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Abstract 

 Understanding the spatial and temporal variations of the precipitation process is essential 

for the planning, design, and management of various water resources systems (e.g., urban 

drainage systems, flood protection dams, etc.). Furthermore, in recent years, climate change 

impacts on precipitation have been considered as one of the most critical issues for water 

resources management worldwide. Hence, it is essential to establish the linkage between the 

large-scale climate variables in the atmosphere with the precipitation characteristics at a local 

site of interest for impact and adaptation studies. The present study is therefore carried out in 

order to develop appropriate methods for improving the accuracy of precipitation estimation at 

a gauged or ungauged local site in the context of a changing climate. This study can be divided 

into five main parts.  

 The first part of this research aims to develop a new statistical downscaling (SD) model for 

describing the linkage between large-scale climate predictors and observed daily precipitation 

characteristics at a local site. The proposed SD model, referred hereafter as SDGAM, is based on 

the Generalized Additive Modeling (GAM) method. The feasibility and accuracy of the SDGAM 

are assessed using the National Center for Environmental Prediction (NCEP) re-analysis data and 

the observed daily precipitation data available for the 1961–2000 period at ten gauged sites located 

in Southern Quebec and Ontario, Canada. Results of this illustrative application have indicated 

that the proposed SDGAM model could provide more accurate results than those given by the 

currently popular SDSM method in practice.  



 iii 

 The second part of this research is to propose a new statistical downscaling approach based 

on the combination of the spatial downscaling method to link large-scale climatic variables 

provided by Global Climate Models (GCMs) to daily extreme precipitations at a local site using 

the SDGAM and the temporal downscaling procedure to describe the relationships between daily 

extreme precipitations with sub-daily extreme precipitations using the scaling General Extreme 

Value distribution and the scaling behavior of the empirical Probability Weighted Moments 

(GEV/PWM). The proposed approach was assessed using precipitation data from 5 minutes to 24 

hours at 10 representative stations across Canada. It was found that the annual maximum 

precipitation series in Canada displayed different scaling behaviors depending on the locations 

considered.  Intensity-Duration-Frequency (IDF) relations were then constructed for historical 

period of 1961-2000 and future periods of 2030s, 2060s and 2090s for different Representative 

Concentration Pathways (RCP 2.6, RCP 4.5 and RCP 8.5).      

 The third part of this research aims to estimate daily precipitation series for ungauged sites 

in Vietnam. Initially, daily rainfall series data of 155 stations across Vietnam were employed to 

identify different homogeneous rainfall regions using the Principal Component Analysis (PCA) 

method. Daily precipitation series at ungauged sites were then estimated using a proposed two-

stage interpolation method to describe the persistence in rainfall occurrences and amounts for the 

identified rainfall homogenous regions. The jackknife technique was used to represent the 

ungauged site condition. Results of this study have shown that Vietnam can be identified into 7 

homogeneous rainfall regions. In addition, the proposed estimation procedure can provide the 

estimated daily precipitation series that are statistically similar to the observed data.   
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 The fourth part of this research is to investigate the presence of trends in daily annual 

maximum precipitation series using the historical rainfall records available from a network of 175 

high-quality stations across Canada and the downscaled regional gridded data from the National 

Aeronautics Space Administration (NASA) Earth Exchange Global Daily Downscaled Projections 

(NEX-GDDP). The Mann-Kendall non-parametric test was adopted for trend detection of 

historical observed data and the trends were estimated using Sen's method. The trends were 

computed for two different periods: historical period from 1950 to 2005 (for all datasets) and future 

period from 2006 to 2100 (for NEX-GDDP dataset). Results of this study have indicated an 

increasing trend for most stations across Canada, approximately 55% for the observed historical 

records, and around 80% for the downscaled regional gridded data. In addition, it was found that 

the CanESM2 model provided the best results in terms of the mean and standard deviation of daily 

annual maximum precipitation time series for Canada. In particular, the gridded data for British 

Colombia (BC) showed a widespread variation among the 21 GCMs considered in NEX-GDDP. 

Furthermore, a positive trend was found for more than 90% stations for the future period.   

 The final part of this research is to perform a detailed analysis of the variability in time and 

in space of the daily annual maximum rainfalls and extreme temperatures over the Montreal region 

for the present and future climates using the data from two different sources: the Pacific Climate 

Impacts Consortium (PCIC) and the National Aeronautics Space Administration (NASA) Earth 

Exchange Global Daily Downscaled Projections (NEX-GDDP). More specifically, the evaluation 

was based on the climate simulation outputs from ten different Global Climate Models downscaled 

(i) by PCIC to a regional 1/12-degree grid using the BCCAQ and BCSD methods; and (ii) by NASA 

to a regional 1/4-degree grid. For the present climate, historical data for the 1961-1990 period from 

observed weather stations in the Montreal region were also used for this evaluation. For the future 
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climates, climate projections corresponding to the RCP 4.5 scenario for the 2006 – 2100 period were 

considered. Results of this study have indicated that the downscaled regional gridded data from PCIC 

are generally more robust and more accurate than those given by NEX-GDDP. However, the 

downscaled data are different from the observed data at a given station. A bias correction is hence 

required before these data could be used in planning and design of urban infrastructures.   
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Résumé 

 La connaissance sur les variations spatiales et temporelles du processus de précipitation est 

essentielle pour la planification, la conception et la gestion de divers systèmes de ressources en 

eau (par exemple, les systèmes de drainage urbain, les barrages de protection contre les 

inondations, etc.). En outre, ces dernières années, les impacts du changement climatique sur les 

précipitations ont été considérés comme l'un des problèmes les plus critiques pour la gestion des 

ressources en eau dans le monde. Par conséquent, il est essentiel d'établir le lien entre les variables 

climatiques à grande échelle dans l'atmosphère et les caractéristiques des précipitations sur les sites 

locaux pour les études d'impact et d'adaptation. La présente étude est donc réalisée dans le but de 

développer des méthodes appropriées pour améliorer la précision de l'estimation des précipitations 

à un site local jaugé ou non jaugé dans le contexte du changement climatique. Cette étude peut être 

divisée en cinq grandes parties. 

 La première partie de cette recherche vise à proposer un nouveau modèle statistique de 

réduction d'échelle pour décrire le lien entre les prédicteurs climatiques à grande échelle et les 

caractéristiques des précipitations quotidiennes observées sur un site local. Le modèle proposé, 

appelé ci-après SDGAM, est basé sur les méthodes d'ajustement du modèle additif généralisé 

(GAM). La faisabilité et la précision de l'approche suggérée sont évaluées à l'aide des données de 

réanalyse du Centre national de prévision environnementale (NCEP) et des données de 

précipitations quotidiennes observées disponibles pour la période 1961-2000 à dix sites jaugés 

situés dans le sud du Québec et en Ontario, Canada. Les résultats de cette application illustrative 

ont indiqué que le modèle SDGAM proposé pourrait fournir des résultats plus précis que ceux 

fournis par la méthode SDSM actuellement la populaire en pratique. 
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 La deuxième partie de cette recherche présente une approche de réduction d'échelle 

statistique basée sur la combinaison de la méthode de réduction d'échelle spatiale pour relier les 

variables climatiques à grande échelle fournies par les modèles du climat global (MCG) aux 

précipitations extrêmes quotidiennes sur un site local en utilisant SDGAM et la procédure de 

réduction d'échelle temporelle pour décrire les relations entre les précipitations extrêmes 

quotidiennes avec des précipitations extrêmes sous-journalières en utilisant la distribution des 

valeurs extrêmes générales (VEG) et le comportement de mise à l'échelle des moments pondérés 

par la probabilité (VEG/MPP). Le modèle proposé a été évalué à l'aide de données sur les 

précipitations de 5 minutes à 24 heures à 10 stations représentatives à travers le Canada. On avait 

constaté que les séries de précipitations maximales annuelles au Canada présentait de multiples 

comportements d'échelle selon l'emplacement des stations considérées. Les relations intensité-

durée-fréquence (IDF) ont ensuite été construites pour la période historique de 1961-2000 et les 

périodes futures des années 2030, 2060 et 2090 pour différentes voies de concentration 

représentatives (RCP 2.6, RCP 4.5 et RCP 8.5). 

 La troisième partie de cette recherche vise à générer des séries de précipitations 

quotidiennes pour des sites non jaugés au Vietnam. Initialement, les données des séries de 

précipitations quotidiennes de 155 stations à travers le Vietnam ont été utilisées pour identifier des 

régions de précipitations homogènes à l'aide de la méthode d'analyse en composantes principales 

(ACP). Des séries de précipitations quotidiennes en des sites non jaugés sont ensuite générées à 

l'aide d'une nouvelle méthode d'interpolation en deux étapes pour décrire la dépendance dans 

l’occurrence des pluies et la quantité de précipitations pour des régions homogènes de 

précipitations identifiées. La technique du jackknife a été utilisée pour représenter l'état du site non 

jaugé. Les résultats de cette étude ont montré que le Vietnam peut être identifié en 7 régions de 
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précipitations homogènes. De plus, la méthode d’estimation proposée peut fournir des séries de 

précipitations quotidiennes qui sont statistiquement semblable aux séries les données observées. 

 La quatrième partie de cette recherche examine la présence des tendances dans les séries 

de précipitations annuelles maximales quotidiennes en utilisant les données historiques disponibles 

aux 175 stations d'observation de haute qualité à travers le Canada et des données régionales 

maillées à échelle réduite fournies par l’Administration nationale de l'espace aéronautique (NASA) 

dans le cadre du projet de Projections mondiales à échelle réduite d'Earth Exchange (NEX-GDDP). 

Le test non paramétrique de Mann-Kendall a été adopté pour la détection des tendances des 

données observées historiques et les tendances ont été estimées à l'aide de la méthode de Sen. Les 

tendances ont été calculées pour deux périodes différentes : la période historique de 1950 à 2005 

(pour tous les jeux de données) et la période future de 2006 à 2100 (pour le jeu de données NEX-

GDDP). Les résultats ont montré une tendance à la hausse à travers le Canada pour la plupart des 

stations, environ 55% pour les données observées historiques et environ 80% pour les données 

maillées régionales à échelle réduite. L'étude a également révélé que CanESM2 offre les meilleurs 

résultats en termes de moyenne et d'écart type des séries chronologiques quotidiennes de 

précipitations maximales annuelles pour le Canada. En particulier, les données maillées en 

Colombie-Britannique (C.-B.) ont montré une grande variabilité parmi les 21 MCG de NEX-

GDDP. En plus, on avait identifié une tendance positive pour plus de 90% des stations pour la 

période future. 

 La dernière partie de cette recherche effectue une analyse détaillée de la variabilité dans le 

temps et dans l'espace des précipitations maximales annuelles quotidiennes et des températures 

extrêmes sur la région de Montréal pour les climats présents et futurs en utilisant les données de deux 
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sources différentes: le Pacific Climate Impacts Consortium (PCIC) et la National Aeronautics Space 

Administration (NASA) Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). Plus 

précisément, l'évaluation était basée sur les sorties de simulation climatique de dix modèles 

climatiques mondiaux différents réduits (i) par le PCIC à une grille régionale de 1/12 degré en 

utilisant les méthodes BCCAQ et BCSD; et (ii) par la NASA à une grille régionale de 1/4 de degré. 

Pour le climat actuel, les données historiques pour la période 1961-1990 provenant des stations 

météorologiques observées dans la région de Montréal ont également été utilisées pour cette 

évaluation. Pour les climats futurs, des projections climatiques correspondant au scénario RCP 4.5 

pour la période 2006–2100 ont été considérées. Les résultats de cette étude ont indiqué que les 

données maillées régionales à échelle réduite de PCIC sont généralement plus robustes et plus 

précises que celles fournies par NEX-GDDP. Les données réduites sont cependant différentes des 

données observées à une station donnée. Une correction de biais est donc nécessaire avant que ces 

données puissent être utilisées dans la planification et la conception des infrastructures urbaines.  
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Chapter 1: General introduction 

 

1.1 Problem statement 

 Understanding the spatial-temporal variations of precipitation process is essential for the 

planning, design, and management of various water resources systems. For instance, daily 

precipitation time series are commonly used to assess the availability of water resources in a 

region, and in particular the extreme rainfall amount for a given return period is required for flood 

design of various hydraulic structures, (e.g., urban drainage systems, flood protection dams, etc.) 

(Hershfield, 1961; WMO, 2009). Recently, climate change impacts on precipitation have been 

considered as one of the most critical issues for water resources management around the world 

(IPCC, 2007; IPCC, 2014). Hence, it is essential to establish the linkage between the large-scale 

climate variables in the atmosphere with the precipitation characteristics at local sites for impact 

and adaptation studies. 

 General Circulation Models (GCMs) have been commonly used for evaluating the effects 

of climate change under different scenarios of greenhouse gas emissions on the hydrological 

regime. Although these GCMs have been recognized to be able to represent the main features of 

the global distribution of basic climate parameters (Randall et al., 2007), they still cannot 

reproduce well details of regional climate conditions at temporal and spatial scales of relevance to 

hydrological impacts and adaptation studies (Nguyen et al., 2006). This is because outputs from 
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GCMs are usually at resolution that is too coarse (as illustrated in Figure 1-1) for many climate 

change impact studies, generally greater than 2.5o for both latitude and longitude (approximately 

250km). To refine the GCM coarse grid resolution climate projection data to much finer spatial 

resolutions (regional or local scales) for the reliable assessment of climate change impacts, 

different downscaling methods have been proposed to resolve this scale discrepancy (Wilby et al., 

2002; Fowler et al., 2007; Nguyen and Nguyen, 2008; Maraun et al., 2010; Khalili and Nguyen, 

2016; Gooré Bi et al., 2017).  

 

Figure 1-1. Spatial downscaling (Source: P. Gachon & Earthsystemcog.org) 

 In general, two broad categories of these downscaling procedures currently exist: 

dynamical downscaling (DD) techniques, involving the extraction of regional scale information 

from large-scale GCM data based on the modeling of regional climate dynamical processes (Denis 

et al., 2002; Lenderink et al., 2007), and statistical downscaling (SD) procedures that relied on the 
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empirical relationships between large-scale atmospheric variables and surface environment 

parameters (Wilby et al., 2004; Diaz-Nieto and Wilby, 2005; Nguyen and Nguyen, 2008; Wilby 

and Dawson, 2013; Gaur and Simonovic, 2017). It has been widely recognized that the SD methods 

offer several practical advantages over the DD procedures, especially in terms of flexible 

adaptation to specific study purposes, and inexpensive computing resource requirement (Xu, 1999; 

Prudhomme et al., 2002; Wilby et al., 2004; Nguyen et al., 2006). In addition, SD methods are 

able to account for the observed climate and weather data available at studied sites.  

 The SD methods can be classified into three sub-categories based on the statistical 

techniques used: weather typing approaches (Hay et al., 1991; Bárdossy, 1997; Goodess, 1998; 

Schnur and Lettenmaier, 1998), stochastic weather generators (Richardson, 1981; Semenov and 

Barrow, 1997); and regression methods (Wilby et al., 2002; Wilby and Dawson, 2013). The major 

disadvantage of the stochastic weather generators is related to the arbitrary manner of determining 

the model parameters for future climate conditions, while its of weather classification schemes in 

the weather typing approaches are somewhat subjective. Of these three approaches, the regression-

based SD procedures are more popular because they are relied on the directly derived statistical 

relationships between large-scale climate predictors and local-scale parameters. The most popular 

one in this sub-category is the Statistical Downscaling Model SDSM (Wilby et al., 2002) which 

describes the daily precipitation process including two separate components: the modeling of the 

occurrence of rainy days using a linear regression technique, and the modeling of the precipitation 

amount on a rainy day. However, linear regression model in occurrence process fails to describe 

the probability of a wet day as the value is outside of the range [0,1]. Furthermore, another 

limitation of SDSM is less accurate in estimating the variance of daily precipitation amounts. 
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Hence, it is necessary to develop an improved SD model for describing more accurately the daily 

precipitation processes at a given site.  

 In addition, in most practical applications, precipitation data at the locations of interest are 

often limited or unavailable, consequently the existing statistical downscaling approaches 

proposed for gaged sites cannot be employed. The estimation and prediction of hydrological 

variables such as precipitation and flow with climate change conditions for these ungauged sites 

remains a crucial challenge for managing and planning water resources (Sivapalan, 2003). 

Although several studies have been proposed to assess the impacts of climate change on water 

resources for ungauged locations (Creutin and Obled, 1982; Besaw et al., 2010; Candela et al., 

2012; Yeo and Nguyen, 2014; Bae and Oh, 2017; Nguyen et al., 2018), there is still no general 

agreement on what the best approach is. Consequently, it is essential to develop a new SD approach 

to describing more accurately the linkages between the large-scale climate variables given by 

GCM simulation outputs and the expected daily precipitation characteristics at locations with 

limited or without historical rainfall data.  

1.2 Objectives of the study 

 In view of the aforementioned issues, the overall objective of the proposed research is to 

develop innovative modeling approaches to describe accurately statistical and physical properties 

of the daily precipitation series at a single site or at many sites concurrently in the context of 

climate change for cases with sufficient rainfall records (gauged sites) and for cases where data 

are limited or unavailable (ungauged sites) in order to provide suitable tools for high-quality 

climate change impact assessment studies. More specifically, the proposed study aims at the 

following objectives:  
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 i)  To develop a new SD model for describing accurately the linkage between large-scale 

climate variables and the local characteristics of the daily precipitation process at a given gauged 

location;  

 ii) To develop a new statistical approach to modeling sub-daily extreme rainfall processes 

in order to improve the accuracy in the estimation of the Intensity-Duration-Frequency (IDF) 

relations at a given gauged site in the context of a changing climate; 

 iii) To develop a new SD approach for downscaling the daily precipitation process at an 

ungauged location based on the rainfall records available at other sites within a given 

homogeneous region;  

 iv) To evaluate the accuracy and reliability of regional climate simulations for present and 

future periods for Canada; and 

 v) To evaluate the spatial and temporal variability of temperature and precipitation 

extremes over Montreal region for present and future climates. 

1.3 Organization of the thesis and chapter overview  

 The thesis consists of eight chapters. Chapter 1 provides the general introduction to the 

current issues related to rainfall modeling in the context of climate change and describes the main 

objectives of this research. Chapter 2 presents an overview of existing SD models and proposes a 

new downscaling model for generating daily precipitation series at a single gauged site. Chapter 3 

describes a new SD approach (the so-called spatial-temporal downscaling approach) for modeling 

the sub-daily annual maximum precipitation (AMP) processes in the context of climate change. 

Chapter 4 proposes a new approach for generating daily precipitation series at an ungauged site 
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based on rainfall information available within the same homogeneous region. Chapter 5 evaluates 

the accuracy and reliability of regional climate simulations over Canada using the NASA Earth 

Exchange Global Daily Downscaled Projections (NEX-GDDP) data for present and future 

climates. Chapter 6 presents the assessment of the variability of precipitation and temperature 

extremes over Montreal region for present and future climates. The major conclusions and 

recommendations for further studies are summarized in Chapter 7. Finally, the statement of 

originality is detailed in Chapter 8.  
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Chapter 2: A statistical downscaling model for daily 

precipitation process at a local site 

 

2.1 Introduction 

 As mentioned in previous section, climate change has been recognized as having a 

profound impact on the hydrologic cycle at different temporal and spatial scales (Zhang et al., 

2011; Arnbjerg-Nielsen et al., 2013; Zhang et al., 2019). Global Climate Models (GCMs) have 

been commonly used in various studies for assessing the potential impacts of climate change. 

However, resolutions of outputs from these models are considered too coarse (generally greater 

than 200km) and hence are not suitable for climate change impact studies at a regional or local 

scale (Nguyen and Nguyen, 2008). Therefore, it is necessary to develop the linkage between daily 

climate variables at global scale and the daily precipitation at a local site of interest. If this linkage 

could be established, then the projected change of climate conditions given by a GCM could be 

used to predict the resulting change of the local precipitation and the resulting runoff 

characteristics. Different downscaling techniques have been proposed to downscale these global 

GCM information to the precipitation series at a local site in several previous studies (Yarnal et 

al., 2001; Nguyen and Yeo, 2011).    

 Generally, downscaling techniques can be classified into two broad categories: statistical 

downscaling (SD) and dynamical downscaling (DD).  The DD techniques involve the extraction 

of regional scale information from large-scale GCM data based on the modeling of regional climate 
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dynamical processes (Denis et al., 2002; Lenderink et al., 2007). Being comprehensive physical 

models, they are able to provide a more detailed physical understanding of the relationship between 

the large-scale atmospheric variables and the regional weather conditions. The main disadvantage 

of DD is the fact that it is computationally intensive and too coarse for local site studies (Xu, 1999). 

On the other hand, statistical downscaling (SD) procedures rely on the empirical relationships 

between large-scale atmospheric variables and surface environment parameters (Nguyen and 

Nguyen, 2008; Wilby and Dawson, 2013). Furthermore, SD methods are flexible to adapt to 

specific study purposes, and inexpensive computing resource requirement (Wilby et al., 2004; 

Nguyen et al., 2006). Because of these practical advantages, SD methods have been commonly 

used in many climate change impact studies in practice. 

 Depending on the selected statistical techniques, SD methods can be further categorized 

into three main groups: weather typing, stochastic weather generation, and regression based 

(Kilsby et al., 1998; Wilks and Wilby, 1999; Yarnal et al., 2001; Fowler et al., 2007; Hessami et 

al., 2008). Firstly, the weather typing approach classifies days into number of discrete weather 

conditions; however, this classification is somewhat subjective, and this approach is also 

computationally intensive for large amount of input observed data (Von Storch et al., 1993). 

Secondly, stochastic weather generation generates synthetic data series that have similar 

statistical properties as observed data (Richardson, 1981). The challenge of stochastic approach 

is to establish the linkage between parameters of these models and large-scale climate variables. 

Finally, regression-based method establishes empirical relationships between global climate 

predictors and local predictands (e.g., temperature and precipitation). This approach is simple 

and straightforward; however, the limitation is related to stationary assumption of regression 

model parameters. 
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 In general, there is still no general agreement about which downscaling method is the most 

appropriate approach for describing the observed precipitation characteristics for a given site in 

the context of climate change, depending mainly on the specific study objectives and the specific 

climatology of a particular study area (Nguyen and Nguyen, 2008). However, the Statistical 

Downscaling Model SDSM (Wilby et al., 2002) has been considered as the most popular since it 

is recommended by the Intergovernmental Panel on Climate Change (IPCC). Significant 

limitations of the model have been recognized in some previous studies such as: i) the linear 

multiple regression model used for modeling the precipitation occurrence process could produce 

some unrealistic results since the probability of rainfall occurrence could be outside of the range 

[0,1]; and ii) the observed variance of rainfall occurrences and amounts for every month cannot be 

accurately reproduced (see for instance the results for Dorval station shown in Figure 2-1).  

  

(i) (ii) 

Figure 2-1. SDSM model at Dorval station for the period 1961-1980 (i) Occurrence; (ii) Amount; 

Black markers: Observed data 
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 The present study proposes therefore a new statistical model, hereafter referred to as 

SDGAM, using the Generalized Additive Modeling (GAM) methods in order to address the 

shortcomings of the current popular SDSM model. The feasibility and accuracy of the suggested 

approach are evaluated using the National Center for Environmental Prediction (NCEP) re-

analysis data and the observed daily precipitation data available for the 1961–2000 period at ten 

gauged sites located in Southern Quebec and Ontario, Canada. 

2.2 Methodology 

2.2.1 Theoretical background 

 Traditionally, regression analysis is used to describe the linear relationship between the 

random variable Y (dependent variables) and the random variables X (independent variables) as 

follow: 

𝑌𝑌 = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝜀𝜀         (2-1) 

in which 𝛽𝛽i denotes the regression parameters, and 𝜀𝜀 is the error term. However, the relationship 

between dependent and independent variables cannot always be represented by a linear behavior, 

for example the relation between the precipitation and the atmospheric predictors. Hence, one 

could consider the Generalized Additive Model (GAM), which was first introduced by Hastie and 

Tibshirani (1986), as an extension of the linear regression methods by replacing the linear relation 

by the smooth function fj, as follow: 

𝑌𝑌 = 𝛼𝛼 + ∑ 𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1 + 𝜀𝜀          (2-2) 
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where 𝛼𝛼 denotes the intercept, Xi denotes independent variables, and 𝜀𝜀 is error term.  

 It has been shown that GAM has several advantages over linear regression models because 

of its flexibility because of the smooth function. Furthermore, data transformation is not required 

due to the smooth functions fj. For instance, fj could be represented by the smooth splines which 

are curves composed of polynomial functions connected at points named knots. Smooth 

parameters can be automatically estimated using restricted maximum likelihood (REML) (Wood, 

2006). The GAMs have been successfully adopted in some fields of water resources. Villarini and 

Serinaldi (2012) used GAMs to forecast seasonal rainfall in Romania. Jones et al. (2013) evaluated 

changes in the frequency and magnitude of extreme daily rainfall in Northern Ireland region. 

Chebana et al. (2014) applied for regional frequency analysis to estimate flood quantiles at 

ungauged sites in Canada. Laanaya et al. (2017) proved that GAM outperforms logistic and linear 

regressions in modeling water temperatures.  

 In this study, a new statistical downscaling approach, called SDGAM, will be proposed 

using the GAM for the modeling of the daily rainfall process. Details of the proposed method are 

provided the following section. The performance of the SDGAM will be assessed using the GAMs 

package developed by RStudio (RStudio Team, 2020). 

