = KH +KF and for NKH actors:

FDE =
∑

NKH
n=1

∥∥Ŷ i
KH+KF

−Y i
KH+KF

∥∥
2

NKH

(3.13)

Root mean square error (RMSE): It is the square root of the mean squared error between Ŷk and

Yk at kth step for NKH actors:

RMSE =

√√√√ 1
NKH

NKH

∑
k=1

(
Ŷ i

k−Y i
k

)2 (3.14)

The model size (i.e., number of parameters in the model) of AiGem is also compared with the

baselines.

3.5.5 Ablation Study

Two ablation studies are conducted, particularly, (1) the effect of dmin as described in equation

(3.6), and, (2) the effect of concatenation at the MLP input defined in equation (3.11) on the

performance of the AiGem.

(1) For the formulation of the graph in section 3.4.1, equation (3.6) defines that there exists
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a bidirectional edge between two actors if the distance between them is less than a predefined

threshold dmin. The values of dmin are set to different values and the performance of AiGem

for these different values are compared. Figure 3.5 shows how the proposed model performs for

different values of dmin. It is clear that when dmin = 0 m (i.e., none of the detected actors are

connected with each other using an edge in the spatial graph), the error is maximum for all the

prediction horizons. Therefore, connecting actors using edges in the spatial graph indeed help

minimizing the loss. Next, it can be observed that the error also increases when dmin is increased

from 25 m to 50 m, i.e., the number of bidirectional edges between actors increases due to increase

in dmin. This phenomenon makes intuitive sense since in real-life scenarios, a human driver is more

likely to make decisions based on nearer actors than actors that are further. Since dmin = 25 m

results in the minimum RMSE value, it is used in the formulation of the spatial graphs.

(2) In the proposed architecture, as defined in equation (3.11), the output is concatenated with

the decoded embedding at the input of the MLP of the output network. To see the performance

without concatenation, i.e., equation (3.11) is modified to:

Ŷ i
KH+1 =MLP

(
gi

KH+1
)
+Y i

KH

Ŷ i
k =MLP

(
gi

k
)
+ Ŷ i

k−1,

for k = KH +2, . . . ,KH +KF

(3.15)

Figure 3.6 shows the differences between the performances with and without concatenation for different

prediction horizons. It is clear that for lower prediction horizons (1, 2 and 3 seconds), concatenation has clear

advantage. However, for longer predictions (4 and 5 seconds), concatenation degrades the performance.

3.5.6 AiGem Training

In this work, the Adam optimizer is used to optimize AiGem with a default learning rate of 0.001.

Figure 3.7 shows the evolution of the RMSE error during training. Note that it took approximately

100 training epochs to get the best model for all prediction horizons – the best model refers to the

model with the lowest validation loss. As the prediction horizon increases, overfitting becomes
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Figure 3.6: Comparison of performance of AiGem with and without concatenation of the output

evident in the training of AiGem.

It is important to note that an actor i ∈NKH
whose trajectory is to be predicted may not have

a complete history. Thus, the impact of the history available of an actor on the accuracy of its

trajectory prediction by AiGem is analyzed. Figure 3.8 shows the performance of the proposed

network for different actors with varying number of historical data points (shown as a percentage

of 3 seconds history). Although there is not a consistent overall pattern, it is noticeable that AiGem

tends to forecast trajectories more accurately for actors with shorter available history, specifically

those below or equal to 25%. More particularly, the prediction accuracy is better for vehicles with

history below or equal to 25% than for vehicles with history above 75%. This may seem counter-

intuitive since one would expect longer available history leads to higher accuracy instead. Table 3.1

displays the training errors for AiGem when trained to predict trajectories of actors with particular

length of history. It can be seen that the intuition stated earlier matches with the training error - the

error tends to decrease as the available history increases. However, from Table 3.2, it can also be

observed that there is a trend of increasing overfitting of the network, denoted by (RMSEvalid−RMSEtrain),

with increasing history availability. Thus, it can be speculated that a smaller amount of historical

data points makes AiGem less prone to overfitting and improves its performance in predicting

trajectories of actors with lesser history.



CHAPTER 3. TRAJECTORY PREDICTION FOR AUTONOMOUS DRIVING 41

Figure 3.7: Training of AiGem showing RMSE evolution for training and validation datasets

3.5.7 Results

Table 3.3 shows the performance comparison between AiGem and other baselines. In RMSE com-

parison, AiGem (with and without concatenation) achieves comparable results in short predictions,

i.e., 1 and 2 seconds. However, in the longer prediction horizons, i.e., 3, 4 and 5 seconds, it is at

the forefront of all the models. For 3 seconds prediction, AiGem with concatenation has the best

performance while AiGem without concatenation has the second best performance and leads the

third best by 4.5% and 0.7%, respectively. For prediction horizons of 4 and 5 seconds, AiGem

without concatenation and AiGem with concatenation have the best and the second best RMSE

values, respectively. AiGem without concatenation has improved the results by 33.8% and 51.8%

for 4 and 5 seconds prediction horizons, respectively. These results show that AiGem is more

proficient in extracting useful features for longer predictions.
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Figure 3.8: Comparison of RMSE when partial or complete history is available for different pre-
diction horizons

Table 3.1: RMSE values (training) obtained for the best models of AiGem trained for actors having
different lengths of history

Historical data RMSEtrain (m)

available 1s 2s 3s 4s 5s

≤25% 0.62 1.01 1.20 1.11 1.51

>25% and ≤50% 0.63 1.02 1.19 1.10 1.17

>50% and ≤75% 0.64 0.94 1.19 1.20 1.02

>75% 0.51 0.77 0.92 1.11 0.89

As shown in Table 3.3, AiGem has the best performance in terms of ADE, and compared to CS-

LSTM, GRIP++, STA-LSTM, DeepTrack and GSTCN, it reduces ADE by 33.2%, 5.0%, 19.1%

and 23.9%, respectively. Althoguh GSTCN has the best score in ADE, AiGem scores only 0.7%

lower. For the metric FDE, AiGem has the best score among all the models. It can outperform

the baselines by 18.3%, 13.6% and 16.0% compared to CS-LSTM, STA-LSTM and DeepTrack,

respectively.

As shown in Table 3.3, compared to CS-LSTM, GRIP++, STA-LSTM and DeepTrack, AiGem

reduces ADE by 46.7%, 24.2%, 35.5%, 39.3% and 24.6%, respectively. For the metric FDE,
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Table 3.2: RMSEvalid−RMSEtrain (difference between validation and training errors to demon-
strate overfitting) obtained for the best models of AiGem trained for actors having different lengths
of history

Historical data RMSEvalid−RMSEtrain (m)

available 1s 2s 3s 4s 5s

≤25% – 0.06 0.05 0.01 0.27 0.43

>25% and ≤50% – 0.1 0.05 0.02 0.41 0.80

>50% and ≤75% – 0.06 0.0 0.08 0.56 0.76

>75% 0.01 0.09 0.1 0.30 0.65

AiGem without concatenation also has the best score among all the models. It can outperform

the baselines by 36.2%, 32.6% and 34.4% compared to CS-LSTM, STA-LSTM and DeepTrack,

respectively.

The AiGem model without concatenation is also the second best in terms of model size as

shown in Table 3.3. Compared to heaviest model, it has 85.5% less number of parameters. The

lightest model is the GSTCN with 33.1% less parameters than the proposed model (without con-

catenation). The smaller size of GSTCN is likely due to restricting the graph to two laterally

adjacent lanes and ±100 meters of the roadways [80] in contrast to AiGem. As explained earlier

in section 3.3, the shifting of the coordinate frame with respect to the current position of the ego

allows the proposed model to adjust easily to any section of the road.

In summary, the proposed model AiGem, with and without concatenation, is lightweight, yet

excels in forecasting trajectories over longer prediction horizons outperforming baseline models.

The ADE and the FDE scores also show that the performance of AiGem is superior in contrast to

the baselines.

Furthermore, the performance of AiGem on predicting trajectories of actors based on their

positions around the ego is analyzed. To do that, broadly speaking, three positions are defined:

1. Front position: If an actor is more than 15 m ahead longitudinally from the ego, it is con-

sidered in the front position.
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Table 3.3: Prediction metrics and model size comparison of AiGem with the baselines. The best
results are in bold and the second best are underlined, with some not specifying (–).

Model ADE (m) FDE (m) RMSE (m) Params (K)
1s 2s 3s 4s 5s

CS-LSTM 2.29 3.34 0.61 1.27 2.09 3.10 4.37 192

GRIP++ 1.61 – 0.38 0.89 1.45 2.14 2.94 496*

STA-LSTM 1.89 3.16 0.37 0.98 1.71 2.63 3.78 125

DeepTrack 2.01 3.25 0.47 1.08 1.83 2.75 3.89 109

GSTCN 1.52 – 0.44 0.83 1.33 2.01 2.98 49.8

BAT – – 0.23 0.81 1.54 2.52 3.62 299*

AiGem (with
concatena-

tion)

1.42 2.57 0.61 1.02 1.27 1.84 1.95 74.5

AiGem
(without con-
catenation)

1.22 2.13 0.64 1.07 1.32 1.33 1.42 74.4

*[79] and [85] do not report their number of parameters but these numbers were extracted from
their shared codes in [86] and [87], respectively.

2. Rear position: If an actor is more than 15 m behind longitudinally from the ego, it is con-

sidered in the rear position.

3. Mid position: If an actor is between ±15 m longitudinally of the ego, it is considered in the

mid position.

Figure 3.9 shows the performance of AiGem in predicting trajectories of actors based on the po-

sitions described above. It can be clearly observed that the proposed model is able to predict

trajectories of actors more accurately that are in the rear with respect to the ego, in contrast to the

mid and front positions, for all prediction horizons. The model achieves the least accuracy when

the actors are in front of the ego. The trajectory prediction problem is essentially to predict the

plan of surrounding actors. As shown in the example in Figure 3.10(a), when the task is to predict

the plan of actor 2, which is at the rear position with respect to the ego, the formulation of the



CHAPTER 3. TRAJECTORY PREDICTION FOR AUTONOMOUS DRIVING 45

Figure 3.9: Performance assessment of AiGem for predicting trajectories of actors based on the
positions around the ego

spatial-temporal graph by AiGem considers the front actors relative to actor 2. On the other hand,

when the task is to predict the plan of actor 4 as shown in Figure 3.10(b), which is at the front

position with respect to the ego, the formulation of the spatial-temporal graph by AiGem considers

the rear actors relative to actor 4. Since it is well-known that drivers focus more on the frontal

region while driving to make decisions [88], it makes intuitive sense that AiGem is able to predict

better for the former scenario since it has information on the actors in front of actor 2, which is not

the case for the latter scenario. In other words, when AiGem predicts the trajectory of an actor i, it

is capable of capturing the intuition that front actors relative to i to have more impact on its future

decision-making while rear actors relative to i have lesser impact on its future decision-making.

3.6 Conclusion

In this chapter, a deep learning model called the AiGem has been proposed that constructs a het-

erogeneous graph from the historical data using spatial and temporal edges to capture interactions

between the agents. A graph encoder network generates embedding for the target actors in the

current timestamp which is fed through a sequential GRU decoder network. The decoded states
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Figure 3.10: Example scenarios – (a) Predict trajectory of actor 2, and, (b) Predict trajectory of
actor 4

from the decoder network are then utilized to predict future trajectories using a MLP in the out-

put network. NGSIM datasets have been used for performance assessment. The results show that

AiGem achieves comparable accuracy to state-of-the-art prediction algorithms for shorter predic-

tion horizons. For longer prediction horizons, particularly 4 and 5 seconds, it outperforms all the

baselines used. The size of the model is better than most of them and comparable to the lightest.

