
Approximation Algorithms for Network Flow and Minimum

Cut Problems

Calum MacRury

Master of Science

Mathematics and Statistics

McGill University

Montreal,Quebec

November 15, 2018

A thesis submitted to McGill University in partial fulfillment of the requirements
of the degree of Masters of Science

Copyright 2018

DEDICATION

In loving memory of Jacob Hope.

ii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor Jakobson for his guidance,

support and understanding throughout my time at McGill. I would also like to

thank Professor Norin for his willingness to discuss various topics in graph theory

with me. It was a pleasure working with both of you.

iii

ABSTRACT

In this thesis, a number of optimization problems are presented from algo-

rithmic graph theory. This includes the multi-commodity flow problem, whose

motivation lies in the single source-sink pair maximum flow problem. Combina-

torial and linear programming techniques are applied to these problems. In the

case of a single source-sink pair, a polynomial time exact algorithm is reviewed,

famously known as the Edmonds-Karp algorithm. A primal-dual algorithm is later

analyzed for the case of multiple source-sink pairs, however it specifically deals

with noncyclic graphs. The other main class of problems studied in this thesis

are known as minimum cut problems. In particular, the single source-sink pair

minimum cut problem is seen to have an exact algorithm. Generalizations of this

problem are later analyzed, including the multiway cut problem and the multicut

problem. Approximation algorithms are developed for both these problems, where

randomized rounding algorithms from linear programming are the main focus.

iv

ABRÉGÉ

Dans cette thèse, nous présentons plusieurs problèmes d’optimization qui

viennent de théorie algorithmique des graphes. Notamment le problème de

distribution multiple de flots dont la motivation provient du problème de flot

maximum a source et puits uniques. Nous appliquons des techniques combinatoires

et de programmation linéaire a ces problèmes. Pour le problème de flot maximum

a source et puits uniques, il existe un algorithme qui calcule une solution exacte

en temps polynomial, l’algorithme d’Edmonds-Karp. Nous analyserons aussi un

algorithme de programmation linéaire dans le cas de sources et puits multiples,

mais uniquement pour les graphes non cycliques. L’autre catégorie de problèmes

que nous étudions dans cette these est celle des problèmes de coupes minimum.

En particulier le problème de coupe minimum dans un graphe a source et puits

unique admet un algorithme exact. Nous verrons plus tard des généralisations de

ce problème.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . v

0 Introduction . 1

1 Review of Relevant Topics . 4

1.1 Decision Problems and Complexity Classes 6
1.1.1 NP-hardness and the Cook-Levin Theorem 13

1.2 Optimization Problems and Approximation Algorithms 16
1.2.1 Approximation Preserving Reductions 27

1.3 Linear Programming Techniques and Applications 30
1.3.1 Integrality Gaps and Rounding Algorithms 40
1.3.2 The Dual of a Linear Program 47

2 Introduction to Network Flow Problems 51

2.1 Path and Edge Network Flow . 53
2.2 Maximum Network Flow and the Ford-Fulkerson Algorithm 66

2.2.1 Edmonds-Karp Maximum Flow Algorithm 75
2.3 Applications of the Edmonds-Karp Algorithm 89

3 The Multiway Cut Problem . 95

3.1 Introduction to Multiway Cut . 97
3.2 Randomized Region Cut . 101
3.3 A Second IP Formulation of Multiway Cut 125

vi

4 The Multicut Problem . 140

4.1 Introduction to Multicut . 142
4.2 Multi-Commodity Flow on Trees 147
4.3 Primal-Dual Multicut Algorithms for Trees 151
4.4 Multicut on General Graphs . 158

5 Conclusion . 186

REFERENCES . 189

vii

CHAPTER 0
Introduction

This thesis serves an as overview of a number of topics from algorithmic

graph theory. In particular, it mainly focuses on developing algorithms for network

flow and minimum cut problems. Broadly speaking, both classes of problems are

optimization problems whose inputs contain edge weighted graphs, where the

interpretation of these weights depends on the problem at hand.

In the case of a minimum cut problem, the goal is typically to separate a

collection of vertex pairs in a graph, by removing a number of edges. The cost of

an edge subset is defined as the sum of its weights, and an exact solution to the

problem involves finding such a subset of minimum cost.

On the other hand, a network flow problem involves routing an abstract flow

commodity between pairs of vertices. This flow is routed using the paths of the

graph, and is subjected to a number of constraints. These restrictions are derived

from the edge weights of the graph, where the amount of flow passing through

an edge cannot exceed its capacity (weight). An exact solution to this problem

therefore involves maximizing the amount of flow passing through the graph.

The majority of the problems covered by the thesis are computationally

challenging. That is, they are unlikely to have polynomial time algorithms which

generate exact solutions. As consequence of these restrictions, the thesis is mostly

concerned with algorithms which generate approximate solutions in polynomial

1

time. The performance of such an algorithm is then determined by how closely it

approximates exact solutions. Algorithms with these properties are referred to as

approximation algorithms.

The first chapter of the thesis serves as an overview for some elementary

concepts from complexity theory. This includes a discussion of various complexity

classes, as well as formal definitions of optimization problems and approximation

algorithms. The last section of the chapter includes a review of some basic con-

cepts from linear programming. This includes material from duality theory, as

well as definitions of integrality gaps and rounding algorithms. The material from

this chapter is mainly adapted from the book “Computational Complexity” by

Arora and Barak [AB16], and the journal article “a Short Guide to Approximation

Preserving Reductions” by Crescenzi [Cp97]. That being said, the books “Ap-

proximation Algorithms” by Vazirani [Vv11], and “the Design of Approximation

Algorithms” by Williamson, and Shmoys [WS11] were also used.

The second chapter introduces the network flow problem for a single vertex

pair. In particular, a number of frameworks for this problem are developed,

which are later shown to be equivalent. In the later sections, exact algorithms

are developed to solve this problem, most notably the Edmonds-Karp algorithm

which appeared in the 1972 journal article by Edmonds and Karp [EK72]. The

chapter concludes with an overview of the maximum-flow minimum-cut theorem,

together with some applications of the Edmonds-Karp algorithm. The book

“Algorithm Design” by Kleinberg and Tardos [KT14] is used as the main source in

this chapter.

2

In the next chapter, the multiway cut problem for graphs is studied exten-

sively. This problem is a generalization of the minimum cut problem, and is known

to be computationally challenging; that is, NP-hard. A variety of combinatorial

and linear programming based algorithms are developed throughout the chap-

ter. The effectiveness of these algorithms are compared and contrasted, with

performance guarantees being the primary focus. The material of this chapter

is based on the books “Approximation Algorithms” [Vv11] and “the Design of

Approximation Algorithms” [WS11].

The final chapter of the thesis primarily studies a further generalization

of the multiway cut problem, known as the multicut problem. This problem is

first examined on trees, and is shown to be NP-hard even for trees of height

one. The dual of this problem is shown to be a maximum flow type problem, in

which flow is routed through many pairs of vertices concurrently. A primal-dual

algorithm is then reviewed from the book “Approximation Algorithms” [Vv11],

and shown to simultaneously approximate both problems. The chapter ends with

the development of rounding based algorithms for solving the multicut problem on

general graphs. This includes a number of randomized algorithms, together with

a deterministic algorithm adapted from “Approximation Algorithms” [Vv11] and

“the Design of Approximation Algorithms” [WS11].

3

CHAPTER 1
Review of Relevant Topics

This chapter contains a brief review of a number of important topics from

linear programming and complexity theory. As the main goal of the thesis is to

examine approximation algorithms on graphs, the primarily focus is on the theory

which serves as background to this area. The majority of the examples throughout

this chapter pertain to problems on graphs. In particular, the vertex cover problem

is used as a recurring example, as it is a simple problem which highlights many of

the topics discussed.

The first section involves a review of decision problems and some common

complexity classes. It also introduces the notion of NP-hardness of a problem,

where the vertex cover decision problem is seen as a prime example. The majority

of this section is based upon the book “Computational Complexity” by Arora and

Barak [AB16].

In the following section, the basic theory surrounding optimization problems

is introduced. This includes a formal definition of NP-optimization problems, as

well as a definition of what it means for such a problem to be NP-hard. Later on,

both deterministic and randomized approximation algorithms are introduced for

optimization problems which are NP-hard, and their performance guarantees are

discussed. This includes a definition of randomized algorithms based on general

probability spaces, which I designed to fit the applications of the thesis. The

4

section concludes with a review of approximation preserving reductions. Most of

the material of this section is adapted from the book “Approximation Algorithms”

by Vazirani [Vv11], and the journal article “A Short Guide to Approximation

Preserving Reductions” by Crescenzi [Cp97].

The final section of this chapter reviews a number of standard linear pro-

gramming concepts. In particular, the encodability of an optimization problem

as an integer program (IP) is discussed, together with its relaxation as a linear

program (LP). The integrality gap of an encoding is discussed at length, where

I have provided mathematically precise defintions of this concept. The section

also discusses the solvability of linear programs using polynomial time separation

oracles. This includes a general discussion of LP rounding algorithms, and their

relations to integrality gaps. The section concludes with a discussion of LP duality,

and a proposition involving the complementary slackness conditions of a linear

program. The book “the Design of Approximation Algorithms” by Williamson and

Shmoys [WS11] is used as a resource, though this is primarily cited in the context

of polynomial time separation oracles.

5

1.1 Decision Problems and Complexity Classes

In this section, we begin by introducing the notion of a decision problem,

and the complexity classes P and NP. From here, we consider the notion of a

polynomial time reduction. This naturally leads us to consider what it means for

a decision problem to be NP-hard. We conclude by reviewing the widely believed

conjecture that P 6= NP.

In broad terms, a decision problem is a type of problem in which the answer

is always “yes” or “no”. One of the most famously known decision problems is the

boolean satisfiability problem. In this problem, we are passed an arbitrary boolean

function f : {0, 1}k → {0, 1}, where k ≥ 1. The function f is referred to as an

instance of the problem. The goal is to determine whether or not there exists an

assignment s ∈ {0, 1}k, for which f(s) is equal to one. If such an assignment exists,

f is called satisfiable, and is classified as a “yes” instance. Otherwise, f is referred

to as nonsatisfiable, and is classified as a “no” instance.

