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Abstract

Understanding the spatial and temporal variations of the precipitation process is essential
for the planning, design, and management of various water resources systems (e.g., urban
drainage systems, flood protection dams, etc.). Furthermore, in recent years, climate change
impacts on precipitation have been considered as one of the most critical issues for water
resources management worldwide. Hence, it is essential to establish the linkage between the
large-scale climate variables in the atmosphere with the precipitation characteristics at a local
site of interest for impact and adaptation studies. The present study is therefore carried out in
order to develop appropriate methods for improving the accuracy of precipitation estimation at
a gauged or ungauged local site in the context of a changing climate. This study can be divided

into five main parts.

The first part of this research aims to develop a new statistical downscaling (SD) model for
describing the linkage between large-scale climate predictors and observed daily precipitation
characteristics at a local site. The proposed SD model, referred hereafter as SDGAM, is based on
the Generalized Additive Modeling (GAM) method. The feasibility and accuracy of the SDGAM
are assessed using the National Center for Environmental Prediction (NCEP) re-analysis data and
the observed daily precipitation data available for the 1961-2000 period at ten gauged sites located
in Southern Quebec and Ontario, Canada. Results of this illustrative application have indicated
that the proposed SDGAM model could provide more accurate results than those given by the

currently popular SDSM method in practice.
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The second part of this research is to propose a new statistical downscaling approach based
on the combination of the spatial downscaling method to link large-scale climatic variables
provided by Global Climate Models (GCMs) to daily extreme precipitations at a local site using
the SDGAM and the temporal downscaling procedure to describe the relationships between daily
extreme precipitations with sub-daily extreme precipitations using the scaling General Extreme
Value distribution and the scaling behavior of the empirical Probability Weighted Moments
(GEV/PWM). The proposed approach was assessed using precipitation data from 5 minutes to 24
hours at 10 representative stations across Canada. It was found that the annual maximum
precipitation series in Canada displayed different scaling behaviors depending on the locations
considered. Intensity-Duration-Frequency (IDF) relations were then constructed for historical
period of 1961-2000 and future periods of 2030s, 2060s and 2090s for different Representative

Concentration Pathways (RCP 2.6, RCP 4.5 and RCP 8.5).

The third part of this research aims to estimate daily precipitation series for ungauged sites
in Vietnam. Initially, daily rainfall series data of 155 stations across Vietnam were employed to
identify different homogeneous rainfall regions using the Principal Component Analysis (PCA)
method. Daily precipitation series at ungauged sites were then estimated using a proposed two-
stage interpolation method to describe the persistence in rainfall occurrences and amounts for the
identified rainfall homogenous regions. The jackknife technique was used to represent the
ungauged site condition. Results of this study have shown that Vietnam can be identified into 7
homogeneous rainfall regions. In addition, the proposed estimation procedure can provide the

estimated daily precipitation series that are statistically similar to the observed data.
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The fourth part of this research is to investigate the presence of trends in daily annual
maximum precipitation series using the historical rainfall records available from a network of 175
high-quality stations across Canada and the downscaled regional gridded data from the National
Aeronautics Space Administration (NASA) Earth Exchange Global Daily Downscaled Projections
(NEX-GDDP). The Mann-Kendall non-parametric test was adopted for trend detection of
historical observed data and the trends were estimated using Sen's method. The trends were
computed for two different periods: historical period from 1950 to 2005 (for all datasets) and future
period from 2006 to 2100 (for NEX-GDDP dataset). Results of this study have indicated an
increasing trend for most stations across Canada, approximately 55% for the observed historical
records, and around 80% for the downscaled regional gridded data. In addition, it was found that
the CanESM2 model provided the best results in terms of the mean and standard deviation of daily
annual maximum precipitation time series for Canada. In particular, the gridded data for British
Colombia (BC) showed a widespread variation among the 21 GCMs considered in NEX-GDDP.

Furthermore, a positive trend was found for more than 90% stations for the future period.

The final part of this research is to perform a detailed analysis of the variability in time and
in space of the daily annual maximum rainfalls and extreme temperatures over the Montreal region
for the present and future climates using the data from two different sources: the Pacific Climate
Impacts Consortium (PCIC) and the National Aeronautics Space Administration (NASA) Earth
Exchange Global Daily Downscaled Projections (NEX-GDDP). More specifically, the evaluation
was based on the climate simulation outputs from ten different Global Climate Models downscaled
(1) by PCIC to a regional 1/12-degree grid using the BCCAQ and BCSD methods; and (ii) by NASA
to a regional 1/4-degree grid. For the present climate, historical data for the 1961-1990 period from

observed weather stations in the Montreal region were also used for this evaluation. For the future
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climates, climate projections corresponding to the RCP 4.5 scenario for the 2006 — 2100 period were
considered. Results of this study have indicated that the downscaled regional gridded data from PCIC
are generally more robust and more accurate than those given by NEX-GDDP. However, the
downscaled data are different from the observed data at a given station. A bias correction is hence

required before these data could be used in planning and design of urban infrastructures.



Résumé

La connaissance sur les variations spatiales et temporelles du processus de précipitation est
essentielle pour la planification, la conception et la gestion de divers systémes de ressources en
eau (par exemple, les systtmes de drainage urbain, les barrages de protection contre les
inondations, etc.). En outre, ces derniéres années, les impacts du changement climatique sur les
précipitations ont été considérés comme I'un des problémes les plus critiques pour la gestion des
ressources en eau dans le monde. Par conséquent, il est essentiel d'établir le lien entre les variables
climatiques a grande échelle dans l'atmosphére et les caractéristiques des précipitations sur les sites
locaux pour les études d'impact et d'adaptation. La présente ¢tude est donc réalisée dans le but de
développer des méthodes appropriées pour améliorer la précision de 1'estimation des précipitations
a un site local jaugé ou non jaugé dans le contexte du changement climatique. Cette étude peut étre

divisée en cinq grandes parties.

La premicre partie de cette recherche vise a proposer un nouveau modele statistique de
réduction d'échelle pour décrire le lien entre les prédicteurs climatiques a grande échelle et les
caractéristiques des précipitations quotidiennes observées sur un site local. Le mod¢le proposé,
appelé ci-apres SDGAM, est basé sur les méthodes d'ajustement du mod¢ele additif généralisé
(GAM). La faisabilité et la précision de I'approche suggérée sont évaluées a l'aide des données de
réanalyse du Centre national de prévision environnementale (NCEP) et des données de
précipitations quotidiennes observées disponibles pour la période 1961-2000 a dix sites jaugés
situés dans le sud du Québec et en Ontario, Canada. Les résultats de cette application illustrative
ont indiqué que le modele SDGAM proposé pourrait fournir des résultats plus précis que ceux

fournis par la méthode SDSM actuellement la populaire en pratique.
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La deuxiéme partie de cette recherche présente une approche de réduction d'échelle
statistique basée sur la combinaison de la méthode de réduction d'échelle spatiale pour relier les
variables climatiques a grande échelle fournies par les modeles du climat global (MCG) aux
précipitations extrémes quotidiennes sur un site local en utilisant SDGAM et la procédure de
réduction d'échelle temporelle pour décrire les relations entre les précipitations extrémes
quotidiennes avec des précipitations extrémes sous-journalieres en utilisant la distribution des
valeurs extrémes générales (VEG) et le comportement de mise a 1'échelle des moments pondérés
par la probabilit¢ (VEG/MPP). Le modele proposé a été évalué a l'aide de données sur les
précipitations de 5 minutes a 24 heures a 10 stations représentatives a travers le Canada. On avait
constaté que les séries de précipitations maximales annuelles au Canada présentait de multiples
comportements d'échelle selon l'emplacement des stations considérées. Les relations intensité-
durée-fréquence (IDF) ont ensuite été construites pour la période historique de 1961-2000 et les
périodes futures des années 2030, 2060 et 2090 pour différentes voies de concentration

représentatives (RCP 2.6, RCP 4.5 et RCP 8.5).

La troisieme partie de cette recherche vise a générer des séries de précipitations
quotidiennes pour des sites non jaugés au Vietnam. Initialement, les données des séries de
précipitations quotidiennes de 155 stations a travers le Vietnam ont été utilisées pour identifier des
régions de précipitations homogenes a 'aide de la méthode d'analyse en composantes principales
(ACP). Des séries de précipitations quotidiennes en des sites non jaugés sont ensuite générées a
l'aide d'une nouvelle méthode d'interpolation en deux étapes pour décrire la dépendance dans
I’occurrence des pluies et la quantit¢é de précipitations pour des régions homogenes de
précipitations identifiées. La technique du jackknife a été utilisée pour représenter 1'état du site non

jaugé. Les résultats de cette étude ont montré que le Vietnam peut étre identifié¢ en 7 régions de
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précipitations homogenes. De plus, la méthode d’estimation proposée peut fournir des séries de

précipitations quotidiennes qui sont statistiquement semblable aux séries les données observées.

La quatrieéme partie de cette recherche examine la présence des tendances dans les séries
de précipitations annuelles maximales quotidiennes en utilisant les données historiques disponibles
aux 175 stations d'observation de haute qualité a travers le Canada et des données régionales
maillées a échelle réduite fournies par I’ Administration nationale de I'espace aéronautique (NASA)
dans le cadre du projet de Projections mondiales a échelle réduite d'Earth Exchange (NEX-GDDP).
Le test non paramétrique de Mann-Kendall a ét¢ adopté pour la détection des tendances des
données observées historiques et les tendances ont été estimées a 1'aide de la méthode de Sen. Les
tendances ont été calculées pour deux périodes différentes : la période historique de 1950 a 2005
(pour tous les jeux de données) et la période future de 2006 a 2100 (pour le jeu de données NEX-
GDDP). Les résultats ont montré une tendance a la hausse a travers le Canada pour la plupart des
stations, environ 55% pour les données observées historiques et environ 80% pour les données
maillées régionales a échelle réduite. L'étude a également révélé que CanESM2 offre les meilleurs
résultats en termes de moyenne et d'écart type des séries chronologiques quotidiennes de
précipitations maximales annuelles pour le Canada. En particulier, les données maillées en
Colombie-Britannique (C.-B.) ont montré une grande variabilité parmi les 21 MCG de NEX-
GDDP. En plus, on avait identifi¢ une tendance positive pour plus de 90% des stations pour la

période future.

La derniére partie de cette recherche effectue une analyse détaillée de la variabilité dans le
temps et dans l'espace des précipitations maximales annuelles quotidiennes et des températures

extrémes sur la région de Montréal pour les climats présents et futurs en utilisant les données de deux
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sources différentes: le Pacific Climate Impacts Consortium (PCIC) et la National Aeronautics Space
Administration (NASA) Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). Plus
précisément, I'évaluation était basée sur les sorties de simulation climatique de dix modeles
climatiques mondiaux différents réduits (i) par le PCIC a une grille régionale de 1/12 degré en
utilisant les méthodes BCCAQ et BCSD; et (i1) par la NASA a une grille régionale de 1/4 de degré.
Pour le climat actuel, les données historiques pour la période 1961-1990 provenant des stations
météorologiques observées dans la région de Montréal ont également été utilisées pour cette
évaluation. Pour les climats futurs, des projections climatiques correspondant au scénario RCP 4.5
pour la période 2006-2100 ont été considérées. Les résultats de cette étude ont indiqué que les
données maillées régionales a échelle réduite de PCIC sont généralement plus robustes et plus
précises que celles fournies par NEX-GDDP. Les données réduites sont cependant différentes des
données observées a une station donnée. Une correction de biais est donc nécessaire avant que ces

données puissent étre utilisées dans la planification et la conception des infrastructures urbaines.
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Chapter 1: General introduction

1.1 Problem statement

Understanding the spatial-temporal variations of precipitation process is essential for the
planning, design, and management of various water resources systems. For instance, daily
precipitation time series are commonly used to assess the availability of water resources in a
region, and in particular the extreme rainfall amount for a given return period is required for flood
design of various hydraulic structures, (e.g., urban drainage systems, flood protection dams, etc.)
(Hershfield, 1961; WMO, 2009). Recently, climate change impacts on precipitation have been
considered as one of the most critical issues for water resources management around the world
(IPCC, 2007; TPCC, 2014). Hence, it is essential to establish the linkage between the large-scale
climate variables in the atmosphere with the precipitation characteristics at local sites for impact

and adaptation studies.

General Circulation Models (GCMs) have been commonly used for evaluating the effects
of climate change under different scenarios of greenhouse gas emissions on the hydrological
regime. Although these GCMs have been recognized to be able to represent the main features of
the global distribution of basic climate parameters (Randall et al., 2007), they still cannot
reproduce well details of regional climate conditions at temporal and spatial scales of relevance to

hydrological impacts and adaptation studies (Nguyen et al., 2006). This is because outputs from



GCMs are usually at resolution that is too coarse (as illustrated in Figure 1-1) for many climate
change impact studies, generally greater than 2.5° for both latitude and longitude (approximately
250km). To refine the GCM coarse grid resolution climate projection data to much finer spatial
resolutions (regional or local scales) for the reliable assessment of climate change impacts,
different downscaling methods have been proposed to resolve this scale discrepancy (Wilby et al.,
2002; Fowler et al., 2007; Nguyen and Nguyen, 2008; Maraun et al., 2010; Khalili and Nguyen,

2016; Gooré¢ Bi et al., 2017).

NP Change (%) from 1861-90 to 2070-99, DJF, BAU

Figure 1-1. Spatial downscaling (Source: P. Gachon & Earthsystemcog.org)

In general, two broad categories of these downscaling procedures currently exist:
dynamical downscaling (DD) techniques, involving the extraction of regional scale information
from large-scale GCM data based on the modeling of regional climate dynamical processes (Denis

et al., 2002; Lenderink et al., 2007), and statistical downscaling (SD) procedures that relied on the



empirical relationships between large-scale atmospheric variables and surface environment
parameters (Wilby et al., 2004; Diaz-Nieto and Wilby, 2005; Nguyen and Nguyen, 2008; Wilby
and Dawson, 2013; Gaur and Simonovic, 2017). It has been widely recognized that the SD methods
offer several practical advantages over the DD procedures, especially in terms of flexible
adaptation to specific study purposes, and inexpensive computing resource requirement (Xu, 1999;
Prudhomme et al., 2002; Wilby et al., 2004; Nguyen et al., 2006). In addition, SD methods are

able to account for the observed climate and weather data available at studied sites.

The SD methods can be classified into three sub-categories based on the statistical
techniques used: weather typing approaches (Hay et al., 1991; Bardossy, 1997; Goodess, 1998;
Schnur and Lettenmaier, 1998), stochastic weather generators (Richardson, 1981; Semenov and
Barrow, 1997); and regression methods (Wilby et al., 2002; Wilby and Dawson, 2013). The major
disadvantage of the stochastic weather generators is related to the arbitrary manner of determining
the model parameters for future climate conditions, while its of weather classification schemes in
the weather typing approaches are somewhat subjective. Of these three approaches, the regression-
based SD procedures are more popular because they are relied on the directly derived statistical
relationships between large-scale climate predictors and local-scale parameters. The most popular
one in this sub-category is the Statistical Downscaling Model SDSM (Wilby et al., 2002) which
describes the daily precipitation process including two separate components: the modeling of the
occurrence of rainy days using a linear regression technique, and the modeling of the precipitation
amount on a rainy day. However, linear regression model in occurrence process fails to describe
the probability of a wet day as the value is outside of the range [0,1]. Furthermore, another

limitation of SDSM is less accurate in estimating the variance of daily precipitation amounts.



Hence, it is necessary to develop an improved SD model for describing more accurately the daily

precipitation processes at a given site.

In addition, in most practical applications, precipitation data at the locations of interest are
often limited or unavailable, consequently the existing statistical downscaling approaches
proposed for gaged sites cannot be employed. The estimation and prediction of hydrological
variables such as precipitation and flow with climate change conditions for these ungauged sites
remains a crucial challenge for managing and planning water resources (Sivapalan, 2003).
Although several studies have been proposed to assess the impacts of climate change on water
resources for ungauged locations (Creutin and Obled, 1982; Besaw et al., 2010; Candela et al.,
2012; Yeo and Nguyen, 2014; Bae and Oh, 2017; Nguyen et al., 2018), there is still no general
agreement on what the best approach is. Consequently, it is essential to develop a new SD approach
to describing more accurately the linkages between the large-scale climate variables given by
GCM simulation outputs and the expected daily precipitation characteristics at locations with

limited or without historical rainfall data.

1.2 Objectives of the study

In view of the aforementioned issues, the overall objective of the proposed research is to
develop innovative modeling approaches to describe accurately statistical and physical properties
of the daily precipitation series at a single site or at many sites concurrently in the context of
climate change for cases with sufficient rainfall records (gauged sites) and for cases where data
are limited or unavailable (ungauged sites) in order to provide suitable tools for high-quality
climate change impact assessment studies. More specifically, the proposed study aims at the

following objectives:



1) To develop a new SD model for describing accurately the linkage between large-scale
climate variables and the local characteristics of the daily precipitation process at a given gauged

location;

i1) To develop a new statistical approach to modeling sub-daily extreme rainfall processes
in order to improve the accuracy in the estimation of the Intensity-Duration-Frequency (IDF)

relations at a given gauged site in the context of a changing climate;

ii1) To develop a new SD approach for downscaling the daily precipitation process at an
ungauged location based on the rainfall records available at other sites within a given

homogeneous region;

iv) To evaluate the accuracy and reliability of regional climate simulations for present and

future periods for Canada; and

v) To evaluate the spatial and temporal variability of temperature and precipitation

extremes over Montreal region for present and future climates.

1.3 Organization of the thesis and chapter overview

The thesis consists of eight chapters. Chapter 1 provides the general introduction to the
current issues related to rainfall modeling in the context of climate change and describes the main
objectives of this research. Chapter 2 presents an overview of existing SD models and proposes a
new downscaling model for generating daily precipitation series at a single gauged site. Chapter 3
describes a new SD approach (the so-called spatial-temporal downscaling approach) for modeling
the sub-daily annual maximum precipitation (AMP) processes in the context of climate change.

Chapter 4 proposes a new approach for generating daily precipitation series at an ungauged site



based on rainfall information available within the same homogeneous region. Chapter 5 evaluates
the accuracy and reliability of regional climate simulations over Canada using the NASA Earth
Exchange Global Daily Downscaled Projections (NEX-GDDP) data for present and future
climates. Chapter 6 presents the assessment of the variability of precipitation and temperature
extremes over Montreal region for present and future climates. The major conclusions and
recommendations for further studies are summarized in Chapter 7. Finally, the statement of

originality is detailed in Chapter 8.



Chapter 2: A statistical downscaling model for daily

precipitation process at a local site

2.1 Introduction

As mentioned in previous section, climate change has been recognized as having a
profound impact on the hydrologic cycle at different temporal and spatial scales (Zhang et al.,
2011; Arnbjerg-Nielsen et al., 2013; Zhang et al., 2019). Global Climate Models (GCMs) have
been commonly used in various studies for assessing the potential impacts of climate change.
However, resolutions of outputs from these models are considered too coarse (generally greater
than 200km) and hence are not suitable for climate change impact studies at a regional or local
scale (Nguyen and Nguyen, 2008). Therefore, it is necessary to develop the linkage between daily
climate variables at global scale and the daily precipitation at a local site of interest. If this linkage
could be established, then the projected change of climate conditions given by a GCM could be
used to predict the resulting change of the local precipitation and the resulting runoff
characteristics. Different downscaling techniques have been proposed to downscale these global
GCM information to the precipitation series at a local site in several previous studies (Yarnal et

al., 2001; Nguyen and Yeo, 2011).

Generally, downscaling techniques can be classified into two broad categories: statistical
downscaling (SD) and dynamical downscaling (DD). The DD techniques involve the extraction

of regional scale information from large-scale GCM data based on the modeling of regional climate



dynamical processes (Denis et al., 2002; Lenderink et al., 2007). Being comprehensive physical
models, they are able to provide a more detailed physical understanding of the relationship between
the large-scale atmospheric variables and the regional weather conditions. The main disadvantage
of DD is the fact that it is computationally intensive and too coarse for local site studies (Xu, 1999).
On the other hand, statistical downscaling (SD) procedures rely on the empirical relationships
between large-scale atmospheric variables and surface environment parameters (Nguyen and
Nguyen, 2008; Wilby and Dawson, 2013). Furthermore, SD methods are flexible to adapt to
specific study purposes, and inexpensive computing resource requirement (Wilby et al., 2004;
Nguyen et al., 2006). Because of these practical advantages, SD methods have been commonly

used in many climate change impact studies in practice.

Depending on the selected statistical techniques, SD methods can be further categorized
into three main groups: weather typing, stochastic weather generation, and regression based
(Kilsby et al., 1998; Wilks and Wilby, 1999; Yarnal et al., 2001; Fowler et al., 2007; Hessami et
al., 2008). Firstly, the weather typing approach classifies days into number of discrete weather
conditions; however, this classification is somewhat subjective, and this approach is also
computationally intensive for large amount of input observed data (Von Storch et al., 1993).
Secondly, stochastic weather generation generates synthetic data series that have similar
statistical properties as observed data (Richardson, 1981). The challenge of stochastic approach
is to establish the linkage between parameters of these models and large-scale climate variables.
Finally, regression-based method establishes empirical relationships between global climate
predictors and local predictands (e.g., temperature and precipitation). This approach is simple
and straightforward; however, the limitation is related to stationary assumption of regression

model parameters.



In general, there is still no general agreement about which downscaling method is the most
appropriate approach for describing the observed precipitation characteristics for a given site in
the context of climate change, depending mainly on the specific study objectives and the specific
climatology of a particular study area (Nguyen and Nguyen, 2008). However, the Statistical
Downscaling Model SDSM (Wilby et al., 2002) has been considered as the most popular since it
is recommended by the Intergovernmental Panel on Climate Change (IPCC). Significant
limitations of the model have been recognized in some previous studies such as: 1) the linear
multiple regression model used for modeling the precipitation occurrence process could produce
some unrealistic results since the probability of rainfall occurrence could be outside of the range
[0,1]; and i1) the observed variance of rainfall occurrences and amounts for every month cannot be

accurately reproduced (see for instance the results for Dorval station shown in Figure 2-1).
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The present study proposes therefore a new statistical model, hereafter referred to as
SDGAM, using the Generalized Additive Modeling (GAM) methods in order to address the
shortcomings of the current popular SDSM model. The feasibility and accuracy of the suggested
approach are evaluated using the National Center for Environmental Prediction (NCEP) re-
analysis data and the observed daily precipitation data available for the 1961-2000 period at ten

gauged sites located in Southern Quebec and Ontario, Canada.

2.2 Methodology

2.2.1 Theoretical background

Traditionally, regression analysis is used to describe the linear relationship between the
random variable Y (dependent variables) and the random variables X (independent variables) as

follow:

Y=F+ 21 BiXi+¢ (2-1)

in which fi denotes the regression parameters, and ¢ is the error term. However, the relationship
between dependent and independent variables cannot always be represented by a linear behavior,
for example the relation between the precipitation and the atmospheric predictors. Hence, one
could consider the Generalized Additive Model (GAM), which was first introduced by Hastie and
Tibshirani (1986), as an extension of the linear regression methods by replacing the linear relation

by the smooth function fj, as follow:

Y=a+3k fiX) +e (2-2)

10



where a denotes the intercept, Xidenotes independent variables, and ¢ is error term.

