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Abstract 

Background: Aortic stenosis (AS) is a heart valve disease that is becoming more 

prevalent with the aging population. Genome-wide association studies (GWAS) of AS in 

European-ancestry populations have identified the variant rs10455872 in LPA as 

associated with greater disease risk, an association that has been replicated in both 

African Americans and Hispanics. This association is mediated by elevated levels of 

lipoprotein(a) (Lp[a]), which are primarily determined by variation at the LPA locus. The 

identification of additional risk loci for Lp(a) levels could reveal new targets for Lp(a)-

lowering therapies.  

Apart from LPA, several other risk loci have been identified for AS; however, a genetic 

risk score (GRS) has never been created to assess the contribution of multiple genetic 

variants to this disease. Given that Lp(a) is a risk factor for AS with strong genetic 

determinants, a GRS for Lp(a) may also be effective at explaining variance in AS. 

Methods: A large-scale GWAS for Lp(a) was performed in White British Individuals 

from the UK Biobank (N=293,274). Approximately 93,095,623 variants were tested for 

association with natural log-transformed Lp(a) levels using linear regression models 

adjusted for age, sex, genotype batch, and 20 principal components of genetic ancestry. 

Independent variants reaching genome-wide significance (P ≤ 5 × 10-8) were tested for 

association in a meta-analysis of two European-ancestry cohorts, as well as additional 

ethnic groups in the UK Biobank. Results from the Lp(a) GWAS and a previously-

performed AS GWAS were used to develop genetic risk scores (GRSs) in Non-Hispanic 

Whites (n=55,192), African Americans (n=1,917), and Hispanics (n=3,482) from the 

Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, where the 
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p-value thresholds for the scores were selected based on maximal association with AS 

in these populations. The proportion of variance explained in AS by the GRSs was 

assessed in each ethnicity, with and without the most significant variant, rs10455872.  

Results: A total of 131 independent variants were associated with Lp(a) at genome-

wide significance, validating previous associations at LPA, APOE, and CETP, and 

identifying a novel association at APOH. The variant rs8178824 at APOH, encoding 

beta2-glycoprotein I (β2GPI), was associated with increased Lp(a) levels (β [95% CI] (ln 

nmol/L), 0.064 [0.047, 0.081]; P = 2.8 × 10-13). This association was replicated in a 

meta-analysis of 5,465 European-ancestry individuals from the Framingham Offspring 

Study and Multi-Ethnic Study of Atherosclerosis (β [95% CI] (ln mg/dL), 0.16 [0.044, 

0.28]; P = 0.0071) but failed to replicate in other ethnicities from the UK Biobank (all 

P>0.05). Genetic risk scores constructed from the Lp(a) GWAS contained 263, 1,291, 

and 11,217 variants when maximized for association in GERA Whites, African 

Americans, and Hispanics, respectively, while GRSs constructed from an AS GWAS in 

the same manner contained 3, 10, and 496 variants, respectively. The best-fit (by 

ethnicity) Lp(a)-GRSs were significantly associated with AS in each ethnicity, but 

explained a small proportion of variance in AS (Whites: R2=0.13%, P= 6.2 × 10-9; 

African Americans: R2=0.56%, P=0.045; Hispanics: R2=0.31%, P=0.045). The best-fit 

(by ethnicity) AS-GRSs explained only marginally more phenotypic variance than the 

Lp(a)-GRSs (Whites: R2=0.16%, P=1.1 × 10-10; African Americans: R2=0.63%, P=0.033; 

Hispanics: R2=0.39%, P=0.024). When rs10455872 was removed from the Lp(a)-GRSs, 

the variance explained decreased to 0.076% in Whites, 0.25% in African Americans, 

and 0.26% in Hispanics. Similarly, excluding rs10455872 from the AS-GRSs decreased 
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the variance explained in Whites (0.063%), African Americans (0.13%), and Hispanics 

(0.37%).  

Conclusions: A large-scale GWAS of Lp(a) levels revealed APOH as a novel locus for 

Lp(a) in individuals of European ancestry, highlighting β2GPI as a potential therapeutic 

target. An Lp(a)-GRS derived from this GWAS was associated with AS to nearly the 

same extent as an AS-GRS when assessed in Whites, African Americans, and 

Hispanics. Both types of GRSs explained only a small proportion of variance in AS, and 

the LPA variant rs10455872 accounted for a considerable fraction of this in Whites and 

African Americans, suggesting that the genetic etiology of AS may be predominantly 

explained by variation at the LPA locus.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

Résumé 

Contexte: La sténose aortique (SA) est une maladie des valves cardiaques de plus en 

plus répandue en raison du vieillissement de la population.  Des études d’associations 

pangénomiques (GWAS) de la SA dans des populations d’ascendance européenne ont 

permis d’identifier la variation rs10455872 du locus LPA comme étant associée à un 

plus grand risque de maladie, une association qui a été par la suite reproduite autant 

chez les Afro-Américains que chez les Hispaniques. Cette association est médiée par 

des niveaux élevés de lipoprotéine(a) (Lp[a]), qui sont déterminés principalement par la 

variation au locus LPA. L’identification de loci de risque additionnels pour les niveaux de 

Lp(a) pourrait permettre d’identifier de nouvelles cibles pour le développement de 

thérapies visant à diminuer les niveaux de Lp(a). 

Outre le locus LPA, plusieurs autres loci de risque ont été identifiés pour la SA. 

Cependant, jamais un score de risque polygénique (GRS) n’avait été créé pour mesurer 

la contribution combinée de multiples variations génétiques à cette maladie. Étant 

donné que la Lp(a) est un facteur de risque génétique pour la SA, un GRS pour la Lp(a) 

pourrait aussi être utile pour expliquer la variation de l’étiologie génétique de la SA. 

Méthodes: Nous avons réalisé un GWAS à grande échelle chez des Britanniques 

blancs de la cohorte UK Biobank (n=293 274 individus). Nous avons testé environ 93 

095 623 variations pour évaluer leur association avec les niveaux de Lp(a) transformés 

en log en utilisant un modèle de régression linéaire ajustée pour l’âge, le sexe, le lot de 

génotypage et 20 composantes principales d’ascendance génétique. Les variations 

atteignant une signification au niveau du génome (P £ 5 ´ 10-8) ont été testées pour la 
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réplication dans une méta-analyse de deux autres cohortes d’ascendance européenne 

et d’autres groupes ethniques de la cohorte UK Biobank. 

Les données générées par le GWAS pour la Lp(a) et par un GWAS pour la SA ont été 

utilisées pour développer des GRS chez les Blancs non hispaniques (n=55192), les 

Afro-Américains (n=1917) et les Hispaniques (n=3482) qui font partie de la cohorte 

GERA (Genetic Epidemiology Research on Adult Health and Aging), où le seuil de 

valeur P des scores a été sélectionné pour maximiser l’association avec la SA dans 

chaque groupe ethnique. La proportion de la variance expliquée de la SA par chaque 

GRS a été évaluée avec et sans la variation la plus significative, soit rs10455872. 

Résultats: Au total, 131 variations indépendantes ont été associées de façon 

statistiquement significative au niveau pangénomique à Lp(a), validant ainsi des 

associations précédemment établies avec LPA, APOE et CETP, et identifiant une 

nouvelle association avec APOH. La variation rs8178824 sur APOH, qui code pour la 

bêta2-glycoprotéine I (β2GPI), est associée avec une augmentation des niveaux de 

Lp(a) (β [95% CI] (ln nmol/L), 0.064 [0.047, 0.081]; P = 2.8 × 10-13).  Cette association a 

été reproduite dans une méta-analyse de 5465 individus d’ascendance européenne des 

cohortes Framingham Offspring Study et MESA (Multi-Ethnic Study of Atherosclerosis) 

(β [95% CI] (ln mg/dL), 0.16 [0.044, 0.28]; P = 0.0071), mais l’association n’a pu être 

reproduite chez les autres groupes ethniques de la cohorte UK Biobank (tous sont à 

P>0.05). 

Les GRS construits à partir du GWAS de Lp(a) et maximisés pour l’association chez les 

blancs de la cohorte, les Afro-Américains et les Hispaniques de la cohorte GERA 

comprenaient respectivement 263, 1,291 et 11,217 variants tandis que les GRS 
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construits par la même méthode, à partir du GWAS de SA, comprenaient 

respectivement 3,10, et 496 variants. Les GRS-Lp(a) optimaux étaient tous associés 

significativement avec la SA mais expliquaient seulement une petite portion la variance 

de la SA (Blancs : R2=0.13%, P= 6.2 × 10-9; Afro-Américains: R2=0.56%, P=0.045; 

Hispaniques: R2=0.31%, P=0.045). Les GRS-SA optimaux expliquaient marginalement 

plus de variance phénotypique que les GRS-Lp(a) (Blancs : R2=0.16%, P= 1.1 × 10-10; 

Afro-Américains: R2=0.63%, P=0.033; Hispaniques: R2=0.39%, P=0.024). Lorsque nous 

avons retirés rs10455872 des GRS-Lp(a) optimaux, la variance expliquée a diminué de 

0.076% chez les Blancs, 0.25% chez les Afro-Américains et de 0.26% chez les 

Hispaniques. Pareillement, si la variation rs10455872 est retirée des GRS-SA optimaux, 

la variance expliquée diminue respectivement de 0.063%, 0.13% et 0.37%. 

Conclusions: Un GWAS à grande échelle des niveaux de Lp(a) a permis de révéler 

APOH comme un nouveau locus pour Lp(a) chez des individus d’ascendance 

européenne, révélant β2GPI comme une cible thérapeutique potentielle. Un GRS-Lp(a) 

dérivé de ce GWAS a également été associé à la SA presque autant qu’un GRS-SA 

lorsqu’étudié chez les Blancs, les Afro-Américains et les Hispaniques. Les deux types 

de GRS expliquent seulement une faible proportion de la variance de la SA, la variation 

LPA rs10455872 représentant une fraction considérable de la variance chez les Blancs 

et les Afro-Américains. Ces résultats suggèrent que l’étiologie génétique de la SA peut 

être expliquée principalement par des variations au niveau du locus LPA et appuient le 

rôle de la Lp(a) en tant que facteur de risque pour la SA dans toutes les groupes 

ethniques. 

 



 9 

Acknowledgements 

I would like to express my deepest thanks to my supervisor, Dr. James C. 

Engert, for his attention and support throughout my degree. I greatly appreciated the 

frequent one-on-one meetings, the continuous feedback, and the impromptu genetics 

lessons. Your dedication to your students does not go unnoticed. As well, your 

intellectual curiosity and enthusiasm for science are truly inspiring.  

I am also indebted to my supervisor, Dr. George Thanassoulis, for his brilliant 

insights and interesting analysis ideas. With your help, I was able to connect to other 

researchers and strengthen the impact of my research. In addition, your comments and 

questions always helped me to think about the broader clinical applications of my work. 

I am extremely grateful to Hao Yu Chen for her endless guidance and support; 

for helping me to navigate the world of presentations, conferences, and publications; for 

sharing code and resources that saved me time and headaches; for answering my 

emails at all hours of the day and night; for training me to think critically about my 

results; and finally, for caring about my health and mental wellbeing during particularly 

busy times. You are an incredible role model in the lab and otherwise. 

Many thanks to Line Dufresne for her statistical wisdom and guidance with 

analysis; to Katia Desbiens for her prompt help with IT issues; to Maedeh 

Mohammadnetaaj for her assistance with administrative tasks; and to Hannah Burr, 

Thomas Marsh, and Yoshihiko (Tiger) Nagai for their friendship and support. 

Finally, I would like to express my gratitude to Dr. Simon Gravel, Dr. Benjamin 

Smith, and Dr. Suhad Ali for their valuable feedback and suggestions during my 

committee meetings. 



 10 

Contribution of Authors 

Chapter 2: Genome-Wide Association Study Highlights APOH as a Novel Locus for 

Lipoprotein(a) Levels (Manuscript*)  

Hoekstra: Main analysis of Lp(a) GWAS in the UK Biobank, meta-analysis of 

Framingham Offspring Study (FOS) and the Multi-Ethnic Study of Atherosclerosis 

(MESA), drafting of manuscript 

Chen: Cleaning of phenotype data in the UK Biobank, running of Lp(a) GWAS in the UK 

Biobank, critical revision of manuscript  

Rong: Replication analysis in the FOS 

Yao & Guo: Replication analysis in the MESA 

Dufresne: Critical revision of manuscript  

Engert, Thanassoulis, Larson, Rotter: Supervisory support, critical revision of 

manuscript  

Post, Vasan, Tsimikas: Administrative support, critical revision of manuscript  

Tsai: Collection of Lp(a) data in the Multi-Ethnic Study of Atherosclerosis 

*submitted to Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB) as a Brief 

Report. 