2.2.2 Proposed statistical downscaling model for daily precipitation process - 

SDGAM 

- Precipitation Occurrence Process: 

𝜋𝜋𝚤𝚤� = 𝐶𝐶𝑂𝑂𝐴𝐴(𝑎𝑎0 + ∑ 𝑓𝑓𝑂𝑂𝑖𝑖(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑎𝑎=1 )         (2-3) 
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in which  𝑓𝑓Oi: smooth function  

  Xi: the large-scale atmospheric predictors given by GCM simulations 

  𝐶𝐶Ok: the correction coefficients for the rainfall occurrence process  

  ri is a uniform distributed random number, if ri ≤ 𝜋𝜋𝚤𝚤� , precipitation occurs at day i 

- Precipitation Amount Process (Ri)  

𝑌𝑌 = 𝑓𝑓.𝐶𝐶𝐴𝐴𝐴𝐴(𝛼𝛼 + ∑ 𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1 + 𝜂𝜂𝑖𝑖)        (2-4) 

in which  𝛼𝛼: intercept   

  𝑓𝑓i: smooth function  

  Xi: the large-scale atmospheric predictors given by GCM simulations 

  𝐶𝐶𝐴𝐴𝐴𝐴: the correction coefficients for amount process 

  𝜂𝜂𝑖𝑖 = 𝑍𝑍 ∗ 𝑆𝑆𝑒𝑒𝑖𝑖  

  𝑆𝑆𝑒𝑒𝑖𝑖 : the standard error of month ith   

  𝑓𝑓: the bias correction coefficient, coming from the deviation of the simulated mean 

given by GCMs and the estimated mean given by the NCEP re-analysis data. The value of 𝑓𝑓 is set 

to 1 in the calibration step of the SDGAM model.  

 

𝑓𝑓 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 𝑏𝑏𝑏𝑏 𝑁𝑁𝐶𝐶𝐸𝐸𝐸𝐸 𝑓𝑓𝑡𝑡𝑓𝑓 𝑐𝑐𝑎𝑎𝑡𝑡𝑐𝑐𝑏𝑏𝑓𝑓𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑚𝑚 𝑝𝑝𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 𝑏𝑏𝑏𝑏 𝐺𝐺𝐶𝐶𝐺𝐺𝐺𝐺 𝑓𝑓𝑡𝑡𝑓𝑓 𝑐𝑐𝑎𝑎𝑡𝑡𝑐𝑐𝑏𝑏𝑓𝑓𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑚𝑚 𝑝𝑝𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡𝑝𝑝
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 In both precipitation occurrence and amount processes, the correction coefficients COk and 

CAk represent the difference between the mean of the observed data and the mean of the simulated 

results based on the regression of GAM for the percentage of wet-day and precipitation amounts, 

respectively. These coefficients are automatically computed during the calibration of the SDGAM 

model such that an adequate agreement between the simulated results and the historical data was 

found. Initially, the values of these coefficients are set to 1 in the calibration step. Figure 2-2 

illustrated the steps in the SDGAM model. 
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Figure 2-2. Scheme of SDGAM model 



 15 

2.3 Illustrative application 

2.3.1 Data 

 To assess the accuracy and feasibility of the proposed SDGAM model, a case study was 

conducted using the NCEP re-analysis data (Kalnay et al., 1996) and the observed daily 

precipitation data available at 10 stations located in Southern Quebec and Ontario regions, Canada 

(see Figure 2-3). For comparison purposes, both SDSM and SDGAM models are considered for 

this study. More specifically, the observed daily precipitation data for the period from 1961 to 

2000 were used as detailed in Table 2-1. The 40-year record length are divided into 2 periods: 

calibration period from 1961 to 1980 and validation period from 1981 to 2000. The NCEP re-

analysis data are composed of 26 daily atmospheric variables for the same periods that are selected 

at grid box covering each of the stations considered (Table 2-2). 

 

Figure 2-3. Selected stations in Southern Quebec and Ontario, Canada 
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Table 2-1. Information of rain-gaged stations in Southern Quebec and Ontario, Canada 

Code Site name Province Latitude Longitude Elevation Starting 

S1 Cornwall ON 45.47 -74.70 64.0 1961 

S2 Dorval QC 45.88 -72.48 36.0 1961 

S3 Drummondeville QC 45.90 -72.05 82.3 1961 

S4 Farnham QC 45.30 -72.90 68 1961 

S5 Lennoxville QC 45.37 -71.82 181 1961 

S6 Morrisburg ON 44.92 -75.19 81.7 1961 

S7 Oka QC 45.50 -74.07 91.4 1961 

S8 Ottawa CDA ON 45.38 -75.72 79.2 1961 

S9 St Alban QC 46.72 -72.08 76.2 1961 

S10 St Jeromes QC 45.80 -74.10 169.5 1961 

Table 2-2. List of atmospheric variables of NCEP re-analysis data in the grid-box 

Variable Level of measurement 

Mean sea level pressure Surface     

Airflow strength Surface 500 hPa 850 hPa 

Zonal velocity Surface 500 hPa 850 hPa 

Meridional velocity Surface 500 hPa 850 hPa 

Vorticity Surface 500 hPa 850 hPa 
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Variable Level of measurement 

Wind direction Surface 500 hPa 850 hPa 

Divergence Surface 500 hPa 850 hPa 

Specific humidity Near surface 500 hPa 850 hPa 

Geopotential height   500 hPa 850 hPa 

2.3.2 Evaluation statistical indices 

 The evaluation of the performance of SDGAM model was carried out in comparison with 

the SDSM model using different statistical indices as detailed in Table 2-3. These indices were 

selected to represent the basic statistical properties of the daily precipitation process: average 

and variance of precipitation, frequency of precipitation occurrence, intensity of precipitation 

amount, extreme events. For purposes of illustration, results of this comparative study were 

presented for Dorval station (S2) in the following section, and results of all other stations were 

presented in Appendix A.   

Table 2-3. Evaluation statistics and indices 

Categories Code Description Unit Time scale 

Basic variable 
Precip_m Average of precipitation mm/day Month 

Precip_std Standard deviation of precipitation mm/day Month 

Frequency PRCP1 Percentage of wet days  % Season 

Intensity SDII Mean precipitation amount at wet days mm/day Season 



 18 

Categories Code Description Unit Time scale 

Extreme 

CDD Maximum number of consecutive dry days  days Season 

PREC90P 90th percentile of rain day amount mm/day Season 

AMS Daily annual maximum precipitation mm/day Year 

Annual TAP Total annual precipitation mm Year 

 In addition, the root-mean-square error (RMSE) was used to compare the performance of 

the proposed models as given below:  

𝑅𝑅𝐺𝐺𝑆𝑆𝐸𝐸 = �1
𝑁𝑁
�(𝑆𝑆𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚𝑒𝑒𝑚𝑚 − 𝑆𝑆𝑆𝑆𝑂𝑂𝑜𝑜𝑜𝑜𝑒𝑒𝑝𝑝𝑂𝑂𝑒𝑒𝑚𝑚)2 

where SI indicates the value of the statistical indices and N is the number of sample size. The 

smaller value of the RMSE indicates the better accuracy of the model considered.    

2.4 Results and discussions 

 As mentioned above, the comparison of the performance of the SDGAM and SDSM for 

Dorval station are presented in this section, and the results for other stations are given the Appendix 

A.  In addition, it should be noted that the same screening procedure for selecting the significant 

climate predictors in the SDSM was also used for the SDGAM.  More specifically, the significant 

climate predictors identified by this screening procedure for both models for Dorval station were 

the surface zonal velocity, the 850 hPa meridional velocity, the surface precipitation, and the 

specific  humidity at  5000 hPa height. The smooth functions of these predictors for Dorval station 

are shown in Figure 2-4. It can be seen that the proposed SDGAM model displays the non-linear 
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relations between the climate predictors and the dependent variables. Therefore, the SDGAM 

could be more flexible in comparison with the current SDSM based on the linear regression.  

  

  

Figure 2-4. Plots of the smooth functions of each variable used in the generalized additive 

models (GAMs) for Dorval station. Solid lines: fitted smooth curves, Dashed lines: confidence 

intervals of the predictions 

2.4.1 Numerical analysis 

 Table 2-4 and Table 2-5 demonstrated the computed values of the RMSEs of monthly mean 

of precipitation (Preceip_m) and monthly standard deviation of precipitation (Precip_std) for the 
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SDSM and SDGAM models for the calibration (1961-1980) and validation periods (1981-2000) 

at Dorval station. In these tables, bold numbers denoted the case when the RMSE value of the 

SDGAM is higher than the value of the SDSM; that is, the SDGAM is less accurate than the 

SDSM. Regarding the mean and standard deviation of precipitation, it could be seen that proposed 

SDGAM can provide a significant improvement over the SDSM for all months during the 

calibration period, and for most months for the validation period (except for October for Precip_m 

and for January, October and November for Precip_std). In general, it was found that for both 

calibration and validation steps, the proposed SDGAM model could provide more accurate results 

than the SDSM in terms of Precip_m and Precip_std.   

Table 2-4. RMSEs of Mean of precipitation at Dorval station 

Month 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

Jan 0.839 0.671 0.969 0.952 

Feb 0.788 0.715 0.821 0.740 

Mar 0.824 0.708 0.954 0.930 

Apr 0.984 0.802 1.236 1.123 

May 0.830 0.725 0.998 0.930 

Jun 1.154 1.083 1.297 1.228 

Jul 1.560 1.409 1.652 1.377 

Aug 1.299 1.068 1.585 1.477 
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Month 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

Sep 1.692 1.551 1.219 1.127 

Oct 0.949 0.799 1.021 1.023 

Nov 0.929 0.867 1.289 1.223 

Dec 0.813 0.714 0.883 0.828 

Table 2-5. RMSEs of Standard deviation of precipitation at Dorval station 

Month 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

Jan 1.947 1.565 2.006 2.168 

Feb 1.785 1.628 1.964 1.609 

Mar 1.992 1.595 2.318 1.717 

Apr 1.939 1.498 2.365 2.086 

May 1.743 1.436 2.318 2.258 

Jun 2.612 2.327 3.672 3.554 

Jul 3.042 2.717 3.297 2.772 

Aug 2.873 2.575 3.344 3.070 

Sep 4.380 3.655 2.876 2.298 

Oct 1.868 1.426 3.163 3.627 
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Month 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

Nov 1.743 1.422 3.695 3.901 

Dec 2.046 1.578 1.855 1.382 

 Regarding the Prcp1, SDII and CDD indices, the proposed SDGAM model could provide 

significant improvements over the SDSM model. In particular, the SDGAM produced a more 

accurate result in the simulation of the maximum number of consecutive dry days (CDD), one of 

the most difficult indices to capture in the modeling process. Regarding the most difficult extreme 

precipitation index (Prec90p), the SDGAM generally cannot produce an improvement over the 

SDSM (the same performance for the calibration period but less accuracy for validation period as 

shown in Table 2-6). Similar results were found for other stations as presented in Appendix A.  

Table 2-6. RMSEs of seasonal indices about frequency, intensity, and extreme of precipitation 

over calibration and validation period Dorval station (S2) 

Indices Season Calibration Validation 

SDSM SDGAM SDSM SDGAM 

Prcp1 

(%) 

Spring 6.380 5.533 6.059 6.027 

Summer 5.435 4.850 6.022 6.027 

Fall 6.041 5.998 5.277 5.219 

Winter 5.920 5.076 6.176 5.692 

SDII Spring 1.595 1.543 1.488 1.321 
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Indices Season Calibration Validation 

SDSM SDGAM SDSM SDGAM 

(mm/wet-day) Summer 1.550 1.281 2.151 2.070 

Fall 2.393 2.037 2.276 1.858 

Winter 1.396 1.066 1.643 1.732 

CDD 

(days) 

Spring 7.339 7.277 4.000 3.417 

Summer 5.289 5.287 4.777 4.832 

Fall 4.257 3.780 4.729 4.749 

Winter 4.414 4.333 4.024 3.746 

Prec90p 

(mm/day) 

Spring 7.078 7.550 6.271 5.758 

Summer 5.426 5.078 8.632 8.914 

Fall 8.058 8.097 7.379 8.158 

Winter 4.408 4.048 5.962 7.096 

 Table 2-7 shows the RMSEs for annual maximum series (AMS) and total yearly 

precipitation for all stations. Bold values indicated the better results for SDSM. It could be seen 

that SDGAM model performs better for all station for calibration period and two-third stations for 

validation period. In brief, the proposed SDGAM model was able to describe well seasonal 

features of the extreme precipitation, as well as its frequency and intensity for both calibration and 

validation periods for rain-gaged stations located in Southern Quebec and Ontario, Canada. 
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Table 2-7. RMSEs of Daily Annual Maximum Precipitation (AMS) and Total Annual 

Precipitation (TAP) for calibration and validation period Dorval station (S2) 

Station 

AMS TAP 

Calibration Validation Calibration Validation 

SDSM SDGAM SDSM SDGAM SDSM SDGAM SDSM SDGAM 

S1 20.28 13.90 14.83 13.23 130.67 118.27 131.44 121.51 

S2 15.55 14.15 17.83 19.72 112.38 104.01 102.17 92.12 

S3 13.59 12.11 19.48 20.58 211.90 200.44 221.42 198.77 

S4 20.53 17.69 21.99 18.49 116.20 95.76 216.40 216.88 

S5 11.42 10.52 17.36 15.66 108.21 90.94 162.70 200.72 

S6 19.14 13.85 19.15 16.30 137.31 123.57 118.75 86.64 

S7 13.35 11.72 12.74 18.36 105.58 90.05 104.89 99.23 

S8 12.00 10.77 17.76 16.98 114.80 105.53 87.94 99.29 

S9 19.58 16.79 15.35 16.02 148.46 146.49 87.96 86.83 

S10 14.21 13.43 14.29 13.90 110.40 99.10 131.07 134.49 

2.4.2 Graphical analysis 

 A graphical comparison of the accuracy of the SDGAM and SDSM models using the box 

plots (the closeness between the estimated median value of the model and the observation) and the 

robustness of the model (the size of the Inter-Quartile Range box) were carried out in this study. 

For purposes of illustration, below figures show the results for the monthly indices of monthly 
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percentage of wet-day (Prcp1) and monthly mean of precipitation (Precip_m) for Dorval Station 

for the calibration (Figure 2-5 and Figure 2-6) and validation (Figure 2-7 and Figure 2-8) periods. 

It can be seen that the proposed SDGAM model could reproduce more accurate results than those 

given by the SDSM for Dorval Station. Figure 2-5 and Figure 2-6 demonstrated that the monthly 

average of observed daily rainfalls is within the Inter-Quartile Range box of monthly average of 

generated data for both Precip_m and Prcp1 indices for every single month. The accuracy of the 

results for the percentage of wet days index (Prcp1) and average precipitation (Precip_m) by the 

SDGAM could indicate that the use of the GAM modeling approach was more appropriate than 

the ordinary linear regression used in the SDSM for modeling the precipitation occurrence process.  

  

Figure 2-5. Boxplots of monthly percentage of wet-days for SDSM (left) and SDGAM (right) for 

Dorval station (Black star markers indicate monthly average values of precipitation data, and 

boxplots indicate model results) 
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Figure 2-6. Boxplot of monthly means of precipitation for SDSM (left) and SDGAM (right) for 

Dorval station (Black star markers indicate monthly average values of precipitation data, and 

boxplots indicate model results) 

  

 

Figure 2-7. Boxplot of percentage of wet days for SDSM (left) and SDGAM (right) for Dorval 

station for validation period. Black markers: Observed data 
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Figure 2-8. Boxplot of monthly means of precipitation for SDSM (left) and SDGAM (right) for 

Dorval station for validation period. Black markers: Observed data 

 Figure 2-9 presents the boxplots of six common annual indices: mean of precipitation 

(Precip_m), standard deviation of precipitation (Precip_std), percentage of wet-day (Prcp1), mean 

of precipitation on wet-days (SDII), consecutive of dry days (CDD), 90th quantiles of wet-days 

(Prec90p), Annual Maximum Series (AMS), and Total Annual Precipitation (TAP) for the entire 

record length from 1961 to 2000 at Dorval station (S2). It can be seen that the SDGAM model can 

capture well the Precip_m, Prcp1, SDII and CDD indices but Precip_std and Prec90p indices are 

still underestimated. Similar results for all other stations can be found in Appendix A (Figure A-3 

to Figure A-11).  
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CDD Prec90p 

  

AMS TAP 

Figure 2-9. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std, 

Prcp1, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at Dorval station (S2) 

2.5 Conclusions 

 A new downscaling model (SDGAM) has been developed to accurately simulate the daily 

precipitation processes at a single site in the context of climate change. The proposed SDGAM 
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model was based on the combination of the precipitation occurrence and the precipitation amount 

using the Generalized Additive Model. In brief, the proposed model was able to describe well 

many features of the daily precipitation process, including its occurrence frequency, intensity, 

and extremes for both calibration and validation periods for data from 10 rain-gauged stations 

located in Southern Quebec and Ontario, Canada. In addition, it has been demonstrated that the 

suggested SDGAM model could provide more accurate results than those given the existing 

SDSM model in the modeling of daily precipitation process based on both numerical and 

graphical performance criteria.   
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Chapter 3: Modeling of short-duration extreme 

precipitations in the context of climate change 

 

3.1 Introduction 

 Many water management applications (i.e., design of urban storm drainage systems, flood 

management and infrastructure operations) require information of rainfall intensity-duration-

frequency (IDF). In order to construct the IDF curves, annual maximum series (AMS) of different 

rainfall durations from a few minutes to days are obtained, commonly from 5 minutes to 1 day. 

However, in most practical applications, short-duration extreme rainfall data are very limited or 

even unavailable for a given location of interest while the daily extreme rainfall records are often 

available. For instance, less than 600 stations in Canada record short-duration extreme rainfall 

from 5 minutes to 24 hours (Environment Canada, 2020), while the number of stations observe the 

daily rainfall is more than 1700 stations (Mekis et al., 2018). Hence, it is necessary to develop new 

methods for modeling extreme rainfall processes over a wide range of time scales such that 

extreme rainfalls needed at sub-daily time scales for constructing IDF relations for a given location 

can be estimated from the available daily extreme rainfall data.  

 General Circulation Models (GCMs) have been commonly used for evaluating the effects 

of climate change under different scenarios of greenhouse gas emissions on the hydrological 

regime. Although these GCMs have been recognized to be able to represent the main features of 

the global distribution of basic climate parameters (Randall et al., 2007), they still cannot 
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reproduce well details of regional climate conditions at temporal and spatial scales of relevance to 

hydrological impacts and adaptation studies (Nguyen et al., 2006). This is because outputs from 

GCMs are usually at resolution that is too coarse (as illustrated in Figure 1-1) for many climate 

change impact studies, generally greater than 2.5o for both latitude and longitude (approximately 

250km). To refine the GCM coarse grid resolution climate projection data to much finer spatial 

resolutions (regional or local scales) for the reliable assessment of climate change impacts, 

different downscaling methods have been proposed to resolve this scale discrepancy (Wilby et al., 

2002; Fowler et al., 2007; Nguyen and Nguyen, 2008; Maraun et al., 2010; Khalili and Nguyen, 

2016; Gooré Bi et al., 2017). The SDGAM based on a combination of a Generalized Additive 

Models (GAMs) for representing the daily rainfall occurrences and the daily precipitation amounts 

has been proposed to describe the linkage of the large-scale climate variability to the historical 

observations of the precipitation process at a local site in previous section.  

 Several probability models have been conducted to describe the distribution of extreme 

precipitation at a gauged site (Wilks, 1993; Zalina et al., 2002). Unfortunately, these models are 

not accurate with all time frames, it is therefore requiring need for formulating models that could 

statistically and simultaneously matches various properties of the precipitation process at different 

levels of aggregations. Recently, the scale-invariance (or scaling) concept has increasingly become 

a popular methodology for modeling of several hydrological processes across a wide range of time 

scales (Hubert, 2001; Schertzer et al., 2010; Lovejoy and Schertzer, 2012). For instances, Nguyen 

et al. (2002) proposed a scaling General Extreme Value (GEV) based estimation method that can 

be used to estimate extreme rainfalls for a given return period at a local site for sub-daily time 

scales (hourly, 30 minutes, etc.) from the statistical properties of extreme rainfalls at a daily scale. 

Nguyen (2020) proposed a new mathematical framework for modeling extreme rainfall processes 
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over a wide range of temporal scales (i.e., from several minutes to one day) based on the three-

parameter Generalized Extreme Value (GEV) distribution and the scaling behavior of the PWMs 

(known as the GEV/PWM model). The proposed model has been tested with data set of long 

rainfall records from a network of 74 stations located in diverse climatic conditions across Canada. 

 Climate variability and change have been recognized to have important impacts on the 

hydrologic cycle at different temporal and spatial scales. The temporal scales could vary from a 

very short time interval of 5 minutes (for urban water cycle) to a yearly time scale (for annual 

water balance computation). The spatial resolutions could be from a few square kilometers (for 

urban watersheds) to several thousand square kilometers (for large river basins). In this study, a 

suggested approach is based on the combination of the spatial downscaling method to link large-

scale climatic variables provided by GCMs to daily extreme precipitations at a local site using the 

SDGAM and the temporal downscaling procedure to describe the relationships between daily 

extreme precipitations with sub-daily extreme precipitations using the scaling General Extreme 

Value (GEV) distribution and the scaling behavior of the PWMs. The feasibility and accuracy of 

this spatial-temporal downscaling approach have been assessed using the AM precipitation data 

available at 10 stations across Canada and based on different climate change scenario simulation 

results available for the study region provided by the Canadian GCMs for the current 1961-2000 

period as well as for future 2030s, 2060s, and 2090s periods. Results of this numerical application 

have indicated that, after a bias-correction adjustment, it is feasible to develop an accurate linkage 

between the daily AMPs spatially downscaled from GCM simulations with the observed daily 

AMPs at local stations. These results suggest that it is possible to use the climate predictors given 

by GCM simulations under different climate scenarios for projecting the variability of AM daily 

precipitations for future periods. On the basis of these results for daily AMPs, the IDF curves for 



 34 

the current 1961-2000 period and for future periods (2030s, 2060s, and 2090s) were constructed 

using the proposed temporal GEV/PWM method for sub-daily AMPs 

3.2 A statistical approach to downscaling of extreme precipitation 

processes 

3.2.1 A spatial downscaling approach using SDGAM 

 The SDGAM model developed in this study can be used to downscale daily precipitation 

process at a local site. The modeling of this process in the context of climate change involves two 

components: the modeling of the daily precipitation occurrences and the modeling of the 

precipitation amounts 

𝜋𝜋𝚤𝚤� = 𝐶𝐶𝑂𝑂𝐴𝐴(𝑎𝑎0 + �𝑓𝑓𝑂𝑂𝑖𝑖(𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑎𝑎=1

) 

in which  𝑓𝑓Oi: smooth function  

  Xi: the large-scale atmospheric predictors given by GCM simulations 

  𝐶𝐶Ok: the correction coefficients for Occurrence process  

  ri is a uniform distributed random number, if ri ≤ 𝜋𝜋𝚤𝚤� , precipitation occurs at day i 

 

 



 35 

- Precipitation Amount Process (Ri)  

𝑌𝑌 = 𝑓𝑓.𝐶𝐶𝐴𝐴𝐴𝐴(𝛼𝛼 + �𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

+ 𝜂𝜂𝑖𝑖) 

in which  𝛼𝛼: intercept   

  𝑓𝑓i: smooth function  

  Xi: the large-scale atmospheric predictors given by GCM simulations 

  𝐶𝐶𝐴𝐴𝐴𝐴: the correction coefficients for amount process 

  𝜂𝜂𝑖𝑖 = 𝑍𝑍 ∗ 𝑆𝑆𝑒𝑒𝑖𝑖  

  𝑆𝑆𝑒𝑒𝑖𝑖 : the standard error of month ith   

  𝑓𝑓: bias correction coefficient, coming from the deviation of the simulated mean 

given GCMs and the estimated mean given by the NCEP re-analysis data. The value of 𝑓𝑓 is set to 

1 in calibration step of SDGAM model. 

𝑓𝑓 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 𝑏𝑏𝑏𝑏 𝑁𝑁𝐶𝐶𝐸𝐸𝐸𝐸 𝑓𝑓𝑡𝑡𝑓𝑓 𝑐𝑐𝑎𝑎𝑡𝑡𝑐𝑐𝑏𝑏𝑓𝑓𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑚𝑚 𝑝𝑝𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 𝑏𝑏𝑏𝑏 𝐺𝐺𝐶𝐶𝐺𝐺𝐺𝐺 𝑓𝑓𝑡𝑡𝑓𝑓 𝑐𝑐𝑎𝑎𝑡𝑡𝑐𝑐𝑏𝑏𝑓𝑓𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡𝑚𝑚 𝑝𝑝𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡𝑝𝑝

 

 In both precipitation occurrence and amount processes, the correction coefficients COk and 

CAk represent the difference between the mean of observed data and the mean of simulated results 

based on the regression of GAM for the percentage of wet-day and precipitation amounts, 

respectively. These coefficients are automatically computed during the calibration of the SDGAM 
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model such that an adequate agreement between the simulated results and the historical data could 

be obtained. Initially, the values of these coefficients are set to 1 in the calibration step.  

 It has been demonstrated in previous chapter that the SDGAM model was able to describe 

accurately the linkage between the daily predictands (precipitation occurrence and amount) at a 

given local site and the large-scale climate predictors provided by GCMs. Hence, it can be used to 

generate “synthetic predictands” that represents the generated local weather 

3.2.2 A temporal downscaling method using the scaling-GEV distribution  

 The GEV distribution has been commonly used to describe the distribution of extreme 

rainfalls for different durations and to construct the IDF curves. The cumulative distribution 

function, F(x), for the GEV distribution is given as: 

𝐹𝐹(𝑥𝑥) = 𝑚𝑚𝑥𝑥𝑝𝑝 �−�1 − 𝜅𝜅(𝑥𝑥−𝜉𝜉)
𝛼𝛼

�
1
𝜅𝜅 �    ;     (𝜅𝜅 ≠ 0) 

where 𝜉𝜉, α, and κ are the location, scale, and shape parameter, respectively.  