It has been shown that GAM has several advantages over linear regression models because
of its flexibility because of the smooth function. Furthermore, data transformation is not required
due to the smooth functions fj. For instance, fj could be represented by the smooth splines which
are curves composed of polynomial functions connected at points named knots. Smooth
parameters can be automatically estimated using restricted maximum likelihood (REML) (Wood,
2006). The GAMs have been successfully adopted in some fields of water resources. Villarini and
Serinaldi (2012) used GAMs to forecast seasonal rainfall in Romania. Jones et al. (2013) evaluated
changes in the frequency and magnitude of extreme daily rainfall in Northern Ireland region.
Chebana et al. (2014) applied for regional frequency analysis to estimate flood quantiles at
ungauged sites in Canada. Laanaya et al. (2017) proved that GAM outperforms logistic and linear

regressions in modeling water temperatures.

In this study, a new statistical downscaling approach, called SDGAM, will be proposed
using the GAM for the modeling of the daily rainfall process. Details of the proposed method are
provided the following section. The performance of the SDGAM will be assessed using the GAMs

package developed by RStudio (RStudio Team, 2020).

2.2.2 Proposed statistical downscaling model for daily precipitation process -

SDGAM

- Precipitation Occurrence Process:

T, = Cox(ag + Xg=1f0i(Xi)) (2-3)

11



in which foi: smooth function

Xi: the large-scale atmospheric predictors given by GCM simulations

Cox: the correction coefficients for the rainfall occurrence process

ri is a uniform distributed random number, if ri < 7, precipitation occurs at day i

- Precipitation Amount Process (R;)

Y =f.Ca(a+ 2 fi(X) +1y) (2-4)

in which a: intercept

fi: smooth function

Xi: the large-scale atmospheric predictors given by GCM simulations

Cyp: the correction coefficients for amount process

ni=Z*S.

Si: the standard error of month i

f: the bias correction coefficient, coming from the deviation of the simulated mean
given by GCMs and the estimated mean given by the NCEP re-analysis data. The value of f is set

to 1 in the calibration step of the SDGAM model.

_ total mean by NCEP for calibration period

~ total mean by GCMs for calibration period
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In both precipitation occurrence and amount processes, the correction coefficients Cok and
Cakrepresent the difference between the mean of the observed data and the mean of the simulated
results based on the regression of GAM for the percentage of wet-day and precipitation amounts,
respectively. These coefficients are automatically computed during the calibration of the SDGAM
model such that an adequate agreement between the simulated results and the historical data was
found. Initially, the values of these coefficients are set to 1 in the calibration step. Figure 2-2

illustrated the steps in the SDGAM model.
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2.3 Illustrative application

2.3.1 Data

To assess the accuracy and feasibility of the proposed SDGAM model, a case study was
conducted using the NCEP re-analysis data (Kalnay et al., 1996) and the observed daily
precipitation data available at 10 stations located in Southern Quebec and Ontario regions, Canada
(see Figure 2-3). For comparison purposes, both SDSM and SDGAM models are considered for
this study. More specifically, the observed daily precipitation data for the period from 1961 to
2000 were used as detailed in Table 2-1. The 40-year record length are divided into 2 periods:
calibration period from 1961 to 1980 and validation period from 1981 to 2000. The NCEP re-
analysis data are composed of 26 daily atmospheric variables for the same periods that are selected

at grid box covering each of the stations considered (Table 2-2).

N
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Figure 2-3. Selected stations in Southern Quebec and Ontario, Canada
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Table 2-1. Information of rain-gaged stations in Southern Quebec and Ontario, Canada

Code Site name Province Latitude  Longitude Elevation Starting
S1  Cornwall ON 45.47 -74.70 64.0 1961
S2  Dorval QC 45.88 -72.48 36.0 1961
S3  Drummondeville QC 45.90 -72.05 82.3 1961
S4  Farnham QC 45.30 -72.90 68 1961
S5  Lennoxville QC 45.37 -71.82 181 1961
S6  Morrisburg ON 44.92 -75.19 81.7 1961
S7  Oka QC 45.50 -74.07 91.4 1961
S8  Ottawa CDA ON 45.38 -75.72 79.2 1961
S9 St Alban QC 46.72 -72.08 76.2 1961

S10 St Jeromes QC 45.80 -74.10 169.5 1961

Table 2-2. List of atmospheric variables of NCEP re-analysis data in the grid-box

Variable Level of measurement
Mean sea level pressure Surface
Airflow strength Surface 500 hPa 850 hPa
Zonal velocity Surface 500 hPa 850 hPa
Meridional velocity Surface 500 hPa 850 hPa
Vorticity Surface 500 hPa 850 hPa
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Variable Level of measurement

Wind direction Surface 500 hPa 850 hPa
Divergence Surface 500 hPa 850 hPa
Specific humidity Near surface 500 hPa 850 hPa
Geopotential height 500 hPa 850 hPa

2.3.2 Evaluation statistical indices

The evaluation of the performance of SDGAM model was carried out in comparison with
the SDSM model using different statistical indices as detailed in Table 2-3. These indices were
selected to represent the basic statistical properties of the daily precipitation process: average
and variance of precipitation, frequency of precipitation occurrence, intensity of precipitation
amount, extreme events. For purposes of illustration, results of this comparative study were
presented for Dorval station (S2) in the following section, and results of all other stations were

presented in Appendix A.

Table 2-3. Evaluation statistics and indices

Categories Code Description Unit Time scale
Precip_ m [Average of precipitation mm/day Month
Basic variable
Precip_std [Standard deviation of precipitation mm/day Month
Frequency PRCP1  [Percentage of wet days % Season
Intensity SDII Mean precipitation amount at wet days mm/day Season
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Categories Code Description Unit Time scale
CDD Maximum number of consecutive dry days| days Season
Extreme PRECO90P [90th percentile of rain day amount mm/day Season
AMS Daily annual maximum precipitation mm/day Year
Annual TAP Total annual precipitation mm Year

In addition, the root-mean-square error (RMSE) was used to compare the performance of

the proposed models as given below:

1
RMSE = \/NZ(SImOdel - SIObserved)2

where S7 indicates the value of the statistical indices and N is the number of sample size. The

smaller value of the RMSE indicates the better accuracy of the model considered.

2.4 Results and discussions

As mentioned above, the comparison of the performance of the SDGAM and SDSM for
Dorval station are presented in this section, and the results for other stations are given the Appendix
A. In addition, it should be noted that the same screening procedure for selecting the significant
climate predictors in the SDSM was also used for the SDGAM. More specifically, the significant
climate predictors identified by this screening procedure for both models for Dorval station were
the surface zonal velocity, the 850 hPa meridional velocity, the surface precipitation, and the
specific humidity at 5000 hPa height. The smooth functions of these predictors for Dorval station

are shown in Figure 2-4. It can be seen that the proposed SDGAM model displays the non-linear
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relations between the climate predictors and the dependent variables. Therefore, the SDGAM

could be more flexible in comparison with the current SDSM based on the linear regression.
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Figure 2-4. Plots of the smooth functions of each variable used in the generalized additive
models (GAMs) for Dorval station. Solid lines: fitted smooth curves, Dashed lines: confidence

intervals of the predictions

2.4.1 Numerical analysis

Table 2-4 and Table 2-5 demonstrated the computed values of the RMSEs of monthly mean

of precipitation (Preceip_m) and monthly standard deviation of precipitation (Precip_std) for the
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SDSM and SDGAM models for the calibration (1961-1980) and validation periods (1981-2000)
at Dorval station. In these tables, bold numbers denoted the case when the RMSE value of the
SDGAM is higher than the value of the SDSM; that is, the SDGAM is less accurate than the
SDSM. Regarding the mean and standard deviation of precipitation, it could be seen that proposed
SDGAM can provide a significant improvement over the SDSM for all months during the
calibration period, and for most months for the validation period (except for October for Precip m
and for January, October and November for Precip std). In general, it was found that for both
calibration and validation steps, the proposed SDGAM model could provide more accurate results

than the SDSM in terms of Precip_m and Precip_std.

Table 2-4. RMSEs of Mean of precipitation at Dorval station

Calibration Validation
Month
SDSM SDGAM SDSM SDGAM

Jan 0.839 0.671 0.969 0.952
Feb 0.788 0.715 0.821 0.740
Mar 0.824 0.708 0.954 0.930
Apr 0.984 0.802 1.236 1.123
May 0.830 0.725 0.998 0.930
Jun 1.154 1.083 1.297 1.228
Jul 1.560 1.409 1.652 1.377
Aug 1.299 1.068 1.585 1.477
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Calibration Validation

Month
SDSM SDGAM SDSM SDGAM
Sep 1.692 1.551 1.219 1.127
Oct 0.949 0.799 1.021 1.023
Nov 0.929 0.867 1.289 1.223
Dec 0.813 0.714 0.883 0.828

Table 2-5. RMSE:s of Standard deviation of precipitation at Dorval station

Calibration Validation
Month
SDSM SDGAM SDSM SDGAM
Jan 1.947 1.565 2.006 2.168
Feb 1.785 1.628 1.964 1.609
Mar 1.992 1.595 2318 1.717
Apr 1.939 1.498 2.365 2.086
May 1.743 1.436 2.318 2.258
Jun 2.612 2.327 3.672 3.554
Jul 3.042 2.717 3.297 2.772
Aug 2.873 2.575 3.344 3.070
Sep 4.380 3.655 2.876 2.298
Oct 1.868 1.426 3.163 3.627
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Calibration Validation

Month
SDSM SDGAM SDSM SDGAM
Nov 1.743 1.422 3.695 3.901
Dec 2.046 1.578 1.855 1.382

Regarding the Prcpl, SDII and CDD indices, the proposed SDGAM model could provide
significant improvements over the SDSM model. In particular, the SDGAM produced a more
accurate result in the simulation of the maximum number of consecutive dry days (CDD), one of
the most difficult indices to capture in the modeling process. Regarding the most difficult extreme
precipitation index (Prec90p), the SDGAM generally cannot produce an improvement over the
SDSM (the same performance for the calibration period but less accuracy for validation period as

shown in Table 2-6). Similar results were found for other stations as presented in Appendix A.

Table 2-6. RMSE:s of seasonal indices about frequency, intensity, and extreme of precipitation

over calibration and validation period Dorval station (S2)

Indices Season Calibration Validation
SDSM SDGAM SDSM SDGAM
Spring 6.380 5.533 6.059 6.027
Prepl Summer 5.435 4.850 6.022 6.027
(%) Fall 6.041 5.998 5.277 5.219
Winter 5.920 5.076 6.176 5.692
SDII Spring 1.595 1.543 1.488 1.321
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Indices Season Calibration Validation
SDSM SDGAM SDSM SDGAM

(mm/wet-day) g mer 1550 1.281 2.151 2.070
Fall 2.393 2.037 2.276 1.858
Winter 1.396 1.066 1.643 1.732
Spring 7.339 7277 4.000 3.417
CDD Summer 5.289 5.287 4.777 4.832
(days) Fall 4.257 3.780 4.729 4.749
Winter 4.414 4333 4.024 3.746
Spring 7.078 7.550 6.271 5.758
Prec90p Summer 5.426 5.078 8.632 8.914
(mm/day) Fall 8.058 8.097 7.379 8.158
Winter 4.408 4.048 5.962 7.096

Table 2-7 shows the RMSEs for annual maximum series (AMS) and total yearly
precipitation for all stations. Bold values indicated the better results for SDSM. It could be seen
that SDGAM model performs better for all station for calibration period and two-third stations for
validation period. In brief, the proposed SDGAM model was able to describe well seasonal
features of the extreme precipitation, as well as its frequency and intensity for both calibration and

validation periods for rain-gaged stations located in Southern Quebec and Ontario, Canada.
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Table 2-7. RMSEs of Daily Annual Maximum Precipitation (AMS) and Total Annual

Precipitation (TAP) for calibration and validation period Dorval station (S2)

AMS TAP
Station Calibration Validation Calibration Validation
SDSM | SDGAM | SDSM | SDGAM | SDSM | SDGAM | SDSM | SDGAM
S1 20.28 13.90 14.83 13.23 130.67 118.27 | 131.44 | 121.51
S2 15.55 14.15 17.83 19.72 112.38 104.01 | 102.17 | 92.12
S3 13.59 12.11 19.48 20.58 211.90 200.44 | 221.42 | 198.77
S4 20.53 17.69 | 21.99 18.49 116.20 95.76 216.40 | 216.88
S5 11.42 10.52 17.36 15.66 108.21 90.94 162.70 | 200.72
S6 19.14 13.85 19.15 16.30 137.31 123.57 | 118.75 86.64
S7 13.35 11.72 12.74 18.36 105.58 90.05 104.89 | 99.23
S8 12.00 10.77 17.76 16.98 114.80 105.53 87.94 99.29
S9 19.58 16.79 15.35 16.02 148.46 146.49 87.96 86.83
S10 14.21 13.43 14.29 13.90 110.40 99.10 131.07 | 134.49
2.4.2 Graphical analysis

A graphical comparison of the accuracy of the SDGAM and SDSM models using the box

plots (the closeness between the estimated median value of the model and the observation) and the

robustness of the model (the size of the Inter-Quartile Range box) were carried out in this study.

For purposes of illustration, below figures show the results for the monthly indices of monthly
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percentage of wet-day (Prcpl) and monthly mean of precipitation (Precip_m) for Dorval Station
for the calibration (Figure 2-5 and Figure 2-6) and validation (Figure 2-7 and Figure 2-8) periods.
It can be seen that the proposed SDGAM model could reproduce more accurate results than those
given by the SDSM for Dorval Station. Figure 2-5 and Figure 2-6 demonstrated that the monthly
average of observed daily rainfalls is within the Inter-Quartile Range box of monthly average of
generated data for both Precip_m and Prcpl indices for every single month. The accuracy of the
results for the percentage of wet days index (Prcpl) and average precipitation (Precip_m) by the
SDGAM could indicate that the use of the GAM modeling approach was more appropriate than

the ordinary linear regression used in the SDSM for modeling the precipitation occurrence process.
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Figure 2-5. Boxplots of monthly percentage of wet-days for SDSM (left) and SDGAM (right) for
Dorval station (Black star markers indicate monthly average values of precipitation data, and

boxplots indicate model results)
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Figure 2-8. Boxplot of monthly means of precipitation for SDSM (left) and SDGAM (right) for
Dorval station for validation period. Black markers: Observed data

Figure 2-9 presents the boxplots of six common annual indices: mean of precipitation
(Precip_m), standard deviation of precipitation (Precip_std), percentage of wet-day (Prcpl), mean
of precipitation on wet-days (SDII), consecutive of dry days (CDD), 90" quantiles of wet-days
(Prec90p), Annual Maximum Series (AMS), and Total Annual Precipitation (TAP) for the entire
record length from 1961 to 2000 at Dorval station (S2). It can be seen that the SDGAM model can
capture well the Precip m, Prcpl, SDII and CDD indices but Precip std and Prec90p indices are
still underestimated. Similar results for all other stations can be found in Appendix A (Figure A-3

to Figure A-11).
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Figure 2-9. Boxplots of annual statistics and indices of SDGAM model: Precip m, Precip_std,
Prcpl, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at Dorval station (S2)

2.5 Conclusions

A new downscaling model (SDGAM) has been developed to accurately simulate the daily

precipitation processes at a single site in the context of climate change. The proposed SDGAM
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model was based on the combination of the precipitation occurrence and the precipitation amount
using the Generalized Additive Model. In brief, the proposed model was able to describe well
many features of the daily precipitation process, including its occurrence frequency, intensity,
and extremes for both calibration and validation periods for data from 10 rain-gauged stations
located in Southern Quebec and Ontario, Canada. In addition, it has been demonstrated that the
suggested SDGAM model could provide more accurate results than those given the existing
SDSM model in the modeling of daily precipitation process based on both numerical and

graphical performance criteria.
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Chapter 3: Modeling of short-duration extreme

precipitations in the context of climate change

3.1 Introduction

Many water management applications (i.e., design of urban storm drainage systems, flood
management and infrastructure operations) require information of rainfall intensity-duration-
frequency (IDF). In order to construct the IDF curves, annual maximum series (AMS) of different
rainfall durations from a few minutes to days are obtained, commonly from 5 minutes to 1 day.
However, in most practical applications, short-duration extreme rainfall data are very limited or
even unavailable for a given location of interest while the daily extreme rainfall records are often
available. For instance, less than 600 stations in Canada record short-duration extreme rainfall
from 5 minutes to 24 hours (Environment Canada, 2020), while the number of stations observe the
daily rainfall is more than 1700 stations (Mekis et al., 2018). Hence, it is necessary to develop new
methods for modeling extreme rainfall processes over a wide range of time scales such that
extreme rainfalls needed at sub-daily time scales for constructing IDF relations for a given location

can be estimated from the available daily extreme rainfall data.

General Circulation Models (GCMs) have been commonly used for evaluating the effects
of climate change under different scenarios of greenhouse gas emissions on the hydrological
regime. Although these GCMs have been recognized to be able to represent the main features of

the global distribution of basic climate parameters (Randall et al., 2007), they still cannot
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reproduce well details of regional climate conditions at temporal and spatial scales of relevance to
hydrological impacts and adaptation studies (Nguyen et al., 2006). This is because outputs from
GCMs are usually at resolution that is too coarse (as illustrated in Figure 1-1) for many climate
change impact studies, generally greater than 2.5° for both latitude and longitude (approximately
250km). To refine the GCM coarse grid resolution climate projection data to much finer spatial
resolutions (regional or local scales) for the reliable assessment of climate change impacts,
different downscaling methods have been proposed to resolve this scale discrepancy (Wilby et al.,
2002; Fowler et al., 2007; Nguyen and Nguyen, 2008; Maraun et al., 2010; Khalili and Nguyen,
2016; Gooré Bi et al., 2017). The SDGAM based on a combination of a Generalized Additive
Models (GAMs) for representing the daily rainfall occurrences and the daily precipitation amounts
has been proposed to describe the linkage of the large-scale climate variability to the historical

observations of the precipitation process at a local site in previous section.

Several probability models have been conducted to describe the distribution of extreme
precipitation at a gauged site (Wilks, 1993; Zalina et al., 2002). Unfortunately, these models are
not accurate with all time frames, it is therefore requiring need for formulating models that could
statistically and simultaneously matches various properties of the precipitation process at different
levels of aggregations. Recently, the scale-invariance (or scaling) concept has increasingly become
a popular methodology for modeling of several hydrological processes across a wide range of time
scales (Hubert, 2001; Schertzer et al., 2010; Lovejoy and Schertzer, 2012). For instances, Nguyen
et al. (2002) proposed a scaling General Extreme Value (GEV) based estimation method that can
be used to estimate extreme rainfalls for a given return period at a local site for sub-daily time
scales (hourly, 30 minutes, etc.) from the statistical properties of extreme rainfalls at a daily scale.

Nguyen (2020) proposed a new mathematical framework for modeling extreme rainfall processes
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over a wide range of temporal scales (i.e., from several minutes to one day) based on the three-
parameter Generalized Extreme Value (GEV) distribution and the scaling behavior of the PWMs
(known as the GEV/PWM model). The proposed model has been tested with data set of long

rainfall records from a network of 74 stations located in diverse climatic conditions across Canada.

Climate variability and change have been recognized to have important impacts on the
hydrologic cycle at different temporal and spatial scales. The temporal scales could vary from a
very short time interval of 5 minutes (for urban water cycle) to a yearly time scale (for annual
water balance computation). The spatial resolutions could be from a few square kilometers (for
urban watersheds) to several thousand square kilometers (for large river basins). In this study, a
suggested approach is based on the combination of the spatial downscaling method to link large-
scale climatic variables provided by GCMs to daily extreme precipitations at a local site using the
SDGAM and the temporal downscaling procedure to describe the relationships between daily
extreme precipitations with sub-daily extreme precipitations using the scaling General Extreme
Value (GEV) distribution and the scaling behavior of the PWMSs. The feasibility and accuracy of
this spatial-temporal downscaling approach have been assessed using the AM precipitation data
available at 10 stations across Canada and based on different climate change scenario simulation
results available for the study region provided by the Canadian GCMs for the current 1961-2000
period as well as for future 2030s, 2060s, and 2090s periods. Results of this numerical application
have indicated that, after a bias-correction adjustment, it is feasible to develop an accurate linkage
between the daily AMPs spatially downscaled from GCM simulations with the observed daily
AMPs at local stations. These results suggest that it is possible to use the climate predictors given
by GCM simulations under different climate scenarios for projecting the variability of AM daily

precipitations for future periods. On the basis of these results for daily AMPs, the IDF curves for

33



the current 1961-2000 period and for future periods (2030s, 2060s, and 2090s) were constructed

using the proposed temporal GEV/PWM method for sub-daily AMPs

3.2 A statistical approach to downscaling of extreme precipitation

Pprocesses

3.2.1 A spatial downscaling approach using SDGAM

The SDGAM model developed in this study can be used to downscale daily precipitation
process at a local site. The modeling of this process in the context of climate change involves two
components: the modeling of the daily precipitation occurrences and the modeling of the

precipitation amounts

7= Conlao + ) for(X)
a=1

in which foi: smooth function
Xi: the large-scale atmospheric predictors given by GCM simulations
Cox: the correction coefficients for Occurrence process

ri is a uniform distributed random number, if 1i < 7, precipitation occurs at day i
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- Precipitation Amount Process (R;)

Y= f.Caa+ ) G +m)

in which a: intercept
fi: smooth function
Xi: the large-scale atmospheric predictors given by GCM simulations
Cyk: the correction coefficients for amount process
n;=Z*S,
Si: the standard error of month i

f: bias correction coefficient, coming from the deviation of the simulated mean
given GCMs and the estimated mean given by the NCEP re-analysis data. The value of f is set to

1 in calibration step of SDGAM model.

__total mean by NCEP for calibration period

~ total mean by GCMs for calibration period

In both precipitation occurrence and amount processes, the correction coefficients Cok and
Cakrepresent the difference between the mean of observed data and the mean of simulated results
based on the regression of GAM for the percentage of wet-day and precipitation amounts,

respectively. These coefficients are automatically computed during the calibration of the SDGAM
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model such that an adequate agreement between the simulated results and the historical data could

be obtained. Initially, the values of these coefficients are set to 1 in the calibration step.

It has been demonstrated in previous chapter that the SDGAM model was able to describe
accurately the linkage between the daily predictands (precipitation occurrence and amount) at a
given local site and the large-scale climate predictors provided by GCMs. Hence, it can be used to

generate “synthetic predictands” that represents the generated local weather
3.2.2 A temporal downscaling method using the scaling-GEV distribution

The GEV distribution has been commonly used to describe the distribution of extreme
rainfalls for different durations and to construct the IDF curves. The cumulative distribution

function, F(x), for the GEV distribution is given as:

1

F(x) =expl—(1—M)zl ; (k#0)

a

where ¢, a, and « are the location, scale, and shape parameter, respectively.

The probability weighted moment (PWM) estimators (or method of L-moment, L-MOM)
can be used for estimation of the GEV parameters in consideration of the scaling property of these
PWMs over different rainfall durations. For a distribution of a random variable X that has a

quantile function, x(u), the PWM of r*-order can be expressed as (Hosking and Wallis, 1997):

B, = BXFCOY) = | T du (3-1)

0
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The PWMs of rt"-order, ., of the GEV distribution are given as follow:
a
Br=Mipo = EIX (FCOYT = 4+ D7 (4 (1~ + DT T(1 + 1)) G2

in which ¢, a, and k are the location, scale, and shape parameters respectively; and F is the

cumulative probability of interest. ['(.) is the gamma function and r must be non-negative.

