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Abstract

Exploring the process by which autonomous agents coordinate represents a pivotal advance-
ment toward emulating populations, which encompasses diverse applications in robotics,
game theory, economics, and social sciences. Specifically, the mechanisms that allow coop-
erating learners to converge toward coherent team strategies remain poorly understood, and
yet, understudied. The myriad of challenges that hinder concurrent learning — environment
non-stationarity, intricate credit assignments, exponential complexity, etc. — has fragmented
the focus of the literature such that the underlying mechanisms of successful multi-agent co-
ordination remain to be pinpointed. This work puts forward and explores three key elements
of coordination, namely, shared incentives, interactions, and the use of internal models. We
scrutinize this take by inspecting how these components can enable coordination in several
multi-agent learning paradigms that cover the well-established Multi-Agent Reinforcement
Learning framework, its offline interaction-less variation, and the Architect-Builder Prob-
lem, a novel reward-less interactive learning setting. Our research derives fresh insights
into fostering coordination and while the implications of multi-agent learning extend across
various fields, we are particularly interested in planning solutions to societal and ecological
challenges by simulating how populations would react to changes in their environment.



Résumé

L’exploration du processus par lequel les agents autonomes se coordonnent représente un
progres décisif vers I’émulation des populations, qui englobe diverses applications en robo-
tique, en théorie des jeux, en économie et en sciences sociales. Plus précisément, les mécanismes
qui permettent a des apprenants coopérants de converger vers des stratégies d’équipe cohérentes
restent mal compris et encore peu étudiés. La myriade de défis qui entravent ’apprentissage
simultané - non-stationnarité de I’environnement, partage des récompenses, complexité ex-
ponentielle, etc. — a fragmenté la littérature de telle sorte que les mécanismes sous-jacents
d’une coordination multi-agents réussie n’ont pas encore été mis en évidence. Ce travail met
en avant et explore trois éléments clés de la coordination, a savoir les incitations partagées,
les interactions et 1'utilisation de modeles internes. Nous examinons comment ces éléments
peuvent permettre la coordination dans plusieurs paradigmes d’apprentissage multi-agents
qui couvrent le cadre bien établi de ’apprentissage par enforcement multi-agent, sa variation
hors ligne sans interaction, et le probleme de I’architecte et du constructeur, un nouveau cadre
d’apprentissage interactif sans récompense. Notre travail apporte de nouvelles perspectives
pour favoriser la coordination et, bien que les implications de 'apprentissage multi-agents
s’étendent a divers domaines, nous sommes particulierement intéressés par la recherche de
solutions aux défis sociétaux et écologiques par la simulation des réactions d’une population
aux modifications de son environnement.
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Chapter 1

Introduction

As a society, we face pressing challenges such as increasing unemployment rates, wealth
inequality, biodiversity loss, and climate change. These complex issues are inherently multi-
agent and require individuals and groups to adapt to changes in their environment (Borgers
and Krahmer, 2015). In this thesis, we take a modest first step towards addressing these
societal and environmental struggles by investigating Cooperative Multi-Agent Learning
(CMAL) and exploring how autonomous agents learn to cooperate and coordinate. Through
this research, we hope to contribute to a deeper understanding of multi-agent behavior and
pave the way for new solutions to the pressing challenges we face today.

We propose to consider the collective emergence of complexity and motivate this approach
by taking inspiration from human evolution. Many argue that the concept of socio-cultural
cognitive niche played a major role in the successful evolution of humans and the rise of
societies (Boyd et al., 2011; Fuentes, 2017). This theory poses that the development of
individuals — and of their cognitive skills in particular — is deeply intertwined with the cultural
practices and social interactions present in their environment. Humans evolve to create
and transmit cultural knowledge and practices, which in turn shape their environment and
create new selection pressures. Those selection pressures favor some cultures and practices
over others, which lay the conditions for the Baldwin effect to operate. The Baldwin effect
postulates that traits that are initially learned through experience can become genetically
encoded over time if they provide a selective advantage. Indeed, natural selection will favor
individuals with a genetic predisposition for the learned trait (Simpson, 1953). Reciprocally,
the natural selection of culturally promoted traits at the scale of individuals impacts the
development of societies and affects what is culturally encouraged. Arguably, the cognitive
niche and the Baldwin effect provided a rich and dynamic environment in which individual
experience could shape the course of evolution. For some, this explains the emergence of
cooperation, sociality, tools, technologies, educational practices, social norms, language, and
so on. Crucially, it also describes how these attributes mutually shaped the evolution of
societies and individuals, leading the way to our very particular cognition (Sterelny, 2003;
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Sweller, 2003; Boyd and Richerson, 2009; Pinker, 2010; Hayes and Sanford, 2014; Boyd,
2018). The cognitive niche argument suggests that, in order to understand human cognition
— and maybe eventually try to emulate it — one should study both the cognitive processes of
individuals and the social interactions and cultural context that give rise to it (Galantucci
and Garrod, 2011). We embrace this idea and focus on exploring the mechanisms that
allow multiple agents to learn, cooperate, socialize, and, maybe, eventually co-evolve into
something as complex as humans and societies.

Since our final aim is to simulate and optimize behaviors, we believe that it is most relevant
to tackle this problem directly in-silico. Consequently, we take an Artificial Intelligence (AI)-
centered approach rather that a more biological or anthropological one.

- ”3@
5 /\Q

(a) DPS and team learning. (b) MAS and concurrent learning.
Centralized. Decentralized.

Figure 1.1: Illustration of the two approaches to Distributed Artificial Intelligence (DAI) and
their respective learning paradigms. The cooperative task consists in piling boxes in a certain
order at the location specified in grey. Agents must coordinate if they are to succeed: first, the
middle robot has to grab the yellow box and make room so that the robot on the right side can
drop the green box on the target. Then, the robot on the left side must place the pink box on
top of the green one, and finally, the middle robot can complete the task by piling the yellow
box. (a) Distributed Problem Solving (DPS) and team learning: a single centralized algorithm
controls all the agents. (b) Multi-Agent System (MAS) and concurrent learning: each agent is its
own autonomous individual learner. This work focuses on MAS and concurrent learners, a setting
referred to as Cooperative Multi-Agent Learning (CMAL).

Distributed Artificial Intelligence (DAI) improves the performance, scalability, and ro-
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bustness of Al systems by relying on multiple distributed artificial agents (Ferber and Weiss,
1999). DAI can be split into two sub-fields. On the one hand, Distributed Problem Solving
(DPS) — see Figure 1.1 (a) — requires centralized control in order to construct a collective
solution by decomposing the problem and distributing simple sub-tasks to executive agents;
on the other hand, Multi-Agent System (MAS) — see Figure 1.1 (b) — refers to autonomous
self-governed agents jointly interacting (Panait and Luke, 2005). In short, DPS agents are
assumed benevolent and cooperative by default, while MAS agents are selfish in essence and
care about their own goals (Nwana et al., 1997; Mohamed and Huhns, 2001). Agents with
aligned — possibly shared — or conflicting — possibly opposing — goals respectively induce
cooperative or competitive situations. We care about MAS and cooperation.
In the broad field of Al, we are interested

in Machine Learning (ML) and we specifi- St+1 |
cally focus on Reinforcement Learning (RL). W —>
RL is an area of ML that is best used to learn [/ :

Tet1

in sequential decision-making problems. RL
agents are autonomous agents that gather gction
experiences by interacting with their envi- a;
ronment and use these experiences to learn
and improve their behavior towards achiev-
ing their goals. The key concepts of se-
quential decision-making are actions, states,
rewards, transition functions — or environ-
ment dynamics —, and policies. Interactions
unfold with the agent observing the cur-
rent state and using its policy to select the
most appropriate action. This action affects
the environment that transitions to the next
state. The agent receives a reward that rates how “good” is the transition with respect to
the goal (see Figure 1.2). A sequence of states, actions, and rewards triplets is called a
trajectory and the agent aims at maximizing the rewards it can collect along those. The
policy encodes the agent’s behavior, it defines the action it ought to take given the current
state. Most RL learning algorithms have the agent estimate values (or state-values) that
capture the outcome of following the current policy from the current state, and Q-values (or
state-action values) that predict the outcome of taking a given action and then following
the current policy from the current state. In a nutshell, RL agents strive to discover and
reinforce the behaviors that yield the most rewards through trial-and-error interactions with
the environment.

Our work aims at training autonomous learners that adapt in response to others so
as to analyze how cooperative agents interact and give rise to emergent group strategies.
This setting is referred to as Cooperative Multi-Agent Learning (CMAL) (Panait and Luke,

reward
Tt

Figure 1.2: Sequential decision making: the
agent observes the current state, takes an action
to make the environment transition to the next
state, and receives a reward for it.
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2005). In CMAL cooperation is not governed but must be learned and enforced by the
agents themselves: it is often the result of coordination. Coordination is the property of an
intelligent agency that ensures that a group of agents interact coherently as a single unit
(Weiss, 1999; Sycara, 1989). Coherence in this context means that agents produce actions
that blend without interfering, avoiding deadlocks and livelocks while they solve the task.
See Figure 1.1 for an example of a cooperative task requiring coordination.

The decentralized nature of CMAL — where entities only have local views, goals, and
knowledge — is likely to degenerate into a chaos of conflicting agents if they fail to coordinate.
This may prevent the group from achieving their task, eventually defeating the purpose of
doing decentralized control in the first place. Specifically, coordination is required in order
to (Durfee et al., 1989; Nwana, 1996; Jennings, 1996):

1. be exhaustive and ensure that all the essential elements of the overall problem are
being tackled by at least one agent,

2. meet global constraints: if acceptable solutions require the team to satisfy budgets or
time limits, agents must account for the activity and resource consumption of other
agents in order to meet these requirements,

3. leverage the expertise, resources, and information that is distributed across different
agents. It is more than likely that no one agent can solve the overall problem on its
own, and

4. to account for the dependencies between agents’ behaviors, either due to interdependent
(sub-)goals or because they are interacting with the same environment.

Note that cooperation does not necessarily require coordination as incoherent behavior
of some agents might still enable the team to succeed as a whole.

In Figure 1.3 (a) where two agents must stack boxes, one agent might act at random
and not contribute to solving the task, waiting for the other agent to complete the pile.
Reciprocally, coordination might occur without strict cooperation, such as in competitive
or partially aligned situations. Or when agents do not realize that their goals are aligned
because they have different abilities, knowledge, or beliefs. In such situations, coordination
is often referred to as negotiation to highlight the win-win trade-off that agents seek (Weiss,
1999). Agents with orthogonal goals (i.e., neither aligned nor conflicting) might also end up
coordinating, Figure 1.3 (b) shows for example an agent getting out of the way of another
agent running towards it.

Interestingly, even in situations where coordination is not required and agents could act
in isolation, it is often more efficient for them to coordinate. For instance, the information
discovered by one agent can be shared with other agents, enabling them to solve their
problems faster (Clearwater et al., 1991). In a scenario where each agent is looking for a
different object, if they all communicate the location of the objects they encounter during
the search, then, overall, agents are likely to find their own object faster.
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(b)

Figure 1.3: Illustration of the difficulty to assess if agents coordinate by examining it from and
external perspective. (a) Uncoordinated teams can sometimes succeed in cooperative tasks: the
agent in the back doesn’t participate in solving the task. (b) Agents can coordinate even if they
do not cooperate, here the agent on the right coordinates with the other agent in order to dodge it
while going for its target. (c) Agents unaware of each other can appear coordinated due to external
factors, here two robots synchronously rush towards the same tree in order to take shelter.

Conversely, coherent actions might arise without coordination. Figure 1.3 (c) illustrates
this: envision people sitting in a park, that, as the result of a sudden downpour, start running
towards a tree in the middle of the park because it is the only source of shelter (Searle, 2002).
Each person aims at avoiding becoming wet and while they are aware of what others are
doing and what might be their goals, it does not affect their actions: it is uncoordinated
behavior.

In light of this, Jennings (1996) pointed out a key aspect of coordination: it is in general
impossible to determine whether or not agents have coordinated their actions when looking
at their behaviors from an external perspective. Indeed, agents can try to coordinate but
fail to do so and yield incoherent strategies if they lack computational power or rely on
incorrect predictions of each other’s demeanors and environmental dynamics. This incapacity
in assessing coordination by looking at behavior alone is why Jennings (1996) proposes to
investigate the internal mechanisms that drive agents’ interactions, namely their beliefs,
knowledge, preferences, intentions, and so on. Here, we follow this idea and focus on the role
of interactions, internal models of others and of the world, and shared incentives.
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In CMAL, agents are concurrent learn-
ers that interact with their peers and their
environment in order to reach their goals.
Interactions are central to this learning pro-
cess as they are both the end — agents col-
lectively interacting in an efficient strategy
— and the mean — it is through interactions
that the learners size the world around them
and find the best way to adapt to it. While
interactions are also at the core of single
agent learning, they are in that case limited
to interactions with the environment (Beer,
1995). On the other hand, with multiple
agents, not only are environment interac-
tions more intricate — as multiple agents are

simultaneously experiencing the world — but Figure 1.4: [Illustration of two agents using
also a new type of interaction appears: inter- their internal model to predict each other’s behav-
agent interactions. Since the agents are con- jor and successfully coordinate their interactions.
currently learning and changing, these inter- They share the same objective of piling boxes in
actions can be highly dynamic and vary over a specific order at the grey location. The left-
time, making it Chaﬂenging for agents to in- side agent must move left and make room for the
terpret and leverage them. right-side agent to place the pink box, then the

Agents must reason about other agents’ left-side agent can complete the task by stacking
the yellow box on top of the pink box.

behaviors. Communication facilitates this
by allowing agents to inform others about their intentions, goals, and beliefs. Yet, agents
can also achieve this without communicating provided that they possess internal models of
each other’s behaviors (Huhns and Singh, 1994). Theory of Mind (ToM) refers to the ability
of an individual to attribute mental states to himself and others. By reasoning about mental
states such as intention, knowledge or belief, one can infer the behavior of others (Premack
and Woodruff, 1978) and fruitfully interact with them to coordinate. To be more efficient
in terms of interactions, individual agents might also build internal world models so as to
estimate how the different team strategies would perform. They can then pick the most
promising one. Finally, shared incentives, such as aligned goals, conventions, and protocols
play a key role in the ability of a group to coordinate (Jennings, 1996; Weiss, 1999; Cao
et al., 2018). Figure 1.4 illustrates two agents that successfully coordinate their interactions
and achieve the objective they share by predicting each other’s behavior.

The following Related Works Chapter 2 discusses the existing literature on coordina-
tion in CMAL and how this challenge has been previously tackled, highlighting the role of
interactions, internal models, and shared incentives. Then, the Background Chapter 3 pro-
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vides the necessary theoretical tools to understand the methods described in this document.
Chapters 4, 5, 6 and 7, present work on coordinating concurrent learners and emphasize
the importance of interactions, internal models, and shared incentives in different settings
and under different assumptions. Chapter 4 investigates cooperative Multi-Agent Reinforce-
ment Learning (MARL) and shows how, even when agents share the same reward function,
coordination and team performance can be improved by enforcing additional shared incen-
tives — social norms that agents strive to follow — such as predictability or synchronicity.
Chapter 5 examines the Offline Coordination Problem (OCP) that arises in Offline MARL
where agents cannot directly interact with one another to coordinate. There, we propose
a solution based on building an internal world model that can be used to simulate agents’
interactions. Chapter 6 questions a common, yet restrictive, assumption in CMAL: all the
agents are aware of the objective they must complete in the sense that they all receive an
external reward. Most of the time this reward is a group reward that is the same —i.e. shared
— across agents. We define the novel learning setting arising from removing such a strong
assumption and present a method to solve it: agents coordinate by evolving a communica-
tion protocol, solving the task only through interactions by modeling the other agents, and
assuming a high-level shared intent. Chapter 7 discusses the importance of Theory of Mind
(ToM) and building inner models of other agents’ behaviors. Noting that current methods
are rather complex and computationally intensive, it proposes a simpler, yet competitive
and more robust method. Finally, the last chapter synthesizes the totality of our findings,
highlighting limitations and proposing future directions.



Chapter 2

Related works

We review seminal and more contemporary works on Coordination in Cooperative Multi-
Agent Learning (CMAL). After a thorough survey on CMAL, the focus shifts towards co-
ordination. First, we cover the classical approach to coordination in Multi-Agent System
that consider non-learning procedural agents. Then we examine the setting that is most
interesting to us and that deals with concurrent learners striving to coordinate. Notably, we
highlight the importance of interactions, internal models, and shared incentives.

2.1 Cooperative Multi-Agent Learning

The inherent complexity and diversity of multi-agent solutions make most supervised learning
methods impractical as it becomes intractable to provide data points for all the possible
situations that could arise. Consequently, formulations of the Cooperative Multi-Agent
Learning problem are often reward-based (Jennings, 1996). Notable exceptions of supervised
multi-agent learners include (Gmytrasiewicz, 1992; Williams, 2004; Garland and Alterman,
2004).

Reward-based formulations are mainly tackled with either Reinforcement Learning (RL)
(Sutton and Barto, 2018) and Evolutionary Computation (EC) algorithms (Back, 1996), or
to be more specific, with their multi-agent extensions Multi-Agent Reinforcement Learning
(MARL) (Littman, 1994) and Coevolutionary Algorithms (CEA) (Wiegand, 2004). Unfor-
tunately, the dynamic nature of learning in Distributed Artificial Intelligence breaks most of
the assumptions required to derive the theoretical guarantees of these methods.

Most approaches to CMAL can be divided into team learning — that covers DPS, i.e., a
single learner derives the behavior for the entire group of agents— and concurrent learning — to
tackle MAS where multiple learners concurrently interact while searching for their optimal
behavior (Jennings, 1996). Please see Figure 1.1 for an illustration of these two learning
paradigms.
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2.1.1 Team Learning

Team learning (Figure 1.1 (a)) refers to a single learner deriving the optimal behavior of
all the agents in the team simultaneously. This approach is closest to traditional machine
learning and one can often use “off-the-shelf” methods. Yet, the algorithms explore the
set of strategies of a whole group of agents instead of just one single agent. Thus, even if
team learning removes the game-theoretic aspect of concurrent learning, it must address the
emergent complezity challenge of MAS (Walker and Wooldridge, 1995; Van Dyke Parunak
and Brueckner, 2001; Dessalles et al., 2007; Teo et al., 2013):

1. the set of joint behaviors is exponential in the number of agents, and
2. interactions of simple individual behaviors can build up into very complex and unpre-
dictable team patterns.

Additionally, team learning requires centralization, meaning that the learning algorithm
must be able to access all the resources which can be unpractical if compute and/or data are
distributed. Most research in team learning has focused on representing the different candi-
date solutions that the learner is deriving — i.e., the different team strategies — in relationship
with the degree of heterogeneity among the controlled agents. A homogeneous learner learns
a unique agent behavior and applies it to all the members of the team. In contrast, a het-
erogeneous learner specifies a different behavior for each member. Note that heterogeneous
qualifies the behaviors and not the agents directly, for instance, a heterogeneous team could
be composed of identical robots learning with identical algorithms but that have discovered
different strategies. Obviously, teams composed of different robots with different capabili-
ties (available actions and sensors) must be heterogeneous as the same behavior cannot be
applied to all the agents. See Figure 2.1 for an illustration.

@
@ @@

(a) A homogeneous team. (b) A heterogeneous team.

Figure 2.1: Illustration of homogeneous vs. heterogeneous teams.

Heterogeneous teams promise more efficient teams of specialized agents at the cost of
larger search spaces and memory consumption (Good, 2000). Most research is then interested
in determining if specialist agents are required to solve a given problem. On the one hand,
homogeneous agents are well suited for tasks in which a single agent can perform well (for
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example foraging) regardless of the difficulty of the task (Balch, 1998; Potter et al., 2001).
On the other hand, heterogeneity promotes robustness and redundancy while being able to
leverage specialized agents in tasks that can be decomposed into sub-tasks (Bongard, 2000).
A trade-off, often referred to as hybrid learners, can be achieved by dividing the team into
squads of homogeneous agents (Luke et al., 1998a,b). Hara (1999) proposes an automatic
grouping technique to tackle the compromise between specialization gains and increased
search-space size that arises with hybrid teams. The most popular problem domains being
tackled with team learning are predator-prey environments (Haynes et al., 1995b,a, 1996;
Haynes and Sen, 1996; Haynes et al., 1997) and RoboCup Simulator (Luke et al., 1998a,b;
Andre and Teller, 1999).

Finally, a line of work investigates which machine learning approach should be used be-
tween RL and EC (Salustowicz et al., 1997; Salustowicz et al., 1998). Model-based variations
on Q-learning (Watkins and Dayan, 1992), such as prioritized sweeping (Moore and Atkeson,
1993), appear to be the most promising avenue (Wiering et al., 1999).

2.1.2 Concurrent Learning

An alternative to team learning is concurrent learning (Figure 1.1 (b)) where separate learn-
ing processes deal with different aspects of the tasks. In practice in MAS, one learning
process is assigned to each agent. This makes concurrent learning suited to problems that
can, and should, be decomposed (Jansen and Wiegand, 2003). Indeed, when decompos-
ing the problem, the initial joint-behavior search space is decomposed into smaller, separate
individual-behavior spaces. Provided that the individual agent behaviors are not too strongly
coupled to each other, this decomposition can result in drastic reductions in terms of search
time and complexity. This also allows for more flexibility in distributing resources, such as
data and computing power, across learning processes. Yet, while most work points toward
concurrent learning outperforming team learning (Bull and Fogarty, 1994; Iba, 1996, 1998),
there exist domains that remain best tackled with team learning (Miconi, 2003).

The core challenge for concurrent learners is that their environment — i.e., the other con-
current learners — is co-adapting to them. This breaks most machine learning assumptions
by making obsolete the context to which a learner adapted its behavior and can potentially
completely ruin a learner’s improvement. This is often referred to as mon-stationarity or
co-adaptation in concurrent multi-agent learning (Sandholm and Crites, 1996; Weinberg and
Rosenschein, 2004). Indeed, an agent’s environment is composed of other agents and be-
cause these other agents are learning, their behavior is changing over time. Thus, through
the eyes of an agent, the environment it is interacting with is changing over time, i.e, it is
non-stationary. The simplest approach to the non-stationarity problem is to ignore other
agents and consider that they are part of a dynamical environment to which our learner must
adapt (Schmidhuber, 1996; Zhao and Schmidhuber, 1996; Schmidhuber and Zhao, 2005). Yet
this assumption ignores a crucial aspect of concurrent learning which is that a learner’s envi-
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ronment — i.e., the other agents — is not just dynamical but actively adapting to the learner.
See Figure 2.2 for an illustration. A more sophisticated way to address the non-stationarity
problem is to adopt the Centralized Training and Decentralized Execution (CTDE) paradigm
(Oliehoek et al., 2008; Kraemer and Banerjee, 2016). In Multi-Agent Reinforcement Learn-
ing, CTDE algorithms train centralized critics to approximate the joint value functions and
use them to optimize decentralized actors that can be deployed autonomously at test time
(Lowe et al., 2017; Foerster et al., 2018b; Rashid et al., 2018; Igbal and Sha, 2019; Foerster
et al., 2019).
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(a) Initially learned policy. (b) Other agents adaptation.

Figure 2.2: Illustration of concurrent learning-induced non-stationarity: Initially (a) the front car
learns to regulate traffic by slowing down which makes other agents also reduce their speed. Yet,
the other agent eventually learns to overtake and bypasses the agent’s action making this latter’s
behavior and experiences obsolete. Illustration inspired by Liang and Liaw (2018).

Work in concurrent learning breaks down into three main areas:

(a) the credit assignment problem that deals with figuring out which agent in the team to
hold accountable for the team reward in order to appropriately reinforce or discourage
the corresponding behaviors,

(b) the dynamics of learning related to concurrent learners and how they coordinate despite
the induced non-stationarity, and

(c) the modeling of other agents so as to fine-tune one’s interactions with them.

The following paragraph discusses (a) while (b) is detailed in Section 2.2 where we examine
Coordination in CMAL, and (c) is covered in Section 2.3.3 which reviews the role of Internal
Models.
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Credit assignment

With concurrently learning cooperative agents, it is chal-
lenging to ascribe the joint reward received from the joint
actions to the individual agents based on the role they
played in that outcome. There is a whole spectrum of
solutions and, at the two extremes of this spectrum, two
simple options: global rewards and local rewards. Global
rewards always divide the reward equally among agents.
This can lead to the notable failure case of lazy agents
since it does penalize free-riders or acknowledge agents
that lead the team to success. These drawbacks arise be-
cause agents lack feedback that is tailored to their de-
meanor and this tends to worsen with an increasing num-
ber of agents (Wolpert and Tumer, 2001). Global rewards Figure 2.3: The credit assign-
can be impractical to compute in distributed situations ment problem: each agent wonders

s . . . if it is the one to blame for the cur-
where it is challenging to gather information across agents. ) )

At the other end of the credit assignment spectrum lie "% deadlock situation. Illustra-

) & P tion inspired by (Liang and Liaw,
local rewards, where an agent’s performance only depends 2018).
on its own behavior. This prevents laziness but it some-
times encourages greedy behaviors and might prevent cooperation by removing the clear
incentive of helping others. In practice, local rewards seem to lead to more homogeneous
teams and faster learners while shared rewards are more prone to specialization (Balch et al.,
1997; Balch, 1999). This is because the set of “greedy” policies that maximize individual
rewards is usually much smaller than the set of policies that can lead to good team perfor-
mance. Imagine for instance a team learning to play soccer: with local rewards, an agent
would only receive a positive reward if it scored a goal. Therefore, it would be straightfor-
ward for all the agents to learn to snatch the ball — even from teammates — and selfishly rush
for the opponents’ net. However, such a team would never evolve sophisticated roles such
as goalkeepers and defensive players, or even learn to pass the ball. This effectively reduces
the diversity of agents’ behaviors and harms team performance.

More sophisticated credit assignment methods try to decompose merit based on agents’
behaviors or accountability. In Chang et al. (2003), each agent directly decomposes the
global reward by assuming that it combines its own reward with the contributions of the
other agents. Agents can extract their individual rewards by modeling the participation
of other agents with a random Markov process (Howard, 1960) and filtering it out with a
Kalman filter Welch et al. (1995). Some works use difference rewards instead and aim a
capturing how the team would perform when the agent is removed (Wolpert and Tumer,
2001; Tumer et al., 2002; Tumer and Agogino, 2007; Proper and Tumer, 2012).

More recent MARL methods tend to assign credit based on Q values instead of rewards
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as the former are better at capturing an agent’s behavior. Inspired by reward decomposition,
Sunehag et al. (2017) models the global Q) value as a linear combination of agents’ individual
Q values. Subsequent works have extended this approach to more elaborate decompositions
(Rashid et al., 2018; Son et al., 2019). Following the motivations behind difference rewards,
Foerster et al. (2018b) proposes a counterfactual baseline that marginalizes out the contri-
bution of an agent’s action to the global QQ value. Another line of work investigates the role
of the RL formulation that is used. For example, Tangamchit et al. (2002) advocate for the
average reward setting (Mahadevan, 1996) and advise against reward discounting. Indeed,
discounting rewards over time can greatly impact credit assignment and prevent cooperation
if the effects of an agent’s contribution to the reward are delayed.

In addition, credit assignment is also tackled by relying on social reinforcement where
agents are encouraged to observe and imitate teammates’ behaviors or might even receive
fractions of teammates’ individual rewards (Mataric, 1994a). Those approaches relate to
social conventions and will be discussed in the corresponding Related Work Sections 2.3.2
and 2.3.4 that respectively cover Interactions and the use of Shared Incentives.

Finally, credit assignment considerably impacts the learning dynamics of CMAL, and
teams with global rewards do not coordinate like teams with local rewards. This is detailed
in Section 2.2 on Coordination.

2.1.3 Multi-Agent Communication

Some tasks can only be achieved if agents communicate. In other cases, communication
might not be required but benefit learning efficiency and improve performance. This work
follows Panait and Luke (2005) popular definition of communication and considers that it
refers to agents “altering the state of the environment such that other agents can perceive
the modification and decode information from it”. Through communication, agents can
more efficiently coordinate by sharing information about their state, plans, solutions, the
environment, etc.

Most of the time, communication refers to direct or explicit communication where agents
have access to external communication channels or mediums to convey information. Message-
passing, signaling, and shared blackboards are some examples of direct communication.
Conversely, in indirect or physical communication, agents do not have a dedicated medium
and must repurpose parts of the environment to communicate. This can be done for instance
through specific placement of objects or using their bodies.

In practice, communication is always restricted in terms of cost, latency, bandwidth, in-
formation loss, locality, etc. Stone and Veloso (2000) explain that it would otherwise simplify
MAS to a single agent problem where a central agent could collect everyone’s states and de-
cide everyone’s actions. However, how this centralized process can emerge through learning
is still an open question. When communication is added, the size of an agent’s action and
observation spaces increase, which can complicate the search for optimal behavior. Conse-
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quently, when it has to be learned, communication can hurt performance and even prevent
learning (Durfee et al., 1989). For these reasons, most works hard-code communication so as
to ease agents’ learning process. Some hard-coded communication protocols include current
positions (Luke and Spector, 1996; Berenji and Vengerov, 2000a), past experiences or current
policies (Tan, 1993), joint utility tables, and joint policies (Berenji and Vengerov, 2000b).

Another line of work is instead interested in learning the communication protocol. Usu-
ally, the vocabulary is fixed but unknown and the agents have to associate the words to
the correct meanings from trial and error (Yanco and Stein, 1993; Jim and Giles, 2000;
Wagner, 2000). Sometimes the vocabulary is instead negotiated and evolved by the agents
themselves. Agents collectively define and agree on the words’ meanings and the result-
ing lexicons spontaneously adapt to cover new meanings if needed (Steels, 1996; Steels and
Kaplan, 1999).

Similar approaches to language and naming games
have recently regained popularity in Multi-Agent Rein-
forcement Learning (Lazaridou et al., 2016; Lazaridou and
Baroni, 2020). In those experiments, agents must co-
evolve and agree on a communication protocol — that is a
mapping between words and meanings — in order to solve
the task. This can be seen as learned coordination in the
communication space. Gupta and Dukkipati (2020) con-
siders another kind of language game in which communi-
cation is not used as a referential tool but as a way to
persuade. The authors explore a voting game where two
candidate agents compete in an election and must con-
vince member agents to gain their votes. Results show
that candidates can successfully emerge a language and
spread their propaganda to win elections. Interestingly,
members of different parties emerge and use different lan-
guages such that, eventually, there is an equivalence be- pigure 2.4: A reference game
tween an agent’s political affiliation and the language it ith (a) explicit communication

uses. where agents have learned the #

Other works consider tasks where agents that come up symbol refers to the green box, and
with a common communication protocol perform better. (b) physical communication where
They investigate how agents can evolve communication in agents have learned that a right
order to gain competence toward varied ends such as sig- arm raised refers to the yellow box.
naling goals (Lowe et al., 2017) or influencing teammates (Jaques et al., 2019). Most settings
consider explicit communication channels between the agents and distinguish between com-
municative actions (e.g., broadcasting a given message) and physical actions (e.g., moving
in a given direction) (Foerster et al., 2016; Lowe et al., 2017; Mordatch and Abbeel, 2018;
Jaques et al., 2019).
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By using communicative actions that do not have a direct impact on the environment —
a notion referred to as cheap talk — agents can communicate and develop a communication
protocol without having to sacrifice individual performance in the process. This coordination
in the communicative action space can enable, to some extent, successful coordination in
the physical action space (Farrell, 1987). Yet, explicit communication is not a necessary
condition for coordination as agents can rely on physical communication (Gupta et al., 2017;
Mordatch and Abbeel, 2018). Nevertheless, with physical communication, the agent has to
trade off how much its action is informative with how efficient it is for the task at hand
(Hadfield-Menell et al., 2016), and coordinating becomes much more challenging.

Most of the time, efficient communication rapidly yields rewards, therefore incentivizing
agents to communicate and deriving a protocol. Yet, Ackley and Littman (1994) point out
that populations can also evolve communication protocols while not being directly rewarded
for it as it can present an evolutionary advantage. This is similar to the “kin altruism” or
“kin selection” argument of evolutionary theory (Hamilton, 1964).

2.1.4 Applications

We present the main domains of application encountered in the literature. For each of these
domains, we list the popular problems being investigated. Figure 2.5 illustrate some of these
problems.

Embodied agents

Cooperative Multi-Agent Learning is inherently suited to handle interacting embodied agents
and is leveraged in multi-agent robotics, swarm dynamics, computational ecology, population
dynamics, wildlife modeling, etc. The most popular applications are Predator-prey pursuit
(Benda, 1985; Denzinger and Fuchs, 1999; Zheng et al., 2018), Foraging (Ostergaard et al.,
2001), Box pushing (Mataric et al., 1995), simulation and robot Soccer (Kitano et al., 1997;
Hester et al., 2010), Cooperative Navigation (Crespi et al., 2002; Robinson and Spector,
2002), Cooperative target observation (Santana et al., 2004; Svennebring and Koenig, 2003)
and Herding (Schultz et al., 1996; Potter et al., 2001).

Game-theoretic environments

As presented in Subsections 2.1.5, 2.2.2 and 2.3.1, MAS is often investigated through the
lens of Game Theory (GT) and thus it borrows classical problems like Coordination games
(Claus and Boutilier, 1998) and Social dilemmas such as the [terated Prisoners’ Dilemma

and the Tragedy of the Commons (Glance and Huberman, 1994; Mundhe and Sen, 2000b).
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Figure 2.5: Multi-agent learning applications. (a) RoboCup penalty kicks during 2009 semi-finals
©[2010] IEEE (Hester et al., 2010). (b) Predator (red) - Prey (blue) many agents simulations
that lead to learned predators’ strategies which leverage walls (grey) (Zheng et al., 2018). (c) The
Prisoners’ Dilemma: prisoners get different jail times depending on whether they remain silent or
confess relative to the other prisoner’s choice. A prisoner can walk free if it confesses while the
other agent remained silent, the silent prisoner gets maximum jail time in that case. (d) A 2D
driving simulator that loads and replays arbitrary trajectories and scenes from real-world driving
data (Vinitsky et al., 2022).
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Real world applications

Many real-world problems in logistics, planning, and constraint-satisfaction require real-time
distributed decision-making and are therefore well handled through the MAS paradigm.
Examples of real-world applications include Distributed vehicle monitoring (Lesser et al.,
1987; Nunes and Oliveira, 2004; Dresner and Stone, 2004) Autonomous driving (Palanisamy,
2020; Chen et al., 2021; Vinitsky et al., 2022), Air traffic control (Steeb et al., 1981), Network
management and routing (Weihmayer and Velthuijsen, 1994; Boyan and Littman, 1993),
Electricity distribution management (Varga et al., 1994; Schneider et al., 1999), Distributed
medial care (Huang et al., 1995), Supply chains (Wooldridge et al., 1996; Brauer and Wei8,
1998), Hierarchical MAS problems such as goods transportation and loading (Fischer et al.,
1993; Miiller and Pischel, 1994), Models of social interactions (Cederman, 1997; Grand et al.,
1997; Grand and Cliff, 1998), and Meeting scheduling (Crawford and Sobel, 1982).

2.1.5 Challenges
We highlight the principal remaining open challenges of CMAL.

Scalability

Arguably, the difficulty in Cooperative Multi-Agent Learning comes from multi. Since state-
action and behavior search spaces grow exponentially with the number of agents and their
network of interaction, learning large, heterogeneous, and interacting MAS remains an ar-
duous challenge. Recent efforts toward this direction notably include the use of parameter
sharing for homogeneous teams (Foerster et al., 2016; Gupta et al., 2017; Terry et al., 2020)
or attention-based critics to parse large action-state space (Igbal and Sha, 2019; Jeon et al.,
2020). However, work remains to be done in order to ”scale up” in terms of number of
agents and team heterogeneity. Additionally, current research assumes very simple agent
behaviors and has yet to consider complex agents with sophisticated internal states and cog-
nitive processes. From a team point of view, scaling up should both address changing teams
— how to dynamically add and remove agents — and changing scenarios where novel tasks
require adapting the team’s ability. Last but not least, because the current literature has
mostly focused on two-agent problems, it has grown accustomed to being able to predict
quite easily the outcomes of interacting agents and behaviors. Yet, the more agents, the
more complex the emergent behavior and it becomes unfeasible to predict the global effects
of a single agent’s change in behavior. This makes planning in the behavior space challeng-
ing and might even prevent the behavior space from being smooth: a small perturbation in
an agent’s behavior might drastically alter the emergent behavior of the team (Panait and
Luke, 2005).
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Definition of team optimality

As previously explained, CMAL deals with multiple agents concurrently learning, adapting
to each other, and thus reciprocally changing each other’s learning targets: the optimal
behavior of an individual depends on the behavior of the group. In return, for a team
strategy to be optimal it must be followed by all the agents it relies on (Chalkiadakis and
Boutilier, 2003). Panait and Luke (2005) illustrates this by talking about “agents learning in
environments where the goalposts are constantly and adaptively being moved”. This makes
it complicated for individual agents to converge to an optimal policy as their optimal policy
is constantly changing with the changing environment. More importantly, it makes it likely
for a team to settle on a sub-optimal strategy.

Currently, most of the literature draws ideas from the Game Theory (GT) community
and considers convergence to Nash equilibria instead of convergence to optimal solutions
(Panait et al., 2004b; Wiegand, 2004). A Nash equilibrium is a set of strategies, one for each
agent, that has the property that each agent’s choice is the best response to the other players’
choices. This means that, assuming that other agents will not change their policies, no agent
can improve its payoff by modifying its strategy. The most famous illustration of this is the
Prisoner’s Dilemma (Figure 2.5 (¢)). If both agents remain silent, an agent can improve its
situation by confessing and walking free. In the situation where one agent confesses while
the other remains silent, the silent agent can confess and reduce its 20 years sentence to a
five years one. However, if both agents confess, no agent can improve its situation as the
agent that would choose to change strategy and remain silent instead of confessing would
get a 20 years sentence instead of the current five years. Therefore, according to GT, the
Nash equilibrium towards which rational agents converge is the situation where both agents
confess. Yet, this is a sub-optimal team strategy. Indeed, if agents would agree on remaining
silent and not betray each other, they would get a one year sentence instead of five years
imprisonment. While GT does not capture this optimal team strategy, human participants
are able to cooperate and achieve it (Axelrod, 1980; Axelrod and Hamilton, 1981).

In light of this limitation, concerns have been raised against the use of Nash equilib-
ria in multi-agent learning, since such “rational” equilibria may be quite far from global
team-optimal solutions (Lichbach, 1996; Shoham et al., 2004). Notably, rational agents
that explicitly target Nash equilibria fail to coordinate when multiple Nash equilibria exist
(Shoham et al., 2004). On the other hand, being optimistic about one’s partners and as-
suming that they will thrive for optimality yields more efficient teams (Claus and Boutilier,
1998; Lauer, 2000; Kapetanakis and Kudenko, 2002b; Panait et al., 2003; Jiang and Lu,
2018). This suggests that CMAL has to move away from purely rational game-theoretic
agents and maybe take inspiration from humans — that are shaped by numerous biases such
as reputations, laws, guilt, and fear of social punishment — if it aims at team optimality
or more accurately modeling human interactions. This will be discussed more in detail in
the following Sections 2.2 and 4 where we highlight the importance of shared incentives and



2. Related works 19

social norms for coordination.

Problem decomposition and learning curriculum

CMAL deals with the large action-state and behaviors spaces, thus, methods often lever-
age single-agent hierarchical learning in order to decompose an agent’s policy into low-level
sub-behaviors (or skills) and a high-level skill selection policy. These low-level skills can be
hard-coded (Mataric, 1994b, 1998) or automatically learned (Chakravorty et al., 2019). In
Roy et al. (2020) we enforce a synchronized and coherent sub-behavior selection mechanism
to promote coordination. Yet, instead of just focusing on decomposing an agent’s behavior,
more work should aim at decomposing multi-agent problems by breaking team strategies
into individual agents’ roles and behaviors (Stone, 1998). Similarly, single-agent curriculum
learning approaches have been adapted to the multi-agent setting. This includes for instance
shaping the reward function such that it gradually promotes complex behaviors over simple
ones (Balch, 1999) or shifting between tasks based on agents’ progress (Zhang and Cho,
1999); however, in multi-agent learning, individual learning mechanisms are strongly cou-
pled. Consequently, the overall progress is more than the mere sum of individuals’ progress.
Indeed, the team’s performance depends on the whole group, and most of the time, agents
can only make progress if teammates improve alongside them. Therefore, it is crucial for
agents to not only coordinate their policies into an optimal team strategy but also to co-
ordinate their learning. Otherwise, they might never discover and converge to successful
strategies. Panait and Luke (2005) depicts this nicely with a team of robots learning to
play soccer: in order for an agent to learn how to pass the ball and measure the benefits of
such a strategy, its counterpart must have learned to receive the ball, while opponents might
ramp-up difficulty by co-adapting and learning to intercept the ball. We further discuss
these learning interactions in Subsection 2.3.2 where we focus on the role of interactions in
coordinating learning agents.
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2.2 Enforcing Coordination in Multi-Agent Systems

As motivated in Chapter 1, coordination is not given in MAS but must be achieved in
order to prevent chaotic interactions, meet global constraints, leverage distributed expertise,
avoid deadlocks and livelocks, and improve efficiency. This section presents approaches that
rely on direct communication to coordinate agents. We start by presenting methods that
coordinate procedural agents by structuring their roles and interactions. Procedural agents
are agents whose behavior is not learned but predefined and routine-based. Then, after
noting that coordination is often thought of as a “negotiation” between agents, we review
the relevant literature in game theory-based, planning-based, and human-inspired approaches
to negotiation.

2.2.1 Coordination through System Structure

This subsection focuses on the main classical approaches to devise coordination in Distributed
Artificial Intelligence. These techniques enforce specific patterns in the structure of the
Multi-Agent System. They can be decomposed into two main categories: Organisational
Structuring and Contracting (Nwana et al., 1997).

Organizational Structuring

This is the most straightforward approach
to coordination as it relies on centraliza-
tion and a priori definition of organiza-
tional structures. These structures spec- Y

ify the agents’ roles, communication chan- /m
nels, and control flows in order to gov-
ern the agents’ interactions and resolve the
task (Durfee et al., 1987). Classical ex-
amples of organizational structures are the
Manager-Worker and Client-Server frame-
works which are typically used to allocate s | /] e e
tasks and resources to agents. These can | i_resolution " "
be implemented in different ways depend-

ing on the communication graph between

agents. Usually, one uses a direct commu- Figure 2.6: The Manager-Worker organizational
nication channel between the manager and structure. The manager derives the solution to
cach worker. The manager plans and dis- the problem by decomposing it into subtasks and
tributes the sub-tasks directly to the work- delegating those to the workers.

ers that send back their results (Figure 2.6). Another, more distributed, approach relies on
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1
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agents communicating by reading from — and writing to — shared blackboards (Hayes-Roth,
1985). This protocol is depicted in Figure 2.7. The read-and-write operations of the workers
are orchestrated by the manager agent, yet this latter can be removed if the task decompo-
sition and sub-task assignments have been done a priori (Werkman, 1990; Kearney et al.,
1994).

