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ABSTRACT

Parallel-kinematics machines (PKMs) have been studied extensively because of their sig-

nificantly higher performance in terms of accuracy, rigidity and load-carrying capacity over

serial robots. However, they suffer from limited workspace, multiple singularities and cou-

pled motion, which makes their design and analysis especially challenging. These issues have

motivated extensive research on PKMs. In this dissertation, two novel classes of six-degree-

of-freedom (dof) PKMs are proposed, namely, the 3-CPS and 3-CCC topologies. Their

kinematics, singularity and workspace analyses, together with their optimum design, were

conducted. Both classes of PKMs bear some common features. In particular, they both

have three limbs, which yields less interference and larger workspace, when compared with

the six-limb Stewart-Gough class. Moreover, all motors are mounted on the base, greatly

reducing the inertia load of the system, while providing higher load-carrying capacity and

better dynamics performance, which makes them quite suitable for high-speed operations.

Furthermore, the two classes bear their own features, as discussed in detail herein.

The dissertation spans three topics. The first pertains to the kinematics, singularity and

workspace analyses plus optimum design of the 3-CPS PKM, dubbed the SDelta—for six-dof

Delta robot. It is shown that the given robot offers a large workspace with a proper choice

of design variables. Moreover, we developed a novel method for its singularity analysis,

which is applicable to a large number of parallel robots. Next, the SDelta optimum design

for maximum dexterity is conducted. The axes of its six actuated wrenches intersecting

pairwise, an expression for the inverse of the 6 × 6 robot forward Jacobian matrix (FJM)

is found symbolically. Based on this expression, we formulate an optimization problem of

the robot geometry for maximum dexterity. It is shown that the SDelta can achieve a local

minimum condition number close to unity.

The second topic is the design for isotropy of a large class of six-dof PKMs whose six
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actuated wrenches intersect pairwise, thus covering numerous instances such as three-limb

six-dof PKMs with one passive spherical joint in each limb, including the SDelta. The inverse

of the FJM of the SDelta, derived here in symbolic form, turns out to be applicable to this

class of PKMs. This result has a significant theoretical value, quite useful in singularity

analysis, design for isotropy and optimization. In this dissertation, we elaborate on the

application of the expression for the above-mentioned inverse to the optimum design of this

class of PKMs. With this approach, we not only provide closed-form expressions for the

optimum parameters for isotropy within this class, but also propose the concept of quasi

isotropy, under which the robot, with a suitable design, can attain postures “close” to isotropy.

This greatly increases the range of choice of the shape of the moving platform (MP) and the

location of the operation point, while maintaining high dexterity. The latter is required, e.g.,

when a gripper or another tool is attached to the MP triangle.

The last topic is the analysis and optimum design of the 3-CCC PKM class. Firstly, its

design for isotropy is investigated, based on which we find the conditions yielding the existence

of a continuous set of isotropic postures. This feature is quite advantageous and probably

unique for six-dof PKMs. Moreover, the forward-displacement of the same class, singularity

and workspace analyses are conducted, which reveal many interesting features. For example,

the associated forward-displacement solution allows for a simple formulation, which can be

cast in closed-form; the rotation and translation motions of the MP are decoupled, the PKM

singularity condition being determined solely by the MP orientation, and occurring only

under large-amplitude rotations. Besides, this class bears a large workspace volume.

Due to the low inertia load of the proposed designs, they are capable of providing

large accelerations, making them quite suitable for high-speed operations. This feature also

makes them suitable for generating shaking operations (i.e., small-amplitude, high-frequency

motions)—a major application we target, where large accelerations are needed. This op-

eration can be used, for example, for inertia-parameter identification. Besides, the special

features of the proposed architectures, especially the second, make them suitable for many

other applications such as motion simulators, parallel manipulators, micro-manipulators,

machine-tools, and medical devices.
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RÉSUMÉ

Les robots parallèles ont fait l’objet de nombreuses études en raison de leurs excel-

lentes performances en matière de précision, de rigidité et de capacité de charge, qui sont

supérieures à celles des robots sériels. Toutefois, la conception et l’analyse de ces robots

sont compliquées par leur espace de travail limité, leurs singularités multiples et leur cou-

plage rotation-translation, justifiant par là-même les recherches dans ce domaine. Cette thèse

présente deux robots parallèles novateurs à six degrés de liberté, de topologie 3-CPS et 3-

CCC. Leur cinématique, leur singularité, leur espace de travail et leur conception optimale

sont étudiés. Les deux topologies partagent un certain nombre de caractéristiques : chacune

a trois membres, ce qui réduit les interférences et élargit l’espace de travail, contrairement

à la topologie Stewart-Gough à six membres. En outre, tous les moteurs sont montés à la

base du robot, ce qui réduit l’inertie, augmente la capacité de charge et améliore les perfor-

mances dynamiques du système, le rendant particulièrement bien adapté aux opérations à

haute vitesse. Les deux topologies ont aussi leurs propres caractéristiques, exposées en détail

dans cette thèse.

La thèse comporte trois volets. Le premier porte sur la cinématique, la singularité, l’espace

de travail, et la conception optimale des robots parallèles à topologie 3-CPS, surnommés

le SDelta—robot Delta à six degrés de liberté. Nous démontrons que ce robot a un vaste

espace de travail lorsque ses variables sont adéquatement choisies lors de sa conception. Nous

proposons également une nouvelle méthode d’analyse de singularité applicable à un grand

nombre de robots parallèles. Nous présentons ensuite la configuration optimale du SDelta en

vue d’une dextérité maximale. Les axes des six torseurs statiques motorisés se coupant deux

à deux, nous obtenons une expression symbolique pour l’inverse de la matrice jacobienne

6 × 6 dite directe. Cette expression permet de formuler un problème d’optimisation de la

géométrie du robot afin d’obtenir la dextérité maximale. On constate que le minimum local
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du conditionnement numérique du SDelta est voisin de l’unité.

Le deuxième volet est la conception axée sur l’isotropie d’un grand nombre de robots

parallèles à six degrés de liberté dont les couples mobiles se coupent deux à deux, ce qui

est le cas de nombreux robots parallèles à trois membres et six degrés de liberté qui ont

un joint sphérique passif dans chaque membre, comme le SDelta. L’inverse de la matrice

jacobienne du SDelta montre qu’elle est applicable à ce type de robot parallèle. La valeur

théorique de ce résultat est très utile pour l’analyse des singularités, pour la conception axée

sur l’isotropie et pour l’optimisation. Nous appliquons l’expression de l’inverse dont il est

question plus haut à la conception optimale de ce type de robots parallèles. Cette approche

nous permet d’obtenir non seulement des expressions symboliques des paramètres d’isotropie

pour ce type de robots, mais aussi de proposer le concept de quasi isotropie dans lequel le

robot sous conception peut atteindre des positions «voisines »de l’isotropie. Elle élargit aussi

considérablement la gamme des configurations de la plate-forme mobile et l’emplacement du

point d’opération tout en conservant une excellente dextérité. La dextérité est effectivement

nécessaire lorsqu’une pince ou un autre outil est fixé au triangle de la plate-forme mobile.

Le dernier volet porte sur l’analyse et la conception optimale des robots parallèles de type

3-CCC. Nous débutons par la conception axée sur l’isotropie d’où nous tirons les conditions

qui mènent à un ensemble continu de positions isotropiques, ce qui est avantageux et prob-

ablement unique dans les robots parallèles à six degrés de liberté. En outre, nous analysons

le problème dit direct du déplacement de ces robots, leurs singularités et leur espace de

travail, ce qui donne des résultats intéressants. Ainsi, la solution relative au déplacement

direct fait appel à une formulation simple qui peut être exprimée sous forme symbolique ;

les mouvements de rotation et de translation de la plate-forme sont découplés, la condition

de singularité des robots parallèles étant alors seulement déterminée par l’orientation de la

plate-forme et ne se produisant que dans des rotations de grande amplitude. De plus, ce type

de robot a un grand espace de travail.

En raison de la faible inertie découlant de la conception proposée, ces robots peuvent

fournir de fortes accélérations, ce qui les rend utiles dans les opérations à haute vitesse. Ils

sont également intéressants pour générer des secousses (mouvements de faible amplitude à

haute fréquence)—une application que nous visons, dans laquelle des fortes accélérations sont
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nécessaires. Cette opération peut servir, par exemple, à identifier les paramètres d’inertie

des corps solides. En outre, les architectures proposées, notamment la seconde, permettent

d’utiliser ces robots dans des appareils aussi divers que les simulateurs de mouvements, les

manipulateurs parallèles, les micro-manipulateurs, les machines outil et les appareils médi-

caux.
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CLAIMS OF ORIGINALITY

The main original contributions of this thesis are listed below:

1. Two novel six-dof PKM classes are proposed, one with a 3-CPS, the other with a 3-

CCC topology. Both bear a three-limb architecture, yielding less interference and larger

workspace when compared with their six-limb counterparts. Moreover, all six motors

are located on the base, greatly reducing the inertia load of the system, which yields

a higher load-carrying capacity and better dynamics performance. These features make

these robots quite suitable for high-speed operations and the major application we tar-

get, shaking operations. Moreover, these PKMs bear various other special features, which

will be introduced below, making the proposed architectures, especially the second, suit-

able for many other applications such as motion simulators, parallel manipulators, micro-

manipulators, machine-tools, medical devices, etc.

2. The forward-displacement, singularity and workspace analyses are conducted for the 3-

CPS PKM. Furthermore, the optimization for maximum dexterity is conducted, which

shows that it can achieve a local minimum condition number close to unity. These results

indicate that it offers both large workspace and good dexterity with a proper choice of

design variables.

3. A new formulation of the singularity analysis, based on a geometric interpretation of

singularity, is proposed, which is applicable to a large class of six-dof PKMs whose six

actuated-wrench axes intersect pairwise.

4. The inverse of the robot forward Jacobian matrix is found symbolically for this class.

This expression has a significant theoretical value, highly useful in applications such as

singularity analysis, design for isotropy and optimization.

5. The design for isotropy of the said class of PKMs is investigated. Closed-form relations

among the design parameters are provided that yield isotropy.
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6. The concept of quasi isotropy is proposed, which indicates robot postures whereby the six

columns of the forward Jacobian matrix are mutually orthogonal, even though of slightly

different Euclidean norms. The introduction of this concept greatly increases the range of

choices of the shape of the moving platform (MP) and the location of the operation point

while maintaining high dexterity, which is required, e.g., when a gripper or any other tool

is attached to the MP triangle.

7. The design for isotropy is conducted for the 3-CCC PKM, indicating that there exists a

continuous set of isotropic poses within the workspace of the 3-CCC PKM, which feature is

quite advantageous and rare, probably unique, for six-dof PKMs. The conditions yielding

this feature are studied in detail.

8. The forward-displacement, singularity and workspace analyses for the 3-CCC PKM, from

which many other interesting features of this class were found.
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Chapter 1

INTRODUCTION

1.1 Motivation and Background

A parallel-kinematics machine (PKM) is defined as a multi-degree-of-freedom (multi-dof)

articulated mechanical system composed of one moving platform (MP) and one base plat-

form (BP), connected by at least two serial limbs [2]. Compared to their serial counterparts,

PKMs offer a significantly higher performance in terms of accuracy, rigidity and load-carrying

capacity, thereby leading to a wide variety of applications such as motion simulators, parallel

manipulators, haptic devices, micro-manipulators, six-axis force/torque sensors and machine-

tools [2,3]. On the other hand, PKMs suffer of drawbacks such as limited workspace, multiple

singularities, coupled motion and complex-control requirements. As a result, numerous re-

searchers are working on PKMs research and development.

Early works on six-dof PKMs are found mostly around the Stewart-Gough platform

(SGP) [4,5], whose MP and BP are connected via six limbs, as shown in Fig. 1.1. This num-

ber, however, results in severe interference, complex singularity loci and limited workspace.

Despite these shortcomings, most six-dof PKMs in industry still utilize this structure nowa-

days. Various researchers have proposed alternative structures with a lower number of limbs

and different actuation schemes. Among these, three-limb, six-dof symmetric PKMs are

probably the most promising candidates in applications where six-dof mobility, homogeneous

performance and relatively large workspaces are required [6, 7].

Numerous three-limb six-dof PKMs can be found in the literature [7–17]. However, when

the number of limbs is smaller than six, each limb has to be actuated by more than one motor;

hence, most of these designs have some motors mounted on moving links. The presence of
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Figure 1.1: An example of Stewart-Gough platform (reproduced from [1])

floating motors leads to a waste of installed power1; moreover, the load-carrying capacity and

dynamic performance are compromised. Thus, PKMs with all actuators located on the base

are preferred, as they are capable of producing large accelerations, making them especially

suitable for high-speed operations and the major application we target—shaking operations,

to be introduced presently. Several designs with all the motors mounted on the base have

been proposed. For example, Sorli et al. [10] used three double-parallelogram mechanisms

to realize this goal, but this design resorted to many extra components, which led to extra

interference. Chen et al. [11] proposed a six-dof haptic device using two-dof planetary-belt

systems; these systems unavoidably introduce belt slip and flexibility, thus making them

unsuitable for high-speed or high-torque applications. One major problem with these designs

is that most of the actuation systems either are extremely complex or introduce many extra

moving parts, thereby exacerbating the link interference, while limiting the workspace. Many

other parallel robots carrying three limbs have been proposed [7,12–16], either failing to have

all actuators mounted on the base or achieving this at the expense of a complex actuation

system.

In this dissertation, two architectures are proposed, with all their motors mounted on

the base, which is realized upon introducing a simple two-dof cylindrical actuator, the C-

Drive [18]. This feature yields lower inertia load, higher load-carrying capacity and better

dynamic performance, making them suitable for high-speed and shaking operations—the ma-

jor application we target. Shaking operations, i.e., small-amplitude, high-frequency motions,

can be used, e.g., for rigid-body inertia-parameter identification. A rigid body bears 10 inertia

1Increased load for the motors mounted on the BP.
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parameters, usually listed as mass, position vector of the centre of mass, and the symmetric,

positive-definite inertia tensor [19]. Alternatively, rather than the position vector of the cen-

tre of mass, the moment of mass can be considered, namely, the product of the mass times

the foregoing position vector2. With the growing demand for high-speed and high-precision

operations, the precise knowledge of the inertia properties of a rigid body is becoming more

and more important, which can be used in many applications, e.g., for high-speed operations

and model-based control, among others.

Inertia-parameter identification is based on the dynamics model: the specimen, a rigid

body, undergoes a prescribed trajectory, and the histories of the acceleration and the wrench

exerted on the specimen are recorded. If we insert these data into the dynamics model, a

system of linear equations in the inertia parameters is obtained, from which these parameters

can be estimated. While various approaches for inertia-parameter identification have been

proposed, they suffer from various drawbacks, the accuracy of their results being mediocre;

a comprehensive comparison is available in the literature [19].

A key issue for the identification process is the type of motion the specimen undergoes.

Even though numerous attempts have been made in the identification in the time domain—

mostly based on large-amplitude motion, the identification results are usually unsatisfactory.

Indeed, the excitation frequency range for such a motion is narrow, which renders the test

incapable of providing sufficient excitation to all the six dof of the specimen motion. On the

other hand, small-amplitude, high-frequency (shaking) operations about all six directions of

the motion space is advantageous due to their capacity of providing sufficient excitation to

the specimen along all six directions. This increases the signal-to-noise ratio. Moreover,

these operations generate data over a broad frequency range. These features are essential for

increasing the accuracy of the identification process. Approaches based on small-amplitude

vibrations can be found in the literature, see, e.g., [20–23]. However, due to the limitation

of the current equipment, the frequency they can achieve is mostly low, which limits the

acceleration generated on the specimen. Hence, novel equipment that can provide small-

amplitude, high-frequency shaking operations is needed.

2As pointed out by Professor J.R. Forbes, the internal examiner
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Six-dof PKMs are naturally suitable for this task due to their high load-carrying capacity,

accuracy and stiffness. Attempts of using six-dof PKMs for identification have been made

based on the Stewart-Gough Platform [22, 23]. However, the complex singularity locus,

limited workspace and coupled motion impose difficulties in this process. Two architectures

are proposed in this dissertation, both with all their motors mounted on the base, greatly

reducing the inertia load of the system, thereby making them capable of providing higher

acceleration (excitation), which is essential for inertia-parameter identification. Moreover,

these PKMs have some other interesting features, especially the 3-CCC class3, which offers:

simple forward-displacement model; decoupled rotation and translation; simple singularity;

a large workspace and high dexterity, making this class more attractive for the task at hand.

These features also make the class of interest promising in some other applications, such as

motion generation, to cite just one. For example, high-frequency operations are needed in

flight simulators to emulate the disturbances brought about by turbulence with high fidelity.

Other applications can be cited, also motivated by flight simulation, e.g., high-amplitude

rotations of the MP, as needed in airplane acrobatics.

It is noteworthy that this dissertation focuses on kinematics analysis and design, dynamics

lying outside of its scope. Next, we provide a literature survey on the approaches for the

analyses and optimization related to the kinematics.

1.2 Forward Displacement Analysis

The forward displacement problem (FDP) consists in determining the pose of the MP

of a PKM given its actuated joint variables, which is essential in path-planning and feed-

back control. The FDP of PKMs involves solving a system of nonlinear equations, which is

usually quite complex, leading to a 40th-degree polynomial in the case of the most general

Stewart-Gough platform [24]. According to Merlet [3], methods of analysis mainly resort to

polynomial continuation [25], Gröbner bases [26] and dialytic elimination [27, 28]. Polyno-

mial continuation is capable of providing, numerically, all the solutions of the given problem,

which can be used to solve very large systems, its main disadvantage being its high compu-

3In this dissertation, R, P, H, C , U and S denote revolute, prismatic, screw, cylindrical, universal and
spherical joints, respectively, underlined symbols denoting an actuated joint.
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tational complexity. Gröbner bases offer currently the fastest method to solve the forward

displacement problem in a guaranteed manner [29], but this approach can be applied only

when the coefficients of the equations are rational. Regarding dialytic elimination, the system

of algebraic4 equations is reduced to one univariate polynomial equation upon eliminating

one unknown at a time. Elimination methods allow for the study of the properties of the

solutions, even though they generally require ad hoc algebraic manipulations.

Besides the above methods, several other approaches have been proposed. Boudreau [30]

proposed a novel method based on genetic algorithms, but these are quite time consuming.

Merlet [29] proposed a new method based on interval analysis. This method is claimed to

be safer in terms of producing the correct solutions corresponding to the current assembly

mode. Some other pertinent approaches can be found in the literature [31,32].

1.3 Singularity Analysis

Singularity is one of the major issues arising in PKM analysis and design. Unlike serial

mechanisms, PKMs possess complex singularity sets5 within their workspace. At singu-

lar configurations, a PKM will lose or gain degrees of freedom instantaneously, while losing

either stiffness or mobility, or encountering extreme internal forces, thereby leading to uncon-

trollable motion, poor performance and even damage of the mechanism. Due to the complex

characteristics of the singularity locus, it is quite challenging to achieve a good understanding

of the singularity set with the purpose of avoiding it. Singularity analysis has thus been a

central topic in PKM analysis for a long time. This section provides a review of the different

approaches reported for singularity analysis.

According to Merlet [3], there exist four general approaches for singularity analysis, based

on: screw theory; Grassmann geometry; differential geometry; and the rank-deficiency con-

dition of the Jacobian matrices. Hunt proposed a general framework for singularity analysis

using screw theory [33]. Kumar [34] developed a general method for kinematics and singular-

ity analysis by means of the reciprocal-twist and wrench systems. Later, a more systematic

method was proposed by Merlet [35], who used Grassmann geometry to identify singular

4i.e., mutivariate polynomials.
5Also referred to as singularity surface in the literature.
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configurations, and introduced a series of simple geometric rules by which he found all the

singularity configurations known at that time. Merlet’s work [35] is a major contribution to

this subject, as it provides a powerful and systematic tool for singularity analysis. However,

although it is generally possible to identify the geometric conditions for singular configura-

tions by the rules introduced by Merlet, it may be difficult to express the geometric conditions

algebraically. These are essential for obtaining the expression for the singularity locus, as

needed for graphic-visualization and real-time control purposes. Park et al. [36] proposed a

differential-geometric method for the analysis of singularities of closed-loop chains. As for

methods based on the rank-deficiency of the Jacobian matrices, one may obtain the equations

of the singularity set by equating the determinant of the Jacobian matrices to zero, but this

approach encounters a major challenge of computational cost, since the corresponding char-

acteristic polynomials are extremely cumbersome. Numerical algorithms have been proposed

based on these observations [37,38].

Besides the above general methods, several approaches have been proposed for the sin-

gularity analysis of a specific class of PKMs [39–43], i.e., six-dof PKMs whose six actuated-

wrench axes intersect pairwise. This covers a large number of PKMs—see, for example, [41,

44]—and the SDelta investigated in this dissertation. The singularity condition of this class

of PKMs lends itself to a straightforward geometrical interpretation, besides a simpler for-

mulation [44–46]. Based on this interpretation, we propose a novel formulation to derive one

single, simple expression for the singularity condition, applicable to this large class of PKMs.

1.4 Workspace

Workspace is one of the most important attributes of PKMs. Since the workspace for a

six-dof PKM is embedded in a six-dimensional space that cannot be represented graphically,

one usually investigates its 3D subsets by fixing three of the six Cartesian coordinates of the

MP, such as the constant-orientation workspace, reachable workspace, dexterous workspace,

orientation workspace, etc. [3]. Merlet [3] classified the pertinent methods into geometri-

cal [47, 48], discretization [13,49–51] and numerical [52–54].

Geometrical methods offer some advantages: they are usually much faster, more accurate
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and simpler to implement for some applications, such as calculating the workspace volume [3].

Their main disadvantage is that their complexity heavily depends on the structure of the

PKM and the types of constraints that need to be considered. Examples are provided by

Gosselin [55], Merlet [56] and Bonev et al. [48]. Discretization methods have been favoured

for their simplicity and capacity of handling all the constraints [49, 51]. These methods,

however, face several problems: they are quite demanding computationally; their accuracy

depends on the fineness of the grid, while their computation time grows exponentially with

the “grid resolution”; it is hard to treat cases involving voids inside the workspace. As for

numerical methods, there exist two typical principles: the first is based on the rank-deficiency

of the Jacobian matrix of the system of equations describing the constraints on the workspace

boundary [52, 53]. Given that the range of motions of a R joint is finite—not so that of P

joints, if one makes abstraction of the joint physical limitations—these joints define motions of

MP points with a zero velocity component normal to the workspace boundary, an observation

on which the second principle is based [57].

Besides the above methods, some researchers have introduced several ad-hoc methods.

For example, Merlet et al. [58] proposed general algorithms based on interval analysis, which

can be applied to different structures, even though they are also computationally expensive.

Bohigas et al. [59] proposed a method using the branch-and-prune technique. Johnson et

al. [60] proposed a method that produces a set of two-dimensional cross-sections of the

workspace region with the aid of CAD software, which does not require any analytical work.

Some researchers utilized optimization algorithms to find the workspace, such as Snyman et

al. [61].

In this dissertation, a geometric approach is used for the two classes due to its accuracy,

efficiency and convenience in terms of workspace volume computation.

1.5 Performance Evaluation and Optimum Design

Different applications may impose requirements on different aspects, such as workspace

volume, dexterity, stiffness and accuracy; in order to evaluate the performance in these as-

pects, various indices have been proposed [62]. Among these, the most widely used include
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dexterity, manipulability, isotropy, workspace volume, etc. A comprehensive review of per-

formance indices appeared recently [63].

Dexterity characterizes the accuracy of the robot and the homogeneity of the motion of

the MP along different directions of the six-dimensional Cartesian space [62,63]; as a result,

dexterity analysis is crucial in robot design and analysis. Dexterity can be characterized by

the condition number of the kinematic Jacobian matrix [64], a dimensionless scalar ranging

from 1 to infinity. The lower the condition number, the higher the dexterity. Furthermore,

when the condition number of the Jacobian matrices can achieve their minimum, i.e., unity,

the corresponding dexterity reaches its maximum, under which the robot at hand is called

isotropic. Since the six rows (columns) of the Jacobian matrices are orthogonal at isotropic

postures6, the positioning accuracy of the robot along all six directions of the Cartesian space

is a maximum [62, 63, 65]. When isotropy is achievable for a given PKM, the optimization

problem can be formulated in a different form, which offers an alternative and more efficient

way for the optimization.

The design for isotropy of serial robots has been discussed in the literature [65–67]. In

the case of parallel robots, two Jacobians come into play7, the isotropy conditions being

more challenging than serial robots. Examples of isotropic designs can be found in the

literature [68–71].

It was found that the SDelta does not allow an isotropic design. Hence, an optimization

for maximal dexterity is conducted based on the condition number. However, based on the

expression of the inverse of the forward Jacobian matrix, derived for the SDelta, a novel

approach is proposed for the design for isotropy (DfI) of a large class of PKMs. Lastly, it is

found that the 3-CCC PKM not only allows for isotropy, but in fact, allows for a continuous

locus of isotropy, which is quite advantageous and rare for PKMs. The conditions yielding

this feature are investigated in detail.

6This statement presupposes a normalization of the Jacobian, by means of the robot characteristic length,
so as to render all the Jacobian entries dimensionally homogeneous.

7In a PKM, in general, two Jacobian matrices occur in the kinematics model, relating the moving-platform
twist with the array of actuator rates. The one multiplying the former is termed the forward Jacobian [68],
that multiplying the latter, the inverse Jacobian.

8



1.6 The Organization of the Thesis

Chapter 1 includes the motivation and background of this dissertation: Firstly, an in-

troduction of PKMs is given, followed by a review of the existing three-limb six-dof PKMs,

while highlighting the advantages of designs with all the motors mounted on the base. Next,

the significance of inertia-parameter identification and the drawbacks of approaches based

on large-amplitude motion are given, from which it is apparent that shaking operations, one

major application we target, is quite advantageous for this task. Lastly, the approaches for

the kinematics, singularity and workspace analyses of PKMs, and the literature survey on

their optimum design, are provided. It is noteworthy that this dissertation only focuses on

the design and analysis based on the kinematics; the dynamics analysis and optimization are

out of the scope of this dissertation.

Chapter 2 is dedicated to the description of the architectures of the two proposed PKMs.

Their design philosophy, topology, actuation scheme and features are discussed.

Chapter 3 is devoted to the analysis and optimum design of the SDelta robot. Firstly,

its kinematics, singularity and workspace analyses are provided. Its forward-displacement

analysis leads to a system of three quadratic equations in three unknowns, which admits

up to eight solutions, or half the number of those admitted by the simplest SGP8. Next,

we developed a novel method for its singularity analysis, which is also applicable to a large

number of parallel robots. Furthermore, the workspace is analyzed via a geometric method.

Next, the optimal design of the SDelta is conducted. Due to the special structure of its

Jacobian matrix, we find the inverse of the robot forward Jacobian matrix symbolically, based

on which we formulate an optimization problem of the robot for maximum dexterity. Drawing

from the optimization results, we offer some guidelines on the choices of the optimum design

parameters. It is shown that the SDelta can achieve a local minimum condition number close

to unity. The above results indicate that the given robot has the potential to offer both large

workspace and good dexterity with a proper choice of design variables.

Chapter 4 is devoted to the design for isotropy of a large class of PKMs, i.e., six-dof

8Six limbs laid out so that their axes intersect pairwise at the BP and the MP, with different pairs of each
platform, common in flight simulators.
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PKMs whose six actuated wrenches intersect pairwise, covering numerous PKMs such as

all the three-limb six-dof PKMs with one passive spherical joint in each limb, including the

SDelta. The inverse of the Jacobian matrix of the SDelta, derived in Chapter 3 turns out

to be applicable to this large class of PKMs, which is found to be highly attractive in many

applications, e.g., singularity analysis, design for isotropy and optimization. In this chapter,

the application of this symbolic expression to the optimum design of this large class of PKMs

is introduced, where we provide closed-form expressions of the geometric conditions that

yield isotropic architectures. We also propose the concept of quasi isotropy, under which

a condition number close to unity is possible, while the six rows of the Jacobian matrix

are orthogonal; hence, the performance under such configurations is close to isotropy. This

greatly increases the range of the choices of the shape of the MP and the location of the

operation point, which is required, e.g., when a gripper or another tool is attached to the

MP.

Chapter 5 is devoted to the optimum design and analysis of the 3-CCC PKM. Firstly,

its design for isotropy is investigated, based on which we find the conditions on the design

parameters leading to the existence of a continuous set of isotropic postures. This feature

is quite advantageous and rare for six-dof PKMs. Furthermore, the forward-displacement,

singularity and workspace analyses of the proposed PKM are conducted, which reveal many

interesting features. For example, the pertinent forward-displacement problem allows for a

simple formulation, which can be solved in closed-form; the rotation and translation motions

of the MP are decoupled; the singularity is determined solely by the MP orientation, and

occurring only under large-amplitude rotations. This class bears a reasonably large workspace

volume, among other features.

Chapter 6 summarizes the work of this dissertation, offers some recommendations for

future work, and concludes the thesis.
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Chapter 2

ARCHITECTURES OF THE TWO PKM CLASSES

Upon consideration of the drawbacks of the existing PKMs, summarized in the Introduc-

tion, three design principles are proposed in this dissertation:

∙ Three-limb, six-dof symmetric PKMs are preferred, in light of their advantages over their

six-limb counterparts, namely, lower interference and hence, larger workspace.

∙ Designs with base-mounted motors are required, since travelling motors significantly in-

crease the inertia load of the system, thereby affecting the load-carrying capacity and

dynamic response of the robot. This requirement can be met by means of multi-dof actu-

ators, such as cylindrical [18], planar motors [72], spherical actuators [73], among others,

with their own advantages and disadvantages in terms of stiffness, accuracy and availabil-

ity. However, actuators of this kind are not yet readily available off the shelf, as many are

still at the development phase. Here we utilize a novel cylindrical actuator that we have

been developing over the last four years in McGill University’s Robotic Mechanical Systems

Laboratory.

∙ Designs with fewer components are preferred, in order to reduce interference and simplify

their dynamics characteristics. Hence, multi-dof joints are preferable, such as universal (U),

cylindrical (C), and spherical (S). S joints, moreover, can be generated by an assembly of

U and R joints, which is simpler to implement while offering a larger range of motion.

Taking these considerations into account, we propose two topologies, namely, 3-CPS and

3-CCC.
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2.1 The 3-CPS Architecture

The first architecture, dubbed the SDelta Robot—for the six-dof Delta robot1, bears a

3-CPS topology, each C joint being realized with a two-dof cylindrical actuator, dubbed the

C-Drive [18], as shown in Figs. 2.1 and 2.2. First and foremost, what distinguishes the SDelta

from other three-limb (or three-loop) parallel robots is its topology, as it is based on three

parallel actuation mechanisms, each with a RHHR topology [18], as displayed in Figs. 2.3

and 2.4. In these figures, 0 denotes the BP, while the closed subchain 0-1-2-3-0 denotes one

of the three actuation mechanisms, one on each side of the equilateral triangle of Fig. 2.3.

In these subchains, 2 is the driving link of one limb, 5 and 8 those of the two other limbs.

Moreover, 1 and 3 denote the left-hand and the right-hand screws, driven by corresponding

rotary motors. Moreover, 10, 11 and 12 denote the links of the passive C-joints making up

each limb, which are coupled to the MP (13) by means of spherical joints [75].

As stated in the Introduction, each limb has to carry two motors for a three-limb six-

dof PKM, and hence, most current designs have travelling motors, which limits the robot

performance. Here, we introduce a parallel substructure in each serial limb, i.e., the two-dof

cylindrical actuator, the C-drive [18], as shown in Fig. 2.2, to locate all the motors on the

base for the proposed PKM. As stated previously, this drive carries one single-loop closed

kinematic chain of the RHHR type; the two H joints, of identical pitches 𝑝 but of opposite

hands, lead to a 2 × 2 constant, isotropic Jacobian matrix of the drive mechanism, which is

the simplest possible. The C-drive operates as a differential: when the two motors turn in

1The original, three-dof Delta Robot, was patented by R. Clavel, EPFL, Switzerland [74].
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the same sense2 at the same rate, the collar undergoes a pure rotation; when the two motors

turn in opposite senses at the same rate, the collar undergoes a pure translation. Each limb

is thus driven in both translation along a given direction and rotation about an axis parallel

to the same direction. Now, regarding the embodiment of the limb kinematic chains, in light

of manufacturability issues, we do not recommend the use of a CPS chain, which is used in

the thesis as a simple description of the topology of each of the three limbs. We recommend,

instead, its CCU equivalent, since the P joint suffers of what is known as the “sticky-drawer

effect” [76].