For a simple scaling process, it can be shown that the relation between the 7"-order PWMs

of rainfalls for two different rainfall durations t and At can be expressed as:

ﬁr(/lt) = Anrﬁr(t) = Anﬁr(t) (3-3)

where 17, = 1 is the scaling exponent and can be estimated based on the means of different

rainfall durations.

This infers that the scaling exponents 7,- are constant across all PWM orders r for the same
rainfall scaling regime. In other words, the plot of the scaling exponents 71,. (y-axis) with the PWM
order r (x-axis) should display a horizontal line rather than a linear sloping line as for the case of

the ordinary statistical moments (Nguyen et al., 2002).

Furthermore, let 75(t) and 75(At) denote the L-skewness of the data samples for two
different time scales t and At respectively (Hosking, 1990). L-skewness is the dimensionless
version of the third order L-moment. It is obtained by dividing the third-order L-moment by the

second-order L-moment. Hence, for a simple scaling process it can be shown that:

(At) = 682(At) — 6B, (At) + Bo(A) _ A7 [6B,(t) — 6B1(t) + Bo(D)] _ () (3-4)
BT TR GO - B AT B -B@]

Equation (3-4) indicates that the L-skewness is constant over different time scales.
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Consequently, for the simple scaling process, the shape parameter of the GEV distribution k,

which is a function of the L-skewness, is also constant over the time scale, that is,
k(At) = k(t) (3-5)

From Eqn. (3-2) and after some mathematical manipulations, the first- and second-order

PWDMs can be written as follows:

fo=§+=(1-T(1+1)} (3-6)

1 -
Br =5 [Bo+ 5 (1= 27911 + K| G-7)

On the basis of Eqns. (3-3), (3-5)-(3-7) the location and scale parameters of the GEV distribution

for different time scales can be related as follows:

a(At) = AMa(t) (3-8)

§(At) = A7) (3-9)
and the quantiles for different time scales can also be expressed as:

In summary, based on these equations, for a simple scaling regime, it is possible to derive
the distributions and statistical properties of short-duration extreme rainfalls from those of longer

durations at a given study site as presented right below.

There are two different manners to downscale extreme rainfall quantiles from daily to sub-

daily and/or sub-hourly intervals: the direct and indirect methods. The direct method scales the
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quantiles of rainfall duration (At) from those of duration t directly using Eqn. (3-10). Note that
the daily extreme rainfall quantiles computed based on different PWM or NCM estimators could
be varied. Consequently, the scaled sub-daily and/or sub-hourly extreme rainfall quantiles obtained
using the two systems are therefore different. Similarly, though the parameter scaling relationships
are identical for the two moment systems, the scaling parameters obtained using two different
estimation methods are also different. For the indirect method, the first three PWMs of sub-daily
and/or sub-hourly AMSs are first computes using the scaling relationships of PWMs over different
rainfall durations. These scaled PWMs are then utilized to solve for the three parameters in order

to calculate the rainfall quantiles

3.3 Numerical application

To access the accuracy and feasibility of the proposed spatial-temporal downscaling
approach, a case study was conducted using both global GCM climate simulation output CanESM?2
and the observed daily precipitation data at 10 stations located in Southern Quebec and Ontario
regions, Canada (see Figure 3-1). For comparison purposes, both SDSM and SDGAM models
were considered for this study. More specifically, the daily precipitation data for the period from

1961 to 2000 were used as detailed in Table 3-1.
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Figure 3-1. Selected stations across Canada

Table 3-1. Information of rain-gaged stations in across Canada

No Province Station name Lat Lon Ele (m) RL (year)
1 AB  CALGARY INT L CS 51.12  -114.00 1081 61
2 BC  VANCOUVER INTL A 49.18  -123.18 4 63
3 MB  WINNIPEG A CS 49.92  -97.25 238 57
4 NB  MONCTON_INTL A 46.12  -64.68 70 67
5 NL  GANDER AIRPORT CS 48.95  -54.57 151 70
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No Province Station name Lat Lon Ele (m) RL (year)
6 NS  SYDNEY CS 46.17  -60.03 62 53
7 ON  TORONTO INTL A 43.68  -79.63 173 64
8 QC  MONTREAL P.E.T INTL (Dorval) 4547  -73.73 32 61
9 SK  REGINA INT L A 50.43  -104.67 577 52
10 YT WHITEHORSE 60.73  -135.10 707 44

The computational procedure for the suggested spatial-temporal downscaling method in

this study can be summarized as follows:

1) Calibrate and validate the SDGAM model using the at-site daily precipitation as predictand

and global GCM atmospheric variables as predictors (spatial downscaling);

i1) Generate 50 samples of 40-year daily precipitation series at a given site using the calibrated

SDGAM and the corresponding GCM predictors, and extract daily AM precipitation series

from these generated samples;

1i1) Perform necessary bias correction of the GCM-downscaled daily AM precipitation series;

iv) Establish the scaling relations between the PWMs of the observed at-site AM

precipitations for various durations;

v) Construct IDF curves using the adjusted GCM-downscaled AM daily precipitations and

the estimated sub-daily AM rainfall amounts given by the calibrated scaling GEV model.

Repeat steps (ii) to (v) to construct IDF curves for future periods (2030s, 2060s, and 2090s).
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3.4 Results and discussions

3.4.1 Spatial downscaling and bias-correction

The SDGAM model was calibrated and used to generate daily AMPs for all stations using
the climate simulation outputs from CanESM2 under different RCPs (RCP 26, RCP 45, and RCP
85). The probability plots of AMPs downscaled in comparison of observed AMPs for the historical
period 1961-2000 for stations S5 and S7 were presented in Figure 3-2 for purposes of illustration.
It can be seen that downscaled AMPs are commonly lower than the observed at-site data. The error
adjustment functions were established based on data for the 1961-1985 calibration period, then
applied for the 1986-2000 validation period to assess their accuracy. In this study, the 4" order
adjusted functions were employed to correct the differences between downscaled and observed

data, results for S5 and S7 stations as shown in Figure 3-4. Results for all other stations can be

found in Appendix B.
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Figure 3-2. Probability plots of observed daily AMPs and Historical Period (HIST) at S5 & S7
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Figure 3-4. Probability plots of observed daily AMPs and Historical Period (HIST) after error-
adjustment at S5 & S7

To assess the accuracy of the error adjustment method, the relative-root-mean-square-error

(RRMSE) was used and can be as follows:

43



1 N Xob XSC
RRMSE = NZ( X7 >

i=1

where N is sample size, X?? and X?? are observed and downscaled quantiles, respectively. Results
can be found in Table 3-2. The smaller RRMSE values mean the results of the adjusted downscaled
AMPs were improved in compared to the unadjusted downscaled AM amounts for both calibration

and validation periods for all stations.

Table 3-2. RRMSE for daily AMPs with and without bias correction for calibration period of
1961-1985 and validation period of 1986-2000

Calibration Validation
Stations
Before Adjusted Before Adjusted
S1 0.637 0.171 0.220 0.202
S2 0.362 0.057 0.335 0.207
S3 0.503 0.077 0.502 0.214
S4 0.246 0.107 0.195 0.340
S5 0.130 0.057 0.204 0.126
S6 0.263 0.064 0.206 0.101
S7 0.152 0.084 0.210 0.117
S8 0.969 0.067 0.640 0.180
S9 0.442 0.113 0.436 0.240
S10 0.308 0.066 0.181 0.178
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3.4.2 Temporal downscaling

To assess the scaling behavior of the observed AMP series, the log-log plots of the five
rainfall PWMs against duration are prepared for all 10 stations. The log- linearity exhibited in the
plot indicates the power law dependency of the rainfall statistical moments. However, Table 3-3
showed that the AM precipitation series in Canada displayed multiple scaling behaviors depending
on the location of stations from East to West, for instance, the breaking points at Dorval and
Sydney CS are 30 and 360 minutes, respectively. Hence, for a given location, it is possible to
determine the PWMs and the distribution of rainfall extremes for short durations (e.g., 30 minutes)

using available rainfall data for longer time scales (e.g., 1 day) within the same scaling regime.

Table 3-3. Breaking points (BP) of PWM/GEYV for all stations

No | Province Name Breaking Point (min)
1 AB CALGARY _INT L CS 15
2 BC VANCOUVER_INTL A 120
3 MB WINNIPEG A CS 30
4 NB MONCTON _INTL A 120
5 NL GANDER AIRPORT CS 30
6 NS SYDNEY CS 360
7 ON TORONTO_ INTL A 30
8 QC MONTREAL P.E. INTL (Dorval) 30
9 SK REGINA INT L A 360
10 YT WHITEHORSE 15
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For purposes of illustration, Figure 3-5 shows the log-log plot of the PWMs versus

durations for Sydney CS (S6) and Dorval (S8) stations.
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Figure 3-5. Log-log plots of the PWMs versus durations at S6 & S8
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Figure 3-6. Scaling exponents plotted against the order of PWMs at S6 &S8
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Figure 3-7. Probability plots of Observed AMPs and estimated using traditional and scaling GEV

distributions at 1-hr (left) and all duration (right) for Dorval station (S8). Dotted line: Traditional
GEV, Solid line: GEV/PWM, circle markers: Observed data

Figure 3-7 illustrates the comparison between observed and estimated precipitation by

traditional GEV and scaling GEV for 1-hour duration (left) and all 9 - durations from 5 minutes to

24hr (right). It can be seen from the Figure 3-7 that scaling GEV approach is in very good

agreement with the observed data. In addition, Table 3-4 presents numerical IDF relations for

Dorval station given by traditional fitted GEV and scaling GEV approaches for the historical

period 1961-2000. There is no significant difference between the two methods. Therefore, the

scaling GEV approach can be used to estimate sub-daily AM rainfalls from historical or adjusted

downscaled daily AM precipitations.

Table 3-4. Numerical IDF curves of AMP estimated by traditional GEV and scaling GEV for

Dorval station (1961-2000). Unit of precipitation intensity is mm/hr, Return Period, T in year
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Traditional GEV method

Return Duration (min): mm/hr
Period (T)
5 10 15 30 60 120 360 720 1440
2 95.01 72.39 58.66 3948 2249 13,59 586 337 1.94
5 125.80 95.81 79.22 5395 31.18 17.93 750 429 2.46
10 14699 111.36 93.20 63.23 3742 21.14 865 5.03 2.87
20 167.94  126.31 10690 7192 43.79 2450 9.78 586 3.32
50 196.01 145.70 125.06 82.86 52.66 2930 11.30 7.13 3.99
100 217.75  160.26 13899 90.85 59.78 33.26 1248 827 4.58
Scaling GEV method
Return Duration (min): mm/hr
Period (T)
5 10 15 30 60 120 360 720 1440
2 99.24 69.27 56.13  39.18 2287 1335 568 332 1.94
5 131.50 93.23 76.22 5399 31.08 17.89 744 428 2.46
10 15493  110.10 90.13 6398 36.74 21.09 874 501 2.87
20 179.09  127.08 103.94 7371 4234 2431 10.09 5.79 332
50 213.01 150.26  122.54 86.50 49.84 2872 12.00 6.92 3.99
100 240.54 168.58 137.02 96.24 55.65 3221 13.57 7.88 4.58
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3.4.3 IDF curves for the periods of 2030s, 2060s, and 2090s

The proposed spatial-temporal SD was used to construct IDF curves for stations located in
Canada under different climate change scenarios (RCP 26, RCP 45, and RCP 85) for the current
and future periods (2030s, 2060s, and 2090s). For purposes of illustration, Figure 3-8 shows the
plots of daily AM precipitations at Dorval station (S8) for the future periods (2030s, 2060s, and
2090s) with different RCP (RCP 26, RCP 45 and RCP 85). It can be seen that there is an increasing

trend in the projected extreme rainfalls for future periods.
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Figure 3-8. IDF curves for future periods with different RCPs at Dorval Station (S8)

Table 3-5. AMP GCM-projected corresponding to 100-year return period for the current and the

future periods. Unit of precipitation intensity is mm/hr

RCP26 RCP45 RCP85
Stations | Current

2030s  2060s  2090s | 2030s 2060s 2090s |2030s 2060s 2090s
S1 7.05 5.78 4.50 6.95 642 535 632 | 822 511 722
S2 1.55 2.50 2.09 2.68 319 254 289 | 266 3.08 3.80
S3 3.00 5.03 5.27 6.81 335 406 381 | 7.10 593 427
S4 4.06 5.08 4.38 5.40 805 525 583 | 512 540 5095
S5 2.49 3.00 2.98 3.54 3.80 417 342 | 383 287 4.14
S6 6.14 7.24 8.52 8.90 895 913 7.68 | 675 7.16 5095
S7 3.67 5.68 5.69 4.29 381 580 545 | 372 4.69 512
S8 4.05 4.94 5.36 4.99 553 545 462 | 537 5.61 480
S9 1.34 2.23 2.26 2.99 232 278 343 | 301 279 338
S10 0.90 0.94 0.97 1.06 0.89 099 090 | 090 0.79 0.96
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3.4 Conclusions

A spatial-temporal downscaling approach was proposed in this study to describe the
linkage between large-scale climate variables for daily scale to AM precipitations for daily and
sub-daily scales at a local site. The feasibility of the proposed downscaling method has been
evaluated based on climate simulation outputs from CanESM2 under different RCPs (RCP 26,
RCP 45, and RCP 85) using available AM precipitation data for durations ranging from 5 minutes
to 24 hours at ten rain-gage stations across Canada. Results have indicated that it is feasible to link
daily large-scale climate variables to daily AM precipitations at a given location. In addition, it
was found that the AM precipitation series in Canada displayed multiple scaling behaviors
depending on the location of stations from east to west regions. Based on this scaling property, the
scaling GEV distribution has been shown to be able to provide accurate estimates of sub-daily AM
precipitations from GCM-downscaled daily AM amounts. It can be concluded that it is feasible to
use the proposed spatial-temporal downscaling method to describe the relationship between large-
scale climate predictors for daily scale given by GCM simulation outputs and the daily and sub-
daily AM precipitations at a local site. This relationship would be useful for various climate-related

impact assessment studies for a given region.

Finally, the proposed downscaling approach was used to construct the IDF relations for a
given site for the historical period of 1961-2000 and for future periods (2030s, 2060s, and 2090s)
using climate predictors given by CanESM2 simulations. This result has demonstrated the
presence of high uncertainty in climate simulations provided by different RCPs. Further studies
are planned to assess the feasibility and reliability of the suggested downscaling approach using

other GCMs and data from regions with different climatic conditions.
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Chapter 4: A statistical approach to estimating
missing daily precipitation series at ungauged sites: a

case study using data in Vietnam

4.1 Introduction

As described in previous Chapters, a number of studies have been conducted to establish
the linkages between the large-scale climate variables given by GCMs and the observed
characteristics of the daily precipitation process at a local site using different downscaling methods
(Xu, 1999; Yarnal et al., 2001; Nguyen et al., 2006). These downscaling methods, however, are
not suitable for dealing with cases where precipitation data at the location of interest are limited or
not available. The estimation and prediction of hydrological variables such as precipitation and
flow with climate change conditions for these ungauged or partially gauged sites remains a crucial
challenge for managing and planning water resources (Sivapalan, 2003). Several studies dealing
with the impacts of climate change on water resources at ungauged locations have been conducted
in recent years (Besaw et al., 2010; Candela et al., 2012; Gibbs et al., 2012). For instance, Candela
et al. (2012) proposed the use of a rainfall-runoff model to assess impacts by climate change on
water resource for ungauged location in Northern Spain. Samuel et al. (2012) suggests the bias
correction technique with Regional Climate Models (RCMs) and Global Climate Models (GCMs)
for simulating precipitation, temperature, and future flows at gauged and ungauged stations. In

particular, Wilby et al. (2006) have identified the three sources of uncertainties in climate change
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impact studies: by GCMs relating to unknown future conditions, by both dynamical and statistical

downscaling procedure, and by specific application models.

In the context of regional impact studies, many previous approaches have been proposed
for the past decades to supplement limited hydrological data at a local site for the current period
or for the assessment for future periods in the context of a changing climate (Wilks, 1998; Mehrotra
et al., 2006; Nguyen et al., 2006; Samuel et al., 2012). For instance, a procedure for generating
spatially correlated and serially independent random numbers in their stochastic multisite
downscaling models in order to preserve the spatial dependency amongst rain-gauge stations in a
region was conducted (Wilks, 1998; Mehrotra et al., 2006). Another approach was the nearest
neighbor resampling to preserve the spatial correlation of the daily precipitation and temperature
data (Buishand and Brandsma, 2001; Beersma and Buishand, 2003). Furthermore, the spatial
structure of Fourier Coefficients was applied to describe the spatial variability of rainfall series in
a region (Lima and Lall, 2009). These studies, however, did not explicitly consider the similarity
or homogeneity of the precipitation series at different sites even though this similarity assessment
is an important factor in the understanding of the variability of the precipitation phenomenon in
space. It is therefore necessary to assess the similarity of historical rainfall series at different
locations to ensure that these observed precipitation measurements are produced from the same
storm system (Nguyen et al., 2002; Gonzélez and Valdés, 2008). Regionalization methods are
hence frequently used to transfer rainfall information from one location to the other (Nguyen et
al., 2007; Samuel et al., 2012). Regionalization methods have been developed and employed
according to two main objectives: considering spatial dependency (homogeneity) and reducing

uncertainty. Consequently, for precipitation estimation at an ungauged site, the homogeneity of
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precipitation processes at different sites is a necessity condition to obtain an accurate rainfall

estimate with less uncertainty.

For the determination of precipitation homogeneity, cluster analysis and eigenvector
analysis are two common approaches. A popular eigenvector-based method for regional
precipitation analysis is Principal Component Analysis (PCA). PCA is a multivariate statistical
technique used to simplify the original data by representing in dimensions fewer than original
number of variables. The first application of PCA in meteorology and climatology was the end of
the 1940s and enormous studies on PCA have published since (Preisendorfer, 1988; Johnson and
Hanson, 1995; Baeriswyl and Rebetez, 1997; Nguyen, 2003; Yeo, 2013). This technique allows
grouping of stations with similar characteristics and the delimitation of climatic regions, especially
while handling a large dataset. PCA can be applied to reduce the dimensionality of the data but
still contains most of the information of the original variables. PCA can be performed using either
the covariance matrix or the correlation matrix. According to Johnson and Hanson (1995), PCA
method can better describe the topographic influence on precipitation phenomenon. Baeriswyl and
Rebetez (1997) also found that the PCA was a more accurate procedure for regional precipitation

analysis in comparison with cluster analysis for precipitation data in Switzerland.

Vietnam is a developing country in Southeast Asia with limited observed rainfall data,
leading to difficulty in construction designing and planning. Most of observed data are are only
available at daily scale. This paper applied Principal Components Analysis (PCA) to identify
homogenous precipitation regions. Regionalization is applied to define homogenous regions of
rainfall for Vietnam. After that, a two-stage interpolation method is proposed to generate daily

rainfall series at ungauged sites. Finally, GEV scaling technique is employed to infer the sub-daily
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and/or sub-hourly extreme rainfalls from daily extreme rainfalls in order to construct IDF curves

at the location of interest.

4.2 Data

For this study, a total of 155 observed daily precipitation series with more than 22 years of
record across Vietnam were selected (see details of these selected data in Appendix C). These
series were selected based on the high quality of the data. In addition, the data with the same
concurrent period of record are an important criterion for the main objective of this study that is to
estimate the missing data at a location of interest using the available rainfall information from the
neighbouring region. Figure 4-1 shows the locations of the selected stations. It can be seen that the
density of stations in Northern part is higher than the Southern part, and those stations in the North

also have longer record lengths.
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Figure 4-1. Selected rain-gauged stations in Vietnam

Figure 4-2 shows some basic statistics of precipitations across Vietnam. Vietnam is located
in the tropical area that receives quite a lot of rainfalls in terms of amounts and extreme values. It
can be seen that the highest annual precipitation and the extreme daily precipitation are in the
Central part, specifically at Thua Thien Hue province - where the Hai Van pass is located. The
annual precipitation here is almost 3800 mm yearly, and the maximum daily precipitation is up to
350 mm. The daily extreme rainfall in the South is smallest with the value of less than 100 mm.

The Northwest and area surrounding the Hai Van pass have more than 50% of rain day per year.
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Figure 4-2. Maps of annual precipitation across Vietnam (a): total annual rainfall, (b): daily annual

maximum, (c): percentage of rain day. The value of each point is average over record period

4.3 Methodology

4.3.1 Homogeneous regions

Principal Component Analysis (PCA) is a multivariate statistical method that can be
employed to reduce the original data by representing in dimensions fewer than the original number
of variables. The original dataset of n correlated variables can be transformed into n numbers of
uncorrelated principal components (PCs). These PCs are linear transformation of the original
variables so that the sums of variances of the original and the new variables are equal. Although
the number of PCs and original variables are the same, the first few transformed PCs consist of the
majority of the variance in the dataset, reducing the dimensionality of the original dataset. The PCs

are sequenced from the highest to the lowest variance as the first PC describes the data's largest
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proportion of variance. The second highest variance is explained by the second PC and so on. The

values of PCs can be obtained from Equations:

n
PC]. = a11x1 + a12x2+. . +a1nxn s Z aljx]

n
PCZ == a21x1 + a22x2+. . +a2nxn == Z azjx]

where x1, x2, . . . xn are the original variables and ajj are the eigenvectors. The eigenvalues are the
variances of the PCs. The covariance or correlation matrix of the data set is used to derive the
coefficients ajj, which are the eigenvectors. The eigenvalues of the data matrix can be calculated

as follow:
|C—M =0

where C is the correlation or covariance matrix, / is the identity matrix, and A is the eigenvalue.

The PC coefficients are then calculated by Equation:
|C—7J|a]] =0

The present study used the Principal Components Analysis (PCA) to identify homogenous
precipitation regions. In this study, inter-station correlation coefficient matrices based on the
annual maximum monthly mean rainfalls were analyzed using PCA. The principal components
(PCs) were rotated, and the rotated component pattern was analyzed. The PCs were chosen based
on the Kaiser's rule (Kaiser, 1960). The PCA was carried out in this study using the IBM SPSS

software (IBM Corp., 2019). Once the homogenous regions of rainfall were identified, a 2-stage
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interpolation method is proposed to generate daily rainfall series at ungauged sites based on the
daily rainfall data available at stations located within the same homogenous region. The method is

detailed in the next section.
4.3.2 Estimation of missing daily precipitation series at an ungauged site

In this study, a two-stage interpolation method is proposed to estimate daily rainfall series
at ungauged sites: rainfall occurrence stage and rainfall amount stage. Estimated daily precipitation
series i1s compared with the observed data at the same location to assess the feasibility and accuracy

of the proposed method.

+ Stage 1: For a calendar day (365 day), let OF be daily precipitation occurrence at station
k at day i. OF = 0 if day i is dry, and OF = 1 if day i is wet, threshold of rainfall for wet day is 1
mm. The probability ; of non-zero precipitation at an ungauged site for day i is defined using
IDW as follows:

N K
_ Zg=1Wk 0;

) 1
m; = with w, = =
L Zgz;[ Wi ’ k dlzc

where N is number of stations within the homogenous region having rainfall data on day 1; dj
distance from ungauged site to station k. The value of r; ranges from 0 to 1. For this study, if value
of m; < 0.5, there is no rain at ungauged location of interest, rainfall amount at day i Ri = 0; if
value of ; = 0.5, rainfall occurs at ungauged location of interest, the rainfall amount R; at day i

is estimated in stage 2.

