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ABSTRACT

Parallel-kinematics machines (PKMs) have been studied extensively because of their sig-
nificantly higher performance in terms of accuracy, rigidity and load-carrying capacity over
serial robots. However, they suffer from limited workspace, multiple singularities and cou-
pled motion, which makes their design and analysis especially challenging. These issues have
motivated extensive research on PKMs. In this dissertation, two novel classes of six-degree-
of-freedom (dof) PKMs are proposed, namely, the 3-CPS and 3-CCC topologies. Their
kinematics, singularity and workspace analyses, together with their optimum design, were
conducted. Both classes of PKMs bear some common features. In particular, they both
have three limbs, which yields less interference and larger workspace, when compared with
the six-limb Stewart-Gough class. Moreover, all motors are mounted on the base, greatly
reducing the inertia load of the system, while providing higher load-carrying capacity and
better dynamics performance, which makes them quite suitable for high-speed operations.
Furthermore, the two classes bear their own features, as discussed in detail herein.

The dissertation spans three topics. The first pertains to the kinematics, singularity and
workspace analyses plus optimum design of the 3-CPS PKM, dubbed the SDelta—for siz-dof
Delta robot. Tt is shown that the given robot offers a large workspace with a proper choice
of design variables. Moreover, we developed a novel method for its singularity analysis,
which is applicable to a large number of parallel robots. Next, the SDelta optimum design
for maximum dexterity is conducted. The axes of its six actuated wrenches intersecting
pairwise, an expression for the inverse of the 6 x 6 robot forward Jacobian matrix (FJM)
is found symbolically. Based on this expression, we formulate an optimization problem of
the robot geometry for maximum dexterity. It is shown that the SDelta can achieve a local
minimum condition number close to unity.

The second topic is the design for isotropy of a large class of six-dof PKMs whose six



actuated wrenches intersect pairwise, thus covering numerous instances such as three-limb
six-dof PKMs with one passive spherical joint in each limb, including the SDelta. The inverse
of the FJM of the SDelta, derived here in symbolic form, turns out to be applicable to this
class of PKMs. This result has a significant theoretical value, quite useful in singularity
analysis, design for isotropy and optimization. In this dissertation, we elaborate on the
application of the expression for the above-mentioned inverse to the optimum design of this
class of PKMs. With this approach, we not only provide closed-form expressions for the
optimum parameters for isotropy within this class, but also propose the concept of quasi
1sotropy, under which the robot, with a suitable design, can attain postures “close” to isotropy.
This greatly increases the range of choice of the shape of the moving platform (MP) and the
location of the operation point, while maintaining high dexterity. The latter is required, e.g.,
when a gripper or another tool is attached to the MP triangle.

The last topic is the analysis and optimum design of the 3-CCC PKM class. Firstly, its
design for isotropy is investigated, based on which we find the conditions yielding the existence
of a continuous set of isotropic postures. This feature is quite advantageous and probably
unique for six-dof PKMs. Moreover, the forward-displacement of the same class, singularity
and workspace analyses are conducted, which reveal many interesting features. For example,
the associated forward-displacement solution allows for a simple formulation, which can be
cast in closed-form; the rotation and translation motions of the MP are decoupled, the PKM
singularity condition being determined solely by the MP orientation, and occurring only
under large-amplitude rotations. Besides, this class bears a large workspace volume.

Due to the low inertia load of the proposed designs, they are capable of providing
large accelerations, making them quite suitable for high-speed operations. This feature also
makes them suitable for generating shaking operations (i.e., small-amplitude, high-frequency
motions)—a major application we target, where large accelerations are needed. This op-
eration can be used, for example, for inertia-parameter identification. Besides, the special
features of the proposed architectures, especially the second, make them suitable for many
other applications such as motion simulators, parallel manipulators, micro-manipulators,

machine-tools, and medical devices.
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RESUME

Les robots paralléles ont fait I'objet de nombreuses études en raison de leurs excel-
lentes performances en matiére de précision, de rigidité et de capacité de charge, qui sont
supérieures a celles des robots sériels. Toutefois, la conception et ’analyse de ces robots
sont compliquées par leur espace de travail limité, leurs singularités multiples et leur cou-
plage rotation-translation, justifiant par la-méme les recherches dans ce domaine. Cette thése
présente deux robots paralléles novateurs a six degrés de liberté, de topologie 3-CPS et 3-
CCC. Leur cinématique, leur singularité, leur espace de travail et leur conception optimale
sont étudiés. Les deux topologies partagent un certain nombre de caractéristiques : chacune
a trois membres, ce qui réduit les interférences et élargit ’espace de travail, contrairement
a la topologie Stewart-Gough a six membres. En outre, tous les moteurs sont montés a la
base du robot, ce qui réduit I'inertie, augmente la capacité de charge et améliore les perfor-
mances dynamiques du systéme, le rendant particuliérement bien adapté aux opérations a
haute vitesse. Les deux topologies ont aussi leurs propres caractéristiques, exposées en détail
dans cette thése.

La thése comporte trois volets. Le premier porte sur la cinématique, la singularité, I’espace
de travail, et la conception optimale des robots paralléles & topologie 3-CPS, surnommés
le SDelta—robot Delta a six degrés de liberté. Nous démontrons que ce robot a un vaste
espace de travail lorsque ses variables sont adéquatement choisies lors de sa conception. Nous
proposons également une nouvelle méthode d’analyse de singularité applicable & un grand
nombre de robots paralléles. Nous présentons ensuite la configuration optimale du SDelta en
vue d’une dextérité maximale. Les axes des six torseurs statiques motorisés se coupant deux
a deux, nous obtenons une expression symbolique pour l'inverse de la matrice jacobienne
6 x 6 dite directe. Cette expression permet de formuler un probléme d’optimisation de la

géométrie du robot afin d’obtenir la dextérité maximale. On constate que le minimum local
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du conditionnement numérique du SDelta est voisin de 'unité.

Le deuxiéme volet est la conception axée sur l'isotropie d’un grand nombre de robots
paralléles a six degrés de liberté dont les couples mobiles se coupent deux a deux, ce qui
est le cas de nombreux robots paralléles a trois membres et six degrés de liberté qui ont
un joint sphérique passif dans chaque membre, comme le SDelta. L’inverse de la matrice
jacobienne du SDelta montre qu’elle est applicable a ce type de robot paralléle. La valeur
théorique de ce résultat est trés utile pour I'analyse des singularités, pour la conception axée
sur l'isotropie et pour 'optimisation. Nous appliquons ’expression de I'inverse dont il est
question plus haut a la conception optimale de ce type de robots paralléles. Cette approche
nous permet d’obtenir non seulement des expressions symboliques des paramétres d’isotropie
pour ce type de robots, mais aussi de proposer le concept de quasi isotropie dans lequel le
robot sous conception peut atteindre des positions «voisines »de l'isotropie. Elle élargit aussi
considérablement la gamme des configurations de la plate-forme mobile et ’emplacement du
point d’opération tout en conservant une excellente dextérité. La dextérité est effectivement
nécessaire lorsqu’une pince ou un autre outil est fixé au triangle de la plate-forme mobile.

Le dernier volet porte sur ’analyse et la conception optimale des robots paralléles de type
3-CCC. Nous débutons par la conception axée sur l'isotropie d’oit nous tirons les conditions
qui ménent & un ensemble continu de positions isotropiques, ce qui est avantageux et prob-
ablement unique dans les robots paralléles a six degrés de liberté. En outre, nous analysons
le probléme dit direct du déplacement de ces robots, leurs singularités et leur espace de
travail, ce qui donne des résultats intéressants. Ainsi, la solution relative au déplacement
direct fait appel & une formulation simple qui peut étre exprimée sous forme symbolique ;
les mouvements de rotation et de translation de la plate-forme sont découplés, la condition
de singularité des robots paralléles étant alors seulement déterminée par 'orientation de la
plate-forme et ne se produisant que dans des rotations de grande amplitude. De plus, ce type
de robot a un grand espace de travail.

En raison de la faible inertie découlant de la conception proposée, ces robots peuvent
fournir de fortes accélérations, ce qui les rend utiles dans les opérations a haute vitesse. Ils
sont également intéressants pour générer des secousses (mouvements de faible amplitude a

haute fréquence)—une application que nous visons, dans laquelle des fortes accélérations sont
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nécessaires. Cette opération peut servir, par exemple, & identifier les paramétres d’inertie
des corps solides. En outre, les architectures proposées, notamment la seconde, permettent
d’utiliser ces robots dans des appareils aussi divers que les simulateurs de mouvements, les
manipulateurs paralléles, les micro-manipulateurs, les machines outil et les appareils médi-

caux.
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CLAIMS OF ORIGINALITY

The main original contributions of this thesis are listed below:

1.

Two novel six-dof PKM classes are proposed, one with a 3-CPS, the other with a 3-
CCC topology. Both bear a three-limb architecture, yielding less interference and larger
workspace when compared with their six-limb counterparts. Moreover, all six motors
are located on the base, greatly reducing the inertia load of the system, which yields
a higher load-carrying capacity and better dynamics performance. These features make
these robots quite suitable for high-speed operations and the major application we tar-
get, shaking operations. Moreover, these PKMs bear various other special features, which
will be introduced below, making the proposed architectures, especially the second, suit-
able for many other applications such as motion simulators, parallel manipulators, micro-

manipulators, machine-tools, medical devices, etc.

. The forward-displacement, singularity and workspace analyses are conducted for the 3-

CPS PKM. Furthermore, the optimization for maximum dexterity is conducted, which
shows that it can achieve a local minimum condition number close to unity. These results
indicate that it offers both large workspace and good dexterity with a proper choice of

design variables.

. A new formulation of the singularity analysis, based on a geometric interpretation of

singularity, is proposed, which is applicable to a large class of six-dof PKMs whose six

actuated-wrench axes intersect pairwise.

The inverse of the robot forward Jacobian matrix is found symbolically for this class.
This expression has a significant theoretical value, highly useful in applications such as

singularity analysis, design for isotropy and optimization.

. The design for isotropy of the said class of PKMs is investigated. Closed-form relations

among the design parameters are provided that yield isotropy.
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6. The concept of quasi isotropy is proposed, which indicates robot postures whereby the six
columns of the forward Jacobian matrix are mutually orthogonal, even though of slightly
different Euclidean norms. The introduction of this concept greatly increases the range of
choices of the shape of the moving platform (MP) and the location of the operation point
while maintaining high dexterity, which is required, e.g., when a gripper or any other tool

is attached to the MP triangle.

7. The design for isotropy is conducted for the 3-CCC PKM, indicating that there exists a
continuous set of isotropic poses within the workspace of the 3-CCC PKM, which feature is
quite advantageous and rare, probably unique, for six-dof PKMs. The conditions yielding

this feature are studied in detail.

8. The forward-displacement, singularity and workspace analyses for the 3-CCC PKM, from

which many other interesting features of this class were found.
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NOMENCLATURE

e Forward Jacobian Matrix: the coefficient of the twist in the kinematic relation between

twist array and motor-rate array. Represented as K.

e Inverse Jacobian Matrix: the coefficient of the motor-rate array in the foregoing kine-

matic relation. Represented as J.

e Actuator Jacobian Matrix: the matrix that maps the motor-rate array into the six-

dimensional array of C-drive rates. Represented as J,,.

e Drive Jacobian Matrix: the matrix that maps each column of the actuator Jacobian

matrix into the corresponding column of the inverse Jacobian matrix. Represented as D.

e Quasi Isotropy : the property of a PKM to attain postures whereby a) its forward
and inverse Jacobian matrices attain condition numbers “slightly above” unity and b) the

columns of each of the two Jacobian matrices are mutually orthogonal.
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Chapter 1

INTRODUCTION

1.1 Motivation and Background

A parallel-kinematics machine (PKM) is defined as a multi-degree-of-freedom (multi-dof)
articulated mechanical system composed of one moving platform (MP) and one base plat-
form (BP), connected by at least two serial limbs [2]. Compared to their serial counterparts,
PKMs offer a significantly higher performance in terms of accuracy, rigidity and load-carrying
capacity, thereby leading to a wide variety of applications such as motion simulators, parallel
manipulators, haptic devices, micro-manipulators, six-axis force/torque sensors and machine-
tools [2,3]. On the other hand, PKMs suffer of drawbacks such as limited workspace, multiple
singularities, coupled motion and complex-control requirements. As a result, numerous re-

searchers are working on PKMs research and development.

Early works on six-dof PKMs are found mostly around the Stewart-Gough platform
(SGP) [4,5], whose MP and BP are connected via six limbs, as shown in Fig. 1.1. This num-
ber, however, results in severe interference, complex singularity loci and limited workspace.
Despite these shortcomings, most six-dof PKMs in industry still utilize this structure nowa-
days. Various researchers have proposed alternative structures with a lower number of limbs
and different actuation schemes. Among these, three-limb, six-dof symmetric PKMs are
probably the most promising candidates in applications where six-dof mobility, homogeneous

performance and relatively large workspaces are required |6, 7].

Numerous three-limb six-dof PKMs can be found in the literature [7-17]. However, when
the number of limbs is smaller than six, each limb has to be actuated by more than one motor;

hence, most of these designs have some motors mounted on moving links. The presence of



Figure 1.1: An example of Stewart-Gough platform (reproduced from [1])

floating motors leads to a waste of installed power!; moreover, the load-carrying capacity and
dynamic performance are compromised. Thus, PKMs with all actuators located on the base
are preferred, as they are capable of producing large accelerations, making them especially
suitable for high-speed operations and the major application we target—shaking operations,
to be introduced presently. Several designs with all the motors mounted on the base have
been proposed. For example, Sorli et al. [10] used three double-parallelogram mechanisms
to realize this goal, but this design resorted to many extra components, which led to extra
interference. Chen et al. [11] proposed a six-dof haptic device using two-dof planetary-belt
systems; these systems unavoidably introduce belt slip and flexibility, thus making them
unsuitable for high-speed or high-torque applications. One major problem with these designs
is that most of the actuation systems either are extremely complex or introduce many extra
moving parts, thereby exacerbating the link interference, while limiting the workspace. Many
other parallel robots carrying three limbs have been proposed [7,12-16], either failing to have
all actuators mounted on the base or achieving this at the expense of a complex actuation

system.

In this dissertation, two architectures are proposed, with all their motors mounted on
the base, which is realized upon introducing a simple two-dof cylindrical actuator, the C-
Drive [18]. This feature yields lower inertia load, higher load-carrying capacity and better
dynamic performance, making them suitable for high-speed and shaking operations—the ma-
jor application we target. Shaking operations, i.e., small-amplitude, high-frequency motions,

can be used, e.g., for rigid-body inertia-parameter identification. A rigid body bears 10 inertia

ncreased load for the motors mounted on the BP.



parameters, usually listed as mass, position vector of the centre of mass, and the symmetric,
positive-definite inertia tensor [19]. Alternatively, rather than the position vector of the cen-
tre of mass, the moment of mass can be considered, namely, the product of the mass times
the foregoing position vector?. With the growing demand for high-speed and high-precision
operations, the precise knowledge of the inertia properties of a rigid body is becoming more
and more important, which can be used in many applications, e.g., for high-speed operations

and model-based control, among others.

Inertia-parameter identification is based on the dynamics model: the specimen, a rigid
body, undergoes a prescribed trajectory, and the histories of the acceleration and the wrench
exerted on the specimen are recorded. If we insert these data into the dynamics model, a
system of linear equations in the inertia parameters is obtained, from which these parameters
can be estimated. While various approaches for inertia-parameter identification have been
proposed, they suffer from various drawbacks, the accuracy of their results being mediocre;

a comprehensive comparison is available in the literature [19].

A key issue for the identification process is the type of motion the specimen undergoes.
Even though numerous attempts have been made in the identification in the time domain—
mostly based on large-amplitude motion, the identification results are usually unsatisfactory.
Indeed, the excitation frequency range for such a motion is narrow, which renders the test
incapable of providing sufficient excitation to all the six dof of the specimen motion. On the
other hand, small-amplitude, high-frequency (shaking) operations about all six directions of
the motion space is advantageous due to their capacity of providing sufficient excitation to
the specimen along all six directions. This increases the signal-to-noise ratio. Moreover,
these operations generate data over a broad frequency range. These features are essential for
increasing the accuracy of the identification process. Approaches based on small-amplitude
vibrations can be found in the literature, see, e.g., [20-23]. However, due to the limitation
of the current equipment, the frequency they can achieve is mostly low, which limits the
acceleration generated on the specimen. Hence, novel equipment that can provide small-

amplitude, high-frequency shaking operations is needed.

2As pointed out by Professor J.R. Forbes, the internal examiner



Six-dof PKMs are naturally suitable for this task due to their high load-carrying capacity,
accuracy and stiffness. Attempts of using six-dof PKMs for identification have been made
based on the Stewart-Gough Platform [22,23]. However, the complex singularity locus,
limited workspace and coupled motion impose difficulties in this process. Two architectures
are proposed in this dissertation, both with all their motors mounted on the base, greatly
reducing the inertia load of the system, thereby making them capable of providing higher
acceleration (excitation), which is essential for inertia-parameter identification. Moreover,
these PKMs have some other interesting features, especially the 3-CCC class®, which offers:
simple forward-displacement model; decoupled rotation and translation; simple singularity;
a large workspace and high dexterity, making this class more attractive for the task at hand.
These features also make the class of interest promising in some other applications, such as
motion generation, to cite just one. For example, high-frequency operations are needed in
flight simulators to emulate the disturbances brought about by turbulence with high fidelity.
Other applications can be cited, also motivated by flight simulation, e.g., high-amplitude

rotations of the MP, as needed in airplane acrobatics.

It is noteworthy that this dissertation focuses on kinematics analysis and design, dynamics
lying outside of its scope. Next, we provide a literature survey on the approaches for the

analyses and optimization related to the kinematics.

1.2 Forward Displacement Analysis

The forward displacement problem (FDP) consists in determining the pose of the MP
of a PKM given its actuated joint variables, which is essential in path-planning and feed-
back control. The FDP of PKMs involves solving a system of nonlinear equations, which is
usually quite complex, leading to a 40th-degree polynomial in the case of the most general
Stewart-Gough platform [24]. According to Merlet [3], methods of analysis mainly resort to
polynomial continuation [25], Grébner bases [26] and dialytic elimination |27, 28|. Polyno-
mial continuation is capable of providing, numerically, all the solutions of the given problem,

which can be used to solve very large systems, its main disadvantage being its high compu-

3In this dissertation, R, P, H, C , U and S denote revolute, prismatic, screw, cylindrical, universal and
spherical joints, respectively, underlined symbols denoting an actuated joint.



tational complexity. Grobner bases offer currently the fastest method to solve the forward
displacement problem in a guaranteed manner [29|, but this approach can be applied only
when the coefficients of the equations are rational. Regarding dialytic elimination, the system
of algebraic* equations is reduced to one univariate polynomial equation upon eliminating
one unknown at a time. Elimination methods allow for the study of the properties of the

solutions, even though they generally require ad hoc algebraic manipulations.

Besides the above methods, several other approaches have been proposed. Boudreau [30]
proposed a novel method based on genetic algorithms, but these are quite time consuming.
Merlet [29] proposed a new method based on interval analysis. This method is claimed to
be safer in terms of producing the correct solutions corresponding to the current assembly

mode. Some other pertinent approaches can be found in the literature [31,32].

1.3 Singularity Analysis

Singularity is one of the major issues arising in PKM analysis and design. Unlike serial
mechanisms, PKMs possess complex singularity sets® within their workspace. At singu-
lar configurations, a PKM will lose or gain degrees of freedom instantaneously, while losing
either stiffness or mobility, or encountering extreme internal forces, thereby leading to uncon-
trollable motion, poor performance and even damage of the mechanism. Due to the complex
characteristics of the singularity locus, it is quite challenging to achieve a good understanding
of the singularity set with the purpose of avoiding it. Singularity analysis has thus been a
central topic in PKM analysis for a long time. This section provides a review of the different

approaches reported for singularity analysis.

According to Merlet [3], there exist four general approaches for singularity analysis, based
on: screw theory; Grassmann geometry; differential geometry; and the rank-deficiency con-
dition of the Jacobian matrices. Hunt proposed a general framework for singularity analysis
using screw theory [33]. Kumar [34] developed a general method for kinematics and singular-
ity analysis by means of the reciprocal-twist and wrench systems. Later, a more systematic

method was proposed by Merlet [35], who used Grassmann geometry to identify singular

4i.e., mutivariate polynomials.
% Also referred to as singularity surface in the literature.



configurations, and introduced a series of simple geometric rules by which he found all the
singularity configurations known at that time. Merlet’s work [35] is a major contribution to
this subject, as it provides a powerful and systematic tool for singularity analysis. However,
although it is generally possible to identify the geometric conditions for singular configura-
tions by the rules introduced by Merlet, it may be difficult to express the geometric conditions
algebraically. These are essential for obtaining the expression for the singularity locus, as
needed for graphic-visualization and real-time control purposes. Park et al. [36] proposed a
differential-geometric method for the analysis of singularities of closed-loop chains. As for
methods based on the rank-deficiency of the Jacobian matrices, one may obtain the equations
of the singularity set by equating the determinant of the Jacobian matrices to zero, but this
approach encounters a major challenge of computational cost, since the corresponding char-
acteristic polynomials are extremely cumbersome. Numerical algorithms have been proposed

based on these observations [37,38|.

Besides the above general methods, several approaches have been proposed for the sin-
gularity analysis of a specific class of PKMs [39-43|, i.e., six-dof PKMs whose six actuated-
wrench axes intersect pairwise. This covers a large number of PKMs—see, for example, [41,
44]—and the SDelta investigated in this dissertation. The singularity condition of this class
of PKMs lends itself to a straightforward geometrical interpretation, besides a simpler for-
mulation [44-46]. Based on this interpretation, we propose a novel formulation to derive one

single, simple expression for the singularity condition, applicable to this large class of PKMs.

1.4 Workspace

Workspace is one of the most important attributes of PKMs. Since the workspace for a
six-dof PKM is embedded in a six-dimensional space that cannot be represented graphically,
one usually investigates its 3D subsets by fixing three of the six Cartesian coordinates of the
MP, such as the constant-orientation workspace, reachable workspace, dexterous workspace,
orientation workspace, etc. [3]. Merlet [3] classified the pertinent methods into geometri-

cal [47,48], discretization [13,49-51] and numerical [52-54].

Geometrical methods offer some advantages: they are usually much faster, more accurate



and simpler to implement for some applications, such as calculating the workspace volume |[3].
Their main disadvantage is that their complexity heavily depends on the structure of the
PKM and the types of constraints that need to be considered. Examples are provided by
Gosselin [55], Merlet [56] and Bonev et al. [48]|. Discretization methods have been favoured
for their simplicity and capacity of handling all the constraints [49,51]. These methods,
however, face several problems: they are quite demanding computationally; their accuracy
depends on the fineness of the grid, while their computation time grows exponentially with
the “grid resolution”; it is hard to treat cases involving voids inside the workspace. As for
numerical methods, there exist two typical principles: the first is based on the rank-deficiency
of the Jacobian matrix of the system of equations describing the constraints on the workspace
boundary [52,53|. Given that the range of motions of a R joint is finite—not so that of P
joints, if one makes abstraction of the joint physical limitations—these joints define motions of
MP points with a zero velocity component normal to the workspace boundary, an observation

on which the second principle is based [57].

Besides the above methods, some researchers have introduced several ad-hoc methods.
For example, Merlet et al. [58] proposed general algorithms based on interval analysis, which
can be applied to different structures, even though they are also computationally expensive.
Bohigas et al. [59] proposed a method using the branch-and-prune technique. Johnson et
al. [60] proposed a method that produces a set of two-dimensional cross-sections of the
workspace region with the aid of CAD software, which does not require any analytical work.
Some researchers utilized optimization algorithms to find the workspace, such as Snyman et

al. [61].

In this dissertation, a geometric approach is used for the two classes due to its accuracy,

efficiency and convenience in terms of workspace volume computation.

1.5 Performance Evaluation and Optimum Design

Different applications may impose requirements on different aspects, such as workspace
volume, dexterity, stiffness and accuracy; in order to evaluate the performance in these as-

pects, various indices have been proposed [62]. Among these, the most widely used include



dexterity, manipulability, isotropy, workspace volume, etc. A comprehensive review of per-

formance indices appeared recently [63].

Dexterity characterizes the accuracy of the robot and the homogeneity of the motion of
the MP along different directions of the six-dimensional Cartesian space [62,63]; as a result,
dexterity analysis is crucial in robot design and analysis. Dexterity can be characterized by
the condition number of the kinematic Jacobian matrix [64]|, a dimensionless scalar ranging
from 1 to infinity. The lower the condition number, the higher the dexterity. Furthermore,
when the condition number of the Jacobian matrices can achieve their minimum, i.e., unity,
the corresponding dexterity reaches its maximum, under which the robot at hand is called
isotropic. Since the six rows (columns) of the Jacobian matrices are orthogonal at isotropic
postures®, the positioning accuracy of the robot along all six directions of the Cartesian space
is a maximum [62,63,65]. When isotropy is achievable for a given PKM, the optimization
problem can be formulated in a different form, which offers an alternative and more efficient

way for the optimization.

The design for isotropy of serial robots has been discussed in the literature [65-67|. In
the case of parallel robots, two Jacobians come into play’, the isotropy conditions being
more challenging than serial robots. Examples of isotropic designs can be found in the

literature [68-71].