We now introduce a number of concrete examples which make use of some

basic concepts from graph theory. Suppose that we are given an undirected graph

G = (V,E). The set V forms the vertices of G, whereas the set E consists of the

undirected edges of G. As G is undirected, each member of E is a set of the form

{u, v} for u, v ∈ V , where u 6= v. If e ∈ E, then we refer to e as an undirected

edge, and the ends of e as the vertices it contains. When we work specifically with

undirected graphs, we typically refer to G as a graph, and the members of E as

simply edges.

6

A fundamental concept in graph theory is the notion of connectivity. Let us

suppose that G = (V,E) is an undirected graph. Moreover, suppose we are given

vertices v1, . . . , vl in G, for which {vi, vi+1} ∈ E for i = 1, . . . , l − 1, where l ≥ 2. In

this case, we say that these vertices form a undirected path betweeen v1 and vl, and

refer to v1 and vl as being connected. The graph G itself is said to be connected,

provided any two vertices are connected (that is, a path between them exists). The

problem of determining whether or not a graph is connected is an example of a

decision problem.

Problem 1.1.1 (Graph Connectivity Problem). Suppose we are given an undi-

rected graph G as an instance of the problem. We may ask may the question: Is

the graph G connected? If the answer is yes, then G is a “yes” instance. If the

answer is no, then G is a “no” instance.

If we are passed a graph G = (V,E), then it is often useful to introduce

a weight function w : V → Q≥0, which can be thought of as associating a

nonnegative rational weight to each vertex of G. Let us suppose that U is a subset

of vertices of G, where for each edge e in E, at least one of the ends of e lies in

U . In this case, we refer to U as a vertex cover of G. Moreover, the weight of U ,

denoted w(U), is defined as the sum of the weights of its vertices. Rather,

w(U) :=
∑
v∈U

w(v).

Consider the following problem, known as the vertex cover decision problem:

Problem 1.1.2 (Vertex Cover Decision Problem). Suppose we are passed a

rational number q ∈ Q≥0, an undirected graph G = (V,E) with a weight function

7

w : E → Q≥0. In this case, the tuple (G,w, q) forms an instance of the problem.

We may ask the question: Does G have a vertex cover of weight less than or equal

to q? If the answer is yes, then (G,w, q) is a “yes” instance. Otherwise, (G,w, q)

is a “no” instance.

It is useful to introduce a formal mathematical object which we can use

to model each of these specific decision problems. Observe that in each of the

problems listed, the problem instances can be encoded using finite strings of binary

numbers. This is why when we considered the vertex cover decision problem,

we ensured that our weight function took on rational numbers, as opposed to

arbitrary real numbers. While there may be multiple ways to encode a problem

using binary strings, the significance is that at least one encoding exists.

Let us now introduce our mathematical definition for decision problems. We

first define {0, 1}∗ to be the set of all {0, 1} strings of finite length. In light of

the preceding observations, we can identify each decision problem as a subset of

{0, 1}∗. More specifically, let us suppose L ⊆ {0, 1}∗. We refer to each string

x ∈ {0, 1}∗ as problem instance. If x is a member of L, then x is referred to as

a “yes” instance. Otherwise, x is referred to as a “no” instance. Thus, the set

L indicates which problem instances have an affirmative answer. We refer to

L as a language, or as an abstract decision problem, where either term is used

interchangeably. That being said, the second term is nonstandard. Typically the

term “decision problem” is used instead to describe L. We precede this term with

the word “abstract”, as it helps to differentiable L from the informal notion of a

decision problem.

8

As an example, observe how we can use an abstract decision problem to model

Problem 1.1.2:

Example 1.1.1 (Vertex Cover Decision Problem). Let us suppose that q ∈ Q≥0,

and G = (V,E) is a graph with weight function w : V → Q≥0. We denote (G,w, q)b

as a {0, 1} encoding of the problem instance (G,w, q). We may now model Problem

1.1.2 using the language L, where

L := {(G,w, q)b : G has a vertex cover U with w(U) ≤ q}.

Observe that since there are many different ways to encode graphs, there are

many different languages which serve as models for Problem 1.1.2.

Now that we have an abstract model for decision problems, we may consider

a natural question associated with them: If L is an arbitrary language, and

x ∈ {0, 1}∗, can we compute whether x is a member of L in a finite amount of

time? In other words, we wish to know whether there exists an algorithm A, which

given the input x, ouputs a correct {0, 1} classification in a finite number of steps.

That is, if A(x) denotes the value outputed by the algorithm, then A(x) should be

one, if and only if x ∈ L (x is a “yes” instance).

While we have an intuitive notion of what an algorithm is, there exist a

number of computational models that allow us to formalize this intuition. In this

text, we focus specifically on the Turing machine model. We assume that the

reader is familiar with this construction, as well as how to identify algorithms with

Turing machines. In particular, we assume familiartiy with the Church-Turing

9

thesis. The majority of the following definitions and results will be stated using

this terminology.

Let us now return to the problem of classifying the members of the language

L. We wish to find a deterministic Turing machine M, for which if x ∈ {0, 1}∗

is present in the input tape of M, then after a finite number of steps, M will

terminate with the correct {0, 1} classification of x in its output tape. Rather, if

M(x) denotes the string present in the output tape at this point, then M(x) = 1,

if and only if x ∈ L. If the Turing machine M has this property, then we say that

M decides the language L. Moreover, we refer to the abstract decision problem L

as decidable.

It is clear that all of the decision problems we have introduced so far are

decidable (when encoded as languages of {0, 1}∗). This is easily seen, as there are

simple algorithms which solve each of them. The Church-Turing thesis ensures

that we can then encode each of these algorithms as Turing machines.

We now introduce a definition which allows us to measure how efficiently a

given Turing machine operates:

Definition 1.1.2. Suppose M is a Turing machine and τ : N → N. Moreover, for

each x ∈ {0, 1}∗, M returns the string M(x) in at most ε τ(|x|) steps, where |x| is

the length of x, and ε > 0 is a fixed constant. In this case, we say that the Turing

machine M operates (executes) in time τ , or that M is a τ -time Turing Machine.

We can relate Definition 1.1.2 to the decidability of languages as follows: Let

L be an arbitrary language, and M be any Turing machine which decides L. If

10

τ : N → N, then we say that M decides L in time τ , provided M operates in time

τ .

Using this definition, we can classify decision problems based on how effi-

ciently they can be solved. Of particular importance is the complexity class P,

which is defined as the set of all languages which are decidable in polynomial

time. Rather, if L is an arbitrary language, then L ∈ P, provided there exists a

Turing Machine M, and a polynomial p : N → N, which decides L in time p (as in

Definition 1.1.2). Observe that the graph connectivity problem (Problem 1.1.1) is a

member of P.

Example 1.1.3. Given a graph G = (V,E) and a vertex v ∈ V , we may execute a

depth-first-search about v, yielding a subset of vertices U ⊆ V . If G is connected,

then U will contain all the vertices of G. Otherwise, U will be a strict subset of

V . As this depth-first-search can be done in time O(|V | + |E|), we have a simple

algorithm for deciding connectivity in polynomial time.

We also define the complexity class NP, which is rougly speaking, the set

all of languages which can be verified efficiently. Formally, if L is an arbitrary

language, then we include L in NP, provided there exists a polynomial time

Turing machine M which satisfies the properties listed below. We assume that x is

an arbitrary member of {0, 1}∗:

• There exists a polynomial p, for which if x ∈ L, then there is some string

u ∈ {0, 1}∗ with |u| ≤ p(|x|), such that the output after passing (x, u) to M

is one. That is, M(x, u) = 1 in the notation introduced earlier. In this case,

we refer to u as a certificate for x.

11

• If x /∈ L, then for every y ∈ {0, 1}∗ with |y| ≤ p(x), the output after passing

(x, u) to M is zero; that is, M(x, y) = 0.

If such a Turing machine M exists, then we refer to M as a verifier for L,

and include L in the class NP.

It is clear that P ⊆ NP. To see this, observe that if L is decidable by M in

polynomial time, then we can take p to be the zero polynomial whereas M can be

used as the verifier for L. In particular, the empty string serves as a certificate for

strings contained in L.

As a result of this observation, the graph connectivity problem is a member

of NP by the work done in Example 1.1.3. We now show that the vertex cover

decision problem (Problem 1.1.2) is a nontrivial member of NP.

Example 1.1.4. Let us suppose that q ≥ 0 is a rational number, and G is a graph

with vertex weight w : V → Q≥0. The tuple (G,w, q) forms a problem instance

of the vertex cover decision problem. Our verification algorithm works as follows:

Given a subset of vertices U ⊆ V , first check whether each edge of G is covered

by U . If this is not the case, then U is not a valid vertex cover, so we reject U

and return the output zero. Otherwise, we acknowledge U as a vertex cover, and

compute its weight, namely, w(U). We next compare w(U) with the rational

number q. If w(U) < q, then we once again reject U , and return the ouput zero.

On the other hand, if w(U) ≤ q, then we accept U , and return the output one. In

this case, U serves as a certificate for the problem instance (G,w, q).

It is clear that this algorithm can be implemented in time O(|E| + |V |).

Moreover, the size of U is at most O(|V |), which is polynomial in the size of G.

12

The algorithm is therefore a verifier for the vertex cover decision problem, thus

proving the problem’s membership in NP.

1.1.1 NP-hardness and the Cook-Levin Theorem

We conclude the section by introducing the notion of NP-hardness. Intu-

itively, this is a means to characterize the most computationally difficult problems

present in the class NP. In order to formalize this notion, we introduce the

concept of polynomial time reductions between languages.

Definition 1.1.5. Given languages L1 and L2, we say that L1 reduces to L2,

denoted L1 ≤ L2, provided there exists a Turing machine M, with the properties

listed below. We assume now that x ∈ {0, 1}∗:

• Given x as input, M outputs a string y ∈ {0, 1}∗, such that x ∈ L1, if and

only if y ∈ L2. We denote this string M for convenience.

• There exists a polynomial p : N → N, such that M operates in time p. In

other words, M is a polynomial time algorithm.