+ Stage 2: if rainfall occurs at location of interest at day 1, the rainfall amount Riis estimated

as using IDW technique follows:
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where R¥ is rainfall amount at station k at day i; N is number of stations within the region having

rainfall data on day i; dj, distance from ungauged site to station k.

By repeating the process for every day of the whole length of record, rainfall series at an
ungauged site of interest is calculated based on the rainfall data available at stations located
within the same homogenous region. The jackknife technique was used to represent the
ungauged site condition. Note that the rainfall is interpolated based on the observed data on the

same calendar date.

4.4. Results and discussions

4.4.1 Homogeneous regions

Table 4-1 illustrates the computed total variance explained by each principal component.
It can be seen that the first component explains the highest variance (52.26% of the total variance
of the system). Based on results of PCA, Vietnam can be divided into seven regions of the
homogenous groups of rain gauges as shown in Figure 4-3. Regions 1 to 3 are for the Northern
part, Region 4 is for the North-central part, Region 5 is for the South-central part, Region 6 is for
the Central Highland area, and Region 7 is for Southern part of Vietnam. It can be seen that this
grouping is consistent with climate sub-regions of Vietnam (General Satistics Office of Vietnam,
1999). Results have indicated that the topography of mountainous areas plays a decisive role in

the determination of the homogenous rainfall regions in Vietnam.
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Table 4-1. Percentage of variances explained by each component computed for monthly amount

of rainfall

Principal % of Cumulative
Component | variance variance (%)

1 52.26 52.26

2 18.31 70.58

3 7.57 78.14

4 2.55 80.69

5 1.62 82.31

6 1.19 83.49

7 0.81 84.30
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Figure 4-3. Seven homogeneous regions of Vietnam: (a) - Proposed method using PCA vs (b) -
according to Vietnam meteorology department
For this study, the PCA works well for the rainfall data of Vietnam in monthly time scale.
However, this approach is considered to be sensitive with the time scale. Hence, when apply with
different time scales, i.e., daily or weekly, the number of homogeneous groups obtained are not
the same as the number obtained for the monthly time scale as shown in Table 4- 2. This is the
disadvantage of PCA; therefore, it is recommended to apply PCA with some caution. Further

works will be studied to minimize this sensitivity.
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Table 4- 2. Number of regions by different time scale

Time scale No. of regions
Daily 19
Weekly 12
Monthly 7

Once homogenous regions of rainfall obtained, the proposed 2-stage interpolation method
is applied to generate daily rainfall series at ungauged sites based on daily rainfall data of stations

within the same homogenous region. Results are presented in the following section.

4.4.2 Estimation of precipitation series at an ungauged site

For this study, Region 4 - belongs to North central coast and marked as red stars in Figure
4-3(a) - has been selected for generating precipitation at ungauged sites. This region 4 has been
selected due to high quality and uniform of rainfall data including 23 stations with 32 years of
record. It is also because of the complexity of rainfall in this region: include stations with the most
extreme values in the country. The information and the summary of basic statistics of 23 stations

in Region 4 are presented in Table 4-3.

Table 4-3. Statistics of stations of Region 4

Station Daily mean | Daily Daily | No.rain | Total Annual
No. Lon Lat
Code (mm) AMS Max day (%) (mm)
1 146 10534 | 19.38 4.14 181.8 376.7 38.0 1544.5
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No. Station Lon Lat Daily mean | Daily Daily | No. rain | Total Annual

Code (mm) AMS Max day (%) (mm)
2 150 105.47 | 19.45 4.60 174.5 388.5 37.5 1718.2
3 151 105.47 | 19.27 4.27 159.2 560.7 36.3 1612.1
4 153 105.40 | 19.59 3.97 120.4 314.7 39.2 1463.0
5 155 104.53 | 19.03 4.21 136.5 449.5 41.8 1556.4
6 156 105.18 | 18.54 4.37 175.9 788.4 40.4 1638.6
7 158 105.46 | 18.48 4.87 208.3 362.0 35.6 1822.2
8 160 105.07 | 19.34 443 129.4 304.1 38.1 1591.3
9 161 105.09 | 19.19 4.29 123.0 272.4 38.0 1592.6
10 162 10538 | 19.10 4.05 161.8 710.1 34.2 1503.8
11 163 105.24 | 19.19 3.84 141.1 279.5 36.5 1496.5
12 164 104.26 | 19.17 3.36 101.2 192.0 353 1259.5
13 165 105.40 | 18.40 5.31 215.1 596.7 40.8 1959.0
14 166 105.54 | 18.21 7.45 266.1 657.2 43.7 2716.3
15 167 105.43 | 18.11 6.04 245.0 492.6 48.1 2214.4
16 168 105.26 | 18.31 5.70 164.5 518.8 47.6 2104.0
17 169 106.17 | 18.05 7.89 280.7 519.1 43.5 2876.9
18 170 106.25 | 17.45 5.58 229.0 413.7 38.8 1997.2
19 172 106.37 | 17.29 5.95 248.1 554.6 40.0 2204.4
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Station Daily mean | Daily Daily | No. rain | Total Annual
No. Lon Lat
Code (mm) AMS Max day (%) (mm)
20 175 106.01 | 17.53 6.07 217.2 548.4 45.0 22242
21 176 107.20 | 17.10 5.75 194.0 727.5 39.2 21233
22 177 107.05 | 16.51 6.04 248.7 447.5 43.0 2200.4
23 178 106.44 | 16.38 5.24 181.6 368.1 50.9 1947.6

Daily rainfall series for all stations in Region 4 were generated using the proposed 2-stage
interpolation method. The jackknife technique was used to represent the ungauged site condition
for 23 selected sites in Region 4. Basic statistics indices (listed in Table 4-4) have been performed
to assess the computed rainfall series, details are presented in Figure 4-4 to Figure 4-8 and Table

4-5 to Table 4-7. Results showed that estimated data are very close to the observed data.

Table 4-4. Statistics indices

No. Indices Definition Unit
1 AP Annual precipitation mm
2 AMS Daily annual maximum precipitation mm/day
3 WD Percentage of wet day %
4 SDII Mean precipitation amount at wet days mm
5 CDD Maximum number of consecutive days days
6 Prec90pc | 90th percentile of rain day amount mm
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It can be seen that there is insignificant difference between estimated and observed data in
terms of annual rainfall amount, percentage of wet day and AMS rainfall. In terms of annual
rainfall amount, generated data are similar to observed data at almost station except station 12 and
17 as presented in Figure 4-4. Similar results for percentage of wet day at all station except station
5, 16, 17 and 20 are showed in Figure 4-5. Figure 4-6 showed that generated data of daily AMS
are lower than observed data at all stations. GEV distribution was used to fit daily annual
precipitation of both generated and observed data for all stations, then quantiles different return
periods T =2, 5, 10, 20, 50 and 100 years were calculated and plotted in Figure 4-7. It displayed
that the difference of generated and observed data are mainly at extreme values. Note that

comparison results were based generated data, no bias correction was applied for this study.
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Figure 4-4. Annual precipitation of observed (Blue) and generated (Red) data for all 23 stations.

Each boxplot is conducted from data of the station for entire record length
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Figure 4-7. Q-Q plot of annual precipitation with return periods T =2, 5, 10, 20, 50 and 100 years

Figure 4-8 compared results of daily mean precipitation and percentage of wet day of all
stations by months. It is found that generated data were very close to observed data. High daily

intensity of rainfall as well as numbers of rainy days were from August to November.
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Figure 4-8. Boxplots of daily mean precipitation (a) and percentage of wet day (b) for 12 months
(Blue: observed data - Red: generated data). Each boxplot is conducted from data of the month
for all stations

Table 4-5 to Table 4-7 compares generated and observed data in terms of mean
precipitation amount at wet days (SDII), maximum number of consecutive dry days (CDD), and
90th percentile of rain day amount (Prec90p) by season time scale for all ungauged sites. For this
study, Spring is defined from January to March, Summer is from April to June, Fall is from July
to September and Winter is from October to December. Highest rainfall intensity at wet days were
found in Winter and Spring, which are almost double values in Summer and Fall (Table 4-5). The
maximum observed value of 30.1 mm/day and generated values 27.9 mm/day were found in
Winter while minimum observed value of 9.4 mm/day and generated value of 10.5 mm/day was
in Summer. In contrast, longest period of time with no rainfall was found in Summer with longest
observed period of 41.2 days and generated period of 40.3 days while shortest period was in Spring
with shortest observed period of 13.3 days and generated period of 14.0 days (Table 4-6).
Threshold is defined 1mm to be considered as rainy day. CDD values were decimal because they
were averaged all year of record length for a station. Similar to SDII, highest values of Prec90p
were in Winter while smallest values were in Summer (Table 4-7). It was found that there is
insignificant difference between estimated and observed data for all indices. Hence, it has been
demonstrated that the proposed method is feasible and the estimated daily precipitation series

are reliable.
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Table 4-5. Mean precipitation amount at wet days

SDII (mm): mean precipitation amount at wet days

Spring Summer Fall Winter
Station

Obs Gen Obs Gen Obs Gen Obs Gen
S1 19.2 20.1 10.1 11.4 12.3 14.4 21.6 22.9
S2 18.2 19.7 10.1 11.3 14.7 13.4 222 22.5
S3 21.1 20.3 11.0 11.6 13.0 14.2 23.0 22.9
S4 15.2 20.0 10.6 11.1 12.4 14.2 19.5 22.6
S5 16.0 19.4 94 13.1 12.6 13.9 19.2 20.5
S6 19.7 23.0 10.0 12.6 12.5 15.0 213 25.5
S7 24.6 23.2 11.6 11.8 13.8 14.1 26.6 25.1
S8 15.1 18.5 10.4 11.1 12.9 13.9 18.8 21.8
S9 15.2 19.4 9.6 11.7 13.1 14.7 19.2 22.0
S10 20.8 21.2 10.6 12.2 13.1 14.5 22.2 23.0
S11 17.9 20.0 10.0 11.6 13.5 14.1 21.0 22.4
S12 14.1 17.7 10.2 10.5 11.7 12.8 14.7 20.4
S13 23.8 24.0 11.3 12.3 13.7 14.6 25.4 25.7
S14 27.4 22.0 16.2 12.7 16.2 14.9 30.1 24.0
S15 20.5 24.7 12.7 13.9 14.2 15.5 22.4 27.9
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SDII (mm): mean precipitation amount at wet days

Spring Summer Fall Winter
Station
Obs Gen Obs Gen Obs Gen Obs Gen
S16 19.2 23.9 10.9 12.7 13.1 14.7 20.9 26.0
S17 27.0 23.7 16.4 14.5 15.8 16.1 28.4 27.4
S18 22.0 22.8 14.0 13.9 12.6 14.9 24.6 26.3
S19 22.4 22.5 13.9 14.1 13.5 13.6 25.4 25.1
S20 20.9 23.7 12.8 15.3 15.1 14.6 23.9 26.5
S21 20.9 22.6 14.8 16.2 17.1 15.5 25.8 26.1
S22 20.5 19.3 16.2 14.5 12.5 14.3 23.5 20.8
S23 15.5 20.6 11.4 15.3 12.4 13.3 16.6 23.5
Table 4-6. Maximum number of consecutive dry days
CDD (days): maximum number of consecutive dry days
Spring Summer Fall Winter
Station
Obs Gen Obs Gen Obs Gen Obs Gen

S1 22.3 24.3 26.7 | 27.1 19.6 23.5 18.8 18.9
S2 21.8 25.1 239 | 273 20.0 19.6 15.6 18.9
S3 20.8 25.4 20.6 | 29.1 20.1 23.1 16.9 18.2
S4 24.6 23.7 28.5 | 254 23.1 21.1 14.9 17.3
S5 17.8 27.0 19.3 | 403 16.7 30.9 14.4 18.8
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CDD (days): maximum number of consecutive dry days

Spring Summer Fall Winter
Station

Obs Gen Obs | Gen Obs Gen Obs Gen
S6 17.7 17.7 179 | 17.1 17.6 22.5 15.3 18.7
S7 19.2 15.1 18.8 | 16.3 24.0 19.9 19.6 17.2
S8 26.1 25.1 343 | 282 26.8 23.5 15.5 18.0
S9 223 26.0 26.7 | 32.2 20.4 25.8 14.9 21.2
S10 28.7 25.0 29.4 | 28.9 25.9 22.8 18.0 19.5
S11 24.4 26.3 28.9 | 29.6 22.6 22.6 20.9 18.4
S12 27.8 18.0 412 | 21.0 28.6 16.9 17.5 14.7
S13 15.1 19.2 16.3 18.8 19.9 24.0 17.2 19.6
S14 13.5 15.3 14.1 15.9 18.9 17.7 18.5 15.5
S15 14.0 14.7 14.3 14.7 16.4 19.7 11.9 20.1
S16 13.3 16.4 152 | 16.7 16.1 21.3 13.6 18.0
S17 14.5 16.7 14.8 | 19.9 18.2 243 19.4 22.6
S18 16.5 14.6 19.6 | 19.8 21.3 24.1 21.1 21.1
S19 14.6 16.5 19.0 | 19.6 22.7 21.3 20.6 21.1
S20 13.4 16.9 17.8 | 20.6 20.1 22.7 15.3 21.1
S21 15.6 15.9 203 | 255 29.7 27.6 27.3 22.6
S22 14.0 16.2 213 | 29.6 223 242 19.3 15.5
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CDD (days): maximum number of consecutive dry days

Spring Summer Fall Winter
Station
Obs Gen Obs | Gen Obs Gen Obs Gen
S23 15.8 14.0 32.0 | 21.3 25.6 223 12.7 19.3
Table 4-7. 90th percentile of rain day amount
PREC90P (mm): 90th percentile of rain day amount
Spring Summer Fall Winter
Station

Obs Gen Obs Gen Obs Gen Obs Gen
S1 60.9 59.2 323 35.7 349 36.7 64.8 57.7
S2 62.0 58.2 37.4 33.8 41.3 35.0 64.5 57.1
S3 63.5 60.0 36.2 34.6 41.7 355 68.5 58.1
S4 52.0 60.0 37.4 34.9 36.7 36.4 56.9 59.0
S5 48.9 52.4 25.8 354 33.8 32.6 53.1 47.6
S6 60.6 58.8 29.9 323 35.4 37.9 59.5 69.1
S7 69.6 64.9 35.8 31.6 44.7 41.0 81.7 72.9
S8 50.9 55.6 30.5 33.1 35.2 33.6 54.2 55.0
S9 51.0 56.4 31.8 34.5 36.3 33.7 54.2 55.8
S10 65.2 59.8 36.9 36.8 44.2 35.2 66.1 58.5
S11 59.0 57.2 36.3 333 39.9 345 63.5 57.0
S12 453 47.5 323 27.7 322 31.4 39.8 51.7
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PREC90P (mm): 90th percentile of rain day amount
Spring Summer Fall Winter
Station
Obs Gen Obs Gen Obs Gen Obs Gen
S13 71.2 63.0 31.3 343 44.0 41.3 77.4 75.3
S14 82.0 60.1 48.7 32.7 50.7 39.4 96.3 68.5
S15 65.5 69.4 38.0 38.6 38.2 449 70.2 83.9
S16 55.7 63.3 31.4 33.7 35.6 40.9 62.2 74.1
S17 80.1 58.6 45.5 35.2 48.2 42.4 81.0 71.3
S18 68.5 63.6 39.5 38.2 39.7 44.7 74.9 75.6
S19 65.8 66.0 41.7 38.0 43.1 40.9 81.7 71.3
S20 57.9 67.8 35.6 40.1 49.4 42.1 69.2 72.4
S21 61.8 56.6 41.3 41.4 62.7 40.8 78.3 68.3
S22 58.5 50.7 47.7 38.5 39.1 38.3 68.8 53.6
S23 48.4 54.6 344 42.0 35.7 37.9 42.4 64.2

To assess the important role of the identification of homogenous precipitation regions in
the proposed method for estimating missing daily rainfall series, three stations S21-S22-S23
located in Region 4 have been selected for testing. They are considered as in difference groups as
presented in Table 4-8. After that, the same estimation approach to generate daily rainfall series
for those 3 stations was used considering these stations as located in different regions as shown in

Table 4-8. The percentage of wet days and the annual precipitation for all scenarios were compared
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to the observed data to see the uncertainty given by different region scenarios. Results of this

uncertainty are presented in Figure 4-9.

Table 4-8. Scenarios of regions

No. Scenarios No. Scenarios
1 Observed data 4 | Region 4+5
2 Region 4 5 | Region 2
3 Region 5 6 | Region 7
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It can be seen that the best estimations obtained when these stations are belongs to Region
4 although it can be seen visually that stations 21 to 23 are very close to Region 5. Homogenous
regions are divided based on the same rainfall characteristics, precipitation of stations in the same
region are therefore similar. It can be concluded that the determination of homogenous regions is

crucial for the proposed method in the estimation of missing daily rainfall data at an ungauged site.

4.5 Conclusions

The estimation of missing daily precipitation series for ungauged sites based on the daily
rainfall data of neighboring stations is essential for Vietnam region. The estimated data are useful
for various applications in practice such as the construction of IDF relations for design and planning

of urban infrastructures for regions where the sub-daily rainfall data are limited or unavailable.

It was found that Vietnam can be divided into 7 sub-regions in terms of meteorology based
on PCA of daily series rainfall data from 155 stations across the country. The PCA works well for
the estimation of missing daily rainfall data in Vietnam based on the identification of homogeneous
regions using data for monthly time scale. However, this approach is considered to be sensitive

with the time scale. Hence, it is recommended to apply this approach with some caution.

The two-stage daily rainfall interpolation can be used to estimate daily rainfall data for
ungauged sites using rainfall information available at the neighboring stations located within the
same homogeneous region. The proposed estimation method can provide good estimates of annual
rainfall amounts and the number of rain days; however, there is still some limitation in the

estimation of extreme values.
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Chapter 5: Evaluation of the reliability of present and
future NASA Earth Exchange Global Daily

Downscaled Projections (NEX-GDDP) regional

climate simulations over Canada

5.1 Introduction

Global warming is currently a critical issue that every nation has to deal with. It has been
recognized that the global climate has significantly changed over past 100 years (IPCC, 2014).
These changes might have serious impacts on various hydrologic processes (Miller et al., 2003;
Whitfield et al., 2003; Ryu et al., 2011; Assani et al., 2012). To understand and predict the climate
change, past trends as well as the projections of future climates for different scenarios have been
conducted in many studies (Besaw et al., 2010; Candela et al., 2012; Yeo and Nguyen, 2014;
Nguyen et al., 2018). General Circulation Models (GCMs) have been commonly used for
evaluating the effects of climate change on the hydrological regime under different scenarios of
greenhouse gas emissions. While these GCMs could represent well the main features of the global
distribution of basic climate parameters (Randall et al., 2007), they still cannot reproduce
accurately the details of regional climate conditions at temporal and spatial scales of relevance to

hydrological impacts and adaptation studies (Nguyen et al., 2006; Maraun, 2016). This is because
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outputs from these GCMs are usually at resolutions that are too coarse for many climate change

impact studies, generally greater than 2.5° for both latitude and longitude (approximately 250 km).

To refine the GCM coarse grid resolution climate projection data to much finer spatial
resolutions (regional or local scales) for the reliable assessment of climate change impacts,
different downscaling techniques have been approached to resolve this scale discrepancy (Wilby
et al., 2002; Fowler et al., 2007; Nguyen and Nguyen, 2008; Maraun et al., 2010; Khalili and
Nguyen, 2016; Gooré¢ Bi et al., 2017). It can be divided into two main categories: statistical
downscaling (SD) and dynamical downscaling (DD). Some downscaled regional gridded datasets
can be showed in below Table 5-1. In terms of SD, two commonly-used datasets are: the Pacific
Climate Impacts Consortium (PCIC) and the National Aeronautics Space Administration (NASA)
Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) (Thrasher et al., 2012;
Werner et al., 2019). In terms of DD, coordinated dynamical downscaling comparisons have been
undertaken as part of the North American Regional Climate Change Assessment Program (Mearns
et al., 2014) and the North America Coordinated Regional Downscaling Experiment (Mearns et

al., 2017). For CORDEX, simulations were run at resolutions of approximately 25 km and 50 km.

Table 5-1. Summaries of available precipitation gridded datasets/reanalysis products

Downscaling | Dataset Grid Year Duration
method available
1971-2000
D . NARCCAP | 50km 2014
ynamic 2041-2070
Downscaling
NA-CORDEX | 25-50km 2017 1950-2100
Statistical 1/12 degree
downscaling PCIC (~10x10km) 2019 1950-2100
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Downscaling | Dataset Grid Year Duration
method available
1/4 degree
NEX-GDDP (~25x25km) 2012 1950-2100

(*NARCCAP: The North American Regional Climate Change Assessment Program; CORDEX:
the Coordinated Regional Downscaling Experiment; PCIC: The Pacific Climate Impacts
Consortium; NEX-GDDP: NASA Earth Exchange Global Daily Downscaled Projections)

Recent studies have been conducted to analyse daily extremes of precipitation at the global
scale for both historical observed and gridded downscaled data. Alexander and his colleagues
found an increase trend of daily maximum and annual precipitation from more than 600 stations
covering the Northern Hemisphere and parts of Australia during the 20" century (Alexander et al.,
2006). At the global scale, approximately two-thirds of a global dataset of more than 8000
historical stations with the period of record from 1900 to 2009 indicated an increase trend of daily
precipitation (Westra et al., 2013). In terms of analysis of downscaled datasets, Kharin and Zwiers
(2000) found a positive trend of daily annual maximum precipitation at majority on the globe in
the 20™ century using data of the first generation Canadian Global Coupled Model (CGCM1). Min
and his colleagues (2008) showed a similar result of precipitation trend using ECHO-G model and

the third generation Canadian Global Coupled Model (CGCM3).

For Canada region, several studies of precipitation trends have been conducted; however,
these studies were interested in total annual precipitation. For instance, Mekis and Vincent (2011)
proves an annual rainfall increase of around 12.5% for the period of 1950 - 2009. Some other
researchers also indicated the similar positive trend across Canada in terms of annual precipitation
during the late 20" and early 21% centuries (Zhang et al., 2000; Zhang et al., 2011; Thistle and

Caissie, 2013; Mekis et al., 2018; Vincent et al., 2018). While many water management
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applications (i.e., design of urban storm drainage systems, flood management and infrastructure
operations) require extreme rainfall information in forms of rainfall intensity-duration-frequency
(IDF). In order to construct the IDF curves, annual maximum rainfall series (AMS) of different
rainfall durations from a few minutes to days are obtained. However, short-duration extreme
rainfall data are very limited or even unavailable for a given location of interest while the daily
extreme rainfall records are often available. For instance, Environment Canada provides short-
duration extreme rainfall data of nine rainfall durations (from 5 minutes to 24 hours) and IDF
relations for approximately 600 stations across Canada (Environment Canada, 2020) whereas the
total rain-gauged stations from Environment Canada and their partners is more than 1700 stations

(Mekis et al., 2018).