Organizational structuring is well suited for problems where there is an inherent hierarchy,
nevertheless, shared blackboard approaches can also be used to coordinate homogeneous
or peer agents (Lesser and Corkill, 1983). The limitations of this approach relate to its
degree of centralization: most of the coordinating and problem-solving pressure is on the
manager agent which creates obvious computation and communication bottlenecks. Also,
the shared blackboard implementations require that all the agents use the same semantics
to communicate and are therefore often restricted to homogeneous low-level agents. Finally,
centralized methods assume there is at least one agent with a global view of the whole system
which is often unrealistic in practice (Durfee et al., 1989).

Problem

v
/ Manager \

Worker 1

Blackboard ~ \ = | """ 7"0- il
,‘ Sub-task \: jommmmm e A :
! resolution 1 i ~ . 1
' Task Task <t : Sub-tasks assignment :
1 2 — it and monitoring !

Solution

Figure 2.7: Blackboard approach to the Manager-Worker framework. The manager and the
worker communicate by reading and writing from a shared blackboard. The contract net protocol
has workers compete to get tasks and allows them to turn into a manager to recursively decompose
and delegated the subtask they have been assigned.

Contracting

The contract net protocol (Smith, 1980; Davis and Smith, 1983) can be seen as an extension of
the shared blackboard scheme above (Figure 2.7). It is a more decentralized and automatic
way of decomposing both the problem and the organization structure. This framework
assumes a decentralized market structure in which agents can either be:

o a manager that decomposes the problem into sub-tasks and solicits contractors to
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achieve them while monitoring the progress of the overall solution, and

e a contractor that carries out a task. Yet, a contractor can recursively choose to be-
come a manager by decomposing the task and proposing the sub-problems to other
contractors.

An agent’s role is therefore dynamic and the organizational structure can change while
the problem is being solved or across problems. The bidding process between managers and
contractors follows the ensuing steps:

e a manager proposes a task,

» contractors consider the task in light of their capabilities and obligations,

« contractors place bids on the task,

« the manager gauges the bids and selects a contractor to which the task is dispatched,
and

« the manager waits for the results of the task.

This distributed process is used in several settings (Parunak, 1987) and has also been
extended to multistage negotiation which enables planners to find acceptable solutions in
over-constrained problems (Conry et al., 1988).

The contract net framework proposes a high-level coordination strategy that can effi-
ciently distribute tasks and self-organize groups of agents. Additionally, based on bidding
and role self-determination, the dynamical nature of contracting makes it a natural load-
balancing and reliable approach: agents can be added and removed, busy agents are not
required to bid, etc. (Huhns and Singh, 1994). Still, it remains most suited for applications
with a well-defined hierarchical nature that can be decomposed in coarse-grained minimally
coupled sub-tasks. Moreover, since the bidding process does not detect nor resolve con-
tradictory demands or conflicting objectives, this framework assumes benevolent and non-
antagonistic agents. This assumption rarely holds in real-world scenarios and non-benevolent
agents are one of the main motivations for coordination. The contract net approach does
not negotiate “what needs to be done” but rather “who is doing it”. Some works propose
iterative approaches to identify conflicts and reach consensus (Conry et al., 1988), yet they
remain highly communication-intensive and are often unfeasible for real-world problems.

2.2.2 Coordination Through Negotiation

As suggested by the last subsection, a significant amount of the literature investigates co-
ordination through the lens of negotiation. Indeed, Bussmann and Muller (1992) define
negotiation as “the communication process of a group of agents in order to reach a mutually
accepted agreement on some matter”. More specifically, Sycara (1989) notes that negotiating
agents must reason about other agents’ beliefs, desires, and intentions, therefore advocating
for techniques that:
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» represent and maintain belief models,
« reason about other agents’ beliefs, and
o influence other agents’ intentions and beliefs.

Negotiation has therefore been investigated with methods from a variety of fields such as
logic, case-based reasoning, belief revisions, distributed truth maintenance, multi-agent plan-
ning, model-based reasoning, optimization, and game theory. It is also a core notion across
many research groups working on multi-agent test beds, languages, protocols, and interlin-
gua, as well as purely developmental, cognitive, and sociological research. This subsection
focuses on the aspects of negotiation that are closest to coordination and reviews founda-
tional work in this literature. Namely, this section discusses:

e mnegotiation in game theory,
e mnegotiation in multi-agent planning, and
» negotiation in human-inspired Al.

Negotiation in Game Theory (GT)

Rosenschein (1986); Rosenschein and Zlotkin (1994) notably leverage the tools of GT (Luce
and Raiffa, 1989) to investigate how rational and autonomous agents can coordinate without
relying on pre-defined explicit coordination mechanisms. Instead of considering that agents
are benevolent, authors consider that they are negotiating rational utility mazimizers. The
game theoretic concepts of this negotiation approach to coordination are wutility functions,
deals, negotiation strategies, and protocols. Utility functions define an agent’s preferences
and the goals it aims to archive. Deals are actions that agents can take and are associated
with a corresponding utility. Negotiation protocols define the rules through which agents
can interact, that is, how to propose, refuse, or accept deals, as well as what happens if
agents fail to agree on a deal. Finally, negotiation strategies define how an agent behaves
given the set of rules (i.e., the space of deals, utility, and the negotiation protocol).

Rosenschein and Zlotkin (1994) experiment with several domains, protocols, and strate-
gies. In practice, the outcomes of interactions are built into pay-off matrices that are common
knowledge to both agents involved in the negotiation. Agents then follow their negotiation
strategy to settle on a deal by evaluating the other’s offers and proposing counter-offers that
maximize their own utility.

Zlotkin and Rosenschein (1990); Rosenschein and Zlotkin (1994) also explore a two-stage
setting, in which agents first negotiate a plan and then execute the joint plan. This enables
them to investigate how agents can be untruthful and deceptive (withholding information
and misinforming other agents) to reach better deals. See Figure 2.8 for a detailed example.
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-1 Phase Game: Broadcast Tasks Hiding Letters

Post Office (]} Post Office (]

(hidden),

Agents will flip a coin to
decide who delivers all
the letters.

—e—e They then agree that

agent 2 delivers to f
and e.

Figure 2.8: Negotiating deceptive agents, excerpt from Rosenschein and Zlotkin (1994). Agents
must deliver letters: agent 1 has to deliver letters at location b and f while agent 2 has to deliver
a letter at location e. In order to leave the post office, deliver their letters, and return to the post
office both agents will have to cover eight units of distance. (a) agents communicate the locations
they must visit and since both agents would have to cover eight units of distance anyway, they agree
on a coin flip that decides which agent will deliver all the letters (which also takes eight units). (b)
agent 1 lies and only tells about the letter that it must deliver at location f. This would require
agent 1 to cover only six units, therefore, there would be no reason for it to walk any additional
unit and deliver agent 2’s letter at e. Thus, agent 2 agrees to deliver both letters at locations f and
e since it does not change the distance it has to cover anyway. By lying and hiding a letter from
agent 2, agent 1 has manipulated it into carrying one of its letters. The deceptive agent now only
has to deliver the hidden letter to b by walking two distance units.

GT approaches to study coordination suffer from several limitations which complicate
their application to real-life settings (Busuioc and Winter, 1995). First, they assume strictly
rational utility maximizer agents that follow predefined strategies. Additionally, the pay-off
matrices are common knowledge meaning that agents are fully aware of other agents’ pref-
erences. These assumptions are unrealistic for truly non-benevolent, partially cooperating
agents in real-world settings. Moreover, agents only weigh in current states in their decision,
past interactions and future implications are not accounted for. Also, agents are assumed
to have the same internal models and capabilities. Finally, building the pay-off matrix for
negotiations with many agents and outcomes remains intractable.
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Negotiation in Multi-Agent Planning

Adler et al. (1989) argue that planning and negotiation are tightly intertwined as agents
need information from other agents to plan effectively. To avoid inconsistent and conflicting
behaviors, multi-agent planning approaches propose to collectively build detailed multi-agent
plans by specifying all the actions and interactions required to meet the objectives. That
way, conflicts can be identified and resolved. Multi-agent planning is either:

o centralized: there is at least one agent that possesses a global view of the system, or
o decentralized: no one agent possesses a global view.

In centralized planning, a coordinating agent receives all the partial and local plans from the
agents in order to analyze them to detect conflicts and inconsistencies. The coordinator then
modifies the local plans so as to resolve those incompatibilities and, once the multi-agent
global plan is correct, it adds communication commands to the local plans to synchronize the
agents’ interactions (Georgeff, 1988a,b). There is no need to have a strong hierarchy between
agents as one agent can choose to be the coordinator and modify its own local plan in order
to resolve conflicts (Cammarata et al., 1988). Conflicts can also be prevented by agents
proposing alternative behaviors — that are expected to mitigate the plans’ incompatibilities
— to the other agents (Jin and Koyama, 1990). Most of the time, the planning process is
two-stage: an initial individual planning phase and then the plan coordination (Kreifelts,
1991).

In decentralized multi-agent planning, the novel idea is to equip agents with world models
and models of other agents’ plans. Through communication, agents can update their local
plans — and models of others’ plans — until they converge to some global complete and
coherent plan (Corkill, 1979; Lesser and Corkill, 1988; Durfee and Lesser, 1988). Due to its
iterative approach, decentralized multi-agent planning requires agents to continuously plan
and replan, exchanging and processing large amounts of information. This yields complex
and resource-intensive protocols even for simple tasks (Corkill, 1979). Yet, this increased
complexity is the price to pay to remove the limitation of a centralized system with an agent
possessing a global view of the entire system (Huhns and Singh, 1994).

Human-Inspired approaches to Negotiation in Al

Building from the observation that some degree of negotiation is required in almost every
human interaction, many negotiation researchers draw inspiration from human negotiation
strategies. In practice, to implement these negotiation priors, authors leverage Al techniques
such as logic, Case-Based Reasoning (CBR), constraint-directed search, etc.

Sycara (1989) for instance builds on the belief that negotiation is an iterative activity
in which human negotiators leverage their experience of past negotiations to inform present
and future ones. This leads the author to propose a multi-agent, multiple-issue repeated
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negotiation model based on CBR and multi-attribute utility theory. Through CBR, agents
can leverage relevant past negotiation experiences and in the absence of those, the model
resorts to preference analysis using multi-attribute theory. Negotiated issues are represented
by utility curves that are combined to come up with a proposal that maximizes the utility. In
addition, Sycara (1989) defines persuasion as the process through which agents can modify
others’ beliefs, behavior, or intentions, and highlights its importance in negotiations that
resolve adversarial conflicts into cooperative interactions.

Werkman (1990, 1992) also believes in the role of past experience and further aims at
capturing the importance of having a common background of domain knowledge when ne-
gotiating. The author relies on an incremental knowledge-based model where agents can
share their perspectives. Typically, knowledge, as well as requested, rejected, or accepted
proposals are shared through the use of blackboards. Agents can then leverage this detailed
information to improve their proposals in the future. Here the negotiations are three-phase
cycles. An agent sends a proposal to the other agent, and the other agent evaluates the
proposal. Then this latter either accepts it or sends a counteroffer. If the two agents get into
a deadlock, an arbitrator agent generates an alternative offer from the negotiation dialogue
and the information network of both agents. While the use of arbitration is novel, it can
become a bottleneck — and the same can be said of the centralized blackboard that requires
an explicit scheduler to orchestrate the read and write operations.

Sathi and Fox (1989) view negotiation as a constrain-directed search in problem space
with negotiation operators. Constraints are dictated by the agents’ preferences and the
negotiation operators are inspired by human negotiation studies (Pruitt, 1981) and can be
used to relax, reconfigure and compose existing constraints into new ones. Negotiation
is organized into two phases. First, during the communication phase, information about
preferences is exchanged and the initial constraints that define the problem are built. Then,
in the bargaining phase, agents negotiate by relaxing the constraints until they reach an
agreement and resolve the conflicts. While this iterative approach has been successfully
applied to resource allocation, agents are often caught in livelocks of exchanging offers. This
is due to the absence of criteria that guide the selection of the relaxation operators.

A similar approach has been proposed by Conry et al. (1988). Authors investigate so-
lutions to distributed constraint satisfaction problems where several agents with limited
resources must coordinate toward a common goal. In that situation, the interdependence of
the local constraints builds up into a complex set of global constraints.

Finally, more complex, cyclic techniques have been proposed, with notably Bussmann
and Muller (1992)’s negotiating framework based on the socio-psychological theory on the
eight phases of the negotiation process (Gulliver, 1979). The core idea is that when agents
reject a proposal they also list which of their preferences are violated by the proposal. That
way, negotiators can update their knowledge about other agents’ preferences and come up
with better offers.
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2.3 Multi-Agent Learning and Coordination

The previous section reviewed the classical approaches to coordination in which agents’
decision rules are specified and procedural. This section now focuses on learned behaviors
and the underlying mechanisms that enable agents to co-evolve. We care about agents that
learn to coordinate and perform well together. Yet, since an agent’s progress is coupled with
the ones of its teammates, it is essential that they also coordinate their learning. Therefore,
this section reviews both learning coordination and coordinating learning. Specifically, the
first subsection discusses the intricacies of concurrent learning and the challenging dynamics
that arise. The subsequent subsections respectively delve into the importance of interactions,
internal models, and shared incentives in successfully coordinated learners.

2.3.1 The dynamics of concurrent learners

Learning dynamics are complex. In the simplest setting, a single agent experiences a sta-
tionary environment and learns from trial and error until it hopefully discovers and settles
on a globally optimal policy. When the environment is dynamic and changes over time, the
agent can at best track the constantly shifting optimal behavior and try to keep up with the
environment’s variations. In Multi-Agent Systems the situation is even more intricate as the
environment adapts itself to the agents’ behaviors.

Unfortunately, there are not many tools available to analyze the learning dynamics of
concurrently adapting agents. Vidal and Durfee (1997, 1998) propose to monitor specific
rates of change during the learning process. They focus for instance on per-agent behavior
change rate, learning and retention rates, or the rate at which other agents are progressing.
One can then approximate the error in an agent’s decision policy throughout the learning
process.

Most works that analyze concurrent learning adopt a game-theoretic perspective and
draw in particular from evolutionary GT. Notable works have investigated the properties
of cooperative co-evolution (Ficici and Pollack, 2000; Wiegand, 2004), including the basins
of attractions of Nash equilibria (Panait et al., 2004b), or studied the evolution of policy
trajectories from concurrent Q-learning processes (Tuyls et al., 2003; Jan’t Hoen and Tuyls,
2004). A crucial concept common to these approaches is the notion of a Nash equilibrium,
that is a joint strategy — i.e., the global strategy that results from the behavior of each agent
— such that no single agent has the rational motivation to unilaterally deviate from it. This
means that no agent can get more rewards by changing its behavior while the other agents
do not change theirs. Since learners do not usually have control over other agents’ behaviors,
it is challenging for them to escape Nash equilibria as it would require forming alliances and
jointly agreeing on a change of strategy. Consequently, most concurrent learning methods
converge to Nash equilibria regardless of the fact that they often correspond to suboptimal
team strategies (Panait and Luke, 2005). Tuyls et al. (2003) propose to analyze the Q-
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learning dynamics by using the Replicator Equations (Schuster and Sigmund, 1983), an
approach commonly used in evolutionary game theory to describe how systems consisting of
different strategies evolve over time (see Figure 2.9).
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Figure 2.9: Q-learning dynamics in the Prisoners’ Dilemma, excerpt from Tuyls et al. (2003).
Horizontal and vertical axes are respectively agent 1’s and agent 2’s probability of confessing. (a)
The direction field from the Replicator Equations applied to the Q-learning updates on the agents’
strategy: agents converge to the sub-optimal Nash equilibrium of confessing. (b) Converging Q-
learning trajectories of the agents’ strategies from different initial conditions.

The convergence and learning dynamics of concurrent learners greatly depend on the
task’s level of cooperation and on the credit assignment scheme of the learning method. In
the following paragraph, different settings are discussed:

 the fully cooperative setting, where agents share rewards,
o the competitive setting, where agents’ rewards are inversely correlated, and
o general sum games, where agents’ rewards might be uncoupled.

Fully cooperative scenarios

In a fully cooperative setting, agents’ rewards are positively correlated meaning that in-
creasing one’s reward increases the reward of the whole team. There is extensive literature
from GT on this setting and it can often be proven that rational agents converge to glob-
ally optimal Nash equilibria (Panait and Luke, 2005). Yet, several works point out that,
quite disturbingly, this might not be the case in practice with concurrent learners. The
corresponding research considers either Repeated Games or Markov Games.
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Repeated Games (RGs) model two or more agents that interact by each picking an action.
Agents receive some rewards based solely on that interaction: there are no states nor influence
from past interactions. Claus and Boutilier (1998) propose two simple repeated games and
show that, in practice, RL agents might fail to discover and coordinate to the global optimum.
This alarming result holds even when agents know and explicitly reason about the other
agent’s actions by building Q-value tables for the joint actions. Coordination failure in this
ideal situation is worrying since agents usually do not have complete knowledge of the other
agent’s behavior. The experiment is described more in detail in Figure 2.10.

Lauer (2000) present an optimistic approach that updates an agent’s Q-table by esti-
mating the best cooperation possible to the corresponding action. The author proves the
method’s convergence to the optimal strategy in deterministic repeated games. After point-
ing out the flaws of this approach for stochastic games, Kapetanakis and Kudenko (2002a,b)
propose an adapted exploration strategy and report improved cooperation in this new set-
ting.

Brafman and Tennenholtz (2002) derive a stochastic sampling procedure that guarantees
the convergence to optimal Nash equilibria. Nevertheless, this approach relies on restrictive
assumptions conflicting with the concurrent learning paradigm. Indeed, the method struc-
tures the agents’ interactions and learning a priori: it defines and enforces a joint exploration
phase followed by a joint learning phase at the end of which each agent settles for the be-
havior that yielded the best outcome. If anything, this illustrates the need to coordinate
exploration and learning in CMAL.

Markov Games (MGs) extend RGs by incorporating the notion of states: at any point in
time, the game is in a given state. The next state is sampled stochastically from a transition
function that depends on the current state and the agents’ interaction. The rewards are
now based on both the current state and the current interaction. If there is a single state, a
MG reduces to a RG, while with only one agent a MG is a Markov Decision Process. Most
works done in MGs consider general-sum games and are therefore presented in the next
subsection. A notable exception, work by Wang and Sandholm (2002), presents Optimal
Adaptive Learning, an algorithm guaranteed to converge to global Nash equilibria in fully
cooperative stochastic games with a finite number of actions and states. To avoid converging
to suboptimal equilibria, the method emulates “virtual games” at each state such that solving
them eliminates potential suboptimal Nash equilibrium. Unfortunately, this approach can
be prohibitive as the number of virtual games to solve scales exponentially with the number
of agents.
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Figure 2.10: Suboptimal coordination in a fully cooperative setting, excerpt from Claus and
Boutilier (1998). (a) the climbing game in which the optimal joint strategy is (ag,bp). (b) and (c)
respectively agent’s A and B strategy throughout learning. (d) joint strategy throughout learning.
Agents start by selecting actions uniformly and the severe -30 penalties that can arise for actions
with indexes 0 and 1 drive agents toward the non-equilibrium strategy (az, b2). Yet, agents "settle”
but continue exploring around this point and agent B finds b; more attractive (provided that A
continues to choose ag most of the time). Once the strategy shifts to (ag,b1), agent A tracks B’s
move and realizes that a; is a better response. Therefore, agents eventually converge to (a1, b;) but
never reach the optimal strategy (ag,bp) because it would require agents to simultaneously switch
strategies and avoid the discouraging -30 penalties.

Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) — extend Markov
Games by considering that agents do not have access to the global state of the game but only
have incomplete and partial observations of it. If there is only one agent, a Dec-POMDP be-
comes a Partially Observable Markov Decision Process (POMDP). A Decentralized Markov
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Decision Process (Dec-MDP) is a special case of Dec-POMDP in which, at any point in time,
the global (hidden) state can be uniquely determined from the current set of observations
of the agents. Note that a Dec-MDP is more challenging than a MG as in the latter all
the agents directly observe the global state of the game. In terms of complexity, MDPs and
POMDPs are respectively P and PSPACE-complete (Papadimitriou and Tsitsiklis, 1987)
while Dec-MDPs and Dec-POMDPs are both NEXP-complete (Bernstein et al., 2002). For
more discussions on computing complexity, the reader is referred to (McMahan and Gordon,
2007; Deng et al., 2023).

In fully cooperative Dec-POMDPs, Peshkin et al. (2001) showed that their distributed RL
method converged to local optima but that were not necessarily Nash equilibria. Nair et al.
(2003) observed that exponential training speedups could be achieved by training agents one
at a time, keeping the policies of the other agents fixed.

Cooperative-Coevolutionary Algorithms (CEA) were originally proposed to decompose a
problem and concurrently search for solutions to the sub-problems (Potter and De Jong,
1994; Potter, 1997). They are well suited to tackle cooperative RGs with many works that
have tuned the algorithms to improve performance Bull (1997, 1998); Wiegand et al. (2001).
Nevertheless, most works have focused on analyzing agents’ convergence to Nash equilibria
rather than investigating how to derive teams that find globally optimal solutions (Wiegand
et al., 2002b,a; Wiegand, 2004). Interestingly, Panait et al. (2003, 2004a,b) note that, when
applied to the cooperative setting, standard CEA methods tend to sacrifice performance
in favor of balance. In other words, agents are driven to co-adapt to teammates regardless
of the latter’s poor performance. This may be counterproductive and agents should rather
assume that teammates will rationally strive to become ideal collaborators in order to aim
for the corresponding optimal behavior. Indeed, the performance of CEA algorithms is
greatly improved if agents are evaluated with teammates that approximate their best possible
collaborators. Yet, estimating these “good partners” is non-trivial, and methods usually rely
on good teammates from past iterations. For instance, Gordin et al. (1997); Puppala et al.
(1998) incrementally build a “hall of fame” repository by keeping the best teams evolved so
far. Authors then evaluate individual learners by selecting teammates from the repository.
Blumenthal and Parker (2004) do something similar by having learners periodically provide
demonstrations representative of their current policies to other learners so those latter can
use it to evaluate their own training.

General sum games

In General sum games, there is no specific structure for the agents’ rewards or credit assign-
ment. Consequently, one agent can increase its reward without the other agents increasing
theirs and the increase in one agent’s reward can sometimes even yield a decrease in another’s.
This setting can thus result in highly non-cooperative situations.
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General sum games are usually represented in two forms. Either extensive-form — as a
tree structure — which best captures agents acting in sequence from imperfect information.
And normal-form — as a pay-off matrix — which is most relevant for simultaneous moves
from perfect information (Nisan et al., 2007). Few works study the dynamics of concurrent
learners in extensive-form games — with the exception of Tesauro and Kephart (2002) — and
most of the literature — starting from Littman (1994) — focuses on normal-form games.

Bowling and Veloso (2000) start by analyzing a number of GT and RL approaches to
Markov Games and discuss the different assumptions that are made. Building from this,
several works investigate the importance of modeling other agents in order to reach better
equilibria. For example, Hu et al. (1998); Bowling (2000); Hu and Wellman (2003) extend
distributed RL methods so that agents also learn Q-values tables for the other agents. From
these, agents can estimate the actions that others might select. Nagayuki et al. (2000) choose
to directly approximate the policies of other agents instead of relying on Q-values.

Suematsu and Hayashi (2002) highlight a crucial limitation of previous works by noting
that agents merely try to reach Nash equilibria and assume that the other agent will also move
towards it. Instead, agents should explicitly adapt to others and influence their behaviors
toward optimal strategies. The authors observe that current methods would fail in situations
where the other agents are following fixed policies. Subsequent works thus focus on proposing
different solutions based on how the other agents could adapt. Suematsu and Hayashi (2002)
for instance proposes a method that reaches Nash equilibria if other agents are adaptable
and strive to do so as well. Otherwise, in the case of fixed teammates, the agent aims for an
optimal response policy. Similarly, Littman et al. (2001) proposes an algorithm where agents
look either for coordination or adversarial equilibria depending on whether their teammates
are cooperative or competitive.

Finally, Bowling and Veloso (2001) focus on the notion of optimality and propose two
desiderata for concurrent learners: rationality and convergence. Rationality states that the
agent should converge to its corresponding optimal policy when other agents have converged
to stationary behaviors. Then, convergence dictates that all agents should eventually con-
verge to stationary strategies. Greenwald et al. (2003) propose to enforce rationality by
drawing from Nash correlated equilibria (Nisan et al., 2007) — an alternative solution con-
cept to Nash equilibria — and proposes Correlated-Q. The authors demonstrate empirical
convergence of the method. At the cost of increased centralization, this approach allows
agents to discover and use strategies that require them to pick coherent options to break the
symmetries in the problem. Indeed, in situations where there exist multiple Nash equilibria,
especially if these are unfair and favor one agent over the other, it might be challenging for
agents to coordinate and agree to select the same equilibrium. Correlated equilibria enable
agents to coherently alternate between different equilibria and fairly share payoffs.
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To better understand this we need to

discuss additional equilibrium concepts. So Player 2 _

far, we have discussed pure Nash equilibria Player 1 Bach  Stravinsky
in which agents use pure strategies which Bach 2,1 0,0
means that they pick actions deterministi- Stravinsky 0, 0 1,2

cally. Agents can also act stochastically and
have a probability distribution over their ac- Table 2.1: The Bach or Stravinsky Game’s pay-
tions: these are called mixed strategies. A off matrix. Two persons want to meet at a mu-
mized Nash equilibrium is a situation where Sic recital but one of them (Player 1) prefers
no agent has the incentive to change its Bach while the other (Player 2) prefers Stravin-
mixed strategy (i.e., its probability distribu- sky. Which event should they choose?

tion over actions) if no other agent does it.

Finally, a correlated Nash equilibrium is a situation in which agents have agreed a prior:
on a set of joint strategies and their likelihood. Before acting, a joint strategy is drawn
and each agent receives an observation indicating the corresponding action it should take
(but not the whole joint strategy). Knowing what the other agent is likely to do (because it
knows the potential joint strategies corresponding to the observation), the agent should have
no reason to deviate from the move suggested by the observation. The Bach or Stravinsky
Game (Table 2.1) illustrates this well. There exist two (unfair) pure Nash equilibria: (Bach,
Bach) and (Stravinsky, Stravinsky) that respectively favor Player 1 and Player 2. There is
also a mixed Nash equilibrium: Player 1 goes to listen to Stravinsky one-third of the time
while Player 2 does it two-thirds of the time. Indeed, knowing that this is the strategy of
the other agent, no player has the incentive to deviate from it. Let us look at it from Player
2’s perspective: it knows Player 1’s strategy and wants to figure out with which probability
p it should go to listen to Stravinsky. Its expected payoft is

p % 1/3 x ug(Stravinsky, Stravinsky) + (1 — p) x 2/3 x us(Bach, Bach)
=px1/3x2+(1—p)x2/3x1=2/3.

This is independent of p so it has no incentive to change strategy (u; is agent i’s utility as
given in the payoff matrix). Similarly, we can verify that if Player 2 goes to Bach a third
of the time, Player 1’s payoff is constant regardless of its strategy. Therefore, Player 1 and
Player 2 going to Bach respectively two-thirds and one-third of the time is a stable and fair
solution (both players have an expected payoff of 2/3). Yet, this mixed equilibrium is not
very interesting since both agents get in expectation less payoff than they would in an unfair
pure equilibrium. A more interesting solution is the following correlated equilibria: agents
agree on two joint strategies, either they both go to Bach or they both go to Stravinsky. A
strategy is picked uniformly at random and each player gets an observation hinting at what
it should do. There are only two joint strategies and it is trivial to show that agents do
not deviate from it: for instance, if Player 1 is suggested a place (Stravinsky for instance) it
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knows that Player 2 will go there (both going to that place is the only joint strategy that
can indicate that place to Player 1) and it should go there to get the positive payoff. That
correlated equilibrium is fair and both agents get 1/2 x 24+ 1/2 x 1 = 3/2 expected payoff.
Note that a correlated equilibrium requires pre-defining joint strategies, sampling those, and
having agents observe their expected roles.

Nowe et al. (2001); Peeters et al. (2004) also has agents alternate between to unfair
equilibria to reach a more equitable outcome repartition. The authors propose a method in
which agents communicate their collected payoff. If the situation is unfair, meaning that
there is a discrepancy between the agents’ payoffs, the currently played actions are removed
from the agent’s action space, and agents must find a new equilibrium.

Competitive learning

While the focus of this literature review is on cooperative settings, learning pathologies
present in competitive environments stem from similar dynamics and provide interesting
insights. Additionally, as discussed more in detail in Subsection 2.3.2, competitive learning
is often used as a way of “training” agents by pitting them against one another which forces
them to improve in order to overcome their opponents. Think for instance of two agents
learning the game of Checkers from scratch by playing against each other: they learn at the
same pace and complexity gradually ramps up as they improve.

There are three main learning pathologies that can arise from competitive learning: loss
of gradient, the Red-Queen effect, and cyclic behaviors.

Loss of gradient happens when one learner starts to dominate the other one. If regardless
of what it does, the dominant player always wins, while the inferior player always loses, no
matter what it tries, none of the agents is receiving any feedback that can be used to improve
(Pollack et al., 1997; Watson and Pollack, 2001). This is closely related to the "laziness”
issues in cooperative learning. Wiegand and Sarma (2004) examine this behavior in a coevo-
lution domain in which some agents can learn faster than others because they are provided
with better learning opportunities. They show that using spatially embedded Cooperative
CEA alleviates the loss of gradient pathology and improves learning performance. Here, spa-
tial embeddings are a way of artificially coupling the learners’ progress by constraining the
selection of new generations. Learners’ populations are distributed across some predefined
virtual space and each learner evaluates its individuals based on how they perform with the
other learners’ individuals in the neighboring space.

The Red Queen effect refers to the difficulty of monitoring a learner’s progress because
its fitness depends on other learners’ abilities (Cliff and Miller, 1995). Back to the two
Checkers learners: initially, they draw on most of the games but then, after some training,
the first agent consistently wins against the other one. From this, little can be said about the



2. Related works 35

progress of the players. It could be that both improved but the first one improved more, or
that the first player’s performance remained constant but the second player’s skills dropped.
However, it could also be that both players got worst at checkers but the second one more.

The Red Queen effect also occurs in cooperative settings. For example in symbiotic
relationships, the mutual benefits are only maintained if both agents continuously adapt
and evolve. This can lead a successful pollinator species to go extinct because the plant
species it was relying upon could not adapt and disappeared (Herre et al., 1999; Gao et al.,
2015). A related pathology occurs with cooperative multi-agent learning and local rewards:
even if every agent improves with respect to its individual reward, there is no guarantee
that the team is improving as a whole. Imagine a task where all agents must reach a target
location and each agent is rewarded based on its proximity to the target. All agents might
learn to get close to the target, yet accidentally block each other and prevent some agents
from actually reaching the target.

% } Deer Wolf ‘@

Population Population

time

Figure 2.11: Illustrations of common multi-agent learning pathologies. (a) the Red-Queen effect:
(1) wolves hunt deer, (2) deer evolve to be more agile and escape wolves, (3) wolves evolve to hunt
more efficiently in packs, and (4) humans start to hunt wolves while deer become less agile. Looking
at population curves alone does not give the full picture as one cannot know if the variations are
due to one specie’s improvement or the other’s collapse. For instance, the deer specie was about
to disappear because their predator became too efficient at hunting them (3). Yet the intervention
of a third species removed wolves and deer now strive, however, deer skills did not improve. (b)
Cyeclic behaviors: agents keep alternating between dominant and dominated strategies indefinitely.

Cyclic behaviors can be seen as learning livelocks — while the loss of gradient pathology was
more of a learning deadlock. Cyclic behaviors are likely to occur if there exist non-transitive
relationships in the problem setting or in the solution strategies. The Rock-Paper-Scissor
game is a good example of a non-transitive cycle: paper beats rock, rock beats scissor and
scissor beats paper. This means that two competing agents can easily be trapped in a cycle
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where they keep co-adapting indefinitely without any overall progress (Cliff and Miller, 1995;
Rosin and Belew, 1997; Ficici and Pollack, 1998).

Cyclic behaviors also occur in cooperative learning, an example of that is the cyclic
emergence of “leaders” that try to solve the task on their own and then “pass the lead” to
another agent. A well-coordinated team where all the agents participate at any point in time
is often more efficient. Picture a task where two agents must find an object and receive a
shared reward. Agents might end up taking turns in who is the “leader” that searches for the
object while it would be more efficient for them to simultaneously search for it. This case is
related to the “laziness” pathology that is exacerbated with shared reward. However, “cyclic
leaders” also occurs with local reward where agents alternate in taking the lead because they
seek extra rewards, often at the expense of the team’s performance. Imagine a four-legged
ant robot where each learner controls a different limb and is rewarded by the forward progress
of this limb — the team objective being to move the robot forward. Agents might alternate
leads as “dominant” agent that makes the robot turn so the “dominant” leg is forward and
covers more ground. Turning the robot that way to have a leg forward might be detrimental
to having the whole robot move forward as much as possible.

The risk for loss of gradient learning failures is even more severe — and conflated with
the Red-Queen effect — in domains that are a mixture of cooperation and competition.
Such settings include tasks where agents must learn to cooperate as a team in order to
compete against an opposing squad. Luke et al. (1998b) for instance trains a team to play
soccer against opponent teams and highlights the need for coordinating the agents’ learnings.
Indeed, in order for an agent to learn how to pass the ball, its teammates must have learned
to receive the ball while opponents might simultaneously co-adapt and learn to intercept
passes. While few works have investigated how to decompose these “learning dependency
graphs”, Guestrin et al. (2002) note that the action domains of agents are often coupled.
Therefore, they propose to decompose the Q-values according to a heuristical coordination
graph that describes which agents have to interact together in order to reach a solution. This
provides a middle ground between having to learn the whole joint value tables and relying on
independent individual value tables. Along those lines, Makar et al. (2001); Ghavamzadeh
and Mahadevan (2004) propose a more hierarchical approach that focuses on coordinating
the agents’ high-level behaviors rather than their primitive actions.

This subsection has discussed the complex dynamics of concurrent learning, highlighting
common pathologies and problems. In particular, it remains a challenge for agents to discover
optimal team strategies and to converge to the corresponding equilibria. We draw from the
literature that points toward the crucial need for agents that coordinate their learnings, and
review in the following subsections three key elements for devising coordinated learners.
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2.3.2 Interactions in Multi-Agent Learning

Interactions are central to multi-agent learning and they result in challenging non-stationary
learning environments from the agent’s point of view (Lowe et al., 2017). This makes the
problem of coordinating the agents into optimal collective behaviors a NEXP-hard one (Bern-
stein et al., 2002). Instead of focusing on the challenges that arise from multi-agent interac-
tion (which has been covered in the previous Subsection 2.3.1), this section investigates how
multi-agent interactions can be leveraged to improve coordination and learning. First, we
discuss how multi-agent competition can design an automatic learning curriculum. Then,
we review how learners can leverage their interactions with other agents to improve. After
that, we present how agents can use interactions to influence their teammates. Finally, we
conclude with the challenges of evaluating interacting agents.

Automatic Curriculum Learning

There is an important body of work that investigates how interactions between learning
agents are a way of progressively tuning up the task difficulty so as to guide training. This
can be seen as a multi-agent approach to curriculum learning. Curriculum learning proposes
to decompose and sequence tasks and data samples into a curriculum. That way it is possible
to train agents on problems that would be too challenging to learn all at once (Elman, 1993;
Sanger, 1994; Rohde and Plaut, 1999; Bengio et al., 2009; Narvekar et al., 2020; Portelas
et al., 2021; Forestier et al., 2022). This approach builds on the notion of optimal learning
difficulty or Goldlilocks zone that refers to tasks whose difficulty is just right so as to challenge
the agent and drive it to improve (Kidd et al., 2012; Wilson et al., 2019). Too easy a task
won’t require any progress since the agent can already solve it. On the other hand, one
might never manage to solve tasks that are too difficult and thus fall short of learning
signals to follow. The Goldilocks learning zone is conceptually close to the zone of proximal
development proposed by (Vygotsky, 1934) to describe the tasks that a learner cannot solve
alone but can manage if provided with guidance. Crucially, the optimal learning difficulty is
a function of a learner’s ability and difficulty must increase with skills. Curriculum learning
aims at designing a progression of tasks that track an agent’s Goldilocks learning zone. By
gradually increasing difficulty, the agent can build upon its existing knowledge and skills to
improve and take on more and more challenging problems (see Figure 2.12).

In the multi-agent setting, the same considerations hold true. For instance, with two
agents learning to play the game of Checkers it is often desirable for them to learn at the
same pace, with difficulty gradually ramping up as they improve. Self-play (Samuel, 1959;
Tesauro, 1991), where a single learner plays a multi-agent game against itself, has been widely
and successfully used for that purpose over the years. Notable examples include Checkers
(Samuel, 1959), Backgammon (Tesauro, 1991), Poker (Kendall and Willdig, 2001), Hanabi
(Bard et al., 2020), Chess, Shogi, Go (Silver et al., 2018) and video games (OpenAl et al.,
2019).
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Figure 2.12: Illustration of the curriculum learning approach. (a) The Goldilocks learning zone:
if the task is too easy there is nothing to learn while if the task is too difficult we cannot make
progress on it. One needs the difficulty to be “just right” and in tune with current skills. (b)
Different subgames in the game of Chess are used to form a curriculum for learning the full game of
Chess by progressively increasing the task’s complexity and tracking the agent’s Goldilocks learning
zone throughout training. Image (b) is an excerpt from Narvekar et al. (2020).

Automatic learning curricula can also arise from competitive environments involving mul-
tiple learners. Bansal et al. (2017) highlight how competition naturally devises a learning
curriculum and can foster the emergence of very complex behaviors in otherwise simple envi-
ronments. Jaderberg et al. (2019); Baker et al. (2020) extend this idea to mixed cooperative-
competitive environments. In Baker et al. (2020) for instance, agents play a team version of
the “hide-and-seek” game and can interact with objects present in the environment. Authors
show that such a simple setting can lead to the emergence of elaborated team strategies and
sophisticated tool use (see Figure 2.13). Yet, these works point out that, in order to avoid
the loss of gradient pathology discussed previously, it is important to keep the opponents’
level of skills balanced and in check. One way to do this is to evaluate the current learned
agents against a whole population of opponents, for example, considering past versions of
the opponent. Additionally, this tends to select robust behaviors that are resilient against
varied opponents.

As mentioned above, self-play is also commonly used to train agents in the cooperative
setting with either a single (Bard et al., 2020) or multiple learners (OpenAl et al., 2019).
Interesting variations on self-play have been investigated for specific cooperative settings.
Other-play (Hu et al., 2020) for instance aims at devising agents for Zero-Shot Coordination
(ZSC). ZSC refers to agents that are able — without additional retraining — to perform with
partners they have never seen before. Another line of work (Lerer and Peysakhovich, 2017),
modifies self-play to train agents to maintain coordination in social dilemmas. Social dilem-
mas refer to situations in which agents are tempted to egoistically increase their individual
outcomes to the detriment of global welfare. It is therefore challenging for agents to maintain
cooperation: they must start by cooperating but avoid being exploited while trying to return
to mutual cooperation if that occurs.
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Figure 2.13: Emergent Skill Progression From Multi-Agent Autocurricula. Through the reward
signal of hide-and-seek (shown on the y-axis), agents go through 6 distinct stages of emergence. (a)
Seekers (red) learn to chase hiders, and hiders learn to crudely run away. (b) Hiders (blue) learn
basic tool use, using boxes and sometimes existing walls to construct forts. (c) Seekers learn to use
ramps to jump into the hiders’ shelter. (d) Hiders quickly learn to move ramps to the edge of the
play area, far from where they will build their fort, and lock them in place. (e) Seekers learn that
they can jump from locked ramps to unlocked boxes and then surf the box to the hiders’ shelter,
which is possible because the environment allows agents to move together with the box regardless
of whether they are on the ground or not. (f) Hiders learn to lock all the unused boxes before
constructing their fort. Image and captions are excerpts from Baker et al. (2020).
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Social Learning

The benefits of automatic curriculum from competitive learning have drawn researchers
to investigate similar mechanisms in the absence of competition. Here, we regroup these
approaches under the umbrella of social learning (Jaques, 2019).

Often, the motivation is to derive behav-
iors that are robust, handle a wide range of
tasks, and are resilient to domain changes.
In that case, most approaches train a learner (%<Eg)
to solve tasks that are adversarially adapted

T

Train
\./

Protagonist

by a competing learner. This is sometimes o

referred to as “host-parasite” co-evolution N\

(Hillis, 1990; Cliff and Miller, 1995; Har- Train
Generated

vey et al., 1997). It is challenging to gen- 7
erate tasks that are (1) relevant to the Environment Environment Antagonist
problem, (2) whose difficulty is adapted Agent

to the current abilities of the agent, and Figure 2.14: Unsupervized Environment De-
(3) solvable. To tackle this, Dennis et al. sign. An environment agent generates the envi-
(2020) propose Unsupervized Environment yonments in which a protagonist and an antago-
Design (UED) where an environment-agent npist agents are trained. The goal of the environ-
picks the parameters of procedurally gen- ment agent is to generate tasks in which it believes
erated environments that are then used to the antagonist will perform better than the pro-
train a protagonist-agent. In parallel to tagonist. That way the protagonist is trained on
the protagonist-agent, an antagonist-agent tasks that are solvable but that it finds challeng-
is trained to solve the same generated do- ing.

mains. The difference in performance between the antagonist and protagonist agents is used
to guide the environment design towards settings that are solvable by the antagonist but
challenging for the protagonist. In Gur et al. (2021), authors extend this setting to gen-
erating compositional tasks and training a whole population of agents instead of a single
protagonist-antagonist pair.

The idea of leveraging the interactions between agents to improve learning has also been
investigated in Imitation Learning (IL) and Inverse Reinforcement Learning (IRL), where a
demonstrator is trained to generate trajectories that might not be optimal but that would
best teach an apprentice agent (Hadfield-Menell et al., 2016). Similarly, Colas et al. (2020)
explores the benefits of having a social partner provide language descriptions of a learning
agent’s activity. Finally, learners can benefit from interacting with other agents even if the
latter are not actively trying to teach them. Ndousse et al. (2021) report that agents trained
in the presence of other learners — and/or experts — learn faster, better, and develop more
generalizable policies. Mataric (1994a) refers to this phenomenon as observational reinforce-
ment: it rewards agents for observing and imitating teammates. This can help reproduce
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rare behaviors and improve the overall team performance (more on this in Subsection 2.3.3).
Other forms of social reinforcement include vicarious rewards through which agents receive
portions of the rewards received by neighboring agents in order to diffuse individual rewards
in a tradeoff between local and global rewards.

Interactions as influence

Agents must leverage interactions, whether through physical or communicative actions, to
influence others. Early on, Chalkiadakis and Boutilier (2003) proposed a method in which
agents reason about how their actions will influence the behavior of other agents. By influenc-
ing each other, agents can eventually coordinate their policies toward equilibria. Similarly,
Jaques et al. (2019) draw from the notion of Causal Influence (Collins et al., 2004) and
reward individual agents for producing actions or messages that will impact the behavior of
their teammates. Authors show that using this intrinsic motivation leads to enhanced coop-
eration and increases the collective performance of the team. Additionally, they note that
it can lead to the emergence of coherent communication protocols when used with explicit
communication channels.

