
	

	
	
	
	
	

Flow-Dependent	Ekman	Theory	
	
	
	
	
	

©Yanxu	Chen	
Department	of	Atmospheric	and	Oceanic	Sciences	

McGill	University	
Montreal	

	
Supervised	by	

Prof.	David	Straub	and	Prof.	Louis-Philippe	Nadeau	
	
	
	
	
	

A	thesis	submitted	to	McGill	University	in	partial	fulfilment	of	the	requirements	of	
the	degree	of	M.Sc.	in	Atmospheric	and	Oceanic	Sciences	

	
©November	2018	

	
	



Table	of	Contents	
	
	

Abstract	.............................................................................................................	2	
	

Acknowledgement	.............................................................................................	4	
	

Chapter	1	Introduction	.......................................................................................	5	
1.1	Development	of	the	Ekman	theory	................................................................................	6	
1.2	Response	of	the	interior	ocean	to	Ekman	pumping	......................................................	11	
1.3	Consideration	of	high-frequency	components	in	the	Ekman	framework	.......................	12	
1.4	Ocean	eddies	and	the	flow-dependent	Ekman	theory	..................................................	15	

	

Chapter	2	Numerical	model	..............................................................................	16	
2.1	The	Ekman	model	........................................................................................................	16	
2.1.1	Governing	equations	..............................................................................................	16	

				2.1.2	Verification:	using	a	single	vortex	case	...................................................................	17	
2.2	The	two-layer	shallow	water	model	.............................................................................	21	
2.2.1	A	typical	two-layer	shallow	water	system	..............................................................	21	
2.2.2	The	baroclinic	mode	and	the	rigid	lid	approximation	..............................................	22	

				2.2.3	Decomposition	into	quasigeostrophic	and	ageostrophic	parts	...............................	24	
				2.2.4	Coupling	of	the	Ekman	model	and	the	two-layer	shallow	water	model	..................	25	
2.2.5	Wind	forcing	structure	and	model	parameters	......................................................	26	
	

Chapter	3	Results	.............................................................................................	28	
3.1	Reference	case:	a	standard	two-layer	system	forced	by	steady	wind	stress	..................	28	
3.2	Steady	wind	stress	over	an	Ekman-interior	coupled	two-layer	system	.........................	33	
3.3	Impacts	of	unsteady	wind	............................................................................................	37	

	

Chapter	4	Conclusions	and	discussions	.............................................................	42	
	

Bibliography	.....................................................................................................	44	

	
	
	



	 2	

Abstract	
	
Classic	Ekman	theory	predicts	a	net	horizontal	transport	in	the	surface	boundary	
layer	that	is	perpendicular	to	the	applied	wind	stress,	and	is	inversely	proportional	
to	 the	 Coriolis	 parameter,	𝑓 .	 This	 theory,	 however,	 neglects	 feedbacks	 of	 the	
surface	 currents	 on	 the	 Ekman	 dynamics	 and	 this	 neglect	 has	 led	 to	 the	
development	of	 flow-dependent	modifications	to	the	classic	 theory.	The	earliest	
such	 corrections	 (Stern	 1965	 and	 Niiler	 1969)	 give	 a	 transport	 that	 is	 instead	
inversely	proportional	 to	 the	 absolute	 vertical	 vorticity,	𝑓 + 𝜁.	 This	modification	
can	be	 justified	 for	plane	parallel	 flows	 (Niiler	1969)	and	circular	 vortices	 (Stern	
1965).	 Wenegrat	 and	 Thomas	 (2017)	 recently	 extend	 these	 earlier	 theories	 to	
better	account	for	strong	balanced	flows	with	arbitrary	curvature.	Their	method,	
however,	 is	not	easily	applicable	 to	 complicated	 flow	 fields,	 such	as	a	 turbulent	
ocean	 saturated	 with	 eddies.	 Here,	 we	 first	 extend	 the	 Ekman	 formulation	 of	
Wenegrat	and	Thomas	by	adding	time	dependence.	Our	new	method	reproduces	
transport	structures	similar	to	theirs	in	idealized	setting,	e.g.,	for	a	single	balanced	
vortex.	We	then	couple	our	 flow-dependent	Ekman	 layer	 to	a	 two-layer	shallow	
water	model	in	which	Ekman	pumping	enters	the	upper-layer	mass	equation.	The	
entire	system	is	forced	by	a	combination	of	steady	and	high-frequency	winds	and	
we	 compare	 the	 kinetic	 energy	 response	of	 this	 Ekman-interior	 coupled	 system	
with	that	of	a	standard	two-layer	model	forced	by	applying	the	wind	stress	directly	
to	the	upper	layer.	For	low	Rossby	number	flows	forced	by	steady	winds,	we	do	not	
find	much	difference	between	the	two	systems.	Adding	even	a	relatively	weak	high-
frequency	component	to	winds,	however,	leads	to	significantly	different	responses	
at	high	frequencies	between	the	new	and	standard	models.		
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La	 théorie	 classique	 d’Ekman	 prédit	 un	 transport	 horizontal	 net	 dans	 la	 couche	
limite	de	surface	qui	est	perpendiculaire	à	la	contrainte	de	vent	appliquée	et	est	
inversement	proportionnelle	au	paramètre	de	Coriolis,	𝑓.	Cette	théorie,	cependant,	
néglige	les	rétroactions	des	courants	de	surface	sur	la	dynamique	d’Ekman	et	cette	
négligence	a	conduit	au	développement	de	modifications	dépendantes	du	flux	à	la	
théorie	classique.	Les	premières	corrections	de	ce	type	(Stern	1965	et	Niiler	1969)	
donnent	un	transport	inversement	proportionnel	au	tourbillon	vertical	absolu,	𝑓 +
𝜁 .	 Cette	 modification	 peut	 être	 justifiée	 pour	 les	 écoulements	 parallèles	 plans	
(Niiler	1969)	et	les	tourbillons	circulaires	(Stern	1965).	Wenegrat	et	Thomas	(2017)	
ont	récemment	étendu	ces	théories	antérieures	pour	mieux	tenir	compte	des	flux	
équilibrés	forts	avec	des	courbures	arbitraires.	Leur	méthode,	cependant,	n’est	pas	
facilement	 applicable	 à	des	 champs	d’écoulement	 compliqués,	 tels	 qu’un	océan	
turbulent	saturé	de	tourbillons.	Ici,	nous	étendons	d’abord	la	formulation	Ekman	
de	Wenegrat	et	Thomas	en	ajoutant	une	dépendance	du	temps.	Notre	nouvelle	
méthode	reproduit	des	structures	de	transport	similaires	aux	leurs	dans	un	cadre	
idéalisé,	par	exemple	pour	un	seul	vortex	équilibré.	Nous	couplons	ensuite	notre	
couche	 d’Ekman	 dépendant	 du	 flux	 à	 un	 modèle	 à	 deux	 couches	 d’eau	 peu	
profonde	dans	lequel	le	pompage	d’Ekman	entre	dans	l’équation	de	masse	de	la	
couche	supérieure.	L’ensemble	du	système	est	forcé	par	une	combinaison	de	vents	
constants	et	de	vents	haute	fréquence	et	nous	comparons	la	réponse	en	énergie	
cinétique	de	ce	 système	couplé	Ekman-intérieur	à	celle	d’un	modèle	 standard	à	
deux	 couches	 forcé	 en	 appliquant	 le	 stress	 du	 vent	 directement	 sur	 la	 couche	
supérieure.	 Pour	 des	 flux	 de	 nombres	 de	 Rossby	 faibles	 forcés	 par	 des	 vents	
constants,	nous	ne	trouvons	pas	beaucoup	de	différence	entre	les	deux	systèmes.	
L’ajout	d’une	composante	haute	fréquence	relativement	faible	aux	vents	entraîne	
toutefois	 des	 réponses	 très	 différentes	 à	 haute	 fréquence	 entre	 les	 nouveaux	
modèles	et	les	modèles	standard.		
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Chapter	1	
	
Introduction	
	
The	wind	 sets	 ocean	 in	motion	 as	 a	 result	 of	 its	 frictional	 drag	 on	 the	 surface.	
Intuitively,	one	expects	this	force	to	push	a	thin	layer	of	water	in	the	same	direction	
as	 the	wind.	 In	 a	 similar	manner,	 this	uppermost	 layer	pushes	on	 the	 layer	 just	
below,	and	so	forth.	So	in	other	words,	one	anticipates	a	vertical	structure	of	the	
upper	ocean	with	each	 layer	 in	the	same	direction	of	the	wind,	and	with	slower	
speeds	further	down.			
	
However,	if	the	wind	persists,	fairly	commensurate	with	the	earth’s	rotation,	one	

must	recast	the	ocean	dynamics	from	a	rotating	reference	frame	to	describe	any	
flow	relative	to	the	moving	surface	of	Earth.	And	in	this	frame,	a	fictitious	force	(the	
Coriolis	force)	drastically	modifies	the	picture	above.	In	this	modified	picture,	the	
net	 frictional	 forcing	on	each	vertical	 layer	 is	balanced	by	the	Coriolis	 force.	But	
since	the	Coriolis	force	is	perpendicular	to	the	current	velocity,	the	uppermost	layer	
responds	by	deflecting	at	some	angle	 (to	 the	right	 in	 the	Northern	Hemisphere)	
relative	to	the	surface	wind.	Consequently,	this	layer	pushes	on	the	next	one	down	
not	in	the	same	direction	as	the	wind,	but	in	a	direction	determined	by	its	motion.	
Similarly,	each	layer	of	water	driven	by	the	layer	above	shifts	direction	as	well	and,	
for	an	ideal	case	where	a	steady	horizontal	wind	blows	across	an	ocean	of	unlimited	
depth,	a	spiral	 is	 formed	(Figure	1.1).	That	 is,	each	successive	 layer	moves	more	
towards	the	right	and	at	a	slower	speed	(Ekman	1905).	The	range	of	depths	from	
the	surface	to	the	depth	at	which	this	spiral	velocity	becomes	negligible	is	known	
as	the	Ekman	layer.	Typically,	the	Ekman	layer	thickness	is	𝛿~𝑂(10*𝑚),	compared	
with	the	average	ocean	depth	𝐷~𝑂(10.𝑚).	So	the	direct	effects	of	the	wind	are	
confined	to	the	upper	few	meters	of	the	ocean.	Integrating	over	the	Ekman	layer	
results	in	a	net	horizontal	transport,	which	is	termed	the	Ekman	transport.	
	



	 6	

	
Figure	1.1	The	mass	transport	of	the	Ekman	layer	is	directed	to	the	right	of	the	wind	in	the	

Northern	Hemisphere.	Horizontal	currents	within	the	Ekman	layer	spiral	are	shown.	(Marshall	
2008)	

	
	
1.1 	Development	of	the	Ekman	theory	
	
We	begin	with	a	brief	review	of	important	work	related	to	Ekman	dynamics.	Classic	
Ekman	theory	assumes	friction	and	the	Coriolis	force	to	be	the	only	terms	in	the	
relevant	horizontal	balance	of	 forces.	This	results	 in	a	net	mass	transport	that	 is	
perpendicular	to	the	wind	stress	and	has	a	magnitude	given	by	the	ratio	of	the	wind	
stress	to	the	Coriolis	parameter,	𝑓.		
	