To deal with locations of interest where sub-daily and/or sub-hourly data are limited or
unavailable, a scaling method to infer the sub-daily and/or sub-hourly extreme from daily extreme
rainfalls has been proposed by Nguyen and his group (Nguyen et al., 2007; Nguyen et al., 2018;
Nguyen and Nguyen, 2020). This proposed technique can also be applied for locations where daily
precipitation observations are unavailable (ungauged sites) using downscaled regional gridded
data. There is no doubt that it could bring many benefits to engineering practices in terms of design
and management. It is likely, however, IDF relations obtained from this method are relied on
variability of extreme rainfalls. This study aims therefore at performing a trend analysis of daily
annual maximum precipitation using historical observed data and downscaled regional gridded

data for the present and future climates over Canada.
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5.2 Data

5.2.1. Historical observed data

The observation datasets were initially considered for this study: historical data and
ANUSPLIN. Historical data are available from Environment Canada's website with the period of
record from 1840 to present (Environment Canada, 2020). ANUSPLIN is a gridded observation
dataset based on non-parametric fitting technique (Hutchinson et al., 2009). Hutchinson (2009)
found daily precipitation for Canada region of ANUSPLIN produce a large error. It is therefore

this study only considers the historical data from Environment Canada.

Among approximately 600 stations across Canada (Mekis et al., 2018), 175 stations with
the record length of more than 30 years and passed the trend detection test were selected for this
study. The high density of stations is located in the southern Ontario. The observed stations are
quite limited in the Northern part of Canada. Listing from the West to the East coast, and from the
North to South, there are 03 stations from Yukon (YT), 05 stations from Northwest Territories
(NT), 37 stations from British Columbia (BC), 16 stations from Alberta (AB), 07 stations from
Saskatchewan (SK), 13 stations from Manitoba (MB), 50 stations from Ontario (ON), 25 stations
from Quebec (QC), 05 stations from New Brunswick (NB), 05 stations from Nova Scotia (NS),
02 stations from Prince Edward Island (PE) and 07 stations from Newfoundland and Labrador
provinces. The location of selected stations is presented in Figure 5-1, more detailed information

of these stations can be found in Appendix.
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Figure 5-1. Selected stations over Canada

These stations were selected based on the high quality, the adequate length of available
historical records, and the representative spatial distribution of the rain-gauges. To ensure the high
quality of selected data, only historical observed data provided by the Atmospheric Environmental
Service of Environment Canada were employed for this study. Every selected station must be more
than 30 years of record and pass the Mann—Kendall test for trend detection. In addition, the
raingauges were chosen from different geography locations to partially represent the diverse

climatic conditions of Canada.
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5.2.2. Downscaled regional gridded data

Due to the limitation of scope and access, only NASA Earth Exchange Global Daily
Downscaled Projections (NEX-GDDP) data is analyzed. NEX-GDDP is a daily downscaled
dataset (~ 25kmx25km resolution) released in June 2012 by NASA. This dataset was generated
from 21 General Circulation Models (GCMs - shown in Table 5-2) runs conducted under the
Coupled Model Intercomparison Project Phase 5 (CMIPS) and across two of the four greenhouse
gas emissions scenarios known as Representative Concentration Pathways (RCP4.5 and RCP8.5)
based on the bias-correction spatial disaggregation downscaling technique (Thrasher et al., 2012).
The climate projections include daily maximum temperature, minimum temperature, and
precipitation for the historical periods of 1950-2005 and the future period of 2006-2100. Canada
is having actions on climate change and projected to archive low emissions level by mid of 21
century (Canada, 2016), it is therefore this study selects projected results of the Representative

Concentration Pathway 4.5.

Table 5-2. Information about the 21 Coupled Model Intercomparison Project 5 (CMIPS5) general
circulation models (GCMs)

Number Model Country and institution

Commonwealth  Scientific and Industrial Research
1 ACCESS1-0
Organization and Bureau of Meteorology, Australia

2 BCC-CMS1-1 Beijing Climate Center, China

Institute of global change and Earth System Sciences,
3 BNU-ESM B
Beijing Normal University, Chinaiste!
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Number Model Country and institution
Canadian Centre for Climate Modeling and Analysis,
4 CanESM2
Canada
5 CCSM4 National Center for Atmospheric Research, America
6 CESM1-BGC National Center for Atmospheric Research, America
CNRM.CMS Centre National de Recherches Meteorologiques, Centre
7 Europeen de Recherche et Formation Avancees en Calcul
Scientifique, France
Commonwealth Scientific and Industrial
8 CSIRO-Mk3-6-0 Research[s}:p}Organization/Queensland Climate  Change
Centre of Excellence, Australiaiske!
9 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, America
10 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, America
11 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, America
12 inmecm4 Institute of Numerical Calculation, Russiaiste
13 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France
14 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France
15 MIROCS Atmosphere and Ocean Research Institute, Japan
16 MIROC-ESM Atmosphere and Ocean Research Institute, Japan
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Number Model Country and institution
17 MIROC-ESM-CHEM | Atmosphere and Ocean Research Institute, Japan
18 MPI-ESM-LR Max Planck Institute for Meteorology, Germany
19 MPI-ESM-MR Max Planck Institute for Meteorology, Germany
20 MRI-CGCM3 Max Planck Institute for Meteorology, Germany
21 NorESM1-M Norway Consumer Council, Norway

5.3 Methodology

5.3.1. Mann-Kendall test

The results in this paper are based on a popular statistical method for testing whether time
series data - the Mann—Kendall nonparametric trend - to evaluate whether there is a monotonic
trend in the series. The advantage of this test is that it does not make any assumptions on the
distribution of the data, other than that under the null hypothesis, the data are independently

distributed in time.

The Mann—Kendall test is a commonly used non-parametric test for evaluating the
presence of monotonic trends in time series data (Chandler and Scott, 2011). The test has been
applied in analyzing trends of rainfall extremes data (Westra et al., 2013). In this study, the
Mann—Kendall analysis was conducted at the significant level of 5% using the MATLAB

software (version 2020a).
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5.3.2. Sen's method

Sen's method has been commonly used to estimate trends in climate series thanks to its
reliability by minimizing sensitivity of outliers in the series in comparison with conventional least-

squares methods (Zhang et al., 2000; Fernandes and G. Leblanc, 2005; Zhang et al., 2011).

Slope and intercept were computed according to Sen's method (Sen, 1968) as follow:

R — R

j—i

my =

for (1< i < j < n) where m is the slope, R denotes the variable, n the number of data, and 1, j are

indices. The median from all slope s then is calculated: s = Median (my,).

Trend of precipitation were exanimated for two time period: historical period 1950-2005
and projected period 2006 - 2100 for all stations. To maintain the consistence and accuracy, the
trends of NEX-GDDP historical data were computed using the same duration of historical

observed data given by Environment Canada.

5.4 Results and discussions

The slopes of 175 historical gauged stations across Canada given by Environment Canada
are showed in Figure 5-2. The number of stations for each province by different change intervals
of slopes for 175 gauged stations is presented in Table 5-3. According to historical observed data,
the number of stations with increase trends is slightly higher than ones with decrease trend (around
55% vs 45%). The highest decrease trend of 40% is Elora rcs (ON) while the highest increase

trend of 50% is at Summerside station (PE). It can be seen that most of Northern and Eastern
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provinces have increase trends while trends of stations located in ON, MB and BC are quite

complicated. SK is the only province that the majority of stations have decrease trend.
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Figure 5-2. Change of slope - Historical observed data. Red triangles: stations with decrease

trend, blue triangles: stations with increase trend
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Table 5-3. Trend statistics of historical observed data

Province Count of stations by Slope change (%)
No.
Code -[40 30)| -[30 20) |-[20 10)| -[10 0) | [0 10) | [1020)|[20 30) | [30 40) | [40 50]
1 NL 0 0 0 0 0 1 0 5 1
2 PE 0 0 0 0 0 0 0 0 2
3 NS 0 0 0 0 1 3 0 1 0
4 NB 0 1 0 1 1 1 0 1 0
5 QC 0 0 0 1 0 12 10 2 0
6 ON 1 8 13 9 14 4 1 0 0
7 MB 0 1 4 1 4 3 0 0 0
8 SK 2 1 3 0 1 0 0 0 0
9 AB 0 0 0 3 11 2 0 0 0
10 BC 3 1 15 6 9 2 0 1 0
11 NT 0 0 2 1 2 0 0 0 0
12 YT 0 0 0 3 0 0 0 0 0
Total 6 12 37 25 43 28 11 10 3
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Trend analyses of NEX-GDDP historical data were conducted based on the dataset over
175 grid boxes (called station hereafter) over Canada that historical observed data are available.
The slopes of NEX-GDDP dataset for historical period is illustrated in Figure 5-3 and summarized
in Table 5-4. It showed that the trends ranging from -10% to + 20%, only one station has the
decrease trend of 10.3% at Sparwood station in BC and two stations have increase trends of over
20% (Medicine hat rcs station and Nanaimo airport station in BC with 21.8% and 24%,
respectively). It can be seen that more than 80% stations have increase trends. AB is the only
province that has more station with decrease trends than ones with increase trends. Note that the
value of slopes presented in Table 5-4 are the median from 21 GCMs for a single station. Detailed

performance of all GCMs is showed in Figure 5-4.
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Figure 5-3. Change of slope - Historical NEX-GDDP data. Each value is the median from 21
GCMs. Red triangle: stations with decrease trend, blue triangle: stations with increase trend
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Table 5-4. Trend statistics of NEX-GDDP historical period

Province Count of stations by Slope change (%)
No.
code -[30-20) | -[10-0) | [0-10) | [10-20) | [20-30]
1 NL 0 1 5 1 0
2 PE 0 0 2 0 0
3 NS 0 0 4 1 0
4 NB 0 0 3 2 0
5 QC 0 5 19 1 0
6 ON 0 6 41 3 0
7 MB 0 1 12 0 0
8 SK 0 3 4 0 0
9 AB 0 10 6 0 0
10 BC 1 3 22 9 2
11 NT 0 1 4 0 0
12 YT 0 0 3 0 0
Total 1 30 125 17 2
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The boxplot (a) of Figure 5-4 presents slopes of historical NEX-GDDP data (blue) in
comparison with slopes of historical observed data (red) for all 175 stations. Each station is
illustrated by one boxplot that constructed from 21 values of 21 GCMs. Root mean square error
(RMSE) of 21 GCMs for each station was calculated and plotted in Figure 5-4 (b), and the average

of RMSEs for each province is presented in Figure 5-4 (¢). The RMSE is given as below:

1
RMSE = \/NZ(SGCMS - SObserved)z

where S indicates the slopes of stations and N is the number of sample size. It could be seen from
Figure 5-4 that NEX-GDDP data for BC have widespread slopes from 21 GCMs and average
RMSEs of all stations in this province is also highest. It could be explained that downscaling
models are limited to capture complex topography of mountainous areas in BC, driving less

accurate results for this area.
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Figure 5-4. (a) AMS precipitation boxplot for historical period for 175 stations - boxplot (Blue)
contains 21 values of 21 GCMs, each value is the average of historical period. Red points are

observed data, each point is the average of record period; (b): Boxplot
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To assess the performance of 21 GCMs in NEX-GDDP data, a ranking score has been
conducted based on the mean (MEAN) and the standard deviation (STD). Steps of calculation
are: (i) compute the MEAN and STD all stations (historical observed and 21GCMs of historical
NEX-GDDP data) over period of time; (i7) calculate the absolute bias of 21 GCMs and observe
data for both the MEAN and STD; (iii) for each station: ranking each GCM according to the bias
values calculated in previous step, a rank of 1 (the best model) is given to the GCM having
smallest bias, apply for both the MEAN and STD; (iv) count the number of stations for each
ranking from 1 to 21 for all GCMs; (v) ranking score for each GCM: sum of rank of that GCM
for 175 stations, apply for both the MEAN and STD; (vi) ranking GCMs: lower ranking score,
better model. Each cell in Table 5-5 shows the total number of stations each ranking for 21
GCMs by the MEAN and STD (upper number: count by MEAN ranking and lower number:
count by STD ranking). For instance, GCM "bcc-csm1-1" is ranked 1 at 6 stations in terms of

the MEAN and 63 stations in terms of STD.

According to the Table 5-6, it can be seen that the second-generation Canadian Earth
System Model (CanESM2) performs the best among 21 GCMs over Canada with rank 2" in terms
of the MEAN and 1% in terms of the STD. In particular, the GCM "CanESM2" is ranked 1 to 4 at
more than 65% of stations and ranked 1 to 3 at more than 75% of stations. Beside "CanESM2",
two models from China ("bcc-csml-1", "BNU-ESM") and two models from Japan ("MIROC-
ESM", "MIROC-ESM-CHEM") are also considered well performing over Canada region. GCMs
"CESM1-BGC", "MIROCS5" and "MRI-CGCM3" are considered as worst models over Canada for
this study. However, it can be seen that there are high uncertainties from results of total 21 GCMs
that unable to estimated and also require an in-depth evaluation of the performance of these all

GCMs, it is recommended to use the median of all GCMs for calculation.

93



Table 5-5. Count of stations ranking by GCMs in terms of MEAN (upper number) and STD
(lower number) of AMS NEX-GDDP historical data

Rank| 1 2 3 4 5 6 7 8 9 (10 | 11 |12 [ 13 |14 |15 [ 16 | 17 | 18 | 19 | 20 | 21
GCM

bec-csml-1 6 127125121 1251181 9 7 5 5 1 1 2 2 2 3 5 4 2 4 1

631 111521 2 2 010 1 {3 2 0 2 1 0 0 211 1 9 {10 {13

BNU-ESM 7 114117 114124 133114112} 3 6 2 6 2 0 5 4 3 2 2 2 3

32 1621 38 1 011 0 2 1 0 0 1 0 01! 0 312 1 41161 11

CanESM2 30130124 1291141121 6 2 2 0 4 2 0 2 0 2 1 2 4 6 3

421601321 1 2 0 1 040 04 2 0 0 0 010 0 0 113 9113

CCSM4 10 1 10 ¢ 7 5 4 2 0 2 3 3 1 2 2 2 6 4 110117 125132128

CESMI-BGC | 12 { 11 | 4 3 3 3 3 0 1 1 1 5 1 6 6 7 8§ 113123130134

30 5 5 81 4 2 1 110 1 2 2 3 0 2 3 116 7 1251 67

CSIRO-MKk3- | 0 0 0 0 3 6 8 8 3 9 121117 124 120181111 7 9 6 3 2
6-0

GFDL-CM3 1 0 1 3 2 4 1131154119118 13012015121 6 2 1 0 3 4 6

0!0 {19131 716110 114 4 5 2 7 4 4 705 1231424 7 5

GFDL- 2 01 4 1 7 114117 123 122412111418 11517 4 7 3 2 2 0 2

[ESM2G
0 0! 2 {14:13: 91! 4 7411041 7 4 514 6 6 7 1351341 5 112

GFDL- 0 2 0 0 4 112 12912613021 141 8 6 6 3 2 3 1 3 4 1
[ESM2M

inmcm4 0 0 0 3 3 1 5 3 4 8 6 114 118 113 119 123 116171141} 5 3

IPSL-CM5A- | 54 {21 {16 {21 {16 { 11 | 3 2 2 3 1 1 0 1 4 2 0 4 2 3 8
LR

IPSL-CM5A- | 0 0 1 1 3 4 9 122124127 11811319 5113110 8 3 2 1 2
MR
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Rank | 1 2 3 4 5 6 7 8 9 (10 | 11 |12 [ 13 |14 |15 [ 16 | 17 | 18 | 19 | 20 | 21
GCM

010 1117411641 7 (121 101 7 9 1151 211141 124% 5 1 9 111 2 3 3

MIROCS5 2 2 5 8 3 3 0 3 3 1 2 1 7 6 9 8 130124129118 111

110 01 4 3 716 S 117116021 115125 1164 11§ 8 7 4 6 3 0

INorESM1-M | 0 0 0 3 7 112 127119120121 1161121 6 7 3 5 4 3 3 5 2

0 1 0 4 3 5 9 9116125131 18114} 9 9 7 7 2 242 2

IACCESSI1-0 0 1 2 0 1 1 3 S 11011519 1211171241151 9 1131 8 6 {111 4

0 01| 4 4 {10} 8 9 1171 17} 2111541 201 8 {16} 5 8 5 1 2 302

ICNRM-CM35 1 2 1124 2 2 2 8 5 0 0 3 5 7 111118121 12212441 6 {14110

1 0 21 4 5 3 6 13{19{20{10 12 ! 18 {14 8 110! 9 I 7 7 4 3

IMIROC-ESM | 22 {25 {22 {32119 ({14} 6 5 3 3 0 0 1 2 0 2 6 3 6 1 3

0 210 1 6 114 1312011311219 120110114 {13} 8 8 5 4 2 1

IMIROC-ESM-| 20 { 22 {30 { 19 | 27 | 15 | 4 2 5 2 4 0 2 3 4 3 2 3 2 3 3
CHEM

01! 0 0! 161112015114 {101} 13} 8 716 11318 11417 7 411 1

IMPI-ESM-LR | 0 1 0 1 3 4 7 2 6 6 {14 115117 128 110 {18 {12 {101} 9 6 6

0 0 0 701740200181 1511014 7 8 1oy s 7 12y 11 411147 6 2 2

IMPI-ESM-MR| 0 1 0 2 2 4 2 7 7 6 {11 119119 {17 127 {2012 8 3 1 7

0 0 4 118116114 11010 70 4 1214 1117 9114 919 114! 4 5 0

IMRI-CGCM3 | 8 6 5 7 3 1 1 5 3 0 2 5 5 1 4 11119 118123122136

1 1 21101 9 701308 11211014 7 74100 5114 8113110010} 5 16

95




Table 5-6. Summary ranking scores for 21 GCMs

No. GCM MEAN score STD score | Rank by MEAN | Rank by STD
1 | bee-csml-1 1117 1062 5 3
2 | BNU-ESM 1228 1044 6 2
3 | CanESM2 936 1001 2 1
4 | CCSM4 2598 1971 18 10
5 | CESMI1-BGC 2622 2472 19 20
6 | CSIRO-Mk3-6-0 2258 2490 12 21
7 | GFDL-CM3 1947 2274 10 19
8 | GFDL-ESM2G 1730 2231 8 18
9 | GFDL-ESM2M 1703 2060 7 13
10 | inmcm4 2518 2130 16 16
11 | IPSL-CMS5A-LR 926 2035 1 12
12 | IPSL-CM5A-MR 1957 1880 11 7
13 | MIROCS 2703 2087 21 14
14 | NorESM1-M 1792 1979 9 11
15 | ACCESS1-0 2380 1867 14 5
16 | CNRM-CM5 2521 2102 17 15
17 | MIROC-ESM 1010 1961 3 9
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No. GCM MEAN score STD score | Rank by MEAN | Rank by STD
18 | MIROC-ESM-CHEM 1033 1814 4 4
19 | MPI-ESM-LR 2410 1875 15 6
20 | MPI-ESM-MR 2368 1892 13 8
21 | MRI-CGCM3 2665 2180 20 17

Figure 5-5 and Table 5-7. Figure 5-5 illustrated the slopes of all stations by magnitude and spatial
spread while Table 5-7 counts the number of stations each province by different intervals of slopes.
Similarity to historical period, trends of NEX-GDDP data for projection period are between -3%
to 10%. Stations with decrease trend are mainly located in AB, SK and MB. It demonstrated that
majority of stations have an increase trend with more than 90% number of stations. Stations with
decrease trend are insignificant with less than 3% and mainly located in AB, SK, MB which the
highest decrease slope of 2.3% at Flin-flon station (MB), only one station located in ON. 10
stations with high increase trend (more than 10% of slope) are entirely located in BC which the
highest value of approximately 16% at Penticton airport station. It can be seen that extreme rainfall

events are likely to occur frequently in BC other than other provinces of Canada in the future

according to the projection of NEX-GDDP.
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Figure 5-5. Change of slope - Gridded historical data (NEX-R45). Each value is the median from

21 GCMs. Red triangle: stations with decrease trend, blue triangle: stations with increase trend

Table 5-7. NEX-GDDP trend statistics of projection period (R45)

Province Count of stations by Slope change Slope (%)
No.
code -[3-0) [0-10) [10 - 20]
] NL 0 7 0
2 PE 0 2 0
3 NS 0 5 0
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Province | Count of stations by Slope change Slope (%)
No.
code -[3-0) [0-10) [10 - 20]
4 NB 0 5 0
5 QC 0 25 0
6 ON 1 49 0
7 MB 4 9 0
8 SK 4 3 0
9 AB 6 10 0
10 BC 0 27 10
11 NT 0 5 0
12 YT 0 3 0
Total 15 150 10

5.5 Conclusions

This study evaluates the trends of daily annual maximum precipitation using data from 175
high-quality historical observed station across Canada and 25kmx25km resolution downscaled
regional gridded data NEX-GDDP for past period from 1950 to 2005 and projection period from
2006 to 2100. The trend is estimated using Sen's method. Overall, it can be concluded that majority

of stations have increase trends for all periods of time. According to historical observed data, there
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1s around 40% of stations with decrease trends and most of them are located in the central and

western Canada.

Downscaled regional gridded data NEX-GDDP show increase trends for both historical
period and projection period with around 80% and 90% of stations, respectively. While trends of
NEX-GDDP historical data are mainly from -10% to + 20%, trends of NEX-GDDP projection data
are only between -3% to 10%. Most of stations with decrease trend are located in the western
Canada and stations with highest trends are mainly in BC. Due to the complex topography of

mountainous area, stations in the province of BC have widespread trends given by different GCMs.

Regarding the performance of all 21 GCMs of NEX-GDDP data, CanESM2 model is
considered the best model over 175 stations in Canada region. Results of CanESM2 model is
ranked 1% for majority of stations in terms of the mean and standard deviation of daily annual
maximum precipitation. Models from China and Japan are also considered to produce good results

over Canada region.

100



Chapter 6: Evaluation of variability of precipitation
and temperature extremes over Montreal region for

present and future climates

6.1 Introduction

In recent years, global climate impacts have been recognized as one of the most the critical
issues for many nations and/or regions all over the world. It has been recognized that the global
climate has significantly changed over past 100 years (IPCC, 2014). To understand and predict the
climate change, past trends as well as the projections of future climates for different scenarios have
been conducted in many studies (Creutin and Obled, 1982; Besaw et al., 2010; Candela et al.,
2012; Yeo and Nguyen, 2014; Nguyen et al., 2018). In Canada, some studies have indicated an
increase trend in both temperature and precipitation with an average increase of around 1.4°C for
air temperature and around 12.5% for annual rainfall during the second half of the 20th century
(Mekis and Vincent, 2011; Zhang et al., 2011). These changes might have significant impacts on
various hydrologic processes (Miller et al., 2003; Whitfield et al., 2003; Ryu et al., 2011; Assani

etal., 2012).

General Circulation Models (GCMs) have been commonly used for evaluating the effects
of climate change on the hydrological regime under different scenarios of greenhouse gas

emissions. While these GCMs could represent well the main features of the global distribution of
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basic climate parameters (Randall et al., 2007), they still cannot reproduce accurately the details
of regional climate conditions at temporal and spatial scales of relevance to hydrological impacts
and adaptation studies (Nguyen et al., 2006). This is because outputs from these GCMs are usually
at resolutions that are too coarse for many climate change impact studies, generally greater than
2.5° for both latitude and longitude (approximately 250km) as shown in Figure 6-1. To refine the
GCM coarse grid resolution climate projection data to much finer spatial resolutions (regional or
local scales) for the reliable assessment of climate change impacts, different downscaling methods
have been proposed to resolve this scale discrepancy (Wilby et al., 2002; Fowler et al., 2007;
Nguyen and Nguyen, 2008; Maraun et al., 2010; Khalili and Nguyen, 2016; Gooré Bi et al., 2017).
These downscaling methods can be generally classified into two broad categories: dynamical
downscaling (DD) and statistical downscaling (SD). It has been widely recognized that the SD
methods offer several practical advantages over the DD procedures, especially in terms of flexible
adaptation to specific study purposes, and inexpensive computing resource requirement (Xu, 1999;
Prudhomme et al., 2002). In addition, SD methods can be used to spatially disaggregate GCM
outputs to regional scales or local/point scales (a single site or multi-sites) (Wilby et al., 2002;
Khalili and Nguyen, 2016; Werner and Cannon, 2016). Furthermore, when dealing with a large
ensemble of GCMs, the SD methods are often in favor because of their computational efficiency
and effectiveness in producing physically plausible hydro-climatology data (Wood, 2004; Werner

and Cannon, 2016).