We remark that unlike the preceding definitions, the Turing machine M in

Definition 1.1.5 may write nontrivial strings to its output tape. Moreover, we

observe that since M can only write one character at a time to its output tape,

|M(x)| ≤ p(|x|)

for each x ∈ {0, 1}∗, as M operates in time p. In light of this observation, the

claims below follow:

13

Proposition 1.1.6. Suppose we are given languages L1 and L2, for which L1 is

reducible to L2; that is, L1 ≤ L2. In this case, if L2 is decidable in polynomial

time, then so is L1. Similarly, if L2 if a member of NP, then so is L1.

If we consider ≤ to be a relation on NP, then it is clear that ≤ is transitive.

Rather, if L1, L2, L3 ∈ NP, then L1 ≤ L2 and L2 ≤ L3, imply that L1 ≤ L3.

To conclude, we define a language L ⊆ {0, 1}∗ to be NP-hard, provided

every language in the class NP reduces to L. If we also know that the language

L is a member of NP, then we refer to L as NP-complete. This turms out to

be a nontrivial definition, as there exist many languages which are known to be

NP-complete. That being said, the proof of the existence of such a language is a

nontrivial result. This existence was first proven in Cook-Levin Theorem, which

showed that the boolean satisfiability problem is NP-complete.

Theorem 1.1.7 (Cook-Levin Theorem). The boolean satisfiability problem is

NP-complete.

Moreover, there is a simple polynomial time reduction between the boolean

satisfiability problem, and the vertex cover decision problem (when encoded as

languages). Thus, as a result of Proposition 1.1.6, we also have the following

corollary:

Corollary 1.1.8. The vertex cover decision problem (Problem 1.1.2) is NP-

complete.

We may think of the NP-complete languages of NP as the hardest problems

to decide within this complexity class. It it widely believed that NP-complete

14

problems cannot be solved in polynomial time. This belief is equivalent to the

famous conjecture that P 6= NP.

Conjecture 1.1.1. The complexity class P is strictly contained in NP.

15

1.2 Optimization Problems and Approximation Algorithms

In this section, we consider a class of problems known as optimization problems.

The majority of the problems encountered in the thesis are of this form, so it is

essential to understand how they are characterized. Specifically, we provide both

formal and informal definitions of what optimization problems are. We then dis-

cuss what it means for optimization problems to be NP-hard, and describe how

this affects our ability to solve such problems exactly. This naturally leads us

to define approximation algorithms, and to consider their various properties. In

particular, we look at the performance guarantees, correctness and the efficiency of

such algorithms.

Informally speaking, an optimization problem Π contains a number of problem

instances, each of which has its own collection of feasible solutions. These feasible

solutions each have their own nonnegative rational numbers associated to them,

which are referred to as their values. The goal of the problem is to find a feasible

solution of optimum value. More specifically, if the optimization problem is

classified as a minimization problem, then the goal is find a a feasible solution of

minimum value. If it is a maximization problem, then the goal is find a feasible

solution of maximum value.

In order to demonstrate these concepts, we return to the vertex cover problem

on graphs, denoted Π . As in the decision version variant introduced in the

previous section (see Problem 1.1.2), we are given an undirected graph G = (V,E),

with a weight function w : V → Q≥0. Each such pair (G,w) makes up an instance

16

of the problem Π . We denote the set of all such instances by DΠ ; that is,

DΠ := {(G,w) : G = (V,E) an undirected graph and w : V → Q≥0}.

If we fix an instance (G,w) of DΠ , then a feasible solution to (G,w), is a vertex

cover U of G. In this way, we may denote SΠ (I) as the collection of all vertex

covers of G, where I := (G,w). For each vertex cover U of G, we associate a

nonnegative rational number to it, denoted w(U). This number is defined to be the

sum of the weights of the vertices of U . Rather,

w(U) :=
∑
v∈U

w(u).

As in our informal definition of optimization problems, w(U) is the value associ-

ated to U . Finally, the problem is a minimization problem. That is, given (G,w),

we wish to find a vertex cover U of G that is of minimum value. In the above

notation,

w(U) = min
U ′∈SΠ (G,w)

w(U ′).

We summarize this problem below for future reference:

Problem 1.2.1 (Vertex Cover Problem). Given an undirected graph G = (V,E)

with weight function w : V → Q≥0, we define a vertex cover U of G, to be a subset

U ⊆ V , where each edge of G has an end in U . We define the value or weight of

U , to be the sum of the weights of its vertices. Rather,

w(U) :=
∑
v∈U

w(v).

17

The goal of the problem is to ensure that U has minimum value. That is,

w(U) = min{w(U ′) : U ′ a vertex cover of G},

If U has this property, then it is an optimum solution to the problem instance

(G,w).

Now that we have an idea of what optimzation problems are, we provide a for-

mal set-theoretic definition that generalizes the above example, while incorporating

the informal properties outlined at the beginning of the section. The definition is

fairly technical, implicitly citing a number of notions from complexity theory. It

can be skipped if the reader is already comfortable with their understanding of

optimization problems.

An optimization problem Π is a four-tuple (D,S, obj, type), for which

the properties below hold. We remark that Π is often referred to as a NP-

optimization problem, though we typically drop this prefix when the context is

clear.

1. D is a set consisting of the problem instances of Π . We require that the

members of D are encodable as binary strings. Once an encoding is fixed,

we define the size of I, denoted |I|, to be the number of characters (bits)

required to represent I. Moreover, it must be possible to check whether an

instance belongs to D in polynomial time.

2. Given an instance I of D, S(I) denotes the set of feasible solutions to

I. Once again, the collection of all possible feasible solutions, namely⋃
I∈D S(I), must be encodable as binary strings. More, we require that the

18

size of these solutions be polynomial in the size of I. That is, there exists a

fixed polynomial p, such that for each s ∈ S(I), |s| ≤ p(|I|). Finally, there

is a polynomial time algorithm, which given a pair (I, s), decides whether

s ∈ S(I).

3. The term obj is a function that assigns a nonnegative rational number to

each pair (I, s), where I ∈ D and s ∈ S(I). It is typcially referred to as

the objective function of problem Π . We require that it is computable in

polynomial time. Rather, there exists an algorithm A and a polynomial q,

which given (s, I), computes obj(s, I) in at most q(|(s, I)|) many steps.

4. The final term of Π is simply an element of set {min,max}; that is,

type ∈ {min,max}. We use it to indicate whether Π is a minimization

or maximization problem.

Given an instance I ∈ D, we say that s ∈ S(I) is an optimum solution for I,

provided,

opt(I, s) = types′∈S(I)opt(I, s′).

The goal of the optimization problem is to find a feasible solution which is

optimum, given an arbtirary problem instance. Moreover, we typically denote D,S,

and opt with the subscript “Π ”, to avoid overlaps in notation in other contexts.

Rather, these symbols are replaced by DΠ , SΠ and optΠ when necessary.

Before we continue, we clarify some of the technical assumptions implicit in

the above definition. Firstly, the notion of encodability of the problem instances

can be taken to mean that there exists a bijection φ from D into {0, 1}∗. When

we then make statements involving the size of an instance I of D, this can defined

19

to be the number of characters in φ(I). A similar definition suffices for the case

of the total collection of feasible solutions; rather
⋃
I∈D S(I). We shall see later

in the section how these algorithmic assumptions explain why we refer to Π as a

NP-optimization problem.

We may state the algorithmic requirements of this definition in terms of

Turing machines. In particular, the first requirement above effectively says that

the language D (when encoded as binary strings) is decidable in polynomial time

(a similar claim is true for the second requirement). The third requirement may

be viewed as enforcing the efficiency at which the objective value can be computed

(see Definition 1.1.2 in the previous section).

Now that we have a formal definition of optimization problems, we consider

a subclass of them known as NP-hard optimization problems. To understand this

classification, first recall the general goal of an optimization problem Π . We are

given an instance of Π , and asked to find an optimum solution for the instance.

That is, we wish to find an algorithm A, which given an instance I ∈ DΠ ,

computes a feasible solution s ∈ S(I) of optimum value. We refer to such an

algorithm as an exact algorithm for Π .

While it is typically possible to find exact algorithms for optimization

problems, we of course are most interested in ones which perform efficiently.

More specifically, we wish to find algorithms which operate in polynomial time,

and yet are also exact. In turns out that for the majority of the problems we

consider, finding algorithms with both of these properties is most likely not an

achieveable goal. This is because the existence of such an algorithm would allow us

20

to conclude that P=NP; a statement that is most likely false. As a example of an

optimization problem which exhibits these shortcomings, we once again consider

the vertex cover problem:

Example 1.2.1. We consider a hypothetical situation in which an exact polyno-

mial time algorithm for Problem 1.2.1 exists.

Let A be an algorithm for the vertex cover problem, and p be a polynomial.

We assume that for each graph G = (V,E) with vertex weight w : V → Q≥0,

A returns an optimum vertex cover U of G. Moreover, this computation takes at

most, p(|G|+ |w|) many steps, where |G| is the size of G and |w| is the size of w.

Observe how algorithm A can be used to solve the vertex cover decision

problem (Problem 1.1.2). Recall that an instance of this problem involves a rational

number q, together with a graph G = (V,E) and a vertex weight w : V → Q≥0. We

may first use A to compute a vertex cover U of G, for which w(U) is minimum.

We then compare w(U) with q, and classify (G,w, q) as a “yes” instance, if and

only if w(U) ≤ q. Since U was a minimum weight vertex cover, this algorithm

will correctly decide the problem instance in polynomial time. As consequence,

the vertex cover decision problem must be a member of P. That being said, this

problem is NP-complete (see Corollary 1.1.8), so we may conclude that P = NP.

The main observation used in this example is that decision problem version of

vertex cut is NP-hard. It turns out that regardless of which optimization problem

Π we are given, we can always relate a decision problem of this kind to Π . To see

this, consider the abstract decision problem LΠ defined as follows:

21

For each instance I ∈ DΠ and q ∈ Q≥0, we add the instance (I, q) to LΠ , if

and only if there exists some s ∈ S(I) for which,

optΠ (s, I) ≤ q,

assuming Π is a minimization problem (otherwise, the inequality is reversed). We

typically refer to LΠ as the decision problem version of Π . A detailed examination

of our definition of Π as a NP-hard optimization, should convince the reader

that the language LΠ is a member of the complexity class NP. This should help

explain the use of some of the technical assumptions regarding NP-optimization

problems, as well as why the term is preceded by NP. The construction also

allows us to extend the notion of NP-hardness from abstract decision problems to

NP-optimization problems.