𝑼01 =
𝝉×𝒛
𝜌7𝑓

																																																										(1.1)	

	
Here,	𝝉	is	surface	wind	stress	and	𝑼01 	is	the	transport	integrated	over	the	Ekman	
layer	 (with	 dimensions	m*	s<= ).	 And	𝜌7 	is	 the	 density	 of	 seawater	 and	 we	 can	
assume	its	magnitude	to	be	~10>	kg	m<>	in	a	simple	incompressible	fluid	context.	
	
Beyond	the	implications	for	horizontal	flows	and	transport,	spatial	variability	in	

the	Ekman	transport	also	generates	vertical	velocities	across	the	base	of	the	Ekman	
layer.	 From	 the	 perspective	 of	 mass	 conservation,	 convergent	 transport	 drives	
downward	 vertical	 motion	 (Ekman	 pumping)	 and	 divergent	 transport	 drives	
upward	 vertical	 motion	 from	 beneath	 (Ekman	 suction).	 In	 this	 thesis,	 “Ekman	
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pumping”	 is	 used	 to	 represent	 general	 effect	 of	 both	 upward	 and	 downward	
motions.	 We	 see	 from	 Eqn	 (1.1)	 that	 the	 structure	 of	 Ekman	 transport	 is	
determined	by	the	structure	of	the	wind	stress	and	the	dependence	of	𝑓	on	latitude.	
For	many	applications,	the	latter	can	be	considered	small,	so	that	Ekman	pumping	
is	dominated	by	spatial	variability	of	the	wind	stress.	To	be	more	specific,	vertical	
Ekman	pumping	velocities	turn	out	to	be	proportional	to	the	wind	stress	curl.	To	
clarify	this,	consider	the	non-divergence	constraint	integrated	over	the	Ekman	layer,	
	

(
𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑧 )𝑑𝑧 = 0

7

<I
																																							(1.2)	

	
𝜕
𝜕𝑥 𝑢

7

<I
𝑑𝑧 +

𝜕
𝜕𝑦 𝑣

7

<I
𝑑𝑧 = −

𝜕𝑤
𝜕𝑧

7

<I
𝑑𝑧 = 𝑤 −𝛿 = 𝑤01														(1.3)	

	

𝑤01 =
𝜕
𝜕𝑥 𝑈01 +

𝜕
𝜕𝑦 𝑉01 =

𝜕
𝜕𝑥

𝜏P

𝜌7𝑓
−
𝜕
𝜕𝑦

𝜏Q

𝜌7𝑓
= ∇×(

𝝉
𝜌7𝑓

)									(1.4)	

	
The	Ekman	pumping	velocity,	defined	by	Eqn	(1.4),	provides	a	boundary	condition	
for	the	interior	flow	that	is	central	to	theories	of	the	general	ocean	circulation	(see	
more	 details	 in	 section	 1.2).	 Figure	 1.2	 shows	 a	 global	map	 of	 Ekman	 pumping	
velocities	calculated	by	Eqn	(1.4),	linking	boundary	conditions	of	the	interior	ocean	
to	the	global	wind	stress	pattern.	
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Figure	1.2	The	global	pattern	of	Ekman	vertical	velocity	(m	y-1)	computed	using	Eqn	(1.4)	from	
the	annual	mean	wind-stress	pattern.	Motion	is	upward	in	the	green	areas,	downward	in	the	

brown	areas.	𝑤01	is	not	computed	over	the	white	strip	along	the	equator	because	𝑓 → 0	there.	
(Marshall	2008)	

	
				Despite	 the	 impressive	 success	 of	 classic	 Ekman	 theory,	 it	 has	 long	 been	
recognized	 that	 observations	 depart	 significantly	 from	 this	 simple	 theory.	 In	
particular,	recent	observations	have	emphasized	that	synoptic	scale	winds	blowing	
over	ocean	eddies	and	fronts	lead	to	significant	vertical	pumping	(Gaube	et	al.	2015;	
Gaube	et	McGillicuddy	2017;	Liu	et	Tang	2018).	This	is	in	large	part	due	to	the	ocean	
current	and	sea	surface	 temperature	 fields	 leading	 to	modifications	of	 the	wind	
stress	(Trenberth	et	al	1989;	Duhaut	et	Straub	2006;	Zhai	et	al	2012),	but	is	also	in	
part	due	to	ocean	currents	modifying	the	relationship	between	wind	stress	and	the	
pumping	 velocity.	 Stern	 (1965)	 and	Niiler	 (1969)	 extended	 the	 classic	 theory	 to	
include	 the	 effects	 of	 simple	 surface	 currents.	 In	 particular,	 they	 show	 Ekman	
pumping	to	be	modified	significantly	in	currents	with	strong	relative	vorticity	(𝜁 =
UV
UQ
− UW

UP
).	These	modifications	are	often	referred	to	as	“nonlinear”	Ekman	theory.	

The	nonlinearity	here	refers	to	the	influence	of	surface	currents	on	the	Ekman	layer	
but	not	the	self-advection	of	Ekman	velocities.	Stern	considered	a	uniform	wind	
stress	acting	on	a	geostrophically	balanced	vortex.	There	are	two	velocity	scales	for	
the	 problem:	 one	 associated	 with	 the	 balanced	 flow	𝑈 	and	 the	 other	 with	 the	
Ekman	 flow,	𝑈0 ≡

YZ
[Z\I

,	 where	𝜏7 	is	 a	 scale	 for	 the	 wind	 stress	 and	𝛿 	indicates	
Ekman	layer	thickness.	Note	that	𝑼01 	describes	the	value	of	transport	integrated	
over	the	Ekman	layer	(with	units	m*	s<=)	while		𝑈0 	is	a	typical	velocity	scale	within	
the	 Ekman	 layer	 (with	 units	m	s<= ).	 Stern	 considered	 flows	 where	 the	 Ekman	
Rossby	number	(𝜀01 = 𝑈0/𝑓𝐿)	and	the	balanced-flow	Rossby	number	(𝜀 = 𝑈/𝑓𝐿)	
are	both	much	smaller	than	unity	(𝜀01 ≪ 1	and	𝜀 ≪ 1).	Here,	𝐿	is	a	characteristic	
horizontal	length	scale.	Through	scale	analysis	of	the	vorticity	equation,	he	showed	
the	Ekman	pumping	velocity	to	be	given	by	
	

𝑤01_bcdef ≈ ∇ ∙
𝝉×𝒛

𝜌7 𝑓 + 𝜁
																																												(1.5)	

	
This	 solution	 is	 notable	 both	 for	 its	 simplicity	 and	 its	 applicability	 to	 flows	with	
curvature.	It	is	noteworthy	that	contrary	to	classic	Ekman	theory,	the	inclusion	of	
relative	 vorticity	modifies	 the	 Ekman	 pumping	 velocity	 such	 that	 a	 horizontally	
uniform	wind	stress	can	nonetheless	drive	vertical	velocities.	It	is	also	important	to	
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emphasize	that	Stern’s	result	is	correct	for	calculation	of	Ekman	pumping	velocity	
only,	but	not	the	transport	(mistakenly	used	by	many	people),	which	means	
	

𝑼01_bcdef ≠
𝝉×𝒛

𝜌7 𝑓 + 𝜁
																																													(1.6)	

	
An	alternate	approach	was	taken	by	Niiler	 (1969),	who	solved	for	the	horizontal	
Ekman	transport	 for	uniform	wind	blowing	parallel	 to	a	 straight	 jet	 (with	strong	
shear	to	represent	the	Gulf	Stream).	The	resulting	solutions	are	accurate	to	a	higher	
order	in	𝜀	than	those	of	Stern	(1965),	and	only	the	nonlinear	Ekman	self-advection	
terms	in	the	momentum	equations	are	neglected.	The	conditions	on	the	validity	of	
Niiler’s	 solution	 can	 be	 given	 as	𝜀01 ≪ 1	and	𝜀 < 1,	 for	 a	 balanced	 flow	 that	 is	
invariant	in	one	horizontal	direction.	Considering	that	Stern’s	framework	does	not	
give	an	estimate	of	horizontal	transport	and	that	Niiler’s	framework	is	 limited	to	
plane	parallel	flows,	neither	gives	a	satisfactory	way	to	include	surface	currents	in	
Ekman	dynamics.		
	
				More	recently,	Wenegrat	and	Thomas	(2017)	extended	earlier	results	on	flow-
dependent	Ekman	dynamics	to	provide	expressions	for	the	Ekman	transport	that	
are	valid	for	geostrophically	balanced	flows	with	curvature	and	for	flows	for	which	
the	Rossby	number	(𝜀)	approaches	unity.	The	latter	is	especially	important	in	the	
ocean	because	many	oceanic	flows	have	𝜀~1,	including	western	boundary	currents,	
flows	 at	 low	 latitude	 and	 submesoscale	 currents,	 etc.	 Thus	 they	 considered	 the	
same	 limit	 as	 Niiler	 ( 𝜀01 ≪ 1 	and	𝜀 < 1 )	 but	 without	 restriction	 on	 the	 flow	
geometry.	 This	 leads	 to	 results	 with	 much	 wider	 applicability	 than	 previous	
methods.	To	parameterize	the	position	of	a	streamline	of	the	balanced	flow,	they	
switched	to	a	natural	coordinate	system	(see	Figure	1.3)	from	Cartesian	coordinate,	
which	seems	a	useful	step	in	terms	of	the	simplification	of	dominant	equations.			
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Figure	1.3	Schematic	of	the	balanced	natural	coordinate	system	(Wenegrat	and	Thomas	2017).	
The	black	line	denotes	a	streamline	of	the	balanced	flow.	Red	lines	denote	examples	of	the	

locally	tangential	(𝒔)	and	normal	(𝒏)	basic	vectors,	and	the	vertical	dimension	(𝒛)	is	directed	out	
of	the	page.		

	
The	Ekman	transport	thus	results	in	two	coupled	ordinary	differential	equations	in	
the	along-flow	coordinate:	
	

𝜀𝑢
𝜕𝑈01
𝜕𝑠 + 1 + 𝜀2Ω 𝑉01 = 𝜏f																																						(1.7)	

	

𝜀𝑢
𝜕𝑉01
𝜕𝑠 − 1 + 𝜀𝜁 𝑈01 = 𝜏r																																								(1.8)	

	
where	𝑢	is	the	magnitude	of	balanced	flow	velocity,	Ω ≡ 𝑢𝑘	is	the	angular	velocity,	
𝜁 ≡ − UW

Uf
+ Ω	is	 the	 relative	 vorticity,	 𝜏r, 𝜏f = (𝝉 ∙ 𝒔, 𝝉 ∙ 𝒏),	 and	𝑘 ≡ U𝒔

Ur
∙ 𝒏 =

1/𝑅	with	𝑅	as	the	radius	of	the	local	osculating	circule,	defines	as	a	positive	value	
(negative)	when	streamlines	curve	to	the	left	(right)	of	the	local	balanced	flow	(see	
Figure	1.3).		
	