Separate models have been used for different predictions horizons. While this practice is com-

mon, a single-model approach for multi-horizon forecasting is more desirable as it will minimize

the maintenance and the cost of implementation. Therefore, for future work, we would like to

explore and modify the model architecture in order to obtain a high accuracy single-model for

multi-horizon predictions.
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Chapter 4

An Online Spatial-Temporal Graph

Trajectory Planner

In this chapter, we consider the problem of generating a safe and reasonable trajectory for the

ego car avoiding the actors around it over the next short time horizon (block 4 in the autonomous

driving framework of Figure 1.1). The predicted actors’ trajectories of Chapter 3 are used in the

computation of the planned ego trajectory. This planned trajectory for the ego is required as input

to the next module in the autonomous driving system, i.e., the lateral vehicle controller discussed

in Chapter 5, whose role is to steer the ego so that it can adequately track its planned trajectory.

4.1 Introduction

Autonomous vehicles have the potential to improve the overall transportation mobility in terms

of safety and efficiency. The module which is primary responsible for planning safely the mo-

tion of the vehicle through a traffic is the trajectory planner. The trajectory planner is a vast and

long-researched area using a wide variety of methods such as different optimization techniques,

artificial intelligence and machine learning [89]. In this work, a novel online trajectory planner

is proposed by structuring the motion planning problem as sequences of spatial-temporal graphs

passing through a sequential graph neural network architecture.
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Different approaches have been undertaken by researchers for generating feasible trajectories.

Sampling based planners like the Rapidly-exploring Random Tree (RRT) have also been exten-

sively tested on automated vehicles for online path planning [90] due to to ease of incorporating

user-defined objectives. Another sampling based technique, state lattice [91, 92], discretizes the

state space in a deterministic manner. Although the spatial-temporal version of the state lattice

allows to plan with dynamic obstacles, its performance depends on sampling density making it

time consuming [93]. However, the resulting paths from graph search based planners and sam-

pling based planners are usually not continuous and thus jerky [94]. Interpolating curve planners

are also popular choices, e.g., clothoid curves [95], polynomial curves [96], Bezier curves [97],

etc. However, these planners require global waypoints defined and can be time consuming when

managing obstacles in real-time [94]. Frenet trajectory planner are also in the family of interpolat-

ing curve planners to generate optimal trajectory but utilizes the Frenet coordinate frame instead

of the Cartesian coordinate frame [46]. Geisslinger et al. [98] use the Frenet planner to generate

candidate trajectories for an ego and then select the best candidate based on five different ethical

principles in line with the European Commission (EU). Interpolating curve planners generally gen-

erate several candidates of trajectories and the best one is chosen. However, it is not uncommon

for such planners to fail to find feasible trajectories.

Graph-based approaches are also commonly found in the literature. These approaches encom-

pass spatial or spatial-temporal representations, whether one dimensional or hierarchical, like a

tree across the feasible driving area [99]. Each node of the graph has an associated cost and the

graph-based algorithms seek to identify the path minimizing the cost between the adjacent nodes.

Graph search based planners A* [100], hybrid A* [101], and variations of these techniques have

been widely used. The 2007 DARPA Urban Challenge was won by the vehicle called Boss that

utilized the Anytime D* algorithm [102]. In a more recent work, Han et al. [103] used hybrid A*

to find collision free paths and further optimized the path using kinematic constraints. A typical

characteristic of these algorithms is their reliance on static or semi-static environmental conditions.

In reality, road conditions and traffic are dynamic, and reliance on static maps can result in out-
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dated or unsafe trajectories. Although the D* algorithm is designed for dynamic environments, its

performance is compromised in highly dynamic conditions [104]. Many use one-layered graph in

the spatial dimensions with only lateral targets along the road [105, 106]. Gu et al. [91] applies

multiple layered graphs with linear edges along the road. The adjacent nodes resulting in the least

cost are then used for path optimization. McNaughton et al. [92] explore both spatial and temporal

dimensions in real-time in the search of minimal cost path in the graph. Multilayered graph-based

trajectory planner is also proposed by [99] where the planning task for a racing environment is

divided into offline and online components. The offline part creates multiple drivable trajectories

by connecting nodes in the graph, and then in real-time the online part picks the least expensive

global state in the scene. However, in multilayered graph-based trajectory planners, constructing

and evaluating large-scale node networks can present significant computational challenges, poten-

tially compromising real-time performance.

Aritificial potential field techniques allow to define potential fields using potential functions

(PFs) for obstacles, road structures and goals and then plan paths by moving in the descent direction

of the field [107]. In [108], Noto et al. generate the reference path to satisfy the dynamic constraints

and to move the vehicle in the descent direction of the PFs. Rasekhipour et al. [107] combine

the power of model predictive controller to address dynamic constraints, and, the power of PFs to

address obstacles and road structures, to generate trajectories for the ego. An online motion planner

for vehicle-like robots proposed by Chen et al. [109] use PFs to generate the initial path meeting

road constraints. The path is then optimized as an unconstrained weighted objective function

for curvature maintenance, obstacle avoidance, and speed profile. However, aritificial potential

field techniques have the drawback of getting trapped in the local minima and also can generate

oscillatory paths in the presence of obstacles [110]. In this work, personalized PFs are proposed

for obstacle avoidance and maximum velocity keeping with priority given to the former.

The usage of machine learning for motion planning also has its fair share in the literature.

Sung et al. [111] use neural networks to learn a planner online from data created using off-the-

shelf path planning algorithms. The results show that the paths generated by the neural networks
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were smoother in contrast to the original paths. However, their network primarily prioritizes the

closest obstacle during planning, potentially resulting in path conflicts with other nearby obsta-

cles. Prediction and planning are combined in [112] which deploys a neural network to predict

future states of the surrounding vehicles (actors) and an initial strategy. These are then forwarded

into a optimization-based differentiable motion planner to determine the final plan by learning the

weights of the cost function online. Nevertheless, their method relies significantly on a proper

initialization of the control variables for the network to converge. Yang et al. [113] use a hybrid

approach where the behavioral learning is done using deep reinforcement learning (DRL) and the

planning is done using a Frenet planner. But in their work, only the longitudinal interaction of

human-driven vehicles is considered. In [114], a Deep Deterministic Policy Gradient (DDPG)

planner is presented that determines the optimal trajectory based on pre-defined initial and final

states, and dynamic constraints. However, no obstacle is considered in the environment and it

required 40,000 iterations before achieving a good quality trajectory. Hoel et al. [115] extend

the AlphaGo Zero algorithm to a continuous state space domain without self-play and combined

planning and learning for tactical decision making in autonomous driving. Their technique’s ap-

plicability is restricted to situations previously encountered during the training process, i.e., the

planner needs to be trained on every possible driving scenario in real-world for practical imple-

mentations. [116] proposes a safety layer in its reinforcement learning (RL) framework that pilots

the exploration process by limiting actions to the safe subspace of the whole action space. These

safe actions are determined by taking into account all the possible trajectories of the traffic partici-

pants. But because it generates all possible trajectories, and compares to the predicted occupancies

of traffic participants, the training time is significantly longer.

In this chapter, spatial-temporal graphs are proposed that incorporate virtual nodes positioned

along the road. These virtual nodes are designed to meet the road boundary conditions as well

as the kinematic constraints of the ego. The ego and its surrounding actors also are nodes in

the graph. The graphs are processed through a network architecture containing sub-networks in

series that generate the future plan for the ego. In contrast to most prior methods, this future plan
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can include one or more of the following driving behaviors: lane-keeping, lane-changing, car-

following, and speed-keeping. Furthermore, a simple behavioral layer is introduced to command

the kinematic constraints of the ego for different driving tasks. The trajectory planner is tested for

different driving tasks and the results obtained demonstrate better performance trade-off compared

to two baselines used in this work.

The main contributions of this work are summarized as follows:

1. A novel spatial-temporal graph that depicts the trajectory planning problem and incorporates

road constraints and kinematic constraints.

2. A neural network architecture that can process the above-mentioned graph to generate future

plan for the ego.

3. Personalized PFs for the architecture to learn on.

4. A simple behavioral layer for defining kinematic constraints of the ego.

The rest of this chapter is organized as follows. Section 4.2 elaborates the proposed Spatial-

Temporal Graph (STG) Trajectory Planner. In Section 4.3, the experimental setup and the results

are discussed. Finally, Section 4.4 concludes the chapter.

4.2 Spatial-Temporal Graph (STG) Trajectory Planner

In this section, the GNN-based trajectory planner utilizing a sequence of spatial-temporal graphs

for trajectory planning is presented. For the formation of the planner, first a simple behavioral

layer that determines the kinematic constraints for the ego is discussed. Next, the formulation of

the spatial graphs considering the road constraints, the kinematic constraints of the ego and the

actors surrounding it are elaborated. Then, the network architecture that processes these graphs to

obtain the future trajectory is presented. Lastly, the cost function to be minimized by the network

for safety is defined. Even though this work is on the design of the trajectory planner module,

there are other vital modules in an autonomous vehicle system. Since the design of those other
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(a) (b)

Figure 4.1: (a) A snapshot of road presented in the Cartesian coordinate frame showing the Frenet
framework formulation with respect to the reference curve (in blue), and, (b) Frenet coordinate
frame of the snapshot with the ego (blue circle). The new Frenet coordinate frame (black solid
dashes) is with respect to the ego position.

modules is out of scope of this work, it is assumed that the states of the actors, road structure

and the regulations are received from the perception module and the future states of the actors are

received from the prediction module.

4.2.1 Frame Conversion

Presenting an autonomous driving task in the Frenet coordinate domain rather than the Cartesian

coordinate domain is much simpler. In this work, the Frenet coordinates are used as features.

Furthermore, after the problem is translated in the Frenet domain, the basis of the new frame is

shifted ({s,d}→ {se,de}) with respect to the ego as shown in Figure 4.1b. By applying this shift,

it can be ensured that the magnitudes of the virtual nodes, as will be discussed in section 4.2.3,

always remain in a constrained range. Lastly, the Frenet coordinate frame also allows us to define

the cost of a path very effectively based on the longitudinal and the lateral displacements of the ego

and the other actors. Thus, on a high-level, the following steps are applied to solve the trajectory

planning problem:

1. A scenario given in the Cartesian frame is first transformed to the Frenet frame.

2. The proposed planner, STG planner, solves the trajectory problem in the Frenet domain.



CHAPTER 4. AN ONLINE SPATIAL-TEMPORAL GRAPH TRAJECTORY PLANNER 53

Figure 4.2: Transformations between the Cartesian and the Frenet frames to obtain trajectory (in
dashed line)

3. The trajectory obtained in the Frenet frame is then transformed back to the Cartesian frame

to get the actual trajectory for the ego.

These steps are illustrated in Figure 4.2.

4.2.2 Behavioral Layer

In this section, a simple behavioral layer is presented for the proposed framework – the design

of a more sophisticated behavioral layer is out of scope of this work. The behavioral layer deter-

mines kinematic constraints for the ego for different driving tasks considering safety with respect

to actors, comfort, and, road regulations. A kinematic constraint refers to a limitation or condition

imposed on the vehicle’s motion based on its physical characteristics and the surrounding environ-

ment. The behavioral layer, presented as a flow diagram in Figure 4.3, is designed to address two

particular driving tasks: driving through traffic (DTT), and, following a specific path and speed

(FSPS).