 

Chapter 4: Assessing the Performance of Genetic Risk Scores for Aortic Stenosis 

Across Ethnicities (Manuscript*)  

Hoekstra: Quality control of summary statistics for AS and Lp(a) GWAS in the UK 

Biobank, imputation of genotype data for Hispanics in the Genetic Epidemiology 



 11 

Research on Adult Health and Aging (GERA) cohort, creation of genetic risk scores, 

statistical analysis, drafting of manuscript 

Chen: Cleaning of phenotype data in the UK Biobank, running of Lp(a) GWAS in the UK 

Biobank, critical revision of manuscript  

Dufresne: Quality control of genotype data in the GERA cohort, cleaning of phenotype 

data in the GERA cohort, critical revision of manuscript  

Burr: Imputation of genotype data for Whites in the GERA cohort 

Ambikkumar: Imputation of genotype data for African Americans in the GERA cohort 

Whitmer: Administrative support 

Munter & Cairns: Running of AS GWAS in the UK Biobank 

Lathrop: Holding of UK Biobank data for AS GWAS 

Engert & Thanassoulis: Concept and design, supervisory support, critical revision of 

manuscript  

* to be submitted to Circulation: Genomic and Precision Medicine. 

 

 

 

 

 

 

 

 

 



 12 

Chapter 1: General Introduction   

Aortic stenosis: a common heart valve disease with a poor prognosis  

Aortic stenosis (AS) is a heart condition involving the progressive thickening of the 

aortic valve due to calcium buildup. As the aortic valve stiffens, blood flow through the 

aorta is restricted, causing angina, syncope, and dyspnea1. The left ventricle must work 

harder to pump blood through the smaller opening, leading to enlargement of the 

ventricle and heart failure. Because AS is a progressive disease, many individuals don’t 

experience noticeable symptoms until the valve is severely calcified and blood flow 

through the heart is greatly reduced.  

AS is the most common acquired valvular heart disease in the developed world, 

affecting 12.4% of individuals 75 years or older2. AS may also occur in younger people 

born with a bicuspid aortic valve, whose valves calcify sooner1. The prevalence of AS 

increases with age and is expected to more than double by 2040 due to the aging 

population3. Accordingly, healthcare costs associated with AS are also expected to 

increase, with current costs in the United States estimated at $1.3 billion a year4.  

While AS was once thought to be a degenerative condition that was inevitable 

with aging, an increasing body of evidence suggests otherwise5. The development of 

AS is now thought to be an active process involving lipid metabolism and inflammation, 

much like atherosclerosis6. Indeed, there is substantial overlap between risk factors for 

AS and coronary artery disease (CAD), including older age, male sex, elevated blood 

pressure, adiposity, dyslipidemia, and cigarette smoking7. Emerging evidence also 

suggests that AS may be influenced by family history, with one study showing that 
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individuals who had a sibling with AS were at least three times more likely to develop it 

themselves8.  

Like CAD, the association between elevated low-density lipoprotein cholesterol 

(LDL-C) and AS has been noted in many observational and retrospective studies9–12. 

However, three separate randomized trials have failed to show that lipid-lowering can 

halt the progress of AS13–15. Since all clinical trials were performed in severe cases of 

AS, it is still possible that lowering LDL-C could have benefits earlier in the disease 

process16. Indeed, a Mendelian randomization analysis performed in several cohorts 

showed that having a genetic predisposition to elevated LDL-C increased the odds for 

aortic valve calcification (AVC) and incident AS17. Unlike observational studies, 

Mendelian randomization provides evidence for potentially causal associations18, 

warranting further investigation into LDL-C as a preventative target for AS. 

Apart from statins, other therapies tested to treat AS include antihypertensive 

medication and drugs targeting phosphate and calcium metabolism19. None of these 

therapies have demonstrated strong benefit in stopping or slowing disease progression. 

As a result, the only definitive treatment option for AS is aortic valve replacement via 

transcatheter procedures or conventional open-heart surgery20. Without valve 

replacement, half of patients with severe AS will die within one year, while nearly 90% 

of patients will die within 5 years4. Research aimed at understanding the causes of AS 

is needed to identify new avenues for prevention and treatment. 
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Genetic approaches for understanding disease 

One way to better understand the basis of complex traits and diseases like AS is by 

performing genome-wide association studies (GWAS). This approach involves 

genotyping a dense set of markers, called single nucleotide polymorphisms (SNPs), in a 

large number of people and assessing each SNP’s association with a given trait21,22. To 

account for the large number of tests performed, the standard p-value threshold 

indicating significant evidence of association in a GWAS is P ≤ 5.0 × 10-8(21).  

Compared to the linkage analysis used in the past, GWAS are much more powerful for 

identifying common genetic variants that have modest effects on disease21,23,24. In 

addition, GWAS are hypothesis-free and do not require any previous evidence of genes 

affecting disease, representing an unbiased approach for discovery. 

 Other genetic approaches for understanding disease include next-generation 

sequencing techniques, such as whole exome sequencing (WES) and whole genome 

sequencing (WGS). These methods involve sequencing all of the protein-coding regions 

of the genome, or in the case of WGS, the entire genome. In contrast to GWAS, which 

focus on variants with moderate-to-high frequency, WES and WGS can identify rare 

variants with larger effect sizes, making them well-suited for the study of Mendelian 

disorders25,26. Accordingly, WES and WGS have been valuable for identifying mutations 

in familial supravalvular AS, a form of AS that develops before birth27,28. Given that non-

congenital AS has many similarities to CAD, a complex disease with many risk loci29, 

GWAS may be a more appropriate method for understanding its genetic basis. 

One common issue encountered in GWAS is population stratification. In 

populations that are geographically isolated, genetic variants can become more or less 



 15 

frequent due to genetic drift or as an adaptation to the environment30,31. Similarly, 

isolated populations can develop different patterns of linkage disequilibrium (LD), which 

refers to the correlation of genotypes between nearby SNPs. When populations with 

different genetic backgrounds are included in the same GWAS, differences in allele 

frequencies between cases and controls due to differences in ancestry can lead to 

false-positive associations or masking of true associations32–34. In a simulation study 

that included both Han Chinese individuals and Caucasian individuals in the same 

sample, the false positive rate in a dataset with only one disease susceptibility locus 

was over 10%35. 

To reduce systemic bias resulting from population stratification, GWAS often 

include individuals from the same ethnic background. However, genetic admixture 

within a population may still lead to confounding36. Genetic admixture occurs when 

previously isolated populations interbreed, resulting in offspring whose genomes are 

mosaics of chromosomal segments with different ancestry31. These proportions of 

ancestry can vary widely between individuals; in one study of African Americans, 

proportions of European ancestry were estimated to range between 0% and 72%37. In a 

classic example of confounding by ancestry, Knowler et al. identified a false association 

between the Gm haplotype Gm3;5,13,14 and type 2 diabetes in American Indians that 

resulted from the association of this haplotype with European ancestry38. 

Several strategies have been proposed to correct for population stratification39,40, 

including the genomic control method and the principal component (PC) method. The 

genomic control method involves adjusting for a single factor (l) that captures systemic 

bias in the test statistic41. While this strategy is effective at addressing inflation globally, 
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it does not account for differences that are specific to each SNP42. The PC method 

involves performing principal component analysis on several thousand unlinked genetic 

markers in a GWAS dataset43. The resulting PCs capture variation in genetic ancestry 

and can be used as covariates in the GWAS (Figure 1). When several adjustment 

methods for population stratification were compared, adjusting for PCs proved to be the 

most effective method for reducing false positives in populations with varying degrees of 

stratification35. 

 

Figure 1: Principal components (PCs) for 488,377 individuals from the UK Biobank, 
where colour and shape represent the self-reported ethnic background of each 
individual. The first two PCs separate individuals with African, European, and Asian 
ancestry. Modified from Bycroft et al., 2018. 
 

Another factor influencing the success of GWAS is the selection of SNPs to be 

genotyped. Genotyping arrays that take LD into account tend to achieve the greatest 

coverage, since more genetic variation can be captured by fewer SNPs44. Patterns of 

LD can also be used to increase coverage through a process known as genotype 
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imputation, where genotypes are predicted for variants that were not directly genotyped. 

These genotypes can be used to increase the number of variants tested in a GWAS, 

increasing the power of a study and facilitating meta-analysis of studies which used 

different genotyping arrays45. To ensure that imputation is accurate, the study sample 

must have LD patterns similar to the population(s) used to create the reference panel. 

For admixed populations, panels including samples from all ancestral populations leads 

to the highest accuracy46,47. 

In addition to improving our understanding of disease, GWAS can also be used 

to create genetic risk scores (GRSs). A GRS aims to summarize the cumulative risk of a 

set of genetic variants into a single variable. This variable can then be used to assess 

the contribution of genetic variation to disease and/or to predict the likelihood of an 

individual developing disease48. The predictive accuracy of a GRS is often assessed by 

measuring the area under a receiver operator characteristic (ROC) curve (AUC), which 

generally varies between 0.5 (a model with predictive power no better than chance) and 

1 (a perfect model)49. As an alternative to measuring the AUC, the proportion of trait 

variability explained by the GRS can be calculated using the multiple R2 from linear 

regression, or a pseudo-R2 for binary traits50. 

One simple approach to creating a GRS involves selecting all variants reaching 

some threshold of significance in a GWAS and summing the risk alleles in a weighted 

fashion. This method is known as clumping (or pruning) and thresholding and can be 

implemented using the software PRSice or PRSice-251. Other methods for creating 

GRSs include penalized regression (eg. lassosum52) and Bayesian approaches (eg. 

LDPred53). When these three approaches were compared for run time, memory usage, 
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and predictive power, PRSice-2 was more efficient than lassosum and LDPred at all 

sample sizes tested and had comparable predictive accuracy51. In addition, the 

clumping and thresholding approach used by PRSice-2 typically includes fewer variants 

in the GRSs, allowing for easier interpretation of the results and potentially greater 

portability to other populations.    

 

Genetic studies of AS and Lipoprotein(a) 

In 2013, the first GWAS for aortic valve disease was performed, identifying rs10455872 

in the LPA gene as associated with both AVC and incident AS54. This variant, which 

was previously associated with CAD55, has since been robustly associated with AS in 

numerous studies56–59. Recently, a transcriptome-wide association study (TWAS) of AS 

identified PALMD as an additional risk locus, with the lead variant increasing odds of 

disease by 29%60. Another study simultaneously reported associations at PALMD and 

TEX4161. Finally, a meta-GWAS and TWAS for AS demonstrated additional 

associations at IL6, ALPL, and NAV162. Of all risk loci identified for AS, LPA is 

estimated to have the largest effect, with each minor allele of rs10455872 increasing 

risk by 66%58. 

The LPA gene codes for apolipoprotein(a), which, when bound to an LDL-like 

particle, forms lipoprotein(a) (Lp[a]). Genetic variation in the LPA gene, determined by a 

variable number of kringle IV type 2 repeats and other sequence variation, is estimated 

to explain over 90% of variation in plasma Lp(a) levels in European populations63. The 

link between LPA and AS has therefore implicated elevated plasma Lp(a) levels in the 

development of AS, an association that is thought to be causal54,57. As a result, Lp(a)-
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lowering therapies are currently being tested as a treatment for both AS and CAD64,65. 

While these trials have shown promising results, the identification of additional loci for 

Lp(a) could reveal new targets for Lp(a)-lowering therapies and contribute to our 

knowledge of Lp(a) metabolism. 

Although several GWAS have been performed for AS, to our knowledge, no 

GRSs have been developed for AS. In contrast, over 15 GRSs have been published for 

CAD in the last 5 years66. The creation of a GRS for AS could be challenging for a 

number of reasons; AS has a late onset and is not highly prevalent in cohorts of middle-

aged adults. In addition, individuals with less severe AS are often asymptomatic and are 

not diagnosed. Finally, AS is a binary trait, leading to less statistical power in 

association studies. Given that Lp(a) is a continuous trait and levels are relatively 

independent of age67, a GRS for Lp(a) may be more effective at explaining risk of AS 

than a GRS for AS.  

The discovery of Lp(a) a risk factor for AS has highlighted the importance of 

genetic studies for contributing to our understanding of AS etiology. However, all 

genome-wide discovery studies for AS have been performed in populations of European 

descent. This lack of ethnic diversity is part of a larger research trend that sees a 

disproportionate focus on individuals of European ancestry68–71. As a result, findings 

from genetics studies may not be generalizable to broader populations. In AS research, 

only one study has attempted to replicate a previous association in non-European 

populations54. Studies assessing the transferability of previous results to other 

ethnicities are urgently needed to improve our understanding of AS in all populations. 
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Objectives 

The main objectives of this thesis are: (1) to determine if Lp(a) levels are influenced by 

loci other than LPA, and (2) to determine whether genetic associations with Lp(a) can 

explain variance in AS across ethnic groups. To achieve these goals, a large-scale 

GWAS of Lp(a) was performed in White British individuals from the UK Biobank, with 

attempted replication in other ethnicities from the same cohort. Next, GRSs for Lp(a) 

were derived from the GWAS and fit for maximal association with AS across ethnicities 

in an American cohort. The performance of the Lp(a)-GRSs was compared to that of 

AS-GRSs derived from the same cohort, and the contribution of the LPA variant 

rs10455872 to both types of scores was assessed. 
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Abstract 

Objective: Lipoprotein(a) (Lp(a]) is an independent risk factor for cardiovascular 

diseases and plasma levels are primarily determined by variation at the LPA locus. We 

performed a genome-wide association study (GWAS) in the UK Biobank to determine 

whether additional loci influence Lp(a) levels. 