The	 solutions	 of	 the	 coupled	ODEs	 in	Wenegrat	 and	 Thomas’s	 theory	 can	 be	

found	analytically	if	the	balanced	flow	has	simple	structures,	e.g.,	a	circular	vortex	
or	a	weakly	nonlinear	jet.	However,	it	would	be	difficult	to	apply	their	equations	to	
complicated	 (balanced	 or	 unbalanced)	 background	 flow	 fields,	 e.g.,	 jets	 with	
random	 shapes,	 turbulent	 eddies,	 etc.	 Motivated	 by	 applying	 flow-dependent	
Ekman	 dynamics	 to	 flows	 with	 arbitrary	 curvature	 more	 efficiently,	 we	 extend	
Wenegrat	 and	 Thomas’s	 formulation	 by	 adding	 a	 time	 dependence.	 This	 step	
removes	 the	 need	 for	 integrating	 along	 streamlines,	 which	 also	 means	 the	
coordinate	switch	is	not	necessary,	further	simplifying	the	calculation	and	enabling	
our	 situation	 to	be	applied	 to	complicated	 flow	 fields.	 The	addition	of	unsteady	
terms	in	our	formulation	also	introduces	a	near-inertial	component	to	the	Ekman	
pumping	(details	in	section	1.3	and	2.1).		
	

Table	1.1	Summary	of	the	Ekman	theory	development		
	 Ekman	 Stern	and	Niiler	 Wenegrat	and	Thomas	

Content	 Transport	depends	
on	the	stress	and	

the	Coriolis	
parameter	only.	

Allows	for	shear	in	the	
surface	velocity	field	to	
affect	the	transport:	

“nonlinear”	Ekman	theory.	

Extends	early	results	to	
better	account	for	

curvature	in	the	surface	
flow	path.	
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Assumptions	 Homogeneous	
deep	stationary	

ocean.	

Valid	for	plane	parallel	
flows	(e.g.,	straight	jets);	
however,	not	explicitly	
solved	for	flows	with	

curvature.	

Curvilinear	flows,	with	
𝜀01 ≪ 1	and	𝜀 < 1;	
however,	not	easily	

applicable	to	complicated	
flow	fields.	

	
	
1.2 	Response	of	the	interior	ocean	to	Ekman	pumping	
	
Beneath	 the	 Ekman	 layer,	 the	 flow	 can	 be	 thought	 of	 as	 a	 superposition	 of	
geostrophic	 flow	 and	 inertia-gravity	 waves.	 Classic	 theory	 has	 focused	 on	 how	
Ekman	 pumping	 velocity	 interacts	 with	 the	 geostrophic	 currents.	 Taking	 the	
horizontal	divergence	of	the	geostrophic	flow,	we	find:	
	

∇w ∙ 𝒖y =
𝜕
𝜕𝑥 −

1
𝜌7𝑓

𝜕𝑝
𝜕𝑦 +

𝜕
𝜕𝑦

1
𝜌7𝑓

𝜕𝑝
𝜕𝑥 = −

𝛽
𝑓 𝑣y																							(1.9)	

	
where	we	consider	the	variation	of	𝑓	with	latitude	and	the	meridional	gradient	of	
𝑓	is	denoted	by	𝛽.	Then	the	resulting	horizontal	divergence	of	geostrophic	flow	is	
associated	with	vertical	stretching	of	water	columns:	
	

∇w ∙ 𝒖y +
𝜕𝑤
𝜕𝑧 = 0																																																		(1.10)	

	
Combining	 Eqns	 (1.9)	 and	 (1.10)	 we	 obtain	 an	 expression	 for	 the	 interior	
geostrophic	flow:	
	

𝛽𝑣y = 𝑓
𝜕𝑤
𝜕𝑧 																																																								(1.11)	

	
which	relates	horizontal	and	vertical	currents.	If	vertical	velocity	magnitude	in	the	
abyss	is	much	smaller	than	surface	Ekman	pumping	velocities,	then	interior	ocean	
currents	 will	 have	 a	 southward	 component	 in	 regions	 where	 𝑤01 < 0 	and	
northward	where	𝑤01 > 0	(Figure	1.4).	
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Figure	1.4	Classic	Ekman-interior	coupled	model	
	
By	integrating	Eqn	(1.11)	from	the	bottom	of	Ekman	layer	to	a	depth	of	no	motion	

(e.g.,	1000m),	we	can	obtain	a	Sverdrup	balance	(1947),	which	is	the	first	model	of	
general	ocean	 circulation.	 In	1948,	 Stommel	used	 the	 same	basic	equations	but	
integrated	to	the	bottom	of	the	ocean	and	allowed	for	bottom	friction	which	is	a	
simple	 linear	 function	 of	 velocity,	 and	 the	 results	 showed	 that	 the	 variation	 in	
Coriolis	parameter	with	 latitude	 leads	 to	a	narrow	western	boundary	 current	 in	
ocean	basins.	Munk	(1950)	proposed	a	complete	solution	for	the	ocean	circulation,	
by	 further	 adding	 a	 lateral	 eddy	 diffusion	 term	 associated	 with	 the	 horizontal	
exchange	of	 large	eddies.	 In	summary,	Ekman	pumping	velocity	sets	a	boundary	
condition	for	the	interior	ocean	circulation.		
	
However,	 the	 classic	 general	 ocean	 circulation	 theory	 has	 focused	 on	 the	

response	 of	 geostrophically	 balanced	 interior	 flow	 to	 simple	 Ekman	 layer	
framework.	Here,	we	 instead	 assume	 the	 interior	 flow	 to	 be	 a	 superposition	 of	
geostrophic	flow	and	inertia-gravity	waves,	and	then	our	interest	is	to	answer	how	
the	new	framework	of	flow-dependent	Ekman	layer	affects	the	interior	response	
both	geostrophically	and	ageostrophically.	To	 this	end,	we	will	embed	our	 flow-
dependent	 Ekman	 layer	 into	 a	 two-layer	 shallow	 water	 model	 and	 compare	
solutions	when	the	model	is	forced	by	Ekman	pumping	with	solutions	where	wind	
forcing	takes	a	more	typical	form	of	a	body	force	applied	over	the	upper	layer.	
	
	
1.3 	Consideration	of	high-frequency	components	in	the	Ekman	framework	
	
As	mentioned	earlier,	the	ocean	contains	not	only	geostrophic	(balanced)	currents	
and	 eddies,	 but	 also	 high-frequency	 (unbalanced)	 oscillations	 that	 exist	 under	
various	circumstances.	However,	models	based	on	Ekman	theory	are	mainly	aimed	
at	 the	 response	 of	 geostrophic	 components	 to	 the	 Ekman	 pumping	 velocities.	
Simple	 shallow	 water	 models	 that	 look	 at	 both	 balanced	 currents	 and	 waves	

Ekman	layer	
	

Interior	where	𝛽𝑣y = 𝑓 U~
U�
		

	

𝑤01 	

𝑤�fcde��e 	
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generally	 represent	 the	wind	 stress	 as	 a	 body	 force,	 instead	of	 adding	 an	 extra	
Ekman	framework	(Figure	1.5	left).	General	circulation	models,	of	course,	explicitly	
resolve	 the	Ekman	 layer,	but	our	 interest	here	 is	 to	 relate	Ekman	 theory	 to	 the	
interior	 flow	 in	 simple	 ways	 and	 to	 compare	 different	 dynamical	 regimes	
specifically	by	using	certain	wind	stress	structures.	
	
		
	

	
Figure	1.5	Typical	ocean	models	forced	by	wind	(Left:	A	two-layer	shallow-water	model	with	the	
wind	stress	as	a	body	force	over	the	upper	layer	(later	we	call	it	the	standard	model);	Right:	A	
model	with	the	Ekman	layer	as	a	link	transferring	momentum	from	wind	to	deep	ocean	(later	

we	call	it	the	new	model))	
	

The	main	purpose	of	this	thesis	is	to	compare	the	above	two	models	in	Figure	1.5	
with	 the	 focus	 on	 how	 advanced	 or	 dynamically	 different	 the	 Ekman-interior	
coupled	model	is.	There	are	two	important	interfaces	in	the	Ekman-interior	coupled	
model	associated	with	high-frequency	energy	transfer:	the	interface	between	wind	
and	the	Ekman	layer,	and	the	interface	between	Ekman	layer	and	the	upper	layer.		
	
In	the	first	place,	it	is	important	to	look	at	the	wind	stress	structure.	The	wind	

stress	over	ocean	 surface	 can	be	modelled	by	 the	bulk	 formula,	which	depends	
quadratically	on	the	wind:		
	

𝝉 = 𝜌�𝐶� 𝑼~�f� 𝑼~�f�																																										(1.12)	
	
where	𝑼~�f� 	is	the	wind	velocity	above	the	sea	surface;	𝜌�	is	the	density	of	air	at	
sea	level	and	𝐶� 	is	the	drag	coefficient.	Classic	models	of	ocean	circulation	focus	on	
steady	solutions	and	low-frequency	variability.	These	models	often	assume	steady	
or	slowly	varying	winds.	Although	this	may	be	true	in	regions	where	there	is	little	
wind	variability,	it	breaks	down	in	regions	where	the	synoptic	wind	dominates:	for	
example,	the	storm-track	regions	(Zhai	et	al	2012).	This	is	because	high-frequency	

Standard	model	 New	model	
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winds	not	only	contribute	to	the	time-averaged	(or	low-frequency)	wind	stress,	but	
also	introduce	high	frequencies	in	the	stress	itself.	Figure	1.6	shows	the	variability	
of	global	wind	stress	curl.	Remind	us	that	Ekman	pumping	is	mainly	determined	by	
wind	stress	curl.	Then	the	difference	between	January	and	July	in	Figure	1.6	tells	
that	the	wind	stress	curl	is	more	variable	at	mid-to-high	latitudes	and	thus	the	high-
frequency	 curl	 components	 of	 the	 stress	might	 be	more	 contributing	 to	 Ekman	
pumping	 at	 those	 areas.	 Back	 to	 our	 study	 of	 the	 new	 Ekman-interior	 coupled	
framework,	 we	 are	 therefore	 interested	 in	 studying	 how	 the	 Ekman	 dynamics	
responds	to	high-frequency	components	of	wind	stress.		
	

	

	
Figure	1.6	Global	Scatterometer	Climatology	of	Ocean	Winds	(SCOW)	wind	stress	curl	maps	for	

(upper)	January	and	(lower)	July	(Risien	et	al,	2008)	
	

Another	important	consideration	is	the	high-frequency	energy	transfer	between	
the	Ekman	layer	and	the	interior	ocean.	Ekman	pumping	velocities	calculated	using	
high-frequency	 components	 of	 wind	 stress	 might	 also	 induce	 some	 high	
frequencies,	continuously	influencing	the	interior	in	a	different	way	compared	with	
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the	 mechanism	 where	 the	 interior	 ocean	 is	 driven	 by	 time-averaged	 Ekman	
pumping.		
	