At first, parameters prioritizing safety (safety gap ssafe), comfort (the maximum longitudinal ac-

celeration/deceleration amax,long, the maximum lateral acceleration/deceleration amax,lat) and road

regulations (recommended speed vrec if any, maximum road speed vmax, minimum road speed vmin)

are defined. Next, the longitudinal gap between the rear (srear) and/or lead (slead) actor(s), and their
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Figure 4.3: Flow diagram for the behavioral layer (see Appendix for Routine A.1)

associated velocities (vrear and/or vlead), are identified. Note that a lead or a rear actor refers to

actors which are closest to and are in the same lane as the ego. Using the parameters, the following

kinematic constraints are initially applied as:

s̈dec,max = amax,long

s̈acc,max = amax,long

ṡmax = vmax

ṡmin = vmin

d̈max = amax,lat

, (4.1)

where, s̈dec,max is the maximum longitudinal deceleration, s̈acc,max is the maximum longitudinal

acceleration, ṡmax is the maximum longitudinal velocity, ṡmin is the minimum longitudinal veloc-

ity, and d̈max is the maximum lateral acceleration. In the event where a lead actor occupies the

safety gap during a DTT operation, the following kinematic constraints are substituted for their
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equivalents in equation (4.1):

s̈dec,max = 2amax,long

ṡmax = vlead

. (4.2)

If the operation is FSPS, the recommended speed vrec is set to vlead. In the event where a rear actor

occupies the safety gap during a DTT operation, the following kinematic constraints are substituted

for their equivalents in equation (4.1):

s̈acc,max = 2amax,long

ṡmin = vrear

. (4.3)

However, if the operation is FSPS and the recommended speed is less than ṡmin defined in equation

(4.3), then vrec is set to ṡmin. In the event when both a rear and a lead actor occupy the safety

gap (for both DTT and FSPS operations), the following kinematic constraint is substituted for its

equivalent in equation (4.1) while equations (4.2) and (4.3) also apply:

d̈max = 2amax,lat. (4.4)

Further, if the determined speeds ṡmax and ṡmin from equations (4.2) and (4.3) , respectively, are

such that ṡmin > ṡmax, then the following is also applied along with equation (4.4):

ṡmax = ṡmin. (4.5)

Routine A.1 (see Appendix) shows the pseudo code to obtain the kinematic constraints in equa-

tions (4.1)-(4.5). Using the constraints, the behavioral layer generates the longitudinal velocity

constraints (ṡmax, ṡmin) and the lateral acceleration constraint (d̈max ) required in the formulation of

a spatial-temporal graph as will be discussed in the next subsection.
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4.2.3 Spatial-Temporal Graphs

A self-driving vehicle must respect the road constraints, e.g., road/lane boundaries, speed limit,

etc., to ensure safety. In addition, it cannot violate the kinematic constraints, e.g., steering limits,

acceleration/deceleration limits. In the proposed formulation of the graph, the aim is to incorporate

some of these constraints. Note that the formation of the graphs requires knowledge of the future

trajectories of the surrounding actors.

An example snapshot is depicted in Figure 4.4(a). In this snapshot, the ego is surrounded by

three other actors. The ego is presented as the node ek in the graph with its longitudinal and lateral

positions and velocities as features at the kth step with k = 0, . . . ,N− 1, where N is the planning

horizon and k = 0 denotes the initial timestamp. All of the NA number of actors in a scenario are

represented by nodes Ai,k+1 with i = 1, . . . ,NA. The future lateral and longitudinal positions of the

actors at the (k+1)th step are the features of their corresponding nodes. Next, the idea of virtual

nodes V are introduced – these are imaginary points on the road spaced laterally or longitudinally

– using kinematic constraints received from the behavioral layer as shown in Figure 4.4(b) – with

respect to the ego as shown in Figure 4.4(c) and Figure 4.4(d), respectively. Thus, these virtualized

nodes have only one feature – the lateral or the longitudinal spacing from the ego at kth step. Note

that the lateral and the longitudinal positions discussed are with respect to a reference path. In

the remainder of the chapter, Frenet coordinates d and s will be used for lateral displacement and

longitudinal distances, respectively.

The lateral nodes are constrained by the road/lane boundaries and the lateral kinematic con-

straint d̈max obtained from the behavioral layer. At the (k+1)th step, the maximum lateral velocity

of the ego is given by

ḋk+1
max = d̈maxts (4.6)

where, ts is the sampling period. Therefore, equation (4.6) imposes the lateral kinematic con-

straints. The road constraint, i.e., dlower ≤ dk+1 ≤ dupper, where the boundary conditions dlower and
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dupper constrain the ego to stay on the road, is imposed using the following:

dk+1
max = min

(
dupper,dk + ḋk+1

maxts
)

dk+1
min = max

(
dlower,dk− ḋk+1

maxts
) (4.7)

where, dk+1
max and dk+1

min are the maximum and the minimum lateral distances that the ego can move.

Given the number of lateral virtual nodes NV , the nodes are layered laterally with equal spacing as

follows:

Vd,k+1 =

[
dk+1

min dk+1
min +δd dk+1

min +2δd · · ·

dk+1
max −δd dk+1

max

]T

∈ RNV

(4.8)

where, δd is the spacing defined by

δd :=

(
dk+1

max −dk+1
min

)
(NV −1)

. (4.9)

For the longitudinal nodes, the kinematic constraints ṡmax and ṡmin obtained from the behavioral

layer are applied. Thus, the maximum and the minimum longitudinal distances the ego can traverse

are defined by

sk+1
max = sk + ṡmaxts

sk+1
min = sk + ṡmints

, (4.10)

respectively. For NV number of virtual longitudinal nodes, the longitudinal layering of these nodes

are defined similarly as above:

Vs,k+1 :=
[

sk+1
min sk+1

min +δs sk+1
min +2δs · · ·

sk+1
max−δs sk+1

max

]T

∈ RNV

(4.11)
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Figure 4.4: (a) The ego (in blue) is surrounded by actors (in red). (b) The behavioral layer generates
kinematic constraints for the current scenario. (c) The lateral virtual nodes (in light peach) are
spread out laterally along the road respecting road boundaries. (d) The longitudinal virtual nodes
(in light green) are spread out longitudinally ahead of the ego along the road. (e) Formation of
graph Gk for the given snapshot with NV = 5

where, δs is the equal spacing between the adjacent nodes defined by

δs :=

(
sk+1

max− sk+1
min

)
(NV −1)

(4.12)

After all the nodes (ek, Ai,k+1, Vs,k+1 and Vd,k+1) have been defined, the graph Gk is formed as

shown in Figure 4.4(e). The edges between ek and Ai,k+1 are bidirectional signifying the “interac-

tions” between the ego and the other actors – the edge features are the euclidean distances between

the ego and the corresponding actors. The edges between the ego and the virtual nodes are unidi-

rectional (e to Vs and Vd) signifying the transition from kth to (k+1)th step (the temporal aspect of

the graph itself). Thus, the edge attribute for the edges between e and, Vs and Vd , is set to be the

sampling period ts. The lateral virtual nodes are connected by bidirectional edges to their adjacent

nodes with each edge attribute being the corresponding lateral distance between the corresponding

nodes. The interactions between the longitudinal nodes are formulated in the same manner.
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4.2.4 STG Network Architecture

The task of the STG network architecture is to output the future longitudinal and lateral positions

of the ego. To do that, a GAT network [34] is utilized as an encoder to generate a node embedding

of the spatial-temporal graph Gk (equation (4.13)) and create the encoded feature vector ΦGAT

(equations (4.14) and (4.15)). An MLP decoder with a fixed-size input further processes ΦGAT to

generate the decoded features ΦMLP (equation (4.16)). A softmax function is then applied on ΦMLP

in two layers to compute two sets of weights Φs
Softmax and Φd

Softmax for the longitudinal and lateral

virtual nodes, respectively (equation (4.17)). These weights determine the relative importance of

the virtual nodes. Finally, inner products between the virtual nodes and the weights are computed

to obtain the future position yk+1 of the ego at the (k+1)th step (equation (4.18)). Each of the

mentioned sequential steps are further detailed below and shown in Figure 4.5.

Figure 4.5: Network architecture to learn online the future trajectory of the ego

The graph Gk that represents the snapshot of the ego’s surrounding at the kth step needs to be
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processed to identify the position of the ego at the (k+1)th step. In order to do so, the framework

shown in Figure 4.5 is proposed. At first, Gk is passed through a GAT network that generates an

embedding of size r for each of the nodes, i.e.,

[
Φ

e
GAT,Φ

Vs
GAT,Φ

Vd
GAT,Φ

A1
GAT, . . . ,Φ

ANA
GAT

]
=

GATConv(Gk)

(4.13)

where, Φe
GAT ∈Rr for the ego, Φ

Vs
GAT ∈RNV×r for the NV longitudinal virtual nodes, Φ

Vd
GAT ∈RNV×r

for the NV lateral virtual nodes, and Φ
A1
GAT,Φ

A2
GAT, . . . ,Φ

ANA
GAT ∈ Rr for the NA actors. Note that the

varying number of actors NA surrounding the ego cause Gk to be a dynamic graph, i.e., addition

and deletion of actor nodes from Gk.

Since MLPs expect a fixed-size input and the GAT network applied to Gk may have different

sizes depending on NA, this structural problem is addressed by applying graph pooling [117] on

the actor nodes only:

Φ
A
GAT = Φ

A1
GAT +Φ

A2
GAT + . . .+Φ

ANA
GAT (4.14)

such that ΦA
GAT ∈Rr. Graph pooling based on the sum is often adequate for applications involving

small graphs as used in this work [117]. Finally, the output of the GAT network is generated by

concatenation as follows:

ΦGAT = concat
(

Φ
e
GAT,Φ

A
GAT,

(
Φ

Vs
GAT

) f
,
(

Φ
Vd
GAT

) f
)

(4.15)

where, ΦGAT ∈ R2r+2rNV and the (·) f operator is the flattening function [118] that returns an array

collapsed into one dimension. With ΦGAT as the input, the MLP decoder generates the decoded

states as follows:

ΦMLP = MLP(ΦGAT) ∈ R2NV (4.16)

Note that the output size for the MLP decoder is set to 2NV since the idea is to create weights for

the NV longitudinal nodes and the NV lateral nodes by applying softmax function S. Then S is
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used to normalize ΦMLP in two layers (first NV elements of ΦMLP for longitudinal weights and the

remaining NV elements for lateral weights) as follows:

Φ
s
Softmax = S

(
Φ

1:NV
MLP

)
∈ RNV

Φ
d
Softmax = S

(
Φ

NV+1:2NV
MLP

)
∈ RNV

(4.17)

Finally, the virtual lateral and longitudinal nodes are weighted using Φd
Softmax and Φs

Softmax to get

the output

yk+1 =

[ 〈
Φs

Softmax,Vs,k+1
〉 〈

Φd
Softmax,Vd,k+1

〉 ]T

(4.18)

where, yk+1 =

[
sk+1 dk+1

]T

∈ R2 is a vector of the future longitudinal and lateral positions at

the (k+1)th step, and, the operator ⟨⟩ represents the inner product. yk+1 is then utilized to obtain

Gk+1 and the same routine is followed to obtain yk+2 and so on as shown in Figure 4.5.

4.2.5 Potential Functions

The network needs to backpropagate some “loss” to learn. However, in an online trajectory planner,

there is no labeled trajectory, and thus, no loss can be calculated. Therefore, potential functions

(PFs) of the obstacles are proposed that determines the safety of the ego for a given trajectory. The

obstacle PF has maximum value at its position to repel the ego.

For an actor longitudinally and laterally distanced from the ego by△s and△d, respectively, is

assigned the longitudinal and the lateral potential functions as follows:

U long :=
b1

(b2△s+ ε1)
2 (4.19)

U lat :=
b3U long

(b4△d + ε1)
2 (4.20)

respectively, where b1, b2, b3, b4, and ε1 are constants. Equation (4.19) – a slight variation of

the repulsive potential proposed by [119] – simply indicates that maintaining a larger longitudinal
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distance alone is safer. However, safety with respect to lateral distance alone is not sufficient. An

actor maintaining a particular lateral distance from the ego at a very close proximity in term of the

longitudinal distance possess higher risk than an actor maintaining the same lateral distance but

further away longitudinally. Thus, equation (4.20) is proposed that accounts for this phenomenon

and Figure 4.6(a) illustrates it. For NA number of actors surrounding the ego, the total potential

function of the obstacles Uo is determined as follows:

Uo :=
NA

∑
i=1

U lat
i (4.21)

Next, it is important to realize that when the ego is driving through a traffic, the planner network

may slow the ego so that the surrounding actors can pass by suggesting a lower potential Uo.