Located on an island in the Saint Lawrence River, Montreal is the biggest city of Quebec
province and second-largest city of Canada with the population of approximately 1.9 million
(Statistics-Canada, 2016). Every year, the city has experienced frequent extreme weather events

such as heavy storm rainfalls and heat waves that cause millions of property losses, and in some
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cases, the loss of human lives (City-of-Montreal, 2017). These types of extremes events are
occurring with increasing frequency. For instance, more than 30 people were killed by a heat wave
in Montreal in July 2018 (Cullinane, 2018). Another example is the spring flood in 2017 that
affected thousands of people and millions of dollars of damages (Lau, 2017). Furthermore, August
2021 is considered hottest month on record for Montreal consisting of 5 heat wave events with 13
days with the temperature of above the 30-degree - compared to an average of 2 days for the month
of August (Graham, 2021). Consequently, information on the spatial and temporal variations of
these precipitation and temperature extremes for current and future climates is important for the
planning and design of the City’s its urban infrastructures to minimize the impacts of these natural
disasters. Many studies have been conducted to assess the variability of temperature and
precipitation processes in Canada and in other countries (Zhang et al., 2001; Arnbjerg-Nielsen et
al., 2013; Thistle and Caissie, 2013; Benmarhnia et al., 2014; City-of-Montreal, 2017) However,
very few studies have been carried out specifically on the daily precipitation and temperature
extremes for the local City of Montreal region. Therefore, in the present study, a critical evaluation
of the spatial and temporal variations of the daily annual maximum rainfalls and daily extreme
temperatures over the Montreal region was conducted for the present and future climates using
two different datasets that have been statistically downscaled by the Pacific Climate Impacts
Consortium (PCIC, 2014) and the National Aeronautics Space Administration Earth Exchange
Global Daily Downscaled Projections (NEX-GDDP) (Thrasher et al., 2012). Information of these

two datasets will be detailed in section 6.2.
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6.2 Numerical application

6.2.1 Data

Figure 6-1 shows a network of seven weather stations in the Montreal region. However,
of these seven stations only Montreal-Pierre Elliott Trudeau International Airport (Dorval) and
McGill stations have good quality of data with long historical records, other stations have either
short historical records or a large number of missing data. Figure 6-1 also indicates the grids of
the two downscaled datasets (red: NEX-GDDP; black: PCIC). It can be seen that the NEX-

GDDP grid size is approximately nine time larger than the PCIC grid.
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Figure 6-1. Location of measuring stations in Montreal region
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Information of PCIC and NEX-GDDP datasets were summarized in Table 6-1 below:

Table 6-1. Summary of PCIC and NEX-GDDP datasets

PCIC NEX-GDDP Note
Grid size (degree) 1/12 1/4
Downscaling method | BCSD", BCSD
BCCAQ"™
Number of GCMs 24 21 PCIC: 12 for BCCAQ
and 12 for BCSD
Variables Tmax, Tmin, Pr Tmax, Tmin, Pr
Timesteps Daily Daily
Projection duration 1950-2100 1950-2100
RCP"™" scenarios 2.6;4.5;8.5 4.5;8.5

(BCSD*: bias-correction spatial disaggregation - see Werner and Cannon (2016) for further

details; BCCAQ**: Bias Correction/Constructed Analogues with Quantile mapping

reordering; RCP™": Representative Concentration Pathway)

In the present study, only gridded daily annual maximum precipitation and daily extreme
temperature data were considered. These data were statistically downscaled from 10 GCMs
corresponding to the RCP 4.5 scenario (see Table 6-2). For the present climates, the available
historical data from Dorval and McGill stations and the PCIC and NEX-GDDP gridded data for

the same 1961-1990 period were used. For the future climates, climate projections from the climate

models corresponding to the RCP 4.5 scenarios for the 2006 — 2100 period were selected.
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Table 6-2. 10 [IPCC-CMIP5 climate models used in this study

GCM Institution
CSIRO (Commonwealth Scientific and Industrial Research
ACCESS1-0 o . .
Organisation, Australia), and BOM (Bureau of Meteorology, Australia)
CanESM2 Canadian Centre for Climate Modeling and Analysis
CCSM4 National Center for Atmospheric Research
Centre National de Recherches Météorologiques/Centre Européen de
CNRM-CMS5

Recherche et Formation Avancées en Calcul Scientifique

CSIRO-MK3-6-0

Commonwealth Scientific and Industrial Research Organization

in collaboration with the Queensland Climate Change Centre of

Excellence

GFDL-ESM2G NOAA's Geophysical Fluid Dynamics Laboratory
INMCM4 Institute for Numerical Mathematics, Moscow, Russia
Japan Agency for Marine-Earth Science and Technology, Atmosphere
MIROCS and Ocean Research Institute (The University of Tokyo), and National
Institute for Environmental Studies
MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M)
MRI-CGCM3 Meteorological Research Institute

6.2.2 Statistical indices

In addition, the root-mean-square error (RMSE) was used to compare the performance of

the proposed model as given below:
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1
RMSE = JNZ(SImodel - SIObseTved)Z

where S indicates the value of the statistical indices and N is the number of sample size. The

smaller value of the RMSE indicates the better accuracy of the model considered.

6.3 Results and discussions

6.3.1 Present climate

Figure 6-2 presents the spatial distribution of the downscaled daily annual maximum
precipitations (AMPs) over the Montreal region from PCIC and NEX-GDDP datasets based on
the average of ten GCMs. It can be seen that the mean precipitation given by NEX-GDDP is
smaller than PCIC. More specifically, Table 6-3 shows the means of daily AMPs at Dorval and
McGill stations in comparison with PCIC and NEX-GDDP data. Overall, the gridded
downscaled data values are smaller than the observed data at a given station. PCIC data are
11.92% and 22.75% lower than observed AMP at Dorval and McGill stations, respectively,
while the values from NEX-GDDP data are 29.24% and 35.92%, respectively. It is therefore
necessary to perform a bias adjustment before these gridded downscaled data can be used in the

planning and design of urban infrastructures.

For purposes of illustration, the results for daily AMP at Dorval Airport are shown in
Figure 6-3 using the boxplots, and the results for temperature extremes are presented in Figure 6-
4 and Figure 6-5. In addition, Table 6-4 presents the comparison using the root mean square error
(RMSE) values for both precipitation and temperature extremes. In general, it can be seen that the

PCIC data are more accurate for AMP and somewhat less accurate for temperature extremes as
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compared to the NEX-GDDP data. However, Figure 6-4 indicates that results given by PCIC are
more robust with narrow boxplots in comparison with NEX-GDDP data. Regarding the standard
deviation, NEX-GDDP data is more accurate for daily minimum temperature while PCIC data are

more robust for daily maximum temperature.

NEX-GDDP
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. High : 42
Low : 35

PCIC
mm/day
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MONTREAL - LAVAL MONTREAL - LAVAL

Kilometers

4
Kilometers L E

PCIC NEX-GDDP

Figure 6-2. Daily AMPs over the Montreal region downscaled by PCIC and NEX-GDDP

Table 6-3. Mean of daily AMPs at Dorval and McGill stations

Mean of daily AMPs (mm/day)
No. | Station Different NEX- Different
Observed PCIC
(%) GDDP (%)
1 Dorval 50.75 44.7 11.92 3591 29.24
2 McGill 54.76 42.3 22.75 35.09 35.92
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Figure 6-3. Mean (left) and Standard Deviation (right) of daily AMPs at Dorval station based on

downscaled gridded data from ten different GCMs

Table 6-4. RMSE of the means of daily AMP and temperature extremes at Dorval station

RMSE
RCMs
Tmin Tmax Precipitation
PCIC-BCSD 6.91 5.16 2.90
PCIC-BCCAQ 6.47 4.75 5.00
NEX-GDDP 5.71 3.99 12.20
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Figure 6-5. Standard deviation of daily minimum (left) and maximum (right) temperatures at

Dorval station based on downscaled gridded data from ten different GCMs

6.3.2 Future climate

Daily annual temperature extremes and daily AMPs for the 2006-2100 period downscaled
from PCIC and NEX-GDDP were analyzed. It can be seen from Figure 6-6 and Figure 6-7 that
there are increasing trends in both temperature extremes and AMP at Dorval station. Table 6-5

shows the values of temperature extremes and AMPs estimated based on the fitted trend regression

110



lines at the year 2006 and 2100. Results are based on an average of all 10 GCMs given by both
datasets. It is estimated that precipitation could increase around 10.77% for the 2006-2100 period.
In addition, daily maximum temperature is projected to increase around 8.06% in the same period.
Daily minimum temperature could have a projected increase of around 16.69%. Hence, the
Montreal region could experience more extreme rainfalls and higher maximum and minimum

temperatures in the future.

Table 6-5. Increase of temperature and precipitation in 2006-2100 period

Variables 2006 2100 % Increase
Precipitation (mm) 41.47 45.93 10.77
Minimum temperature (°C) -26.19 -21.82 16.69
Maximum temperature (°C) 33.33 36.02 8.06
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6.4 Conclusions

Major findings of this present study can be summarized as follows:

Many climate projection studies have been commonly conducted at global or large regional
scales, the present study has been performed specifically at the City of Montreal scale to provide
useful information on the variability in time and in space of annual maximum precipitations and
temperature extremes for the design and planning of its urban infrastructures using the regional
downscaled climate projection data from ten different GCMs under the RCP 4.5 scenario provided
by PCIC and NEX-GDDP. In general, the PCIC data with finer grid size of 1/12 degree (or
approximately 10x10 km) could produce more robust results than the NEX-GDDP data with a

coarser resolution of % degree (or approximately 25x25 km).

According to the results downscaled by PCIC and NEX-GDDP, there are projected
increasing trends in both temperature extremes and AMPs over the Montreal region. The AMP
is projected to increase around 10% for the 2006-2100 period. Minimum and maximum
temperatures are projected to increase approximately 16% and 8% respectively by the end of

this century.

Downscaled gridded data are different from observed data at a given location. It is therefore
essential to perform a bias correction of the gridded data before these data could be used in the

planning and design of the urban infrastructures.
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Chapter 7: Conclusions and recommendations

7.1 Conclusions

The following main conclusions can be drawn from the present study:

1.

A statistical downscaling model (called SDGAM) has been proposed for climate change
impact assessment studies at a gauged site. The proposed model was based on the
combination of the precipitation occurrence and the precipitation amount using the
Generalized Additive Modeling method. Results of a numerical application have indicated
that the proposed model was able to describe well many features of the daily precipitation
process, including its occurrence frequency, intensity, and extremes for both calibration
and validation periods for data from 10 rain-gauged stations located in Southern Quebec
and Ontario, Canada. In addition, this model could provide a significant improvement over
the popular SDSM model in the modeling of daily precipitation process in the context of

climate change.

. A spatial-temporal downscaling approach was proposed in this study to describe the

linkage between large-scale climate variables for daily scale to AMP for daily and sub-
daily scales at a local site. The proposed method was based on the combination of the
spatial downscaling method to link large-scale climatic variables provided by GCMs to
daily extreme precipitations at a local site using the SDGAM model developed in this study

and the temporal downscaling procedure to describe the relationships between daily
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extreme precipitations with sub-daily extreme precipitations using the scaling GEV/PWM
model. The feasibility of the proposed downscaling method has been evaluated based on
climate simulation outputs from the CanESM2 model under different RCPs (RCP 26, RCP
45, and RCP 85) and using available AMP data for durations ranging from 5 minutes to 24
hours at ten rain-gage stations across Canada. Results have showed that it is feasible to link
daily large-scale climate variables to daily AMP at a local site for climate change impact

and adaptation studies at a given location of interest.

. A detailed statistical analysis of AMP series for selected stations representing the diverse
climatic conditions across Canada has indicated that these AMP series in Canada displayed
different scaling behaviors depending on the location of the station considered. Based on
this scaling property, the scaling GEV distribution has been proved to be able to provide

accurate estimates of sub-daily AMPs from GCM-downscaled daily AMP amounts.

. A statistical regionalization method using the Principal Component Analysis (PCA) has
been proposed to identify homogeneous regions of precipitation regimes. The feasibility
and accuracy of the proposed method has been assessed using the daily precipitation data
available from a network of 155 rain-gauge stations across Vietnam. Results of this
numerical application have indicated that the suggested regionalization method was able
to identify homogeneous precipitation regions which were found physically consistent to

the particular climatic features of Vietnam.

. A statistical estimation approach has been developed in this study to generate daily
precipitation series at an ungauged location using rainfall information available within the

same homogeneous rainfall region. The proposed approach was based on a two-stage
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interpolation method to describe the persistence in rainfall occurrences and rainfall
amounts for the rainfall homogenous region. The feasibility and accuracy of the proposed
estimation method has been evaluated using daily rainfall data available from a network of
155 raingauges in Vietnam. Results of this assessment have indicated that the proposed
procedure could provide an accurate estimate of the daily precipitation series for an

ungauged location.

. A detailed statistical analysis was performed to identify the presence of trends in
precipitation series using the historical high-quality rainfall records from a network of 175
stations located across Canada and using the 25kmx25km resolution downscaled regional
gridded data from NEX-GDDP for the past period from 1950 to 2005 and for the projection
period from 2006 to 2100. It was found that the majority of station data have increase
trends, and around 40% of stations located mostly in central and western Canada with
decrease trends. For downscaled regional gridded data NEX-GDDP, increase trends was

found for both historical and projected periods for more than 80% of stations.

. Among all 21 GCMs of NEX-GDDP data, the CanESM2 model is considered the best
model for Canada, especially in terms of the mean and standard deviation of the annual
maximum daily precipitation. Models from China and Japan were also found to be able to

produce good results over many locations in Canada.

. The PCIC data with finer grid size of 1/12 degree (or approximately 10x10 km) could
produce more robust results than the NEX-GDDP data with a coarser resolution of 4
degree (or approximately 25x25 km) over Montreal area. It was also found that these data

projected increasing trends in both temperature extremes and AMPs. More specifically, the
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AMP was projected to increase around 10% for the 2006-2100 period while minimum and
maximum temperatures were projected to increase approximately 16% and 8%

respectively by the end of this century for the Montreal region.

7.2 Recommendations for further works

Based on the findings of this study, the following recommendations are suggested for

future studies:

1.

The regression-based downscaling models for generating daily precipitation process for
climate impact studies were found to be sensitive to the selection of the large-scale climate
predictors given by the GCMs. However, there is still no general agreement for selecting
the best approach that could identify the most significant predictors for these models.
Hence, it is essential to develop a new screening method for selecting the most significant
predictors that could describe more accurately the linkages between these climate

predictors and the observed precipitation characteristics at a local site of interest.

The present study has indicated that the performance of the ungauged precipitation model
was significantly influenced by the accuracy in the identification of the homogeneous
regions of precipitation. For improving our understanding of the spatial and temporal
variation of the precipitation process and for improving the accuracy of the precipitation
estimation at an ungauged site it is necessary to explore other similarity criteria based on
both precipitation regimes and topographic characteristics that could be used to improve

the definition of the similarity of the precipitation variability in time and in space.
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3. For this study, the PCA works well for rainfall data of Vietnam region in monthly time
scale. However, this approach is considered to be sensitive with the time scale of the
selected data, it is therefore necessary to develop a more robust method based on, for

instance, Ordinary Factor Analysis or Cluster analysis to minimize this sensitivity.

4. Further studies should be conducted to evaluate of the variability in time and in space of
the daily annual maximum rainfalls and extreme temperatures over Canada region for
different other sources of downscaled regional gridded data beside the National
Aeronautics Space Administration (NASA) Earth Exchange Global Daily Downscaled
Projections (NEX-GDDP) including the Pacific Climate Impacts Consortium (PCIC), and

ANUSPLIN.

5. The methods proposed in this study should be tested with different datasets available
worldwide from different climate conditions to assess the feasibility and reliability of these

suggested approaches.
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Chapter 8: Statement of originality

To the best of the author’s knowledge, the followings are the original contributions from

the present study:

1.

A new statistical downscaling model (SDGAM) has been developed in this study for
describing accurately the linkage between large-scale climate predictors and
observed daily rainfall characteristics at a local site. This new model was based on
the Generalized Additive Modeling (GAM) method. Results of a comparative study
using NCEP re-analysis data and observed daily precipitation data in Canada have
demonstrated that the SDGAM could provide more accurate results than those given
by the currently popular SDSM model. The proposed SDGAM model is therefore
could be an essential tool for high-quality climate change impact assessment studies

in practice.

A novel spatial-temporal downscaling approach was proposed in the present study to
provide a more accurate estimation of extreme rainfalls for daily and sub-daily scales
at a local site in the context of climate change. The proposed approach was quite
useful for improving the accuracy in the construction of the IDF relations at a given
site and, consequently, a more accurate estimation of the design storm for urban

infrastructures design in a changing climate.

. An original regionalization method based on the Principal Component Analysis

(PCA) technique was proposed for identifying homogeneous regions of precipitation
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regimes. Results of an illustrative application using observed daily rainfall data in

Vietnam have indicated the feasibility and accuracy of the proposed method.

. An original statistical approach has been developed in this study to estimate daily
precipitation series at a location where the rainfall data are unavailable (an ungauged
site) using rainfall information in the same homogeneous region. The proposed
approach was based on a two-stage interpolation method to represent the persistence
in rainfall occurrences and rainfall amounts within the same homogeneous region. It
has been demonstrated that this new approach could provide the estimated daily
precipitation series at an ungauged site having similar statistical properties as those

of the observed data.

. A detailed statistical analysis has been performed to identify the presence of trends
in the historical records of daily annual maximum precipitation series for different
locations and the downscaled regional gridded data from the National Aeronautics
Space Administration (NASA) Earth Exchange Global Daily Downscaled
Projections (NEX-GDDP) for Canada. Results of this analysis have provided
essential information for improving our understanding of the variability of daily

precipitation in Canada for the present and future periods.

. A detailed statistical analysis of the variability in time and in space of the daily
annual maximum rainfalls and extreme temperatures over the Montreal region for
the present and future climates using the data from two different sources: the Pacific
Climate Impacts Consortium (PCIC) and the National Aeronautics Space

Administration (NASA) Earth Exchange Global Daily Downscaled Projections
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(NEX-GDDP). Results of this analysis have provided valuable information for the
planning and design of urban infrastructures for Montreal in the context of a

changing climate.
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Figure A-1. Boxplots of monthly percentage of wet-day for SDSM (left) and SDGAM (right) for

all stations (Black star markers indicate monthly average values of precipitation data)
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Figure A-2. Boxplot of monthly mean of precipitation for SDSM (left) and SDGAM (right) for

all stations (Black star markers indicate monthly average values of precipitation data)
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Table A-1. RMSEs of monthly Precip-m and Precip-std for all stations

Indices

Precip-m

Precip-std

Station Month

Calibration

Validation

Calibration

Validation

SDSM SDGAM

SDSM SDGAM

SDSM SDGAM

SDSM SDGAM

Jan | 1494 1357 | 1.182 1277 | 2778 2394 | 2251 2534
,,,,,,,,,,,, s Lo 0.893 1.075 0.912 1.990 1.669 1.971 1.381

C Mar | 1259 1040 | 1.007  1.198 | 2764  2.058 | 2.098  2.754

"""""" Apr | 1.165 0939 | 1353 1274 | 2145 1660 | 2324  1.999

~ May | 1187 0982 | 1152 1.072 | 2081 1722 | 2.548  2.486

""""""" Jun | 1109 1.006 | 1.563 1374 | 2.684 2428 | 2936  2.759

St . i 1348 1175 1645 1.496 3.120 2.778 3.223 3.000
1717 1525 | 1480 1281 | 3.843 3280 | 3.580  2.583

1731 1454 | 1538 1379 | 4690 3455 | 3.854  2.600

""""""" Oct | 1.137 0939 | 1.285  1.149 | 2529 2,053 | 3.127 2981

"""""" Nov | 1.149 098 | 1.189  1.037 | 2200 1792 | 2503  1.979

C Dec | 1324 1149 | 1011 0970 | 2317 1833 | 1.777 1565

Jan | 1508 1359 | 1581 1405 | 2317 2138 | 2.669  2.454

"""""" Feb | 1374 1238 | 1325 1311 | 2.647 2322 | 3.032  3.086

S Mar | 1398 1242 | 1304 1238 | 3197 2739 | 3.021 2734
1152 0907 | 1427 1307 | 1773 1581 | 2123 1721

> ~ May | 1.131 1012 | 1516 1475 | 2246 2013 | 2.853 23816
""""""" Jun | 1496 1318 | 1773 1705 | 3.028  2.689 | 3.228  3.330

""""""" Jul | 2128 1963 | 1518 1352 | 4261 3810 | 2992 2504

"""""" Aug | 1929 1724 | 1933  1.831 | 3984 3485 | 4931  4.863
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Indices Precip-m Precip-std

Calibration Validation Calibration Validation
Station Month

SDSM SDGAM | SDSM  SDGAM | SDSM  SDGAM | SDSM SDGAM

Sep 1.757 1.590 1.577 1.495 4.128 3.207 3.800 3.297

Oct 1.237 1.176 1.146 1.035 2.568 2.247 2.393 2.071

Nov 1.324 1.204 1.734 1.654 2.419 1.925 3.160 2.858

Dec 1.519 1.407 2.118 2.071 2.246 2.088 3.257 3.216

Jan 0.960 0.844 1.272 1.206 1.538 1.326 2.181 2.070

Feb 1.009 0.877 1.261 1.103 1.999 1.694 2.353 1.881

Mar 1.189 1.023 1.253 1.206 2.020 1.701 2.423 2.068

Apr 1.223 1.074 1.250 1.091 2.100 1.739 2.180 1.773

May | 0.904 0.737 1.134 1.038 1.838 1.496 1.938 1.698

1.619 1.476 1.341 1.089 3.243 2.948 2.942 2.524

o Jul | 1976  1.839 | 1.764 1.612 | 4172 3999 | 4568  4.488
"""""" Aug | 1512 1356 | 1948  1.888 | 3.572 3527 | 3.867  3.573
,,,,,,,,,,,,, Sep | 1.620 1427 | 1.636 1568 | 3.293 2483 | 3.614  3.286
""""""" Oct | 1.057 0903 | L464 1357 | 2914 2704 | 3342 3338
"""""" Nov | 1.025 0905 | 1.534 1486 | 1.667 1451 | 3.100  3.136
~ Dec | 0955 0878 | 1293 1171 | 1.603 1361 | 2382  2.401
Jan | 1051 0884 | L.164  1.058 | 1705 1494 | 2.159 1578
,,,,,,,,,,,, 55 Loos 0.913 1.028  0.899 2.169 1.996 1.883 1.530
~ Mar | 0873 0724 | 0.896 0764 | 1.756  1.527 | 1.768 1223
S5

Apr 1.343 1.151 1.264 1.235 2.221 1.783 2.155 1.572

May | 1.122 0.979 1.214 1.192 1.930 1.650 2.340 1.783

Jun 1.401 1.324 1.258 1.201 2.647 2.213 2.428 1.924
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Indices Precip-m Precip-std