Definition 1.2.2. We say that an NP-optimization problem Π is NP-hard,

provided the decision problem LΠ is NP-hard.

We may mimic the work done in Example 1.2.1 to yield the following proposi-

tion:

Proposition 1.2.3. Assuming P 6= NP, there does not exist an NP-hard

optimization problem which has an exact polynomial time algorithm.

In light of this proposition, we focus on finding algorithms which don’t

always return optimum solutions, yet are guaranteed to run efficiently. That is, in

polynomial time, they return solutions to problem instances which are feasible, but

not necessarily optimum. Broadly speaking, algorithms of this nature are known

22

as approximation algorithms. The majority of the thesis is focused on finding

algorithms of this kind for NP-hard optimization problems.

Let us suppose that Π is an NP-hard optimization problem, for which we

are given an approximation algorithm A. We take this to mean that A runs in

polynomial time, and always returns solutions which are feasible; that is, A is

correct. In order to assess the performance of the algorithm, we would like to

somehow measure the quality of the solutions it returns. As A cannot be exact,

these solutions will not always be optimum. Instead, we attempt to make them as

close to optimum as possible.

Assume for now that Π is a minimization problem, and that A is an approxi-

mation algorithm for it. We also assume that there exists some real number α > 0,

such that for all I ∈ DΠ ,

optΠ (I,A(I)) ≤ αOPTΠ (I),

where OPTΠ (I) is the value of an optimum solution of I, and A(I) is the feasible

solution of I returned by A. In this case, we say that algorithm A has a perfor-

mance gurantee of α, or that it achieves an approximation guarantee of α. Clearly,

α ≥ 1, as

optΠ (I,A(I)) ≤ OPTΠ (I)

for all I ∈ DΠ .

23

On the other hand, if we assume that Π is a maximization problem, then we

say that A has a performance guarantee of α. provided,

optΠ (I,A(I)) ≥ αOPTΠ (I)

for all I ∈ Π . In this case, it is clear that α ≤ 1, as

optΠ (I,A(I)) ≥ OPTΠ (I)

for all I ∈ DΠ . Approximation algorithms which achieve performance guarantees

as close to one as possible are of course the most desirable.

Before we continue, we make a remark regarding this definition. Observe that

we can generalize the above definitions by allowing α to be function of the size of

the input I. That is, α : N → R, such that α(n) ≥ 1 for all n ∈ N, in the case of

minimization problems, and α(n) ≤ 1 for all n ∈ N, in the case of maximization

problems. We shall see later in the thesis that sometimes performance guarantees

of this kind are the best we can hope for.

We now show that there exists an approximation algorithm with a perfor-

mance guarantee of two for the cardinality vertex cover problem. This problem is

a special case of the vertex cover problem, in which all of the graphs we consider

have weight functions which are identically one. That is, if G = (V,E) is a graph

with weight function w : V → Q≥0, then w(v) = 1 for all v ∈ V . As all the weight

functions have this property, we may assume that the cardinality vertex cover

problem has only undirected graphs as its problem instances. Moreover, the value

24

(weight) of a vertex cover is simply the cardinality of the set. An optimum solution

is therefore a vertex cover of minimum size.

Let us now describe how this algorithm operates. Suppose that we are passed

a graph G = (V,E). We begin by computing a matching M of G, which is a subset

of edges of E which are mutually disjoint (no two edges of M share a vertex).

We also ensure that M is maximal, thus implying that each edge e ∈ E has a

nontrivial intersection with at least one edge of M . Once we have computed this

maximal matching M , we collect the vertices present in the edges of M , and return

them as our output U .

Algorithm 1.2.1 Greedy Cardinality Vertex Cover Algorithm

Let G = (V,E) be an undirected graph.
1: Initialize M ← ∅.
2: Initialize U ← ∅.
3: for each edge e = {u, v} ∈ E do
4: if e is disjoint from all members of M then
5: Add e to M .
6: Add u and v to U .
7: Return U

It is clear that this algorithm runs in polynomial time. Moreover, the set U

is a vertex cover, so the algorithm is correct. This is easily seen, for if e ∈ E,

then e has a nontrivial intersection with a member of M , by the maximality of M .

Since we add all the vertices which are present in the edges of M , this observation

implies that U must be a vertex cover for G. We now prove a bound on the

performance guarantee of the algorithm.

Proposition 1.2.4. Algorithm 1.2.1 achieves an approximation guarantee of two

for the cardinality vertex cover problem.

25

Proof. Let us suppose we are given an arbitrary graph G = (V,E), for which the

algorithm computes the matching M and the vertex cover U . We denote the term

OPT (G) to be the size of a minimum vertex cover of G. Observe that,

|M | ≤ OPT (G),

rather the number of edges in M is less than or equal to the value of OPT (G).

This is because the edges of M are disjoint, and so require at least M vertices of G

in order to cover them all.

On the other hand, we know that |U | = 2 |M |, by construction. Thus,

|U | ≤ 2 |M | ≤ 2OPT (G).

As this inequality is true for every graph G, we know that the algorithm

achieves an approximation guarantee of two. The claim thus follows.

It will also sometimes be useful to incorporate randomness into the approx-

miation algorithms we design. We say that A is a randomized approximation

algorithm for optimization problem Π , provided for each fixed I ∈ DΠ , the output

A(I) forms a random element taking values in SΠ (I). That is, there exists some

probability space (Ω,B,P), such that for each I ∈ DΠ , A(I) is a measurable map

from Ω into SΠ (I); rather, A(I) : Ω → SΠ (I). Observe that since we place a

restriction on the size of the members of SΠ (I) in terms of |I|, the size of SΠ (I) is

itself finite. In particular, we can associate a trivial measure space to SΠ (I).

26

While the solutions returned by the algorithm are random, we typically

require that A deterministically operates in polynomial time. That is, there is

some polynomial p, such that for all I ∈ DΠ and ω ∈ Ω, the algorithm takes at

most p(|I|) many steps to return the output A(I)(ω).

As in the case of deterministic approximation algorithms, we devise perfor-

mance guarantees for randomized approximation algorithms as well. This is done

by comparing the value OPTΠ (I) with the expected value of the random solution

A(I) for each I ∈ DΠ . If Π is a minimization problem, then we say that A

achieves a performance guarantee of α ≥ 1, provided

E optΠ (I,A(I)) ≤ αOPTΠ (I)

for each I ∈ DΠ . A similar definition holds for maximization problems, and for the

case when α depends on the input size of I; that is, α : N→ R.

1.2.1 Approximation Preserving Reductions

We conclude the section by introducing the definition of an approximation

preserving reduction between pairs of minimization problems. This object shares

similar characteristics to those of polynomial reductions between languages,

however its definition is slightly more complicated.

Definition 1.2.5 (Approximation Preserving Reduction). Let Π1 and Π2 be

two NP-minimization problems. Moreover, suppose that A1 and A2 are two

algorithms, with the properties outlined below. We assume that I1 ∈ DΠ1:

27

• The algorithm A1 takes in the problem instance I1, and returns an instance

I2 of Π2, which we denote by A1(I1). Moreover, we have that,

OPTΠ2(I2) ≤ OPTΠ1(I1).

In other words, the optimum value of I2 is less than or equal to the optimum

value of I1.

• If we take any feasible solution s2 ∈ SΠ2(I2), then given the inputs I1 and s2,

the algorithm A2 returns a feasible solution s1 ∈ SΠ1(I1), which we denote by

A2(I1, s2). Moreover, the objective value of s1 is less than the objective value

of s2. Rather,

optΠ1
(I1, s1) ≤ optΠ2

(I2, s2).

• The algorithms A1 and A2 operate in polynomial time.

If the algorithms satisfy these properties, then we refer to the pair (A1,A2) as

an approximation preserving reduction from Π1 into Π2.

If (A1,A2) is an approximation preserving reduction between minimization

problems Π1 and Π2, then it is clear from the above definition that

OPTΠ2(A1(I1)) ≤ OPTΠ1(I1),

for each I1 ∈ DΠ1 . It turns out that the second property of (A1,A2) in the above

definition allows us to conclude the reverse inequality as well. Rather,

OPTΠ1(I1) ≤ OPTΠ2(A1(I1)).

28

Thus,

OPTΠ1(I1) = OPTΠ2(A1(I1)).

for all I1 ∈ DΠ1 . We conclude the section by summarizing a number of useful

properties of these types of reductions:

Proposition 1.2.6. Let Π1 and Π2 be two NP-minimization problems, for which

an approximation preserving reduction exists from Π1 into Π2. We observe the

following claims hold:

• If Π1 is NP-hard, then so is Π2.

• Let α ≥ 1. If Π2 has an algorithm with an approximation guarantee of α,

then so will Π1.

While the results developed involving approximation presevering reductions

are for pairs of minimization problems, similar definitions and results hold for pairs

of maximization problems.

29

1.3 Linear Programming Techniques and Applications

To conclude the chapter, we introduce a special class of optimization prob-

lems, known as integer programs. We then examine how we can model many

NP-optimization problems using this framework. Moreover, we introduce a

relaxation of integer programs, know as linear programs. We consider some ba-

sic properties of these programs, and explore some techniques that will help us

develop approximation algorithms for NP-hard optimization problems.

Let us suppose that n,m ≥ 1 are integers, and we are given an n-vector

c = (c1, . . . , cn) ∈ Qn, an m-vector b = (b1, . . . , bm) ∈ Qm, together with an

m× n matrix A = (ai,j) ∈ Qm×n. We can use these parameters to define an integer

program (IP), specified as either a minimization or maximization problem. We first

consider the case under the former specification:

minimize
n∑
j=1

cj xj

subject to
n∑
j=1

ai,j xj ≥ bj ∀i = 1, . . . ,m,

xj ∈ Z≥0 ∀j = 1, . . . , n.