However, this is an ineffective way of solving for the trajectory plan. Thus, to address the issue, a

potential function of velocity Uv is also introduced in this work:

Uv := c1

(
c2

Uo + ε2

) ṡmax
ṡ

(4.22)

where c1, c2, and ε2 are constants. Equation (4.22) implies that lower velocities should have higher

potential when the risk is lower, i.e., Uo is lower. Thus, the velocity PF has its maximal value when

the risk is the lowest and the ego is traveling at the minimum velocity. On the other hand, when Uo

is higher, the velocity PF is minimum since safety is a higher priority. Figure 4.6(b) illustrates Uv.

Finally, the total potential Utotal (i.e., the “loss”) backpropagated into the network is given by

Utotal =
N−1

∑
k=0

(
Uk+1

o +Uk+1
v

)
(4.23)
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Figure 4.6: Potential functions – (a) Lateral potential function, and, (b) Velocity potential function

4.3 Experimental Results and Analysis

4.3.1 Driving Tasks

In this section, some autonomous driving tasks are defined to evaluate the performance of the

proposed planner. These tasks vary in complexity, e.g., vehicle following and lane keeping are

on the simpler side of the spectrum, whereas, merging, driving through traffic are at the other

end [120]. Often, simpler tasks are sub-tasks of more complex tasks. Particularly, three complex

problem statements are defined – vehicle following and lane keeping are sub-tasks of the defined

problems.

4.3.1.1 Driving Through Traffic

Aradi [120] suggests that driving through traffic is the most complicated setup to test a planner.

Although this task is scalable, the task is limited to highway driving. Three different densities

– low, medium, and high – of traffic scenarios (100 for each) were generated using the SL2015

model of SUMO (Simulation of Urban MObility) simulator [121]. The low density traffic scenario

consist of 1-5 actors, the medium density traffic scenarios consist of 10-14 actors surrounding the

ego, and the high ones consist of 15-20 actors surrounding the ego. The actors are set to respect

the speed limits of the road. Once the traffic is generated, an agent from the scene is randomly
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selected to play the role of the ego while the trajectories of other agents remain unchanged. In this

task, the ego has to plan a safe trajectory for a 5 seconds horizon with 0.1 second sampling time.

4.3.1.2 Merging

In this task, the ego (driving at 50 km/h) has to merge to a highway and its lane ends in approxi-

mately 100 m. The recommended speed to enter the merging lane is set at vrec = 60 km/h. There is

an actor approaching with a speed of 70 km/h in the merging lane of the highway. There is another

actor in the adjacent lane driving at 75 km/h.

4.3.1.3 Taking an Exit

The ego currently driving at 80 km/h has to take an exit with the recommended speed of vrec =

50 km/h. There is an actor approximately 25 m ahead of it driving at 55 km/h. In the course of

time, the actor also takes the exit reducing its speed to the recommended speed. Another actor is

driving in the adjacent lane at 75 km/h which does not take the exit.

4.3.2 Baselines

Two baselines are used in this work to assess and compare the proposed technique. The kinematic

constraints used in both the baselines are the same used in the proposed method.

SL2015 from SUMO is used as the first baseline. The SL2015 model is a lane-changing behav-

ior model used to replicate real-world lane changing maneuvers in a traffic simulation. The model

allows to define kinematic constraints such as the maximum lateral and longitudinal speeds. The

model makes lane changing decisions based on several factors such as the difference between the

current and the desired speeds, cooperation between the driving agents, and the safety gap in the

current lane. The data generated using the model already defines the trajectory of the randomly

chosen agent as the ego. Thus, the trajectory not only respects the kinematic constraints, but also

mimics cooperative behavior with other actors on the road to maintain safety.
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Figure 4.7: (a) The ego (blue rectangle) merging into highway from the start (dot) and the rect-
angles represent the progression of the vehicles over time spaced by 2 seconds. (b) The velocity
profiles of the ego and the actors for the merging task

Next, the Frenet path planner from MATLAB (MFP) [122] is used. It generates multiple can-

didate trajectories using fourth or fifth-order polynomials relative to the reference path. The can-

didates are then pruned by checking for kinematic constraints. Next, the trajectories are assessed

for collision against the predicted motions of the surrounding actors and the colliding ones are

eliminated. Finally, the cost of the remaining trajectories are measured and the least expensive

trajectory is selected. Equation (4.23) is used for measuring the cost.

4.3.3 Evaluation Metrics

The trajectory qualities are evaluated in terms of safety, comfort and the longitudinal distance

traveled. Safety is assessed by the proposed risk score shown in equation (4.21) as follows:

Risk =
1
T

∫ T

0
Uo(t)dt, (4.24)

where, T is the planning horizon in seconds. Minimum jerk – the time rate of change in acceler-

ation – reflects maximal smoothness , and thus, discomfort score can be defined using integrated

absolute jerk [123]:

Discomfort =
1
T

∫ T

0
|J(t)|dt, (4.25)

where, J =
√

J2
long + J2

lat is the total jerk experienced in the trajectory in both longitudinal and

lateral directions. The longitudinal distance is extracted from the trajectory itself.
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Figure 4.8: (a) The ego (in blue) taking exit and the rectangles represent the progression of the
vehicles over time spaced by 2 seconds. (b) The velocity profiles of the ego and the actors for the
exit task

Table 4.1: Median score comparisons (best score in bold) between the proposed and the baselines
(100 random scenarios for each type of traffic)

Traffic Type Planner Discomfort
[m/s3]

Risk Longitudinal
Distance [m]

Low density traffic
STG 0.52 5.76 108.24

MFP* 0.2 5.19 104.22
SL2015 2.41 5.81 109.58

Medium density
traffic

STG 1.04 6.30 108.55
MFP** 0.22 7.12 96.85
SL2015 2.26 10.24 96.98

High density traffic
STG 1.12 7.08 109.39

MFP*** 0.26 7.42 97.92
SL2015 2.88 10.84 98.26

*73 feasible trajectories, **71, ***67

4.3.4 Experimental Results

For the task of driving through medium and high density traffics, the STG planner achieved 100%

success rate in planning feasible trajectories, i.e., trajectories that do not cause collision and do

not violate the kinematic constraints. However, MFP failed to find feasible trajectories in 27%,

29%, and 33% of the scenarios with low, medium, and high traffics, respectively. The SUMO2015

model being the basis to generate the trajectories, does not account for any failure. Table 4.1 shows

the performance comparisons between the three planners for the driving through traffic task. The

median score is presented for each of the metrics as it defines the central tendency. Note that the

results for MFP shown in the table include only the scenarios where it succeeded.

For all types of traffics, MFP generates the most comfortable trajectories and the proposed

planner stands second in the same aspect. However, the primary objective of a planner is the

ability to find a feasible path and the proposed STG planner demonstrates 100% success rate in
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planning in contrast to MFP. In low density traffic scenarios, MFP performs the best in terms of

risk, while SL2015 performs the best in terms of longitudinal distance traveled. However, STG

achieves better risk score than SL2015 and better longitudinal distance traveled than MFP for

the same traffic. The scores for medium and high density traffic shows that the planner not only

achieves more longitudinal distance, but also safer trajectories. MFP generates trajectories that are

the shortest in terms of longitudinal distance while SL2015 generates trajectories that are the least

safe.Figure 4.7 shows the performance of STG in the merging task. The velocity profile shows

that it accelerates to reach the recommended speed (60 km/h) to merge. It continues with the speed

until it gets behinds a lead actor (in green) and starts following it effectively.In the task of taking an

exit, STG generates a safe trajectory as well as shown in Figure 4.8. The ego starts to slow down

but finds a lead actor (in green also taking the exit) and then follows it quite efficiently to take the

exit. In both the above two tasks, STG demonstrates its efficacy in the following three sub-tasks:

speed-keeping, car-following and lane-keeping.

4.3.5 Interpretability

The trained GAT network encapsulates the interactions between the nodes with an attention mech-

anism as explained in section 2.1. Figure 4.9 shows the attention in equation (2.3) evolving over

time between the ego and the actors in the tasks defined in sections 4.3.1.2 and 4.3.1.3. In the

merging task, it can be seen that since both the actors are closing in and remain close, their atten-

tion values tend to converge towards each other. In the other task of taking an exit, the attention of

the actor taking the exit ahead of the ego increases while the attention of the actor not taking the

exit decreases. While it is difficult to explain the magnitude of these attention values, it is rather

intuitive that the ego should have increasing focus on the actor taking exit along with it than the

one going in another direction.
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Figure 4.9: αpq between ego p and actor q

4.3.6 Comparative Analysis of Numerical Performance

Wang et al. proposed a trajectory planner by applying Deep Reinforcement Learning (DRL) in the

Frenet coordinate system by segmenting the driving tasks into behavior decision making and tra-

jectory planning [124]. The experiments were conducted in CARLA environment for four types of

scenarios: straightforward linear road, intricate linear road, uncomplicated curved road and intri-

cate curved road. The traffic type used in [124] is low density traffic as per the definition provided

earlier in this chapter. Their model proved to be 6.8% and 13.1% more efficient than the Expecta-

tion Maximization Planner (EMP) [125] and a simple RL method, respectively, for lane changing

tasks. However, the model was unable to generate feasible trajectories in several instances with

a 0.7% failure in the straightforward linear road (the best performance) and a 3.5% failure in the

intricate curved road (the worst performance). In contrast, the STG trajectory planner proposed in

this chapter successfully generated 100% feasible trajectories under all scenarios, including high,

medium and low density traffics.

In [126], a hierarchical framework based on RL is used to generate a trajectory in the Frenet

frame. The model was compared to a Monte Carlo Q-learning and a soft actor-critic algorithm

(SAC) and all of these techniques achieved 100% success rate in generating feasible trajectories.

However, a very simplified two-lane highway scenario including an off-ramp and two vehicles

per experiment, served as the basis for the simulations in [126], in contrast to the more complex

scenarios used to test the STG trajectory planner.
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Naveed et al. propose a Robust-Hierarchical Reinforcement Learning (HRL) framework in

which the high-level layer decides from options such as lane follow/wait and lane change, and the

low level layer generates the waypoints to follow [127]. A PID controller is further deployed to

generate the longitudinal and the lateral control signals. The technique was tested in CARLA such

that the vehicles react to each other making the environment interactive – this is unlike the test

bed for STG trajectory planner where the ego must plan its path around its actors without relying

on cooperative behaviors. The scenario in which the model in [127] is tested is a straight road

with high, moderate, and low traffic flows. They compared their models with several techniques

including state-of-the-art RL techniques such as the vanilla DQN and the hierarchical double deep

Q-Learning and achieved the highest success rate for feasible trajectories. However, they reported

4.5% and 2.5% collision rates with and without Gaussian noise, respectively. On the other hand,

STG trajectory planner achieved 0% collision rate under non-cooperative behavior.

A dual variable is used to model the non-convex collision-free constraint in [128] and then

further optimized in an MPC framework. With additional constraints for safe and comfortable

driving, the final formulated optimization problem is convex which is solved using quadratic pro-

gramming solvers. The technique is tested under five different scenarios but, unlike the test bed

for STG trajectory planner, they are limited to a maximum number of two actors in addition to the

ego. The model in [128] was able to generate collision-free trajectories for all the five scenarios.