Approach and Results: We included 293,274 White British individuals in the discovery 

analysis. Approximately 93,095,623 variants were tested for association with natural 

log-transformed Lp(a) levels using linear regression models adjusted for age, sex, 

genotype batch, and 20 principal components of genetic ancestry. After quality control, 

131 independent variants were associated at genome-wide significance (P ≤ 5 × 10-8). 

In addition to validating previous associations at LPA, APOE, and CETP, we identified a 

novel variant at the APOH locus, encoding beta2-glycoprotein I (β2GPI). The APOH 

variant rs8178824 was associated with increased Lp(a) levels (b [95% CI] (ln nmol/L), 

0.064 [0.047, 0.081]; P = 2.8 × 10-13) and demonstrated a stronger effect after 

adjustment for variation at the LPA locus (b [95% CI] (ln nmol/L), 0.089 [0.076, 0.10]; P 

< 1.0 × 10-25). This association was replicated in a meta-analysis of 5,465 European-

ancestry individuals from the Framingham Offspring Study and Multi-Ethnic Study of 

Atherosclerosis (b [95% CI] (ln mg/dL), 0.16 [0.044, 0.28]; P = 0.0071).  

Conclusions: In a large-scale GWAS of Lp(a) levels, we identified APOH as a novel 

locus for Lp(a) in individuals of European ancestry. Additional studies are needed to 

determine the precise role of β2GPI in influencing Lp(a) levels as well as its potential as 

a therapeutic target. 
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Abbreviations 

Lp(a): Lipoprotein(a) 

GWAS: Genome-wide association study 

Apo(a): Apolipoprotein(a) 

LDL: Low-density lipoprotein  

β2GPI: Beta2-glycoprotein I 

MESA: Multi-Ethnic Study of Atherosclerosis  

 

Introduction  

Lipoprotein(a) (Lp[a]) is an independent risk factor for both coronary artery disease and 

aortic valve stenosis1,2. Lp(a) consists of a low-density lipoprotein (LDL)-like particle 

covalently bound to the glycoprotein apolipoprotein(a) (apo[a]). Levels of Lp(a) are 

primarily controlled by the size of the apo(a) protein, with smaller apo(a) isoforms 

leading to higher concentrations of plasma Lp(a). This size polymorphism is caused by 

a variable number of kringle IV type 2 repeats in the LPA gene. Together with other 

sequence variation in LPA, these kringle IV type 2 repeats are estimated to explain 

more than 90% of variability in Lp(a) concentration in individuals of European 

ancestry3,4. 

Lp(a) plasma concentrations vary widely between populations, with African-

ancestry individuals having 2-3 fold higher levels than European-ancestry individuals5,6. 

The distribution of Lp(a) is right-skewed across populations, with most individuals 

having very low levels7. While the precise physiological functions of Lp(a) are still 

unclear, there is evidence that it has proatherogenic and proinflammatory properties8. In 
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pathophysiological studies, Lp(a) or apo(a) have been detected in both the lesioned 

intima of human arteries9–12 and in aortic valve lesions13,14.    

Several genome-wide association studies (GWAS) of Lp(a) have been 

performed, highlighting LPA as the major genetic determinant of Lp(a) levels4,7,15–20. 

However, these studies have been limited by small sample sizes (N<15,000), sparse 

genotyping arrays, or a focus on founder populations. In this study, we aimed to identify 

novel loci for Lp(a) by performing a GWAS in nearly 300,000 individuals from the UK 

Biobank. The findings could provide further insights into the regulation and clearance of 

Lp(a) particles and highlight novel targets for Lp(a)-lowering therapies. 

 

Materials and Methods 

Study Population 

The UK Biobank study recruited over 500,000 individuals aged 40-69 years from 22 

recruitment centers across the United Kingdom between 2006 and 2010. Participants 

provided blood samples for DNA extraction and biomarker analysis and completed a 

series of questionnaires, as previously described21. UK Biobank received ethical 

approval from the North West Multi-Centre Research Ethics Committee and all 

participants provided written informed consent. All relevant internal review boards 

approved this study. Only genetically-confirmed White British individuals were included 

in the discovery analysis to reduce confounding by ancestry, where White British 

ancestry was determined using a combination of self-reported ethnicity and results from 

a principal component analysis21. 
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Phenotyping  

Lp(a) (nmol/L) was measured using an immunoturbidimetric analysis on a Randox 

AU5800. Measurements were taken at the initial assessment visit (2006-2010) or the 

first repeat assessment visit (2012-2013). Measurements that returned an error from the 

analyzer or were outside of the reportable range (3.80-189 nmol/L) were excluded 

(n=91,426). Additional phenotypes are described in the Supplemental Material. 

 

Genotyping  

Genotyping was performed using the Affymetrix UK BiLEVE Axiom array on an initial 

50,000 participants, while the remaining 450,000 participants were genotyped using the 

Affymetrix UK Biobank Axiom array. Quality control and imputation were performed 

centrally by the UK Biobank as described previously21. Briefly, genetic markers were 

tested for batch effects, plate effects, departure from Hardy-Weinberg equilibrium, sex 

effects, array effects, and discordance across control replicates; markers that failed at 

least one test in a given batch had their genotype calls set to missing. Imputation was 

performed using only markers present on both the UK BiLEVE and UK Biobank Axiom 

arrays, and markers that failed quality control in more than one batch, had a >5% 

missing rate, or had a minor allele frequency <0.0001 were removed. Samples with 

unusually high heterozygosity or >5% missing rate were excluded from analysis. 

 

GWAS for Lp(a) 

Associations of 93,095,623 genetic variants with natural log-transformed Lp(a) were 

tested in linear regression models assuming additive genetic effects in PLINK version 
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2.022,23. All models were adjusted for age, sex, genotype batch, and 20 principal 

components of ancestry. Variants with minor allele frequency < 0.01 or imputation 

quality score < 0.3 were removed (n=83,266,620). Clumping was performed on variants 

reaching genome-wide significance (P ≤ 5 × 10-8) with PLINK version 1.922,24; index 

variants were chosen greedily starting with the lowest p-value, and variants less than 

1Mb away from an index variant with an r2 of 0.01 were assigned to that index variant’s 

clump. The most significant independent variants in each locus (lead variants) were 

queried for previous associations using PhenoScanner (accessed 02/04/2020)25,26. In a 

conditional analysis, all lead variants were tested for association with Lp(a) after 

additional adjustment for assessment center. 

 

Conditional analysis for the LPA locus 

A weighted LPA-region genetic risk score was created using all independent genome-

wide significant variants in the LPA region. Lead variants outside the LPA region were 

tested for association with Lp(a) after adjusting for age, sex, genotype batch, 20 

principal components, and the LPA-region genetic risk score.  

 

Replication in Other Populations 

The lead variant in each locus was tested for association with Lp(a) in other ethnic 

groups from the UK Biobank containing at least 1,000 unrelated individuals (South 

Asians, Black Africans, and Black Caribbeans). Lp(a) (nmol/L) was natural log 

transformed and models were adjusted for age, sex, genotype batch, and 20 principal 

components. Lead variants were also assessed in a fixed-effects meta-analysis of self-
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reported White individuals from the Multi-Ethnic Study of Atherosclerosis (MESA) and 

the Framingham Offspring Study. The variant rs1065853 was not available in these 

cohorts so rs7412 was used as a proxy (linkage disequilibrium r2=0.99 in the UK 

Biobank). Cohort descriptions and model details are provided in the Supplemental 

Material.  

 

Statistical Analyses 

Two-sided p-values ≤ 5 × 10-8 were considered significant in the GWAS and two-sided 

p-values ≤ 0.05 were considered significant in all other analyses. Proportion of variance 

explained was calculated for independent significant variants in the LPA region 

independently, when modeled together, and when combined as a weighted genetic risk 

score. For data availability, please see the Major Resources Table in the Supplemental 

Material. 

 

Results 

A total of 293,274 individuals with Lp(a) measurements were included in the study. 

Demographic characteristics of the UK Biobank Lp(a) subset are presented in Table I in 

the Supplemental Material, with individuals stratified by Lp(a) levels. Individuals with 

Lp(a) levels greater than or equal to the median were more likely to have coronary 

artery disease and aortic stenosis but were less likely to be female or diabetic (all 

P<0.001). These individuals also had higher levels of LDL cholesterol (corrected and 

uncorrected for Lp[a]) and high-density lipoprotein cholesterol (all P<0.001). 
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Following quality control, 9,829,003 variants with a minor allele frequency > 0.01 

remained for further analysis. The association of these variants with Lp(a) showed no 

substantial inflation in the test statistics (genomic inflation factor [λ] = 1.03, Figure 1). 

After clumping, we identified 131 independent variants associated with Lp(a) at the 

genome-wide significance level of P ≤ 5 × 10-8. The most significant variant, rs10455872 

in LPA, explained 29% of variance in Lp(a) levels (Table II in Supplemental Material). 

There were 126 other independent variants in the LPA region, explaining an additional 

20% of variance.  

Outside the LPA region, we identified variants in four loci (Table 1). Variant 

rs1065853 on chromosome 19, located downstream of APOE, was associated with 

decreased Lp(a) levels (b [95% CI] (ln nmol/L), -0.11 [-0.12, -0.10]; P < 1.0 × 10-25), as 

was variant rs247617 on chromosome 16, located upstream of CETP (b [95% CI] (ln 

nmol/L), -0.023 [-0.030, -0.017]; P = 1.0 × 10-13). On chromosome 17, rs8178824 in 

APOH was associated with an increase in Lp(a) (b [95% CI] (ln nmol/L), 0.064 [0.047, 

0.081]; P = 2.8 × 10-13). Finally, variant rs826128 on chromosome 2, located in the long 

non-coding RNA AC093639.1, was associated with decreased Lp(a) levels (b [95% CI] 

(ln nmol/L), -0.039 [-0.053, -0.026]; P = 5.9 × 10-9). The median Lp(a) level by genotype 

is shown for all lead variants in Table III of the Supplemental Material. Additional 

adjustment for assessment center did not materially change the results (Table IV in 

Supplemental Material). 

The lead variant in each locus was evaluated for association with Lp(a) in the 

following populations from the UK Biobank: South Asian (n=6,101), Black African 

(n=2,510), and Black Caribbean (n=3,207). Consistent with results in White British 
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individuals, rs10455872 was associated with increased Lp(a) in South Asians (b [95% 

CI] (ln nmol/L), 1.01 [0.82,1.19]; P < 1.0 × 10-25) and Black Caribbeans (b [95% CI] (ln 

nmol/L), 0.81 [0.59, 1.03]; P = 1.4 × 10-12). This variant showed no association in Black 

Africans, likely owing to its low frequency in this population (minor allele frequency = 6.3 

× 10-4). The variant rs1065853 near APOE was significantly associated with Lp(a) 

across ethnic groups, with Black African individuals demonstrating the largest decrease 

in levels per minor allele (T) (b [95% CI] (ln nmol/L), -0.28 [-0.34, -0.21]; P = 9.4 × 10-16). 

The lead variants in CETP, APOH, and AC093639.1 were not significantly associated in 

South Asians, Black Africans, or Black Caribbeans (Table V in Supplemental Material).  

The lead variants were also tested for association with Lp(a) in a meta-analysis 

of 5,465 European-ancestry individuals from the Multi-Ethnic Study of Atherosclerosis 

and the Framingham Offspring Study. Both rs10455872 in LPA and rs8178824 in APOH 

were significantly associated with increased Lp(a) levels in the meta-analysis 

(rs10455872: b [95% CI] (ln mg/dL), 2.1 [2.0, 2.2]; P < 1.0 × 10-25 and rs8178824: b 

[95% CI] (ln mg/dL), 0.16 [0.044, 0.28]; P = 0.0071). The lead variants in APOE, CETP, 

and AC093639.1 showed no significant effects (Table VI in Supplemental Material). 