Instead of restricting influence to considering the impact of an agent’s actions on an-
other’s, Foerster et al. (2018a) propose Learning with Opponent Learning Awareness (LOLA)
where agents directly consider how their learning influences other agents’. In practice,
LOLA’s policy update optimizes for one-step lookaheads of opponent learning, which mean
that it adapts to — but also actively influences — the other agent’s next policy update. Au-
thors show that shaping the learning of other agents allows for the emergence of cooperation
out of self-interest, consequently improving on Nash equilibria. For instance, the method
leads to Tit-for-Tat strategies in the iterated prisoners’ dilemma, this means that agents
start by collaborating (and remaining silent) and then mimic what the other agent does,
so they defect (i.e., confess) after being betrayed but forgive and agree to collaborate again
if the other agent switches back to collaboration. Tit-for-tat strategies are based on the
concepts of retaliation and altruism and, while being robust against exploitation, they can
lead to much better outcomes in the iterated prisoners’ dilemma.

Finally, a very efficient way of influencing other agents is to set their objectives, such
as their rewards or goals. Ahilan and Dayan (2019) considers Feudal Learning based on
a hierarchical decomposition of the problem where a manager agent can set the goals and
rewards of other agents. Yang et al. (2020) extends this idea to a more horizontal and
distributed setting by allowing each agent to give rewards directly to other agents.

Evaluating teams of agents

It is challenging to evaluate the performance of interacting agents when they are trained
together because the performance of an agent — and of the team — depends on the performance
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of its teammates (cf. the Red-Queen effect in Subsection 2.3.1). Nevertheless, evaluating an
agent with the teammates it has been trained with is usually the simpler setting.

A whole branch of multi-agent learning investigates how an
agent can coordinate and perform when interacting with teammates
it has never seen before. Picture for example a robot playing soccer
that must join an existing team it has never practiced with. This
problem is usually referred to as ad-hoc teamplay or ad-hoc coordi-
nation. There exist different settings depending on, the extent of
knowledge that the agent has about its potential teammates, and
whether or not the learner is allowed to update its policy during
the ad-hoc interactions to identify and fine-tune itself to the team
(Stone et al., 2010; Barrett et al., 2011). More recent approaches
usually forbid fine-tuning the ad-hoc teams from learning updates
but still assume some degree of knowledge about teammates. For
example, some works assume access to offline demonstrations of the
teammates’ behaviors that can be used to guide the agent’s self-
play training toward adopting the appropriate equilibrium (or “so-
cial conventions”) of its future teammates (Lerer and Peysakhovich,
2019; Tucker et al., 2020). Similarly, Carroll et al. (2019) uses offline
data to learn a model of the teammate’s behavior and use it to train
the agent to coordinate with that ally. On the other hand, Hu et al.
(2020) consider a slightly different setting, Zero-Shot Coordination
(see Figure 2.15), that does not require information about the spe-
cific behaviors of the potential teammates. Instead, ZSC aims at
deriving agents that will perform well when teamed together even
if they were not trained together. In other words, it assumes that
all agents (teammates included) learn with the same algorithm.
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Figure 2.15: Zero-Shot
Coordination.  Agents
that were trained inde-
pendently must perform
together.

2.3.3 Internal Models in Multi-Agent Learning

This subsection discusses the importance of internal models for successful multi-agent learn-
ing. Specifically, it investigates how these models can be used to simulate other agents or
the environment in order to coordinate concurrent learners.

Modelling teammates

Internal models are mainly used by agents to represent their teammates and opponents
present in the environment. They can then use these models to understand and predict how
others are expected to behave so as to best adapt to them. Boutilier (1996a); Chalkiadakis
and Boutilier (2003) propose to use Bayesian learning to estimate a distribution over other
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agents’ strategies in order to coordinate with them. Suryadi and Gmytrasiewicz (1999)
follows a similar approach but instead model teammates’ beliefs, capabilities, and preferences
and derive how these drive an agent’s behavior.

Agents modeling agents that are reciprocally modeling them in
return brings infinite recursion: “agent 1 is going to do A because it
assumes that agent 2 assumes that agent 1 assumes that...”. Vidal “\
and Durfee (1997) note that this cannot be feasibly sorted out and g:‘
propose to categorize rational agents according to the complexity
that they assume for their teammates. A level-0 agent considers @
that its teammates do not explicitly adapt their behavior to it-
self. A level-N agent assumes level-(N — 1) teammates, such that g]

a level-1 agent considers that its teammates are level-0 agents and
so on. Mundhe and Sen (2000a) explore level-0, level-1, and level-
2 agents and concludes that in most domains level-1 agents are
enough with some domains being already solved by level-0 agents. (. .1out other agents
Foerster et al. (2018a) report similar findings and note that level- } 4t are reasoning about
1 LOLA agents are immune to being manipulated by higher-level tpeom.

agents. While some works present tasks in which good performances

can be achieved by level-0 learners (Mundhe and Sen, 2000a; Sen and Sekaran, 1998; Sen
et al., 1994), most research advocates for level-1 learners. Banerjee et al. (2000); Sen et al.
(2003) for instance showcase experiments in which level-1 learners can build a form of mutual
trust by modeling each others’ action probability distributions. Tambe (1995) notes the ben-
efits of tracking the decisions of both groups of agents and individuals. Finally, learners can
also benefit from modeling agents in purely competitive settings (Carmel and Markovitch,
1994; Uther and Veloso, 1997).

Although modeling other agents can greatly benefit concurrent learners, some authors
advise caution and note that the initial beliefs of an agent about its teammate can greatly
influence the resulting global strategy (Hu and Wellman, 1996; Wellman and Hu, 1998).
Sometimes, if an agent’s assumption about its teammates’ behavior is wrong, agent mod-
eling can be misleading and prevent convergence to optimal behavior, yielding worse team
performance than for level-0 agents. Following this, Hu and Wellman (1998), advocate for
the conservative approach of minimizing an agent’s assumption about the other agents’ poli-
cies. This has led researchers to investigate agents that automatically assess if other agents
are cooperating or competing in order to reciprocate adequately (Sekaran and Sen, 1995;
Sen and Sekaran, 1996). Nowak and Sigmund (1998) distinguishes between two types of
reciprocity: direct — agent 1 helps agent 2 and expects agent 2 to help in the future — and
indirect — agent 1 helps agent 2 and expects to receive help from different agents. This latter
form of reciprocity requires a “degree of acquaintanceship” that measures the likelihood of an
agent knowing another’s reputation. They argue that cooperation can occur if the degree of
acquaintanceship is greater than the ratio between the cost of altruistic help and its benefits

Figure 2.16: Infi-
nite recursive thinking
arises when agents rea-
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to the recipient. Ito (1997) share similar considerations but do not rely on an explicit model
of reputation. Instead, authors provide agents with a history of their partner’s previous

moves with other players.

Another, more recent, approach is to
model others in order to simulate them in
the environment. In Claus and Boutilier
(1998), agents observe other agents’ actions
and learn a model of their current policy.
They then use these models to simulate their
teammates through ficticious play and esti-
mate their own actions’ Q-value in the con-
text of other agents’ current strategies. This
approach is also common in the offline set-
ting where a learner cannot directly interact
with the other agents. Carroll et al. (2019)
for instance leverage offline data to learn a
model of the teammate’s behavior and use
it to train the agent so that it coordinates
efficiently with that ally at test time.

Instead of reasoning about a partner’s
current behavior, some works try to infer
a partner’s updated strategy. For instance,
Zhang and Lesser (2010) propose a MARL
algorithm that leverages policy prediction
to converge faster and more consistently to
Nash equilibria in iterated games. The key
idea is in essence similar to the later work of
Foerster et al. (2018a): by predicting future
policies, an agent can adjust its strategy to
the forecasted behavior of other players in-
stead of their current one. The main dif-
ference is that LOLA agents actively try to
influence their opponents’ future strategies.
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Figure 2.17: Model predictions excerpt from
Rabinowitz et al. (2018): (a) the past trajectory
of the agent given to the model, (b) the current
state of the agent, (d) and (c) based on the past
trajectory and the current state, the model pre-
dicts that the agent is going to go right and up in
order to consume the green object.

Teammate modeling can also benefit agents even when their policy-optimizing algorithm
does not explicitly leverage the prediction about other agents’ behavior. Ndousse et al. (2021)
shows that agents learn more rapidly, better, and more generalizable policies if they are
trained with expert agents present in the environment. However, these benefits only hold if
learners are equipped with the auxiliary task of modeling the expert agents by predicting their
behavior. Yet, the agents’ policy optimization scheme does not use the behavior prediction

module in any way to adjust one’s strategy.
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A myriad of methods, (Lowe et al., 2017; Foerster et al.,
2018a; Jaques et al., 2019), are based on the learning centraliza-
tion assumption of Centralized Training and Decentralized FEx-
ecution (CTDE), however, these works also experiment with re-
laxing this assumption and using teammate modeling instead.
While the overall learning performance often drops because of
the teammate-model inaccuracies, it remains a promising ap-
proach for more decentralized and scalable concurrent learning.
This has motivated researchers to move away from naive be-
havioral cloning-based approaches in order to devise more elab-
orate and scalable ways of modeling others. Raileanu et al.
(2018) propose an approach where a learner predicts other
agents’ behaviors by using its own policy. In settings where
agents are similar to one another, this allows leveraging team-
mate modeling for free. Rabinowitz et al. (2018) propose to
learn sophisticated models of others from a meta-learning ap-
proach. The same network is used to model a variety of agents
and extract both general behavior patterns and agent-specific
features, the latter being formed at test time from the current

Figure 2.18: Model agent-
embeddings excerpt from Ra-
binowitz et al. (2018): 2D
behavior embeddings of the
model, each dot represents a
monitored agent and is col-
ored by the latter’s ground
truth preferred object. The
model has learned to identify
and represent agents based on

trajectory of the agent being modeled. This results in an elabo- their preferences.

rate agent-modeling module that discovers abstractions in the
space of behaviors and is able to infer agents’ belief states,
goals, and goal-directed behaviors (see Figure 2.17 and Figure 2.18).

Modelling the world

Agents do not only model other agents, they can also learn models of the environment,
sometimes referred to as world models, and leverage them for planning, learning abstractions,
or generating synthetic experiences (Ha and Schmidhuber, 2018). While these ideas have
been around for quite some time in the single agent setting (Craik, 1967; Dennett, 1975;
Sutton, 1981, 1991), they have yet to be extensively investigated for concurrent multi-agent
learning.

To improve sample efficiency in terms of interactions with the environment, several works
(Chockalingam et al., 2018; Willemsen et al., 2021) have extended world-models approaches
and single-agent model-based optimization (Janner et al., 2019) to the multi-agent setting by
leveraging the Centralized Training and Decentralized Execution (CTDE) framework. Zhang
et al. (2021) relax the centralization requirements by also building models of the opponents
and using them to generate the synthetic training data in a more decentralized fashion.

In the cooperative setting, Egorov and Shpilman (2022) adds a communication module
through which agents exchange their current internal states and derive a global team em-
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bedding that can be used to coordinate their behaviors. Similarly, Pretorius et al. (2021)
proposes agents that learn to coordinate by communicating encodings of their model rollouts
and predicted outcomes. By exchanging these individually forecasted trajectories, agents can
better asses teammates’ beliefs and intentions and jointly plan a strategy. Since this com-
munication process also occurs during training — and is optimized end-to-end during agents’
concurrent learning — one can also see it as a mechanism to coordinate the agents’ learning.

Sessa et al. (2022) present a sample efficient algorithm that balances exploration and ex-
ploitation to collect data and iteratively build a world model throughout the agents’ learning.
At each iteration, the current world model is used to optimistically construct a simulated
game that approximates the agents’ task and a subroutine derives the corresponding equi-
librium policies. Authors present theoretical bounds on the dynamic regret of the agents
— that is the payoff they miss by using a sub-optimal policy while learning — and on the
convergence rate towards the approximate equilibria of the true underlying Markov Game.
This approach is reminiscent of the early work of Chalkiadakis and Boutilier (2003) which
investigates the generalized exploration-exploitation tradeoff that arises in MARL. A com-
promise has to be found between learning the equilibrium and exploring the strategy space
to discover more desirable team equilibria. The authors propose to learn bayesian models
for both the environment and the other agents. Planning is done by assessing the value of
the actions under the current models — for example by its potential to influence other agents
— but also for the value of information it provides. This latter relates to the ability of an
action to provide information that might change future decisions, for instance by gaining
knowledge about other agents’ strategies or the world’s dynamics.

2.3.4 Shared Incentives in Multi-Agent Learning

This subsection considers two types of incentives that agents can share to help them coordi-
nate: objectives — that define what the agents should learn — and conventions — that specify
how they should learn.

Shared objectives

Here we focus on the importance of rewards to define objectives and review the specific case
of the emergence of communication.

The importance of shared rewards. The role of shared goals and rewards to promote coop-
eration and coordination has already been mentioned with respect to credit assignment in
Subsection 2.1.2. Indeed, in the absence of shared rewards, individually motivated agents
might end up locked in competitive strategies regardless of cooperation being the better op-
tion. Early on, Mataric (1994a) have advocated for small vicarious reinforcements where an
agent directly gets portions of the rewards received by agents around it. This local sharing
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of the rewards allows for spreading individual rewards to the whole team and can regroup it
towards a common objective, eventually fostering cooperation.

This is a common idea in the literature and many variations of it have been investigated.
Peysakhovich and Lerer (2017) show that globally sharing individual rewards in the Stag
Hunt coordination problem leads agents to converge to the more risky but higher payoff Nash
equilibrium. However, completely sharing rewards might impede learning in more complex
environments by interfering with credit assignments. Indeed, an agent cannot differentiate
anymore if it is responsible for the reward it receives or if it comes from the other agent’s
deed. This can lead to “lazy agent” learning pathologies. A prevalent alternative is therefore
to use a scheduled learning curriculum to adapt the reward from selfish and individual local
rewards at the beginning of training to cooperative shared global rewards toward the end
of it. OpenAl et al. (2019) leverage such progressive credit assignment schedule with their
team spirit reward to ease credit assignment in the early learning phases of the complex
Dota 2 video game. Similarly, Lerer and Peysakhovich (2017) highlight the challenges of
cooperating — which they define as maximizing the joint payoff — in social dilemmas where
individuals are tempted to increase their individual outcomes regardless of whether or not
this would hurt the global payoff. The authors propose a variation on self-play based on a
two-phase reward curriculum where agents start with selfish individual rewards to learn the
game mechanics and finish with shared rewards to promote cooperation. Sharing rewards is
a basic, yet efficient way of aligning agents’ objectives and having them coordinate.

Works have come up with more sophisticated ways of aligning agents’ goals. Ahilan
and Dayan (2019) for instance considers a hierarchical learning decomposition in which a
manager agent sets the goals and rewards of other agents to organize and coordinate their
learning. A more horizontal and distributed version of this approach is proposed by Yang
et al. (2020) where agents influence each other by actively rewarding each other so as to
coordinate toward a common goal.

The emergence of communication. The importance of aligning the agents’ objectives has
been extensively discussed by the research community focusing on the emergence of commu-
nication. Rightly, effective and efficient communication is both practical to measure and a
good indicator of agents’ cooperation and coordination.

In Lazaridou et al. (2016)’s experiments, agents share the same rewards in order to
coordinate and emerge a communication protocol that allows them to solve a referential
game. Cao et al. (2018) presents an environment where agents that have different preferences
over items must negotiate and agree on which agent gets which items. Agents interact by
sending proposals about which items it would take provided that the other agent accepts
the offer. In addition to the proposals, agents can use cheap talk, that is sending arbitrary
messages that do not impact the game transitions or rewards directly. Results show that,
while selfish agents can negotiate and fairly split the items, they do this suboptimally and
do not leverage cheap talk. On the other hand, prosocial agents that share a joint reward
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Figure 2.19: Negotiation game of Cao et al. (2018). Agents have different preferences over items
must split the item pool between them. They interact by sending proposals of the items they would
like to have and they can also communicate arbitrary messages for free. (a) Selfish agents do not
learn to communicate and split items suboptimally (the total outcome could be higher). (b) Agents
that share rewards learn to communicate their hidden preferences and are able to split items so as
to maximize the total outcome.

learn to use the messages to communicate their preferences and split the items optimally (see
Figure 2.19). These results highlight the importance of aligned goals — and thus cooperation—
for the emergence of communication with cheap talk. It presents experimental support for
the theoretical results of Crawford and Sobel (1982); Nowak and Krakauer (1999).

A more in-depth discussion on the relationship between cooperation and communication
is proposed by Noukhovitch et al. (2021). First, they experimentally retrieve Crawford and
Sobel (1982)’s result that communication is proportional to cooperation. Authors thus show
that communication with cheap talk can emerge in partially competitive scenarios provided
that both agents individually benefit from it. If one agent can dominate without communi-
cation it will shut down and prevent its development, despite the other agent actively trying
to make contact. Additionally, in order to unify the cooperative and competitive settings
with regard to communication, the authors introduce the notion of information transfer and
differentiate between communication and manipulation (Barrett and Skyrms, 2017; Dawkins
and Krebs, 1978; Hinde, 1981). In this new taxonomy, information transfer is defined as the
amount of knowledge that passes — or spills — from the sender to the receiver, regardless of
which agent benefits from it. Communication considers that both agents benefit from the
information transfer while manipulation profits the sender but not the receiver.
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This section highlights the importance of shared objectives — mainly through global
rewards — in aligning agents learning and fostering cooperation and coordination, be it in
the physical or communicative space. In addition to aligning agents by sharing rewards, some
works emphasize the importance of supplementary shared objectives. Liu et al. (2021) for
instance presents a MARL method in which it is crucial that agents share goals to promote
an efficient and coordinated cooperative exploration.

Shared conventions

In addition to sharing objectives, agents may share conventions. Such social norms structure
interactions, coordinate learning, and enable teams to converge to common strategies.

Conventions to structure learning. Jennings (1996) argues that all coordination mecha-
nisms can ultimately be reduced to commitments and their associated (social) conventions.
Commitments are covenants to follow specific courses of action, they ensure a degree of pre-
dictability and allow agents to plan while taking others into consideration. Conventions are
best seen as procedures on how to monitor and adapt commitments to changing contexts.
They provide flexibility and define the mechanisms to (1) asses if current commitments are
valid given the actual circumstances, and (2) reassess and adapt commitments.

Jennings (1996)’s focus is more on procedural agents and how to coordinate their planning
and execution, yet conventions are also present in learning agents. In that case, conventions
tend to structure learning by introducing biases and prior knowledge in order to nudge and
unify the learned behavior. As we have pointed out in Subsection 2.1.5, “rational agents”
tend to converge to suboptimal Nash equilibria rather than to globally team-optimal solu-
tions (Lichbach, 1996). On the other hand, many works (Lauer, 2000; Claus and Boutilier,
1998; Kapetanakis and Kudenko, 2002a; Panait et al., 2003) have pointed out that agents
that are optimistic about their partners’ performance and cooperativeness tend to converge
to better team strategies than strictly rational ones. They argue that in the context of co-
operation, agents’ rationality should come after the requirements for optimal team strategy.
For instance, it feels absurd to enforce rationality in the Prisoner’s dilemma as it prescribes
sub-optimal solutions that human participants would never choose. Instead, artificial agents
should follow human intuition and cooperate!. Optimistic learning can be implemented in
many ways, Lauer (2000) proposes to update an agent’s Q-values by estimating the best pos-
sible cooperative behavior of other agents to its action. Similarly, in the offline RL setting,
Jiang and Lu (2021) artificially makes high-value states more likely by assuming that the
whole team will strive to reach these promising situations. The authors argue that high-value
states are underrepresented in offline non-expert data because the mistake of one agent can

'The question of what makes humans irrational and prevents them from exploiting benevolent teammates
is an interesting one and might relate to altruism, social pressure, mores, reputation, fear of retribution, etc.
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deprive the whole team from a good outcome: in suboptimal teams, miscoordination is more
likely than coordination.

Conventions to coordinate on common strategies. Conventions might also enable teams
to coordinate by specifying how to deal with symmetry. Many situations where multiple
optimal equilibria exist require agents to arbitrarily break ties in order to converge to the
same strategy (Shoham et al., 2004). Boutilier (1996b) presents such a simple coordination
game where each agent has to choose between left and right options but only gets rewarded if
the other agent picks the same option. The authors propose guidelines to design conventions
and social laws based on a lexicographic ordering of actions. Prioritizing some action over
another effectively break ties during strategy selection. However, such conventions are not
learned and lexicographic orderings are most often ungrounded and arbitrary. This prevents
generalization to unacquainted agents. Hu et al. (2020) proposes Other-play, a variation on
self-play that is invariant to the inherent symmetries of the environment. The method forces
agents to learn coordinating conventions that are grounded and can generalize at test-time to
teams that have not been trained together. Lerer and Peysakhovich (2019) investigates how
to identify and adapt to existing conventions. They leverage imitation learning on offline
data to align the learned MARL behaviors to the social conventions in use. That way agents
can blend in and coordinate well when they enter an existing group.

Emergence of linguistic conventions Finally, the field of experimental semiotics, which stud-
ies the novel forms of communication that agents develop when they cannot use preexisting
ones, abounds with works investigating the emergence of social conventions in populations
of agents and across generations (Galantucci and Garrod, 2011). While most of these works
focus on human learning (Galantucci and Steels, 2008; Vollmer et al., 2014), there is an
important effort to bring these ideas and methods to the Al community with a focus on the
emergence of language (Beuls and Steels, 2013; Spranger and Steels, 2015; Steels, 2011; Steels
and Hild, 2012; Steels and Szathméry, 2018) and its acquisition for understanding feedback
and following instruction (Lopes et al., 2011; Cederborg and Oudeyer, 2014; Grizou et al.,
2013, 2014b,a).
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Chapter 3

Background

This chapter is not intended to be a comprehensive or in-depth course on the presented
notions. Instead, it aims at giving the required background to understand the methods and
derivations exposed in this manuscript. The reader is referred to Littman (1994); Oliehoek
and Amato (2015); Sutton and Barto (2018); Levine et al. (2020) for more extensive material.

3.1 Modelling Sequential Decision Processes

This section covers the prevalent formalisms for single and multi-agent sequential decisions
making.

3.1.1 Markov Decision Processes (MDPs)

MDPs provide a mathematical framework to handle decision-making in situations where
outcomes are stochastic and only partially under the decision maker’s control (Puterman,
2014). We consider the discrete-time stochastic control process modeled by the T-horizon +-
discounted MDP (S, A, P, Py,~,r,T). For simplicity, we assume that S and A, respectively
the set of all possible states and actions, are finite. Successor states follow the state-action
transition distribution P(s'|s,a) 2 Pr{S’' = §|S=s,A=a} €[0,1]Vs €S,s€S,ac A
with S, S, A respectively the next state, current state, and current action random variables.
The initial state random variable Sy is drawn from the initial state distribution Py(s) =
Pr{Sy = s} € [0,1] Vs € S. Transitions are rewarded with r(s,a,s’) € R with r being
bounded and we abuse notation by defining r(s,a) = Ep[r(s,a, s’)] where the expectation
over next states is taken with respect to the transition distribution. The discount factor and
the episode horizon are v € [0,1] and 7' € N U {00}, where T' < oo for v = 1. Finally, we
consider stationary stochastic policies 7 : S x .4 —]0, 1] such that 7(a|s) = Pr{A4 = a|S = s}.

As shown in Figure 3.1 (a), a policy = and a MDP form a Probabilistic Graphical Model
(PGM) with the state and action at time ¢ as sequential random variables (respectively
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(a) The Probabilistic Graphical Model view
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(b) The Markov chain view

Figure 3.1: PGM illustration. A policy and a MDP form a Markov chain.

Sy and A;). Importantly, note that the next state only depends on the current state and
action. Since the current action also only depends on the current state we can define the
policy-induced state transition function:

P.(8'|s) £ Pr{S’ = §|S = s}
= ZPI{A =a|S =s}Pr{S' =4S =s,A=a}

= Z P(s|s, a)
ZEW[ (s']s, a)],

where E.[-] denotes the expected value of a random variable (or of a function of random
variables) under the distribution 7 (i.e., A ~ 7). With this new transition function, we see
that the PGM is actually a Markov chain that respects the Markov property: the next state
only depends on the current one (see Figure 3.1(b)).

Executing the policy on the MDP produces realizations that we call trajectories, or
rollouts:

T = (So = 307A0 = ag, 51 = 817141 =ap,..S57-1 = ST—laAt—l =ar_1,57 = ST)

= (5= 5>{0:T}7 (A= a){O:T—l}- (3.2)
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The probability of trajectory 7 under policy 7 is

p(T) = Pr{(S = s)ory, (A= a)or-1}

-1
=Pr{Sy = so} [[ Pr{4 = a|S = s;}Pr{S" = 5,11|5 = s, A = a;} (3.3)
t=0 .
-1
= Py(s0) H m(ay|se) P(Se41]5e, ar).
=0

For 0 <t < T we can define the following marginals:

di-(s) £ Pr{S; = s}

= Z p7r(7—)

{7|St=s} (3.4)
= > Y Pr{(S=a)prpng (A =y)or-a}, S = s},

ZLo:TI\{t} Y{0:T -1}

dix(s,a) = Pr{S; = 5, A; = a}
= Pr{A; = a|S; = s}Pr{S; = s}
= m(als)d; (s),

(3.5)

where {7|S; = s} is the set of all trajectories such that the state at time ¢ is equal to s
and ZS{O:T}\“} Za{o:T—l} indicates that we sum over all the possible values of all the vari-
ables sq, S1, ..., St_1, St+1, .-, ST and ag, @y, ..., ap_1. This implies 7' summations over S, and T’
summations over 4. With these marginals, we define the normalized discounted state (and
state-action) occupancy measures as

d=(s) Z(% tZ_(:)v (3.6)
dx(s,a) (7 ;‘) V' dix(s,a) = dx(s)m(als), (3.7)

where the partition function Z(v,T) is equal to L' +*. Intuitively, the state (or state-

action) occupancy measure can be interpreted as the discounted visitation distribution of
the states (or state-action pairs) that the agent encounters when navigating the MDP with
policy .

The sum of the discounted rewards along a trajectory is called the return and is expressed
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as:

G(r) = z o (50, a). (3.)

For a given MDP, the expected return of a policy can be expressed in terms of the occupancy
measures as follows:

Jalr(s,a)] £ By, [G(7)] = Z(7,T) Eq, [r(s, a)]. (3.9)

Or expressed in terms of the state action marginals:

Jer(s,a)] = ZZT(S, a) z_:o Vi (s,a) = z_:o vtEdm [r(s,a)]. (3.10)

See derivations on the next page where we use 7" = T — 1 and remove the final terminal
state of trajectories to ease notations.
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Jalr(s,

Ep, [G(7)]
Z (1)G(T

expand with Egs. (3.2) and (3.8)

W) &

T/
= Z Z Pr{(S=xA= ?/){O:T/}} Z’Yt (e, Yr)

Tio:1'} Y{0:T'} t=0

factorize independent terms out of sums
T/
= Z’yt Z Z PI‘{ = Z, A= y){O:T’}}T(xb yt)
t=0 T(o.7'y Y{0:T!}

split sums to make t index explicit

= Z 22 X 2 Pr{s

Tt Yt TLo:T I\ {1} Y{0:T )\ {¢}
for clarity, replace z¢,y: with s, a

y){O:T/}\{t}7 Sy = x4, Ay = yt}r(ifn yt)

Z Pr{(S =z, A= y){o:T/}\{t}, Sy =5, = a} (s, a)
——

:ZV X0

S @ o p\{t} Y{0:T'}\{¢t}

factorize independent terms out of sums

=2 'Y r(sa) 3 3 Pri(S=uxA

Lo I\{t} Y{0:T/}\{¢t}

= Y) o, St = S, Ay = a}

law of total probability

T/
=> "> r(s,a)Pr{S; = s, A, = a}
t=0 S a

Eq. (3. 5)

—Zv ZZ (s,a)di(s,a) = ZytEdM a)]
shift order of independent sums
T
= Z Z 70<57 Cl) Z fytdt,ﬂ'<37 (l)
s a t=0
Eq. (3.7)
T) Z Z r(s,a)d

=Z(v,T)Eq,[r(s,a)l.
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3.1.2 Partially Observable Markov Decision Processes (POMDPs)

POMDPs are a generalization of MDPs in which the agent does not have access to the true
state of the environment s but instead observes it through a stochastic observation function
O such that o ~ O(o|s). The agent must therefore rely on action-observation histories,
defined as h; = {o0g,ag,...,0;} € H, to take decisions and a; = w(alh;). Learning in a
POMDP is much more challenging than learning in a MDP and most theoretical results do
not hold. In practice, if the true state s; can be inferred from the history h;, then learning
is possible.

3.1.3 Decentralized Markov Decision Processs (Dec-MDPs) and
Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs)

Dec-POMDPs are the multi-agent extension of POMDPs (Bernstein et al., 2002; Nair et al.,
2003). A Dec-POMDP of N agents is defined by the tuple (S, P, Py, v, T, {O%, A", 7} Y ,)
where S, P, Py, v, and T are respectively the set of all possible states, the state-action
transition distribution, the initial state distribution, the discount factor and the horizon.
While these are global properties of the environment, O, A%, and r* are individually defined
for each agent 7. They are respectively the observation function, the set of all possible actions,
and the reward function. At each time-step t, the global state of the environment is given by
sy € S and every agent’s individual action vector is denoted by ai € A’. At each time-step,
each agent takes an action using its policy 7 : H*x A" —]0, 1[ and its own action-observation
history hi = {0, al, ...,0i} € H' such that of ~ O'(0'|s;) € O and ai ~ 7i(a’|hi) € A'. The
initial state sg is sampled from the initial state distribution P : S — [O 1] and the next state
s¢y1 is sampled from the probability distribution over the possible next states given by the
transition function P: & x & x A x ... x AN — [0, 1]. Finally, at each time-step, each agent
receives an individual scalar reward r! from its reward function r* : SxSx Al x ... x AN — R.
We will use bold to refer to joint variables, e.g. a;, = [a}, a?,...,a] and 7 £ [z, ..., 7V].
Since rewards and transitions depend on all of the agents, each agent’s return also depends

on the other agents:
T-1

Je[r'(s,a)] = Ep,r[z 7Vt (sy, ay)] (3.11)

t=0
Where p, indicates the trajectory distribution when actions are sampled according to 7, i.e.,
each agent uses its policy 7.
Agents act independently and the joint policy decomposes into individual independent
policies:

a; ~ (als;) £ H?T “Ih). (3.12)
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Centralized Training and Decentralized Execution (CTDE)

In the CTDE framework (Lowe et al., 2017; Foerster et al., 2018b), individual observations,
policies, and value functions are available to all the agents at training time. For simplicity,
most works also assume access to the global state s; and the observation functions O°.
When this is unfeasible, the global state can be defined as the concatenation of the agents’
observations, i.e., s; = {o},...,0l}. Dec-MDPs are special cases of Dec-POMDPs in which
such concatenation of observations fully observes the environment, i.e., the true global state
can be inferred from it.

Fully cooperative case
In fully cooperative tasks, all the agents receive the same reward and

T’z =Ty = T(St, a,t> - R\V/Z,t (313)

The agents’ shared objective is therefore to maximize the expected team return J, =
E, [G(7)] where G(7) = >, v'r, with discount factor v, 7 = {s¢, ag, 70, ...87} is a trajec-
tory with absorbing state sr, sy41 ~ P(8'|sy, a;), and a; ~ .

3.2 Single- and Multi-Agent Reinforcement Learning

This section covers the Reinforcement Learning based approaches to single and multi-agent
learning.

3.2.1 Single-Agent Reinforcement Learning (RL)

The field of RL aims at finding the optimal policy 7*, i.e., the one that maximizes the
expected return (Sutton and Barto, 2018):

7 = argmax J.[r(s, a)]. (3.14)

It can be shown that, for any MDP, there exists an optimal deterministic policy 7* such
that:

m(s) = arg max Q*(s,a), (3.15)
Q*(s,a) =r(s,a) +72P(5'|3,a)\/*(s'), (3.16)

)

V*(s) = max Q*(s,a), (3.17)
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where V*(s) and Q*(s,a) are respectively the optimal state value and the optimal state-
action value. These can be computed using Value Iteration (Bellman, 1966), a Dynamic
Programming algorithm that iterates the following update rule to convergence:

Q" (s a) + r(s,a) + 7> P(s]s,a)V*(s') with Q%s,a) =r(s,a). (3.18)

Sl

Maximum Entropy (MaxEnt) Reinforcement Learning

In the entropy-regularized Reinforcement Learning framework (Haarnoja et al., 2018), the
optimal soft-policy maximizes its entropy at each visited state (in addition to the standard
RL objective):

™ £ argmax J;[r(s,a) + aH(n(-]s))], H(w(:|s)) £ E.][—log(n(als))].
As shown in Ziebart (2010) and Haarnoja et al. (2017), the corresponding optimal soft-policy
is
7T:of‘c(a|s) = eXp (a_l A;koft(sa CL)) with Asoft(s (l) £ Qsoft( ) Vvs:;ft(s)’ (319)
Via(s) = alog Y exp (07 Qi (5, @) , Qun(5:@) = 7(5,@) + 7 Earpina Vi ()]
(3.20)

Policy Invariance

Ng et al. (1999) noted an interesting property of optimal policies: they are invariant under
specific reward transformations. Specifically, if a policy 7* is optimal in a given MDP with
reward r(s,a,s’), then it is also optimal with reward 7(s,a,s’) provided that it exists a
real-valued function ® : & — R such that

P(s,a,8) =r(s,a,8) +~vP(s') — D(s). (3.21)

In which case 7 is said to be a potential-based reward shaping of r.

On-policy vs. Off-policy methods

An important distinction between RL methods revolves around the nature of interactions
they can use to learn. On-policy methods require the interactions to be collected with
the current policy, they include SARSA (Rummery and Niranjan, 1994; Sutton and Barto,
2018) and PPO (Schulman et al., 2017), and are often robust in the sense that they display
stable learning curves and require less hyperparameter tuning. On the other hand, off-
policy methods can learn from transitions collected with any policy and they often leverage
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past interactions by using replay buffers in which they store collected interactions. Off-policy
methods do not require collecting new interactions every time the policy is updated, therefore
they usually use fewer environment interactions, a property referred to as sample efficiency.
Q-learning (Watkins and Dayan, 1992; Sutton and Barto, 2018) and DDPG (Silver et al.,
2014; Lillicrap et al., 2015) are example of off-policy methods.

3.2.2 Multi-Agent Reinforcement Learning (M ARL)

In MARL each agent aims at maximizing its own expected return:

T-1
7 = argmax Jp[r'(s, a)] = argmaxE, [Y 7'r'(s;, a)] (3.22)
=0

t 't

This optimization is more challenging than its single agent counterpart Eq. (3.14) because
the return of an agent depends on quantities that it does not control or know of — such as
the global state and the actions of the other agents. Moreover, since other agents change
how they select their actions as they learn, the environment as observed by an agent is non-
stationary, i.e., the transitions distributions and reward functions change over the course of
training.

Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

With MADDPG, the multi-agent extension of DDPG (Lillicrap et al., 2015), Lowe et al.
(2017) proposed a centralized training procedure that makes the environment stationary
during learning while allowing for decentralized policies. The term centralized is used when
an agent has access to the observations and actions of all the agents, whereas if agents
only access their own observations and actions we call it decentralized. In MADDPG, each
agent i possesses its own deterministic policy 7 for action selection and critic Q! for state-
action value estimation, which are respectively parametrized by §* and ¢'. All parametric
models are trained from collected transitions ¢, = (o;,a;, T, 0¢41) uniformly sampled from
a replay buffer D (which makes it off-policy). Each centralized critic is trained to estimate
the expected return for a particular agent ¢ by minimizing the Q-learning loss (Watkins and
Dayan, 1992):

=42 o

a§+1:wj(o{+l;§j)Vj :

For a given set of weights w, we define its target counterpart w, updated from w < cw +
(1 — ¢)w where ¢ is a hyperparameter. Each policy is updated to maximize the expected
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return of the corresponding agent i, yielding the Policy Gradient (PG) objective :

Jfaa(@i) = Eo,~p Q"(ot,at) i

aj=n"(0};0"),
al=n7(0];07)Vji

(3.24)

Despite the multi-agent setting, agents are trained in a centralized and stationary environ-
ment since the value functions take into account all the agents’ observation-action pairs when
guiding an agent’s policy. This mechanism can allow one to learn coordinated strategies that
can then be deployed in a decentralized way.

Multi-Agent Proximal Policy Optimization (MAPPO)

MAPPO (Yu et al., 2022) is an extension of Proximal Policy Optimization (PPO) (Schulman
et al., 2017) to the multi-agent setting. PPO is a Policy Gradient method that aims at
maximizing the following objective:

Jpg(e) = Ew[log Wg(at|8t)_/4t]. (325)

Ay is an estimation of the advantage function and E, means that the expectation is taken
with respect to transitions collected with the current 7 (which makes PPO an on-policy
method). The above objective increases the likelihood of actions that yield a high advantage
and reduces the likelihood of actions with a small advantage. Advantages are estimated
using the Generalized Advantage Estimator (GAE):

At = (515 -+ (7>\)5t+1 + ...+ (’7)\)Tﬁt+15T,1, (326)
5,5 =1+ '}/V(SH_l) — V(St). (327)

where )\ is a hyperparameter.
The value V' is learned by minimizing:

T—t—-1

Ly (0) = —E, [;(ve(st)—at)ﬂ, Gi= > Vrise (3.28)

PPO constrains the updates such that updated models remain in regions for which the
collected transitions used to compute the objectives can still be trusted. For transitions
collected with 7y o1q and clipping parameter e:

JEEC(6) = By [min (WAt, clip (W 1—e1+ e) Atﬂ . (3.29)

W@,old(at|5t) 770,old(at|5t
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Similarly, for the value loss:

LyTO(0) = iE [max (VP (s,) = Go)?, (Valsr) — Gi)*) ], (3.30)
V"lip(st) = Vioua(se) + clip (Vo(s:) — Vo ora(se), —€,€) . (3.31)

MAPPO extends these objectives to the multi-agent CTDE setting by using a centralized
value model and decomposing the joint policy according to Eq. 3.12.

Value Decomposition

In the CTDE setting, QMIX (Rashid et al., 2018) proposes to combine the value networks
Vi(Rh!) of individual agents into a centralized value model V' (s;). It relies on weights w'(s;)
and bias b(s;) generated by a learnable network called mixer network:

Vi(s) £ Zwi(st)vi(hi) + b(s¢). (3.32)

3.2.3 Offline RL and Offline MARL

Offline Learning (Fujimoto et al., 2019; Levine et al., 2020) refers to the setting in which
agents only have access to a fixed dataset of trajectories D and cannot collect additional
interactions with the environment and other agents. The challenge is therefore to learn a
policy that will generalize and perform well when evaluated in the environment. In order to
do so, methods constrain the policy so that it stays close to the offline dataset and does not
stray toward regions of the state-action space for which no interactions are available.

Implicit Q-Learning (IQL) and Multi-Agent Implicit Q-Learning (MAIQL)

IQL (Kostrikov et al., 2021) combines a SARSA approach with weighted imitation learning
(see Subsection 3.3) to ensure that the policy stays close to the dataset distribution. In order
to improve on the dataset policy, IQL uses a greedy and optimistic value learning scheme
that estimates the e expectile of @) instead of the mean @) (this latter is a special case where
e = 0.5). This estimation assumes that actions that yielded better outcomes will be more
likely to be selected at evaluation. This makes sense given that, at evaluation, the agent
will select actions so as to maximize its return. To ensure that the expectile estimation
incorporates only the action selection distribution and is not influenced by the randomness
of the environment’s transitions, IQL uses a state-only value function V' that marginalizes
over future transitions:

Ly () = Esavp [£5(Q5(s, a) = V(s))]

= Eoaup [le = 1(Q4(s,a) — Vis(s) < 0) ] (Q4(s,a) — Vy(s))*] | (3.33)
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La(0) = By s [(r(5,0) + 9V (') = Quls,0))*] . (3.34)

Policy extraction is done with Advantage Weighted Regression (AWR) to favor actions with
good outcomes while ensuring that they exist in the dataset:

Lx(¢) = E(sa)p [— exp (B (Qy(s, a) — Vi (s))) log my(als)] - (3.35)

We make IQL multi-agent (i.e. MAIQL) by leveraging the CTDE formalism and using QMIX
value-decomposition (Rashid et al., 2018) for both @ and V:

Zwv $)Vyi (R) + by (),

sz Q0 (1) + bos). (8.36)

And the target network:

~

Z (5)Q4i(s") + bo(s). (3.37)

The joint policy is decomposed as Eq. 3.12. Injecting this into Eq. 3.35 one gets:

Lo(¢) = E¢ayop |~ Hexp( (5)Qai (W', a') = wiy(5)Vye (1)) ) - log g (a? | 1)

B(s) = exp(bo(s) — by (s)). s,
3.38

3.3 Imitation and Inverse Reinforcement Learning

Imitation Learning (IL) and Inverse Reinforcement Learning (IRL) both consider the case
where the MDP’s reward is unknown. Instead, the task at hand is specified by providing
demonstrations, i.e., rollouts from an expert policy, 7., that solves that task (Pomerleau,
1991). In some cases, the policy itself is provided (Ross and Bagnell, 2010). Imitation
Learning focuses on retrieving an optimal policy (Pomerleau, 1991; Ho and Ermon, 2016)
and while it does not aim at finding the MDP’s reward function, it sometimes relies on
inferred reward functions to guide the imitation policy (Abbeel and Ng, 2004; Ho and Ermon,
2016), that case is often referred to as Apprenticeship Learning. On the other hand, Inverse
Reinforcement Learning focuses on retrieving the MDP’s reward function, yet in order to do
so, it usually has to train a policy (Ng et al., 2000; Fu et al., 2017).
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3.3.1 Maximum Causal Entropy Inverse Reinforcement Learning

Maximum causal entropy IRL (Ziebart et al., 2008) proposes to fit a reward function r from
a set R and retrieve the corresponding optimal policy by solving the optimization problem:

min (mgx Jor(s,a) + H(x([s))] = Jx_[r(s, a)]) . (3.39)
In brief, the problem reduces to finding a reward function r for which the expert policy is
optimal. In order to do so, the optimization procedure searches high entropy policies that
are optimal with respect to r and minimizes the difference between their returns and the
return of the expert policy, eventually reaching a policy 7 that approaches 7.

Most of the proposed solutions (Abbeel and Ng (2004); Ziebart (2010) and Ho and Ermon
(2016)) transpose IRL to the problem of distribution matching; Abbeel and Ng (2004) and
Ziebart et al. (2008) used linear function approximation and proposed to match the feature
expectation; Ho and Ermon (2016) proposed to cast Eq. (3.39) with a convex reward function
regularizer into the problem of minimizing the Jensen-Shannon divergence between the state-
action occupancy measures:

H%rmDJS<d7rvd7rE) — J[H(m(-|9))]. (3.40)

Connections between Generative Adversarial Network (GAN) and IRL.

For the data distribution p, and the generator distribution p, defined on the domain X, the
GAN objective (Goodfellow et al., 2014) is

min max L(D,p.), L(D,p,)= Eznp, [log D(z)] + By, [log(1 — D(x))]. (3.41)

el

In Goodfellow et al. (2014), the maximizer of the inner problem in Eq. (3.41) is shown
to be

Dy

D* £ argmax L(D, == 3.42
Pa gD ( pG) pE + pG ( )

and the optimizer for Eq. (3.41) is
arg min max L(D, p,) = argmin L(D;G,pa) =P, (3.43)

P D P

Later, Finn et al. (2016a) and Ho and Ermon (2016) concurrently proposed connections
between GANs and IRL. The Generative Adversarial Imitation Learning (GAIL) formulation
in Ho and Ermon (2016) is based on matching state-action occupancy measures, while Finn
et al. (2016a) considered matching trajectory distributions. Finn et al. (2016a) also proposed
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the following discriminator structure:

A Po(T)
Do) = ) + o) 40

where py(7) o exp G(7) with reward approximator Gy is motivated by maximum causal en-
tropy IRL. Note that Eq. (3.44) matches the form of the optimal discriminator in Eq. (3.42).
Although Finn et al. (2016a) do not empirically support the effectiveness of their method, the
Adversarial Inverse Reinforcement Learning (AIRL) approach of Fu et al. (2017) successfully
used a similar discriminator for state-action occupancy measure matching.