The SDelta Robot has the advantage that its architecture is simple, with fewer compo-

nents than other three-limb designs, which reduces the complexity of its architecture and

hence, simplifies its dynamics model and its control. This simplicity also reduces the poten-

tial interference among the limbs, thus resulting in a larger workspace. Moreover, mounting

all motors on the base reduces the inertial load on the system, thereby making it suitable for

high-speed operations, and the major application we target—shaking operations. A similar

topology, a 3-PRPS limb kinematic chain, was proposed by Behi [8], whose first two joints

form a C-joint; in this design, however, the two prismatic joints in each limb are actuated,

and hence, each limb has one floating motor, thereby increasing significantly the inertia load

of the system.

2As viewed from the same side of the drive layout.
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2.2 The 3-CCC Architecture

Next, we propose a second architecture with all the motors mounted on the base, which

bears a 3-CCC topology, as shown in Figs. 2.5 and 2.6.

ai

bi

ri

Ai

Bi

Ri

Li

Ui

BP

MP

C
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Figure 2.6: Graph of the 3-CCC PKM

The 3-CCC PKM consists of one BP, one MP, and three limbs, each limb consisting, in

turn, of three C joints. The axes 𝒜𝑖, for 𝑖 = 1, 2, 3, of the three C joints on the base are

actuated in our case, in order to have only stationary motors; moreover, the axes ℬ𝑖, for

𝑖 = 1, 2, 3, of the three distal cylindrical joints are fixed to the MP; the axes of the middle

cylindrical joints, denoted ℛ𝑖, connect the two cylindrical joints on the BP and MP, each

limb having six degrees of freedom. Again, the three C joints on the base are actuated via

the C-Drive introduced previously, in order to fix all the motors to the base.

In the chapters that follow, the kinematics, singularity and workspace analyses, along

with the optimization of these two architectures, are reported, from which their various

special features are revealed. Furthermore, the design for isotropy of a large class of PKMs

is conducted in Chapter 4 based on the inverse of the forward Jacobian matrix, derived for

the SDelta in Chapter 3.
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Chapter 3

THE 3-CPS PKM

The work pertaining to the 3-CPS PKM is described in this chapter. Firstly, its kinematics

relations (velocity level) are derived, as needed for simulation and control. Next, its forward-

displacement, singularity and workspace analyses are conducted for two given sets of design

parameters. These analyses reveal its performance on different aspects, which are essential for

robot evaluation, simulation and control. Lastly, the optimization of the dexterity index, i.e.,

minimization of the condition number of the Jacobian matrix, is conducted. The optimization

offers guidelines on how to choose the design parameters to obtain maximum dexterity.

3.1 Kinematics

The architecture of the SDelta Robot and the C-Drive are displayed in Figs. 2.1 and

2.2, where the MP and the BP are represented by equilateral triangles, of sides 𝑎 and 𝑏,

respectively, while the three vertices of the BP are labeled 𝐴𝑖, for 𝑖 = 1, 2, 3. Moreover,

the architecture of one of its limbs is illustrated in Fig. 3.1. Let c be the position vector

of the operation point 𝐶 on the moving platform1, under the assumption that point 𝑂 on

the BP is the origin of the fixed coordinate frame, t = [𝜔𝜔𝜔𝑇 , ċ𝑇 ]𝑇 the twist of the MP,

with 𝜔𝜔𝜔 denoting the angular velocity of the MP, and ċ the velocity of 𝐶. Furthermore,

𝜓̇̇𝜓̇𝜓 = [𝜓̇𝐿1, 𝜓̇𝑅1, 𝜓̇𝐿2, 𝜓̇𝑅2, 𝜓̇𝐿3, 𝜓̇𝑅3]
𝑇 represents the array of six motor rates, three to the

right (𝑅), three to the left (𝐿) of point 𝑂𝑗 of the C-Drive collar in Fig. 3.1, for 𝑗 = 1, 2, 3.

Then we need to find the mapping between t and 𝜓̇𝜓𝜓. It is known [47] that the array of

actuated-joint rates 𝜓̇𝜓𝜓 and the MP twist are related by two Jacobian matrices, K and J,

termed the forward and the inverse Jacobian matrices, respectively, namely,

Kt = J𝜓̇̇𝜓̇𝜓 (3.1)

1Depicted in Fig. 3.1 as the centroid 𝐶 of the equilateral triangle 𝑆1𝑆2𝑆3.
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However, since each C-drive of the SDelta Robot carries two screw pairs, the derivation of

its Jacobian matrices is not as straightforward. We thus introduce a new array:

𝜑̇̇𝜑̇𝜑 = [𝜑̇1, 𝑟̇1, 𝜑̇2, 𝑟̇2, 𝜑̇3, 𝑟̇3]
𝑇 (3.2)

where 𝜑̇𝑗 and 𝑟̇𝑗 represent the turning and the sliding rates of the collar of the 𝑗th C-drive,

for 𝑗 = 1, 2, 3. Now we can express Eq. (3.1) in the form

Kt = D𝜑̇̇𝜑̇𝜑, 𝜑̇̇𝜑̇𝜑 = J𝑚𝜓̇̇𝜓̇𝜓 (3.3)

with matrices K, D and J𝑚 as yet to be displayed, the latter two referred to as the drive

Jacobian and the actuator Jacobian, respectively. Therefore, the inverse Jacobian matrix J

can be expressed as the product of the drive Jacobian and the actuator Jacobian, namely,

J = DJ𝑚 (3.4)

K j1(G j)

K j2(E j)

F j

S j

e j

f j

g j MP

O

X

Y

Zφ j

r j

l j

C j

A j

C
p j

O j

BP

Figure 3.1: Notation for the kinematic chain of
the 𝑗th limb of the SDelta Robot
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b
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(a)

(b)
Figure 3.2: Dimensions of the SDelta Robot: (a)
top view; (b) front view

3.1.1 The Forward Jacobian and Drive Jacobian Matrices

Firstly we introduce our notation: Vector p𝑗 is defined as that joining the spherical joint

centre 𝑆𝑗 with the operation point 𝐶, while e𝑗 and f𝑗, for 𝑗 = 1, 2, 3, all shown in Fig. 3.1,
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represent the unit vectors parallel to the 𝑗th C-drive axis 𝒞𝑗 and the 𝑗th-limb axis ℱ𝑗; g𝑗 is

defined as the unit vector along e𝑗 × f𝑗, with e𝑗 and f𝑗 at right angles by design. Therefore,

{e𝑗, f𝑗,g𝑗} is an orthonormal, right-handed triad, as illustrated in Fig. 3.1.

Matrices K and D relate the MP twist with the array of the turning and sliding rates of

the collars of the three C-drives. These Jacobian matrices can be conveniently derived based

on screw theory [77, 78]. It is known that every joint in the robot bears an axis, either a

“finite” line or a line at infinity, associated with a corresponding array of Plücker coordinates.

In this vein, let us assume that the 𝑖th joint variable of 𝜑𝜑𝜑 is associated with the 𝑗th joint of

the 𝑘th limb; then, the 𝑖th row of K must be a screw reciprocal [64] to the Plücker array

of all the axes in the 𝑘th limb, but the one associated with the 𝑗th joint. Moreover, it is

recalled that a “finite” line can be regarded as a screw of zero pitch, while a line at infinity

as an infinite-pitch screw. Furthermore,

1. Two zero-pitch screws are reciprocal when they are coplanar.

2. Two screws of infinite pitch are always reciprocal to each other.

3. A zero-pitch screw is reciprocal to an infinite-pitch screw when their directions are or-

thogonal.

From these rules, it becomes apparent that the line 𝒦𝑗1—associated with the wrench

corresponding to the rotational degree of freedom of the 𝑗th C-drive—must pass through 𝑆𝑗,

with its direction vector normal to e𝑗 and f𝑗, i.e., along g𝑗, as shown in Fig. 3.1. Moreover,

line 𝒦𝑗2—associated with the wrench corresponding to the translational degree of freedom of

the 𝑗th C-drive—is found to pass through 𝑆𝑗 and is parallel to the axis of the 𝑗th C-drive 𝒞𝑗,

as shown, again, in Fig. 3.1. Based on the above analysis, we can obtain the K matrix as

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(g1 × p1)
𝑇 g𝑇

1

(e1 × p1)
𝑇 e𝑇1

(g2 × p2)
𝑇 g𝑇

2

(e2 × p2)
𝑇 e𝑇2

(g3 × p3)
𝑇 g𝑇

3

(e3 × p3)
𝑇 e𝑇3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.5)

17



Under this notation, g𝑗 and e𝑗 represent the unit vectors parallel to lines 𝒦𝑗1 and 𝒦𝑗2,

respectively, for 𝑗 = 1, 2, 3. We will henceforth denote 𝒦𝑗1 and 𝒦𝑗2 as 𝒢𝑗 and ℰ𝑗, respectively,

for simplicity, as shown in Fig. 3.1, their Plücker arrays being k𝑗1 =
[︁
g𝑇
𝑗 , (g𝑗 × p𝑗)

𝑇

]︁𝑇
and

k𝑗2 =
[︁
e𝑇𝑗 , (e𝑗 × p𝑗)

𝑇

]︁𝑇
.

Once K is available, D is straightforward to derive, as it turns out to be a diagonal

matrix, whose 𝑖th component is the reciprocal product of the line corresponding to the 𝑖th

row of K and that associated with the joint of the 𝑖th component of 𝜑𝜑𝜑. D is found to bear

the form

D = diag(𝑙1, 1, 𝑙2, 1, 𝑙3, 1) (3.6)

with 𝑙𝑖 representing the length of the 𝑖th limb, thereby deriving the forward and the drive

Jacobian matrices, K in Eq. (3.5) and D in Eq. (3.6).

3.1.2 The Actuator Jacobian Matrix

Let J𝑚, the matrix relating the array of six motor rates with the array of the turning

and sliding rates of the collars of the three C-drives, be termed the actuator Jacobian. The

Jacobian matrix J𝐶 , of one C-drive [18], relates the speeds of the two screws with the turning

and sliding rates of the collar, namely:

𝛾̇𝛾𝛾𝐶 = J𝐶𝜓̇𝜓𝜓𝐶 (3.7)

with

𝛾̇𝛾𝛾𝐶 =

⎡⎣𝜑̇
𝑟̇

⎤⎦ , J𝐶 =

⎡⎣ 1/2 1/2

𝑝/4𝜋 −𝑝/4𝜋

⎤⎦ , 𝜓̇𝜓𝜓𝐶 =

⎡⎣𝜓̇𝐿

𝜓̇𝑅

⎤⎦ (3.8)

where 𝛾̇𝛾𝛾𝐶 and 𝜓̇𝜓𝜓𝐶 represent the two-dimensional speed arrays of the collar and of the screws,

respectively, 𝜓̇𝐿, 𝜓̇𝑅 the angular speeds of the left- and the right-hand screws of the C-drive,

respectively, and hence, of the motors. Moreover, 𝜑̇ and 𝑟̇ represent the rotational and

translational speeds of the collar of the C-drive, while 𝑝 is the pitch of the screws of the three

C-drives.
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It is noteworthy that the three C-drives are identical, the above relation thus applying to

all of them. Apparently, then, J𝑚 is a block-diagonal matrix for the three C-drives:

J𝑚 = diag(J𝐶 ,J𝐶 ,J𝐶) (3.9)

thereby deriving relation (3.3).

3.1.3 Redefinition of the Actuator Jacobian and the Drive Jacobian

If the rates of the C-drive are redefined as 𝛾̇𝛾𝛾𝐶 = [𝜑̇, 2𝜋𝑟̇/𝑝]𝑇 , then, we can rewrite Eq. (3.7)

as

𝛾̇𝛾𝛾𝐶 = J𝐶𝜓̇𝜓𝜓𝐶 , with J𝐶 =

⎡⎢⎣1/2 1/2

1/2−1/2

⎤⎥⎦ , 𝜓̇𝜓𝜓𝐶 =

⎡⎣𝜓̇𝐿

𝜓̇𝑅

⎤⎦ (3.10)

In this vein, we redefine J𝑚 as

J𝑚 = diag(J𝐶 ,J𝐶 ,J𝐶) (3.11)

which is a constant isotropic matrix because J𝐶 in Eq. (3.10) is isotropic2. Correspondingly,

D is redefined as

D = diag
(︁
𝑙1,

𝑝

2𝜋
, 𝑙2,

𝑝

2𝜋
, 𝑙3,

𝑝

2𝜋

)︁
(3.12)

in order to preserve the equality in Eq. (3.4). Finally, the J matrix becomes

J = DJ𝑚 (3.13)

where D, as displayed in Eq. (3.12), is a diagonal matrix whose entries have all units of

length, while J𝑚 is a 6 × 6 dimensionless block-diaongal isotropic matrix, as displayed in

Eq. (3.11).

So far we have established the kinematics relation of the SDelta at the velocity level,

2A non-singular square matrix is isotropic if it is a) dimensionally homogeneous and b) its inverse is
proportional to its transpose. For rectangular matrices, change non-singular to full rank and inverse to
generalized inverse.
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from which the relevant Jacobian matrices are available. Next, we provide its forward-

displacement, singularity and workspace analyses.

3.2 The Forward-displacement Analysis

The architecture of the SDelta Robot is shown in Figs. 2.1 and 3.1, where the MP and

the BP are represented by equilateral triangles, of sides 𝑎 and 𝑏, respectively [75]. The

elimination method suggested by Nanua et al. [79] is adopted for its forward-displacement

analysis. In the foregoing paper, the authors analyzed a class of Stewart-Gough platform3

with three pairs of concurrent limbs, ending up with a 16th-degree resolvent polynomial;

in our case, the forward-displacement problem leads to a simpler model, namely, an octic

polynomial. Given that the displacement of the actuated joints (i.e., the three C-Drives)

are known, while the lengths of the limbs, 𝑙𝑗 for 𝑗 = 1, 2, 3, are not yet determined, we can

regard the three C-Drives as “locked”, thereby yielding an equivalent 3-dof 3-PS PKM. The

forward-displacement analysis of a 3-PS mechanism has been investigated by Parenti-Castelli

and Innocenti [80]; in this vein, we denote denote the position vector of point 𝑆𝑗, the centre of

the spherical joint of the 𝑗th limb, as s𝑗, for 𝑗 = 1, 2, 3, the relations below readily following:

‖s2 − s1‖2 = ‖s3 − s2‖2 = ‖s1 − s3‖2 = 𝑎2 (3.14)

In the forward-displacement analysis, the sliding 𝑟𝑗 of the 𝑗th C joint and its rotation 𝜑𝑗 are

prescribed, the pose of the MP being unknown. The MP pose is found upon locating points

𝑆𝑗, which is possible when the limb lengths 𝑙𝑗 are known, their computation being outlined

below. Proceeding exactly as Nanua et al. did [79], three quadratic equations in the three

3The simplest version of the SGP, whose limbs are laid out so that their axes intersect pairwise at the BP
and the MP, with different pairs of each platform, common in flight simulators.
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limb lengths 𝑙𝑗 are derived:

𝑙21 + 𝑙22 −
√
3(𝑏− 𝑟1) cos𝜑2𝑙2 + [(cos𝜑1 cos𝜑2 − 2 sin𝜑1 sin𝜑2)𝑙2 −

√
3𝑟2 cos𝜑1]𝑙1

+𝑟1𝑟2 − 𝑏𝑟2 − 𝑎2 + 𝑏2 − 2𝑏𝑟1 + 𝑟21 + 𝑟22 = 0 (3.15a)

𝑙22 + 𝑙23 −
√
3(𝑏− 𝑟2) cos𝜑3𝑙3 + [(cos𝜑2 cos𝜑3 − 2 sin𝜑2 sin𝜑3)𝑙3 −

√
3𝑟3 cos𝜑2]𝑙2

+𝑟2𝑟3 − 𝑏𝑟3 − 𝑎2 + 𝑏2 − 2𝑏𝑟2 + 𝑟22 + 𝑟23 = 0 (3.15b)

𝑙23 + 𝑙21 −
√
3(𝑏− 𝑟3) cos𝜑1𝑙1 + [(cos𝜑1 cos𝜑3 − 2 sin𝜑1 sin𝜑3)𝑙1 −

√
3𝑟1 cos𝜑3]𝑙3

+𝑟3𝑟1 − 𝑏𝑟1 − 𝑎2 + 𝑏2 − 2𝑏𝑟3 + 𝑟23 + 𝑟21 = 0 (3.15c)

The Bezout number [81] of a system of multivariable polynomial equations is defined as the

product of the degrees of the individual equations, which is the number of roots admitted by

the resolvent (monovariate) polynomial4 of the system. In our case, this number is 23 = 8,

half the number of the solutions of the forward-displacement problem admitted by the (six-

limb) simplest SGP with triangular BP and MP.

The said octic resolvent polynomial can be derived by dyalitic elimination [64] if all roots

are needed. For purpose of control, a numerical method (Newton-Raphson) is recommended.

3.3 Singularity Analysis

The singularities of parallel robots pertain to 1) those occurring in the serial Jacobian

matrices J𝑗 of any of the limbs and 2) those occurring in matrices K and D. The latter are

known as type-I (for K) and type-II for (D) singularities [47].

3.3.1 Singularities of the Serial Jacobian Matrices

The limb singularity occurs when the Plücker array of the axes of the six joints of the 𝑗th

limb become linearly dependent, under which the PKM encounters a loss of mobility. Since

each limb of the SDelta Robot has a decoupled architecture—i.e., a spherical joint coupling

the MP with each limb—the singularity analysis of its Jacobian matrices is straightforward.

4This is the monovariate polynomial equation obtained after eliminating all but one of the unknowns from
the given system.
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The pertinent singularities can be classified into wrist and shoulder singularities: Wrist

singularities occur when the three wrist axes become coplanar [64]. This means that the axes

of the three concurrent revolute joints are coplanar. Furthermore, the shoulder singularity,

according to screw theory, hanppens only when a) a wrist singularity does not occur, and

b) there exists one line ℒ𝑗 passing through 𝑆𝑗 that intersects the C-Drive axis 𝒞𝑗, and is

normal to e𝑗 and f𝑗. This can only happen when the length of the 𝑗th limb is zero, which is

physically impossible for the SDelta architecture. Hence, the shoulder singularity does not

occur for this architecture.

3.3.2 Type-I Singularity

SinceD is a diagonal matrix, it becomes singular when any of its diagonal entries vanishes.

From Eq. (3.12) it can be readily seen that this happens when the length of one of the limbs

is zero, which is, again, physically impossible in general. This condition is the same as that

for the shoulder singularity of serial Jacobian matrices, and hence, excluded.

3.3.3 Type-II Singularity

This occurs when K becomes singular, and the robot gains extra mobility. The singu-

larity of three-limb PKMs with one passive S joint at each limb end has been investigated

extensively, based on: screw theory [39]; passive joint velocities [40]; instability analysis [41];

the pure condition [42]; and the characteristic tetrahedron [43]. An approach proposed for

the 6-3 Stewart-Gough platform can also be applied to this class of PKMs [82]. Moreover,

the singularity of a more general class of PKMs, namely, three-limb PKMs whose limbs,

each, includes a passive S joint somewhere, has also been investigated based on passive joint

velocities [45] and Grassmann-Cayley algebra [44,46]. It has been shown that the singularity

of this class of robots yields a straightforward geometrical interpretation, namely, the four

planes—three planes composed of the three pairs of intersecting wrench axes plus the plane

of the MP triangle—share at least one common point [44–46]. Starting from this geometric

condition, we propose a simple formulation for the singularity condition without involving

any determinant calculation [40–43,45] or passive joint velocities [40,45].

We have obtained K as shown in Eq. (3.5), whose six rows can be regarded as the Plücker
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coordinates [64] of six actuated-wrench axes, intersecting pairwise at the centre of the three

spherical joints. Hence, K becomes singular when the four planes—three planes composed

of the three pairs of intersecting actuated-wrench axes together with the plane of the MP

triangle—share at least one common point [41–46]. We denote the plane defined by the

intersecting lines ℰ𝑗, 𝒢𝑗 as Π𝑗, its normal as n𝑗, for 𝑗 = 1, 2, 3. It is noteworthy that n𝑗 = f𝑗

for the SDelta Robot, but this does not hold for a general six-dof PKM whose actuated-

wrench axes intersect pairwise, hence, we use n𝑗 for generality. Moreover, we denote the

MP plane as Π4, its normal as n4. Next we conduct the singularity analysis based on this

geometrical interpretation.

First, denote the intersecting line between Π𝑗 and Π4 as ℒ𝑗, for 𝑗 = 1, 2, 3; it is noteworthy

that ℒ𝑗 passes through 𝑆𝑗, and lies in the common plane Π4; the foregoing geometrical

condition is then equivalent to requiring that the three lines ℒ𝑗, for 𝑗 = 1, 2, 3, share common

points. In this way, we can reduce the analysis to the plane Π4. Furthermore, let us denote

the intersecting point of ℒ1 with ℒ2 and with ℒ3 as 𝑅2 and 𝑅3, respectively; then, the

condition leads to requiring that the position vectors of 𝑅2 and 𝑅3 be identical.

Let l𝑗 denote a vector parallel to ℒ𝑗; then, l𝑗 must be normal to both n𝑗 and n4. We do

not require l𝑗 to be of unit norm here, and hence, we can assign

l𝑗 = n𝑗 × n4 𝑗 = 1, 2, 3 (3.16)

Furthermore, upon defining the position vector of the common point as 𝜉𝜉𝜉, we have

𝜉𝜉𝜉 = 𝜂1l1 − p1 = 𝜂2l2 − p2 = 𝜂3l3 − p3 (3.17)

where 𝜂𝑗, 𝑗 = 1, 2, 3, are as yet to be determined. From the above relations, we have

𝜂1l1 − 𝜂2l2 = p1 − p2 (3.18a)

𝜂1l1 − 𝜂3l3 = p1 − p3 (3.18b)

Next we cross-multiply both sides of Eq. (3.18a) with l2, those of Eq. (3.18b) with l3, which
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leads to

𝜂1l1 × l2 = (p1 − p2) × l2 (3.19a)

𝜂1l1 × l3 = (p1 − p3) × l3 (3.19b)

It can be seen that both sides of Eqs. (3.19a) and (3.19b) are parallel to the 𝑧-axis of the

MP frame. Next, upon dot-multiplying the LHS of Eq. (3.19a) with the RHS of Eq. (3.19b),

then equating this product with that of the corresponding sides of Eqs. (3.19a) and (3.19b),

we obtain

(l1 × l2) · [(p1 − p3) × l3] = (l1 × l3) · [(p1 − p2) × l2] (3.20)

where the common factor 𝜂1 has been eliminated. Moreover, plugging Eq. (3.16) into

Eq. (3.20), after some manipulations, leads to

[(n3 − n3 · n4n4) · (p1 − p3)][(n2 × n1) · n4] = [(n2 − n2 · n4n4) · (p1 − p2)][(n3 × n1) · n4]

(3.21)

Furthermore, it is noted that n4 is normal to p𝑖 − p𝑗, for 𝑖, 𝑗 = 1, 2, 3, 𝑖 ̸= 𝑗; we can thus

simplify Eq. (3.21) to obtain

[n3 · (p1 − p3)][(n2 × n1) · n4] = [n2 · (p1 − p2)][(n3 × n1) · n4] (3.22)

which is the singularity condition sought. It is observed that, when represented in the MP

frame, p𝑗 and n4 in Eq. (3.22) become constant, which reduces the computational cost greatly.

As a result, we choose to express all the vectors in the MP frame. Then, we only need to

find n𝑗, for 𝑗 = 1, 2, 3, in the MP frame. It is noteworthy that, for the SDelta robot, n𝑗 is

nothing but f𝑗, and hence, parallel to the axis of the 𝑗th limb; moreover, its norm does not

affect the relation in Eq. (3.22). Assuming that the perpendicular foot of 𝑆𝑗 on the axis of

the 𝑗th C-drive is 𝑂𝑗, as shown in Figs. 3.1, we can use
−−→
𝑂𝑗𝑆𝑗 to substitute n𝑗 in Eq. (3.22),

where

−−→
𝑂𝑗𝑆𝑗 = (1− e𝑗e

𝑇
𝑗 )
−−→
𝐴𝑗𝑆𝑗 = (1− e𝑗e

𝑇
𝑗 )(

−−→
𝐶𝑆𝑗 −

−−→
𝐶𝐴𝑗) (3.23)
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which yields

[
−−→
𝑂𝑗𝑆𝑗]ℳ = Q𝑇 (1− [e𝑗]ℬ[e𝑗]

𝑇
ℬ){[c]ℬ − [

−−→
𝑂𝐴𝑗]ℬ −Q[p𝑗]ℳ} (3.24)

in which only Q and c are variable, with Q representing the rotation matrix of the MP, which

is the 3× 3 identity matrix under the reference pose. Then we can use
−−→
𝑂𝑗𝑆𝑗 to substitute n𝑗

in Eq. (3.22), for 𝑗 = 1, 2, 3.

It can be readily verified that this equality also holds even if some of the four planes Π𝑗

are coincident, or when some of the three intersecting lines ℒ𝑗 coincide.

3.3.4 Case Study: the Fixed-orientation Singularity Locus

Since the singularity locus of a six-dof PKM is impossible to visualize, its fixed-orientation

subset has been mostly investigated in the literature, which means that the orientation, i.e.,

the Q matrix, is fixed. Further,
−−→
𝑂𝑗𝑆𝑗 is linear in c, while (n𝑗 × n1) · n4 is quadratic in c, for

𝑗 = 2, 3; it then follows that Eq. (3.22) yields a cubic surface in c. A numerical example is

given below for illustration.

Apparently, the design parameters impact on the singularity distribution and the workspace.

Hence, we plot these items for two typical sets of design variables, namely, the sides of the

MP and the BP are assumed to obey the relation 𝑎/𝑏 = 0.2 for Design I and 𝑎/𝑏 = 1 for

Design II, respectively. Furthermore, we define the reference pose of the MP as that under

which the operation point 𝐶 coincides with 𝑂 in the BP, while the MP orientation is as

shown in Fig. 3.2, with the BP and MP planes coincident.

Several typical orientations are selected, under which the singularity loci are plotted as

the surfaces shown in Figs. 3.3 to 3.5, with the open and closed surfaces representing the

singularity locus and the corresponding workspace boundary, respectively. In these figures,

the orientation is given by the numerical values of the vector q and angle 𝜃 of the rotation

matrix Q that carries the BP from its reference to its current attitude.

It is observed that, when the MP rotates about the 𝑍-axis, the singularity is characterized

by three vertical planes, which can be analyzed by means of Grassmann geometry: at the

reference orientation, the three wrench axes ℰ𝑖, for 𝑖 = 1, 2, 3, corresponding to the three
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Figure 3.3: The workspace and singularity loci of the SDelta at the reference orientation (a) Design
I (b) Design II

C-Drive axes, lie all in a horizontal plane. Then, when the middle link of the 𝑖th limb is

vertical, the wrench line corresponding to g𝑖 lies also in the same horizontal plane, these

four lines becoming a linear variety [35] of rank 3, which leads to a singular configuration.

Hence, the three planes can be found when the MP translates to a configuration in which 𝑆𝑖

lies in the vertical plane that passes through the 𝑖th C-Drive axis. Furthermore, when the

MP undergoes a rotation about the 𝑍-axis, the three lines ℰ𝑖 are still in the same horizontal

plane, which again, leads to three vertical singularity planes; this is simple to characterize.

However, when the MP rotates about some other axes, the singularity surface has, generally,

a complex shape.
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Figure 3.4: The workspace and singularity loci of the SDelta with the orientation q = [0, 0, 1]𝑇

and 𝜃 = 15∘ (a) Design I (b) Design II
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Figure 3.5: The workspace and singularity loci of the SDelta with the orientation q = [0, 1, 0]𝑇

and 𝜃 = 15∘ (a) Design I (b) Design II

3.4 Workspace Analysis

In this section we investigate the fixed-orientation position workspace to have a general

idea of the workspace volume. We consider only the limits of the active and passive joints

first, then verify whether singularities exist within the workspace thus obtained.

3.4.1 The Geometrical Method for Workspace Quantification

We developed a geometrical method capable of obtaining the three-dimensional posi-

tion workspace systematically, targeting its graphical display and workspace-volume evalu-

ation with computer-algebra software, which lends itself also to workspace optimization via

mathematical programming. The basic principle of the construction of the fixed-orientation

workspace follows: We find the feasible workspace of the MP under the constraint of only

the 𝑖th limb (i.e., we assume that the two other limbs are disconnected and regard the robot

as a serial chain), denoted as 𝒲𝑖; then, the workspace of interest will be the intersection of

{𝒲𝑖}31. Next, we explain the procedure for finding 𝒲𝑖.

Since the orientation of the MP is fixed for the fixed-orientation workspace, the centre

of the spherical joint 𝑆𝑖 undergoes the same motion as the operation point 𝐶. Hence, we

firstly find the “position workspace” of 𝑆𝑖—denoted 𝒲𝑆𝑖. Considering the stroke of the C-

drive, denoted 𝑟𝑠, the upper and lower bounds of the limb length, denoted 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥, the

position of 𝑆𝑖 is found to lie within the region between two co-axial cylinders of radii 𝑙𝑚𝑖𝑛

and 𝑙𝑚𝑎𝑥, respectively, whose height is the stroke 𝑟𝑠, as shown in Fig. 3.6(a).
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Figure 3.6: Illustration of the workspace formulation based on the geometric method

Furthermore, we consider the constraint of the S joint, which we assume to be realized

by a ball-and-socket joint, whose working-angle range can be modelled as a cone [3], its

maximum denoted 𝛿𝑚𝑎𝑥. Apparently, the translation of the MP along the direction e𝑖 of

the axis of the C-drive, or along the direction f𝑖 of the 𝑖th limb, will not change the relative

orientation of the two links connected by the spherical joint; only the translation of the MP

in the direction of g𝑖 will change the foregoing relative orientation, which corresponds to the

rotation of the C-drive. Hence, the motion of the S joint has a limit only on the feasible range

of the angle of rotation of the C-drive; this limit remains constant when 𝑆𝑖 translates in the

direction of e𝑖 or f𝑖. This means that, when we further consider the limits of the S joint,

we will no longer have a cylindrical shape, but a pie slice, as shown, again, in Fig. 3.6(a),

whose angular range can be derived from the projection of the cone onto the plane normal

to e𝑖. Until now, we have found 𝒲𝑠𝑖; it is a simple matter to translate this region by p𝑖

to find 𝒲𝑖, the feasible region of the operation point under the constraint of the 𝑖th limb,

as shown in Fig. 3.6(b). Once all the three regions {𝒲𝑖}31 are available, their intersection

yields the fixed-orientation workspace sought. Researchers usually discretize one of the three

coordinates, e.g., the 𝑍-coordinate, then find the workspace shape on different layers. With

the aid of computer-algebra, this kind of intersection operation of geometrical objects can be

handled directly; the software in use also provides the workspace volume and the visulization

of its boundary.
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3.4.2 Case Study

The fixed-orientation worksapce is provided for the robot, again, with two sets of design

parameters:

𝑎 = 0.2𝑏, 𝑙𝑚𝑖𝑛 = 0.45𝑏, 𝑙𝑚𝑎𝑥 = 0.85𝑏, and 𝑎 = 𝑏, 𝑙𝑚𝑖𝑛 = 0.6𝑏, 𝑙𝑚𝑎𝑥 = 1.13𝑏 (3.25)

where 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 represent the minimum and maximum lengths of each limb; It is notewor-

thy that we choose different 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 values in order to keep the height of the MP similar

at the reference pose for the two sets of different design parameters. Moreover, we assume

the maximum angle attained by the S joint to be 𝛿𝑚𝑎𝑥 = 45∘; then, the workspace under the

reference orientation is plotted in Fig. 3.7 for each case, yielding volume values of 0.049𝑏3 and

0.067𝑏3, respectively. The workspace is also evaluated under several other orientations, as

shown in Figs. 3.8 and 3.9, with the volumes 0.045𝑏3, 0.007𝑏3, 0.047𝑏3, 0.042𝑏3, respectively.

It is, however, noteworthy that the singularity surface sometimes crosses the workspace for

the given set of design parameters and selected orientation, as shown in Figs. 3.3 to 3.5,

similar to the case of the Stewart-Gough platform [83].

Finally, in order to reveal the effect of the ratio 𝑎/𝑏 on the workspace volume (𝑉 ), we plot

𝑉 vs. 𝑎/𝑏, in the range of 0.2 to 1.5, which we deem to be sufficient in general applications.