The weighted LPA-region genetic risk score contained 127 variants and 

explained 44% of the variance in Lp(a) levels. After adjusting for this score, variants in 

APOE, CETP, and APOH showed stronger effects on Lp(a) (Table VII in Supplemental 

Material). Conversely, the variant rs826128 on chromosome 2 showed a decreased 

effect and no longer reached genome-wide significance (b [95% CI] (ln nmol/L), -0.016 

[-0.026, -0.0058]; P = 0.0019). 
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Discussion  

We performed a GWAS for plasma Lp(a) levels in 293,274 White British individuals from 

the UK Biobank. We confirmed the association of loci in the LPA region with Lp(a) 

levels, as well as APOE and CETP. In addition, we identified APOH as a novel risk 

locus and replicated this association in a meta-analysis of two independent cohorts.  

As expected, our association study identified many significant variants in the LPA 

gene and the surrounding region. Despite imposing a stringent r2 threshold (£ 0.01), 127 

variants were independently associated with Lp(a). Together, the top 4 variants 

explained 40% of the variance in Lp(a) levels, while the remaining 123 explained an 

additional 9%. Consistent with previous work1,20,27, the variant rs10455872 was the most 

strongly associated with Lp(a), explaining 29% of variation in Lp(a) levels alone.  

Outside of the LPA region, we identified variants at four loci, two of which have 

been previously associated with Lp(a) or Lp(a)-cholesterol: APOE and CETP. Our lead 

variant near the APOE locus, rs1065853, is in high linkage disequilibrium with the 

apoE2-defining variant rs7412 (r2=0.99), which has been previously associated with 

decreased Lp(a)4,19,28,29. Relative to the apoE3 and apoE4 isoforms, apoE2 has a lower 

affinity for LDL receptors and LDL receptor-related protein I, potentially leading to less 

competition for Lp(a) binding and greater clearance of Lp(a)30. Upstream of the CETP 

locus, the variant rs247617 was also associated with decreased Lp(a) levels. This 

finding is consistent with clinical studies showing that inhibition of cholesteryl ester 

transfer protein, the product of CETP, decreases Lp(a) levels31–33. This variant is also in 

high linkage disequilibrium with rs247616 (r2=0.99), which has been previously 

associated with Lp(a)-cholesterol28.  
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Apart from APOE and CETP, no other loci outside the LPA region have been 

associated with Lp(a) levels at the genome-wide significance level. Here, we identify 

rs8178824 in APOH as significantly associated with increased Lp(a) and provide 

independent replication. Relative to rs10455872, the effect size of rs8178824 is small, 

with individuals homozygous for the minor allele having a median Lp(a) level only 4.7 

nmol/L higher than individuals with two major alleles. However, this effect is comparable 

to those seen for APOE and CETP, where the difference in homozygous genotype 

classes is 10.5 nmol/L and 1.9 nmol/L, respectively. As demonstrated previously with 

treatments targeting CETP, which produced reductions in Lp(a) of more than 30%31–33, 

therapeutic targeting of the APOH locus could have a more substantial effect on Lp(a) 

levels than the effect of a single variant. 

The APOH locus encodes beta2-glycoprotein I (β2GPI), a single chain plasma 

protein with a high affinity for negatively charged surfaces34. Recently, β2GPI has been 

shown to interact with proprotein convertase subtilisin/kexin-9 (PCSK9)35, whose 

inhibition leads to reductions in LDL cholesterol36. This evidence is supported by 

previous studies demonstrating that genetic variation in APOH is associated with 

decreased levels of LDL cholesterol37–40 and peak particle diameter41. In vitro, β2GPI 

has also been shown to bind to Lp(a), both through the phospholipids of the LDL 

component and through the kringle IV-domain of apo(a)42. Given that apo(a) is a major 

site for the accumulation of negatively charged oxidized phospholipids43, the interaction 

of β2GPI and Lp(a) may be primarily mediated through binding of β2GPI to these 

phospholipids. 
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The variant we identified in APOH is in perfect linkage disequilibrium with 

rs1801689 (r2=1.0). Interestingly, the amino acid change caused by rs1801689 

(Cys325Gly, also known as Cys306Gly) has been shown to alter the binding capacity of 

β2GPI for phospholipids44. This change may reduce β2GPI’s affinity for oxidized 

phospholipids on apo(a), thereby allowing more free molecules of β2GPI and Lp(a) to 

circulate in the plasma. Indeed, rs1801689 has also been previously associated with 

increased levels of plasma β2GPI45,46. The potential role of β2GPI in lipid metabolism is 

further supported by the observation that it can accelerate triglyceride clearance in 

rats47. Future studies should investigate whether the presence of β2GPI similarly affects 

Lp(a) clearance or affects its pathogenicity through other mechanisms. 

This study has several strengths and limitations. The UK Biobank discovery 

sample was larger than any previous Lp(a) GWAS, and thus had more power to detect 

novel associations. In addition, we were able to replicate our novel finding in APOH in a 

meta-analysis of two other European-ancestry cohorts. However, the APOH variant 

showed no association with Lp(a) in other ethnicities from the UK Biobank. The lack of 

replication observed for this variant and others may reflect reduced power due to 

smaller sample sizes, different allele frequencies, or different patterns of linkage 

disequilbrium48; nonetheless, additional studies in larger non-European cohorts are 

warranted. Another limitation of our study is the high percentage of individuals missing 

Lp(a) measurements (>20%) in the UK Biobank due to the assay’s limited reportable 

range (3.80-189 nmol/L); our results may therefore not apply to individuals with very 

high levels of Lp(a).   
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In summary, we have performed a large-scale GWAS of Lp(a) levels, validating 

previous loci and identifying APOH as a novel locus. Our findings provide further insight 

into the regulation of Lp(a) levels and highlight β2GPI as a potential therapeutic target in 

individuals with elevated Lp(a).  
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Highlights 

• We have performed a large-scale genome-wide association study of Lp(a) levels. 

• We confirmed the association of variants in LPA, APOE, and CETP with Lp(a). 

• We identified APOH as a novel risk locus for Lp(a), highlighting β2GPI as a 

determinant of Lp(a) levels and a potential therapeutic target. 



 

Tables 

Table 1: Association of lead variants with Lp(a). 

Variant CHR Position Genes in 
Locus 

Minor 
Allele 
(Freq) 

! [95% CI] (ln nmol/L) P Variants 
in Locus* 

rs10455872 6 161010118 LPA, 

ZDHHC14, 

SNX9† 

 

G (0.076) 1.7 [1.7,1.7] <1.0 × 10-25 127 

rs1065853 19 45413233 APOE T (0.080) -0.11 [-0.12, -0.10] <1.0 × 10-25 1 

rs247617 16 56990716 CETP A (0.32) -0.023 [-0.030, -0.017] 1.0 × 10-13 1 

rs8178824 17 64224775 APOH T (0.030) 0.064 [0.047,0.081] 2.8 × 10-13 

 

1 

rs826128 2 184797074 AC093639.1 A (0.054) -0.039 [-0.053, -0.026] 5.9 × 10-9 1 

*Number of independent (r2 < 0.01), genome-wide significant variants. 

†Additional genes (+/- 3.5 MB from LPA): TULP4, SYTL3, EZR, RP1-155D22.1, RSPH3, RP1-111C20.4, FNDC1, RP11-

125D12.1, RP11-125D12.2, RP3-393E18.1, SOD2, ACAT2, PNLDC1, RP1-249F5.3, IGF2R, SLC22A1, SLC22A2, 

SLC22A3, LPAL2, PLG, RP11-235G24.1, RP11-235G24.2, RP11-235G24.3, RP3-428L16.1, MAP3K4, AGPAT4, PARK2.
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SUPPLEMENTAL MATERIAL 

Supplemental Methods 

Phenotype Definitions in the UK Biobank 

Sex was coded as concordant genetic sex and self-reported gender. Age refers to the 

age of the participant on the day they attended an Assessment Centre. Presence of 

diabetes was determined using self-report of diagnosis by a doctor. Cases of coronary 

artery disease were determined by diagnosis of International Classification of Diseases, 

9th Revision (ICD-9) 410, 410.0, 410.1, 410.2, 410.3, 410.4, 410.5, 410.6, 410.7, 410.8, 

410.9, 411.9, 412, 412.9, 414.0, 414.1, 414.8, 414.9, or 429.7 or diagnosis of ICD-

10 I21, I21.0, I21.1, I21.2, I21.3, I21.4, I21.9, I22, I22.0, I22.1, I22.8, I22.9, I23, I23.0, 

I23.1, I23.2, I23.3, I23.6, I23.8, I24.1, I25.0, I25.1, I25.2, I25.3, I25.4, I25.5, I25.6, I25.8, 

I25.9, I51.0, I51.3 in the hospital inpatient records or death records, or OPCS4 

procedure codes K40.1, K40.2, K40.3, K40.4, K40.8, K40.9, K41.1, K41.2, K41.3, 

K41.4, K41.8, K41.9, K42.1, K42.2, K42.3, K42.4, K42.8, K42.9, K43.1, K43.2, K43.3, 

K43.4, K43.8, K43.9, K44.1, K44.2, K44.8, K44.9, K45.1, K45.2, K45.3, K45.4, K45.5, 

K45.6, K45.8, K45.9, K46.1, K46.2, K46.3, K46.4, K46.5, K46.8, K46.9, K49.1, K49.2, 

K49.3, K49.4, K49.8, K49.9, K50.1, K50.2, K50.3, K50.4, K50.8, K50.9, K75.1, K75.2, 

K75.3, K75.4, K75.8, K75.9 in hospital inpatient records. Low-density lipoprotein 

cholesterol (LDL-C) in nmol/L was measured by enzymatic protective selection analysis 

on a Beckman Coulter AU5800. Corrected LDL-C was calculated by converting both 

LDL-C and lipoprotein(a) (Lp[a]) into mg/dL and subtracting 30% of the Lp(a) value from 

the LDL-C value, as previously described1. High-density lipoprotein cholesterol (nmol/L) 

was measured by enzyme immunoinhibition analysis on a Beckman Coulter AU5800. 
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Systolic and diastolic blood pressure (mmHg) were each measured automatically using 

an Omron device. Body mass index (kg/m2) was calculated using weight and height 

measurements from the initial assessment visit.  

 

Replication Cohorts 

The Multi-Ethnic Study of Atherosclerosis (MESA) recruited 6,814 individuals of diverse 

ancestry from 6 communities in the United States between 2000 and 2002, as 

previously described2. Individuals were 45 to 84 years old at the baseline exam and free 

of clinical cardiovascular disease. Blood samples were genotyped using the Affymetrix 

Genome-Wide Human SNP Array 6.0 and imputation was performed using the 1000 

Genomes Phase 3 reference panel3. Lp(a) in mg/dL was measured at baseline by 

Health Diagnostics Laboratory (Richmond, VA) using a latex-enhanced turbidimetric 

immunoassay (Denka Seiken, Tokyo, Japan) that controls for the heterogeneous sizes 

of apolipoprotein(a). Our analysis included 2,456 unrelated individuals of European 

ancestry. Associations between genetic variants and natural log-transformed Lp(a) were 

tested in linear regression models adjusted for age, sex, recruitment site, and two 

principal components of ancestry.  

 

The Framingham Offspring Study (FOS) is a longitudinal population-based study that 

recruited 5,124 of the original Framingham Heart Study participants’ offspring and their 

spouses, as previously described4. During the 5th examination cycle (1991-1995), 

participants underwent a medical history, physical examination, and had blood drawn 

for plasma lipid and lipoprotein measurements. Lp(a) was measured in mg/dL using an 
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immunoturbidimetric assay from Wako Chemicals USA (Richmond, VA). Genotyping 

was performed on the Affymetrix GeneChip Human Mapping 500K Array and 50K 

Human Gene Focused Panel and genotypes were imputed using the Haplotype 

Reference Consortium panel5. Our analysis included 3,009 unrelated individuals of 

European ancestry. Associations between genetic variants and natural log-transformed 

Lp(a) were tested using linear regression models adjusted for age, sex, and 10 principal 

components of ancestry.  