It was found that the SDelta does not allow an isotropic design. Hence, an optimization
for maximal dexterity is conducted based on the condition number. However, based on the
expression of the inverse of the forward Jacobian matrix, derived for the SDelta, a novel
approach is proposed for the design for isotropy (DfT) of a large class of PKMs. Lastly, it is
found that the 3-CCC PKM not only allows for isotropy, but in fact, allows for a continuous
locus of isotropy, which is quite advantageous and rare for PKMs. The conditions yielding

this feature are investigated in detail.

6This statement presupposes a normalization of the Jacobian, by means of the robot characteristic length,
so as to render all the Jacobian entries dimensionally homogeneous.

"In a PKM, in general, two Jacobian matrices occur in the kinematics model, relating the moving-platform
twist with the array of actuator rates. The one multiplying the former is termed the forward Jacobian [68],
that multiplying the latter, the inverse Jacobian.



1.6 The Organization of the Thesis

Chapter 1 includes the motivation and background of this dissertation: Firstly, an in-
troduction of PKMs is given, followed by a review of the existing three-limb six-dof PKMs,
while highlighting the advantages of designs with all the motors mounted on the base. Next,
the significance of inertia-parameter identification and the drawbacks of approaches based
on large-amplitude motion are given, from which it is apparent that shaking operations, one
major application we target, is quite advantageous for this task. Lastly, the approaches for
the kinematics, singularity and workspace analyses of PKMs, and the literature survey on
their optimum design, are provided. It is noteworthy that this dissertation only focuses on
the design and analysis based on the kinematics; the dynamics analysis and optimization are

out of the scope of this dissertation.

Chapter 2 is dedicated to the description of the architectures of the two proposed PKMs.

Their design philosophy, topology, actuation scheme and features are discussed.

Chapter 3 is devoted to the analysis and optimum design of the SDelta robot. Firstly,
its kinematics, singularity and workspace analyses are provided. Its forward-displacement
analysis leads to a system of three quadratic equations in three unknowns, which admits
up to eight solutions, or half the number of those admitted by the simplest SGP®. Next,
we developed a novel method for its singularity analysis, which is also applicable to a large
number of parallel robots. Furthermore, the workspace is analyzed via a geometric method.
Next, the optimal design of the SDelta is conducted. Due to the special structure of its
Jacobian matrix, we find the inverse of the robot forward Jacobian matrix symbolically, based
on which we formulate an optimization problem of the robot for maximum dexterity. Drawing
from the optimization results, we offer some guidelines on the choices of the optimum design
parameters. It is shown that the SDelta can achieve a local minimum condition number close
to unity. The above results indicate that the given robot has the potential to offer both large

workspace and good dexterity with a proper choice of design variables.

Chapter 4 is devoted to the design for isotropy of a large class of PKMs, i.e., six-dof

8Six limbs laid out so that their axes intersect pairwise at the BP and the MP, with different pairs of each
platform, common in flight simulators.



PKMs whose six actuated wrenches intersect pairwise, covering numerous PKMs such as
all the three-limb six-dof PKMs with one passive spherical joint in each limb, including the
SDelta. The inverse of the Jacobian matrix of the SDelta, derived in Chapter 3 turns out
to be applicable to this large class of PKMs, which is found to be highly attractive in many
applications, e.g., singularity analysis, design for isotropy and optimization. In this chapter,
the application of this symbolic expression to the optimum design of this large class of PKMs
is introduced, where we provide closed-form expressions of the geometric conditions that
yield isotropic architectures. We also propose the concept of quasi isotropy, under which
a condition number close to unity is possible, while the six rows of the Jacobian matrix
are orthogonal; hence, the performance under such configurations is close to isotropy. This
greatly increases the range of the choices of the shape of the MP and the location of the
operation point, which is required, e.g., when a gripper or another tool is attached to the

MP.

Chapter 5 is devoted to the optimum design and analysis of the 3-CCC PKM. Firstly,
its design for isotropy is investigated, based on which we find the conditions on the design
parameters leading to the existence of a continuous set of isotropic postures. This feature
is quite advantageous and rare for six-dof PKMs. Furthermore, the forward-displacement,
singularity and workspace analyses of the proposed PKM are conducted, which reveal many
interesting features. For example, the pertinent forward-displacement problem allows for a
simple formulation, which can be solved in closed-form; the rotation and translation motions
of the MP are decoupled; the singularity is determined solely by the MP orientation, and
occurring only under large-amplitude rotations. This class bears a reasonably large workspace

volume, among other features.

Chapter 6 summarizes the work of this dissertation, offers some recommendations for

future work, and concludes the thesis.
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Chapter 2

ARCHITECTURES OF THE TWO PKM CLASSES

Upon consideration of the drawbacks of the existing PKMs, summarized in the Introduc-

tion, three design principles are proposed in this dissertation:

e Three-limb, six-dof symmetric PKMs are preferred, in light of their advantages over their

six-limb counterparts, namely, lower interference and hence, larger workspace.

e Designs with base-mounted motors are required, since travelling motors significantly in-
crease the inertia load of the system, thereby affecting the load-carrying capacity and
dynamic response of the robot. This requirement can be met by means of multi-dof actu-
ators, such as cylindrical [18], planar motors [72], spherical actuators [73], among others,
with their own advantages and disadvantages in terms of stiffness, accuracy and availabil-
ity. However, actuators of this kind are not yet readily available off the shelf, as many are
still at the development phase. Here we utilize a novel cylindrical actuator that we have
been developing over the last four years in McGill University’s Robotic Mechanical Systems

Laboratory.

e Designs with fewer components are preferred, in order to reduce interference and simplify
their dynamics characteristics. Hence, multi-dof joints are preferable, such as universal (U),
cylindrical (C), and spherical (S). S joints, moreover, can be generated by an assembly of

U and R joints, which is simpler to implement while offering a larger range of motion.

Taking these considerations into account, we propose two topologies, namely, 3-CPS and

3-CCC.

11
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Figure 2.1: Architecture of the SDelta Robot  Figure 2.2: An embodiment of the C-drive

2.1 The 3-CPS Architecture

The first architecture, dubbed the SDelta Robot—for the siz-dof Delta robot!, bears a
3-CPS topology, each C joint being realized with a two-dof cylindrical actuator, dubbed the
C-Drive [18], as shown in Figs. 2.1 and 2.2. First and foremost, what distinguishes the SDelta
from other three-limb (or three-loop) parallel robots is its topology, as it is based on three
parallel actuation mechanisms, each with a RHHR topology [18], as displayed in Figs. 2.3
and 2.4. In these figures, 0 denotes the BP, while the closed subchain 0-1-2-3-0 denotes one
of the three actuation mechanisms, one on each side of the equilateral triangle of Fig. 2.3.
In these subchains, 2 is the driving link of one limb, 5 and 8 those of the two other limbs.
Moreover, 1 and 3 denote the left-hand and the right-hand screws, driven by corresponding
rotary motors. Moreover, 10, 11 and 12 denote the links of the passive C-joints making up

each limb, which are coupled to the MP (13) by means of spherical joints [75].

As stated in the Introduction, each limb has to carry two motors for a three-limb six-
dof PKM, and hence, most current designs have travelling motors, which limits the robot
performance. Here, we introduce a parallel substructure in each serial limb, i.e., the two-dof
cylindrical actuator, the C-drive [18], as shown in Fig. 2.2, to locate all the motors on the
base for the proposed PKM. As stated previously, this drive carries one single-loop closed
kinematic chain of the RHHR type; the two H joints, of identical pitches p but of opposite
hands, lead to a 2 x 2 constant, isotropic Jacobian matrix of the drive mechanism, which is

the simplest possible. The C-drive operates as a differential: when the two motors turn in

!The original, three-dof Delta Robot, was patented by R. Clavel, EPFL, Switzerland [74].
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Figure 2.3: Graph of the SDelta robot Figure 2.4: Graph of the C-drive

the same sense? at the same rate, the collar undergoes a pure rotation; when the two motors
turn in opposite senses at the same rate, the collar undergoes a pure translation. Each limb
is thus driven in both translation along a given direction and rotation about an axis parallel
to the same direction. Now, regarding the embodiment of the limb kinematic chains, in light
of manufacturability issues, we do not recommend the use of a CPS chain, which is used in
the thesis as a simple description of the topology of each of the three limbs. We recommend,

instead, its CCU equivalent, since the P joint suffers of what is known as the “sticky-drawer

effect” [76].

The SDelta Robot has the advantage that its architecture is simple, with fewer compo-
nents than other three-limb designs, which reduces the complexity of its architecture and
hence, simplifies its dynamics model and its control. This simplicity also reduces the poten-
tial interference among the limbs, thus resulting in a larger workspace. Moreover, mounting
all motors on the base reduces the inertial load on the system, thereby making it suitable for
high-speed operations, and the major application we target—shaking operations. A similar
topology, a 3-PRPS limb kinematic chain, was proposed by Behi [8], whose first two joints
form a C-joint; in this design, however, the two prismatic joints in each limb are actuated,
and hence, each limb has one floating motor, thereby increasing significantly the inertia load

of the system.

2As viewed from the same side of the drive layout.
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2.2 The 3-CCC Architecture

Next, we propose a second architecture with all the motors mounted on the base, which

bears a 3-CCC topology, as shown in Figs. 2.5 and 2.6.

fas H fay
Figure 2.5: An example of a 3-CCC PKM Figure 2.6: Graph of the 3-CCC PKM

The 3-CCC PKM consists of one BP, one MP, and three limbs, each limb consisting, in
turn, of three C joints. The axes A;, for i = 1,2, 3, of the three C joints on the base are
actuated in our case, in order to have only stationary motors; moreover, the axes B;, for
1 = 1,2, 3, of the three distal cylindrical joints are fixed to the MP; the axes of the middle
cylindrical joints, denoted R;, connect the two cylindrical joints on the BP and MP, each
limb having six degrees of freedom. Again, the three C joints on the base are actuated via

the C-Drive introduced previously, in order to fix all the motors to the base.

In the chapters that follow, the kinematics, singularity and workspace analyses, along
with the optimization of these two architectures, are reported, from which their various
special features are revealed. Furthermore, the design for isotropy of a large class of PKMs
is conducted in Chapter 4 based on the inverse of the forward Jacobian matrix, derived for

the SDelta in Chapter 3.
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Chapter 3

THE 3-CPS PKM

The work pertaining to the 3-CPS PKM is described in this chapter. Firstly, its kinematics
relations (velocity level) are derived, as needed for simulation and control. Next, its forward-
displacement, singularity and workspace analyses are conducted for two given sets of design
parameters. These analyses reveal its performance on different aspects, which are essential for
robot evaluation, simulation and control. Lastly, the optimization of the dexterity index, i.e.,
minimization of the condition number of the Jacobian matrix, is conducted. The optimization

offers guidelines on how to choose the design parameters to obtain maximum dexterity.

3.1 Kinematics

The architecture of the SDelta Robot and the C-Drive are displayed in Figs. 2.1 and
2.2, where the MP and the BP are represented by equilateral triangles, of sides a and b,
respectively, while the three vertices of the BP are labeled A;, for ¢ = 1,2,3. Moreover,
the architecture of one of its limbs is illustrated in Fig. 3.1. Let c be the position vector

! under the assumption that point O on

of the operation point C' on the moving platform
the BP is the origin of the fixed coordinate frame, t = [w?, ¢’]7 the twist of the MP,
with w denoting the angular velocity of the MP, and ¢ the velocity of C. Furthermore,
't,& = Wle ¢R17 ¢L2, &RQ, ¢L3, &Rg]T represents the array of six motor rates, three to the
right (R), three to the left (L) of point O, of the C-Drive collar in Fig. 3.1, for j = 1,2, 3.
Then we need to find the mapping between t and . It is known [47] that the array of

actuated-joint rates 1/; and the MP twist are related by two Jacobian matrices, K and J,

termed the forward and the inverse Jacobian matrices, respectively, namely,

Kt = Jo (3.1)

!Depicted in Fig. 3.1 as the centroid C of the equilateral triangle S;55S5.
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However, since each C-drive of the SDelta Robot carries two screw pairs, the derivation of

its Jacobian matrices is not as straightforward. We thus introduce a new array:
¢ = [p1, F1, P2, T2, &3, 13]" (3.2)

where q'bj and 7; represent the turning and the sliding rates of the collar of the jth C-drive,
for j =1,2,3. Now we can express Eq. (3.1) in the form

Kt =Dé, ¢=JI,9 (3.3)

with matrices K, D and J,, as yet to be displayed, the latter two referred to as the drive
Jacobian and the actuator Jacobian, respectively. Therefore, the inverse Jacobian matrix J

can be expressed as the product of the drive Jacobian and the actuator Jacobian, namely,

J=DJ,, (3.4)

Figure 3.1: Notation for the kinematic chain of Figure 3.2: Dimensions of the SDelta Robot: (a)
the jth limb of the SDelta Robot top view; (b) front view

3.1.1 The Forward Jacobian and Drive Jacobian Matrices

Firstly we introduce our notation: Vector p; is defined as that joining the spherical joint

centre S; with the operation point C, while e; and f;, for j = 1,2,3, all shown in Fig. 3.1,
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represent the unit vectors parallel to the jth C-drive axis C; and the jth-limb axis F;; g; is
defined as the unit vector along e; x f;, with e; and f; at right angles by design. Therefore,

{e;,f;,g;} is an orthonormal, right-handed triad, as illustrated in Fig. 3.1.

Matrices K and D relate the MP twist with the array of the turning and sliding rates of
the collars of the three C-drives. These Jacobian matrices can be conveniently derived based
on screw theory [77,78]. It is known that every joint in the robot bears an axis, either a
“finite” line or a line at infinity, associated with a corresponding array of Pliicker coordinates.
In this vein, let us assume that the 7th joint variable of ¢ is associated with the jth joint of
the kth limb; then, the ith row of K must be a screw reciprocal [64] to the Pliicker array
of all the axes in the kth limb, but the one associated with the jth joint. Moreover, it is
recalled that a “finite” line can be regarded as a screw of zero pitch, while a line at infinity

as an infinite-pitch screw. Furthermore,

1. Two zero-pitch screws are reciprocal when they are coplanar.
2. Two screws of infinite pitch are always reciprocal to each other.

3. A zero-pitch screw is reciprocal to an infinite-pitch screw when their directions are or-

thogonal.

From these rules, it becomes apparent that the line K;;—associated with the wrench
corresponding to the rotational degree of freedom of the jth C-drive—must pass through Sj,
with its direction vector normal to e; and f;, i.e., along g;, as shown in Fig. 3.1. Moreover,
line Kjo—associated with the wrench corresponding to the translational degree of freedom of
the jth C-drive—is found to pass through S; and is parallel to the axis of the jth C-drive C;,

as shown, again, in Fig. 3.1. Based on the above analysis, we can obtain the K matrix as

(g1 xp1)" gl
(e; xp1)T el
K — (g2 xp2)" g5 (3.5)
(ex x p2)t el
(g3 xpP3)" 83
| (e5 x p3)T e3T_
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Under this notation, g; and e; represent the unit vectors parallel to lines ;1 and Kjo,
respectively, for j = 1,2,3. We will henceforth denote K;; and Kj, as G; and &;, respectively,

T
for simplicity, as shown in Fig. 3.1, their Pliicker arrays being k;; = g;f, (g; x p;)*| and

T
kj2 = |ej, (e; x Pj)T] -

Once K is available, D is straightforward to derive, as it turns out to be a diagonal
matrix, whose ith component is the reciprocal product of the line corresponding to the ith

row of K and that associated with the joint of the ith component of ¢. D is found to bear

the form
D= diag(ll, 1, 12, 1, l3, 1) (36)

with [; representing the length of the ith limb, thereby deriving the forward and the drive
Jacobian matrices, K in Eq. (3.5) and D in Eq. (3.6).

3.1.2 The Actuator Jacobian Matrix

Let J,,, the matrix relating the array of six motor rates with the array of the turning
and sliding rates of the collars of the three C-drives, be termed the actuator Jacobian. The
Jacobian matrix J¢, of one C-drive [18], relates the speeds of the two screws with the turning

and sliding rates of the collar, namely:

Yo = Jcl.bc (3.7)
with
j 1/2 1/2 . '
Yo = ¢ ,Jo= / / , Yo = %L (3.8)
T p/Am  —p/4r Ur

where v and @bc represent the two-dimensional speed arrays of the collar and of the screws,
respectively, 1., g the angular speeds of the left- and the right-hand screws of the C-drive,
respectively, and hence, of the motors. Moreover, gb and r represent the rotational and
translational speeds of the collar of the C-drive, while p is the pitch of the screws of the three

C-drives.
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It is noteworthy that the three C-drives are identical, the above relation thus applying to
all of them. Apparently, then, J,, is a block-diagonal matrix for the three C-drives:

Jm = diag(Jc,Jc,Jc) (39)

thereby deriving relation (3.3).

3.1.3 Redefinition of the Actuator Jacobian and the Drive Jacobian

If the rates of the C-drive are redefined as 4 = [¢, 2n7/p|”, then, we can rewrite Eq. (3.7)

as
| 212 [y,
Yo =Jce, withJo = s Yo = . (3.10)
1/2-1/2 VR
In this vein, we redefine J,, as
Jm = diag(Jc,Jc,Jc) (311)

which is a constant isotropic matrix because J¢ in Eq. (3.10) is isotropic?. Correspondingly,

D is redefined as

D :dlag (ha%vl%ﬁ)l&ﬁ) (312)

21 2

in order to preserve the equality in Eq. (3.4). Finally, the J matrix becomes
J=DJ,, (3.13)

where D, as displayed in Eq. (3.12), is a diagonal matrix whose entries have all units of
length, while J,, is a 6 X 6 dimensionless block-diaongal isotropic matrix, as displayed in

Eq. (3.11).

So far we have established the kinematics relation of the SDelta at the velocity level,

2A non-singular square matrix is isotropic if it is a) dimensionally homogeneous and b) its inverse is
proportional to its transpose. For rectangular matrices, change non-singular to full rank and inverse to
generalized inverse.
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from which the relevant Jacobian matrices are available. Next, we provide its forward-

displacement, singularity and workspace analyses.

3.2 The Forward-displacement Analysis

The architecture of the SDelta Robot is shown in Figs. 2.1 and 3.1, where the MP and
the BP are represented by equilateral triangles, of sides a and b, respectively [75]. The
elimination method suggested by Nanua et al. [79] is adopted for its forward-displacement
analysis. In the foregoing paper, the authors analyzed a class of Stewart-Gough platform?
with three pairs of concurrent limbs, ending up with a 16th-degree resolvent polynomial;
in our case, the forward-displacement problem leads to a simpler model, namely, an octic
polynomial. Given that the displacement of the actuated joints (i.e., the three C-Drives)
are known, while the lengths of the limbs, [; for j = 1, 2, 3, are not yet determined, we can
regard the three C-Drives as “locked”, thereby yielding an equivalent 3-dof 3-PS PKM. The
forward-displacement analysis of a 3-PS mechanism has been investigated by Parenti-Castelli
and Innocenti [80]; in this vein, we denote denote the position vector of point S}, the centre of

the spherical joint of the jth limb, as s;, for j = 1,2, 3, the relations below readily following:

[s2 — s1]” = [|ss — s2||* = [|s1 — s3] = @ (3.14)

In the forward-displacement analysis, the sliding r; of the jth C joint and its rotation ¢; are
prescribed, the pose of the MP being unknown. The MP pose is found upon locating points
S;, which is possible when the limb lengths [; are known, their computation being outlined

below. Proceeding exactly as Nanua et al. did [79], three quadratic equations in the three

3The simplest version of the SGP, whose limbs are laid out so that their axes intersect pairwise at the BP
and the MP, with different pairs of each platform, common in flight simulators.
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limb lengths [; are derived:

l% + l% — \/g(b — 1) €08 Pala + [(cos ¢1 cos o — 2sin ¢y sin ¢a)la — V/3ry cos o1l

+r1re — bry — a® 4+ b% — 2bry + 72 413 =0 (3.15a)
15+ l§ - \/g(b — 79) oS P3l3 + [(cos pa cos p3 — 2 sin Pg sin ¢3)l3 — V/3r3 cos ¢2)la

+rorg — brg — a® + b? — 2bry + r% + r% =0 (3.15b)
13413 — V3(b — r3) cos p1l1 + [(cos ¢ cos ¢z — 2sin ¢y sin ¢3)l1 — V371 cos ¢3)l3

+rgry —bry —a® +b* — 2brg + 15 + 15 =0 (3-15¢)

The Bezout number [81] of a system of multivariable polynomial equations is defined as the
product of the degrees of the individual equations, which is the number of roots admitted by
the resolvent (monovariate) polynomial* of the system. In our case, this number is 23 = 8,
half the number of the solutions of the forward-displacement problem admitted by the (six-
limb) simplest SGP with triangular BP and MP.

The said octic resolvent polynomial can be derived by dyalitic elimination [64] if all roots

are needed. For purpose of control, a numerical method (Newton-Raphson) is recommended.

3.3 Singularity Analysis

The singularities of parallel robots pertain to 1) those occurring in the serial Jacobian
matrices J; of any of the limbs and 2) those occurring in matrices K and D. The latter are

known as type-I (for K) and type-II for (D) singularities [47].

3.3.1 Singularities of the Serial Jacobian Matrices

The limb singularity occurs when the Pliicker array of the axes of the six joints of the jth
limb become linearly dependent, under which the PKM encounters a loss of mobility. Since
each limb of the SDelta Robot has a decoupled architecture—i.e., a spherical joint coupling

the MP with each limb—the singularity analysis of its Jacobian matrices is straightforward.

4This is the monovariate polynomial equation obtained after eliminating all but one of the unknowns from
the given system.
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The pertinent singularities can be classified into wrist and shoulder singularities: Wrist
singularities occur when the three wrist axes become coplanar [64]. This means that the axes
of the three concurrent revolute joints are coplanar. Furthermore, the shoulder singularity,
according to screw theory, hanppens only when a) a wrist singularity does not occur, and
b) there exists one line £; passing through S; that intersects the C-Drive axis C;, and is
normal to e; and f;. This can only happen when the length of the jth limb is zero, which is
physically impossible for the SDelta architecture. Hence, the shoulder singularity does not

occur for this architecture.

3.3.2 Type-1 Singularity

Since D is a diagonal matrix, it becomes singular when any of its diagonal entries vanishes.
From Eq. (3.12) it can be readily seen that this happens when the length of one of the limbs
is zero, which is, again, physically impossible in general. This condition is the same as that

for the shoulder singularity of serial Jacobian matrices, and hence, excluded.

3.3.3 Type-II Singularity

This occurs when K becomes singular, and the robot gains extra mobility. The singu-
larity of three-limb PKMs with one passive S joint at each limb end has been investigated
extensively, based on: screw theory [39]; passive joint velocities [40]; instability analysis [41];
the pure condition [42]; and the characteristic tetrahedron [43]. An approach proposed for
the 6-3 Stewart-Gough platform can also be applied to this class of PKMs [82]. Moreover,
the singularity of a more general class of PKMs, namely, three-limb PKMs whose limbs,
each, includes a passive S joint somewhere, has also been investigated based on passive joint
velocities [45] and Grassmann-Cayley algebra [44,46]. It has been shown that the singularity
of this class of robots yields a straightforward geometrical interpretation, namely, the four
planes—three planes composed of the three pairs of intersecting wrench axes plus the plane
of the MP triangle—share at least one common point [44-46]. Starting from this geometric
condition, we propose a simple formulation for the singularity condition without involving

any determinant calculation [40-43,45] or passive joint velocities [40, 45].

We have obtained K as shown in Eq. (3.5), whose six rows can be regarded as the Pliicker
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coordinates 64| of six actuated-wrench axes, intersecting pairwise at the centre of the three
spherical joints. Hence, K becomes singular when the four planes—three planes composed
of the three pairs of intersecting actuated-wrench axes together with the plane of the MP
triangle—share at least one common point [41-46]. We denote the plane defined by the
intersecting lines &;, G, as II;, its normal as nj, for j = 1,2, 3. It is noteworthy that n; = f;
for the SDelta Robot, but this does not hold for a general six-dof PKM whose actuated-
wrench axes intersect pairwise, hence, we use n; for generality. Moreover, we denote the
MP plane as I, its normal as ny. Next we conduct the singularity analysis based on this

geometrical interpretation.

First, denote the intersecting line between 11, and Il as £;, for j = 1, 2, 3; it is noteworthy
that £; passes through S;, and lies in the common plane Il;; the foregoing geometrical
condition is then equivalent to requiring that the three lines £;, for j = 1,2, 3, share common
points. In this way, we can reduce the analysis to the plane II4. Furthermore, let us denote
the intersecting point of £, with L5 and with L3 as Ry and Rj3, respectively; then, the

condition leads to requiring that the position vectors of Ry and R3 be identical.