Calibration Validation Calibration Validation
Station Month

SDSM SDGAM | SDSM  SDGAM | SDSM  SDGAM | SDSM SDGAM

Jul 1.609 1.460 1.764 1.625 2413 1.961 3.974 3.845

Aug 1.738 1.479 1.727 1.558 3.663 3.338 3.798 3.405

Sep 1.368 1.234 1.454 1.206 2.582 2.230 2.988 2.525

Oct 1.339 1.231 1.571 1.740 2473 2.081 2.809 3.194

Nov | 1.108 0.826 1.410 1.209 2.286 2.006 2.665 1.855

Dec 1.072 0.916 1.198 1.221 2.092 1.930 2.276 2.020

Jan 1.294 1.205 0.888 0.798 2.476 2.375 1.673 1.581

Feb 0.968 0.815 0.976 0.820 1.953 1.695 2.024 1.822

Mar 1.090 0.896 0.959 0.992 1.982 1.498 1.966 2.022

1.003 0.894 1.446 1.293 2.008 1.602 2.587 2.380

May | 1.088 0.915 1.131 1.003 1.943 1.652 2.084 1.843

Jun 1.192 1.019 1.225 1.169 2.746 2.488 2.288 2.164

Jul 1.560 1.391 1.456 1.329 3.309 2.832 3.057 3.001

Aug 1.389 1.253 1.669 1.522 2.703 2.164 3.976 3.522

Sep 1.647 1.347 1.652 1.539 4.416 3.422 4.149 3.550

Oct 1.184 0.952 1.324 1.163 2.904 2.499 3.190 3.127

1.158 1.057 1.257 1.057 2.540 2.398 2.876 2.671

Dec 1.169 0.927 1.171 1.025 1.869 1.606 2.189 2.014

Jan 1.265 1.121 1.095 1.075 2.724 2.337 2.061 1.974

Feb 1.059 0.972 1.124 1.084 2.050 1.770 1.982 1.852

Mar 1.213 1.048 1.233 1.347 2.434 1.911 2.647 2.508

Apr 1.101 0.956 1.471 1.321 1.937 1.534 2.798 2.517
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Indices

Precip-m

Precip-std

Station Month

Calibration

Validation

Calibration

Validation

SDSM SDGAM

SDSM SDGAM

SDSM SDGAM

SDSM SDGAM

May | 0947 0873 | 1227 1.160 | 1.833 1555 | 2219  2.259
""""""" Jun | 1186 0.898 | 1429 1347 | 2386  1.829 | 3.334  3.447

""""""" Jul | 1519 1347 | 1652 1.520 | 2902 2389 | 3.530  3.263

,,,,,,,,,,, aoa | 1538 1356 1.610 1.503 3.068  2.767 3.563 2.979

,,,,,,,,,,,,, Sep | 1.704 1498 | 1464 1425 | 4218 3393 | 2997 2999

,,,,,,,,,,,,, 5 150 1.097 1.251 1.208 3.138  2.845 2.750 2.883

"""""" Nov | 1158 1004 | 1308 1293 | 2140 1718 | 2.855 2952

C Dec | L111 0972 | 1309 1234 | 2.108  1.938 | 1.890  1.608

Jan | 1.092 0994 | 1.088  1.049 | 2.166 1996 | 2.139  1.997

1359 1281 | 1326  1.196 | 2.644 2484 | 2129 1770

© Mar | 1226  1.094 | 1228  1.075 | 2567  2.182 | 2325  1.659

"""""" Apr | 1.020 0865 | 1.145 0958 | 2017 1557 | 2230  1.807
May | 1.042 0861 | 1381 1261 | 2150 1948 | 2414  2.184

""""""" Jun | 1437 1299 | 1617 1490 | 3326  3.081 | 3.621  3.389
W Jul | 1427 1309 | 1531 1364 | 2701 2195 | 2909  2.325
1565 1237 | 1789 1540 | 3574 2989 | 4.663  4.246

1508 1270 | 1.387 1232 | 3324 2865 | 3770  3.617

""""""" Oct | 1.085  0.824 | 1249 1207 | 2479 1942 | 2974  3.022

,,,,,,,,,,, <o L1ss 0.905 1.246 1.125 2.360 1.977 2.506 2.122
e g 1.190 1.422 1.395 2384  2.099 2.153 1.696

Jan | 1.058 0915 | 0916 0793 | 2.049 1720 | 1.926  1.559
i Feb | 1.047 0882 | 1.105 0862 | 2402 2008 | 2.725  2.108
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Indices Precip-m Precip-std

Calibration Validation Calibration Validation
Station Month

SDSM SDGAM | SDSM  SDGAM | SDSM  SDGAM | SDSM SDGAM

Mar 1.112 0.915 1.102 1.008 2.590 1.961 2.679 2.493

Apr 0.941 0.865 1.143 0.942 2.470 2.205 2.045 1.704

May | 1.275 1.187 1.544 1.416 2.640 2.471 2.650 2.305

Jun 1.493 1.354 1.683 1.596 2.770 2.468 3.372 3.660

Jul 1.780 1.560 2.039 1.652 3.671 3.069 4.451 3.878

Aug | 2.262 2.051 1.734 1.662 5.379 5.092 3.549 2.564

Sep 1.680 1.507 1.437 1.339 3.892 3.105 3.524 2.938

Oct 1.169 1.029 1.338 1.148 2.706 2.226 2.782 1.980

Nov 1.150 0.974 1.315 1.186 2.102 1.742 2.569 2.114

0.994 0.895 1.060 0.970 2.238 2.027 2.230 1.880

Jan 1.407 1.260 1.587 1.383 3.302 2.883 3.007 2.169

Feb 1.525 1.277 1.622 1.381 3.333 2.745 2914 2.341

Mar | 1.490 1.292 1.603 1.430 3.489 2.966 3.192 2.433

Apr 1.506 1.356 1.576 1.342 3.506 3.134 3.081 2.452

May | 1.293 1.165 1.325 1.097 2.554 2.145 2.674 2.243

Jun 1.295 1.174 2.472 2.276 2911 2.611 4.910 4918

1.576 1.401 1.598 1.427 3.217 2.831 3.165 2.932

Aug | 1.607 1.448 1.629 1.439 3.295 3.125 3.209 2.277

Sep 1.842 1.712 1.486 1.170 3.861 3.211 3.389 2.401

Oct 1.387 1.175 1.334 1.235 3.429 3.051 2.723 2.572

Nov | 1.304 1.156 1.514 1.372 2.664 2.188 2.794 2.292

Dec 1.557 1.408 1.990 1.941 3.177 2.732 3.381 2.618
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Table A-2. RMSEs of seasonal Prcpl, SDII, CDD, Prec90p for all stations

Calibration Validation
Station Indices Season
SDSM SDGAM SDSM SDGAM
Spring 8.326 8.011 7.489 7.728
Prepl Summer 6.873 6.533 8.566 7.713
(%) Fall 6.401 6.020 7.012 6.202
Winter 7.261 6.902 7.045 6.851
Spring 1.958 1.809 1.745 1.878
SDII Summer 1.693 1.345 1.656 1.379
(mm/wet-day) Fall 2.490 2.021 2.906 2.202
Winter 1.687 1.445 1.794 1.456
> Spring 8.982 8.648 4.391 4.499
CDD Summer 13.551 13.976 4.928 4.727
(days) Fall 4.497 4.202 5.945 6.223
Winter 7.594 7.608 3.749 3.618
Spring 7.799 7.836 4.500 4.336
Prec90p Summer 4.700 4.642 5.671 6.030
(mm/day) Fall 8.948 9.158 8.587 7.048
Winter 5.368 5.409 4.552 3.596
Spring 8.652 8.086 7.596 7.546
Prepl Summer 6.611 6.295 9.043 9.118
(%) Fall 11.281 11.281 6.048 5.429
> Winter 6.644 6.637 6.854 6.601
SDII Spring 2.262 2.101 1.826 1.763
(mm/wet-day) Summer 1.592 1.431 2.807 2.729
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Calibration Validation
Station Indices Season
SDSM SDGAM SDSM SDGAM
Fall 2.812 2.505 2.348 2.150
Winter 1.304 1.123 2.090 2.062
Spring 9.712 9.194 4.011 3.778
Summer 9.456 9.592 14.958 15.223
CDD (days)
Fall 20.873 21.038 4.492 4.419
Winter 8.574 8.532 3.173 2.884
Spring 9.275 9.420 6.166 6.926
Prec90p Summer 6.036 6.061 8.736 9.445
(mm/day) Fall 8.734 8.816 6.836 6.477
Winter 4.649 4.287 6.318 7.304
Spring 8.145 7.178 11.323 11.281
Prepl Summer 5.635 5.189 8.195 6.688
(%) Fall 6.880 6.651 9.177 9.186
Winter 7.281 6.107 11.406 11.398
Spring 1.565 1.418 2.444 2.078
SDII Summer 1.663 1.323 1.703 1.384
S4 (mm/wet-day) Fall 2271 1.983 3.339 2.965
Winter 1.307 1.156 2.168 2.063
Spring 5.006 4.841 18.884 18.890
CDD Summer 4.430 4.673 4.289 4.172
(days) Fall 4.366 4.046 17.296 17.321
Winter 4.177 4.031 22.294 22.267
Spring 4.547 5.001 5.534 4.954
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Calibration Validation
Station Indices Season
SDSM SDGAM SDSM SDGAM

Summer 5.253 4.830 4.820 4.284

Prec90p
(mm/day) Fall 9.086 9.140 17.024 17.815
Winter 3.552 3.596 6.609 7.263
Spring 6.809 5.966 7.457 7.873
Prepl Summer 5.538 5.403 8.251 7.957
(%) Fall 6.024 5.588 6.398 6.010
Winter 5.985 5.591 10.214 10.659
Spring 1.374 1.219 1.726 1.456
SDII Summer 1.838 1.607 2.353 2.044
(mm/wet-day) Fall 2.100 1.556 2.380 1.887
Winter 1.562 1.328 1.758 1.676
> Spring 6.887 6.643 7.214 7.210
CDD Summer 4.205 4.106 4.062 4.101
(days) Fall 3.845 3.637 8.597 8.482
Winter 3.900 3.888 18.388 18.624
Spring 4.765 5.194 4.422 3.692
Prec90p Summer 5.754 6.114 5.802 4.533
(mm/day) Fall 6.188 6.296 7.895 7.593
Winter 5.580 5.991 5.003 5313
Spring 6.417 6.168 8.339 7.941
Prepl Summer 5.527 5.135 7.928 7.123
> (%) Fall 6.542 6.389 6.997 6.204
Winter 6.453 5.689 6.867 6.019
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Calibration Validation
Station Indices Season
SDSM SDGAM SDSM SDGAM

Spring 1.759 1.565 1.483 1.235
SDII Summer 1.668 1.331 1.592 1.343
(mm/wet-day) Fall 2.247 1.996 2.759 2.403
Winter 1.609 1.282 1.679 1.241
Spring 4.867 4.676 4.388 4.115
CDD Summer 5.277 4.944 4.998 5.032
(days) Fall 4.978 4.597 4.646 4.495
Winter 4.398 4.348 3.862 3.785
Spring 5.013 4.662 4.999 4.788
Prec90p Summer 5.495 5.777 5.009 5.349
(mm/day) Fall 8.991 10.225 8.594 8.447
Winter 4.707 4.435 4.930 4.849
Spring 8.264 7.975 6.172 6.281
Prepl Summer 5.729 6.047 8.112 7.570
(%) Fall 6.591 6.666 5.722 5.414
Winter 6.305 6.119 7.066 6.827
Spring 2.320 2.356 2.067 1.833
S7 SDII Summer 1.569 1.242 1.721 1.574
(mm/wet-day) Fall 2.498 2.154 2.375 2.113
Winter 1.345 1.017 1.451 1.203
Spring 8.992 8.955 4.404 4.495

CDD
Summer 5.502 5.810 4.667 4.626

(days)
Fall 6.151 6.080 5.376 5.705
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Calibration Validation
Station Indices Season
SDSM SDGAM | SDSM  SDGAM
Winter 6.595 6.737 4.064 3.729
Spring 8.175 8.252 6.226 4.985
Prec90p Summer 4.988 4.154 6.512 7.295
(mm/day) Fall 7.603 7.832 6.772 5.702
Winter 4.694 4.587 4.906 4.476
Spring 6.357 6.515 7.280 7.075
Prepl Summer 5.857 5.657 6.596 6.762
(%) Fall 6.244 5.973 6.523 6.227
Winter 5.507 5.738 7.150 6.771
Spring 1.409 1.167 1.739 1.570
SDII Summer 1.700 1.433 1.896 1.647
(mm/wet-day) Fall 2.111 1.755 2.727 2.347
Winter 1.493 1.212 1.715 1.512
> Spring 7217 7.496 3.901 4.024
CDD Summer 4.775 4.803 5.185 5.155
(days) Fall 4.789 4.470 5.687 5.625
Winter 3.503 3.442 3.496 3.368
Spring 4.084 3.590 5.948 5.525
Prec90p Summer 5.763 5.477 6.815 7.512
(mm/day) Fall 8.101 8.544 8.323 8.852
Winter 4.822 4.648 5.632 5913
Prepl Spring 7.091 7.030 8.187 8.740
> (%) Summer 5.659 5.626 6.078 5.749
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Calibration Validation
Station Indices Season
SDSM SDGAM SDSM SDGAM
Fall 6.901 7.070 5.597 5.143
Winter 6.127 6.473 7.209 7.190
Spring 1.635 1.358 2.060 1.854
SDII Summer 2.279 2.100 2.019 1.977
(mm/wet-day) Fall 3.062 2.527 2.171 1.874
Winter 1.560 1.467 1.728 1.458
Spring 7.960 8.179 4.653 4.648
CDD Summer 4.376 4.236 5.080 4.832
(days) Fall 3.803 3.664 4.286 4.241
Winter 4.011 4.088 4.675 4.702
Spring 5.726 5.254 7.244 7.090
Prec90p Summer 7.106 6.990 6.707 7.439
(mm/day) Fall 9.734 9.228 7.627 6.675
Winter 5.473 5.340 6.053 5.366
Spring 5.493 5.746 7.544 7.458
Prepl Summer 7.595 7.416 8.294 7.437
(%) Fall 6.182 6.307 5.378 5.119
Winter 5.060 4.947 6.512 6.681
S10 Spring 2.632 2.254 2.015 1.828
SDII Summer 2.810 2.408 2.455 2.211
(mm/wet-day) Fall 2.289 1.969 2.168 1.790
Winter 1.866 1.540 2.045 1.699
CDD Spring 6.171 6.409 7.718 7.967
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Calibration Validation

Station Indices Season

SDSM SDGAM | SDSM  SDGAM

(days) Summer 18.693 18.643 4.786 4.051

Fall 5.981 5.960 4.034 3.877

Winter 4.489 4.390 4308 4.400

Spring 9.173 9.251 5.848 5.240

Prec90p Summer 7.976 5.985 9.001 9.715

(mm/day) Fall 9.874 10.588 6.598 6.111

Winter 6.174 5.692 6.266 5.770
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Figure A-3. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std,

Prcpl, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S1
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Figure A-4. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std,

Prcpl, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S3
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Figure A-6. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std,
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Figure A-8. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std,
Prcpl, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at Dorval station (S7)
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Figure A-10. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std,

Prcpl, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S9
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Figure A-11. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std,
Prcpl, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S10
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Figure B-1. Boxplots of monthly mean of percentage of wet-day
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Figure B-7. Log-log plots of the PWMs versus durations
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Figure B-8. Scaling exponents plotted against the order of PWMs
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Figure B-9. IDF curves for future periods with different RCPs at S1
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Figure B-10. IDF curves for future periods with different RCPs at S2
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Figure B-11. IDF curves for future periods with different RCPs at S3
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Figure B-12. IDF curves for future periods with different RCPs at S4
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Figure B-13. IDF curves for future periods with different RCPs at S5
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Figure B-14. IDF curves for future periods with different RCPs at S6
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Figure B-15. IDF curves for future periods with different RCPs at S7
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Figure B-16. IDF curves for future periods with different RCPs at S9
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Figure B-17. IDF curves for future periods with different RCPs at S10
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Appendix C: Supplementary materials for chapter 4

Table C-1. Information of selected stations in Vietham

No. | Code Station name Province Lon Lat RL (years)
1 002 | DienBien Lai Chau 103 21.22 32
2 003 LaiChau Lai Chau 103.09 22.04 32
3 005 | MuongTe Lai Chau 102.5 22.22 32
4 006 | PhaDin Lai Chau 103.31 21.34 32
5 008 SinHo Lai Chau 103.14 22.22 32
6 009 TamDuong Lai Chau 103.29 22.25 32
7 011 TuanGiao Lai Chau 103.25 21.35 32
8 012 BacYen Son La 104.25 21.15 32
9 013 CoNoi Son La 104.09 21.08 32
10 014 MocChau Son La 104.41 20.5 32
11 016 | PhuYen Son La 104.38 21.16 32
12 017 QuynhNhai Son La 103.34 21.51 32
13 018 SonLa Son La 103.54 21.2 32
14 019 SongMa Son La 103.44 21.04 32
15 023 | YenChau Son La 104.18 21.03 32
16 024 | ChiNe Hoa Binh 105.47 20.29 32
17 026 | HoaBinh Hoa Binh 105.2 20.49 32
18 027 | KimBoi Hoa Binh 105.32 20.4 32
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No. | Code Station name Province Lon Lat RL (years)
19 028 | LacSon Hoa Binh 105.27 20.27 32
20 029 | MaiChau Hoa Binh 105.03 20.39 32
21 030 | BacMe Ha Giang 105.22 22.44 32
22 031 BacQuang Ha Giang 104.52 22.3 32
23 032 | HoangSuPhi Ha Giang 104.41 22.45 32
24 033 HaGiang Ha Giang 104.58 22.49 32
25 036 | BacHa Lao Cai 104.17 22.32 32
26 040 | PhoRang Lao Cai 104.28 22.14 32
27 041 SaPa Lao Cai 103.49 22.21 32
28 045 | LucYen Yén Bai 104.43 22.06 32
29 046 | MuCangChai Yén Bai 104.03 21.52 32
30 048 | VanChan Yén Bai 104.31 21.35 32
31 049 | YenBai Yén Bai 104.52 21.42 32
32 050 | ChiemHoa Tuyén Quang 105.16 22.09 32
33 051 HamYen Tuyén Quang 105.02 22.04 32
34 053 TuyenQuang Tuyén Quang 105.13 21.49 32
35 054 | BacKan Bic Can 105.5 22.09 32
36 055 ChoRa Bic Can 105.43 22.27 32
37 056 | NganSon Bic Can 105.59 22.26 32
38 059 | DinhHoa Thai Nguyén 105.38 21.55 32
39 061 ThaiNguyen Thai Nguyén 105.5 21.36 32
40 063 MinhDai Phu Tho 105.03 21.1 32
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No. | Code Station name Province Lon Lat RL (years)
41 064 | PhuHo Phu Tho 105.14 21.27 32
42 067 | VietTri Phua Tho 105.25 21.18 32
43 069 | TamDao Vinh Phuc 105.39 21.28 32
44 071 VinhYen Vinh Phuc 105.36 21.19 32
45 072 BaolLac Cao Bing 105.4 22.57 32
46 073 CaoBang Cao Bing 106.15 22.4 31
47 075 | NguyenBinh Cao Bing 105.57 22.39 32
48 077 TrungKhanh Cao Bing 106.31 22.5 32
49 078 BacSon Lang Son 106.19 21.54 32
50 079 | DinhLap Lang Son 107.06 21.32 32
51 080 | HuuLung Lang Son 106.21 21.3 32
52 081 LangSon Lang Son 106.46 21.5 32
53 084 | ThatKhe Lang Son 106.28 22.15 32
54 085 BacGiang Bic Giang 106.13 22.18 32
55 087 | HiepHoa Bic Giang 105.58 21.21 32
56 088 LucNgan Bic Giang 106.33 21.23 32
57 089 SonDong Bic Giang 106.51 21.2 32
58 092 | BaiChay Quang Ninh 107.04 20.58 32
59 093 CoTo Quang Ninh 107.46 20.59 32
60 094 CuaOng Quang Ninh 107.21 21.01 32
61 097 QuangHa Quang Ninh 107.45 21.27 28
62 098 TienYen Quang Ninh 107.24 21.2 32
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No. | Code Station name Province Lon Lat RL (years)
63 099 | UongBi Quang Ninh 106.45 21.02 32
64 100 | BachLongVy Hai Phong 107.43 20.08 32
65 106 | HonDau Hai Phong 106.48 20.4 32
66 107 | PhuLien Hai Phong 106.38 20.48 32
67 109 | BaVi Ha Tay 105.25 21.09 32
68 111 HaDong Ha Tay 105.45 20.58 32
69 113 SonTay Ha Tay 105.3 21.08 32
70 119 | Lang Ha No6i 105.51 21.02 32
71 121 ChiLinh Hai Duong 106.23 21.05 31
72 122 | HaiDuong Hai Duong 106.18 20.56 32
73 123 | HungYen Hung Yén 106.03 20.39 32
74 127 HaNam Ha Nam 105.55 20.33 32
75 129 NamDinh Nam Dinh 106.09 20.24 32
76 130 | VanLy Nam Dinh 106.18 20.07 32
77 131 ThaiBinh Thai Binh 106.21 20.27 32
78 138 | NhoQuan Ninh Binh 105.44 20.2 32
79 139 | NinhBinh Ninh Binh 105.58 20.14 32
80 140 | BaiThuong Thanh Hoéa 105.23 19.54 32
81 142 HoiXuan Thanh Hoa 105.07 20.22 32
82 146 | NhuXuan Thanh Hoéa 105.34 19.38 32
83 150 ThanhHoa Thanh Hoéa 105.47 19.45 32
84 151 TinhGia Thanh Hoa 105.47 19.27 32
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No. | Code Station name Province Lon Lat RL (years)
85 153 YenDinh Thanh Hoa 105.4 19.59 32
86 155 ConCuong Nghé An 104.53 19.03 32
87 156 DoLuong Ngh¢ An 105.18 18.54 32
88 158 | HonNgu Nghé An 105.46 18.48 32
89 160 | QuyChau Nghé An 105.07 19.34 32
90 161 QuyHop Nghé An 105.09 19.19 32
91 162 | QuynhLuu Ngh¢ An 105.38 19.1 32
92 163 TayHieu Nghé An 105.24 19.19 32
93 164 TuongDuong Ngh¢ An 104.26 19.17 32
94 165 | Vinh Ngh¢ An 105.4 18.4 32
95 166 | HaTinh Ha Tinh 105.54 18.21 32
96 167 | HuongKhe Ha Tinh 105.43 18.11 32
97 168 HuongSon Ha Tinh 105.26 18.31 32
98 169 | KyAnh Ha Tinh 106.17 18.05 32
99 170 BaDon Quang Binh 106.25 17.45 32
100 172 | DongHoi Quang Binh 106.37 17.29 32
101 175 | TuyenHoa Quang Binh 106.01 17.53 32
102 176 ConCo Quang Tri 107.2 17.1 32
103 177 | DongHa Quang Tri 107.05 16.51 32
104 178 | KheSanh Quang Tri 107.44 16.38 32
105 180 | ALuoi Thira Thién - Hué 107.17 16.13 31
106 | 181 |Hue Thira Thién - Hué 10735 | 16.26 31
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No. | Code Station name Province Lon Lat RL (years)
107 | 182 | NamDong Thira Thién - Hué 107.43 16.1 32
108 184 | DaNang Da Ning 108.12 16.02 31
109 186 TamKy Quang Nam 108.28 15.34 28
110 187 TraMy Quang Nam 108.15 15.2 29
111 188 | BaTo Quang Ngai 108.44 14.46 27
112 189 | LySon Quang Ngai 109.09 15.23 22
113 190 | QuangNgai Quang Ngai 108.48 15.07 31
114 191 HoaiNhon Binh Dinh 109.02 14.31 29
115 192 QuyNhon Binh Dinh 109.13 13.46 32
116 194 SonHoa Phu Yén 108.59 13.03 30
117 195 TuyHoa Phu Yén 109.17 13.05 31
118 196 | CamRanh Khéanh Hoa 109.09 11.55 29
119 197 | NhaTrang Khénh Hoa 109.12 12.13 31
120 199 | TruongSa Khéanh Hoa 111.55 8.39 30
121 201 PhanRang Ninh Thuén 108.59 11.35 28
122 202 HamTan Binh Thuan 107.46 10.41 29
123 203 PhanThiet Binh Thuan 107.06 11.56 29
124 204 | PhuQuy Binh Thuan 107.56 11.31 28
125 205 DacTo Kon Tum 107.5 14.39 26
126 206 | KonTum Kon Tum 108 14.3 31
127 207 | AnKhe Gia Lai 108.39 13.57 30
128 208 | AyunPa Gia Lai 108.27 13.23 28
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No. | Code Station name Province Lon Lat RL (years)
129 | 209 | Pleiku Gia Lai 108.01 13.58 31
130 | 211 | BuonMeThuot | Pic Lic 108.03 12.4 30
131 | 212 | BuonHo Pic Lic 108.16 12.55 29
132 | 213 | DacNong Pic Lic 107.41 12 29
133 | 216 | Eakmat Pic Lic 108.08 12.41 27
134 | 218 | MDRac Pic Lic 108.46 12.44 29
135 | 219 | BaoLoc Lam Pong 107.49 11.32 28
136 | 220 | DaLat Lam Pong 108.27 11.57 28
137 221 LienKhuong Lam Pong 108.23 11.45 26
138 | 224 | TriAn Dong Nai 107.04 11.05 29
139 | 226 | DongPhu Binh Phuéc 106.54 11.32 28
140 228 | PhuocLong Binh Phudc 106.59 11.5 29
141 | 230 | TayNinh Tay Ninh 106.07 11.2 28
142 | 231 | ConDao Ba Ria-V.Tau 106.36 8.41 29
143 233 VungTau Ba Ria-V.Tau 107.05 10.52 28
144 235 MocHoa Long An 105.56 10.47 28
145 | 237 | MyTho Tién Giang 106.24 10.21 27
146 | 238 | CaoLanh Pong Thap 105.38 10.28 28
147 | 239 | BaTri Bén Tre 106.36 10.03 28
148 242 CangLong Tra Vinh 106.12 9.59 29
149 243 ChauDoc An Giang 105.08 10.42 28
150 | 244 | CanTho Can Tho 105.46 10.02 29
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No. | Code Station name Province Lon Lat RL (years)
151 245 SocTrang So6c Trang 105.58 9.36 29
152 246 | PhuQuoc Kién Giang 104.08 10.13 28
153 247 | RachGia Kién Giang 105.04 10 28
154 249 | BacLieu Bac Liéu 105.43 9.17 27
155 250 | CaMau Ca Mau 105.09 9.11 28
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Appendlx D: Supplementary materials for chapter 5