 The probability weighted moment (PWM) estimators (or method of L-moment, L-MOM) 

can be used for estimation of the GEV parameters in consideration of the scaling property of these 

PWMs over different rainfall durations. For a distribution of a random variable 𝑋𝑋 that has a 

quantile function, 𝑥𝑥(𝑢𝑢), the PWM of 𝑓𝑓𝑡𝑡ℎ-order can be expressed as (Hosking and Wallis, 1997):  

𝛽𝛽𝑝𝑝 = E(X{𝐹𝐹(𝑋𝑋)}𝑝𝑝) = � 𝑥𝑥(𝑢𝑢)𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢
1

0
 

(3-1) 



 37 

The PWMs of 𝑓𝑓𝑡𝑡ℎ-order, 𝛽𝛽𝑝𝑝, of the GEV distribution are given as follow: 

𝛽𝛽𝑝𝑝 = 𝐺𝐺1,𝑝𝑝,0 = 𝐸𝐸[𝑋𝑋 {𝐹𝐹(𝑋𝑋)}𝑝𝑝] = (𝑓𝑓 + 1)−1 �𝜉𝜉 +
𝛼𝛼
𝜅𝜅

{1 − (𝑓𝑓 + 1)−𝜅𝜅 Γ(1 + 𝜅𝜅)}�  (3-2) 

in which 𝜉𝜉,𝛼𝛼, and 𝜅𝜅 are the location, scale, and shape parameters respectively; and 𝐹𝐹 is the 

cumulative probability of interest. Γ(. ) is the gamma function and 𝑓𝑓 must be non-negative.  

 For a simple scaling process, it can be shown that the relation between the rth-order PWMs 

of rainfalls for two different rainfall durations 𝑡𝑡 and 𝜆𝜆𝑡𝑡 can be expressed as:  

𝛽𝛽𝑝𝑝(𝜆𝜆𝑡𝑡) = 𝜆𝜆𝜂𝜂𝑟𝑟𝛽𝛽𝑝𝑝(𝑡𝑡) = 𝜆𝜆𝜂𝜂𝛽𝛽𝑝𝑝(𝑡𝑡) (3-3) 

 where 𝜂𝜂𝑝𝑝 = 𝜂𝜂0 is the scaling exponent and can be estimated based on the means of different 

rainfall durations. 

 This infers that the scaling exponents 𝜂𝜂𝑝𝑝 are constant across all PWM orders 𝑓𝑓 for the same 

rainfall scaling regime. In other words, the plot of the scaling exponents 𝜂𝜂𝑝𝑝 (y-axis) with the PWM 

order 𝑓𝑓 (x-axis) should display a horizontal line rather than a linear sloping line as for the case of 

the ordinary statistical moments (Nguyen et al., 2002).  

 Furthermore, let 𝜏𝜏3(𝑡𝑡) and 𝜏𝜏3(𝜆𝜆𝑡𝑡) denote the L-skewness of the data samples for two 

different time scales 𝑡𝑡 and 𝜆𝜆𝑡𝑡 respectively (Hosking, 1990). L-skewness is the dimensionless 

version of the third order L-moment. It is obtained by dividing the third-order L-moment by the 

second-order L-moment. Hence, for a simple scaling process it can be shown that:    

 Equation (3-4) indicates that the L-skewness is constant over different time scales. 

𝜏𝜏3(𝜆𝜆𝑡𝑡) =
6𝛽𝛽2(𝜆𝜆𝑡𝑡) − 6𝛽𝛽1(𝜆𝜆𝑡𝑡) + 𝛽𝛽0(𝜆𝜆𝑡𝑡)

2𝛽𝛽1(𝜆𝜆𝑡𝑡) − 𝛽𝛽0(𝜆𝜆𝑡𝑡)
=
𝜆𝜆𝜂𝜂

𝜆𝜆𝜂𝜂
.
[6𝛽𝛽2(𝑡𝑡) − 6𝛽𝛽1(𝑡𝑡) + 𝛽𝛽0(𝑡𝑡)]

[2𝛽𝛽1(𝑡𝑡) − 𝛽𝛽0(𝑡𝑡)] = 𝜏𝜏3(𝑡𝑡) 
(3-4) 
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Consequently, for the simple scaling process, the shape parameter of the GEV distribution 𝜅𝜅, 

which is a function of the L-skewness, is also constant over the time scale, that is,   

𝜅𝜅(𝜆𝜆𝑡𝑡) = 𝜅𝜅(𝑡𝑡)   (3-5) 

 From Eqn. (3-2) and after some mathematical manipulations, the first- and second-order 

PWMs can be written as follows: 

𝛽𝛽0 = 𝜉𝜉 +
𝛼𝛼
𝜅𝜅

{1 − Γ(1 + 𝜅𝜅)} (3-6) 

𝛽𝛽1 =
1
2
�𝛽𝛽0 +

𝛼𝛼
𝜅𝜅

(1 − 2−𝐴𝐴)Γ(1 + 𝑘𝑘)� (3-7) 

On the basis of Eqns. (3-3), (3-5)-(3-7) the location and scale parameters of the GEV distribution 

for different time scales can be related as follows:   

𝛼𝛼(𝜆𝜆𝑡𝑡) = 𝜆𝜆𝜂𝜂𝛼𝛼(𝑡𝑡)  (3-8) 

𝜉𝜉(𝜆𝜆𝑡𝑡) = 𝜆𝜆𝜂𝜂𝜉𝜉(𝑡𝑡) (3-9) 

and the quantiles for different time scales can also be expressed as:   

𝑋𝑋𝑇𝑇(𝜆𝜆𝑡𝑡) = 𝜆𝜆𝜂𝜂𝑋𝑋𝑇𝑇(𝑡𝑡)   (3-10) 

 In summary, based on these equations, for a simple scaling regime, it is possible to derive 

the distributions and statistical properties of short-duration extreme rainfalls from those of longer 

durations at a given study site as presented right below.  

 There are two different manners to downscale extreme rainfall quantiles from daily to sub-

daily and/or sub-hourly intervals: the direct and indirect methods. The direct method scales the 
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quantiles of rainfall duration (𝜆𝜆𝑡𝑡) from those of duration 𝑡𝑡 directly using Eqn. (3-10). Note that 

the daily extreme rainfall quantiles computed based on different PWM or NCM estimators could 

be varied. Consequently, the scaled sub-daily and/or sub-hourly extreme rainfall quantiles obtained 

using the two systems are therefore different. Similarly, though the parameter scaling relationships 

are identical for the two moment systems, the scaling parameters obtained using two different 

estimation methods are also different. For the indirect method, the first three PWMs of sub-daily 

and/or sub-hourly AMSs are first computes using the scaling relationships of PWMs over different 

rainfall durations. These scaled PWMs are then utilized to solve for the three parameters in order 

to calculate the rainfall quantiles 

3.3 Numerical application 

 To access the accuracy and feasibility of the proposed spatial-temporal downscaling 

approach, a case study was conducted using both global GCM climate simulation output CanESM2 

and the observed daily precipitation data at 10 stations located in Southern Quebec and Ontario 

regions, Canada (see Figure 3-1). For comparison purposes, both SDSM and SDGAM models 

were considered for this study. More specifically, the daily precipitation data for the period from 

1961 to 2000 were used as detailed in Table 3-1.  
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Figure 3-1. Selected stations across Canada 

Table 3-1. Information of rain-gaged stations in across Canada 

No Province Station name Lat Lon Ele (m) RL (year) 

1 AB CALGARY_INT_L_CS 51.12 -114.00 1081 61 

2 BC VANCOUVER_INTL_A 49.18 -123.18 4 63 

3 MB WINNIPEG_A_CS 49.92 -97.25 238 57 

4 NB MONCTON_INTL_A 46.12 -64.68 70 67 

5 NL GANDER_AIRPORT_CS 48.95 -54.57 151 70 
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No Province Station name Lat Lon Ele (m) RL (year) 

6 NS SYDNEY_CS 46.17 -60.03 62 53 

7 ON TORONTO_INTL_A 43.68 -79.63 173 64 

8 QC MONTREAL_P.E.T_INTL (Dorval) 45.47 -73.73 32 61 

9 SK REGINA_INT_L_A 50.43 -104.67 577 52 

10 YT WHITEHORSE 60.73 -135.10 707 44 

 The computational procedure for the suggested spatial-temporal downscaling method in 

this study can be summarized as follows:  

i)  Calibrate and validate the SDGAM model using the at-site daily precipitation as predictand 

and global GCM atmospheric variables as predictors (spatial downscaling);  

ii)  Generate 50 samples of 40-year daily precipitation series at a given site using the calibrated 

SDGAM and the corresponding GCM predictors, and extract daily AM precipitation series 

from these generated samples;  

iii) Perform necessary bias correction of the GCM-downscaled daily AM precipitation series;  

iv)  Establish the scaling relations between the PWMs of the observed at-site AM 

precipitations for various durations;  

v)  Construct IDF curves using the adjusted GCM-downscaled AM daily precipitations and 

the estimated sub-daily AM rainfall amounts given by the calibrated scaling GEV model.  

 Repeat steps (ii) to (v) to construct IDF curves for future periods (2030s, 2060s, and 2090s). 
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3.4 Results and discussions 

3.4.1 Spatial downscaling and bias-correction 

 The SDGAM model was calibrated and used to generate daily AMPs for all stations using 

the climate simulation outputs from CanESM2 under different RCPs (RCP 26, RCP 45, and RCP 

85). The probability plots of AMPs downscaled in comparison of observed AMPs for the historical 

period 1961-2000 for stations S5 and S7 were presented in Figure 3-2 for purposes of illustration. 

It can be seen that downscaled AMPs are commonly lower than the observed at-site data. The error 

adjustment functions were established based on data for the 1961-1985 calibration period, then 

applied for the 1986-2000 validation period to assess their accuracy. In this study, the 4th order 

adjusted functions were employed to correct the differences between downscaled and observed 

data, results for S5 and S7 stations as shown in Figure 3-4. Results for all other stations can be 

found in Appendix B.  

  

Figure 3-2. Probability plots of observed daily AMPs and Historical Period (HIST) at S5 & S7 
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Figure 3-3. Error-Adjustment functions for S5 &S7 

 

  

Figure 3-4. Probability plots of observed daily AMPs and Historical Period (HIST) after error-

adjustment at S5 & S7 

 To assess the accuracy of the error adjustment method, the relative-root-mean-square-error 

(RRMSE) was used and can be as follows: 
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𝑅𝑅𝑅𝑅𝐺𝐺𝑆𝑆𝐸𝐸 = �
1
𝑁𝑁
��

𝑋𝑋𝑖𝑖𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑖𝑖𝑜𝑜𝑠𝑠

𝑋𝑋𝑖𝑖𝑜𝑜𝑜𝑜
�
2𝑁𝑁

𝑖𝑖=1

 

where N is sample size, 𝑋𝑋𝑖𝑖𝑜𝑜𝑜𝑜 and 𝑋𝑋𝑖𝑖𝑜𝑜𝑜𝑜 are observed and downscaled quantiles, respectively. Results 

can be found in Table 3-2. The smaller RRMSE values mean the results of the adjusted downscaled 

AMPs were improved in compared to the unadjusted downscaled AM amounts for both calibration 

and validation periods for all stations.  

Table 3-2. RRMSE for daily AMPs with and without bias correction for calibration period of 

1961-1985 and validation period of 1986-2000 

Stations 
Calibration Validation 

Before Adjusted Before Adjusted 

S1 0.637 0.171 0.220 0.202 

S2 0.362 0.057 0.335 0.207 

S3 0.503 0.077 0.502 0.214 

S4 0.246 0.107 0.195 0.340 

S5 0.130 0.057 0.204 0.126 

S6 0.263 0.064 0.206 0.101 

S7 0.152 0.084 0.210 0.117 

S8 0.969 0.067 0.640 0.180 

S9 0.442 0.113 0.436 0.240 

S10 0.308 0.066 0.181 0.178 



 45 

3.4.2 Temporal downscaling 

 To assess the scaling behavior of the observed AMP series, the log-log plots of the five 

rainfall PWMs against duration are prepared for all 10 stations. The log- linearity exhibited in the 

plot indicates the power law dependency of the rainfall statistical moments. However, Table 3-3 

showed that the AM precipitation series in Canada displayed multiple scaling behaviors depending 

on the location of stations from East to West, for instance, the breaking points at Dorval and 

Sydney CS are 30 and 360 minutes, respectively. Hence, for a given location, it is possible to 

determine the PWMs and the distribution of rainfall extremes for short durations (e.g., 30 minutes) 

using available rainfall data for longer time scales (e.g., 1 day) within the same scaling regime. 

Table 3-3. Breaking points (BP) of PWM/GEV for all stations 

No Province Name Breaking Point (min) 

1 AB CALGARY_INT_L_CS 15 

2 BC VANCOUVER_INTL_A 120 

3 MB WINNIPEG_A_CS 30 

4 NB MONCTON_INTL_A 120 

5 NL GANDER_AIRPORT_CS 30 

6 NS SYDNEY_CS 360 

7 ON TORONTO_INTL_A 30 

8 QC MONTREAL P.E. INTL (Dorval) 30 

9 SK REGINA_INT_L_A 360 

10 YT WHITEHORSE 15 
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 For purposes of illustration, Figure 3-5 shows the log-log plot of the PWMs versus 

durations for Sydney_CS (S6) and Dorval (S8) stations. 

  

Figure 3-5. Log-log plots of the PWMs versus durations at S6 & S8 

  

Figure 3-6. Scaling exponents plotted against the order of PWMs at S6 &S8 
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Figure 3-7. Probability plots of Observed AMPs and estimated using traditional and scaling GEV 

distributions at 1-hr (left) and all duration (right) for Dorval station (S8). Dotted line: Traditional 

GEV, Solid line: GEV/PWM, circle markers: Observed data 

 Figure 3-7 illustrates the comparison between observed and estimated precipitation by 

traditional GEV and scaling GEV for 1-hour duration (left) and all 9 - durations from 5 minutes to 

24hr (right). It can be seen from the Figure 3-7 that scaling GEV approach is in very good 

agreement with the observed data. In addition, Table 3-4 presents numerical IDF relations for 

Dorval station given by traditional fitted GEV and scaling GEV approaches for the historical 

period 1961-2000. There is no significant difference between the two methods. Therefore, the 

scaling GEV approach can be used to estimate sub-daily AM rainfalls from historical or adjusted 

downscaled daily AM precipitations.  

Table 3-4. Numerical IDF curves of AMP estimated by traditional GEV and scaling GEV for 

Dorval station (1961-2000). Unit of precipitation intensity is mm/hr, Return Period, T in year 
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Traditional GEV method 

Return 

Period (T) 

Duration (min): mm/hr 

5 10 15 30 60 120 360 720 1440 

2 95.01 72.39 58.66 39.48 22.49 13.59 5.86 3.37 1.94 

5 125.80 95.81 79.22 53.95 31.18 17.93 7.50 4.29 2.46 

10 146.99 111.36 93.20 63.23 37.42 21.14 8.65 5.03 2.87 

20 167.94 126.31 106.90 71.92 43.79 24.50 9.78 5.86 3.32 

50 196.01 145.70 125.06 82.86 52.66 29.30 11.30 7.13 3.99 

100 217.75 160.26 138.99 90.85 59.78 33.26 12.48 8.27 4.58 

Scaling GEV method 

Return 

Period (T) 

Duration (min): mm/hr 

5 10 15 30 60 120 360 720 1440 

2 99.24 69.27 56.13 39.18 22.87 13.35 5.68 3.32 1.94 

5 131.50 93.23 76.22 53.99 31.08 17.89 7.44 4.28 2.46 

10 154.93 110.10 90.13 63.98 36.74 21.09 8.74 5.01 2.87 

20 179.09 127.08 103.94 73.71 42.34 24.31 10.09 5.79 3.32 

50 213.01 150.26 122.54 86.50 49.84 28.72 12.00 6.92 3.99 

100 240.54 168.58 137.02 96.24 55.65 32.21 13.57 7.88 4.58 
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3.4.3 IDF curves for the periods of 2030s, 2060s, and 2090s 

 The proposed spatial-temporal SD was used to construct IDF curves for stations located in 

Canada under different climate change scenarios (RCP 26, RCP 45, and RCP 85) for the current 

and future periods (2030s, 2060s, and 2090s). For purposes of illustration, Figure 3-8 shows the 

plots of daily AM precipitations at Dorval station (S8) for the future periods (2030s, 2060s, and 

2090s) with different RCP (RCP 26, RCP 45 and RCP 85). It can be seen that there is an increasing 

trend in the projected extreme rainfalls for future periods. 

2030s 2060s 2090s  

   

RCP 

26 

   

RCP 

45 
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RCP 

85 

Figure 3-8. IDF curves for future periods with different RCPs at Dorval Station (S8) 

Table 3-5. AMP GCM-projected corresponding to 100-year return period for the current and the 

future periods. Unit of precipitation intensity is mm/hr 

Stations Current 
RCP26 RCP45 RCP85 

2030s 2060s 2090s 2030s 2060s 2090s 2030s 2060s 2090s 

S1 7.05 5.78 4.50 6.95 6.42 5.35 6.32 8.22 5.11 7.22 

S2 1.55 2.50 2.09 2.68 3.19 2.54 2.89 2.66 3.08 3.80 

S3 3.00 5.03 5.27 6.81 3.35 4.06 3.81 7.10 5.93 4.27 

S4 4.06 5.08 4.38 5.40 8.05 5.25 5.83 5.12 5.40 5.95 

S5 2.49 3.00 2.98 3.54 3.80 4.17 3.42 3.83 2.87 4.14 

S6 6.14 7.24 8.52 8.90 8.95 9.13 7.68 6.75 7.16 5.95 

S7 3.67 5.68 5.69 4.29 3.81 5.80 5.45 3.72 4.69 5.12 

S8 4.05 4.94 5.36 4.99 5.53 5.45 4.62 5.37 5.61 4.80 

S9 1.34 2.23 2.26 2.99 2.32 2.78 3.43 3.01 2.79 3.38 

S10 0.90 0.94 0.97 1.06 0.89 0.99 0.90 0.90 0.79 0.96 
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3.4 Conclusions 

 A spatial-temporal downscaling approach was proposed in this study to describe the 

linkage between large-scale climate variables for daily scale to AM precipitations for daily and 

sub-daily scales at a local site. The feasibility of the proposed downscaling method has been 

evaluated based on climate simulation outputs from CanESM2 under different RCPs (RCP 26, 

RCP 45, and RCP 85) using available AM precipitation data for durations ranging from 5 minutes 

to 24 hours at ten rain-gage stations across Canada. Results have indicated that it is feasible to link 

daily large-scale climate variables to daily AM precipitations at a given location. In addition, it 

was found that the AM precipitation series in Canada displayed multiple scaling behaviors 

depending on the location of stations from east to west regions. Based on this scaling property, the 

scaling GEV distribution has been shown to be able to provide accurate estimates of sub-daily AM 

precipitations from GCM-downscaled daily AM amounts. It can be concluded that it is feasible to 

use the proposed spatial-temporal downscaling method to describe the relationship between large-

scale climate predictors for daily scale given by GCM simulation outputs and the daily and sub-

daily AM precipitations at a local site. This relationship would be useful for various climate-related 

impact assessment studies for a given region.  

 Finally, the proposed downscaling approach was used to construct the IDF relations for a 

given site for the historical period of 1961-2000 and for future periods (2030s, 2060s, and 2090s) 

using climate predictors given by CanESM2 simulations. This result has demonstrated the 

presence of high uncertainty in climate simulations provided by different RCPs. Further studies 

are planned to assess the feasibility and reliability of the suggested downscaling approach using 

other GCMs and data from regions with different climatic conditions.  
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Chapter 4: A statistical approach to estimating 

missing daily precipitation series at ungauged sites: a 

case study using data in Vietnam 

 

4.1 Introduction 

 As described in previous Chapters, a number of studies have been conducted to establish 

the linkages between the large-scale climate variables given by GCMs and the observed 

characteristics of the daily precipitation process at a local site using different downscaling methods 

(Xu, 1999; Yarnal et al., 2001; Nguyen et al., 2006). These downscaling methods, however, are 

not suitable for dealing with cases where precipitation data at the location of interest are limited or 

not available. The estimation and prediction of hydrological variables such as precipitation and 

flow with climate change conditions for these ungauged or partially gauged sites remains a crucial 

challenge for managing and planning water resources (Sivapalan, 2003). Several studies dealing 

with the impacts of climate change on water resources at ungauged locations have been conducted 

in recent years (Besaw et al., 2010; Candela et al., 2012; Gibbs et al., 2012). For instance, Candela 

et al. (2012) proposed the use of a rainfall-runoff model to assess impacts by climate change on 

water resource for ungauged location in Northern Spain. Samuel et al. (2012) suggests the bias 

correction technique with Regional Climate Models (RCMs) and Global Climate Models (GCMs) 

for simulating precipitation, temperature, and future flows at gauged and ungauged stations. In 

particular, Wilby et al. (2006) have identified the three sources of uncertainties in climate change 
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impact studies: by GCMs relating to unknown future conditions, by both dynamical and statistical 

downscaling procedure, and by specific application models.  

 In the context of regional impact studies, many previous approaches have been proposed 

for the past decades to supplement limited hydrological data at a local site for the current period 

or for the assessment for future periods in the context of a changing climate (Wilks, 1998; Mehrotra 

et al., 2006; Nguyen et al., 2006; Samuel et al., 2012). For instance, a procedure for generating 

spatially correlated and serially independent random numbers in their stochastic multisite 

downscaling models in order to preserve the spatial dependency amongst rain-gauge stations in a 

region was conducted (Wilks, 1998; Mehrotra et al., 2006). Another approach was the nearest 

neighbor resampling to preserve the spatial correlation of the daily precipitation and temperature 

data (Buishand and Brandsma, 2001; Beersma and Buishand, 2003). Furthermore, the spatial 

structure of Fourier Coefficients was applied to describe the spatial variability of rainfall series in 

a region (Lima and Lall, 2009). These studies, however, did not explicitly consider the similarity 

or homogeneity of the precipitation series at different sites even though this similarity assessment 

is an important factor in the understanding of the variability of the precipitation phenomenon in 

space. It is therefore necessary to assess the similarity of historical rainfall series at different 

locations to ensure that these observed precipitation measurements are produced from the same 

storm system (Nguyen et al., 2002; González and Valdés, 2008). Regionalization methods are 

hence frequently used to transfer rainfall information from one location to the other (Nguyen et 

al., 2007; Samuel et al., 2012). Regionalization methods have been developed and employed 

according to two main objectives: considering spatial dependency (homogeneity) and reducing 

uncertainty. Consequently, for precipitation estimation at an ungauged site, the homogeneity of 
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precipitation processes at different sites is a necessity condition to obtain an accurate rainfall 

estimate with less uncertainty.  

 For the determination of precipitation homogeneity, cluster analysis and eigenvector 

analysis are two common approaches. A popular eigenvector-based method for regional 

precipitation analysis is Principal Component Analysis (PCA). PCA is a multivariate statistical 

technique used to simplify the original data by representing in dimensions fewer than original 

number of variables. The first application of PCA in meteorology and climatology was the end of 

the 1940s and enormous studies on PCA have published since (Preisendorfer, 1988; Johnson and 

Hanson, 1995; Baeriswyl and Rebetez, 1997; Nguyen, 2003; Yeo, 2013). This technique allows 

grouping of stations with similar characteristics and the delimitation of climatic regions, especially 

while handling a large dataset. PCA can be applied to reduce the dimensionality of the data but 

still contains most of the information of the original variables. PCA can be performed using either 

the covariance matrix or the correlation matrix. According to Johnson and Hanson (1995), PCA 

method can better describe the topographic influence on precipitation phenomenon. Baeriswyl and 

Rebetez (1997) also found that the PCA was a more accurate procedure for regional precipitation 

analysis in comparison with cluster analysis for precipitation data in Switzerland.  

Vietnam is a developing country in Southeast Asia with limited observed rainfall data, 

leading to difficulty in construction designing and planning. Most of observed data are are only 

available at daily scale. This paper applied Principal Components Analysis (PCA) to identify 

homogenous precipitation regions. Regionalization is applied to define homogenous regions of 

rainfall for Vietnam. After that, a two-stage interpolation method is proposed to generate daily 

rainfall series at ungauged sites. Finally, GEV scaling technique is employed to infer the sub-daily 
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and/or sub-hourly extreme rainfalls from daily extreme rainfalls in order to construct IDF curves 

at the location of interest. 

4.2 Data 

 For this study, a total of 155 observed daily precipitation series with more than 22 years of 

record across Vietnam were selected (see details of these selected data in Appendix C). These 

series were selected based on the high quality of the data. In addition, the data with the same 

concurrent period of record are an important criterion for the main objective of this study that is to 

estimate the missing data at a location of interest using the available rainfall information from the 

neighbouring region. Figure 4-1 shows the locations of the selected stations. It can be seen that the 

density of stations in Northern part is higher than the Southern part, and those stations in the North 

also have longer record lengths. 
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Figure 4-1. Selected rain-gauged stations in Vietnam 

 Figure 4-2 shows some basic statistics of precipitations across Vietnam. Vietnam is located 

in the tropical area that receives quite a lot of rainfalls in terms of amounts and extreme values. It 

can be seen that the highest annual precipitation and the extreme daily precipitation are in the 

Central part, specifically at Thua Thien Hue province - where the Hai Van pass is located. The 

annual precipitation here is almost 3800 mm yearly, and the maximum daily precipitation is up to 

350 mm. The daily extreme rainfall in the South is smallest with the value of less than 100 mm. 