3.3.2 Offline methods for IL and IRL

Most IL and IRL methods that rely on distribution matching between learned policy statis-
tics and demonstrated policy statistics require to frequently evaluate such statistics during
training (Ng et al., 2000; Abbeel and Ng, 2004; Ziebart et al., 2008; Ho and Ermon, 2016;
Fu et al., 2017). In order to do so, they need to either generate trajectories by having the
policy interact with the environment or have access to the environment model: they are on-
line in the sense that learning and environment interactions are entangled. Offline methods
on the other hand only rely on the provided demonstration and do not require additional
interactions.

Behavioral Cloning (BC)

BC (Pomerleau, 1991) is the simplest yet very efficient approach to IL that trains a parametrized
policy 7(als;6) to maximize the log-likelihood of the data-set of demonstrated trajectories
D = {7;}Y,. Making the common supervised learning assumption that elements of the data-
set (in this case trajectories) are independent, the negative log-likelihood of the data under
policy parameters 6 is given by:

L(D;0) = —log [ [ px(7";6)

1=0
N . T_l . . B . B

= —log [] Po(sq) TT m(ai|si; 0)P(si st ap) (3.45)
1=0 t=0

N T-1 N T-1

= —Zlog Po(sy) = Y. logm(ay|si; 0) — > log P(s,,|si, ap).

=0 1=0 t=0 i=0 t=0
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And the optimal parameters * are given by

N T-1
0* = argmin L(D;0) = —argmin Y _ > logw(aj|s}; ), (3.46)
0 0

=0 t=0

which can be optimized through gradient descent and corresponds to either a classification
or regression task depending on whether actions are discrete or continuous.

3.4 Planning

We refer here to the process by which one leverages knowledge about the world in his
head to figure out the best course of action. More specifically, planning is one approach to
Reinforcement Learning where the agent exploits MDP knowledge — such as transition or
reward functions — so as to derive the sequence of actions that would maximize its expected
return. In that regard, the Value Iteration algorithm described in Section 3.2.1 is a planning
algorithm.

3.4.1 Monte Carlo Tree Search (MCTS)

MCTS addresses planning by searching over possible future trajectories to estimate the
expected return of a sequence of actions (Browne et al., 2012). In order to do so, it uses
MDP knowledge such as the action space A and the transition distribution P to sample
trajectories, as well as the reward function r to compute returns.

MCTS carries out the trajectory search by constructing a search tree composed of nodes
(see Figure 3.2). Following the nomenclature of Lecarpentier (2020), these nodes are either
decision nodes vy — labeled with a state value — or chance nodes v — labeled with a state-
action pair value. The children nodes of a decision node are chances-node labeled with the
same state value as their parent decision node, indeed they correspond to choosing an action
from that state. Reciprocally, the children of a chance node are decision nodes labeled with
the state value sampled from the transition distribution with the state-action pair of the
parent chance-node, indeed they correspond to sampling a successor state from that state-
action pair. Decision nodes without children are called leaf nodes. The root node of the tree
is a decision node labeled with the current state of the agent. In terms of notation, ! denotes
the i*" realization of the random variable X,. It is possible that different realizations have
the same value, i.e., ¥t = 2, yet they only correspond to the same node if they correspond
to the same trajectory, i.e., have the same parent node. When environment transitions are
deterministic, chance nodes only have one child and the search tree can be built without the
use of chance nodes by labeling the edges between decision nodes with the corresponding
action.
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One MCTS iteration corresponds to four steps: node selection and node expansion (both
rely on the tree policy), a simulation phase (using a default policy) and the back-propagation
step. As indicated in Figure 3.3, the tree policy moves through the tree by selecting the most
promising action at each decision node it visits. If it selects an action that has never been
tried before from that decision node (or if a new state is sampled from an existing chance
node), it expands the tree with a new chance node (respectively decision node). Once the
new leaf node is created, its value is estimated using the default policy and then this value
is back-propagated through the visited nodes to update their own value estimate.

There exists several tree policies but the most common is Upper Confidence bound applied
to Trees (UCT) (Kocsis and Szepesvari, 2006) that relies on Upper Confidence Bound (UCB)
(Auer et al., 2002):

a® = arg max (Q(s, a) + QCPJ IOgaN(S’b)) ’

N(s,a) (3.47)

Zf\;(g’a)_l Gi(s,a)

Qs,a) = N(s,a)

Where N(s,a) counts the number of times that the chance node v? has been visited, G;(s, a)
are all the returns v¢ has collected to this point and C), is a constant that trades-off exploita-
tion and exploration during the node selection and is usually set to v/2.

Usually, the default policy is either a problem dependent heuristic or a Monte Carlo
rollout performed from the leaf node by selecting actions at random for H + 1 times. The
corresponding Monte-Carlo Return is then:

H
o' = ZVZTHZH; (3.48)

=0

where t indicates the time index of the root node and [ is the depth of the leaf node inside
the tree.

Finally, during the back-propagation step, all the chance nodes that were visited during
this iteration collect a new return value. For a visited chance node at depth k£ and a expanded

leaf node at depth [:
I-1—k

G = 3 Y +9 R (3.49)
7=0
The budget B defines the number of MCTS iteration that are carried out before acting
in the environment with action argmax, Q(s,a). Kocsis and Szepesvéri (2006) showed that
using MCTS with UCT and Monte Carlo returns converges to the optimal policy as the
budget tends to infinity.



3. Background 67

Decision
node

Leaf
node

Chance
node

Figure 3.2: Search tree composed of decision nodes and chance nodes. The root node corresponds
to the current state, in this case the initial state.

Tree Policy Default Policy

/ Selection Expansiorm ( Simulation Backpropagation

\ /

Figure 3.3: The four steps of one MCTS iteration. Illustrated in the specific case of deterministic
transitions (edges are chance nodes).
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Chapter 4

Improving coordination with shared
incentives in Deep MARL

This chapter investigates coordination in Multi-Agent Reinforcement Learning by featuring
work that we have published (Roy et al., 2020). We start by noting that prevalent MARL
methods often fail to learn efficient cooperative group strategies. This is worrying and un-
expected given that the MARL framework provides all the agents with rewards as well as
the possibility to fine-tune to each other from interactions. One would expect these condi-
tions to warrant coordination, yet, even when provided with perfect knowledge about their
teammates during training, MARL agents tend to “ignore” one another. To remediate this,
we propose to foster fruitful group strategies by relying on coordination-promoting shared
incentives. First, we suggest a definition for coordination and motivate it by showcasing
the efficiency of coordinated group strategies. Then, we define coordination-promoting so-
cial norms and propose to enforce these by relying on auxiliary tasks to shape the agents’
interactions during learning. The first method derives directly from our definition of coor-
dination and enforces that coordinated agents are both predictable and able to predict their
teammates’ behaviors. The second one leverages a centralized entity during training so that
agents collectively recognize relevant situations and switch to their corresponding fine-tuned
sub-policy, i.e., synchronously alternating between different group strategies depending on
the situation at hand. It appears that leveraging such social norms to promote coordination
greatly improves the performance of cooperative multi-agent learning.

In MARL, discovering successful collective behaviors is challenging as it requires explor-
ing a joint action space that grows exponentially with the number of agents. While the
tractability of independent agent-wise exploration is appealing, this approach fails on tasks
that require elaborate group strategies. A popular framework for MARL is the use of the
Centralized Training and Decentralized Execution (CTDE) procedure (Lowe et al., 2017;
Foerster et al., 2018b; Igbal and Sha, 2019; Foerster et al., 2019; Rashid et al., 2018). Typ-
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ically, one leverages centralized critics to approximate the value function of the aggregated
observations-action pairs and train actors restricted to the observation of a single agent.
Such critics, if exposed to coordinated joint actions leading to high returns, can steer the
agents’ policies toward these highly rewarding behaviors. However, these approaches depend
on the agents luckily stumbling on these collective actions in order to grasp their benefit.
Thus, it might fail in scenarios where such behaviors are unlikely to occur by chance. We
hypothesize that in such scenarios, coordination-promoting inductive biases on the policy
search could help discover successful behaviors more efficiently and supersede task-specific
reward shaping and curriculum learning. To motivate this proposition we present a sim-
ple Markov Game in which agents with coordinated actions learn remarkably faster. For
more realistic tasks in which coordinated strategies cannot be easily engineered and must
be learned, we propose to transpose this insight by relying on two coordination proxies to
bias the policy search. The first avenue, TeamReg, assumes that an agent must be able
to predict the behavior of its teammates in order to coordinate with them. The second,
CoachReg, supposes that coordinated agents collectively recognize different situations and
synchronously switch to different sub-policies to react to them.

This work makes three distinct contributions. First, we show that coordination can cru-
cially accelerate CMAL. Second, we propose two novel approaches that aim at promoting
such coordination by augmenting CTDE algorithms with additional shared multi-agent ob-
jectives (or social norms) that act as policy regularizers when optimized jointly with the
main return-maximization objective. Third, we design two new sparse-reward cooperative
tasks in the multi-agent particle environment (Mordatch and Abbeel, 2018). We use them
along with two standard multi-agent tasks to present a detailed evaluation of our approaches’
benefits when they extend the reference CTDE algorithm MADDPG (Lowe et al., 2017). We
validate our methods’ key components by performing ablation studies and detailed analyses
of their effects on agents’ behaviors. Finally, we validate that these learning advantages
carry on to the Google Research Football environment (Kurach et al., 2019), which involves
discrete actions and greater complexity.

Based on our experiments and analysis, the TeamReg objective seems to provide a dense
learning signal that can help guide the policy towards coordination in the absence of external
reward, eventually leading to the discovery of higher-performing team strategies in a number
of cooperative tasks. However, we also find that TeamReg does not lead to improvements in
every single case and can even be harmful in environments with a competitive component.
CoachReg enforces synchronous sub-policy selection which enables the agents to concurrently
learn to react to different agreed-upon situations. This consistently improves the group’s
performance.
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4.1 Motivation: coordinated agents learn better

Can coordination help the discovery of effective policies in cooperative tasks? Intuitively,
coordination can be defined as an agent’s behavior being informed by the behavior of an-
other agent, i.e. structure in the agents’ interactions. Namely, a team where agents behave
independently of one another would not be coordinated.

0, 1) 0,1

Figure 4.1: Simple Markov Game consisting of a chain of length L leading to a terminal state (in
grey). Agents can be seen as the two wheels of a vehicle so their actions need to be in agreement
for the vehicle to move.

Consider the simple Markov Game consisting of a chain of length L leading to a ter-
mination state as depicted in Figure 4.1. At each time step, both agents receive r, = —1.
The joint action of these two agents in this environment is given by a € A = A! x A2,
where A! = A% = {0,1}. Agent i tries to go right when selecting a’ = 0 and left when
selecting a’ = 1. However, to transition to a different state, both agents need to perform the
same action at the same time (two lefts or two rights). Now consider a slight variant of this
environment with a different joint action structure a’ € A’. The former action structure is
augmented with a hard-coded coordination module that maps the joint primitive a’ to a”

like so: y . .
r__[a =a a
a = (az’ —a'a®+ (1—a))(1— (12)) ) <a2> €A

While the second agent still learns a state-action value function Q?(s,a?) with a? € A?, the
coordination module builds a* from (a',a?) so that a? effectively determines whether the
second agent acts in agreement or in disagreement with the first agent. In other words, if
a® =1, then a¥ = a' (agreement) and if a*> = 0, then a® = 1 — a' (disagreement).
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While it is true that this additional structure does not modify the action space nor the
independence of the action selection, it reduces the stochasticity of the transition dynamics
as seen by agent 2. In the first setup, the outcome of an agent’s action is conditioned on the
action of the other agent. In the second setup, if agent 2 decides to disagree, the transition
becomes deterministic as the outcome is independent of agent 1. This suggests that by
reducing the entropy of the transition distribution, this mapping reduces the variance of the
Q-updates and thus makes online tabular Q-learning agents learn much faster (Figure 4.2).
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Figure 4.2: Learning curves for tabular Q-learning. Agents learn much more efficiently when
constrained to the space of coordinated policies (solid lines) than in the original action space
(dashed lines). We trained each agent i with online Q-learning (Watkins and Dayan, 1992) on the
Q'(a’, s) table using Boltzmann exploration (Kaelbling et al., 1996). The Boltzmann temperature
is fixed to 1 and we set the learning rate to 0.05 and the discount factor to 0.99. After each learning
episode, we evaluate the current greedy policy on 10 episodes and report the mean return. Curves
are averaged over 20 seeds and the shaded area represents the standard error.

In this section, we used handcrafted mappings in order to demonstrate the effectiveness
of exploring the space of coordinated policies rather than the unconstrained policy space.
The following sections present two approaches to softly learning the same type of constraints
throughout training for any multi-agent cooperative tasks.
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4.2 Promoting coordination

Here, we investigate techniques to enforce inductive biases that foster coordination. We
propose to rely on shared social norms and implement these using auxiliary tasks to regularize
the agents’ policies. We devise two methods: TeamReg, which is based on inter-agent action
predictability, and CoachReg which relies on synchronized behavior selection.

4.2.1 Team regularization

We propose to exploit the structure present in the joint action space of coordinated policies to
attain a certain degree of predictability of one agent’s behavior with respect to its teammates.
It is based on the hypothesis that the reciprocal also holds i.e., that promoting agents’
predictability could foster such team structure and lead to more coordinated behaviors.
This assumption is cast into the decentralized framework by training agents to predict their
teammates’ actions given only their own observations. For continuous control, the loss is
the Mean Squared Error (MSE) between the predicted and true actions of the teammates,
yielding a teammate-modeling secondary objective. For discrete action spaces, we use the
Kullback-Leibler (KL) divergence (Dkr,) between the predicted and real action distributions.

While estimating teammates’ policies can be used to enrich the learned representations,
we extend this objective to also drive the teammates’ behaviors towards the predictions
by leveraging a differentiable action selection mechanism. This means that gradients are
backpropagated through both the prediction and the real action selection modules. We call
team-spirit the objective pair J;ls and JJg between agents ¢ and j:

J%é-continuous(9i7 9j> = _EOtND [MSE('[’LJ (Og’ ‘9])’/117] (Oi’ 91))} (41)
T dnerese (0, 07) = ~Eoyp [Dict, (77 (-|of; 07)] |77 (|0} 07)) | (4.2)

where i/ (or #%7 in the discrete case) is the policy head of agent i trying to predict the
action of agent j. The total objective for a given agent ¢ becomes:

torat(0) = Tpa(07) + M Y2 Jps(07,07) + Ao 3 Jgig(67,67) (4.3)
; .

J

where A\; and )y are hyperparameters that respectively weigh how well an agent should
predict its teammates’ actions, and how predictable an agent should be for its teammates.
We call TeamReg this dual regularization from team-spirit objectives. Figure 4.3 summarizes
the method.
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4.2.2 Coach regularization

This method aims at teaching agents to recognize different situations and synchronously
select corresponding sub-behaviors to foster coordinated interactions.

(a) TeamReg (b) CoachReg

Figure 4.3: Illustration of the policy regularization methods with two agents. (a) TeamReg: each
agent’s policy is equipped with additional heads that are trained to predict other agents’ actions
and every agent is regularized to produce actions that its teammates correctly predict. The method
is depicted for agent 1 only to avoid cluttering. (b) CoachReg: a central model, the coach, takes all
agents’ observations as input and outputs the current mode (policy mask). Agents are regularized
to predict the same mask from their local observations and optimize the corresponding sub-policy.

Sub-policy selection

Explicit sub-behavior selection is implemented by relying on policy masks to modulate the
agent’s policy. A policy mask v/ is a one-hot vector of size K (a fixed hyperparameter) with
its j® component set to one. In practice, we use these masks to perform dropout (Srivastava
et al., 2014) in a structured manner on hy € RM | the pre-activations of the first hidden layer
hy of the policy network 7. To do so, we construct the vector w/, which is the concatenation
of C' copies of u”, in order to reach the dimensionality M = C * K. The element-wise
product w/ ® hy is performed and only the units of h; at indices m modulo K = j are kept
form =0, ..., M —1. Each agent i generates e}, its own policy mask from its observation o,
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to modulate its policy network. Here, a simple linear layer I’ is used to produce a categorical
probability distribution p'(el|o!; %) from which the one-hot vector is sampled:

i/ i i Q. pi exXp (li(ozl;; Qi)j)
p'(e; = u’|o;; 0") = — -
( t ‘ t ) Zszol eXp (ZZ(O%; gl)k’)

(4.4)

Synchronous and coherent sub-policy selection

Agents can swiftly switch between sub-policies by using policy masking, however, they are
not encouraged to modulate their behavior synchronously and coherently. To promote this,
we introduce the coach entity, parametrized by v, which learns to produce policy masks ef
from the joint observations, i.e. p°(ef|os;10). The coach is used at training time only and
drives the agents toward synchronously selecting the same behavior mask. Specifically, the
coach is trained to output masks that (1) yield high returns when used by the agents, and
(2), are predictable by the agents. Similarly, each agent is regularized so that (1) its private
mask matches the coach’s mask, and (2), it derives efficient behavior when using the coach’s
mask. At evaluation time, the coach is removed and the agents only rely on their own policy

masks. The policy gradient objective when agent ¢ is provided with the coach’s mask is given
by:

J%PG(eia 77Z)) = EOt,atND [Qi(ob at)

ai=u<oi,e§;ei>} (4.5)

eg~p°(-lo;e))
The difference between the mask distribution of agent ¢ and the coach’s one is measured
from the KL divergence:

Tp(0'.0) = ~Eouup [Diw (p°(low )| [p'(-lo}; 0)] (4.6)
The total objective for agent i is:
total(07) = JTpa(0") + AT (0", 9) + Mo Tppe (07, 9) (4.7)

with A\; and Ay the regularization coefficients. Similarly, the coach is trained with the fol-
lowing dual objective, weighted by the A3 coefficient:

1 N

bt () = 5 2 (Topa(8', ) + AaTi(6,)) (4.8)

=1

In order to propagate gradients through the sampled policy mask we reparameterize the
categorical distribution using the Gumbel-softmax (Jang et al., 2017) with a temperature of
1. We call this coordinated sub-policy selection regularization CoachReg and illustrate it in
Figure 4.3.
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4.3 Experimental Setup

This section presents our experimental design. We describe the continuous control tasks
with sparse rewards that we used to test our approach. We also detail the thorough hy-
perparameter search and evaluation process that the followed to ensure fair and informative
comparisons with the baselines.

4.3.1 Training environments

-

{
L

a) b) <) - d)

Figure 4.4: The multi-agent tasks we employ. (a) SPREAD: Agents must spread out and cover
a set of landmarks. (b) BOUNCE: Two agents are linked together by a spring and must position
themselves so that the falling black ball bounces towards a target. (c) COMPROMISE: Two linked
agents must compete or cooperate to reach their own assigned landmark. (d) CHASE: Two agents
chase a (non-learning) prey (turquoise) that moves w.r.t repulsion forces from predators and walls.

We build novel continuous control tasks in OpenAl’s multi-agent particle environment (Mor-
datch and Abbeel, 2018). SPREAD and CHASE were introduced by Lowe et al. (2017). We
use SPREAD as is but with sparse rewards. CHASE is modified with a prey controlled
by repulsion forces so that only the predators are learnable, as we wish to focus on coor-
dination in cooperative tasks. Finally, we introduce COMPROMISE and BOUNCE where
agents are physically tied together. While positive return can be achieved in these tasks by
selfish agents, they all benefit from coordinated strategies and maximal return can only be
achieved by agents working closely together. Figure 4.4 presents a visualization and a brief
description. In all tasks, agents receive as observation their own global position and velocity
as well as the relative position of other entities. Note that works showcasing experiments in
these environments often use discrete action spaces and dense rewards (e.g. the proximity
with the objective) (Igbal and Sha, 2019; Lowe et al., 2017; Jiang and Lu, 2018). In our
experiments, agents learn with continuous action spaces and from sparse rewards which is a
far more challenging setting.
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Tasks description

SPREAD (Figure 4.4a): In this environment, there are 3 agents (small orange circles) and 3
landmarks (bigger gray circles). At every timestep, agents receive a team-reward r, = n — ¢
where n is the number of landmarks occupied by at least one agent and ¢ is the number
of collisions occurring at that timestep. To maximize their return, agents must therefore
spread out and cover all landmarks. Initial agents’ and landmarks’ positions are random.
Termination is triggered when the maximum number of timesteps is reached.

BOUNCE (Figure 4.4b): In this environment, two agents (small orange circles) are
linked together with a spring that pulls them toward each other when stretched above its
relaxation length. At episode’s mid-time a ball (smaller black circle) falls from the top of
the environment. Agents must position correctly so as to have the ball bounce on the spring
towards the target (bigger beige circle), which turns yellow if the ball’s bouncing trajectory
passes through it. They receive a team reward of r; = 0.1 if the ball reflects towards the
side walls, r; = 0.2 if the ball reflects towards the top of the environment, and r, = 10 if the
ball reflects towards the target. At initialization, the target’s and ball’s vertical position is
fixed, and their horizontal positions are random. Agents’ initial positions are also random.
Termination is triggered when the ball is bounced by the agents or when the maximum
number of timesteps is reached.

COMPROMISE (Figure 4.4c): In this environment, two agents (small orange circles)
are linked together with a spring that pulls them toward each other when stretched above its
relaxation length. They both have a distinct assigned landmark (light gray circle for the light
orange agent, dark gray circle for the dark orange agent), and receive a reward of r; = 10
when they reach it. Once a landmark is reached by its corresponding agent, the landmark
is randomly relocated in the environment. The initial positions of agents and landmarks are
random. Termination is triggered when the maximum number of timesteps is reached.

CHASE (Figure 4.4d): In this environment, two predators (orange circles) are chasing a
prey (turquoise circle). The prey moves with respect to a scripted policy consisting of repul-
sion forces from the walls and predators. At each timestep, the learning agents (predators)
receive a team reward of r, = n where n is the number of predators touching the prey. The
prey has a greater max speed and acceleration than the predators. Therefore, to maximize
their return, the two agents must coordinate in order to squeeze the prey into a corner or a
wall and effectively trap it there. Termination is triggered when the maximum number of
time steps is reached.

The presented tasks are challenging and require different levels of coordination.
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4.3.2 Algorithms and Training details
Algorithms

Algorithm 1 TeamReg

Randomly initialize N critic networks * and actor networks '
Initialize the target weights
Initialize one replay buffer D
for episode from 0 to number of episodes do
Initialize random processes N for action exploration
Receive initial joint observation oy
for timestep ¢ from 0 to episode length do
Select action a; = p'(0}) + N} for each agent
Execute joint action a; and observe joint reward r; and new observation o,
Store transition (o, ay, ry, 0441) in D

Sample a random minibatch of M transitions from D
for each agent 7 do
Evaluate L’ and Jh from Equations (3.23) and (3.24)
for each other agent (j # i) do
Evaluate J32 from Equations (4.1, 4.2)
Update actor j with 67 < 67 4+ gV, )\21];—7%'
Update critic with ¢ < ¢ — Vi L
Update actor ¢ with 6° <— 6° + @y Vg (JJ%G +MEN, J}fg)

Update all target weights
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Algorithm 2 CoachReg

Randomly initialize N critic networks ¢, actor networks u and one coach network p°
Initialize N target networks Q¥ and u”
Initialize one replay buffer D
for episode from 0 to number of episodes do
Initialize random processes N for action exploration
Receive initial joint observation og
for timestep t from 0 to episode length do
Select action a; = p'(0}) + N} for each agent
Execute joint action a; and observe joint reward r; and new observation o4
Store transition (0, a;,ry, 0441) in D

Sample a random minibatch of M transitions from D
for each agent ¢ do
Evaluate £ and Jb, from Equations (3.23) and (3.24)
Update critic with ¢" < ¢ — Vi L'
Update actor with 6% < 0% + ayVy: J};G
for each agent ¢ do
Evaluate J% and J%po from Equations (4.6) and (4.5)
Update actor with 6 + 0° + ayVyi (A1 J5 + Ao Jipc)
Update coach with 1 < ¢ + ayVy+ SN (Jhpe + A3 Jh)
Update all target weights

Generalities

In all of our experiments, we use the Adam optimizer (Kingma and Ba, 2014) to perform
parameter updates. All models (actors, critics, and the coach) are parametrized by feedfor-
ward networks containing two hidden layers of 128 units. We use the Rectified Linear Unit
(ReLU) (Nair and Hinton, 2010) activation function and layer normalization (Ba et al., 2016)
on the pre-activations unit to stabilize the learning. We use a buffer size of 10° entries and a
batch size of 1024. We collect 100 transitions by interacting with the environment for each
learning update. For all tasks in our hyperparameter searches, we train the agents for 15, 000
episodes of 100 steps and then re-train the best configuration for each algorithm-environment
pair for twice as long (30,000 episodes) to ensure full convergence for the final evaluation.
The scale of the exploration noise is kept constant for the first half of the training time and
then decreases linearly to 0 until the end of training. We use a discount factor v of 0.95 and
a gradient clipping threshold of 0.5 in all experiments. Finally, for CoachReg, we fixed K to
4, meaning that agents could choose between 4 sub-policies. Since policies’ hidden layers are
of size 128 the corresponding value for C' is 32. All experiments were run on Intel E5-2683
v4 Broadwell (2.1GHz) CPUs in less than 12 hours.
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Hyperparameter search

Here we present the thorough parameter search with which we tuned the baselines and our
methods alike. Using the same budget and evaluation protocol ensures a fair and informative
comparison.

Hyperparameter search ranges. We perform searches over the following hyperparameters:
the learning rate of the actor ay, the learning rate of the critic wy relative to the actor
(ap = wy * ), the target-network soft-update parameter 7 and the initial scale of the
exploration noise 7,4ise for the Ornstein-Uhlenbeck noise generating process (Uhlenbeck and
Ornstein, 1930) as used by Lillicrap et al. (2015). When using TeamReg and CoachReg, we
additionally search over the regularization weights A\;, Ao, and A3. In order to reduce the
search space, the learning rate of the coach is always equal to the actor’s learning rate (i.e.
ag = o), motivated by their similar architectures and learning signals. Table 4.1 shows the
ranges from which values for the hyperparameters are drawn uniformly during the searches.

HYPERPARAMETER RANGE

log(ay) [—8, 3]
log () ~2, 2
log(7) -3, 1]
log()‘1> [_37 O}
S
0g( A3 —]_, 1
Toise [03, 18]

Table 4.1: Ranges for hyperparameter search, the log base is 10

Model selection. During training, a policy is evaluated on a set of 10 different episodes
every 100 learning steps. At the end of the training, the model at the best evaluation
iteration is saved as the best version of the policy for this training and is re-evaluated on 100
different episodes to have a better assessment of its final performance. The performance of
a hyperparameter configuration is defined as the average performance (across seeds) of the
best policies learned using this set of hyperparameter values.

Hyperparameter search results. The performance distributions across hyperparameters con-
figurations for each algorithm on each task are depicted in Figure 4.5 using a box-and-whisker
plot. It can be seen that, while most algorithms can perform reasonably well with the correct
configuration, TeamReg, CoachReg, as well as their ablated versions, boost the performance
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of the third quartile, suggesting an increase in the robustness across hyperparameter com-
pared to the baselines.
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Figure 4.5: Hyperparameter tuning results for all algorithms. There is one distribution per
(algorithm, environment) pair, each one formed of 50 data points (hyperparameter configuration
samples). Each point represents the best model performance averaged over 100 evaluation episodes
and averaged over the 3 training seeds for one sampled hyperparameters configuration. The box
plots divide into quartiles the 49 lower-performing configurations for each distribution while the
score of the best-performing configuration is highlighted above the box plots by a single dot.

Selected hyperparameters. Tables 4.2, 4.3, 4.4, and 4.5 show the best hyperparameters found
by the random searches for each of the environments and each of the algorithms.
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HYPERPARAMETER DDPG MADDPG MADDPG+SHARING MADDPG4+TEAMREG MADDPG+COACHREG

o 53%107°  2.1%107° 9.0 1074 2.5%107° 1.2%107°
We 53 79 0.71 42 82

T 0.05 0.083 0.076 0.098 0.0077
A - - - 0.054 0.13
A2 - - - 0.29 0.24
A3 - - - - 8.4
Nnoise 1.0 0.5 0.7 1.2 1.6

Table 4.2: Best found hyperparameters for the SPREAD environment

HYPERPARAMETER DDPG MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG-+CoOACHREG

ay 8.1%x107% 3.8x107° 1.2% 1074 1.3%107° 6.8%107°
ws 2.4 87 0.47 85 9.4

T 0.089 0.016 0.06 0.055 0.02
M - - - 0.06 0.0066
Ao - - - 0.0026 0.23
A3 - - - - 0.34
Toise 1.2 0.9 1.2 1.0 1.1

Table 4.3: Best found hyperparameters for the BOUNCE environment

HYPERPARAMETER DDPG MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+COACHREG

ag 45%107%  2.0%107* 0.7% 1077 1.3%107° 1.8%1071
We 32 64 0.79 85 90

T 0.031 0.021 0.032 0.055 0.011
A - - - 0.06 0.0069
A2 - - - 0.0026 0.86
A3 - - - - 0.76
nnm',se 06 10 15 10 11

Table 4.4: Best found hyperparameters for the CHASE environment

HyPERPARAMETER DDPG MADDPG MADDPG+SHARING MADDPG4+TEAMREG MADDPG+COACHREG

as 6.1%10° 31107 6.2%10 7 15%10° 34%107
we 17 0.94 0.58 90 29

r 0.065 0.045 0.007 0.02 0.0037
At . . . 0.0013 0.65
Ao . . . 0.56 0.5

A3 . . . . 1.3
Nnoise 11 0.7 1.3 1.6 1.6

Table 4.5: Best found hyperparameters for the COMPROMISE environment
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HYPERPARAMETER MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+CoACHREG

) 1.6 %1076 3.4%107° 3.5% 1076 9.4%107°
wg 3.1 13 0.96 2.9

T 0.004 0.0014 0.0066 0.018
M - - 0.1 0.027
Ao - - 0.02 0.027
A3 - - - 2.4

Table 4.6: Best found hyperparameters for the 3-vs-1-with-keeper Google Football environment

Selected hyperparameters (ablations). Tables 4.7, 4.8, 4.9, and 4.10 show the best hyperpa-
rameters found by the random searches for each of the environments and each of the ablated

algorithms.

HYPERPARAMETER MADDPG+AGENT MODELLING MADDPG-+PoLicy MASK

Qg 1.3%107° 6.8%107°
T 0.055 0.02
A 0.06 0

A2 0 0

)\3 - 0
Mhnoise 1.0 1.1

Table 4.7: Best found hyperparameters for the SPREAD environment

HYPERPARAMETER MADDPG-+AGENT MODELLING MADDPG-+PoLicy MASK

ag 1.3% 1075 25% 1077
We 85 0.52

T 0.055 0.0077
M 0.06 0

A 0 0

A3 - 0
Thoise 1.0 1.3

Table 4.8: Best found hyperparameters for the BOUNCE environment
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HYPERPARAMETER MADDPG+AGENT MODELLING MADDPG-+PoLicy MASK

@ 25%10°° 6.8 %100
W 42 9.4

T 0.098 0.02

Al 0.054 0

A2 0 0

A3 - 0
Mhoise 1.2 1.1

Table 4.9: Best found hyperparameters for the CHASE environment

HYPERPARAMETER MADDPG+AGENT MODELLING MADDPG-+PoLicy MASK

ap 1.2%107% 2.5% 1074
We 0.71 0.52

T 0.0051 0.0077
A1 0.0075 0

Ao 0 0

)\3 - 0
MNnoise 1.8 1.3

Table 4.10: Best found hyperparameters for the COMPROMISE environment

4.4 Results and Analysis

The approaches investigated in this work offer a way to incorporate new inductive biases
in CTDE multi-agent policy search algorithms. We evaluate them by extending MADDPG,
one of the most widely used algorithms in the MARL literature. We compare against vanilla
MADDPG as well as two of its variants in the four cooperative multi-agent tasks described in
Section 4.3.1. The first variant (DDPG) is the single-agent counterpart of MADDPG (decen-
tralized training). The second (MADDPG + sharing) shares the policy and value-function
models across agents. In addition to the two proposed algorithms and the three baselines,
we present results for two ablated versions of our methods. The first ablation (MADDPG
+ agent modeling) is similar to TeamReg but with Ay = 0, which results in only enforcing
agent modeling and not encouraging agent predictability. The second ablation (MADDPG
+ policy mask) uses the same policy architecture as CoachReg, but with A; 23 = 0, which
means that agents still predict and apply a mask to their own policy, but synchronicity is
not encouraged.

To offer a fair comparison between all methods, the hyperparameter search routine is the
same for each algorithm and environment (see Subsection 4.3.2). For each search-experiment
pair (one per algorithm per environment), 50 randomly sampled hyperparameter configura-
tions each using 3 random seeds are used to train the models for 15,000 episodes. For each
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algorithm-environment pair, we then select the best hyperparameter configuration for the
final comparison and retrain them on 10 seeds for twice as long. This thorough evaluation
procedure represents around 3 CPU-year. We give all details about the training setup and
model selection in Subsection 4.3.2 and 4.3.2. The results of the hyperparameter searches
are given in Subsection 4.3.2. Interestingly, Figure 4.5 shows that our proposed coordination
regularizers improve robustness to hyperparameters despite having more hyperparameters
to tune.

4.4.1 Asymptotic Performance

Figure 4.6 reports the average learning curves and Table 4.11 presents the final performance.

SPREAD BOUNCE COMPROMISE

0 15000 30000 0 15000 30000 0 15000 30000 0 15000 30000

Episodes Episodes Episodes Episodes
—— MADDPG + policy mask —<— MADDPG + agent modelling —@— MADDPG + sharing —@— DDPG
—§— MADDPG + CoachReg (ours) —%— MADDPG + TeamReg (ours) MADDPG

Figure 4.6: Learning curves (mean return over agents) for our two proposed algorithms, two
ablations, and three baselines on all four environments. Solid lines are the mean and envelopes are
the Standard Error of the Mean (SEM) across the 10 training seeds.

Tasks

SPREAD | BOUNCE | COMPROMISE | CHASE

Algorithms
DDPG 133 + 12 3.6+14 19.1+£1.2 727 £+ 87
MADDPG 159+ 6 40+1.6 18.14+1.1 834 + 80
+sharing 47+ 8 0.0+ 0.0 196 £ 1.5 980 + 64
+agent modeling 183 £ 10 3.8+1.5 12.94+0.9 946 £+ 69
+policy mask 221 +11 | 3.7+1.1 184+1.3 722 + 82
+TeamReg (ours) | 216 =12 | 5.8 + 1.3 8.8+0.9 917 + 90
+CoachReg (ours) | 210 £12 | 7.4 1.2 31.1+1.1 949 + 54

Table 4.11: Final performance reported as the mean return over agents averaged across 10 episodes
and 10 seeds (£ SEM).
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CoachReg is the best-performing algorithm considering performance across all tasks.
TeamReg also significantly improves performance on two tasks (SPREAD and BOUNCE)
but shows unstable behavior on COMPROMISE, the only task with an adversarial com-
ponent. This result reveals one limitation of this approach and is discussed in detail in
Subsection 4.4.2. Note that all algorithms perform similarly well on CHASE, with a slight
advantage to the one using parameter sharing; yet this superiority is restricted to this task
where the optimal strategy is to move symmetrically and squeeze the prey into a corner.
Contrary to popular belief, we find that MADDPG almost never significantly outperforms
DDPG in these sparse reward environments, supporting the hypothesis that while CTDE
algorithms can in principle identify and reinforce highly rewarding coordinated behavior,
they are likely to fail to do so if not incentivized to coordinate.

Regarding the ablated versions of our methods, the use of unsynchronized policy masks
might result in swift and unpredictable behavioral changes and make it difficult for agents
to perform together and coordinate. Experimentally, “MADDPG + policy mask” performs
similarly or worse than MADDPG on all but one environment, and never outperforms the full
CoachReg approach. However, policy masks alone seem sufficient to succeed on SPREAD,
which is about selecting a landmark from a set. Finally “MADDPG + agent modeling”
does not drastically improve on MADDPG apart from one environment and is always out-
performed by the full TeamReg (except on COMPROMISE, see Subsection 4.4.2) which
supports the importance of enforcing predictability alongside agent modeling.

4.4.2 Effects of enforcing predictable behavior
Improving agent modeling

Here we validate that enforcing predictabil-
ity makes the agent-modeling task more MADDPG
successful. To this end, we compare, on — MADDPG + agent modelling

. L. —w— MADDPG + TeamReg (ours)
the SPREAD environment, the team-spirit
losses between TeamReg and its ablated ver-
sions. Figure 4.7 shows that initially, due M
to the weight initialization, the predicted

0 10000 20000 30000

Episodes

Team Spirit Loss
o o o
w (o)) o

o
<)

and actual actions both have relatively small
norms yielding small values of team-spirit
loss. As training goes on (~1000 episodes), Figure 4.7: Effect of enabling and disabling the
the norms of the action vector increase, and coefficients A\; and A on the ability of agents to
the regularization loss becomes more impor- predict their teammates’ behaviors. Solid lines
tant. As expected, MADDPG leads to the and envelope are average and SEM on 10 seeds
worst team-spirit loss as it is not trained to ©n SPREAD.

predict the actions of other agents. When using only the agent-modeling objective (A; > 0),
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the agents significantly decrease the team-spirit loss, but it never reaches values as low as
when using the full TeamReg objective (A\; > 0 and Ay > 0). Note that the team-spirit
loss increases when performance starts to improve i.e. when agents start to master the task
(~8000 episodes). Indeed, once the return maximization signal becomes stronger, the rela-
tive importance of the auxiliary objective is reduced. Being predictable with respect to one
another may push agents to explore in a more structured and informed manner in the ab-
sence of a reward signal, as similarly pursued by intrinsic motivation approaches (Chentanez
et al., 2005).

The case of competitive settings

The results presented in Figure 4.6
show that MADDPG + TeamReg DDPG MADDPG MADDPG + sharing
is outperformed by all other al-

# MADDPG + TeamReg (ours)

gorithms when considering average 2 ’ ’
return across agents. In this sec-

tion, we seek to further investigate 20

this failure mode. Importantly, . .
COMPROMISE is the only task _— :
with a competitive component (i.e. 43 .
the only one in which agents do ~ 10 .

® e

not share their rewards). The two

[ T
®
=
=
-
=
®

-
agents being strapped together, a 514 * T
. | ! . w8
good policy has both agents reach | $ i A T
their landmark successively (e.g. ol I LEPLE R TR CACHINT
by having both agents navigate to- 1073 1072 107t 10°
wards the closest landmark). How- Az

ever, if one agent never reaches for Figure 4.8: Average performance difference (Ac.r) be-

its landmark, the optimal strategy tween the two agents in COMPROMISE for each of the 150
for the other one becomes to drag g of the hyperparameter searches (left). All occurrences
it around and always go for its of abnormally-high performance differences are associated
own, leading to a strong imbalance with high values of Ay (right).

in the return cumulated by both

agents. While such a scenario does not occur for the other algorithms, we found Team-
Reg to often lead to cases of domination such as depicted in Figure 4.9.

Figure 4.8 depicts the performance difference between the two agents for every one of the
150 runs of the hyperparameter search for TeamReg and the baselines and shows that (1),
TeamReg is the only algorithm that leads to large imbalances in performance between the
two agents, and (2), that these cases where one agent becomes dominant are all associated
with high values of Ay, which drives the agents to behave in a predictable fashion to one
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Figure 4.9: Learning curves for TeamReg and the three baselines on COMPROMISE. We see
that while both agents remain equally performant as they improve at the task for the baseline
algorithms, TeamReg tends to make one agent much stronger than the other one. This domination
is optimal as long as the other agent remains docile, as the dominant agent can gather much more
reward than if it had to compromise. However, when the dominated agent finally picks up the
task, the dominant agent, which has learned a policy that does not compromise, sees its return
dramatically go down and the mean over agents overall then remains lower than for the baselines.

another.

Looking back at Figure 4.9, while these domination dynamics tend to occur at the be-
ginning of training, the dominated agent eventually gets exposed more and more to sparse
reward gathered by being dragged (by chance) onto its own landmark, picks up the goal of
the task and starts pulling in its own direction, which causes the average return over agents
to drop as we see happening midway during training in Figure 4.6. These results suggest
that using a predictability-based team regularization in a competitive task can be harmful;
quite understandably, you might not want to optimize an objective that aims at making your
behavior predictable to (and influenceable by) your opponent.
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4.4.3 Analysis of synchronous and coherent sub-policy selection

In this section we confirm that CoachReg yields the desired behavior: agents synchronously
and coherently alternating between varied sub-policies.

Figure 4.10 shows the average entropy of the mask distributions for each environment
compared to the entropy of Categorical Uniform Distribution (CUD) of size k (k-CUD). On
all the environments, agents use several masks and tend to alternate between masks with
more variety (close to uniformly switching between 3 masks) on SPREAD (where there are 3
agents and 3 goals) than on the other environments (comprised of 2 agents). Moreover, the
Hamming proximity between the agents’ mask sequences, 1 — D), where D), is the Hamming
distance (i.e. the ratio of timesteps for which the two sequences are different) shows that
agents are synchronously selecting the same policy mask at test time (without a coach).
Finally, we observe that some settings result in the agents coming up with interpretable
strategies, like the one depicted in Figure 4.13 in Subsection 4.4.3 where the agents alternate
between two sub-policies depending on the position of the target (see also animations at
https://sites.google.com/view/marl-coordination/).
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Figure 4.10: (Left) Average entropy of the policy mask distributions for each task. Hi,qz 1 is the
entropy of a k-CUD. (Right) Average Hamming Proximity between the policy mask sequence of
agent pairs. randy stands for agents independently sampling their masks from k-CUD. Error bars
are the SEM on 10 seeds.

Mask diversity and synchronicity (ablation)

As in Subsection 4.4.3 we report the mean entropy of the mask distribution and the mean
Hamming proximity for the ablated “MADDPG + policy mask” and compare it to the full
CoachReg. With “MADDPG + policy mask” agents are not incentivized to use the same
masks.
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Figure 4.11: (Top) Entropy of the policy mask
distributions for each task and method, averaged
over agents and training seeds. H,,q, 1 is the en-

+ policy mask” agents are more synchro-
nized than agents independently sampling
their masks from k-CUD, suggesting that,
even in the absence of the coach, agents tend
to synchronize their mask selection.

tropy of a k-CUD. (Bottom) Hamming Proximity
between the policy mask sequence of each agent
averaged across agent pairs and seeds. randyg
stands for agents independently sampling their
masks from k-CUD. Error bars are SEM across
seeds.