 

Supplemental Figures 

 

Figure I: QQ-plot for the GWAS of natural log-transformed Lp(a) adjusted for age, sex, 
genotype batch, and 20 principal components. Associations with P < 4.9 × 10-324 are not 
shown due to limitations in plotting software. 
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Supplemental Tables 
Table I: Population characteristics of the UK Biobank cohort with Lp(a) measurements. 
 All < Lp(a) median >= Lp(a) median P 
N 293,274 146,416 146,858 NA 
Male (%) 135,220 (46.1) 69,918 (47.8) 65,302 (44.5) <0.001 

Age, y (mean (SD)) 57.9 (8.2) 57.7 (8.2) 58.2 (8.1) <0.001 

BMI, kg/m2 (mean (SD)) 27.4 (4.7) 27.4 (4.8) 27.4 (4.7) 0.73 
CAD (%) 22,391 (7.6) 10,172 (7.0) 12,219 (8.3) <0.001 
AS (%) 1722 (0.6) 740 (0.5) 982 (0.7) <0.001 
Diabetes (%) 14,340 (4.9) 7,710 (5.3) 6,630 (4.5) <0.001 
Ever smoked (%) 176,845 (60.5) 88,317 (60.5) 88,528 (60.5) 0.92 
SBP, mm Hg (mean 
(SD)) 138.6 (18.7) 138.5 (18.6) 138.6 (18.7) 0.10 
DBP, mm Hg (mean 
(SD)) 82.0 (10.1) 82.0 (10.2) 82.0 (10.1) 0.073 
HDL-C, mmol/L (mean 
(SD)) 1.45 (0.38) 1.45 (0.38) 1.46 (0.38) <0.001 

LDL-C, mmol/L (mean 
(SD)) 3.57 (0.87) 3.50 (0.85) 3.64 (0.87) <0.001 

Corrected LDL-C, 
nmol/L (mean (SD)) 3.53 (0.86) 3.49 (0.85) 3.57 (0.87) <0.001 
Lp(a), nmol/L (median 
[IQR]) 20.1 [9.3, 60.2] 9.3 [6.1, 13.3] 60.1 [33.8, 119.0] <0.001 
Abbreviations: BMI, body mass index; CAD, coronary artery disease; AS, aortic stenosis; SBP, systolic blood pressure; 
DBP, diastolic blood pressure; HLD-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; 
Lp(a), lipoprotein(a); SD, standard deviation; IQR, inter-quartile range. 
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Table II: Variance explained for the top 10 independent variants in the LPA region, modeled independently and 
cumulatively. 
Variant Rank Variant R2 Model R2 
rs10455872 1 0.29 0.29 
rs73596816 2 0.046 0.36 
rs150415123 3 0.026 0.37 
rs544366796 4 0.023 0.40 
rs140570886* 5 0.015 0.42 
rs78439586 6 0.014 0.42 
rs41269133 7 0.013 0.43 
rs77009508 8 0.012 0.43 
6:160489092_TGG_T 9 0.012 0.44 
rs528521448 10 0.011 0.44 
Abbreviations: R2, proportion of variance explained. 
*rs140570886 is in high linkage disequilibrium with rs3798220 (r2=0.81 in LDlink6), which was not present in the dataset. 
 
Table III: Median Lp(a) level within each genotypic class for the lead variants. 
Variant Locus Minor Allele 

(Freq) 
Median Lp(a) level (nmol/L) 
Homozygous 
Major 

Heterozygous Homozygous 
Minor 

rs10455872 LPA G (0.076) 16.1 127 148 
rs1065853 APOE T (0.080) 20.8 16.8 10.3 
rs247617 CETP A (0.32) 20.7 19.9 18.8 
rs8178824 APOH T (0.030) 20.0 22.6 24.7 
rs826128 AC093639.1 A (0.054) 20.2 19.1 17.4 
 



 

Table IV: Association of lead variants with natural log-transformed Lp(a) after adjusting for age, sex, genotype batch, 20 
principal components, and assessment center. 
Variant Locus Minor Allele (Freq) ! [95% CI] (ln nmol/L) P 

rs10455872 LPA G (0.076) 1.7 [1.7, 1.7] <1.0 × 10-25 

rs1065853 APOE T (0.080) -0.11 [-0.12, -0.10] <1.0 × 10-25 

rs247617 CETP A (0.32) -0.023 [-0.030, -0.017] 1.1 × 10-13 

rs8178824 APOH T (0.030) 0.064 [0.047, 0.081] 2.9 × 10-13 

rs826128 AC093639.1 A (0.054) -0.040 [-0.053, -0.0026] 5.4 × 10-9 

Abbreviations: CI, confidence interval. 
 
Table V: Association of lead variants with natural log-transformed Lp(a) in 6,101 South Asians, 2,510 Black Africans, 
3,207 Black Caribbeans, and 293,274 White British from the UK Biobank. 
Variant Locus Group Minor Allele 

(Freq) 
! [95% CI] (ln nmol/L) P 

rs10455872 LPA SA G (0.011) 1.01 [0.82, 1.19] <1.0 × 10-25 
BA G (0.00063) 0.68 [-0.24, 1.6] 0.15 
BC G (0.010) 0.81 [0.59, 1.03] 1.4 × 10-12 
WB G (0.076) 1.7 [1.7, 1.7] <1.0 × 10-25 

rs1065853 APOE SA T (0.045) -0.17 [-0.25, -0.081] 1.3 × 10-4 
BA T (0.12) -0.28 [-0.34, -0.21] 9.4 × 10-16 
BC T (0.12) -0.21 [-0.27, -0.15] 1.2 × 10-11 
WB T (0.080) -0.11 [-0.12, -0.10] <1.0 × 10-25 

rs247617 CETP SA A (0.34) -0.0046 [-0.041, 0.032] 0.81 
BA A (0.26) -0.020 [-0.70, 0.031] 0.45 
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BC A (0.25) 0.0086 [-0.038, 0.055] 0.72 
WB A (0.32) -0.023 [-0.030, -0.017] 1.0 × 10-13 

rs8178824 APOH SA T (0.015) 0.051 [-0.095, 0.20] 0.49 
BA T (0.0031) 0.22 [-0.18, 0.61] 0.28 
BC T (0.0047) -0.14 [-0.44, 0.16] 0.35 
WB T (0.030) 0.064 [0.047, 0.081] 2.8 × 10-13 

rs826128 AC093639.1 SA A (0.065) 0.023 [-0.049, 0.096] 0.53 
BA A (0.13) -0.00066 [-0.068, 0.067] 0.98 
BC A (0.12) -0.01 [-0.073, 0.052] 0.75 
WB A (0.054) -0.039 [-0.053, -0.026] 5.9 × 10-9 

Abbreviations: SA, South Asians; BA, Black Africans; BC, Black Caribbeans; WB, White British; CI, confidence interval. 
 
Table VI: Association of lead variants with natural log-transformed Lp(a) in 3,009 White individuals from the FOS cohort, 
2,456 White individuals from the MESA cohort, and a meta-analysis of these two cohorts. 
Variant Locus Minor 

Allele 
(Freq*) 

FOS MESA Meta-analysis 

!	[95% CI] (ln 
mg/dL) 

P ! [95% CI] (ln 
mg/dL) 

P ! [95% CI] (ln 
mg/dL) 

P 

rs10455872 LPA G (0.066) 2.3  
[2.2, 2.4] 

<1.0 × 
10-25 

1.6  
[1.5, 1.8] 

<1.0 × 10-25 2.1  
[2.0, 2.2] 

<1.0 × 10-25 

rs7412† APOE T (0.077) 0.0014  
[-0.12, 0.13] 

0.99 -0.15  
[-0.29, -0.0084] 

0.038 -0.065  
[-0.16, 0.028] 

0.17 

rs247617 CETP A (0.32) -0.026  
[-0.082, 0.030] 

0.54 0.018 
[-0.043, 0.078] 

0.57 -0.0057 
[-0.047, 0.035] 

0.79 

rs8178824 APOH T (0.035) 0.19  
[0.049, 0.34] 

0.082 0.11  
[-0.089, 0.31] 

0.28 0.16  
[0.044, 0.28] 

0.0071 

rs826128 AC093639.1 A (0.049) 0.050  
[-0.072, 0.17] 

0.58 -0.047  
[-0.17, 0.074] 

0.45 0.0013  
[-0.084, 0.087] 

0.98 

Abbreviations: CI, confidence interval; FOS, Framingham Offspring Study; MESA, Multi-Ethnic Study of Atherosclerosis. 
*Allele frequency in the Framingham Offspring Study. 
†rs7412 used as a proxy for rs1065853 (linkage disequilibrium r2 = 0.99 in the UK Biobank). 



 52 

 
Table VII: Association of non-LPA lead variants with natural log-transformed Lp(a) after adjustment for age, sex, genotype 
batch, 20 principal components, and the LPA-region genetic risk score. 
Variant Locus Minor Allele (Freq) ! [95% CI] (ln nmol/L) P 

rs1065853 APOE T (0.080) -0.17 [-0.17, -0.16] <1.0 × 10-25 

rs247617 CETP A (0.32) -0.029 [-0.034, -0.024] <1.0 × 10-25 

rs8178824 APOH T (0.030) 0.089 [0.076, 0.10] <1.0 × 10-25 

rs826128 AC093639.1 A (0.054) -0.016 [-0.026, -0.0058] 0.0019 

Abbreviations: CI, confidence interval. 
 
 
Major Resources Table 
Data & Code Availability 

Description Source / Repository Persistent ID / URL 
UK Biobank genetic & phenotypic 
data 

http://www.ukbiobank.ac.uk/using-the-
resource/ 

NA  

MESA genetic & phenotypic data dbGaP Study Accession: phs000209.v13.p3 https://www.mesa-
nhlbi.org/default.aspx 

FOS genetic & phenotypic data dbGaP Study Accession: phs000007.v30.p11 https://framinghamheartstud
y.org 

Analysis code Available upon request NA 

Abbreviations: MESA, Multi-Ethnic Study of Atherosclerosis; FOS, Framingham Offspring Study. 
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Chapter 3: Transition 

In the previous chapter, a large-scale GWAS for Lp(a) was performed in White 

British individuals from the UK Biobank. The association of variants in previously 

discovered loci were validated and APOH was identified as a novel risk locus. When the 

lead variants were assessed in other ethnicities from the UK Biobank, LPA and APOE 

were the only loci to demonstrate significant associations. While it is well established 

that LPA’s rs10455872 plays a role in the development of aortic stenosis (AS) in 

populations of European descent, the extent to which other genetic determinants of 

Lp(a) explain AS is unknown. In addition, it is not clear how large a role rs10455872 

may play in explaining AS in non-European ethnicities.  

In the next chapter, genetic risk scores (GRSs) will be used to assess the 

explanatory value of genetic associations with Lp(a) for aortic stenosis (AS) in several 

ethnicities. Using the variants and effect sizes from the Lp(a) GWAS in White British, 

GRSs will be fit for maximal association with AS in non-Hispanic Whites, African 

Americans, and Hispanics from an American cohort (the GERA cohort) using PRSice-2. 

The performance of the best-fit (by ethnicity) Lp(a)-GRSs will be compared to AS-GRSs 

developed using a previously performed AS GWAS. In addition, the contribution of 

rs10455872 to AS will be assessed within each ethnicity, both as part of the risk scores 

and independently. The results of this study will provide insights into the transferability 

of genetic associations with AS and Lp(a) in European-ancestry populations to other 

ethnicities, while verifying the value of Lp(a) as a risk factor for AS. 
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Abstract 

Background: Aortic stenosis (AS) is becoming increasingly common as the population 

ages. Genome-wide association studies (GWAS) have identified LPA as a risk locus for 

AS, highlighting lipoprotein(a) (Lp[a]) as an important risk factor. We sought to 

determine whether genetic risk scores (GRSs) for AS and Lp(a) can explain variance in 

AS across ethnicities.  

Methods: Using GWAS performed in the UK Biobank, we derived best-fit GRSs for AS 

and Lp(a) in unrelated non-Hispanic Whites (n=55,192), African Americans (n=1,917), 

and Hispanics (n=3,4582) from the Genetic Epidemiology Research on Adult Health and 

Aging (GERA) cohort. The variance explained in AS was assessed for each GRS, with 

and without the LPA variant rs10455872. 

Results: Depending on ethnicity, the best-fit AS-GRS contained between 3 and 496 

variants, while the best-fit Lp(a)-GRS contained between 263 and 11,217 variants. The 

best-fit (by ethnicity) AS-GRSs were all significantly associated with AS but explained 

only a small proportion of phenotypic variance (Whites: R2=0.16%, P=1.1 × 10-10; 

African Americans: R2=0.63%, P=0.033 & Hispanics: R2=0.39%, P=0.024). The best-fit 

Lp(a)-GRSs were also significantly associated with AS and had comparable 

performances. Removing rs10455872 from the GRSs decreased the variance explained 

substantially in Whites and African Americans, and modestly in Hispanics. 

Conclusions: UK Biobank-derived GRSs for AS and Lp(a) are associated with AS in 

Whites, African Americans, and Hispanics when the p-value threshold is selected in 

these ethnicities. The LPA variant rs10455872 accounts for a considerable proportion of 
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the variance explained by both types of score in Whites and African Americans, 

emphasizing genetic variation at LPA as a risk factor for AS in these ethnicities.  

 

Keywords: aortic stenosis, lipoprotein(a), genetic risk scores. 

 

Introduction 

Aortic stenosis (AS) is the most common acquired valve disorder in developed countries 

and its prevalence is expected to increase considerably with the aging population1,2. 

Currently, there are no medical therapies to stop or slow the progression of AS. Without 

an aortic valve replacement, half of patients with severe AS will die within 1 year3. 