The Northwest and area surrounding the Hai Van pass have more than 50% of rain day per year.  
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(a) (b) (c) 

Figure 4-2. Maps of annual precipitation across Vietnam (a): total annual rainfall, (b): daily annual 

maximum, (c): percentage of rain day. The value of each point is average over record period 

4.3 Methodology 

4.3.1 Homogeneous regions 

 Principal Component Analysis (PCA) is a multivariate statistical method that can be 

employed to reduce the original data by representing in dimensions fewer than the original number 

of variables. The original dataset of n correlated variables can be transformed into n numbers of 

uncorrelated principal components (PCs). These PCs are linear transformation of the original 

variables so that the sums of variances of the original and the new variables are equal. Although 

the number of PCs and original variables are the same, the first few transformed PCs consist of the 

majority of the variance in the dataset, reducing the dimensionality of the original dataset. The PCs 

are sequenced from the highest to the lowest variance as the first PC describes the data's largest 
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proportion of variance. The second highest variance is explained by the second PC and so on. The 

values of PCs can be obtained from Equations: 

𝐸𝐸𝐶𝐶1 = 𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2+. . . +𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛  = �𝑎𝑎1𝑗𝑗𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 

𝐸𝐸𝐶𝐶2 = 𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2+. . . +𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛  = �𝑎𝑎2𝑗𝑗𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 

where x1, x2, . . . xn are the original variables and ajj are the eigenvectors. The eigenvalues are the 

variances of the PCs. The covariance or correlation matrix of the data set is used to derive the 

coefficients ajj, which are the eigenvectors. The eigenvalues of the data matrix can be calculated 

as follow: 

|C−λI| = 0 

where C is the correlation or covariance matrix, I is the identity matrix, and λ is the eigenvalue. 

The PC coefficients are then calculated by Equation: 

|C−λI|ajj =0 

 The present study used the Principal Components Analysis (PCA) to identify homogenous 

precipitation regions. In this study, inter-station correlation coefficient matrices based on the 

annual maximum monthly mean rainfalls were analyzed using PCA. The principal components 

(PCs) were rotated, and the rotated component pattern was analyzed. The PCs were chosen based 

on the Kaiser's rule (Kaiser, 1960). The PCA was carried out in this study using the IBM SPSS 

software (IBM Corp., 2019). Once the homogenous regions of rainfall were identified, a 2-stage 
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interpolation method is proposed to generate daily rainfall series at ungauged sites based on the 

daily rainfall data available at stations located within the same homogenous region. The method is 

detailed in the next section. 

4.3.2 Estimation of missing daily precipitation series at an ungauged site 

 In this study, a two-stage interpolation method is proposed to estimate daily rainfall series 

at ungauged sites: rainfall occurrence stage and rainfall amount stage. Estimated daily precipitation 

series is compared with the observed data at the same location to assess the feasibility and accuracy 

of the proposed method.  

 + Stage 1: For a calendar day (365 day), let 𝑂𝑂𝑖𝑖𝐴𝐴 be daily precipitation occurrence at station 

k at day i. 𝑂𝑂𝑖𝑖𝐴𝐴 = 0 if day i is dry, and  𝑂𝑂𝑖𝑖𝐴𝐴 = 1 if day i is wet, threshold of rainfall for wet day is 1 

mm. The probability 𝜋𝜋𝑖𝑖  of non-zero precipitation at an ungauged site for day i is defined using 

IDW as follows: 

𝜋𝜋𝑖𝑖 = ∑ 𝑤𝑤𝑘𝑘 𝑂𝑂𝑖𝑖
𝑘𝑘𝑁𝑁

𝑘𝑘=1
∑ 𝑤𝑤𝑘𝑘 
𝑁𝑁
𝑘𝑘=1

, with 𝑤𝑤𝐴𝐴 = 1
𝑚𝑚𝑘𝑘
2  

where N is number of stations within the homogenous region having rainfall data on day i; 𝑝𝑝𝐴𝐴 

distance from ungauged site to station k. The value of 𝜋𝜋𝑖𝑖 ranges from 0 to 1. For this study, if value 

of 𝜋𝜋𝑖𝑖 < 0.5, there is no rain at ungauged location of interest, rainfall amount at day i Ri = 0; if 

value of 𝜋𝜋𝑖𝑖 ≥ 0.5, rainfall occurs at ungauged location of interest, the rainfall amount Ri at day i 

is estimated in stage 2.  

 + Stage 2: if rainfall occurs at location of interest at day i, the rainfall amount Ri is estimated 

as using IDW technique follows: 
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𝑅𝑅𝑖𝑖 = ∑ 𝑤𝑤𝑘𝑘 𝑅𝑅𝑖𝑖
𝑘𝑘𝑁𝑁

𝑘𝑘=1
∑ 𝑤𝑤𝑘𝑘 
𝑁𝑁
𝑘𝑘=1

, with 𝑤𝑤𝐴𝐴 = 1
𝑚𝑚𝑘𝑘
2   

where 𝑅𝑅𝑖𝑖𝐴𝐴 is rainfall amount at station k at day i; N is number of stations within the region having 

rainfall data on day i; 𝑝𝑝𝐴𝐴 distance from ungauged site to station k. 

 By repeating the process for every day of the whole length of record, rainfall series at an 

ungauged site of interest is calculated based on the rainfall data available at stations located 

within the same homogenous region. The jackknife technique was used to represent the 

ungauged site condition. Note that the rainfall is interpolated based on the observed data on the 

same calendar date. 

4.4. Results and discussions 

4.4.1 Homogeneous regions 

 Table 4-1 illustrates the computed total variance explained by each principal component. 

It can be seen that the first component explains the highest variance (52.26% of the total variance 

of the system). Based on results of PCA, Vietnam can be divided into seven regions of the 

homogenous groups of rain gauges as shown in Figure 4-3. Regions 1 to 3 are for the Northern 

part, Region 4 is for the North-central part, Region 5 is for the South-central part, Region 6 is for 

the Central Highland area, and Region 7 is for Southern part of Vietnam. It can be seen that this 

grouping is consistent with climate sub-regions of Vietnam (General Satistics Office of Vietnam, 

1999). Results have indicated that the topography of mountainous areas plays a decisive role in 

the determination of the homogenous rainfall regions in Vietnam. 
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Table 4-1. Percentage of variances explained by each component computed for monthly amount 

of rainfall 

Principal 

Component 

% of 

variance 

Cumulative 

variance (%) 

1 52.26 52.26 

2 18.31 70.58 

3 7.57 78.14 

4 2.55 80.69 

5 1.62 82.31 

6 1.19 83.49 

7 0.81 84.30 
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Figure 4-3. Seven homogeneous regions of Vietnam: (a) - Proposed method using PCA vs (b) - 

according to Vietnam meteorology department 

For this study, the PCA works well for the rainfall data of Vietnam in monthly time scale. 

However, this approach is considered to be sensitive with the time scale. Hence, when apply with 

different time scales, i.e., daily or weekly, the number of homogeneous groups obtained are not 

the same as the number obtained for the monthly time scale as shown in Table 4- 2. This is the 

disadvantage of PCA; therefore, it is recommended to apply PCA with some caution. Further 

works will be studied to minimize this sensitivity.  

(a) (b)
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Table 4- 2. Number of regions by different time scale 

Time scale No. of regions 

Daily 19 

Weekly 12 

Monthly 7 

Once homogenous regions of rainfall obtained, the proposed 2-stage interpolation method 

is applied to generate daily rainfall series at ungauged sites based on daily rainfall data of stations 

within the same homogenous region. Results are presented in the following section. 

4.4.2 Estimation of precipitation series at an ungauged site 

For this study, Region 4 - belongs to North central coast and marked as red stars in Figure 

4-3(a) - has been selected for generating precipitation at ungauged sites. This region 4 has been

selected due to high quality and uniform of rainfall data including 23 stations with 32 years of 

record. It is also because of the complexity of rainfall in this region: include stations with the most 

extreme values in the country. The information and the summary of basic statistics of 23 stations 

in Region 4 are presented in Table 4-3.  

Table 4-3. Statistics of stations of Region 4 

No. 
Station 

Code 
Lon Lat 

Daily mean 

(mm) 

Daily

AMS 

Daily 

Max 

No. rain 

day (%) 

Total Annual 

(mm) 

1 146 105.34 19.38 4.14 181.8 376.7 38.0 1544.5 
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No. 
Station 

Code 
Lon Lat 

Daily mean 

(mm) 

Daily

AMS 

Daily 

Max 

No. rain 

day (%) 

Total Annual 

(mm) 

2 150 105.47 19.45 4.60 174.5 388.5 37.5 1718.2 

3 151 105.47 19.27 4.27 159.2 560.7 36.3 1612.1 

4 153 105.40 19.59 3.97 120.4 314.7 39.2 1463.0 

5 155 104.53 19.03 4.21 136.5 449.5 41.8 1556.4 

6 156 105.18 18.54 4.37 175.9 788.4 40.4 1638.6 

7 158 105.46 18.48 4.87 208.3 362.0 35.6 1822.2 

8 160 105.07 19.34 4.43 129.4 304.1 38.1 1591.3 

9 161 105.09 19.19 4.29 123.0 272.4 38.0 1592.6 

10 162 105.38 19.10 4.05 161.8 710.1 34.2 1503.8 

11 163 105.24 19.19 3.84 141.1 279.5 36.5 1496.5 

12 164 104.26 19.17 3.36 101.2 192.0 35.3 1259.5 

13 165 105.40 18.40 5.31 215.1 596.7 40.8 1959.0 

14 166 105.54 18.21 7.45 266.1 657.2 43.7 2716.3 

15 167 105.43 18.11 6.04 245.0 492.6 48.1 2214.4 

16 168 105.26 18.31 5.70 164.5 518.8 47.6 2104.0 

17 169 106.17 18.05 7.89 280.7 519.1 43.5 2876.9 

18 170 106.25 17.45 5.58 229.0 413.7 38.8 1997.2 

19 172 106.37 17.29 5.95 248.1 554.6 40.0 2204.4 



65 

No. 
Station 

Code 
Lon Lat 

Daily mean 

(mm) 

Daily

AMS 

Daily 

Max 

No. rain 

day (%) 

Total Annual 

(mm) 

20 175 106.01 17.53 6.07 217.2 548.4 45.0 2224.2 

21 176 107.20 17.10 5.75 194.0 727.5 39.2 2123.3 

22 177 107.05 16.51 6.04 248.7 447.5 43.0 2200.4 

23 178 106.44 16.38 5.24 181.6 368.1 50.9 1947.6 

Daily rainfall series for all stations in Region 4 were generated using the proposed 2-stage 

interpolation method. The jackknife technique was used to represent the ungauged site condition 

for 23 selected sites in Region 4. Basic statistics indices (listed in Table 4-4) have been performed 

to assess the computed rainfall series, details are presented in Figure 4-4 to Figure 4-8 and Table 

4-5 to Table 4-7. Results showed that estimated data are very close to the observed data.

Table 4-4. Statistics indices 

No. Indices Definition Unit 

1 AP Annual precipitation mm 

2 AMS Daily annual maximum precipitation mm/day 

3 WD Percentage of wet day % 

4 SDII Mean precipitation amount at wet days mm 

5 CDD Maximum number of consecutive days days 

6 Prec90pc 90th percentile of rain day amount mm 
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It can be seen that there is insignificant difference between estimated and observed data in 

terms of annual rainfall amount, percentage of wet day and AMS rainfall. In terms of annual 

rainfall amount, generated data are similar to observed data at almost station except station 12 and 

17 as presented in Figure 4-4.  Similar results for percentage of wet day at all station except station 

5, 16, 17 and 20 are showed in Figure 4-5. Figure 4-6 showed that generated data of daily AMS 

are lower than observed data at all stations. GEV distribution was used to fit daily annual 

precipitation of both generated and observed data for all stations, then quantiles different return 

periods T = 2, 5, 10, 20, 50 and 100 years were calculated and plotted in Figure 4-7. It displayed 

that the difference of generated and observed data are mainly at extreme values. Note that 

comparison results were based generated data, no bias correction was applied for this study. 

Figure 4-4. Annual precipitation of observed (Blue) and generated (Red) data for all 23 stations. 

Each boxplot is conducted from data of the station for entire record length 
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Figure 4-5. Percentage of wet day of observed (Blue) and generated (Red) data for all 23 

stations. Each boxplot is conducted from data of the station for entire record length 

Figure 4-6. Daily AMS precipitation of observed (Blue) and generated (Red) data for all 23 

stations. Each boxplot is conducted from data of the station for entire record length 
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Figure 4-7. Q-Q plot of annual precipitation with return periods T = 2, 5, 10, 20, 50 and 100 years 

Figure 4-8 compared results of daily mean precipitation and percentage of wet day of all 

stations by months. It is found that generated data were very close to observed data. High daily 

intensity of rainfall as well as numbers of rainy days were from August to November.   

(a) (b)
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Figure 4-8. Boxplots of daily mean precipitation (a) and percentage of wet day (b) for 12 months 

(Blue: observed data - Red: generated data). Each boxplot is conducted from data of the month 

for all stations 

 Table 4-5 to Table 4-7 compares generated and observed data in terms of mean 

precipitation amount at wet days (SDII), maximum number of consecutive dry days (CDD), and 

90th percentile of rain day amount (Prec90p) by season time scale for all ungauged sites. For this 

study, Spring is defined from January to March, Summer is from April to June, Fall is from July 

to September and Winter is from October to December. Highest rainfall intensity at wet days were 

found in Winter and Spring, which are almost double values in Summer and Fall (Table 4-5). The 

maximum observed value of 30.1 mm/day and generated values 27.9 mm/day were found in 

Winter while minimum observed value of 9.4 mm/day and generated value of 10.5 mm/day was 

in Summer. In contrast, longest period of time with no rainfall was found in Summer with longest 

observed period of 41.2 days and generated period of 40.3 days while shortest period was in Spring 

with shortest observed period of 13.3 days and generated period of 14.0 days (Table 4-6). 

Threshold is defined 1mm to be considered as rainy day. CDD values were decimal because they 

were averaged all year of record length for a station. Similar to SDII, highest values of Prec90p 

were in Winter while smallest values were in Summer (Table 4-7). It was found that there is 

insignificant difference between estimated and observed data for all indices. Hence, it has been 

demonstrated that the proposed method is feasible and the estimated daily precipitation series 

are reliable.  
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Table 4-5. Mean precipitation amount at wet days 

SDII (mm): mean precipitation amount at wet days 

Station 
Spring Summer Fall Winter 

Obs Gen Obs Gen Obs Gen Obs Gen 

S1 19.2 20.1 10.1 11.4 12.3 14.4 21.6 22.9 

S2 18.2 19.7 10.1 11.3 14.7 13.4 22.2 22.5 

S3 21.1 20.3 11.0 11.6 13.0 14.2 23.0 22.9 

S4 15.2 20.0 10.6 11.1 12.4 14.2 19.5 22.6 

S5 16.0 19.4 9.4 13.1 12.6 13.9 19.2 20.5 

S6 19.7 23.0 10.0 12.6 12.5 15.0 21.3 25.5 

S7 24.6 23.2 11.6 11.8 13.8 14.1 26.6 25.1 

S8 15.1 18.5 10.4 11.1 12.9 13.9 18.8 21.8 

S9 15.2 19.4 9.6 11.7 13.1 14.7 19.2 22.0 

S10 20.8 21.2 10.6 12.2 13.1 14.5 22.2 23.0 

S11 17.9 20.0 10.0 11.6 13.5 14.1 21.0 22.4 

S12 14.1 17.7 10.2 10.5 11.7 12.8 14.7 20.4 

S13 23.8 24.0 11.3 12.3 13.7 14.6 25.4 25.7 

S14 27.4 22.0 16.2 12.7 16.2 14.9 30.1 24.0 

S15 20.5 24.7 12.7 13.9 14.2 15.5 22.4 27.9 
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SDII (mm): mean precipitation amount at wet days 

Station 
Spring Summer Fall Winter 

Obs Gen Obs Gen Obs Gen Obs Gen 

S16 19.2 23.9 10.9 12.7 13.1 14.7 20.9 26.0 

S17 27.0 23.7 16.4 14.5 15.8 16.1 28.4 27.4 

S18 22.0 22.8 14.0 13.9 12.6 14.9 24.6 26.3 

S19 22.4 22.5 13.9 14.1 13.5 13.6 25.4 25.1 

S20 20.9 23.7 12.8 15.3 15.1 14.6 23.9 26.5 

S21 20.9 22.6 14.8 16.2 17.1 15.5 25.8 26.1 

S22 20.5 19.3 16.2 14.5 12.5 14.3 23.5 20.8 

S23 15.5 20.6 11.4 15.3 12.4 13.3 16.6 23.5 

Table 4-6. Maximum number of consecutive dry days 

CDD (days): maximum number of consecutive dry days 

Station 
Spring Summer Fall Winter 

Obs Gen Obs Gen Obs Gen Obs Gen 

S1 22.3 24.3 26.7 27.1 19.6 23.5 18.8 18.9 

S2 21.8 25.1 23.9 27.3 20.0 19.6 15.6 18.9 

S3 20.8 25.4 20.6 29.1 20.1 23.1 16.9 18.2 

S4 24.6 23.7 28.5 25.4 23.1 21.1 14.9 17.3 

S5 17.8 27.0 19.3 40.3 16.7 30.9 14.4 18.8 
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CDD (days): maximum number of consecutive dry days 

Station 
Spring Summer Fall Winter 

Obs Gen Obs Gen Obs Gen Obs Gen 

S6 17.7 17.7 17.9 17.1 17.6 22.5 15.3 18.7 

S7 19.2 15.1 18.8 16.3 24.0 19.9 19.6 17.2 

S8 26.1 25.1 34.3 28.2 26.8 23.5 15.5 18.0 

S9 22.3 26.0 26.7 32.2 20.4 25.8 14.9 21.2 

S10 28.7 25.0 29.4 28.9 25.9 22.8 18.0 19.5 

S11 24.4 26.3 28.9 29.6 22.6 22.6 20.9 18.4 

S12 27.8 18.0 41.2 21.0 28.6 16.9 17.5 14.7 

S13 15.1 19.2 16.3 18.8 19.9 24.0 17.2 19.6 

S14 13.5 15.3 14.1 15.9 18.9 17.7 18.5 15.5 

S15 14.0 14.7 14.3 14.7 16.4 19.7 11.9 20.1 

S16 13.3 16.4 15.2 16.7 16.1 21.3 13.6 18.0 

S17 14.5 16.7 14.8 19.9 18.2 24.3 19.4 22.6 

S18 16.5 14.6 19.6 19.8 21.3 24.1 21.1 21.1 

S19 14.6 16.5 19.0 19.6 22.7 21.3 20.6 21.1 

S20 13.4 16.9 17.8 20.6 20.1 22.7 15.3 21.1 

S21 15.6 15.9 20.3 25.5 29.7 27.6 27.3 22.6 

S22 14.0 16.2 21.3 29.6 22.3 24.2 19.3 15.5 



73 

CDD (days): maximum number of consecutive dry days 

Station 
Spring Summer Fall Winter 

Obs Gen Obs Gen Obs Gen Obs Gen 

S23 15.8 14.0 32.0 21.3 25.6 22.3 12.7 19.3 

Table 4-7. 90th percentile of rain day amount 

PREC90P (mm): 90th percentile of rain day amount 

Station 
Spring Summer Fall Winter 

Obs Gen Obs Gen Obs Gen Obs Gen 

S1 60.9 59.2 32.3 35.7 34.9 36.7 64.8 57.7 

S2 62.0 58.2 37.4 33.8 41.3 35.0 64.5 57.1 

S3 63.5 60.0 36.2 34.6 41.7 35.5 68.5 58.1 

S4 52.0 60.0 37.4 34.9 36.7 36.4 56.9 59.0 

S5 48.9 52.4 25.8 35.4 33.8 32.6 53.1 47.6 

S6 60.6 58.8 29.9 32.3 35.4 37.9 59.5 69.1 

S7 69.6 64.9 35.8 31.6 44.7 41.0 81.7 72.9 

S8 50.9 55.6 30.5 33.1 35.2 33.6 54.2 55.0 

S9 51.0 56.4 31.8 34.5 36.3 33.7 54.2 55.8 

S10 65.2 59.8 36.9 36.8 44.2 35.2 66.1 58.5 

S11 59.0 57.2 36.3 33.3 39.9 34.5 63.5 57.0 

S12 45.3 47.5 32.3 27.7 32.2 31.4 39.8 51.7 
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PREC90P (mm): 90th percentile of rain day amount 

Station 
Spring Summer Fall Winter 

Obs Gen Obs Gen Obs Gen Obs Gen 

S13 71.2 63.0 31.3 34.3 44.0 41.3 77.4 75.3 

S14 82.0 60.1 48.7 32.7 50.7 39.4 96.3 68.5 

S15 65.5 69.4 38.0 38.6 38.2 44.9 70.2 83.9 

S16 55.7 63.3 31.4 33.7 35.6 40.9 62.2 74.1 

S17 80.1 58.6 45.5 35.2 48.2 42.4 81.0 71.3 

S18 68.5 63.6 39.5 38.2 39.7 44.7 74.9 75.6 

S19 65.8 66.0 41.7 38.0 43.1 40.9 81.7 71.3 

S20 57.9 67.8 35.6 40.1 49.4 42.1 69.2 72.4 

S21 61.8 56.6 41.3 41.4 62.7 40.8 78.3 68.3 

S22 58.5 50.7 47.7 38.5 39.1 38.3 68.8 53.6 

S23 48.4 54.6 34.4 42.0 35.7 37.9 42.4 64.2 

To assess the important role of the identification of homogenous precipitation regions in 

the proposed method for estimating missing daily rainfall series, three stations S21-S22-S23 

located in Region 4 have been selected for testing. They are considered as in difference groups as 

presented in Table 4-8. After that, the same estimation approach to generate daily rainfall series 

for those 3 stations was used considering these stations as located in different regions as shown in 

Table 4-8. The percentage of wet days and the annual precipitation for all scenarios were compared 
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to the observed data to see the uncertainty given by different region scenarios. Results of this 

uncertainty are presented in Figure 4-9.    

Table 4-8. Scenarios of regions 

No. Scenarios No. Scenarios 

1 Observed data 4 Region 4+5 

2 Region 4 5 Region 2 

3 Region 5 6 Region 7 

(a) (b) 

Figure 4-9. Compare percentage of Wet day (a) and Annual precipitation (b) of 3 stations with 

scenarios 

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
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 It can be seen that the best estimations obtained when these stations are belongs to Region 

4 although it can be seen visually that stations 21 to 23 are very close to Region 5. Homogenous 

regions are divided based on the same rainfall characteristics, precipitation of stations in the same 

region are therefore similar. It can be concluded that the determination of homogenous regions is 

crucial for the proposed method in the estimation of missing daily rainfall data at an ungauged site. 

4.5 Conclusions  

 The estimation of missing daily precipitation series for ungauged sites based on the daily 

rainfall data of neighboring stations is essential for Vietnam region. The estimated data are useful 

for various applications in practice such as the construction of IDF relations for design and planning 

of urban infrastructures for regions where the sub-daily rainfall data are limited or unavailable.  

 It was found that Vietnam can be divided into 7 sub-regions in terms of meteorology based 

on PCA of daily series rainfall data from 155 stations across the country. The PCA works well for 

the estimation of missing daily rainfall data in Vietnam based on the identification of homogeneous 

regions using data for monthly time scale. However, this approach is considered to be sensitive 

with the time scale. Hence, it is recommended to apply this approach with some caution.   

 The two-stage daily rainfall interpolation can be used to estimate daily rainfall data for 

ungauged sites using rainfall information available at the neighboring stations located within the 

same homogeneous region. The proposed estimation method can provide good estimates of annual 

rainfall amounts and the number of rain days; however, there is still some limitation in the 

estimation of extreme values.  
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Chapter 5: Evaluation of the reliability of present and 

future NASA Earth Exchange Global Daily 

Downscaled Projections (NEX-GDDP) regional 

climate simulations over Canada 

 

5.1 Introduction 

 Global warming is currently a critical issue that every nation has to deal with. It has been 

recognized that the global climate has significantly changed over past 100 years (IPCC, 2014). 

These changes might have serious impacts on various hydrologic processes (Miller et al., 2003; 

Whitfield et al., 2003; Ryu et al., 2011; Assani et al., 2012). To understand and predict the climate 

change, past trends as well as the projections of future climates for different scenarios have been 

conducted in many studies (Besaw et al., 2010; Candela et al., 2012; Yeo and Nguyen, 2014; 

Nguyen et al., 2018). General Circulation Models (GCMs) have been commonly used for 

evaluating the effects of climate change on the hydrological regime under different scenarios of 

greenhouse gas emissions. While these GCMs could represent well the main features of the global 

distribution of basic climate parameters (Randall et al., 2007), they still cannot reproduce 

accurately the details of regional climate conditions at temporal and spatial scales of relevance to 

hydrological impacts and adaptation studies (Nguyen et al., 2006; Maraun, 2016). This is because 
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outputs from these GCMs are usually at resolutions that are too coarse for many climate change 

impact studies, generally greater than 2.5o for both latitude and longitude (approximately 250 km). 

To refine the GCM coarse grid resolution climate projection data to much finer spatial 

resolutions (regional or local scales) for the reliable assessment of climate change impacts, 

different downscaling techniques have been approached to resolve this scale discrepancy (Wilby 

et al., 2002; Fowler et al., 2007; Nguyen and Nguyen, 2008; Maraun et al., 2010; Khalili and 

Nguyen, 2016; Gooré Bi et al., 2017). It can be divided into two main categories: statistical 

downscaling (SD) and dynamical downscaling (DD). Some downscaled regional gridded datasets 

can be showed in below Table 5-1. In terms of SD, two commonly-used datasets are: the Pacific 

Climate Impacts Consortium (PCIC) and the National Aeronautics Space Administration (NASA) 

Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) (Thrasher et al., 2012; 

Werner et al., 2019). In terms of DD, coordinated dynamical downscaling comparisons have been 

undertaken as part of the North American Regional Climate Change Assessment Program (Mearns 

et al., 2014) and the North America Coordinated Regional Downscaling Experiment (Mearns et 

al., 2017). For CORDEX, simulations were run at resolutions of approximately 25 km and 50 km. 