Let 1; denote a vector parallel to £;; then, L; must be normal to both n; and n,. We do

not require 1; to be of unit norm here, and hence, we can assign
li=n;xng, j=1,2,3 (3.16)
Furthermore, upon defining the position vector of the common point as &, we have
§=ml —p1 =mlh —p2=mnpl3 — p3 (3.17)

where 7;, 7 = 1,2, 3, are as yet to be determined. From the above relations, we have

mh —nlo = p1 — po (3.18a)

mh —nsls = p1 — ps (3.18b)

Next we cross-multiply both sides of Eq. (3.18a) with 1y, those of Eq. (3.18b) with 13, which
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leads to

mh X1 = (p1 — p2) X L (3.19a)

ml x 13 = (p1 — p3) x 13 (3.19Db)

It can be seen that both sides of Eqgs. (3.19a) and (3.19b) are parallel to the z-axis of the
MP frame. Next, upon dot-multiplying the LHS of Eq. (3.19a) with the RHS of Eq. (3.19b),
then equating this product with that of the corresponding sides of Eqs. (3.19a) and (3.19b),

we obtain

(L x L) - [(p1 — p3) x I3] = (L X I3) - [(P1 — P2) X Lo (3.20)

where the common factor 7; has been eliminated. Moreover, plugging Eq. (3.16) into

Eq. (3.20), after some manipulations, leads to

[(n3 —n3-nyny) - (p1 — p3)][(nz X n1) - ny] = [(nz — ny - nyny) - (p1 — P2)][(n3 X ny) - Ny

(3.21)

Furthermore, it is noted that n,4 is normal to p; — p;, for 4,5 = 1,2,3,7 # j; we can thus

simplify Eq. (3.21) to obtain

M3 - (p1 — P3)][(n2 X 1) - n4f = [n2 - (p1 — p2)][(n3 X 1) - Ny (3.22)

which is the singularity condition sought. It is observed that, when represented in the MP
frame, p; and ny in Eq. (3.22) become constant, which reduces the computational cost greatly.
As a result, we choose to express all the vectors in the MP frame. Then, we only need to
find nj, for j = 1,2, 3, in the MP frame. It is noteworthy that, for the SDelta robot, n; is
nothing but f;, and hence, parallel to the axis of the jth limb; moreover, its norm does not
affect the relation in Eq. (3.22). Assuming that the perpendicular foot of S; on the axis of
the jth C-drive is O;, as shown in Figs. 3.1, we can use O]—S]> to substitute n; in Eq. (3.22),

where

0,5, = (1 —e,e)A,5, = (1 - e,el) (05, — CA) (3.23)

J J
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which yields
S S
10,51 = Q71 — [es]sle; ) [els — [OA))s — Qlpluc} (3.24)
in which only Q and c are variable, with Q representing the rotation matrix of the MP, which
>
is the 3 x 3 identity matrix under the reference pose. Then we can use O;S; to substitute n;

in Eq. (3.22), for j = 1,2,3.

It can be readily verified that this equality also holds even if some of the four planes II;

are coincident, or when some of the three intersecting lines £; coincide.

3.3.4 Case Study: the Fixed-orientation Singularity Locus

Since the singularity locus of a six-dof PKM is impossible to visualize, its fixed-orientation
subset has been mostly investigated in the literature, which means that the orientation, i.e.,
the Q matrix, is fixed. Further, O]—S]> is linear in ¢, while (n; x n;) - n, is quadratic in c, for
Jj = 2,3; it then follows that Eq. (3.22) yields a cubic surface in c. A numerical example is

given below for illustration.

Apparently, the design parameters impact on the singularity distribution and the workspace.
Hence, we plot these items for two typical sets of design variables, namely, the sides of the
MP and the BP are assumed to obey the relation a/b = 0.2 for Design I and a/b = 1 for
Design TI, respectively. Furthermore, we define the reference pose of the MP as that under
which the operation point C' coincides with O in the BP, while the MP orientation is as
shown in Fig. 3.2, with the BP and MP planes coincident.

Several typical orientations are selected, under which the singularity loci are plotted as
the surfaces shown in Figs. 3.3 to 3.5, with the open and closed surfaces representing the
singularity locus and the corresponding workspace boundary, respectively. In these figures,
the orientation is given by the numerical values of the vector q and angle 6 of the rotation

matrix Q that carries the BP from its reference to its current attitude.

It is observed that, when the MP rotates about the Z-axis, the singularity is characterized
by three vertical planes, which can be analyzed by means of Grassmann geometry: at the

reference orientation, the three wrench axes &;, for i = 1,2,3, corresponding to the three
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Figure 3.3: The workspace and singularity loci of the SDelta at the reference orientation (a) Design
I (b) Design II

C-Drive axes, lie all in a horizontal plane. Then, when the middle link of the ith limb is
vertical, the wrench line corresponding to g; lies also in the same horizontal plane, these
four lines becoming a linear variety [35] of rank 3, which leads to a singular configuration.
Hence, the three planes can be found when the MP translates to a configuration in which .S;
lies in the vertical plane that passes through the ith C-Drive axis. Furthermore, when the
MP undergoes a rotation about the Z-axis, the three lines &; are still in the same horizontal
plane, which again, leads to three vertical singularity planes; this is simple to characterize.
However, when the MP rotates about some other axes, the singularity surface has, generally,

a complex shape.

Figure 3.4: The workspace and singularity loci of the SDelta with the orientation q = [0,0,1]7
and 6 = 15° (a) Design I (b) Design 1T
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Figure 3.5: The workspace and singularity loci of the SDelta with the orientation q = [0, 1,0]”
and 6 = 15° (a) Design I (b) Design 1T

3.4 Workspace Analysis

In this section we investigate the fixed-orientation position workspace to have a general
idea of the workspace volume. We consider only the limits of the active and passive joints

first, then verify whether singularities exist within the workspace thus obtained.

3.4.1 The Geometrical Method for Workspace Quantification

We developed a geometrical method capable of obtaining the three-dimensional posi-
tion workspace systematically, targeting its graphical display and workspace-volume evalu-
ation with computer-algebra software, which lends itself also to workspace optimization via
mathematical programming. The basic principle of the construction of the fixed-orientation
workspace follows: We find the feasible workspace of the MP under the constraint of only
the ith limb (i.e., we assume that the two other limbs are disconnected and regard the robot
as a serial chain), denoted as W;; then, the workspace of interest will be the intersection of

{W;}3. Next, we explain the procedure for finding W;.

Since the orientation of the MP is fixed for the fixed-orientation workspace, the centre
of the spherical joint S; undergoes the same motion as the operation point C. Hence, we
firstly find the “position workspace” of S;,—denoted Ws;. Considering the stroke of the C-
drive, denoted r,, the upper and lower bounds of the limb length, denoted l,,;, and l,,,4., the
position of §; is found to lie within the region between two co-axial cylinders of radii l,,;,

and l,,qz, respectively, whose height is the stroke r,, as shown in Fig. 3.6(a).
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Figure 3.6: Illustration of the workspace formulation based on the geometric method

Furthermore, we consider the constraint of the S joint, which we assume to be realized
by a ball-and-socket joint, whose working-angle range can be modelled as a cone [3], its
maximum denoted d,,,.. Apparently, the translation of the MP along the direction e; of
the axis of the C-drive, or along the direction f; of the ith limb, will not change the relative
orientation of the two links connected by the spherical joint; only the translation of the MP
in the direction of g; will change the foregoing relative orientation, which corresponds to the
rotation of the C-drive. Hence, the motion of the S joint has a limit only on the feasible range
of the angle of rotation of the C-drive; this limit remains constant when .S; translates in the
direction of e; or f;. This means that, when we further consider the limits of the S joint,
we will no longer have a cylindrical shape, but a pie slice, as shown, again, in Fig. 3.6(a),
whose angular range can be derived from the projection of the cone onto the plane normal
to e;. Until now, we have found W,;; it is a simple matter to translate this region by p;
to find W;, the feasible region of the operation point under the constraint of the ¢th limb,
as shown in Fig. 3.6(b). Once all the three regions {W;}} are available, their intersection
yields the fixed-orientation workspace sought. Researchers usually discretize one of the three
coordinates, e.g., the Z-coordinate, then find the workspace shape on different layers. With
the aid of computer-algebra, this kind of intersection operation of geometrical objects can be
handled directly; the software in use also provides the workspace volume and the visulization

of its boundary.
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3.4.2 Case Study

The fixed-orientation worksapce is provided for the robot, again, with two sets of design

parameters:

a = 0.2, Lin = 0.45b, lpee = 0.85b, and @ = b, Lyin = 0.6b, lyee = 1.13b (3.25)

where l,,;, and [, represent the minimum and maximum lengths of each limb; It is notewor-
thy that we choose different [,,;, and [,,,, values in order to keep the height of the MP similar
at the reference pose for the two sets of different design parameters. Moreover, we assume
the maximum angle attained by the S joint to be §,,,, = 45°; then, the workspace under the
reference orientation is plotted in Fig. 3.7 for each case, yielding volume values of 0.0490* and
0.067b%, respectively. The workspace is also evaluated under several other orientations, as
shown in Figs. 3.8 and 3.9, with the volumes 0.0450%,0.007b%, 0.047b%, 0.04202, respectively.
It is, however, noteworthy that the singularity surface sometimes crosses the workspace for
the given set of design parameters and selected orientation, as shown in Figs. 3.3 to 3.5,

similar to the case of the Stewart-Gough platform [83].

Finally, in order to reveal the effect of the ratio a/b on the workspace volume (V'), we plot
V' vs. a/b, in the range of 0.2 to 1.5, which we deem to be sufficient in general applications.
Moreover, even though we used different [,,;, and [,,,. values for Designs I and II, in order
to make the height of the MP similar at the reference pose, we fix them here in order to
reveal the effect of solely the ratio a/b; more specifically, l,,;, = 0.55b, [ = b. Then,
the workspace volumes are, again, plotted under the three different orientations, i.e., the
reference orientation, the orientation q = [0,0,1]7 with § = 15° and q = [0,1,0]7 with
0 = 15°, respectively, as shown in Fig. 3.10. Apparently, the workspace volume V' under
the reference orientation remains largely unchanged for different values of a/b; however, V'
decreases significantly when the MP is rotated about the Z-axis; when the MP is rotated
about other directions, the workspace volume can either decrease or increase. It is noteworthy
that the above workspace volume is different from those of Designs I and II, indicating that

the range of the passive limb length affects the workspace as well.

The above result indicates that, when the range of the passive limb length is fixed, the
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Figure 3.7: The workspace of the SDelta under the reference orientation (a) Design I (b) Design
IT

Z VA

Figure 3.8: The workspace of the SDelta with the orientation q = [0,0,1]” and § = 15° (a) Design
I (b) Design II

Z A

Figure 3.9: The workspace of the SDelta with the orientation q = [0,1,0]” and § = 15° (a) Design
I (b) Design II
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workspace volume generally decreases as the ratio a/b increases; however, for a larger MP,
(e.g., a = b), the robot allows for a larger range of the passive limb length®, which can end

up with a bigger workspace volume.
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Figure 3.10: The workspace volume w.r.t. the ratio of a/b, under different orientations

3.5 Singularity and Workspace Analyses—A Discussion

From the above figures, for which two sets of arbitrarily chosen design parameters are
used, it is apparent that singularity locus and workspace are greatly affected by the ratio
a/b and the range of the limb length. Interestingly, when the MP finds itself at the reference
orientaion, the singularity locus is the union of three vertical planes, each corresponding to
a set of postures under which one of the three points S; lies in the vertical plane passing
through the axis of the jth C-Drive, for j = 1,2,3. As a result, |a — b/2| must be as large
as possible, in order to make the distance from S; to the vertical plane passing through the
axis of the jth C-Drive as large as possible, the singularity surface becoming farther from
the desired workspace region. Furthermore, when the MP rotates about the Z-axis, the
singularity surface is still the union of three vertical planes. As the MP rotates about an axis
other than the Z-axis, the singularity surfaces generally show the tendency to both rotate

about this axis, and deform in such a way that their shapes become more complex®.

As for the workspace volume, it is greatly affected not only by the ratio a/b but also
by the range of the limb length: the workspace volume increases as the stroke of each limb
increases; moreover, as the average of [,,;,, and [,,,, increases, the “centre” of the workspace

region lies higher and the workspace volume generally becomes larger.

°In Designs I and II, we assume that lyay ~ 2l and lLees = (Lnax + lmin)/2, where I,y represents the
limb length at the reference pose; moreover, the reference height of the MP was kept similar in Designs I and
II to make a reasonable comparison, which ends up with different l,,,;,, and [, values.

6The complexity of a surface can be quantified in terms of the curvature distribution [84].
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(a)
Figure 3.11: Alternative layouts of the three C-drives

The singularity locus sometimes crosses the workspace, which is undesirable; we believe
that this is due to the three C-Drive axes becoming coplanar, which yields the three singu-
larity planes at the reference orientation. As a result, other layouts of the three C-Drives
may be explored, such as those with three vertical axes, three intersecting orthogonal axes or
three skew orthogonal axes, as shown in Figs. 3.11. These alternatives have the potential to
provide a larger singularity-free workspace. For example, for the layout with three vertical
axes, it allows for a larger stroke of the three intermediate P joints for the same footprint”;
moreover, the workspace can be extended along the vertical axis as long as we increase the
C-drive lengths. These features yield a larger workspace, although this platform is mostly
suitable for small workpieces, due to the possible interference among the three guideways

and a large workpiece.

So far we have completed the forward-displacement, singularity and workspace analyses
of the SDelta, which are essential in the robot evaluation, simulation and control. Next, its
optimization based on a dexterity index is provided, which offers guidelines on how to choose

the design parameters for high dexterity.

"Here “footprint” means the area the robot occupies.
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3.6 The Optimum Design of the 3-CPS PKM for Maxi-
mum Dexterity

According to one typical dictionary® definition, desterity: the ability to use your hands
skillfully. In robotics the term has been adopted to indicate the precision capability of a
robotic manipulator to execute a positioning task |64]. Two measures have been adopted:
the condition number [66] and manipulability, the absolute value of the determinant [85]
of the Jacobian matrix. These two indices are intended to measure, roughly speaking, the
distance of a robot posture, given by the joint angles, from singularity. The absolute value of
the Jacobian determinant depends on the size of the robot, and hence, favors large robots;
the former, when the Jacobian matrix has been normalized by means of a characteristic
length, is dimensionless, besides being the measure adopted within numerical analysis [86]
community for the same purpose. For these reasons, the condition number appears as a sound
measure of dexterity, and hence, we adopt it in this dissertation. The condition number x
is a dimensionless scalar ranging from 1 to infinity, which, when calculated based on the

Frobenius norm®, || - ||, represented as k, takes the form [64]

[1aeiialll i3 Z%\/tr(KKT)tr[(KKT)l], n=06 (3.26)

It is known that the lower the condition number, the higher the dexterity.

Furthermore, the reciprocal of the condition number of the Jacobian matrix is adopted
here to quantify the dexterity. Since D is diagonal, its condition number can be readily
monitored as the ratio of the largest absolute value to the smallest absolute value of its
non-zero entries, which is well bounded, since the limb extensions are designed to be always
positive. Moreover, as J,, is orthogonal, it is isotropic. Hence, we only look at matrix K
here. Given that the entries of the Jacobian matrices bear different units, we introduce a

pertinent characteristic length L [68] to resolve this dimensional inhomogeneity. To this end,

8Merriam-Webster Learner’s Dictionary.

9This norm is chosen because it yields an analytic function of the condition number, and hence, is infinitely
many times differentiable [67]. Moreover, it can be readily shown that the Frobenius norm of a matrix is
immutable to a multiplication of the matrix by an orthogonal matrix. As well, the same norm is invariant
under a change of frame.
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we redefine both the twist and matrix K in their dimensionally homogeneous forms:
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which yields K,t, = Kt, the latter appearing in Eq. (3.3). The characteristic length [64] is

defined as the value L that minimizes the condition number of K}, as yet to be determined.

Next, the optimum design of the SDelta is conducted based on the condition number of
the Jacobian matrix K. From Eq. (3.26), it is apparent that the expression for K~ is needed
when a symbolic formulation is sought. Next, the inverse of the robot forward Jacobian
matrix is found symbolically. After that, we formulate an optimization problem based on its
condition number, for maximum dexterity. Drawing from the optimization results, we offer

some guidelines on choosing the optimum design parameters.

3.6.1 Derivation of the Inverse of the Forward Jacobian Matrix

The axes of the six actuated wrenches of a large class of six-dof PKMs intersect pair-
wise, including most of the three-limb PKMs whose each limb includes a passive spherical
joint'% [39,75]. Next, we derive a symbolic expression for the inverse of the forward Jacobian
matrix for this class of PKMs, an instance being the SDelta, illustrated in Fig. 2.1. Due to
the special layout of the six actuated wrenches, the Jacobian matrix K of such robots always
bears the form of Eq. (3.5), with e; and g; representing the unit vectors associated with
the jth pair of intersecting wrench axes, for j = 1, 2, 3; unlike the case of the SDelta, these
vectors are, in general, not necessarily normal to each other. In order to make the derivation
below general, in the remainder of this subsection we redefine f;, such that f; = g; x e;, for
j = 1,2,3, which is not necessarily a unit vector; moreover, the expression of K~! below does

not require the operation point C' to be the centroid of triangle 575555 in this subsection.

10Numerous examples of such PKMs can be found in [41,44].
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As a matter of fact, C' need not even be a point of the plane of the triangle 5155S53.

We denote K—! as K, i.e., KK = 1, where 1 represents the 6 x 6 identity matrix. If the
first column of K is denoted by k;, then

Kk1 =l (328)

with ¢; representing a six-dimensional vector array, whose first entry is unity, all other entries

vanishing. Next, k; is defined as the six-dimensional array

_ u
K= (3.29)

m,

where u; and m; represent three-dimensional vectors, as yet to be determined. Then, the
inner product of the last five rows of K with k; must vanish. The inner product of the third

and fourth rows of K with k; leads to

(my —u; X p2)'g2 =0, (my —u; xpy)ies=0 (3.30)

which imply that m; —u; X py is parallel to gs X e, i.e., to f3; hence, (m; —u; X pg) = kofy

or, equivalently,
m; = szg +u; X p2 (331)

where ko represents a scalar, as yet to be found. Similarly, from the inner product of the

fifth and sixth rows of K with k;, we have
m; = ksf; +u; X ps3 (3.32)
with ks, as well, to be determined. Equations (3.31) and (3.32) yield
u; X (p2 — p3) = —kofs + ksfs (3.33)

from which we can conclude that u;, ps — p3 and f5 x f3 are coplanar. Thus, we can assume
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u; to be a linear combination of the last two vectors, i.e.,

u; = wi(p2 — p3) + wa(fy x f3) (3.34)

with w; and wy to be determined. After plugging Eq. (3.34) into Eq. (3.33) and some

straightforward manipulations, we obtain
wo{[f5 (P2 — P3)lfs — [f5 (P2 — ps)|fo} = —kofy + ksf (3.35)
and hence,
ko = wofy (P2 — P3), ks = wof; (P2 — P3) (3.36)

Relations (3.31), (3.34) and (3.36) guarantee that the inner product of the last four rows of
K with k; do vanish, w; and ws, being free parameters. Next, we find the ratio of w; to ws

from the vanishing of the inner product of the second row of K with ki, which leads to
(p1 X u; +my)le; =0 (3.37)

After plugging Eqgs. (3.31), (3.34) and (3.36) into Eq. (3.37) and some straightforward sim-

plifications, we obtain

wi[(p1 — P2) X (P2 — P3)] €1 + wo{(pP1 — P2) X (f2 x £3) + [f5 (P2 — p3)|f2} €1 =0 (3.38)

from which we can find the ratio of w; to wy. Let us denote the coefficients of w; and ws

aSll

S1 = [(pl—P2)X(p2—p3)]T61 = QSAIITel, Sg = {(pl—p2)><(fz><f3)+[f3T(pz—p3)]fz}Te1 = I’lTel
(3.39)
where sa represents the area of the MP triangle 51553, n is the unit vector normal to the

MP triangle, its direction defined according to Eqgs. (3.39), while r; is defined as

r; = {[(p1 — ps)" f5]f> — [(p1 — p2)” f]fs} (3.40)

HRather than working with the ratio w; /ws, or wy/w; for that matter, in which either of the two variables
can vanish, we keep both in the balance of the paper.
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The simplest way of assigning values to w; and wy is, thus,
W) = —8y = —rr{el, Wy = $1 = 25an" €, (3.41)
In this way, we can represent vectors u; and m; as

u; = —I“lTel(pQ - p3) + QSAIIT61(f2 X f3), m; — w2(f2Tp2)f3 - w2(f3Tp3)f2 + wiPp2 X P3

(3.42)
Furthermore, if we define h; as
hy = (£] p2)fs — (f5 p3)fy (3.43)
then,
m; = 2s5(n’e;)h; — (rfe;)ps x ps (3.44)

Now we can guarantee that k; is orthogonal to the last five rows of K. However, its inner
product with the first row of K must be unity; hence, the last step is to calculate this inner

product, denoted as ¢;. Then, the scaled k; can be expressed as

I (3.45)
b |,
which satisfies Kk, = ¢;, with ¢, introduced in Eq. (3.28). Finally, ¢, is derived as
t1=(g1 x p1) w +gim = (py xu +my)’'g (3.46)
which, after routine algebraic manipulations, reduces to
t1 =2sa(f; X 11) -1 (3.47)

We have obtained so far the first column of K (i.e., of K=!). Next we derive the remaining

columns of K. First, we express K as

K= Esl Es2 Es3 Es4 Es5 Es6] (3-48)
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Following the form of ki, as given by Eq. (3.45), we can set
k,; = . j=2,...,6 (3.49)

For example, for the first column of K,

r; =[(p1 — p3) " f5]fs — [(p1 — p2) " fofs

hy =(f; p2)fs — (f:sTP3>f2

u; = —rie;(p2 — p3) + 2san’ e (5 x f3) (3.50)
m; =2s5(n’e;)h; — (r{e1)ps X p3

t1 =2sA(f; X r1) - n

Due to the symmetries in the structure of K, we can find the second column of K by simply

exchanging the roles of e; and g; in Egs. (3.50)'%:

u; = — (r]{g1)(pP2 — P3) + 2sa(n’g1)(f2 x f3)
m, =2s5(n"g1)hy — (r{g1)P2 X P (3.51)

ty = — 25A(f1 X rl) ‘n

and hence,
to = —14 (3.52)

Moreover, we can find the third and fifth columns of K upon exchanging subscripts 1,2,3
with 2,3,1 or 3,1,2 in Egs. (3.50), respectively, and the fourth and sixth columns of K upon
exchanging subscript 1,2,3 with 2,3, 1 or 3,1,2 in Eqs. (3.51), respectively. It is noteworthy
that the corresponding subscripts in all the terms within r; and h; have to be exchanged as

well.

Furthermore, it is found that we only need to calculate the denominator once because

ty =ty =t5 = —ly = —ty = —tg (3.53)

12Consistently, f; should be substituted by —f;, but it is readily verified that this does not affect the result;
n, which does not involve e; or g1, is not affected, either.
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Now we prove the above statement: If we denote the edge joining the ith and jth S joint

s
centre as s;; = 5;5;, then, p, — p; = s;;; moreover,

25a(r1 x m) =[(sf3f3)fs — (sTyfo)f5] X (s12 X 813) = (s1383) (s3562)s12 — (s[of2) (s3585)s13

(3.54)

and hence,

t1 = 2sa(ry x m) - £ =[(s{5f3)(s3562)812 — (s1,02) (s35F3)s15] - £

(3.55)
== (51T2f1>(sg3f2)<sglf3) + (51T2f2>(52T3f3>(S§1f1)

If we exchange, for example, subscripts 1, 2, 3 with 2, 3, 1, respectively, while noticing that

Sij = —S;i, we obtain

ts =[(s5£1) (s5;£5)s23 — (s33f3) (s5,61)s01] - £

(3.56)
= — (s1o01) (s33E2) (s5,63) + (s{of2) (s3565) (s, f1) = &4

Similarly, relation (3.53) follows. Finally, if we define ¢ = ¢, then K can be written as

. ; u —u, U3 —-u; u; —Ug (3.57)
m; —my, msg —ImMy Img —IMg

Interestingly, Eq. (3.55) is the same as the expression for the singularity loci of three-limb

PKMs with three passive spherical joints derived by Yang et al. [40]. This makes sense

because, when K becomes singular, its inverse does not exist, which happens when and only

when ¢ = 0. From the mixed-product form of ¢t—i.e., ¢; in expression (3.47)—we obtain a

more compact form of the singularity loci, which should yield a more efficient evaluation of

the singularity loci of any six-dof three-limb PKM with three passive S joints.

3.6.2 Unconstrained Dexterity Maximization

Next, we employ the expression for K~ derived in the previous subsection to conduct the

optimization for the SDelta based on a dexterity index. Firstly, we formulate the optimization
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problem: The architecture parameters o and ~ are defined as

v=5 (3.58)

where a and b are the lengths of the sides of the MP and BP equilateral triangles, respectively,
while £ is the height of the MP plane at the reference pose!'3, as shown in Fig. 3.2. Moreover,
the pose of the MP is given by its orientation Q € R**3 and the position vector c¢ of the
operation point C'. Next, the rotation matrix Q is represented by q and 6, the unit vector
parallel to the axis of rotation and the angle of rotation, respectively; then, the set of design

variables is defined as:
T 11
X=b L q c a v 6 eR (3.59)
where L is the characteristic length [68], as yet to be found. Then, the optimization problem
can be formulated as

1
_ 2 15 —112 :
Fx) = SIKIFIK | — min (3.60)

s.t. b,a,L >0
In order to solve this problem, we next derive ||K|/% and |[K~!|%, which carry simpler
expressions than [|[K||r and ||[K™!||z.
3.6.2.1 Derivation of the Norm of the Forward Jacobian

When deriving the condition number of the forward Jacobian matrix, its homogeneous
form, as per Eq. (3.27), is needed, which was obtained upon introducing the characteristic

length [68] L. L can be found, together with the other entries of the design vectors x of

131t is noteworthy that h is actually the component of the position vector ¢ of the operation point along
the z axis (¢,) in the BP frame at the reference pose.
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Eq. (3.59), upon solution of problem (3.60). To this end, || Kj|/% is readily derived as

3

IKnllz =Y [L%(llgsl3 + llesl12) + (85 x p)" (85 x py) + (€5 x p;) (e x ;)
j=1

3
=> [2L* + (p/ p;g; — P, 8;p,;) g + (P, Pje; — ) e;p;)"e)] (3.61)
j=1

3
= 2L +2|lpjll; - (p]g))* — (] e))’]

j=1

Since {e;, f;,g;}} are orthonormal for the SDelta, and the operation point is located at the
centroid of the MP triangle, |Kj||% simplifies to

3 3 3

1K, |7 =6L° + Z(%)Q +) (P £)? = 6L+ *0* + ) (] ;) (3.62)

Jj=1 Jj=1 J=1

where p; and f; are functions of x.