Mask densities

We depict in Figure 4.12 the mask distribution of each agent for each (seed, environment)
experiment when collected on 100 different episodes. Firstly, in most of the experiments,
agents use at least 2 different masks. Secondly, for a given experiment, agents’ distributions
are very similar, suggesting that they are using the same masks in the same situations and
that they are therefore synchronized. Finally, agents collapse more to using only one mask on
CHASE, where they also display more dissimilarity between one another. This may explain
why CHASE is the only task where CoachReg does not improve performance. Indeed, on
CHASE, agents do not seem synchronized nor leveraging multiple sub-policies which are the
priors to coordination behind CoachReg. In brief, we observe that CoachReg is less effective
in enforcing those priors to coordination in CHASE, an environment where it does not boost
nor harm performance.
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Episodes rollouts with synchronous sub-policy selection

We display here and on https://sites.google.com/view/marl-coordination/ some in-
teresting sub-policy selection strategies evolved by CoachReg agents. In Figure 4.13, the
agents identified two different scenarios depending on the target-ball location and use the
corresponding policy mask for the whole episode. Whereas in Figure 4.13, the agents syn-
chronously switch between policy masks during an episode. In both cases, the whole group
selects the same mask as the one that would have been suggested by the coach.

t=0,C= t=5,C= t=10,C= t=15C= t=50,C= t=59,C= t=60,C= t=65C=

(a) BOUNCE: The ball is on the left side of the target,

agents both select the purple policy mask

t=0,C= t=5,C= t=10,C= t=15C= t=50,C= t=58,C= t=59,C= t=65C=

(b) BOUNCE: The ball is on the right side of the target,
agents both select the green policy mask

Figure 4.13: Visualization of two different BOUNCE evaluation episodes. Note that here, the
agents’ colors represent their chosen policy mask. Agents have learned to synchronously identify
two distinct situations and act accordingly. The coach’s masks (not used at evaluation time) are
displayed with the timestep at the bottom of each frame.
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Figure 4.14: Visualization of sequences on two different environments. An agent’s color represents
its current policy mask. The coach’s masks (not used at evaluation time) are displayed with the
timestep at the bottom of each frame. Agents synchronously switch between the available policy

masks.
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4.4.4 Scalability with the number of agents
Complexity

In this section, we discuss the increases in model complexity that our methods entail. In
practice, this complexity is negligible compared to the overall complexity of the CTDE frame-
work. To that respect, note that (1) the critics are not affected by the regularizations, so our
approaches only increase complexity for the forward and backward propagation of the actor,
which consists of roughly half of an agent’s computational load at training time. Moreover,
(2) efficient design choices significantly impact real-world scalability and performance: we
implement TeamReg by adding only additional heads to the pre-existing actor model (ef-
fectively sharing most parameters for the teammates’ action predictions with the agent’s
action selection model). CoachReg consists only of an additional linear layer per agent and
a unique Coach entity for the whole team (which scales better than a critic since it only
takes observations as inputs). As such, only a small number of additional parameters need
to be learned relative to the underlying base CTDE algorithm. For a TeamReg agent, the
number of parameters of the actor increases linearly with the number of agents (additional
heads) whereas the critic model grows quadratically (since the observation sizes themselves
usually depend on the number of agents). In the limit of increasing the number of agents,
the proportion of added parameters by TeamReg compared to the increase in parameters of
the centralized critic vanishes to zero. On the SPREAD task, for example, training 3 agents
with TeamReg increases the number of parameters by about 1.25% (with a similar compu-
tational complexity increase). With 100 agents, this increase is only 0.48%. For CoachReg,
the increase in an agent’s parameter is independent of the number of agents. Finally, any
additional heads in TeamReg or the Coach in CoachReg are only used during training and
can be safely removed at execution time, reducing the system’s computational complexity
to that of the base algorithm.

Robustness

To assess how the proposed methods scale to a greater number of agents, we increase the
number of agents in the SPREAD task from three to six agents. The results presented in
Figure 4.15 show that the performance benefits provided by our methods hold when the
number of agents is increased. Unsurprisingly, we also note how quickly learning becomes
more challenging when the number of agents rises. Indeed, with each new agent, the coordi-
nation problem becomes more and more difficult, and that might explain why our methods
that promote coordination maintain a higher degree of performance. Nonetheless, in the
sparse reward setting, the complexity of the task soon becomes too difficult and none of the
algorithms is able to solve it with six agents.

While these results show that our methods do not contribute to a quicker downfall when
the number of agents is increased, they are not however aimed at tackling the problem of
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massively multi-agent RL. Other approaches that use attention heads (Igbal and Sha, 2019)
or restrict one agent perceptual field to its n-closest teammates are better suited to these
particular challenges and our proposed regularisation schemes could readily be adapted to

these methods as well.

SPREAD - 4 AGENTS
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Return

5000 10000 15000 20000 25000 30000

SPREAD - 6 AGENTS

0 5000 10000 15000 20000 25000 30000 0
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60
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Figure 4.15: Learning curves (mean return over agents) for all algorithms on the SPREAD
environment for varying number of agents. Solid lines are the mean and envelopes are the SEM

across the 10 training seeds.
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4.4.5 Experiments on discrete action spaces

We evaluate our techniques on the more challeng-

ing task of 3vs2 Google Research football envi-

ronment (Kurach et al.; 2019). In this environ- MADDPG 0.004 =+ 0.002
ment, each agent controls an offensive player and + sharing 0.005 + 0.003
tries to score against a defensive player and a + TeamReg (ours) | 0.006 + 0.003
goalkeeper controlled by the engine’s rule-based + CoachReg (ours) | 0.088 =+ 0.017
bots. Here agents have discrete action spaces of
size 21, with actions like moving direction, drib- Table 4.12: Average Returns for 3v2 foot-
ble, sprint, short pass, high pass, etc. We use ball

as observations 37-dimensional vectors contain- i ]
ing players’ and ball’s coordinates, directions, [N : A
etc.

The algorithms presented in Table 4.12 were
trained using 25 randomly sampled hyperpa-
rameter configurations. The best configuration
was retrained using 10 seeds for 80,000 episodes
of 100 steps. Table 2 shows the mean re-
turn (+ standard error across seeds) on the last
10,000 episodes. All algorithms but MADDPG
+ CoachReg fail to reliably learn policies that Figure 4.16: Snapshot of the google re-
achieve positive returns (i.e. scoring goals). search football 3vsI-with-keeper.

4.5 Discussion

TeamReg falls in the line of work that explores how to shape agents’ behaviors with respect
to other agents through auxiliary tasks. Strouse et al. (2018) use the mutual information
between the agent’s policy and a goal-independent policy to shape the agent’s behavior
towards hiding or spelling out its current goal. However, this approach is only applicable to
tasks with an explicit goal representation and is not specifically intended for coordination.
Jaques et al. (2019) approximate the direct causal effect between agents’ actions and use it
as an intrinsic reward to encourage social empowerment. This approximation relies on each
agent learning a model of other agents’ policies to predict its effect on them. In general,
this type of behavior prediction is referred to as agent modeling (or opponent modeling) and
has been used in previous work to enrich representations (Hernandez-Leal et al., 2019; Hong
et al., 2017), to stabilize the learning dynamics (He et al., 2016) or to classify the opponent’s
play style (Schadd et al., 2007). More details are given in Chapter 2.

With CoachReg, agents learn to unitedly recognize different modes in the environment
and adapt by jointly switching their policies. This echoes with the hierarchical RL literature
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and in particular with the single agent options framework (Bacon et al., 2017) where the
agent switches between different sub-policies — the options — depending on the current state.
To encourage cooperation in the multi-agent setting, Ahilan and Dayan (2019) proposed that
an agent, the “manager”; is extended with the possibility of setting other agents’ rewards
in order to guide collaboration. CoachReg stems from a similar idea: reaching a consensus
is easier with a central entity that can asymmetrically influence the group. Yet, Ahilan
and Dayan (2019) guides the group in terms of “ends” (influences through the rewards)
whereas CoachReg constrains it in terms of “means” (the group must synchronously switch
between different strategies). Hence, the interest of CoachReg does not just lie in training
sub-policies (which are obtained here through a simple and novel masking procedure) but
rather in co-evolving synchronized sub-policies across multiple agents. Mahajan et al. (2019)
also looks at sub-policies co-evolution to tackle the problem of joint exploration, however,
their selection mechanism occurs only on the first timestep and requires duplicating random
seeds across agents at test time. On the other hand, with CoachReg the sub-policy selection
is explicitly decided by the agents themselves at each timestep without requiring a common
sampling procedure since the mode recognition has been learned and grounded on the state
throughout training.

Barton et al. (2018) propose Convergent Cross Mapping (CCM) to measure the degree of
effective coordination between two agents. Although this represents an interesting avenue for
behavior analysis, it fails to provide a tool for effectively enforcing coordination as CCM must
be computed over long time series making it an impractical learning signal for single-step
temporal difference methods.

To our knowledge, our work is the first to extend agent modeling to derive an inductive
bias toward team-predictable policies or to introduce a collective, agent-induced, modulation
of the policies without an explicit communication channel. Importantly, these coordination
proxies are enforced throughout training only, which allows for maintaining decentralized
execution at test time.
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Chapter 5

Coordination in the Offline Setting

Training multiple agents to coordinate is an important problem with applications in robotics,
game theory, economics, and social sciences. However, most existing MARL methods are
online and thus impractical for real-world applications in which collecting new interactions
is costly or dangerous. While these algorithms should leverage offline data when available,
doing so gives rise to the offline coordination problem. Specifically, we identify and formalize
the Strategy Agreement (SA) and the Strategy Fine-Tuning (SFT) challenges, two coordi-
nation issues at which current offline MARL algorithms fail. To address this setback, we
propose a simple model-based approach that generates synthetic interaction data and enables
agents to converge on a strategy while fine-tuning their policies accordingly. Our resulting
method, Model-based Offline Multi-Agent Proximal Policy Optimization (MOMA-PPO),
outperforms the prevalent learning methods in challenging offline multi-agent MuJoCo tasks
even under severe partial observability and with learned world models. This chapter features
work from Barde et al. (2023).

5.1 The offline coordination problem

Multi-agent problems are ubiquitous in real-world scenarios, including traffic control, dis-
tributed energy management, multi-robot coordination, auctions and marketplaces, and so-
cial networks (Dresner and Stone, 2004; Palanisamy, 2020; Steeb et al., 1981; Boyan and
Littman, 1993; Varga et al., 1994; Huang et al., 1995; Brauer and Weif3, 1998; Fischer et al.,
1993; Cederman, 1997; Grand et al., 1997; Crawford and Sobel, 1982; Panait and Luke,
2005). This makes the development of efficient multi-agent algorithms a crucial research
area in artificial intelligence and machine learning (Vinitsky et al., 2022; Shi et al., 2021;
Zhang et al., 2019; Liu and Wu, 2021; Li et al., 2021) with substantial implications in vari-
ous fields including robotics, game theory, economics, and social sciences. However, existing
methods are mostly online and require interactions with the environment throughout learn-
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Figure 5.1: Illustration of the offline coordination problem. (a) Policy space for a task with
two optima. (b) In online learning, agents continuously co-evolve and adapt to one another, even-
tually converging to a globally optimal equilibrium. (c) In offline learning, agents cannot interact
to estimate how their current policy might fare or to probe other agents’ current behavior. They
have to estimate the optimal strategies and the corresponding policies only from the interactions
in the offline datasets. Choosing between optimum x' and optimum % is referred to as Strategy
Agreement while Strategy Fine-Tuning relates to deriving the corresponding optimal policies.

ing which often makes them costly or even dangerous for real-world applications (Levine
et al., 2020). In contrast, offline Reinforcement Learning obviates the need for interactions
with the environment as it allows learning from extensive existing datasets that do not have
to be collected by experts. It is therefore well suited to tasks for which one cannot afford
to materialize the situation in practice, building a simulator is unfeasible, and there exist
datasets of realizations of such situations. Consequently, we hypothesize that offline multi-
agent approaches will be key for tackling real-world multi-agent problems. Let us imagine
for instance trying to understand how autonomous actors (i.e., governments, international
organizations, industries, etc.) must maneuver to reduce the severity of a worldwide pan-
demic while preventing economic collapse. It goes without saying that starting pandemics
is not a viable way to gain real-world practice and building a simulator is a colossal task
that would suggest emulating our society and its economy. Yet, the impact of past decisions
(such as implementing lockdown policies, travel restrictions, and vaccination campaigns) on
the unfolding of the pandemics and the economy is well-documented. These records could
be used to derive new strategies in the future.

In general, actors such as individuals, organizations, robots, software processes, cars,
etc., are self-governed and ultimately act autonomously. However, during the offline learning
phase, it is reasonable to assume that learners can share pieces of information, which makes
the Centralized Training and Decentralized Execution formulation a natural approach for
the offline training regime. Unfortunately, as shown in this work, simply combining CTDE
MARL and offline RL methods does not ensure that agents learn policies which perform well
together from a dataset of multi-agent interactions. Indeed, multi-agent problems require
agents to coordinate, that is to act coherently as a group such that individual behaviors
combine into an efficient team policy.
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In this work, we propose that multi-agent coordination can be decomposed into two
distinct challenges. First, since most multi-agent tasks allow multiple optimal team strategies
(Boutilier, 1996b) — some of which may only vary on how they break symmetries present
in the task (Hu et al., 2020) — agents must select, as a group, one strategy over another so
that they individually converge toward coherent behaviors. We refer to this coordination
challenge as Strateqy Agreement. Additionally, for a chosen team strategy, agents have to
precisely calibrate and adjust their behaviors to one another if they are to rise toward the
corresponding optimal group behavior. We call this Strategy Fine-Tuning. In online learning,
agents continuously interact together in the environment, therefore, changes due to local
optimization directly impact other agents and teammates are able to adapt: coordination
occurs through interactive trial and error. Conversely, when learning from a fixed dataset of
interactions, agents cannot probe how other agents are adapting their behaviors, which global
strategy they may be choosing, or how the learned individual policies might combine and
perform together in the environment. Thus, it is difficult for offline learners to coordinate.
Figure 5.1 illustrates this in the policy space: (a) shows a task for which there exist two
optimal team strategies. (b) in online learning agents continuously interact and reach a
global optimum by co-adapting and improving on each other’s changes. (c) in the offline
setting however, agents must first independently decide towards which of the two optima
they aim to converge (i.e., Strategy Agreement between 7! or 7i2, i = 1,2), let us assume
they pick x1. Then, they must derive their corresponding optimal policy (i.e., Strategy Fine-
Tuning toward 7}!, i = 1,2) without additional interactions that inform them how their
current policy behaves in the environment or blend with the other agent’s policy (they only
have access to interactions with dataset policies 7, i = 1,2).

Current methods (Yang et al., 2021; Jiang and Lu, 2021; Pan et al., 2022) deal with of-
fline MARL by simply extending single-agent offline RL to the multi-agent setting. To do so,
they either consider that agents are independent learners, or leverage the CTDE paradigm.
In such settings, it is possible in theory for the agents to learn (provided that the datasets
have enough coverage) the different optimal policies, yet, since agents are never actually
evaluated together during training, they fail to agree on which strategy to pick and how
to fine-tune their behavior to one another. We illustrate such offline coordination failure
in an offline version of the well-established Iterated Coordination Game (Boutilier, 1996b).
Thus, we motivate the need for generating additional synthetic data in order for agents
to assess how they would interact and eventually allow them to coordinate. We propose
MOMA-PPO, a simple model-based approach to generate such synthetic interactions and
show that it allows for offline coordination. We extend our solution to more complex tasks
with partial observability in Multi-Agent MuJoCo (MAMuJoCo) environments (Peng et al.,
2021) and show that it learns effective strategies that outperform the offline MARL base-
lines. Interestingly, MOMA-PPO also outperforms the fully centralized model-free method
IQL (Kostrikov et al., 2021) even though centralization completely bypasses the strategy
agreement problem. This suggests that model-free methods, even when fully centralized, are
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unable to deal with strategy fine-tuning. On the other hand, our model-based approach fixes
both multi-agent strategy agreement and strategy fine-tuning problems. This goes to show
that the benefits of model-based approaches over model-free ones (Yu et al., 2020) hold in
the offline multi-agent setting. Finally, we observe in our experiments that the single-agent
approach of fine-tuning offline methods (i.e. IQL) with online interactions (Kostrikov et al.,
2021) fails for multi-agent formulation (i.e. MAIQL). Conversely, MOMA-PPO’s success
puts forward the benefits of model-based approaches that leverage online policy learning
succeeds.

5.2 A model-based solution to the offline coordination
problem

In this work, we propose MOMA-PPO, a Dyna-like (Sutton, 1990) model-based approach to
multi-agent CTDE offline learning that relies on PPO (Schulman et al., 2017). The method
can be decomposed into two steps: first learning a world model from the dataset, and then
using the world model to train the agents’ policies.

5.2.1 Learning a centralized world model ensemble

MOMA-PPO leverages the CTDE assumptions and therefore learns centralized models to
predict the next state, reward, and termination condition from the current state and actions.
When learning in an approximate world model, a risk is that RL agents learn to exploit the
world model’s reconstruction inaccuracies to reap more rewards in simulation, eventually
producing incoherent behaviors that perform poorly in the real world (Ha and Schmidhuber,
2018). One way to avoid this is to penalize the agent for going into regions of the state-
action space where the world model is uncertain about its predictions (Yu et al., 2020).
Learning an ensemble of models enables estimating the world model’s epistemic uncertainty
due to the limited amount of learning data in the offline dataset. Each model comprises two
diagonal Gaussians N (ur, %) and N (u,,0?) that respectively model the next state s’ and
the reward r. Each model also predicts whether or not the next state is terminal using a
Bernoulli distribution Bern(py). pr, fir, o1, or, and p; are parametrized by neural networks
conditioned on the current global state s and the joint action a. The parameters are trained
using Gaussian negative log-likelihood — for N(ur, 0%) and N (u,,02) — and binary cross-
entropy — for Bern(pg) — on the offline dataset D. In practice, we train N,, = 7 models
and keep the best N = 5 based on their average validation accuracy across the next states
and rewards. We estimate the epistemic uncertainty of the reward using the variance of the
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predicted rewards across the ensemble:

Z%:l (fm - f)2 - Z%:l fm
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€ =

We also estimate the epistemic uncertainty of the general prediction by concatenating
the next state and the reward and computing the Frobenius norm of the ensemble covariance
matrix:

Y=t (Bigm — ) (Zjm — Ti)

€g = ||cov(zs, x5)||p  with  cov(x, x;) = v ’

where x; and x; are components of the vector resulting from the concatenation of the pre-
dicted next state vector §' and the predicted reward scalar 7.
At this point, we define a world model based on the ensemble such that:

§t+17 fﬁ ﬁ? 6T,t7 Eg,t ~ M('|St7 CLt),

where f, is a mask equal to 0, if the model predicts that we reached an absorbing state,
and 1 otherwise. 7, is the mean predicted reward across the ensemble and f, results from
a majority vote between the members of the ensemble. Since the mean state would likely
be out-of-distribution and lack the structure of real states (which would impede learning
and evaluation), §;4; is instead sampled uniformly amongst the possible predicted next
states from the ensemble. Finally, to avoid unrealistic values, r; and §;,1 are clipped to the
minimum bounding box of the offline dataset while uncertainties estimations are limited to
a specified threshold:

minr <7, <maxr, mins; < §4;,; <maxs; Vi€ [0,¢/|SCRY and e <lI, ¢, <.
reD reD $; €D ’ s;€D

5.2.2 Model-based Offline Multi-Agent Proximal Policy Optimiza-
tion (MOMA-PPO)

Once M has been trained on the offline dataset D, it can be used to train online reinforcement
learning algorithms in a Dyna-like manner. In this work, we decide to use MAPPO, a CTDE
multi-agent version of PPO (Yu et al., 2022).

The synthetic data used to train the PPO policies is collected by sampling states from the
offline dataset D and using the current policies ¢ alongside the world model M to generate
PPO’s training rollouts of size k. Terminating a rollout when the world model uncertainty
exceeds [, allows for adaptative rollout length and avoids training the policies on unfeasible
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data. Rollouts are always terminated with a timeout mark (; such that:
G=1-It=k—1Ue¢; > 1),

where I is the indicator function. On the PPO side, we adapt the Generalized Advantage
Estimator (GAE) (Schulman et al., 2015b) to account for these timeouts and ensure that
there is no accumulation across rollouts while computing returns. We use the value of the
last state as an estimation of the return-to-go (for more detail see Subsection 5.6.1).

The generation of length £ = 3 rollouts is illustrated in
Figure 5.2 where it can be seen that a rollout is interrupted 60
early because the world model was unreliable when generating .
the associated state (shown in red). n.

In addition to the adaptive rollout length, the model epis- g
temic uncertainty is used to penalize the agents and avoid ex- . Q/ .
ploiting the world model in poorly reconstructed regions of the .
state space. The final uncertainty-penalized reward is given
by:

Figure 5.2: Model-based
rollouts generation (blue)
where €, and €, are hyperparameters that weigh the severity of from dataset’s states (grey).
the penalty. Red denotes early termina-
tion and k = 3.

7:15 = ft — )\7«67« — )\gega

Practical considerations.

Note that, we assume CTDE and that the global state s; fully observes the environment,
therefore we do not equip the world model with memory. The agents, on the other hand,
only have access to partial observations and must rely on action-observation histories ht.
In practice, we restrict action-observation histories to 10 steps in the past (either from
the dataset or the generated rollouts) and process them with one layer of self-attention
(Vaswani et al., 2017) followed by one layer of soft-attention (Bahdanau et al., 2015). The
resulting embeddings are concatenated to the agent’s current state, and for simplicity, we
abuse notation by denoting this “memory enhanced” state by hl.

Our MAPPO implementation uses the QMIX value-decomposition (Rashid et al., 2018)
for the centralized value function. All models are kept simple: two layers MLPs for actors
and critics and four layers MLPs for world models.

Finally, it is important to note that the task of the MOMA-PPO agents is quite different
from the task of the agents that generated the dataset. First, the MOMA-PPO agents’
initial state distribution is now the dataset’s state distribution. Then the reward of the task
has been altered to account for the model uncertainty. Last but not least, agents are only
allowed to stray k steps away from the dataset’s coverage. While this restriction mitigates
world model abuse, it can also prevent the agents from discovering goals that are further away
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from the offline data. Our resulting model-based offline multi-agent method is illustrated in
Algorithm 3 and more details are provided in Section 5.6.

Algorithm 3 MOMA-PPO
Require: offline dataset D, world model M, rollout horizon k, rollout batch size b, uncertainty
penalty coefficients A\, and A, uncertainty threshold [, MAPPO agents.

Initialize MAPPO policies 7* and value function V.
for epoch 1,2,... do
> Generate synthetic data
Initialize an empty rollout buffer R «+ &.
for 1,2,...,b (in parallel) do
Sample history h; = {h%}fi 4 from D.
for j=t,t+1,....,t+k—1do
Sample a} ~ 7rz(a_’]h§) Vi.
Sample §j+17 fj, fj’ €rj,€q,5 ™ M("S]’, (lj).
Compute 7j = 7j — Aper — Agegy.
Compute (; =1—-1I(j =t+k—1Ue€qg; > L)
Add sample (hj,ajfj,fj,cj,éjﬂ) to R.
Get h}H from h;-, aé- and 5j41.
Set Sj+1 = §j+1.
> Train agents
Use synthetics rollouts in R to train policies 7% and value function V with MAPPO.

return multi-agent policies 7.

5.3 Baselines, Environments, Tasks, and Datasets

5.3.1 Baselines

We compare with a large and varied array of baselines. First, we consider a simplified version
of the offline MARL problem by assuming centralized training and centralized execution
with access to the global state. We use IQL (Kostrikov et al., 2021), a state-of-the-art
single-agent model-free offline RL algorithm, to tackle this setting. Considering centralized
execution gives an upper bound on what can be achieved in terms of strategy agreement.
Indeed, a single learner controls all the agents and can thus choose for the whole team the
strategy to adopt. Then, we extend IQL to the multi-agent setting by using the QMIX
value decomposition on the () and V' value networks. This gives MAIQL, a very competitive
model-free CTDE offline MARL algorithm that allows for fine-tuning with additional online
data after training (Kostrikov et al., 2021). We refer to the finetuned version as MAIQL-ft
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and follow the procedure of Kostrikov et al. (2021): MAIQL-ft is first trained to convergence
on the offline data and then finetuned for the same number of training steps by progressively
introducing additional interaction data. At the end of finetuning, the replay buffer contains
as many offline interactions as online ones.

Recent literature in model-free MARL (de Witt et al., 2020; Lyu et al., 2021) and no-
tably in the offline setting (Pan et al., 2022), advocates for decentralized value functions
and independent learners. Therefore, we consider several independent learner approaches,
starting with Independent Behavioral Cloning (IBC). Despite its simplicity, BC (Pomerleau,
1991) produces surprisingly efficient baselines for Imitation Learning and offline RL (Barde
et al., 2020; Spencer et al., 2021). Finally, we consider the independent learners extensions
to Kumar et al. (2020) and Fujimoto and Gu (2021), respectively ITD3+BC and ICQL. We
also compare to the state-of-the-art model-free offline MARL method, OMAR (Pan et al.,
2022) that we denote IOMAR the highlight that it uses independent learners.

5.3.2 Offline Iterated Coordination Game

To illustrate the strategy agreement coordination challenge, we propose an offline version of
the Iterated Coordination Game presented in Figure 5.1 (a). Agents must pick the same
direction in order to succeed and we investigate three offline datasets of interactions: in the
most favorable one, data is collected by coordinated agents that select the same option of
going right most of the time. In the less favorable setting, agent 1 goes left most of the
time while agent 2 is more likely to go right. In the neutral setting, agents act uniformly.
Table 5.1 (b) reports the policies used to collect the datasets and the resulting datasets’
average scores. In the favorable dataset, agents are mostly coordinating (62.3% of the time)
while it is the opposite for the unfavorable dataset (37.5% of the time).

a’ P(a' =—) | P(a®> =—) | Avg. Score
— — favorable 0.75 0.75 0.623
4l ~ | 1,1 0,0 neutral 0.5 0.5 0.502
— 10,0 1,1 unfavorable 0.25 0.75 0.375

(a) (b)

Table 5.1: Offline Iterated Coordination Game. (a) Pay off matrix of Boutilier (1996b)’s
Coordination Game. (b) Datasets’ agent policies and corresponding averaged scores

However, all the datasets do contain both coordinated and uncoordinated behaviors in
which agents simultaneously choose the same — respectively, different — directions. It is
therefore straightforward for a centralized critic to learn that Q(—, =) = Q(+—, ) =1
while Q(—, <) = Q(+-,—) = 0 on all of the datasets. Yet, decentralized actors remain
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unaware of whether they should go left or right since they cannot infer what the other agent
will do.

5.3.3 Offline MAMuJoCo

Building upon D4RL (Fu et al., 2020) and MAMuJoCo (Peng et al., 2021), we propose two
offline multi-agent continuous control tasks with full and partial observability.

Two-agent Reacher with a mixture-of-expert dataset

To investigate strategy agreement in a more complex contin-
uous control setting, we propose a two-agent version of the
Reacher environment as shown in Figure 5.3. The offline
dataset is collected as follows: in the first stage, we train online
MAPPO on the fully observable two-agent Reacher task (ev-
ery agent observes all the joint angles and velocities as well as
the target position — in black — and the target to fingertip — in  Figure 5.3: Two-agent
green — vector). Depending on the seed of the run, teams con- Reacher. Red and blue
verge to counter-clockwise (6 > 0 as in Figure 5.3) or clockwise agents respectively control
(A2 < 0) arm bends. Thus we can build a mixture-of-expert the torque on #; and 6s.
dataset by combining equal proportions of demonstrations from

clockwise and counter-clockwise teams. Finally, we explore the impact of Full Observability
(FO) versus Partial Observability (PO) by considering three types of observation functions:
all-observant (FO: every agent fully observes the environment), independent (PO: each agent
only sees the target and the velocity and angle of the joint it controls), and leader-only (PO:
both agents observes the two joints but only the red agent observes the target’s position).
Note that with PO no agent observes the target to fingertip vector. These tasks are very
challenging and require agents to agree to follow a specific convention (either clockwise or
counter-clockwise arm bend) to reach a given target location. Indeed, at least one agent
in the team cannot estimate whether or not the fingertip matches the target (they miss
information about the other joint or the target).
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Four-agent Ant

Similarly, we use a MAMuJoCo-like decomposition of
the offline ant task to make it multi-agent: each indi-
vidual limb (composed of two joints) is controlled by
a different agent. For the offline datasets, we use the
single-agent D4RL datasets and consider two types
of observation functions: for fully observable tasks,
every agent observes the whole robot (torso observa-
tions — i.e., vertical position, orientation, angular and
translational velocities — and the observations of all
the limbs — i.e., angle and angular velocity of each
joint). For the partially observable tasks, agents only
observe the limb they control, and the torso obser-
vations are only made available to the yellow limb
agent. PO tasks are very challenging in this case be-
cause only the yellow agent knows if the ant is moving
in the correct direction and it must therefore learn to
“steer” the whole robot.

MAMuJoCo datasets

Figure 5.4: Four-agent Ant. Each
agent controls a different limb (shown
with different colors). In PO tasks,
agents only observe the limb they con-
trol while the torso — in white — obser-
vations are available only to the yellow
agent.

Table 5.2 summarizes the datasets’ scores distribution as well as the reference performances
used to normalize the results. Note that we generated the two-agent reacher mixture-of-
expert dataset while ant datasets are from D4RL (Fu et al., 2020) (single agent datasets

that we split into multi-agent observations).

Metrics . .
Datasets min (%) | mean (%) | median (%) | max (%) || expert score | random score
reacher | expert-mix 38.8 100.0 98.9 152.3 -4.237 -11.145
random -3 6.4 7.2 10.3
medium -4.8 80.2 95.1 107.2
A replay || -22.4 72.0 778 134.3 3879.7 -325.6
expert -32.8 117.4 129.4 142.5

Table 5.2: Normalized measures of datasets’ scores distributions and normalization scores.
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5.4 Aggregated results and insights

The experimental procedure such as hyperparameters, training routine, and learning curves
are detailed in Section 5.6 for reproducibility. All algorithms are trained to convergence and
we used 10 seeds for the Iterated Coordination Game and 3 seeds for MAMuJoCo tasks.
Tables are normalized and report the mean evaluation performance and the standard error
of the mean across seeds. Evaluation is done for 100 episodes using the greedy policies (no
sampling). This section focuses on extracting insights from the experiments results while we
provide raw results in Sections 5.7 and 5.6.

5.4.1 Strategy Agreement
Table 5.3 reports the results for the offline

Iterated Coordination Game and validates IQL MAIQL IBC MOMA-PPO
o fav. | 1. £0.| 1. £o0. 1. £o. 1. £ 0.

most of our mtmtl‘ons about ?trategy Agree~ | eutral | 1. + 0. | 0.9 + 0.1 | 0.55 + 0.11 1. £ 0.

ment: the centralized execution (IQL) and | wnfav. |1. £ 0.| 0. 0. 0. £ 0. 1. £ 0.

model-based (MOMA-PPO) approaches are
able to coordinate agents regardless of the
datasets. On the other hand, independent
BC agents imitate the dataset behavior and
therefore coordinate only if the dataset ma-
jorly demonstrates coordination. Surpris-
ingly, the CTDE model-free approach MAIQL is able to break symmetry and coordinate
agents in the neutral dataset. We hypothesize that small numerical errors in the cen-
tralized value approximation have the team favor one equivalent strategy over the other.
Unfortunately, the conservatism of model-free methods forces agents to stay close to the
demonstrated behaviors and prevails over this brittle symmetry-breaking mechanism in the
unfavorable — i.e., uncoordinated — dataset.

Table 5.3: Teams’ performances on the Coor-
dination Game. MOMA-PPO is the only decen-
tralized execution method to solve it for all the
datasets.

Algorithms || centralized || decentralized execution independent learners model-based (ours)
Tasks 1QL MAIQL IBC ITD3+BC ICQL IOMAR MOMA-PPO
FO all-observant 1.07 + 0.01 0.96 + 0.05 1.02 + 0.01 | 0.78 £ 0.00 | 0.48 £ 0.06 | 0.73 & 0.01 1.07 + 0.01
PO independent 0.92 £ 0.04 0.76 & 0.04 | 0.30 = 0.11 | 0.46 £ 0.04 | 0.45 £ 0.02 0.95 £ 0.06
leader-only 0.80 + 0.05 0.84 £ 0.02 | 0.48 4 0.04 | 0.31 £ 0.05 | 0.39 £ 0.02 1.00 + 0.01

Table 5.4: Teams’ performances on two-agent Reacher with mixture-of-experts dataset for dif-
ferent observation functions. Scores are normalized with expert and random performances. Inde-
pendent learners fail at strategy agreement on datasets that contain a mixture of experts while
MOMA-PPO (and to some extent MAIQL) are able to coordinate agents and match expert per-
formance.

Table 5.4 confirms that these insights on strategy agreement hold in the more complex
two-agent Reacher environment. Results also highlight that model-free independent learners
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such as IBC, ITD3+BC, ICQL, and IOMAR struggle with strategy agreement — especially
under partial observability — and are outperformed by the CTDE method MAIQL.! Interest-
ingly, IBC fares best among independent learners. Finally, our model-based CTDE approach
MOMA-PPO is well suited for Strategy Agreement as it performs on par with centralized
execution, a setting that sidesteps the strategy agreement issue altogether. MOMA-PPO
also matches or outperforms all other baselines.

5.4.2 Strategy Fine-Tuning

Algorithms || centralized decentralized execution independent learners model-based (ours)

Tasks IQL MAIQL MAIQL-ft IBC ITD3+BC ICQL IOMAR MOMA-PPO
ant-random 0.12 £ 0.00 || 0.28 £0.01 | 0.28 £ 0.03 || 0.31 £ 0.00 | 0.22 £ 0.02 | 0.08 £ 0.00 | 0.08 £ 0.00 0.52 + 0.07
FO ant-medium 0.97 £0.02 || 0.85 £ 0.02 | 0.81 + 0.02 || 0.84 £ 0.01 | 1.04 + 0.00 | 0.88 &+ 0.12 | 1.10 £ 0.03 1.29 + 0.06
ant-full-replay 1.22 £ 0.02 || 0.77 £0.21 | 0.95 £ 0.13 || 1.20 & 0.01 | 1.33 £ 0.01 | 1.21 £ 0.02 | 1.30 £ 0.00 1.42 £+ 0.07
ant-expert 1.26 + 0.01 || 1.24 £ 0.00 | 1.06 £ 0.07 || 1.24 &+ 0.00 | 1.25 £ 0.02 | 0.73 £ 0.15 | 1.16 £ 0.01 1.49 + 0.01
ant-random 0.31 £0.00 | 0.34 £0.04 || 0.31 & 0.00 | 0.31 £ 0.00 | 0.17 £ 0.02 | 0.21 £ 0.02 0.42 + 0.05
PO ant-medium 0.14 £ 0.02 | 0.11 £ 0.01 || 0.17 & 0.01 | 0.22 £ 0.05 | 0.09 &+ 0.02 | 0.06 £ 0.01 0.54 + 0.19
ant-full-replay 0.18 +£ 0.02 | -0.07 £ 0.10 || 0.21 4+ 0.02 | 0.20 £ 0.01 | 0.09 &+ 0.01 | 0.11 £ 0.02 0.46 + 0.10
ant-expert -0.16 £ 0.01 | -0.23 £ 0.02 || 0.05 & 0.04 | 0.16 £ 0.00 | 0.11 4 0.03 | 0.10 £ 0.01 0.18 + 0.00

Table 5.5: Teams’ performances on four-agent Ant for different datasets and observation functions.
Scores are normalized with expert and random performances. Current model-free methods are
unable to adapt agents’ behaviors and handle partially observable scenarios while MOMA-PPO
can learn robust teams.

From Table 5.5 one can investigate how the different offline methods fare with strategy
finetuning. First, IQL performs on par with the other model-free methods which suggests
that centralized execution (single-agent) vs. decentralized execution (multi-agent) is less
a consideration for strategy fine-tuning than it is for strategy agreement. Yet, this also
highlights that model-free methods (even when centralized) are unable to perform Strategy
Fine-Tuning. Indeed, they are surpassed by our model-based method, MOMA-PPO, which
generates additional synthetic experiences that allow for Strategy Fine-Tuning in addition
to Strategy Agreement. For model-free methods, independent learners tend to outperform
CTDE ones (which echoes Pan et al. (2022) observations). Additionally, comparing IQL
with MAIQL performance does highlight that offline multi-agent coordination is more chal-
lenging in varied datasets — such as medium or full-replay that display both coordinated
and uncoordinated behaviors — than in uniform and coordinated datasets — such as expert’s.
Despite its simplicity and the fact that it only does imitation, IBC does surprisingly well as
an offline MARL baseline.

In partially observable (PO) tasks, model-free methods are unable to adapt the behaviors
demonstrated in the datasets and they result in teams that run in circles because the yellow

https://sites.google.com/view/moma-ppo shows independent learners converge to incompatible con-
ventions.
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agent (the only one to observe the torso’s headings and velocities) fails to correct the other
limbs” motions. Conversely, with MOMA-PPO, the yellow agent steers the ant toward the
correct direction, and the teams reach very satisfactory performances provided that the
datasets have enough coverage to learn a wold-model that can simulate diverse and robust
behaviors (cf. the lower performance in the expert dataset).?

Finally, the poor performance of MAIQL-ft suggests that IQL’s finetuning abilities might
not carry over to the multi-agent setting (even though we used the ground-truth simulator
to generate the rollouts). While there might be multiple causes, we hypothesize that it is
mainly due to MAIQL’s instability since it required intensive hyperparameters finetuning and
filtering out collapsed runs for ant tasks. We believe that its instability is exacerbated by the
induced non-stationarity of the training data when augmenting it with online interactions.
Unlike online methods, offline algorithms are designed to learn on fixed datasets and are
thus ill-equipped to deal with data continually collected by changing policies. Similarly,
experiments that used MAIQL instead of MAPPO for MOMA (i.e. MOMA-IQL) quickly
led to unstable learning and exploding losses.

5.4.3 Ablations

Subsection 5.7.2 reports the raw results for the ablations and we discuss here the main
insights. First, using the ground-truth simulator yielded higher scores suggesting that the
performance of MOMA-PPO can be further improved by learning a more accurate world
model. Then, not clipping the generated next-states to the dataset’s bounding box prevented
generating length 10 rollouts as the states’ magnitude exploded after just a few world-model
steps. Additionally, the use of uncertainty penalty (),) and adaptive rollouts’ length (l,)
are necessary to achieve satisfactory results. Finally, varying the rollout’s maximum length
from 5 to 50 did not significantly impact performance.

5.5 Discussion and Conclusion

This section concludes by discussing this work in relationship with the literature.

Multi-agent coordination

Coordination has been a challenge of interest since the early works on cooperative MARL
(Boutilier, 1996b; Claus and Boutilier, 1998; Littman et al., 2001; Brafman and Tennenholtz,
2002; Chalkiadakis and Boutilier, 2003) and has consistently been a central focus of the
multi-agent literature (Zhang and Lesser, 2013; Lowe et al., 2017; Jaques et al., 2019; Lerer
and Peysakhovich, 2019). While different works consider different aspects of coordination

’https://sites.google.com/view/moma-ppo shows rollouts with and without “steering” behavior.


https://sites.google.com/view/moma-ppo

5. Coordination in the Offline Setting 110

— such as behavior predictability and synchronous sub-policy selection (Roy et al., 2020),
structured team exploration (Mahajan et al., 2019) or the emergence of communication and
cooperative guiding (Lazaridou et al., 2017; Woodward et al., 2020; Barde et al., 2022) —
our definition of coordination is closest to the seminal work of Boutilier (1996b). Indeed,
we consider coordination in terms of agents agreeing to individually follow the same team
strategy (that is a policy over joint actions) and finetuning their behavior to one another in
tasks where multiple distinct optimal team strategies exist. A similar notion of coordination
has been used in the Zero-Shot Coordination problem investigated by Hu et al. (2020) where
agents are trained so that they are able to perform with agents they have never seen before.
Yet, while their focus is on deriving standardized coordinated strategies that can generalize
to unseen teammates, coordination is still learned through online interactions.

Coordination with teammates without direct interactions is often referred to as ad-hoc
coordination (Stone et al., 2010; Barrett et al., 2011). Recent works assume access to offline
demonstrations of the teammates’ behaviors. These can be used to guide the agent’s self-
play training toward adopting the appropriate equilibrium (or “social conventions”) of its
future teammates (Lerer and Peysakhovich, 2019; Tucker et al., 2020). Similarly, Carroll
et al. (2019) uses offline data to learn a model of the teammate’s behavior and use it to
train the agent to coordinate with that ally. In ad-hoc coordination, teammates’ behaviors
are fixed and can be estimated a priori from the dataset: the learner merely has to identify
the team strategy and adopt it. Conversely, in our offline coordination setting, all the
agents are learning and therefore have unknown changing behaviors: they must identify the
different potential team strategies and agree on which one to follow (Strategy Agreement).
Simultaneously, they must finetune their behaviors to one another in order to reach this team
policy (Strategy Fine-Tuning). All this without being able to interact with other agents or
the environment.

Offline MARL

Recent works have been investigating offline solutions to the MARL problem. All of these
methods build on model-free single-agent approaches and constrain the policy to stay in the
dataset’s distribution by using either SARSA-like schemes (such as ICQ (Yang et al., 2021)
and IQL (Kostrikov et al., 2021)) or policy regularization (such as CQL (Kumar et al., 2020)
and TD3+BC (Fujimoto and Gu, 2021)).

Some methods investigate specific modifications to improve performance in the multi-
agent setting. For instance, in the decentralized setting, MABCQ (Jiang and Lu, 2021) en-
forces an optimistic importance sampling modification that assumes that independent agents
will strive toward similar high-rewarding states, yet since this does not discriminate between
which high-rewarding state to favor, the strategy agreement issue remains. For discrete ac-
tions spaces problems, Tseng et al. (2022) propose a Transformer-based approach that learns
a centralized teacher and distills its policy into independent student policies. Finally, OMAR
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(Pan et al., 2022) proposes to alleviate miscoordination failure in offline MARL by adding
a zeroth order optimization method on top of multi-agent CQL, achieving state-of-the-art
performance on a variety of tasks. We share these works’ goal of learning coordinated and
efficient multi-agent teams in the offline setting. Yet, we believe that interacting learners
and agents are essential to coordination and therefore take a different approach by focusing
on model-based methods rather than model-free ones.

Offline model-based RL

Model-based approaches have been investigated in the single-agent offline RL setting. Noto-
riously, MOPO (Yu et al., 2020) proposed to learn an ensemble-based world model and use
it to generate rollouts from the offline dataset to train a SAC agent (Haarnoja et al., 2018).
They also proposed an uncertainty-based reward penalty to prevent the learner from exploit-
ing the model. MOReL (Kidambi et al., 2020) takes a similar approach but prevents model
abuse by learning a pessimistic MDP in which states that are outside of the dataset coverage
become absorbing terminal states. COMBO (Yu et al., 2021) proposed a similar but more
conservative version of MOPO by using CQL instead of SAC and learning on both generated
and dataset’s states. Finally, ROMI (Wang et al., 2021) also uses model-free offline RL to
derive a policy from a model-based augmented offline dataset, yet they enforce additional
conservatism by learning a reverse policy and dynamics model to generate rollouts that lead
to target states contained in the dataset. This mitigates against generating rollouts outside
of the dataset’s coverage.