Table D-1. Information of selected stations across Canada

Province; Climate Elevation Record RL
No. Station name Lat Lon
name ID (m) period (year)
1 NL 8401705 | GANDER AIRPORT CS 48.95 | -54.57 151 | 1939-2017 | 70
2 NL 8501900 | GOOSE A 53.32 1 -60.42 48 | 1961-2016 | 53
3 NL 8403820 | STEPHENVILLE RCS 48.57 | -58.57 58 1 1967-2017 | 48
4 NL 8401501 | DEER LAKE A 49.22 | -57.40 21 1 1966-2002 | 36
5 NL 8403506 | ST JOHN_S A 47.62 | -52.73 140 | 1949-1996 | 35
6 NL 8403619 | ST LAWRENCE 46.92 | -55.38 48 | 1969-2013 | 35
7 NL 8400801 | BURGEO NL 47.62 | -57.62 10 | 1967-2013 | 34
8 PE 8300301 | CHARLOTTETOWN_A 46.28 | -63.12 48 | 1967-2016 | 31
9 PE 8300596 | SUMMERSIDE 46.43 | -63.83 12 | 1964-2013 | 37
10 NS 8205092 | SHEARWATER RCS 44.63 | -63.52 24 1 1955-2016 | 59
11 NS 8205702 | SYDNEY CS 46.17 | -60.03 62 | 1961-2016 | 53
12 NS 8202000 | GREENWOOD A 4498 | -64.92 28 | 1964-2016 | 44
13 NS 8206495 | YARMOUTH_A 43.83 | -66.08 42 1 1971-2016 | 43
14 NS 8202810 | KENTVILLE CDA _CS 45.07 | -64.48 48 | 1960-2013 | 37
15 NB 8103201 | MONCTON_INTL A 46.12 | -64.68 70 | 1946-2016 | 67
16 NB 8100885 | CHARLO AUTO 4798 | -66.33 42 1 1959-2013 | 51
17 NB 8101605 | FREDERICTON CDA CS 4592 | -66.62 351 1959-2015 | 47
18 NB 8104900 | SAINT JOHN A 4532 | -65.88 108 | 1958-2002 | 40
19 NB 8100989 | MIRAMICHI RCS 47.02 | -65.47 33 1 1964-2015 | 36
20 QC 7025006 | MONTREAL PIERRE ELLIOTT | 4547 | -73.73 32 1 1943-2014 | 61
_TRUDEAU _INTL
21 QC 7015001 | QUEBEC JEAN LESAGE INTL | 46.80 { -71.38 60 | 1961-2015 | 46
22 QC 7014160 | L ASSOMPTION 4582 | -73.43 21 | 1963-2017 | 45
23 QC 7024280 | LENNOXVILLE 4537 | -71.82 181 | 1960-2017 | 45
24 QC 7060400 | BAGOTVILLE A 48.33 | -71.00 159 | 1961-2017 | 45
25 QC 7018001 | SHAWINIGAN 46.57 | -72.73 110 | 1968-2017 | 41
26 QC 7055121 | MONT JOLI A 48.62 | -68.22 52 1 1968-2015 | 38
27 QC 7047914 | SEPT-ILES 50.22 | -66.25 52 1 1969-2014 | 35
28 QC 7098600 | VAL-D OR A 48.07 | -77.78 337 | 1961-1995 | 34
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No. Province; Climate Station name Lat Lon Elevation Record RL
name 1D (m) period (year)
29 QC 7042395 | FORET MONTMORENCY RCS | 4732 { -71.15 672 | 1967-2014 | 33
30 QC 7025280 | MONTREAL MCGILL 45.50 | -73.58 56 1 1906-1992 | 32
31 QC 7028124 | SHERBROOKE A 4543 1 -71.68 241 | 1962-1994 | 32
32 QC 7113534 | KUUJJUAQ A 58.10 | -68.42 39 1 1970-2013 | 32
33 QC 7025745 | ORMSTOWN 45.12 | -74.05 45 1 1963-1998 | 31
34 QC 7028441 | THETFORD MINES 46.10 | -71.35 381 § 1967-1999 | 31
35 QC 7057287 | STE_ GERMAINE 46.42 | -70.47 510 { 1966-1999 | 31
36 QC 7066685 | ROBERVAL A 48.52 1 -72.27 178 { 1970-2012 | 31
37 QC 7103536 | KUUJJUARAPIK A 55.28 | -77.75 12 1 1969-2013 | 31
38 QC 7020305 | ARTHABASKA 46.02 | -71.95 140 { 1963-1998 | 30
39 QC 7022720 | GEORGEVILLE 45.13 | -72.23 266 | 1968-1998 | 30
40 QC 7024320 | LINGWICK 45.63 | -71.37 266 | 1968-1999 | 30
41 QC 7027200 | ST EPHREM 46.07 | -70.97 312§ 1966-1999 | 30
42 QC 7027802 | SAWYERVILLE NORD 4537 | -71.53 345 1 1966-1999 | 30
43 QC 7028676 | VALLEE JONCTION 46.38 | -70.93 152§ 1966-1999 : 30
44 QC 7054095 | LA POCATIERE CDA 4735 1 -70.03 30 ¢ 1962-1995 | 30
45 ON 6137362 | ST THOMAS WPCP 42.77 + -81.22 209 | 1926-2007 | 75
46 ON 6158355 | TORONTO_CITY 43.67 | -79.40 112 { 1940-2017 | 67
47 ON 6144478 | LONDON_CS 43.03 | -81.15 278 | 1943-2016 | 65
48 ON 6158731 | TORONTO INTL A 43.68 | -79.63 173 § 1950-2017 | 64
49 ON 6104175 | KINGSTON PUMPING STATIO | 44.23 | -76.48 76 | 1914-2007 | 63
N
50 ON 6139525 | WINDSOR_A 42.28 | -82.97 189 | 1946-2007 | 60
51 ON 6105978 | OTTAWA CDA RCS 4538 | -75.72 79 | 1905-2011 | 54
52 ON 6048268 | THUNDER BAY CS 48.37 | -89.33 199 { 1952-2012 | 53
53 ON 6143089 | GUELPH_TURFGRASS 43.55 | -80.22 325 1 1954-2017 ¢ 52
54 ON 6153301 | HAMILTON RBG _CS 43.28 | -79.92 102 { 1962-2016 | 52
55 ON 6012199 | EAR FALLS (AUT) 50.63 | -93.22 362 § 1952-2007 ¢ 50
56 ON 6042716 | GERALDTON_A 49.78 | -86.93 348 { 1952-2007 ¢ 50
57 ON 6131983 | DELHI CS 42.87 | -80.55 231 ¢ 1962-2015 | 50
58 ON 6127519 | SARNIA CLIMATE 43.00 | -82.30 181 | 1962-2016 | 49
59 ON 6078285 | TIMMINS VICTOR POWER A 48.57 | -81.38 294 | 1952-2007 | 48
60 ON 6057592 | SAULT STE MARIE A 46.48 | -84.52 192 { 1962-2007 | 46
61 ON 6158875 | TRENTON_A 44.12 ¢ -77.53 86 | 1965-2017 | 46
62 ON 6034073 | KENORA RCS 49.78 | -94.38 412 | 1966-2011 | 44

197




No. Province; Climate Station name Lat Lon Elevation Record RL
name 1D (m) period (year)
63 ON 6016525 | PICKLE LAKE (AUT) 5145 | -90.22 390 | 1953-2007 | 42
64 ON 6073980 | KAPUSKASING CDA ON 4942 | -82.43 218 | 1966-2013 | 42
65 ON 6085700 | NORTH BAY_A 46.37 | -79.42 370 { 1964-2006 | 41
66 ON 6037775 | SIOUX LOOKOUT A 50.12 §{ -91.90 383§ 1963-2007 | 40
67 ON 6131415 | CHATHAM_WPCP 4238 | -82.22 180 { 1966-2007 | 40
68 ON 6106000 | OTTAWA MACDONALD- 4532 | -75.67 114 | 1967-2007 | 39
CARTIER INT L A
69 ON 6142286 | ELORA RCS 43.65 | -80.42 376 { 1970-2017 ¢ 39
70 ON 6137154 | RIDGETOWN_RCS 42.45 1 -81.88 205 | 1959-2016 | 38
71 ON 6145504 | MOUNT_FOREST (AUT) 43.98 | -80.75 414 | 1962-2016 | 38
72 ON 6116132 | OWEN_SOUND_ MOE 44.58 | -80.93 178 { 1965-2006 : 37
73 ON 6136606 | PORT COLBORNE 42.88 | -79.25 175§ 1964-2007 | 37
74 ON 6142400 | FERGUS SHAND DAM 43.73 | -80.33 417 { 1961-2007 | 37
75 ON 6150689 | BELLEVILLE 44.15 ¢ -77.38 76 1 1960-2006 | 37
76 ON 6068150 | SUDBURY A 46.63 | -80.80 348 { 1971-2007 | 36
77 ON 6140954 | BRANTFORD MOE 43.13 | -80.23 196 | 1961-2001 | 36
78 ON 6148105 | STRATFORD WWTP 43.37 ¢ -81.00 345 1 1966-2004 | 36
79 ON 6100971 | BROCKVILLE PCC 44.60 | -75.67 96 | 1967-2005 | 35
80 ON 6115811 | ORILLIA BRAIN 44.60 | -79.43 250 { 1965-2004 : 35
81 ON 6104027 | KEMPTVILLE CS 45.00 | -75.63 99 | 1970-2007 | 34
82 ON 6074211 | KIRKLAND LAKE CS 48.15 | -80.00 324 1 1980-2015 | 33
83 ON 6101901 | CORNWALL ONT HYDRO 45.03 | -74.80 76 1 1957-1992 | 33
84 ON 6106400 | PETAWAWA NAT FORESTRY | 4598 | -77.43 183 | 1961-1994 | 33
85 ON 6119500 | WIARTON A 4475 |+ -81.12 222 1 1973-2007 { 33
86 ON 6137287 | ST CATHARINES A 43.20 | -79.17 97 | 1954-2005 | 33
87 ON 6149387 | WATERLOO WELLINGTON A | 4345 | -80.38 317 { 1971-2007 | 33
88 ON 6153194 | HAMILTON A 43.17 | -79.93 237 { 1971-2003 | 33
89 ON 6166418 | PETERBOROUGH_A 4423 | -78.37 191 | 1971-2006 | 33
90 ON 6155878 | OSHAWA WPCP 43.87 | -78.83 83 1 1970-2006 | 32
91 ON 6075435 | MOOSONEE RCS 51.28 | -80.62 9 1 1968-2007 | 31
92 ON 6122847 | GODERICH 43.77 i -81.72 213 1 1970-2016 | 31
93 ON 6150830 | BOWMANVILLE MOSTERT 43.92 | -78.67 99 | 1968-2001 | 31
94 ON 6151042 | BURKETON MCLAUGHLIN 44.03 | -78.80 312 § 1969-2001 | 31
95 MB 502S001 | WINNIPEG A CS 4992 | -97.25 238 | 1944-2016 | 57
96 MB 5062921 | THOMPSON_ A 55.80 | -97.87 224 1 1971-2017 | 43
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No. Province; Climate Station name Lat Lon Elevation Record RL
name 1D (m) period (year)
97 MB 5050919 | FLIN FLON 54.68 | -101.68 303 | 1970-2017 | 42
98 MB 5012324 | PORTAGE _SOUTHPORT 49.90 | -98.28 272 1 1964-2017 | 40
99 MB 5040681 | DAUPHIN CS 51.10 | -100.07 304 { 1954-2016 | 40
100 MB 5052890 | THE PAS CLIMATE 53.97 | -101.10 274 § 1971-2011 | 39
101 MB 5060608 | CHURCHILL CLIMATE 58.73 | -94.07 28 1 1963-2015 | 39
102 MB 5060999 | GILLAM 56.37 | -94.70 145§ 1972-2017 | 37
103 MB 5061376 | ISLAND LAKE A 53.85 | -94.65 235 1 1971-2013 | 36
104 MB 5010490 | BRANDON RCS 49.90 | -99.95 409 | 1970-2014 | 35
105 MB 5020725 | DEERWOOD RCS 49.40 | -98.32 341 { 1964-2014 | 35
106 MB 5061646 | LYNN LAKE A 56.87 | -101.08 356 { 1969-2005 | 34
107 MB 5021054 | GLENLEA 49.65 | -97.12 234§ 1967-2000 : 32
108 SK 401HP5R | WEYBURN 49.70 | -103.80 588 1 1962-2017 | 43
109 SK 4012410 | ESTEVAN 49.22 | -102.97 580 | 1964-2016 | 52
110 SK 4015322 | MOOSE JAW CS 50.33 | -105.53 577 1 1960-2014 | 49
111 SK 4016560 | REGINA INT L A 50.43 | -104.67 577 | 1941-1995 | 52
112 SK 4043901 | KINDERSLEY_ A 51.52 | -109.18 693 { 1966-2016 | 50
113 SK 4057165 | SASKATOON_RCS 52.17 | -106.72 504 { 1960-2017 | 40
114 SK 4060983 | BUFFALO NARROWS (AUT) 55.83 | -108.42 440 | 1968-2017 | 41
115 AB 3012209 | EDMONTON BLATCHFORD 53.57 | -113.52 671 { 1914-2015 | 69
116 AB 3031094 | CALGARY_INT L CS 51.12 | -114.00 1081 | 1947-2015 | 61
117 AB 3012206 | EDMONTON_ INTERNATIONAL | 53.32 | -113.62 715§ 1961-2017 | 52
_CS

118 AB 3025481 | RED DEER REGIONAL A 52.18 | -113.88 904 | 1959-2014 | 49
119 AB 3081680 | COLD _LAKE A 54.42 | -110.28 541} 1966-2017 | 49
120 AB 3033890 | LETHBRIDGE CDA 49.70 | -112.77 910 { 1960-2017 | 47
121 AB 3034485 | MEDICINE HAT RCS 50.03 | -110.72 715§ 1971-2017 | 42
122 AB 3062696 | FORT MCMURRAY CS 56.65 | -111.22 368 { 1966-2017 : 39
123 AB 3075040 | PEACE RIVER A 56.23 | -117.45 570 | 1966-2011 | 39
124 AB 3015523 | ROCKY _MTN HOUSE (AUT) 5242 1 -114.92 988 | 1964-2017 | 37
125 AB 3023722 | LACOMBE CDA 2 5245 | -113.77 860 | 1970-2017 | 34
126 AB 3030QLP | BROOKS 50.57 | -111.85 747 { 1965-2017 | 32
127 AB 3073146 | HIGH LEVEL A 58.62 | -117.17 338 { 1971-2011 | 32
128 AB 3036681 | VAUXHALL CDA 50.05 | -112.13 778 { 1956-1987 | 31
129 AB 3053520  JASPER 52.88 | -118.07 1062 | 1963-1994 | 31
130 AB 3070560 | BEAVERLODGE CDA 55.20 | -119.40 744 1 1961-1994 | 31
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No. Province; Climate Station name Lat Lon Elevation Record RL
name 1D (m) period (year)
131 BC 1018611 | VICTORIA_ GONZALES CS 48.42 | -123.32 61 | 1925-2017 | 65
132 BC 1108395 | VANCOUVER INTL A 49.18 | -123.18 4 1 1953-2017 | 63
133 BC 1105192 | MISSION_WEST ABBEY 49.15 | -122.27 197 { 1963-2017 | 54
134 BC 1018621 | VICTORIA INTL A 48.65 | -123.43 19 | 1965-2017 | 50
135 BC 1068131 | TERRACE PCC 54.50 | -128.62 67 i 1968-2017 | 47
136 BC 1038205 | TOFINO A 49.08 | -125.77 24 1 1970-2017 | 45
137 BC 1126150 | PENTICTON_A 49.47 | -119.60 344 | 1953-2002 | 45
138 BC 1166R45 | SALMON _ARM A 50.68 | -119.23 527 | 1964-2016 | 44
139 BC 1160899 | BLUE RIVER A 52.13 | -119.28 690 { 1970-2016 | 44
140 BC 1103332 | HANEY UBC _RF _ADMIN 49.27 | -122.57 147 { 1963-2005 | 42
141 BC 1096450  PRINCE GEORGE A 53.88 | -122.68 691 { 1960-2002 | 41
142 BC 1021830 | COMOX A 49.72 | -124.90 25 1 1963-2006 | 40
143 BC 1106180 | PITT POLDER 49.27 | -122.63 51 1965-2007 | 40
144 BC 1142574 | DUNCAN _LAKE DAM 50.23 | -116.97 548 | 1969-2013 | 38
145 BC 1163780 | KAMLOOPS A 50.70 | -120.43 345§ 1965-2002 | 38
146 BC 1013754 | JORDAN_ RIVER DIVERSION 48.50 | -124.00 393§ 1964-2003 : 37
147 BC 1107873 | SURREY KWANTLEN PARK 49.18 | -122.87 78 1 1962-1999 | 37
148 BC 1173210 | GOLDEN_A 51.30 | -116.98 784 1 1973-2013 | 37
149 BC 1054500 | LANGARA 54.27 | -133.07 42 1 1982-2017 | 36
150 BC 112G8L1 | SUMMERLAND CS 49.57 | -119.65 454 1 1955-1994 | 36
151 BC 1123970 | KELOWNA_A 49.97 | -119.38 429 | 1969-2004 | 34
152 BC 1192940 | FORT NELSON A 58.83 | -122.60 381 § 1966-2002 | 34
153 BC 1046391 | POWELL RIVER A 49.83 | -124.50 129 | 1982-2016 | 33
154 BC 1057050 | SANDSPIT A 53.25 | -131.82 6 1 1972-2004 | 33
155 BC 1108487 | VANCOUVER UBC 49.25 | -123.25 76 1 1958-1990 | 33
156 BC 1126510 | PRINCETON_A 49.47 | -120.52 701 { 1979-2017 | 33
157 BC 1157630 | SPARWOOD 49.75 | -114.88 1137 | 1980-2016 | 33
158 BC 1021990 | COURTENAY PUNTLEDGE BC | 49.68 { -125.03 24 1 1964-1995 | 32
HP
159 BC 1025369 | NANAIMO A 49.05 | -123.87 28 | 1985-2017 | 32
160 BC 1067742 | STEWART A 55.93 | -129.98 71 1978-2015 | 32
161 BC 1113540 | HOPE A 49.37 | -121.50 39 1 1964-1995 | 32
162 BC 1148211 | TRAIL BIRCHBANK 49.20 | -117.73 594 1 1965-1997 | 32
163 BC 1152102 | CRANBROOK A 49.62 | -115.78 940 { 1969-2002 | 32
164 BC 1077500 | SMITHERS A 54.82 | -127.18 521§ 1971-2002 | 31
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No. Province; Climate Station name Lat Lon Elevation Record RL
name 1D (m) period (year)
165 BC 1181508 | CHETWYND_ A 55.68 | -121.63 609 { 1970-2016 | 31
166 BC 1060841 | BELLA COOLA_A 52.38 | -126.60 35 1 1983-2015 { 30
167 BC 1125766 | OLIVER STP 49.18 | -119.53 297 1 1973-2005 | 30
168 NT 2202102 | FORT SIMPSON_ CLIMATE 61.77 | -121.23 168 | 1969-2017 | 42
169 NT 2202401 | HAY RIVER A 60.83 | -115.78 164 { 1971-2015 | 39
170 NT 2202801 | NORMAN WELLS A 65.28 | -126.80 72 | 1974-2016 | 35
171 NT 2204100 | YELLOWKNIFE A 6247 | -114.43 205 | 1963-1996 | 33
172 NT 2202578 | INUVIK CLIMATE 68.32 | -133.52 103 | 1972-2017 | 32
173 YT 2101310 | WHITEHORSE AUTO 60.73 | -135.10 707 § 1960-2016 | 44
174 YT 2100880 ! PELLY RANCH 62.83 | -137.32 445 1 1966-2014 | 41
175 YT 2101102 : TESLIN (AUT) 60.17 | -132.73 705 § 1967-2016 | 35

201




	Acknowledgements
	Abstract
	Résumé
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