Moreover, even though we used different 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 values for Designs I and II, in order

to make the height of the MP similar at the reference pose, we fix them here in order to

reveal the effect of solely the ratio 𝑎/𝑏; more specifically, 𝑙𝑚𝑖𝑛 = 0.55𝑏, 𝑙𝑚𝑎𝑥 = 𝑏. Then,

the workspace volumes are, again, plotted under the three different orientations, i.e., the

reference orientation, the orientation q = [0, 0, 1]𝑇 with 𝜃 = 15∘ and q = [0, 1, 0]𝑇 with

𝜃 = 15∘, respectively, as shown in Fig. 3.10. Apparently, the workspace volume 𝑉 under

the reference orientation remains largely unchanged for different values of 𝑎/𝑏; however, 𝑉

decreases significantly when the MP is rotated about the 𝑍-axis; when the MP is rotated

about other directions, the workspace volume can either decrease or increase. It is noteworthy

that the above workspace volume is different from those of Designs I and II, indicating that

the range of the passive limb length affects the workspace as well.

The above result indicates that, when the range of the passive limb length is fixed, the
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Figure 3.7: The workspace of the SDelta under the reference orientation (a) Design I (b) Design
II

 

1

1

1

−1

−1

−1

X Y

Z

(a)

11

−1

−1

−1

X Y

Z

(b)

Figure 3.8: The workspace of the SDelta with the orientation q = [0, 0, 1]𝑇 and 𝜃 = 15∘ (a) Design
I (b) Design II
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Figure 3.9: The workspace of the SDelta with the orientation q = [0, 1, 0]𝑇 and 𝜃 = 15∘ (a) Design
I (b) Design II
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workspace volume generally decreases as the ratio 𝑎/𝑏 increases; however, for a larger MP,

(e.g., 𝑎 = 𝑏), the robot allows for a larger range of the passive limb length5, which can end

up with a bigger workspace volume.
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Figure 3.10: The workspace volume w.r.t. the ratio of 𝑎/𝑏, under different orientations

3.5 Singularity and Workspace Analyses—A Discussion

From the above figures, for which two sets of arbitrarily chosen design parameters are

used, it is apparent that singularity locus and workspace are greatly affected by the ratio

𝑎/𝑏 and the range of the limb length. Interestingly, when the MP finds itself at the reference

orientaion, the singularity locus is the union of three vertical planes, each corresponding to

a set of postures under which one of the three points 𝑆𝑗 lies in the vertical plane passing

through the axis of the 𝑗th C-Drive, for 𝑗 = 1, 2, 3. As a result, |𝑎 − 𝑏/2| must be as large

as possible, in order to make the distance from 𝑆𝑗 to the vertical plane passing through the

axis of the 𝑗th C-Drive as large as possible, the singularity surface becoming farther from

the desired workspace region. Furthermore, when the MP rotates about the 𝑍-axis, the

singularity surface is still the union of three vertical planes. As the MP rotates about an axis

other than the 𝑍-axis, the singularity surfaces generally show the tendency to both rotate

about this axis, and deform in such a way that their shapes become more complex6.

As for the workspace volume, it is greatly affected not only by the ratio 𝑎/𝑏 but also

by the range of the limb length: the workspace volume increases as the stroke of each limb

increases; moreover, as the average of 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 increases, the “centre” of the workspace

region lies higher and the workspace volume generally becomes larger.

5In Designs I and II, we assume that 𝑙𝑚𝑎𝑥 ≈ 2𝑙𝑚𝑖𝑛 and 𝑙𝑟𝑒𝑓 ≈ (𝑙𝑚𝑎𝑥 + 𝑙𝑚𝑖𝑛)/2, where 𝑙𝑟𝑒𝑓 represents the
limb length at the reference pose; moreover, the reference height of the MP was kept similar in Designs I and
II to make a reasonable comparison, which ends up with different 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 values.

6The complexity of a surface can be quantified in terms of the curvature distribution [84].
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(a) (b) (c)

Figure 3.11: Alternative layouts of the three C-drives

The singularity locus sometimes crosses the workspace, which is undesirable; we believe

that this is due to the three C-Drive axes becoming coplanar, which yields the three singu-

larity planes at the reference orientation. As a result, other layouts of the three C-Drives

may be explored, such as those with three vertical axes, three intersecting orthogonal axes or

three skew orthogonal axes, as shown in Figs. 3.11. These alternatives have the potential to

provide a larger singularity-free workspace. For example, for the layout with three vertical

axes, it allows for a larger stroke of the three intermediate P joints for the same footprint7;

moreover, the workspace can be extended along the vertical axis as long as we increase the

C-drive lengths. These features yield a larger workspace, although this platform is mostly

suitable for small workpieces, due to the possible interference among the three guideways

and a large workpiece.

So far we have completed the forward-displacement, singularity and workspace analyses

of the SDelta, which are essential in the robot evaluation, simulation and control. Next, its

optimization based on a dexterity index is provided, which offers guidelines on how to choose

the design parameters for high dexterity.

7Here “footprint” means the area the robot occupies.
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3.6 The Optimum Design of the 3-CPS PKM for Maxi-

mum Dexterity

According to one typical dictionary8 definition, dexterity: the ability to use your hands

skillfully. In robotics the term has been adopted to indicate the precision capability of a

robotic manipulator to execute a positioning task [64]. Two measures have been adopted:

the condition number [66] and manipulability, the absolute value of the determinant [85]

of the Jacobian matrix. These two indices are intended to measure, roughly speaking, the

distance of a robot posture, given by the joint angles, from singularity. The absolute value of

the Jacobian determinant depends on the size of the robot, and hence, favors large robots;

the former, when the Jacobian matrix has been normalized by means of a characteristic

length, is dimensionless, besides being the measure adopted within numerical analysis [86]

community for the same purpose. For these reasons, the condition number appears as a sound

measure of dexterity, and hence, we adopt it in this dissertation. The condition number 𝜅

is a dimensionless scalar ranging from 1 to infinity, which, when calculated based on the

Frobenius norm9, ‖ · ‖𝐹 , represented as 𝜅𝐹 , takes the form [64]

𝜅𝐹 (K) =
1

𝑛

√︁
‖K‖2𝐹‖K−1‖2𝐹 =

1

𝑛

√︀
tr(KK𝑇 )tr[(KK𝑇 )−1], 𝑛 = 6 (3.26)

It is known that the lower the condition number, the higher the dexterity.

Furthermore, the reciprocal of the condition number of the Jacobian matrix is adopted

here to quantify the dexterity. Since D is diagonal, its condition number can be readily

monitored as the ratio of the largest absolute value to the smallest absolute value of its

non-zero entries, which is well bounded, since the limb extensions are designed to be always

positive. Moreover, as J𝑚 is orthogonal, it is isotropic. Hence, we only look at matrix K

here. Given that the entries of the Jacobian matrices bear different units, we introduce a

pertinent characteristic length 𝐿 [68] to resolve this dimensional inhomogeneity. To this end,

8Merriam-Webster Learner’s Dictionary.
9This norm is chosen because it yields an analytic function of the condition number, and hence, is infinitely

many times differentiable [67]. Moreover, it can be readily shown that the Frobenius norm of a matrix is
immutable to a multiplication of the matrix by an orthogonal matrix. As well, the same norm is invariant

under a change of frame.
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we redefine both the twist and matrix K in their dimensionally homogeneous forms:

tℎ =

⎡⎣ 𝜔̇𝜔𝜔

ċ/𝐿

⎤⎦ , Kℎ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(g1 × p1)
𝑇 𝐿g𝑇

1

(e1 × p1)
𝑇 𝐿e𝑇1

(g2 × p2)
𝑇 𝐿g𝑇

2

(e2 × p2)
𝑇 𝐿e𝑇2

(g3 × p3)
𝑇 𝐿g𝑇

3

(e3 × p3)
𝑇 𝐿e𝑇3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.27)

which yields Kℎtℎ = Kt, the latter appearing in Eq. (3.3). The characteristic length [64] is

defined as the value 𝐿 that minimizes the condition number of Kℎ, as yet to be determined.

Next, the optimum design of the SDelta is conducted based on the condition number of

the Jacobian matrix K. From Eq. (3.26), it is apparent that the expression for K−1 is needed

when a symbolic formulation is sought. Next, the inverse of the robot forward Jacobian

matrix is found symbolically. After that, we formulate an optimization problem based on its

condition number, for maximum dexterity. Drawing from the optimization results, we offer

some guidelines on choosing the optimum design parameters.

3.6.1 Derivation of the Inverse of the Forward Jacobian Matrix

The axes of the six actuated wrenches of a large class of six-dof PKMs intersect pair-

wise, including most of the three-limb PKMs whose each limb includes a passive spherical

joint10 [39,75]. Next, we derive a symbolic expression for the inverse of the forward Jacobian

matrix for this class of PKMs, an instance being the SDelta, illustrated in Fig. 2.1. Due to

the special layout of the six actuated wrenches, the Jacobian matrix K of such robots always

bears the form of Eq. (3.5), with e𝑗 and g𝑗 representing the unit vectors associated with

the 𝑗th pair of intersecting wrench axes, for 𝑗 = 1, 2, 3; unlike the case of the SDelta, these

vectors are, in general, not necessarily normal to each other. In order to make the derivation

below general, in the remainder of this subsection we redefine f𝑗, such that f𝑗 ≡ g𝑗 × e𝑗, for

𝑗 = 1, 2, 3, which is not necessarily a unit vector; moreover, the expression of K−1 below does

not require the operation point 𝐶 to be the centroid of triangle 𝑆1𝑆2𝑆3 in this subsection.

10Numerous examples of such PKMs can be found in [41,44].
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As a matter of fact, 𝐶 need not even be a point of the plane of the triangle 𝑆1𝑆2𝑆3.

We denote K−1 as K, i.e., KK = 1, where 1 represents the 6 × 6 identity matrix. If the

first column of K is denoted by k1, then

Kk1 = 𝜄1 (3.28)

with 𝜄1 representing a six-dimensional vector array, whose first entry is unity, all other entries

vanishing. Next, k1 is defined as the six-dimensional array

k1 =

⎡⎣u1

m1

⎤⎦ (3.29)

where u1 and m1 represent three-dimensional vectors, as yet to be determined. Then, the

inner product of the last five rows of K with k1 must vanish. The inner product of the third

and fourth rows of K with k1 leads to

(m1 − u1 × p2)
𝑇g2 = 0, (m1 − u1 × p2)

𝑇e2 = 0 (3.30)

which imply that m1 −u1 ×p2 is parallel to g2 × e2, i.e., to f2; hence, (m1 −u1 ×p2) = 𝑘2f2

or, equivalently,

m1 = 𝑘2f2 + u1 × p2 (3.31)

where 𝑘2 represents a scalar, as yet to be found. Similarly, from the inner product of the

fifth and sixth rows of K with k1, we have

m1 = 𝑘3f3 + u1 × p3 (3.32)

with 𝑘3, as well, to be determined. Equations (3.31) and (3.32) yield

u1 × (p2 − p3) = −𝑘2f2 + 𝑘3f3 (3.33)

from which we can conclude that u1, p2 − p3 and f2 × f3 are coplanar. Thus, we can assume
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u1 to be a linear combination of the last two vectors, i.e.,

u1 = 𝑤1(p2 − p3) + 𝑤2(f2 × f3) (3.34)

with 𝑤1 and 𝑤2 to be determined. After plugging Eq. (3.34) into Eq. (3.33) and some

straightforward manipulations, we obtain

𝑤2{[f𝑇2 (p2 − p3)]f3 − [f𝑇3 (p2 − p3)]f2} = −𝑘2f2 + 𝑘3f3 (3.35)

and hence,

𝑘2 = 𝑤2f
𝑇
3 (p2 − p3), 𝑘3 = 𝑤2f

𝑇
2 (p2 − p3) (3.36)

Relations (3.31), (3.34) and (3.36) guarantee that the inner product of the last four rows of

K with k1 do vanish, 𝑤1 and 𝑤2 being free parameters. Next, we find the ratio of 𝑤1 to 𝑤2

from the vanishing of the inner product of the second row of K with k1, which leads to

(p1 × u1 + m1)
𝑇e1 = 0 (3.37)

After plugging Eqs. (3.31), (3.34) and (3.36) into Eq. (3.37) and some straightforward sim-

plifications, we obtain

𝑤1[(p1 − p2) × (p2 − p3)]
𝑇e1 + 𝑤2{(p1 − p2) × (f2 × f3) + [f𝑇3 (p2 − p3)]f2}𝑇e1 = 0 (3.38)

from which we can find the ratio of 𝑤1 to 𝑤2. Let us denote the coefficients of 𝑤1 and 𝑤2

as11

𝑠1 = [(p1−p2)×(p2−p3)]
𝑇e1 ≡ 2𝑠Δn

𝑇e1, 𝑠2 = {(p1−p2)×(f2×f3)+[f𝑇3 (p2−p3)]f2}𝑇e1 ≡ r𝑇1 e1

(3.39)

where 𝑠Δ represents the area of the MP triangle 𝑆1𝑆2𝑆3, n is the unit vector normal to the

MP triangle, its direction defined according to Eqs. (3.39), while r1 is defined as

r1 = {[(p1 − p3)
𝑇 f3]f2 − [(p1 − p2)

𝑇 f2]f3} (3.40)

11Rather than working with the ratio 𝑤1/𝑤2, or 𝑤2/𝑤1 for that matter, in which either of the two variables
can vanish, we keep both in the balance of the paper.
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The simplest way of assigning values to 𝑤1 and 𝑤2 is, thus,

𝑤1 = −𝑠2 = −r𝑇1 e1, 𝑤2 = 𝑠1 = 2𝑠Δn
𝑇e1 (3.41)

In this way, we can represent vectors u1 and m1 as

u1 = −r𝑇1 e1(p2 − p3) + 2𝑠Δn
𝑇e1(f2 × f3), m1 = 𝑤2(f

𝑇
2 p2)f3 − 𝑤2(f

𝑇
3 p3)f2 + 𝑤1p2 × p3

(3.42)

Furthermore, if we define h1 as

h1 = (f𝑇2 p2)f3 − (f𝑇3 p3)f2 (3.43)

then,

m1 = 2𝑠Δ(n𝑇e1)h1 − (r𝑇1 e1)p2 × p3 (3.44)

Now we can guarantee that k1 is orthogonal to the last five rows of K. However, its inner

product with the first row of K must be unity; hence, the last step is to calculate this inner

product, denoted as 𝑡1. Then, the scaled k1 can be expressed as

k𝑠1 =
1

𝑡1

⎡⎣u1

m1

⎤⎦ (3.45)

which satisfies Kk𝑠1 = 𝜄1, with 𝜄1 introduced in Eq. (3.28). Finally, 𝑡1 is derived as

𝑡1 =(g1 × p1)
𝑇u1 + g𝑇

1 m1 = (p1 × u1 + m1)
𝑇g1 (3.46)

which, after routine algebraic manipulations, reduces to

𝑡1 =2𝑠Δ(f1 × r1) · n (3.47)

We have obtained so far the first column ofK (i.e., ofK−1). Next we derive the remaining

columns of K. First, we express K as

K =
[︁
k𝑠1 k𝑠2 k𝑠3 k𝑠4 k𝑠5 k𝑠6

]︁
(3.48)
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Following the form of k𝑠1, as given by Eq. (3.45), we can set

k𝑠𝑗 =
1

𝑡𝑗

⎡⎣u𝑗

m𝑗

⎤⎦ , 𝑗 = 2, . . . , 6 (3.49)

For example, for the first column of K,

r1 =[(p1 − p3)
𝑇 f3]f2 − [(p1 − p2)

𝑇 f2]f3

h1 =(f𝑇2 p2)f3 − (f𝑇3 p3)f2

u1 = − r𝑇1 e1(p2 − p3) + 2𝑠Δn
𝑇e1(f2 × f3)

m1 =2𝑠Δ(n𝑇e1)h1 − (r𝑇1 e1)p2 × p3

𝑡1 =2𝑠Δ(f1 × r1) · n

(3.50)

Due to the symmetries in the structure of K, we can find the second column of K by simply

exchanging the roles of e1 and g1 in Eqs. (3.50)12:

u2 = − (r𝑇1 g1)(p2 − p3) + 2𝑠Δ(n𝑇g1)(f2 × f3)

m2 =2𝑠Δ(n𝑇g1)h1 − (r𝑇1 g1)p2 × p3

𝑡2 = − 2𝑠Δ(f1 × r1) · n

(3.51)

and hence,

𝑡2 = −𝑡1 (3.52)

Moreover, we can find the third and fifth columns of K upon exchanging subscripts 1, 2, 3

with 2, 3, 1 or 3, 1, 2 in Eqs. (3.50), respectively, and the fourth and sixth columns of K upon

exchanging subscript 1, 2, 3 with 2, 3, 1 or 3, 1, 2 in Eqs. (3.51), respectively. It is noteworthy

that the corresponding subscripts in all the terms within r𝑗 and h𝑗 have to be exchanged as

well.

Furthermore, it is found that we only need to calculate the denominator once because

𝑡1 = 𝑡3 = 𝑡5 = −𝑡2 = −𝑡4 = −𝑡6 (3.53)

12Consistently, f1 should be substituted by −f1, but it is readily verified that this does not affect the result;
n, which does not involve e1 or g1, is not affected, either.
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Now we prove the above statement: If we denote the edge joining the 𝑖th and 𝑗th S joint

centre as s𝑖𝑗 =
−−→
𝑆𝑖𝑆𝑗, then, p𝑖 − p𝑗 = s𝑖𝑗; moreover,

2𝑠Δ(r1 × n) =[(s𝑇13f3)f2 − (s𝑇12f2)f3] × (s12 × s13) = (s𝑇13f3)(s
𝑇
23f2)s12 − (s𝑇12f2)(s

𝑇
23f3)s13

(3.54)

and hence,

𝑡1 = 2𝑠Δ(r1 × n) · f1 =[(s𝑇13f3)(s
𝑇
23f2)s12 − (s𝑇12f2)(s

𝑇
23f3)s13] · f1

= − (𝑠𝑇12f1)(s
𝑇
23f2)(s

𝑇
31f3) + (s𝑇12f2)(s

𝑇
23f3)(s

𝑇
31f1)

(3.55)

If we exchange, for example, subscripts 1, 2, 3 with 2, 3, 1, respectively, while noticing that

s𝑖𝑗 = −s𝑗𝑖, we obtain

𝑡3 =[(s𝑇21f1)(s
𝑇
31f3)s23 − (s𝑇23f3)(s

𝑇
31f1)s21] · f2

= − (𝑠𝑇12f1)(s
𝑇
23f2)(s

𝑇
31f3) + (s𝑇12f2)(s

𝑇
23f3)(s

𝑇
31f1) = 𝑡1

(3.56)

Similarly, relation (3.53) follows. Finally, if we define 𝑡 = 𝑡1, then K can be written as

K =
1

𝑡

⎡⎣u1 −u2 u3 −u4 u5 −u6

m1 −m2 m3 −m4 m5 −m6

⎤⎦ (3.57)

Interestingly, Eq. (3.55) is the same as the expression for the singularity loci of three-limb

PKMs with three passive spherical joints derived by Yang et al. [40]. This makes sense

because, when K becomes singular, its inverse does not exist, which happens when and only

when 𝑡 = 0. From the mixed-product form of 𝑡—i.e., 𝑡1 in expression (3.47)—we obtain a

more compact form of the singularity loci, which should yield a more efficient evaluation of

the singularity loci of any six-dof three-limb PKM with three passive S joints.

3.6.2 Unconstrained Dexterity Maximization

Next, we employ the expression for K−1 derived in the previous subsection to conduct the

optimization for the SDelta based on a dexterity index. Firstly, we formulate the optimization
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problem: The architecture parameters 𝛼 and 𝛾 are defined as

𝛼 =
𝑎

𝑏
𝛾 =

ℎ

𝑏
(3.58)

where 𝑎 and 𝑏 are the lengths of the sides of the MP and BP equilateral triangles, respectively,

while ℎ is the height of the MP plane at the reference pose13, as shown in Fig. 3.2. Moreover,

the pose of the MP is given by its orientation Q ∈ R3×3 and the position vector c of the

operation point 𝐶. Next, the rotation matrix Q is represented by q and 𝜃, the unit vector

parallel to the axis of rotation and the angle of rotation, respectively; then, the set of design

variables is defined as:

x =
[︁
𝑏 𝐿 q c 𝛼 𝛾 𝜃

]︁𝑇
∈ R11 (3.59)

where 𝐿 is the characteristic length [68], as yet to be found. Then, the optimization problem

can be formulated as

𝑓(x) =
1

𝑛2
‖K‖2𝐹‖K−1‖2𝐹 → min

x

s.t. 𝑏, 𝛼, 𝐿 > 0

(3.60)

In order to solve this problem, we next derive ‖K‖2𝐹 and ‖K−1‖2𝐹 , which carry simpler

expressions than ‖K‖𝐹 and ‖K−1‖𝐹 .

3.6.2.1 Derivation of the Norm of the Forward Jacobian

When deriving the condition number of the forward Jacobian matrix, its homogeneous

form, as per Eq. (3.27), is needed, which was obtained upon introducing the characteristic

length [68] 𝐿. 𝐿 can be found, together with the other entries of the design vectors x of

13It is noteworthy that ℎ is actually the component of the position vector c of the operation point along
the 𝑧 axis (𝑐𝑧) in the BP frame at the reference pose.
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Eq. (3.59), upon solution of problem (3.60). To this end, ‖Kℎ‖2𝐹 is readily derived as

‖Kℎ‖2𝐹 =
3∑︁

𝑗=1

[𝐿2(‖g𝑗‖22 + ‖e𝑗‖22) + (g𝑗 × p𝑗)
𝑇 (g𝑗 × p𝑗) + (e𝑗 × p𝑗)

𝑇 (e𝑗 × p𝑗)

=
3∑︁

𝑗=1

[2𝐿2 + (p𝑇
𝑗 p𝑗g𝑗 − p𝑇

𝑗 g𝑗p𝑗)
𝑇g𝑗 + (p𝑇

𝑗 p𝑗e𝑗 − p𝑇
𝑗 e𝑗p𝑗)

𝑇e𝑗]

=
3∑︁

𝑗=1

[2𝐿2 + 2‖p𝑗‖22 − (p𝑇
𝑗 g𝑗)

2 − (p𝑇
𝑗 e𝑗)

2]

(3.61)

Since {e𝑗, f𝑗,g𝑗}31 are orthonormal for the SDelta, and the operation point is located at the

centroid of the MP triangle, ‖Kℎ‖2𝐹 simplifies to

‖Kℎ‖2𝐹 =6𝐿2 +
3∑︁

𝑗=1

(
𝑎√
3

)2 +
3∑︁

𝑗=1

(p𝑇
𝑗 f𝑗)

2 = 6𝐿2 + 𝛼2𝑏2 +
3∑︁

𝑗=1

(p𝑇
𝑗 f𝑗)

2 (3.62)

where p𝑗 and f𝑗 are functions of x.

3.6.2.2 Derivation of the Norm of the Inverse of the Forward Jacobian

We recall the expressions of K−1 and Kℎ displayed in Eqs. (3.57) and (3.27). Since

we multiplied the right block of K by 𝐿, the lower block of K−1 should be divided by 𝐿

correspondingly, namely,

Kℎ =
1

𝑡

⎡⎣ u1 −u2 u3 −u4 u5 −u6

m1/𝐿 −m2/𝐿 m3/𝐿 −m4/𝐿 m5/𝐿 −m6/𝐿

⎤⎦ (3.63)

If we further consider the geometry of the robot under study, as shown in Fig. 2.1, where

both the MP and the BP are equilateral triangles, of sides 𝑎 and 𝑏, respectively, and the

operation point 𝐶 is selected as the centroid of triangle 𝑆1𝑆2𝑆3, then, u1, u2 and m1, m2 can
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be further simplified as

u1 = − (r𝑇1 e1)(p2 − p3) +

√
3

2
𝑎2(n𝑇e1)(f2 × f3)

u2 = − (r𝑇1 g1)(p2 − p3) +

√
3

2
𝑎2(n𝑇g1)(f2 × f3)

m1 =

√
3

6
𝑎2[3(n𝑇e1)h1 − (r𝑇1 e1)n]

m2 =

√
3

6
𝑎2[3(n𝑇g1)h1 − (r𝑇1 g1)n]

(3.64a)

Next, we partition Kℎ into three 6 × 2 blocks, and denote the Euclidean norm of the 𝑗th

block as 𝑑𝑗, which leads to

𝑑21 =
1

𝑡21
[‖u1‖22 + ‖u2‖22 +

1

𝐿2
(‖m1‖22 + ‖m2‖22)] (3.65)

where ‖u1‖22 + ‖u2‖22 and ‖m1‖22 + ‖m2‖22 are derived as

‖u1‖22 + ‖u2‖22 =𝑎2[(r𝑇1 e1)
2 + (r𝑇1 g1)

2] +
3

4
𝑎4[(n𝑇e1)

2 + (n𝑇g1)
2]‖f2 × f3‖22

− 2
√

3𝑎2(r𝑇1 e1n
𝑇e1 + r𝑇1 g1n

𝑇g1)s
𝑇
23(f2 × f3)

(3.66)

and

‖m1‖22 + ‖m2‖22 =
𝑎4

12
{9[(n𝑇e1)

2 + (n𝑇g1)
2]‖h1‖22 + (r𝑇1 e1)

2 + (r𝑇1 g1)
2

− 6(r𝑇1 e1n
𝑇e1 + r𝑇1 g1n

𝑇g1)h
𝑇
1 n}

(3.67)

Thus, ‖K−1‖2𝐹 can be expressed as

‖K−1‖2𝐹 =
3∑︁

𝑗=1

𝑑2𝑗 (3.68)

with 𝑑𝑗 defined in Eq. (3.65), for 𝑗 = 1, similar expressions following for 𝑗 = 2, 3.

3.6.2.3 Solving the Optimization Problem at a Symmetric Posture

The evaluation of the condition number under arbitrary postures is cumbersome, since

the dimension of the corresponding design space is 11; it is thus desirable to limit the design

space to a more manageable subspace. Due to the symmetric architecture of the robot under

study, the minimum condition number is most likely to be found at a symmetric posture.
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Apparently, such a posture occurs when the centroid of the MP lies right above that of the

BP, and the MP has the reference orientation shown in Fig. 3.2, i.e., 𝜃 = 0 and 𝑐𝑥 = 𝑐𝑦 = 0,

where 𝑐𝑥 and 𝑐𝑦 represent the components of c along the 𝑥 and 𝑦 axes in the BP frame. Now

the set of design variables becomes14

x =
[︁
𝑏 𝛼 𝛾 𝐿

]︁𝑇
(3.69)

Moreover, Eqs. (3.62) and (3.68), evaluated in this subspace, are simplified dramatically:

‖K‖2𝐹 =6𝐿2 + 𝛼2𝑏2 +
4𝛼4 𝑏2 − 4𝛼3 𝑏2 + 𝛼2 𝑏2

4𝛼2 − 4𝛼 + 12 𝛾2 + 1

=
2 (12𝐿2 𝛼2 − 12𝐿2 𝛼 + 36𝐿2 𝛾2 + 3𝐿2 + 4𝛼4 𝑏2 − 4𝛼3 𝑏2 + 6𝛼2 𝑏2 𝛾2 + 𝛼2 𝑏2)

4𝛼2 − 4𝛼 + 12 𝛾2 + 1

(3.70)

and

‖K−1‖2𝐹 =
60𝐿2 𝛼2 − 60𝐿2 𝛼 + 288𝐿2 𝛾2 + 15𝐿2 + 20𝛼4 𝑏2 − 20𝛼3 𝑏2 + 12𝛼2 𝑏2 𝛾2 + 5𝛼2 𝑏2

3𝐿2 𝛼2 𝑏2 (4𝛼2 − 4𝛼 + 1)
(3.71)

Furthermore, defining 𝜌 as the ratio 𝐿/𝑏, the objective function becomes

𝑓(x) =
1

36
‖K‖2𝐹‖K−1‖2𝐹 = 𝜅2𝐹 (K) =

𝑁

𝐷
(3.72)

where

𝑁 =𝑁4𝜌
4 +𝑁2𝜌

2 +𝑁0, 𝐷 = 54(1 − 2𝛼)2𝛼2[(1 − 2𝛼)2 + 12𝛾2]𝜌2 (3.73)

with

𝑁0 =𝛼4[(1 − 2𝛼)2 + 6𝛾2][5 + 20(−1 + 𝛼)𝛼 + 12𝛾2]

𝑁2 =3𝛼2[(1 − 2𝛼)2 + 12𝛾2][5 + 20(−1 + 𝛼)𝛼 + 12𝛾2]

+ 3𝛼2[(1 − 2𝛼)2 + 6𝛾2][5 + 20(−1 + 𝛼)𝛼 + 96𝛾2]

𝑁4 =9[(1 − 2𝛼)2 + 12𝛾2][5 + 20(−1 + 𝛼)𝛼 + 96𝛾2]

(3.74)

14We should use 𝑐𝑧 instead of 𝛾 as one of the design parameters, but here we use 𝛾, the height of the MP
plane at the reference posture of Fig. 3.2 as one of the design variables instead, for conciseness.
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which are free of 𝑏 and 𝐿. Moreover, by inspection, it is found that 𝜌 always appears at even

powers, and 𝛼 mostly appears as 2𝛼− 1. For these reasons, we define

𝜆 = 𝜌2, 𝛽 = 2𝛼− 1 (3.75)

Then we redefine the vector of design variables as x = [𝛽, 𝛾, 𝜆]𝑇 , thereby simplifying the

numerator and denominator of 𝑓(x) as appearing in Eq. (3.72), namely,

𝑓(𝛽, 𝛾, 𝜆) = 𝜅2𝐹 (K) =
𝑁

𝐷
→ min

x
(3.76)

where

𝑁 =144
(︀
𝛽2 + 12𝛾2

)︀ (︀
5𝛽2 + 96𝛾2

)︀
𝜆2 + 24(𝛽 + 1)2

(︀
5𝛽4 + 99𝛽2𝛾2 + 360𝛾4

)︀
𝜆

+ (𝛽 + 1)4
(︀
5𝛽4 + 42𝛽2𝛾2 + 72𝛾4

)︀
𝐷 =216𝛽2(1 + 𝛽)2(𝛽2 + 12𝛾2)𝜆 = 144 ×

3

2
𝛽2(1 + 𝛽)2(𝛽2 + 12𝛾2)𝜆

(3.77)

Next, we solve the optimization problem by differentiating 𝑓(x) with respect to 𝛽, 𝛾 and 𝜆.

By zeroing the partial derivative of 𝑓 w.r.t. 𝜆, we obtain 𝜆 as a function of 𝛽 and 𝛾, i.e.,

𝜆 =
1

12

√︃
(𝛽 + 1)4 (5𝛽4 + 42𝛽2𝛾2 + 72𝛾4)

5𝛽4 + 156𝛽2𝛾2 + 1152𝛾4
(3.78)

Substitution of Eq. (3.78) into Eq. (3.76) leads to a bivariate function, which only involves

the design parameters 𝛽 and 𝛾. Next we plot15 𝜅−1
𝐹 (K) as 1/

√
𝑓 vs. 𝛽 and 𝛾, as shown in

Fig. 3.12.

It is observed that the minimum condition number is achieved when 𝛾 = 0 and 𝛽 ̸= 0,

the said minimum being

𝜅𝐹 (K)𝑚𝑖𝑛 =

√
10

3
(3.79)

i.e., 𝜅𝐹 (K)𝑚𝑖𝑛 = 1.0541, to four decimal places, or pretty close to unity.

Next, we calculate the characteristic length for a given architecture, i.e., for a given 𝛽.

It is observed that the minimum condition number is achieved when 𝛾 = 0. Then we can

15As 𝜅𝐹 (K) is unbounded from above, but bounded from below by unity, it is more meaningful to plot
1/𝜅𝐹 (K).

44



β

γ

1

κF

1

1

−1

0

0

0

2

−2

0.5

−0.5

0.4

0.8

6
(a)

β

γ

1

κF

1

−1

0

0

02

2

−2

0.4

0.8

4

6

(b)

Figure 3.12: Inverse condition number of the robot vs. 𝛽 and 𝛾, (a) 𝛽 ∈ (−1, 1), 𝛾 ∈ (−2, 2) (b)
𝛽 ∈ (−1, 7), 𝛾 ∈ (−2, 2)

obtain 𝐿 as

𝐿 = 𝑏𝜌 = 𝑏
√
𝜆|𝛾=0 =

√︂
1

12

(︂
(𝛽 + 1)4 · 5𝛽4

5𝛽4

)︂ 1
4

𝑏 =
1√
3
|𝛼|𝑏 =

√
3

3
𝑎 (3.80)

That is, the characteristic length is the distance from any spherical-joint centre to the oper-

ation point, which is meaningful.