Table 5-1. Summaries of available precipitation gridded datasets/reanalysis products 

Downscaling 
method 

Dataset Grid Year 
available 

Duration 

Dynamic 
Downscaling 

NARCCAP 50km 2014 
1971-2000 
2041-2070 

NA-CORDEX 25-50km 2017 1950-2100 

Statistical 
downscaling PCIC 1/12 degree 

(~10x10km) 2019 1950-2100 
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Downscaling 
method 

Dataset Grid Year 
available 

Duration 

NEX-GDDP 1/4 degree 
(~25x25km) 2012 1950-2100 

(*NARCCAP: The North American Regional Climate Change Assessment Program; CORDEX: 

the Coordinated Regional Downscaling Experiment;  PCIC: The Pacific Climate Impacts 

Consortium; NEX-GDDP: NASA Earth Exchange Global Daily Downscaled Projections) 

Recent studies have been conducted to analyse daily extremes of precipitation at the global 

scale for both historical observed and gridded downscaled data. Alexander and his colleagues 

found an increase trend of daily maximum and annual precipitation from more than 600 stations 

covering the Northern Hemisphere and parts of Australia during the 20th century (Alexander et al., 

2006). At the global scale, approximately two-thirds of a global dataset of more than 8000 

historical stations with the period of record from 1900 to 2009 indicated an increase trend of daily 

precipitation (Westra et al., 2013). In terms of analysis of downscaled datasets, Kharin and Zwiers 

(2000) found a positive trend of daily annual maximum precipitation at majority on the globe in 

the 20th century using data of the first generation Canadian Global Coupled Model (CGCM1). Min 

and his colleagues (2008) showed a similar result of precipitation trend using ECHO-G model and 

the third generation Canadian Global Coupled Model (CGCM3).   

For Canada region, several studies of precipitation trends have been conducted; however, 

these studies were interested in total annual precipitation. For instance, Mekis and Vincent (2011) 

proves an annual rainfall increase of around 12.5% for the period of 1950 - 2009. Some other 

researchers also indicated the similar positive trend across Canada in terms of annual precipitation 

during the late 20th and early 21st centuries (Zhang et al., 2000; Zhang et al., 2011; Thistle and 

Caissie, 2013; Mekis et al., 2018; Vincent et al., 2018). While many water management 
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applications (i.e., design of urban storm drainage systems, flood management and infrastructure 

operations) require extreme rainfall information in forms of rainfall intensity-duration-frequency 

(IDF). In order to construct the IDF curves, annual maximum rainfall series (AMS) of different 

rainfall durations from a few minutes to days are obtained. However, short-duration extreme 

rainfall data are very limited or even unavailable for a given location of interest while the daily 

extreme rainfall records are often available. For instance, Environment Canada provides short-

duration extreme rainfall data of nine rainfall durations (from 5 minutes to 24 hours) and IDF 

relations for approximately 600 stations across Canada (Environment Canada, 2020) whereas the 

total rain-gauged stations from Environment Canada and their partners is more than 1700 stations 

(Mekis et al., 2018).  

To deal with locations of interest where sub-daily and/or sub-hourly data are limited or 

unavailable, a scaling method to infer the sub-daily and/or sub-hourly extreme from daily extreme 

rainfalls has been proposed by Nguyen and his group (Nguyen et al., 2007; Nguyen et al., 2018; 

Nguyen and Nguyen, 2020). This proposed technique can also be applied for locations where daily 

precipitation observations are unavailable (ungauged sites) using downscaled regional gridded 

data. There is no doubt that it could bring many benefits to engineering practices in terms of design 

and management. It is likely, however, IDF relations obtained from this method are relied on 

variability of extreme rainfalls. This study aims therefore at performing a trend analysis of daily 

annual maximum precipitation using historical observed data and downscaled regional gridded 

data for the present and future climates over Canada. 
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5.2 Data  

5.2.1. Historical observed data 

 The observation datasets were initially considered for this study: historical data and 

ANUSPLIN. Historical data are available from Environment Canada's website with the period of 

record from 1840 to present (Environment Canada, 2020). ANUSPLIN is a gridded observation 

dataset based on non-parametric fitting technique (Hutchinson et al., 2009). Hutchinson (2009) 

found daily precipitation for Canada region of ANUSPLIN produce a large error. It is therefore 

this study only considers the historical data from Environment Canada. 

 Among approximately 600 stations across Canada (Mekis et al., 2018), 175 stations with 

the record length of more than 30 years and passed the trend detection test were selected for this 

study. The high density of stations is located in the southern Ontario. The observed stations are 

quite limited in the Northern part of Canada. Listing from the West to the East coast, and from the 

North to South, there are 03 stations from Yukon (YT), 05 stations from Northwest Territories 

(NT), 37 stations from British Columbia (BC), 16 stations from Alberta (AB), 07 stations from 

Saskatchewan (SK), 13 stations from Manitoba (MB), 50 stations from Ontario (ON), 25 stations 

from Quebec (QC), 05 stations from New Brunswick (NB), 05 stations from Nova Scotia (NS), 

02 stations from Prince Edward Island (PE) and 07 stations from Newfoundland and Labrador 

provinces. The location of selected stations is presented in Figure 5-1, more detailed information 

of these stations can be found in Appendix.  
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Figure 5-1. Selected stations over Canada 

These stations were selected based on the high quality, the adequate length of available 

historical records, and the representative spatial distribution of the rain-gauges. To ensure the high 

quality of selected data, only historical observed data provided by the Atmospheric Environmental 

Service of Environment Canada were employed for this study. Every selected station must be more 

than 30 years of record and pass the Mann–Kendall test for trend detection. In addition, the 

raingauges were chosen from different geography locations to partially represent the diverse 

climatic conditions of Canada. 
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5.2.2. Downscaled regional gridded data 

 Due to the limitation of scope and access, only NASA Earth Exchange Global Daily 

Downscaled Projections (NEX-GDDP) data is analyzed. NEX-GDDP is a daily downscaled 

dataset (~ 25kmx25km resolution) released in June 2012 by NASA. This dataset was generated 

from 21 General Circulation Models (GCMs - shown in Table 5-2) runs conducted under the 

Coupled Model Intercomparison Project Phase 5 (CMIP5) and across two of the four greenhouse 

gas emissions scenarios known as Representative Concentration Pathways (RCP4.5 and RCP8.5) 

based on the bias-correction spatial disaggregation downscaling technique (Thrasher et al., 2012). 

The climate projections include daily maximum temperature, minimum temperature, and 

precipitation for the historical periods of 1950-2005 and the future period of 2006-2100. Canada 

is having actions on climate change and projected to archive low emissions level by mid of 21st 

century (Canada, 2016), it is therefore this study selects projected results of the Representative 

Concentration Pathway 4.5. 

Table 5-2. Information about the 21 Coupled Model Intercomparison Project 5 (CMIP5) general 

circulation models (GCMs) 

Number Model Country and institution 

1 ACCESS1-0 
Commonwealth Scientific and Industrial Research 

Organization and Bureau of Meteorology, Australia  

2 BCC-CMS1-1 Beijing Climate Center, China  

3 BNU-ESM 
Institute of global change and Earth System Sciences, 

Beijing Normal University, China 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Number Model Country and institution 

4 CanESM2 
Canadian Centre for Climate Modeling and Analysis, 

Canada  

5 CCSM4 National Center for Atmospheric Research, America 

6 CESM1-BGC National Center for Atmospheric Research, America 

7 
CNRM-CM5 

Centre National de Recherches Meteorologiques, Centre 

Europeen de Recherche et Formation Avancees en Calcul 

Scientifique, France  

8 CSIRO-Mk3-6-0 

Commonwealth Scientific and Industrial 

Research Organization/Queensland Climate Change 

Centre of Excellence, Australia  

9 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, America 

10 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, America 

11 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, America 

12 inmcm4 Institute of Numerical Calculation, Russia 

13 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 

14 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 

15 MIROC5 Atmosphere and Ocean Research Institute, Japan 

16 MIROC-ESM Atmosphere and Ocean Research Institute, Japan 
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Number Model Country and institution 

17 MIROC-ESM-CHEM  Atmosphere and Ocean Research Institute, Japan  

18 MPI-ESM-LR  Max Planck Institute for Meteorology, Germany  

19 MPI-ESM-MR  Max Planck Institute for Meteorology, Germany  

20 MRI-CGCM3  Max Planck Institute for Meteorology, Germany  

21 NorESM1-M  Norway Consumer Council, Norway 

5.3 Methodology 

5.3.1. Mann-Kendall test 

 The results in this paper are based on a popular statistical method for testing whether time 

series data - the Mann–Kendall nonparametric trend - to evaluate whether there is a monotonic 

trend in the series. The advantage of this test is that it does not make any assumptions on the 

distribution of the data, other than that under the null hypothesis, the data are independently 

distributed in time. 

 The Mann–Kendall test is a commonly used non-parametric test for evaluating the 

presence of monotonic trends in time series data (Chandler and Scott, 2011). The test has been 

applied in analyzing trends of rainfall extremes data (Westra et al., 2013). In this study, the 

Mann–Kendall analysis was conducted at the significant level of 5% using the MATLAB 

software (version 2020a).  
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5.3.2. Sen's method 

 Sen's method has been commonly used to estimate trends in climate series thanks to its 

reliability by minimizing sensitivity of outliers in the series in comparison with conventional least-

squares methods (Zhang et al., 2000; Fernandes and G. Leblanc, 2005; Zhang et al., 2011).   

Slope and intercept were computed according to Sen's method (Sen, 1968) as follow: 

𝑚𝑚𝐴𝐴 =
𝑅𝑅𝑗𝑗 − 𝑅𝑅𝑖𝑖
𝑗𝑗 − 𝑐𝑐

 

for (1≤ 𝑐𝑐 < 𝑗𝑗 ≤ 𝑚𝑚) where m is the slope, R denotes the variable, n the number of data, and i, j are 

indices. The median from all slope s then is calculated: s = Median (𝑚𝑚𝐴𝐴).  

 Trend of precipitation were exanimated for two time period: historical period 1950-2005 

and projected period 2006 - 2100 for all stations. To maintain the consistence and accuracy, the 

trends of NEX-GDDP historical data were computed using the same duration of historical 

observed data given by Environment Canada.  

5.4 Results and discussions 

 The slopes of 175 historical gauged stations across Canada given by Environment Canada 

are showed in Figure 5-2. The number of stations for each province by different change intervals 

of slopes for 175 gauged stations is presented in Table 5-3. According to historical observed data, 

the number of stations with increase trends is slightly higher than ones with decrease trend (around 

55% vs 45%). The highest decrease trend of 40% is Elora_rcs (ON) while the highest increase 

trend of 50% is at Summerside station (PE). It can be seen that most of Northern and Eastern 
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provinces have increase trends while trends of stations located in ON, MB and BC are quite 

complicated. SK is the only province that the majority of stations have decrease trend. 

 

Figure 5-2. Change of slope - Historical observed data. Red triangles: stations with decrease 

trend, blue triangles: stations with increase trend 
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Table 5-3. Trend statistics of historical observed data 

No. 
Province 

Code 

Count of stations by Slope change (%) 

-[40 30) -[30 20) -[20 10) -[10 0) [0 10) [10 20) [20 30) [30 40) [40 50] 

1 NL 0 0 0 0 0 1 0 5 1 

2 PE 0 0 0 0 0 0 0 0 2 

3 NS 0 0 0 0 1 3 0 1 0 

4 NB 0 1 0 1 1 1 0 1 0 

5 QC 0 0 0 1 0 12 10 2 0 

6 ON 1 8 13 9 14 4 1 0 0 

7 MB 0 1 4 1 4 3 0 0 0 

8 SK 2 1 3 0 1 0 0 0 0 

9 AB 0 0 0 3 11 2 0 0 0 

10 BC 3 1 15 6 9 2 0 1 0 

11 NT 0 0 2 1 2 0 0 0 0 

12 YT 0 0 0 3 0 0 0 0 0 

  Total 6 12 37 25 43 28 11 10 3 
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 Trend analyses of NEX-GDDP historical data were conducted based on the dataset over 

175 grid boxes (called station hereafter) over Canada that historical observed data are available. 

The slopes of NEX-GDDP dataset for historical period is illustrated in Figure 5-3 and summarized 

in Table 5-4. It showed that the trends ranging from -10% to + 20%, only one station has the 

decrease trend of 10.3% at Sparwood station in BC and two stations have increase trends of over 

20% (Medicine_hat_rcs station and Nanaimo airport station in BC with 21.8% and 24%, 

respectively). It can be seen that more than 80% stations have increase trends. AB is the only 

province that has more station with decrease trends than ones with increase trends. Note that the 

value of slopes presented in Table 5-4 are the median from 21 GCMs for a single station. Detailed 

performance of all GCMs is showed in Figure 5-4.  

 

Figure 5-3. Change of slope - Historical NEX-GDDP data. Each value is the median from 21 
GCMs. Red triangle: stations with decrease trend, blue triangle: stations with increase trend 
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Table 5-4. Trend statistics of NEX-GDDP historical period 

No. 
Province 

code 

Count of stations by Slope change (%) 

-[30 - 20) -[10 - 0) [0 - 10) [10 - 20) [20 - 30] 

1 NL 0 1 5 1 0 

2 PE 0 0 2 0 0 

3 NS 0 0 4 1 0 

4 NB 0 0 3 2 0 

5 QC 0 5 19 1 0 

6 ON 0 6 41 3 0 

7 MB 0 1 12 0 0 

8 SK 0 3 4 0 0 

9 AB 0 10 6 0 0 

10 BC 1 3 22 9 2 

11 NT 0 1 4 0 0 

12 YT 0 0 3 0 0 

  Total 1 30 125 17 2 
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 The boxplot (a) of Figure 5-4 presents slopes of historical NEX-GDDP data (blue) in 

comparison with slopes of historical observed data (red) for all 175 stations. Each station is 

illustrated by one boxplot that constructed from 21 values of 21 GCMs. Root mean square error 

(RMSE) of 21 GCMs for each station was calculated and plotted in Figure 5-4 (b), and the average 

of RMSEs for each province is presented in Figure 5-4 (c). The RMSE is given as below: 

𝑅𝑅𝐺𝐺𝑆𝑆𝐸𝐸 = �1
𝑁𝑁
�(𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜 − 𝑆𝑆𝑂𝑂𝑜𝑜𝑜𝑜𝑒𝑒𝑝𝑝𝑂𝑂𝑒𝑒𝑚𝑚)2 

where S indicates the slopes of stations and N is the number of sample size. It could be seen from 

Figure 5-4 that NEX-GDDP data for BC have widespread slopes from 21 GCMs and average 

RMSEs of all stations in this province is also highest. It could be explained that downscaling 

models are limited to capture complex topography of mountainous areas in BC, driving less 

accurate results for this area.  

 

 

 

 

 



 92 

 

 

(b) 

No Provinces RMSE 

1 NL-PE 34.33 

2 NS-NB 23.78 

3 QC 23.70 

4 ON 20.87 

5 MB 17.04 

6 SK 24.00 

7 AB 14.94 

8 BC 35.58 

9 NT-YT 12.79 
 

(a) (c) 

Figure 5-4. (a) AMS precipitation boxplot for historical period for 175 stations - boxplot (Blue) 

contains 21 values of 21 GCMs, each value is the average of historical period. Red points are 

observed data, each point is the average of record period; (b): Boxplot 

NL 
NS 

QC 

ON 

SK 

MB 

AB 

BC 

NT 

NB 
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 To assess the performance of 21 GCMs in NEX-GDDP data, a ranking score has been 

conducted based on the mean (MEAN) and the standard deviation (STD). Steps of calculation 

are: (i) compute the MEAN and STD all stations (historical observed and 21GCMs of historical 

NEX-GDDP data) over period of time; (ii) calculate the absolute bias of 21 GCMs and observe 

data for both the MEAN and STD; (iii) for each station: ranking each GCM according to the bias 

values calculated in previous step, a rank of 1 (the best model) is given to the GCM having 

smallest bias, apply for both the MEAN and STD; (iv) count the number of stations for each 

ranking from 1 to 21 for all GCMs; (v) ranking score for each GCM: sum of rank of that GCM 

for 175 stations, apply for both the MEAN and STD; (vi) ranking GCMs: lower ranking score, 

better model. Each cell in Table 5-5 shows the total number of stations each ranking for 21 

GCMs by the MEAN and STD (upper number: count by MEAN ranking and lower number: 

count by STD ranking). For instance, GCM "bcc-csm1-1" is ranked 1 at 6 stations in terms of 

the MEAN and 63 stations in terms of STD.  

 According to the Table 5-6, it can be seen that the second-generation Canadian Earth 

System Model (CanESM2) performs the best among 21 GCMs over Canada with rank 2nd in terms 

of the MEAN and 1st in terms of the STD. In particular, the GCM "CanESM2" is ranked 1 to 4 at 

more than 65% of stations and ranked 1 to 3 at more than 75% of stations. Beside "CanESM2", 

two models from China ("bcc-csm1-1", "BNU-ESM") and two models from Japan ("MIROC-

ESM", "MIROC-ESM-CHEM") are also considered well performing over Canada region. GCMs 

"CESM1-BGC", "MIROC5" and "MRI-CGCM3" are considered as worst models over Canada for 

this study. However, it can be seen that there are high uncertainties from results of total 21 GCMs 

that unable to estimated and also require an in-depth evaluation of the performance of these all 

GCMs, it is recommended to use the median of all GCMs for calculation.  
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Table 5-5. Count of stations ranking by GCMs in terms of MEAN (upper number) and STD 

(lower number) of AMS NEX-GDDP historical data 

              Rank 

GCM 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

bcc-csm1-1 6  

 63 

27  

 11 

25   

52 

21  

2 

25   

2 

18  

 0 

9   

0 

7  

 1 

5   

3 

5   

2 

1  

 0 

1  

 2 

2  

 1 

2  

 0 

2  

 0 

3  

 2 

5   

1 

4   

1 

2   

9 

4   

10 

1   

13 

BNU-ESM 7   

32 

14  

 62 

17   

38 

14  

 1 

24  

 0 

33   

1 

14  

 0 

12  

 2 

3  

 1 

6  

 0 

2  

 0 

6   

1 

2  

 0 

0  

 0 

5   

0 

4  

 3 

3   

2 

2  

 1 

2 

  4 

2   

16 

3  

 11 

CanESM2 30  

 42 

30  

 60 

24   

32 

29   

1 

14  

 2 

12  

 0 

6  

 1 

2  

 0 

2   

0 

0  

 0 

4   

2 

2   

0 

0  

 0 

2  

 0 

0  

 0 

2   

0 

1   

0 

2   

0 

4   

13 

6 

  9 

3   

13 

CCSM4 10   

2 

10  

 5 

7  

 10 

5   

37 

4   

9 

2   

4 

0   

3 

2   

5 

3   

3 

3  

 1 

1   

5 

2   

5 

2  

 9 

2   

4 

6   

8 

4  

 5 

10   

9 

17   

20 

25   

15 

32   

8 

28  

 8 

CESM1-BGC 12 

  30 

11   

5 

4   

5 

3  

 8 

3   

4 

3   

2 

3   

1 

0  

 1 

1   

0 

1   

1 

1   

2 

5   

2 

1   

3 

6   

0 

6  

 2 

7  

 3 

8  

 1 

13   

6 

23   

7 

30   

25 

34 

  67 

CSIRO-Mk3-

6-0 

0   

3 

0   

29 

0   

2 

0  

 3 

3   

7 

6   

4 

8  

 2 

8 

  3 

3 

  1 

9  

 2 

21   

2 

17   

2 

24   

0 

20  

 6 

18 

  2 

11  

 1 

7   

2 

9  

 3 

6   

19 

3   

62 

2 

  20 

GFDL-CM3 1  

 0 

0   

0 

1   

19 

3   

13 

2  

 7 

4   

6 

13   

10 

15 

  1 

19   

4 

18   

4 

30   

5 

20   

2 

15   

7 

12   

4 

6   

4 

2  

 7 

1   

5 

0  

 23 

3  

 42 

4  

 7 

6 

  5 

GFDL-

ESM2G 

2  

 0 

0  

 0 

4   

2 

1   

14 

7   

13 

14  

 9 

17   

4 

23 

  7 

22  

 10 

21   

7 

14   

4 

8  

 5 

15   

4 

7   

6 

4   

6 

7   

7 

3   

35 

2   

34 

2  

 5 

0  

 1 

2   

2 

GFDL-

ESM2M 

0  

 0 

2   

0 

0   

0 

0   

5 

4   

15 

12  

 17 

29  

 14 

26  

 11 

30   

9 

21  

 6 

14  

 4 

8   

6 

6   

8 

6   

6 

3   

14 

2   

29 

3   

16 

1  

 6 

3  

 5 

4 

  1 

1 

  3 

inmcm4 0   

0 

0  

 0 

0   

1 

3   

3 

3   

7 

1   

15 

5  

 17 

3  

 10 

4   

12 

8   

5 

6  

 3 

14  

 5 

18   

9 

13   

10 

19   

27 

23  

 24 

16   

8 

17  

 10 

14   

5 

5 

  1 

3 

 3 

IPSL-CM5A-

LR 

54   

0 

21  

 0 

16   

0 

21   

3 

16   

14 

11   

12 

3   

11 

2  

 12 

2   

7 

3   

9 

1   

13 

1   

8 

0   

13 

1   

28 

4   

12 

2   

12 

0  

 9 

4  

 3 

2   

4 

3 

  5 

8 

  0 

IPSL-CM5A-

MR 

0  0   1  1   3   4   9  22 24  27  18   13 9   5   13  10   8  3   2  1 2 
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              Rank 

GCM 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

 0 0  1 17 16 7  12   10  7  9 15   21 14 12  5 1  9 11  2  3  3 

MIROC5 2  

 1 

2   

0 

5  

 0 

8   

4 

3  

 3 

3  

 7 

0   

6 

3   

5 

3   

17 

1  

 16 

2   

21 

1   

15 

7   

25 

6   

16 

9   

11 

8   

8 

30  

 7 

24  

 4 

29  

 6 

18 

  3 

11 

  0 

NorESM1-M 0   

0 

0   

1 

0   

0 

3  

 4 

7  

 3 

12  

 5 

27  

 9 

19  

 9 

20  

 16 

21  

 25 

16   

31 

12 

  18 

6   

14 

7   

9 

3   

9 

5   

7 

4   

7 

3   

2 

3  

 2 

5   

2 

2 

 2 

ACCESS1-0 0   

0 

1   

0 

2   

4 

0   

4 

1  

 10 

1   

8 

3   

9 

5   

17 

10 

  17 

15 

  21 

9   

15 

21 

  20 

17   

8 

24   

16 

15   

5 

9   

8 

13   

5 

8   

1 

6  

 2 

11 

  3 

4  

 2 

CNRM-CM5 1   

1 

2   

0 

12  

 2 

2   

4 

2   

5 

2   

3 

8   

6 

5  

 13 

0   

19 

0  

 20 

3   

10 

5   

12 

7   

18 

11  

 14 

18   

8 

21   

10 

22  

 9 

24   

7 

6   

7 

14 

  4 

10 

  3 

MIROC-ESM 22   

0 

25  

 2 

22   

0 

32   

1 

19   

6 

14   

14 

6   

13 

5   

20 

3   

13 

3  

 12 

0   

9 

0   

20 

1   

10 

2   

14 

0   

13 

2   

8 

6   

8 

3   

5 

6   

4 

1 

  2 

3  

 1 

MIROC-ESM-

CHEM 

20  

 0 

22   

0 

30  

 0 

19  

 16 

27   

11 

15   

20 

4  

 15 

2   

14 

5   

10 

2  

 13 

4   

8 

0  

 7 

2   

6 

3   

13 

4   

8 

3   

14 

2   

7 

3   

7 

2 

  4 

3 

 1 

3 

 1 

MPI-ESM-LR 0   

0 

1   

0 

0  

 0 

1  

 7 

3   

17 

4  

 20 

7   

18 

2  

 15 

6   

10 

6   

7 

14  

 8 

15 

  10 

17  

 5 

28   

7 

10  

 12 

18   

11 

12   

11 

10  

 7 

9  

 6 

6 

 2 

6  

 2 

MPI-ESM-MR 0   

0 

1   

0 

0  

 4 

2  

 18 

2  

 16 

4   

14 

2   

11 

7   

10 

7  

 7 

6  

 4 

11   

12 

19   

4 

19   

11 

17  

 9 

27   

14 

20  

 9 

12   

9 

8  

 14 

3   

4 

1 

 5 

7 

  0 

MRI-CGCM3 8   

1 

6   

1 

5  

 2 

7  

 10 

3  

 9 

1  

 7 

1   

13 

5   

8 

3   

12 

0   

10 

2   

7 

5  

 7 

5   

10 

1  

 5 

4  

 11 

11  

 8 

9   

13 

18  

 10 

23   

10 

22   

5 

36 

  16 
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Table 5-6. Summary ranking scores for 21 GCMs 

No. GCM MEAN score STD score Rank by MEAN Rank by STD 

1 bcc-csm1-1 1117 1062 5 3 

2 BNU-ESM 1228 1044 6 2 

3 CanESM2 936 1001 2 1 

4 CCSM4 2598 1971 18 10 

5 CESM1-BGC 2622 2472 19 20 

6 CSIRO-Mk3-6-0 2258 2490 12 21 

7 GFDL-CM3 1947 2274 10 19 

8 GFDL-ESM2G 1730 2231 8 18 

9 GFDL-ESM2M 1703 2060 7 13 

10 inmcm4 2518 2130 16 16 

11 IPSL-CM5A-LR 926 2035 1 12 

12 IPSL-CM5A-MR 1957 1880 11 7 

13 MIROC5 2703 2087 21 14 

14 NorESM1-M 1792 1979 9 11 

15 ACCESS1-0 2380 1867 14 5 

16 CNRM-CM5 2521 2102 17 15 

17 MIROC-ESM 1010 1961 3 9 
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No. GCM MEAN score STD score Rank by MEAN Rank by STD 

18 MIROC-ESM-CHEM 1033 1814 4 4 

19 MPI-ESM-LR 2410 1875 15 6 

20 MPI-ESM-MR 2368 1892 13 8 

21 MRI-CGCM3 2665 2180 20 17 

 The slopes of NEX-GDDP dataset for projection period under RCP 4.5 is presented in 

Figure 5-5 and Table 5-7. Figure 5-5 illustrated the slopes of all stations by magnitude and spatial 

spread while Table 5-7 counts the number of stations each province by different intervals of slopes. 