Cheng et al. developed a path planning algorithm utilizing Gaussian processes to generate

continuous paths parameterized by arc length in the Frenet frame, subject to constraints on curva-

ture and avoidance of static obstacles [129]. To address dynamic environmental factors, an efficient

spatial-temporal graph search is used to calculate a speed profile along the determined path. Lastly,

kinodynamic feasibility is ensured through an iterative, incremental optimization of both path and

speed. Unlike the planner presented in this chapter, their methodology was empirically validated

in CARLA using interactive agents. The results show that the performance of their method is quite

superior to other baselines. However, their success rate in generating feasible trajectories is not

perfect, with a failure rate of 1.1%.
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4.4 Conclusion

In this work, a novel online spatial-temporal graph trajectory planner is introduced. Heterogeneous

graphs are used to formulate the problem by taking into account road boundaries and kinematic

constaints. Then, these graphs are processed in a sequential neural network architecture to get

the desired future trajectory that can depict common driving behaviors such as lane-keeping, lane-

changing, car-following, and speed-keeping. For the network to learn, potential functions address-

ing safety and maximum velocity keeping are presented as well. In addition, a simple behavioral

layer is presented to provide kinematic constraints for the planner. The results show that the pro-

posed planner succeeded in generating feasible trajectories in all the driving tasks. In contrast to

the baselines, the metrics point to better trade-off performance.

In the future, the efficacy of the proposed planner in more diverse driving tasks using more

complex behavioral layers will be tested. We also plan to extend the application of this method to

cooperative multi-agent connected autonomous driving.
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Chapter 5

An Online Self-learning Lateral Controller

In this chapter, we consider the problem of lateral control of the ego car (block 5 in the autonomous

driving framework of Figure 1.1) so it can track its planned trajectory computed by the trajectory

planner of Chapter 4. Longitudinal control of the ego, a simpler control problem, is assumed to be

handled by a separate controller and therefore we only treat the ego’s lateral control problem here.

5.1 Introduction

The Automated Driving Systems (ADS) industry has experienced a surge in investment and re-

search – the focus of the researchers are primarily, but not limited to, safety, efficiency and con-

venience [130]. A study has estimated that 90% of fatalities in motor vehicle accidents are driven

by human errors in contrast to only 2% resulting from a vehicle malfunction [131]. Promising

solutions in self-driving cars are emerging to elevate safety and reshape the transportation industry

[132].

One of the significant tasks of the self-driving car, also referred to as the ego, is to drive along

a predefined trajectory. This requires solving the control problems for longitudinal and lateral

dynamics of the vehicle [133]. This chapter primarily focuses on solving the control problem of

the lateral dynamics only. Lateral controllers using fuzzy control [134], H∞ control [135], sliding

mode control [136] have been studied. Another approach is the geometric control, such as the
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Pure Pursuit controller [137] and the Stanley controller [138] that utilizes the geometry of the

vehicle kinematics and the reference trajectory to compute the steering commands. Performance

comparison of these controllers is presented in [139]. However, these methods rely on linear

models of the lateral dynamics. In real-world driving scenarios, there are lots of uncertainties in

the environments and one particular challenge in ADS is how to deal with varying environments

(e.g., road networks, weather conditions, etc.) [140]. For classical solutions, for example, the

control of these cars was mostly rule-based and required painstaking manual tuning of the control

parameters. Yet, such control laws were challenging to generalize to individual scenarios [141].

Thus, it is necessary that autonomous cars can learn on the fly, i.e., they adopt online learning

strategies.

Deep learning allows control agents to adapt to dynamic environments and generalize to new

settings using self-optimization through time. Control of the ego car, in general, can be divided

into two categories [142]: (1) end-to-end, and (2) the perception and control separation meth-

ods. The end-to-end learning controllers directly process sensor readings to control desired output

variables. In an early end-to-end method, [143] used a simple feedforward network to train with

camera images to generate steering commands. Convolutional Neural Networks (CNN) have also

been a popular choice to process camera images for lateral control of the vehicle [144, 145]. Since

end-to-end learning methods typically predict a control input for a particular observation and the

predicted action affects the following observation, the error can accumulate and lead the network

to a completely different observation [146]. Another drawback of end-to-end learning is that it

requires a large dataset for training [147]. Kwon et al. [148] proposed an incremental end-to-end

learning method where the training is initiated with data collected by a human driver and later

replaced by the neural network for further learning. In contrast, the perception and control separa-

tion technique has a separate perception module that extracts the features (e.g., position, velocity,

etc.) and the features are then used to make decisions by the controller module. Khalil et al. [149]

introduce an adaptive neural lateral controller for end-to-end learning in which they utilize a base

model and a predictive model inspired by human’s near/far gaze distribution. Despite promising
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results achieved by end-to-end learning techniques, these suffer from poor interpretability and gen-

eralization to new scenes [150]. In this work, the perception and control separation technique is

used; however, perfect state measurements are assumed, since the perception module is out of the

scope of this work.

Reinforcement Learning (RL) is another frequent choice for lateral control. Ma et al. [151]

propose a game-theoretic receding horizon reinforcement learning lateral controller by formulating

the uncertainties on the ego as a player by zero-sum differential games. In addition, an actor-critic

algorithm combined with a critic neural network and two actor neural networks define their control

strategy. Brasch et al. [152] used the soft-actor-critic algorithm of RL to determine steering values

to reduce path tracking error. Wasala et al. [153] proposed a novel reward function to minimize

tracking errors and improve comfort and safety for their RL algorithm. For lane changing maneu-

vers, Wang et al. [154] proposed a quadratic function as the Q-function for their RL algorithm

and use neural networks to approximate the coefficients of the function. While the RL has the

advantage of not requiring a vehicle model, it essentially trains in a trial-and-error mode, making

it dangerous to train an agent on an actual vehicle. The proposed methods allow safer training of

the actual vehicle in real time.

Another potential method for lateral control is the MPC that has demonstrated reasonable con-

trol performance [155][156]. Costa et al. [157] implemented a learning-based MPC algorithm to

improve modeling accuracy and perform online tuning of MPC parameters for control. While the

approach in [157] is similar to the proposed method, MPC is computationally expensive and on-

board computers of autonomous cars may not be powerful enough to solve real-time optimization

problems [158]. In [158], Zhou et al. mitigated the computational load problem using event-

triggered MPC in contrast to the generally used time-triggered MPC; however, there is a slight

performance loss. To achieve the task of platooning, Kazemi et al. [159] used a Laguerre-based

MPC and a robust MPC for longitudinal and lateral control, respectively. In [160], RL is used to

dynamically update the objective weights of a nonlinear MPC to perform real-time lateral control

of the ego.
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The main contributions of this chapter are as follows:

• Vehicle modeling: The vehicle is modeled using existing knowledge of vehicle dynamics in

unification with GNN, particularly Graph Attention Network, that processes a heterogeneous

graph depicting the vehicle. The strength of the model lies in the fact that it can be trained

online anytime the performance degrades.

• Lateral controller: A heterogeneous graph representing the state transition of the vehicle –

from current to desired – is processed through a GNN-based network to generate steering

commands. The controller is competent in online learning, allowing it to adjust its parame-

ters and respond accordingly to unseen environments.

• The methods are validated in CARLA, an open-source high-fidelity ADS platform [161].

To the best of my knowledge, no literature exists that utilizes graphs to solve lateral control prob-

lems in autonomous driving.

The rest of this chapter is organized as follows. Section 5.2 introduces the proposed vehicle

modeling and the lateral controller. In Section 5.3, the procedures for training the vehicle model

and the controller are discussed. Section 5.4 presents the main simulation results and a comparison

with the baseline. Finally, Section 5.5 concludes the chapter.

5.2 Vehicle Model and Lateral Controller

In this section, a novel technique is proposed for the lateral controller and an enhancement for

the modeling of the vehicle by taking advantage of the expressive power of graphs to represent

real-world problems (e.g. [162, 163]).

5.2.1 Network Architecture for Graph

In this work, the network architecture shown in Figure 5.1 is implemented to process a graph.

The framework consists of multiple layers, and each layer comprises a GAT and a linear layer in
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Figure 5.1: Network architecture (G2O) used in this work to map a graph – defined by its features
Z and edge connections E – to output ϕ

(x,y)

 θ
δv

β

lwb
X(m)

Y(m)

Figure 5.2: Dynamic vehicle bicycle model where the two axles are represented as single wheels

parallel, the output of which is passed through a ReLU function. For convenience, this framework

will be referred as G2O (graph-to-output) in the rest of the chapter.

For Layer 1, the input is the original graph G(Z,E), where Z is a collection of both node

features Znodes and edge features Zedges. The output of the network ϕ is given by the following:

Z̄1 =ReLU
(

GAT(1) (Znodes,Zedges,E
)
+

Linear(1)
(
(Znodes)

f
))

Z̄l =ReLU
(

GAT(l) (Z̄l−1,Zedges,E
)
+

Linear(l)
(
(Z̄l−1)

f
))

, ∀l = 2, . . . ,L

ϕ =Z̄L ∈ RN×M

(5.1)

where, (·) f operator is the flattening function [118] that returns an array collapsed into one dimen-

sion, N is the number of nodes and M is the output feature dimension of G2O.
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5.2.2 Proposed Vehicle Model

Since the proposed controller outputs the steering command and not the actual states based on

which the network needs to be optimized, an intermediate differentiable and a high accuracy rep-

resentation of the actual vehicle is needed. A commonly used model for ego cars, which is also

differentiable, is the dynamic bicycle model as shown in Figure 5.2, in which the front and rear

wheel pairs are each lumped into a single wheel since roll dynamics are ignored. Assuming the

center of mass is at the center of the wheelbase (CW), the local frame of the vehicle is considered

at CW. The dynamic differential equations of the model are as follows:

˙̂Xb =



ẋ

ẏ

θ̇

v̇


=



vcos(θ +β )

vsin(θ +β )

vtan(δ )cos(β )
lwb

‘

anet


(5.2)

where, x and y are the global coordinates of the CW, θ is the heading, v is the velocity of the

vehicle, δ is the steering angle, β is the slip angle defined as

β = arctan
(

tan(δ )
2

)
, (5.3)

lwb is the length of the wheelbase, and anet is the net acceleration. Since, in CARLA, the vehicle

takes throttle (T ) as input instead of acceleration (a) and also experiences drag force (Fdrag), the

net acceleration can be defined by

anet = a−
Fdrag

mv
, (5.4)

with,

Fdrag =
1
2

ζ A f ρairv2 (5.5)

and,

a = 6.5T 2 +0.6T +0.08, (5.6)
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where, mv and ζ are the mass and the drag coefficient respectively obtained directly from CARLA,

A f is the frontal area that has been approximated based on the bounding box of the vehicle provided

in CARLA, and ρair is the air density. Equation (5.6) is obtained by a second-order polynomial

curve fitting of throttle versus acceleration data obtained through simulation in CARLA. It is im-

portant to note that the equation (5.6) is not an accurate relation between the acceleration and the

throttle. However, the idea is to combine the power of physics with the learning of neural network

to improve the accuracy in estimating the states. Thus, while the bicycle model utilizes equation

(5.6), it is empowered by the neural network to achieve higher accuracy, which is discussed in the

remaining part of this section and further demonstrated in the results section (section 5.4.3).