Our method, MOMA-PPO is in essence closest to MOPO and MOReL as it uses an online
policy learning algorithm instead of an offline one. We believe that offline RL algorithms
are ill-suited to learn on non-stationary data such as the one generated by updating policies
be it in a world model or in a real environment. To enforce conservatism and avoid world
model exploitation we use both uncertainty penalty and early rollout termination. Yet,
instead of penalizing aleatoric uncertainty (the inherent uncertainty of the environment,
which is nonexistent for most MuJoCo tasks with deterministic dynamics) as in MOPO, we
focus on the epistemic uncertainty (due to the finite amount of training data) and estimate
it by monitoring the coherence between the different models in the ensemble. Also, early
rollout termination is done with timeouts rather than terminal states meaning that it does
not penalize agents while still avoiding using unfeasible rollouts to train them. Finally, in
contrast with the works above, MOMA-PPO is based on PPO, an on-policy method that has
reliably achieved state-of-the-art performance in MARL tasks (Yu et al., 2022). It is therefore
well adapted for settings in which slight changes in a teammate’s policy can drastically impact
the overall group behavior and quickly make previous interactions obsolete.
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Model-based multi-agent RL

In the online setting, model-based approaches aim at improving sample efficiency by reducing
the number of interactions with the environment. Therefore, these methods use off-policy
schemes and focus on how and when to collect additional data for refining the world model
and the policies (Willemsen et al., 2021; Zhang et al., 2021, 2022). In offline MARL, sample
efficiency is not a consideration since the data has already been collected offline and addi-
tional data collection is not an option. Yet, we believe that model-based approaches can also
be beneficial to multi-agent coordination in the offline setting as they allow multiple learners
to interact through the world model.

In conclusion, this work explores coordination in offine MARL and highlights the fail-
ures of current model-free methods. Specifically, they struggle in the presence of multiple
equivalent but incompatible optimal team strategies (Strategy Agreement), or when partial
observability requires the team to adapt the behaviors demonstrated in the dataset (Strategy
Fine-Tuning). To solve these problems, we propose MOMA-PPO which is, to our knowledge,
the first model-based offline MARL approach. Our method is able to coordinate teams of
offline learners and significantly outperforms model-free alternatives (even fully centralized
ones). Our MOMA approach is general and some might be interested in investigating us-
ing more sample-efficient policy learning algorithms such as MOMA-SAC. Additionally, the
dataset bounding box clipping and adaptive rollouts developed for MOMA-PPO might also
benefit the single-agent setting. Finally, for tasks that require adapting the team’s behavior,
dataset coverage might be more desirable than demonstrated performance, since methods
fare better on random datasets than expert ones.
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5.6 Reproducibility details

The following section focuses on reproducibility and goes into detail about the implementa-
tions and experimental procedures.

5.6.1 Methods implementation

We detail here our implementation choices.

MOMA-PPO entropy bonus

For offline methods based on online RL algorithm, exploration is an important component
(cf. TD3’s exploration strategy) so we used an entropy bonus for PPO defined as:

# entropy bonus

# dimensions are batch, act_dim, n_agents.

# Instead of using closed form entropy,

# we estimate it with E(-pi log pi) were

# the expectation is sampled over pi_old

# so we have to correct with pi_new/pi_old (which is ratio!)

# we do two losses
# (clipped / not clipped like with the actor loss)

surrogate_entropy = - (ratio * new_policy) .mean(0)
clipped_entropy = - (clipped_ratio * new_policy) .mean(0)
entropy = torch.min(surrogate_entropy, clipped_entropy)

self .entropy_alpha += self.ppo_entropy_bonus_coeff*(self.
ppo_entropy_target - entropy).detach
O

self.entropy_alpha.data.clamp_min_(0.)

# minus sign because we minimize the expressions
# i.e. max(ent) = min(-ent)
entropy_bonus = - entropy * self.entropy_alpha

with an entropy bonus coefficient of 0.001 and an entropy target of -6 and -4 for respectively
Ant and Reacher tasks.

MOMA-PPO action penalty

Since entropy computation can become numerically unstable for squashed actions close to
the Tanh bounds, PPO uses action penalty instead of Tanh squashing to keep actions close
to the -1, 1 range (with an action penalty coefficient of 1.):
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delta = (1. - actioms.abs())

action_bound_error = ((delta < 0.).to(torch.float32) * delta**2).sum(1,
keepdim=True)

surrogate_action_bound_error = (ratio * action_bound_error) .mean(0)

clipped_action_bound_error = (clipped_ratio * action_bound_error) .mean (0)

action_bound_error = torch.max(surrogate_action_bound_error,
clipped_action_bound_error)

action_penalty = self.ppo_action_penalty_coeff * action_bound_error

General Advantage Estimation

We show below how we modified the general advantage estimation to account for rollout
termination (indicated by time_out_masks).

# initial (end) running returns is the next state value
running_returns = next_values[-1] * masks[-1]

# initial (end) advantage is 0O because no difference in value and return
running_advants = 0

for t in reversed(range(0, len(rewards))):
# We are going reverse so if done, only reward because end of

# episode if timeout, we stop accumulation and use value as
# bootstrap like in initialization

running_returns = rewards[t] + self.discount * masks[t] * (
running_returns * time_out_masks|[
t] + (1. - time_out_masks[t]) =*

next_values[t] * masks[t])
returns[t] = running_returns

## No accumulation here and timeout doesn’t influence next_state value
running_delta = rewards[t] + (self.discount * next_values[t] * masks[t
1) - values|[t]

## if timeout running_advants goes back to running_delta because

# we do not have extra rewards to estimate it

# (cf initialization above)

running_advants = running_delta + (self.discount * self.lamda *
running_advants * masks[t]) =*
time_out_masks[t]

advants [t] = running_advants
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Memory module for partial observability

To handle partial observability we use observation-action histories hi of size ten (i.e. the ten
past observation-action pairs). These histories are processed with self-attention followed by
soft-attention to yield embeddings of size e, = 128 that are concatenated to the current state
before being fed to the policy and value networks. We use a first linear layer to encode h! to
R and add positional encodings (Vaswani et al., 2017). Query, Key, and Value networks
are linear layers and we follow Vaswani et al. (2017)’s Scaled Dot-Product Attention with
skip connection and layer-norm. Finally, the resulting self-attentions are aggregated using
soft-attention with the soft-key network being a bias-less linear layer and the soft-queries are
e normally initialized trainable parameters.

Note that policy and value networks use (and backprop through) the same memory
module but target networks have their own target memory module (that tracks the memory
module with Polyak updates just like regular target networks). The memory learning rate
is 1le= for all the algorithms.

Finetuning MAIQL: MAIQL-ft

We follow Kostrikov et al. (2021)’s finetuning procedure and use the ground truth simulator
to generate the rollout. However, the rollouts are still generated using MOMA’s Dyna-like
approach described in Section 5.2 rather than generating length 1000 rollouts from the initial
state distribution. Indeed, we consider the model-based offline setting and not the offline-to-
online finetuning setting. Therefore it is unfeasible to assume that the task’s ground-truth
initial state distribution is known or that it is possible to learn a world model that remains
accurate over 1000 simulation steps.

Opensource baselines

For the baseline implementations, we followed the official repositories at:

e https://github.com/sfujim/TD3_BC,
e https://github.com/ling-pan/0OMAR/,
e and https://github.com/ikostrikov/implicit_q_learning.

5.6.2 Hyperparameters, Tuning, and Training

We detail here the training procedures.

Hyperparameters and tuning

Unless specified otherwise, networks are two-layers 256 units ReLu MLPs. We use Adam
optimizer (Kingma and Ba, 2014) with default hyperparameters (except learning rates) and


https://github.com/sfujim/TD3_BC
https://github.com/ling-pan/OMAR/
https://github.com/ikostrikov/implicit_q_learning
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a batch size of 256. We clip gradient norms to 1. We use a discount factor of 0.99 and a
target update coefficient of 0.005 for the Polyak averaging.

World model learning. World models use four layers and 1024 units. World models use a
learning rate of 3e™® and are trained for 3e® steps.

Policy learning. MAPPO learning rate was finetuned on MAMuJoCo online task
halfcheetah-v2_2x3_full with a grid search across [1le™® 5e75 1e7® 5e75 1le™* He™* 1le73].
We kept the value of 5e™ for MOMA-PPO for all experiments. PPO uses rollouts length of
1000, 5 epochs per update, 2000 transitions between updates, a clip value of 0.2, a A value
of 0.98, and a critic loss coefficient of 0.5.

MAIQL showed quite unstable and we had to finetune its learning rate extensively de-
pending on the tasks. We tried the range [le™®, 3e™* 1le™® 5¢75, 1e7% on ant-expert for
MAIQL and MAIQL-ft and kept 3e~*. For the results on ant-expert with full observability,
we had to discard one collapsed unstable seed for MAIQL and retrain another seed. For
reacher tasks we tried [5e7® 1e™*, 3e % 5e7*, 1e73] and kept 3e~*. IQL and MAIQL use an
expectile value of 0.7 and an AWR temperature of 3.

All other methods use their default learning rate of 3e~. ITD3+BC uses a BC regular-
ization parameter of 2.5, a policy frequency update of 2, a policy noise of 0.2, and a noise
clip value of 0.5. ICQL uses a coefficient of 1 (and so does IOMAR’s CQL component) for all
tasks except for ant-expert tasks where we had to tune it between [0.1,0.5,1, 5] and kept a
value of 5 (same for [IOMAR). Additionally, CQL uses an LSE temperature of 1, 10 sampled
actions, and a sample noise level of 0.2. Finally, IOMAR uses a coefficient of 1, 2 iterations,
a 1 value of 0, a o value of 2, 20 samples, and 5 elites.

TD3 (and thus CQL and OMAR) policies are deterministic with Tanh squashing while
IQL and PPO use Gaussians with state-dependent variance. IQL uses Tanh squashing while
PPO does not (see below).

Model-free methods are trained for 1e® learning steps while MOMA-PPO is trained for
le® learning steps which correspond to roughly 2e® collected world model interactions.

Compute

Our longest MOMA-PPO training took 6 days on a Tesla P100-PCIE-12GB GPU. For
comparison our longest IOMAR run took 38 hours on a Tesla V100-SXM2-32GB GPU and
our longest MAIQL run took 40 hours on a Tesla V100-SXM2-32GB GPU and five days on
a Tesla P100-PCIE-12GB GPU for MAIQL-ft. Training a world model took at most three
days on a Tesla P100-PCIE-12GB GPU. Note that training times are also impacted by how
often we estimate performance for the learning curves and we do it much more often for
MOMA-PPO (5 episodes every 50 learning steps) than for other methods (10 episodes every
5000 learning steps).
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5.7 Raw results

This section focuses on transparency and provides the raw results of the experiments.

5.7.1 Learning Curves

Figues 5.5 and 5.7 show the learning curves for the Reacher and Ant environments respec-
tively. We use 5 episodes to evaluate MOMA-PPO every 50 learning steps and 10 episodes
every 5000 learning steps to evaluate the other methods (this is why MOMA-PPO curves
might look noisier). We used a smoothing factor of .8 for all curves. We report the mean
over three seeds and the shaded area represents &+ the standard error of the mean. We train
MOMA-PPO for 1e® training steps because it is on-policy while the off-policy methods are
trained for 1e® training steps. MAIQL-ft training is 2e% steps (half offline and half online
fine-tuning).
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Figure 5.5: Learning Curves for two-agent Reacher. Mean and standard error of the mean on

three seeds.
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Figure 5.6: Learning curves for four-agent Ant on random and medium datasets. Mean and
standard error of the mean on three seeds.
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5.7.2 Ablations
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Figure 5.8: Impact of using the ground truth world model vs. the learned world model. “gt”
stands for “ground truth” and means that the corresponding runs use the ground truth world model.
The learning curves are with respect to generated transitions (either from the ground truth or the
learned world model). Here we show each individual run instead of the usual mean and standard

error of the mean.

MOMA-PPO | MOMA-PPO-gt
ant-random 0.52 £+ 0.07 1.17 + 0.03
(FO) ant-medium 1.29 4+ 0.06 1.68 £+ 0.03
ant-full-replay | 1.42 £ 0.07 1.66 + 0.03
ant-expert 1.49 + 0.01 1.71 4+ 0.04
ant-random 0.42 4+ 0.05 0.47 + 0.01
(PO) ant-medium 0.54 + 0.19 0.81 + 0.20
ant-full-replay | 0.46 £ 0.10 0.84 + 0.07
ant-expert 0.18 £ 0.00 0.43 + 0.06

Table 5.6: Mean scores and standard error of the mean at the end of training with and without
the use of the ground truth simulator. Evaluations are over 100 episodes.

Figure 5.8 and Table 5.6 compare using a learned world model with having access to the
ground truth simulator to generate the rollouts. It appears that MOMA-PPO performance
can be further improved provided that we learn better world models.
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Figure 5.9: Impact of the different uncertainty-based techniques to prevent model exploitation by
the learning algorithm. “gt” stands for “ground truth” and means that the corresponding runs use
the ground truth world model. “epsilon_g” and “epsilon_r” respectively mean that we set Ay = 0
and A\, = 0. “rollouts” means that we removed the adaptive rollouts component (i.e. I = 00).
Mean and standard error of the mean on three seeds.

Figure 5.9 shows ablations on MOMA-PPO. It appears that A, penalty can be removed
without hurting performance, indeed it is already encapsulated in A,. The other components
of MOMA-PPO such as A, uncertainty penalty on the reward, or the adaptive rollouts
that terminate if the uncertainty crosses a threshold, are mandatory to reach satisfactory
performance.

Note that running experiments without clipping the world model predictions to the
datasets’ bounding box was impossible as the magnitude of the predicted state exploded
after a few rollout steps. This could be mitigated by reducing the exploration of the PPO
policies so that the agents stay closer to the dataset distribution where the world model does
not predict such extreme states.
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Figure 5.10: Impact of different maximum rollout lengths when generating the synthetic inter-
actions. MOMA-PPO-x indicates a maximum rollout length of x. “gt” stands for “ground truth”
and means that the corresponding runs use the ground truth world model. Mean and standard
error of the mean on three seeds.

Figure 5.10 shows MOMA-PPO trainings for different maximum rollout lengths. It ap-
pears that varying the maximum length from 5 to 50 does not significatively impact MOMA-
PPO performance on the tasks we investigated.
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Chapter 6

Coordinating in the absence of
rewards or demonstrations

This chapter features the work that we published in Barde et al. (2022). Here we investigate
how agents can coordinate in the absence of explicit rewards or demonstrations. Specifically,
we investigate the emergence of communication between an agent that receives rewards but
cannot directly affect the environment to maximize it, and an agent that can act in the
environment but receives no rewards. While agents must collaborate and coordinate if they
are to solve the task, they have no shared incentives — one of them has no reward nor explicit
learning signal — nor the possibility to demonstrate and rely on observational reinforcement.
Learning in this setting seems unfeasible, yet, we show that it is possible by leveraging
intrinsic shared intent priors and structuring the agents interactions.

We are interested in interactive agents that learn to coordinate, namely, a builder —
which performs actions but ignores the goal of the task, i.e., has no access to rewards — and
an architect which guides the builder towards the goal of the task. We define and explore
a formal setting where artificial agents are equipped with mechanisms that allow them to
simultaneously learn a task while at the same time evolving a shared communication protocol.
Ideally, such learning should only rely on high-level communication priors and be able to
handle a large variety of tasks and meanings while deriving communication protocols that
can be reused across tasks.

Humans are notoriously successful at teaching — and learning from — each other. This
enables skills and knowledge to be shared and passed along through generations, being pro-
gressively refined toward mankind’s current state of proficiency. People can teach and be
taught in situations where there is no shared language and very little common ground, such
as a parent teaching a baby how to stack blocks during play. Experimental Semiotics, a line
of work that studies the forms of communication that people develop when they cannot use
pre-established ones, reveals that humans can even teach and learn without direct reinforce-
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ment signals, demonstrations, or a shared communication protocol (Galantucci and Garrod,
2011). Vollmer et al. (2014) for instance investigate a Co-Construction (CoCo) game exper-
iment where an architect must rely only on arbitrary instructions to guide a builder toward
constructing a structure. In this experiment, both the task of building the structure and the
meanings of the instructions — with which the architect guides the builder — are simultane-
ously learned throughout interactions. Such flexible teaching — and learning — capabilities
are essential to autonomous artificial agents if they are to master an increasing number of
skills without extensive human supervision. As a first step toward this research direction, we
draw inspiration from the CoCo game and propose the Architect-Builder Problem (ABP): an
interactive learning setting that models agents’ interactions with MDPs (Puterman, 2014).
In the ABP, learning has to occur in a social context through observations and communi-
cation, in the absence of direct imitation or reinforcement (Bandura and Walters, 1977).
Specifically, the constraints of the ABP are: (1) the builder has absolutely no knowledge
about the task at hand (no reward and no prior on the set of possible tasks), (2) the ar-
chitect can only interact with the builder through communication signals (cannot interact
with the environment or provide demonstrations), and (3) the communication signals have
no pre-defined meanings (nor belong to a set of known possible meanings). (1) sets this work
apart from Reinforcement Learning and even MARL in which explicit rewards are available
to all the agents. (2) implies the absence of teleoperation or third-person demonstrations and
thus distinguishes the ABP from Imitation Learning and Inverse Reinforcement Learning.
Finally, (3) prevents the architect from relying on a fixed communication protocol since the
meanings of instructions must be negotiated.

These constraints make ABP an appealing setting to investigate Human-Robot Inter-
action (HRI) problems where “a learner tries to figure out what a teacher wants them to
do” (Goodrich and Schultz, 2008; Grizou et al., 2013; Cederborg and Oudeyer, 2014). In
particular, the challenge of Brain-Computer Interfaces (BCls), where users use brain sig-
nals to control virtual or robotic agents in sequential tasks is well captured by the ABP
(Katyal et al., 2014; deBettencourt et al., 2015; Mishra and Gazzaley, 2015; Munoz-Moldes
and Cleeremans, 2020; Chiang et al., 2021). In BCIs, (3) is referred to as the “calibration
problem” and is usually tackled with supervised learning to learn a mapping between signals
and meanings. As this calibration phase is often laborious and impractical for users, current
approaches investigate calibration-free solutions where the mapping is learned interactively
(Grizou et al., 2014a; Xie et al., 2021). Yet, these works consider that the user (i.e., the
architect) is fixed, in the sense that it does not adapt to the agent (i.e., the builder) and
uses a set of pre-defined instruction — and/or feedback — meanings that the agent must
learn to map to signals. Contrarily, in our ABP formulation, the architect is dynamic and,
as interactions unfold, must learn to best guide a learning builder by tuning the meanings
of instructions according to the builder’s reactions. In that sense, ABP provides a more
complete computational model of agent-agent or human-agent interaction.

With all these constraints in mind, we propose Architect-Builder Iterated Guiding (ABIG),
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an algorithmic solution to ABP when both agents are Als. ABIG is inspired by the field of
experimental semiotics and relies on two high-level coordination priors: shared intent and
interaction frames. Shared intent refers to the fact that, although the builder ignores the
objective of the task to fulfill, it will assume that its objective is aligned with the one of
the architects. This assumption is characteristic of cooperative tasks that are shown to be
a necessary condition for the emergence of communication both in practice (Foerster et al.,
2016; Cao et al., 2018) and in theory (Crawford and Sobel, 1982). Specifically, the builder
should assume that the architect is guiding it toward a shared objective. Knowing this,
the builder must reinforce the behavior it displays when guided by the architect. We show
that the builder can efficiently implement this by using imitation learning on its own guided
behavior. Because the builder imitates itself, we call it self-imitation. The notion of in-
teraction frames (also called pragmatic frames) states that agents that interact in sequence
can more easily interpret the interaction history (Bruner, 1985; Vollmer et al., 2016). In
ABIG, we consider two distinct stationary interaction frames. Here stationary refers to the
fact that, when one agent learns, the other agent’s behavior is fixed. During the first frame
(the modeling frame), the builder is fixed and the architect learns a model of the builder’s
message-conditioned behavior. During the second frame (the guiding frame), the architect
is fixed and the builder learns to be guided via self-imitation learning.

We show that ABIG results in a low-level, high-frequency, guiding communication pro-
tocol that not only enables an architect-builder pair to solve the task at hand and can also
be used to solve unseen tasks. Our contributions are:

o The formulation of the Architect-Builder Problem, an interactive learning setting to
study the mechanisms by which artificial agents can coordinate and learn to solve a
task while simultaneously deriving a communication protocol.

o Architect-Builder Iterated Guiding, an algorithmic solution to the ABP.

o An analysis of ABIG’s key learning mechanisms.

e An evaluation of ABIG on a construction environment where we show that ABIG
agents evolve communication protocols that generalize to unseen harder tasks.

o A detailed analysis of ABIG’s learning dynamics and impact on the mutual information
between messages and actions.

6.1 The Architect-Builder Problem

In this section, we present our novel interactive learning setting.

6.1.1 The formalism

We consider a multi-agent setup composed of two agents: an architect and a builder. Both
agents observe the environment state s but only the architect knows the goal at hand. The
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architect cannot take action in the environment but receives the environmental reward r
whereas the builder does not receive any reward and has therefore no knowledge about the
task at hand. In this asymmetrical setup, the architect can only interact with the builder
through a communication signal m sampled from its policy 7, (m|s). These messages, which
have no a priori meanings, are received by the builder which acts according to its policy
7, (als, m). This makes the environment transition to a new state s’ sampled from P,(s'|s, a),
and the architect receives reward r. Messages are sent at every time step. The ABP setting,
as well as the CoCo game that inspired it, are sketched in Figure 6.1. The differences
between the ABP setting and the commons MARL and IRL settings are also highlighted in
Figure 6.1.

6.1.2 The BuildWorld

We conduct our experiments in BuildWorld a 2D construction grid-world of size (w x h).
At the beginning of an episode, the agent and NN, blocks are spawned at different random
locations. The agent can navigate in this world and grasp blocks by activating its gripper
while on a block. More specifically, the agent has a discrete action space A of size 6: the
first four actions control the direction of navigation (North, South, East, West); the fifth
action toggles the gripper (grasp/drop) and the last one is a “do nothing” action. At each
time step, the agent observes its position in the grid, its gripper state as well as the position
of all the blocks and if they are grasped (|S| = 3 + 3N,).

6.1.3 The tasks

BuildWorld contains four different training tasks:

1. ‘Grasp’: The agent must grasp any of the blocks;

2. ‘Place’: The agent must place any block at a specified location in the grid;

3. ‘H-Line’: The agent must place all the blocks in a horizontal line configuration;
4. ‘V-line’: The agent must place all the blocks in a vertical line configuration.

BuildWorld also has a harder fifth testing task:

5. ‘6-blocks-shapes’, which consists of more complex configurations and that is used to
challenge an algorithm’s transfer abilities.

For all tasks, rewards are sparse and only given when the task is completed.

This environment encapsulates the interactive learning challenge of ABP while removing
the need for complex perception or locomotion. In the RL setting, where the same agent acts
and receives rewards, this environment would not be very impressive. However, it remains
to be shown that the tasks can be solved in the challenging learning setting of ABP (with a
reward-less builder and an action-less architect).
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Figure 6.1: (a) Schematic view of the CoCo Game. The architect and the builder should
collaborate in order to build the construction target while located in different rooms. The ar-
chitecture has a picture of the target structure while the builder has access to the blocks. The
architect monitors the builder’s workspace via a camera (video stream) and can communicate with
the builder only through the use of 10 symbols (button events). (b) Schematic view of the
ABP. The architect must learn how to use messages to guide the builder while the builder needs
to learn to make sense of the messages in order to be guided by the architect. (c) Interaction
diagram in the ABP. The architect communicates messages (m) to the builder. Only the builder
can act (a) in the environment. The builder conditions its action on the message sent by the builder
(7, (a]s,m)). The builder never perceives any reward from the environment and only the architect
perceives the reward signal (7). (d) MARL framework. Both the architect and the builder have
access to environmental rewards r4 and rg. Which would contradict the fact that the builder
ignores everything about the task at hand; (e) IRL framework. The architect needs to provide
demonstrations. The architect does not exchange messages with the builder. The builder uses the
demonstrations {(s, a, s’):} to learn the desired behavior.
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6.1.4 The communication

The architect guides the builder by sending messages m which are one-hot vectors of size
|V| ranging from 2 to 72, see Subsection 6.4.1 for the impact of this parameter.

6.1.5 The additional assumptions

In order to focus on the architect-builder interactions and the learning of a shared commu-
nication protocol, the architect has access to P,(s'|s,a) and to the reward function (s, a) of
the goal at hand. This assumes that, if the architect were to act in the environment instead
of the builder, it would be able to quickly figure out how to solve the task from model-based
planning. This assumption is compatible with the CoCo game experiment (Vollmer et al.,
2014) where human participants, and in particular the architects, are known to have such
world models.

6.2 Architect-Builder Iterated Guiding

In this section we present ABIG, our solution to the Architect-Builder Problem.

6.2.1 Analytical description

(c) Builder MDP (d) Implicit Builder MDP

Figure 6.2: Agent’s Markov Decision Processes. Highlighted regions refer to MDP coupling.
(a) The architect’s transitions and rewards are conditioned by the builder’s policy m,. (b) Archi-
tect’s MDP where transition and reward models implicitly account for the builder’s behavior. (c-d)
The builder’s transition model depends on the architect’s message policy 7,. The builder’s learning
signal 7 is unknown.



6. Coordinating in the absence of rewards or demonstrations 130

Agents” MDPs.  In the Architect-Builder Problem, agents are operating in different, yet
coupled, MDPs. These MDPs depend on their respective point of view (see Figure 6.2).
From the point of view of the architect, messages are actions that influence the next state
as well as the reward (see Figure 6.2 (a)). The architect knows the environment transition
function P,(s'|s,a), and r(s,a), the true reward function associated with the task that does
not depend explicitly on messages. It must thus additionally reason about the effect of its
messages on the builder’s actions since these actually drive the reward and the next states
(see Figure 6.2 (b)). On the other hand, the builder’s state is composed of the environment
state and the message, which makes estimating state transitions challenging as one must also
capture the message dynamics (see Figure 6.2 (c)). Yet, the builder can assume that the
architect picks messages based on the current environment state. The equivalent transition
and reward models, when available, are given below:

P,(s'|s,m) = >_ 7, (als,m) B, (s'|a, s)

acA . ~ A
with 7, (a|s,m) = P(als,m 6.1
ra(s,;m) = #,(als,m)r(s, a) (alosm) = Felsm) o1
acA
P,(s',m|s,m,a) = 7,(m/|s)P,(s'|s,a) with 7, (m|s) & P(m'|s") (6.2)

where subscripts A and B respectively refer to the architect and the builder. & denotes that
x is unknown and must be approximated. From the builder’s point of view, the reward —
denoted 7 — is unknown. This prevents the use of classical RL algorithms.

To derive these results we use the laws of total probabilities and conditional probabilities:

P,(s'|s,m) = > P(s,als,m)

acA

= P(s'a,s,m)P(als,m)
acA

=Y P,(5|a,s)7,(als,m)
acA

Where the final equality uses the knowledge that next-states only depend on states and the
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builder’s actions.
r,(s,m,s") £ E[R|s,m, 5]
:/T‘P(T|S,m, s')dr
—/ > P(r,als,m,s")dr

acA
—/ > P(rls,m,a,s')P(als,m,s")dr
acA
—/ > P(r]s,a,s")7,(als, m)dr
acA
=Y @, (als,m /rP(r\s,a, s')dr
acA R
=Y @,(als,m)r(s,a,s")
acA

P(s',m/|s,m,a) = P(m/|s',s,m,a)P(s'|s,m,a)
= P(m/|s")P(s]s,a)
T (m'|s") P, (s'ls, a)

Shared Intent and Interaction Frames. It follows from Eq. (6.1) that, provided that it can
approximate the builder’s behavior, the architect can compute the reward and transition
models of its MDP. It can then use these to derive an optimal message policy 7} that would
maximize its objective:

Ta

7 = argmax G, = argmax E[>_~'r, /] (6.3)
A t

v € [0,1] is a discount factor and the expectation can be thought of in terms of 7, P,, and
the initial state distribution. However, the expectation can also be thought of in terms of the
corresponding trajectories 7 = {(s,m,a,r);} generated by the architect-builder interactions.
In other words, when using 7} to guide the builder, the architect-builder pair generates
trajectories that maximize G,.

The builder has no reward signal to maximize, yet, it relies on a shared intent prior and
should assume that its objective is the same as the one of the architect:

Gy =G, =E:[D 2] =E[> '] (6.4)

where the expectations are taken with respect to trajectories 7 of architect-builder inter-
actions. Therefore, under the shared intent prior, architect-builder interactions where the
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architect uses 77 to maximize G,, also maximize G,. This means that the builder can in-
terpret these 1nteractlon trajectories as demonstrations that maximize its unknown reward
function 7. Consequently, the builder can reinforce the desired behavior — towards which the
architect guides it — by performing self-Imitation Learning' on the interaction trajectories 7.

Note that in Eq. (6.1), the architect’s models can be interpreted as expectations with
respect to the builder’s behavior. Similarly, the builder’s objective depends on the architect’s
guiding behavior. This makes one agent’s MDP highly non-stationary and the agent must
adapt its behavior if the other agent’s policy changes. To palliate this, agents rely on
interaction frames which means that, when one agent learns, the other agent’s policy is
fixed to restore stationarity. The equivalent MDPs for the architect and the builder are
respectively M, = (S,V,P,,r,,7) and M, = (S x V, A B,.0,7). With 7, : S — V,
P, : S><V—>[01] SxV—)[Ol] SxV—)AandP SxVxA—)[Ol]where
S ,Aand V are respectlvely the sets of states, actions, and messages.

6.2.2 The algorithm

Modelling Frame h
/" Architect
Ve \m ~ Uniform() \
‘ Architect m 7B(‘4, frB RN IR,
\ Builder i
o \
BuildWorld Da
‘ \_Behavior modelling /
.
4 i
\4
S / r T B
Y Builder ‘»
4 TA P s
BC {(s,m,a,8");}
7B ‘ \ Architect /
_, Inputs Builder cl
P S DB BuﬂdWorId
-- Replace model \_ ScelfImitation _/
_, Train model Guiding Frame

-

Figure 6.3: Architect-Builder Iterated Guiding. Agents iteratively interact through the
modeling and guiding frames. In each frame, one agent collects data and improves its policy while
the other agent’s behavior is fixed.

ABIG iteratively structures the interactions between a builder-architect pair into interaction
frames. FEach iteration starts with a modeling frame during which the architect learns a

Inot to be confused with Oh et al. (2018) which is an off-policy actor-critic algorithm promoting explo-
ration in single-agent RL.
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model of the builder. Directly after, during the guiding frame, the architect leverages this
model to produce messages that guide the builder. On its side, the builder stores the guiding
interactions to train and refine its policy m,. The interaction frames are described below and
the algorithm is illustrated in Figure 6.3. The pseudo-code is reported in Algorithm 4.

Modeling Frame. The architect records a dataset of interactions D, = {(s,m,a,s’);} by
sending random messages m to the builder and observing its reaction. After collecting
enough interactions, the architect learns a model of the builder 7, using Behavioral Cloning.

Guiding Frame. During the guiding frame, the architect observes the environment states s
and produces messages so as to maximize its return (see Eq. (6.3)). The policy of the architect
is a MCTS algorithm (Kocsis and Szepesvari, 2006) that searches for the best message by
simulating the reaction of the builder using a ~ 7, (-|m, s) alongside the dynamics and reward
models. During this frame, the builder stores the interactions in a buffer D, £ {(s,m,a, s');}.
At the end of the guiding frame, the builder self-imitates by updating its policy 7, with BC
on D,.

The resulting method (ABIG) is general and can handle a variety of tasks while not
restricting the kind of communication protocol that can emerge. Indeed, it only relies on a
few high-level priors, namely, the architect’s access to environment models, shared intent,
and interaction frames.

Ablations. In addition to ABIG we also investigate two control settings: ABIG -no-intent
— the builder interacts with an architect that disregards the goal and therefore sends random
messages during training. At evaluation time, the architect has access to the exact model of
the builder (7, = m,) and leverages it to guide it towards the evaluation goal (the architect
no longer disregards the goal). And random — the builder takes random actions. The
comparison between ABIG and ABIG-no-intent measures the impact of doing self-imitation
on guiding versus on non-guiding trajectories. The random baseline is used to provide a
performance lower bound that indicates the task’s difficulty.

6.2.3 Practical considerations

Behavioral Cloning. BC minimizes the cross-entropy loss with Adam optimizer (Kingma
and Ba, 2014). Specifically, the dataset is split into training (70%) and validation (30%)
sets, and training is stopped if the validation accuracy has not improved after a ‘wait for’
number of epochs. For a training dataset D of size N the policy model 7y parametrized by
6 minimizes the BC loss given by:

J(0) = —=>_ —logg(als,m) (6.5)
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Networks are re-initialized before each BC training.

Monte Carlo Tree Search. The architect’s MCTS uses UCT and relies on heuristics rather
than Monte-Carlo rollouts to estimate the value of states. Specifically, nodes are labeled by
the environment’s states and they are expanded by selecting messages. Selecting message m
from a node with label s yields a builder action according to the architect’s builder model
a ~ 7,(als,m), this sampled action in turn yields the label of the child node according to
the environment’s transition model s' ~ P_(s|s,a). We repeat this process until we select a
message that was never selected from the current node or we sample a next state that does
not correspond to a child node yet. In both of these cases, a new node has to be created. We
estimate the value of the new node using an engineered heuristic that estimates the return
of an optimal policy 7*(als) from state s. This value is scaled down by a factor of two to
avoid overestimation: the builder’s policy may not allow the architect to have it follow 7*.
This estimated value for a newly created node at depth [ is back-propagated as a return to
parents node at depth k according to:

I-1-k

Gk = Z ’yTTk—i-l—i-T + Vl_kvl k= l, ceey 0 (66)
7=0

where 7, is the reward collected from node at depth j to child node at depth j + 1. From a
node with label s we select messages according to the Upper Confidence bound applied to
Trees rule:

m = argmax Q(s,m) + ¢ W (6.7)
u | 6.7
Gz )
Qfe,m) =

where N(s,m) is the number of times message m was selected from the node, G;(s, m) are
the returns obtained from the node when selecting m and ¢ is a constant set to v/2. When
the architect must choose a message from the environment state s, its policy m,(m/|s) runs
the above procedure from a root node labeled with the current environment state s. After
expanding a budget b of nodes the architect picks the best message to send according to
Eq. (6.7) applied to the root node. It is then possible to reuse the tree for the next action
selection or to discard it, if a tree is reused its maximal depth should be constrained. For
more details on the MCTS procedure, the reader is referred to the Background, specifically
Subsection 3.4.1.

Hyperparameters. All models are parametrized by two-hidden layer 126-units feedforward
ReLU networks. Only the learning rates on BuildWorld were searched over with grid searches.
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For BuildWorld with 3 blocks, the searched range is [5 x 107%,1 x 107%,1 x 10~°] for both
architect and builder (vocabulary size was fixed at 6). For ‘grasp’ with 6 blocks the searched
range is [1 x 1072,5 x 107*,1 x 107%] for the architect and [5 x 107*,1 x 107*,5 x 1077] for
the builder (vocabulary size was fixed at 72). The other hyperparameters do not seem to
have a major impact on the performance provided that:

o the MCTS hyperparameters enable an agent that has access to the reward to solve the
task.
 there is enough BC epochs to approach convergence.

Regarding the vocabulary size, the larger the better (see experiments in Figure 6.9). Sparse
reward means that the architect receives 1 if the goal is achieved and 0 otherwise. Episodes
per iteration are equally divided into the modeling and guiding frames. Hyperparameters
are given in the tables below.

Compute. A complete ABIG training can take up to 48 hours on a single modern CPU
(Intel E5-2683 v4 Broadwell @ 2.1GHz). The presented results require approximately
700 CPU hours. For each training, the main computation cost comes from the MCTS
planning during the guiding frames. The self-imitation and behavior modeling steps only
account for a small fraction of the computation.

Reproducibility and code. We ensure the reproducibility of the experiments presented in this
work by providing our code (see https://github.com/flowersteam/architect-builder-abig.
git). We also guarantee the statistical significance of our experimental results by using 10
random seeds, reporting the standard error of the mean, and using Welch’s ¢-test.

budget reuse tree max tree depth
100 true 500

Table 6.1: MCTS parameters

episode len grid size reward message
40 5x6 / (6 x 6) sparse one-hot

discount factor episodes per iteration vocab size evaluation episode len

0.95 600 13 / (72) 40 / (60)

Table 6.2: BuildWorld parameters for 3 blocks / (for 6 blocks if different)


https://github.com/flowersteam/architect-builder-abig.git
https://github.com/flowersteam/architect-builder-abig.git
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Algorithm 4 Architect-Builder Iterated Guiding (ABIG)

Require: randomly initialized builder policy 7, reward function r, transition function F,,
BC algorithm, MCTS algorithm
for i in range(Njerations) do
> Modelling frame
for e in range(Neojeet/2) do
Architect populates D, using m ~ Uniform() and observing a ~ m,(+|s, m)

Architect learns 7, (a|s,m) on D, with BC
Architect sets 7, (m|s) £ MCTS(r, 7, P,)
Architect flushes D,

> Guiding frame
for e in range(Neojeet/2) do
Builder populates D, using 7, while guided by Architect, i.e. m ~ m,(-|s)
Builder learns 7, (a|s, m) on D, with BC
Builder flushes D,

Architect runs one last Modelling Frame
return 7, 7,

learning rate number of epochs batch-size wait for
5x 1074 1000 256 300

Table 6.3: Architect’s BC parameters on BuildWorld for 3 blocks / (for 6 blocks if different)

learning rate number of epochs batch-size wait for
1x107? 1000 256 300

Table 6.4: Builder’s BC parameters on BuildWorld for 3 blocks / (for 6 blocks if different)
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6.3 Understanding the learning mechanisms

Architect-Builder Iterated Guiding relies on two steps. First, the architect selects favorable
messages, i.e., messages that maximize the likelihood of the builder picking optimal actions
with respect to the architect’s reward. Then, the builder does self-imitation and reinforces
the guided behavior by maximizing the likelihood of the corresponding messages-actions
sequence under its policy. The message-to-action associations (or preferences) are encoded
in the builder’s policy m,(a|s,m). Maximum likelihood assumes that actions are initially
equiprobable for a given message. Therefore, actions under a message that is not present
in the dataset (D,) remain so. In other words, if the builder never observes a message, it
assumes that this message is equally associated with all the possible actions. This enables
the builder to forget past message-to-action associations that are not used by the architect.
In practice, initial uniform likelihood is ensured by resetting the builder’s policy network
before each self-imitation. The architect can leverage the forgetting mechanism to erase
unfavorable associations until a favorable one emerges. Such favorable associations can then
be reinforced by the architect-builder pair until it is made deterministic. The reinforcement
process of favorable associations is also enabled by the self-imitation phase. Indeed, for a
given message m, the self-imitation objective for m on a data-set D collected using 7 is:

J(m,m) = — z;)log m(alm) = Equn(m)[—logm(alm)] = H[r(-|m)] (6.8)
where H stands for the entropy of a distribution. Therefore, maximizing the likelihood, in
this case, results in minimizing the entropy of m(-|m) and thus reinforces the associations
between messages and actions. Using these mechanisms, the architect can adjust the policy
of the builder until it becomes controllable, i.e., deterministic (strong preferences over actions
for a given message) and flexible (varied preferences across messages). Conversely, in the
case of ABIG-no-intent, the architect does not guide the builder and simply sends messages
at random. Favorable and unfavorable messages are thus sampled alike which prevents the
forgetting mechanism to undo unfavorable message-to-action associations. Consequently, in
that case, self-imitation tends to simply reinforce the initial builder’s preferences over actions
making the controllability of the builder policy depend heavily on the initial preferences.

We illustrate the above learning mechanisms in the following paragraph by applying
ABIG to a simple instantiation of the ABP. Figures 6.4 and 6.6 confirm that ABIG uses the
forgetting and reinforcement mechanisms to circumvent the unfavorable initial conditions
while ABIG-no-intent simply reinforces them. Eventually, Figure 6.6 reports that ABIG
always reaches 100% success rate regardless of the initial conditions while ABIG-no-intent
success rate depends on the initial preferences (only 3% of success rate when they are unfa-
vorable).

Interestingly, the emergent learning mechanisms discussed here are reminiscent of the
amplification and self-enforcement of random fluctuations in naming games (Steels, 1995).
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In naming games, however, the self-organization of vocabularies is driven by each agent max-
imizing its communicative success whereas in our case the builder has no external learning
signal and simply self-imitates.

6.3.1 A detailed example

To illustrate the learning mechanisms of ABIG we propose to look at the simplest instan-
tiation of the Architect-Builder Problem: there is one state (thus it can be ignored), two
messages my and ms and two possible actions a; and ay. If the builder chooses a; it is a
loss (r(a1) = —1) but choosing as results in a win (r(az) = 1). Figure 6.4 displays several
iterations of ABIG on this problem when the initial builder’s policy is unfavorable (a; is more
likely than ay for all the messages). During each iteration, the architect selects messages in
order to maximize the likelihood of the builder picking action as and then the builder does
self-Imitation Learning by maximizing the likelihood of the corresponding messages-actions
sequence under its policy. Figure 6.4 shows that this process leads to forgetting unfavorable
associations until a favorable association emerges and can be reinforced. On the other hand,
for ABIG-no-intent in Figure 6.5, favorable and unfavorable messages are sampled alike
which prevents the forget mechanism to undo unfavorable message-to-action associations.
Consequently, initial preferences are reinforced.