Similarity to historical period, trends of NEX-GDDP data for projection period are between -3% 

to 10%. Stations with decrease trend are mainly located in AB, SK and MB. It demonstrated that 

majority of stations have an increase trend with more than 90% number of stations. Stations with 

decrease trend are insignificant with less than 3% and mainly located in AB, SK, MB which the 

highest decrease slope of 2.3% at Flin-flon station (MB), only one station located in ON. 10 

stations with high increase trend (more than 10% of slope) are entirely located in BC which the 

highest value of approximately 16% at Penticton airport station. It can be seen that extreme rainfall 

events are likely to occur frequently in BC other than other provinces of Canada in the future 

according to the projection of NEX-GDDP.  
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Figure 5-5. Change of slope - Gridded historical data (NEX-R45). Each value is the median from 

21 GCMs. Red triangle: stations with decrease trend, blue triangle: stations with increase trend 

Table 5-7. NEX-GDDP trend statistics of projection period (R45) 

No. 
Province 

code 

Count of stations by Slope change Slope (%) 

-[3 - 0) [0 - 10) [10 - 20] 

1 NL 0 7 0 

2 PE 0 2 0 

3 NS 0 5 0 
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No. 
Province 

code 

Count of stations by Slope change Slope (%) 

-[3 - 0) [0 - 10) [10 - 20] 

4 NB 0 5 0 

5 QC 0 25 0 

6 ON 1 49 0 

7 MB 4 9 0 

8 SK 4 3 0 

9 AB 6 10 0 

10 BC 0 27 10 

11 NT 0 5 0 

12 YT 0 3 0 

  Total 15 150 10 

 

5.5 Conclusions 

 This study evaluates the trends of daily annual maximum precipitation using data from 175 

high-quality historical observed station across Canada and 25kmx25km resolution downscaled 

regional gridded data NEX-GDDP for past period from 1950 to 2005 and projection period from 

2006 to 2100. The trend is estimated using Sen's method. Overall, it can be concluded that majority 

of stations have increase trends for all periods of time. According to historical observed data, there 



 100 

is around 40% of stations with decrease trends and most of them are located in the central and 

western Canada. 

 Downscaled regional gridded data NEX-GDDP show increase trends for both historical 

period and projection period with around 80% and 90% of stations, respectively. While trends of 

NEX-GDDP historical data are mainly from -10% to + 20%, trends of NEX-GDDP projection data 

are only between -3% to 10%. Most of stations with decrease trend are located in the western 

Canada and stations with highest trends are mainly in BC. Due to the complex topography of 

mountainous area, stations in the province of BC have widespread trends given by different GCMs.   

 Regarding the performance of all 21 GCMs of NEX-GDDP data, CanESM2 model is 

considered the best model over 175 stations in Canada region. Results of CanESM2 model is 

ranked 1st for majority of stations in terms of the mean and standard deviation of daily annual 

maximum precipitation. Models from China and Japan are also considered to produce good results 

over Canada region.   
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Chapter 6: Evaluation of variability of precipitation 

and temperature extremes over Montreal region for 

present and future climates 

 

6.1 Introduction 

 In recent years, global climate impacts have been recognized as one of the most the critical 

issues for many nations and/or regions all over the world. It has been recognized that the global 

climate has significantly changed over past 100 years (IPCC, 2014). To understand and predict the 

climate change, past trends as well as the projections of future climates for different scenarios have 

been conducted in many studies (Creutin and Obled, 1982; Besaw et al., 2010; Candela et al., 

2012; Yeo and Nguyen, 2014; Nguyen et al., 2018). In Canada, some studies have indicated an 

increase trend in both temperature and precipitation with an average increase of around 1.4°C for 

air temperature and around 12.5% for annual rainfall during the second half of the 20th century 

(Mekis and Vincent, 2011; Zhang et al., 2011). These changes might have significant impacts on 

various hydrologic processes (Miller et al., 2003; Whitfield et al., 2003; Ryu et al., 2011; Assani 

et al., 2012). 

 General Circulation Models (GCMs) have been commonly used for evaluating the effects 

of climate change on the hydrological regime under different scenarios of greenhouse gas 

emissions. While these GCMs could represent well the main features of the global distribution of 
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basic climate parameters (Randall et al., 2007), they still cannot reproduce accurately the details 

of regional climate conditions at temporal and spatial scales of relevance to hydrological impacts 

and adaptation studies (Nguyen et al., 2006). This is because outputs from these GCMs are usually 

at resolutions that are too coarse for many climate change impact studies, generally greater than 

2.5o for both latitude and longitude (approximately 250km) as shown in Figure 6-1. To refine the 

GCM coarse grid resolution climate projection data to much finer spatial resolutions (regional or 

local scales) for the reliable assessment of climate change impacts, different downscaling methods 

have been proposed to resolve this scale discrepancy (Wilby et al., 2002; Fowler et al., 2007; 

Nguyen and Nguyen, 2008; Maraun et al., 2010; Khalili and Nguyen, 2016; Gooré Bi et al., 2017). 

These downscaling methods can be generally classified into two broad categories: dynamical 

downscaling (DD) and statistical downscaling (SD). It has been widely recognized that the SD 

methods offer several practical advantages over the DD procedures, especially in terms of flexible 

adaptation to specific study purposes, and inexpensive computing resource requirement (Xu, 1999; 

Prudhomme et al., 2002). In addition, SD methods can be used to spatially disaggregate GCM 

outputs to regional scales or local/point scales (a single site or multi-sites) (Wilby et al., 2002; 

Khalili and Nguyen, 2016; Werner and Cannon, 2016). Furthermore, when dealing with a large 

ensemble of GCMs, the SD methods are often in favor because of their computational efficiency 

and effectiveness in producing physically plausible hydro-climatology data (Wood, 2004; Werner 

and Cannon, 2016).  

 Located on an island in the Saint Lawrence River, Montreal is the biggest city of Quebec 

province and second-largest city of Canada with the population of approximately 1.9 million 

(Statistics-Canada, 2016). Every year, the city has experienced frequent extreme weather events 

such as heavy storm rainfalls and heat waves that cause millions of property losses, and in some 
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cases, the loss of human lives (City-of-Montreal, 2017). These types of extremes events are 

occurring with increasing frequency. For instance, more than 30 people were killed by a heat wave 

in Montreal in July 2018 (Cullinane, 2018). Another example is the spring flood in 2017 that 

affected thousands of people and millions of dollars of damages (Lau, 2017). Furthermore, August 

2021 is considered hottest month on record for Montreal consisting of 5 heat wave events with 13 

days with the temperature of above the 30-degree - compared to an average of 2 days for the month 

of August (Graham, 2021). Consequently, information on the spatial and temporal variations of 

these precipitation and temperature extremes for current and future climates is important for the 

planning and design of the City’s its urban infrastructures to minimize the impacts of these natural 

disasters. Many studies have been conducted to assess the variability of temperature and 

precipitation processes in Canada and in other countries (Zhang et al., 2001; Arnbjerg-Nielsen et 

al., 2013; Thistle and Caissie, 2013; Benmarhnia et al., 2014; City-of-Montreal, 2017) However, 

very few studies have been carried out specifically on the daily precipitation and temperature 

extremes for the local City of Montreal region. Therefore, in the present study, a critical evaluation 

of the spatial and temporal variations of the daily annual maximum rainfalls and daily extreme 

temperatures over the Montreal region was conducted for the present and future climates using 

two different datasets that have been statistically downscaled by the Pacific Climate Impacts 

Consortium (PCIC, 2014) and the National Aeronautics Space Administration Earth Exchange 

Global Daily Downscaled Projections (NEX-GDDP) (Thrasher et al., 2012). Information of these 

two datasets will be detailed in section 6.2.  
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6.2 Numerical application 

6.2.1 Data 

 Figure 6-1 shows a network of seven weather stations in the Montreal region. However, 

of these seven stations only Montreal-Pierre Elliott Trudeau International Airport (Dorval) and 

McGill stations have good quality of data with long historical records, other stations have either 

short historical records or a large number of missing data. Figure 6-1 also indicates the grids of 

the two downscaled datasets (red: NEX-GDDP; black: PCIC). It can be seen that the NEX-

GDDP grid size is approximately nine time larger than the PCIC grid.  

 

Figure 6-1. Location of measuring stations in Montreal region 
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 Information of PCIC and NEX-GDDP datasets were summarized in Table 6-1 below: 

Table 6-1. Summary of PCIC and NEX-GDDP datasets 

 PCIC NEX-GDDP Note 

Grid size (degree) 1/12  1/4  

Downscaling method BCSD*, 

BCCAQ** 

BCSD  

Number of GCMs 24 21 PCIC: 12 for BCCAQ 

and 12 for BCSD 

Variables Tmax, Tmin, Pr Tmax, Tmin, Pr  

Timesteps Daily Daily  

Projection duration 1950-2100 1950-2100  

RCP*** scenarios 2.6; 4.5; 8.5 4.5; 8.5  

 (BCSD*: bias-correction spatial disaggregation - see Werner and Cannon (2016) for further 

details; BCCAQ**: Bias Correction/Constructed Analogues with Quantile mapping 

reordering; RCP***: Representative Concentration Pathway)  

 In the present study, only gridded daily annual maximum precipitation and daily extreme 

temperature data were considered. These data were statistically downscaled from 10 GCMs 

corresponding to the RCP 4.5 scenario (see Table 6-2). For the present climates, the available 

historical data from Dorval and McGill stations and the PCIC and NEX-GDDP gridded data for 

the same 1961-1990 period were used. For the future climates, climate projections from the climate 

models corresponding to the RCP 4.5 scenarios for the 2006 – 2100 period were selected.  
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Table 6-2. 10 IPCC-CMIP5 climate models used in this study 

GCM Institution 

ACCESS1-0 
CSIRO (Commonwealth Scientific and Industrial Research 

Organisation, Australia), and BOM (Bureau of Meteorology, Australia) 

CanESM2  Canadian Centre for Climate Modeling and Analysis 

CCSM4  National Center for Atmospheric Research 

CNRM-CM5  
Centre National de Recherches Météorologiques/Centre Européen de  

Recherche et Formation Avancées en Calcul Scientifique 

CSIRO-MK3-6-0 

Commonwealth Scientific and Industrial Research Organization  

in collaboration with the Queensland Climate Change Centre of 

Excellence 

GFDL-ESM2G  NOAA's Geophysical Fluid Dynamics Laboratory 

INMCM4  Institute for Numerical Mathematics, Moscow, Russia 

MIROC5 

Japan Agency for Marine-Earth Science and Technology, Atmosphere 

and Ocean Research Institute (The University of Tokyo), and National 

Institute for Environmental Studies 

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) 

MRI-CGCM3 Meteorological Research Institute 

6.2.2 Statistical indices 

 In addition, the root-mean-square error (RMSE) was used to compare the performance of 

the proposed model as given below:  
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𝑅𝑅𝐺𝐺𝑆𝑆𝐸𝐸 = �1
𝑁𝑁
�(𝑆𝑆𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚𝑒𝑒𝑚𝑚 − 𝑆𝑆𝑆𝑆𝑂𝑂𝑜𝑜𝑜𝑜𝑒𝑒𝑝𝑝𝑂𝑂𝑒𝑒𝑚𝑚)2 

where SI indicates the value of the statistical indices and N is the number of sample size. The 

smaller value of the RMSE indicates the better accuracy of the model considered. 

6.3 Results and discussions 

6.3.1 Present climate 

 Figure 6-2 presents the spatial distribution of the downscaled daily annual maximum 

precipitations (AMPs) over the Montreal region from PCIC and NEX-GDDP datasets based on 

the average of ten GCMs. It can be seen that the mean precipitation given by NEX-GDDP is 

smaller than PCIC. More specifically, Table 6-3 shows the means of daily AMPs at Dorval and 

McGill stations in comparison with PCIC and NEX-GDDP data. Overall, the gridded 

downscaled data values are smaller than the observed data at a given station. PCIC data are 

11.92% and 22.75% lower than observed AMP at Dorval and McGill stations, respectively, 

while the values from NEX-GDDP data are 29.24% and 35.92%, respectively. It is therefore 

necessary to perform a bias adjustment before these gridded downscaled data can be used in the 

planning and design of urban infrastructures. 

 For purposes of illustration, the results for daily AMP at Dorval Airport are shown in 

Figure 6-3 using the boxplots, and the results for temperature extremes are presented in Figure 6-

4 and Figure 6-5.  In addition, Table 6-4 presents the comparison using the root mean square error 

(RMSE) values for both precipitation and temperature extremes. In general, it can be seen that the 

PCIC data are more accurate for AMP and somewhat less accurate for temperature extremes as 
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compared to the NEX-GDDP data. However, Figure 6-4 indicates that results given by PCIC are 

more robust with narrow boxplots in comparison with NEX-GDDP data. Regarding the standard 

deviation, NEX-GDDP data is more accurate for daily minimum temperature while PCIC data are 

more robust for daily maximum temperature.    

  

PCIC NEX-GDDP 

Figure 6-2. Daily AMPs over the Montreal region downscaled by PCIC and NEX-GDDP 

Table 6-3. Mean of daily AMPs at Dorval and McGill stations 

No. Station 

Mean of daily AMPs (mm/day) 

Observed PCIC 
Different 

(%) 

NEX-

GDDP 

Different 

(%) 

1 Dorval 50.75 44.7 11.92 35.91 29.24 

2 McGill 54.76 42.3 22.75 35.09 35.92 



 109 

  

Figure 6-3. Mean (left) and Standard Deviation (right) of daily AMPs at Dorval station based on 

downscaled gridded data from ten different GCMs 

Table 6-4. RMSE of the means of daily AMP and temperature extremes at Dorval station 

RCMs 
RMSE 

Tmin Tmax Precipitation 

PCIC-BCSD 6.91 5.16 2.90 

PCIC-BCCAQ 6.47 4.75 5.00 

NEX-GDDP 5.71 3.99 12.20 
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Figure 6-4. Mean of daily minimum (left) and maximum (right) temperatures at Dorval station 

based on downscaled gridded data from ten different GCMs 

  

Figure 6-5. Standard deviation of daily minimum (left) and maximum (right) temperatures at 

Dorval station based on downscaled gridded data from ten different GCMs 

6.3.2 Future climate 

 Daily annual temperature extremes and daily AMPs for the 2006-2100 period downscaled 

from PCIC and NEX-GDDP were analyzed. It can be seen from Figure 6-6 and Figure 6-7 that 

there are increasing trends in both temperature extremes and AMP at Dorval station. Table 6-5 

shows the values of temperature extremes and AMPs estimated based on the fitted trend regression 
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lines at the year 2006 and 2100. Results are based on an average of all 10 GCMs given by both 

datasets. It is estimated that precipitation could increase around 10.77% for the 2006-2100 period. 

In addition, daily maximum temperature is projected to increase around 8.06% in the same period. 

Daily minimum temperature could have a projected increase of around 16.69%. Hence, the 

Montreal region could experience more extreme rainfalls and higher maximum and minimum 

temperatures in the future.  

Table 6-5. Increase of temperature and precipitation in 2006-2100 period 

Variables 2006 2100 % Increase 

Precipitation (mm) 41.47 45.93 10.77 

Minimum temperature (oC) -26.19 -21.82 16.69 

Maximum temperature (oC) 33.33 36.02 8.06 
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Figure 6-6. Historical and Projected daily AMPs at Dorval station for entire period 1950-2100. 

The range donates the maximum and minimum values from all GCMs of each dataset, solid lines 

are median of each dataset.  

 

Figure 6-7. Historical and projected daily minimum and maximum temperatures at McGill 

station for entire period 1950-2100. The range donates the maximum and minimum values from 

all GCMs of each dataset, solid lines are median of each dataset.  
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6.4 Conclusions 

 Major findings of this present study can be summarized as follows: 

 Many climate projection studies have been commonly conducted at global or large regional 

scales, the present study has been performed specifically at the City of Montreal scale to provide 

useful information on the variability in time and in space of annual maximum precipitations and 

temperature extremes for the design and planning of its urban infrastructures using the regional 

downscaled climate projection data from ten different GCMs under the RCP 4.5 scenario provided 

by PCIC and NEX-GDDP. In general, the PCIC data with finer grid size of 1/12 degree (or 

approximately 10x10 km) could produce more robust results than the NEX-GDDP data with a 

coarser resolution of ¼ degree (or approximately 25x25 km).   

 According to the results downscaled by PCIC and NEX-GDDP, there are projected 

increasing trends in both temperature extremes and AMPs over the Montreal region. The AMP 

is projected to increase around 10% for the 2006-2100 period. Minimum and maximum 

temperatures are projected to increase approximately 16% and 8% respectively by the end of 

this century.  

 Downscaled gridded data are different from observed data at a given location. It is therefore 

essential to perform a bias correction of the gridded data before these data could be used in the 

planning and design of the urban infrastructures.  
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Chapter 7: Conclusions and recommendations 

 

7.1 Conclusions 

The following main conclusions can be drawn from the present study:  

1. A statistical downscaling model (called SDGAM) has been proposed for climate change 

impact assessment studies at a gauged site. The proposed model was based on the 

combination of the precipitation occurrence and the precipitation amount using the 

Generalized Additive Modeling method. Results of a numerical application have indicated 

that the proposed model was able to describe well many features of the daily precipitation 

process, including its occurrence frequency, intensity, and extremes for both calibration 

and validation periods for data from 10 rain-gauged stations located in Southern Quebec 

and Ontario, Canada. In addition, this model could provide a significant improvement over 

the popular SDSM model in the modeling of daily precipitation process in the context of 

climate change.  

2. A spatial-temporal downscaling approach was proposed in this study to describe the 

linkage between large-scale climate variables for daily scale to AMP for daily and sub-

daily scales at a local site. The proposed method was based on the combination of the 

spatial downscaling method to link large-scale climatic variables provided by GCMs to 

daily extreme precipitations at a local site using the SDGAM model developed in this study 

and the temporal downscaling procedure to describe the relationships between daily 
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extreme precipitations with sub-daily extreme precipitations using the scaling GEV/PWM 

model. The feasibility of the proposed downscaling method has been evaluated based on 

climate simulation outputs from the CanESM2 model under different RCPs (RCP 26, RCP 

45, and RCP 85) and using available AMP data for durations ranging from 5 minutes to 24 

hours at ten rain-gage stations across Canada. Results have showed that it is feasible to link 

daily large-scale climate variables to daily AMP at a local site for climate change impact 

and adaptation studies at a given location of interest. 

3. A detailed statistical analysis of AMP series for selected stations representing the diverse 

climatic conditions across Canada has indicated that these AMP series in Canada displayed 

different scaling behaviors depending on the location of the station considered. Based on 

this scaling property, the scaling GEV distribution has been proved to be able to provide 

accurate estimates of sub-daily AMPs from GCM-downscaled daily AMP amounts.  

4. A statistical regionalization method using the Principal Component Analysis (PCA) has 

been proposed to identify homogeneous regions of precipitation regimes. The feasibility 

and accuracy of the proposed method has been assessed using the daily precipitation data 

available from a network of 155 rain-gauge stations across Vietnam. Results of this 

numerical application have indicated that the suggested regionalization method was able 

to identify homogeneous precipitation regions which were found physically consistent to 

the particular climatic features of Vietnam.  

5. A statistical estimation approach has been developed in this study to generate daily 

precipitation series at an ungauged location using rainfall information available within the 

same homogeneous rainfall region. The proposed approach was based on a two-stage 
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interpolation method to describe the persistence in rainfall occurrences and rainfall 

amounts for the rainfall homogenous region. The feasibility and accuracy of the proposed 

estimation method has been evaluated using daily rainfall data available from a network of 

155 raingauges in Vietnam. Results of this assessment have indicated that the proposed 

procedure could provide an accurate estimate of the daily precipitation series for an 

ungauged location. 

6. A detailed statistical analysis was performed to identify the presence of trends in 

precipitation series using the historical high-quality rainfall records from a network of 175 

stations located across Canada and using the 25kmx25km resolution downscaled regional 

gridded data from NEX-GDDP for the past period from 1950 to 2005 and for the projection 

period from 2006 to 2100. It was found that the majority of station data have increase 

trends, and around 40% of stations located mostly in central and western Canada with 

decrease trends. For downscaled regional gridded data NEX-GDDP, increase trends was 

found for both historical and projected periods for more than 80% of stations.  

7. Among all 21 GCMs of NEX-GDDP data, the CanESM2 model is considered the best 

model for Canada, especially in terms of the mean and standard deviation of the annual 

maximum daily precipitation. Models from China and Japan were also found to be able to 

produce good results over many locations in Canada. 

8. The PCIC data with finer grid size of 1/12 degree (or approximately 10x10 km) could 

produce more robust results than the NEX-GDDP data with a coarser resolution of ¼ 

degree (or approximately 25x25 km) over Montreal area. It was also found that these data 

projected increasing trends in both temperature extremes and AMPs. More specifically, the 
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AMP was projected to increase around 10% for the 2006-2100 period while minimum and 

maximum temperatures were projected to increase approximately 16% and 8% 

respectively by the end of this century for the Montreal region.  

7.2 Recommendations for further works 

 Based on the findings of this study, the following recommendations are suggested for 

future studies:  

1. The regression-based downscaling models for generating daily precipitation process for 

climate impact studies were found to be sensitive to the selection of the large-scale climate 

predictors given by the GCMs. However, there is still no general agreement for selecting 

the best approach that could identify the most significant predictors for these models. 

Hence, it is essential to develop a new screening method for selecting the most significant 

predictors that could describe more accurately the linkages between these climate 

predictors and the observed precipitation characteristics at a local site of interest.  

2. The present study has indicated that the performance of the ungauged precipitation model 

was significantly influenced by the accuracy in the identification of the homogeneous 

regions of precipitation. For improving our understanding of the spatial and temporal 

variation of the precipitation process and for improving the accuracy of the precipitation 

estimation at an ungauged site it is necessary to explore other similarity criteria based on 

both precipitation regimes and topographic characteristics that could be used to improve 

the definition of the similarity of the precipitation variability in time and in space.  
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3. For this study, the PCA works well for rainfall data of Vietnam region in monthly time 

scale. However, this approach is considered to be sensitive with the time scale of the 

selected data, it is therefore necessary to develop a more robust method based on, for 

instance, Ordinary Factor Analysis or Cluster analysis to minimize this sensitivity. 

4. Further studies should be conducted to evaluate of the variability in time and in space of 

the daily annual maximum rainfalls and extreme temperatures over Canada region for 

different other sources of downscaled regional gridded data beside the National 

Aeronautics Space Administration (NASA) Earth Exchange Global Daily Downscaled 

Projections (NEX-GDDP) including the Pacific Climate Impacts Consortium (PCIC), and 

ANUSPLIN.  

5. The methods proposed in this study should be tested with different datasets available 

worldwide from different climate conditions to assess the feasibility and reliability of these 

suggested approaches. 
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Chapter 8: Statement of originality 

 

 To the best of the author’s knowledge, the followings are the original contributions from 

the present study:  

1. A new statistical downscaling model (SDGAM) has been developed in this study for 

describing accurately the linkage between large-scale climate predictors and 

observed daily rainfall characteristics at a local site. This new model was based on 

the Generalized Additive Modeling (GAM) method. Results of a comparative study 

using NCEP re-analysis data and observed daily precipitation data in Canada have 

demonstrated that the SDGAM could provide more accurate results than those given 

by the currently popular SDSM model. The proposed SDGAM model is therefore 

could be an essential tool for high-quality climate change impact assessment studies 

in practice. 

2. A novel spatial-temporal downscaling approach was proposed in the present study to 

provide a more accurate estimation of extreme rainfalls for daily and sub-daily scales 

at a local site in the context of climate change. The proposed approach was quite 

useful for improving the accuracy in the construction of the IDF relations at a given 

site and, consequently, a more accurate estimation of the design storm for urban 

infrastructures design in a changing climate. 

3. An original regionalization method based on the Principal Component Analysis 

(PCA) technique was proposed for identifying homogeneous regions of precipitation 
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regimes. Results of an illustrative application using observed daily rainfall data in 

Vietnam have indicated the feasibility and accuracy of the proposed method.  

4. An original statistical approach has been developed in this study to estimate daily 

precipitation series at a location where the rainfall data are unavailable (an ungauged 

site) using rainfall information in the same homogeneous region. The proposed 

approach was based on a two-stage interpolation method to represent the persistence 

in rainfall occurrences and rainfall amounts within the same homogeneous region. It 

has been demonstrated that this new approach could provide the estimated daily 

precipitation series at an ungauged site having similar statistical properties as those 

of the observed data.  

5. A detailed statistical analysis has been performed to identify the presence of trends 

in the historical records of daily annual maximum precipitation series for different 

locations and the downscaled regional gridded data from the National Aeronautics 

Space Administration (NASA) Earth Exchange Global Daily Downscaled 

Projections (NEX-GDDP) for Canada. Results of this analysis have provided 

essential information for improving our understanding of the variability of daily 

precipitation in Canada for the present and future periods.   