In recent years, genome-wide association studies have helped identify the 

genetic etiology of AS development. Variants in the LPA locus have been strongly 

associated with both aortic valve calcium, a subclinical precursor to AS, and established 

valve disease4–8. The most strongly associated variant, rs10455872, has been shown to 

increase odds of AS by over 60%7. These associations are mediated by elevated levels 

of lipoprotein(a) [Lp(a)], which is now recognized as an important risk factor for AS and 

other cardiovascular diseases9. 

Since the discovery that genetic variants in LPA contribute to AS susceptibility, 

several additional loci have been implicated in this disease, each with small to moderate 

effects10–13. These findings are consistent with a polygenic model of inheritance, where 

a trait is determined by the combined action of many genes. Genetic risk scores 

(GRSs), also known as polygenic risk scores, aim to capture the polygenic nature of 

traits by combining the cumulative risk of many genetic variants into a single variable. 
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Recently, GRSs have been created to assess the extent to which cumulative genetic 

variation contributes to complex diseases14–16. It is unknown to what extent a GRS can 

explain variance in AS.  

Creating a GRS that captures significant variation in AS may be challenging for 

several reasons. The prevalence of AS is significantly higher in individuals aged 75 

years or older17, making it less frequent in cohorts of predominantly young to middle-

aged individuals. In addition, asymptomatic individuals and those with less severe 

disease may not diagnosed18, further reducing statistical power in association studies. 

Lp(a) levels, on the other hand, can be measured as a continuous variable in all 

individuals and are relatively constant across the lifetime19. Given that studies of Lp(a) 

are more highly powered, a GRS for Lp(a) may better explain an individual’s risk for AS.  

Another challenge hindering the development of a GRS for AS (as well as many 

other diseases) is ensuring that it can accurately predict risk in diverse populations20. 

Despite being a significant source of morbidity across ethnicities21, our knowledge of the 

genetic determinants of AS in non-Europeans is limited. A study of aortic valve calcium 

in European-ancestry individuals found that the lead variant, rs10544872, was also 

associated with valve calcium in African Americans and Hispanics4. Other than this 

replication, no studies have assessed whether genetic associations for AS in European 

populations are transferable to other ethnicities.  

In this study, we explore the extent to which genetic associations with AS and 

Lp(a) in a population of European ancestry can explain variation in AS in non-Hispanic 

Whites, African Americans, and Hispanics from the Genetic Epidemiology Research on 

Adult Health and Aging (GERA) cohort. Using PRSice-2 to perform p-value 
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thresholding, we find the best-fit GRSs in each ethnicity and compare the performances 

of these scores to the performance of the LPA variant rs10455872. Our findings provide 

insights into the transferability of genetic associations with AS to non-European 

populations, as well as the role of Lp(a) in AS development across ethnicities.   

 

Methods 

Study Populations 

The UK Biobank study recruited over 500,000 individuals aged 40-69 years from 22 

recruitment centers across the United Kingdom between 2006 and 201022. Participants 

provided blood samples for DNA extraction and biomarker analysis and completed a 

series of questionnaires. The UK Biobank received ethical approval from the North West 

Multi-Centre Research Ethics Committee and all participants provided written, informed 

consent. Cases of AS were determined using International Classification of Diseases, 

10th Revision (ICD-10) diagnosis codes for AS from electronic health records (ICD-10 

I35.0 or 135.2); all remaining participants were designated controls. Lp(a) (nmol/L) was 

measured using an immunoturbidimetric analysis on a Randox AU5800. Measurements 

were taken at the initial assessment visit (2006-2010) or the first repeat assessment 

visit (2012-2013). Measurements that returned an error from the analyzer or were 

outside of the reportable range (3.80-189 nmol/L) were excluded. 

The Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort 

includes 110,266 members of the Kaiser Permanente Medical Care Plan in the Northern 

California Region (dbGaP Study Accession: phs000674.v3.p3). All participants 

answered a detailed survey, provided saliva samples for extraction of DNA, and gave 
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broad consent for the use of their data. The present study included only unrelated 

participants aged 55 years or older of self-reported White, African American, or Hispanic 

race/ethnicity. AS status was determined using electronic health record data from 

January 1, 1996, to December 31, 2015, inclusive. Cases were classified using the 

International Classification of Diseases, 9th Revision (ICD-9) diagnosis code for AS 

(424.1) or a procedure code for aortic valve replacement; all other individuals were 

classified as controls. Individuals with congenital valvular disease (ICD-9 codes 746-

747) were excluded from the analysis. Demographic characteristics are described in the 

Supplemental Material.  

 

Genotyping and Imputation 

For the UK Biobank samples, genotyping was performed using the Affymetrix UK 

BiLEVE Axiom array on an initial 50,000 participants, while the remaining 450,000 

participants were genotyped using the Affymetrix UK Biobank Axiom array. Quality 

control and imputation were performed centrally by the UK Biobank as previously 

described22.   

In the GERA cohort, genome-wide genotyping was performed using ethnicity-

specific Axiom Genotyping Solution (Affymetrix) arrays that have been described 

elsewhere23. Genotype data was imputed on the Michigan Imputation Server24 using the 

Haplotype Reference Consortium (version r1.1)25 for White individuals, the Consortium 

on Asthma among African-ancestry Populations in the Americas reference panel26 for 

African Americans, and the 1000 Genomes Phase 3 reference panel27 for Hispanic 

individuals. 
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GWAS for AS and Lp(a) in the UK Biobank 

Only unrelated, genetically-confirmed White British individuals were included in the 

association studies. The AS GWAS included 214,947 individuals aged 55 years or older 

(n=1,399 AS cases); variants were assessed for association with AS using logistic 

regression models adjusted for age, age2, sex, and recruitment centre. The Lp(a) 

GWAS included 293,274 individuals of all ages and linear regression models were 

adjusted for age, sex, and genotype batch. Both GWAS were run with PLINK 2.028,29 

with adjustment for 20 principal components of ancestry. 

 

Risk Score Construction 

Genetic risk scores were constructed using GWAS for AS and Lp(a) in the UK Biobank. 

To be included in the genetic risk scores, variants had to be well-imputed in the UK 

Biobank (imputation quality score >= 0.90) with a minor allele frequency >= 1%. 

Variants also had to be present in the data for Whites, African Americans, and 

Hispanics of the GERA cohort and had to possess the same two unambiguous alleles 

across ethnicities. For each risk score, the overlapping sets of variants were clumped 

with PLINK (version 1.9)30 to retain only independent variants with P<0.05 in the AS 

GWAS and Lp(a) GWAS (r2=0.1, window size=1Mb). The independent sets of variants 

were analyzed to find the optimal p-value threshold for AS in each ethnicity of GERA 

using PRSice version 2.2.1331. All p-value thresholds between 5.0 × 10-8 and 0.05 were 

tested at intervals of 5.0 × 10-7, for a total of 31,859 thresholds. After determining the 

optimal p-value thresholds using PRSice-2, the scores were computed in PLINK 2.0. 

For each individual, the GRS was calculated by multiplying the number of risk alleles 
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per variant (represented as dosages) with the regression coefficient (beta in Lp(a) 

GWAS and log odds ratio in AS GWAS), summed over all variants.  

 

Association of Risk Scores with AS in GERA 

The best-fit AS-GRS and Lp(a)-GRS in each ethnicity was standardized and tested for 

association with AS, unadjusted and adjusted for age, age2, and sex. The best-fit AS-

GRS and Lp(a)-GRS in Whites was also tested for association with AS in African 

Americans and Hispanics. In a sensitivity analysis, the variant rs10455872 was 

removed from the GRSs and associations with AS were re-tested. The variance 

explained was calculated for the risk scores, with and without rs10455872. The variant 

rs10455872 was also tested independently for association with AS after standardization. 

All association tests were performed using logistic regression in R32, with two-sided p-

values <0.05 considered significant.   

 

Results 

A total of 55,192 Whites, 1,917 African Americans, and 3,482 Hispanics were included 

in the study. Demographic characteristics of each ethnicity are presented in Table 1. 

Compared to Whites, African Americans and Hispanics had a larger body mass index 

and a higher prevalence of dyslipidemia, coronary artery disease, and diabetes (all 

P<0.001). African Americans had a higher prevalence of hypertension than Whites and 

Hispanics, while Whites had the highest prevalence of AS (all P<0.001).  

In total, 37,570 variants were eligible for inclusion in the AS-GRSs and 39,018 

variants were eligible for inclusion into the Lp(a)-GRSs (Figure 1). The best-fit AS-GRS 
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in Whites was found at a p-value threshold of 1.6 × 10-6 (n=10 variants) and was 

associated with an 11% increase in odds for AS (odds ratio [OR] per SD [95% CI], 1.11 

[1.08, 1.15]; P=1.1 × 10-10). This score was not significantly associated with AS in 

African Americans or Hispanics (Table 1 in Supplemental Material). The optimal p-value 

thresholds for the best-fit AS-GRSs in African Americans and Hispanics were 5.0 × 10-8 

(n=3 variants) and 3.4 × 10-4 (n=496 variants), respectively; per SD, these GRSs were 

associated with a 25% increase in odds for AS in African Americans (1.25 [1.02, 1.53]; 

P=0.033), and a 20% increase in odds for AS in Hispanics (1.20 [1.02,1.40], P=0.024).  

The best-fit Lp(a)-GRS in Whites was found at a p-value threshold of 6.6 × 10-4 

and included 1,291 variants. This score was associated with an 11% increase in odds 

for AS in Whites (OR per SD [95% CI], 1.10 [1.07,1.14]; P=6.2 × 10-9), but was not 

significantly associated with AS in African Americans or Hispanics (Table 1 in 

Supplemental Material). The best-fit Lp(a)-GRSs in African Americans and Hispanics 

were found at p-value thresholds of 1.1 × 10-6 (n=263 variants) and 0.010 (n=11,217 

variants), and per SD, were associated with a 24% increase in odds for AS (1.24 

[1.00,1.52]; P=0.045) and a 17% increase in odds for AS (1.17 [1.00,1.37]; P=0.045), 

respectively. The association results for all risk scores are summarized in Figure 2. 

Adjusting for age, age2, and sex did not materially change the results (Figure 1 in 

Supplemental Material).  

When the variant rs10455872 was excluded from the AS-GRSs, the variance 

explained (R2) decreased from 0.16% to 0.063% in Whites, from 0.63% to 0.13% in 

African Americans, and from 0.39% to 0.37% in Hispanics. When rs10455872 was 

excluded from the Lp(a)-GRSs, the variance explained decreased from 0.13% to 



 65 

0.076% in Whites, from 0.56% to 0.25% in African Americans, and from 0.31% to 0.26% 

in Hispanics. When tested independently, each SD increase of rs10455872 was 

associated with a 10% increase in odds for AS in Whites (OR per SD [95% CI], 1.10 

[1.07, 1.14]; P=3.9 × 10-10) and explained 0.14% of phenotypic variance. In African 

Americans, rs10455872 was associated with a 25% increase in odds for AS (1.25 [1.09, 

1.43]; P=0.0010) and explained 1.2% of phenotypic variance. The variant rs10455872 

had no clear effect on AS in Hispanics (0.99 [0.84, 1.17]; P=0.92; R2<0.001). A 

comparison of the variance explained by the best-fit (by ethnicity) GRSs and 

rs10455872 is shown in Figure 3. 

 

Discussion  

In this study, we assessed the explanatory value of genetic associations with AS and 

Lp(a) in the UK Biobank for AS in other ethnicities. Using PRSice-2, we created GRSs 

based on GWAS in White British and fit for maximal association with AS in Whites, 

African Americans, and Hispanics from the GERA cohort. All best-fit (by ethnicity) GRSs 

were significantly associated with AS, but explained only a small proportion of 

phenotypic variance. The variant rs10455872 accounted for a large proportion of 

variance explained in the best-fit GRSs for Whites and African Americans, but not 

Hispanics. 

To our knowledge, this is the first study to assess the explanatory value of a GRS 

for AS. To create our GRSs, we selected only independent variants and used PRSice-2 

to perform p-value thresholding. The best p-value thresholds were selected based on 

the maximal association with AS within the testing populations. As a result, the GRSs 
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are over-fitted by nature and reflect the best possible performance of European-derived 

genetic associations in these populations. While clumping and thresholding is one way 

to derive GRSs, there are several other methods including penalized regression (eg. 

lassosum) and Bayesian approaches (eg. LDPred). When tested on simulated data, 

PRSice-2 had comparable performance to these methods31,33. In addition, the typically 

fewer number of variants included using the clumping and thresholding method make 

the GRSs more clinically relevant and easier to assess in other populations.  

In addition to creating GRSs based on associations with AS, we also created 

GRSs based on genetic associations with Lp(a). Both types of GRSs were derived in 

White British from the UK Biobank and were significantly associated with AS across 

ethnicities in GERA when the p-value threshold was selected in each ethnicity. 