(1.3.1)

Similarly, we may construct an integer program, whose objective is maximiza-

tion:

30

maximize
n∑
j=1

cj xj

subject to
n∑
j=1

ai,j xj ≤ bj ∀i = 1, . . . ,m,

xj ∈ Z≥0 ∀j = 1, . . . , n.

(1.3.2)

In either context, we refer to the vector x = (x1, . . . , xn) ∈ Zn≥0 as the variable

of the integer program. Moreover, any assignment to x which satisfies the above

constraints (inequalities) is referred to as a feasible solution. If x is feasible and

minimizes (maximizes) the value of the linear objective function
∑n

j=1 cj xj, then it

is referred to as an optimum solution.

It will sometimes be convenient to specify additional constraints on our

integer programs. For example, we may wish to place additional bounds on the

variable x, such as restricting its coordinates to the set {0, 1}, or allowing its

coordinates to take negative values. We may also wish to add constraints which

impose exact equalities opposed to inequalities. Rather, constraints of the form,∑n
j=1 ai,j = bi, where 1 ≤ i ≤ m. It terms out that the framework above is

sufficiently general to encode all these extra restrictions. As a result, integer

programs which mimic the forms of IP (1.3.1) and IP (1.3.2) are often said to be

in canonical form. We mostly concern ourselves with canonical integer programs

throughout the section.

Let us now once again consider the vertex cover problem (Problem 1.2.1). Our

goal is to build an integer program that encodes the restrictions of the problem.

In order to do this, let us suppose we are given a graph G = (V,E), together with

31

a weight function w : E → Q≥0. We first label order the vertices and edges of G,

v1, . . . , vn and e1, . . . , em respectively, where n := |V | and m := |E|.

For each j = 1, . . . , n, we introduce the variable xj associated to the vertex

vj, whose values are restricted to the set {0, 1}. Clearly, any assignment to the

variable x := (x1, . . . xn) corresponds to a subset of vertices U ⊆ V , where vj ∈ U ,

if and only if xj = 1, for each j = 1, . . . , n.

In order to ensure that the feasible solutions of the program are in bijection

with the valid vertex covers of G, we introduce m inequalities involving the

variable x. Rather, for each edge i = 1, . . . ,m, we impose the restriction

xj1 + xj2 ≥ 1,

where ei = {vj1 , vj2}, and 1 ≤ j1 < j2 ≤ n. Let us once again denote the vertex set

associated to the assignment of x as U . Clearly, U will include at least one vertex

from every edge e ∈ E, precisely when x is feasible. This observation is sufficient

to establish the desired bijection.

Let us now define the m-vector b := (1, . . . , 1), and the m × n matrix

A = (ai,j), where

ai,j = 1, if and only if vertex vj is in edge ei.

Finally, we define the n-vector c, where c := (w(v1), . . . , w(vn)), so that the objec-

tive function
∑n

j=1 cj xj properly encodes the value of the vertex set corresponding

to x. Using the parameters A, b and c, consider the following integer program:

32

minimize
n∑
j=1

cj xj

subject to
n∑
j=1

ai,j xj ≥ bj ∀i = 1, . . . ,m,

xj ∈ {0, 1} ∀j = 1, . . . , n.

(1.3.3)

The program is clearly not in canonical form, however this can be rectified

by encoding each upper bound on the variables as an additional inequality in the

matrix A. We leave this for the reader to verify.

While we ordered the vertices and edges of G to state our integer program

in the notation of IP (1.3.1), we typically ignore this formality. Instead, we state

our integer program in the notation of the graph G. That is, for each v ∈ V , we

introduce the variable xv, whose values are restricted to the set {0, 1}. In this

notation, we observe the following formulation of the vertex cover problem on G:

minimize
∑
v∈V

w(v)xv

subject to xu + xv ≥ 1 ∀e = {u, v} ∈ E

xv ∈ {0, 1} ∀v ∈ V.

(1.3.4)

Now that we’ve witnessed the expressability of integer programs, it is natural

to wonder whether there exists a polynomial time algorithm for solving them.

Namely, we wish to find an algorithm, which given an arbitrary canonical integer

program in the form of IP (1.3.1) or IP (1.3.2), returns optimum solution x∗ in

time polynomial in the size of A,b, and c.

33

While algorithms exist that execute efficiently for specific classes of integer

programs, no such algorithm is known to exist for all integer programs. In light

of the NP-hardness of the vertex cover problem, together with IP (1.3.4), it is

unlikely that such an algorithm exists.

Theorem 1.3.1. The problem of finding an optimum solution to an arbitrary

integer program does not have a polynomial time solution, provided P 6= NP.

While there is likely no way of solving general integer programs in polynomial

time, there exists a class of optimization problems which are efficiently solvable,

and closely resemble integer programs. We refer to these optimization problems

of this kind as linear programs. Broadly speaking, they differ only from integer

programs in that they allow their solutions to take on real numbers.

As in the case of integer programs, let us suppose that n,m ≥ 1 are integers,

and that we are given an n-vector c = (c1, . . . , cn) ∈ Qn, as well as an m-

vector b = (b1, . . . , bm) ∈ Qm. Moreover, assume that A is an m × n matrix

A = (ai,j) ∈ Qm×n. We can use these parameters to formulate a linear program

(LP), whose goal is minimization or maximization. In this case of minimization,

we have the following program:

minimize
n∑
j=1

cj xj

subject to
n∑
j=1

ai,j xj ≥ bj ∀i = 1, . . . ,m,

xj ≥ 0 ∀j = 1, . . . , n.

(1.3.5)

34

Similarly, we may construct a linear program, whose objective is maximiza-

tion:

maximize
n∑
j=1

cj xj

subject to
n∑
j=1

ai,j xj ≤ bj ∀i = 1, . . . ,m,

xj ≥ 0 ∀j = 1, . . . , n.

(1.3.6)

The terminology of linear programs mirrors that of integer programs. In

paritcular, we refer to the vector x = (x1, . . . , xn) ∈ Qn as a variable, and

assignments of x as feasible solutions, provided they satisfy the above constraints

(inequalities). Moreover, an assignment of x is referred to as optimum, provided

it minimizes (maximizes) the value of the linear objective function
∑n

j=1 cj xj,

while remaining feasible. Finally, we refer to linear programs that conform to

the structure of LP (1.3.5) and LP (1.3.6) as being canonical. The structure of

canonical linear programs is sufficiently general to account for a number of natural

modifications, as in the case of integer programs (see the discussion after IP

(1.3.2)).

There exists a number of polynomial time algorithms that imply the following

theorem:

Theorem 1.3.2. There exists an algorithm Ψ and a polynomial p, which given

any canonical linear program parameterized by A, b, and c, returns an optimum

solution x∗ in at most p(|A| + |b| + |c|) steps. Moreover, the optimum solution x∗

is guaranteed to take on rational values in all its coordinates; that is, x∗ ∈ Qn.

35

.

The fact that the solution x∗ takes on rational numbers is convenient in that

we can store its coordinates exactly. We do not have to worry about approximat-

ing these values with rational numbers when using x∗ in computations.

Let us now consider the minimization linear program formed by restricting our

feasible solutions to rational numbers:

minimize
n∑
j=1

cj xj

subject to
n∑
j=1

ai,j xj ≥ bj ∀i = 1, . . . ,m,

xj ∈ Q≥0 ∀j = 1, . . . , n.

(1.3.7)

Clearly, the feasible solutions of this linear program remain feasible solutions

to LP (1.3.5). Moreover, as a result of Theorem 1.3.2, we also have the following

corollary:

Corollary 1.3.3. If x∗ is an optimum solution to LP (1.3.5), then there is an

optimum solution x∗∗ to LP (1.3.7), for which,

n∑
j=1

cj x
∗
j =

n∑
j=1

cj x
∗∗
j .

That is, x∗ and x∗∗ have equal value.

As a result of this claim, we refer to LP (1.3.5) and LP (1.3.7) as being

equivalent as linear programs. We may work with either formulation, depending on

which is more convenient. Throughout the thesis, we work with both variations,

however the form of LP (1.3.5) is most useful from a notational perspective,

36

wheras our algorithms employ the rational solutions of LP (1.3.7) in practise. In

any case, we consider LP (1.3.7) to also be in canonical form. Of course, we can

develop similar definitions and claims for linear programs stated as maximization

problems.

Let us now reconsider the vertex cover problem in the structure of a lin-

ear program. Given IP (1.3.4), we form a linear program, known as the linear

relaxation of IP (1.3.4), by allowing its variables to take on real numbers. This

leaves us with the linear program below, where G = (V,E) is a graph with weight

function w : V → Q≥0:

minimize
∑
v∈V

w(v)xv

subject to xu + xv ≥ 1 ∀e = {u, v} ∈ E

xv ∈ [0, 1] ∀v ∈ V.

(1.3.8)

Observe that we can forgo the upper bounds on these variables, without

decreasing the value of an optimum solution. This is easily seen, as the function

w : V → Q≥0 is guaranteed to be nonnegative, and so its optimum solutions have

their coordinates as small as possible. We therefore have the following canonical

linear program, after restricting our attention to rational solutions:

minimize
∑
v∈V

w(v)xv

subject to xu + xv ≥ 1 ∀e = {u, v} ∈ E

xv ∈ Q≥0 ∀v ∈ V.

(1.3.9)

37

We may think of the assignment x = (xv)v∈V as specifying a fractional

vertex cover for G, where each value xv indicates the fractional extent to which

v is included in the vertex cover. In light of Theorem 1.3.2, there is an optimum

solution x∗ to LP (1.3.9), which we refer to as an optimum fractional vertex cover.

The value of this optimum solution, namely
∑n

j=1 cj x
∗
j , is denoted by OPTf (I),

where I := (G,w) is the problem instance of the vertex cover problem. We

now employ a linear programming technique known as rounding to attain an

approximation algorithm for the general vertex cover problem.