The bicycle model described by equation (5.2) is limited by assumptions. Given a vehicle is a

nonlinear dynamical system running under uncertainties, the bicycle model cannot determine the

states accurately which is crucial for the controller performance. Therefore, the following Graph

Vehicle Model (GVM) is proposed to estimate the states:

χ̇ = Γ⊙ ˙̂Xb, (5.7)

where Γ ∈ R4×1 allows dynamic model adjustment and the ⊙ operator represents element-wise

multiplication. The mapping Γ for vehicle modeling is learned using G2Om as follows:

Γ = MLPm

(
(ϕm)

f
)
∈ R4×1 (5.8)

where, the subscript m refers to modeling, ϕm ∈R6×Mm (note that there are six nodes in Gm), MLP

refers to a deep multilayer perceptron with input dimension 6Mm, and, G2O and ϕ have already

been defined in section 5.2.1. Note that an MLP can be defined using the standard equation:

z(l) = σ

(
W (l)z(l−1)+b(l)

)
, for 1≤ l ≤ L (5.9)

where, z(0) is the input, and z(L) is the output, L is the number of layers including the input and the
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output layers, and, W (l) and b(l) are its learnable parameters in the lth layer. The GVM architecture

is shown in Figure 5.3.

The network is fed with a heterogeneous graph Gm, depicting the four wheels and the actuators

(steering and throttle) as nodes. The features of the actuator nodes are their corresponding steering

and throttle values at kth time
(

Zδ
k ,Z

T
k ∈ R

)
. The front wheel and the rear wheel nodes have the

following features

Zw, f
k,l/r =



sw, f
k,l/r− sk

dw, f
k,l/r−dk

vk

θk +δk−1


(5.10)

and,

Zw,r
k,l/r =



sw,r
k,l/r− sk

dw,r
k,l/r−dk

vk

θk


, (5.11)

respectively, where s and d are the corresponding longitudinal and lateral coordinates of x and y

respectively in the Frenet coordinate frame with respect to the reference path, the superscripts w,

f and r represent wheel, front and rear respectively, and the subscripts r and l represent right and

left respectively. Thus, the first two elements of the feature vectors of the wheels are in reference

to CW. At the kth step, the front wheels are further angled by the steering angle at the (k−1)th

step. The wheels positions can be easily found using basic trigonometry and their corresponding

Frenet coordinates are computed. The edge features between the wheels are the distances between

them. Between the actuator and the wheel nodes, the sampling period ts is assigned as the edge

feature. However, no edge feature is assigned to edges between the actuator nodes themselves.

The assigned edge features are constant throughout time. Figure 5.3 also shows the directions of

the edges of Gm. It is not apparent how the wheels would “communicate” with each other, and
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Figure 5.3: Architecture of Graph Vehicle Model to estimate X̂k+1 online based on the error em at
each time step

thus, the edges between them are bidirectional. The same holds for the actuators. Nonetheless, it is

evident that the actuators drive the wheels – both for steering and rotation. During implementation,

the dynamics of the model is discretized as follows:

X̂k+1 = Xk + χ̇kts (5.12)

where, X is the ground truth of the states obtained from vehicle sensors. The modeling error

em = Xk+1− X̂k+1 (5.13)

which is the difference between the estimated states and the ground truth at the (k+1)th time step

is backpropagated into G2Om and MLPm to update their weights.

5.2.3 Graph-based Lateral Controller

The Graph-based Lateral Controller (GLC) proposed in this section primarily frames the “desired”

transition from the current state to the desired state into a heterogeneous graph Gc as shown in



CHAPTER 5. AN ONLINE SELF-LEARNING LATERAL CONTROLLER 80

Figure 5.4. The features of the wheels at kth step are the same used in equations (5.10) and (5.11).

However, for the (k+1)th step, velocity is removed from the feature array. The removal of velocity

from the desired nodes is intuitive since the task of the lateral controller is not to track velocity

profile. The unidirectional edges from current to desired mimics the transition to the future, and

thus, the sampling period is assigned as their edge features. The bidirectional edges between the

wheels have their corresponding physical distances as the edge feature. As shown in Figure 5.4,

Gc is fed into G2Oc to generate ϕc. Finally, the steering command is produced as follows:

δk = HardTanh
(

MLPc

((
ϕ

desired
c

) f
−
(
ϕ

current
c

) f
))

(5.14)

where, the subscript c refers to controller, ϕc ∈R8×Mc (note that there are eight nodes in Gm), MLP

has an input dimension 4Mc, ϕdesired
c and ϕcurrent

c are the output node embedding of the desired and

current nodes of Gc respectively, and,

HardTanh(ω) =


1.0, if σ > 1.0

−1.0, if σ <−1.0

2.0ω, otherwise

oEquation (5.12) is used to estimate the states of the vehicle at (k+1) using δk and compared with

the desired states. The error is then backpropagated into G2Oc and MLPc to update their weights.

To calculate the error, only the position coordinates are used, i.e.,

ec = Yd− Ŷk+1 = Yd−DX̂k+1 (5.15)

where, Yd is the desired position and Ŷ is the estimated position with D =

[
I2×2, 02×2

]
and I

being the identity matrix. Algorithm 5.1 outlines the pseudo code to obtain Yd . Cd (R) is an array

of the cumulative distance of the reference path R given by positional coordinates, and the function

“Frenet Coordinate” outputs the longitudinal Frenet coordinate with respect to the reference path.
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Figure 5.4: Graph-based Lateral Controller framework for online lateral control based on the error
ec at each time step

Algorithm 5.1 Pseudo code to obtain Yd

Inputs: R, Cd (R), Xk
Do:

1 sk = Frenet Coordinate(R,Xk)
2 indices = find(Cd (R)> sk)
3 Yd = R [indices[1], :]

It is important to note that this work is centered on the design of a lateral controller, and

therefore, throttle is treated as a measured disturbance in the vehicle dynamics. A similar approach

was used in the design of a lateral controller in [158].

5.3 Training Process

Prior to deploying the online learning of the lateral controller, GVM is pre-trained in the CARLA

environment as shown in Figure 5.3. By passing pre-determined throttle and steering values, the

output from the CARLA vehicle is utilized to train GVM on the fly. In practice, a driver would just
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Figure 5.5: Pre-training process of the controller

have to drive the car making as much diverse maneuvers as possible and the network would learn

in real time.

Furthermore, GLC is also pre-trained on the already trained GVM before the actual deployment

in the CARLA simulator. The training process is similar to Figure 5.4, except that Xk is replaced

by X̂k, directly obtained from GVM, to generate Gc as shown in Figure 5.5. The usefulness of

this pre-training is evident in Figure 5.6 – with a pre-trained model on the CARLA simulator, the

vehicle starts with impressive path tracking at the first learning epoch, unlike when an untrained

model is used. Again, in practicality, this would mean that the car using a pre-trained GLC would

be much safer at the very beginning of its learning curve. It should be noted that during the online

learning, GVM can potentially be updated only when the estimation error is above a predefined

threshold ε . Similarly, the online training of the GLC can be halted as long the performance is

satisfactory. However, in this work, the online learning is always activated.

The loss function related to e ∈ R used to train both the GVM and the GLC is SmoothL1Loss:

smoothL1 (e) :=


0.5e2, if |e|< 1

|e|−0.5, otherwise
(5.16)
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Figure 5.6: Performance comparison of the proposed controller in CARLA environment at the first
learning epoch with a pre-trained model and an untrained model of the controller

5.4 Simulation Results

5.4.1 CARLA Environment Setup

CARLA [161] is an open-source autonomous car simulator that can simulate driving scenarios and

can support multitude of ADS tasks [164]. Its high-fidelity environment allows to develop, test

and validate ADS systems including controllers. In recent works [165, 166, 167, 168], CARLA

has been widely used for different tasks. The platform has the OPENDrive [169] standalone mode

that allows one to load an OpenDRIVE file and create a temporal 3D mesh that defines the road in

a minimalistic manner.

In this work, CARLA version 0.9.14 has been used. At initialization, the road is loaded using

OpenDRIVE format along with the ego. The center of the road along the path is set as the reference

path. To obtain the reference trajectory, the CARLA auto-pilot mode was activated such that it

follows the lane center at a maximum speed of 10 m/s. The reference trajectory contains position,

heading and velocity at each time-step, which is set at 0.1 second. CARLA APIs allow accessing all

the states (e.g., position, heading, velocity) directly at each step. A longitudinal controller (PID) to

follow the reference velocity, and a lateral controller (the proposed controller) to minimize lateral

positional error, were implemented.

The first autonomous racing leagues took place in Abu Dhabi (circuit called Yas Marina, also
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Figure 5.7: Six race tracks from six different continents along with curvature values along the race
tracks

used in this work) in April 2024 with seven participating nations [170]. At the trials of the event

during which no opponent was present on the track, the self-driving cars randomly curled and even

turned into the walls [170] showing poor performances of the lateral component of the controllers.

Therefore, for training and testing purposes in this work, six different Formula 1 race tracks from

six different continents, as shown in Figure 5.7, were used. These tracks have several sharp turns,

bends and straights making them practical choices to test any control algorithm for autonomous

cars.
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Table 5.1: MPC parameters and steering constraints used

Parameter Value Description

p 4 Prediction horizon

δmin -1.0 rad Minimum steering

δmax 1.0 rad Maximum steering

∆δmax 0.5 rad/s Maximum steering velocity

ts 0.1 s Sampling period

Rd 1.0 Weight on input

Q diag
{

2.5, 2.5
}

Weight on tracking error

Q f diag
{

3.5, 3.5
}

Weight on terminal condition

5.4.2 Baselines

5.4.2.1 Model Predictive Controller

A Linear Time-Varying MPC is used as the baseline lateral controller to compare the proposed

controller against. Since the prediction model (see equation (5.2)) is non-linear, it is linearized at

different operating points, i.e., it is updated recursively as the operating conditions change. The

cost function to be minimized in the finite-horizon MPC problem is defined using weighted 2-

norms as follows:

J =
p−1

∑
k=1
∥Yt+k−Rt+k∥2

Q+
∥∥Yt+p−Rt+p

∥∥2
Q f

+
p−1

∑
k=1
∥δt+k∥2

Rd
+

p−1

∑
k=1
∥δt+k−δt+k−1∥2

Rd

(5.17)

where, the first term represents the tracking error of the position, the second term penalizes the

error of the terminal condition, the third term penalizes high steering inputs, and the last term

penalizes steering velocity. The MPC is programmed to generate only the steering command and

a separate PID is used as the longitudinal controller in the baseline settings. The MPC parameters

and constraints on the inputs used are listed in Table 5.1.
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5.4.2.2 Stanley Lateral Controller

The Stanley lateral controller [138] uses position of the front axle to calculate the heading error (ψ)

as well as the cross-track error (ect, the closest distance between the front axle and the reference

trajectory). The steering angle (control law) is given as follows:

δ = ψ + arctan
kect

v
, (5.18)

where, k is a gain that determines the rate of error convergence and v is the velocity. The second

term adjusts the steering in nonlinear proportion to ect, i.e., the steering response toward the trajec-

tory is stronger if ect is larger. Detailed explanation on the Stanley lateral controller can be found

in [138]. In this work, k = 1.0 has been used.

Figure 5.8: Absolute lateral error experienced by the controllers without perturbation
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5.4.3 Result Analysis

The proposed controller GLC and the MPC are both simulated in the CARLA environment as

described earlier with the goal to drive along the center lane. Maximum lateral error

MLE = max
i=1,...,n

(|ei|) , (5.19)

and the root mean square error

RMSE =

√
1
n

n

∑
i=1

e2
i (5.20)

of the lateral position error are used to measure the performance of each controller, where e is the

error signal for time t1, . . . , tn. The tracks are segmented into two categories for better insight into

performance measurement: straight section when the curvature is less than 0.02 m−1, otherwise,

turning section (see Figure 5.7). Furthermore, with the pre-trained controller discussed in section

5.3, two different tests – with and without perturbation – are carried out. In the latter test, a constant

perturbation of ±2.5 degrees is added to the steering command – such a disturbance mimics the

misalignment of the wheels with the steering in the real world.
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Figure 5.9: Steering commands generated by the controllers without perturbation
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Table 5.2: Performance comparison for reference path tracking between GLC, MPC and Stanley
for the six tracks without perturbation. The best result for each of the subcategories is in bold.