3.6.2.4 Some Remarks

It can be concluded from Fig. 3.12 that

∙ The graph is symmetric w.r.t. 𝛽 = 0 and 𝛾 = 0. Moreover, The dexterity is higher when

the MP plane is near the BP plane.

∙ For the choice of 𝑎, it is found that the farther 𝑎 is from 𝑏/2, the lower the condition

number. A reasonable range for 𝛼 may be given around (0, 0.4] ∪ [0.6, 4] or, equivalently,

𝛽 ∈ (−1,−0.2] ∪ [0.2, 7].

∙ If we want the MP to operate near the BP, we should choose 𝑎 such that 𝑎 < 𝑏/2; under

these conditions, the smaller the MP, the higher the dexterity. It is, however, noteworthy

that when 𝑎 is relatively large, for example, when 𝑎 = 2𝑏 (𝛽 = 3), it can be seen that even

if we change the value of 𝛾, the condition number remains below 10.0, which means a good
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dexterity, as shown in Fig. 3.13, although the MP cannot cross the BP in this case. It is

noteworthy that this figure only shows the information for a set of symmetric MP poses,

rather than arbitrary poses.

∙ The characteristic length for a given architecture, i.e., for given 𝛼 and 𝑏, is given in

Eq. (3.80). It is noted from Eq. (3.78), however, that the value of 𝜆 varies as 𝛾 changes.

This means that the characteristic length for a given architecture can minimize the con-

dition number of the robot at the optimum pose, but does not necessarily minimize the

condition number elsewhere. Considering this fact, we re-plot the condition number using

the characteristic length given in Eq. (3.80), as shown in Fig. 3.13, where the range of 𝛽

is set as 𝛽 ∈ [0.2, 7] in order to avoid the singularity when 𝛽 = 0. It is shown that the

difference is relatively small when the MP is at the reference orientation.
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Figure 3.13: (a) Condition number of the SDelta Robot vs. 𝛽 and 𝛾, using the unique characteristic
length for the architecture (b) the difference between (a) and previous calculation shown in Fig. 3.12

3.6.3 Discussion of the Optimization Results

From the above optimization exercise, we can conclude that the dexterity is generally

higher when the distance from the centroid of the MP to the BP plane (i.e., 𝑐𝑧16) is smaller.

It is shown that the SDelta can always achieve a minimum condition number close to unity

when the centroids of the MP and the BP coincide and the former finds itself at the refer-

ence orientation, regardless of the ratio 𝑎/𝑏; this leaves us a big margin to optimize other
16The 𝑍- component of the position vector c of the operation point.
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Figure 3.14: An example of the SDelta indicating its large orientation capacity when the centroid
of the MP is close to the BP plane

performance indices. Moreover, from tests in CAD software, the MP can almost flip w.r.t.

some axes in the BP plane when 𝑐𝑧 is small, the angle of rotation being around ±80∘ about

these axes. An example is shown in Fig. 3.14 with 𝛼 = 0.32. Hence, this architecture has

a good potential to extend the orientation workspace, which is useful, e.g., for increasing

the operation range of machine tools and motion simulators. However, this layout requires

a small-size MP w.r.t. that of the BP, and a small range of the stroke of the intermediate P

joint of each limb. These physical constraints limit the positioning workspace. Fortunately,

the analyses and optimization reveal that when the distance from the centroid of the MP

to the BP plane is bigger, the condition number is also reasonably low, and the positioning

workspace becomes larger. This means that, upon proper choice of 𝑎, 𝑏 and 𝛾, we can obtain

relatively large operation zones with high dexterity within the workspace.

The above statements indicate that there is a compromise in the choice of 𝑐𝑧 between

the requirements of high dexterity and large positioning workspace in the current design

of the SDelta, although the dexterity is generally acceptable. This compromise is mostly

introduced by the physical constraints of the limb kinematic chains. The idea of exploring

different layouts of the three C-drives, proposed at the end of Section 3.5, is brought up again

here, which, in our opinion, have the potential to yield a larger singularity-free workspace

together with a good dexterity. For example, it can be readily shown that the layout with

three vertical axes yields a larger workspace volume, while the highest dexterity (with the

same optimal value of the current design) can be obtained along a continuous vertical axes,

though this layout is more suitable for small-size workpieces. Hence, other layouts of the

three C-drives may be explored, such as those with three vertical axes, three intersecting
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orthogonal axes or three skew orthogonal axes. These alternatives have the potential to

provide a larger singularity-free workspace and a good dexterity. This work is recommended

for future research.

So far we have completed the forward-displacement, singularity and workspace analyses

of the SDelta, which are essential for robot evaluation, simulation and control. Moreover, its

optimization, based on a dexterity index, is provided. These analyses and optimization give

us the whole picture of the performance of the robot at the kinematics level.

During the analyses for the SDelta, we found an expression for the inverse of its forward

Jacobian matrix in symbolic form, which applies to a large class of PKMs. This expression

is quite useful in many applications, e.g., in singularity analysis, design for isotropy and

optimization. In Chapter 4 we will elaborate on its application in the optimum design of this

large class of PKMs.
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Chapter 4

THE DESIGN FOR ISOTROPY OF A CLASS OF SIX-

DOF PKMS

The design for isotropy of a large class of six-dof parallel-kinematics machines is investi-

gated in this chapter, for the plausible case in which the axes of the six actuated wrenches

intersect pairwise. As stated previously, two Jacobian matrices occur in the basic kinematic

model of a PKM, relating the moving-platform twist with the array of motor rates. The one

multiplying the former is termed the forward Jacobian [68], denoted K, that multiplying the

latter, the inverse Jacobian, denoted D in this chapter1. A low condition number of K, say,

within 𝑂(2), is needed to avoid large roundoff-error amplification when solving for the MP

twist in terms of the array of joint rates. This is needed in forward kinematics, for example,

to estimate the MP positioning error, to be fed back into the motors for error-compensation.

A similarly well-conditioned inverse Jacobian is needed to compute the actuated-joint rates

in real time, to be fed back into the motor controllers.

Several isotropic six-limb, six-dof PKMs have been proposed [68–70]. Moreover, design

for isotropy has been investigated in a fairly general framework via the geometric relations of

the six lines (representing the axes of the six actuated wrenches) and one point (the operation

point), based on which Tsai et al. [87] proposed the concept of “isotropy generator”. With

this approach, several designs of six-limb isotropic robots have been reported; however, in

the foregoing paper, the authors assume that the two 3× 3 blocks of the Jacobian associated

with the six unit vectors of the actuated wrenches are orthogonal matrices, which is not a

necessary condition for isotropy, the condition thereby leading to a limited class of isotropic

1For the general PKM investigated in this chapter—which is not actuated by the C-drive, the inverse
Jacobian is no longer a product two matrices—the drive Jacobian and the actuator Jacobian, as proposed in
this dissertation. Hence, we use D itself to represent the inverse Jacobian for the general PKM investigated
in this chapter.
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designs. In a follow-up paper, Tsai et al. [88] proposed a numerical method capable of using

the parameters of a 𝑛-dof redundant isotropic PKM as the initial guess to obtain a (𝑛− 1)-

dof isotropic PKM, and eventually, obtain six-dof isotropic PKMs. This method does not

impose requirements either on the shape of the MP or on the distances from the wrench lines

to the operation point; however, the design thus obtained depends heavily on the choice of

the initial guess of the design parameters.

In this chapter, firstly, the kinematics relations, the expressions for the underlying forward

Jacobian matrix [68] and its inverse in symbolic form, derived in Chapter 3, are briefly

recalled. Next, based on this symbolic expression, a novel approach is proposed for the DfI of

this class of PKMs. Several numerical examples are given. Expressions are provided for the

design parameters that yield isotropy. It is noteworthy that this method does not require any

initial guess and is capable of giving all the possible solutions leading to isotropy, and hence,

completes the DfI of this class of PKMs. Moreover, we propose the concept of quasi-isotropy,

which guarantees a small condition number with six orthogonal wrench axes, yielding high

dexterity, accuracy, and homogeneity of the motion of the MP, within a finite region of the

workspace. This greatly enriches the list of candidates for the MP shape and the location

of the operation point, required, e.g., when a gripper or another tool is attached to the MP

triangle.

4.1 The Kinematics Jacobian Matrix and Its Symbolic

Inverse

4.1.1 The Kinematics Relations

A large class of six-dof PKMs with six actuated-wrench axes intersecting pairwise have

been reported2 [39], an example being the SDelta, whose architecture and actuated wrenches

are reproduced in Figs. 4.1 and 4.2 for quick reference3. Next, we use this example to derive

2Numerous examples of such PKMs can be found in the literature [41,44].
3Slight differences between these two figures and the corresponding figures in previous chapters are to be

highlighted: notation items not needed in Chapter 4 are removed; the joint variables for a general PKM of
this class are denoted with alternative symbols to make a distinction with those of the specific instance of
the SDelta.
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the kinematics relations, the Jacobian matrix and its symbolic inverse for this class of PKMs.

S 2
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Figure 4.1: Architecture of the SDelta Robot
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Figure 4.2: The wrench axes 𝒢𝑗 , ℰ𝑗 , their com-
mon perpendicular ℱ𝑗 , and vector p𝑗 of the 𝑗th
limb of the SDelta Robot

We start by introducing the pertinent notation: e𝑗 and g𝑗 are again defined as the unit

vectors parallel to the axes of the 𝑗th pair of actuated wrenches of the 𝑗th limb, for 𝑗 = 1, 2, 3,

as shown in Fig. 4.2. Moreover, the corresponding axes of the actuated wrenches are denoted

ℰ𝑗 and 𝒢𝑗, respectively, which intersect at4 𝑆𝑗, for 𝑗 = 1, 2, 3. The plane defined by ℰ𝑗 and

𝒢𝑗 is labeled Π𝑗, for 𝑗 = 1, 2, 3, the plane of the moving platform triangle 𝑆1𝑆2𝑆3 being Π4.

Next, the operation point on the MP is 𝐶, of position vector c; p𝑗 is defined as vector
−−→
𝑆𝑗𝐶. Lastly, the twist of the MP, already defined, is recalled: t = [𝜔𝜔𝜔𝑇 , ċ𝑇 ]𝑇 .

It is noteworthy that, due to the special layout of the SDelta, we have e𝑗 ⊥ g𝑗, for 𝑗 =

1, 2, 3. Moreover, depending on the type of actuated joints (if we regard the six-dimensional

C-drive array as the input of the SDelta, then the actuated joints are one R and one P

joint for each limb), the six diagonal entries of the inverse Jacobian—as per Eq. (3.6)—bear

different units, three of them being constant. However, for an arbitrary six-dof PKM whose

actuated-wrench axes intersect pairwise, none of these special features necessarily holds. In

4For the case of a three-limb PKM with one spherical joint in each limb, 𝑆𝑗 refers to the centre of the
spherical joint of the 𝑗th limb.
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order to keep the derivation general, we define the input array as

𝜑̇̇𝜑̇𝜑 = [𝜑̇1, 𝜓̇1, 𝜑̇2, 𝜓̇2, 𝜑̇3, 𝜓̇3]
𝑇 (4.1)

with 𝜑̇𝑗, 𝜓̇𝑗 representing the joint rates corresponding to the wrenches of axes 𝒢𝑗 and ℰ𝑗,

respectively, for 𝑗 = 1, 2, 3, as shown in Fig. 4.2. It is noteworthy that {𝜑𝑗}31 or {𝜓𝑗}31 can

represent either translation or rotation for a general PKM of this class.

According to screw theory [77, 78], it can be readily shown that the kinematics relation

of this class of robots bears the form [75]

Kt = D𝜑̇̇𝜑̇𝜑 (4.2)

with

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(g1 × p1)
𝑇 g𝑇

1

(e1 × p1)
𝑇 e𝑇1

(g2 × p2)
𝑇 g𝑇

2

(e2 × p2)
𝑇 e𝑇2

(g3 × p3)
𝑇 g𝑇

3

(e3 × p3)
𝑇 e𝑇3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D = diag(𝑙1,𝑚1, 𝑙2,𝑚2, 𝑙3,𝑚3) (4.3)

Moreover, 𝑙𝑗 and𝑚𝑗 represent the reciprocal products [89] of 𝒢𝑗 and ℰ𝑗 with their correspond-

ing axes of actuated joints, which can either carry units of length or being dimensionless,

depending on the type of the corresponding actuated joint (R or P).

4.1.2 The Symbolic Inverse of the Forward Jacobian

Due to the special layout of the six actuated wrenches, the Jacobian matrix K of the said

large class of robots always bears the form in Eq. (4.3), i.e., the six rows of K represent the

Plücker coordinates of six lines that intersect pairwise. Furthermore, K−1, denoted K and

derived in Chapter 3, is reproduced here for quick reference

K =
1

𝑡

⎡⎣u1 −u2 u3 −u4 u5 −u6

m1 −m2 m3 −m4 m5 −m6

⎤⎦ (4.4)
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with

𝑡 =2𝑠Δ(f1 × r1) · n (4.5)

and its first two columns given by

u1 = − (r𝑇1 e1)(p2 − p3) + 2𝑠Δ(n𝑇e1)(f2 × f3)

m1 =2𝑠Δ(n𝑇e1)h1 − (r𝑇1 e1)p2 × p3

(4.6)

and

u2 = − (r𝑇1 g1)(p2 − p3) + 2𝑠Δ(n𝑇g1)(f2 × f3)

m2 =2𝑠Δ(n𝑇g1)h1 − (r𝑇1 g1)p2 × p3

(4.7)

with r1 and h1 defined as

r1 =[(p1 − p3)
𝑇 f3]f2 − [(p1 − p2)

𝑇 f2]f3

h1 =(f𝑇2 p2)f3 − (f𝑇3 p3)f2

(4.8)

Moreover, f𝑗 ≡ g𝑗 × e𝑗, for 𝑗 = 1, 2, 3, 𝑠Δ denoting the area of the triangle 𝑆1𝑆2𝑆3, and n

representing the unit vector normal to the MP triangle, namely, n ≡
−−→
𝑆2𝑆1 ×

−−→
𝑆3𝑆2/‖

−−→
𝑆2𝑆1 ×

−−→
𝑆3𝑆2‖2.

Furthermore, the third and fifth columns of K can be found upon exchanging subscripts

1, 2, 3 with 2, 3, 1 or 3, 1, 2 in the RHS of Eqs. (4.6), respectively; its fourth and sixth columns

can be obtained upon exchanging subscripts 1, 2, 3 with 2, 3, 1 or, correspondingly, with 3, 1, 2

in the RHS of Eqs. (4.7)5. It is noteworthy that the expression for K−1 does not impose any

constraint on the location of the operation point 𝐶. As a matter of fact, 𝐶 need not even

lie in the plane of 𝑆1𝑆2𝑆3. Hence, we have more flexibility in choosing the location of the

operation point, which may ease the design when, e.g., a gripper or another tool is to be

attached to the MP triangle.

5The corresponding subscripts of r𝑗 , h𝑗 and all the terms within r𝑗 and h𝑗 have to be exchanged as well.
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4.2 The Isotropic Design

As noted previously, dexterity characterizes the kinematic accuracy and the homogeneity

of the motion of the MP along different directions in the motion space, which is crucial for

an acceptable robot performance. The conditions for isotropy, i.e., for maximum dexterity,

can be stated as

KℎK
𝑇
ℎ = 𝜎2

𝐾16×6, DℎD
𝑇
ℎ = 𝜎2

𝐷16×6 (4.9)

with Kℎ and Dℎ denoting the two Jacobian matrices in their homogeneous form, to be

introduced presently; in this case, all the singular values of Kℎ are identical, and the same

goes for Dℎ, with 𝜎𝐾 and 𝜎𝐷 representing, correspondingly, their sextuple singular values.

The maximum dexterity is generally obtained via a mathematical-programming problem

(MPP). However, when the problem at hand admits an isotropic solution, as in this case,

the isotropy condition in Eqs. (4.9) obviates the MPP. In this section, we derive the isotropy

condition for three-limb, six-dof PKMs whose actuated wrench axes intersect pairwise, with

an arbitrarily chosen location of the operation point.

Firstly, we study the isotropy condition of K. Since its entries bear different units, we

again produce the homogeneous form Kℎ of K upon introducing the characteristic length

𝐿 [68], K and K then taking the homogeneous forms

Kℎ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(g1 × p1)
𝑇 𝐿g𝑇

1

(e1 × p1)
𝑇 𝐿e𝑇1

(g2 × p2)
𝑇 𝐿g𝑇

2

(e2 × p2)
𝑇 𝐿e𝑇2

(g3 × p3)
𝑇 𝐿g𝑇

3

(e3 × p3)
𝑇 𝐿e𝑇3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.10)

and

Kℎ =
1

𝑡

⎡⎣ u1 −u2 u3 −u4 u5 −u6

m1/𝐿 −m2/𝐿 m3/𝐿 −m4/𝐿 m5/𝐿 −m6/𝐿

⎤⎦ (4.11)

It is noteworthy that some authors use other approaches to cope with this inconsistency
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of units; for example, Tsai et al. [88] proposed an index based on the three criteria for

isotropy proposed by Klein [90]. However, it can be readily verified that the method using

the characteristic length to make K into a dimensionally homogeneous matrix is a necessary

and sufficient condition for the three Klein criteria [90], and hence, equivalent to the measure

of isotropy used by Tsai et al. [88]. Since using the characteristic length yields a much simpler

formulation, we adopt here the approach based on this length.

From the isotropy condition (4.9), we have

K𝑇
ℎ = 𝜎2

𝐾K
−1
ℎ = 𝜎2

𝐾Kℎ (4.12)

Now we look at the first two columns of the matrix equation (4.12). Since 𝜎𝐾 and 𝐿 are

undetermined at this stage, we define 𝜎𝑢 = 𝜎2
𝐾/𝑡, 𝜎𝑚 = 𝜎2

𝐾/(𝑡𝐿
2), with 𝑡 given in Eq. (4.5).

Then the first two columns of Eq. (4.12) yield the conditions:

u1 = −r𝑇1 e1s23 + 2𝑠Δn
𝑇e1(f2 × f3) = g1 × p1/𝜎𝑢

u2 = −r𝑇1 g1s23 + 2𝑠Δn
𝑇g1(f2 × f3) = −e1 × p1/𝜎𝑢

(4.13)

and

m1 = 2𝑠Δ(n𝑇e1)h1 − (r𝑇1 e1)p2 × p3 = g1/𝜎𝑚

m2 = 2𝑠Δ(n𝑇g1)h1 − (r𝑇1 g1)p2 × p3 = −e1/𝜎𝑚

(4.14)

where s𝑖𝑗 ≡ p𝑖 −p𝑗 denotes vector
−−→
𝑆𝑖𝑆𝑗. Next, we conduct the geometric analysis in the MP

frame, as p𝑗 is a known constant vector in this frame, for 𝑗 = 1, 2, 3. It is apparent that u1

and u2 are both linear combinations of s23 and f2 × f3. Hence, s23 and f2 × f3 define a plane

whose normal is parallel to (g1 × p1) × (e1 × p1) = [(g1 × e1)
𝑇p1]p1 = (f𝑇1 p1)p1. Thus, the

normal to the foregoing plane is parallel to p1, i.e.,

s𝑇23p1 = 0, (f2 × f3)
𝑇p1 = 0 (4.15)

However, it is noteworthy that the above derivation is based on the assumption that s23 and

f2 × f3 are linearly independent. Let us analyze the case when they are linearly dependent.

This involves two possibilities:
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∙ f2 × f3 = 0, namely, f2 ‖ f3. Then, u1 ‖ u2 ‖ s23 ‖ (g1 × p1) ‖ (e1 × p1), yielding

(g1 × p1) × (e1 × p1) = (f𝑇1 p1)p1 = 0, and hence, f1 ⊥ p1. Moreover, since f𝑗 is normal to

the Π𝑗 plane, for 𝑗 = 1, 2, 3, we can conclude that p1 lies in the plane Π1. Furthermore,

since e1 and g1 lie in Π1, we can conclude that (g1×p1) ‖ (e1×p1) ‖ f1 ‖ s23. This means

that s23 is normal to Π1, while p1 lies in Π1. It is apparent that Eqs. (4.15) still hold in

this case, and need not be discussed further.

∙ the scalar coefficients in Eqs. (4.13) obey the relation

(−r𝑇1 e1)/(2𝑠Δn
𝑇e1) = (−r𝑇1 g1)/(2𝑠Δn

𝑇g1) (4.16)

which, upon simplification, yields

−(r𝑇1 e1)(n
𝑇g1) + (n𝑇e1)(r

𝑇
1 g1) = [(g1 × e1) × r1]

𝑇n = (f1 × r1)
𝑇n = 𝑡/(2𝑠Δ) = 0 (4.17)

thereby leading to a singularity, and hence, this condition cannot yield isotropy.

In summary, s23 and f2× f3 must be linearly independent and Eqs. (4.15) must hold, in order

to reach isotropy. Considering this condition for the three pairs of intersecting wrenches, we

can conclude that the operation point 𝐶 (or its projection on Π4) must be chosen as the

orthocentre of the triangle 𝑆1𝑆2𝑆3.

Next, we look at Eqs. (4.14). A similar analysis leads to two possibilities:

∙ h1 ⊥ f1 and p2 × p3 ⊥ f1, or

∙ h1 = 0; then, g1 ‖ e1, which leads to a singularity.

In summary, the geometric conditions below must be satisfied for isotropy:

s𝑇23p1 = 0 (4.18a)

(f2 × f3)
𝑇p1 = 0 (4.18b)

h𝑇
1 f1 = 0 (4.18c)

(p2 × p3)
𝑇 f1 = 0 (4.18d)
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which still hold when we exchange subscripts 1, 2, 3 with 2, 3, 1 or 3, 1, 2, respectively. Next,

we derive the remaining isotropy conditions.

4.2.1 The Operation Point Lying in the MP Triangle

Firstly, we study the case when the operation point 𝐶 lies in Π4. According to Eq. (4.18a),

𝐶 must coincide with the ortho-centre of triangle 𝑆1𝑆2𝑆3. Moreover, it is apparent that

p2 × p3 ‖ n in this case; according to Eq. (4.18d), we conclude that f1 has to lie in Π4, as

shown in Fig 4.3. Similarly, f2 and f3 must lie in Π4. Under these conditions, Eq. (4.18b)

naturally holds. Since f𝑗 is in fact normal to the plane Π𝑗, for 𝑗 = 1, 2, 3, these three planes

must be normal to Π4.

S1
S2

S3

θ1 θ2

θ3

f1

f2

f3

p1

p2

p3

MP (Π4)

Π1
Π2

Π3

C

Figure 4.3: The layout of f𝑗 in the MP plane
(Π4) and the definition of 𝜃𝑗 (top view)
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n
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e1 (E1)

g1 (G1)

MP (Π4)

Figure 4.4: The definition of 𝜖𝑗 and 𝛾𝑗 , in plane
Π𝑗

It is apparent that s23 ⊥ n and h1 ⊥ n in this case. Moreover, f2×f3 ‖ n; more specifically,

f2 × f3 = (g2 × e2) × (g3 × e3) = sin𝛼2 sin𝛼3 sin𝜑𝑖𝑗n (4.19)

where 𝛼𝑗 is defined as the angle between g𝑗 and e𝑗, and 𝜑𝑖𝑗 denotes that between f𝑖 and f𝑗.

Then, we rewrite u𝑗 and m𝑗, for 𝑗 = 1, 2, as per Eqs. (4.13) and (4.14), as

u1 = −𝑠23r𝑇1 e1s𝑛23 + 2 sin𝛼2 sin𝛼3 sin𝜑𝑖𝑗𝑠Δn
𝑇e1n = (𝑝1/𝜎𝑢)g1 × p𝑛1

u2 = −𝑠23r𝑇1 g1s𝑛23 + 2 sin𝛼2 sin𝛼3 sin𝜑𝑖𝑗𝑠Δn
𝑇g1n = −(𝑝1/𝜎𝑢)e1 × p𝑛1

(4.20)
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and

m1 = 2𝑠Δ(n𝑇e1)h1 − 2𝑠Δ23(r
𝑇
1 e1)n = g1/𝜎𝑚

m2 = 2𝑠Δ(n𝑇g1)h1 − 2𝑠Δ23(r
𝑇
1 g1)n = −e1/𝜎𝑚

(4.21)

with 𝑠𝑖𝑗 and s𝑛𝑖𝑗 defined as the magnitude of
−−→
𝑆𝑖𝑆𝑗 and the unit vector parallel to

−−→
𝑆𝑖𝑆𝑗, 𝑝𝑛𝑗

and p𝑛𝑗 defined likewise, as the magnitude of vector p𝑗 and the unit vector parallel to the

same. Furthermore, the area of the triangle 𝐶𝑆𝑖𝑆𝑗 is denoted as 𝑠Δ𝑖𝑗.

Next, we decompose u1 and m1 according to the corresponding orthogonal directions,

namely,

−𝑠23r𝑇1 e1 = 𝑝1/𝜎𝑢(p𝑛1 × s𝑛23)
𝑇g1 = (𝑝1/𝜎𝑢)n𝑇g1

−𝑠23r𝑇1 g1 = −𝑝1/𝜎𝑢(p𝑛1 × s𝑛23)
𝑇e1 = − (𝑝1/𝜎𝑢)n𝑇e1

2 sin𝛼2 sin𝛼3 sin𝜑𝑖𝑗𝑠Δn
𝑇e1 = − (𝑝1/𝜎𝑢)s𝑇𝑛23g1

2 sin𝛼2 sin𝛼3 sin𝜑𝑖𝑗𝑠Δn
𝑇g1 = (𝑝1/𝜎𝑢)s𝑇𝑛23e1

(4.22)

and

− 2𝑠Δ23(r
𝑇
1 e1) = n𝑇g1/𝜎𝑚

− 2𝑠Δ23(r
𝑇
1 g1) = −n𝑇e1/𝜎𝑚

2𝑠Δ(n𝑇e1)h
𝑇
1 h1 = h𝑇

1 g1/𝜎𝑚

2𝑠Δ(n𝑇g1)h
𝑇
1 h1 = −h𝑇

1 e1/𝜎𝑚

(4.23)

When the robot finds itself at an isotropic posture, Eqs. (4.22) and (4.23) must all hold.

From the first of Eqs. (4.22) and that of (4.23), we can find the characteristic length as

𝐿 =
√︀
𝜎𝑢/𝜎𝑚 =

⎯⎸⎸⎷2𝑠Δ23𝑝1

𝑠23
=
√︀
𝑝1𝑝′1 (4.24)

where 𝑝′1 is defined as the distance from 𝐶 to 𝑆2𝑆3. Since 𝐶 is the orthocentre of triangle

𝑆1𝑆2𝑆3, this product is the same for the other two pairs of columns, namely,

√︀
𝑝1𝑝′1 =

√︀
𝑝2𝑝′2 =

√︀
𝑝3𝑝′3 (4.25)

In this way, we can represent 𝜎𝑢 as 𝐿2𝜎𝑚. Now we rearrange the set of equations (4.22) and
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(4.23) to obtain the geometric constraint on the distribution of the wrench axes that lead to

isotropy. Firstly, we let the angle between p𝑗 and f𝑗 be 𝜃𝑗, as shown in Fig. 4.3. Furthermore,

𝒟𝑗 is defined as the intersection line of Π𝑗 with Π4, for 𝑗 = 1, 2, 3, with the unit vector d𝑗.

Since Π𝑗 ⊥ Π4, for 𝑗 = 1, 2, 3, d𝑗 can be found as d𝑗 ≡ n × f𝑗. Then, f𝑗, d𝑗 and n form a

right-handed triad. In this way, e𝑗 and g𝑗 can be obtained upon rotating d𝑗 about f𝑗 through

an angle 𝜖𝑗 and 𝛾𝑗, respectively, with 𝜖𝑗 and 𝛾𝑗 as yet to be determined. Then6, 𝛼𝑗 = 𝜖𝑗 − 𝛾𝑗.

Moreover, since h1 ∈ Π4, we have, according to the three-cosine theorem7,

h𝑇
1 g1 = (d𝑇

1 h1) cos 𝛾1, h𝑇
1 e1 = (d𝑇

1 h1) cos 𝜖1 (4.26)

If we cross-multiply the two sides of the last two of Eqs. (4.23), we obtain

(h𝑇
1 d1)(cos 𝜖1 sin 𝜖1 + cos 𝛾1 sin 𝛾1) = (h𝑇

1 d1) sin(𝜖1 + 𝛾1) = 0 (4.27)

It is noteworthy that h1 ̸= 0; otherwise, according to Eq. (4.21), we have g1 ‖ m1 ‖ n ‖ m2 ‖

e1, which leads to singularity. Hence, Eq. (4.27) holds under two possible cases:

∙ h1 ⊥ d1 or, equivalently, h1 ‖ f1. It can be readily shown that the condition h𝑇
1 f1 = 0 does

not hold in this case. Hence, this layout is not feasible.

∙ sin(𝜖1 + 𝛾1) = 0, then, 𝜖1 + 𝛾1 = 2𝑘𝜋 or 𝜖1 + 𝛾1 = 𝜋+ 2𝑘𝜋, 𝑘 ∈ Z. This means that, ℰ1 and

𝒢1 must be symmetric w.r.t. 𝒟1, as shown in Fig. 4.4 or, equivalently, 𝒟1 is a bisector of

the angle made by ℰ1 and 𝒢1.

It can be readily verified that, if one changes the sign of e𝑗 and (or) of g𝑗 in Kℎ, the product

KℎK
𝑇
ℎ does not change; as a result, the choice of the sign of these unit vectors becomes

immaterial. Hence, we only look at one of the two previous conditions, e.g., 𝛾1 = −𝜖1 + 2𝑘𝜋.

Now we summarize the conditions required by the isotropic postures: a) the normals f𝑗 of

Π𝑗 must lie in Π4, for 𝑗 = 1, 2, 3; b) the two wrench axes ℰ𝑗 and 𝒢𝑗 must be symmetric w.r.t.