Broadly speaking, the rounding algorithm begins with a problem instance

(G,w) of the vertex cover problem. We then encode the problem as IP (1.3.4),

using G and w as parameters. From here, relax this integer problem to form LP

(1.3.9). We use Theorem 1.3.2 to invoke an algorithm which returns an optimum

(fractional) solution x∗ to LP (1.3.9), in time polynomial in |G| and |w|. For each

vertex v ∈ V , we examine the coordinate x∗v, and round it up to one, provided

x∗v ≥ 1/2. Otherwise, we round the coordinate x∗v down to zero. The resulting

assignment x∗ is no longer fractional, but is instead integral, and thus a solution

of IP (1.3.4). In particular, we may associate to it a vertex cover U of G, which is

returned as the output of the algorithm. Let us now summarize this procedure:

38

Algorithm 1.3.1 Vertex Cover Algorithm

Let G = (V,E) be an undirected graph.
Let w : V → Q≥0 be a weight function.

1: Initialize U ← ∅.
2: Initialize vector x∗ = (x∗v)v∈V .
3: Solve LP (1.3.9), with (G,w) as inputs.
4: Store the result in x∗.
5: for each vertex v ∈ V do
6: if x∗v ≥ 1

2
then

7: Add v to U .
8: Return U

We first observe that the algorithm is guaranteed to execute in polynomial

time, as we can solve LP (1.3.9) in polynomial time. Moreover, the algorithm is

correct; that is, U is always a vertex cover of G. To see this, suppose that e is an

edge of G, where e = {u, v}. As the solution x∗ is feasible, we know that

x∗u + x∗v ≥ 1.

In particular, at least of one of x∗u and x∗v has value greater or equal to 1/2. As a

result, U will contain at least one of u and v, and thus will cover e. This implies

that U is a valid vertex cover, as e was arbitrary.

Theorem 1.3.4. Algorithm 1.3.1 achieves an approximation guarantee of 2.

Proof. We assume that G = (V,E) is an arbitrary graph with a weight function

w : V → Q≥0, each of which is passed to the algorithm. Let us suppose that U is

the vertex cover of G returned by the algorithm. If OPT (G,w) denotes the value

of an optimum vertex cover of G with respect to w, then our goal is to show that,

w(U) ≤ 2OPT (G,w).

39

In other words, we must bound the weight of U by twice the weight of an optimum

vertex cover for G.

Towards this goal, let us suppose that x∗ is the optimum solution to LP

(1.3.9), as used in the algorithm. As x∗ is an optimum fractional vertex cover,

we denote its value by OPTf (G,w). Observe that since all solutions to IP (1.3.4)

remain solutions to LP (1.3.9), we may conclude that OPTf (G,w) ≤ OPT (G,w).

Thus, if we can show that w(U) ≤ 2OPTf (G,w), the proof will be complete.

Let us denote the integral solution of IP (1.3.4) corresponding to U by x∗∗.

That is, v ∈ U , if and only if x∗∗v = 1, for each v ∈ V . It is clear that x∗∗ is the

rounded version of x∗. That is, for each v ∈ V , x∗∗v = 1, if and only if x∗v ≥ 1/2. In

light of these observations, we have that

w(U) =
∑
v∈V

w(v)x∗∗v

≤
∑
v∈V

2w(v)x∗v

= 2OPTf (G,w).

Thus, w(U) ≤ 2OPTf (G,w), so the claim holds.

1.3.1 Integrality Gaps and Rounding Algorithms

In the preceding argument, the main proof technique involved comparing the

value of U with the value of OPTf (G,w). This is typical of all linear programming

based algorithms, which employ rounding techniques to approximate optimum

vertex covers. It turns out that it is possible to understand how well these

40

algorithms can perform, by considering a value known as the integrality gap of

IP (1.3.4). If we denote the vertex cover problem by Π , then we define this to be

sup
(G′,w′)∈DΠ

OPT (G′, w′)

OPTf (G′, w′)
,

where OPT (G′, w′) is the value of an optimum integral vertex cover of G′, and

OPTf (G
′, w′) is the value of an optimum fractional vertex cover of G′. We may

denote this value by ΛΠ for convenience. Clearly, ΛΠ ≥ 1, as all solutions to IP

(1.3.9) are solutions to LP (1.3.9). We claim that the analysis done in the proof of

Theorem 1.3.4 implies that ΛΠ ≤ 2.

Let us suppose that G and w are passed to Algorithm 1.3.1. As we saw, a

vertex cover U of G is returned, for which

w(U) ≤ 2OPTf (G,w). (1.3.10)

By definition, we know that OPT (G,w) ≤ w(U). Thus, we have that,

OPT (G,w)

OPTf (G,w)
≤ 2,

for each graph G and vertex weight w passed to Algorithm 1.3.1. We typically

refer to the ratio on the left side of this equation as the integrality gap of instance

(G,w). In any case, we may conclude that ΛΠ ≤ 2, after taking a supremum over

the instances of Π with respect to Equation 1.3.10. The desired claim therefore

holds. Moreover, it is clear that any approximation algorithm whose analysis

employs a comparison in the form of Equation 1.3.10 cannot improve upon the

approximation guarantee of ΛΠ .

41

In the later chapters, we often use linear programming rounding techniques to

approximate solutions to optimization problems. It is therefore useful to consider a

general definition of the integrality gap of an optimization problem Π .

Let us suppose that Π is classified as a minimization problem; similar

definitions hold for maximization problems. We may assume that there is an

IP-encoding of Π , which is defined as a pair of functions (φ, ψ) satisfying the

properties listed below:

The function φ is typically referred to as an IP-encoding map for Π . It has

the property that it injectively maps instances of Π to minimization integer

programs. Typically, these minimization programs are assumed to be canonical

form. We refer to the function ψ as a IP-conversion map for Π . Its inputs include

an instance I of Π , together with a feasible solution s of SΠ (I). This function

satisfies a number of properties:

• For each I ∈ Π , and s ∈ SΠ (I), ψ(I, s) is a feasible solution of φ(I), whose

value is equal to the value of s. In light of this property, we refer to ψ as

value-preserving.

• For each I ∈ Π , ψ(I, ·) forms a bijection from SΠ (I) into the set of all

feasible solutions of φ(I).

When the context is clear, we typically drop the prefix “IP”, and refer to

(φ, ψ) as an encoding, where φ is an encoding map and ψ is a conversion map.

For each instance I of Π , observe that the existence of (φ, ψ) implies that the

value of an optimum solution of I is equal to the value of an optimum solution

of φ(I). In each case, we denote this value by OPT (I). Let us now suppose

42

that φ(I)f is the relaxation of φ(I) as a canonical linear program. We may

denote the value of an optimum solution of φ(I)f by OPTf (I). It is clear that

OPTf (I) ≤ OPT (I). We refer to the ratio,

OPT (I)

OPTf (I)
,

as the integrality gap of instance I with respect to the encoding (φ, ψ). Moreover,

we refer to the supremum,

sup
I∈DΠ

OPT (I)

OPTf (I)
,

as the integrality gap of Π with respect to the encoding (φ, ψ). We shall see later

in the text that there often exists multiple ways of encoding a single optimization

problem, thus leading to multiple integrality gaps for the problem. Of course, if

there is no ambiguity, then we may refer to this supremum as the integrality gap of

Π , or in a slight abuse of notation, as the integrality gap of φ(I).

From an algorithmic perspective, the most useful IP encodings are the ones

whose functions can be evaluated in polynomial time. We saw this in the vertex

cover problem, as it was the main tool used in the approximation algorithm we

built. It turns out that similar claims are true of any optimization problem Π

that uses the rounding algorithm below as a template. Once again, we assume

that (φ, ψ) is an encoding of the problem Π , and that both these functions are

computable:

43

Algorithm 1.3.2 General Rounding Algorithm

Let I be an instance of Π .
1: Store the IP φ(I), after computing it from I.
2: Store the LP φ(I)f , after relaxing it from φ(I).
3: Store an optimum solution x of LP φ(I)f , by passing φ(I)f to an LP-solving

algorithm (See Theorem 1.3.2).
4: Store a solution x∗ of IP φ(I), by rounding the coordinates of x to integer

values.
5: Compute the solution ψ−1(I,x∗).
6: Set s← ψ−1(I,x∗).
7: Return s.

It is clear that the algorithm explicitly stores both the programs φ(I) and

φ(I)f . It then solves φ(I)f , yielding an optimum solution x∗, whose values are

then rounded to an integral solution x of φ(I). This rounding process is of course

dependent on the specific problem at hand. In any case, Algorithm 1.3.2 will

certainly have a runtime at least polynomial in the size of φ(I). In particular, if

φ(I) ≥ Ω(2|I|) for all I ∈ DΠ , then the runtime of this algorithm will also be

exponential in the size of its inputs.

Conversely, if the encoding of I to φ(I) can be done in polynomial time,

together with the conversion of x∗ into s, then the algorithm itself will run in

time polynomial in the size of I. The only caveat being that the rounding of x

to x∗ must also be doable in time polynomial in the size of x. This is typically a

reasonable assumption to make when considering rounding algorithms.

As consequence of the above remarks, it is clear that the runtime of Algorithm

1.3.2 is intimately connected to the efficiency for which φ and ψ can be computed.

In the case of the map ψ, this is not an issue, as all the problems we consider

throughout the text have efficient conversion algorithms. On the other hand, a

44

number of the problems in the later chapters have encoding maps which cannot be

computed efficiently. It is therefore desirable to consider an algorithmic template

which is similar to Algorithm 1.3.2, yet whose runtime is less reliant on the

complexity of the encodings used.

In order to achieve this goal, we must first enforce some additional conditions

on the IP-encoding (φ, ψ) of Π . Let us suppose that p and q are polynomials, and

that I ∈ DΠ . We enforce the following conditions:

• The feasible solutions of IP φ(I) have at most p(|I|) many coordinates.

• Each rational number of φ(I) can be represented in at most q(|I|) many

characters (bits).

If the IP-encoding (φ, ψ) satisfies these properties, then we say that it

compactly represents Π . Notice that in this case, each inequality of φ(I) can be

represented using at most p(|I|) q(|I|) many characters. That being said, the

number of inequalities of φ(I) may still be exponential in the size of I.

If we assume that our encoding (φ, ψ) compactly represents Π , then we may

consider a class of algorithms which help us decide whether solutions of φ(I)f are

in fact feasible. Rather, assume that I ∈ DΠ , and that x is a potentially feasible

solution to LP φ(I)f . We refer to an algorithm A as a polynomial time separation

oracle, provided the properties below hold:

• Given I and x as inputs to A, the algorithm operates in time polynomial in

the size of I and x.