From	observations	we	know	that	it	is	more	reasonable	to	apply	time-dependent	

wind	stress	to	the	ocean.	By	modifying	Wenegrat	and	Thomas’s	Ekman	transport	
formulation,	we	also	allow	for	time	dependence	in	the	Ekman	pumping.	Thus,	we	
are	interested	in	testing	whether	the	addition	of	a	flow-dependent	Ekman	layer	can	
be	used	as	an	alternative	way	to	 implement	wind	forcing	 in	a	 two-layer	shallow	
water	model	and	how	different	this	mechanism	is	from	a	standard	model	in	terms	
of	the	high-frequency	energy	transfer.		
	
	
1.4	Ocean	eddies	and	the	flow-dependent	Ekman	theory		
	
Mesoscale	 eddies	 and	 geostrophic	 turbulence	 are	 ubiquitous	 in	 the	 ocean	 and	
exhibit	 different	 properties	 to	 their	 surroundings,	 allowing	 them	 to	 transport	
properties	such	as	heat,	salt	and	carbon	around	the	ocean.	More	than	half	of	the	
kinetic	energy	of	 the	ocean	circulation	 is	contained	 in	 the	mesoscale	eddy	 field,	
with	 the	 remainder	 largely	 contained	 in	 the	 large-scale	 circulation.	 The	 largest-
scale	 eddies	 emerge	 from	 instabilities	 of	 strongly	 horizontally	 sheared	motions,	
particularly	in	boundary	currents	such	as	the	Gulf	Stream.	These	eddies	often	take	
the	form	of	well-defined	rings	extending	to	great	depth.	At	slightly	smaller	scales,	
on	the	order	of	tens	of	kilometers	(mesoscale),	eddies	are	generated	by	baroclinic	
instability.		
	
As	mentioned	before,	previous	flow-dependent	Ekman	theory	is	not	applicable	

to	 the	real	ocean,	which	 includes	abundant,	 turbulent	eddies.	Theories	by	Stern	
and	Niiler	are	too	simple	and	while	that	by	Wenegrat	and	Thomas	could	in	principle	
be	applied	to	an	eddy-rich	field,	the	calculation	would	be	horrendous.		Our	research	
interest	 is	 greatly	 related	 to	 the	 understanding	 of	 how	 ocean	 “storms”,	 or	
mesoscale	eddies,	help	 to	modify	 the	Ekman	dynamics	and	 then	how	 this	 flow-
dependent	Ekman	layer	changes	the	interior	response	as	well.	Note	that	one	could	
also	ask	these	questions	using	a	general	circulation	model	that	explicitly	resolves	
the	 surface	Ekman	 layer.	We	believe,	however,	 that	 it	 is	 also	useful	 to	examine	
these	issues	in	a	more	idealized	context,	such	as	that	developed	in	this	thesis.		
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Chapter	2	
	
Numerical	model	
	
2.1	The	Ekman	model	
2.1.1	Governing	equations	
	
Consider	an	Ekman	layer	superposed	on	a	background	eddying	flow	with	a	velocity	
𝒖7.	 The	 total	horizontal	 flow	can	be	written	as	𝒖c�c�� = 𝒖7 + 𝒖01,	where	𝒖01 	is	
the	wind-forced	Ekman	component.	It	is	further	assumed	that	the	background	flow	
is	 either	 barotropic	 or	 the	 Ekman	 layer	 is	 sufficiently	 thin	 so	 as	 to	 allow	 the	
background	 flow	 to	 be	 approximated	 as	 barotropic,	 i.e.,	𝛿 ≪ 𝐻,	where	𝐻 	is	 the	
depth	 scale	of	 the	balanced	 flow.	We	are	 interested	 in	 finding	 solutions	 for	 the	
Ekman	flow	in	the	presence	of	a	steady,	spatially	uniform,	wind	stress.	The	variables	
can	 thus	 be	 nondimensionalized	 as	 follows:	 𝑢7 = 𝑈7𝑢7� ,	 𝑢01, 𝑣01, 𝑤01 =
𝑈0[𝑢01� , 𝑣01� , (𝛿/𝐿)𝑤01� ] ,	 𝜏Q, 𝜏P = 𝜏7(𝜏Q�, 𝜏P�) ,	𝑥 = 𝐿𝑥� ,	𝑦 = 𝐿𝑦� ,	𝑧 = 𝛿𝑧� ,	t =
𝑇𝑡�,	where	primes	denote	nondimensional	variables.	The	equations	governing	the	
horizontal	Ekman	flow	can	be	written	in	vector	form	as	
	

𝜕𝒖01
𝜕𝑡 + 𝒖01 ∙ ∇ 𝒖7 + 𝒖7 ∙ ∇ 𝒖01 + 𝒖01 ∙ ∇ 𝒖01 + 𝑓𝒛×𝒖01 =

𝜕𝝉
𝜕𝑧						(2.1)	

	
Using	scalings,	we	can	write	a	nondimensionalized	equation	
	
1
𝑓𝑇

𝜕𝒖01�

𝜕𝑡� + 𝜀𝒖01
� ∙ ∇𝒖7� + 𝜀

𝛼𝑈0
𝑈0

𝒖7� ∙ ∇𝒖01� + 𝜀01
𝛼𝑈0
𝑈0

𝒖01� ∙ ∇𝒖01� + 𝒛×𝒖01� =
𝜕𝝉�

𝜕𝑧� 	(2.2)	

	
where	the	gradient	in	Ekman	flow	is	scaled	as	∇𝒖01~𝛼𝑈0/𝐿.	For	a	spatially	uniform	
wind	stress	𝛼𝑈0/𝑈0~𝜀	(Stern	1965);	hence,	the	third	and	fourth	terms	on	the	left-
hand	side	appear	at	𝑂(𝜀*)	and	𝑂(𝜀01𝜀),	respectively.		
	
If	we	consider	the	limit	of	Wenegrat	and	Thomas’s	formulation	(𝜀01 ≪ 1	and	𝜀 <

1),	the	fourth	term	on	the	left-hand	side,	which	is	the	Ekman	self-advection	term,	
can	be	neglected.	If	so,	integrating	Eqn	(2.1)	over	the	entire	Ekman	layer	results	in	
an	equation	for	the	Ekman	transport,	
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𝜕𝑼01
𝜕𝑡 + 𝑼01 ∙ ∇ 𝒖7 + 𝒖7 ∙ ∇ 𝑼01 + 𝑓𝒛×𝑼01 = 𝝉																(2.3)	

	
The	time-dependent	term,	which	is	the	first	term	on	the	left-hand	side,	does	not	
appear	in	Wenegrat	and	Thomas’s	formulation	and	is	added	here	as	a	convenience	
to	avoid	having	to	integrate	along	characteristics	to	recover	𝑼01.	Note,	however,	
that	 the	addition	of	 this	 term	also	allows	 for	high-frequency	oscillations	 in	𝑼01 ,	
irrespective	of	whether	or	not	there	are	high	frequencies	in	𝝉.	The	Ekman	pumping	
velocity,	𝑤01 ,	 can	be	 found	by	 taking	 the	horizontal	divergence	of	Eqn	 (2.3).	By	
taking	 the	 high-frequency	 components	 of	𝑼01 	into	 consideration,	 the	 Ekman	
pumping	velocity	then	contains	high	frequencies	and	thus	further	triggers	similar	
response	of	 the	 interior.	 It	 is	 also	noteworthy	 that	 the	units	 for	𝑼01 	are	m*	s<=	
while	𝒖7	has	 the	dimension	of	m	s<=.	Compared	with	previous	 section,	notation	
henceforth	is	simplified	in	that	𝝉	has	been	normalized	by	𝜌7.	
	
	
2.1.2	Verification:	using	a	single	vortex	case	
	
Wenegrat	and	Thomas	considered	a	purely	zonal	wind	stress	over	a	circular	vortex	
and	found	that	there	can	be	a	nonzero	component	of	the	Ekman	transport	in	the	
direction	of	the	zonal	wind	stress,	which	is	contrary	to	classical	Ekman	theory.	An	
illustration	is	shown	in	Figure	2.1.	The	zonal	transport	develops	a	quadrupole	patter,	
emphasizing	the	influence	of	the	flow-dependent	Ekman	dynamics.	The	meridional	
transport	converges	(diverges)	on	the	north	(south)	side	of	the	cyclonic	vortex,	with	
the	 pattern	 reversed	 for	 the	 vortex	 with	 anticyclonic	 flow	 and	 with	 slight	
differences	in	structure	between	the	two	cases.		
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Figure	2.1:	Ekman	transports	and	vertical	velocities	in	Wenegrat	and	Thomas	model.	From	top	
to	bottom,	the	rows	show	zonal	transport	𝑈01,	meridional	transport	𝑉01	and	vertical	velocity	

𝑤01.	(Wenegrat	and	Thomas	2017)	
	
As	 a	 consistency	 check,	 we	 begin	 by	 reproducing	 the	 above	 results	 with	 our	

model.	That	 is,	we	apply	a	uniform	westerly	wind	stress	over	a	circular	eddy.	To	
minimize	transients	(the	high-frequency	oscillations	of	𝑼01,	which	is	described	in	
section	2.1.1),	we	ramp	up	the	wind	stress	slowly	(over	ten	inertial	periods).	The	
eddy	 structure	 is	 also	 consistent	 with	 Wenegrat	 and	 Thomas’s	 vortex,	 with	
parameters	 chosen	 such	 that	 the	 transport	magnitude	 𝑈01 ~1.5	m*	s<= 	(using	
𝜏~10<�	m*	s<*,	𝑓~7 ∙ 10<.	s<=,	𝜀~0.25),	in	accordance	with	the	observed	global-
mean	properties	of	midlatitude	mesoscale	eddies.		
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Figure	2.2:	Ekman	transports	and	vertical	velocities	for	a	circular	vortex	forced	by	a	westerly	

wind	stress.	From	top	to	bottom,	the	rows	show	zonal	transport	𝑈01,	meridional	transport	𝑉01	
and	vertical	velocity	𝑤01.	

	
Our	 results	 correspond	 well	 with	 Wenegrat	 and	 Thomas’s	 analytic	 solutions	

(compare	Figure	2.1	and	Figure	2.2).	Figure	2.2	is	a	snapshot	of	our	Ekman	model	
output.	However,	our	model	produces	transients	even	though	the	wind	forcing	is	
switched	on	with	extremely	slow	speed,	e.g.,	over	one	month.	Figure	2.3	illustrates	
how	 robust	 the	 transient	 part	 is.	 The	 transient	 pumping	 component	 decreases	
when	the	time	period	to	entirely	switch	on	the	wind	stress	is	increased,	however,	
it	cannot	be	eliminated.	This	new	framework	of	adding	high-frequency	transients	
helps	 to	 test	 the	 interior	 response	 to	high-frequency	Ekman	pumping	 (details	 in	
section	3).		
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Figure	2.3:	Ekman	pumping	velocities	for	an	anticyclonic	vortex	forced	by	a	westerly	wind	
stress,	decomposed	into	a	time-averaged	part	and	a	transient	part.	The	time	period	to	fully	
ramp	up	the	wind	stress	is	denoted	by	the	number	of	inertial	periods	𝑛.	From	top	to	bottom,	

𝑛 = 1, 5, 30.	
	