3.6.2.2 Derivation of the Norm of the Inverse of the Forward Jacobian

We recall the expressions of K~ and K, displayed in Egs. (3.57) and (3.27). Since
we multiplied the right block of K by L, the lower block of K~! should be divided by L

correspondingly, namely,

1] u —u u —u u —u
K, — 1 2 3 4 5 6 (3.63)
¢ ml/L —mz/L mg/L —m4/L m5/L —mG/L
If we further consider the geometry of the robot under study, as shown in Fig. 2.1, where

both the MP and the BP are equilateral triangles, of sides a and b, respectively, and the

operation point C' is selected as the centroid of triangle 575553, then, u;, uy and my, my can
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be further simplified as

u; =— (rle))(p2 — p3) + §GQ(DT61)(f2 x f3)

B

uy = — (r{g1)(p2 — p3) + 7a2(nTg1)(f2 x f3)

(3.64a)
m; :§a2[3(nTe1)h1 — (rTe;))n]
my Zﬁaz[?’(nTgl)hl — (r{gi)n]

6

Next, we partition K, into three 6 x 2 blocks, and denote the Euclidean norm of the jth
block as d;, which leads to

1 1
di =253 + [[usll3 + 7 (ffa |2 + [lmo13)] (3.65)

1

where ||[u;]|3 + ||uz||? and ||m;]|3 + ||my||3 are derived as

3
a3+ Jlusll3 =a*[(rien)” + (rig1)’] + Ja'[(n"er)® + (n"g1)][[f2 x f]]5 (3.66)
—2v3a*(rTenTe; 4+ rl'ginTg;)sL (£, x f3)

and
1
a
[Ima 5 + [[ms[f3 =75 {910 e1)” + (n"ga)?][[hu 5 + (re1)” + (r1 @)’
(3.67)
—6(r{e;n"e, +r{gin"g)hin}
Thus, ||[K™!||% can be expressed as
3
K E =) d (3.68)
j=1

with d; defined in Eq. (3.65), for j = 1, similar expressions following for j = 2, 3.

3.6.2.3 Solving the Optimization Problem at a Symmetric Posture

The evaluation of the condition number under arbitrary postures is cumbersome, since
the dimension of the corresponding design space is 11; it is thus desirable to limit the design
space to a more manageable subspace. Due to the symmetric architecture of the robot under

study, the minimum condition number is most likely to be found at a symmetric posture.
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Apparently, such a posture occurs when the centroid of the MP lies right above that of the
BP, and the MP has the reference orientation shown in Fig. 3.2, i.e., § =0 and ¢, = ¢, = 0,
where ¢, and ¢, represent the components of ¢ along the  and y axes in the BP frame. Now

the set of design variables becomes!'*

X = [b a 7y L}T (3.69)

Moreover, Egs. (3.62) and (3.68), evaluated in this subspace, are simplified dramatically:

9o Aatb? — 4030 + a? b
+a b +
4o —4a+1242+1
2(12L2a® =122 a+ 36 L2+ 3L? + 4a* b* — 4P b2 + 6 a2 V? 2 + o2 b?)
4a? —4da+1242+1

K5 =6.L*

(3.70)
and
K12 = 60 L% a® — 60 L? . + 288 L? 4% + 15 L% + 20 a* b? — 20 a3 b? + 1202 b2 42 + 52 b?
£ 3L2a2b? (40?2 —4a+1)
(3.71)
Furthermore, defining p as the ratio L/b, the objective function becomes
1 2 17e—1112 2 N
£00) = S KIR K3 = w(K) = (372
where
N =Nyp* + Nop* + Ny, D = 54(1 — 2a)*c?[(1 — 2a)? + 129%]p? (3.73)
with
No =a*[(1 = 20)% + 69%][5 + 20(—1 + a)a + 1297]
Ny =3a2[(1 — 2a)® + 129%][5 + 20(—1 + a)a + 1277] (5.74)
3.74

+30[(1 — 2a)% + 6+?][5 + 20(—1 + a)a + 9677

Ny =9[(1 — 2a)* + 129%][5 + 20(—1 + o) + 9677

4We should use c, instead of  as one of the design parameters, but here we use v, the height of the MP
plane at the reference posture of Fig. 3.2 as one of the design variables instead, for conciseness.
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which are free of b and L. Moreover, by inspection, it is found that p always appears at even

powers, and « mostly appears as 2ac — 1. For these reasons, we define
A=p% pf=2a-1 (3.75)

Then we redefine the vector of design variables as x = [3,7, A|]T, thereby simplifying the

numerator and denominator of f(x) as appearing in Eq. (3.72), namely,

F(8.7.3) = K3(K) = = = min (3.76)

where
N =144 (8% + 129%) (567 4+ 967°) A* + 24(8 + 1)* (58 + 998%+* + 3607*) A
+(B+ 1) (58" +426%% + 7297) (3.77)
3
D =2165%(1 + B8)*(8* + 127%)\ = 144 x 552(1 + B)2(8* + 129*)A

Next, we solve the optimization problem by differentiating f(x) with respect to 3, and A.

By zeroing the partial derivative of f w.r.t. A, we obtain A as a function of g and v, i.e.,

_1 \/ (8 -+ 1) (56" + 428292 + 7274) (@78)

12 534 + 1563242 + 11524
Substitution of Eq. (3.78) into Eq. (3.76) leads to a bivariate function, which only involves
the design parameters 3 and 7. Next we plot'® k' (K) as 1/v/f vs. 8 and +, as shown in
Fig. 3.12.

It is observed that the minimum condition number is achieved when v = 0 and 5 # 0,

the said minimum being

KF(K)min = @ (3.79)

i.e., kp(K)min = 1.0541, to four decimal places, or pretty close to unity.

Next, we calculate the characteristic length for a given architecture, i.e., for a given (.

It is observed that the minimum condition number is achieved when v = 0. Then we can

5As kp(K) is unbounded from above, but bounded from below by unity, it is more meaningful to plot
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Figure 3.12: Inverse condition number of the robot vs. 8 and v, (a) 8 € (—1,1),v € (=2,2) (b)
B € (_177)77 € (_272)

obtain L as

12 54 /3 3

That is, the characteristic length is the distance from any spherical-joint centre to the oper-

L=bp=bVAy= /= (w) = igyaw _ V3 (3.80)

ation point, which is meaningful.

3.6.2.4 Some Remarks

It can be concluded from Fig. 3.12 that

e The graph is symmetric w.r.t. § = 0 and v = 0. Moreover, The dexterity is higher when
the MP plane is near the BP plane.

e For the choice of a, it is found that the farther a is from b/2, the lower the condition

number. A reasonable range for & may be given around (0,0.4] U [0.6,4] or, equivalently,

g e (—1,-0.2]U[0.2,7].

e If we want the MP to operate near the BP, we should choose a such that a < b/2; under
these conditions, the smaller the MP, the higher the dexterity. It is, however, noteworthy
that when a is relatively large, for example, when a = 2b (§ = 3), it can be seen that even

if we change the value of v, the condition number remains below 10.0, which means a good
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dexterity, as shown in Fig. 3.13, although the MP cannot cross the BP in this case. It is
noteworthy that this figure only shows the information for a set of symmetric MP poses,

rather than arbitrary poses.

e The characteristic length for a given architecture, i.e., for given « and b, is given in
Eq. (3.80). It is noted from Eq. (3.78), however, that the value of X\ varies as v changes.
This means that the characteristic length for a given architecture can minimize the con-
dition number of the robot at the optimum pose, but does not necessarily minimize the
condition number elsewhere. Considering this fact, we re-plot the condition number using
the characteristic length given in Eq. (3.80), as shown in Fig. 3.13, where the range of
is set as § € [0.2,7] in order to avoid the singularity when § = 0. It is shown that the

difference is relatively small when the MP is at the reference orientation.

Figure 3.13: (a) Condition number of the SDelta Robot vs. 8 and +, using the unique characteristic
length for the architecture (b) the difference between (a) and previous calculation shown in Fig. 3.12

3.6.3 Discussion of the Optimization Results

From the above optimization exercise, we can conclude that the dexterity is generally
higher when the distance from the centroid of the MP to the BP plane (i.e., ¢,'%) is smaller.
It is shown that the SDelta can always achieve a minimum condition number close to unity
when the centroids of the MP and the BP coincide and the former finds itself at the refer-

ence orientation, regardless of the ratio a/b; this leaves us a big margin to optimize other

16The Z- component of the position vector ¢ of the operation point.
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(a) (b)

Figure 3.14: An example of the SDelta indicating its large orientation capacity when the centroid
of the MP is close to the BP plane

performance indices. Moreover, from tests in CAD software, the MP can almost flip w.r.t.
some axes in the BP plane when c, is small, the angle of rotation being around £80° about
these axes. An example is shown in Fig. 3.14 with o = 0.32. Hence, this architecture has
a good potential to extend the orientation workspace, which is useful, e.g., for increasing
the operation range of machine tools and motion simulators. However, this layout requires
a small-size MP w.r.t. that of the BP, and a small range of the stroke of the intermediate P
joint of each limb. These physical constraints limit the positioning workspace. Fortunately,
the analyses and optimization reveal that when the distance from the centroid of the MP
to the BP plane is bigger, the condition number is also reasonably low, and the positioning
workspace becomes larger. This means that, upon proper choice of a,b and v, we can obtain

relatively large operation zones with high dexterity within the workspace.

The above statements indicate that there is a compromise in the choice of ¢, between
the requirements of high dexterity and large positioning workspace in the current design
of the SDelta, although the dexterity is generally acceptable. This compromise is mostly
introduced by the physical constraints of the limb kinematic chains. The idea of exploring
different layouts of the three C-drives, proposed at the end of Section 3.5, is brought up again
here, which, in our opinion, have the potential to yield a larger singularity-free workspace
together with a good dexterity. For example, it can be readily shown that the layout with
three vertical axes yields a larger workspace volume, while the highest dexterity (with the
same optimal value of the current design) can be obtained along a continuous vertical axes,
though this layout is more suitable for small-size workpieces. Hence, other layouts of the

three C-drives may be explored, such as those with three vertical axes, three intersecting
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orthogonal axes or three skew orthogonal axes. These alternatives have the potential to
provide a larger singularity-free workspace and a good dexterity. This work is recommended

for future research.

So far we have completed the forward-displacement, singularity and workspace analyses
of the SDelta, which are essential for robot evaluation, simulation and control. Moreover, its
optimization, based on a dexterity index, is provided. These analyses and optimization give

us the whole picture of the performance of the robot at the kinematics level.

During the analyses for the SDelta, we found an expression for the inverse of its forward
Jacobian matrix in symbolic form, which applies to a large class of PKMs. This expression
is quite useful in many applications, e.g., in singularity analysis, design for isotropy and
optimization. In Chapter 4 we will elaborate on its application in the optimum design of this

large class of PKMs.
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Chapter 4

THE DESIGN FOR ISOTROPY OF A CLASS OF SIX-
DOF PKMS

The design for isotropy of a large class of six-dof parallel-kinematics machines is investi-
gated in this chapter, for the plausible case in which the axes of the six actuated wrenches
intersect pairwise. As stated previously, two Jacobian matrices occur in the basic kinematic
model of a PKM, relating the moving-platform twist with the array of motor rates. The one
multiplying the former is termed the forward Jacobian [68|, denoted K, that multiplying the
latter, the inverse Jacobian, denoted D in this chapter!. A low condition number of K, say,
within O(2), is needed to avoid large roundoff-error amplification when solving for the MP
twist in terms of the array of joint rates. This is needed in forward kinematics, for example,
to estimate the MP positioning error, to be fed back into the motors for error-compensation.
A similarly well-conditioned inverse Jacobian is needed to compute the actuated-joint rates

in real time, to be fed back into the motor controllers.

Several isotropic six-limb, six-dof PKMs have been proposed [68-70]. Moreover, design
for isotropy has been investigated in a fairly general framework via the geometric relations of
the six lines (representing the axes of the six actuated wrenches) and one point (the operation
point), based on which Tsai et al. [87] proposed the concept of “isotropy generator”. With
this approach, several designs of six-limb isotropic robots have been reported; however, in
the foregoing paper, the authors assume that the two 3 x 3 blocks of the Jacobian associated
with the six unit vectors of the actuated wrenches are orthogonal matrices, which is not a

necessary condition for isotropy, the condition thereby leading to a limited class of isotropic

!For the general PKM investigated in this chapter—which is not actuated by the C-drive, the inverse
Jacobian is no longer a product two matrices—the drive Jacobian and the actuator Jacobian, as proposed in
this dissertation. Hence, we use D itself to represent the inverse Jacobian for the general PKM investigated
in this chapter.
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designs. In a follow-up paper, Tsai et al. [88] proposed a numerical method capable of using
the parameters of a n-dof redundant isotropic PKM as the initial guess to obtain a (n — 1)-
dof isotropic PKM, and eventually, obtain six-dof isotropic PKMs. This method does not
impose requirements either on the shape of the MP or on the distances from the wrench lines
to the operation point; however, the design thus obtained depends heavily on the choice of

the initial guess of the design parameters.

In this chapter, firstly, the kinematics relations, the expressions for the underlying forward
Jacobian matrix [68] and its inverse in symbolic form, derived in Chapter 3, are briefly
recalled. Next, based on this symbolic expression, a novel approach is proposed for the DfI of
this class of PKMs. Several numerical examples are given. Expressions are provided for the
design parameters that yield isotropy. It is noteworthy that this method does not require any
initial guess and is capable of giving all the possible solutions leading to isotropy, and hence,
completes the DAI of this class of PKMs. Moreover, we propose the concept of quasi-isotropy,
which guarantees a small condition number with six orthogonal wrench axes, yielding high
dexterity, accuracy, and homogeneity of the motion of the MP, within a finite region of the
workspace. This greatly enriches the list of candidates for the MP shape and the location
of the operation point, required, e.g., when a gripper or another tool is attached to the MP

triangle.

4.1 The Kinematics Jacobian Matrix and Its Symbolic
Inverse

4.1.1 The Kinematics Relations

A large class of six-dof PKMs with six actuated-wrench axes intersecting pairwise have
been reported? [39], an example being the SDelta, whose architecture and actuated wrenches

are reproduced in Figs. 4.1 and 4.2 for quick reference®. Next, we use this example to derive

2Numerous examples of such PKMs can be found in the literature [41,44].

3Slight differences between these two figures and the corresponding figures in previous chapters are to be
highlighted: notation items not needed in Chapter 4 are removed; the joint variables for a general PKM of
this class are denoted with alternative symbols to make a distinction with those of the specific instance of
the SDelta.
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the kinematics relations, the Jacobian matrix and its symbolic inverse for this class of PKMs.

MP

e Figure 4.2: The wrench axes G;, £;, their com-
1

mon perpendicular F;, and vector p; of the jth
Figure 4.1: Architecture of the SDelta Robot limb of the SDelta Robot

We start by introducing the pertinent notation: e; and g; are again defined as the unit
vectors parallel to the axes of the jth pair of actuated wrenches of the jth limb, for j = 1,2, 3,
as shown in Fig. 4.2. Moreover, the corresponding axes of the actuated wrenches are denoted
&; and G, respectively, which intersect at* S;, for j = 1,2,3. The plane defined by &; and
G; is labeled 11, for j = 1,2, 3, the plane of the moving platform triangle S;5,S55 being Il4.

Next, the operation point on the MP is C, of position vector c; p; is defined as vector

,@. Lastly, the twist of the MP, already defined, is recalled: t = [w”, ¢T]T.

It is noteworthy that, due to the special layout of the SDelta, we have e; L g;, for j =
1,2, 3. Moreover, depending on the type of actuated joints (if we regard the six-dimensional
C-drive array as the input of the SDelta, then the actuated joints are one R and one P
joint for each limb), the six diagonal entries of the inverse Jacobian—as per Eq. (3.6)—bear
different units, three of them being constant. However, for an arbitrary six-dof PKM whose

actuated-wrench axes intersect pairwise, none of these special features necessarily holds. In

“For the case of a three-limb PKM with one spherical joint in each limb, S; refers to the centre of the
spherical joint of the jth limb.
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order to keep the derivation general, we define the input array as
4.5 = [GBM ¢1, ¢2> 1&2, és, 1&3]T (4-1)

with géj,zﬁj representing the joint rates corresponding to the wrenches of axes G; and &,
respectively, for j = 1,2, 3, as shown in Fig. 4.2. It is noteworthy that {¢;}} or {¢;}} can

represent either translation or rotation for a general PKM of this class.

According to screw theory [77,78]|, it can be readily shown that the kinematics relation

of this class of robots bears the form [75]

Kt = D¢ (4.2)
with
(gl X pl)T ng
(el X Pl)T elT
5¢ T T
K = Eg2 p2;T g; ) D = diag<l17 maq, l27 ma, l37 m3) (43)
€2 X P2 €
(g3 X ps)T g:{
_(eg x p3) T egT_

Moreover, I; and m; represent the reciprocal products [89] of G; and &; with their correspond-
ing axes of actuated joints, which can either carry units of length or being dimensionless,

depending on the type of the corresponding actuated joint (R or P).

4.1.2 The Symbolic Inverse of the Forward Jacobian

Due to the special layout of the six actuated wrenches, the Jacobian matrix K of the said
large class of robots always bears the form in Eq. (4.3), i.e., the six rows of K represent the
Pliicker coordinates of six lines that intersect pairwise. Furthermore, K, denoted K and

derived in Chapter 3, is reproduced here for quick reference

1 u —Uz U3 —Ug Us —Ug

(4.4)

m; —IMo> IM3 —IMNy Iy —IXg
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with
t ZQSA(fl X I'1) ‘n (45)

and its first two columns given by

u = - (r{el)(Pz —Pp3) + 23A(HT61)(fz x f3)

(4.6)
m; =2sa(n"e;)h; — (r{e;)ps x p3
and
W = — (r{g1)(p2 — pP3) + 2sa(n’gy) (£, x f3) (47
my =2sa(n"g)h; — (r{g1)p2 X P3
with r{ and h; defined as
ri =[(p1 — p3) ] — [(p1 — p2) " £o]f5
(4.8)

h,; Z(ngpz)fs - (ngPS)fz

Moreover, f; = g; x e;, for j = 1,2,3, s denoting the area of the triangle 515,53, and n

representing the unit vector normal to the MP triangle, namely, n = S,S; x S355/||5257 %

e
S35 |2

Furthermore, the third and fifth columns of K can be found upon exchanging subscripts
1,2,3 with 2,3, 1 or 3,1,2 in the RHS of Eqs. (4.6), respectively; its fourth and sixth columns
can be obtained upon exchanging subscripts 1, 2, 3 with 2, 3, 1 or, correspondingly, with 3,1, 2
in the RHS of Eqgs. (4.7)°. Tt is noteworthy that the expression for K~ does not impose any
constraint on the location of the operation point C. As a matter of fact, C' need not even
lie in the plane of 515553. Hence, we have more flexibility in choosing the location of the
operation point, which may ease the design when, e.g., a gripper or another tool is to be

attached to the MP triangle.

The corresponding subscripts of r;, h; and all the terms within r; and h; have to be exchanged as well.
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4.2 The Isotropic Design

As noted previously, dexterity characterizes the kinematic accuracy and the homogeneity
of the motion of the MP along different directions in the motion space, which is crucial for
an acceptable robot performance. The conditions for isotropy, i.e., for maximum dexterity,

can be stated as
KK} = 05 16x6, DD = 05 1lsxe (4.9)

with K, and D, denoting the two Jacobian matrices in their homogeneous form, to be
introduced presently; in this case, all the singular values of K;, are identical, and the same

goes for Dy, with ox and op representing, correspondingly, their sextuple singular values.

The maximum dexterity is generally obtained via a mathematical-programming problem
(MPP). However, when the problem at hand admits an isotropic solution, as in this case,
the isotropy condition in Egs. (4.9) obviates the MPP. In this section, we derive the isotropy
condition for three-limb, six-dof PKMs whose actuated wrench axes intersect pairwise, with

an arbitrarily chosen location of the operation point.

Firstly, we study the isotropy condition of K. Since its entries bear different units, we
again produce the homogeneous form K, of K upon introducing the characteristic length

L |68], K and K then taking the homogeneous forms

(g1 xp1)" Legl
(81 X pl)T Le{
x pg)t  Legl
K, = (82 P2)" Le (4.10)
(ex x po)T  Lel
(g3 X P3)T ngT
(eg x pg)T Leg
and
_ Il u —u u —u u —u
K, — - 1 2 3 4 5 6 (4.11)

t ml/L —mg/L mg/L —m4/L m5/L —m6/L
It is noteworthy that some authors use other approaches to cope with this inconsistency
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of units; for example, Tsai et al. 88| proposed an index based on the three criteria for
isotropy proposed by Klein [90]. However, it can be readily verified that the method using
the characteristic length to make K into a dimensionally homogeneous matrix is a necessary
and sufficient condition for the three Klein criteria [90], and hence, equivalent to the measure
of isotropy used by Tsai et al. [88]. Since using the characteristic length yields a much simpler

formulation, we adopt here the approach based on this length.

From the isotropy condition (4.9), we have
K; =o0%K; ' = 03K, (4.12)

Now we look at the first two columns of the matrix equation (4.12). Since ok and L are
undetermined at this stage, we define o, = 0% /t, 0, = 0% /(tL?), with t given in Eq. (4.5).
Then the first two columns of Eq. (4.12) yield the conditions:

T T
u; = —rj;€e(Sq3 + 28AII el(fg X fg) =g X pl/au
' (4.13)
uy = —I'1Tg1523 + 2$AnTg1(f2 x f3) = —e; x p1/oy,
and
m; = QSA(HTel)hl - (rlTel)P2 X Ps=81/0m
(4.14)

my = 255(n" g1)hy — (r{g1)ps X ps = —ey /o

where s;; = p; — p; denotes vector kTS; Next, we conduct the geometric analysis in the MP
frame, as p; is a known constant vector in this frame, for j = 1,2, 3. It is apparent that u;
and usy are both linear combinations of so3 and fy x f3. Hence, so3 and f5 x f3 define a plane
whose normal is parallel to (g; x p1) X (e; x p1) = [(g1 x e1)Tp1|p1 = (f{ p1)p1. Thus, the

normal to the foregoing plane is parallel to py, i.e.,
s33p1 =0, (fo x f3)"p; =0 (4.15)

However, it is noteworthy that the above derivation is based on the assumption that so3 and
fy x f5 are linearly independent. Let us analyze the case when they are linearly dependent.

This involves two possibilities:
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o £, x f; = 0, namely, f5 || f5. Then, uy || us || s23 || (81 X p1) || (e1 X p1), yielding
(g1 X p1) X (e1 x p1) = (f{' p1)p1 = 0, and hence, f; L p;. Moreover, since f; is normal to
the II; plane, for j = 1,2,3, we can conclude that p; lies in the plane II;. Furthermore,
since e; and g lie in IT;, we can conclude that (g; x p1) || (e1 X p1) || f1 || s23- This means
that so3 is normal to Il;, while py lies in II;. It is apparent that Eqs. (4.15) still hold in

this case, and need not be discussed further.

e the scalar coefficients in Eqgs. (4.13) obey the relation
(~1Te))/(2san"e;) = (—xTgy)/(25an"gy) (4.16)
which, upon simplification, yields
—(ryey)(n"g1) + (n'er)(rig1) = [(g1 x 1) xri]'n = (fi x11)'n=1/(252) =0 (4.17)

thereby leading to a singularity, and hence, this condition cannot yield isotropy.

In summary, so3 and fy x f3 must be linearly independent and Eqgs. (4.15) must hold, in order
to reach isotropy. Considering this condition for the three pairs of intersecting wrenches, we
can conclude that the operation point C' (or its projection on II;) must be chosen as the

orthocentre of the triangle 5755S55.

Next, we look at Eqs. (4.14). A similar analysis leads to two possibilities:

° hlJ_flandpgxp;;J_fl,or

e h; = 0; then, g; || e;, which leads to a singularity.
In summary, the geometric conditions below must be satisfied for isotropy:

S2T3P1 =0
(fQ X fg)Tpl =0
hif, =0 (4.18¢

(P2 X p3) 1 =0 (4.18d
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which still hold when we exchange subscripts 1,2,3 with 2,3, 1 or 3,1, 2, respectively. Next,

we derive the remaining isotropy conditions.

4.2.1 The Operation Point Lying in the MP Triangle

Firstly, we study the case when the operation point C' lies in I1,. According to Eq. (4.18a),
C must coincide with the ortho-centre of triangle 575553. Moreover, it is apparent that
P2 X p3 || n in this case; according to Eq. (4.18d), we conclude that f; has to lie in Il4, as
shown in Fig 4.3. Similarly, f; and f3 must lie in II,. Under these conditions, Eq. (4.18b)
naturally holds. Since f; is in fact normal to the plane II;, for j = 1,2, 3, these three planes

must be normal to Il4.