However, the number of variants in the best-fit scores varied greatly by ethnicity. For 

example, the best-fit Lp(a)-GRS in African Americans contained 263 variants while the 

best-fit Lp(a)-GRS in Hispanics contained over 11,000. Furthermore, when the Lp(a)-

GRS created in Whites (n=1,291 variants) was tested in African Americans and 

Hispanics, it had non-significant and attenuated effects on AS compared to the best-fit 

(by ethnicity) scores. These results are consistent with previous studies showing that 

GRSs developed in European populations perform less well in non-European 

ethnicities34,35. While European associations with AS may have some predictive value in 

admixed populations, GRSs are likely not transferable without ethnicity-specific 

optimization. 

As mentioned, the GRSs in this study were derived using a clumping and 

thresholding method. In previous studies, when this method was used to develop risk 
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scores for coronary artery disease, the p-value threshold for the optimal GRS was 0.001 

in one study36 and 0.05 in another study37. The liberal p-value thresholds for these 

scores is consistent with the notion that coronary artery disease is a polygenic trait, with 

genetic risk determined by the cumulative risk of a large number of variants with small 

effects. In contrast, the p-value threshold for the best-fit AS-GRS in Whites from our 

study was 1.6 × 10-6. This more stringent threshold may suggest that compared to 

coronary artery disease, risk of AS may be less polygenic and influenced by a smaller 

number of variants.  

Despite being created based on maximum association with AS, the GRSs in our 

study explained less than 1.0% of phenotypic variance. By comparison, risk scores 

recently developed for type 2 diabetes and coronary artery disease explained 2.9% and 

4.0% of phenotypic variance, respectively37. When rs10455872 was excluded from the 

AS- and Lp(a) GRSs in Whites and African Americans, the variance explained was 

reduced by more than half. On its own, the variance explained by rs10455872 was 

comparable to that of the GRSs in Whites (0.14%) and was even higher than the GRSs 

in African Americans (1.2%). These findings further support the notion that the genetic 

architecture of AS may be oligogenic with strong influence from variants in LPA. 

While rs10455872 was an important component of the GRSs in Whites and 

African Americans, the variance explained only decreased slightly in Hispanics when 

this variant was removed. In addition, rs10455872 alone showed no significant 

association with AS among Hispanics. This finding is in contrast to a previous study in 

the Multi-Ethnic Study of Atherosclerosis (MESA), where rs10455872 was significantly 

associated with aortic valve calcium in Hispanics4. However, another study in MESA 
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showed that Lp(a) levels themselves were not significantly associated with aortic valve 

calcium in Hispanics38. Follow-up studies are needed to confirm the role of Lp(a) in 

disease development in this population. 

This study had several strengths and limitations. This was the first study to 

broadly assess the transferability of genetic associations with AS in a European-

ancestry population to African Americans and Hispanics. Our GRSs were derived using 

associations in the UK Biobank, a large and well-powered cohort. To ensure that our 

risk scores had the best chance of transferring to these populations, we selected only 

variants that were common across ethnicities to be included in the risk scores. As a 

result, ethnicity-specific risk variants may have been excluded from the risk scores, 

resulting in false negatives. In addition, our sample sizes for African Americans and 

Hispanics were smaller than for Whites, decreasing statistical power and likely hindering 

transferability to these populations. Finally, AS is a late-onset disease, further hindering 

the performance of a GRS in a cohort of predominantly middle-aged adults (i.e. 

individuals with high genetic risk may not have developed the disease yet).  

In summary, we created GRSs for AS using genetic associations with AS and 

Lp(a) in the UK Biobank and fitted for association with AS in Whites, African Americans, 

and Hispanics from the GERA cohort. Our results demonstrate that European-derived 

GRSs have some explanatory value in African Americans and Hispanics when the p-

value thresholds are selected in these populations, but are not significantly associated 

otherwise. In addition, our findings suggest that AS risk may be greatly explained by 

variation in LPA, highlighting the importance of plasma Lp(a) as a risk factor for AS. 
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Tables 

Table 1. Characteristics of individuals 55 years and older in the GERA cohort.  
 Whites African 

Americans 
Hispanics P 

N 55,192 1,917 3,482 N/A 
Male (%) 23,687 (42.9) 844 (44.0) 1,543 (44.3) 0.18 
Age, years 
(mean (SD)) 

67.9 (8.6) 66.2 (8.0) 65.9 (7.9) <0.001 

BMI, kg/m2 
(mean (SD)) 

26.9 (5.1) 29.1 (5.6) 28.1 (5.2) <0.001 

Dyslipidemia 
(%) 

31,344 (56.8) 1,255 (65.5) 2,180 (62.6) <0.001 

Coronary artery 
disease (%) 

12,895 (23.4) 493 (25.7) 804 (23.1) 0.051 

Hypertension 
(%) 

22,005 (39.9) 1,139 (59.4) 1,396 (40.1) <0.001 

Ever smoked 
(%) 

26,374 (50.0) 911 (50.9) 1,524 (46.3) <0.001 

Diabetes (%) 5,960 (10.8) 424 (22.1) 697 (20.0) <0.001 
Aortic valve 
stenosis (%) 

3,469 (6.3) 86 (4.5) 159 (4.6) <0.001 

Abbreviations: BMI, body mass index; GERA, Genetic Epidemiology Research on Adult 
Health and Aging. 



 

Figures 

 

Figure 1. Variant selection process for the AS-GRSs and Lp(a)-GRSs created using GWAS in the UK Biobank and fitted 

for association with AS in Whites, African Americans, and Hispanics from the GERA cohort. N refers to the number of 

variants. Abbreviations: UKB, UK Biobank; GERA, Genetic Epidemiology Research on Adult Health and Aging; AS, aortic 

stenosis; Lp(a), lipoprotein(a); LD, linkage disequilibrium; GRS, genetic risk score; GWAS, genome-wide association 

study. 
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Figure 2: Association of rs10455872 and the best-fit (by ethnicity) AS-GRSs and Lp(a)-GRSs in Whites, African 

Americans, and Hispanics from the GERA cohort. Odds ratio (OR) is per standard deviation. Abbreviations: CI, 

confidence interval; AS, aortic stenosis; Lp(a), lipoprotein(a); GRS, genetic risk score; GERA, Genetic Epidemiology 

Research on Adult Health and Aging. 
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Figure 3: Proportion of variance explained in AS by rs10455872 and the best-fit (by ethnicity) AS-GRSs and Lp(a)-GRSs 

in Whites, African Americans, and Hispanics from the GERA cohort. Abbreviations: AS, aortic stenosis; Lp(a), 

lipoprotein(a); GRS, genetic risk score; GERA, Genetic Epidemiology Research on Adult Health and Aging. 



 

SUPPLEMENTAL MATERIAL 

Supplemental Methods 

Variable Descriptions  

In the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, age 

and sex were recorded from the medical chart, with ages greater than 90 years rounded 

down to 90 to enhance privacy (n=412). Hypertension, smoking, and diabetes were self-

reported in a questionnaire and body mass index was calculated from self-reported 

height and weight. Dyslipidemia was defined as two or more diagnoses of lipid 

metabolism disorders in the electronic health records (International Classification of 

Diseases, Ninth Revision [ICD-9] 272) and one or more statin prescriptions in the Kaiser 

Permanente prescriptions database. Coronary artery disease was defined as a 

diagnosis of myocardial infarction or coronary artery disease (ICD-9 410-414), a 

procedure code for coronary artery bypass surgery, or percutaneous coronary 

intervention in the electronic health records. 

 

Supplemental Tables 
Table 1. Association of the best-fit AS-GRS and Lp(a)-GRS in GERA Whites across 
ethnicities in the GERA cohort. 
Ethnicity  AS-GRS Lp(a)-GRS 

OR [95% CI] P OR [95% CI] P 
White 1.11 [1.08,1.15] 1.1 × 10-10 1.10 [1.07,1.14] 6.2 × 10-9 

African American 1.00 [0.80,1.23] 1.00 1.20 [0.97,1.48] 0.092 

Hispanic 1.11 [0.95,1.27] 0.17 1.11 [0.95,1.29] 0.20 

Abbreviations: AS, aortic stenosis; Lp(a), lipoprotein(a); GRS, genetic risk score; OR, 
odds ratio; CI, confidence interval; GERA, Genetic Epidemiology Research on Adult 
Health and Aging. 
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Supplemental Figures 

 

Figure 2: Association of rs10455872 and the best-fit (by ethnicity) AS-GRSs and Lp(a)-
GRSs with AS in Whites, African Americans, and Hispanics from the GERA cohort after 
adjustment for age, age2, and sex. Abbreviations: AS, aortic stenosis; Lp(a), 
lipoprotein(a); GRS, genetic risk score; OR, odds ratio; CI, confidence interval; GERA, 
Genetic Epidemiology Research on Adult Health and Aging. 
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Chapter 5: General Discussion 

Summary 

In this thesis, a large-scale GWAS of Lp(a) was performed in White British individuals 

from the UK Biobank, validating previously identified loci, including LPA, APOE, and 

CETP, and identifying APOH as a novel risk locus. The Lp(a) GWAS was used to create 

GRSs in Whites, African Americans, and Hispanics from the GERA cohort, where the p-

value threshold for the GRSs was selected based on clumping and thresholding to 

maximize association with AS in these populations. GRSs were derived from an GWAS 

for AS in the UK Biobank in a similar manner. The best-fit (by ethnicity) Lp(a)- and AS-

GRSs were significantly associated with AS in each ethnicity, with the Lp(a)-GRSs 

explaining a comparable proportion of variance to the AS-GRSs. However, the variance 

explained by all scores was small, and the variant rs10455872 in LPA accounted for a 

considerable proportion in Whites and African Americans. 

 

Genetic associations with Lp(a) 

Consistent with previous GWAS of Lp(a)55,72,73, the variant rs10455872 had the largest 

effect on Lp(a) levels. White British individuals carrying two minor alleles for rs10455872 

had a median Lp(a) level of 148 nmol/L, compared to the cohort median of 20.1 nmol/L. 

In addition, it was demonstrated for the first time that rs10455872 is associated with 

Lp(a) in South Asians; other studies in this population have failed to assess this variant 

due to limited sample sizes and a lower risk allele frequency in this population74. As 

shown in other studies of admixed populations with African ancestry75,76, rs10455872 



 82 

was also significantly associated in Black Caribbeans. This variant was not significantly 

associated in Black Africans, likely due to its near absence in this population. 

The variant rs1065853 at APOE had the next largest effect in White British, with 

individuals homozygous for the minor allele having levels approximately 10 nmol/L 

lower than the median. Like rs10455872, the variant rs1065853 in APOE (or a SNP in 

high LD, the apoE2-defining rs7412) has been previously associated with Lp(a) in 

populations of African ancestry77,78, but has never been investigated in a South Asian 

population. In the present study, the variant rs1065853 was significantly associated with 

Lp(a) in Black Caribbeans, Black Africans, and South Asians from the UK Biobank, 

making it the only lead variant to replicate in all ethnicities tested. The specific 

mechanism underlying this association requires further investigation, but may involve 

the apoE2 isoform having reduced affinity for LDL receptors, resulting in a greater 

number of receptors available for Lp(a)79,80. 

In addition to LPA and APOE, a new locus for Lp(a) was identified: APOH.  The 

variant rs8178824 in APOH was significantly associated with increased Lp(a) levels, an 

association that was replicated in a meta-analysis of two independent European-

ancestry cohorts. Previously, in vitro studies have shown that b2GPI, the protein 

product of APOH, interacts directly with the apo(a) component of Lp(a)81. Since b2GPI 

is known to have a high affinity for negatively charged phospholipids82, this interaction 

may be mediated by the binding of b2GPI to oxidized phospholipids, which accumulate 

on apo(a)83. A study demonstrating that b2GPI accelerates triglyceride clearance in 

rats84 supports the hypothesis that b2GPI may play a role in the clearance of Lp(a) from 

plasma. 
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Neither the variant in APOH, nor the variants in CETP and AC093639.1, were 

significantly associated in the other ethnicities from the UK Biobank. Relative to LPA 

and APOE, these variants had only small effects on Lp(a) in White British; thus, the 

sample sizes of the other ethnicities may not have been large enough to detect an 

effect. Other potential reasons for the differing effects between populations include 

gene-gene or gene-environment interactions, whereby the effect of a gene is influenced 

by other genes (epistasis)85 or by environmental exposures, such as diet or climate86. 

Alternatively, genetic heterogeneity may be caused by differences in LD structure 

between the populations87, which can occur when the identified variant in the GWAS is 

not causal and tags different variants in different populations (Figure 1)31. 