Π4; c) the characteristic length must satisfy Eq. (4.24). Now, we insert these relations into

the original expression (4.9): according to the geometric conditions summarized above, we

6The sign is chosen to make g𝑗 , e𝑗 and f𝑗 a right-handed triad.
7Included in the Appendix, for quick reference.
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can use six (redundant) parameters to characterize an isotropic posture, namely, {𝜖𝑗}31 and

{𝜃𝑗}31. Furthermore, without loss of generality, we assume the location of the centres of the

three S joints to be

s1 = 𝑚 [−1/2, 0, 0]𝑇 , s2 = 𝑚 [1/2, 0, 0]𝑇 , s3 = 𝑚 [𝑥0, 𝑦0, 0]𝑇 (4.28)

where 𝑚 represents the norm of
−−→
𝑆1𝑆2. Then, KℎK

𝑇
ℎ in Eq (4.9) has only six distinct off-

diagonal entries and three distinct diagonal entries, which, upon some manipulations, yield

nine equations in nine unknowns: {𝜃𝑖}31, {𝜖𝑖}31, {𝜎𝑖}31. These equations are(︀
− sin 𝜃1 + 4𝑥2

0 sin 𝜃1 + 4𝑦20 sin 𝜃1 + 4𝑦0 cos 𝜃1
)︀ (︀

− sin 𝜃2 + 4𝑥2
0 sin 𝜃2 + 4𝑦20 sin 𝜃2 − 4𝑦0 cos 𝜃2

)︀
= 0

(− sin 𝜃1 + 2𝑥0 sin 𝜃1 + 2𝑦0 cos 𝜃1) (− sin 𝜃3 + 2𝑥0 sin 𝜃3 − 2𝑦0 cos 𝜃3) = 0

(sin 𝜃2 + 2𝑥0 sin 𝜃2 + 2𝑦0 cos 𝜃2) (sin 𝜃3 + 2𝑥0 sin 𝜃3 − 2𝑦0 cos 𝜃3) = 0

−8𝑦20 sin
2 𝜖1 − cos2 𝜖1

(︀
sin2 𝜃1 + 8𝑥3

0 sin
2 𝜃1 − 4𝑥2

0 sin
2 𝜃1 + 2𝑥0

(︀
4𝑦20 − 1

)︀
sin2 𝜃1 − 2𝑦20 (cos (2𝜃1) + 3)

)︀
= 0

8𝑦20 sin
2 𝜖2 − cos2 𝜖2

(︀
− sin2 𝜃2 + 8𝑥3

0 sin
2 𝜃2 + 4𝑥2

0 sin
2 𝜃2 + 2𝑥0

(︀
4𝑦20 − 1

)︀
sin2 𝜃2 + 2𝑦20 (cos (2𝜃2) + 3)

)︀
= 0

−4𝑦20 sin
2 𝜖3 + cos2 𝜖3

(︀
sin2 𝜃3 − 4𝑥2

0 sin
2 𝜃3 + 4𝑦20 cos

2 𝜃3
)︀
= 0

𝑚2 (2𝑥0 + 1) sin2 𝜖1 = 𝜎1

𝑚2 (1− 2𝑥0) sin
2 𝜖2 = 𝜎2

1

2
𝑚2
(︀
4𝑥2

0 + 4𝑦20 − 1
)︀
sin2 𝜖3 = 𝜎3

(4.29)

which lead to isotropy when 𝜎1 = 𝜎2 = 𝜎3 = 𝜎2
𝐾 . It is noteworthy that we have shown that

it is sufficient to assume 𝜖𝑗 ∈ [−𝜋/2, 𝜋/2] and 𝜃𝑗 ∈ [−𝜋/2, 𝜋/2] in the calculation, because 𝜃𝑗

and 𝜃𝑗 + 𝜋 characterize the same plane Π𝑗, while 𝜖𝑗 and 𝜖𝑗 + 𝜋 represent the same line ℰ𝑗;

moreover, each of the first three equations involves two decoupled terms, from which we can

obtain two sets of {𝜃𝑗}31 values, namely,

𝜃1 = arctan
4𝑦0

−4𝑥20 − 4𝑦20 + 1
, 𝜃2 = − arctan

2𝑦0
2𝑥0 + 1

, 𝜃3 = arctan
2𝑦0

2𝑥0 − 1
(4.30)

or

𝜃1 = arctan
2𝑦0

1 − 2𝑥0
, 𝜃2 = arctan

4𝑦0
4𝑥20 + 4𝑦20 − 1

, 𝜃3 = arctan
2𝑦0

2𝑥0 + 1
(4.31)
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after which f𝑗 follows. It can be verified that the above condition yields the relation

f1 ⊥ 𝑆1𝑆3, f2 ⊥ 𝑆2𝑆1, f3 ⊥ 𝑆3𝑆2, (4.32)

or

f1 ⊥ 𝑆1𝑆2, f2 ⊥ 𝑆2𝑆3, f3 ⊥ 𝑆3𝑆1, (4.33)

meaning that the three planes {Π𝑗}31 must coincide with the three planes passing through the

three edges of 𝑆1𝑆2𝑆3 and normal to the MP plane Π4, i.e., 𝑆1𝑆3 ∈ Π1, 𝑆1𝑆2 ∈ Π2, 𝑆2𝑆3 ∈ Π3,

or 𝑆1𝑆2 ∈ Π1, 𝑆2𝑆3 ∈ Π2, 𝑆3𝑆1 ∈ Π3, as shown in Fig. 4.5. Hence, we do not really need

to calculate 𝜃𝑗 via Eqs. (4.30) or (4.31); the directions of f𝑗 can be determined directly from

these geometric relations.

S1

S2

S3

−ǫ1

e1

e2
e3

g1

g2

g3

Π1

Π2Π3

MP (Π4)

n

Figure 4.5: One of the two layouts of Π𝑗 ,
e𝑗 and g𝑗 that may render isotropy

S 1

S 2

S 3

C0

C

Σ1

Σ2

Σ3

MP (Π4)

Figure 4.6: The directions of f𝑗 coinciding with the
three edges of the the tetrahedron

Next, we insert the values of {𝜃𝑗}31 into the fourth to sixth of equations (4.29) to obtain

the corresponding {𝜖𝑗}31, namely,

𝜖1 = ±1

2
arccos

(︂
2𝑥0 + 1

4𝑥2
0 + 2𝑥0 + 4𝑦20

)︂
, 𝜖2 = ±1

2
arccos

(︂
1− 2𝑥0

2𝑥0 + 3

)︂
, 𝜖3 = ±1

2
arccos

(︂
4𝑥2

0 + 4𝑦20 − 1

4𝑥2
0 − 8𝑥0 + 4𝑦20 + 3

)︂
(4.34)

or

𝜖1 = ±1

2
arccos

(︂
2𝑥0 + 1

3− 2𝑥0

)︂
, 𝜖2 = ±1

2
arccos

1− 2𝑥0

4𝑥2
0 − 2𝑥0 + 4𝑦20

, 𝜖3 = ±1

2
arccos

4𝑥2
0 + 4𝑦20 − 1

4𝑥2
0 + 8𝑥0 + 4𝑦20 + 3

(4.35)

Finally, we insert the values of {𝜖𝑗}31 into the last three equations, to verify whether they are
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compatible. These three equations yield

𝜎1 =
𝑚2 (2𝑥0 + 1) (4𝑥20 + 4𝑦20 − 1)

4 (2𝑥20 + 𝑥0 + 2𝑦20)
, 𝜎2 =

𝑚2 (1 − 4𝑥20)

2𝑥0 + 3
, 𝜎3 = −𝑚

2 (2𝑥0 − 1) (4𝑥20 + 4𝑦20 − 1)

4𝑥20 − 8𝑥0 + 4𝑦20 + 3
(4.36)

or

𝜎1 =
𝑚2 (4𝑥20 − 1)

2𝑥0 − 3
, 𝜎2 =

𝑚2 (2𝑥0 − 1) (4𝑥20 + 4𝑦20 − 1)

−8𝑥20 + 4𝑥0 − 8𝑦20
, 𝜎3 =

𝑚2 (2𝑥0 + 1) (4𝑥20 + 4𝑦20 − 1)

4𝑥20 + 8𝑥0 + 4𝑦20 + 3
(4.37)

After inserting the values of {𝜃𝑗}31 and {𝜖𝑗}31, KℎK
𝑇
ℎ becomes

KℎK
𝑇
ℎ = diag(𝜎1, 𝜎1, 𝜎2, 𝜎2, 𝜎3, 𝜎3) (4.38)

It is found that 𝜎1 = 𝜎2 = 𝜎3 if and only if the MP bears the shape of an equilateral triangle,

i.e., s3 = 𝑚 [0,
√

3/2, 0]𝑇 , the corresponding parameters being

𝜃2 = 𝜃3 = 𝜃1 = ±60∘, 𝜖1 = ±𝜖2 = ±𝜖3 = ± arctan(
√

2/2)rad = ±0.6155rad = ±35.2644∘

(4.39)

which represent two different postures, under which Π𝑖 passes through the edge 𝑆𝑖𝑆𝑗 or 𝑆𝑖𝑆𝑘,

for distinct 𝑖, 𝑗, 𝑘, as stated above. Moreover, each pair of lines of the actuated wrenches

must make an angle of 35.2644∘ w.r.t. plane Π4 of the MP triangle. A possible isotropic

design is depicted in Fig. 4.7, using the Stewart-Gough platform as an example8, where we

chose the case for which Π1 passes through 𝑆1𝑆2. 𝜎2
𝐾 being 𝑚2/3 in this case.

On the other hand, when the shape of the MP triangle is not equilateral, and the operation

point is chosen in the MP plane, it is shown that isotropy is not possible. However, the above

analysis indicates that under some postures, the product KℎK
𝑇
ℎ can be diagonal, with only

three distinct values, and its condition number can be well bounded with proper choice of

the MP shape. For example, if we choose

s3 = 𝑚[1/4, 1, 0]𝑇 (4.40)

8We choose the Stewart-Gough platform as an example because its actuated-wrench axes are parallel to
its six limbs, making it illustrative for the demonstration of the isotropic designs. Other three-limb PKMs
can also be designed once the layout of the actuated wrenches is known, e.g., with the method proposed by
Tsai and Lee [71].
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n
Figure 4.7: An example of an isotropic Stewart-
Gough platform with the operation point at the
centroid of the MP triangle

n
Figure 4.8: An example of an isotropic Stewart-
Gough platform with the operation point lying
outside of the plane of the MP triangle

then we have either

𝜎1 =
39𝑚2

76
, 𝜎2 =

3𝑚2

14
, 𝜎3 =

13𝑚2

42
, (4.41)

or

𝜎1 =
3𝑚2

10
, 𝜎2 =

13𝑚2

60
, 𝜎3 =

39𝑚2

74
, (4.42)

thereby yielding a condition number 𝜅𝐹 of either 1.065 or 1.069, which is small enough to

guarantee accuracy and the homogeneity of the motion capacity of the MP along different

directions. A mapping represented by a given 𝑛 × 𝑛 matrix A carries the unit ball in the

domain space into a 𝑛-axis ellipsoid in the image space. The mapping, and hence its matrix

representation, is said to be isotropic when the unit ball remains a ball. We can now define

an index of distortion 𝜄 as

𝜄 = log10(𝜅) ∈ (0,∞) (4.43)

which vanishes when the Jacobian matrix is isotropic, and becomes unbounded when the

matrix is singular. To this end, we call a posture “quasi-isotropic” when all the rows of Kℎ

are orthogonal to each other, while the distortion of Kℎ is sufficiently small, e.g., between 0

and 1.0, thereby guaranteeing accuracy and the homogeneity of the motion capacity of the
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MP along different directions.

It is noteworthy that the MP triangle must be an acute triangle; otherwise, the character-

istic length, as per Eq. (4.24), becomes a complex number, meaning the set of equations (4.22)

and (4.23) cannot be satisfied simultaneously. Moreover, it appears that the closer the shape

of the MP is to an equilateral triangle, the smaller the condition number it can achieve.

However, it is noteworthy that even for an acute MP triangle, we did not show that the con-

dition number is minimum under quasi isotropy. Hence, strictly speaking, the characteristic

length in Eq. (4.24) is not necessarily the one that minimizes the condition number globally.

However, the condition number under quasi isotropy is quite close to unity, using the quasi

isotropy and the corresponding characteristic length should be sufficient in most situations:

When KℎK
𝑇
ℎ becomes diagonal, the different rows of Kℎ are orthogonal to each other; more-

over, a small condition number means that the Euclidean norms of the rows of Kℎ are “close”

to each other, which brings the PKM close to an isotropic posture, thus guaranteeing the

accuracy and homogeneity of the motion of the MP.

4.2.2 The Operation Point Lying Outside of the MP Triangle

Next, we address the case when the operation point lies outside the MP triangle, which

is needed, e.g., when a tool is attached to the MP triangle. Let 𝐶0 denote the ortho-centre of

the MP triangle, and 𝐶 the operation point. According to Eq. (4.18a), 𝐶0𝐶 must be normal

to the MP plane in order to yield isotropy, as shown in Fig. 4.6. Moreover, we label the plane

composed of
−−→
𝑆2𝐶 and

−−→
𝑆3𝐶 Σ1, that composed of

−−→
𝑆3𝐶 and

−−→
𝑆1𝐶 Σ2, and that of

−−→
𝑆1𝐶 and

−−→
𝑆2𝐶

Σ3. Furthermore, the relation p2 × p3 ⊥ f1 indicates that f1 must be coplanar with p2 and

p3; hence, f1 is a vector parallel to the Σ1 plane. Similarly, f2 ‖ Σ2 and f3 ‖ Σ3. Moreover,

the condition (f2 × f3) · p1 = 0 indicates that the three vector factors are coplanar. This is

possible only when f2 or f3 coincides with p1. A similar analysis for the last four columns of

KℎK
𝑇
ℎ indicates that

f1 ‖ p3, f2 ‖ p1, f3 ‖ p2 or f1 ‖ p2, f2 ‖ p3, f3 ‖ p1 (4.44)

It can be verified that the condition h𝑗 ⊥ f𝑗 naturally holds, given the previous directions of

f𝑗.
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Once their normals {f𝑗}31 are available, the planes {Π𝑗}31 are defined, together with the

unit vector parallel to the intersection line of Π𝑗 with Π4, denoted d𝑗, where d𝑗 ‖ n × f𝑗.

Then, the unit vectors e𝑗 and g𝑗 can, again, be obtained upon rotating d𝑗 about f𝑗 through

an angle 𝜖𝑗 and 𝛾𝑗, respectively. It is noteworthy that the expression for the characteristic

length, in Eq. (4.24) no longer holds; we thus have seven unknown parameters, {𝜖𝑗}31, {𝛾𝑗}31
and 𝐿. After inserting them into the expression of KℎK

𝑇
ℎ , we obtain six distinct diagonal

entries and fifteen distinct off-diagonal entries, among which 12 of the off-diagonal entries

bear a common factor that is a linear combination of 𝑚2 and 𝐿2. Hence, that term should

be zero in order to make all the 12 entries vanish. In this way, we obtain the characteristic

length, which, is shown to be

𝐿 =
√︁
𝐿2
0 − ℎ2 (4.45)

where 𝐿0 is the characteristic length when the OP is selected as the ortho-centre 𝐶0 of the

MP, as per Eq. (4.24), and ℎ is the distance from the operation point 𝐶 to the MP plane9.

Upon recalling the expression for the characteristic length, we are left with three non-zero

off-diagonal entries and six distinct diagonal entries, that should equal the same constant 𝜎2
𝐾

under isotropy, thereby ending up with nine equations and seven unknowns. Since these

equations are extremely lengthy if we leave s3 as unknown, they are not included here.

However, when s3 is specified, the display becomes manageable. For example, if we use the

9In order to make 𝐿𝑐 a real number, the distance from the operation point 𝐶 to the MP plane must be
smaller than 𝐿.
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same s3 as shown in Eq. (4.40), the nine equations10, after simplification, yield

−384𝜈
√︀
256𝜈2 + 169 sin (𝛾1 + 𝜖1) +

(︀
2535− 256𝜈2

)︀
cos (𝛾1 − 𝜖1) +

(︀
1792𝜈2 − 1521

)︀
cos (𝛾1 + 𝜖1) = 0

−256𝜈
√︀
256𝜈2 + 153 sin (𝛾2 + 𝜖2) +

(︀
2295− 4352𝜈2

)︀
cos (𝛾2 − 𝜖2) + 6

(︀
1280𝜈2 − 51

)︀
cos (𝛾2 + 𝜖2) = 0

−6656𝜈
√︀
256𝜈2 + 25 sin (𝛾3 + 𝜖3) + 25

(︀
2304𝜈2 + 481

)︀
cos (𝛾3 − 𝜖3) +

(︀
22272𝜈2 − 4225

)︀
cos (𝛾3 + 𝜖3) = 0

−384
√
256𝜈2 + 169𝜈 sin (2𝜖1) +

(︀
1792𝜈2 − 1521

)︀
cos (2𝜖1)− 256𝜈2 + 2535

8192𝜈2 + 5408
𝑚2 = 𝜎11

−384
√
256𝜈2 + 169𝜈 sin (2𝛾1) +

(︀
1792𝜈2 − 1521

)︀
cos (2𝛾1)− 256𝜈2 + 2535

8192𝜈2 + 5408
𝑚2 = 𝜎12

−256
√
256𝜈2 + 153𝜈 sin (2𝜖2) + 6

(︀
1280𝜈2 − 51

)︀
cos (2𝜖2)− 4352𝜈2 + 2295

68 (256𝜈2 + 153)
𝑚2 = 𝜎21

−256
√
256𝜈2 + 153𝜈 sin (2𝛾2) + 6

(︀
1280𝜈2 − 51

)︀
cos (2𝛾2)− 4352𝜈2 + 2295

68 (256𝜈2 + 153)
𝑚2 = 𝜎22

−6656
√
256𝜈2 + 25𝜈 sin (2𝜖3) +

(︀
22272𝜈2 − 4225

)︀
cos (2𝜖3) + 57600𝜈2 + 12025

800 (256𝜈2 + 25)
𝑚2 = 𝜎31

−6656
√
256𝜈2 + 25𝜈 sin (2𝛾3) +

(︀
22272𝜈2 − 4225

)︀
cos (2𝛾3) + 57600𝜈2 + 12025

800 (256𝜈2 + 25)
𝑚2 = 𝜎32

(4.46)

where 𝜈 ≡ ℎ/𝑚, which yields isotropy when 𝜎11 = 𝜎12 = 𝜎21 = 𝜎22 = 𝜎31 = 𝜎32. Since

we have nine equations and only six unknowns, this system does not admit a compatible

solution, and hence, we cannot make all six 𝜎𝑖𝑗 identical—as required by isotropy. However,

considering the symmetries among the last three pairs of Eqs. (4.46), we can make these

values equal by pairs, i.e., 𝜎11 = 𝜎12, 𝜎21 = 𝜎22, 𝜎31 = 𝜎32. To this end, we define 𝜏𝑗 such

that tan 𝜏𝑗 = 𝑟𝑗/𝑠𝑗, where 𝑟𝑗 and 𝑠𝑗 represent the coefficients of cos(2𝜖𝑗) and sin(2𝜖𝑗) of the

fourth, sixth and eighth equations, which leads to

2𝜖𝑗 + 2𝛾𝑗 + 2𝜏𝑗 = 𝜋 + 2𝑘𝜋, 𝑘 ∈ Z (4.47)

Moreover, after inserting this expression into the first three of equations (4.46), we can find

their difference, and eventually, obtain their values. For example, for the given s3, we obtain

10As stated above, two choices for the directions of {f𝑗}31 are possible; we choose f1 ‖ p3, f2 ‖ p1, f3 ‖ p2

for demonstration, the other case being handled likewise.
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2
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𝜋

2
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2
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+ arctan
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𝛾3 =
1
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arccos
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(4.48)

and

KK𝑇 = 𝑚2 diag

(︂
48672

256𝜈2 − 2535
+

39

2
,

48672

256𝜈2 − 2535
+

39

2
,

72

256𝜈2 − 135
+

3

4
,

72

256𝜈2 − 135
+

3

4
,
507− 3328𝜈2

4608𝜈2 + 962
,
507− 3328𝜈2

4608𝜈2 + 962

)︂
(4.49)

With these relations11, we guarantee that KℎK
𝑇
ℎ bears the form of a diagonal matrix with

three distinct entries; this type of posture, although not isotropic, yields a small condition

number under a proper choice of the design parameters. For example, when 𝜈 = 0.1, 𝜅𝐹 =

1.05848.

If we further impose 𝜎11 = 𝜎21 = 𝜎31 = 𝜎2
𝐾 , required for isotropy, it will be found that

this happens only when the MP bears the shape of an equilateral triangle, the solutions then

becoming

𝜖1 = 𝜖2 = 𝜖3 =
1

2

(︂
− arccos

(︂
1

3

(︀
12𝜈2 + 1

)︀)︂
+ arctan

(︂
6𝜈2 − 1

6𝜈
√

3𝜈2 + 1

)︂
+
𝜋

2

)︂
𝛾1 = 𝛾2 = 𝛾3 =

1

2

(︂
arccos

(︂
1

3

(︀
12𝜈2 + 1

)︀)︂
+ arctan

(︂
6𝜈2 − 1

6𝜈
√

3𝜈2 + 1

)︂
+
𝜋

2

)︂
𝜎2
𝐾 = (

1

3
− 2𝜈2)𝑚2

(4.50)

11The values of 𝜖𝑗 and 𝛾𝑗 are obtained upon assuming 𝜖𝑗 = −𝛾𝑗 − 𝜏𝑗 + 𝜋/2; it can be readily shown that
if we assume 𝜖𝑗 = −𝛾𝑗 − 𝜏𝑗 − 𝜋/2, then the corresponding result can be obtained simply upon exchanging
𝜖𝑗 and 𝛾𝑗 ; moreover, if we substitute 𝜖𝑗 and (or) 𝛾𝑗 with 𝜖𝑗 + 𝜋 and (or) 𝛾𝑗 + 𝜋, then the condition number
does not change. In summary, the foregoing results determine two lines in {Π𝑗}31; as long as e𝑗 and g𝑗 are
parallel to these two lines simultaneously, the corresponding condition number remains constant.
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when f1 ‖ p3, f2 ‖ p1, f3 ‖ p2, or

𝜖1 = 𝜖2 = 𝜖3 =
1
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(︂
1

3
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−12𝜈2 − 1
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(︂
arccos

(︂
1

3

(︀
−12𝜈2 − 1

)︀)︂
− arctan

(︂
6𝜈2 − 1

6𝜈
√

3𝜈2 + 1

)︂
+
𝜋

2

)︂
𝜎2
𝐾 = (

1

3
− 2𝜈2)𝑚2

(4.51)

when f1 ‖ p2, f2 ‖ p3, f3 ‖ p1. It is apparent that for an equilateral MP, when the distance

from the operation point to the MP plane is smaller than 𝐿0, with 𝐿0 calculated as per

Eq. (4.45), there always exist postures that yield isotropy.

The isotropic design is displayed in Fig. 4.8 for the case of an equilateral MP with 𝜈 = 0.3,

as described by Eq. (4.50) for illustration. The display of the quasi-isotropic design, as

described by Eqs. (4.46) and (4.48), is similar to that of Fig. 4.8; it is hence omitted for

brevity. Interestingly, in order to render isotropy, Π𝑗 must also pass through one of the edges

of the triangle 𝑆1𝑆2𝑆3 when the operation point is outside the MP plane, just as the case

when the OP is in the MP plane. For example, for the first case described by Eqs. (4.44),

we have f1 ‖ p3 ⊥ 𝑆1𝑆2; then, 𝑆1𝑆2 passes through a point (𝑆1) on Π1 and perpendicular to

its normal; hence, Π1 passes through 𝑆1𝑆2.

Finally, isotropy can be achieved only when the MP triangle is equilateral, and the OP is

chosen to be on the line normal to the MP plane and passing through its ortho-centre; when

the MP is not an equilateral triangle, it is possible to find some postures that we call quasi

isotropic, that bear a small condition number. Formulas for the corresponding parameters

were provided.

4.2.3 The Isotropy of the Inverse Jacobian Matrix

Next, we briefly discuss the isotropy of the inverse Jacobian matrix, denoted Dℎ. Since

Dℎ is a diagonal matrix, its isotropy is obtained when all its six diagonal entries have identical

absolute values; moreover, its 𝑖th diagonal entry is equal to the reciprocal product [89] of the

two axes associated with the 𝑖th pair of actuated twist and actuated wrench, for 𝑖 = 1, . . . , 6.

It has been shown in the previous derivation in Section 4.2 that the axes of the six actuated

wrenches are already determined by the isotropy of Kℎ; however, one can still change the
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location and directions of the axes of the actuated twists to make Dℎ isotropic.

Let us take an arbitrary three-limb, six-dof PKM—whose MP is connected to the three

limbs via three passive spherical joints—as an example. We assume that the axes of the

actuated wrenches of the 𝑗th limb are given by ℰ𝑗 and 𝒢𝑗, for 𝑗 = 1, 2, 3, while the realizations

of the first three joints of each limb are not yet known. Then, the passive joint can be found

such that its axis 𝒫𝑗 is reciprocal to both ℰ𝑗 and 𝒢𝑗, meaning 𝒫𝑗 is either a line at infinity

whose direction is normal to both e𝑗 and g𝑗, or a finite line that lies in the plane defined

by ℰ𝑗 and 𝒢𝑗, but does not pass through 𝑆𝑗. As for the choice of the location of the two

actuated twists, we simply need to guarantee that they are reciprocal to only one of ℰ𝑗 or

𝒢𝑗. Thus, there are infinitely many choices for these actuated twists, which yields a large

margin of manoeuvre to change the values of the entries of Dℎ. Hence, it is a simple matter

to make Dℎ isotropic. It is noteworthy that, when the actuated joints bear different units,

e.g., when the two actuated joints in each limb are a P joint and a R joint, the entries of

D bear different units; thus, a pertinent characteristic length is needed for the D matrix, as

well.

Since the design for isotropy of Dℎ is straightforward, it is omitted for conciseness.

4.3 Discussion

In this Chapter we discussed the DfI of a large class of six-dof PKMs whose actuated-

wrench axes intersect pairwise. Based on the symbolic form of the inverse of the forward

Jacobian matrix, the isotropic design is investigated here, which indicates that isotropy is

feasible only when the MP bears the shape of an equilateral triangle and the operation

point lies on the line normal to the MP plane and passes through the orthocentre of the

MP. Moreover, for a general shape of the MP triangle, there exist some postures that we call

quasi isotropic, under which the productKℎK
𝑇
ℎ becomes diagonal, with three distinct entries,

whose condition number is small, say, below 10.0. The expressions for the corresponding

parameters are provided, not only offering a quick way to find such layouts, but also providing

a better insight of how these parameters affect the condition number. While the design for

maximum dexterity, in general, leads to an optimization problem, requiring a mathematical-
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programming solution, the problem studied here allows for isotropic solutions, that can be

found by equation-solving. Furthermore, we showed that the solution can be expressed by

means of formulas and provided fairly general design guidelines. This is more advantageous

compared with iterative methods targeting design for isotropy, used, e.g., by Tsai et al., since

the latter require an initial guess and can only provide one solution at a time. This work

covers the isotropic design of a large class of PKMs, whose six wrench axes intersect pairwise.

These include all the three-limb parallel robots whose limbs, each, bears one passive spherical

joint at one end, and Stewart-Gough platforms with three attachment points at the MP.

So far we have provided the analyses and optimization of the SDelta robot, and the design

for isotropy of a large class of three-limb PKMs whose limbs, each, bears one passive spherical

joint at one end, based on the results (the expression of K−1 in symbolic form) found during

the optimization of the SDelta. Next, we investigate the last topic of this dissertation, i.e.,

the analyses and optimization of an alternative architecture—the 3-CCC PKM. Compared

with the SDelta, this architecture bears different yet interesting features, making it not only

a good candidate for high-speed and shaking operations, but also in many other possible

applications, such as machine tools, medical devices and motion simulators, among others.

70



Chapter 5

THE 3-CCC PARALLEL-KINEMATICS MACHINE

An alternative architecture, i.e., the 3-CCC PKM is investigated in this chapter. Given

that there are infinitely many different layouts of the C joints involved here, this in fact

represents a large class of PKMs. Firstly, the design for isotropy of this class is investigated,

based on which we find the conditions on the design parameters yielding a continuous set of

isotropic postures [91]. This feature is quite advantageous and rare, probably unique, for six-

dof PKMs. The conditions yielding this feature are investigated in detail. Next, the forward-

displacement, singularity and workspace analyses of this class of PKMs are conducted, which

reveal many interesting features. For example, their forward-displacement analysis allows

for a simple formulation, which can be solved in closed form; the rotation and translation

motions of the MP are decoupled, singularity being determined solely by the MP orientation,

and occurring only under very large rotations. These PKMs bear a large workspace volume,

among other properties. These features make this class of PKMs promising in many possible

applications.

The concept of the 3-CCC PKM was first proposed by Daniali et al. as the six-dof

version of a more general class of PKMs, i.e., the double-triangular mechanisms, whose

BP and MP are, each, a planar or a spherical triangle [92–94]. The forward-displacement

analysis, singularity analysis and optimum design of this class of robots were the subjects of

the foregoing references. However, the main subject of these references is the disclosure of a

novel concept, the six-dof version of the double-triangular PKMs as a generalization of their

three-dof counterparts, along with their kinematic relations. In fact, the kinematic relations

derived therein were not in their simplest form, which hides the kinematic meaning of the

relevant quantities involved, and leads to unnecessary constraints on their isotropic design.

As a result, many interesting features of the 3-CCC PKM were not revealed in those papers.
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We have re-derived the kinematic relations of the 3-CCC PKM in a more systematic way,

namely, using screw theory, which yields simpler kinematic relations. From these relations,

we found several new, interesting features of this class of robots. It is noteworthy that the

kinematics analysis included here is more general than those in the previous works, since

we do not require any two of the three C-joint axes to intersect or be perpendicular to

each other. Moreover, based on our kinematic analysis, we found a rich set of possible

isotropic architectures, as some conditions imposed in the previous references turned out to

be unnecessary to attain isotropy. Finally, our analysis reveals the existence of a line of

isotropy, namely a locus of isotropic designs, out of which a few are instantiated.

More recently, some researchers have conducted the analysis and optimum design of 3-

CCC PKMs [95,96], in which the middle cylindrical joints are actuated. This class of PKMs

suffers in that a) their actuation is quite challenging to implement, and b) at least one motor

in each limb is floating, thereby increasing significantly the inertia load on the system. This

feature invariably affects the load-carrying capacity and dynamic response of the robot.

5.1 Kinematics

5.1.1 The Derivation of the Jacobian Matrix

The general architecture of a 3-CCC PKM is displayed in Fig. 2.5. Let us consider the

𝑖th limb, for 𝑖 = 1, 2, 3. First, we define the unit vectors parallel to the axes of the three

cylindrical joints in the 𝑖th limb as a𝑖, r𝑖 and b𝑖—see Fig. 2.5. Moreover, p𝑎𝑖, p𝑟𝑖 and p𝑏𝑖

are the vectors pointing from an arbitrary point on each of the three corresponding axes to

the operation point 𝐶, fixed to the MP. Next, we array the joint variables of the 𝑖th limb

into vector 𝜃𝜃𝜃𝑖 = [𝜃𝑖𝑎, 𝑟𝑖𝑎, 𝜃𝑖𝑟, 𝑟𝑖𝑟, 𝜃𝑖𝑏, 𝑟𝑖𝑏]
𝑇 , with 𝜃𝑖𝐽 and 𝑟𝑖𝐽 representing the angle of rotation

and the translation of the cylindrical joint 𝐽 of the 𝑖th limb, for 𝐽 = 𝑎, 𝑟, 𝑏; this leads to the

relation

J𝑖𝜃̇𝜃𝜃𝑖 = t, 𝑖 = 1, 2, 3 (5.1)
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where 𝜃̇𝜃𝜃𝑖 = [𝜃𝑖𝑎, 𝑟̇𝑖𝑎, 𝜃𝑖𝑟, 𝑟̇𝑖𝑟, 𝜃𝑖𝑏, 𝑟̇𝑖𝑏]
𝑇 , and

J𝑖 =

⎡⎣ a𝑖 0 r𝑖 0 b𝑖 0

a𝑖 × p𝑎𝑖 a𝑖 r𝑖 × p𝑟𝑖 r𝑖 b𝑖 × p𝑏𝑖 b𝑖

⎤⎦ , t =

⎡⎣𝜔𝜔𝜔
ċ

⎤⎦ (5.2)

again, for 𝑖 = 1, 2, 3, with t denoting the six-dimensional array of the twist of the moving

platform and 0 the three-dimensional zero vector. Moreover, we assume that the cylindrical

joint whose axis is parallel to a𝑖 is actuated.

Now we seek the kinematic relation of the 3-CCC PKM, which bears the form

Kt = D𝜑̇𝜑𝜑 (5.3)

where

𝜑̇𝜑𝜑 = [𝜃1𝑎, 𝜃2𝑎, 𝜃3𝑎, 𝑟̇1𝑎, 𝑟̇2𝑎, 𝑟̇3𝑎]
𝑇 (5.4)

is the six-dimensional array of C-drive rates, D is the drive Jacobian, and K the forward

Jacobian. Now we find the rows of K independently. First, we define K as

K = [k𝑟𝑡1,k𝑟𝑡2,k𝑟𝑡3,k𝑡𝑟1,k𝑡𝑟2,k𝑡𝑟3]
𝑇 (5.5)

where k𝑟𝑡𝑖 and k𝑡𝑟𝑖 represent six-dimensional arrays, for 𝑖 = 1, 2, 3; next, we regard the

foregoing vector arrays as screws with their upper and lower three-dimensional blocks in axis

coordinates1, that are reciprocal [97] to all but the first or, correspondingly, to the second

columns of J𝑖, for 𝑖 = 1, 2, 3. It can be readily seen that arrays k𝑟𝑡𝑖 are, in fact, screws with

infinite pitch, their blocks, represented in axis-coordinates, as

k𝑟𝑡𝑖 = [(b𝑖 × r𝑖)
𝑇 ,0𝑇 ]𝑇 , 𝑖 = 1, 2, 3 (5.6)

It can be verified that the inner product of k𝑟𝑡𝑖 with the last five columns of J𝑖—the reciprocal

product of the corresponding screws—indeed vanishes. As for k𝑡𝑟𝑖, let us assume that it bears

the general form of a screw:

k𝑡𝑟𝑖 = [(s𝑖 × p𝑠𝑖 + 𝑘𝑖s𝑖)
𝑇 , s𝑇𝑖 ]𝑇 , 𝑖 = 1, 2, 3 (5.7)

1A screw is represented in axis coordinates when the direction vector of the axis of the screw is in the
lower block of the screw [97].
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with s𝑖 representing the unit vector parallel to the axis of the screw, as yet to be determined.