MP (IL,)
o
Figure 4.3: The layout of f; in the MP plane Figure 4.4: The definition of ¢; and ~;, in plane
(ILy) and the definition of 6; (top view) 11,

It is apparent that so3 L nand h; L nin this case. Moreover, fs x f3 || n; more specifically,

£ x f5 = (g2 X e3) X (g3 X €3) = sin s sin az sin ¢;;n (4.19)

where «; is defined as the angle between g; and e;, and ¢;; denotes that between f; and f;.

Then, we rewrite u; and m;, for j = 1,2, as per Egs. (4.13) and (4.14), as

T . . . T
Uy = —S93T] €1Sp23 + 2sin ag sin ag sin ¢;;5an" en = (p1/0,)g1 X Pr1

(4.20)

T . . . T -
Ug = —S23I'] 81Sn23 + 2sin (Qvg S111 (x3 S11 gzﬁijsAn gin = —(pl/au)el X Pni
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and

m; = 25A(nTe1)h1 — 23A23(rfe1)n =g /om (421)

my = 25A(n7'g)h; — 25p03(r] g1)n = —e; /0,

—
with s;; and s,;; defined as the magnitude of S;S; and the unit vector parallel to S S, Pnj
and p,; defined likewise, as the magnitude of vector p; and the unit vector parallel to the

same. Furthermore, the area of the triangle C'S;S; is denoted as sa;;.

Next, we decompose u; and m; according to the corresponding orthogonal directions,

namely,
—823T1Te1 = P1/0u(Pn1 X Sn23)Tg1 = (pl/Uu)l’ng1
—5231'{g1 = —pl/Uu(Pnl X Sn23)T61 = - (p1/0u)11T91 (4 22)
2 sin s sin ag sin ¢ij8AnT61 S (pl/au)sg:sgl
2 sin oy sin g sin qbijsAnTgl = (pl/au)sr;fmel
and
- 25A23(P1Te1) = Ing1/Um
- 28A23(I‘Tg1) = —IlTel/Um
' (4.23)

2sa(n"e;)h{hy = hig; /oy,
QSA(nTgl)thhl = —thel/am

When the robot finds itself at an isotropic posture, Egs. (4.22) and (4.23) must all hold.
From the first of Eqgs. (4.22) and that of (4.23), we can find the characteristic length as

25A23D1
L=\/o,/om=

= /i (4.24)

where p] is defined as the distance from C to S553. Since C' is the orthocentre of triangle

515983, this product is the same for the other two pairs of columns, namely,

VP1P) = \/Paph = \/Pspl (4.25)

In this way, we can represent o, as L?c,,. Now we rearrange the set of equations (4.22) and
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(4.23) to obtain the geometric constraint on the distribution of the wrench axes that lead to
isotropy. Firstly, we let the angle between p; and f; be 0;, as shown in Fig. 4.3. Furthermore,
D; is defined as the intersection line of II; with Iy, for j = 1,2, 3, with the unit vector d;.
Since II; L Iy, for j = 1,2,3, d; can be found as d; = n x f;. Then, f;, d; and n form a
right-handed triad. In this way, e; and g, can be obtained upon rotating d; about f; through
an angle ¢; and v;, respectively, with €; and 7; as yet to be determined. Then®, a; = ¢; — ;.

Moreover, since h; € I, we have, according to the three-cosine theorem?,

hTg, = (d'hy)cosy;, hle; = (d'hy)cose; (4.26)
If we cross-multiply the two sides of the last two of Eqs. (4.23), we obtain
(hTd;)(cos e sine; 4 cosyy siny) = (hid)sin(e; + 1) =0 (4.27)

It is noteworthy that h; # 0; otherwise, according to Eq. (4.21), we have g; || m; || n || my ||
e1, which leads to singularity. Hence, Eq. (4.27) holds under two possible cases:

e h; | d; or, equivalently, h; || f;. It can be readily shown that the condition h?f; = 0 does

not hold in this case. Hence, this layout is not feasible.

e sin(e; +71) =0, then, 1 +v; = 2kw or ) + 1 = 7+ 2k7, k € Z. This means that, & and
g1 must be symmetric w.r.t. Dy, as shown in Fig. 4.4 or, equivalently, D; is a bisector of

the angle made by & and G;.

It can be readily verified that, if one changes the sign of e; and (or) of g; in K, the product
KK} does not change; as a result, the choice of the sign of these unit vectors becomes

immaterial. Hence, we only look at one of the two previous conditions, e.g., v; = —e; + 2kT.

Now we summarize the conditions required by the isotropic postures: a) the normals f; of
II; must lie in Iy, for j = 1,2, 3; b) the two wrench axes £; and G; must be symmetric w.r.t.
I14; ¢) the characteristic length must satisfy Eq. (4.24). Now, we insert these relations into

the original expression (4.9): according to the geometric conditions summarized above, we

The sign is chosen to make g;, e; and f; a right-handed triad.
"Included in the Appendix, for quick reference.
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can use six (redundant) parameters to characterize an isotropic posture, namely, {¢;}3 and
{6,}}. Furthermore, without loss of generality, we assume the location of the centres of the

three S joints to be
s; =m[-1/2,0,0]", sy =m[1/2,0,0], s3=mz0,y0,0]" (4.28)

s
where m represents the norm of S;S95. Then, K;K! in Eq (4.9) has only six distinct off-
diagonal entries and three distinct diagonal entries, which, upon some manipulations, yield

nine equations in nine unknowns: {6;}3, {¢;}3, {0;}3. These equations are

(f sin 61 + 4x% sin 61 + 4y(2) sin 61 + 4yg cos 91) (f sin 6y + 4:03 sin 6y + 4yg sin 6y — 4yg cos O

(—sin 6y + 2xgsin 0y + 2yg cos b1) (— sin O3 + 2z sin 03 — 2y cos 3

(sin Oy + 220 sin Os + 2yg cos O2) (sin O3 + 2x sin 3 — 2y cos O3

)
)
—8y(2) sin? €; — cos? ¢, (Sin2 01 + 8308 sin® 6, — 41;0 sin? 01 + 2z (4y0 - 1) sin? 6, — 2y0 (cos (2601) + 3) )

8y0 sin? e5 — cos? e (— sin® 6y + 8330 sin® 0y + 4960 sin? 05 + 2z (4y0 - 1) sin? 6y + 2y0 (cos (202) + 3)

—4y§ sin? €5 + cos? e3 (sin2 03 — 410 sin? 63 + 4y0 cos? 05

m? (2z¢ + 1) sin® €; = oy

m? (1 — 2x0) sin® €5 = 09

%mz (4:17(2) + 4y§ — 1) sin? €3 = 03
(4.29)

which lead to isotropy when oy = 0y = 03 = 0%. It is noteworthy that we have shown that
it is sufficient to assume €; € [—7/2,7/2] and 6; € [—7/2,7/2] in the calculation, because 6,
and 0; + m characterize the same plane II;, while ¢; and ¢; + 7 represent the same line &j;
moreover, each of the first three equations involves two decoupled terms, from which we can

obtain two sets of {6;}3 values, namely,

4yo AT

2
f; = — arctan 2 05 = arctan

0, = arct 4.30
LA e e U 270+ 1 ey 1 (&30)
or
2 4 2
0, = arctan ﬁ, 0, = arctan %, 5 = arctan o (4.31)
1—2&70 41’0+4y0—1 21‘0+1
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after which f; follows. It can be verified that the above condition yields the relation

f1 LSS5, £, LS5, f351 559, (4.32)
or

£, L 515y, £, 15,85, f51 559, (4.33)

meaning that the three planes {II;} must coincide with the three planes passing through the
three edges of S,.5,55 and normal to the MP plane Iy, i.e., $;.55 € IT;, $155 € Iy, S555 € 11,
or 515, € II;, S59; € Iy, S35, € I3, as shown in Fig. 4.5. Hence, we do not really need
to calculate 6; via Eqgs. (4.30) or (4.31); the directions of f; can be determined directly from

these geometric relations.

> C

2
2

/1~
[E—=

. SN MP(IL)
1

Figure 4.5: One of the two layouts of II;, Figure 4.6: The directions of f; coinciding with the
e; and g; that may render isotropy three edges of the the tetrahedron

Next, we insert the values of {6;}? into the fourth to sixth of equations (4.29) to obtain

the corresponding {¢;}}, namely,

1 2 1 1 1-2 1 A2 492 — 1
€1 = £ arccos <$0+) , €2 = £ arccos ( $o> , €3 = £ arccos ( o + 2o )

2 4at + 2w + 4y 2 220 + 3 2 4ot — 8w + 4yt +3
(4.34)
or
1 200+ 1 1 1—2x 1 4:5(2) + 4y(2) -1
=4= , €g = +— —— 3= E— 4.35
€1 5 Arceos (3 — 23?0) €2 5 arceos 2% — 200 + 47 €3 5 Arccos T2+ 8w+ 2 1 3 (4.35)

Finally, we insert the values of {¢;}? into the last three equations, to verify whether they are
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compatible. These three equations yield

m? (2xg + 1) (423 + 4y2 — 1) m? (1 — 422) m? (2xg — 1) (423 + 4y3 — 1)
g1 = 09 — _—, Oq = —
! 4 (222 + 20 + 242) 2 210 + 3 ’ 4x3 — 8xo + 492 + 3
(4.36)
or
m? (4z% — 1) m? (2zg — 1) (422 +4y2 — 1) m? (2zo + 1) (423 + 4y2 — 1)
ol = — O = Oq =
! 2w —3 | ° —8x3 + 4o — 8y3 U 4ad + 8xo + 4y2 + 3
(4.37)
After inserting the values of {6;}3 and {¢;}3, K, K} becomes
KhKZ; = diag(o-h 01,02,02,03, 0-3) (438)

It is found that oy = 09 = o3 if and only if the MP bears the shape of an equilateral triangle,
ie., s3=m/0, v3/2, 07, the corresponding parameters being

Oy = 03 = 0; = £60°, € = Fey = ez =+ arctan(\/§/2)rad = +0.6155rad = £+35.2644°
(4.39)
which represent two different postures, under which II; passes through the edge S;S; or S; Sk,
for distinct ¢, 7, k, as stated above. Moreover, each pair of lines of the actuated wrenches
must make an angle of 35.2644° w.r.t. plane II, of the MP triangle. A possible isotropic
design is depicted in Fig. 4.7, using the Stewart-Gough platform as an example®, where we

chose the case for which IT; passes through S;S,. 0% being m?/3 in this case.

On the other hand, when the shape of the MP triangle is not equilateral, and the operation
point is chosen in the MP plane, it is shown that isotropy is not possible. However, the above
analysis indicates that under some postures, the product K, K can be diagonal, with only
three distinct values, and its condition number can be well bounded with proper choice of

the MP shape. For example, if we choose

s3 =m[1/4,1,0]" (4.40)

8We choose the Stewart-Gough platform as an example because its actuated-wrench axes are parallel to
its six limbs, making it illustrative for the demonstration of the isotropic designs. Other three-limb PKMs
can also be designed once the layout of the actuated wrenches is known, e.g., with the method proposed by
Tsai and Lee [71].
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Figure 4.7: An example of an isotropic Stewart- Figure 4.8: An example of an isotropic Stewart-
Gough platform with the operation point at the Gough platform with the operation point lying
centroid of the MP triangle outside of the plane of the MP triangle

then we have either

39m? 3m? 13m?
= = = 4.41
01 76 , 02 14 , 03 42 9 ( )
or
3m? 13m? 39m?
_ = — = 4.42
01 10 , 09 60 , 03 74 9 ( )

thereby yielding a condition number xz of either 1.065 or 1.069, which is small enough to
guarantee accuracy and the homogeneity of the motion capacity of the MP along different
directions. A mapping represented by a given n x n matrix A carries the unit ball in the
domain space into a n-axis ellipsoid in the image space. The mapping, and hence its matrix
representation, is said to be isotropic when the unit ball remains a ball. We can now define

an index of distortion ¢ as
v = logyy(k) € (0, 00) (4.43)

which vanishes when the Jacobian matrix is isotropic, and becomes unbounded when the
matrix is singular. To this end, we call a posture “quasi-isotropic” when all the rows of K,
are orthogonal to each other, while the distortion of K} is sufficiently small, e.g., between 0

and 1.0, thereby guaranteeing accuracy and the homogeneity of the motion capacity of the
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MP along different directions.

It is noteworthy that the MP triangle must be an acute triangle; otherwise, the character-
istic length, as per Eq. (4.24), becomes a complex number, meaning the set of equations (4.22)
and (4.23) cannot be satisfied simultaneously. Moreover, it appears that the closer the shape
of the MP is to an equilateral triangle, the smaller the condition number it can achieve.
However, it is noteworthy that even for an acute MP triangle, we did not show that the con-
dition number is minimum under quasi isotropy. Hence, strictly speaking, the characteristic
length in Eq. (4.24) is not necessarily the one that minimizes the condition number globally.
However, the condition number under quasi isotropy is quite close to unity, using the quasi
isotropy and the corresponding characteristic length should be sufficient in most situations:
When K, K7 becomes diagonal, the different rows of Kj, are orthogonal to each other; more-
over, a small condition number means that the Euclidean norms of the rows of K, are “close”
to each other, which brings the PKM close to an isotropic posture, thus guaranteeing the

accuracy and homogeneity of the motion of the MP.

4.2.2 The Operation Point Lying Outside of the MP Triangle

Next, we address the case when the operation point lies outside the MP triangle, which
is needed, e.g., when a tool is attached to the MP triangle. Let Cj denote the ortho-centre of
the MP triangle, and C the operation point. According to Eq. (4.18a), CoC must be normal
to the MP plane in order to yield isotropy, as shown in Fig. 4.6. Moreover, we label the plane
composed of @ and @ Y1, that composed of @ and @ Y9, and that of k@ and @
Y3. Furthermore, the relation p, x p3 L f; indicates that f; must be coplanar with p, and
p3; hence, f; is a vector parallel to the ¥; plane. Similarly, £, || X2 and f3 || 3. Moreover,
the condition (fy x f3) - p; = 0 indicates that the three vector factors are coplanar. This is
possible only when f; or f3 coincides with p;. A similar analysis for the last four columns of

K, K7 indicates that

f H ps3, f5 H pi, f3 H p2 or f; H p2, £ H p3, f3 H P1 (4-44)

It can be verified that the condition h; L f; naturally holds, given the previous directions of
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Once their normals {f;}} are available, the planes {II;}} are defined, together with the
unit vector parallel to the intersection line of II; with II4, denoted d;, where d; || n x f;.
Then, the unit vectors e; and g; can, again, be obtained upon rotating d; about f; through
an angle ¢; and ;, respectively. It is noteworthy that the expression for the characteristic
length, in Eq. (4.24) no longer holds; we thus have seven unknown parameters, {¢;}3, {v;}3
and L. After inserting them into the expression of K,K7?, we obtain six distinct diagonal
entries and fifteen distinct off-diagonal entries, among which 12 of the off-diagonal entries
bear a common factor that is a linear combination of m? and L?. Hence, that term should
be zero in order to make all the 12 entries vanish. In this way, we obtain the characteristic

length, which, is shown to be

L=+/L%—h? (4.45)

where Lg is the characteristic length when the OP is selected as the ortho-centre Cy of the
MP, as per Eq. (4.24), and h is the distance from the operation point C' to the MP plane®.

Upon recalling the expression for the characteristic length, we are left with three non-zero
off-diagonal entries and six distinct diagonal entries, that should equal the same constant, o%
under isotropy, thereby ending up with nine equations and seven unknowns. Since these
equations are extremely lengthy if we leave s3 as unknown, they are not included here.

However, when s3 is specified, the display becomes manageable. For example, if we use the

9In order to make L. a real number, the distance from the operation point C to the MP plane must be
smaller than L.
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same s3 as shown in Eq. (4.40), the nine equations'®, after simplification, yield

—38411/25612 4 169sin (y1 + €1) + (2535 — 25617) cos (11 — €1) + (17920 — 1521) cos (11 + €1) = 0
—25611/25602 + 153sin (2 + €2) + (2295 — 435202) cos (12 — €2) + 6 (12800% — 51) cos (y2 + €2) =0

—665611/25612 + 25sin (3 + €3) + 25 (230402 + 481) cos (v3 — €3) + (222720% — 4225) cos (3 + €3) = 0

—384v/25612 + 169v sin (261) + (17920 — 1521) cos (2€1) — 25602 + 2535,
819202 + 5408 me=on

—3841/25612 + 169w sin (271) + (179202 — 1521) cos (2v1) — 25602 + 2535
819202 + 5408 =

—2561/25602 + 153w sin (2€3) + 6 (128012 — 51) cos (2€) — 43520 + 2295 o

68 (2560 + 153) -

—256v/25612 + 153vsin (272) + 6 (128002 — 51) cos (272) — 435202 4+ 2295
68 (25612 + 153) o=

—66561/25612 + 25v sin (2€3) + (222720% — 4225) cos (2€3) + 5760002 + 12025
800 (25612 + 25) =

—66561/25612 + 25v sin (273) + (2227202 — 4225) cos (273) + 5760002 + 12025
800 (25612 + 25) T o

(4.46)

where v = h/m, which yields isotropy when 013 = 015 = 091 = 092 = 031 = 032. Since
we have nine equations and only six unknowns, this system does not admit a compatible
solution, and hence, we cannot make all six 0;; identical—as required by isotropy. However,
considering the symmetries among the last three pairs of Eqs. (4.46), we can make these
values equal by pairs, i.e., 011 = 012, 021 = 0922, 031 = 032. To this end, we define 7; such
that tan7; = r;/s;, where r; and s; represent the coefficients of cos(2¢;) and sin(2e;) of the

fourth, sixth and eighth equations, which leads to
2¢; +2v; + 21, =7+ 2km, k€ Z (4.47)

Moreover, after inserting this expression into the first three of equations (4.46), we can find

their difference, and eventually, obtain their values. For example, for the given s3, we obtain

10As stated above, two choices for the directions of {f;}$ are possible; we choose f; || ps, f2 || p1, f5 || P2
for demonstration, the other case being handled likewise.
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1 —640002 — 1521 + arct 179212 — 1521 LT
€ — — arccos arctan —
1=5 25612 — 2535 3841v/25612 + 169 2
1 2 (2560° +9) 3 (1280v% — 51) ™
€2 = — | —arccos 3 -+ arctan + -
2 2561/ — 135 128vv/25612 + 153 153 2
1 < (43521/ + 169> + arct < 2227212 — 4225 > N w)
€ — — arccos arctan —
579 230412 + 481 66560725602 + 25/ 2 (1.48)
1 —640002 — 1521 © arct 179212 — 1521 s ’
— — | arccos arctan —
n=y 25612 — 2535 3840V/25602 + 169/ 2
1 2 (25602 + 9) 3 (128002 — 51) ™
V2 = 5 | arccos | ———5——57 | T arctan + =
2 25612 — 135 128vv/256v2 + 153 2
1 < (43521/2 + 169> + arct < 2227212 — 4225 > N 77)
= —larccos |\ ——————————— arctan -
=g 230412 + 481 6656025602 + 25/ 2
and
KK — m2 dia ( 48672 " @ 48672 " Q 72 n § 72 n § 507 — 332802 507 — 33281/2)
- &\ 25602 — 2535 " 2’ 25602 — 2535 | 2’ 25602 — 135 | 4 25602 — 135 | 4’ 460802 + 962" 460812 + ?62 :
4.49

With these relations'', we guarantee that K,K? bears the form of a diagonal matrix with
three distinct entries; this type of posture, although not isotropic, yields a small condition
number under a proper choice of the design parameters. For example, when v = 0.1, kp =

1.05848.

If we further impose o1; = 091 = 031 = 0%, required for isotropy, it will be found that
this happens only when the MP bears the shape of an equilateral triangle, the solutions then

becoming

1 1 9 6% — 1 7r
€] = €3 = €3 = 3 <— arccos (5 (12V + 1)) + arctan <m) + 5)
=y =y = 1( (1 19 +1)) ©aret (W——l) +E> (4.50)
1= =73 =5 | arccos | 3 (12v arctan | — NerEw 5

1
o (§ —20%)m?
"The values of €; and ; are obtained upon assuming e; = —y; — 7; + 7/2; it can be readily shown that
if we assume €¢; = —y; — 7; — 7/2, then the corresponding result can be obtained simply upon exchanging

€; and +y;; moreover, if we substitute €; and (or) «; with €; + m and (or) «; + 7, then the condition number
does not change. In summary, the foregoing results determine two lines in {II;}3; as long as e; and g; are
parallel to these two lines simultaneously, the corresponding condition number remains constant.
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when f; || ps, f2 || p1, f3 || P2, or

€1 = €3 =¢€3=— | —arccos | = (—12v° — —arctan | ———— —
TR 3 6vv3Z+1) 2
1 1 612 —1 T
=~y =3 = — [arccos | = (—1202 — 1) | — arctan | ——— | + —) (4.51)
M =72=73 5 ( (3( )) (GV —3u2+1> 5

when f) || ps, £5 || pP3, f5 || p1. It is apparent that for an equilateral MP, when the distance
from the operation point to the MP plane is smaller than Ly, with Ly calculated as per

Eq. (4.45), there always exist postures that yield isotropy.

The isotropic design is displayed in Fig. 4.8 for the case of an equilateral MP with v = 0.3,
as described by Eq. (4.50) for illustration. The display of the quasi-isotropic design, as
described by Egs. (4.46) and (4.48), is similar to that of Fig. 4.8; it is hence omitted for
brevity. Interestingly, in order to render isotropy, II;, must also pass through one of the edges
of the triangle 575553 when the operation point is outside the MP plane, just as the case
when the OP is in the MP plane. For example, for the first case described by Eqgs. (4.44),
we have f; || ps L S155; then, S1.Ss passes through a point (S7) on II; and perpendicular to

its normal; hence, II; passes through S;.55.

Finally, isotropy can be achieved only when the MP triangle is equilateral, and the OP is
chosen to be on the line normal to the MP plane and passing through its ortho-centre; when
the MP is not an equilateral triangle, it is possible to find some postures that we call quasi
isotropic, that bear a small condition number. Formulas for the corresponding parameters

were provided.

4.2.3 The Isotropy of the Inverse Jacobian Matrix

Next, we briefly discuss the isotropy of the inverse Jacobian matrix, denoted Dj,. Since
D,, is a diagonal matrix, its isotropy is obtained when all its six diagonal entries have identical
absolute values; moreover, its ith diagonal entry is equal to the reciprocal product [89] of the
two axes associated with the ith pair of actuated twist and actuated wrench, fori =1,...,6.
It has been shown in the previous derivation in Section 4.2 that the axes of the six actuated

wrenches are already determined by the isotropy of Kj; however, one can still change the
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location and directions of the axes of the actuated twists to make D, isotropic.

Let us take an arbitrary three-limb, six-dof PKM—whose MP is connected to the three
limbs via three passive spherical joints—as an example. We assume that the axes of the
actuated wrenches of the jth limb are given by &; and G;, for j = 1,2, 3, while the realizations
of the first three joints of each limb are not yet known. Then, the passive joint can be found
such that its axis P; is reciprocal to both &; and G;, meaning P; is either a line at infinity
whose direction is normal to both e; and g;, or a finite line that lies in the plane defined
by & and Gj, but does not pass through S;. As for the choice of the location of the two
actuated twists, we simply need to guarantee that they are reciprocal to only one of &; or
G;. Thus, there are infinitely many choices for these actuated twists, which yields a large
margin of manoeuvre to change the values of the entries of Dj. Hence, it is a simple matter
to make Dy, isotropic. It is noteworthy that, when the actuated joints bear different units,
e.g., when the two actuated joints in each limb are a P joint and a R joint, the entries of
D bear different units; thus, a pertinent characteristic length is needed for the D matrix, as

well.

Since the design for isotropy of Dy, is straightforward, it is omitted for conciseness.

4.3 Discussion

In this Chapter we discussed the DfI of a large class of six-dof PKMs whose actuated-
wrench axes intersect pairwise. Based on the symbolic form of the inverse of the forward
Jacobian matrix, the isotropic design is investigated here, which indicates that isotropy is
feasible only when the MP bears the shape of an equilateral triangle and the operation
point lies on the line normal to the MP plane and passes through the orthocentre of the
MP. Moreover, for a general shape of the MP triangle, there exist some postures that we call
quasi isotropic, under which the product K, K] becomes diagonal, with three distinct entries,
whose condition number is small, say, below 10.0. The expressions for the corresponding
parameters are provided, not only offering a quick way to find such layouts, but also providing
a better insight of how these parameters affect the condition number. While the design for

maximum dexterity, in general, leads to an optimization problem, requiring a mathematical-
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programming solution, the problem studied here allows for isotropic solutions, that can be
found by equation-solving. Furthermore, we showed that the solution can be expressed by
means of formulas and provided fairly general design guidelines. This is more advantageous
compared with iterative methods targeting design for isotropy, used, e.g., by Tsai et al., since
the latter require an initial guess and can only provide one solution at a time. This work
covers the isotropic design of a large class of PKMs, whose six wrench axes intersect pairwise.
These include all the three-limb parallel robots whose limbs, each, bears one passive spherical

joint at one end, and Stewart-Gough platforms with three attachment points at the MP.