To further assess how the architect’s message choices impact the performance of a self-
imitating builder, we compare the distribution of the builder’s preferred actions obtained
after using ABIG and ABIG-no-intent. We consider three different initial conditions (favor-
able, unfavorable, intermediate) that are each ran to convergence (meaning that the policy
does not change anymore across iterations) for 100 different seeds. Figure 6.6 displays the
resulting distributions of preferred — i.e., most likely — action for each message. When apply-
ing ABIG on the toy problem, the pair always reaches a success rate of 100/100 no matter
the initial condition. We also observe that — at convergence — the builder never prefers action
a1, yet when an action is preferred for a given message, the other message yields no pref-
erence over action (p(ai|m) = p(az|m)). This is due to the forgetting mechanism discussed
previously. The results when applying ABIG-no-intent on the toy problem are much more
dependent on the initial condition. In the unfavorable scenario, ABIG-no-intent fails heavily
with only three seeds succeeding over the 100 experiments. This is due to the fact that, in
absence of message guidance from the architect, the builder has a high chance to continually
reinforce the association between the two messages and a;, therefore losing. However, in
rare cases, the builder can inverse the initial message-conditioned probabilities by ‘luckily’
sampling more often as when receiving m; and win. This only happened three times over
the 100 seeds. Finally, when initial conditions are more favorable, the self-imitation steps
reinforce the association between the messages and ay which makes the builder prefer as for
at least one message and enables high success rates (100/100 for favorable and 98/100 for
intermediate).
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sampling temperature samples per iteration learning rate number of epochs batch size
0.5 100 0.1 1000 50

Table 6.5: Toy experiment hyperparameters

. a3, (loose) a; (win)
1
: I I I reboewps .m0 ]
my m; my m my m; my m; my m; my m; my m; m m;
1=0 1=1 1=2 1=3 1=4 1=25 1=26 1=17

Figure 6.4: ABIG-driven evolution of message-conditioned action probabilities (builder’s policy)
for a simple problem where the builder must learn to produce action as. Even under unfavorable
initial condition the architect-builder pair eventually manages to associate a message (here my)
with the winning action (ag). Initial conditions are unfavorable since a; is more likely than ag for
both messages. (i = 0) Given the initial conditions, the architect only sends message m; since it is
the most likely to result in action ag. (i = 1) the builder guiding data only consisted of m; messages
therefore it cannot learn a preference over actions for ms and both actions are equally likely under
mg. The architect now only sends message mo since it is more likely than m; at triggering as.
(¢ = 2) Unfortunately, the sampling of m; resulted in the builder doing more a; than as during the
guiding frame and the builder thus associates mo with ay. The architect tries its luck again but
now with my. (i = 3) Eventually, the sampling results in more ag actions being sampled in the
guiding data and the builder now associates mj to az. (i = 4) and (i = 5) The architect can now
keep on sending m; messages to reinforce this association.

s & (loose) & (win)

m m my m; m my m m; m my m m; m my

Figure 6.5: ABIG-no-intent driven evolution of message-conditioned action probabilities for a
simple problem where the builder must learn to produce action as. Initial conditions are unfavorable
since a; is more likely than as for both messages. Without an architect’s guiding messages during
training, a self-imitating builder reinforces the action preferences of the initial conditions and fails
(even when evaluated alongside a knowledgeable architect as both messages can only yield aq).
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Unfavorable Favorable Intermediate
P(ai|m1) = 0.8, P(azlm1) =0.2 P(ai|mi1) =0.2, P(az|lm1) =0.8 P(a1|m1) =0.9, P(azlmi) =0.1
P(ai|m2) = 0.9, P(az|m2) = 0.1 P(ai|m2) = 0.1, P(az|mz2) =0.9 P(ai1|m2) = 0.1, P(az2|mz2) =0.9

(a) Initial probabilities

W o) (lose) W draw (P(a1]m) = P(az|m)) az (win)

1] 1] 1.00 1] 1.00

0.63

0.37

0 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00

my my my nmsy m mz

difficult easy varied
Success Rate = 100/100 Success Rate = 100/100 Success Rate = 100/100

(b) ABIG: Distributions of final preferred action for each message

= o) (loose) W draw (P(ay|m) = P(am)) a (win)
14 097 1.00 11 1.00
0 0.00 Iouo 0L..2:02 0.00 0.00
m1 mz m my m m
difficult easy varied
Success Rate = 3/100 Success Rate = 100/100 Success Rate = 98/100

(c) ABIG-no-intent: Distributions of final preferred action for each message

Figure 6.6: Toy experiment analysis (a) Initial conditions: initial probability for each action a
given a message m; distributions of final builder’s preferred actions for each message after applying
(b) ABIG and (c) ABIG-no-intent on the toy problem; distributions are calculated over 100 seeds.
For each method and each initial condition, we report the success rate obtained by a knowledgeable
architect guiding the builder. At evaluation, the architect has access to the builder’s model and
does not ignore the goal. ABIG always succeeds while ABIG-no-intent’s success depends on the
initial conditions.
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6.4 Results

In the following sections, success rates (sometimes referred to as scores) are averaged over
10 random seeds and error bars are £2SEM. If not stated otherwise, the grid size is (5 x 6),
contains three blocks (N, = 3) and the vocabulary size is |V| = 18.

6.4.1 ABIG’s learning performances

We apply ABIG to the four learning tasks of BuildWorld and compare it with the two control
settings: ABIG-no-intent (no guiding during training) and random (builder takes random
actions). Figure 6.7 reports the mean success rate on the four tasks defined in Section 6.1.
First, we observe that ABIG significantly outperforms the control conditions on all tasks.
Second, we notice that on the simpler ‘grasp’ task ABIG-no-intent achieves a satisfactory
mean score of 0.7740.03. This is consistent with the learning mechanisms analysis provided
in Subsection 6.3.1 that shows that, in favorable settings, a self-imitating builder can develop
a reasonably controllable policy even if it learns on non-guiding trajectories. Nevertheless,
when the tasks get more complicated and involve placing objects or drawing lines, the perfor-
mances of ABIG-no-intent drop significantly whereas ABIG continues to achieve high success
rates (> 0.8). This demonstrates that ABIG enables a builder-architect pair to successfully
agree on a communication protocol that makes the builder’s policy controllable and enables
the architect to efficiently guide it.

Method
mm ABIG . ABIG-no-intent B random

*
*
* *
N x> *

grasp place H-line V-line

Goal

o ® ©

o

Mean score (10 seeds)
o o o o o =~
»

o

Figure 6.7: Methods performances. Stars indicate significance with respect to ABIG model
according to Welch’s ¢-test with null hypothesis p; = po, at level a = 0.05. ABIG outperforms
control baselines on all goals.

To highlight the need for a builder’s policy that is controllable (i.e., both deterministic
and flexible), we define two extra baselines:

o stochastic: where the builder policy is a fixed softmax policy parameterized by a
randomly initialized network, and



6. Coordinating in the absence of rewards or demonstrations 142

o deterministic: where the builder policy is a fixed argmax policy parameterized by a
randomly initialized network.

To even further simplify the architect’s task, we give it direct access to the exact policy of the
builder (7, = m,). It can thus use it without approximation to plan and guide the builder
during evaluation. In the performances reported in Figure 6.8, the stochastic condition
exhibits similar performances as the random builder. This indicates that, even if the architect
tries to guide the builder, the stochastic policy is not controllable and performances are not
improved. Finally, we would expect a deterministic policy to be more easily controllable
by the architect. Yet, as pointed out in Figure 6.8, the initial deterministic policies lack
flexibility and fail. This shows that the builder must iteratively co-evolve its policy in order
to make it controllable by the architect.

Method
. ABIG-no-intent B random EEm stochastic B deterministic
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Figure 6.8: Baseline performance depending on the goal. Stochastic policy behaves on
par with the random builder. Self-imitation with ABIG-no-intent remains the most controllable
baseline.

Figure 6.9 shows ABIG’s performance in- Vocabulary size
creasing with the vocabulary size, suggesting 2 6 Wm0 wmm o8

that with more messages available, the ar- @10

chitect can more efficiently refer to the de- § 08
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Figure 6.9: Influence of the vocabulary
size. Experiments for ABIG on the 'place’ task.
Performance increases with the vocabulary size.
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6.4.2 ABIG’s transfer performances

Building upon previous results, we propose to study whether a learned communication pro-
tocol can transfer to new tasks. The architect-builder pairs are trained on a single task and
then evaluated without retraining on the four tasks. In addition, we include ‘all-goals’: a
control setting in which the builder learns a single policy by being guided on all four goals
during training. Figure 6.9 shows that, on all training tasks except ‘grasp’, ABIG enables a
transfer performance above 0.65 on all testing tasks. Notably, training on ‘place’ results in
a robust communication protocol that can be used to solve the other tasks with a success
rate above 0.85, being effectively equivalent to training on ‘all-goals’ directly. This might
be explained by the fact that placing blocks at specified locations is an atomic operation
required to build lines.

Testing Goal
. grasp B place H-line V-line
§ 1.0
L T ==
%08 - - T . T
o
T 06
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(s}
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200
grasp place H-line V-line all-goals
Training Goal

Figure 6.9: ABIG transfer performances. For different training goals and without retraining.
ABIG agents learn a communication protocol that transfers to new tasks. The highest performances
are reached when training on ‘place’.

Challenging ABIG'’s transfer abilities.
Motivated by ABIG’s transfer performances,

we propose to train it on the ‘place’ task in Training Transfer

a blgger gl"ld (6 X 6) with Nb = 6 and |V| = (‘place’) (‘6—block—shapes’)
72. Then, without retraining, we evaluate it Mean

on the ‘6-block-shapes‘ task? that consists of Score 0.96 = 0.02 0.85+0.03

constructing the shapes given in Figure 6.10.

The training performance on ‘place’ is 0.96+ Table 6.6: Transfer to complex tasks. The
0.02 and the transfer performance on the ‘6- communication protocol learned on the simple
block-shapes’ is 0.85 & 0.03 (see Table 6.6). ‘place’ task tr&.msfers well to more complex struc-
This further demonstrates ABIG’s ability to ture constructions.

derive robust communication protocols that

can solve more challenging unseen tasks.

2For rollouts see https://sites.google.com/view/architect-builder-problem/
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Figure 6.10: 6-block-shapes that ABIG can construct in transfer mode when trained on the
‘place’ task.

6.4.3 ABIG’s learning dynamics

We have shown performances (success rates) of builder-architect pairs at convergence. In
this subsection, we propose to thoroughly study the evolution of the builder’s policy in order
to provide a deeper analysis of ABIG’s learning dynamics.

Metric definition. We define three metrics that characterize the builder’s behavior. We
compute these metrics on a constant measurement set M made of 6000 randomly sampled
states, for each of these states we sample all the possible messages m ~ Uniform()) where
V is the set of possible messages. Therefore, |M| = 6000 x |V|. The set of possible actions
is A and we denote by ¢ the indicator function. We also define the following distributions:

s 1 /
)= ——) (s =s
P() 2 i Ta =
1
V|’
pSMA(S’m7 a) £ pSM(S’m)P(a’S’m) :pSM(S7m)7rB(a‘S7m)

pA(a) = ZpSMA(S7m7 a)? pMA(m7a) = ZpSMA(S?m7a>7 pSA(87a) = ZpSMA(S?m’a>
M M M

Py (m) £ P(m|s) = Pas(5,m) = py(s) P(mls) = py(s)p,, (m)

From this we can define the following monitoring metrics:

e Mean Entropy

_ 1
H(m) = ™ %: - %:W(a|s,m)log7r(a|s,m)

o Mutual Information between messages and actions

B ) o Pya(m,a)
b= 2 2 pualma)log oy )

o Mutual Information between states and actions

. s a)lo pSA(S7a’)
=22 pa(sa)log 2 00 09
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Analysis. Figure 6.11 displays the evolution of these metrics after each iteration as well
as the evolution of the success rate (b). As indicated by Eq. (6.8), doing self-imitation
learning results in a decay of the mean entropy (c). This decay is similar for ABIG and
ABIG-no-intent. The most interesting result is provided by the evolution of the mutual
information (a). For ABIG-no-intent, we see that I and I, slowly increase with Iy > I,
over all iterations. This indicates that the builder policy mg(a|s,m) relies more on states
than on messages to compute the actions. In this scenario, the builder, therefore, tends to
ignore messages. On the other hand, I; and I,,, evolve differently for ABIG. Both metrics
first increase with I, > I, until they cross around iteration 25. Then [, starts decreasing
and I,,, grows. This shows that, as the communication protocol settles, ABIG increases the
mutual information of message-action over the state-action one and results in a builder that
selects actions based on the messages it receives. This is a very desirable feature for the
emergence of communication.

1.00 —<— ABIG I —+— ABIG-no-intent /¢
s —%— ABIG —=— ABIG-no-intent /,
.‘g 0.75
£
Ne)
£0.50
©
2
=}

s 0.25

0.00

iteration

(a) Evolution of the mutual information I, and I,

100~ ABIG < ABIG
ABIG-no-intent e >‘1»6 ABIG-no-intent

° 1 g
gors —er—" % 1.2
2 &
8 050 5 08
g = =
D 0.25 —— — D o4

0.00 00 I —

0 20 40 60 0 20 4 60
iteration iteration
(b) Evolution of the success rate (c) Evolution of the builder policy mean entropy H,

Figure 6.11: Comparison of the evolution of builder policy properties when applying ABIG
and ABIG-no-intent on the ’place’ task in BuildWorld. (a) ABIG promotes the mutual information
between messages and actions which indicates successful communication protocols. (b) ABIG
enables much higher performance that ABIG-no-intent. (c) Both methods use self-imitation and
thus reduce the entropy of the policy.
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6.5 Discussion

This work is inspired by experimental semiotics (Galantucci and Garrod, 2011) and in par-
ticular Vollmer et al. (2014) that studied the CoCo game with human participants as a key
step towards understanding the underlying mechanisms of coordination for the emergence
of communication. Here we take a complementary approach by defining and investigating
solutions to the Architect-Builder Problem, a general formulation of the CoCo game where
both agents are Als.

Recent MARL works investigate how RL agents trained in the presence of other agents
leverage the behaviors they observe to improve learning (Lowe et al., 2017; Woodward et al.,
2020; Roy et al., 2020; Ndousse et al., 2021). In these settings, the other agents are used to
build useful representations or gain task-related information, yet, the main learning signal
of every agent remains the ground truth reward.

Feudal Learning investigates a setting where a manager sets the rewards of workers to
maximize its own return (Dayan and Hinton, 1993; Kulkarni et al., 2016; Vezhnevets et al.,
2017; Nachum et al., 2018a; Ahilan and Dayan, 2019). In these Hierarchical frameworks, the
manager interacts by directly tweaking the workers’ learning signal. For instance, Kulkarni
et al. (2016) propose to decompose an RL agent into a two-stage hierarchy with a meta-
controller (the manager) setting the goals of a controller (the worker). The meta-controller
is trained to select sequences of goals that maximize the environment reward while the
controller is trained to maximize goal-conditioned intrinsic rewards. The definition of the
goal space as well as the corresponding hard-coded goal-conditioned reward functions are
task-related design choices. Vezhnevets et al. (2017) propose a more general approach by
defining goals as embeddings that directly modulate the worker’s policy. Additionally, the
authors define intrinsic rewards as the cosine distance between goals and embedded state
deltas (the difference between the embedded state at the moment the goal was given and the
current embedded state). Thus, goals can be interpreted as directions in embedding space.
Nachum et al. (2018a) simplify this idea by letting go of the embedding transformation and
considering goals as directions to reach, and rewards as distances between state deltas and
goals. These works tackle the single-agent learning problem and therefore allow the manager
to directly influence the learning signal of the workers. This would be unfeasible in the
multi-agent setting where agents are physically distinct and it is not possible for an agent
to explicitly tweak another agent’s learning algorithm. Instead, agents must communicate
by influencing each other’s observations instead of intrinsic rewards. Designed to investigate
the emergence of communication, ABP lies in this latter multi-agent setting where separate
entities can only interact with one another through communications and influence each
other’s observations instead of reward signals. Additionally, Feudal or Hierarchical methods
require worker agents that directly receive and maximize rewards. In contrast, in ABP, the
builder is reward-less and observes communication messages (which, initially, have arbitrary
meanings) to figure out what it should do.
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Inverse Reinforcement Learning and Imitation Learning have been investigated for Human-
Robot Interaction when it is challenging to specify a reward function (Pomerleau, 1991;
Ng et al., 2000). Instead of defining rewards, IRL and IL rely on expert demonstrations.
Hadfield-Menell et al. (2016) argue that learning from expert demonstrations is not always
optimal and investigate how to produce instructive demonstrations to best teach an ap-
prentice. Crucially, the expert is aware of the mechanisms by which the apprentice learns,
namely RL on top of IRL. This allows the expert to assess how its demonstrations influence
the apprentice policy, effectively reducing the problem to a single agent POMDP. In our case,
however, the architect and the builder do not share the same action space which prevents the
architect from producing demonstrations. In addition, the architect has no knowledge of the
builder’s learning process which makes the simplification to a single-agent teacher problem
impossible.

In essence, the ABP is closest to works tackling the calibration-free Brain-Computer
Interface control problem (Grizou et al., 2014a; Xie et al., 2021). Yet, these works both
consider that the architect sends messages after the builder’s actions and thus enforce that the
feedback conveys a reward. Crucially, the architect does not learn, rather, it communicates
with a fixed mapping between feedback and pre-defined meanings (”correct” vs. "wrong”).
These meanings are known to the builder and this latter simply has to learn the mapping
between feedback and meaning. In our case, however, the architect communicates before
the builder’s action and thus gives instructions rather than feedback. Additionally, the
builder has no a priori knowledge of the set of possible meanings and the architect adapts
these latter to the builder’s reaction. Finally, Grizou et al. (2013) handles both feedback
and instruction communications but relies on known task distribution and a set of possible
meanings. In terms of motivations, previous works are interested in one robot figuring out
a fixed communication protocol while we train two agents to collectively emerge one.

Our BuildWorld resembles GridLU proposed by Bahdanau et al. (2019) to analyze re-
ward modeling in language-conditioned learning. However, their setting is fundamentally
different from ours as it investigates single-agent goal-conditioned IL where goals are prede-
fined episodic linguistic instructions labeling expert demonstrations. Nguyen et al. (2021)
alleviate the need for expert demonstrations by introducing an interactive teacher that pro-
vides descriptions of the learning agent’s trajectories. In this HRI setting, the teacher still
follows a fixed pre-defined communication protocol known by the learner: messages are ac-
tivity descriptions. Our ABP formulation relates to the Minecraft Collaborative Building
Task and the IGLU competition (Narayan-Chen et al., 2019; Kiseleva et al., 2021); however,
they do not consider emergent communication. Rather, they focus on generating architect
utterances by leveraging a human-human dialogues corpus to learn pre-established meanings
expressed in natural language. Conversely, in ABP both agents learn and must evolve the
meanings of messages while solving the task without relying on any form of demonstration.
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This work formalizes the ABP as an interactive setting where learning and coordination
must occur without explicit reinforcement, demonstrations, or a shared language. This
setting is best suited to tackle the calibration-free BCI problem in which a user (the architect)
tries to control a prosthetic arm (the builder) from brain signals (the messages) alone. Since
there are no general and robust a-priori mappings between a user’s brain signals and what the
arm should do, it might be best for the user and the prothese to coordinate by interactively
defining this communication protocol together.

To address the ABP, we propose ABIG, an algorithm that allows us to learn how to
guide and to be guided. ABIG is only based on two high-level priors to the emergence of
communication: shared intent and interaction frames. ABP’s general formulation enables us
to formally enforce those priors during learning. We study their influence through ablation
studies, highlighting the importance of shared intent achieved by doing self-imitation on
guiding trajectories. When performed across interaction frames, this mechanism enables
agents to efficiently evolve a communication protocol that allows them to solve all the tasks
defined in BuildWorld. More impressively, we find that communication protocols derived
from a simple task can be used to solve harder, never-seen goals.
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Chapter 7

Learning better internal models of
others

We have seen throughout the literature review and the works presented in this thesis that
coordination in multi-agent learning heavily relies on being able to build accurate models of
other agents. Currently, most works rely on the basic Behavioral Cloning approach to learn
these approximate models since more sophisticated methods, such as the ones leveraging
adversarial learning, are complex, computationally intensive, brittle, and require extensive
hyperparameter tuning. This prevents their use to model teammates in multi-agent learning
since, in addition to optimizing its own policy, each agent would have to learn a complex
internal model for every other agent. Building from this observation, this chapter features
the work that we published in Barde et al. (2020) and proposes a simple, practical, and robust
Imitation Learning method that is competitive to the much more complex, yet prevalent,
Adversarial Imitation Learning (AIL) approaches.

Specifically, AIL alternates between learning a discriminator — which tells apart expert’s
demonstrations from generated ones — and a generator’s policy to produce trajectories that
can fool this discriminator. This alternated optimization is known to be delicate in practice
since it compounds unstable adversarial training with brittle and sample-inefficient rein-
forcement learning. We propose to remove the burden of the policy optimization steps by
leveraging a novel discriminator formulation. Specifically, our discriminator is explicitly
conditioned on two policies: the one from the previous generator’s iteration and a learnable
policy. When optimized, this discriminator directly learns the optimal generator’s policy.
Consequently, our discriminator’s update solves the generator’s optimization problem for
free: learning a policy that imitates the expert does not require an additional optimization
loop. This formulation effectively cuts by half the implementation and computational bur-
den of Adversarial Imitation Learning algorithms by removing the Reinforcement Learning
phase altogether. We show on a variety of tasks that our simpler approach is competitive to
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the popular IL methods.

Imitation Learning treats the task of learning a policy from a set of expert demonstrations.
IL is effective on control problems that are challenging for traditional RL methods, either due
to reward function design challenges or the inherent difficulty of the task itself (Abbeel and
Ng, 2004; Ross et al., 2011). Since it enables learning policies from state-action trajectories,
it also provides a powerful tool to model other agents from the behaviors they demonstrate.

Most IL work can be divided into two branches: Behavioral Cloning and Inverse Rein-
forcement Learning. BC casts IL as a supervised learning objective and seeks to imitate the
expert’s actions using the provided demonstrations as a fixed dataset (Pomerleau, 1991).
Thus, BC usually requires a lot of expert data and results in agents that struggle to gen-
eralize. As an agent deviates from the demonstrated behaviors — straying outside the state
distribution on which it was trained — the risks of making additional errors increase, a prob-
lem known as compounding error (Ross et al., 2011).

Inverse Reinforcement Learning aims to reduce compounding error by learning a reward
function under which the expert policy is optimal (Abbeel and Ng, 2004). Once learned,
an agent can be trained (with any RL algorithm) to learn how to act at any given state
of the environment. Early methods were prohibitively expensive in large environments be-
cause they required training the RL agent to convergence at each learning step of the reward
function (Ziebart et al., 2008; Abbeel and Ng, 2004). Recent Adversarial Imitation Learning
approaches instead apply an adversarial formulation in which a discriminator learns to dis-
tinguish between expert and agent behaviors to learn the reward optimized by the expert.
AIL methods allow for the use of function approximators and can in practice be used with
only a few policy improvement steps for each discriminator update (Ho and Ermon, 2016;
Fu et al., 2017; Finn et al., 2016a).

While these advances have allowed IL to tackle bigger and more complex environments
(Kuefler et al., 2017; Ding et al., 2019), they have also significantly complexified the imple-
mentation and learning dynamics of the algorithms. It is worth asking how much of this
complexity is actually mandated. For example, in recent work, Reddy et al. (2019) have
shown that competitive performance can be obtained by hard-coding a very simple reward
function to incentivize expert-like behaviors and manage to imitate it through off-policy di-
rect RL. Reddy et al. (2019) therefore remove the reward learning component of AIL and
focus on the RL loop, yielding a regularized version of BC. Motivated by these results, we
also seek to simplify the AIL framework but follow the opposite direction: keeping the reward
learning module and removing the policy improvement loop.

We propose a simpler yet competitive AIL framework. Motivated by Finn et al. (2016a)
who use the optimal discriminator form, we propose a structured discriminator that esti-
mates the probability of demonstrated and generated behavior using a single parameterized
maximum entropy policy. Discriminator learning and policy learning, therefore, occur simul-
taneously, rendering seamless generator updates: once the discriminator has been trained for
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a few epochs, we simply use its policy model to generate new rollouts. We call this approach
Adversarial Soft Advantage Fitting (ASAF).
We make the following contributions:
o Algorithmic: we present a novel algorithm (ASAF) designed to imitate expert demon-
strations without any Reinforcement Learning step.

e Theoretical: we show that our method retrieves the expert policy when trained to
optimality.

o Empirical: we show that ASAF outperforms prevalent IL algorithms on a variety of
discrete and continuous control tasks. We also show that, in practice, ASAF can be easily
modified to account for different trajectory lengths (from full length to transition-wise).

7.1 Imitation Learning without Policy Optimization

In this section, we derive Adversarial Soft Advantage Fitting, our novel Adversarial Imitation
Learning approach. Specifically, in Section 7.1.1, we present the theoretical foundations for
ASAF to perform IL on full-length trajectories. Intuitively, our method is based on the use
of such structured discriminators — that match the optimal discriminator form — to fit the
trajectory distribution induced by the expert policy. This approach requires being able to
evaluate and sample from the learned policy and allows us to learn that policy and train
the discriminator simultaneously, thus drastically simplifying the training procedure. We
present in Section 7.1.2 parametrization options that satisfy these requirements. Finally,
in Section 7.1.3, we explain how to implement a practical algorithm that can be used for
arbitrary trajectory lengths, including the transition-wise case.

7.1.1 Adversarial Soft Advantage Fitting — theoretical setting

Before introducing our method, we derive GAN training with a structured discriminator.

GAN with structured discriminator. Suppose that we have a generator distribution p,
and some arbitrary distribution p and that both can be evaluated efficiently, e.g., cate-
gorical distribution or probability density with normalizing flows (Rezende and Mohamed,
2015). We call a structured discriminator a function Dj, : X — [0,1] of the form

Dp . (x) = () / (p(z) + p.(x)) which matches the optimal discriminator form for Eq. (3.42).
Considering our new GAN objective, we get:
minmax L5, p,), L5 ps) 2 Bany 108 Dy, ()] + Eaog [log(1 = Dgp (@) (7.1
Pa p

While the unstructured discriminator D from Eq. (3.41) learns a mapping from z to
a Bernoulli distribution, we now learn a mapping from x to an arbitrary distribution p
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from which we can analytically compute Dj, (x). One can therefore say that Dj, is
parameterized by p. For the optimization problem of Eq. (7.1), we have the following optima:

Lemma 1. The optimal discriminator parameter for any generator p, in Eq. (7.1) is equal
to the expert’s distribution, p* = arg max; L(p,p,) = p, , and the optimal discriminator
parameter is also the optimal generator, i.e.,

2 £ argminmax L(p,p,) = argmin L(p,,p,) =p, = D"

P p P

Proof. Lemma 1 states that given L(p,p,) defined in Eq. (7.1):

(a) p* £ arg max L(p, p;) = p,
P

(b) argmin L(p,, p.) = Dy

P

Starting with (a), we have:

arg maxL(p ) = arg maXZpE (i) log Djy, (i) + pg (1) log(1 — Dy, (1))

p x;
£ arg max Z L;
P a

Assuming infinite discriminator’s capacity, L; can be made independent for all z; € X and we
can construct our optimal discriminator D} , , s a look-up table D;’Pc : X —10,1[; x; — D}
with D} the optimal discriminator for each :v, defined as:

D} = argmax L; = argmax p, ; log D; + p, ; log(1 — D;), (7.2)
D; D;

with p, ; £ D (i), Dy £ Py (x;) and D; £ D(z;).

Recall that D; €]0,1[ and that p,; €]0,1][. Therefore the function p;, — D; = %
Di pg,’i
is defined for p; €]0, +oo]. Since it is strictly monotonic over that domain we have that:
D; = argmax L; < p; = argmax L; (7.3)
D; Pi

Taking the derivative and setting to zero, we get:

=0 ©pi =D, (7.4)
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2.
7

dp? |..

i |p:
of L; at the boundaries of the domain of definition of p; tend to —oo, therefore L;(p; = p, ;)
is the global maximum of L; w.r.t. p;. Finally, the optimal global discriminator is given by:

The second derivative test confirms that we have a maximum, i.e. < 0. The values

P (%)
D: ()= yrex (7.5)
P (%) + s (2)
This concludes the proof for (a).
The proof for (b) can be found in the work of Goodfellow et al. (2014). We reproduce it
here for completion. Since from (a) we know that p*(z) = p,(z)Vx € X, we can write the
GAN objective for the optimal discriminator as:

arg min L(p*, p,) = argmin L(p,, p.)

- ) (7.6)
7.6
: P () 1 [ s () ]
=argmink,., |log————| +E,., |log————————
S [ Sn@ @] [ @) @)
Note that:
log4 = Eynp, [log 2] + Epny, [log 2] (7.7)
Adding Eq. (7.7) to Eq. (7.6) and subtracting log4 on both sides:

2p, (2)
Pe() + 1y ()

+
. 2pG) + Dict (pE

Pa

] e llog i M
Pe -2ch ) (7.8)

argmin L(p,,p;) = —log4 + E,opp [log

:_10g4+DKL(E

= —log4 +2Dys (1, |Ip: )

Where Dg1, and Djg are respectively the Kullback—Leibler and the Jensen-Shannon di-
vergences. Since the Jensen-Shannon divergence between two distributions is always non-
negative and zero if and only if the two distributions are equal, we have that

argmin L(p,,p,) = p,. This concludes the proof for (b).

P

]

Intuitively, Lemma 1 shows that the optimal discriminator parameter is also the target
data distribution of our optimization problem (i.e., the optimal generator). In other words,
solving the inner optimization yields the solution of the outer optimization. In practice, we
update p to minimize the discriminator objective and use it directly as p, to sample new
data.
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Matching trajectory distributions with a structured discriminator. Motivated by the GAN
with a structured discriminator, we consider the trajectory distribution matching problem
in IL. Here, we optimise Eq. (7.1) with z = 7,X = T,p, = Pr_,p, = Pr_, which yields the
following objective:

minmax L(7, 7,), L(T,7,) = Erp, [log Dzy, (7)) + Ervp, [log(1 = Dz, (7)), (7.9)

)
7I'G T G

with the structured discriminator:

_ Px(7) _ qz(7)
Pr(7) + Pr (1) qx(T) + qn ()

Dsn (1) (7.10)

Here we used the fact that P,(7) decomposes into two distinct products:

T-1

4 (T) £ H m(als)

t=0
which depends on the stationary policy 7, and

T-1

&(7) = Po(s0) H P(st41]5¢, ar)

t=0

which accounts for the environment dynamics. Crucially, £(7) cancels out in the numerator
and denominator leaving 7 as the sole parameter of this structured discriminator. In this
way, D;T,,TG(T) can evaluate the probability of a trajectory being generated by the expert
policy simply by evaluating products of stationary policy distributions 7 and 7m,. With this
form, we can get the following result:

Theorem 1. The optimal discriminator parameter for any generator policy 7, in Eq. (7.9)
7* 2 argmax. L(w,m,) is such that gz = qr, . and using generator policy ©* minimizes
L(7*, m,), i.e.,
7 € argminmax L(7, 7,) = argmin L(7*, 7).
e ™ Ty

Proof. Theorem 1 states that given L(7, ) defined in Eq. (7.9):

(a) T £ arg max L(7, 7, ) satisfies ¢z« = ¢

T

(b) 7% = 7" € argmin L(7", 7,)

e

The proof of (a) is very similar to the one from Lemma 1. Starting from Eq. (7.9) we
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have:

arg maxL(7, ;) = arg max Z P (1;) log D . (1:) + P, (1;) log(1 — Di . (13))

™ T

= arggaxZﬁ(Ti) (qﬂE (7i)log D n(7i) + Gr (7:) log(1 — Di n, (Tz))) (7.11)

= argmax y_ L;

i

Like for Lemma 1, we can optimize for each L; individually. When doing so, {(7;) can be
omitted as it is constant w.r.t 7. The rest of the proof is identical to the one of but Lemma 1
with p, = ¢, and p, = ¢, . It follows that the max of L(#,7,) is reached for ¢; = ¢ .

From that we obtain that the policy 7* that makes the discriminator Dy« . optimal w.r.t

L(7,7,) is such that gz« = ¢ = ¢,_ i.e. [T 7 (aglse) = [Ty 7 (a|s:) Y 7.

The proof for (b) stems from the observation that choosing 7, = 7* (the policy recovered
by the optimal discriminator Dz« ) minimizes L(7*, 7, ):

T-1 T-1
m,(als) =7 (als) V(s,a) e Sx A =[] m.(ads:) = [] #*(arlse) VT € T
t=0 t=0
= G, (T) =qn, (T)VTET (7.12)
= Diz==-VTE T

= L(#",7") = —log4

By multiplying the numerator and denominator of Dz« z« by £(7) it can be shown in exactly
the same way as in the proof of Lemma 1 that —log 4 is the global minimum of L(7*, 7). O

Theorem 1’s benefits are similar to the ones from Lemma 1: we can use a discriminator of
the form of Eq. (7.10) to fit the expert demonstrations with a policy 7* that simultaneously
yields the optimal generator’s policy and produces the same trajectory distribution as the
expert policy.

7.1.2 A Specific Policy Class

The derivations of Section 7.1.1 rely on the use of a learnable policy that can both be
evaluated and sampled from in order to fit the expert policy. A number of parameterization
options that satisfy these conditions are available.

First of all, we observe that since 7, is independent of  and 7, we can add the entropy of
the expert policy H(m,(-|s)) to the MaxEnt IRL objective of Eq. (3.39) without modifying
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the solution to the optimization problem:

min (i Jo[r(s,0) + Hr(13)] ) = o, (s, @) + H(m, (1)) (7.13)
The max over policies implies that when optimizing r, 7 has already been made optimal with
respect to the causal entropy augmented reward function 7/(s, a|r) = r(s,a) + H(n(:|s)) and
therefore it must be of the form presented in Eq. (3.19). Moreover, since 7 is optimal w.r.t.
r’ the difference in performance J.[r'(s, a|m)] — J._[r'(s, a|m,)] is always non-negative and its

E
minimum of 0 is only reached when 7, is also optimal w.r.t. 7, in which case 7, must also

be of the form of Eq. (3.19).
With discrete action spaces, we propose to parameterize the MaxEnt policy defined in
Eq. (3.19) with the following categorical distribution

ﬁwwwm@mm—mgwmmw»

where Qg is a model parameterized by 6 that approximates i gt

With continuous action spaces, the soft value function involves an intractable integral
over the action domain. Therefore, we approximate the MaxEnt distribution with a Normal
distribution with a diagonal covariance matrix like it is commonly done in the literature
(Haarnoja et al., 2018; Nachum et al., 2018b). By parameterizing the mean and variance we
get a learnable density function that can be easily evaluated and sampled.

7.1.3 Adversarial Soft Advantage Fitting — practical algorithm

Section 7.1.1 shows that assuming 7 can be evaluated and sampled from, we can use the
structured discriminator of Eq. (7.10) to learn a policy 7 that matches the expert’s trajectory
distribution. Section 7.1.2 proposes parameterizations for discrete and continuous action
spaces that satisfy those assumptions.

In practice, as with GANs, we do not train the discriminator to convergence as gradient-
based optimization cannot be expected to find the global optimum of non-convex problems
(Goodfellow et al., 2014). Instead, ASAF alternates between two simple steps:

1. training D;WG by minimizing the binary cross-entropy loss,

- 1 & 1 rc
Lpce(DPr, Da, ) = o > log Ds <Ti(E)) - 3 log (1 B Dﬁ,wG(Tz‘(G)))
=1 i=1

where 77 ~ Dy, 79 ~ Dg (7.14)

T—1 ~
and fo»ﬂc (1) = T—1 ~ iso W(atilftl)
[Tizo 7(aels:) + [Ti=o 7 (adlse)
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with minibatch sizes ng = n¢g, and

2. updating the generator’s policy as 7, <— 7 to minimize Eq. (7.9) (see Algorithm 5).

We derived ASAF considering full trajectories, yet it might be preferable in practice to
split full trajectories into smaller chunks. This is particularly true in environments where
trajectory length varies a lot or tends to infinity.

To investigate whether the practical
benefits of using partial trajectories hurt
ASAF’s performance, we also consider
a variation, ASAF-w, where we treat
trajectory-windows of size w as if they were
full trajectories. Note that considering win-
dows as full trajectories results in approx-
imating that the initial states of these sub-

Algorithm 5 ASAF

Require: expert trajectories Dp = {7; } 1

Randomly initialize 7 and set 7, <— 7
for steps m = 0 to M do
Collect trajectories Dg = {7;} 5 using

e

Update 7 by minimizing Eq. (7.14)

trajectories have equal probability under the
Set m, < T

expert’s and the generator’s policy (this is
easily seen when deriving Eq. (7.10)). In the
limit, ASAF-1 (window size of 1) becomes
a transition-wise algorithm which can be desirable if one wants to collect rollouts asyn-
chronously or has only access to unsequential expert data. While ASAF-1 may work well in
practice it essentially assumes that the expert’s and the generator’s policies have the same
state occupancy measure, which is incorrect until actually recovering the true expert policy.

Finally, to offer a complete family of algorithms based on the structured discriminator
approach, we show in the next section that this assumption is not mandatory and derive
a transition-wise algorithm based on Soft Q-function Fitting (rather than soft advantages)
that also gets rid of the RL loop. We call this algorithm Adversarial Soft Q Fitting (ASQF).
While theoretically sound, we found that in practice that ASQF is outperformed by ASAF-1
in more complex environments (see Subsection 7.4.6).

7.2 Transition-wise Imitation Learning without Policy
Optimization

In this section, we present Adversarial Soft Q Fitting, a principled approach to Imitation
Learning without Reinforcement Learning that relies exclusively on transitions. Using tran-
sitions rather than trajectories presents several practical benefits such as the possibility to
deal with asynchronously collected data or non-sequential expert demonstrations. We first
present the theoretical setting for ASQF and then test it on a variety of discrete control
tasks. We show in Subsection 7.4.6 that while it is theoretically sound, ASQF is often out-
performed by ASAF-1, an approximation to ASAF that also allows learning on transitions
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instead of trajectories.

7.2.1 Adversarial Soft Q Fitting — theoretical setting

We consider the GAN objective of Eq. (3.41) with x = (s,a), X = S x A, p, = d
P = dr, and a discriminator Dy . of the form of Fu et al. (2017):

7TE7

minmax L(f. 7). L(f.7,) £ Ea, g Dy (5,0)) + B log(1 = Dy (s )]
exp f(S, a) (715)

exp f(s, a) + m(als)

with Df:“c =

9

for which we present the following theorem.

Theorem 2. For any generator policy m,, the optimal discriminator parameter for Eq. (7.15)

is 4., (5)
dﬂG (s)

F £ angmox L7 7) = 1o (ol

)V(s,a)ESxA
!

Using f*, the optimal generator policy T 1S

argminmax L(f, 7,) = argmin L(f*, 7,) = 7_(a|s) = exp / ES’ @) V(s,a) € S x A.
el ! el >’ €XP f*(5> a/)
Proof. The beginning of the proof closely follows the proof of Lemma 1.
argmax L(f,7.) =
i
(7.16)
arg max Z dr, (si,ai)log Dfﬂfa (si,ai) + dr, (si,a;)log(l — DfmG (siy0a;))
£ s
T . 7 eXp]Ei . .
We solve for each individual (s;,a;) pair and note that f; — D; = ——=——— is strictly
5 exXp fz + Mg i
monotonic on f; € RV, ,; €]0,1] so,
D} = argmax L; < f = argmax L; (7.17)
D; 7
Taking the derivative and setting it to 0, we find that
dLZ ~ dﬂ' i
= =0 & fi=log (WGZdE> (7.18)
dfz fz T b
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We confirm that we have a global maximum with the second derivative test and the values
at the border of the domain i.e.,

d?L;
df?
It follows that

< 0and L; goes to —oo for f; — +oo and for f; — —oc.

7

) V(s,a) e S x A (7.19)

This proves the first part of Theorem 2.
To prove the second part notice that

Df*=7rc (s,a) =

(7.20)

This is equal to the optimal discriminator of the GAN objective Eq. (7.5) when = = (s,a).
For this discriminator we showed in Lemma 1 that the optimal generator m is such that
drs(s,a) = dr (s,a) V(s,a) € S x A, which is satisfied for 7}(als) = 7, (als) V(s,a) € S x A.
Using the fact that

_ d. (s dr (s dr. (s
Z/exp [ (s,d) = Z,WE(CLI|S)CZ7|—E ES; = dﬂE Esi ZIFE(CL/|S) = dﬂE Esi (7.21)

we can combine Eq. (7.19) and Eq. (7.21) to write the expert’s policy 7, as a function of the
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optimal discriminator parameter f*:

i (als) =~ gl e sya (7.22)
S o exp fr(s,a)
This concludes the second part of the proof. O

7.2.2 Adversarial Soft Q Fitting - practical algorithm

In a nutshell, Theorem 2 tells us that training the discriminator in Eq. (7.15) to distinguish
between transitions from the expert and transitions from a generator policy can be seen
as retrieving f* which plays the role of the expert’s soft Q-function (i.e., which matches

Eq. (3.19) for [* = 1Qly ):

exp f*(s, a)
Y exp (s, a’)

. (als) = (7.23)

= exp (f*(s, a) —log > exp F (s, a’)) ;

Therefore, by training the discriminator, one simultaneously retrieves the optimal generator
policy.

There is one caveat though: the sum-
mation over actions that is required in
Eq'. (7.23) to.go fmm I to ‘.Ehe policy Require: expert transitions Dg =
is intractable in continuous action spaces (s, @)} NE1

) i=

d 1d i dditional st h - z
AL WO TEqUITe afl additionia: S1eb Sie Randomly initialize f and get m, from
as a projection to a proper distribution

Algorithm 6 ASQF

(Haarnoja et al. (2018) use a Gaussian) in Eq. (7.23)
o for steps m =0 to M do
order to draw samples and evaluate likeli- Collect t " Do = (s ,)}NG
hoods. Updating in this way the generator with?r ect transiions Ve = iy (i) fi=1
G

policy to match a softmax over our learned

state-action preferences (f*) becomes very
similar in requirements and computational

Train Dfﬂrc on Dg and Dg
Get m, from Eq. (7.23)

load to a policy optimization step, thus de-
feating the purpose of this work which is to
get rid of the policy optimization step. For this reason, we only consider ASQF for dis-
crete action spaces. As explained in Section 7.1.3, in practice we optimize Dfﬂra only for

a few steps before updating 7, by normalizing exp f(s,a) over the action dimension. See
Algorithm 6 for the pseudo-code.
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7.3 Experimental setup

We compare our algorithms ASAF, ASAF-w and ASAF-1 against GAIL (Ho and Ermon,
2016), the predominant Adversarial Imitation Learning algorithm in the literature, and
AIRL (Fu et al., 2017), one of its variations that also leverages the access to the gener-
ator’s policy distribution. Additionally, we compare against SQIL (Reddy et al., 2019), a
recent Reinforcement Learning-only approach to Imitation Learning that proved successful
on high-dimensional tasks. Our implementations of GAIL and AIRL use PPO (Schulman
et al., 2017) instead of TRPO (Schulman et al., 2015a) as it has been shown to improve
performance (Kostrikov et al., 2019). Finally, we do not use causal entropy regularization to
be consistent with (Ho and Ermon, 2016).

For all tasks except MuJoCo, we selected the best-performing hyperparameters through
a random search of equal budget for each algorithm-environment pair (see Subsection 7.3.2)
and the best configuration is retrained on ten random seeds. For the MuJoCo experiments,
GAIL required extensive tuning (through random searches) of both its RL and IRL com-
ponents to achieve satisfactory performances. Our methods, ASAF-w and ASAF-1, on the
other hand, showed much more stability and robustness to hyper parameterization, which
is likely due to their simplicity. SQIL used the same implementation and hyperparameters
than the SAC (Haarnoja et al., 2018) version that we generated the expert demonstrations
from.

Finally, for each task, all algorithms use the same neural network architectures for their
policy and /or discriminator (see full description in Subsection 7.3.2). Expert demonstrations
are either generated by hand (mountaincar), using open-source bots (Pommerman) or from
our implementations of SAC and PPO (all remaining). More details are given in 7.3.1.

7.3.1 Environments and expert demonstrations

Classic Control. The environments used here are the reference Gym implementations for
classic control' and for Box2D?. We generated the expert trajectories for mountaincar (both
discrete and continuous versions) by hand using keyboard inputs. For the other tasks,
we trained our SAC implementation to get experts on the discrete action tasks and our
PPO implementation to get experts on the continuous action tasks. Mountaincar-c and
lunarlander-c refer to the continuous action versions of these environments.

MuJoCo. The experts were trained using our implementation of SAC (Haarnoja et al., 2018)
the state-of-the-art RL algorithm in MuJoCo continuous control tasks. Our implementation
basically refactors the SAC implementation from Rlpyt®. We trained the SAC agent for

!See: http://gym.openai.com/envs/#classic_control
2See: http://gym.openai.com/envs/#box2d
3See: https://github.com/astooke/rlpyt
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1,000,000 steps for Hopper-v2 and 3,000,000 steps for Walker2d-v2 and HalfCheetah-v2 and
Ant-v2. We used the default hyperparameters from Rlpyt.