• If x is a feasible solution to the LP φ(I)f , then the algorithm classifies x as a

“yes” instance.

45

• If x is not a feasible solution to the LP φ(I)f , then x is classified as a “no”

instance, and a violated inequality of φ(I) is returned by A.

The existence of polynomial time separation oracles help us solve linear programs

in polynomial time. This is truly an amazing result, as these linear programs may

still have exponentially many inequalities.

Theorem 1.3.5. Let Π be an optimization problem, with an IP-encoding (φ, ψ)

that compactly represents it. If there exists a polynomial separation oracle A for Π

and (φ, ψ), then there exists an algorithm Ψ with the following properties:

• Ψ takes in an instance I of Π as input, and is granted access to A as a

subroutine.

• Ψ returns an optimal solution x of φ(I)f , in time polynomial in the size of I.

In light of this theorem, we can modify our general rounding algorithm

(Algorithm 1.3.2) to account for encodings that aren’t computable in polynomial

time, yet can still be compactly represented. That is, we assume that Π is an

optimization problem with a compactly represented encoding (φ, ψ), together with

a polynomial time separation oracle A.

Algorithm 1.3.3 General Oracle Rounding Algorithm

Let I be an instance of Π .
1: Store an optimum solution x of LP φ(I)f , by passing I to a linear program

solver with access to subroutine A (see Theorem 1.3.5).
2: Store a solution x∗ of IP φ(I), by rounding the coordinates of x to integer

values.
3: Compute the solution ψ−1(I,x∗).
4: Set s← ψ−1(I,x∗).
5: Return s.

46

Observe that because of Theorem 1.3.5, the solution x is guaranteed to

be polynomial in the size of I. If we also assume that the conversion map ψ is

computable in polynomial time, then it is clear that the entire algorithm runs in

polynomial time. We shall see in the later chapters that the existence of this algo-

rithm is essential in the design of linear programming based rounding algorithms.

With that being said, encoding which can be computed in polynomial time are still

the most desirable, as Algorithm 1.3.2 is more efficient than Algorithm 1.3.3 in

practise.

1.3.2 The Dual of a Linear Program

We conclude this chapter with an overview of the most important results from

the duality theory of linear programming. In particular, we define the dual of a

linear program, and review the Strong Duality Theorem. These results will be used

in the later chapters to help us design approximation algorithms.

Let us suppose that m,n ≥ 1 are integers, and that we are given a mini-

mization linear program, parameterized by an m × n matrix A, together with

an m-vector b, and an n-vector c. The matrix A and the m-vector b are used to

write the m inequalities of the linear program, whereas the n-vector c is used to

represent the program’s objective funcction.

minimize
n∑
j=1

cj xj

subject to
n∑
j=1

ai,j xj ≥ bj ∀i = 1, . . . ,m,

xj ≥ 0 ∀j = 1, . . . , n.

(1.3.11)

47

We may once again think of the n-vector x := (x1, . . . , xn) as the variable of

the linear program. Let us refer to LP (1.3.11) as the primal.

Suppose we now compute the transpose of the matrix A, namely AT . This is

an n×m matrix, formed by constructed the rows and columns of A. If we swap the

roles of b and c from that of the primal, then we may form a maximization linear

program. It uses AT and c to form its inequalties, and b to form its objective

function.

maximize
m∑
i=1

bi yi

subject to
m∑
i=1

ai,j yi ≤ cj ∀j = 1, . . . , n,

yi ≥ 0 ∀i = 1, . . . ,m.

(1.3.12)

In this context, the m-vector y := (y1, . . . , ym) is referred to as the variable of

the linear program. We refer to LP (1.3.12) as the dual of LP (1.3.11), or simply

the dual when the context is clear.

It turns out that the values taken on by the objective functions of the primal

and dual are closely related. We summarize this relation in the theorem below:

Theorem 1.3.6 (Weak Duality Theorem). If x is a feasible solution to the primal

(LP (1.3.11)), and y is a feasible solution to the dual (LP (1.3.12)), then we

have that,
m∑
i=1

bi yi ≤
n∑
j=1

cj xj.

In particular, a maximum solution to the dual has value less than or equal to a

minimum solution to the primal.

48

It turns out that this inequality is in fact tight. That is, optimum primal

solutions and optimum dual solutions have equal value.

Theorem 1.3.7 (Strong Duality Theorem). If x∗ is a optimum solution to the

primal (LP (1.3.11)), and y∗ is an optimum solution the dual (LP (1.3.12)), then

we have that,
m∑
i=1

bi y
∗
i =

n∑
j=1

cj x
∗
j .

As a corollary, we can discern when pairs of solutions are each optimum. Let

x and y be feasible solutions to the primal and dual respectively. Consider the

following sets of equations:

Primal complementary slackness conditions

For each 1 ≤ j ≤ n, either xj = 0, or
∑m

i=1 ai,j yi = cj.

Dual complementary slackness conditions

For each 1 ≤ i ≤ m, either yi = 0, or
∑m

j=1 ai,j xj = bi.

Corollary 1.3.8 (Complementary Slackness Conditions). The solutions x and y

are both optimum, if and only if they satisfy the primal and dual complementary

slackness conditions.

If we fix α, β ≥ 1, then we can also form an approximate version of this

corollary. Let us once again assume that x and y are feasible solutions to the

primal and dual. We may modify the above conditions, such that we no longer

require exactness:

Approximate primal complementary slackness conditions

For each 1 ≤ j ≤ n, either xj = 0, or cj/α ≤
∑m

i=1 ai,j yi = cj.

Approximate dual complementary slackness conditions

49

For each 1 ≤ i ≤ m, either yi = 0, or bi ≤
∑m

j=1 ai,j xj = β · bi.

We shall often make use of the following proposition when designing primal-

dual approximation algorithms in the later chapters.

Proposition 1.3.9. If x and y satisfy the above conditions, then we have that,

m∑
i=1

bi yi ≤ αβ

n∑
j=1

cj xj.

50

CHAPTER 2
Introduction to Network Flow Problems

In this chapter, two network flow problems on graphs are introduced, namely

the path network flow problem and the edge network flow problem. Later on,

these problems are related to the single source-sink pair minimum cut problem.

This includes a number of applications to graph theory, where both directed and

undirected networks are considered.

In the first section, the edge and path flow problems are related to each other.

In particular, the section develops efficient algorithms for converting solutions from

one problem to the other. While the relations between these problems have been

studied before in the book “Approximation Algorithms” by Vazirani [Vv11], the

specific algorithms presented are developed and analyzed independently by myself.

The next section introduces the Ford-Fullkerson algorithm, whose analysis

is adapted from the book “Algorithm Design” by Kleinberg and Tardos [KT14].

This naturally leads to a specific implementation of this algorithm, known as the

Edmonds-Karp algorithm, which was established in a journal article by Edmonds

and Karp in 1972 [EK72]. While this algorithm is of course not original, I wrote its

analysis independently of any sources.

The final section of the chapter includes a number of important applications

of this algorithm, most notably the max-flow min-cut theorem. These applications

51

are cited from the book “Algorithm Design” [KT14], though I developed the

terminology and analysis independently.

52

2.1 Path and Edge Network Flow

Our goal in this section is to introduce two network flow problems, and to

relate them to each other algorithmically. We mainly work with directed graphs

when studying these problems, so we review some of the terminology regarding

these objects.

Suppose we are given a directed graph G = (V,E), where V denotes the

vertices of G, and E denotes the directed edges of G. A directed edge e between

vertices u, v ∈ V , is an ordered pair, e = (u, v). The position of the vertices in

this pair encodes the direction of the edge. In particular, we say that u points to v;

referring to u as the head and v as the tail of e. If the context is clear, we refer to

directed graphs as graphs, and directed edges as edges.

If u ∈ V is a fixed vertex of G, then we define the in-neighbourhood of u,

denoted N−(u), as the vertices of G which point to u. Similarly, we define the

out-neighbourhood of u, denoted N+(u), where N+(u) := {v ∈ V : (u, v) ∈ E}.

If S ⊆ V , then we denote δ−(S) := {e = (u, v) : v ∈ S and e ∈ E} and

δ+(S) := {e = (u, v) : u ∈ S and e ∈ E}.

Let us also suppose that we are also given a capacity function, c : E → Q≥0.

For each edge e ∈ E, we refer to the value c(e) as the capacity of e.

Finally, suppose we are given a pair of vertices (s, t) of G. We refer to s as the

source node, and t as the sink node.

The purpose of the network flow problem is to route an abstract commodity

between s and t. In order to do so, let us suppose Γ is the set of all simple directed

paths from s to t. Moreover, for each γ ∈ Γ, let fγ be the amount of flow routed

53

through γ. We wish to assign a value to each variable fγ, such that the amount

of flow passing through any given edge does not exceed its capacity. Formally, we

wish that

∑
γ∈Γ:e∈γ

fγ ≤ c(e),

for each e ∈ E.

If an assignment f = (fγ)γ∈Γ satisfies all these constraints, then we refer to

it as a path flow through G. We wish to find a path flow which maximizes the

amount of flow leaving the source. We formally outline this problem below:

Problem 2.1.1 (Path Network Flow). We are given a directed graph G = (V,E)

with capacity function c : E → Q≥0, and source-sink pair (s, t). Let us suppose

Γ refers to the set of all directed paths from s to t. The objective is to find a path

flow through G, denoted f = (fγ)γ∈Γ, which maximizes the value of
∑

γ∈Γ fγ.

We refer to this quantity as the value of the path flow f ; denoted val(f) for

convenience. We remark that when storing f , we adopt the convention that only

paths with nonzero flow are kept.

While the above network flow problem is easy to state, it does not lend itself

well to algorithmic design. Rather, for a typical graph G, the number of paths

between s and t may be superpolynomial in size. Thus, working directly with the

variables (fγ)γ∈Γ is difficult to do efficiently. As we wish to find a polynomial time

algorithm to solve Problem 2.1.1, this limitation is undesirable.

54

In order to get around this issue, we introduce another network flow problem.

For each edge e = (u, v) ∈ E, let ζe be the amount of flow which passes from u to

v. As before, we require that ζe is bounded above by the capacity of the edge e.