6. A detailed statistical analysis of the variability in time and in space of the daily 

annual maximum rainfalls and extreme temperatures over the Montreal region for 

the present and future climates using the data from two different sources: the Pacific 

Climate Impacts Consortium (PCIC) and the National Aeronautics Space 

Administration (NASA) Earth Exchange Global Daily Downscaled Projections 
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(NEX-GDDP). Results of this analysis have provided valuable information for the 

planning and design of urban infrastructures for Montreal in the context of a 

changing climate.    
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Appendix A: Supplementary materials for chapter 2 
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Figure A-1. Boxplots of monthly percentage of wet-day for SDSM (left) and SDGAM (right) for 

all stations (Black star markers indicate monthly average values of precipitation data) 
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Figure A-2. Boxplot of monthly mean of precipitation for SDSM (left) and SDGAM (right) for 

all stations (Black star markers indicate monthly average values of precipitation data)  
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Table A-1. RMSEs of monthly Precip-m and Precip-std for all stations 

Indices Precip-m Precip-std 

Station Month 
Calibration Validation Calibration Validation 

SDSM SDGAM SDSM SDGAM SDSM SDGAM SDSM SDGAM 

S1 

Jan 1.494 1.357 1.182 1.277 2.778 2.394 2.251 2.534 

Feb 1.047 0.893 1.075 0.912 1.990 1.669 1.971 1.381 

Mar 1.259 1.040 1.007 1.198 2.764 2.058 2.098 2.754 

Apr 1.165 0.939 1.353 1.274 2.145 1.660 2.324 1.999 

May 1.187 0.982 1.152 1.072 2.081 1.722 2.548 2.486 

Jun 1.109 1.006 1.563 1.374 2.684 2.428 2.936 2.759 

Jul 1.348 1.175 1.645 1.496 3.120 2.778 3.223 3.000 

Aug 1.717 1.525 1.480 1.281 3.843 3.280 3.580 2.583 

Sep 1.731 1.454 1.538 1.379 4.690 3.455 3.854 2.600 

Oct 1.137 0.939 1.285 1.149 2.529 2.053 3.127 2.981 

Nov 1.149 0.986 1.189 1.037 2.200 1.792 2.503 1.979 

Dec 1.324 1.149 1.011 0.970 2.317 1.833 1.777 1.565 

S3 

Jan 1.508 1.359 1.581 1.405 2.317 2.138 2.669 2.454 

Feb 1.374 1.238 1.325 1.311 2.647 2.322 3.032 3.086 

Mar 1.398 1.242 1.304 1.238 3.197 2.739 3.021 2.734 

Apr 1.152 0.907 1.427 1.307 1.773 1.581 2.123 1.721 

May 1.131 1.012 1.516 1.475 2.246 2.013 2.853 2.816 

Jun 1.496 1.318 1.773 1.705 3.028 2.689 3.228 3.330 

Jul 2.128 1.963 1.518 1.352 4.261 3.810 2.992 2.504 

Aug 1.929 1.724 1.933 1.831 3.984 3.485 4.931 4.863 
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Indices Precip-m Precip-std 

Station Month 
Calibration Validation Calibration Validation 

SDSM SDGAM SDSM SDGAM SDSM SDGAM SDSM SDGAM 

Sep 1.757 1.590 1.577 1.495 4.128 3.207 3.800 3.297 

Oct 1.237 1.176 1.146 1.035 2.568 2.247 2.393 2.071 

Nov 1.324 1.204 1.734 1.654 2.419 1.925 3.160 2.858 

Dec 1.519 1.407 2.118 2.071 2.246 2.088 3.257 3.216 

S4 

Jan 0.960 0.844 1.272 1.206 1.538 1.326 2.181 2.070 

Feb 1.009 0.877 1.261 1.103 1.999 1.694 2.353 1.881 

Mar 1.189 1.023 1.253 1.206 2.020 1.701 2.423 2.068 

Apr 1.223 1.074 1.250 1.091 2.100 1.739 2.180 1.773 

May 0.904 0.737 1.134 1.038 1.838 1.496 1.938 1.698 

Jun 1.619 1.476 1.341 1.089 3.243 2.948 2.942 2.524 

Jul 1.976 1.839 1.764 1.612 4.172 3.999 4.568 4.488 

Aug 1.512 1.356 1.948 1.888 3.572 3.527 3.867 3.573 

Sep 1.620 1.427 1.636 1.568 3.293 2.483 3.614 3.286 

Oct 1.057 0.903 1.464 1.357 2.914 2.704 3.342 3.338 

Nov 1.025 0.905 1.534 1.486 1.667 1.451 3.100 3.136 

Dec 0.955 0.878 1.293 1.171 1.603 1.361 2.382 2.401 

S5 

Jan 1.051 0.884 1.164 1.058 1.705 1.494 2.159 1.578 

Feb 1.025 0.913 1.028 0.899 2.169 1.996 1.883 1.530 

Mar 0.873 0.724 0.896 0.764 1.756 1.527 1.768 1.223 

Apr 1.343 1.151 1.264 1.235 2.221 1.783 2.155 1.572 

May 1.122 0.979 1.214 1.192 1.930 1.650 2.340 1.783 

Jun 1.401 1.324 1.258 1.201 2.647 2.213 2.428 1.924 
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Indices Precip-m Precip-std 

Station Month 
Calibration Validation Calibration Validation 

SDSM SDGAM SDSM SDGAM SDSM SDGAM SDSM SDGAM 

Jul 1.609 1.460 1.764 1.625 2.413 1.961 3.974 3.845 

Aug 1.738 1.479 1.727 1.558 3.663 3.338 3.798 3.405 

Sep 1.368 1.234 1.454 1.206 2.582 2.230 2.988 2.525 

Oct 1.339 1.231 1.571 1.740 2.473 2.081 2.809 3.194 

Nov 1.108 0.826 1.410 1.209 2.286 2.006 2.665 1.855 

Dec 1.072 0.916 1.198 1.221 2.092 1.930 2.276 2.020 

S6 

Jan 1.294 1.205 0.888 0.798 2.476 2.375 1.673 1.581 

Feb 0.968 0.815 0.976 0.820 1.953 1.695 2.024 1.822 

Mar 1.090 0.896 0.959 0.992 1.982 1.498 1.966 2.022 

Apr 1.003 0.894 1.446 1.293 2.008 1.602 2.587 2.380 

May 1.088 0.915 1.131 1.003 1.943 1.652 2.084 1.843 

Jun 1.192 1.019 1.225 1.169 2.746 2.488 2.288 2.164 

Jul 1.560 1.391 1.456 1.329 3.309 2.832 3.057 3.001 

Aug 1.389 1.253 1.669 1.522 2.703 2.164 3.976 3.522 

Sep 1.647 1.347 1.652 1.539 4.416 3.422 4.149 3.550 

Oct 1.184 0.952 1.324 1.163 2.904 2.499 3.190 3.127 

Nov 1.158 1.057 1.257 1.057 2.540 2.398 2.876 2.671 

Dec 1.169 0.927 1.171 1.025 1.869 1.606 2.189 2.014 

S7 

Jan 1.265 1.121 1.095 1.075 2.724 2.337 2.061 1.974 

Feb 1.059 0.972 1.124 1.084 2.050 1.770 1.982 1.852 

Mar 1.213 1.048 1.233 1.347 2.434 1.911 2.647 2.508 

Apr 1.101 0.956 1.471 1.321 1.937 1.534 2.798 2.517 
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Indices Precip-m Precip-std 

Station Month 
Calibration Validation Calibration Validation 

SDSM SDGAM SDSM SDGAM SDSM SDGAM SDSM SDGAM 

May 0.947 0.873 1.227 1.160 1.833 1.555 2.219 2.259 

Jun 1.186 0.898 1.429 1.347 2.386 1.829 3.334 3.447 

Jul 1.519 1.347 1.652 1.520 2.902 2.389 3.530 3.263 

Aug 1.538 1.356 1.610 1.503 3.068 2.767 3.563 2.979 

Sep 1.704 1.498 1.464 1.425 4.218 3.393 2.997 2.999 

Oct 1.259 1.097 1.251 1.208 3.138 2.845 2.750 2.883 

Nov 1.158 1.004 1.308 1.293 2.140 1.718 2.855 2.952 

Dec 1.111 0.972 1.309 1.234 2.108 1.938 1.890 1.608 

S8 

Jan 1.092 0.994 1.088 1.049 2.166 1.996 2.139 1.997 

Feb 1.359 1.281 1.326 1.196 2.644 2.484 2.129 1.770 

Mar 1.226 1.094 1.228 1.075 2.567 2.182 2.325 1.659 

Apr 1.020 0.865 1.145 0.958 2.017 1.557 2.230 1.807 

May 1.042 0.861 1.381 1.261 2.150 1.948 2.414 2.184 

Jun 1.437 1.299 1.617 1.490 3.326 3.081 3.621 3.389 

Jul 1.427 1.309 1.531 1.364 2.701 2.195 2.909 2.325 

Aug 1.565 1.237 1.789 1.540 3.574 2.989 4.663 4.246 

Sep 1.508 1.270 1.387 1.232 3.324 2.865 3.770 3.617 

Oct 1.085 0.824 1.249 1.207 2.479 1.942 2.974 3.022 

Nov 1.153 0.905 1.246 1.125 2.360 1.977 2.506 2.122 

Dec 1.379 1.190 1.422 1.395 2.384 2.099 2.153 1.696 

S9 
Jan 1.058 0.915 0.916 0.793 2.049 1.720 1.926 1.559 

Feb 1.047 0.882 1.105 0.862 2.402 2.008 2.725 2.108 
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Indices Precip-m Precip-std 

Station Month 
Calibration Validation Calibration Validation 

SDSM SDGAM SDSM SDGAM SDSM SDGAM SDSM SDGAM 

Mar 1.112 0.915 1.102 1.008 2.590 1.961 2.679 2.493 

Apr 0.941 0.865 1.143 0.942 2.470 2.205 2.045 1.704 

May 1.275 1.187 1.544 1.416 2.640 2.471 2.650 2.305 

Jun 1.493 1.354 1.683 1.596 2.770 2.468 3.372 3.660 

Jul 1.780 1.560 2.039 1.652 3.671 3.069 4.451 3.878 

Aug 2.262 2.051 1.734 1.662 5.379 5.092 3.549 2.564 

Sep 1.680 1.507 1.437 1.339 3.892 3.105 3.524 2.938 

Oct 1.169 1.029 1.338 1.148 2.706 2.226 2.782 1.980 

Nov 1.150 0.974 1.315 1.186 2.102 1.742 2.569 2.114 

Dec 0.994 0.895 1.060 0.970 2.238 2.027 2.230 1.880 

S10 

Jan 1.407 1.260 1.587 1.383 3.302 2.883 3.007 2.169 

Feb 1.525 1.277 1.622 1.381 3.333 2.745 2.914 2.341 

Mar 1.490 1.292 1.603 1.430 3.489 2.966 3.192 2.433 

Apr 1.506 1.356 1.576 1.342 3.506 3.134 3.081 2.452 

May 1.293 1.165 1.325 1.097 2.554 2.145 2.674 2.243 

Jun 1.295 1.174 2.472 2.276 2.911 2.611 4.910 4.918 

Jul 1.576 1.401 1.598 1.427 3.217 2.831 3.165 2.932 

Aug 1.607 1.448 1.629 1.439 3.295 3.125 3.209 2.277 

Sep 1.842 1.712 1.486 1.170 3.861 3.211 3.389 2.401 

Oct 1.387 1.175 1.334 1.235 3.429 3.051 2.723 2.572 

Nov 1.304 1.156 1.514 1.372 2.664 2.188 2.794 2.292 

Dec 1.557 1.408 1.990 1.941 3.177 2.732 3.381 2.618 
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Table A-2. RMSEs of seasonal Prcp1, SDII, CDD, Prec90p for all stations 

Station Indices Season 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

S1 

Prcp1 

(%) 

Spring 8.326 8.011 7.489 7.728 

Summer 6.873 6.533 8.566 7.713 

Fall 6.401 6.020 7.012 6.202 

Winter 7.261 6.902 7.045 6.851 

SDII  

(mm/wet-day) 

Spring 1.958 1.809 1.745 1.878 

Summer 1.693 1.345 1.656 1.379 

Fall 2.490 2.021 2.906 2.202 

Winter 1.687 1.445 1.794 1.456 

CDD  

(days) 

Spring 8.982 8.648 4.391 4.499 

Summer 13.551 13.976 4.928 4.727 

Fall 4.497 4.202 5.945 6.223 

Winter 7.594 7.608 3.749 3.618 

Prec90p 

(mm/day) 

Spring 7.799 7.836 4.500 4.336 

Summer 4.700 4.642 5.671 6.030 

Fall 8.948 9.158 8.587 7.048 

Winter 5.368 5.409 4.552 3.596 

S3 

Prcp1  

(%) 

Spring 8.652 8.086 7.596 7.546 

Summer 6.611 6.295 9.043 9.118 

Fall 11.281 11.281 6.048 5.429 

Winter 6.644 6.637 6.854 6.601 

SDII  

(mm/wet-day) 

Spring 2.262 2.101 1.826 1.763 

Summer 1.592 1.431 2.807 2.729 
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Station Indices Season 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

Fall 2.812 2.505 2.348 2.150 

Winter 1.304 1.123 2.090 2.062 

CDD (days) 

Spring 9.712 9.194 4.011 3.778 

Summer 9.456 9.592 14.958 15.223 

Fall 20.873 21.038 4.492 4.419 

Winter 8.574 8.532 3.173 2.884 

Prec90p 

(mm/day) 

Spring 9.275 9.420 6.166 6.926 

Summer 6.036 6.061 8.736 9.445 

Fall 8.734 8.816 6.836 6.477 

Winter 4.649 4.287 6.318 7.304 

S4 

Prcp1 

(%) 

Spring 8.145 7.178 11.323 11.281 

Summer 5.635 5.189 8.195 6.688 

Fall 6.880 6.651 9.177 9.186 

Winter 7.281 6.107 11.406 11.398 

SDII  

(mm/wet-day) 

Spring 1.565 1.418 2.444 2.078 

Summer 1.663 1.323 1.703 1.384 

Fall 2.271 1.983 3.339 2.965 

Winter 1.307 1.156 2.168 2.063 

CDD  

(days) 

Spring 5.006 4.841 18.884 18.890 

Summer 4.430 4.673 4.289 4.172 

Fall 4.366 4.046 17.296 17.321 

Winter 4.177 4.031 22.294 22.267 

Spring 4.547 5.001 5.534 4.954 
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Station Indices Season 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

Prec90p 

(mm/day) 

Summer 5.253 4.830 4.820 4.284 

Fall 9.086 9.140 17.024 17.815 

Winter 3.552 3.596 6.609 7.263 

S5 

Prcp1 

(%) 

Spring 6.809 5.966 7.457 7.873 

Summer 5.538 5.403 8.251 7.957 

Fall 6.024 5.588 6.398 6.010 

Winter 5.985 5.591 10.214 10.659 

SDII  

(mm/wet-day) 

Spring 1.374 1.219 1.726 1.456 

Summer 1.838 1.607 2.353 2.044 

Fall 2.100 1.556 2.380 1.887 

Winter 1.562 1.328 1.758 1.676 

CDD  

(days) 

Spring 6.887 6.643 7.214 7.210 

Summer 4.205 4.106 4.062 4.101 

Fall 3.845 3.637 8.597 8.482 

Winter 3.900 3.888 18.388 18.624 

Prec90p 

(mm/day) 

Spring 4.765 5.194 4.422 3.692 

Summer 5.754 6.114 5.802 4.533 

Fall 6.188 6.296 7.895 7.593 

Winter 5.580 5.991 5.003 5.313 

S6 
Prcp1 

(%) 

Spring 6.417 6.168 8.339 7.941 

Summer 5.527 5.135 7.928 7.123 

Fall 6.542 6.389 6.997 6.204 

Winter 6.453 5.689 6.867 6.019 
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Station Indices Season 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

SDII  

(mm/wet-day) 

Spring 1.759 1.565 1.483 1.235 

Summer 1.668 1.331 1.592 1.343 

Fall 2.247 1.996 2.759 2.403 

Winter 1.609 1.282 1.679 1.241 

CDD 

 (days) 

Spring 4.867 4.676 4.388 4.115 

Summer 5.277 4.944 4.998 5.032 

Fall 4.978 4.597 4.646 4.495 

Winter 4.398 4.348 3.862 3.785 

Prec90p 

(mm/day) 

Spring 5.013 4.662 4.999 4.788 

Summer 5.495 5.777 5.009 5.349 

Fall 8.991 10.225 8.594 8.447 

Winter 4.707 4.435 4.930 4.849 

S7 

Prcp1 

(%) 

Spring 8.264 7.975 6.172 6.281 

Summer 5.729 6.047 8.112 7.570 

Fall 6.591 6.666 5.722 5.414 

Winter 6.305 6.119 7.066 6.827 

SDII  

(mm/wet-day) 

Spring 2.320 2.356 2.067 1.833 

Summer 1.569 1.242 1.721 1.574 

Fall 2.498 2.154 2.375 2.113 

Winter 1.345 1.017 1.451 1.203 

CDD  

(days) 

Spring 8.992 8.955 4.404 4.495 

Summer 5.502 5.810 4.667 4.626 

Fall 6.151 6.080 5.376 5.705 
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Station Indices Season 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

Winter 6.595 6.737 4.064 3.729 

Prec90p 

(mm/day) 

Spring 8.175 8.252 6.226 4.985 

Summer 4.988 4.154 6.512 7.295 

Fall 7.603 7.832 6.772 5.702 

Winter 4.694 4.587 4.906 4.476 

S8 

Prcp1 

(%) 

Spring 6.357 6.515 7.280 7.075 

Summer 5.857 5.657 6.596 6.762 

Fall 6.244 5.973 6.523 6.227 

Winter 5.507 5.738 7.150 6.771 

SDII  

(mm/wet-day) 

Spring 1.409 1.167 1.739 1.570 

Summer 1.700 1.433 1.896 1.647 

Fall 2.111 1.755 2.727 2.347 

Winter 1.493 1.212 1.715 1.512 

CDD  

(days) 

Spring 7.217 7.496 3.901 4.024 

Summer 4.775 4.803 5.185 5.155 

Fall 4.789 4.470 5.687 5.625 

Winter 3.503 3.442 3.496 3.368 

Prec90p 

(mm/day) 

Spring 4.084 3.590 5.948 5.525 

Summer 5.763 5.477 6.815 7.512 

Fall 8.101 8.544 8.323 8.852 

Winter 4.822 4.648 5.632 5.913 

S9 
Prcp1 

(%) 

Spring 7.091 7.030 8.187 8.740 

Summer 5.659 5.626 6.078 5.749 



 151 

Station Indices Season 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

Fall 6.901 7.070 5.597 5.143 

Winter 6.127 6.473 7.209 7.190 

SDII  

(mm/wet-day) 

Spring 1.635 1.358 2.060 1.854 

Summer 2.279 2.100 2.019 1.977 

Fall 3.062 2.527 2.171 1.874 

Winter 1.560 1.467 1.728 1.458 

CDD  

(days) 

Spring 7.960 8.179 4.653 4.648 

Summer 4.376 4.236 5.080 4.832 

Fall 3.803 3.664 4.286 4.241 

Winter 4.011 4.088 4.675 4.702 

Prec90p 

(mm/day) 

Spring 5.726 5.254 7.244 7.090 

Summer 7.106 6.990 6.707 7.439 

Fall 9.734 9.228 7.627 6.675 

Winter 5.473 5.340 6.053 5.366 

S10 

Prcp1 

(%) 

Spring 5.493 5.746 7.544 7.458 

Summer 7.595 7.416 8.294 7.437 

Fall 6.182 6.307 5.378 5.119 

Winter 5.060 4.947 6.512 6.681 

SDII  

(mm/wet-day) 

Spring 2.632 2.254 2.015 1.828 

Summer 2.810 2.408 2.455 2.211 

Fall 2.289 1.969 2.168 1.790 

Winter 1.866 1.540 2.045 1.699 

CDD  Spring 6.171 6.409 7.718 7.967 
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Station Indices Season 
Calibration Validation 

SDSM SDGAM SDSM SDGAM 

(days) Summer 18.693 18.643 4.786 4.051 

Fall 5.981 5.960 4.034 3.877 

Winter 4.489 4.390 4.308 4.400 

Prec90p 

(mm/day) 

Spring 9.173 9.251 5.848 5.240 

Summer 7.976 5.985 9.001 9.715 

Fall 9.874 10.588 6.598 6.111 

Winter 6.174 5.692 6.266 5.770 
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Figure A-3. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std, 

Prcp1, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S1 
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Figure A-4. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std, 

Prcp1, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S3 
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Figure A-5. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std, 

Prcp1, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S4 
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Figure A-6. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std, 

Prcp1, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S5 
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Figure A-7. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std, 

Prcp1, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S6 
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Figure A-8. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std, 

Prcp1, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at Dorval station (S7) 
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Figure A-9. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std, 

Prcp1, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S8 
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Figure A-10. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std, 

Prcp1, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S9 
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Figure A-11. Boxplots of annual statistics and indices of SDGAM model: Precip_m, Precip_std, 

Prcp1, SDII, CDD, Prec90p, AMS and TAP for 1961-2000 period at S10 
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Appendix B: Supplementary materials for chapter 3 

   

   

   

 

 

 

Figure B-1. Boxplots of monthly mean of percentage of wet-day 
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Figure B-2. Boxplots of monthly mean of precipitation 
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Figure B-3. Probability Plot 
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Figure B-4. Bias correction - Calibration period 
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Figure B-5. Bias correction Functions 
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Figure B-6. Bias correction - Validation period 
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Figure B-7. Log-log plots of the PWMs versus durations 
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Figure B-8. Scaling exponents plotted against the order of PWMs 
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Figure B-9. IDF curves for future periods with different RCPs at S1 
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Figure B-10. IDF curves for future periods with different RCPs at S2 
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Figure B-11. IDF curves for future periods with different RCPs at S3 
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Figure B-12. IDF curves for future periods with different RCPs at S4 
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Figure B-13. IDF curves for future periods with different RCPs at S5 
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Figure B-14. IDF curves for future periods with different RCPs at S6 

  



 185 

 

2030s 2060s 2090s  

   

RCP 

26 

   

RCP 

45 

   

RCP 

85 

Figure B-15. IDF curves for future periods with different RCPs at S7 
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Figure B-16. IDF curves for future periods with different RCPs at S9 
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Figure B-17. IDF curves for future periods with different RCPs at S10 
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Appendix C: Supplementary materials for chapter 4 

Table C-1. Information of selected stations in Vietnam 

No. Code Station name Province Lon Lat RL (years) 

1 002 DienBien Lai Châu 103 21.22 32 

2 003 LaiChau Lai Châu 103.09 22.04 32 

3 005 MuongTe Lai Châu 102.5 22.22 32 

4 006 PhaDin Lai Châu 103.31 21.34 32 

5 008 SinHo Lai Châu 103.14 22.22 32 

6 009 TamDuong Lai Châu 103.29 22.25 32 

7 011 TuanGiao Lai Châu 103.25 21.35 32 

8 012 BacYen Sơn La 104.25 21.15 32 

9 013 CoNoi Sơn La 104.09 21.08 32 

10 014 MocChau Sơn La 104.41 20.5 32 

11 016 PhuYen Sơn La 104.38 21.16 32 

12 017 QuynhNhai Sơn La 103.34 21.51 32 

13 018 SonLa Sơn La 103.54 21.2 32 

14 019 SongMa Sơn La 103.44 21.04 32 

15 023 YenChau Sơn La 104.18 21.03 32 

16 024 ChiNe Hoà Bình 105.47 20.29 32 

17 026 HoaBinh Hoà Bình 105.2 20.49 32 

18 027 KimBoi Hoà Bình 105.32 20.4 32 
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No. Code Station name Province Lon Lat RL (years) 

19 028 LacSon Hoà Bình 105.27 20.27 32 

20 029 MaiChau Hoà Bình 105.03 20.39 32 

21 030 BacMe Hà Giang 105.22 22.44 32 

22 031 BacQuang Hà Giang 104.52 22.3 32 

23 032 HoangSuPhi Hà Giang 104.41 22.45 32 

24 033 HaGiang Hà Giang 104.58 22.49 32 

25 036 BacHa Lào Cai 104.17 22.32 32 

26 040 PhoRang Lào Cai 104.28 22.14 32 

27 041 SaPa Lào Cai 103.49 22.21 32 

28 045 LucYen Yên Bái 104.43 22.06 32 

29 046 MuCangChai Yên Bái 104.03 21.52 32 

30 048 VanChan Yên Bái 104.31 21.35 32 

31 049 YenBai Yên Bái 104.52 21.42 32 

32 050 ChiemHoa Tuyên Quang 105.16 22.09 32 

33 051 HamYen Tuyên Quang 105.02 22.04 32 

34 053 TuyenQuang Tuyên Quang 105.13 21.49 32 

35 054 BacKan Bắc Cạn 105.5 22.09 32 

36 055 ChoRa Bắc Cạn 105.43 22.27 32 

37 056 NganSon Bắc Cạn 105.59 22.26 32 

38 059 DinhHoa Thái Nguyên 105.38 21.55 32 

39 061 ThaiNguyen Thái Nguyên 105.5 21.36 32 

40 063 MinhDai Phú Thọ 105.03 21.1 32 
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No. Code Station name Province Lon Lat RL (years) 

41 064 PhuHo Phú Thọ 105.14 21.27 32 

42 067 VietTri Phú Thọ 105.25 21.18 32 

43 069 TamDao Vĩnh Phúc 105.39 21.28 32 

44 071 VinhYen Vĩnh Phúc 105.36 21.19 32 

45 072 BaoLac Cao Bằng 105.4 22.57 32 

46 073 CaoBang Cao Bằng 106.15 22.4 31 

47 075 NguyenBinh Cao Bằng 105.57 22.39 32 

48 077 TrungKhanh Cao Bằng 106.31 22.5 32 

49 078 BacSon Lạng Sơn 106.19 21.54 32 

50 079 DinhLap Lạng Sơn 107.06 21.32 32 

51 080 HuuLung Lạng Sơn 106.21 21.3 32 

52 081 LangSon Lạng Sơn 106.46 21.5 32 

53 084 ThatKhe Lạng Sơn 106.28 22.15 32 

54 085 BacGiang Bắc Giang 106.13 22.18 32 

55 087 HiepHoa Bắc Giang 105.58 21.21 32 

56 088 LucNgan Bắc Giang 106.33 21.23 32 

57 089 SonDong Bắc Giang 106.51 21.2 32 

58 092 BaiChay Quảng Ninh 107.04 20.58 32 

59 093 CoTo Quảng Ninh 107.46 20.59 32 

60 094 CuaOng Quảng Ninh 107.21 21.01 32 

61 097 QuangHa Quảng Ninh 107.45 21.27 28 

62 098 TienYen Quảng Ninh 107.24 21.2 32 
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No. Code Station name Province Lon Lat RL (years) 