Pommerman. The observation space that we use for the Pommerman domain (Resnick
et al., 2018) is composed of a set of 15 feature maps as well as an additional information
vector. The feature maps, whose dimensions are given by the size of the board (8x8 in the
case of 1vsl tasks), are one-hot across the third dimension and represent which element is
present at which location. Specifically, these feature maps identify whether a given location
is the current player, an ally, an enemy, a passage, a wall, a wood, a bomb, a flame, a fog, or
a power-up. Other feature maps contain integers indicating bomb blast strength, bomb life,
bomb moving direction, and flame life for each location. Finally, the additional information
vector contains the timestep, number of ammunition, whether the player can kick, and its
blast strength. The agent has an action space composed of six actions: do-nothing, up,
down, left, right, and lay bomb.

For these experiments, we generate the expert demonstrations using Agent47Agent, the
open-source champion algorithm of the FFA 2018 competition (Zhou et al., 2018) which
uses hardcoded heuristics and Monte Carlo Tree Search?. While this agent occasionally
eliminates itself during a match, we only select trajectories leading to a win as being expert
demonstrations.

Demonstrations summary. Table 7.1 provides a summary of the expert data used.

TASK-NAME EXPERT MEAN RETURN NUMBER OF EXPERT TRAJECTORIES
CARTPOLE 200.0 10
MOUNTAINCAR -108.0 10
LUNARLANDER 277.5 10
PENDULUM -158.6 10
MOUNTAINCAR-C 93.92 10
LUNARLANDER-C 266.1 10

HoprPER 3537 25
WALKER2D 5434 25
HALFCHEETAH 7841 25

ANT 5776 25
POMMERMAN RANDOM-TAG 1 300, 150, 75, 15, 5, 1

Table 7.1: Expert demonstrations used for Imitation Learning

4See: https://github.com/YichenGong/Agent47Agent/tree/master/pommerman
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7.3.2 Hyperparameter tuning and best configurations

Classic Control. This first set of experiments uses the fixed hyperparameters of Table 7.2.

RL component

HYPERPARAMETER DiSCRETE CONTROL CONTINUOUS CONTROL
SAC
BATCH SIZE (IN TRANSITIONS) 256 256
REPLAY BUFFER LENGTH |B| 10° 10°
WARMUP (IN TRANSITIONS) 1280 10240
INITIAL ENTROPY WEIGHT « 0.4 0.4
GRADIENT NORM CLIPPING THRESHOLD 0.2 1
TRANSITIONS BETWEEN UPDATE 40 1
TARGET NETWORK WEIGHT T 0.01 0.01
PPO
BATCH SIZE (IN TRANSITIONS) 256 256
GAE PARAMETER A\ 0.95 0.95
TRANSITIONS BETWEEN UPDATE - 2000
EPISODES BETWEEN UPDATES 10 -
EPOCHS PER UPDATE 10 10
UPDATE CLIPPING PARAMETER 0.2 0.2

Reward Learning component
HYPERPARAMETER Di1SCRETE CONTROL CONTINUOUS CONTROL

AIRL, GAIL, ASAF-1

BATCH SIZE (IN TRANSITIONS) 256 256
TRANSITIONS BETWEEN UPDATE - 2000
EPISODES BETWEEN UPDATES 10 -
EPOCHS PER UPDATE 50 50
GRADIENT VALUE CLIPPING THRESHOLD - 1
(ASAF-1)

ASAF, ASAF-w

BATCH SIZE (IN TRAJECTORIES) 10 10
EPISODES BETWEEN UPDATES 10 20
EPOCHS PER UPDATE 50 50
WINDOW SIZE w (SEARCHED) 200
GRADIENT VALUE CLIPPING THRESHOLD - 1

Table 7.2: Fixed hyperparameters for classic control tasks
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For the most sensitive hyperparameters, i.e., the learning rates for the reinforcement
learning and discriminator updates (ery, and ep), we perform a random search over 50 con-
figurations and 3 seeds each (for each algorithm on each task) for 500 episodes. We consider
logarithmic ranges, i.e., ¢ = 10* with v ~ Uniform(—6, —1) for ep and u ~ Uniform(—4, —1)
for egr,. We also include in this search the critic learning rate coefficient x for PPO also
sampled according to a logarithmic scale with u ~ Uniform(—2,2) so that the effective
learning rate for PPO’s critic network is k - egy,. For discrete action tasks, the window-size
w for ASAF-w is sampled uniformly within {32,64,128}. The best configuration for each
algorithm is presented in Tables 7.3 to 7.8. Figure 7.1 uses these configurations retrained on
10 seeds and twice as long.

Finally for all neural networks (policies and discriminators) for these experiments we
use a fully-connected MLP with two hidden layers and ReLU activation (except for the last
layer). We used hidden sizes of 64 for the discrete tasks and 256 for the continuous tasks.

HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR ¢p 0.028 0.039 0.00046 - 2.5%1076 0.00036
RL UPDATE LR €gy, - - - 0.0067 0.0052 0.012
CRITIC LR COEFFICIENT K - - - - 0.25 0.29
WINDOW SIZE W - 64 1 - - -
WINDOW STRIDE - 64 1 - - -

Table 7.3: Best found hyperparameters for Cartpole

HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR ¢p 0.059 0.059 0.0088 - 0.0042 0.00016
RL UPDATE LR €gy, - - - 0.062 0.016 0.0022
CRITIC LR COEFFICIENT K - - - - 4.6 0.018
WINDOW SIZE W - 32 1 - - -
WINDOW STRIDE - 32 1 - - -

Table 7.4: Best found hyperparameters for Mountaincar

HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR ¢p  0.0055 0.0015 0.00045 - 0.0002 0.00019
RL UPDATE LR g, - - - 0.0036 0.0012 0.0016
CRITIC LR COEFFICIENT K - - - - 0.48 8.5
WINDOW SIZE W - 32 1 - - -
WINDOW STRIDE - 32 1 - - -

Table 7.5: Best found hyperparameters for Lunarlander
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HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL 4+ PPO GAIL + PPO
DISCRIMINATOR UPDATE LR e¢p 0.00069 0.00082 0.00046 - 4.3%10° 1.6%¥10°°
RL UPDATE LR €gy, - - - 0.0001 0.00038 0.00028
CRITIC LR COEFFICIENT K - - - - 0.028 84
WINDOW SIZE W - 200 1 - - -
WINDOW STRIDE - 200 1 - - -

Table 7.6: Best found hyperparameters for Pendulum

HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR e¢p 0.00021 3.8%10~° 6.2*10°° - 1.7%107° 1.5%107°
RL UPDATE LR €Ry, - - - 0.0079 0.0012 0.0052
CRITIC LR COEFFICIENT K - - - - 10 12
WINDOW SIZE W - 200 1 - - -
WINDOW STRIDE - 200 1 - - -

Table 7.7: Best found hyperparameters for Mountaincar-c

HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR ep 0.0051  0.0022 0.0003 - 0.0045 0.00014
RL UPDATE LR €y, - - - 0.0027 0.00031 0.00049
CRITIC LR COEFFICIENT K - - - - 14 0.01
WINDOW SIZE W - 200 - - - -
WINDOW STRIDE - 200 - - - -

Table 7.8: Best found hyperparameters for Lunarlander-c

MuJoCo. For MuJoCo experiments (Hopper-v2, Walker2d-v2, HalfCheetah-v2, Ant-v2),
the fixed hyperparameters are presented in Table 7.9. For all experiments, fully-connected
MLPs with two hidden layers and ReLU activation (except for the last layer) were used, and
the number of hidden units is equal to 256.

For SQIL we used SAC with the same hyperparameters used to generate the expert
demonstrations. For ASAF, ASAF-1 and ASAF-w, we set the learning rate for the discrim-
inator at 0.001 and ran random searches over 25 randomly sampled configurations and 2
seeds for each task to select the other hyperparameters for the discriminator training. These
hyperparameters included the discriminator batch size sampled from a uniform distribution
over {10,20,30} for ASAF and ASAF-w (in trajectories) and over {100, 500, 1000, 2000} for
ASAF-1 (in transitions), the number of epochs per update sampled from a uniform dis-
tribution over {10,20,50}, the gradient norm clipping threshold sampled form a uniform
distribution over {1,10}, the window-size (for ASAF-w) sampled from a uniform distribu-
tion over {100,200, 500, 1000} and the window stride (for ASAF-w) sampled from a uniform
distribution over {1,50,w}. For GAIL, we obtained poor results using the original hyper-
parameters from (Ho and Ermon, 2016) for a number of tasks so we ran random searches
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RL component
HYPERPARAMETER HoprPER, WALKER2D, HALFCHEETAH, ANT

PPO (for GAIL)

GAE PARAMETER \ 0.98
TRANSITIONS BETWEEN UPDATES 2000
EPOCHS PER UPDATE 5
UPDATE CLIPPING PARAMETER 0.2
CRITIC LR COEFFICIENT K 0.25
DISCOUNT FACTOR 7y 0.99
Reward Learning component
HYPERPARAMETER HopPPER, WALKER2D, HALFCHEETAH, ANT
GAIL
TRANSITIONS BETWEEN UPDATES 2000
ASAF
EPISODES BETWEEN UPDATES 25

ASAF-1 and ASAF-w
TRANSITIONS BETWEEN UPDATES 2000

Table 7.9: Fixed hyperparameters for MuJoCo environments.

over 100 randomly sampled configurations for each task and 2 seeds to select for the follow-
ing hyperparameters: the log learning rate of the RL update and the discriminator update
separately sampled from uniform distributions over [—7, —1], the gradient norm clipping for
the RL update and the discriminator update separately sampled from uniform distributions
over {None, 1,10}, the number of epochs per update sampled from a uniform distribution
over {5, 10, 30,50}, the gradient penalty coefficient sampled from a uniform distribution over
{1,10} and the batch size for the RL update and discriminator update separately sampled
from uniform distributions over {100, 200, 500, 1000, 2000}
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HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL GAIL 4+ PPO
RL BATCH SIZE (IN TRANSITIONS) - - - 256 200
DISCRIMINATOR BATCH SIZE (IN TRANSITIONS) - - 100 - 2000
DISCRIMINATOR BATCH SIZE (IN TRAJECTORIES) 10 10 - - -
GRADIENT CLIPPING (RL UPDATE) - - - - 1
GRADIENT CLIPPING (DISCRIMINATOR UPDATE) 10. 10. 1. - 1.
EPOCHS PER UPDATE 50 50 30 - 5
GRADIENT PENALTY (DISCRIMINATOR UPDATE) - - - - 1.
RL UPDATE LR €gy, - - - 3% 1074 1.8 %1075
DISCRIMINATOR UPDATE LR €p 0.001 0.001 0.001 - 0.011
WINDOW SIZE W - 200 1 - -
WINDOW STRIDE - 1 1 - -
Table 7.10: Best found hyperparameters for the Hopper-v2 environment
HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL GAIL + PPO
RL BATCH SIZE (IN TRANSITIONS) - - - 256 1000
DISCRIMINATOR BATCH SIZE (IN TRANSITIONS) - - 100 - 100
DISCRIMINATOR BATCH SIZE (IN TRAJECTORIES) 10 10 - - -
GRADIENT CLIPPING (RL UPDATE) - - - - -
GRADIENT CLIPPING (DISCRIMINATOR UPDATE) 10. 1 1 - 10
EPOCHS PER UPDATE 50 10 30 - 30
GRADIENT PENALTY (DISCRIMINATOR UPDATE) - - - - 1.
RL UPDATE LR €py, - - - 3%107% 0.0006
DISCRIMINATOR UPDATE LR €p 0.001 0.001 0.001 - 0.023
WINDOW SIZE W - 200 1 - -
WINDOW STRIDE - 1 1 - -
Table 7.11: Best found hyperparameters for the HalfCheetah-v2 environment
HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL GAIL + PPO
RL BATCH SIZE (IN TRANSITIONS) - - - 256 200
DISCRIMINATOR BATCH SIZE (IN TRANSITIONS) - - 500 - 2000
DISCRIMINATOR BATCH SIZE (IN TRAJECTORIES) 20 20 - - -
GRADIENT CLIPPING (RL UPDATE) - - - - -
GRADIENT CLIPPING (DISCRIMINATOR UPDATE) 10. 1. 10. - -
EPOCHS PER UPDATE 30 10 50 - 30
GRADIENT PENALTY (DISCRIMINATOR UPDATE) - - - - 1.
RL UPDATE LR €g), - - - 3x1074 0.00039
DISCRIMINATOR UPDATE LR €p 0.001 0.001 0.001 - 0.00066
WINDOW SIZE W - 100 1 - -
WINDOW STRIDE - 1 1 - -

Table 7.12: Best found hyperparameters for the Walker2d-v2 environment
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HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL GAIL 4+ PPO
RL BATCH SIZE (IN TRANSITIONS) - - - 256 500
DISCRIMINATOR BATCH SIZE (IN TRANSITIONS) - - 100 - 100
DISCRIMINATOR BATCH SIZE (IN TRAJECTORIES) 20 20 - - -
GRADIENT CLIPPING (RL UPDATE) - - - - -
GRADIENT CLIPPING (DISCRIMINATOR UPDATE) 10. 1. 1. - 10.
EPOCHS PER UPDATE 50 50 10 - 50
GRADIENT PENALTY (DISCRIMINATOR UPDATE) - - - - 10
RL UPDATE LR €gy, - - - 3% 1074 85%107°
DISCRIMINATOR UPDATE LR €p 0.001 0.001 0.001 - 0.0016
WINDOW SIZE W - 200 1 - -
WINDOW STRIDE - 50 1 - -

Table 7.13: Best found hyperparameters for the Ant-v2 environment

Pommerman. For this set of experiments, we use a number of fixed hyperparameters for
all algorithms either inspired from their original papers for the baselines or selected through
preliminary searches. These fixed hyperparameters are presented in Table 7.15.

For the most sensitive hyperparameters, the learning rates for the reinforcement learning
and discriminator updates (ery, and €p), we perform a random search over 25 configurations
and 2 seeds each for all algorithms. We consider logarithmic ranges, i.e., ¢ = 10* with u ~
Uniform(—7, —3) for ep and u ~ Uniform(—4, —1) for egr,. We also include in this search the
window-size w for ASAF-w, sampled uniformly within {32, 64, 128}. The best configuration
for each algorithm is presented in Table 7.14. Figure 7.3 uses these configurations retrained
on 10 seeds.

Finally, for all neural networks (policies and discriminators) we use the same architecture.
Specifically, we first process the feature maps (see Section 7.3.1) using a 3-layers convolu-
tional network with a number of hidden feature maps of 16, 32, and 64 respectively. Each
one of these layers uses a kernel size of 3x3 with a stride of 1, no padding, and a ReLU
activation. This module ends with a fully connected layer of hidden size 64 followed by a
ReLU activation. The output vector is then concatenated to the unprocessed additional in-
formation vector (see Section 7.3.1) and passed through a final MLP with two hidden layers
of size 64 and ReLU activations (except for the last layer).

HYPERPARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO BC
DISCRIMINATOR UPDATE LR ep 0.0007  0.0002 0.0001 - 3.1%¥1077 9.3%1077 0.00022
RL UPDATE LR €y, - - - 0.00019 0.00017 0.00015 -
WINDOW SIZE W - 32 1 - - - -
WINDOW STRIDE - 32 1 - - - -

Table 7.14: Best found hyperparameters for the Pommerman Random-Tag environment
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RL component

HYPERPARAMETER POMMERMAN RANDOM-TAG

SAC

BATCH SIZE (IN TRANSITIONS) 256
REPLAY BUFFER LENGTH |B] 10°
WARMUP (IN TRANSITIONS) 1280
INITIAL ENTROPY WEIGHT « 0.4
GRADIENT NORM CLIPPING THRESHOLD 0.2
TRANSITIONS BETWEEN UPDATE 10
TARGET NETWORK WEIGHT T 0.05
PPO

BATCH SIZE (IN TRANSITIONS) 256
GAE PARAMETER \ 0.95
EPISODES BETWEEN UPDATES 10
EPOCHS PER UPDATE 10
UPDATE CLIPPING PARAMETER 0.2
CRITIC LR COEFFICIENT K 0.5

Reward Learning component
HYPERPARAMETER PoMMERMAN RANDOM-TAG

AIRL, GAIL, ASAF-1

BATCH SIZE (IN TRANSITIONS) 256
EPISODES BETWEEN UPDATES 10
EPOCHS PER UPDATE 10

ASAF, ASAF-w

BATCH SIZE (IN TRAJECTORIES) 5
EPISODES BETWEEN UPDATES 10
EPOCHS PER UPDATE 10

Table 7.15: Fixed Hyperparameters for Pommerman Random-Tag environment.

7.4 Results

We evaluate our methods on a variety of discrete and continuous control tasks. Our results
show that, in addition to drastically simplifying the adversarial IRL framework, our methods
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perform on par or better than previous approaches in all but one environment. When
trajectory length is really long or drastically varies across episodes (see MuJoCo experiments
Section 7.4.2), we find that using sub-trajectories with fixed window-size (ASAF-w or ASAF-
1) significantly outperforms its full trajectory counterpart ASAF.

7.4.1 Experiments on classic control and Box2D tasks (discrete
and continuous)
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Figure 7.1: Results on classic control and Box2D tasks for 10 expert demonstrations. The first
row contains discrete actions environments, the second row corresponds to continuous control.

Figure 7.1 shows that ASAF and its approximate variations ASAF-1 and ASAF-w quickly
converge to expert’s performance (here w was tuned to values between 32 to 200, see Sub-
section 7.3.2 for selected window-sizes). This indicates that the practical benefits of using
shorter trajectories or even just transitions do not hinder performance on these simple tasks.
Note that for Box2D and classic control environments, we retrain the best configuration of
each algorithm for twice as long than was done in the hyperparameter search, which allows
for uncovering unstable learning behaviors. Figure 7.1 shows that our methods display much
more stable learning: their performance rises until they match the expert’s and does not
decrease once it is reached. This is a highly desirable property for an Imitation Learning
algorithm since in practice one does not have access to a reward function and thus cannot
monitor the performance of the learning algorithm to trigger early stopping. The baselines
on the other hand experience occasional performance drops. For GAIL and AIRL, this is
likely due to the concurrent RL and IRL loops, whereas, for SQIL, it has been noted that
an effective reward decay can occur when accurately mimicking the expert (Reddy et al.,
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2019). This instability is particularly severe in the continuous control case. In practice, all
three baselines use early stopping to avoid performance decay (Reddy et al., 2019).

7.4.2 Experiments on MuJoCo (continuous control)

To scale up our evaluations in continuous control we use the popular MuJoCo benchmarks. In
this domain, the trajectory length is either fixed at a large value (1000 steps on HalfCheetah)
or varies a lot across episodes due to termination when the character falls down (Hopper,
Walker2d, and Ant). Figure 7.2 shows that these trajectory characteristics hinder ASAF’s
learning as this latter requires collecting multiple episodes for every update, while ASAF-
1 and ASAF-w perform well and are more sample-efficient than ASAF in these scenarios.
We focus on GAIL since Fu et al. (2017) claims that AIRL performs on par with it on
MuJoCo environments. In Figure 7.7 in Subsection 7.4.7 we evaluate GAIL both with and
without Gradient Penalty (GP) on discriminator updates (Gulrajani et al., 2017; Kostrikov
et al., 2019) and while GAIL was originally proposed without GP (Ho and Ermon, 2016), we
empirically found that GP prevents the discriminator to overfit and enables RL to exploit
dense rewards, which highly improves its sample efficiency. Despite these ameliorations,
GAIL proved to be quite inconsistent across environments despite substantial efforts on
hyperparameter tuning. On the other hand, ASAF-1 performs well across all environments.
Finally, we see that SQIL’s instability is exacerbated on MuJoCo.
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Figure 7.2: Results on MuJoCo tasks for 25 expert demonstrations.

7.4.3 Experiments on Pommerman (discrete control)

Finally, to scale up our evaluations in discrete control environments, we consider the domain
of Pommerman (Resnick et al., 2018), a challenging and very dynamic discrete control envi-
ronment that uses rich and high-dimensional observation spaces (see Subsection 7.3.1). We
perform evaluations of all of our methods and baselines on a 1 vs 1 task where a learning
agent plays against a random agent, the opponent. The goal for the learning agent is to navi-
gate to the opponent and eliminate it using expert demonstrations provided by the champion
algorithm of the FFA 2018 competition (Zhou et al., 2018). We removed the ability of the
opponent to lay bombs so that it does not accidentally eliminate itself. Since it can still move
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around, it is however surprisingly tricky to eliminate: the expert has to navigate across the
whole map, lay a bomb next to the opponent, and retreat to avoid eliminating itself. This
entire routine has then to be repeated several times until finally succeeding since the oppo-
nent will often avoid the hit by chance. We refer to this task as Pommerman Random-Tag.
Note that since we measure the success of the imitation task with the win-tie-lose outcome
(a notably sparse performance metric), a learning agent has to truly reproduce the expert
behavior until the very end of trajectories to achieve higher scores. Figure 7.3 shows that
all three variations of ASAF as well as Behavioral Cloning outperform the other baselines.
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Figure 7.3: Results on Pommerman Random-Tag: (Left) Snapshot of the environment. (Center)
Learning measured as evaluation return over episodes for 150 expert trajectories (Right) Average
return on last 20% of training for decreasing number of expert trajectories [300, 150, 75, 15, 5, 1].

7.4.4 Wall Clock Time

We report training times in Figure 7.4 and observe that ASAF-1 is always the fastest to learn.
Note however that reports of performance w.r.t wall-clock time should always be taken with
a grain of salt as they are greatly influenced by hyperparameters and implementation details.
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Figure 7.4: Training times on MuJoCo tasks for 25 expert demonstrations.
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7.4.5 Mimicking the expert

To ensure that our method actually mimics
the expert and does not just learn a policy
that collects high rewards when trained with
expert demonstrations, we ran ASAF-1 on
the Ant-v2 MuJoCo environment using vari-
ous sets of 25 demonstrations. These demon-
strations were generated from a SAC agent
at various levels of performance during its
training. Since at low levels of performance,
the variance of the episode’s return is high,
we filtered collected demonstrations to lie in
the targeted range of performance (e.g. re-
turn in [800, 1200] for the 1K set). Results
in Figure 7.5 show that our algorithm suc-
ceeds at learning a policy that closely emu-
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Figure 7.5: ASAF-1 on Ant-v2. Colors are 1K,
2K, 3K, 4K, and 5K expert’s performance.

lates various demonstrators (even when these are suboptimal).

7.4.6 ASQF vs ASAF

Figure 7.6 shows that ASQF performs well in
small-scale environments but struggles and
eventually fails in more complicated envi-
ronments. Specifically, it seems that ASQF
does not scale well with the observation
space size. Indeed mountaincar, cartpole,
lunarlander, and pommerman have respec-
tively an observation space dimensionality
of 2, 4, 8, and 960. This may be due to the
fact that the partition function Eq. (7.21)
becomes more difficult to learn. Indeed, for
each state, several transitions with differ-
ent actions are required in order to learn it.
Poorly approximating this partition function
could lead to assigning too low a probability
to expert-like actions and eventually failing
to behave appropriately. ASAF on the other
hand explicitly learns the probability of an
action given the state — in other words, it
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explicitly learns the partition function — and is therefore immune to that problem.

7.4.7 Importance of Gradient Penalty for GAIL
Figure 7.7 shows the benefits of using Gradient Penalty with GAIL on MuJoCo tasks.
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Figure 7.7: Comparison between original GAIL (Ho and Ermon, 2016) and GAIL with Gradient
Penalty (Gulrajani et al., 2017; Kostrikov et al., 2019)

7.5 Discussion

MaxEnt IRL, the foundation of modern IL was first proposed in Ziebart et al. (2008). Then,
Ziebart (2010) further elaborated it and derived the optimal form of the MaxEnt policy
which is at the core of our methods. Finn et al. (2016a) proposed a GAN formulation
to IRL that leverages the energy-based models from Ziebart (2010). However, Finn et al.
(2016b)’s implementation of this method relied on processing full trajectories with a Linear
Quadratic Regulator, and optimizing with guided policy search was required to manage the
high variance from the trajectories. To retrieve robust rewards, Fu et al. (2017) proposed a
straightforward transposition of Finn et al. (2016a) to state-action transitions. Yet, to do
so, they had to let go of the GAN objective (i.e., the Jensen-Shannon divergence) for the
policy optimization, and instead minimize the Kullback—Leibler divergence from the expert
occupancy measure to the policy occupancy measure (Ghasemipour et al., 2019).

Later works move away from the Generative Adversarial formulation (Sasaki et al., 2018;
Kostrikov et al., 2020). To do so, Sasaki et al. (2018) directly express the expectation of
the Jensen-Shannon divergence between the occupancy measures in term of the agent’s Q-
function, which can then be used to optimize the agent’s policy with off-policy Actor-Critic
(Degris et al., 2012). Similarly, Kostrikov et al. (2020) use Dual Stationary Distribution
Correction Estimation (Nachum et al., 2019) to approximate the Q-function on the expert’s
demonstrations before optimizing the agent’s policy under the initial state distribution using
the reparametrization trick (Haarnoja et al., 2018). While Sasaki et al. (2018); Kostrikov
et al. (2020) are related to our methods in their interests in learning directly the value
function, they differ in their goal and thus in the resulting algorithmic complexity. Indeed,
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they aim at improving the sample efficiency in terms of environment interaction and therefore
move away from the GAN formulation towards more complicated divergence minimization
methods. In doing so, they further complicate the Imitation Learning methods while still
requiring explicitly learning a policy. Additionally, simply using the GAN formulation with
an Experience Replay Buffer can significantly improve sample efficiency (Kostrikov et al.,
2019). For these reasons, and since our aim is to propose efficient yet simple methods, we
focus on the Adversarial Imitation Learning formulation and the MaxEnt IRL framework.

While Reddy et al. (2019) share our interest in simpler IL methods, they pursue an
opposite approach to ours. They propose to eliminate the reward learning steps of IRL
by simply hard-coding a reward of 1 for the expert’s transitions and of 0 for the agent’s
transitions. They then use Soft Q-learning (Haarnoja et al., 2017) to learn a value function by
sampling transitions in equal proportion from the expert’s and agent’s buffers. Unfortunately,
once the learner accurately mimics the expert, it collects expert-like transitions that are
labeled with a reward of 0 since they are generated and not coming from the demonstrations.
This effectively causes the reward of expert-like behavior to decay as the agent improves and
can severely destabilize learning to a point where early stopping becomes required (Reddy
et al., 2019).

Our work builds on Finn et al. (2016a), yet its novelty is to explicitly express the proba-
bility of a trajectory in terms of the policy in order to directly learn this latter when training
the discriminator. In contrast, Fu et al. (2017) considers a transition-wise discriminator with
un-normalized probabilities which makes it closer to ASQF (Section 7.2) than to ASAF-1.
Additionally, AIRL from Fu et al. (2017) minimizes the KL divergence between occupancy
measures (Ghasemipour et al., 2019) whereas ASAF minimizes the JS divergence between
trajectory distributions.

Finally, Behavioral Cloning uses the loss function from supervised learning (classification
or regression) to match the expert’s actions given the expert’s states. Its data is limited
to the demonstrated state-action pairs without environment interaction and therefore it
suffers from the compounding error problem due to co-variate shift (Ross and Bagnell, 2010).
Contrarily, ASAF-1 uses the binary cross entropy loss in Eq. (7.14) and does not suffer from
compounding errors as it learns on both generated and expert’s trajectories.

Concretely, we strongly believe that enabling affordable agent modeling by developing
simple and robust, yet efficient, IL algorithms can pave the way to significant improve-
ments in multi-agent learning. To that end, we propose an important simplification to the
Adversarial Imitation Learning framework by removing the Reinforcement Learning opti-
mization loop altogether. We show that, by using a particular form for the discriminator,
our method recovers a policy that matches the expert’s trajectory distribution. We evalu-
ate our approach against prior works on many different benchmarking tasks and show that
our method (ASAF) compares favorably to the predominant Imitation Learning algorithms.
The approximate versions, ASAF-w and ASAF-1, that use sub-trajectories yield flexible
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algorithms that work well both on short and long-time horizons while remaining simple, ro-
bust, and computationally affordable. Finally, our approach still involves a reward learning
module through its discriminator, and it would be interesting in future work to explore how
ASAF can be used to learn robust rewards, along the lines of Fu et al. (2017).
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Chapter 8

Discussion of findings

In this thesis, we highlight both the importance and challenges of coordinating concurrent
learners in cooperative multi-agent tasks. Specifically, we strive to identify settings in which
multi-agent coordination is strenuous, yet a requirement for good team performance. For
each of these settings, we identify the causes for the failure of coordination and propose
practical algorithmic improvements that promote coordination and lead to successful teams.

We started with Multi-Agent Reinforcement Learning, the most favorable setting for
coordination: all the agents receive rewards and they continuously interact in the environ-
ment. Therefore, each agent is driven by explicit learning signals, and learning coordinated
behavior through unrestricted interactions with the world or other agents is straightforward.

Nevertheless, we observe that, even in these ideal conditions, prominent learning algo-
rithms fail to coordinate and do not discover the optimal team strategies. Indeed, current
MARL algorithms may fall short in training agents that leverage information about the
behavior of their teammates. Crucially, this occurs even when agents are explicitly given
their teammates’ observations, actions, and current policies throughout training. We be-
lieve that this is an important finding worth raising some concerns among the community:.
Particularly, there is a widespread belief that centralized training (like MADDPG) solves
coordination and thus should always outperform decentralized training (like DDPG). Not
only is this belief unsupported by empirical evidence (at least in our experiments), but it
also prevents the community from investigating and tackling coordination flaws. These are
important limitations that impede learning safer and more effective multi-agent behaviors.
An agent cannot adapt to a new teammate or a change in an ally’s behavior if it does not
account for others. This prevents current methods to be applied in real-world settings where
external perturbations and uncertainties force artificial agents to be flexible and adaptable
when interacting with various individuals.

We propose to focus on coordination and give a practical definition of it: an agent’s
behavior should be predictable given its teammates’ behaviors. While we agree that this
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definition is restrictive and incomplete, we believe that it is a good starting point to consider.
Indeed, enforcing that criterion should make learning agents more aware of their teammates
if they are to coordinate with them. Yet, coordination alone does not ensure success, as
agents could be coordinated in an unproductive manner. More so, coordination could have
detrimental effects if it enables an attacker to influence an agent by taking control of a
teammate or using a mock-up teammate. For these reasons, when using MARL algorithms
(or even single-agent RL for that matter) for real-world applications, additional safeguards
are absolutely required to prevent the system from misbehaving, which is highly probable if
out-of-distribution states are to be encountered.

We show that coordination can be promoted by relying on shared incentives and enforc-
ing social norms across agents. First, we motivate the use of coordinated policies to ease
the discovery of successful team strategies in cooperative multi-agent tasks. Then, we foster
coordination with auxiliary tasks that bias the agent’s learning towards desirable policies.
We investigate two distinct approaches in Centralized Training and Decentralized Execu-
tion MARL algorithms. The first one, TeamReg, regularizes the agents’ policies so that
agents are both predictable and able to predict their teammates’ behaviors. The second
one, CoachReg, enforces that agents use sub-policies and that the group switches between
different behaviors synchronously and coherently. While the benefits of TeamReg appear
task-dependent — we show for example that it can be detrimental on tasks with a competi-
tive component — CoachReg significantly improves performance in almost all the presented
coordination-intensive multi-agent problems. Finally, we analyze the effects of our meth-
ods on the policies that our agents learn. We observe that the auxiliary tasks successfully
enforce the features that we propose as proxies for coordinated behaviors, namely predictabil-
ity, synchronicity, and coherence. Motivated by the success of this single-step coordination
technique, a promising direction is to explore model-based planning approaches to promote
coordination over long-term multi-agent interactions.

After exploring online MARL, the most favorable setting, we explore coordination in the
more challenging offline setting. An offline RL agent cannot interact with its environment
to figure out how its behavior is going to pan out. In offline MARL, the situation is even
direr as agents cannot interact with one another to understand how individual strategies
will blend together and result in complex team behaviors. Worse, offline learners may have
no way to probe each other and gain information about other agents’ current policies. This
gives rise to what we call the Offline Coordination Problem, which we propose decomposes
into the Strategy Agreement and the Strategy Fine-Tuning challenges.

We show that current state-of-the-art offline MARL methods fail at Strategy Agreement
and Strategy Fine-Tuning, and so even when allowed to fine-tune online once the offline
training is over. Specifically, independent learner approaches fail at both Strategy Agree-
ment and Strategy Fine-Tuning while Centralized Training and Decentralized Execution
approaches are able to deal with Strategy Agreement. Surprisingly, no model-free method
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is able to tackle Strategy Agreement, even the fully centralized one. The more different the
learned agents’ behavior from the offline data, the more severe the Strategy Fine-Tuning
requirement and thus the more severe the performance drop. This occurs for instance with
sub-optimal offline data (agents will try to improve on the collected data and their policy is
therefore likely to change) or if partial observability requires agents to adapt their behavior
compared to the demonstrated one.

We propose to remediate this Offline Coordination Problem by leveraging centralized
training and model-based methods. We learn a world model from the offline data and use
it to generate synthetic interaction data. That way, the offline learners can simulate how
their individual policies will interact and collectively derive coordinated team strategies. We
show that our approach, MOMA-PPO, the first model-based offline MARL method, largely
outperforms the prominent offline learning algorithms. Even more impressively, this multi-
agent algorithm outperforms single-agent approaches that completely sidestep the Strategy
Agreement (SA) problem. This highlights that our method solves both the Strategy Agree-
ment and Strategy Fine-Tuning problems. This suggests that the benefits of model-based
approaches observed in the single-agent offline setting (Yu et al., 2020) transfer well to
multi-agent problems and can overcome the challenges of offline coordination.

A promising extension to this work is to consider decentralized training. In real-world
applications, many offline learners are independent (humans, animals, robots from different
companies, etc.) and do not have direct access to other agents’ policies. Therefore, effort
must be made to propose more relevant learning settings in which offline learners might only
be able to communicate with one another during training. Even more restricting settings
without communication would require learners to estimate other agents’ policies solely from
what might be learned from the shared offline data. Finally, research on how to safely
learn and leverage world models when querying them outside of the training distribution is
mandatory for real-world applications.

After considering MARL and offline MARL, we challenge coordination in a less conven-
tional learning paradigm. While Chapter 5 is about removing “interactions” and questioning
if coordination can occur without them, Chapter 6 questions two other pillars of coordina-
tion: shared incentives and explicit external learning signals. In classical multi-agent learn-
ing paradigms, agents’ learning and coordination are guided by either external rewards or
demonstrations. In Chapter 6, we take inspiration from the field of experimental semiotics
— which has shown the extent of human proficiency at learning from a priori unknown in-
structions meanings in the absence of clear external reinforcement or demonstrations — and
question this assumption. We present the Architect-Builder Problem: an asymmetrical set-
ting in which an architect must learn to guide a builder toward completing a specific task.
The architect knows the target task but cannot act in the environment and can only send
arbitrary messages to the builder. The builder on the other hand can act in the environ-
ment, but receives no rewards nor has any knowledge about the task: it must learn to solve
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it by relying only on the messages sent by the architect. Crucially, the meaning of messages
is not defined initially, nor shared between the agents, but must be negotiated throughout
learning. Under these constraints, we propose Architect-Builder Iterated Guiding, a solution
to the ABP where the architect leverages a learned model of the builder to guide it. The
builder in return uses self-imitation learning to reinforce the guided behavior. To palliate
the non-stationarity induced by the two agents concurrently learning, ABIG structures the
sequence of interactions between the agents into interaction frames. We analyze the key
learning mechanisms of ABIG and test it in a 2-dimensional instantiation of the ABP where
tasks involve grasping cubes, placing them at a given location, or building various shapes.
In this environment, ABIG results in a low-level, high-frequency, guiding communication
protocol that, not only enables an architect-builder pair to solve the task at hand but can
also generalize to unseen tasks.

This work investigates an original approach to autonomous agent learning and coordi-
nation by proposing a novel interactive learning setting. The proposed learning paradigm
contrasts with more classical supervision such as reward signals and demonstrations. By
proposing an iterative and interactive learning framework, the ABP promotes a finer and
more flexible control over the learned behaviors than designing rewards or demonstrations.
Indeed, the behavior is constantly evaluated and refined throughout learning as the inter-
actions unfold. Still, in this process, it is essential to keep in mind the importance of the
architect since it is the agent that judges whether or not the learned behavior is satisfactory.

Our approach has several limitations which open up different opportunities for further
work. First, ABIG trains agents in a stationary configuration which implies doing several
interaction frames. Each interaction frame involves collecting numerous transitions and thus
ABIG is not data efficient. A challenging avenue would be to relax this stationarity constraint
and have agents learn from experience buffers containing non-stationary data with obsolete
agent behaviors. Second, the builder remains dependent on the architect’s messages even
at convergence. Using a Vygotskian approach (Colas et al., 2020, 2021), the builder could
internalize the guidance from the architect and become autonomous at the task. This could,
for instance, be achieved by having the builder learn a model of the architect’s message
policy once the communication protocol has converged.

Because we present the first step towards interactive agents that learn in the ABP, our
method uses simple tools (feed-forward networks and self-imitation learning). It is however
important to note that our proposed formulation of the ABP can support many different
research directions. Experimenting with agents’” models could allow for the investigation of
other forms of communication. One could, for instance, include memory mechanisms in the
models of agents in order to facilitate the emergence of retrospective feedback, a form of
emergent communication observed in Vollmer et al. (2014). ABP is also compatible with
low-frequency feedback and to experiment in this direction, one could penalize the archi-
tect for sending messages and assess whether a pair can converge to higher-level meanings.
Messages could also be composed of several tokens in order to allow for the emergence of
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compositionality. Finally, while we believe that the proposed framework is best suited to
model Brain-Computer Interface, it can also serve as a testbed to study the fundamental
mechanisms of emergent communication and investigate the impact of high-level communi-
cation priors of experimental semiotics.

Our findings align with the main axes that we have identified in the literature and dis-
cussed in Chapter 2: interactions, internal models and shared incentives are central to coor-
dination. Coordination is about structuring interactions at evaluation and, in turn, requires
to structure interactions during learning. In Chapter 4, shaping learning interactions with
social norms that enforce predictability, coherence, and synchronicity resulted in more co-
ordinated and better-performing teams. Similarly, ABIG in Chapter 6 relies on interaction
frames to interleave agents’ interactive learning and enable them to coordinate and commu-
nicate in a challenging setting. However, it is the Offline Coordination Problem of Chapter 5
that illustrates best the need for interactions: in the absence of them, offline learners cannot
coordinate and fail. Yet, leveraging synthetic data to simulate interactions we were able to
restore the learners’ ability to coordinate and perform together.

Shared incentives are usually what drive coordination, and MARL relies on every agent
receiving an environmental reward to foster cooperation. Most of the time, as in Chapters 4
and 5, cooperative MARL these rewards are shared and account for the team performance.
On the one hand, we have shown in Chapter 4 that additional shared incentives such as
social norms can greatly improve coordination and performance. On the other hand, as
we have investigated in Chapter 6, removing this shared team reward assumption makes
learning, let alone coordinating, daunting. Learning in this setting required to impose a
shared intent prior by specifying that agents assume that they pursue the same objective as
their teammates. Because some agents can ignore what the objective actually is, this shared
incentive is more versatile and can accommodate more settings than shared team rewards.
It remains, however, similar to it in essence.

Throughout this thesis, the importance of modeling others and their interactions has
become evident. Indeed, it is at the core of all the solutions that we proposed: in Chapter 4,
models of others are used to enforce social norms on the leaned agents’ policies; in Chapter 5,
learning a world model enables us to simulate the learners’ interactions and estimate how
individual policies will blend into group behaviors. This shows that world models shall not
be discarded for multi-agent problems, finally, in Chapter 6, the architect must learn a model
of the builder in order to plan how to best guide it. However, current approaches to building
inner models of others are either simplistic — lacking expressivity — or overly complex. In
practice, this complexity prevents sophisticated methods to be used as part of higher-level
multi-agent algorithms. Consequently, in Chapter 7, we propose Adversarial Soft Advantage
Fitting, a novel IL approach that is competitive with the state-of-the-art methods while
being much more simple, robust, and computationally affordable.
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Chapter 9

Conclusion and summary

Our research has highlighted that coordination is not a given and can elude us even in
settings that meet all the necessary prerequisites (see Chapter 4). Yet, our investigation
has also demonstrated the remarkable versatility of multi-agent learning frameworks and
how they allow for efficient coordination when approached appropriately. Notably, we have
showcased that coordination can be enhanced by leveraging shared incentives and social
norms (see Chapter 4). Moreover, our findings indicate that coordination can occur even
in the absence of genuine interactions provided that learners construct world models to
simulate how individual behaviors blend into coherent group strategies (see Chapter 5).
Remarkably, learners equipped with high-level priors on objectives and interactions can
effectively coordinate without relying on external rewards or demonstrations (see Chapter 6).
Lastly, Chapter 7 has introduced simple yet efficient Imitation Learning approaches to build
models of others, which is a central aspect of coordination.

Our research has delved into diverse settings, revealing that coordination can be attained
through the use of interactions, shared incentives, and inner models. However, significant
challenges remain before these techniques can alleviate complex and long-term real-world
issues. To keep this grounded, let us consider the detrimental impact of human activities and
climate change on biodiversity which is well illustrated by the pressing need for safeguarding
the integrity of blue corridors (Dunn et al., 2019; Johnson et al., 2022). Blue corridors are
whales’ crucial migratory routes across the oceans and have become very hazardous due to
the cumulative threats of industrial fishing, ship strikes, pollution, habitat loss, and climate
change. It is complex yet vital to protect these migration superhighways by creating networks
of marine protected areas to ensure that whale populations have every opportunity to thrive.

In this context, we believe that leveraging agent-based modeling, mechanism design, and
multi-agent learning holds significant potential to inform decision-making processes. For
instance, by modeling how climate change will impact oceans’ temperatures, salinity, and
currents, we can estimate the potential effects on plankton populations and their distribution
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across the oceans. Subsequently, this knowledge can inform us about whales’ future migra-
tory routes, therefore guiding the design and enforcement of adequate marine protected areas.
However, it is crucial to recognize that such interventions may have ripple effects on fishing
companies and maritime transport, prompting them to alter their operational strategies, and
retroactively affecting whales in unforeseen ways.

This complex scenario is a highly dynamic and intricate multi-agent system for which
current techniques fall short. Firstly, the agents are immersed in an environment that con-
stantly evolves, necessitating the integration of sophisticated prediction models from cli-
matology, fluid dynamics, ecology, and economics. Additionally, the multitude of agents
involved in this system exhibit heterogeneity and engage in both competitive and cooper-
ative relationships. Moreover, these agents encompass entities such as plankton, whales,
fishing, and maritime transportation companies which adapt at very different time scales.

Addressing these challenges demands further advancements in our understanding of
multi-agent systems and how they can decompose problems whose complexity emerges from
the interaction of many different actors. By bridging the gaps between disciplines to draw
insights from agent-based modeling, mechanism design, and multi-agent learning, we can
aspire to capture the intricacies that link the agents’ behaviors to their environment. Mod-
eling these relationships will eventually allow the creation of comprehensive frameworks to
assist in navigating the complexities of real-world decision-making. Ultimately, our research
investigates the mechanisms of multi-agent coordination and contributes to the advancement
of knowledge that will pave the way for more effective strategies.
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