Figure	2.4	shows	the	ratio	of	transient	kinetic	energy	to	mean	kinetic	energy	in	

the	Ekman	layer.	It	is	apparent	that	transients	decrease	as	more	inertial	periods	are	
used	to	entirely	turn	on	the	wind.	That	means	in	order	to	avoid	the	influence	of	
transients	in	the	Ekman	layer,	we	need	to	use	a	reasonable	ramp-up	time	to	slowly	
switch	on	the	wind	stress.		
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Figure	2.4	The	ratio	of	transient	kinetic	energy	to	mean	kinetic	energy	in	the	Ekman	layer,	as	a	

function	of	how	many	inertial	periods	(𝑛)	is	used	to	turn	on	the	wind.	
	
	
2.2	The	two-layer	shallow	water	model	
2.2.1	A	typical	two-layer	shallow	water	system	
	
The	case	of	two	superposed	shallow	layers	of	different	density	is	always	regarded	
as	a	simple	starting	point	for	understanding	the	behavior	of	vertically	stratified	flow.	
“Shallow”	here	means	 that	 the	 depth	 of	 each	 layer	 is	 small	 compared	with	 the	
horizontal	scale	of	perturbation.	The	setup	of	the	system	to	be	considered	is	shown	
in	Figure	2.5.	 It	has	a	 lower	 layer	of	density	𝜌*	and	an	upper	 layer	of	density	𝜌=,	
where	 𝜌= < 𝜌* .	 The	 free	 surface,	 whose	 equilibrium	 position	 is	 𝑧 = 0 ,	 has	
perturbed	position	𝑧 = 𝜂=	and	the	interface	displacement	has	the	position	𝑧 = 𝜂*.	
It	is	assumed	that	hydrostatic	balance	applies	and	the	pressure	varies	continuously	
across	the	interface	between	the	two	layers	but	the	density	does	not.	Therefore,	
the	shallow	water	momentum	equations	are	
	

𝐷𝒗=
𝐷𝑡 + 𝑓𝒛×𝒗= = −𝑔∇𝜂=																																											(2.4𝑎)	

	
𝐷𝒗*
𝐷𝑡 + 𝑓𝒛×𝒗* = −

𝜌=
𝜌*
𝑔∇𝜂= − 𝑔�∇𝜂* ≈ −𝑔∇𝜂= − 𝑔�∇𝜂*																	(2.4𝑏)	

	
where	𝑔�	is	the	reduced	gravity,	defined	by	
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𝑔� =
𝑔 𝜌* − 𝜌=

𝜌*
																																																							(2.5)	

	
	
																																			𝑧	
																																																																																							𝑧 = 𝜂=(𝑥, 𝑦, 𝑡)				
	
																																																				Upper	layer	density	𝜌=	
	
																																																																											𝑧 = −𝐻= + 𝜂*(𝑥, 𝑦, 𝑡)	
																							
																																																				Lower	layer	density	𝜌*	
	
																																		−𝐻	

	
Figure	2.5	The	notation	used	to	describe	the	motion	of	two	superposed	shallow	homogeneous	
layers	of	fluid.	𝐻=,	𝐻*	are	the	depths	of	the	layers	when	at	rest	and	𝐻 = 𝐻= + 𝐻*	is	the	total	
depth.	The	𝑧	axis	points	vertically	upward,	𝑧 = 𝜂=(𝑥, 𝑦, 𝑡)	is	the	surface	elevation,	and	𝑧 =
−𝐻 + 𝜂*(𝑥, 𝑦, 𝑡)	gives	the	disturbed	position	of	the	interface	between	the	two	fluids.	The	

thicknesses	of	the	layers	are	ℎ= = 𝐻= + 𝜂= − 𝜂*	and	ℎ* = 𝐻* + 𝜂*	respectively.	
	
whereas	the	continuity	equations	are	
	

𝐷ℎ=
𝐷𝑡 + ℎ=

𝜕𝑢=
𝜕𝑥 +

𝜕𝑣=
𝜕𝑦 = 0																																						(2.6𝑎)	

	
𝐷ℎ*
𝐷𝑡 + ℎ*

𝜕𝑢*
𝜕𝑥 +

𝜕𝑣*
𝜕𝑦 = 0																																						(2.6𝑏)	

	
	
2.2.2	The	baroclinic	mode	and	the	rigid	lid	approximation	
	
The	disparity	in	the	values	of	𝑔�	and	𝑔	means	that	approximations	can	be	made	to	
the	equations	 and	boundary	 conditions,	 depending	on	 the	mode	being	 studied.	
Following	 Gill	 (1982),	 we	 can	 describe	 the	 flow	 with	 two	 independent	 vertical	
modes,	called	the	barotropic	(sum	of	the	two	layers)	and	baroclinic	(difference	of	
the	two	 layers)	modes.	For	the	barotropic	mode,	the	approximation	 is	simply	to	
ignore	density	differences	altogether	and	treat	fluid	as	one	of	uniform	density.		
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And	there	are	two	approximations	used	to	obtain	the	baroclinic	mode.	The	first	
uses	the	fact	 that	 for	this	mode	surface	displacements	are	small	compared	with	
interface	displacements.	Thus	the	continuity	equation	(2.6a)	is	approximated	by	
	

−
𝜕𝜂*
𝜕𝑡 + 𝒗= ∙ ∇ 𝜂= − 𝜂* + ℎ=

𝜕𝑢=
𝜕𝑥 +

𝜕𝑣=
𝜕𝑦 = 0												(2.6𝑎_𝑛𝑒𝑤)	

	
where	ℎ= = 𝐻= − 𝜂*.	
	
The	momentum	equations	for	the	upper	layer	are	given	by	(2.4a)	as	before.	This	

is	called	the	rigid	lid	approximation,	although	the	name	is	misleading	because	free	
surface	displacements	are	required	to	give	pressure	gradients	 in	the	upper	 layer	
(i.e.,	(2.4a)	involves	∇𝜂=).	The	justification	for	the	name	lies	in	the	fact	that	if	there	
were	 a	 rigid	 lid	 at	𝑧 = 0 ,	 the	 identical	 pressure	 gradients	 would	 be	 achieved	
because	 the	 rigid	 lid	 would	 provide	 the	 necessary	 pressure.	 The	 second	
approximation	is	simply	to	replace	the	ratio	𝜌=/𝜌*	by	unity,	as	shown	in	(2.4b).	This	
is	 usually	 referred	 to	 as	 the	 Boussinesq	 approximation	 that	 the	 differences	 in	
inertia	of	the	two	layers	is	negligible	but	their	weights	are	different.	Equations	(2.4)	
and	(2.6b)	usually	compose	a	typical	rigid	lid	two-layer	shallow	water	system.		
	

				We	can	define	our	baroclinic	and	barotropic	velocities	as	follows:	
	

𝒗�� = 𝒗* − 𝒗=																																																				(2.7)	
	

𝒗�c =
𝐻=𝒗= + 𝐻*𝒗*

𝐻 																																																				(2.8)	
	
𝒗�� 	and	𝒗�c	can	also	be	thought	of	as	the	amplitude	of	 the	baroclinic	mode	and	
barotropic	mode	respectively.	And	then	we	can	rewrite	the	shallow	water	equation	
system	with	baroclinic	and	barotropic	velocities.	
	

𝜕𝒗��
𝜕𝑡 + 𝒗�c ∙ ∇ 𝒗�� + 𝒗�� ∙ ∇ 𝒗�c + 𝑓𝒛×𝒗�� = −𝑔�∇𝜂*											(2.9)	

	
𝜕𝒗�c
𝜕𝑡 +

𝐻=
𝐻 𝒗�c ∙ ∇ 𝒗�c +

𝐻=*𝐻*
𝐻> 𝒗�� ∙ ∇ 𝒗�� + 𝑓𝒛×𝒗�c = −𝑔∇𝜂= − 𝑔�

𝐻*
𝐻 ∇𝜂*										(2.10)	
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𝜕𝜂*
𝜕𝑡 = − 𝐻* + 𝜂* ∇ ∙ 𝒗�c −

𝐻*
𝐻 𝒗�� − 𝒗�c −

𝐻*
𝐻 𝒗�� ∙ ∇𝜂*							(2.11)	

	
				Waves	traveling	on	barotropic	and	baroclinic	modes	have	specific	phase	speeds:	
	

𝑐�c = 𝑔𝐻 ≈ 200	m	𝑠<=																																								(2.12)	
	

𝑐�� = 𝑔�𝐻d ≈ 2	m	𝑠<=																																								(2.13)	
	
where	𝐻d = 𝐻=𝐻*/𝐻,	is	the	equivalent	height.	Here,	we	apply	𝐻 = 4000	m,	𝐻= =
1000	m	and	𝐻* = 3000	m	in	our	model.	After	making	the	rigid	lid	approximation,	
the	barotropic	gravity	waves	no	longer	exist,	which	means	that	𝑐�c	is	replaced	with	
an	infinite	gravity	wave	speed	and	𝜂= = 0	in	our	model.	
	
	
2.2.3	Decomposition	into	quasigeostrophic	and	ageostrophic	parts	
	
Quasigeostrophy	 assumes	 the	 Rossby	 and	 Froude	 numbers	 to	 be	 small.	
Equivalently,	it	is	assumed	that	𝜀~𝜀( �

��
)* ≪ 1,	where	the	deformation	radius	𝐿� 	is	

defined	as	
	

𝐿�* ≡
𝑔�𝐻d
𝑓* =

𝑐��*

𝑓* 																																																		(2.14)	

	
From	 the	 perspective	 of	 potential	 vorticity,	 we	 can	 also	 define	 barotropic	 and	
baroclinic	 potential	 vorticity	 to	 describe	 the	 two-layer	 quasigeostrophic	 (QG)	
system.	
	

𝑞�c =
𝐻=𝜁= + 𝐻*𝜁*

𝐻 																																																(2.15)	
	

𝑞�� = 𝜁* − 𝜁= −
𝑓𝜂*
𝐻d

																																																(2.16)	

	
Since	the	potential	vorticity	 is	a	Laplacian-like	operator	of	the	stream	function	𝜓	
and	the	QG	potential	vorticity	is	conserved,	each	𝑞	mode	mentioned	above	can	be	
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solved	and	results	in	two	𝜓	modes	by	doing	the	inverse	Laplacian	transformation.	
To	be	specific,	
	

𝐷𝑞
𝐷𝑡 = 0																																																									(2.17)	

	
where	𝑞	can	be	either	𝑞�c	or	𝑞��.	
	

𝑞�c = ∇*𝜓�c																																																				(2.18)	
	

𝑞�� = ∇*𝜓�� −
1
𝐿�*
𝜓��																																													(2.19)	

	
Knowing	the	value	of	𝜓�c	and	𝜓�� 	and	given	the	definition	of	stream	function,	QG	
velocities	of	both	layers	are	also	easy	to	achieve.	Next,	the	ageostrophic	(AG)	part	
of	velocities	is	simply	the	difference	between	the	total	and	the	QG	part.		
	