MLE (m)
Straight Turn Overall

GLC MPC Stanley GLC MPC Stanley GLC MPC Stanley

Montreal 0.24 0.09 0.33 0.20 0.24 0.34 0.24 0.24 0.34

Sao Paulo 0.22 0.07 0.21 0.21 0.14 0.18 0.22 0.14 0.21

Barcelona 0.23 0.18 0.42 0.17 0.29 0.43 0.23 0.29 0.43

Kyalami 0.27 0.15 0.18 0.33 0.22 0.19 0.33 0.22 0.19

Yas Marina 0.28 0.31 0.30 0.28 0.51 0.22 0.28 0.51 0.30

Melbourne 0.30 0.27 0.18 0.26 0.40 0.19 0.30 0.40 0.19

RMSE (m)
Straight Turn Overall

GLC MPC Stanley GLC MPC Stanley GLC MPC Stanley

Montreal 0.08 0.01 0.03 0.08 0.07 0.12 0.08 0.02 0.04

Sao Paulo 0.07 0.01 0.03 0.08 0.06 0.08 0.07 0.01 0.03

Barcelona 0.07 0.01 0.03 0.07 0.13 0.12 0.07 0.02 0.03

Kyalami 0.07 0.01 0.03 0.13 0.06 0.10 0.07 0.01 0.03

Yas Marina 0.08 0.01 0.03 0.10 0.18 0.10 0.08 0.04 0.04

Melbourne 0.08 0.01 0.03 0.12 0.13 0.11 0.09 0.02 0.03

Firstly, the controllers are tested without perturbation. Figure 5.8 shows the performance of

the proposed controller in contrast to the baselines and the summary of the results are listed in

Table 5.2. On straight paths, MPC has outperformed both GLC and Stanley in terms of both

MLE and RMSE. At turns, GLC achieves better MLE in two of the six tracks, while performance

of MPC and Stanley are better in one and three of six tracks, respectively. Overall, the RMSE

values show that the performance of the baselines are better than the proposed controller without

perturbation. However, this performance comes at the cost of comfort. Although the steering

commands generated by the controllers, as shown in Figure 5.9, are within the steering limit of

CARLA environment (i.e., 1 radian), Table 5.3 shows that the maximum steering velocity for all

the six tracks generated by both MPC and Stanley is always above GLC. Thus, the proposed

controller provides a more comfortable ride.



CHAPTER 5. AN ONLINE SELF-LEARNING LATERAL CONTROLLER 90

Table 5.3: Comparison of maximum steering velocity for reference path tracking between GLC,
MPC and Stanley for the six tracks. The best result for each of the subcategories is in bold.

Maximum steering velocity (rad/s)
No Perturbation With Perturbation

GLC MPC Stanley GLC MPC Stanley

Montreal 0.25 0.61 1.08 0.17 1.01 1.41

Sao Paulo 0.21 0.71 1.34 0.23 0.68 1.35

Barcelona 0.33 0.62 0.66 0.18 1.34 1.34

Kyalami 0.26 0.61 0.80 0.28 0.73 1.03

Yas Marina 0.12 2.20 1.16 0.26 1.66 1.04

Melbourne 0.22 0.79 1.29 0.22 0.91 1.51

Table 5.4: RMSE for position estimation by GVM for the six tracks

RMSE (m)

Montreal 0.021

Sao Paulo 0.020

Barcelona 0.018

Kyalami 0.018

Yas Marina 0.026

Melbourne 0.019

The performance of the proposed GVM plays a crucial role in the performance of GLC. Table

5.4 shows the accuracy of the proposed model in estimating the position of the ego. The RMSE

values suggest high accuracy of the proposed vehicle model.

Next, the controllers are tested with perturbation. It can be seen from Figure 5.10 that the

proposed controller GLC learned to attenuate the perturbation while MPC and Stanley failed to do

so – a lateral error offset can be observed for both. In terms of both MLE and RMSE as can be

seen in Table 5.5, the overall performance of GLC is superior to that of MPC and Stanley. Note

that GLC still maintained a more comfortable ride even under perturbation (see Figure 5.11 and

Table 5.3).
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Figure 5.10: Absolute lateral error experienced by the controllers under perturbation

5.4.4 Comparative Analysis of Numerical Performance

Zhou et al. proposed an event-triggered MPC (eMPC) for autonomous path tracking [158]. Unlike

the traditional time-triggered MPC (tMPC), eMPC solves the optimization problem only when an

event is triggered. They also tested their proposed controller on CARLA but on a much simpler

track (Figure 5 in [158]) and without any perturbation. The maximum speed was set at 30 km/h

which is slightly less than the maximum speed used in our case (i.e., 10 m/s = 36 km/h). Their

results show that tMPC has better performance but this performance comes at the cost of fre-

quent triggering of the MPC – eMPC is triggered significantly less than tMPC for larger values of

the event-trigger threshold, particularly, σ = 0.03. Overall, RMSE values obtained by tMPC are
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Figure 5.11: Steering commands generated by the controllers under perturbation

0.052 m at turns and 0.018 m at straights, which are comparable to the (worst) performance ob-

tained by our proposed GLC, i.e., 0.13 m at turns (in Kyalami) and 0.08 m at straights (in Montreal,

Yas Marina and Melbourne).

In [171], Artuñedo et al. implemented several classical control approaches for the lateral

control problem in autonomous driving, including Linear Quadratic Regulators (LQR), PID and

nonlinear MPC (NMPC). They also implemented more recent approaches – Model-Free Control

(MFC) [172] developed in 2013, and Speed-Adaptive Model-Free Control (SAMFC) [173] devel-

oped in 2022. They have tested these controllers on several tracks with different maximum speeds

under no perturbation. For fair comparison, only the results obtained from trajectory T1, which has

much simpler turns (Figure 3(a) in [171]) in contrast to the racing tracks used to test GLC (5.7), is
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Table 5.5: Performance comparison for reference path tracking between GLC, MPC and Stanley
for the six tracks with perturbation. The best result for each of the subcategories is in bold.

MLE (m)
Straight Turn Overall

GLC MPC Stanley GLC MPC Stanley GLC MPC Stanley

Montreal 0.23 0.24 0.70 0.23 0.23 0.71 0.23 0.24 0.71

Sao Paulo 0.18 0.30 0.62 0.22 0.30 0.63 0.22 0.30 0.63

Barcelona 0.21 0.37 0.59 0.22 0.46 0.60 0.22 0.46 0.60

Kyalami 0.24 0.56 0.58 0.24 0.74 0.59 0.24 0.74 0.59

Yas Marina 0.45 0.43 0.64 0.41 0.76 0.73 0.45 0.76 0.73

Melbourne 0.40 0.29 0.61 0.40 0.38 0.61 0.40 0.38 0.61

RMSE (m)
Straight Turn Overall

GLC MPC Stanley GLC MPC Stanley GLC MPC Stanley

Montreal 0.07 0.13 0.45 0.06 0.15 0.49 0.07 0.13 0.45

Sao Paulo 0.09 0.13 0.44 0.07 0.15 0.51 0.09 0.13 0.45

Barcelona 0.08 0.14 0.46 0.09 0.25 0.45 0.08 0.14 0.46

Kyalami 0.08 0.14 0.45 0.07 0.27 0.40 0.08 0.14 0.45

Yas Marina 0.09 0.13 0.45 0.14 0.33 0.46 0.10 0.15 0.45

Melbourne 0.07 0.13 0.45 0.11 0.18 0.50 0.07 0.13 0.45

mentioned here since the maximum speed used in this trajectory is 35 km/h. The mean values of

MLE suggest that SAMFC has the best performance among the five tested controllers achieving

0.33 m. On the other hand, in terms of MLE, the best and the worst performances of GLC were

0.23 m (in Barcelona) and 0.33 m (in Kyalami), respectively.

A hierarchical dynamic drifting controller (HDDC) is proposed in [174] which includes a path

tracking layer (for generating the desired states), a vehicle motion control layer (to integrate drift-

ing and typical cornering control), and an actuator regulating layer. HDDC is integrated with both

MPC and LQR separately and the performance of these two controllers is assessed on a single

track. It should be noted that both the MPC-HDDC and LQR-HDDC controllers are coupled con-

trollers, i.e., they generate both the longitudinal and the lateral commands. Overall, in terms of



CHAPTER 5. AN ONLINE SELF-LEARNING LATERAL CONTROLLER 94

MLE, MPC-HDDC has the best performance with a 0.34 m value, and in terms of RMSE, both

the controllers achieve the same performance, i.e., 0.11 m. Both these values are higher compared

to GLC’s corresponding achieved (worst) values, i.e., 0.33 m for MLE (in Kyalami), and 0.09 m

for RMSE (in Melbourne). Even though the maximum speed used in [174] is lower than the max-

imum speed used in this work, it appears that the absence of coupling between the lateral and the

longitudinal aspects in GLC gives it an edge over HDDC.

Wasala et al. used separate reinforcement learning (RL) algorithms for longitudinal and lateral

controls [153]. They tested their method with high speeds (80 km/h and 200 km/h) in simulation,

which is higher than the speed in this work, and with low speeds (between 10 km/h and 40 km/h)

on a real vehicle. They also used race tracks to assess the performance of their proposed con-

trollers. For the simulations on unseen tracks with a maximum speed of 80 km/h, with Jaguar-X

(car model), the lateral controller was able to achieve approximately 0.20 m for MLE and an av-

erage value of 0.32 m for RMSE. The MLE value clearly suggests better performance of their

proposed controller in contrast to the proposed GLC in this work. However, the RMSE value ob-

tained in [153] is more than three times of that obtained by GLC – this is understandable given the

high speed profile of their test bed compared to the one in this work.

Combining the Pure Pursuit controller with a PID and then using a customized RL model to

trade off between the two, Shane et al. were able to successfully track different paths with high

speeds (up to 80 km/h) [175]. However, they also tested their technique using a lower speed of

35 km/h, which is similar to this work, and therefore experimental results related to that particular

speed will be mentioned here. The experiments were carried out on four types of tracks (S-shape

for training, and, T-shape, U-shape and O-shape for testing). In the training, the value of MLE

obtained was 0.37 m, while in training the values were 0.25 m, 0.37 m and 0.38 m for T-shape, U-

shape and O-shape, respectively. Although the average of these values is higher than that obtained

by GLC, these are comparable performance results.
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5.5 Conclusion

This chapter introduces an innovative approach of learning a vehicle model followed by a novel on-

line lateral controller for autonomous driving. Heterogeneous graphs are used to represent both the

components and then fed through their corresponding G2O. The vehicle learning model GVM uti-

lizes existing knowledge of a vehicle, whereas a neural network would have to learn from scratch.

Conversely, unlike a physics-based model, GVM can capture unidentified dynamics. Combining

these strengths, GVM efficiently learned the vehicle dynamics online. The lateral controller GLC

also learns online to effectively maintain the ego on its reference path; MPC and Stanley controller,

on the other hand, cannot learn online. Without perturbation, MPC and Stanley does better track-

ing than GLC. However, the proposed controller gives a more comfortable ride. When the ego is

perturbed, GLC outperforms both MPC and Stanley by mitigating the perturbation while main-

taining satisfactory tracking performance as well as comfort. The efficacy and practicality of the

proposed techniques have been validated through comprehensive simulations in CARLA. In this

work, the proposed lateral controller was tested for a low velocity and a PID controller was used

as a longitudinal controller for tracking that velocity. However, at higher velocities, the coupling

between the two controllers become stronger, and thus, a unified controller is more suitable. For

future work, we want to investigate a graph-based controller that can generate both the steering

and the throttle commands.
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Chapter 6

Conclusion

The fast progress of self-driving technology requires the creation of reliable, flexible, and efficient

systems to guarantee safe, comfortable, and road regulation-compliant autonomous vehicles. The

main focus of this thesis is on three crucial elements of autonomous driving systems: predicting

trajectories, planning trajectories, and controlling the vehicle.