The inner product of k𝑡𝑟𝑖 with the 4th and 6th column of J𝑖, i.e., the reciprocal product of

the two screws, must vanish:

s𝑇𝑖 r𝑖 = 0, s𝑇𝑖 b𝑖 = 0 (5.8)

Hence, we can assign s𝑖 as

s𝑖 = b𝑖 × r𝑖 (5.9)

Next, the inner product of k𝑡𝑟𝑖 with the first column of J𝑖 must vanish as well, i.e.,

(s𝑖 × p𝑠𝑖 + 𝑘𝑖s𝑖)
𝑇a𝑖 + s𝑇𝑖 (a𝑖 × p𝑎𝑖) = 0 (5.10)

which, after simplification, yields

(a𝑖 × s𝑖)
𝑇p𝑠𝑖 + a𝑖 · s𝑖𝑘𝑖 = (a𝑖 × s𝑖)

𝑇p𝑎𝑖 (5.11a)

Similarly, we can derive the inner product of k𝑡𝑟𝑖 with the third and fifth columns of J𝑖,

namely,

(r𝑖 × s𝑖)
𝑇p𝑠𝑖 + r𝑖 · s𝑖𝑘𝑖 = (r𝑖 × s𝑖)

𝑇p𝑟𝑖 (5.11b)

(b𝑖 × s𝑖)
𝑇p𝑠𝑖 + b𝑖 · s𝑖𝑘𝑖 = (b𝑖 × s𝑖)

𝑇p𝑏𝑖 (5.11c)

Now we have three linear equations, (5.11a–c), with four unknowns (the three components

of p𝑠𝑖 and 𝑘𝑖), and hence, we need one fourth equation. Since the component of p𝑠𝑖 along

s𝑖 does not affect the cross product s𝑖 × p𝑠𝑖, p𝑠𝑖 is indeterminate; we can thus define p𝑠𝑖 as

normal to s𝑖, to make it of minimum norm. We thus obtain four equations in four unknowns,

i.e., ⎡⎢⎢⎢⎢⎢⎢⎣
(a𝑖 × s𝑖)

𝑇 a𝑖 · s𝑖
(r𝑖 × s𝑖)

𝑇 r𝑖 · s𝑖
(b𝑖 × s𝑖)

𝑇 b𝑖 · s𝑖
s𝑇𝑖 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣p𝑠𝑖

𝑘𝑖

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
(a𝑖 × s𝑖)

𝑇p𝑎𝑖

(r𝑖 × s𝑖)
𝑇p𝑟𝑖

(b𝑖 × s𝑖)
𝑇p𝑏𝑖

0

⎤⎥⎥⎥⎥⎥⎥⎦ (5.12)

Moreover, we notice that s𝑖 is normal to r𝑖 and b𝑖; after rearranging the four equations given

74



above, and casting them in block form, we obtain⎡⎣E𝑖 0

g𝑇
𝑖 ℎ𝑖

⎤⎦⎡⎣p𝑠𝑖

𝑘𝑖

⎤⎦ =

⎡⎣ z𝑖
𝑧0𝑖

⎤⎦ (5.13)

where

E𝑖 ≡

⎡⎢⎢⎢⎣
(b𝑖 × s𝑖)

𝑇

(r𝑖 × s𝑖)
𝑇

s𝑇𝑖

⎤⎥⎥⎥⎦ ∈ R3×3, g𝑖 ≡ a𝑖 × s𝑖 ∈ R3, ℎ𝑖 ≡ a𝑖 · s𝑖 ∈ R

⎡⎣p𝑠𝑖

𝑘𝑖

⎤⎦ ∈ R4, z𝑖 ≡

⎡⎢⎢⎢⎣
(b𝑖 × s𝑖)

𝑇p𝑏𝑖

(r𝑖 × s𝑖)
𝑇p𝑟𝑖

0

⎤⎥⎥⎥⎦ ∈ R3, 𝑧0𝑖 ≡ (a𝑖 × s𝑖)
𝑇p𝑎𝑖 ∈ R

(5.14)

Next, we solve for [p𝑇
𝑠𝑖, 𝑘𝑖]

𝑇 from Eq. (5.13), using the formula for the inverse of a block

matrix: ⎡⎣p𝑠𝑖

𝑘𝑖

⎤⎦ =

⎡⎣ E−1
𝑖 z𝑖

−ℎ−1
𝑖 g𝑇

𝑖 E
−1
𝑖 z𝑖 + ℎ−1

𝑖 𝑧0𝑖

⎤⎦ (5.15)

Hence, by resorting to reciprocal bases [98] to derive E−1
𝑖 , p𝑠𝑖 can be found, upon simplifica-

tion, as

p𝑠𝑖 =
‖s𝑖‖2

∆𝐸𝑖

[−r𝑖 b𝑖]

⎡⎣(b𝑖 × s𝑖)
𝑇p𝑏𝑖

(r𝑖 × s𝑖)
𝑇p𝑟𝑖

⎤⎦ (5.16)

where ∆𝐸𝑖 denotes det(E𝑖), which can be readily obtained by means of the double mixed

product of its three row vectors. After simplification,

∆𝐸𝑖
= ‖s𝑖‖2 (5.17)

Therefore,

p𝑠𝑖 = [−r𝑖 b𝑖]

⎡⎣(b𝑖 × s𝑖)
𝑇p𝑏𝑖

(r𝑖 × s𝑖)
𝑇p𝑟𝑖

⎤⎦ (5.18)

𝑘𝑖 then following from Eq. (5.15). Now we have a general expression for the K matrix of
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Eq. (5.3), associated with a 3-CCC PKM, regardless of which C joint is actuated; the angles

and the distances between any neighboring pair of those axes (𝒜𝑖, ℛ𝑖, ℬ𝑖) are arbitrary.

Hence, these relations are fairly general.

Next, we limit ourselves to the case whereby the axis of the 𝑖th-limb cylindrical joint is

the common perpendicular of the first and third cylindrical axes, as Daniali et al. did [92–94],

which greatly simplifies the pertinent relations. This class of robot is shown to entail many

simplifications in the design and analysis, and hence, we will henceforth focus on this class.

Let the intersecting points of ℛ𝑖 with 𝒜𝑖 and ℬ𝑖 be 𝐿𝑖 and 𝑈𝑖, respectively, as shown in

Fig. 2.5; it is found, that due to the relation b𝑖 ⊥ r𝑖, vectors b𝑖, r𝑖 and s𝑖 form an orthonormal

triad, and hence, an orthonormal basis, matrix E𝑖 then simplifying to

E𝑖 =

⎡⎢⎢⎢⎣
(b𝑖 × s𝑖)

𝑇

(r𝑖 × s𝑖)
𝑇

s𝑇𝑖

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−r𝑇𝑖

b𝑇
𝑖

s𝑇𝑖

⎤⎥⎥⎥⎦ (5.19)

which is, in fact, proper orthogonal. Indeed, s𝑖 is of unit norm in this case, the axis of the

second and third axes, ℛ𝑖 and ℬ𝑖, intersecting at point 𝑈𝑖. We can thus choose this point to

represent the Plücker coordinates of the foregoing axes. If we denote vector
−−→
𝑈𝑖𝐶 as p𝑖, then

the derivation of p𝑠𝑖 simplifies to

p𝑠𝑖 = (r𝑖 · p𝑖)r𝑖 + (b𝑖 · p𝑖)b𝑖 = p𝑖 − (p𝑖 · s𝑖)s𝑖 (5.20)

which is nothing but the projection of p𝑖 onto the plane defined by the intersecting axes of

the two passive cylindrical joints. Moreover, even though we assume p𝑠𝑖 to be normal to s𝑖

to obtain a unique solution, this is not necessary because a component along the s𝑖 direction

does not affect the inner product of p𝑠𝑖 and s𝑖. As a result, we can simply assign p𝑠𝑖 as

p𝑠𝑖 = p𝑖 (5.21)

which is a vector pointing from the intersection of the axes of the two passive C-joints, 𝑈𝑖,
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to the operation point 𝐶. Moreover, r𝑖 ⊥ a𝑖 leads to

−ℎ−1
𝑖 g𝑇

𝑖 E
−1
𝑖 = −

1

a𝑖 · s𝑖
(a𝑖 × s𝑖)

𝑇 [−r𝑖,b𝑖, s𝑖]

= −
1

a𝑖 · s𝑖
[−(s𝑖 × r𝑖)

𝑇a𝑖, (s𝑖 × b𝑖)
𝑇a𝑖, 0]

= −
1

a𝑖 · s𝑖
[b𝑇

𝑖 a𝑖, 0, 0]

(5.22)

𝑘𝑖 now being calculated accordingly; after straightforward simplifications, we obtain

𝑘𝑖 =
1

a𝑖 · s𝑖
{[a𝑖 × (b𝑖 × r𝑖)] · (p𝑖 + 𝑟𝑖r𝑖) + b𝑖 · a𝑖(r𝑖 · p𝑖)} (5.23)

with 𝑟𝑖 denoting the distance between 𝒜𝑖 and ℬ𝑖, namely, the variable length of the middle

link. Furthermore,

a𝑖 × s𝑖 = a𝑖 × (b𝑖 × r𝑖) = (a𝑖 · r𝑖)b𝑖 − (a𝑖 · b𝑖)r𝑖 = −(a𝑖 · b𝑖)r𝑖 (5.24)

Then, 𝑘𝑖 simplifies to

𝑘𝑖 =
1

a𝑖 · s𝑖
[−(a𝑖 · b𝑖)r𝑖 · (p𝑖 + 𝑟𝑖r𝑖) + b𝑖 · a𝑖(r𝑖 · p𝑖)] = −

a𝑖 · b𝑖

a𝑖 · s𝑖
𝑟𝑖

(5.25)

Consequently, K bears the form

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s𝑇1 0𝑇

s𝑇2 0𝑇

s𝑇3 0𝑇

(s1 × p1 + 𝑘1s1)
𝑇 s𝑇1

(s2 × p2 + 𝑘2s2)
𝑇 s𝑇1

(s3 × p3 + 𝑘3s3)
𝑇 s𝑇3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.26)

where

s𝑖 = b𝑖 × r𝑖, 𝑘𝑖 = −
a𝑖 · b𝑖

a𝑖 · s𝑖
𝑟𝑖 (5.27)
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Next, D, which appears in Eq. (5.3), is obtained as a diagonal matrix, namely,

D = diag(𝑑𝑟𝑡1, 𝑑𝑟𝑡2, 𝑑𝑟𝑡3, 𝑑𝑡𝑟1, 𝑑𝑡𝑟2, 𝑑𝑡𝑟3) (5.28)

whose entries can be expressed as

𝑑𝑟𝑡𝑖 = [s𝑇𝑖 ,0
𝑇 ]

⎡⎣ a𝑖

a𝑖 × p𝑎𝑖

⎤⎦ = s𝑖 · a𝑖, 𝑖 = 1, 2, 3 (5.29)

and

𝑑𝑡𝑟𝑖 = [(s𝑖 × p1 + 𝑘1s2)
𝑇 , s𝑇𝑖 ]

⎡⎣0
a𝑖

⎤⎦ = s𝑖 · a𝑖, 𝑖 = 1, 2, 3 (5.30)

As a result,

D = diag(s1 · a1, s2 · a2, s3 · a3, s1 · a1, s2 · a2, s3 · a3) (5.31)

Moreover, if we define the angle between the axes of the actuated and the distal C-joints,

namely, the angle between a𝑖 and b𝑖, as 𝛼𝑖, then2

s𝑖 · a𝑖 = (b𝑖 × r𝑖) · a𝑖 = (a𝑖 × b𝑖) · r𝑖 = sin𝛼𝑖 (5.32)

and hence,

D = diag(sin𝛼1, sin𝛼2, sin𝛼3, sin𝛼1, sin𝛼2, sin𝛼3) (5.33)

Moreover, 𝑘𝑖 also simplifies to

𝑘𝑖 = −(cot𝛼𝑖)𝑟𝑖 (5.34)

It can be readily verified that the inner product of k𝑡𝑟𝑖 with the first and the last four columns

of J𝑖 indeed vanishes; the proof being straightforward is thus omitted.

Next, we verify the decoupled property of this type of PKM and offer a brief singularity

analysis to show that singularity depends only on the orientation of the MP. If we represent

2This angle, appearing in both K and D, is a function of [a𝑖]𝐵 , [b𝑖]𝑀 , and the orientation of the MP. It
is noteworthy that we assume that the set {a𝑖,b𝑖, r𝑖}31 forms a right-handed system, i.e., its double product,
in the given order, is positive.
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K, D and 𝜑𝜑𝜑 in block form, namely,

K =

⎡⎣S O

T S

⎤⎦ , D = diag(D0,D0), 𝜑𝜑𝜑 =

⎡⎣𝜃𝜃𝜃𝑎
r𝑎

⎤⎦ (5.35)

with

S =

⎡⎢⎢⎢⎣
s𝑇1

s𝑇2

s𝑇3

⎤⎥⎥⎥⎦ , T =

⎡⎢⎢⎢⎣
(s1 × p1 + 𝑘1s1)

𝑇

(s2 × p2 + 𝑘2s2)
𝑇

(s3 × p3 + 𝑘3s3)
𝑇

⎤⎥⎥⎥⎦
D0 = diag(sin𝛼1, sin𝛼2, sin𝛼3),

𝜃𝜃𝜃𝑎 =

⎡⎢⎢⎢⎣
𝜃1𝑎

𝜃2𝑎

𝜃3𝑎

⎤⎥⎥⎥⎦ , r𝑎 =

⎡⎢⎢⎢⎣
𝑟1𝑎

𝑟2𝑎

𝑟3𝑎

⎤⎥⎥⎥⎦
(5.36)

then, the kinematics relations in Eq. (5.3) can be rewritten as

S𝜔𝜔𝜔 = D0𝜃̇𝜃𝜃𝑎, T𝜔𝜔𝜔 + Sċ = D0ṙ𝑎 (5.37)

from which it is apparent that the angular velocity is only dependent on the angular rates

of the three actuated cylindrical joints, which means that the rotation is decoupled from the

translation at the velocity level. However, the velocity ċ of the operation point is linearly

related to the angular velocity of the MP. Next, we conduct a brief singularity analysis for

this robot. Firstly, the singularity locus can be obtained upon setting the determinant of K

(or of D) to zero3; since K is a block-lower-triangular matrix, its determinant ∆K reduces to

∆K = (∆S)2 (5.38)

where ∆S denotes det(S). As a result, the singularity of K is defined by the condition

∆S ≡ (s1 × s2) · s3 = 0 (5.39)

3There is another type of singularity involved in PKMs, which is the limb singularity. It can be readily
shown that the limb singularity occurs iff D becomes singular for the 3-CCC PKM.

79



where

s𝑖 = b𝑖 × r𝑖 ‖ b𝑖 × (a𝑖 × b𝑖) = a𝑖 − b𝑖 cos𝛼𝑖 (5.40)

which is also affected only by the orientation of the MP. As for D, it becomes singular when

a𝑖 ‖ b𝑖 for some 𝑖, 𝑖 = 1, 2, 3, which is obviously only affected by the orientation of the MP.

To summarize, the singularity is totally determined by the orientation of the MP. Moreover,

even though the above analysis is conducted at the velocity level, the rotation of the MP of

the proposed robot is in fact decoupled from its translation at the displacement level as well,

which can be verified from the forward displacement analysis in Section 5.3.

As stated at the beginning of this chapter, the kinematics of this class of PKMs was, in

fact, investigated by Daniali et al. [92–94], but their derivation yields cumbersome forms ofK

and D; for example, our D is diagonal, which dramatically simplifies the analysis and brings

about novel results. Moreover, the six rows of K in the same references do not represent

the screws associated with the corresponding joints. As a result, the evaluation of these

matrices is cumbersome. Furthermore, it will be shown that the derivation therein imposes

unnecessary constraints on the isotropic design, to be discussed in Section 5.2.

In summary, the proposed robot entails simple kinematics, by virtue of the rotation of the

MP being decoupled from its translation. This not only simplifies significantly the control

and analysis of the robot, but also makes the singularity analysis dependent only on the

orientation of the MP, thereby making singularity avoidance dramatically simpler. These

features are rarely seen in six-dof PKMs.

5.1.2 The Inverse Jacobian and Actuator Jacobian

In Subsection 5.1.1 we obtained the kinematic relation of the 3-CCC PKM between the

MP twist t and the six-dimensional array of C-drive rates 𝜑̇𝜑𝜑. Based on this result, we derive

the kinematic relation between the MP twist and the six-dimensional motor-rate array as

Kt = J𝜓̇𝜓𝜓 (5.41)
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where 𝜓̇̇𝜓̇𝜓 = [𝜓̇𝐿1, 𝜓̇𝑅1, 𝜓̇𝐿2, 𝜓̇𝑅2, 𝜓̇𝐿3, 𝜓̇𝑅3]
𝑇 represents the array of the six motor rates, and

J = DJ𝑚 (5.42)

with J and J𝑚 representing the inverse Jacobian and the actuator Jacobian, respectively.

Furthermore, J𝑚 takes the form

J𝑚 =
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

𝑝𝑛 −𝑝𝑛 0 0 0 0

0 0 𝑝𝑛 −𝑝𝑛 0 0

0 0 0 0 𝑝𝑛 −𝑝𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.43)

where if 𝑝 represents the pitch of the C-joints, 𝑝𝑛 = 𝑝/(2𝜋) represents the normalized pitch,

meaning the pitch measured in mm/rad, to express it in SI units. It is noteworthy that the

above J𝑚 is different from that of the SDelta, displayed in Eq. (3.9), which is solely due to

the different ordering of the six components of the C-drive array, as per Eqs. (3.2) and (5.4).

5.1.3 Introducing the Characteristic Length

Before we conduct the optimization based on the condition number of the Jacobian ma-

trices, we need to render them dimensionally homogeneous. It is apparent that the four 3×3

blocks of both K and J𝑚 bear different units. Next, we make them dimensionally homoge-

neous with the aid of the characteristic length 𝐿 and some manipulations of the matrices.

Firstly, J𝑚 is rewritten as

J𝑚 =

√
2

2
PW (5.44)
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where

P = diag(1, 1, 1, 𝑝𝑛, 𝑝𝑛, 𝑝𝑛), W =

√
2

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.45)

the latter being orthogonal. As a result, Eq. (5.41) takes the form

Kt = D𝜑̇𝜑𝜑 = DJ𝑚𝜓̇𝜓𝜓 =

√
2

2
DPW𝜓̇𝜓𝜓 =

√
2

2
PDW𝜓̇𝜓𝜓 (5.46)

the last equality holding because both P and D are diagonal, and hence, commute. Since D

and W are dimensionless, while K and P are not, we multiply both sides of the foregoing

equation by P−1 and redefine the two Jacobian matrices as

K′ = P−1K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s𝑇1 0𝑇

s𝑇2 0𝑇

s𝑇3 0𝑇

(s1 × p1 + 𝑘1s1)
𝑇/𝑝𝑛 s𝑇1 /𝑝𝑛

(s2 × p2 + 𝑘2s2)
𝑇/𝑝𝑛 s𝑇1 /𝑝𝑛

(s3 × p3 + 𝑘3s3)
𝑇/𝑝𝑛 s𝑇3 /𝑝𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.47)

and

D′ =

√
2

2
DW (5.48)

which leads to the mapping between t and 𝜓̇𝜓𝜓:

K′t = D′𝜓̇𝜓𝜓 (5.49)
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Now, if we want to make K′ dimensionally homogeneous, we recall the characteristic length

𝐿, as yet to be determined, and redefine the MP twist and Kℎ as

tℎ =

⎡⎣ 𝜔̇𝜔𝜔

ċ𝑇/𝐿

⎤⎦ , Kℎ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s𝑇1 0𝑇

s𝑇2 0𝑇

s𝑇3 0𝑇

(s1 × p1 + 𝑘1s1)
𝑇/𝑝𝑛 s𝑇1𝐿/𝑝𝑛

(s2 × p2 + 𝑘2s2)
𝑇/𝑝𝑛 s𝑇1𝐿/𝑝𝑛

(s3 × p3 + 𝑘3s3)
𝑇/𝑝𝑛 s𝑇3𝐿/𝑝𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.50)

In summary, when taking the six motor rates as the input joint rates, the kinematic relation

of interest can be written as

Kℎtℎ = Dℎ𝜓̇𝜓𝜓 (5.51)

with Dℎ defined as

Dℎ =

√
2

2
DW (5.52)

It is apparent that both Kℎ and Dℎ are dimensionally homogeneous, in fact, dimensionless.

5.2 The Isotropic Design

5.2.1 Geometric Conditions for Isotropy

As discussed in Chapter 4, isotropy is achieved when its two Jacobian matrices bear the

condition number of unity, under which the six rows (columns) of the Jacobian matrices are

orthogonal, yielding high positioning accuracy and homogeneity of the MP motion along all

six directions of the Cartesian space [62, 63, 65]. Due to the simple form of the kinematic

relations for the 3-CCC PKM, this robot class admits an isotropic design, as shown below.

The isotropy requirement leads to two conditions, one for each Jacobian, namely,

DℎD
𝑇
ℎ = 𝜎2

𝐷16×6, KℎKℎ
𝑇 = 𝜎2

𝐾16×6 (5.53)

83



withKℎ and Dℎ defined in Eqs.(5.50) and (5.52), respectively, 𝜎𝐷 and 𝜎𝐾 as yet to be found.

First, we look at the Kℎ matrix in block form, namely,

Kℎ =

⎡⎣ S O3×3

(1/𝑝𝑛)T (𝐿/𝑝𝑛)S

⎤⎦ (5.54)

Hence,

KℎK
𝑇
ℎ =

⎡⎣ SS𝑇 (1/𝑝𝑛)ST𝑇

(1/𝑝𝑛)TS𝑇 (1/𝑝2𝑛)TT𝑇 + (𝐿2/𝑝2𝑛)SS𝑇

⎤⎦ (5.55)

When Kℎ is isotropic, SS𝑇 is proportional to the 3 × 3 identity matrix. Moreover, from

knowledge that the rows of S are all of unit Euclidean norm, we conclude that S, in fact, has

to be an orthogonal matrix. Moreover, (1/𝑝𝑛)TS𝑇 has to vanish, and hence, by virtue of the

orthogonality of S, T must vanish, i.e.,

T = 𝑝𝑛O3×3S = O3×3 (5.56)

Now KℎK
𝑇
ℎ becomes

KℎK
𝑇
ℎ =

⎡⎣1 O

O (𝐿2/𝑝2𝑛)1

⎤⎦ (5.57)

with 1 representing the 3 × 3 identity matrix.

Moreover, 𝐿 is defined as the value that maximizes the dexterity, which is achieved when

the condition number equals unity, or equivalently, when the robot is under an isotropic

configuration. It is obvious that, in order to render Kℎ isotropic, 𝐿2/𝑝2𝑛 has to equal to

unity; hence, the characteristic length is nothing but 𝐿 = 𝑝𝑛, i.e., the normalized pitch for

the proposed class of isotropic PKMs.

Finally, in order to render Kℎ isotropic, we need the set {s𝑖}31 to be orthonormal, while T

must vanish. Now, given that each row of T is composed of two orthogonal components, as

per Eq. (5.36), s𝑖 × p𝑖 and 𝑘𝑖s𝑖, this means that these two components have to both vanish,

namely, s𝑖 ‖ p𝑖 and 𝑘𝑖 = −𝑟𝑖 cot𝛼𝑖 = 0. The last condition yields a𝑖 ⊥ b𝑖; moreover, r𝑖 is the

common perpendicular to a𝑖 and b𝑖, and hence, a𝑖, r𝑖 and b𝑖 form an orthonormal triad under
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an isotropic posture, for 𝑖 = 1, 2, 3. Since each axis has two possible directions, we choose

r𝑖 to be in the same direction as a𝑖 × b𝑖. Under these conditions, s𝑖 = b𝑖 × r𝑖 = a𝑖. Then,

the condition for {s𝑖}31 to be orthogonal is equivalent to requiring {a𝑖}31 to be orthonormal.

Moreover, the condition p𝑖 ‖ s𝑖 is equivalent to p𝑖 ‖ a𝑖.

In summary, the isotropy conditions for Kℎ follow:

1. the set {a𝑖}31 is orthogonal

2. a𝑖 ⊥ b𝑖, for 𝑖 = 1, 2, 3

3. s𝑖 ‖ p𝑖 or, equivalently, a𝑖 ‖ p𝑖

It can be readily verified that these conditions also lead to Dℎ isotropic, and hence, the

robot can attain an isotropic posture. This set of constraints is different from that obtained

by Daniali et al. for isotropy [92–94]. In fact, different from the conditions reported in the

foregoing papers, the conditions derived here allow for a continuum of isotropic architectures,

as shown below.

5.2.2 Realization of the Isotropic Design

5.2.2.1 The Design of the Base Platform

Based on the conditions derived above, we can set up the geometric conditions under

which the robot is isotropic. The design procedure is described below.

We denote the coordinate axes of the BP frame as 𝑋1, 𝑌1 and 𝑍1, respectively, as shown

in Fig. 5.1. Since {a𝑖}31 is orthonormal, we define these vectors as parallel to the coordinate

axes of the base frame without loss of generality, namely, a1 = [1, 0, 0]𝑇 , a2 = [0, 1, 0]𝑇 and

a3 = [0, 0, 1]𝑇 . The three axes 𝒜𝑖 do not necessarily intersect each other; hence, there may be

an offset between each pair of these. Without loss of generality, we define the BP frame such

that the 𝑋1 axis coincides with 𝒜1, and the 𝑍1 axis coincides with the common perpendicular

of 𝒜1 and 𝒜2, as shown in Fig. 5.1. In this way, we define the offset vectors {d𝑖}31, with d𝑖

directed from the 𝑖th coordinate axis of the base frame to 𝒜𝑖, i.e., d1 = 0, d2 = 𝑑2a3 and

d3 = 𝑑31a1 + 𝑑32a2, with obvious definitions for 𝑑3𝑖, for 𝑖 = 1, 2. Then, the layout of the
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three C-joint axes on the BP is uniquely defined by {a𝑖}31, 𝑑2, 𝑑31 and 𝑑32. When the last

three parameters are prescribed, all the possible layouts of the BP can be obtained; hence,

𝑑2, 𝑑31 and 𝑑32 are three design parameters, which fully characterize the layout of the BP.

A1

A2

A3

X1

Y1

Z1

U1

U2

U3

L1

L2

L3

d2

d31

d32

C0

O

t)
Figure 5.1: The determination of the BP and MP using d𝑖, c0 and p𝑖

5.2.2.2 Design of the Moving Platform

According with the isotropy conditions, we can now design the MP: First, we choose an

arbitrary point 𝐶0 in the BP frame, with the position vector c0 = [𝑐01, 𝑐02, 𝑐03]
𝑇 , in BP-frame

coordinates, which is the position vector of the operation point 𝐶 at the reference posture,

as illustrated in Fig. 2.5. 𝐶0 is termed the characteristic point, as this point characterizes

the robot isotropic posture. Next, we define three lines {𝒜′
𝑖}31 that pass through 𝐶0, with

𝒜′
𝑖 parallel to 𝒜𝑖, for 𝑖 = 1, 2, 3 or, equivalently, to the three BP frame axes. Moreover, we

choose three arbitrary points 𝑈𝑖 on {𝒜′
𝑖}31, as shown in Fig. 5.1, where 𝑈𝑖, introduced earlier,

represents the intersection of ℛ𝑖 with ℬ𝑖, as shown in Fig. 2.5. Then, ℛ𝑖 can be found as the

perpendicular from 𝑈𝑖 to 𝒜𝑖, namely, 𝐿𝑖𝑈𝑖; moreover, {a𝑖, r𝑖, b𝑖}31 form three orthonormal

sets under an isotropic configuration; hence, we can find b𝑖 as4 r𝑖 × a𝑖, and ℬ𝑖 as the line

passing through 𝑈𝑖, and parallel to b𝑖.

Since p𝑖 =
−−→
𝑈𝑖𝐶 is parallel to the 𝑖th axis of the BP frame, the position vector u𝑖 of 𝑈𝑖

4As there are two possible directions of b𝑖, we assume that {a𝑖, r𝑖, b𝑖}31 is a right-handed triad.
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can be obtained as

u1 =

⎡⎢⎢⎢⎣
𝑐01 + 𝑜1

𝑐02

𝑐03

⎤⎥⎥⎥⎦ , u2 =

⎡⎢⎢⎢⎣
𝑐01

𝑐02 + 𝑜2

𝑐03

⎤⎥⎥⎥⎦ , u3 =

⎡⎢⎢⎢⎣
𝑐01

𝑐02

𝑐03 + 𝑜3

⎤⎥⎥⎥⎦ (5.58)

in BP-frame coordinates, where {𝑜𝑖}31 represents the offset from 𝑈𝑖 to 𝐶0. Moreover, as 𝐿𝑖 is

the intersection of 𝒜𝑖 with ℛ𝑖,

−−−→
𝐿1𝑈1 =

⎡⎢⎢⎢⎣
0

𝑐02

𝑐03

⎤⎥⎥⎥⎦ , −−−→𝐿2𝑈2 =

⎡⎢⎢⎢⎣
𝑐01

0

𝑐03 − 𝑑2

⎤⎥⎥⎥⎦ , −−−→𝐿3𝑈3 =

⎡⎢⎢⎢⎣
𝑐01 − 𝑑31

𝑐02 − 𝑑32

0

⎤⎥⎥⎥⎦ (5.59)

in BP-frame coordinates. Furthermore,
−−→
𝐿𝑖𝑈𝑖 = 𝑟𝑖r𝑖; as a result, r𝑖 can be obtained upon

normalizing
−−→
𝐿𝑖𝑈𝑖. Moreover, it is apparent that r𝑖 only involves c0 and the prescribed offset

{𝒜𝑖}31; once r𝑖 is determined, the direction of b𝑖 can also be determined as r𝑖×a𝑖. As a result,

all the directions involved in the isotropic posture are determined uniquely by the choice of

the characteristic point c0, besides the three design parameters 𝑑2, 𝑑31 and 𝑑32. As for the

distances 𝑜𝑖 (the magnitude of
−−→
𝑈𝑖𝐶), they determine the distance between the three axes ℬ𝑖.

Hence, c0 and 𝑑𝑖 suffice to define the MP. Moreover, the values for 𝑑2, 𝑑31, 𝑑32, c0 and {𝑜𝑖}31
can be given arbitrarily; as a result, there are infinitely many possibilities to render the robot

isotropic.

5.2.2.3 The Feasible Set of Characteristic Points

For most robots, their isotropic postures, if any, are found in finite and discrete sets. For

the robots under investigation, however, due to their simple Jacobian matrices, we found

that, under proper dimensioning, it is possible to achieve designs within whose workspace

a continuous set of isotropic postures exists. This feature guarantees that the accuracy of

those properly designed robots attains its maximum within a large region of the workspace,

as opposed to isolated points, which is quite advantageous. To the author’s knowledge, this

feature has not been reported in the literature. Now we seek the conditions under which this

can happen.
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We assume that we have a 3-CCC robot at a given isotropic posture, and hence, a𝑖 ⊥ b𝑖.

Moreover, we have to keep this relation at any isotropic posture; now, upon rotating the MP

by a rotation matrix Q without violating a𝑖 ⊥ b𝑖, we have to satisfy the conditions below:

a𝑇
𝑖 b𝑖 = 0, a𝑇

𝑖 (Qb𝑖) = 0, ‖b𝑖‖2 = 1

b𝑇
𝑖 b𝑗 = cos 𝛽𝑖𝑗, 𝑖 = 1, 2, 3, 𝑗 ̸= 𝑖

(5.60)

where 𝛽𝑖𝑗 is a constant, representing the angle between the unit vectors b𝑖 and b𝑗. Since the

rotation matrix can be characterized by three independent variables—the three components

of the vector in the Euler Rodrigues parameters [64], for example—the above conditions

form a system of 12 equations with 12 unknowns (nine from {b𝑖}31 and three from Q). The

above system is bound to have a discrete set of solutions. This means that we cannot find

a continuous rotation maintaining the above condition. As a result, for the set of isotropic

postures, if one exists, the MP has to keep a constant orientation under which a𝑖 ⊥ b𝑖 for

𝑖 = 1, 2, 3, i.e., the MP can only undergo a pure translation if the isotropic posture is to be

preserved. Then, the first two conditions for isotropy, introduced in Section 5.2, are satisfied.