Typically,	the	QG	(or	geostrophic)	part	of	the	total	flow	contains	most	of	the	slow	

motion	and	the	ageostrophic	part	is	dominated	by	fast	time	scale	motion,	such	as	
inertia-gravity	or	Poincaré	waves.	Later,	we	will	use	this	decomposition	of	the	flow	
to	interpret	our	results.		
	
	
2.2.4	Coupling	of	the	Ekman	model	and	the	two-layer	shallow	water	model	
	
As	described	in	section	1	(Figure	1.4),	we	compare	a	typical	two-layer	shallow	water	
model	using	the	wind	stress	as	a	body	force	of	the	upper	layer	momentum	equation	
with	our	new	model	where	the	flow-dependent	Ekman	pumping	enters	the	upper	
layer	mass	equation.	Here,	we	assume	a	zonal	wind	stress	as	a	cosine	function	of	
latitude.		
	
Consider	the	momentum	and	mass	equations	of	the	upper	layer	using	standard	

method	
	

𝜕
𝜕𝑡 𝒖= + 𝒖= ∙ 𝛻 𝒖= + 𝑓𝑧×𝒖= = −𝑔∇𝜂= +

𝝉
ℎ=
																							(2.20)	
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𝜕
𝜕𝑡 ℎ= + 𝛻 ∙ ℎ=𝒖= = 0																																									(2.21)	

	
Governing	 equations	 for	 the	 lower	 layer	 are	 similar	 to	 equations	 described	 in	
section	2.2.1.	The	new	method	to	represent	wind	forcing	applies	an	explicit	Ekman	
layer	with	dynamics	described	by	Eqn	(2.3)	and	then	this	flow-dependent	Ekman	
pumping	enters	as	a	forcing	term	in	the	mass	continuity	equation	
	

𝜕
𝜕𝑡 𝒖= + 𝒖= ∙ 𝛻 𝒖= + 𝑓𝑧×𝒖= = −𝑔∇𝜂=																								(2.22)	

	
	 U
Uc
ℎ= + 𝛻 ∙ ℎ=𝒖= = −𝑤01																																							(2.23)	

	
To	recap,	 the	 focus	of	 this	 thesis	 is	 to	compare	the	standard	two-layer	model	

(Eqn	(2.20)	and	(2.21))	with	a	new	Ekman-interior	coupled	model	(Eqn	(2.22)	and	
(2.23)).	 Later	 in	all	 figures,	 “standard”	denotes	 the	 typical	 two-layer	model	with	
wind	as	the	body	force	and	“new”	represents	our	Ekman-interior	coupled	system.	
	
	

2.2.5	Wind	forcing	structure	and	model	parameters	
	
The	two-layer	shallow	water	system	described	above	is	forced	by	a	steady	westerly	
wind	stress	that	varies	sinusoidally	in	y-direction.		
	

𝜏Q = 𝜏7 ∙ cos
2𝜋𝑦
𝐿P

																																										(2.24𝑎)	

	
𝜏P = 0																																																																			(2.24𝑏)	

	
where	𝜏7 = 2 ∙ 10<�	m*	s<* 	and	 the	 domain	 size	 is	 characterized	 by	𝐿P = 𝐿Q =
2000	km.	Table	2.1	below	indicates	other	parameters	in	the	model.		
	

Table	2.1	Parameters	in	the	two-layer	shallow	water	model	
Parameters	 Values	

Resolution	(grid	points)	 𝑛Q = 𝑛P = 512	
Coriolis	parameter	 𝑓 = 7 ∙ 10<.	s<=	

Bottom	drag	coefficient	 𝑟�e�y = 10<¤	s<=	
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Lateral	momentum	
diffusivity	 𝐴w = 2 ∙ 10<¦ ∙ (

𝐿Q
𝑛Q
)�	

Dissipation	rate	for	large-
scale	motions	 𝑟��eyd = 2 ∙ 10<¦ ∙ (

2𝜋
𝐿P
)*	

Time	step	 𝑑𝑡 = 300	s	
Duration	 𝑇 = 200	days	

Output	frequency	 𝜔�Wc = 16	cycles/day	
Layer	thickness	 𝐻= = 1000	m	

𝐻* = 3000	m	
	
The	system	is	doubly	periodic	and	at	𝑡 = 0	the	wind	stress	is	turned	on	gradually	

(as	discussed	 in	 section	2.1.2).	We	 then	 investigate	 the	 response	of	 this	 initially	
motionless	stratified	fluid	to	the	wind	stress	when	the	entire	system	is	stable	 in	
time	(Figure	2.5).	Time-averaged	values	of	kinetic	energy	calculated	from	new	and	
standard	methods	are	more	or	less	the	same.		
	

	
Figure	2.5	Timeseries	of	domain-averaged	kinetic	energy	of	both	layers	using	standard	and	new	

methods	
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Chapter	3	
	
Results	
	
We	 will	 first	 present	 results	 for	 a	 reference	 simulation	 using	 standard	 forcing	
(described	as	the	standard	method	previously).	The	reference	simulation	is	chosen	
so	as	 to	produce	a	 flow	with	Rossby	numbers	on	 the	order	of	0.1.	While	 this	 is	
perhaps	small	relative	to	energetic	currents	such	as	the	Gulf	Stream	or	Kuroshio,	it	
respects	 the	 small	 Rossby	 number	 approximation	 typically	 assumed	 in	 studies	
evoking	Ekman	theory.	We	will	later	be	interested	to	see	how	our	two-layer	model	
forced	 using	 an	 assumed	 Ekman	 layer	 differs	 from	 the	 standard	 case.	 In	 other	
words,	 different	 responses	 of	 the	 interior	 ocean	 to	 standard	 and	 new	 forcing	
methods	mentioned	in	early	sections	are	displayed	and	compared.	Because	such	
differences	are	likely	to	vary	with	scale	and	between	geostrophic	and	ageostrophic	
parts	 of	 the	 flow,	we	will	 be	particularly	 interested	 in	 looking	 at	 frequency	 and	
wavenumber	spectra,	as	well	as	in	viewing	the	geostrophic	and	ageostrophic	parts	
of	the	flow	separately.		
	
	
3.1	Reference	case:	a	standard	two-layer	system	forced	by	steady	wind	stress	
	
First,	we	 conduct	 a	 reference	 simulation	 in	which	 a	 steady	 zonal	wind	 stress	 is	
applied	to	the	standard	two-layer	shallow	water	model.	Figure	3.1	plots	snapshots	
of	 various	 upper-layer	 fields	 to	 illustrate	 the	 flow	 regime	 of	 our	 reference	
simulation.	Plotted	are	the	two	components	of	horizontal	velocity,	layer	thickness	
and	 relative	 vorticity	 (normalized	 by	 planetary	 vorticity	𝑓 ).	 The	 flow	 pattern	 is	
dominated	by	large-scale	zonal	jets	which	are	in	the	direction	of	wind	stress,	while	
the	 eddy	 components	 also	 account	 for	 a	 certain	 proportion.	 For	 example,	 the	
upper-layer	velocities	 𝑢= ~0.1	m	s<=	and	the	interface	displacement	 𝜂* ~200	m.	
The	 Rossby	 number	 𝜀~0.1 	is	 also	 consistent	 with	 both	 properties	 from	 the	
observed	global-mean	ocean	and	W&T	experiments.		
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Figure	3.1	Snapshots	for	the	field	of	the	reference	simulation.	From	left	to	right	and	from	top	to	

bottom,	the	subplots	show	upper-layer	zonal	velocity,	meridional	velocity,	thickness,	and	
Rossby	number	(relative	vorticity	normalized	by	𝑓).	

	
The	upper	panel	in	Figure	3.2	compares	the	upper-layer	kinetic	energy	response	

with	the	one	in	lower	layer.	As	is	typical	of	wind-forced	baroclinic	flow,	the	lower	
layer	 is	 less	 energetic.	 This	 is	 true	 for	 all	 frequencies	 and	 wavenumbers,	 by	
comparing	the	red	lines	(upper-layer	kinetic	energy)	with	the	blue	lines	(lower-layer	
kinetic	energy)	in	Figure	3.3.	One	can	also	make	such	comparison	in	barotropic	or	
baroclinic	context	(see	Eqns	(2.7)	and	(2.8)).	The	lower	panel	in	Figure	3.2	shows	
baroclinic	kinetic	energy	to	dominate	in	our	simulation.	Again,	this	dominance	is	at	
all	 frequencies	 and	all	wavenumbers.	 The	 following	parts	will	 thus	 focus	on	 the	
kinetic	energy	response	of	the	baroclinic	mode.		
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Figure	3.2	Snapshots	for	the	field	of	the	reference	simulation.	From	left	to	right	and	from	top	to	
bottom,	the	subplots	show	upper-layer	kinetic	energy,	lower-layer	kinetic	energy,	barotropic	

kinetic	energy	and	baroclinic	kinetic	energy.		
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Figure	3.3	Frequency	spectra	and	wavenumber	spectra	of	upper-layer	kinetic	energy,	lower-
layer	kinetic	energy,	barotropic	kinetic	energy	and	baroclinic	kinetic	energy	in	the	reference	

simulation.		
	
It	 is	 also	 of	 interest	 to	 decompose	 the	 flow	 into	 its	 geostrophic	 (QG)	 and	

ageostrophic	 (AG)	 components.	 Figure	 3.4	 does	 this	 for	 the	 baroclinic	 relative	
vorticity.	As	is	evident	from	the	figure,	the	flow	is	dominated	by	the	geostrophic	
mode	while	variations	in	the	ageostrophic	component	comprise	only	about	3%	of	
the	total.		
	

	
Figure	3.4	Snapshots	for	the	baroclinic	relative	vorticity	(QG	and	AG)	fields	of	the	reference	

simulation.	
	
Consistent	with	 Figure	 3.4,	 the	QG	 part	 of	 baroclinic	 kinetic	 energy	 is	 almost	

indistinguishable	 from	 the	 total	 baroclinic	 kinetic	 energy,	 with	 respect	 to	 both	
frequencies	and	wavenumbers	(compare	the	red	and	blue	curves	in	Figure	3.5).	The	
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sharp	 peak	 of	 the	 ageostrophic	 response	 at	𝜔 = 1 	corresponds	 to	 the	 Coriolis	
frequency,	which	is	shown	as	the	spikes	of	the	AG	frequency	spectrum,	but	note	
that	this	peak	remains	near	or	below	the	(already	weak)	level	of	energy	in	the	QG	
part	of	the	spectrum	at	these	frequencies.	The	low-frequency	ageostrophic	energy	
is	considerably	 larger	 than	 the	energy	contained	 in	 the	near-inertial	peak	and	 is	
likely	related	to	Rossby	number	corrections	to	QG.	Another	noteworthy	point	from	
the	wavenumber	spectra	is	that	the	ratio	of	AG	to	QG	kinetic	energy	increases	with	
wavenumber.	Nonetheless,	QG	motion	continues	to	dominate	up	to	the	dissipation	
range	(which	begins	near	wavenumber	100).			
	