 

 

Figure 3: Differences in linkage disequilibrium (LD) between an unobserved causal 
variant (the diamond) and observed variants (the circles) between two populations. 
Modified from Gurdasani et al., 2019.  
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The lack of reproducibility observed for these variants may also be due to false 

positive associations in the discovery study. However, the loci CETP and APOH have 

been previously linked to Lp(a), either through previous association studies78, clinical 

studies88–90, or in vitro studies81, supporting the validity of these associations. In 

addition, the APOH variant was significantly associated in a meta-analysis of 

independent European-ancestry cohorts, further strengthening the evidence for a true 

association at this locus. The variant in AC093639.1, on the other hand, did not 

replicate in other ethnicities, showed no association in the meta-analysis, and has not 

been previously connected to Lp(a), suggesting a potential false positive association. 

 

Lp(a) as a risk factor for aortic stenosis 

The Lp(a) GWAS and a GWAS for AS were used to create GRSs for AS, where the p-

value thresholds for the GRSs were selected based on maximal association with AS in 

Whites, African Americans and Hispanics of the GERA cohort. It was demonstrated, for 

the first time, that using the same SNP selection procedure, GRSs for Lp(a) explain 

nearly the same proportion of variance in AS as GRSs for AS, suggesting an important 

role for Lp(a) in AS development. Interestingly, when the Lp(a)- and AS-GRSs fit for 

association in Whites were applied to African Americans, the Lp(a)-GRS showed a 

strong effect (OR=1.20), while the AS-GRS showed no effect (OR=1.00). While neither 

effect was statistically significant and the confidence intervals were large, this trend 

suggests that an Lp(a)-GRS could be more robust to transferring to African Americans 

when creating an ethnicity-specific GRS for AS isn’t possible. 
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The effects of the Lp(a)- and AS-GRS were largest in African Americans, despite 

these scores containing fewer variants than the best-fit scores in Whites and Hispanics. 

The variant rs10455872 also demonstrated the largest effect on AS in this population; 

each SD was associated with a 25% increase in odds for AS, corresponding to more 

than a 4-fold increase in the odds per risk allele. When rs10455872 was previously 

tested for association with AVC in African Americans of the MESA cohort, it similarly 

demonstrated a large effect, with each risk allele more than tripling the odds for AVC54. 

As was demonstrated in Black Caribbeans from the UK Biobank, this variant is also 

associated with increased Lp(a) levels in populations of African ancestry, suggesting 

that the association with AS/AVC is likely mediated by Lp(a), as it is in Whites.

 Interestingly, while levels of Lp(a) are several times higher in African Americans 

than other populations91,92, these increased levels don’t seem to translate to a higher 

risk of AS93. In fact, in the present study, the prevalence of AS was significantly lower in 

African Americans (4.5%) than Whites (6.3%) from the GERA cohort. This association 

has been noted in several other studies94–98, and persists after adjustment for traditional 

cardiovascular risk factors. One possible explanation for this trend is referral bias, 

where African Americans are less likely to be referred for echocardiography and 

therefore less likely to be diagnosed with AS99. One large study assessed this possibility 

by comparing the prevalence of severe mitral regurgitation, another condition requiring 

an echocardiogram-based diagnosis, between African Americans and Whites; no 

differences were found, suggesting that referral bias did not play a large role96. Other 

potential explanations for the lower prevalence of AS in African Americans include lower 

socioeconomic status and reduced access to healthcare in this population99. It also 
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remains possible that African Americans are protected from their elevated Lp(a) levels 

or have a different etiology of disease, but this requires further investigation. 

The relationship between Lp(a) and AS in Hispanics is even less clear. The best-

fit Lp(a)-GRS in Hispanics was significantly associated with AS and, like the score in 

African Americans, explained a larger proportion of phenotypic variance than the score 

in Whites. However, the lead variant rs10455872 showed no association with AS in this 

population, despite this variant showing association with AVC in a previous study54. 

Studies of Lp(a) levels in Hispanics have also had conflicting results. One study of 316 

Mexican Americans showed that Lp(a) levels were significantly lower in this population 

than in Whites (n=242)100, while another study showed that Hispanic men (n=126) had 

significantly higher levels of Lp(a) than White men (n=222)101. In the MESA cohort, 

median Lp(a) levels were nearly identical in Hispanics (n=1,044) and Whites 

(n=1,677)102, yet Lp(a) levels in Hispanics were not significantly associated with AVC93. 

The somewhat contrasting results between studies of Hispanics may reflect the 

complex admixture in this population. Hispanics typically possess European, African, 

and Native American ancestry, the proportions of which vary widely between Hispanic 

subgroups103–106. In the MESA cohort, where most Hispanics self-identify as having 

origins in either Central America, Cuba, the Dominican Republic, Mexico, Puerto Rico, 

or South America, there are large differences in ancestry proportions between the 

subgroups107. For example, genomes within the Caribbean subgroups primarily reflect 

admixture between European and African ancestry, while those in the Mexican 

subgroup primarily reflect admixture of European and Native American ancestry (Figure 
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2). An analysis of Hispanics stratified by subgroup could contribute to our understanding 

of why rs10455872 has demonstrated conflicting results between Hispanic cohorts. 

 

 

Figure 4: Estimated proportions of ancestry in 1,374 Hispanic individuals from the 
MESA cohort with self-identified origins in Central America, Cuba, Dominican Republic, 
Mexico, Puerto Rice, and South America, where red represents Native American 
ancestry, green represents African ancestry, and blue represents European ancestry. 
Modified from Manichaikul et al., 2012. 

 

Genetic risk scores for aortic stenosis 

The GRSs in the present study were developed to assess the role of genetic variation in 

disease. However, an increasing number of GRSs are being developed to predict the 

risk of common complex diseases108–110. Given that an individual’s genetic profile is 

determined at birth, GRSs may theoretically be used to predict future disease risk in 

unaffected individuals, or to predict future disease severity in early stage disease111–113. 

However, a major obstacle preventing the clinical implementation of GRSs is ensuring 

that they are equally applicable to all ethnic groups. Currently, the majority of GRSs are 

being developed using GWAS of European-ancestry individuals114; therefore, the 
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variants and their effect sizes are specific to these populations. As a result, the GRSs 

perform less well when applied to other ethnicities115,116.  

The present study demonstrated that selecting ethnicity-specific p-value 

thresholds for GRSs can improve their performance, even when the variants are 

selected from a European GWAS. However, several other methods have been 

proposed for improving the accuracy of GRSs in non-European populations. In a study 

assessing the transferability of GRSs from Europeans to Hispanics, the optimal GRSs 

most often included variants selected from a European GWAS, but with weights 

selected from a meta-analysis of the European GWAS and a Hispanic GWAS117. 

Similarly, the “multi-ethnic” approach proposed by Marquez-Luna et al. involves 

combining weights from a European population and the target population in a linear 

combination118. One method designed specifically for admixed individuals involves 

creating “partial” GRSs for each region of the genome corresponding to local ancestry 

at that region and combining them into one score119. All of these methods aim to 

leverage the large sample sizes of European populations while incorporating ethnic-

specific information to improve prediction accuracy in the target population. 

 

Future directions 

As the body of evidence supporting Lp(a)’s role in both AS and CAD increases, 

research into Lp(a)-lowering therapies is becoming increasingly important. Several 

therapies have been shown to modestly lower Lp(a), including niacin120, mipomersen121, 

cholesteryl ester transfer protein (CETP) inhibitors88–90 and proprotein convertase 

subtilisin/kexin type 9 (PCSK9) inhibitors122–125. Currently, more specific Lp(a) therapies 
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are being tested that target apo(a) mRNA in the liver. In clinical trials, these antisense 

oligonucleotide therapies have demonstrated potent and dose-dependent reductions in 

Lp(a) levels64,65.   

The present study identified APOH as a novel locus for Lp(a), pointing to β2GPI, 

the product of the APOH gene, as a potential therapeutic target. Like PCSK9, mutations 

in APOH also result in reductions of LDL-C126–130. In fact, β2GPI was recently identified 

as a potential endogenous inhibitor of PCKS9131, suggesting that upregulating the 

action of APOH may produce similar results to PCSK9 inhibitors. The combined action 

of lowering LDL-C and Lp(a) would make this type of drug potentially useful for the 

prevention of AS16. Future work should investigate the mechanism by which β2GPI 

alters levels of Lp(a) and LDL-C, and whether targeting of the APOH locus or β2GPI 

could produce a clinically useful effect. 

In addition to providing novel insights into the determinants of Lp(a), this study 

attempted to extend these findings to other ethnic groups. However, to truly understand 

ethnic differences in associations with Lp(a) and AS, discovery studies must be 

performed in non-European populations. For many diseases and traits, a major barrier 

to this pursuit is limited sample sizes. Large sample sizes are highly valued in genomic 

research, which has resulted in cohorts like the UK Biobank becoming the new standard 

for discovery GWAS71. However, opportunities to study non-European populations are 

increasing with the creation of large and diverse cohorts, such as the Million Veteran 

Program, where non-European individuals make up nearly 30% of the ~800,000 

participants132; the Trans-Omics for Precision Medicine (TOPMed) Program, where 60% 

of ~155,000 participants are of non-European ancestry133; and the Population 
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Architecture using Genomics and Epidemiology (PAGE) Consortium, whose next phase 

(PAGE II) will genotype approximately 50,000 individuals from non-European cohorts134. 

Another challenge of performing GWAS in non-European populations is a lack of 

adequate reference panels for genetic imputation. If the markers for a reference panel 

are selected based on allele frequencies and LD patterns in European populations, 

performing imputation in other populations will result in reduced accuracy and therefore 

reduced statistical power in a GWAS135. Earlier available panels include the Human 

Genome Diversity Project136, the HapMap Consortium137, and the 1000 Genomes 

Project (1000G)138, all of which were created using diverse but small samples139. The 

Human Reference Consortium (HRC) created a much larger reference panel but 

included predominantly individuals of European ancestry140. Recently, the TOPMed 

panel was released, which was created using over 60,000 deeply sequenced genomes 

from a diverse sample including ~50% non-European individuals141. Compared to the 

HRC and 1000G panels, the TOPMed panel has been shown to greatly increase the 

imputation quality of low-frequency variants in admixed populations like African 

Americans141. 

Another barrier to performing discovery analyses in non-Europeans is genetic 

admixture142. As previously discussed, ancestry can be a confounding factor in GWAS, 

making admixed populations more challenging to study31. However, several methods 

have been developed to detect and adjust for stratification due to admixture143, 

including: genomic control methods41,144; the inference of genetic ancestry through 

model-based programs such as STRUCTURE145 and ADMIXTURE146; adjusting for 

principal components (PCs)43; or using mixed model programs to perform GWAS, such 
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as TASSEL147 and EMMAX148. In some cases, genetic admixture can actually be 

leveraged to discover new risk loci149; in a technique known as admixture mapping, 

ancestry analysis in admixed individuals can help identify regions in the genome with 

excess ancestry among disease cases150. 

In addition to facilitating the discovery of ancestry-linked risk loci, performing 

genetic studies in diverse populations may lead to the discovery of variants that are 

simply too rare to detect in Europeans151. For example, a study in African Americans 

identified nonsense variants in PCSK9 that are common in this population (~2%), but 

rare (<0.1%) in individuals of European descent152. These variants were shown to be 

associated with remarkable reductions in LDL-C and an accompanying reduction in the 

risk for CAD153. Findings from these studies have not only enhanced our understanding 

of the genetic determinants of LDL-C, but have encouraged the development of LDL-C-

lowering therapies (PCSK9 inhibitors) that stand to benefit the broader population154. 

Genetic discovery studies of Lp(a) and AS in diverse populations may achieve similar 

successes. 

 

Conclusion 

In conclusion, a large-scale GWAS in the UK Biobank identified several loci associated 

with Lp(a) levels in White British individuals, including the novel locus APOH, encoding 

β2GPI. Only the lead variants in LPA and APOE were significantly associated in smaller 

sample sizes of Black Africans, Black Caribbeans, and South Asians from this cohort. 

Genetic risk scores derived from the Lp(a) GWAS explained a small but statistically 

significant proportion of variance in AS in Whites, African Americans, and Hispanics 
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from the GERA cohort when the p-value thresholds for the scores were selected in each 

ethnicity. These Lp(a)-GRSs performed nearly as well as AS-GRSs derived from the 

same cohort, emphasizing the importance of Lp(a) as a risk factor for AS.  

Future studies should focus on performing GWAS for AS and Lp(a) in diverse 

populations, while using appropriate techniques to reduce confounding by ancestry. 

Alternatively, a trans-ethnic meta-GWAS involving both European populations and other 

ethnicities could improve statistical power and strengthen the ability to identify causal 

variants155. Once summary statistics are available for ethnic-specific or trans-ethnic 

GWAS, the performance of GRSs for AS should be assessed when variants and/or 

weights are selected from these GWAS. Future studies should also investigate the role 

of Lp(a) in the development of AS across ethnicities, with a particular focus on 

Hispanics. Together, results from work in this field will improve our understanding of the 

etiology of AS and other cardiovascular diseases across ethnicities while highlighting 

new targets for much-needed therapies. 
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