Next, we consider the last condition, i.e., p𝑖 ‖ a𝑖, for 𝑖 = 1, 2, 3: Let us look at vectors

p𝑖 =
−−→
𝑈𝑖𝐶, where 𝑈𝑖 is the intersection of ℛ𝑖 with ℬ𝑖. Since we have to keep

−−→
𝑈𝑖𝐶 parallel

to 𝒜𝑖 as the MP translates within the set of isotropic postures, the direction of
−−→
𝑈𝑖𝐶 must

be constant. Moreover, the operation point 𝐶 is fixed to the MP; hence, point 𝑈𝑖 must be

fixed to the MP as well, when the MP undergoes the pure translation required by the first

two isotropy conditions. This means that 𝑈𝑖 must be fixed to ℬ𝑖, i.e., there is no translation

between the MP and the upper link of the 𝑖th limb. Equivalently, the MP has to either

undergo a translation as a linear combination of a𝑖 and r𝑖, for 𝑖 = 1, 2, 3, or the translation of

the MP must be in the direction normal to the three vectors b𝑖, for 𝑖 = 1, 2, 3. This is feasible

if and only if the set {b𝑖}31 is coplanar. Let us assume that this is the case and denote their

common unit normal as n. Once this condition is satisfied, when the MP undergoes a pure

translation parallel to n (starting from an isotropic posture), there is no translation between

the MP and the upper links of the limbs. Hence, all vectors a𝑖, r𝑖, b𝑖, p𝑖 remain constant,

thereby preserving all three isotropy conditions mentioned at the end of Section 5.2, i.e., the

robot still finds itself at an isotropic posture.
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Further, we find the isotropy condition under which the set {b𝑖}31 is coplanar. Since we

already have the directions of r𝑖 parallel to
−−→
𝐿𝑖𝑈𝑖, as per Eq. (5.59), finding the vectors {b′

𝑖}31
parallel to the directions of {b𝑖}31 is straightforward:

b′
𝑖 =

−−→
𝐿𝑖𝑈𝑖 × a𝑖, 𝑖 = 1, 2, 3 (5.61)

or

b′
1 =

⎡⎢⎢⎢⎣
0

𝑐03

−𝑐02

⎤⎥⎥⎥⎦ , b′
2 =

⎡⎢⎢⎢⎣
𝑑2 − 𝑐03

0

𝑐01

⎤⎥⎥⎥⎦ , b′
3 =

⎡⎢⎢⎢⎣
𝑐02 − 𝑑32

𝑑31 − 𝑐01

0

⎤⎥⎥⎥⎦ (5.62)

The condition that {b𝑖}31 be coplanar yields (b′
1 × b′

2) · b′
3 = 0; after simplification, this

condition becomes

𝑑2𝑐01𝑐02 + 𝑑31𝑐02𝑐03 − 𝑑32𝑐01𝑐03 − 𝑑2𝑑31𝑐02 = 0 (5.63)

which is quadratic in c0. This means that, as long as the chosen point of isotropy (at the

design stage) satisfies condition (5.63), {b𝑖}31 will be coplanar. Then, the proposed robot

will be able to achieve a set of continuous isotropic postures along the line passing through

𝐶0 and parallel to n, the common normal of {b𝑖}31, which can be found as the unit vector

parallel to b′
𝑖 × b′

𝑗, 𝑖 ̸= 𝑗, e.g.5,

n ‖ b′
1 × b′

2 =

⎡⎢⎢⎢⎣
𝑐01𝑐03

𝑐02(𝑐03 − 𝑑2)

𝑐03(𝑐03 − 𝑑2)

⎤⎥⎥⎥⎦ (5.64)

5.2.2.4 Several Typical Layouts of the Proposed PKM

We have thus found the condition under which the robot can achieve a set of isotropic

postures. Since we have infinitely many choices, we make some further assumptions on the

BP frame to determine several typical layouts:

5b′
1 × b′

2 is chosen because it has the simplest form.
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∙ Case I: If we assume that the three axes {𝒜𝑖}31 intersect at one common point, i.e.,

𝑑2 = 𝑑31 = 𝑑32 = 0, then the condition in Eq. (5.63) naturally holds. This means that,

when the three orthogonal axes of the C-joints at the base platform intersect at one common

point, we can always find a set of motions of the MP along a line, that keeps the robot

posture isotropic. The said line passes through the arbitrarily chosen 𝐶0, its direction

being found as that of b′
1 × b′

2, which turns out to be that of c0. This means that, when

the MP moves along the line connecting the origin and the chosen 𝐶0 (with the proper

orientation), the robot remains at an isotropic posture.

∙ Case II: We assume that two of the axes intersect, e.g. 𝒜1 and 𝒜2, i.e., 𝑑2 = 0; then, the

above condition simplifies to

(𝑑32𝑐01 − 𝑑31𝑐02)𝑐03 = 0 (5.65)

which leads to one of two conditions, namely,

𝑑32𝑐01 − 𝑑31𝑐02 = 0 or 𝑐03 = 0 (5.66)

That is, the chosen point of isotropy must lie in the plane of 𝒜1 and 𝒜2, or the plane of the

origin and 𝒜3, in order to obtain a set of isotropic postures of the given robot. It can be

readily verified from Eq. (5.64) that the said line is, again, the line connecting the origin

with 𝐶0.

N.B.: if we choose the axes 𝒜𝑖 as the edges of a cube of edge length ℓ, then this item covers

two special cases: 𝒜1 and 𝒜2 coincide with the 𝑋1- and 𝑌1- axes, respectively, while 𝒜3

can be the line parallel to the 𝑍1- axis, but passing through either [ℓ, 0, 0]𝑇 or [ℓ, ℓ, 0]𝑇 .

∙ Case III: Lastly, we assume that the lines are skew, namely, none of 𝑑2, 𝑑31, 𝑑32 vanishes.

To simplify matters, and to make the robot more “symmetric”, we assume that 𝑑2 = 𝑑31 =

𝑑32 = ℓ. This covers the case in which we choose three skew edges of the cube. In this

case, Eq. (5.63) simplifies to

(𝑐02ℓ− 𝑐01𝑐02 − 𝑐02𝑐03 + 𝑐01𝑐03)ℓ = 0 (5.67)
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but, since ℓ ̸= 0, from the vanishing of the coefficient of ℓ in Eq. (5.67),

𝑐03 =
𝑐02(𝑐01 − ℓ)

𝑐01 − 𝑐02
(5.68)

The surfaces composed of those points that can be used as points of isotropy are plotted

in Figs. 5.2 and 5.3, within the range of a cube with an edge length equal to ℓ and to 1.5ℓ,

respectively.

0
0.5ℓ

0.5ℓ

0.5ℓ

ℓ

ℓ

ℓ

5ℓ

Figure 5.2: The surface of feasible points of
isotropy within a cube of edge length ℓ

0

0.5ℓ

0.5ℓ
0.5ℓ

ℓ

ℓ

ℓ

1.5ℓ

1.5ℓ

1.5ℓ

Figure 5.3: The surface of feasible points of
isotropy within a cube of edge length 1.5ℓ

Furthermore, we know that the set of characteristic points must pass through point 𝐶0, of

position vector c0. Considering the direction of the line given in Eq. (5.64), we can find the

line, and further conclude that the line intersects the 𝑋1 axis at point 𝐻, of position vector

h, namely,

[h]ℬ =

⎡⎢⎢⎢⎣
−𝑐01𝑑2/(𝑐03 − 𝑑2)

0

0

⎤⎥⎥⎥⎦ (5.69)

when viewed in the base frame (as indicated by the subscript). We can use this point to

locate the line of isotropy in the desired region, thus choosing from an infinity of possibilities.

From the above analysis, it is apparent that we still have a large margin of maneuver to

choose the layout of the robot while guaranteeing a set of isotropy postures. Hence, we have

a continuous set of design variables that yield infinitely many different robot designs; within

the workspace of any of these robots, a continuous set of isotropic postures is feasible.
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5.2.2.5 Enumeration of Several Representative Designs

Symmetry in robot design, or design at large, for that matter, is advantageous. We

introduce below some further assumptions on symmetry, to come up with some representative

layouts.

As for the MP, we make the assumption that the angles between each pair of axes {ℬ𝑖}31
are equal, if this is at all possible. Notice that the three lines {ℬ𝑖}31 are not necessarily

coplanar, but their direction vectors {b𝑖}31 have to be so in order to guarantee the existence

of a line of isotropic postures. This requires that the angles between b𝑖 and b𝑗 be 2𝜋/3,

namely, b𝑖 · b𝑗 = −1/2, for 𝑖, 𝑗 = 1, 2, 3, 𝑖 ̸= 𝑗. In fact, this layout defines an equilateral

spatial triangle. The foregoing inner products can be obtained as

b𝑖 · b𝑗 =
b′
𝑖 · b′

𝑗

‖b′
𝑖‖2‖b′

𝑗‖2
(5.70)

Then, the set of conditions

b1 · b2 = −
1

2
, b2 · b3 = −

1

2
, b3 · b1 = −

1

2
(5.71)

constitutes a set of constraints on the choice of the characteristic point 𝐶0.

Below we elaborate on four layouts:

∙ Layout I: the base is characterized by 𝑑2 = 𝑑31 = 𝑑32 = 0. Then, constraint (5.71) yields

the condition 𝑐01 = 𝑐02 = 𝑐03 (due to symmetry, we keep only the solution in the first

quadrant in this case, without loss of generality). As a result, we choose 𝐶0 as any point

on the line passing through the origin and one point with the position vector [1, 1, 1]𝑇 . For

example, we choose the centroid of the cube, i.e., c0 = [0.5ℓ, 0.5ℓ, 0.5ℓ]𝑇 . Moreover, we

assume 𝑜1 = 𝑜2 = 𝑜3 = 𝑜 to keep the robot “more symmetric”, in which case, the three

axes {ℬ𝑖}31 form a planar equilateral triangle. Upon choosing 𝑜 = 0.2ℓ, we obtain the robot

shown in Fig. 5.4, with the small sphere representing the characteristic point.

∙ Layout II: This case is shown in Fig. 5.5, where we require 𝑑2 = 𝑑32 = 0, 𝑑31 = ℓ. It is

found that the operation point has to lie either in the plane of 𝒜1 and 𝒜2 or in the plane of

the origin and 𝒜3, the latter also being the plane of 𝒜1 and 𝒜3 in this case. Without loss
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of generality, the characteristic point is chosen to lie in the plane of 𝒜1 and 𝒜3; moreover,

the characteristic point is chosen as the centroid of the face of the cube in the plane of

𝒜1 and 𝒜3, i.e., c0 = [0.5ℓ, 0, 0.5ℓ]𝑇 . We again set 𝑜1 = 𝑜2 = 𝑜3 = 0.2ℓ, which gives the

isotropic design shown in Fig. 5.5. It is apparent that ℬ1 and ℬ3 must be both parallel

to 𝒜2 in this case, while normal to ℬ2, which makes it impossible to have the three axes

{ℬ𝑖}31 at equal angles pairwise. The simplest version in this category may be the one with

the distances from ℬ2 to ℬ1 and to ℬ3 equal. This requires the relation 𝑜3/𝑜1 = 𝑐01/𝑐03.

∙ Layout III: This case is shown in Fig. 5.6, where we require 𝑑2 = 0, 𝑑31 = 𝑑32 = ℓ. It is

found that the operation point has to lie in the plane of 𝒜1 and 𝒜2 or the plane of the

origin and 𝒜3. If we choose the latter, we can choose the operation point as the centroid

of the cube i.e., c0 = [0.5ℓ, 0.5ℓ, 0.5ℓ]𝑇 . We again set 𝑜1 = 𝑜2 = 𝑜3 = 0.2ℓ, which gives the

isotropic design shown in Fig. 5.6. As can be seen, this layout is similar to Layout I.

∙ Layout IV: This case is shown in Fig. 5.7, where we require 𝑑2 = 𝑑31 = 𝑑32 = ℓ. From

Fig. 5.2, we can choose the operation point on the three axes 𝒜𝑖 for 𝑖 = 1, 2, 3, or their three

common perpendiculars. The former is not feasible, since it yields the middle link of some

limb of zero length; for the latter, an example is shown in Fig. 5.7, with c0 = [ℓ, 0.5ℓ, 0]𝑇

and 𝑜1 = 𝑜2 = 𝑜3 = 0.2ℓ.

This category of layout is generally complex and difficult to analyze, so we will not elaborate

on this category further.
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Figure 5.4: An example of an isotropic design
for Layout I
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Figure 5.5: An example of an isotropic design
for Layout II

BP

MP

Figure 5.6: An example of an isotropic design
for Layout III

BP

MP

Figure 5.7: An example an the isotropic design
for Layout IV

5.2.3 Discussion

Based on the Jacobian matrices derived here, it is found that one of the constraints for

isotropy imposed in previous works [94] are not necessary, which allows us to find a rich set

of isotropic architectures. Moreover, the conditions yielding the existence of a line of isotropy

were revealed. We identified a class of PKMs within whose workspace a continuous set of

postures of isotropy is feasible, thereby guaranteeing the accuracy and the homogeneity of

the PKM motion inside a region of the workspace, rather than at a discrete set of points,

as is usually the case. This feature is rare and quite advantageous; moreover, as discussed

in this section, there are infinitely many choices of design variables that yield this property.

Hence, there is a large margin for us to optimize the performance of the robot in terms of

other aspects.

Next, we focus on this subclass of 3-CCC PKM, and conduct its forward-displacement,

singularity and workspace analyses, to provide a whole picture of the robot performance. As

stated previously, the general 3-CCC PKM was first analyzed by Daniali et al. as the six-
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dof version of the double-triangular mechanisms [92–94]. However, the kinematic relations

derived therein based on dual quaternions do not yield the simplest formulation: The forward

kinematics thus yields eight equations with six unknowns, which is neither decoupled nor

minimal; moreover, solving this system is computationally cumbersome, which is thus not

suitable for real-time control. Some singular configurations were enumerated, but they did

not provide a complete analysis of the singularity loci and their graphic representation. These

issues are studied in this dissertation yielding a simpler formulation and pertinent results.

It is also noteworthy that, compared with the 3-CCC PKMs [95, 96] mentioned at the

beginning of Chapter 5, besides the advantages mentioned therein, the proposed 3-CCC PKM

also bears simpler and better kinematics performance. For example, it will be shown that

the proposed robot bears a simpler formulation of the forward-displacement problem, which

admits eight solutions, as opposed to 64 for the 3-CCC PKM, besides many other interesting

and advantageous features of the 3-CCC PKM in terms of singularity and workspace.

5.3 The Forward-displacement Analysis

It is apparent that J𝑚—which establishes the mapping between the rates of the cylindrical

motion of the three collars of the three actuated C-Drives and the six motor rates—is a

constant matrix, which becomes trivial in the forward-displacement and singularity analyses.

Hence, we regard 𝜑𝜑𝜑 as the input in these analyses for simplicity. Now we derive the forward-

displacement analysis of the 3-CCC PKMs, which involves finding the pose coordinates of

the MP for a given set of input variables 𝜑𝜑𝜑.

5.3.1 The Orientation Problem

Firstly, we study the orientation subproblem. It is noteworthy that we provide two

different formulations for the orientation problem, one for 3-CCC PKMs with a) coplanar,

and one for b) non-coplanar {b𝑖}31 triad. It was found [91] that PKMs in case a) are quite

advantageous, since they entail a continuous locus of isotropic postures within the robot

workspace, guaranteeing the accuracy and homogeneity of the motion of the MP within a large

region. Moreover, this class of PKMs allows a simpler formulation for the orientation problem,
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compared with PKMs in case b). Hence, we mainly focus on class a), using an approach

similar to that of Gosselin et al.’s for a spherical parallel manipulator with a coplanar6

platform [99]. Thereafter, we briefly discuss the formulation for case b), but will not elaborate

on it.

Since the three axes {ℬ𝑖}31 are rigidly fixed to the MP, it is obvious that the orientation

of the MP is totally defined once all the directions of b𝑖 are known, for 𝑖 = 1, 2, 3. When the

three unit vectors {b𝑖}31 are coplanar7, they become linearly dependent, in which case there

exist three scalars {𝛿𝑖}31, such that

𝛿1b1 + 𝛿2b2 + 𝛿3b3 = 0 (5.72)

with {𝛿𝑖}31 being constant known parameters for a given MP. For example, for an equilateral

MP, we have

𝛿1 = 𝛿2 = 𝛿3 = 1, b1 + b2 + b3 = 0 (5.73)

Moreover, as the direction vectors a𝑖 are known, while r𝑖—the direction vectors of the common

perpendicular of 𝒜𝑖 and ℬ𝑖—are uniquely determined by 𝜃𝑖𝑎, we can express the direction

vector b𝑖 as

b𝑖 = cos𝛼𝑖a𝑖 + sin𝛼𝑖r𝑖(𝜃𝑖𝑎) × a𝑖, 𝑖 = 1, 2, 3 (5.74)

with only 𝛼𝑖 as yet to be determined. If we insert Eqs. (5.74) into Eqs. (5.72), the three com-

ponents of this vector equation lead to three constraint equations with three unknowns, linear

in sin𝛼𝑖 and cos𝛼𝑖. This system of equations can be transformed into a set of polynomial

equations upon introducing 𝑥𝑖 = sin𝛼𝑖 and 𝑦𝑖 = cos𝛼𝑖, namely,

𝛿1𝑥1r1 × a1 + 𝛿2𝑥2r2 × a2 + 𝛿3𝑥3r3 × a3 + 𝛿1𝑦1a1 + 𝛿2𝑦2a2 + 𝛿3𝑦3a3 = 0

𝑥21 + 𝑦21 = 1

𝑥22 + 𝑦22 = 1

𝑥23 + 𝑦23 = 1

(5.75)

6This means that the axes of the distal R joints of the three limbs are coplanar.
7It is noteworthy that this does not mean that the three axes {ℬ𝑖}31 are coplanar since these axes may be

offset.

96



bearing a Bezout number [81] of 8, i.e., it admits up to eight solutions; it will be shown,

with the aid of one case study, that the number is minimal. Once {𝛼𝑖}31 are determined,

the orientation of the MP is totally determined. The MP rotation being decoupled from its

translation offers several advantages in terms of control, analysis, etc.

Next, we briefly discuss the orientation problem for PKMs of case b). The orientation

problem of its forward-displacement will be shown to be equivalent to that of the spherical

three-dof PKM investigated by Gosselin et al. [99–101]. Indeed, the translation of the axes

{𝒜𝑖}31, {ℬ𝑖}31 and {ℛ𝑖}31 does not affect the orientation of the MP; hence, we can always

establish a spherical PKM upon translating all the foregoing nine axes to intersect at a given

common point, whose forward-displacement problem bears the same solution as the 3-CCC

PKM. Hence, the derivation and conclusions about the forward-displacement problem therein

also apply to the orientation problem of the 3-CCC PKM. The forward-displacement problem

of a general spherical PKM was formulated based on a set of Euler angles [100, 101] which

yield an octic univariate polynomial. Due to the equivalence described above, this conclusion

applies to the orientation problem of PKMs for case b) also. Since we do not focus on this

type, we will not elaborate on it.

The above formulation displayed in Eqs. (5.72) and (5.74), and that in Eqs. (5.75), es-

pecially the latter, are probably good enough for the real-time calculation of the forward-

displacement problem. In fact, this system of equations might be the simplest formulation

the author has seen for the forward-displacement problem of six-dof PKMs. However, solving

Eqs. (5.75) still requires an iterative algorithm, just as the case of other six-dof PKMs. Such

an algorithm, though adequate in most cases when good initial guesses are provided, can con-

verge to solutions of other branches and sometimes even diverge, especially when the robot

finds itself near a singular configuration. These issues can lead to large error, high computa-

tional cost and even failure to converge. Hence, closed-form solution is quite advantageous

in such situations.

As will be seen from Eqs. (5.98) in the case study, when the set {𝛼𝑖}31 satisfies the

orientation constraint, as per Eq. (5.72), so does {−𝛼𝑖}31. This can be readily explained

considering that this simply changes the sign of {b𝑖}31 in Eq. (5.74) into {−b𝑖}31, under which
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Eq. (5.72) still holds. Hence, the eight solutions can be grouped into four pairs. Based on this

finding, we manage to represent the resolvent polynomial into an equivalent polynomial of

degree four, which can be solved in closed form, via Ferrari’s formula [102]. In this way, all the

solutions can be obtained simultaneously while the computation cost is reduced, especially

when a large number of iterations is needed. Next, we discuss the procedure for obtaining the

quartic resolvent polynomial. This polynomial is derived based on Eq. (5.72). We focus on

the case when the set {a𝑖}31 is orthonormal, which yields a continuous set of isotropy loci [91].

Without loss of generality, we assume

a1 = [1, 0, 0]𝑇 , a2 = [0, 1, 0]𝑇 , a3 = [0, 0, 1]𝑇 , (5.76)

Moreover, we let 𝜃𝑖𝑝 be the angle between r𝑖 and the corresponding frame plane (𝑋-𝑂-𝑌 ,𝑌 -

𝑂-𝑍,𝑍-𝑂-𝑋, respectively, for 𝑖 = 1, 2, 3), as shown in Fig. 5.8, namely,

𝜃𝑖𝑝 = 𝜃𝑖0 + 𝜃𝑖𝑎 (5.77)

which is given in the forward-displacement problem, with 𝜃𝑖0 representing the angle between

r𝑖 and the corresponding coordinate plane at the reference pose. Then, Eqs. (5.72) take the

form

𝛿1 cos𝛼1 − 𝛿2 cos 𝜃2𝑝 sin𝛼2 + 𝛿3 sin 𝜃3𝑝 sin𝛼3 = 0

𝛿1 sin 𝜃1𝑝 sin𝛼1 + 𝛿2 cos𝛼2 − 𝛿3 cos 𝜃3𝑝 sin𝛼3 = 0

−𝛿1 cos 𝜃1𝑝 sin𝛼1 + 𝛿2 sin 𝜃2𝑝 sin𝛼2 + 𝛿3 cos𝛼3 = 0

(5.78)

Next, we eliminate 𝛼3 from the above equations to obtain two equations with two unknowns.

We solve for sin𝛼3 from the first two equations, which gives us one equation free of 𝛼3,

namely,

sin𝛼3 = csc 𝜃3𝑝(𝛿23 cos 𝜃2𝑝 sin𝛼2 − 𝛿13 cos𝛼1) = sec 𝜃3𝑝(𝛿23 cos𝛼2 + 𝛿13 sin 𝜃1𝑝 sin𝛼1) (5.79)

with 𝛿𝑖𝑗 ≡ 𝛿𝑖/𝛿𝑗. This equation is linear in terms of cos𝛼2 and sin𝛼2. Moreover, we solve for

cos𝛼3 from the third of Eqs. (5.78), and insert the values of sin𝛼3 and cos𝛼3 into

sin2 𝛼3 + cos2 𝛼3 = 1 (5.80)
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thereby obtaining a second equation free of 𝛼3, namely,

𝐸𝑠2 sin2 𝛼2 + 𝐸𝑐2 cos2 𝛼2 + 𝐸𝑠1 sin𝛼2 + 𝐸𝑐1 cos𝛼2 + 𝐸0 = 0 (5.81)

with

𝐸𝑠2 = 𝛿223 sin
2 𝜃2𝑝 ≡ 𝜖1, 𝐸𝑐2 = 𝛿223 sec

2 𝜃3𝑝 ≡ 𝜖2

𝐸𝑠1 = −2𝛿13𝛿23 cos 𝜃1𝑝 sin 𝜃2𝑝 sin𝛼1 ≡ 𝜖3 sin𝛼1

𝐸𝑐1 = 2𝛿13𝛿23 sin 𝜃1𝑝 sec
2 𝜃3𝑝 sin𝛼1 ≡ 𝜖4 sin𝛼1

𝐸0 = − cos2 𝛼1 +
(︀
𝛿213(cos

2 𝜃1𝑝 + sin2 𝜃1𝑝 sec
2 𝜃3𝑝)− 1

)︀
sin2 𝛼1 ≡ 𝜖5 cos

2 𝛼1 + 𝜖6 sin
2 𝛼1

(5.82)

where the scalars {𝜖𝑖}61—and {𝜙𝑖}31, {𝜆𝑖}51, {𝜇𝑖}61, {𝜈𝑖}20, {𝜎𝑖}10, to be defined presently—are

intermediate results introduced for computational purposes. Next, we solve for sin𝛼2 from

Eq. (5.79), namely,

sin𝛼2 = 𝐹1 cos𝛼2 + 𝐹0 (5.83)

with

𝐹1 = sec 𝜃2𝑝 tan 𝜃3𝑝 ≡ 𝜙1

𝐹0 = sec 𝜃2𝑝𝛿12 (cos𝛼1 + sin 𝜃1𝑝 tan 𝜃3𝑝 sin𝛼1) ≡ 𝜙2 cos𝛼1 + 𝜙3 sin𝛼1

(5.84)

Moreover, we insert Eq. (5.83) into the Eq. (5.81) and into

sin2 𝛼2 + cos2 𝛼2 = 1 (5.85)

thereby obtaining two equations in 𝛼2:

𝐺2 cos2 𝛼2 +𝐺1 cos𝛼2 +𝐺0 = 0

𝐻2 cos2 𝛼2 +𝐻1 cos𝛼2 +𝐻0 = 0
(5.86)

where

𝐺2 = 𝐸𝑐2 − 𝐸𝑠2, 𝐺1 = 𝐸𝑠1𝐹1 + 𝐸𝑐1, 𝐺0 = 𝐸𝑠1𝐹0 + 𝐸0 + 𝐸𝑠2

𝐻2 = 𝐹 2
1 + 1, 𝐻1 = 2𝐹1𝐹0, 𝐻0 = 𝐹 2

0 − 1
(5.87)

The above procedure is similar to that used by Gosselin et al. for a special three-dof spherical

PKM [99]; next, dialytic elimination [64] was used by the same authors to obtain an octic
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univariate polynomial from Eq. (5.86). Here we use a different approach which is simpler to

derive and simplify, and end up with a quartic univariate polynomial: We multiply the two

equations in Eq. (5.86) by 𝐻2 and 𝐺2, respectively, and find their difference as

cos𝛼2 =
𝐺2𝐻0 −𝐺0𝐻2

𝐺1𝐻2 −𝐺2𝐻1

≡
𝑁

𝐷
(5.88)

whose RHS only involves 𝛼1. Once we insert Eq. (5.88) into the second of Eqs. (5.86), a

univariate equation in 𝛼1 is obtained, namely,

𝐻2𝑁
2 +𝐻1𝑁𝐷 +𝐻0𝐷

2 = 0 (5.89)

which is found to be a homogeneous quartic equation in sin𝛼1 and cos𝛼1. If we divide

both sides by sin4 𝛼1, the LHS will become a quartic equation in 𝜌 ≡ cot𝛼1, which, after

simplification, becomes

𝜁4𝜌
4 + 𝜁3𝜌

3 + 𝜁2𝜌
2 + 𝜁1𝜌+ 𝜁0 = 0 (5.90)

whose coefficients are derived in the Appendix. This equation can be solved in closed form,

and hence, all the solutions can be obtained precisely and simultaneously without resorting to

an iterative solution, which might converge to other branches of solutions, and even diverge.

This feature, rare for six-dof PKMs, is quite advantageous in simulation and control, espe-

cially when the the robot operates near a singular configuration, where an iterative approach

is likely to fail.

5.3.2 The Positioning Problem

Next, we study the translational displacement of the MP. Once {𝛼𝑖}31 are known from

Eqs. (5.72) or (5.75) or Eq. (5.90), the directions {b𝑖}31 are determined, from which the

orientation Q of the MP can be readily derived. Below we solve the translation subproblem.

Three translation equations can be obtained from the condition of the intersection of ℬ𝑖

and ℛ𝑖, for 𝑖 = 1, 2, 3. It is known that two lines intersect if and only if the reciprocal product

of their Plücker coordinates vanishes [103]. The calculation of the Plücker coordinates of ℛ𝑖

and ℬ𝑖 calls for the unit vectors associated with their axes (r𝑖, b𝑖) and the position vectors of
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two arbitrary points on them. We choose 𝐿𝑖 and 𝑈 ′
𝑖 as these two points, where the position

vector of 𝐿𝑖 can be readily calculated as l𝑖 = l0𝑖 + 𝑟𝑖𝑎a𝑖—with l0𝑖 representing the position

vector of 𝐿𝑖 at the reference posture, while 𝑈 ′
𝑖 represents the current location of the point on

the MP (more precisely, on ℬ𝑖) that coincides with ℛ𝑖 at the reference pose. If we denote

the vector stemming from the operation point 𝐶 to 𝑈 ′
𝑖 as q𝑖, then the position vector u′

𝑖 of

𝑈 ′
𝑖 can be calculated as

u′
𝑖 = c + q𝑖 = c + Qq𝑖0 (5.91)

which is linear in c, while q𝑖0 can be readily calculated under the reference pose. Now the

Plücker coordinates of ℛ𝑖 and ℬ𝑖 can be readily obtained as

[r𝑇𝑖 ,n
𝑇
𝑟𝑖]

𝑇 = [r𝑇𝑖 , l𝑖 × r𝑇𝑖 ]𝑇 , [b𝑇
𝑖 ,n

𝑇
𝑏𝑖]

𝑇 = [b𝑇
𝑖 ,u

′
𝑖 × b𝑇

𝑖 ]𝑇 (5.92)

where the only unknown is c, their reciprocal product yielding

(b𝑖 × r𝑖) · (u′
𝑖 − l𝑖) ≡ s𝑇𝑖 (c + Qq𝑖0 − l𝑖) = 0 (5.93)

or, equivalently,

s𝑇𝑖 c = s𝑇𝑖 (l0𝑖 + 𝑟𝑖𝑎a𝑖 −Qq𝑖0) ≡ 𝑤𝑖, 𝑖 = 1, 2, 3 (5.94)

In this way, the translation problem is formulated upon casting the three foregoing equations

in the form ⎡⎢⎢⎢⎣
s𝑇1

s𝑇2

s𝑇3

⎤⎥⎥⎥⎦ c = w (5.95)

Finally, the position vector of the intersection of ℛ𝑖 and ℬ𝑖, i.e., u𝑖, may be needed, e.g.,

in simulation, which can be readily calculated as [104]

u𝑖 =
n𝑟𝑖 × n𝑏𝑖

b𝑖 · n𝑟𝑖

(5.96)

after which the lengths of the intermediate limbs 𝑟𝑖 can be readily found as 𝑟𝑖 = ‖𝐿𝑖𝑈𝑖‖2.
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Figure 5.8: The architecture of a 3CCC PKM for case study

5.3.3 Case Study

Next, a case study is provided for verification. We will choose a set of design parameters

that yield a continuous locus of isotropic postures. The conditions for isotropy are reproduced

below for quick reference:

1. The set {a𝑖}31 is orthogonal

2. a𝑖 ⊥ b𝑖, for 𝑖 = 1, 2, 3

3. s𝑖 ‖ p𝑖 or, equivalently, a𝑖 ‖ p𝑖

4. The three direction vectors {b𝑖}31 are coplanar

Based on these conditions, we choose a symmetric layout as shown in Fig. 5.8 for illustration:

the length of the sides, of a cube that encloses the BP is denoted ℓ, the reference position

of the operation point8 is specified as c0 = 1/2[ℓ, ℓ, ℓ, ]𝑇 . Moreover, the distance between 𝐶0

and ℬ𝑖 is prescribed 0.2ℓ, yielding an equilateral shape of the MP, with a length 0.4
√

2ℓ.

A set of input design parameters is tested:

𝜑𝜑𝜑 = [𝜃1𝑎, 𝜃2𝑎, 𝜃3𝑎, 𝑟1𝑎, 𝑟2𝑎, 𝑟3𝑎]
𝑇 = [0.1, 0.05, 0.15, 0.1, 0.2, 0.15] (5.97)

It is noteworthy that 𝜃𝑖𝑎 and 𝑟𝑖𝑎 are defined to be 0 at the reference pose. The system of

Eqs. (5.75) is adopted in this case study, since a set of polynomials is easier to handle than

8It is noteworthy that even though the operation point is not located on the plane defined by the three
coplanar axes {ℬ𝑖}31, it is fixed to the MP.
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those involving trigonometric functions. It is found that the orientation problem admits eight

real solutions, arrayed in sol𝑟𝑜𝑖 = [𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3]
𝑇
𝑖 , namely,

sol𝑟𝑜1 = [0.549981, 0.835177, 0.0929369,−0.995672,−0.96023, 0.279209]𝑇

sol𝑟𝑜2 = [−0.549981,−0.835177,−0.0929369, 0.995672, 0.96023,−0.279209]𝑇

sol𝑟𝑜3 = [0.310112,−0.9507,−0.99944,−0.0334597, 0.348137, 0.937444]𝑇

sol𝑟𝑜4 = [−0.310112, 0.9507, 0.99944, 0.0334597,−0.348137,−0.937444]𝑇

sol𝑟𝑜5 = [−0.99013, 0.14015,−0.984355, 0.176199,−0.994658, 0.103228]𝑇

sol𝑟𝑜6 = [0.99013,−0.14015, 0.984355,−0.176199, 0.994658,−0.103228]𝑇

sol𝑟𝑜7 = [0.985306,−0.170797,−0.482835,−0.875711,−0.190261, 0.981734]𝑇

sol𝑟𝑜8 = [−0.985306, 0.170797, 0.482835, 0.875711, 0.190261,−0.981734]𝑇

(5.98)

The formulation based on Eq. (5.90) is also conducted, which leads to

−58.7167𝜌4 − 109.331𝜌3 + 243.303𝜌2 + 83.8462𝜌+ 6.70696 = 0 (5.99)

with the solutions 𝜌 = 1.51856, −0.141547, −0.173344, −3.06567, from which eight values of

𝛼1 can be obtained, which do correspond to the solutions in Eq. (5.98).