63 099 UongBi Quảng Ninh 106.45 21.02 32 

64 100 BachLongVy Hải Phòng 107.43 20.08 32 

65 106 HonDau Hải Phòng 106.48 20.4 32 

66 107 PhuLien Hải Phòng 106.38 20.48 32 

67 109 BaVi Hà Tây 105.25 21.09 32 

68 111 HaDong Hà Tây 105.45 20.58 32 

69 113 SonTay Hà Tây 105.3 21.08 32 

70 119 Lang Hà Nội 105.51 21.02 32 

71 121 ChiLinh Hải Dương 106.23 21.05 31 

72 122 HaiDuong Hải Dương 106.18 20.56 32 

73 123 HungYen Hưng Yên 106.03 20.39 32 

74 127 HaNam Hà Nam 105.55 20.33 32 

75 129 NamDinh Nam Định 106.09 20.24 32 

76 130 VanLy Nam Định 106.18 20.07 32 

77 131 ThaiBinh Thái Bình 106.21 20.27 32 

78 138 NhoQuan Ninh Bình 105.44 20.2 32 

79 139 NinhBinh Ninh Bình 105.58 20.14 32 

80 140 BaiThuong Thanh Hóa 105.23 19.54 32 

81 142 HoiXuan Thanh Hóa 105.07 20.22 32 

82 146 NhuXuan Thanh Hóa 105.34 19.38 32 

83 150 ThanhHoa Thanh Hóa 105.47 19.45 32 

84 151 TinhGia Thanh Hóa 105.47 19.27 32 
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No. Code Station name Province Lon Lat RL (years) 

85 153 YenDinh Thanh Hóa 105.4 19.59 32 

86 155 ConCuong Nghệ An 104.53 19.03 32 

87 156 DoLuong Nghệ An 105.18 18.54 32 

88 158 HonNgu Nghệ An 105.46 18.48 32 

89 160 QuyChau Nghệ An 105.07 19.34 32 

90 161 QuyHop Nghệ An 105.09 19.19 32 

91 162 QuynhLuu Nghệ An 105.38 19.1 32 

92 163 TayHieu Nghệ An 105.24 19.19 32 

93 164 TuongDuong Nghệ An 104.26 19.17 32 

94 165 Vinh Nghệ An 105.4 18.4 32 

95 166 HaTinh Hà Tĩnh 105.54 18.21 32 

96 167 HuongKhe Hà Tĩnh 105.43 18.11 32 

97 168 HuongSon Hà Tĩnh 105.26 18.31 32 

98 169 KyAnh Hà Tĩnh 106.17 18.05 32 

99 170 BaDon Quảng Bình 106.25 17.45 32 

100 172 DongHoi Quảng Bình 106.37 17.29 32 

101 175 TuyenHoa Quảng Bình 106.01 17.53 32 

102 176 ConCo Quảng Trị 107.2 17.1 32 

103 177 DongHa Quảng Trị 107.05 16.51 32 

104 178 KheSanh Quảng Trị 107.44 16.38 32 

105 180 ALuoi Thừa Thiên - Huế 107.17 16.13 31 

106 181 Hue Thừa Thiên - Huế 107.35 16.26 31 
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No. Code Station name Province Lon Lat RL (years) 

107 182 NamDong Thừa Thiên - Huế 107.43 16.1 32 

108 184 DaNang Đà Nẵng 108.12 16.02 31 

109 186 TamKy Quảng Nam 108.28 15.34 28 

110 187 TraMy Quảng Nam 108.15 15.2 29 

111 188 BaTo Quảng Ngãi 108.44 14.46 27 

112 189 LySon Quảng Ngãi 109.09 15.23 22 

113 190 QuangNgai Quảng Ngãi 108.48 15.07 31 

114 191 HoaiNhon Bình Định 109.02 14.31 29 

115 192 QuyNhon Bình Định 109.13 13.46 32 

116 194 SonHoa Phú Yên 108.59 13.03 30 

117 195 TuyHoa Phú Yên 109.17 13.05 31 

118 196 CamRanh Khánh Hòa 109.09 11.55 29 

119 197 NhaTrang Khánh Hòa 109.12 12.13 31 

120 199 TruongSa Khánh Hòa 111.55 8.39 30 

121 201 PhanRang Ninh Thuận 108.59 11.35 28 

122 202 HamTan Bình Thuận 107.46 10.41 29 

123 203 PhanThiet Bình Thuận 107.06 11.56 29 

124 204 PhuQuy Bình Thuận 107.56 11.31 28 

125 205 DacTo Kon Tum 107.5 14.39 26 

126 206 KonTum Kon Tum 108 14.3 31 

127 207 AnKhe Gia Lai 108.39 13.57 30 

128 208 AyunPa Gia Lai 108.27 13.23 28 
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No. Code Station name Province Lon Lat RL (years) 

129 209 Pleiku Gia Lai 108.01 13.58 31 

130 211 BuonMeThuot Đắc Lắc 108.03 12.4 30 

131 212 BuonHo Đắc Lắc 108.16 12.55 29 

132 213 DacNong Đắc Lắc 107.41 12 29 

133 216 Eakmat Đắc Lắc 108.08 12.41 27 

134 218 MDRac Đắc Lắc 108.46 12.44 29 

135 219 BaoLoc Lâm Đồng 107.49 11.32 28 

136 220 DaLat Lâm Đồng 108.27 11.57 28 

137 221 LienKhuong Lâm Đồng 108.23 11.45 26 

138 224 TriAn Đồng Nai 107.04 11.05 29 

139 226 DongPhu Bình Phước 106.54 11.32 28 

140 228 PhuocLong Bình Phước 106.59 11.5 29 

141 230 TayNinh Tây Ninh 106.07 11.2 28 

142 231 ConDao Bà Rịa-V.Tàu 106.36 8.41 29 

143 233 VungTau Bà Rịa-V.Tàu 107.05 10.52 28 

144 235 MocHoa Long An 105.56 10.47 28 

145 237 MyTho Tiền Giang 106.24 10.21 27 

146 238 CaoLanh Đồng Tháp 105.38 10.28 28 

147 239 BaTri Bến Tre 106.36 10.03 28 

148 242 CangLong Trà Vinh 106.12 9.59 29 

149 243 ChauDoc An Giang 105.08 10.42 28 

150 244 CanTho Cần Thơ 105.46 10.02 29 
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No. Code Station name Province Lon Lat RL (years) 

151 245 SocTrang Sóc Trăng 105.58 9.36 29 

152 246 PhuQuoc Kiên Giang 104.08 10.13 28 

153 247 RachGia Kiên Giang 105.04 10 28 

154 249 BacLieu Bạc Liêu 105.43 9.17 27 

155 250 CaMau Ca Mau 105.09 9.11 28 
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Appendix D: Supplementary materials for chapter 5 

Table D-1. Information of selected stations across Canada 

No. 
Province 

name 

Climate 

ID 
Station name Lat Lon 

Elevation 

(m) 

Record 

period 

RL 

(year) 

1 NL 8401705 GANDER_AIRPORT_CS 48.95 -54.57 151 1939-2017 70 

2 NL 8501900 GOOSE_A 53.32 -60.42 48 1961-2016 53 

3 NL 8403820 STEPHENVILLE_RCS 48.57 -58.57 58 1967-2017 48 

4 NL 8401501 DEER_LAKE_A 49.22 -57.40 21 1966-2002 36 

5 NL 8403506 ST_JOHN_S_A 47.62 -52.73 140 1949-1996 35 

6 NL 8403619 ST_LAWRENCE 46.92 -55.38 48 1969-2013 35 

7 NL 8400801 BURGEO_NL 47.62 -57.62 10 1967-2013 34 

8 PE 8300301 CHARLOTTETOWN_A 46.28 -63.12 48 1967-2016 31 

9 PE 8300596 SUMMERSIDE 46.43 -63.83 12 1964-2013 37 

10 NS 8205092 SHEARWATER_RCS 44.63 -63.52 24 1955-2016 59 

11 NS 8205702 SYDNEY_CS 46.17 -60.03 62 1961-2016 53 

12 NS 8202000 GREENWOOD_A 44.98 -64.92 28 1964-2016 44 

13 NS 8206495 YARMOUTH_A 43.83 -66.08 42 1971-2016 43 

14 NS 8202810 KENTVILLE_CDA_CS 45.07 -64.48 48 1960-2013 37 

15 NB 8103201 MONCTON_INTL_A 46.12 -64.68 70 1946-2016 67 

16 NB 8100885 CHARLO_AUTO 47.98 -66.33 42 1959-2013 51 

17 NB 8101605 FREDERICTON_CDA_CS 45.92 -66.62 35 1959-2015 47 

18 NB 8104900 SAINT_JOHN_A 45.32 -65.88 108 1958-2002 40 

19 NB 8100989 MIRAMICHI_RCS 47.02 -65.47 33 1964-2015 36 

20 QC 702S006 MONTREAL_PIERRE_ELLIOTT

_TRUDEAU_INTL 

45.47 -73.73 32 1943-2014 61 

21 QC 701S001 QUEBEC_JEAN_LESAGE_INTL 46.80 -71.38 60 1961-2015 46 

22 QC 7014160 L_ASSOMPTION 45.82 -73.43 21 1963-2017 45 

23 QC 7024280 LENNOXVILLE 45.37 -71.82 181 1960-2017 45 

24 QC 7060400 BAGOTVILLE_A 48.33 -71.00 159 1961-2017 45 

25 QC 7018001 SHAWINIGAN 46.57 -72.73 110 1968-2017 41 

26 QC 7055121 MONT_JOLI_A 48.62 -68.22 52 1968-2015 38 

27 QC 7047914 SEPT-ILES 50.22 -66.25 52 1969-2014 35 

28 QC 7098600 VAL-D_OR_A 48.07 -77.78 337 1961-1995 34 
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No. 
Province 

name 

Climate 

ID 
Station name Lat Lon 

Elevation 

(m) 

Record 

period 

RL 

(year) 

29 QC 7042395 FORET_MONTMORENCY_RCS 47.32 -71.15 672 1967-2014 33 

30 QC 7025280 MONTREAL_MCGILL 45.50 -73.58 56 1906-1992 32 

31 QC 7028124 SHERBROOKE_A 45.43 -71.68 241 1962-1994 32 

32 QC 7113534 KUUJJUAQ_A 58.10 -68.42 39 1970-2013 32 

33 QC 7025745 ORMSTOWN 45.12 -74.05 45 1963-1998 31 

34 QC 7028441 THETFORD_MINES 46.10 -71.35 381 1967-1999 31 

35 QC 7057287 STE_GERMAINE 46.42 -70.47 510 1966-1999 31 

36 QC 7066685 ROBERVAL_A 48.52 -72.27 178 1970-2012 31 

37 QC 7103536 KUUJJUARAPIK_A 55.28 -77.75 12 1969-2013 31 

38 QC 7020305 ARTHABASKA 46.02 -71.95 140 1963-1998 30 

39 QC 7022720 GEORGEVILLE 45.13 -72.23 266 1968-1998 30 

40 QC 7024320 LINGWICK 45.63 -71.37 266 1968-1999 30 

41 QC 7027200 ST_EPHREM 46.07 -70.97 312 1966-1999 30 

42 QC 7027802 SAWYERVILLE_NORD 45.37 -71.53 345 1966-1999 30 

43 QC 7028676 VALLEE_JONCTION 46.38 -70.93 152 1966-1999 30 

44 QC 7054095 LA_POCATIERE_CDA 47.35 -70.03 30 1962-1995 30 

45 ON 6137362 ST_THOMAS_WPCP 42.77 -81.22 209 1926-2007 75 

46 ON 6158355 TORONTO_CITY 43.67 -79.40 112 1940-2017 67 

47 ON 6144478 LONDON_CS 43.03 -81.15 278 1943-2016 65 

48 ON 6158731 TORONTO_INTL_A 43.68 -79.63 173 1950-2017 64 

49 ON 6104175 KINGSTON_PUMPING_STATIO

N 

44.23 -76.48 76 1914-2007 63 

50 ON 6139525 WINDSOR_A 42.28 -82.97 189 1946-2007 60 

51 ON 6105978 OTTAWA_CDA_RCS 45.38 -75.72 79 1905-2011 54 

52 ON 6048268 THUNDER_BAY_CS 48.37 -89.33 199 1952-2012 53 

53 ON 6143089 GUELPH_TURFGRASS 43.55 -80.22 325 1954-2017 52 

54 ON 6153301 HAMILTON_RBG_CS 43.28 -79.92 102 1962-2016 52 

55 ON 6012199 EAR_FALLS_(AUT) 50.63 -93.22 362 1952-2007 50 

56 ON 6042716 GERALDTON_A 49.78 -86.93 348 1952-2007 50 

57 ON 6131983 DELHI_CS 42.87 -80.55 231 1962-2015 50 

58 ON 6127519 SARNIA_CLIMATE 43.00 -82.30 181 1962-2016 49 

59 ON 6078285 TIMMINS_VICTOR_POWER_A 48.57 -81.38 294 1952-2007 48 

60 ON 6057592 SAULT_STE_MARIE_A 46.48 -84.52 192 1962-2007 46 

61 ON 6158875 TRENTON_A 44.12 -77.53 86 1965-2017 46 

62 ON 6034073 KENORA_RCS 49.78 -94.38 412 1966-2011 44 
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No. 
Province 

name 

Climate 

ID 
Station name Lat Lon 

Elevation 

(m) 

Record 

period 

RL 

(year) 

63 ON 6016525 PICKLE_LAKE_(AUT) 51.45 -90.22 390 1953-2007 42 

64 ON 6073980 KAPUSKASING_CDA_ON 49.42 -82.43 218 1966-2013 42 

65 ON 6085700 NORTH_BAY_A 46.37 -79.42 370 1964-2006 41 

66 ON 6037775 SIOUX_LOOKOUT_A 50.12 -91.90 383 1963-2007 40 

67 ON 6131415 CHATHAM_WPCP 42.38 -82.22 180 1966-2007 40 

68 ON 6106000 OTTAWA_MACDONALD-

CARTIER_INT_L_A 

45.32 -75.67 114 1967-2007 39 

69 ON 6142286 ELORA_RCS 43.65 -80.42 376 1970-2017 39 

70 ON 6137154 RIDGETOWN_RCS 42.45 -81.88 205 1959-2016 38 

71 ON 6145504 MOUNT_FOREST_(AUT) 43.98 -80.75 414 1962-2016 38 

72 ON 6116132 OWEN_SOUND_MOE 44.58 -80.93 178 1965-2006 37 

73 ON 6136606 PORT_COLBORNE 42.88 -79.25 175 1964-2007 37 

74 ON 6142400 FERGUS_SHAND_DAM 43.73 -80.33 417 1961-2007 37 

75 ON 6150689 BELLEVILLE 44.15 -77.38 76 1960-2006 37 

76 ON 6068150 SUDBURY_A 46.63 -80.80 348 1971-2007 36 

77 ON 6140954 BRANTFORD_MOE 43.13 -80.23 196 1961-2001 36 

78 ON 6148105 STRATFORD_WWTP 43.37 -81.00 345 1966-2004 36 

79 ON 6100971 BROCKVILLE_PCC 44.60 -75.67 96 1967-2005 35 

80 ON 6115811 ORILLIA_BRAIN 44.60 -79.43 250 1965-2004 35 

81 ON 6104027 KEMPTVILLE_CS 45.00 -75.63 99 1970-2007 34 

82 ON 6074211 KIRKLAND_LAKE_CS 48.15 -80.00 324 1980-2015 33 

83 ON 6101901 CORNWALL_ONT_HYDRO 45.03 -74.80 76 1957-1992 33 

84 ON 6106400 PETAWAWA_NAT_FORESTRY 45.98 -77.43 183 1961-1994 33 

85 ON 6119500 WIARTON_A 44.75 -81.12 222 1973-2007 33 

86 ON 6137287 ST_CATHARINES_A 43.20 -79.17 97 1954-2005 33 

87 ON 6149387 WATERLOO_WELLINGTON_A 43.45 -80.38 317 1971-2007 33 

88 ON 6153194 HAMILTON_A 43.17 -79.93 237 1971-2003 33 

89 ON 6166418 PETERBOROUGH_A 44.23 -78.37 191 1971-2006 33 

90 ON 6155878 OSHAWA_WPCP 43.87 -78.83 83 1970-2006 32 

91 ON 6075435 MOOSONEE_RCS 51.28 -80.62 9 1968-2007 31 

92 ON 6122847 GODERICH 43.77 -81.72 213 1970-2016 31 

93 ON 6150830 BOWMANVILLE_MOSTERT 43.92 -78.67 99 1968-2001 31 

94 ON 6151042 BURKETON_MCLAUGHLIN 44.03 -78.80 312 1969-2001 31 

95 MB 502S001 WINNIPEG_A_CS 49.92 -97.25 238 1944-2016 57 

96 MB 5062921 THOMPSON_A 55.80 -97.87 224 1971-2017 43 
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No. 
Province 

name 

Climate 

ID 
Station name Lat Lon 

Elevation 

(m) 

Record 

period 

RL 

(year) 

97 MB 5050919 FLIN_FLON 54.68 -101.68 303 1970-2017 42 

98 MB 5012324 PORTAGE_SOUTHPORT 49.90 -98.28 272 1964-2017 40 

99 MB 5040681 DAUPHIN_CS 51.10 -100.07 304 1954-2016 40 

100 MB 5052890 THE_PAS_CLIMATE 53.97 -101.10 274 1971-2011 39 

101 MB 5060608 CHURCHILL_CLIMATE 58.73 -94.07 28 1963-2015 39 

102 MB 5060999 GILLAM 56.37 -94.70 145 1972-2017 37 

103 MB 5061376 ISLAND_LAKE_A 53.85 -94.65 235 1971-2013 36 

104 MB 5010490 BRANDON_RCS 49.90 -99.95 409 1970-2014 35 

105 MB 5020725 DEERWOOD_RCS 49.40 -98.32 341 1964-2014 35 

106 MB 5061646 LYNN_LAKE_A 56.87 -101.08 356 1969-2005 34 

107 MB 5021054 GLENLEA 49.65 -97.12 234 1967-2000 32 

108 SK 401HP5R WEYBURN 49.70 -103.80 588 1962-2017 43 

109 SK 4012410 ESTEVAN 49.22 -102.97 580 1964-2016 52 

110 SK 4015322 MOOSE_JAW_CS 50.33 -105.53 577 1960-2014 49 

111 SK 4016560 REGINA_INT_L_A 50.43 -104.67 577 1941-1995 52 

112 SK 4043901 KINDERSLEY_A 51.52 -109.18 693 1966-2016 50 

113 SK 4057165 SASKATOON_RCS 52.17 -106.72 504 1960-2017 40 

114 SK 4060983 BUFFALO_NARROWS_(AUT) 55.83 -108.42 440 1968-2017 41 

115 AB 3012209 EDMONTON_BLATCHFORD 53.57 -113.52 671 1914-2015 69 

116 AB 3031094 CALGARY_INT_L_CS 51.12 -114.00 1081 1947-2015 61 

117 AB 3012206 EDMONTON_INTERNATIONAL

_CS 

53.32 -113.62 715 1961-2017 52 

118 AB 3025481 RED_DEER_REGIONAL_A 52.18 -113.88 904 1959-2014 49 

119 AB 3081680 COLD_LAKE_A 54.42 -110.28 541 1966-2017 49 

120 AB 3033890 LETHBRIDGE_CDA 49.70 -112.77 910 1960-2017 47 

121 AB 3034485 MEDICINE_HAT_RCS 50.03 -110.72 715 1971-2017 42 

122 AB 3062696 FORT_MCMURRAY_CS 56.65 -111.22 368 1966-2017 39 

123 AB 3075040 PEACE_RIVER_A 56.23 -117.45 570 1966-2011 39 

124 AB 3015523 ROCKY_MTN_HOUSE_(AUT) 52.42 -114.92 988 1964-2017 37 

125 AB 3023722 LACOMBE_CDA_2 52.45 -113.77 860 1970-2017 34 

126 AB 3030QLP BROOKS 50.57 -111.85 747 1965-2017 32 

127 AB 3073146 HIGH_LEVEL_A 58.62 -117.17 338 1971-2011 32 

128 AB 3036681 VAUXHALL_CDA 50.05 -112.13 778 1956-1987 31 

129 AB 3053520 JASPER 52.88 -118.07 1062 1963-1994 31 

130 AB 3070560 BEAVERLODGE_CDA 55.20 -119.40 744 1961-1994 31 
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No. 
Province 

name 

Climate 

ID 
Station name Lat Lon 

Elevation 

(m) 

Record 

period 

RL 

(year) 

131 BC 1018611 VICTORIA_GONZALES_CS 48.42 -123.32 61 1925-2017 65 

132 BC 1108395 VANCOUVER_INTL_A 49.18 -123.18 4 1953-2017 63 

133 BC 1105192 MISSION_WEST_ABBEY 49.15 -122.27 197 1963-2017 54 

134 BC 1018621 VICTORIA_INTL_A 48.65 -123.43 19 1965-2017 50 

135 BC 1068131 TERRACE_PCC 54.50 -128.62 67 1968-2017 47 

136 BC 1038205 TOFINO_A 49.08 -125.77 24 1970-2017 45 

137 BC 1126150 PENTICTON_A 49.47 -119.60 344 1953-2002 45 

138 BC 1166R45 SALMON_ARM_A 50.68 -119.23 527 1964-2016 44 

139 BC 1160899 BLUE_RIVER_A 52.13 -119.28 690 1970-2016 44 

140 BC 1103332 HANEY_UBC_RF_ADMIN 49.27 -122.57 147 1963-2005 42 

141 BC 1096450 PRINCE_GEORGE_A 53.88 -122.68 691 1960-2002 41 

142 BC 1021830 COMOX_A 49.72 -124.90 25 1963-2006 40 

143 BC 1106180 PITT_POLDER 49.27 -122.63 5 1965-2007 40 

144 BC 1142574 DUNCAN_LAKE_DAM 50.23 -116.97 548 1969-2013 38 

145 BC 1163780 KAMLOOPS_A 50.70 -120.43 345 1965-2002 38 

146 BC 1013754 JORDAN_RIVER_DIVERSION 48.50 -124.00 393 1964-2003 37 

147 BC 1107873 SURREY_KWANTLEN_PARK 49.18 -122.87 78 1962-1999 37 

148 BC 1173210 GOLDEN_A 51.30 -116.98 784 1973-2013 37 

149 BC 1054500 LANGARA 54.27 -133.07 42 1982-2017 36 

150 BC 112G8L1 SUMMERLAND_CS 49.57 -119.65 454 1955-1994 36 

151 BC 1123970 KELOWNA_A 49.97 -119.38 429 1969-2004 34 

152 BC 1192940 FORT_NELSON_A 58.83 -122.60 381 1966-2002 34 

153 BC 1046391 POWELL_RIVER_A 49.83 -124.50 129 1982-2016 33 

154 BC 1057050 SANDSPIT_A 53.25 -131.82 6 1972-2004 33 

155 BC 1108487 VANCOUVER_UBC 49.25 -123.25 76 1958-1990 33 

156 BC 1126510 PRINCETON_A 49.47 -120.52 701 1979-2017 33 

157 BC 1157630 SPARWOOD 49.75 -114.88 1137 1980-2016 33 

158 BC 1021990 COURTENAY_PUNTLEDGE_BC

HP 

49.68 -125.03 24 1964-1995 32 

159 BC 1025369 NANAIMO_A 49.05 -123.87 28 1985-2017 32 

160 BC 1067742 STEWART_A 55.93 -129.98 7 1978-2015 32 

161 BC 1113540 HOPE_A 49.37 -121.50 39 1964-1995 32 

162 BC 1148211 TRAIL_BIRCHBANK 49.20 -117.73 594 1965-1997 32 

163 BC 1152102 CRANBROOK_A 49.62 -115.78 940 1969-2002 32 

164 BC 1077500 SMITHERS_A 54.82 -127.18 521 1971-2002 31 
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Province 
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Climate 

ID 
Station name Lat Lon 

Elevation 

(m) 

Record 

period 

RL 

(year) 

165 BC 1181508 CHETWYND_A 55.68 -121.63 609 1970-2016 31 

166 BC 1060841 BELLA_COOLA_A 52.38 -126.60 35 1983-2015 30 

167 BC 1125766 OLIVER_STP 49.18 -119.53 297 1973-2005 30 

168 NT 2202102 FORT_SIMPSON_CLIMATE 61.77 -121.23 168 1969-2017 42 

169 NT 2202401 HAY_RIVER_A 60.83 -115.78 164 1971-2015 39 

170 NT 2202801 NORMAN_WELLS_A 65.28 -126.80 72 1974-2016 35 

171 NT 2204100 YELLOWKNIFE_A 62.47 -114.43 205 1963-1996 33 

172 NT 2202578 INUVIK_CLIMATE 68.32 -133.52 103 1972-2017 32 

173 YT 2101310 WHITEHORSE_AUTO 60.73 -135.10 707 1960-2016 44 

174 YT 2100880 PELLY_RANCH 62.83 -137.32 445 1966-2014 41 

175 YT 2101102 TESLIN_(AUT) 60.17 -132.73 705 1967-2016 35 
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