	
Figure	3.5	Frequency	spectra	and	wavenumber	spectra	of	total,	QG	and	AG	baroclinic	kinetic	

energy	in	the	reference	simulation.	
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				To	 conclude,	 the	 reference	 two-layer	 system	 is	 strongly	 baroclinic	 and	 in	
approximate	 quasigeostrophic	 balance.	 The	 ageostrophic	 component	 of	 this	
system	 is	much	 smaller	 than	 the	QG	 component,	 becoming	 comparable	only	 at	
large	wavenumbers.	
	
	
3.2	Steady	wind	stress	over	an	Ekman-interior	coupled	two-layer	system	
	
In	this	section,	a	comparison	between	an	Ekman-interior	coupled	system	and	the	
reference	system	mentioned	earlier	will	be	discussed.	Both	simulations	are	forced	
by	 a	 steady	 wind	 stress.	 In	 other	 words,	 we	 compare	 two-layer	 shallow	 water	
simulations	with	new	and	standard	methods,	as	described	in	section	2.2.4.		
	
The	major	difference	between	these	two	methods	is	whether	an	explicit	Ekman	

layer	is	applied	as	an	intermediary	between	the	wind	forcing	and	the	interior.	We	
thus	begin	with	a	look	of	the	temporal	and	spatial	structures	of	the	Ekman	pumping	
(Figure	3.6).	The	wavenumber	1	forcing	pattern	(consistent	with	standard	Ekman	
theory)	 is	clearly	dominant	 in	both	the	snapshot	and	the	wavenumber	spectrum	
shown	in	the	figure.	Between	wavenumbers	1	and	2,	the	spectrum	falls	off	sharply,	
after	 which	 a	 positive	 slope	 is	 seen	 out	 to	 about	 wavenumber	 100,	 which	 is	
associated	with	the	wavelength	of	about	10	km.	These	small-scale	structures	are	
clearly	evident	in	the	snapshot	and	dominate	the	variability	in	the	Ekman	pumping.	
The	frequency	spectrum	is	relatively	flat	before	tailing	off	around	𝜔 = 0.1	cycle/
day.	There	is	a	small	peak	at	around	𝜔 = 0.02	cycle/day	but	we	are	unsure	as	to	
its	origins	and	 leave	 this	 for	 future	study.	To	summarize,	 the	Ekman	pumping	 is	
dominated	 by	 the	 wavenumber	 1	 steady	 forcing	 given	 by	 the	 wind	 stress	 curl.	
Nonetheless,	there	is	also	a	significant	amount	of	higher-frequency	and	small-scale	
variability.	It	is	therefore	reasonable	to	anticipate	the	standard	and	new	forcings	
will	 produce	 different	 results.	 Since	 the	 basic	 Ekman	 forcing	 is	 mainly	 from	
wavenumber	1,	however,	we	anticipate	that	these	differences	will	be	subtle.				
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Figure	3.6	A	snapshot,	the	frequency	spectrum	and	wavenumber	spectrum	of	Ekman	pumping	

velocity	in	the	Ekman-interior	coupled	system	forced	by	steady	wind.	
	
Figure	3.7	and	Figure	3.8	show	frequency	and	wavenumber	spectra	of	baroclinic	

kinetic	 energy	 using	 the	 new	 and	 standard	 forcings.	 Spectra	 with	 both	 forcing	
methods	are	nearly	identical.	This	is	true	for	both	the	QG	and	AG	parts	of	the	total	
flow.	A	small	difference	is	that	the	system	forced	with	new	method	contains	more	
near-inertial	 baroclinic	 kinetic	 energy	 than	 the	 standard	model	 (see	 Figure	 3.7)	
while	the	wavenumber	spectra	do	not	show	much	difference	between	these	two	
systems.		
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Figure	3.7	Frequency	spectra	of	baroclinic	kinetic	energy	in	two-layer	systems	with	new	and	
standard	methods.	From	top	to	bottom,	the	rows	show	total	kinetic	energy,	quasigeostrophic	

kinetic	energy	and	ageostrophic	kinetic	energy.		
	

	
Figure	3.8	Wavenumber	spectra	of	baroclinic	kinetic	energy	in	two-layer	systems	with	new	and	
standard	methods.	From	top	to	bottom,	the	rows	show	total	kinetic	energy,	quasigeostrophic	

kinetic	energy	and	ageostrophic	kinetic	energy.		
	

To	summarize,	the	kinetic	energy	response	of	Ekman-interior	coupled	system	is	
quite	similar	to	the	one	from	the	reference	or	standard	system	(Figures	3.7-3.9).	
There	are	two	or	more	possible	explanations	associated	with	the	similarity.	From	
the	 wavenumber	 spectrum	 in	 Figure	 3.6,	 the	 Ekman	 pumping	 forcing	 for	 the	
interior	 ocean	 in	 our	 new	 system	 is	mostly	 at	wavenumber	 1.	Hence,	 the	 high-
frequency	small-scale	Ekman	pumping	is	 inefficient	at	forcing	interior	flow.	Later	
we	 will	 check	 this	 possibility	 by	 identify	 the	 spatial	 scale	 of	 high-frequency	
components	 in	 the	 kinetic	 energy	 response	 of	 our	 new	 Ekman-interior	 coupled	
system.	If	the	near-inertial	components	are	associated	with	scales	relatively	large	
compared	to	the	deformation	radius,	then	the	hypothesis	above	is	possibly	right.	
Another	 possibility	 is	 that	 the	 standard	method	 forces	 the	 interior	 in	 a	 similar	
manner	because	the	forcing	term	in	associated	momentum	equations	is	also	time-
dependent	(containing	high	frequencies),	e.g.,	the	right	hand	side	in	Eqn	(2.20)	is	
𝝉
w
	where	ℎ=	is	dependent	on	time.	Using	potential	vorticity	equations	of	these	two	

systems	might	be	an	alternative	way	to	compare	forcings	and	responses	of	the	two	
methods	but	we	will	leave	the	analysis	of	potential	vorticity	to	future	studies.		
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Figure	3.9	Snapshots	for	the	baroclinic	total	kinetic	energy	fields	of	standard	and	new	systems.	

	
Figure	 3.10	 illustrates	 the	 complexity	 of	 the	 flow,	 which	 is	 characterized	 by	

eddies	 and	 filaments.	 Clearly	 for	 such	 a	 flow,	 using	 the	 method	 proposed	 by	
Wenegrat	 and	 Thomas	 to	 calculate	 the	 flow-dependent	 Ekman	 pumping	 field	
would	 be	 intractable.	 For	 example,	 even	 with	 simple	 cyclonic	 or	 anticyclonic	
structures	 shown	 in	 the	 lower	 panel	 of	 Figure	 3.10,	 it	 is	 difficult	 to	 apply	W&T	
method	 to	 calculate	 the	 pumping	 velocities	 since	 the	 structures	 are	 irregular.	
Compared	with	their	method,	our	calculation	is	more	applicable	to	turbulent	flow	
field,	however,	our	method	of	using	an	explicit	representation	of	Ekman	pumping	
in	 two-layer	model	made	 little	 difference	 in	 terms	 of	 interior	 energy	 response,	
compared	to	the	standard	two-layer	shallow	water	model.	We	speculate	previously	
that	this	lack	of	difference	might	be	related	to	i)	the	relatively	low	Rossby	number	
of	the	flows	simulated	and	ii)	the	absence	of	fast	time	scale	wind	forcing	(and	this	
conjecture	 is	 similar	 to	 the	 previous	 speculation	 that	 forcing	 term	 in	 standard	
model	is	also	time-dependent).	In	the	next	section,	we	explore	the	latter	possibility	
by	adding	a	time	variable	component	to	the	wind	stress.	
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Figure	3.10	Snapshots	for	the	Ekman-interior	coupled	system	forced	by	steady	wind	stress.	
From	top	to	bottom	and	from	left	to	right,	plots	show	Ekman	pumping	velocity,	upper-layer	

relative	vorticity,	an	enlargement	of	the	upper-layer	relative	vorticity	field	to	illustrate	a	typical	
cyclonic	vortex	and	an	anticyclonic	vortex.		

	
	

3.3	Impacts	of	unsteady	wind	
	
Any	two-layer	system	described	before	this	section	was	forced	by	a	steady	westerly	
wind	 stress	 varying	 sinusoidally	 in	 y-direction	 as	 described	 by	 (2.24a),	 with	 the	
maximum	 wind	 stress	 𝜏7 = 2 ∙ 10<�	m*	s<* .	 In	 this	 section,	 a	 high-frequency	
component	 of	 the	wind	 forcing	 is	 introduced	 so	 as	 to	 test	whether	 the	 Ekman-
interior	coupled	system	is	different	from	the	reference	system	in	regard	to	energy	
response.	The	modified	wind	stress	at	any	time	point	is	then	described	as	
	

𝜏Q = 𝜏7 cos
2𝜋𝑦
𝐿P

+ 𝜏=sin	(𝑓𝑡)																																							(3.1)	

	
where	𝜏= = 10<.	m*	s<* 	and	𝑡 	is	 time.	 Hence,	 our	 new	 wind	 stress	 includes	 a	
steady	part	which	has	the	same	value	as	the	one	described	in	section	3.1	and	3.2,	
but	also	an	unsteady	component	which	is	uniform	in	space.	
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Figure	3.11	and	3.12	give	an	impression	of	how	different	the	Ekman	forcing	of	

new	wind	stress	 is	 from	the	steady-wind	case,	even	though	the	time-dependent	
component	of	𝜏Q	is	relatively	small	compared	with	the	stationary	component	(Y

YZ
=

0.05).	The	near-inertial	Ekman	forcing	for	the	unsteady	wind	case	is	considerable;	
it	is	larger	than	low-frequency	components,	as	can	be	seen	from	the	blue	frequency	
spectrum	in	Figure	3.12.	We	might	then	expect	a	similar	difference	in	response	of	
our	two-layer	system	to	the	new	Ekman	pumping,	which	is	assumed	to	contain	a	
large	amount	of	high	frequencies;	however,	as	shown	below	this	is	not	the	case.	
That	is,	the	major	differences	are	limited	to	the	high-frequency	end	of	the	spectrum	
(as	one	might	expect)	and	high-frequency	energy	remains	small	compared	to	 its	
low-frequency	counterpart.	
	

	
Figure	3.11	Snapshots	for	the	Ekman	pumping	velocities	of	the	steady-wind	and	unsteady-wind	

cases	separately	(of	the	Ekman-interior	coupled	model).	
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Figure	3.12	Frequency	spectra	and	wavenumber	spectra	of	𝑤01	of	the	steady-wind	and	
unsteady-wind	cases	separately	(of	the	Ekman-interior	coupled	model).	