6.1 Research Summary

The research work presented in this thesis addresses some of the core problems in autonomous

driving. Namely, it proposes novel techniques for the prediction of the actors’ trajectories, the

computation of a planned trajectory for the ego, and the lateral control of the ego car to track its

planned trajectory. This work contributes significantly to the current state of autonomous driving

technology by introducing innovative methodologies using graph learning techniques.

6.1.1 Trajectory Prediction with AiGem

Trajectory prediction plays a fundamental role in the decision-making and safety of autonomous

vehicles. In this context, a deep learning model called AiGem (Agent-Interaction Graph Embed-

ding) is proposed. AiGem employs a creative approach to build a heterogeneous graph using
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historical data, effectively capturing the interactions between agents through spatial and temporal

edges. The use of this graph representation allows for a thorough modeling of agent interactions

as time progresses. Within the AiGem framework, there is a graph encoder network that generates

embeddings for target actors at the current timestamp. Next, the embeddings are inputted into

a sequential GRU decoder network. Utilizing the decoded states from the GRU, the output net-

work employs an MLP to predict future trajectories. The NGSIM datasets are used to evaluate the

performance of the model, showing that AiGem achieves similar accuracy to the most advanced

prediction algorithms for shorter prediction timeframes. AiGem stands out by outperforming all

baseline models in predicting events with longer horizons of four and five seconds.

The trajectory prediction module of AiGem presents notable advancements in autonomous

driving, enhancing safety, improving decision-making, and decreasing collisions. The long-term

trajectory prediction capability of AiGem empowers autonomous vehicles to anticipate potential

hazards in advance and make well-informed decisions. By employing a heterogeneous graph, the

model successfully captures the complex dynamics of agent interactions, leading to more accurate

predictions of future movements. The comprehensive understanding of interactions, although not

readily apparent, plays a pivotal role in averting hazardous situations by facilitating appropriate

responses from the vehicle. As a result, AiGem’s predictive capabilities play a crucial role in min-

imizing collisions by enabling autonomous systems to anticipate and respond to potential threats,

thus ensuring safer and more dependable autonomous driving.

The frequency at which autonomous cars make trajectory predictions is very important, as

it is greatly affected by the prediction horizon and the necessary level of accuracy. In order to

navigate through immediate obstacles, predictions for shorter horizon scenarios must be made

more frequently to enable swift responses to dynamic environmental changes. Implementing high-

frequency updates enables the system to maintain more control and adjust promptly to abrupt

changes in the surrounding conditions, such as the sudden emergence of a pedestrian or an un-

expected maneuver by another vehicle. In comparison, predictions that extend several seconds

into the future can be generated less frequently. This is because the focus shifts from immedi-
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ate reactions to strategic planning. Predictions with longer horizons prioritize broader trends and

can accommodate minor inaccuracies, as subsequent short-term predictions allow for immediate

corrective actions.

6.1.2 Online Spatial-Temporal Graph Trajectory Planner

Autonomous driving also involves careful trajectory planning, which guarantees safe and comfort-

able vehicle navigation while considering kinematic and road constraints. An innovative online

STG trajectory planner is developed that combines autonomous vehicles, surrounding vehicles,

and virtual road nodes to build heterogeneous graphs. By using a graph-based representation,

it becomes simpler to model the driving environment. To generate the desired future trajectory,

the planner employs a sequential neural network architecture to analyze these graphs, effectively

capturing familiar driving behaviors like lane-keeping, lane-changing, car-following, and speed

keeping. To guarantee effective learning of the network, potential functions that consider safety

and velocity constraints are integrated. Moreover, a basic behavioral layer is introduced to incor-

porate kinematic constraints into the planner. Testing on three complex driving tasks validates the

effectiveness of the proposed planner, with its performance compared with two frequently used

techniques. The results show that the planner effectively creates viable paths for all tasks, striking

a better balance between safety and efficiency when compared to the baselines.

The STG trajectory planner holds several noteworthy implications for autonomous driving in

real-life scenarios. First, the incorporation of a spatial-temporal graph planner that represents the

environment using a heterogeneous graph facilitates more precise and contextually aware trajectory

planning. This allows autonomous vehicles to navigate complex driving situations, such as chang-

ing lanes, following other cars, and maintaining speed, with enhanced accuracy. By incorporating

safety and velocity constraints, the planner guarantees the generation of paths that are not only

efficient but also prioritize safety, thereby reducing the chances of accidents. Moreover, the incor-

poration of a basic behavioral layer to consider kinematic limitations allows the planner to generate

trajectories that are not only feasible but also comfortable, thereby enhancing the passenger’s ex-
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perience. Overall, the STG trajectory planner improves the balance between safety, efficiency, and

comfort in autonomous driving, leading to more reliable and user-friendly autonomous vehicles.

6.1.3 Adaptive Vehicle Modeling and Online Lateral Control

Autonomous driving controllers must be adaptable to reliably perform in different conditions. In

this thesis, a novel technique for online learning in vehicle modeling and lateral control is intro-

duced. This approach involves the use of heterogeneous graphs and GNNs. The development

includes two key components: the GVM and the GLC. By leveraging existing vehicle knowledge

and established physical constraints, the GVM can effectively learn vehicle dynamics in real-time

and capture previously unidentified dynamics that traditional physics-based models may overlook.

With this capability for online learning, the model maintains accuracy regardless of changing con-

ditions. The GLC, which is designed to keep the vehicle centered on its intended path, also has the

ability to learn in real-time. While a traditional MPC may excel in terms of tracking accuracy un-

der normal conditions, the GLC prioritizes a comfortable ride quality. In addition, the GLC stands

out as the better choice compared to the MPC and the Stanley, as it excels in effectively managing

disturbances and maintaining a high level of tracking and comfort when the vehicle encounters

perturbations. Thorough simulations on the CARLA platform have verified the practicality and

effectiveness of the GLC.

The integration of an online learning technique into the vehicle lateral control module brings

about notable progress in autonomous driving. Utilizing this approach, the vehicle can adapt in

real-time to changes in its dynamics, resulting in consistent performance even in challenging con-

ditions that conventional models may have difficulty with. In addition to maintaining the vehicle’s

intended course, the GLC enhances ride comfort, making it well-suited for practical driving sce-

narios. The ability to manage perturbations underscores its potential to enhance safety and pas-

senger comfort when compared to conventional controllers like MPC and Stanley. This technique

indicates that autonomous vehicles that incorporate such a control system will show improved

resilience, comfort, and reliability, equipping them to successfully navigate the complexities of
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real-world driving scenarios.

Collectively, these contributions provide a comprehensive solution to some of the most press-

ing challenges in autonomous driving, paving the way for safer and more efficient transportation

systems.

6.2 Future works

The findings of this thesis suggest several areas that would benefit from further investigation.

6.2.1 A Single-model for Trajectory Prediction

Separate models were used for different prediction horizons in Chapter 3. While this practice is

common, opting for a single-model approach for multi-horizon forecasting [176] is highly desir-

able as it can significantly improve efficient usage of computational resources [177] (including

memory) and can be beneficial when scaling up [178], consequently, reduce maintenance com-

plexity. Moving forward, I plan to explore and improve the model architecture, aiming to attain a

single-model approach that yields high accuracy in multi-horizon predictions.

6.2.2 Trajectory Planner for Connected Vehicles

As a result of the significant enhancements in data transfer speeds and connectivity made possible

by 5G/6G technology [179, 180, 181], inevitably, autonomous vehicles will engage in real-time

communication and collaborative planning [182, 183, 184]. In the future, my strategy involves

expanding the implementation of the proposed method to encompass planning for V2V (Vehicle-

to-Vehicle) communication architectures. The concept was evaluated in an initial simulation and

showed promising outcomes for vehicle platooning (i.e., group of vehicles driving together) via

V2V communication. However, the architectural design needs to be enhanced to handle complex

scenarios beyond platooning.
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6.2.3 Coupled Lateral and Longitudinal Controller

The coupling between the lateral and the longitudinal controllers increases with increasing velocity

[185]. Moreover, the absence of coupled controllers disregards the fundamental interdependence

of tire forces between longitudinal and lateral motion from a vehicle dynamics point of view [186].

Despite previous research on coupled controllers [186, 187, 188], the exploration of online learn-

ing for coupled controllers has been largely overlooked, suggesting the possibility of substantial

progress. For future, my plan is to extend the capabilities of the existing GLC by constructing a

unified lateral and longitudinal controller capable of generating both the steering and the throttle

commands through online learning.

6.2.4 Interpretability of Models

For future, I plan to offer a framework for comprehending the information processing and action-

taking of autonomous agents in pursuit of their objectives. Models of this nature play a vital role

in understanding the mechanisms that drive the planning and decision-making processes within

self-driving cars. For example, attention mechanisms allow to investigate the priorities put on

different objects by the model. This will result in the possibility of parameterizing the model in

a manner that accommodates human-like choices. For example, prioritizing pedestrians over cars

given their increased vulnerability. Similarly, by quantifying the interactions among the vehicles,

justifications for the trajectory choices made by the vehicles can be showcased. Such explanations

will enhance social acceptability of self-driving cars.
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Appendix A

Routine for STG planner

Routine A.1 shows the steps to obtain the kinematic constraints. Lines 1-6 imply that in the ab-

sence of a lead actor or a rear actor within the safety gap, the kinematic constraints should remain

the same, which were determined prioritizing comfort. However, if there is a lead actor within

the safety gap (line 7), then the maximum deceleration rate s̈dec,max is doubled (line 8) and the

maximum velocity ṡmax is constrained to lead actor’s velocity vlead (line 9). If the task is FSPS,

the recommended speed vrec is set to vlead (line 11). Similarly, if there is a rear actor within the

safety gap (line 12), the maximum acceleration rate s̈acc,max is doubled (line 13) and the minimum

velocity ṡmin is constrained to rear actor’s velocity vrear (line 14). With FSPS, the recommended

velocity vref is set to ṡmin if vref < ṡmin (line 16). In the event that there is both a lead and a rear actor

within the safety gap (line 17), the lateral acceleration d̈max is doubled (line 18). Furthermore, the

maximum velocity is adjusted in the event that the rear actor is moving faster than the lead actor

(lines 19-20).

It is important to note that doubling both the lateral and longitudinal accelerations from the

already given acceleration constraints is a heuristic for safety – the ego should be able to speed

up its way out of danger in the event a lead or a rear actor breaches the safety gap without losing

control. For example, with a higher lateral acceleration in effect, the ego can swerve away faster

from the near-colliding vehicle, and this behavior is common in human drivers [189].



APPENDIX A. ROUTINE FOR STG PLANNER 103

Algorithm A.1 Pseudo code to obtain kinematic constraints

function Kinematic Constraints

Inputs:

slead, srear, vlead, vrear, amax,long, vmax,
vmin, amax,lat, vrec, ssafe, DTT, FSPS

Do:

1 s̈dec,max = amax,long
2 s̈acc,max = amax,long
3 ṡmax = vmax
4 ṡmin = vmin
5 d̈max = amax,lat

6 if slead < ssafe
7 s̈dec,max = 2amax,long
8 ṡmax = vlead
9 if FSPS

10 vrec = vlead

11 if srear < ssafe
12 s̈acc,max = 2amax,long
13 ṡmin = vrear
14 if FSPS and vrec < ṡmin
15 vrec = ṡmin

16 if slead < ssafe and srear < ssafe
17 d̈max = 2amax,lat
18 if ṡmin > ṡmax
19 ṡmax = ṡmin

Return:

if DTT: s̈dec,max, s̈acc,max, ṡmax, ṡmin, d̈max
if FSPS: s̈dec,max, s̈acc,max, d̈max, vrec
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