The corresponding position vector c of the operation point, denoted sol𝑡𝑟𝑖 = [𝑐1, 𝑐2, 𝑐3]
𝑇 ,

are found as

sol𝑡𝑟1 = [0.507908, 0.119128, 0.825462]𝑇 ,

sol𝑡𝑟3 = [0.363044, 0.977219, 0.641]𝑇 ,

sol𝑡𝑟5 = [0.855996, 0.945059, 0.894451]𝑇 ,

sol𝑡𝑟7 = [0.905586, 1.49944, 1.34846]𝑇 ,

sol𝑡𝑟2 = [1.20758, 1.17601, 0.929398]𝑇

sol𝑡𝑟4 = [1.26536, 1.06529, 1.60808]𝑇

sol𝑡𝑟6 = [0.581321, 0.681459, 0.642581]𝑇

sol𝑡𝑟8 = [0.811763, 0.529586, 0.151661]𝑇

(5.100)

The corresponding configurations are plotted in Figs. 5.9, where the intermediate and distal

links of the different limbs are displayed in different colours. It is readily shown that these

configurations do share the same set of input design parameters; however, some of these

layouts exceed the joint limits, and hence, are not feasible.
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Figure 5.9: The layouts corresponding to those solutions in the case study of the forward kinemat-
ics.

5.4 Singularity Analysis

Since translation and rotation are usually coupled in a six-dof PKM, the corresponding

singularity set is usually a five-dimensional surface in the six-dimensional space, whose evalu-

ation or representation is quite challenging. However, it will be shown that the different types

of singularity of the 3-CCC PKM are all dependent on the MP orientation only, which is

quite advantageous, because the corresponding singularity locus becomes a two-dimensional

surface within the three-dimensional orientation workspace, thereby simplifying dramatically

its representation and evaluation. Hence, we can represent the singularity locus in the ori-

entation workspace. Various orientation representation schemes have been proposed, such

as Euler angles, tilt and torsion angles, quaternions, roll-pitch-yaw angles, axis and angle of

rotation, etc. [105]. Among these representations, the Euler-Rodrigues representation [64]

is found to be quite advantageous in the representation of orientation workspace, since this

formulation provides a one-to-one mapping between the Euler-Rodrigues parameters (ERP)

and the orientation, which is singularity-free; moreover, the graph plotted in terms of ERP

entails a clearer geometric meaning, compared to the other representation schemes. Hence,

this representation is adopted in this dissertation.

The Euler-Rodrigues parameters are defined as [64]

r = sin(𝜑/2)e, 𝑟0 = cos(𝜑/2), with ‖r‖2 + 𝑟20 = 1 (5.101)

where 𝜑 and e represent the angle and the axis of rotation, 𝜑 ∈ [0, 𝜋]; the corresponding
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rotation matrix is then expressed as

Q = (𝑟20 − r · r)1 + 2rr𝑇 + 2𝑟0R (5.102)

where R is the cross-product matrix [64] of r. For the purpose of graphic representation, we

can substitute 𝑟0 with
√︀

1 − ‖r‖2, matrix Q then becoming a three-parameter function in

terms of r and the singularity surface is composed of all the points whose position vector r

yields singularity.

5.4.1 Limb Singularity

In order to gain more insight into the limb Jacobian, we recall the relations derived in

Subsection 5.1.1, and reorder the limb joint rates and the limb-twist relation in the form

J𝑖𝜃̇𝜃𝜃𝑖 = t (5.103)

where

J𝑖 =

⎡⎣ a𝑖 r𝑖 b𝑖 0 0 0

a𝑖 × p𝑎𝑖 r𝑖 × p𝑟𝑖 b𝑖 × p𝑏𝑖 a𝑖 r𝑖 b𝑖

⎤⎦ , 𝜃𝜃𝜃𝑖 = [𝜃𝑖𝑎, 𝜃𝑖𝑟, 𝜃𝑖𝑏, 𝑟𝑖𝑎, 𝑟𝑖𝑟, 𝑟𝑖𝑏]
𝑇 (5.104)

It is apparent that the limb Jacobian is block lower-triangular with two identical diagonal

blocks; hence, its limb singularity is encountered when and only when its diagonal block

becomes singular, which happens when a𝑖, b𝑖 and r𝑖 are coplanar, for any 𝑖 = 1, 2, 3. There

are three sets of limb singularity, one for each limb.

When the 𝑖th limb encounters a singularity, we have a𝑖 ‖ b𝑖, i.e.,

a𝑖 · b𝑖 = a𝑖 · (Qb𝑖0) = ±1 (5.105)

with Q given in Eq. (5.102), which expands to

a𝑖 · b𝑖 = (𝑟20 − r · r)a𝑖 · b𝑖0 + 2(r · a𝑖)(r · b𝑖0) + 2𝑟0(r× b𝑖0) · a𝑖

= 2(r · a𝑖)(r · b𝑖0) − 2𝑟0(a𝑖 × b𝑖0) · r = 2(r · a𝑖)(r · b𝑖0) − 2𝑟0r𝑖0 · r = ±1
(5.106)

where b𝑖0 represents the direction of b𝑖 at the reference posture, and r𝑖0 is the unit vector

parallel to the common perpendicular of a𝑖 and b𝑖0. This theoretically represents two surfaces
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within the orientation space. However, it will be shown that the limb singularity correspond-

ing to the 𝑖th limb is, in fact, not a surface, but degenerates into two elliptic curves when

represented in terms of the ERP, for 𝑖 = 1, 2, 3. It is noteworthy that a𝑖, b𝑖0, r𝑖0 form a

right-handed orthonormal basis, defining frame ℱ𝐿𝑖, for 𝑖 = 1, 2, 3; if we express vector r in

ℱ𝐿𝑖, we obtain

r = 𝑟𝑎𝑖a𝑖 + 𝑟𝑏𝑖b𝑖0 + 𝑟𝑟𝑖r𝑖0 (5.107)

where 𝑟𝑎𝑖, 𝑟𝑏𝑖, 𝑟𝑟𝑖 represent the components of r about these three axes, respectively; then,

Eq. (5.106) simplifies to

2𝑟𝑎𝑖𝑟𝑏𝑖 − 2𝑟0𝑟𝑟𝑖 = ±1 (5.108)

from which 𝑟0 can be solved for as

𝑟0 = (2𝑟𝑎𝑖𝑟𝑏𝑖 ∓ 1)/(2𝑟𝑟𝑖) (5.109)

Moreover,

‖r‖2 + 𝑟20 = 𝑟2𝑎𝑖 + 𝑟2𝑏𝑖 + 𝑟2𝑟𝑖 + [(2𝑟𝑎𝑖𝑟𝑏𝑖 ∓ 1)/(2𝑟𝑟𝑖)]
2 = 1 (5.110)

which is quadratic in 𝑟𝑎𝑖. After simplification,

(𝑟2𝑟𝑖 + 𝑟2𝑏𝑖)𝑟
2
𝑎𝑖 ∓ 𝑟𝑎𝑖𝑟𝑏𝑖 +

1

4
− 𝑟2𝑟𝑖(1 − 𝑟2𝑟𝑖 − 𝑟2𝑏𝑖) = 0 (5.111)

whose discriminant is calculated as

∆𝑖 = 𝑟2𝑏𝑖 − 4(𝑟2𝑟𝑖 + 𝑟2𝑏𝑖)[
1

4
− 𝑟2𝑟𝑖(1 − 𝑟2𝑟𝑖 − 𝑟2𝑏𝑖)] = −𝑟2𝑟𝑖 + 4𝑟2𝑟𝑖(𝑟

2
𝑟𝑖 + 𝑟2𝑏𝑖)(1 − 𝑟2𝑟𝑖 − 𝑟2𝑏𝑖)

= −𝑟2𝑟𝑖[2(𝑟2𝑟𝑖 + 𝑟2𝑏𝑖) − 1]2 ≤ 0

(5.112)

indicating that the quadratic equation has real solutions if and only if ∆𝑖 vanishes, in which

case the equation has only one real solution for each of the two equations a𝑖 ·b𝑖 = ±1, namely,

𝑟𝑎𝑖 =
± 𝑟𝑏𝑖

2(𝑟2𝑟𝑖 + 𝑟2𝑏𝑖)
(5.113)
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the ± sign appears since a𝑖 · b𝑖 = ±1, which has two possible values. Moreover, the above

solution is valid only when ∆𝑖 = 0, namely,

𝑟2𝑟𝑖 + 𝑟2𝑏𝑖 =
1

2
or 𝑟𝑟𝑖 = 0 (5.114)

If 𝑟2𝑟𝑖 + 𝑟2𝑏𝑖 = 1/2, we have

𝑟𝑎𝑖 = ±𝑟𝑏𝑖, 𝑟2𝑟𝑖 + 𝑟2𝑏𝑖 = 1/2, 𝑟2𝑎𝑖 + 𝑟2𝑟𝑖 + 𝑟2𝑏𝑖 ≤ 1 (5.115)

When viewed in frame ℱ𝐿𝑖, the second equation is a cylinder whose axis is 𝒜𝑖, while the first

equation characterizes two planes passing through the origin, their intersection being two

ellipses. The two principal semi-axes of the ellipses are found to be
√

2/2r𝑖0 = [0, 0,
√

2/2]𝑇

and v𝑖 = [1/
√

2,±1/
√

2, 0]𝑇 in frame ℱ𝐿𝑖; moreover, it is simple to verify that an arbitrary

point on the ellipses is given by the position vector

𝜒𝜒𝜒𝑖 = v𝑖 cos 𝜂𝑖 +
√

2/2r𝑖0 sin 𝜂𝑖 (5.116)

where 𝜂𝑖 is an arbitrary scalar. It is apparent that the two ellipses lie within in the unit

sphere which satisfies the norm constraint naturally.

When 𝑟𝑟𝑖 = 0, from Eq. (5.113), we have

𝑟𝑎𝑖 = ±
1

2𝑟𝑏𝑖
(5.117)

which has only four solutions that do not violate the norm constraint, namely, [𝑟𝑎𝑖, 𝑟𝑏𝑖] =

[±1/
√

2,±1/
√

2]. It is a simple matter to verify that these points satisfy Eqs. (5.115) as well.

As a result, the singularity loci for each limb singularity yields two ellipses, characterized by

Eq. (5.116).

So far we have found an expression for the singularity curve of the 𝑖th limb in ℱ𝐿𝑖; we

now need to express it in the global orientation workspace frame. We assume the three axes

of the global orientation workspace frame to be parallel to those of the BP frame. Since ℱ𝐿𝑖

is fixed to the BP frame (i.e., the global orientation workspace frame), it is simple to express

the singularity curves in the BP frame: Their expressions are again provided by Eq. (5.116),
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the only difference is that we need to express the direction vectors v𝑖 and r𝑖0 in the BP

frame, which is straightforward. Finally, the singularity conditions of the three limbs yield

six ellipses.

5.4.2 The Singularity of the Forward Jacobian Matrix

Since K, the forward Jacobian, is a block lower-triangular matrix, it becomes singular if

and only if one of its diagonal blocks is singular, which happens iff the triad {s𝑖}31 becomes

coplanar. This condition is characterized by

(s1 × s2) · s3 = 0 (5.118)

where

s𝑖 = b𝑖×r𝑖 ‖ b𝑖× (a𝑖×b𝑖) = (b𝑖 ·b𝑖)a𝑖− (b𝑖 ·a𝑖)b𝑖 = a𝑖− (a𝑖 ·b𝑖)b𝑖 = a𝑖−b𝑖 cos𝛼𝑖 (5.119)

Then, the singularity condition can be obtained upon plugging Eq. (5.119) into Eqs. (5.118).

Moreover, if we consider only the case of PKMs with a continuous set of isotropy, then, {a𝑖}31
forms an orthonormal basis and {b𝑖}31 becomes coplanar. The singularity condition can be

further derived as

[(a1 − cos𝛼1b1) × (a2 − cos𝛼2b2)] · (a3 − cos𝛼3b3) = 1 − cos𝛼2
1 − cos𝛼2

2 − cos𝛼2
3

+ 𝑏12 cos𝛼1 cos𝛼2n · a3 + 𝑏31 cos𝛼1 cos𝛼3n · a2 + 𝑏23 cos𝛼2 cos𝛼3n · a1

(5.120)

where n represents the unit vector normal to {b𝑖}31, cos𝛼𝑖 is calculated as a𝑖 · b𝑖, and coeffi-

cients 𝑏𝑖𝑗 are defined below

b𝑖 × b𝑗 = 𝑏𝑖𝑗n, 𝑖 ̸= 𝑗 (5.121)

which is constant for a given MP. Apparently, the singularity of K is also depending only on

the MP orientation.

5.4.3 The Singularity Analysis of the Inverse Jacobian

Its is apparent that the inverse Jacobian matrix D becomes singular when s𝑖 · a𝑖 =

(b𝑖 × r𝑖) · a𝑖 = 0, for any 𝑖 = 1, 2, 3, i.e., when a𝑖, r𝑖 and b𝑖 become coplanar, for any
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𝑖 = 1, 2, 3. This is the same as the singularity condition of the limb singularity, so there is

no need to investigate it again.

5.4.4 Case Study

We use the same set of design parameters for the forward-displacement problem. More-

over, we represent the orientation in terms of its ERP parameters. The corresponding

limb-singularity is shown in Figs. 5.10(a), and a combination with that of K is shown in

Fig. 5.10(b).

From these figures, it is apparent that the singularity occurs only when the MP is rotated

for large angles: it is found that the minimum distance from the origin to an arbitrary

point on the singularity surface is around 0.664, which means that the MP can rotate about

any direction for at least an angle of −83.2∘ to 83.2∘ before encountering a singularity;

when rotated about the majority of directions, the robot will never encounter a singularity.

Moreover, since the singularity of the 3-CCC robot is only dependent on the orientation of the

MP, the above conclusion is valid regardless of the location of the MP; hence, the proposed

robot is unlikely to encounter a singularity without exceeding the joint limits or encountering

link interference. As a result, singularity detection is not needed in real-time control in most

cases, which greatly simplifies the control algorithm.
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(a) (b)

Figure 5.10: Singularity of the 3-CCC PKM (a) the curve for limb singularity (b) the limb singu-
larity and that of K

5.5 Workspace Analysis

5.5.1 The Geometrical Method for Workspace Quantification

In this section the fixed-orientation position workspace of the proposed robot is analyzed.

We neglect the interference and only consider the limits of the active and passive joints. We

propose the use of a geometrical method to calculate the fixed-orientation workspace, similar

to the one used for the SDelta Robot [75], which allows us to obtain the workspace efficiently.

The method follows:

Firstly, we derive the feasible workspace region of the MP upon regarding the latter as

the end-effector of a serial robot, formed by the joints and links of the 𝑖th limb (i.e., we

disconnect the MP from the two other limbs), denoted as 𝒲𝑖; then, the workspace of the MP

can be obtained as the intersection of {𝒲𝑖}31.

Next, we describe the process of obtaining the workspace region 𝒲𝑖. Let us denote the

intersection of ℬ𝑖 and ℛ𝑖 as 𝑈𝑖0 at the reference pose; furthermore, the point on the MP that

coincides with 𝑈𝑖0 at the reference posture is denoted as 𝑀𝑖, its position vector as m𝑖
9; it

is then apparent that the shape of the translational workspace region of 𝑀𝑖 is the same as

9It is noteworthy that 𝑀𝑖 does not necessarily coincide with 𝑈𝑖 when the robot is not at the reference
posture, since 𝑈𝑖 is not a fixed point on the MP, due to the translational degree of freedom of the distal
cylindrical joints.
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that of the operation point 𝐶, while the region of the latter can be obtained simply through

a pure translation of the former by the constant vector
−−→
𝑀𝑖𝐶. Furthermore, it can be readily

verified that once the orientation of the MP is fixed, the directions of all the links in the three

limbs are fixed. As a result, only the three translational degrees of freedom remain in each

limb, and hence, the workspace region of point 𝑀𝑖 is simply a parallelepiped, whose edges

are parallel to 𝒜𝑖, ℛ𝑖 and ℬ𝑖, respectively, the length of the edges equal to the stroke of the

corresponding three C joints in the 𝑖th limb.

5.5.2 Case Study

Next, the fixed orientation workspace is analyzed for the robot with the same set of design

parameters as those of the forward-displacement problem. We assume that all the three C

joints in each limb find themselves at the middle of their strokes at the reference posture,

and the strokes of the first two C joints in each limb are specified as

𝑑𝑖𝑎𝑚𝑖𝑛
= 0.5ℓ, 𝑑𝑖𝑎𝑚𝑎𝑥 = 0.9ℓ, 𝑟𝑚𝑖𝑛 = 0.5ℓ, 𝑟𝑚𝑎𝑥 = 0.93ℓ (5.122)

where 𝑑𝑖𝑎𝑚𝑖𝑛
and 𝑑𝑖𝑎𝑚𝑎𝑥 represent the minimum and maximum distances from 𝐿𝑖 to the

corresponding frame plane (𝑌 -𝑂-𝑍,𝑍-𝑂-𝑋,𝑋-𝑂-𝑌 , for 𝑖 = 1, 2, 3), respectively, 𝑟𝑚𝑖𝑛 and

𝑟𝑚𝑎𝑥 represent the minimum and maximum length of the intermediate limbs, while the stroke

of the distal C joint is prescribed to be roughly 0.8 times the length of the edge of the MP,

namely, 0.45ℓ. This layout, although slightly increasing the footprint, as shown in Fig. 5.11,

avoids interference near the origin among the C-Drives. The workspace under several different

orientations is plotted in Figs. 5.11, yielding volume values of 0.049ℓ3, 0.024ℓ3, 0.024ℓ3 and

0.010ℓ3, respectively. The workspace shapes for Figs. 5.11(b) and 5.11(c) are the same,

except that their orientations are different, which should be expected, due to symmetry. The

workspace volume is generally large; for example, if we regard the above volume values with

those of cubes, the length of the edge will be 0.366ℓ, 0.288ℓ, 0.288ℓ, 0.218ℓ. It is noteworthy

that the design parameters used above are arbitrarily chosen; better results can be achieved

if we conduct an optimization of the workspace volume.
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(a) (b) (c)

(d)

Figure 5.11: The workspace of the 3-CCC PKM (a) under the reference orientation (b) with the
orientation e = [1, 0, 0]𝑇 and 𝜑 = 15∘ (c) e = [0, 0, 1]𝑇 and 𝜑 = 15∘ (d) e = [1/

√
3, 1/

√
3, 1/

√
3]𝑇

and 𝜑 = 15∘

5.6 Forward-Displacement, Singularity and Workspace

Analyses—A Discussion

According to the forward-displacement, singularity and workspace analyses of the 3-CCC

PKM, it is found that this class of PKM bears various interesting features: The forward-

displacement analysis reveals that the rotation and translation degrees of freedom of the

MP are decoupled not only at the velocity level but also at the displacement level, which

significantly simplifies its analysis and control. The subproblems of rotation and translation

are studied separately, both yielding a simple formulation that lead to minimal polynomials.

A quartic resolvent polynomial is derived, which can be solved in closed form, and hence, all

the solutions can be obtained precisely and simultaneously without resorting to an iterative

method, which might converge to other branches of solutions, and even diverge. This feature

is very rare for six-dof PKMs, probably the first time that is found in a six-dof PKM to the

best of the author’s knowledge, which is quite advantageous in control, especially when the

robot operates near a singular configuration, where an iterative approach is likely to fail.
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Singularity is shown to be dependent only on the orientation of the MP; it is possible to

reduce the dimension of the singularity surface from five (for a six-dof PKM) to two, thereby

greatly simplifying its singularity analysis and detection; moreover, the singularity loci are

represented and visualized in terms of the Euler-Rodrigues parameters in the orientation

workspace, which shows that the proposed robot will not encounter a singularity until it is

rotated through a minimum of ±83.2∘ about any axes, for the given parameters, which hardly

happens without encountering link interference or joint limits. The singularity problem is

thus not severe for the robot under study, which is quite advantageous. Finally, workspace

analysis indicates that the robot has a reasonably large workspace volume with a more regular

shape when compared with that of the Stewart-Gough Platform. These features indicate that

the robot has great potential in highly demanding applications, such as those requiring high

speed, high frequency or high amplitude.

We have completed the last topic of this dissertation, namely, the design and analyses of

the 3-CCC PKM class.
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Chapter 6

CLOSING REMARKS ANDRECOMMENDATIONS FOR

FUTURE RESEARCH

6.1 Conclusions

PKMs with all the motors mounted on the base are quite advantageous, greatly reduc-

ing the inertia load of the system, capable of providing large accelerations, yielding better

load-carrying capacity and a better dynamic response than the state of the art. These

features make them quite suitable for shaking operations, which can be used, e.g., for inertia-

parameter identification. With the growing demand for high-speed and high-precision oper-

ations, the accurate information of the inertia properties of a rigid body is becoming more

and more important, which can be used in many applications such as model-based control.

Moreover, small-amplitude high-frequency shaking operations about all six directions of the

specimen motion are quite advantageous due to their capacity of providing sufficient exci-

tation and generating data over a broad frequency range, which are essential for increasing

the accuracy of the identification. In this vein, two classes of three-limb six-dof PKMs are

proposed, bearing some common features, e.g., they both have a three-limb architecture,

yielding less interference and larger workspace; all their motors are on the base, thus quite

suitable for the shaking operations.

This dissertation covers three topics: Firstly, the kinematics, singularity and workspace

analyses of the 3-CPS PKM, dubbed the SDelta robot, is investigated. SDelta features a

symmetric structure; its forward-displacement analysis leading to a system of three quadratic

equations in three unknowns, which admits up to eight solutions, or half the number of those

admitted by the SGP. The kinematic analysis, undertaken with a geometrical method based

on screw theory, leads to two Jacobian matrices, whose singularity conditions are investigated.
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Instead of using the determinant of a 6 × 6 matrix, we derive one simple expression that

characterizes the singularity condition. This approach is also applicable to a large number

of parallel robots whose six actuated-wrench axes intersect pairwise, such as the SGP and

three-limb parallel robots whose limbs include, each, a passive spherical joint. Next, the

workspace is analyzed via a geometric method. Furthermore, the six actuated wrenches bear

a special form, i.e., they intersect pairwise. Based on this feature, we find the inverse of

the robot forward Jacobian matrix symbolically, which is quite useful in singularity analysis,

design for isotropy and optimal control. Finally, we formulate an optimization problem of the

robot, based on its condition number, for maximum dexterity. Drawing from the optimization

results, we offer some guidelines on choosing the optimum design parameters. It is shown

that the SDelta can achieve a local minimum condition number close to unity. The above

results indicate that the given robot has the potential to offer both large workspace and good

dexterity with a proper choice of design variables.

The second topic is the design for isotropy of a large class of six-dof parallel-kinematics

machines whose six actuated-wrench axes intersect pairwise; this feature covers a large num-

ber of PKMs. It is found that the inverse derived for the SDelta applies to this large class of

PKMs, which has a significant theoretical value, quite useful in singularity analysis, design

for isotropy and optimization. We have included a chapter to elaborate on its application

in the optimum design of this large class of PKMs. Based on this expression, we analyzed

their isotropy condition, where the location of the operation point can be chosen freely. It is

shown that isotropy can be achieved only when the MP bears an equilateral triangle shape;

however, the operation point need not be the centroid of this triangle. Moreover, for a MP

with an acute-triangular shape, there can exist configurations that we call quasi isotropic,

under which the condition number is close to unity, while the six rows of the Jacobian matrix

are orthogonal; hence, the performance under such configurations is close to isotropy. This

greatly increases the range of choices of the shape of the MP and the location of the operation

point, which is required, e.g., when a tool is attached to the MP triangle.

The last topic is the kinematics, singularity, workspace analyses and the optimization for

the second architecture, the 3-CCC PKM. It is found that, upon proper embodiment and
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dimensioning, the 3-CCC PKM, with all actuators mounted on the base, exhibit interesting

features, not found elsewhere. One is the existence of an isotropy locus, as opposed to isolated

isotropy points in the workspace, thereby guaranteeing the accuracy and the homogeneity

of the motion of the MP along the six directions of the motion space within a significantly

large region of their workspace. The conditions leading to such a locus are discussed in

depth; several typical isotropic designs are brought to the limelight. Moreover, the forward-

displacement analysis reveals that the rotation and translation degrees of freedom of the MP

are decoupled not only at the velocity level but also at the displacement level, significantly

simplifying the analysis and control of this class of PKMs. Furthermore, the associated

forward-displacement problem is formulated in such a way that it can be solved in closed

form, which feature is rare in six-dof PKMs; hence, all the solutions can be obtained precisely

and simultaneously, quite advantageous in simulation and control. Singularity is shown to be

dependent only on the orientation of the MP, greatly simplifying its singularity analysis and

detection. It is shown that the proposed robot will not encounter a singularity until the MP

is rotated through a large angle. Finally, the proposed robot has a large workspace volume

with a more regular shape when compared with the Stewart-Gough Platform.

The special features of the proposed architectures, especially the second, make them not

only quite suitable for high-speed operations and the major application we target—shaking

operations for inertia-parameter identification—but also in many other applications such as

motion simulation, micro-manipulation, machining, and robotics-assisted surgery.

6.2 Recommendations for Future Research

Finally, some research directions are recommended for future work:

∙ For the design of the SDelta, alternative layouts of the three C-Drives can be explored,

such as those with three vertical axes, three intersecting orthogonal axes or three skew

orthogonal axes. As found during the analysis and optimization of the SDelta, there is a

compromise to be made in the choice of the distance from the centroid of the MP to the

BP plane between the requirement of high dexterity and large positioning workspace in

the current design of the SDelta, though the dexterity is generally reasonably low. These
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alternative layouts have the potential to provide a larger singularity-free orientation (and

position) workspace together with a good dexterity.

∙ For the 3-CCC PKM, even though its workspace is already large, it can be further extended

if we change the physical realization of the intermediate limbs. Currently, the three limbs

are composed of three bars, which limits the stroke of the intermediate links. Other real-

izations of the limbs could be explored; for example, the links used by the Agile Eye [106]

could be used here, upon replacing the R joints with C joints. This should increase the

workspace volume of the proposed robot significantly. The same idea can be used for

increasing the workspace volume of the SDelta, as well.

∙ This dissertation focuses on the kinematics of the robots under study. However, for the

inertia-parameter identification task, the dynamics analysis of the proposed PKMs is also

required; control algorithms must also be developed.

∙ According to the optimization results of the SDelta and the 3-CCC PKM, both allow

infinitely many choices of the design parameters, thus leaving ample room for the opti-

mization of other indices. Optimization should be conducted to maximize the dynamic

performance of the PKMs, e.g., in terms of stiffness and frequency response.

∙ Due to the special features of the proposed structures, especially the second, they are

promising in many other applications. These potential applications should be explored.
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APPENDICES

A.1 The Three-Cosine Theorem

The three-cosine theorem—needed for deriving Eq. (4.26)—is recalled below for quick

reference. Let us assume that a line ℒ and a plane Π intersect at point 𝑂, as shown in

Fig. A.1; moreover, the orthogonal projection of ℒ onto Π is ℒ′, while ℳ is an arbitrary line

in Π that passes through 𝑂. Finally, the angle between ℒ′ and ℳ is denoted 𝛼1, while the

angle between ℒ and ℒ′ and that between ℒ and ℳ are denoted 𝛼2 and 𝛼3, respectively.

Then, the three-cosine theorem states that these three angles obey the relation

cos𝛼3 = cos𝛼1 cos𝛼2 (A.1)

O

A

A′

B

Π

L

L′

M

α1

α2

α3

Figure A.1: The illustration of the three-cosine theorem

A.2 The Coefficients of the Resultant Polynomial for the

Forward-Kinematics of the 3-CCC PKM

The derivation of the coefficients of Eq. (5.90) is provided below. Firstly, we notice that

Eq. (5.90) is obtained upon dividing both sides of Eq. (5.89) by sin𝛼4
1; moreover, all the
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factors of Eq. (5.89)—{𝐻𝑖}20, 𝑁 and 𝐷—are homogeneous in 𝛼1. Hence, if we introduce the

substitution

sin𝛼1 = 1, cos𝛼1 = 𝜌 (A.2)

in Eqs. (5.82) and (5.84), and revise the expressions for {𝐺𝑖}20, {𝐻𝑖}20, 𝑁 and 𝐷 accordingly,

then Eq. (5.89) naturally becomes a quartic equation in 𝜌, which is the same as Eq. (5.90)

using the procedure described in subsection 5.3.1. Hence, we adopt this substitution to

simplify the derivation.

Firstly, the coefficients given in Eqs. (5.82) and (5.84) are rewritten as

𝐸𝑠2 = 𝜖1, 𝐸𝑐2 = 𝜖2, 𝐸𝑠1 = 𝜖3, 𝐸𝑐1 = 𝜖4, 𝐸0 = 𝜖5𝜌
2 + 𝜖6, 𝐹1 = 𝜙1, 𝐹0 = 𝜙2𝜌+ 𝜙3 (A.3)

Then, {𝐺𝑖}20 and {𝐻𝑖}20 can be obtained as

𝐺2 = 𝜖2 − 𝜖1 ≡ 𝜆1, 𝐺1 = 𝜙1𝜖3 + 𝜖4 ≡ 𝜆2

𝐺0 = (𝜖1 + 𝜖5) 𝜌
2 + 𝜙2𝜖3𝜌+ 𝜙3𝜖3 + 𝜖1 + 𝜖6 ≡ 𝜆3𝜌

2 + 𝜆4𝜌+ 𝜆5

𝐻2 = 𝜙2
1 + 1 ≡ 𝜇1, 𝐻1 = 2𝜙1𝜙2𝜌+ 2𝜙1𝜙3 ≡ 𝜇2𝜌+ 𝜇3

𝐻0 =
(︀
𝜙2
2 − 1

)︀
𝜌2 + 2𝜙2𝜙3𝜌+ 𝜙2

3 − 1 ≡ 𝜇4𝜌
2 + 𝜇5𝜌+ 𝜇6

(A.4)

while 𝑁 and 𝐷 can be derived as

𝑁 = (𝜆1𝜇4 − 𝜆3𝜇1) 𝜌
2 + (𝜆1𝜇5 − 𝜆4𝜇1) 𝜌− 𝜆5𝜇1 + 𝜆1𝜇6 ≡ 𝜈2𝜌

2 + 𝜈1𝜌+ 𝜈0

𝐷 = −𝜆1𝜇2𝜌+ 𝜆2𝜇1 − 𝜆1𝜇3 ≡ 𝜎1𝜌+ 𝜎0

(A.5)

where {𝜆𝑖}51, {𝜇𝑖}61, {𝜈𝑖}20 and {𝜎𝑖}10 are intermediate results introduced to reduce computa-

tional cost. Finally, the coefficients of Eq. (5.90) can be derived as

𝜁4 = 𝜇2𝜈2𝜎1 + 𝜇1𝜈
2
2 + 𝜇4𝜎

2
1, 𝜁3 = 𝜇2𝜈1𝜎1 + 𝜇3𝜈2𝜎1 + 𝜇2𝜈2𝜎0 + 2𝜇1𝜈1𝜈2 + 𝜇5𝜎

2
1 + 2𝜇4𝜎0𝜎1

𝜁2 = 𝜇2𝜈1𝜎0 + 𝜇3𝜈1𝜎1 + 𝜇3𝜈2𝜎0 + 𝜇2𝜈0𝜎1 + 𝜇1𝜈
2
1 + 2𝜇1𝜈0𝜈2 + 𝜇4𝜎

2
0 + 𝜇6𝜎

2
1 + 2𝜇5𝜎0𝜎1

𝜁1 = 𝜇2𝜈0𝜎0 + 𝜇3𝜈1𝜎0 + 𝜇3𝜈0𝜎1 + 2𝜇1𝜈0𝜈1 + 𝜇5𝜎
2
0 + 2𝜇6𝜎1𝜎0, 𝜁0 = 𝜇3𝜈0𝜎0 + 𝜇1𝜈

2
0 + 𝜇6𝜎

2
0

(A.6)
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