So far we have provided the analyses and optimization of the SDelta robot, and the design
for isotropy of a large class of three-limb PKMs whose limbs, each, bears one passive spherical
joint at one end, based on the results (the expression of K~! in symbolic form) found during
the optimization of the SDelta. Next, we investigate the last topic of this dissertation, i.e.,
the analyses and optimization of an alternative architecture—the 3-CCC PKM. Compared
with the SDelta, this architecture bears different yet interesting features, making it not only
a good candidate for high-speed and shaking operations, but also in many other possible

applications, such as machine tools, medical devices and motion simulators, among others.

70



Chapter 5

THE 3-CCC PARALLEL-KINEMATICS MACHINE

An alternative architecture, i.e., the 3-CCC PKM is investigated in this chapter. Given
that there are infinitely many different layouts of the C joints involved here, this in fact
represents a large class of PKMs. Firstly, the design for isotropy of this class is investigated,
based on which we find the conditions on the design parameters yielding a continuous set of
isotropic postures [91]. This feature is quite advantageous and rare, probably unique, for six-
dof PKMs. The conditions yielding this feature are investigated in detail. Next, the forward-
displacement, singularity and workspace analyses of this class of PKMs are conducted, which
reveal many interesting features. For example, their forward-displacement analysis allows
for a simple formulation, which can be solved in closed form; the rotation and translation
motions of the MP are decoupled, singularity being determined solely by the MP orientation,
and occurring only under very large rotations. These PKMs bear a large workspace volume,
among other properties. These features make this class of PKMs promising in many possible

applications.

The concept of the 3-CCC PKM was first proposed by Daniali et al. as the six-dof
version of a more general class of PKMs, i.e., the double-triangular mechanisms, whose
BP and MP are, each, a planar or a spherical triangle [92-94]. The forward-displacement
analysis, singularity analysis and optimum design of this class of robots were the subjects of
the foregoing references. However, the main subject of these references is the disclosure of a
novel concept, the six-dof version of the double-triangular PKMs as a generalization of their
three-dof counterparts, along with their kinematic relations. In fact, the kinematic relations
derived therein were not in their simplest form, which hides the kinematic meaning of the
relevant quantities involved, and leads to unnecessary constraints on their isotropic design.

As a result, many interesting features of the 3-CCC PKM were not revealed in those papers.
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We have re-derived the kinematic relations of the 3-CCC PKM in a more systematic way,
namely, using screw theory, which yields simpler kinematic relations. From these relations,
we found several new, interesting features of this class of robots. It is noteworthy that the
kinematics analysis included here is more general than those in the previous works, since
we do not require any two of the three C-joint axes to intersect or be perpendicular to
each other. Moreover, based on our kinematic analysis, we found a rich set of possible
isotropic architectures, as some conditions imposed in the previous references turned out to
be unnecessary to attain isotropy. Finally, our analysis reveals the existence of a line of

1sotropy, namely a locus of isotropic designs, out of which a few are instantiated.

More recently, some researchers have conducted the analysis and optimum design of 3-
CCC PKMs [95,96], in which the middle cylindrical joints are actuated. This class of PKMs
suffers in that a) their actuation is quite challenging to implement, and b) at least one motor
in each limb is floating, thereby increasing significantly the inertia load on the system. This

feature invariably affects the load-carrying capacity and dynamic response of the robot.

5.1 Kinematics

5.1.1 The Derivation of the Jacobian Matrix

The general architecture of a 3-CCC PKM is displayed in Fig. 2.5. Let us consider the
1th limb, for ¢ = 1,2,3. First, we define the unit vectors parallel to the axes of the three
cylindrical joints in the ith limb as a;, r; and b,—see Fig. 2.5. Moreover, pu;, pr; and py;
are the vectors pointing from an arbitrary point on each of the three corresponding axes to
the operation point C, fixed to the MP. Next, we array the joint variables of the 7th limb
into vector ; = [0ia, Tia, Oir, Tir, Oi, Tip) L, With 6;; and r;; representing the angle of rotation
and the translation of the cylindrical joint J of the 7th limb, for J = a, r, b; this leads to the

relation

JO,=t, i=1,23 (5.1)
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where ; = [éiayhaa Oirs Tirs 9'ib77'°ib]Ta and
3, — b= (5.2)
a; X Pai & T; X Pri T by X pyi b; ¢

again, for ¢ = 1,2,3, with t denoting the six-dimensional array of the twist of the moving
platform and O the three-dimensional zero vector. Moreover, we assume that the cylindrical

joint whose axis is parallel to a; is actuated.

Now we seek the kinematic relation of the 3-CCC PKM, which bears the form
Kt = D¢ (5.3)
where

¢ = [élaa éQa; éSa; 7;‘1G7 7;2a7 T“3a]T (54)

is the six-dimensional array of C-drive rates, D is the drive Jacobian, and K the forward

Jacobian. Now we find the rows of K independently. First, we define K as
K= [krtla krt27 krt37 ktrl; ktr27 ktr3]T (55)

where k,;; and k;.; represent six-dimensional arrays, for ¢ = 1,2,3; next, we regard the
foregoing vector arrays as screws with their upper and lower three-dimensional blocks in axis
coordinates', that are reciprocal [97] to all but the first or, correspondingly, to the second
columns of J;, for i = 1,2,3. It can be readily seen that arrays k,;; are, in fact, screws with

infinite pitch, their blocks, represented in axis-coordinates, as
ki = [(b; x )", 07", i=1,2,3 (5.6)

It can be verified that the inner product of k,;; with the last five columns of J,—the reciprocal
product of the corresponding screws—indeed vanishes. As for ky,;, let us assume that it bears

the general form of a screw:

Ky = [(s; X psi + kisi)T,sT]T, i=1,2,3 (5.7)

LA screw is represented in axis coordinates when the direction vector of the axis of the screw is in the
lower block of the screw [97].
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with s; representing the unit vector parallel to the axis of the screw, as yet to be determined.
The inner product of ky,; with the 4th and 6th column of J;, i.e., the reciprocal product of

the two screws, must vanish:
sir;=0, s'b;=0 (5.8)
Hence, we can assign s; as
s;i=b; xr; (5.9)
Next, the inner product of ky,; with the first column of J; must vanish as well, i.e.,
(si X psi + kisi)Ta; + S?(ai X Pai) =0 (5.10)
which, after simplification, yields
(a; x Si)Tpsi +a; - s;k; = (a; X Si)Tpm' (5.11a)

Similarly, we can derive the inner product of k;.; with the third and fifth columns of J;,

namely,

(I‘Z' X Si)Tpsi + r;- Sikfi = (I‘i X Si>Tpm‘ (511b)

(b; x 8;) ' psi + b - sk = (b; X 8;)" Pus (5.11¢)

Now we have three linear equations, (5.11a—c), with four unknowns (the three components
of ps and k;), and hence, we need one fourth equation. Since the component of p; along
s; does not affect the cross product s; X ps;, Psi is indeterminate; we can thus define p; as

normal to s;, to make it of minimum norm. We thus obtain four equations in four unknowns,

ie.,
(ai X Si>T a; - S; (ai X Si>Tpai
(I"z' X Si)T r;-s; Psi| (I"z' X Si)Tpri (5 12)
(bi X Si)T b; - s; k; (bi X Si)pri
st 0 0

Moreover, we notice that s; is normal to r; and b;; after rearranging the four equations given
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above, and casting them in block form, we obtain

E, 0 si Z;
P = (5.13)

ng hz kz 20i

where
(bz X Si)T
Ei= |(r; xs;)" ER¥™ gi=a;xs;, €R® h;=a;-5,€R
s

(5.14)

(b; x Si)pri
€ERY 2= | (r; xs)Tpy | €ER?, 20, = (a; X 5;) " pai € R

0

Next, we solve for [pL, k;]7 from Eq. (5.13), using the formula for the inverse of a block

matrix:

~1
Psi E; z;
= (5.15)
ki —h;lngEjlzz -+ h;lzm
Hence, by resorting to reciprocal bases [98] to derive E; !, py; can be found, upon simplifica-

tion, as

s
Ag

) PSP (5.16)

i (Fz‘ X Si)Tpri

Psi =

where Apg; denotes det(E;), which can be readily obtained by means of the double mixed

product of its three row vectors. After simplification,
Ap, = |sill? (5.17)
Therefore,

b; % ;) Py
Psi = [_I'i bl] ( ) Pe (518)

(I‘i X Si)Tpri

k; then following from Eq. (5.15). Now we have a general expression for the K matrix of
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Eq. (5.3), associated with a 3-CCC PKM, regardless of which C joint is actuated; the angles
and the distances between any neighboring pair of those axes (A;, R;, B;) are arbitrary.

Hence, these relations are fairly general.

Next, we limit ourselves to the case whereby the axis of the ¢th-limb cylindrical joint is
the common perpendicular of the first and third cylindrical axes, as Daniali et al. did [92-94],
which greatly simplifies the pertinent relations. This class of robot is shown to entail many

simplifications in the design and analysis, and hence, we will henceforth focus on this class.

Let the intersecting points of R; with A; and B; be L; and U;, respectively, as shown in
Fig. 2.5; it is found, that due to the relation b; L r;, vectors b;, r; and s; form an orthonormal

triad, and hence, an orthonormal basis, matrix E; then simplifying to

(bl X SZ')T —I'lT
Ei = (I’i X SZ')T — bZT (519)
s s’

which is, in fact, proper orthogonal. Indeed, s; is of unit norm in this case, the axis of the
second and third axes, R; and B;, intersecting at point U;. We can thus choose this point to
represent the Pliicker coordinates of the foregoing axes. If we denote vector U;C' as p;, then

the derivation of p; simplifies to

Psi = (ri - pi)r; + (b; - pi)b; = pi — (Pi - 8i)si (5.20)

which is nothing but the projection of p; onto the plane defined by the intersecting axes of
the two passive cylindrical joints. Moreover, even though we assume pg to be normal to s;
to obtain a unique solution, this is not necessary because a component along the s; direction

does not affect the inner product of py; and s;. As a result, we can simply assign py; as

Psi = Pi (5.21)

which is a vector pointing from the intersection of the axes of the two passive C-joints, U;
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to the operation point C. Moreover, r; L a; leads to

1
—h;lg?E;1 = — (ai X SZ')T[—I'i, bi, Si]
a; - S;
1 T 7 (5.22)
= - [—(si x 1;)" a;, (s; x b;)" a;, 0] '
a; - S;
1
= — [bla;,0,0]
a; - S;
k; now being calculated accordingly; after straightforward simplifications, we obtain
1 (5.23)

ki = {la; x (b; x ;)] - (p; + 7rix;) + b; - a;(r; - p;)}

a; * S;
with r; denoting the distance between A; and B;, namely, the variable length of the middle

link. Furthermore,
a; X s; = a; X (b; x1;) = (a; - 1;)b; — (a; - by)r; = —(a; - by (5.24)

Then, k; simplifies to

1 a; - b;

ki = —(a; - by)r; - (ps + riry) + by - a;(r; - pi)] = — i (5.25)
(@ b (b ) bl p)) = —
Consequently, K bears the form
st o7
s o’
st o7
K= (5.26)
(s1 X p1 + kis))T st
(s3 X P2 + kosy)T st
_<S3 X P3 + k‘gSg)T Sg:_
where
a; - b;
S; = bz X r;, ]{52 = — T; (527)
a; - S;
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Next, D, which appears in Eq. (5.3), is obtained as a diagonal matrix, namely,
D= diag(drﬂa drt27 drt?n dtrh dtr?a dtrS) (528)

whose entries can be expressed as

a;

drti - [S,Zra OT] = 8; -, 1= ]-7 27 3 (529)
a; X Pa;
and
T T 0 .
dir; = [(Sz X Pp1+ /ﬁSz) = ] =s;-a;, 1=1,2,3 (5-30)
q;

As a result,

D = diag(s; - a;,s2 - a,83 - a3, S1 - A1, Sy - A, S3 - A3) (5.31)

Moreover, if we define the angle between the axes of the actuated and the distal C-joints,

namely, the angle between a; and b;, as a;, then?
si-a; = (b; xr;)-a; = (a; x b;) - 1r; =sinqy (5.32)
and hence,
D = diag(sin ay, sin a, sin ag, sin o, sin ag, sin a3) (5.33)
Moreover, k; also simplifies to
ki = —(cot a;)r; (5.34)

It can be readily verified that the inner product of k,; with the first and the last four columns

of J; indeed vanishes; the proof being straightforward is thus omitted.

Next, we verify the decoupled property of this type of PKM and offer a brief singularity

analysis to show that singularity depends only on the orientation of the MP. If we represent

2This angle, appearing in both K and D, is a function of [a;]p, [b;]ar, and the orientation of the MP. It
is noteworthy that we assume that the set {a;, b;, r;}3 forms a right-handed system, i.e., its double product,
in the given order, is positive.
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K, D and ¢ in block form, namely,

S O ) 0,
K= y D= dlag(Dg, Do), ¢ = (535)
T S r,
with
SlT (Sl X Pp1+ /f1S1)T

S = Sg y T = (SQ X P2 —+ ]{,’QSQ)T

s3 (s3 X p3 + kss3)”

D, = diag(sin ay, sin aw, sin a3), (5.36)
014 T'la

0o = [0 |: Ta= |1
034 T'3a

then, the kinematics relations in Eq. (5.3) can be rewritten as

Sw =Dud,, Tw + S¢ = Dyt (5.37)

from which it is apparent that the angular velocity is only dependent on the angular rates
of the three actuated cylindrical joints, which means that the rotation is decoupled from the
translation at the velocity level. However, the velocity ¢ of the operation point is linearly
related to the angular velocity of the MP. Next, we conduct a brief singularity analysis for
this robot. Firstly, the singularity locus can be obtained upon setting the determinant of K

(or of D) to zero?; since K is a block-lower-triangular matrix, its determinant Ag reduces to

Ak = (Ag)? (5.38)
where Ag denotes det(S). As a result, the singularity of K is defined by the condition

AS = (51 X Sg) -s3 =0 (539)

3There is another type of singularity involved in PKMs, which is the limb singularity. It can be readily
shown that the limb singularity occurs iff D becomes singular for the 3-CCC PKM.
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where
S; = bz X T; H bz X (ai X bl) =a; — bl COS ¢y; (540)

which is also affected only by the orientation of the MP. As for D, it becomes singular when
a; || b; for some i, 1 = 1, 2, 3, which is obviously only affected by the orientation of the MP.
To summarize, the singularity is totally determined by the orientation of the MP. Moreover,
even though the above analysis is conducted at the velocity level, the rotation of the MP of
the proposed robot is in fact decoupled from its translation at the displacement level as well,

which can be verified from the forward displacement analysis in Section 5.3.

As stated at the beginning of this chapter, the kinematics of this class of PKMs was, in
fact, investigated by Daniali et al. [92-94], but their derivation yields cumbersome forms of K
and D; for example, our D is diagonal, which dramatically simplifies the analysis and brings
about novel results. Moreover, the six rows of K in the same references do not represent
the screws associated with the corresponding joints. As a result, the evaluation of these
matrices is cumbersome. Furthermore, it will be shown that the derivation therein imposes

unnecessary constraints on the isotropic design, to be discussed in Section 5.2.

In summary, the proposed robot entails simple kinematics, by virtue of the rotation of the
MP being decoupled from its translation. This not only simplifies significantly the control
and analysis of the robot, but also makes the singularity analysis dependent only on the
orientation of the MP, thereby making singularity avoidance dramatically simpler. These

features are rarely seen in six-dof PKMs.

5.1.2 The Inverse Jacobian and Actuator Jacobian

In Subsection 5.1.1 we obtained the kinematic relation of the 3-CCC PKM between the
MP twist t and the six-dimensional array of C-drive rates ¢ Based on this result, we derive

the kinematic relation between the MP twist and the six-dimensional motor-rate array as

Kt = Jo (5.41)
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where 'tﬁ = [@bLl, %—n, w'Lg, &RQ, ¢L3, ¢R3]T represents the array of the six motor rates, and

J=DJ,,

(5.42)

with J and J,, representing the inverse Jacobian and the actualor Jacobian, respectively.

Furthermore, J,, takes the form

1 1 0 0 0
O 0 1 1 0
Ito o 0 0 1
I =2
21 pp—pn 0 0 0
0 0 DPn —Pn 0
0 0 0 0 pp—pn

o O = O O

(5.43)

where if p represents the pitch of the C-joints, p, = p/(27) represents the normalized pitch,

meaning the pitch measured in mm/rad, to express it in SI units. It is noteworthy that the

above J,, is different from that of the SDelta, displayed in Eq. (3.9), which is solely due to

the different ordering of the six components of the C-drive array, as per Eqgs. (3.2) and (5.4).

5.1.3 Introducing the Characteristic Length

Before we conduct the optimization based on the condition number of the Jacobian ma-

trices, we need to render them dimensionally homogeneous. It is apparent that the four 3 x 3

blocks of both K and J,, bear different units. Next, we make them dimensionally homoge-

neous with the aid of the characteristic length L and some manipulations of the matrices.

Firstly, J,, is rewritten as
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where

1 1 0 0 0 O

O 01 1 0 O

, V210 0 0 0 1 1

P = dlag(17 17 17pn7pn7pn>7 W = 5 (545)

211 =10 0 0 0

0O 0 1 -1 0 O

0O 0 0 0 1 -1

the latter being orthogonal. As a result, Eq. (5.41) takes the form

the last equality holding because both P and D are diagonal, and hence, commute. Since D
and W are dimensionless, while K and P are not, we multiply both sides of the foregoing

equation by P~! and redefine the two Jacobian matrices as

st o7
st o’
K =P 'K = 5 o (5.47)
(s1 X p1+k181)" /pn 1 /D
(82 X P2+ kas2)" /pn ST /pn
(55 % Py + k585)T /p ST /D0
and
V2
D = TDW (5.48)
which leads to the mapping between t and 'l,b
K't = D'y (5.49)
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Now, if we want to make K’ dimensionally homogeneous, we recall the characteristic length

L, as yet to be determined, and redefine the MP twist and K, as

st o7
st o’
w st o’
t, = . Ky = (5.50)
T T T

¢ /L (s1 X p1+kis1)" /pn s1L/pn

(s2 X p2 + k232)T/pn S1TL/pn

_(53 X p3 + k3s3)T /pn SsTL/pn_

In summary, when taking the six motor rates as the input joint rates, the kinematic relation

of interest can be written as
Kty = Dy (5.51)

with D,, defined as

D, = —DW (5.52)

It is apparent that both K; and D;, are dimensionally homogeneous, in fact, dimensionless.

5.2 The Isotropic Design

5.2.1 Geometric Conditions for Isotropy

As discussed in Chapter 4, isotropy is achieved when its two Jacobian matrices bear the
condition number of unity, under which the six rows (columns) of the Jacobian matrices are
orthogonal, yielding high positioning accuracy and homogeneity of the MP motion along all
six directions of the Cartesian space [62,63,65]. Due to the simple form of the kinematic
relations for the 3-CCC PKM, this robot class admits an isotropic design, as shown below.

The isotropy requirement leads to two conditions, one for each Jacobian, namely,

DhD{ = 0} 1xs, K, K," = e (5.53)
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with K, and Dy, defined in Eqs.(5.50) and (5.52), respectively, op and ok as yet to be found.

First, we look at the K;, matrix in block form, namely,

S 03><3
K, = (5.54)
(1/p)T  (L/pn)S
Hence,
Ss” 1/p,)STT
KK = (1/pa) (5.55)

(1/pn)TS" (1/p2)TT" + (L*/p?)SS”

When K, is isotropic, SS” is proportional to the 3 x 3 identity matrix. Moreover, from
knowledge that the rows of S are all of unit Euclidean norm, we conclude that S, in fact, has
to be an orthogonal matrix. Moreover, (1/p,)TS” has to vanish, and hence, by virtue of the

orthogonality of S, T must vanish, i.e.,

T = pnOSXSS = O3><3 (556)
Now K, K7 becomes
. [1 o
K, K7 = (5.57)
O (L*/pa)1

with 1 representing the 3 x 3 identity matrix.

Moreover, L is defined as the value that maximizes the dexterity, which is achieved when
the condition number equals unity, or equivalently, when the robot is under an isotropic
configuration. It is obvious that, in order to render K, isotropic, L?/p? has to equal to
unity; hence, the characteristic length is nothing but L = p,, i.e., the normalized pitch for

the proposed class of isotropic PKMs.

Finally, in order to render K, isotropic, we need the set {s;}3 to be orthonormal, while T
must vanish. Now, given that each row of T is composed of two orthogonal components, as
per Eq. (5.36), s; X p; and k;s;, this means that these two components have to both vanish,
namely, s; || p; and k; = —r; cot o; = 0. The last condition yields a; L b;; moreover, r; is the

common perpendicular to a; and b;, and hence, a;, r; and b; form an orthonormal triad under
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an isotropic posture, for © = 1,2,3. Since each axis has two possible directions, we choose
r; to be in the same direction as a; X b;. Under these conditions, s;, = b; X r; = a;. Then,
the condition for {s;}3 to be orthogonal is equivalent to requiring {a;}? to be orthonormal.

Moreover, the condition p; || s; is equivalent to p; || a;.

In summary, the isotropy conditions for K follow:

1. the set {a;}? is orthogonal
2. aq; J_bl, for ¢ = 1,2,3

3. s; || pi or, equivalently, a; || p;

It can be readily verified that these conditions also lead to D, isotropic, and hence, the
robot can attain an isotropic posture. This set of constraints is different from that obtained
by Daniali et al. for isotropy [92-94]. In fact, different from the conditions reported in the
foregoing papers, the conditions derived here allow for a continuum of isotropic architectures,

as shown below.
5.2.2 Realization of the Isotropic Design

5.2.2.1 The Design of the Base Platform

Based on the conditions derived above, we can set up the geometric conditions under

which the robot is isotropic. The design procedure is described below.

We denote the coordinate axes of the BP frame as X;,Y; and Z;, respectively, as shown
in Fig. 5.1. Since {a;}} is orthonormal, we define these vectors as parallel to the coordinate
axes of the base frame without loss of generality, namely, a; = [1,0,0]7, a; = [0,1,0]T and
az = [0,0,1]7. The three axes A; do not necessarily intersect each other; hence, there may be
an offset between each pair of these. Without loss of generality, we define the BP frame such
that the X axis coincides with A, and the Z; axis coincides with the common perpendicular
of A; and Aj, as shown in Fig. 5.1. In this way, we define the offset vectors {d;}3, with d;
directed from the ith coordinate axis of the base frame to A;, i.e., d; = 0, dy = dra3 and

d; = ds1a; + dspas, with obvious definitions for ds;, for © = 1, 2. Then, the layout of the
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three C-joint axes on the BP is uniquely defined by {a;}3, do, d3; and dz;. When the last
three parameters are prescribed, all the possible layouts of the BP can be obtained; hence,

ds, d3; and d3o are three design parameters, which fully characterize the layout of the BP.

A
Z1 I Us
Ls S L
Co !, Uy
///'/ L2 \ “42
7 - Yl

X1
Figure 5.1: The determination of the BP and MP using d;, co and p;

5.2.2.2 Design of the Moving Platform

According with the isotropy conditions, we can now design the MP: First, we choose an
arbitrary point Cy in the BP frame, with the position vector co = [co1, coa, co3]”, in BP-frame
coordinates, which is the position vector of the operation point C at the reference posture,
as illustrated in Fig. 2.5. Cy is termed the characteristic point, as this point characterizes
the robot isotropic posture. Next, we define three lines {A}}3 that pass through Cy, with
A’ parallel to A;, for i = 1,2,3 or, equivalently, to the three BP frame axes. Moreover, we
choose three arbitrary points U; on {A/}3, as shown in Fig. 5.1, where U;, introduced earlier,
represents the intersection of R; with B;, as shown in Fig. 2.5. Then, R; can be found as the
perpendicular from U; to A;, namely, L;U;; moreover, {a;, r;, b;}? form three orthonormal
sets under an isotropic configuration; hence, we can find b; as r; x a;, and B; as the line

passing through U;, and parallel to b;.

Since p; = m is parallel to the ith axis of the BP frame, the position vector u; of U;

4As there are two possible directions of b;, we assume that {a;, r;, b;}3 is a right-handed triad.
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can be obtained as

Co1 + 01 Co1 Co1
u; = Co2 , U2 = [coo + 09| , U3 = Co2 (558)
Co3 Co3 Co3 + 03

in BP-frame coordinates, where {0;}3 represents the offset from U; to Cy. Moreover, as L; is

the intersection of A; with R;,

0 Co1 co1 — ds3;

I e s

LU = |cop| 5 LUz = 0 ; LsUs = | cpo — dso (5.59)
Co3 coz — da 0

in BP-frame coordinates. Furthermore, m = r;r;; as a result, r; can be obtained upon
normalizing m Moreover, it is apparent that r; only involves cy and the prescribed offset
{A;}3; once r; is determined, the direction of b; can also be determined as r; x a;. As a result,
all the directions involved in the isotropic posture are determined uniquely by the choice of
the characteristic point cg, besides the three design parameters ds, d3; and dso. As for the
distances o; (the magnitude of (7,8), they determine the distance between the three axes B;.
Hence, ¢ and d; suffice to define the MP. Moreover, the values for dy, d3;, dsz, co and {o0;}3
can be given arbitrarily; as a result, there are infinitely many possibilities to render the robot

isotropic.