	
Figure	 3.13	 compares	 four	 simulations	 together:	 standard	 or	 new	 forcing	

mechanisms	with	steady	or	unsteady	wind.	The	four	frequency	spectra	of	the	total	
baroclinic	kinetic	energy	coincide	almost	perfectly	at	low	frequencies,	but	diverge	
significantly	at	near-inertial	and	higher	frequencies	(see	Figure	3.13	upper	left).	The	
decomposition	 of	 kinetic	 energy	 into	 QG	 and	 AG	 parts	 also	 shows	 similar	
characteristics	 between	 new	 and	 standard	 regimes	 forced	 by	 unsteady	wind	 in	
terms	of	frequency	analysis.	That	is,	the	high-frequency	peak	is	significantly	wider	
in	the	Ekman-interior	coupled	system	than	the	reference	system.	Additionally,	the	
QG	part	of	this	high-frequency	peak	is	much	larger	for	the	simulation	using	the	new	
forcing	method	 (see	 green	 and	 yellow	 curves	 in	 Figure	 3.13	middle	 left	 panel).	
Conversely,	the	four	wavenumber	spectra	of	total	or	QG	baroclinic	kinetic	energy	
show	 remarkable	 agreement	 at	 all	 wavenumbers.	 A	 comparison	 between	 the	
frequency	 spectrum	and	 the	wavenumber	 spectrum	of	 the	 ageostrophic	 kinetic	
energy	 seems	 to	 show	 that	 this	 high-frequency	 difference	 between	 the	 two	
mechanisms	spreads	over	a	broad	range	of	spatial	scales.		
	
Another	 interesting	 point	 to	 note	 is	 the	 comparison	 between	 QG	 and	 AG	

components	of	the	Ekman-interior	coupled	system	forced	by	unsteady	wind.	Most	
people	 would	 associate	 near-inertial	 motion	 with	 the	 AG	modes,	 however,	 QG	
modes	also	contribute	to	high-frequency	energy	response	(e.g.,	compare	the	two	
green	curves	of	QG	and	AG	frequency	spectra	in	Figure	3.13).	
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Figure	3.13	Frequency	spectra	and	wavenumber	spectra	of	baroclinic	kinetic	energy	in	two-

layer	systems	with	new	and	standard	methods.	From	top	to	bottom,	the	rows	show	total	kinetic	
energy,	quasigeostrophic	kinetic	energy	and	ageostrophic	kinetic	energy.	

	
Focusing	on	AG	modes	(the	bottom	panel	in	Figure	3.13),	it	is	apparent	that	there	

are	sizable	differences	in	high-frequency	energy	in	response	to	the	two	methods	of	
forcing	 and	 these	 differences	 are	 visible	 at	 almost	 all	 wavenumbers.	 The	 high-
frequency	 QG	 modes	 (the	 middle	 panel	 in	 Figure	 3.13),	 on	 the	 other	 hand	
constitute	 a	much	 smaller	 fraction	 of	 the	 total	QG	energy.	 As	 such,	 it	 does	 not	
significantly	 affect	 the	wavenumber	 spectrum,	which	 is	 dominated	 by	 the	 slow	
modes.	To	get	a	better	understanding	of	the	spatial	structure	of	the	fast	QG	and	
AG	modes,	 we	 now	 separate	 high-frequency	 components	 of	 the	 kinetic	 energy	
from	 the	 total	 (Figure	 3.14).	 To	 isolate	 the	 high	 frequencies,	 we	 subtract	
instantaneous	values	from	a	two-day	running	mean,	which	we	consider	to	be	the	
low-frequency	 part	 of	 the	 flow.	 It	 is	 apparent	 that	 the	 difference	 of	 high	
frequencies	between	these	two	methods	is	almost	at	each	wavenumber.	And	the	
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main	difference	is	in	the	AG	modes	while	QG	modes	show	difference	at	small	to	
moderate	wavenumbers.		
	

	
Figure	3.14	Wavenumber	spectra	of	baroclinic	high-frequency	kinetic	energy	for	the	unsteady	

wind	case:	total	(left),	QG	(middle)	and	AG	(right).				
	
To	conclude,	a	first	comparison	between	the	standard	and	new	cases	where	both	

systems	 are	 forced	 by	 steady	 wind	 shows	 little	 difference.	 Even	 the	 weak	
ageostrophic	part	of	the	flow	shows	spectra	that	essentially	agree	between	the	two	
cases.	 This	 lack	 of	 difference	 is	 consistent	 with	 the	 Ekman	 pumping	 being	
dominated	by	its	steady	wavenumber	1	component	(as	is	the	wind	forcing	applied	
directly	to	the	momentum	equation	in	the	standard	model).	We	then	turn	to	a	case	
where	 the	 wind	 stress	 also	 includes	 high	 frequencies.	 In	 this	 case,	 the	 Ekman	
pumping	inferred	using	our	new	forcing	method	not	only	contains	a	large	amount	
of	energy	at	near-inertial	frequencies,	but	also	 is	skewed	towards	relatively	high	
wavenumbers.	In	this	case	the	two	models	show	significantly	different	responses.	
These	 differences	 are	 largely	 provided	 by	 the	 ageostrophic	modes.	 That	 is,	 the	
larger	horizontal	scales,	at	which	geostrophy	dominates,	remain	insensitive	to	the	
method	 of	 forcing.	 This	 is	 consistent	 with	 quasigeostrophic	 theory,	 for	 which	
forcing	in	the	momentum	or	mass	equations	is	equivalent.	
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Chapter	4	
	
Conclusions	and	discussions	
	
The	influence	of	relative	vorticity	on	Ekman	pumping	has	long	been	recognized	and	
theoretically	improved.	However,	all	previous	theories	assume	the	Ekman	flow	to	
be	determined	by	instantaneous	values	of	the	wind	stress	and	surface	velocities.	
That	is,	both	the	winds	and	the	surface	currents	are	assumed	to	vary	on	time	scales	
slow	compared	to	the	time	needed	to	establish	the	Ekman	balance.	Explicit	time	
dependence	in	the	Ekman	equations	is	thus	ignored.	In	order	to	further	apply	the	
flow-dependent	 Ekman	 theory	 to	 complicated	 turbulent	 fields,	 we	 add	 time	
dependence	to	the	associated	Ekman	equations.	By	doing	so,	it	becomes	possible	
to	solve	for	the	Ekman	transport	without	the	need	to	perform	line	integrals	along	
complex	streamlines,	which	greatly	simplifies	calculation.		
	
In	 order	 to	 validate	 our	 time-dependent	 Ekman	 layer,	 we	 first	 reproduce	

Wenegrat	and	Thomas’s	results	for	a	balanced	vortex,	however,	our	method	also	
introduces	 a	 strong	 near-inertial	 component	 to	 the	 Ekman	 pumping,	 except	 in	
cases	where	the	wind	stress	 is	 ramped	up	very	slowly.	We	next	couple	our	new	
flow-dependent	Ekman	layer	to	a	two-layer	shallow	water	model	and	compare	it	
with	a	standard	wind-driven	two-layer	regime.	This	comparison	makes	up	the	core	
part	of	the	thesis.	The	standard	regime	forced	by	a	steady	wind	stress	is	also	set	as	
a	 reference	 simulation	 and	 each	 simulation	 resulting	 from	 other	 forcing	
possibilities	is	compared	with	the	reference.		
	
The	 standard	model	 and	 the	 Ekman-interior	 coupled	model	 forced	 by	 steady	

wind	stress	give	tiny	difference	between	the	two	regimes	in	regard	to	the	baroclinic	
kinetic	 energy	 response,	 even	 though	 Ekman	 pumping	 forcing	 in	 the	 coupled	
system	has	a	relatively	large	proportion	of	high	frequencies.	We	then	add	unsteady	
components	which	oscillate	at	Coriolis	frequency	to	the	steady	wind	stress.	In	this	
case	 the	 two	models	 show	 significantly	 different	 responses,	 especially	 in	 near-
inertial	frequency	range	of	the	ageostrophic	kinetic	energy.	And	later	we	find	this	
high-frequency	difference	is	related	to	all	wavenumbers.	
	
To	further	compare	the	difference	between	new	and	standard	forcing	regimes,	

it	 is	also	possible	to	turn	to	equations	of	the	upper-layer	potential	vorticity	(PV).	
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Taking	curl	of	Eqn	(2.20)	and	combine	it	with	Eqn	(2.21),	one	can	obtain	the	upper-
layer	PV	equation	of	a	standard	system.	Using	similar	derivation	method	with	Eqns	
(2.22)	 and	 (2.23),	 the	 upper-layer	 PV	 equation	 for	 the	 coupled	 system	 is	 also	
determined.	
	

𝐷
𝐷𝑡

𝑓 + 𝜁=
ℎ=

=
1
ℎ=

∇×
𝝉
ℎ=

																																											(4.1)	

	
𝐷
𝐷𝑡

𝑓 + 𝜁=
ℎ=

=
(𝑓 + 𝜁=) ∙ 𝑤01

ℎ=*
																																								(4.2)	

	
Eqns	(4.1)	and	(4.2)	are	then	the	upper-layer	PV	equations	for	standard	and	new	
forcing	 methods.	 The	 upper-layer	 PV	 is	 defined	 as	 𝑞= =

\°±
w

,	 which	 can	 be	

regarded	as	the	vortical	response	of	upper	layer	while	the	right	hand	side	of	above	
equations	can	be	thought	of	as	forcing	which	helps	to	determine	the	PV	response	
of	each	method.	Thus,	we	can	define	the	right	hand	side	of	(4.1)	and	(4.2)	to	be	PV	
forcings	for	each	method.	Comparing	these	two	systems	from	the	perspective	of	
PV	is	then	an	alternative	way	to	understand	the	difference	and	this	will	be	left	to	
future	work.		
	
We	also	mentioned	previously	that	the	background	flow	simulated	here	has	low	

Rossby	 numbers.	 Another	 possible	 future	 work	 is	 therefore	 to	 try	 a	 set	 of	
background	flows	with	different	Rossby	numbers.	With	different	spatial	scales	of	
background	flow,	the	interaction	between	Ekman	dynamics	and	the	interior	might	
also	result	in	surprising	responses.		
	
Another	important	improvement	of	this	flow-dependent	Ekman	dynamics	is	to	

think	about	the	nonlinearity.	Look	back	on	Eqn	(2.1)	and	we	know	that	in	our	flow-
dependent	 Ekman	 equation	 the	 nonlinear	 Ekman	 self-advection	 term,	 𝒖01 ∙
∇ 𝒖01 	(the	 fourth	 term	 in	 Eqn	 (2.1)),	 is	 ignored.	 It	 is	 reasonable	 for	 the	 scale	
assumption	 where	 𝜀01 ≪ 1 	and	 𝜀 < 1 .	 However,	 if	 the	 Ekman	 flow	 and	 the	
background	flow	are	comparable	to	each	other	in	terms	of	their	spatial	structures,	
it	is	then	necessary	to	add	this	term	back	to	our	Ekman	equation.	Then,	Eqn	(2.3)	
includes	another	term,	the	vertical	integral	of	the	Ekman	self-advection	term	in	Eqn	
(2.1).	However,	calculating	this	new	term	in	Eqn	(2.3)	at	least	needs	to	define	an	
Ekman	layer	thickness	in	the	model	and	more	parameterization	methods	might	be	
introduced	for	further	study.		
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