5.2.2.3 The Feasible Set of Characteristic Points

For most robots, their isotropic postures, if any, are found in finite and discrete sets. For
the robots under investigation, however, due to their simple Jacobian matrices, we found
that, under proper dimensioning, it is possible to achieve designs within whose workspace
a continuous set of isotropic postures exists. This feature guarantees that the accuracy of
those properly designed robots attains its maximum within a large region of the workspace,
as opposed to isolated points, which is quite advantageous. To the author’s knowledge, this
feature has not been reported in the literature. Now we seek the conditions under which this

can happen.
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We assume that we have a 3-CCC robot at a given isotropic posture, and hence, a; L b,.
Moreover, we have to keep this relation at any isotropic posture; now, upon rotating the MP
by a rotation matrix Q without violating a; | b;, we have to satisfy the conditions below:

T T 2
a;b; =0, a; (Qb;) =0, [[bf|" =1 (5.60)
bl-Tbj =cosfi, 1=1,2,3,jF#1
where (3;; is a constant, representing the angle between the unit vectors b, and b;. Since the
rotation matrix can be characterized by three independent variables—the three components
of the vector in the Euler Rodrigues parameters [64], for example—the above conditions
form a system of 12 equations with 12 unknowns (nine from {b;}} and three from Q). The
above system is bound to have a discrete set of solutions. This means that we cannot find
a continuous rotation maintaining the above condition. As a result, for the set of isotropic
postures, if one exists, the MP has to keep a constant orientation under which a; 1L b; for
1 =1,2,3, i.e., the MP can only undergo a pure translation if the isotropic posture is to be

preserved. Then, the first two conditions for isotropy, introduced in Section 5.2, are satisfied.

Next, we consider the last condition, i.e., p; || a;, for ¢ = 1,2,3: Let us look at vectors
p;i = [ﬁ, where U; is the intersection of R; with B;. Since we have to keep (ﬁ parallel
to A; as the MP translates within the set of isotropic postures, the direction of (ﬁ must
be constant. Moreover, the operation point C' is fixed to the MP; hence, point U; must be
fixed to the MP as well, when the MP undergoes the pure translation required by the first
two isotropy conditions. This means that U; must be fixed to B;, i.e., there is no translation
between the MP and the upper link of the ¢th limb. Equivalently, the MP has to either
undergo a translation as a linear combination of a; and r;, for ¢ = 1,2, 3, or the translation of
the MP must be in the direction normal to the three vectors b;, for ¢+ = 1,2, 3. This is feasible
if and only if the set {b;}? is coplanar. Let us assume that this is the case and denote their
common unit normal as n. Once this condition is satisfied, when the MP undergoes a pure
translation parallel to n (starting from an isotropic posture), there is no translation between
the MP and the upper links of the limbs. Hence, all vectors a;, r;, b;, p; remain constant,
thereby preserving all three isotropy conditions mentioned at the end of Section 5.2, i.e., the

robot still finds itself at an isotropic posture.
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Further, we find the isotropy condition under which the set {b;}} is coplanar. Since we
already have the directions of r; parallel to L;U;, as per Eq. (5.59), finding the vectors {b}}3

parallel to the directions of {b;}? is straightforward:

b; = L,;U; X a;, =123 (561)
or
0 dy — co3 co2 — dso
b,1 = | Co3 | > b,2 - 0 ) bé = |ds; — cox (5~62)
—Co2 Co1 0

The condition that {b;}? be coplanar yields (b} x b)) - b; = 0; after simplification, this

condition becomes
dacoicoa + dsicoacos — dsacorcos — dadsicor = 0 (5~63)

which is quadratic in ¢o. This means that, as long as the chosen point of isotropy (at the
design stage) satisfies condition (5.63), {b;}? will be coplanar. Then, the proposed robot
will be able to achieve a set of continuous isotropic postures along the line passing through
Cy and parallel to n, the common normal of {b;}}, which can be found as the unit vector

parallel to bj x bl;, i # j, e.g.”,
Co1Co3
n || b} x b = coz(cog — da) (5.64)

Co3 (003 - d2)

5.2.2.4 Several Typical Layouts of the Proposed PKM

We have thus found the condition under which the robot can achieve a set of isotropic
postures. Since we have infinitely many choices, we make some further assumptions on the

BP frame to determine several typical layouts:

°b x bl is chosen because it has the simplest form.
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e Case I: If we assume that the three axes {A;}} intersect at one common point, i.e.,
dy = d3; = d3p = 0, then the condition in Eq. (5.63) naturally holds. This means that,
when the three orthogonal axes of the C-joints at the base platform intersect at one common
point, we can always find a set of motions of the MP along a line, that keeps the robot
posture isotropic. The said line passes through the arbitrarily chosen Cj, its direction
being found as that of b} x b, which turns out to be that of cg. This means that, when
the MP moves along the line connecting the origin and the chosen Cy (with the proper

orientation), the robot remains at an isotropic posture.

e Case II: We assume that two of the axes intersect, e.g. A; and As, i.e., ds = 0; then, the

above condition simplifies to
(d3aco1 — dzico2)co3 =0 (5.65)
which leads to one of two conditions, namely,
dsacor — dsicoa =0 or cp3 =0 (5.66)

That is, the chosen point of isotropy must lie in the plane of A; and Ajs, or the plane of the
origin and Ajs, in order to obtain a set of isotropic postures of the given robot. It can be
readily verified from Eq. (5.64) that the said line is, again, the line connecting the origin
with Cj.

N.B.: if we choose the axes A; as the edges of a cube of edge length ¢, then this item covers
two special cases: A; and Aj coincide with the X;- and Yi- axes, respectively, while A3

can be the line parallel to the Z;- axis, but passing through either [¢,0, 0] or [¢, ¢,0]T.

e Case III: Lastly, we assume that the lines are skew, namely, none of ds, ds;, d3s vanishes.
To simplify matters, and to make the robot more “symmetric”, we assume that dy = d3; =
d3; = (. This covers the case in which we choose three skew edges of the cube. In this

case, Eq. (5.63) simplifies to

(co2l — co1Co2 — Co2¢o3 + Cco1¢03)¢ =0 (5.67)
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but, since ¢ # 0, from the vanishing of the coefficient of ¢ in Eq. (5.67),

coz2(co1 — f)
Co3 = ———— (5.68)
Co1 — Co2
The surfaces composed of those points that can be used as points of isotropy are plotted
in Figs. 5.2 and 5.3, within the range of a cube with an edge length equal to ¢ and to 1.5¢,

respectively.

Figure 5.2: The surface of feasible points of Figure 5.3: The surface of feasible points of
isotropy within a cube of edge length ¢ isotropy within a cube of edge length 1.5¢

Furthermore, we know that the set of characteristic points must pass through point Cj, of
position vector cy. Considering the direction of the line given in Eq. (5.64), we can find the
line, and further conclude that the line intersects the X; axis at point H, of position vector

h, namely,

—Co1d2/(003 - dQ)
[h]s = 0 (5.69)

0

when viewed in the base frame (as indicated by the subscript). We can use this point to

locate the line of isotropy in the desired region, thus choosing from an infinity of possibilities.

From the above analysis, it is apparent that we still have a large margin of maneuver to
choose the layout of the robot while guaranteeing a set of isotropy postures. Hence, we have
a continuous set of design variables that yield infinitely many different robot designs; within

the workspace of any of these robots, a continuous set of isotropic postures is feasible.
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5.2.2.5 Enumeration of Several Representative Designs

Symmetry in robot design, or design at large, for that matter, is advantageous. We
introduce below some further assumptions on symmetry, to come up with some representative

layouts.

As for the MP, we make the assumption that the angles between each pair of axes {B;}3
are equal, if this is at all possible. Notice that the three lines {B;}} are not necessarily
coplanar, but their direction vectors {b;}? have to be so in order to guarantee the existence
of a line of isotropic postures. This requires that the angles between b; and b, be 27/3,
namely, b; - b; = —1/2, for i, = 1,2,3,i # j. In fact, this layout defines an equilateral

spatial triangle. The foregoing inner products can be obtained as

b b
b b= (5.70)
AR LA
Then, the set of conditions
1 1 1
by = —— b= —— by = (5.71)
by - by = 5 by - b3 = 5 bs - by = 5

constitutes a set of constraints on the choice of the characteristic point Cj.

Below we elaborate on four layouts:

e Layout I: the base is characterized by dy = d3; = d3s = 0. Then, constraint (5.71) yields
the condition cg; = cga = co3 (due to symmetry, we keep only the solution in the first
quadrant in this case, without loss of generality). As a result, we choose Cj as any point
on the line passing through the origin and one point with the position vector [1,1,1]7. For
example, we choose the centroid of the cube, i.e., co = [0.5¢,0.5¢,0.5¢]1. Moreover, we
assume o; = 09 = 03 = o to keep the robot “more symmetric”, in which case, the three
axes {B;}3 form a planar equilateral triangle. Upon choosing o = 0.2/, we obtain the robot

shown in Fig. 5.4, with the small sphere representing the characteristic point.

e Layout II: This case is shown in Fig. 5.5, where we require dy = d3s = 0, d3; = . Tt is
found that the operation point has to lie either in the plane of A; and A, or in the plane of
the origin and Aj, the latter also being the plane of A; and Aj3 in this case. Without loss
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of generality, the characteristic point is chosen to lie in the plane of A; and Aj3; moreover,
the characteristic point is chosen as the centroid of the face of the cube in the plane of
Ay and Ajs, ie., cg = [0.5£,0,0.5(]T. We again set 0, = 0, = 03 = 0.2¢, which gives the
isotropic design shown in Fig. 5.5. It is apparent that B; and Bs must be both parallel
to A, in this case, while normal to By, which makes it impossible to have the three axes
{B;}3 at equal angles pairwise. The simplest version in this category may be the one with

the distances from By to B; and to B3 equal. This requires the relation o3/01 = ¢o1/co3-

Layout III: This case is shown in Fig. 5.6, where we require do = 0, d3; = d3o = £. It is
found that the operation point has to lie in the plane of A; and A, or the plane of the
origin and Aj. If we choose the latter, we can choose the operation point as the centroid
of the cube i.e., ¢y = [0.5¢,0.5¢,0.5¢]7. We again set 0; = 0y = 03 = 0.2¢, which gives the

isotropic design shown in Fig. 5.6. As can be seen, this layout is similar to Layout I.

Layout IV: This case is shown in Fig. 5.7, where we require do = d3; = d3s = ¢. From
Fig. 5.2, we can choose the operation point on the three axes A; for i = 1,2, 3, or their three
common perpendiculars. The former is not feasible, since it yields the middle link of some
limb of zero length; for the latter, an example is shown in Fig. 5.7, with ¢y = [¢,0.5¢,0]7

and o; = 0y = 03 = 0.24.

This category of layout is generally complex and difficult to analyze, so we will not elaborate

on this category further.
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Figure 5.4: An example of an isotropic design Figure 5.5: An example of an isotropic design
for Layout I for Layout II

LMP

Figure 5.6: An example of an isotropic design Figure 5.7: An example an the isotropic design
for Layout III for Layout IV

5.2.3 Discussion

Based on the Jacobian matrices derived here, it is found that one of the constraints for
isotropy imposed in previous works [94] are not necessary, which allows us to find a rich set
of isotropic architectures. Moreover, the conditions yielding the existence of a line of isotropy
were revealed. We identified a class of PKMs within whose workspace a continuous set of
postures of isotropy is feasible, thereby guaranteeing the accuracy and the homogeneity of
the PKM motion inside a region of the workspace, rather than at a discrete set of points,
as is usually the case. This feature is rare and quite advantageous; moreover, as discussed
in this section, there are infinitely many choices of design variables that yield this property.
Hence, there is a large margin for us to optimize the performance of the robot in terms of

other aspects.

Next, we focus on this subclass of 3-CCC PKM, and conduct its forward-displacement,
singularity and workspace analyses, to provide a whole picture of the robot performance. As

stated previously, the general 3-CCC PKM was first analyzed by Daniali et al. as the six-
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dof version of the double-triangular mechanisms [92-94]|. However, the kinematic relations
derived therein based on dual quaternions do not yield the simplest formulation: The forward
kinematics thus yields eight equations with six unknowns, which is neither decoupled nor
minimal; moreover, solving this system is computationally cumbersome, which is thus not
suitable for real-time control. Some singular configurations were enumerated, but they did
not provide a complete analysis of the singularity loci and their graphic representation. These

issues are studied in this dissertation yielding a simpler formulation and pertinent results.

It is also noteworthy that, compared with the 3-CCC PKMs [95,96] mentioned at the
beginning of Chapter 5, besides the advantages mentioned therein, the proposed 3-CCC PKM
also bears simpler and better kinematics performance. For example, it will be shown that
the proposed robot bears a simpler formulation of the forward-displacement problem, which
admits eight solutions, as opposed to 64 for the 3-CCC PKM, besides many other interesting

and advantageous features of the 3-CCC PKM in terms of singularity and workspace.

5.3 The Forward-displacement Analysis

It is apparent that J,,—which establishes the mapping between the rates of the cylindrical
motion of the three collars of the three actuated C-Drives and the six motor rates—is a
constant matrix, which becomes trivial in the forward-displacement and singularity analyses.
Hence, we regard ¢ as the input in these analyses for simplicity. Now we derive the forward-
displacement analysis of the 3-CCC PKMs, which involves finding the pose coordinates of
the MP for a given set of input variables @.

5.3.1 The Orientation Problem

Firstly, we study the orientation subproblem. It is noteworthy that we provide two
different formulations for the orientation problem, one for 3-CCC PKMs with a) coplanar,
and one for b) non-coplanar {b,}? triad. It was found [91] that PKMs in case a) are quite
advantageous, since they entail a continuous locus of isotropic postures within the robot
workspace, guaranteeing the accuracy and homogeneity of the motion of the MP within a large

region. Moreover, this class of PKMs allows a simpler formulation for the orientation problem,
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compared with PKMs in case b). Hence, we mainly focus on class a), using an approach
similar to that of Gosselin et al.’s for a spherical parallel manipulator with a coplanar®
platform [99]. Thereafter, we briefly discuss the formulation for case b), but will not elaborate

on it.

Since the three axes {B;}} are rigidly fixed to the MP, it is obvious that the orientation
of the MP is totally defined once all the directions of b; are known, for i = 1,2, 3. When the
three unit vectors {b;}? are coplanar’, they become linearly dependent, in which case there

exist three scalars {d;}3, such that
61b1 + 52b2 + 53b3 =0 (572)

with {0;}3 being constant known parameters for a given MP. For example, for an equilateral

MP, we have

Moreover, as the direction vectors a; are known, while r;—the direction vectors of the common
perpendicular of A; and B,—are uniquely determined by 6;,, we can express the direction

vector b; as
bi = COs v;a; + sin Ojiri(em) X a;, 1= 1, 2, 3 (574)

with only «; as yet to be determined. If we insert Egs. (5.74) into Eqs. (5.72), the three com-
ponents of this vector equation lead to three constraint equations with three unknowns, linear
in sina; and cos ;. This system of equations can be transformed into a set of polynomial

equations upon introducing x; = sin «; and y; = cos «;, namely,

(511‘11‘1 X a; + (52[EQI'2 X as + (531’31‘3 X az + 51y181 + 52y232 + 53y3a3 =0

Ty =1 (5.75)
z3+ys =1
vty =1

6This means that the axes of the distal R joints of the three limbs are coplanar.
"It is noteworthy that this does not mean that the three axes {I3;}$ are coplanar since these axes may be
offset.
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bearing a Bezout number [81] of 8, i.e., it admits up to eight solutions; it will be shown,
with the aid of one case study, that the number is minimal. Once {a;}} are determined,
the orientation of the MP is totally determined. The MP rotation being decoupled from its

translation offers several advantages in terms of control, analysis, etc.

Next, we briefly discuss the orientation problem for PKMs of case b). The orientation
problem of its forward-displacement will be shown to be equivalent to that of the spherical
three-dof PKM investigated by Gosselin et al. [99-101|. Indeed, the translation of the axes
{A 3, {B;}3 and {R;}? does not affect the orientation of the MP; hence, we can always
establish a spherical PKM upon translating all the foregoing nine axes to intersect at a given
common point, whose forward-displacement problem bears the same solution as the 3-CCC
PKM. Hence, the derivation and conclusions about the forward-displacement problem therein
also apply to the orientation problem of the 3-CCC PKM. The forward-displacement problem
of a general spherical PKM was formulated based on a set of Euler angles {100, 101] which
yield an octic univariate polynomial. Due to the equivalence described above, this conclusion
applies to the orientation problem of PKMs for case b) also. Since we do not focus on this

type, we will not elaborate on it.

The above formulation displayed in Eqs. (5.72) and (5.74), and that in Eqgs. (5.75), es-
pecially the latter, are probably good enough for the real-time calculation of the forward-
displacement problem. In fact, this system of equations might be the simplest formulation
the author has seen for the forward-displacement problem of six-dof PKMs. However, solving
Eqgs. (5.75) still requires an iterative algorithm, just as the case of other six-dof PKMs. Such
an algorithm, though adequate in most cases when good initial guesses are provided, can con-
verge to solutions of other branches and sometimes even diverge, especially when the robot
finds itself near a singular configuration. These issues can lead to large error, high computa-
tional cost and even failure to converge. Hence, closed-form solution is quite advantageous

in such situations.

As will be seen from Eqs. (5.98) in the case study, when the set {a;}} satisfies the
orientation constraint, as per Eq. (5.72), so does {—a;}3. This can be readily explained

considering that this simply changes the sign of {b;}? in Eq. (5.74) into {—b;}?, under which
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Eq. (5.72) still holds. Hence, the eight solutions can be grouped into four pairs. Based on this
finding, we manage to represent the resolvent polynomial into an equivalent polynomial of
degree four, which can be solved in closed form, via Ferrari’s formula [102]. In this way, all the
solutions can be obtained simultaneously while the computation cost is reduced, especially
when a large number of iterations is needed. Next, we discuss the procedure for obtaining the
quartic resolvent polynomial. This polynomial is derived based on Eq. (5.72). We focus on
the case when the set {a;}} is orthonormal, which yields a continuous set of isotropy loci [91].

Without loss of generality, we assume
a; = [1,0,0]", a, =[0,1,0]", a3 = [0,0,1]7, (5.76)

Moreover, we let 6;, be the angle between r; and the corresponding frame plane (X-O-Y, Y-

O-Z,7-0O-X, respectively, for i = 1,2, 3), as shown in Fig. 5.8, namely,
Oip = bio + bia (5.77)

which is given in the forward-displacement problem, with 6,y representing the angle between
r; and the corresponding coordinate plane at the reference pose. Then, Eqgs. (5.72) take the

form

01 cos a; — 0z cos By, Sin ag + 03 8in O3, sinag = 0
d1 sin by, sin oy + 03 cos ag — 93 cos s, sinag = 0 (5.78)

—01 €0s 01, sin vy + 02 sin Oy, sin g + 03 cos g = 0

Next, we eliminate a3 from the above equations to obtain two equations with two unknowns.
We solve for sinas from the first two equations, which gives us one equation free of as,

namely,
sin ag = s f3;,(da3 cOS O sin g — 013 cos 1) = sec B3, (923 cos g + dy38in by, sinay)  (5.79)

with 6;; = 6;/9;. This equation is linear in terms of cos o and sin ay. Moreover, we solve for

cos ag from the third of Eqgs. (5.78), and insert the values of sin a3 and cos a3 into

sin® a3 + cos? a3 = 1 (5.80)
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thereby obtaining a second equation free of a3, namely,
Egxsin?ag + Fugcos® g + By sinag + E.q cosas + Fyg =0

with
) _ 2 2 _
Eg = d53sin" 6oy = €1, Ee = d335ec” 03, = €2
Eg1 = —2013023 cos 01y, sin Oz, sin o = €3 sin oy

Ecl = 2513(523 sin 91p SeC2 93p sin ] = €4 sin a7

Ep= —cos®a; + ((5%3(cos2 01p + sin? 01p sec? Osp) — 1) sin? a; = €5 cos® g + €gsin® o

(5.81)

(5.82)

where the scalars {¢;}9—and {¢;}3, {\1}3, {w}S, {vi}3, {oi}, to be defined presently—are

intermediate results introduced for computational purposes. Next, we solve for sin ay from

Eq. (5.79), namely,

sinag = Fj cos ag + F
with
Fy =sec Oy, tan O3, = ¢y
Fy =sec by,012 (cos oy + sin by, tan s, sin ay) = g cos g + g sin oy

Moreover, we insert Eq. (5.83) into the Eq. (5.81) and into
sin? Qg + cos? g =1
thereby obtaining two equations in as:

Gy cos? as + Gy cosas + Gy =0
Hy cos® as + Hycosay + Hy =0
where
Gy=FEgo—Ego, Gi=FEgFi+Ea, Go=FEaky+ Ey+ Eg

Hy=F:+1, H =2FF, Hy=F:—1

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

The above procedure is similar to that used by Gosselin et al. for a special three-dof spherical

PKM [99]; next, dialytic elimination [64] was used by the same authors to obtain an octic
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univariate polynomial from Eq. (5.86). Here we use a different approach which is simpler to
derive and simplify, and end up with a quartic univariate polynomial: We multiply the two

equations in Eq. (5.86) by Hs and Gs, respectively, and find their difference as

GoHy— GoHy N

G G- D (5.88)

COS (g =

whose RHS only involves ;. Once we insert Eq. (5.88) into the second of Eqs. (5.86), a

univariate equation in «; is obtained, namely,
HyN? 4+ HIND + HyD*> =0 (5.89)

which is found to be a homogeneous quartic equation in sinca; and cosaq. If we divide
both sides by sin® oy, the LHS will become a quartic equation in p = cot ay, which, after

simplification, becomes

Gap' + Gp° + P+ Gp+ G =0 (5.90)

whose coefficients are derived in the Appendix. This equation can be solved in closed form,
and hence, all the solutions can be obtained precisely and simultaneously without resorting to
an iterative solution, which might converge to other branches of solutions, and even diverge.
This feature, rare for six-dof PKMs, is quite advantageous in simulation and control, espe-
cially when the the robot operates near a singular configuration, where an iterative approach

is likely to fail.

5.3.2 The Positioning Problem

Next, we study the translational displacement of the MP. Once {a;}} are known from
Egs. (5.72) or (5.75) or Eq. (5.90), the directions {b;}? are determined, from which the

orientation Q of the MP can be readily derived. Below we solve the translation subproblem.

Three translation equations can be obtained from the condition of the intersection of B;
and R;, for i = 1,2, 3. It is known that two lines intersect if and only if the reciprocal product
of their Pliicker coordinates vanishes [103]. The calculation of the Pliicker coordinates of R;

and B; calls for the unit vectors associated with their axes (r;, b;) and the position vectors of
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two arbitrary points on them. We choose L; and U/ as these two points, where the position
vector of L; can be readily calculated as 1; = 1ly; 4+ r;,a;—with 1y; representing the position
vector of L; at the reference posture, while U/ represents the current location of the point on
the MP (more precisely, on B;) that coincides with R; at the reference pose. If we denote
the vector stemming from the operation point C' to U as q;, then the position vector u of

U! can be calculated as
u;=c+q; =c+ Qap (5.91)

which is linear in c, while q;9 can be readily calculated under the reference pose. Now the

Pliicker coordinates of R; and B; can be readily obtained as
el )" = [, L], (bl )" = (b, uf x b ]T (5.92)
where the only unknown is c, their reciprocal product yielding
(b; x1;)- (W) — L) =s! (c+Qqi— L) =0 (5.93)
or, equivalently,

SzTC = SzT(IOi + Tiad; — quo) = Wy, 1= 1, 2, 3 (594)

In this way, the translation problem is formulated upon casting the three foregoing equations

in the form

sTlc=w (5.95)

Finally, the position vector of the intersection of R; and B;, i.e., u;, may be needed, e.g.,

in simulation, which can be readily calculated as [104]

n,; X 1y,
i = 5.96
" bz L) ( )
after which the lengths of the intermediate limbs 7; can be readily found as r; = ||L;U;]|2-
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Figure 5.8: The architecture of a 3CCC PKM for case study

5.3.3 Case Study

Next, a case study is provided for verification. We will choose a set of design parameters
that yield a continuous locus of isotropic postures. The conditions for isotropy are reproduced

below for quick reference:

1. The set {a;}? is orthogonal
2. a; Lb;,fori=1,2,3
3. s; || psi or, equivalently, a; || p;

4. The three direction vectors {b;}$ are coplanar

Based on these conditions, we choose a symmetric layout as shown in Fig. 5.8 for illustration:
the length of the sides, of a cube that encloses the BP is denoted ¢, the reference position
of the operation point® is specified as co = 1/2[¢, ¢, ¢,]T. Moreover, the distance between Cj

and B; is prescribed 0.2¢, yielding an equilateral shape of the MP, with a length 0.4+/2¢.

A set of input design parameters is tested:
& = [014, 020, 034, 10, T2a, 34) T = [0.1,0.05,0.15,0.1, 0.2, 0.15] (5.97)

It is noteworthy that 6, and r;, are defined to be 0 at the reference pose. The system of

Eqgs. (5.75) is adopted in this case study, since a set of polynomials is easier to handle than

81t is noteworthy that even though the operation point is not located on the plane defined by the three
coplanar axes {B;}3, it is fixed to the MP.
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those involving trigonometric functions. It is found that the orientation problem admits eight

real solutions, arrayed in sol,,; = |11, Y1, T2, Yo, T3, y3|] , namely,

sol.o1 = [0.549981,0.835177,0.0929369, —0.995672, —0.96023, 0.279209] "
S0l,2 = [—0.549981, —0.835177, —0.0929369, 0.995672, 0.96023, —0.279209]”
s0l,3 = [0.310112, —0.9507, —0.99944, —0.0334597,0.348137, 0.937444] "

sol,oq = [—0.310112,0.9507,0.99944, 0.0334597, —0.348137, —0.937444]”

(5.98)
sol,05 = [—0.99013,0.14015, —0.984355, 0.176199, —0.994658, 0.103228] "
s0l,06 = [0.99013, —0.14015,0.984355, —0.176199, 0.994658, —0.103228] "
sol,.o7 = [0.985306, —0.170797, —0.482835, —0.875711, —0.190261, 0.981734]”
s0l,.o8 = [—0.985306,0.170797,0.482835, 0.875711,0.190261, —0.981734] "
The formulation based on Eq. (5.90) is also conducted, which leads to
—58.7167p* — 109.331p% + 243.303p2 + 83.8462p + 6.70696 = 0 (5.99)

with the solutions p = 1.51856, —0.141547, —0.173344, —3.06567, from which eight values of

a; can be obtained, which do correspond to the solutions in Eq. (5.98).

The corresponding position vector c of the operation point, denoted sol;,; = [c1, ¢z, ¢3]7,
are found as
soly1 = [0.507908, 0.119128,0.825462]”,  solye = [1.20758,1.17601,0.929398]"
soly,3 = [0.363044, 0.977219,0.641]7, soly4 = [1.26536,1.06529, 1.60808]” : )
5.100
soly,5 = [0.855996, 0.945059, 0.894451]",  sol,¢ = [0.581321,0.681459, 0.642581]"
solyr = [0.905586, 1.49944, 1.34846]7, solys = [0.811763, 0.529586,0.151661]"
The corresponding configurations are plotted in Figs. 5.9, where the intermediate and distal
links of the different limbs are displayed in different colours. It is readily shown that these
configurations do share the same set of input design parameters; however, some of these

layouts exceed the joint limits, and hence, are not feasible.
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Figure 5.9: The layouts corresponding to those solutions in the case study of the forward kinemat-
ics.

5.4 Singularity Analysis

Since translation and rotation are usually coupled in a six-dof PKM, the corresponding
singularity set is usually a five-dimensional surface in the six-dimensional space, whose evalu-
ation or representation is quite challenging. However, it will be shown that the different types
of singularity of the 3-CCC PKM are all dependent on the MP orientation only, which is
quite advantageous, because the corresponding singularity locus becomes a two-dimensional
surface within the three-dimensional orientation workspace, thereby simplifying dramatically
its representation and evaluation. Hence, we can represent the singularity locus in the ori-
entation workspace. Various orientation representation schemes have been proposed, such
as Euler angles, tilt and torsion angles, quaternions, roll-pitch-yaw angles, axis and angle of
rotation, etc. [105]. Among these representations, the Euler-Rodrigues representation [64]
is found to be quite advantageous in the representation of orientation workspace, since this
formulation provides a one-to-one mapping between the Euler-Rodrigues parameters (ERP)
and the orientation, which is singularity-free; moreover, the graph plotted in terms of ERP
entails a clearer geometric meaning, compared to the other representation schemes. Hence,

this representation is adopted in this dissertation.

The Euler-Rodrigues parameters are defined as [64]
r = sin(¢/2)e, 1o = cos(¢/2), with |r[>+rj =1 (5.101)
where ¢ and e represent the angle and the axis of rotation, ¢ € [0, x]; the corresponding
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rotation matrix is then expressed as
Q=(r2—r-r)1+2rr’ + 2R (5.102)

where R is the cross-product matriz |64] of r. For the purpose of graphic representation, we
can substitute ro with /1 — ||r||?, matrix Q then becoming a three-parameter function in
terms of r and the singularity surface is composed of all the points whose position vector r

yields singularity.

5.4.1 Limb Singularity

In order to gain more insight into the limb Jacobian, we recall the relations derived in

Subsection 5.1.1, and reorder the limb joint rates and the limb-twist relation in the form

J0;, =t (5.103)

a; r; bz 0O 0 O T
J, = , 0, = [Qz‘m Oir, Oiv, Tia, rirarib] (5-104)
A X Pai TiXPri bixpy a 1; b;

It is apparent that the limb Jacobian is block lower-triangular with two identical diagonal
blocks; hence, its limb singularity is encountered when and only when its diagonal block
becomes singular, which happens when a;, b; and r; are coplanar, for any ¢ = 1,2,3. There

are three sets of limb singularity, one for each limb.

When the ith limb encounters a singularity, we have a; || by, i.e.,
with Q given in Eq. (5.102), which expands to

a;-b; = (rj —r-r)a; by + 2(r-a;)(r - by) + 2ro(r x by) - a
(rg ) 0+ 2(r - a;)(r - big) + 2ro( 0) (5.106)
= 2(1‘ . ai)(r . blo) — 27’0(&1' X blo) T = 2(1’ . ai)(r . sz) — 27"01'1'0 = :i:l

where b,y represents the direction of b; at the reference posture, and r;y is the unit vector

parallel to the common perpendicular of a; and b;y. This theoretically represents two surfaces
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within the orientation space. However, it will be shown that the limb singularity correspond-
ing to the ith limb is, in fact, not a surface, but degenerates into two elliptic curves when
represented in terms of the ERP, for ¢ = 1,2,3. It is noteworthy that a;, b;y, r;0 form a
right-handed orthonormal basis, defining frame Fp;, for i = 1,2, 3; if we express vector r in

Fri, we obtain
r = re@; + rpibio + rritio (5.107)

where 74, 1, 7 represent the components of r about these three axes, respectively; then,

Eq. (5.106) simplifies to
2raiThi — 2roTri = £1 (5.108)
from which r¢ can be solved for as
ro = (2raires F 1)/(2r4) (5.109)
Moreover,
ell* + 75 = ra; + i + 1+ [(2raimss F 1)/ (2r)] = 1 (5.110)

which is quadratic in r4;. After simplification,

1
(rfs + 1) F vt + 7 = (L= rfs = 1) = 0 (5.111)
whose discriminant is calculated as
2 2 ol 2 2 2 2, 92 2 2 2
Aj =1y — 4(ry; + Tbi)[z — 1o (L =1y — i) = =y + g (ryy + i) (1 — 1y — 1) (5.112)

= —r5[20r% 4 1) — 12 <0

indicating that the quadratic equation has real solutions if and only if A; vanishes, in which

case the equation has only one real solution for each of the two equations a;-b; = +1, namely,

:l:rbi

- 5.113
2(7”31 + ng) ( )

Tai =
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the £ sign appears since a; - b; = £1, which has two possible values. Moreover, the above

solution is valid only when A; = 0, namely,

1
3+ = 5 Or Tri= 0 (5.114)

If r, +rZ = 1/2, we have

Tai = b, T?i + Tl?i =1/2, Tii + Tv%i + Tl?i <1 (5.115)

When viewed in frame F;, the second equation is a cylinder whose axis is A;, while the first
equation characterizes two planes passing through the origin, their intersection being two
ellipses. The two principal semi-axes of the ellipses are found to be v/2/2r;y = [0,0,/2/2]"
and v; = [1/v/2,£1/4/2,0]" in frame Fr;; moreover, it is simple to verify that an arbitrary

point on the ellipses is given by the position vector
Xi = Vicosn; + V2/2rsinm; (5.116)

where 7n; is an arbitrary scalar. It is apparent that the two ellipses lie within in the unit

sphere which satisfies the norm constraint naturally.

When r,; =0, from Eq. (5.113), we have

1

ai — + 5.117
" 27’51' ( )

which has only four solutions that do not violate the norm constraint, namely, [rq, 5] =
[+1/v/2,41//2]. Tt is a simple matter to verify that these points satisfy Eqs. (5.115) as well.
As a result, the singularity loci for each limb singularity yields two ellipses, characterized by

Eq. (5.116).

So far we have found an expression for the singularity curve of the ith limb in F7;; we
now need to express it in the global orientation workspace frame. We assume the three axes
of the global orientation workspace frame to be parallel to those of the BP frame. Since Fp;
is fixed to the BP frame (i.e., the global orientation workspace frame), it is simple to express

the singularity curves in the BP frame: Their expressions are again provided by Eq. (5.116),
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the only difference is that we need to express the direction vectors v; and r;y in the BP
frame, which is straightforward. Finally, the singularity conditions of the three limbs yield

six ellipses.

5.4.2 The Singularity of the Forward Jacobian Matrix

Since K, the forward Jacobian, is a block lower-triangular matrix, it becomes singular if
and only if one of its diagonal blocks is singular, which happens iff the triad {s;}3 becomes

coplanar. This condition is characterized by
(1 X 82)-83=0 (5.118)
where
s; = b; xr; || b; x (a; xb;) = (b;-b;)a; — (b;-a;)b; = a, — (a; - b;)b; = a; —b; cosa; (5.119)

Then, the singularity condition can be obtained upon plugging Eq. (5.119) into Egs. (5.118).
Moreover, if we consider only the case of PKMs with a continuous set of isotropy, then, {a;}3
forms an orthonormal basis and {b;}? becomes coplanar. The singularity condition can be

further derived as

a; — cosaiby) X (ay — cos asby)] - (a3 — cos asbs) = 1 — cosa? — cos a2 — cos o2
' ’  (5.120)

+ b12 COS (¥ COS xoN - a3 + bgl COS (X1 COS (xgN - Ay + b23 COS (¥g COS (¥3N - A1

where n represents the unit vector normal to {bi}‘;’, cos «; is calculated as a; - b;, and coeffi-

cients b;; are defined below

which is constant for a given MP. Apparently, the singularity of K is also depending only on
the MP orientation.

5.4.3 The Singularity Analysis of the Inverse Jacobian

Its is apparent that the inverse Jacobian matrix D becomes singular when s; - a; =

(b; x r;) -a; = 0, for any i« = 1,2,3, i.e., when a;, r; and b; become coplanar, for any
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t = 1,2,3. This is the same as the singularity condition of the limb singularity, so there is

no need to investigate it again.

5.4.4 Case Study

We use the same set of design parameters for the forward-displacement problem. More-
over, we represent the orientation in terms of its ERP parameters. The corresponding
limb-singularity is shown in Figs. 5.10(a), and a combination with that of K is shown in

Fig. 5.10(b).

From these figures, it is apparent that the singularity occurs only when the MP is rotated
for large angles: it is found that the minimum distance from the origin to an arbitrary
point on the singularity surface is around 0.664, which means that the MP can rotate about
any direction for at least an angle of —83.2° to 83.2° before encountering a singularity;
when rotated about the majority of directions, the robot will never encounter a singularity.
Moreover, since the singularity of the 3-CCC robot is only dependent on the orientation of the
MP, the above conclusion is valid regardless of the location of the MP; hence, the proposed
robot is unlikely to encounter a singularity without exceeding the joint limits or encountering
link interference. As a result, singularity detection is not needed in real-time control in most

cases, which greatly simplifies the control algorithm.
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Figure 5.10: Singularity of the 3-CCC PKM (a) the curve for limb singularity (b) the limb singu-
larity and that of K

5.5 Workspace Analysis

5.5.1 The Geometrical Method for Workspace Quantification

In this section the fixed-orientation position workspace of the proposed robot is analyzed.
We neglect the interference and only consider the limits of the active and passive joints. We
propose the use of a geometrical method to calculate the fixed-orientation workspace, similar
to the one used for the SDelta Robot [75], which allows us to obtain the workspace efficiently.
The method follows:

Firstly, we derive the feasible workspace region of the MP upon regarding the latter as
the end-effector of a serial robot, formed by the joints and links of the ith limb (i.e., we
disconnect the MP from the two other limbs), denoted as W;; then, the workspace of the MP

can be obtained as the intersection of {W;}3.

Next, we describe the process of obtaining the workspace region W,;. Let us denote the
intersection of B; and R; as Ujq at the reference pose; furthermore, the point on the MP that
coincides with Uy at the reference posture is denoted as M;, its position vector as m,”; it

is then apparent that the shape of the translational workspace region of M; is the same as

°Tt is noteworthy that M, does not necessarily coincide with U; when the robot is not at the reference
posture, since U; is not a fixed point on the MP, due to the translational degree of freedom of the distal
cylindrical joints.
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that of the operation point C, while the region of the latter can be obtained simply through
a pure translation of the former by the constant vector m Furthermore, it can be readily
verified that once the orientation of the MP is fixed, the directions of all the links in the three
limbs are fixed. As a result, only the three translational degrees of freedom remain in each
limb, and hence, the workspace region of point M, is simply a parallelepiped, whose edges
are parallel to A;, R; and B;, respectively, the length of the edges equal to the stroke of the

corresponding three C joints in the ith limb.

5.5.2 Case Study

Next, the fixed orientation workspace is analyzed for the robot with the same set of design
parameters as those of the forward-displacement problem. We assume that all the three C
joints in each limb find themselves at the middle of their strokes at the reference posture,

and the strokes of the first two C joints in each limb are specified as

dia, = 0.50, dig... = 0.9, i = 0.5(, T'maz = 0.93¢ (5.122)

Lmin 1Qmaz

where d and d represent the minimum and maximum distances from L; to the

amin 1maz

corresponding frame plane (Y-O-Z,Z-O-X, X-O-Y, for i = 1,2,3), respectively, r,,;, and
Tmae Tepresent the minimum and maximum length of the intermediate limbs, while the stroke
of the distal C joint is prescribed to be roughly 0.8 times the length of the edge of the MP,
namely, 0.45¢. This layout, although slightly increasing the footprint, as shown in Fig. 5.11,
avoids interference near the origin among the C-Drives. The workspace under several different
orientations is plotted in Figs. 5.11, yielding volume values of 0.049¢3, 0.024¢3, 0.024¢3 and
0.010¢3, respectively. The workspace shapes for Figs. 5.11(b) and 5.11(c) are the same,
except that their orientations are different, which should be expected, due to symmetry. The
workspace volume is generally large; for example, if we regard the above volume values with
those of cubes, the length of the edge will be 0.366¢, 0.288¢, 0.288¢, 0.218¢. It is noteworthy
that the design parameters used above are arbitrarily chosen; better results can be achieved

if we conduct an optimization of the workspace volume.
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b)
(d)
Figure 5.11: The workspace of the 3-CCC PKM (a) under the reference orientation (b) with the

orientation e = [1,0,0]” and ¢ = 15° (c) e = [0,0,1]7 and ¢ = 15° (d) e = [1/V/3,1/v/3,1//3]T
and ¢ = 15°

5.6 Forward-Displacement, Singularity and Workspace
Analyses—A Discussion

According to the forward-displacement, singularity and workspace analyses of the 3-CCC
PKM, it is found that this class of PKM bears various interesting features: The forward-
displacement analysis reveals that the rotation and translation degrees of freedom of the
MP are decoupled not only at the velocity level but also at the displacement level, which
significantly simplifies its analysis and control. The subproblems of rotation and translation
are studied separately, both yielding a simple formulation that lead to minimal polynomials.
A quartic resolvent polynomial is derived, which can be solved in closed form, and hence, all
the solutions can be obtained precisely and simultaneously without resorting to an iterative
method, which might converge to other branches of solutions, and even diverge. This feature
is very rare for six-dof PKMs, probably the first time that is found in a six-dof PKM to the
best of the author’s knowledge, which is quite advantageous in control, especially when the

robot operates near a singular configuration, where an iterative approach is likely to fail.
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Singularity is shown to be dependent only on the orientation of the MP; it is possible to
reduce the dimension of the singularity surface from five (for a six-dof PKM) to two, thereby
greatly simplifying its singularity analysis and detection; moreover, the singularity loci are
represented and visualized in terms of the Euler-Rodrigues parameters in the orientation
workspace, which shows that the proposed robot will not encounter a singularity until it is
rotated through a minimum of £83.2° about any axes, for the given parameters, which hardly
happens without encountering link interference or joint limits. The singularity problem is
thus not severe for the robot under study, which is quite advantageous. Finally, workspace
analysis indicates that the robot has a reasonably large workspace volume with a more regular
shape when compared with that of the Stewart-Gough Platform. These features indicate that
the robot has great potential in highly demanding applications, such as those requiring high
speed, high frequency or high amplitude.

We have completed the last topic of this dissertation, namely, the design and analyses of

the 3-CCC PKM class.
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Chapter 6

CLOSING REMARKS AND RECOMMENDATIONS FOR
FUTURE RESEARCH

6.1 Conclusions

PKMs with all the motors mounted on the base are quite advantageous, greatly reduc-
ing the inertia load of the system, capable of providing large accelerations, yielding better
load-carrying capacity and a better dynamic response than the state of the art. These
features make them quite suitable for shaking operations, which can be used, e.g., for inertia-
parameter identification. With the growing demand for high-speed and high-precision oper-
ations, the accurate information of the inertia properties of a rigid body is becoming more
and more important, which can be used in many applications such as model-based control.
Moreover, small-amplitude high-frequency shaking operations about all six directions of the
specimen motion are quite advantageous due to their capacity of providing sufficient exci-
tation and generating data over a broad frequency range, which are essential for increasing
the accuracy of the identification. In this vein, two classes of three-limb six-dof PKMs are
proposed, bearing some common features, e.g., they both have a three-limb architecture,
yielding less interference and larger workspace; all their motors are on the base, thus quite

suitable for the shaking operations.

This dissertation covers three topics: Firstly, the kinematics, singularity and workspace
analyses of the 3-CPS PKM, dubbed the SDelta robot, is investigated. SDelta features a
symmetric structure; its forward-displacement analysis leading to a system of three quadratic
equations in three unknowns, which admits up to eight solutions, or half the number of those
admitted by the SGP. The kinematic analysis, undertaken with a geometrical method based

on screw theory, leads to two Jacobian matrices, whose singularity conditions are investigated.
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Instead of using the determinant of a 6 x 6 matrix, we derive one simple expression that
characterizes the singularity condition. This approach is also applicable to a large number
of parallel robots whose six actuated-wrench axes intersect pairwise, such as the SGP and
three-limb parallel robots whose limbs include, each, a passive spherical joint. Next, the
workspace is analyzed via a geometric method. Furthermore, the six actuated wrenches bear
a special form, i.e., they intersect pairwise. Based on this feature, we find the inverse of
the robot forward Jacobian matrix symbolically, which is quite useful in singularity analysis,
design for isotropy and optimal control. Finally, we formulate an optimization problem of the
robot, based on its condition number, for maximum dexterity. Drawing from the optimization
results, we offer some guidelines on choosing the optimum design parameters. It is shown
that the SDelta can achieve a local minimum condition number close to unity. The above
results indicate that the given robot has the potential to offer both large workspace and good

dexterity with a proper choice of design variables.

The second topic is the design for isotropy of a large class of six-dof parallel-kinematics
machines whose six actuated-wrench axes intersect pairwise; this feature covers a large num-
ber of PKMs. It is found that the inverse derived for the SDelta applies to this large class of
PKMs, which has a significant theoretical value, quite useful in singularity analysis, design
for isotropy and optimization. We have included a chapter to elaborate on its application
in the optimum design of this large class of PKMs. Based on this expression, we analyzed
their isotropy condition, where the location of the operation point can be chosen freely. It is
shown that isotropy can be achieved only when the MP hears an equilateral triangle shape;
however, the operation point need not be the centroid of this triangle. Moreover, for a MP
with an acute-triangular shape, there can exist configurations that we call quasi isotropic,
under which the condition number is close to unity, while the six rows of the Jacobian matrix
are orthogonal; hence, the performance under such configurations is close to isotropy. This
greatly increases the range of choices of the shape of the MP and the location of the operation

point, which is required, e.g., when a tool is attached to the MP triangle.

The last topic is the kinematics, singularity, workspace analyses and the optimization for

the second architecture, the 3-CCC PKM. It is found that, upon proper embodiment and
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dimensioning, the 3-CCC PKM, with all actuators mounted on the base, exhibit interesting
features, not found elsewhere. One is the existence of an isotropy locus, as opposed to isolated
isotropy points in the workspace, thereby guaranteeing the accuracy and the homogeneity
of the motion of the MP along the six directions of the motion space within a significantly
large region of their workspace. The conditions leading to such a locus are discussed in
depth; several typical isotropic designs are brought to the limelight. Moreover, the forward-
displacement analysis reveals that the rotation and translation degrees of freedom of the MP
are decoupled not only at the velocity level but also at the displacement level, significantly
simplifying the analysis and control of this class of PKMs. Furthermore, the associated
forward-displacement problem is formulated in such a way that it can be solved in closed
form, which feature is rare in six-dof PKMs; hence, all the solutions can be obtained precisely
and simultaneously, quite advantageous in simulation and control. Singularity is shown to be
dependent only on the orientation of the MP, greatly simplifying its singularity analysis and
detection. It is shown that the proposed robot will not encounter a singularity until the MP
is rotated through a large angle. Finally, the proposed robot has a large workspace volume

with a more regular shape when compared with the Stewart-Gough Platform.

The special features of the proposed architectures, especially the second, make them not
only quite suitable for high-speed operations and the major application we target—shaking
operations for inertia-parameter identification—but also in many other applications such as

motion simulation, micro-manipulation, machining, and robotics-assisted surgery.

6.2 Recommendations for Future Research

Finally, some research directions are recommended for future work:

e For the design of the SDelta, alternative layouts of the three C-Drives can be explored,
such as those with three vertical axes, three intersecting orthogonal axes or three skew
orthogonal axes. As found during the analysis and optimization of the SDelta, there is a
compromise to be made in the choice of the distance from the centroid of the MP to the
BP plane between the requirement of high dexterity and large positioning workspace in

the current design of the SDelta, though the dexterity is generally reasonably low. These
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alternative layouts have the potential to provide a larger singularity-free orientation (and

position) workspace together with a good dexterity.

For the 3-CCC PKM, even though its workspace is already large, it can be further extended
if we change the physical realization of the intermediate limbs. Currently, the three limbs
are composed of three bars, which limits the stroke of the intermediate links. Other real-
izations of the limbs could be explored; for example, the links used by the Agile Eye [106]
could be used here, upon replacing the R joints with C joints. This should increase the
workspace volume of the proposed robot significantly. The same idea can be used for

increasing the workspace volume of the SDelta, as well.

This dissertation focuses on the kinematics of the robots under study. However, for the
inertia-parameter identification task, the dynamics analysis of the proposed PKMs is also

required; control algorithms must also be developed.

According to the optimization results of the SDelta and the 3-CCC PKM, both allow
infinitely many choices of the design parameters, thus leaving ample room for the opti-
mization of other indices. Optimization should be conducted to maximize the dynamic

performance of the PKMs, e.g., in terms of stiffness and frequency response.

Due to the special features of the proposed structures, especially the second, they are

promising in many other applications. These potential applications should be explored.
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APPENDICES

A.1 The Three-Cosine Theorem

The three-cosine theorem—needed for deriving Eq. (4.26)—is recalled below for quick
reference. Let us assume that a line £ and a plane II intersect at point O, as shown in
Fig. A.1; moreover, the orthogonal projection of £ onto Il is £', while M is an arbitrary line
in II that passes through O. Finally, the angle between £ and M is denoted «, while the
angle between £ and £’ and that between £ and M are denoted as and agz, respectively.

Then, the three-cosine theorem states that these three angles obey the relation

COS (¥3 = COS (V] COS (g (A.1)

WAL
0 Logt f
3 " M

Figure A.1: The illustration of the three-cosine theorem

A.2 The Coefficients of the Resultant Polynomial for the
Forward-Kinematics of the 3-CCC PKM

The derivation of the coefficients of Eq. (5.90) is provided below. Firstly, we notice that

Eq. (5.90) is obtained upon dividing both sides of Eq. (5.89) by sinaf; moreover, all the
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factors of Eq. (5.89)—{H,}3, N and D—are homogeneous in a;. Hence, if we introduce the
substitution

sinay =1, cosa; = p (A.2)

in Egs. (5.82) and (5.84), and revise the expressions for {G;}2, {H;}2, N and D accordingly,
then Eq. (5.89) naturally becomes a quartic equation in p, which is the same as Eq. (5.90)
using the procedure described in subsection 5.3.1. Hence, we adopt this substitution to

simplify the derivation.

Firstly, the coefficients given in Eqgs. (5.82) and (5.84) are rewritten as

Eo=¢, Eg=c¢, Eq=c¢3, B = ¢4, By =es5p” + 66, F1 = 1, Fo = pop+ 93 (A.3)

Then, {G;}2 and {H;}2 can be obtained as
0 0

Go=ea—e1=)A, Gi =163+ €4 = Ao

Go = (€1 + €5) p° + pae3p + €3 + €1 + €6 = A\3p”> + Mp + A5

(A4)
Hy = ¢} + 1=, Hi = 201029 + 201903 = p12p + i3
Ho = (g5 — 1) p* + 202030 + 3 — 1 = puap® + psp + pis
while N and D can be derived as
N = (Mg — Azpin) /)2 + (Mps — Aapin) p— Aspin + Aipig = V2/12 +vip+ (A5)

D = —Xpap + Aopin — Az = 01p + 0
where {\;}5, {1}, {vi}2 and {o;}} are intermediate results introduced to reduce computa-
tional cost. Finally, the coefficients of Eq. (5.90) can be derived as

(1 = pooot + V3 + paol, G = pav101 + 3o + paveog + 2u1vive + 5ot + 240001
Co = [ov100 + 3101 + H3Vaco + fiaVo0 + pavi + 2pvove + paoh + pi6o7 + 2450001 (A.6)

G = pathyoo + psriog + pavoon + 2uavort + psog + 2160100, Co = Hatooo + pvh + 160G
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