In addition to these constraints, we also require that most of the vertices of G

satisfy a conservation condition. Rather, we have that,

∑
u∈N−(v)

ζ(u,v) =
∑

w∈N+(v)

ζ(v,w),

for all v ∈ V , where v 6= s, t. In other words, for each vertex v (excluding s

and t), the amount of flow that enters v is equal to the amount of flow that leaves

it.

Finally, we impose some special conditions on the source and sink. Rather, for

each v ∈ V , if (v, s) ∈ E then we have that ζ(v,s) = 0. Similarly, for each w ∈ V , if

(t, w) ∈ E, then we have that ζ(t,w) = 0. In other words, we require that there is no

flow entering the source, and no flow leaving the sink.

If an assignment ζ = (ζe)e∈E satisfies these constraints, then we refer to it as

an edge flow through G. As before, we wish to maximize the total flow that leaves

the source. Let us now formally outline this problem:

Problem 2.1.2 (Edge Network Flow). We are given a directed graph G =

(V,E) with capacity function c : E → Q≥0, and source-sink pair (s, t). Let us

suppose Γ refers to the set of all simple paths from s to t. The objective is to

find an edge flow through G, denoted ζ = (ζe)e∈E, which maximizes the value

of
∑

u∈V :(s,u)∈E ζ(s,u). We refer to this quantity as the value of the edge flow f ;

denoted val(f) for convenience.

55

It turns out that Problems 2.1.2 and 2.1.1 are in a strong sense equivalent.

Rather, any edge flow can be converted to a path flow of equal value, and vice

versa. Before we describe this conversion, we first focus on some properties of edge

flows in their own right.

Suppose that G = (V,E) and c : E → Q≥0 are as above, and (ζe)e∈E is an edge

flow through G. Given a vertex v of G, let us define Z+(v) :=
∑

u∈N+(v) ζ(v,u), and

Z−(v) :=
∑

w∈N+(v) ζ(w,v). We refer to these values as the outflow and inflow of v,

respectively. Given source sink pair (s, t), we observe that the constraints of ζ on s

and t reduce to Z−(s) = 0 and Z+(t) = 0. Similarly, the conservation constraints

reduce to Z−(v) = Z+(v), for all v ∈ V , v 6= s, t.

We may extend the definitions of Z+ and Z− to subsets of vertices as well.

Rather, if S ⊆ V , then we define Z+(S) to be the total edge flow leaving S, and

Z−(S) to be the total edge flow entering S. Formally, we have that Z+(S) :=∑
e∈δ+(S) ζe and Z−(S) :=

∑
e∈δ−(S) ζe. We refer to these quantities as the outflow

and inflow of S, respectively.

Recall that if S ⊆ V has s ∈ S and t ∈ V \ S, then we refer to (S, V \ S) as an

s-t cut. Observe the following proposition regarding inflows and outflows of (s, t)

cuts:

Proposition 2.1.1. Let (ζe)e∈E be an edge flow through G. If (S, V \S) is an (s, t)

cut, then we have that val(ζ) = Z+(S)− Z−(S).

Proof. We first observe that val(ζ) = Z+(s) − Z−(s), as ζ is assumed to not send

any flow into s.

56

Moreover, as ζ satisfies the conservation conditions, we know that in particu-

lar, Z+(v)− Z−(v) = 0 for all v ∈ S, v 6= s.

It follows that, val(ζ) =
∑

v∈S Z
+(s)− Z−(s).

Let us consider this sum on the right-hand side of the above equation.

Observe that if e = (u, v) ∈ E, whose head and tail lie in S, then ζe will occur in

terms Z+(u) and Z−(v) exclusively. Similarly, if only the head u of e is in S, then

ζe will occur exclusively in term Z+(u). If only the tail v of e is in S, then ζe will

only occur in term Z−(v). When neither end of e is in S, ζe will not occur in any

term of the sum.

Using these above observations, we notice that,

∑
v∈S

Z+(v)− Z−(v) = Z+(S)− Z−(S).

It follows that,

val(ζ) = Z+(S)− Z−(S).

This completes the proof of the proposition.

We now return to studying the conversion between edge and path flows.

In particular we introduce two algorithms; one for each side of the conversion.

Let us begin with the conversion of edge flows to path flows. From an efficiency

perspective, this conversion can be done in polynomial time.

At a high level, the algorithm searches for simple paths which are fully

nonzero (paths which have nonzero edge flow at each of their edges). When such

57

a path γ′ is found, the minimum edge flow mine∈γ′ ζe is assigned to fγ′ . This value

is then subtracted from ζe for each each edge e of p′. The algorithm then continues

the search for paths of nonzero edge flow, until no such path exists. At this point,

the path flow (fγ)γ∈Γ is returned.

Algorithm 2.1.1 Edge Flow to Path Flow Conversion Algorithm

Let (G,E) be a directed graph.
Let c : E → Q≥0, and (s, t) a pair of distinct vertices.
Let (ζe)e∈E be an edge flow.

1: Initialize an identically zero path flow (fγ)γ∈Γ.
2: while a fully nonzero simple path γ′ from s to t exists in G do
3: Initialize ε← 0.
4: Set ε← mine∈γ′ ζe.
5: Set fγ′ ← ε.
6: for e ∈ γ′ do
7: Set ζe ← ζe − ε.
8: Return (fγ)γ∈Γ.

We first observe that the above algorithm runs in polynomial time. In order

to show this, it is enough to bound the number of iterations of the “while loop”.

Consider the following proposition:

Proposition 2.1.2. The number of iterations of the “while loop” in Algorithm

2.1.1 is at most |E|, the number of edges of G.

Proof. Let us suppose that simple path γ′ in computed in the “while loop”. If

ε is the minimum edge flow of γ′, then at least one edge e of γ′ has ζe = ε. In

particular, by the end of the “while loop”, e will have been removed from G. Since

the “while loop” terminates when no fully nonzero path from s to t exists in G,

58

at most |E| edges will need to be removed from G to cause this termination. The

result thus holds.

We now make a claim regarding the correctness of the above algorithm.

Proposition 2.1.3. Let ζ = (ζe)e∈E be an edge flow through G. The assignment

f = (fγ)γ∈Γ returned by the algorithm, is a path flow for which val(f) = val(ζ).

Moreover, this computation is done in time O(|E|2 + |E||V |).

Proof. Let us suppose l ≥ 0 is the number of iterations of the “while loop” in

Algorithm 2.1.1. By the above proposition, we know that l ≤ |E|. Moreover, each

iteration involves computing a depth first search started at s, so each iteration

takes time O(|E| + |V |). It follows that the algorithm takes time O(|E|2 + |E||V |).

We now analyze the current edge flow and path flow at each of these iterations.

For clarity, let us set ζ∗ to denote the initial edge flow ζ. We then set f 0 = 0

and ζ0 = ζ∗. Similarly, for i = 1, . . . l, we set f i to be the path flow and ζi to be

the edge flow, after i iterations of the “while loop”.

Our first goal will be to show that the final path flow, f l, is valid. Towards,

this goal, let e0 ∈ E. We claim that,

∑
γ∈Γ

f iγ ≤ ζ∗e0 − ζ
i
e0

for each 0 ≤ i ≤ l.

In order to prove this claim, we use induction on i. In particular, if i = 0, then

the statement is trivial, as f 0 is identically zero.

59

Let us assume that it is true for i ≥ 0. We now show that it holds for i+ 1.

Consider iteration i + 1 of the “while loop”. As we are concerned with the

edge e0, we consider two cases:

Let us first assume that the path γ′ chosen by the algorithm does not include

edge e0. In this scenario, for each path γ ∈ Γ with e0 ∈ γ, its path flow will not

change value. In other words, f i+1
γ = f iγ.

Similarly, the edge flow of e0 will also remain the same. We therefore have

that ζ i+1
e0

= ζ ie0 . It follows that the inequality will continue to hold trivially.

We now assume that the path γ′ does include edge e0. As in the algorithm, let

us denote ε to be the minimal edge flow through γ′. Rather, ε := mine∈γ′ ζ
i
e.

Observe that after this iteration of the “while loop”, the edge flow through e0

will have been decreased by ε. Formally, we have that ζ i+1
e = ζ ie − ε.

On the other hand, the path flow through γ′ will have been increased by ε. It

follows that f i+1
γ′ = f iγ′ + ε.

Thus, by the induction hypothesis,

∑
γ∈Γ:e0∈γ

f i+1
γ =

∑
γ∈Γ:e0∈γ

f iγ + ε

≤ ζ∗e0 − ζ
i
e0

+ ε

= ζ∗e0 − ζ
i+1
e0
.

It follows that the claim holds for all e0 ∈ E and 0 ≤ i ≤ l. In particular, for

i = l, we have that

60

∑
γ∈Γ:e0∈γ

f lγ ≤ ζ∗e0 − ζ
l
e0
≤ c(e0),

for all e0 ∈ E. The rightmost inequality follows from the feasibility of ζ∗.

As the algorithm returns the path flow f l, this implies that the algorithm

returns a correct solution.

It remains to show that val(f l) = val(ζ∗).

Let us consider the quantities val(f i) and val(ζi) after iteration i of the

“while loop”, where 0 ≤ i ≤ l − 1. We observe that during iteration i + 1 of

the “while loop”, val(f i) increases by the same amount that val(ζi) decreases.

As this is true for all iterations of the “while loop”, we know that val(f l) =

val(ζ∗)− val(ζl). Thus, if we can show that val(ζl) = 0, the result will follow.

Let us consider the final edge flow ζl. We define a subset S of vertices, where

v ∈ S, provided there is a fully nonzero path from s to v. We include s in this set

as well.

As the algorithm terminates with this edge flow, this edge flow must fail the

condition of the “while loop”. Rather, any path from s to t in G will have at least

one edge with zero flow. It follows that t will not be included in S.

If we consider the cut (S, V \ S), then it must have outflow Z+(S) = 0. To see

this, observe that if there were some u ∈ S and v ∈ V \ S, such that ζ l(u, v) > 0,

then v would be included in S.

On the other hand, we know that by Proposition 2.1.1, val(ζl) = Z+(S) −

Z−(S). This implies that val(ζl) ≤ 0. As edge flows always have nonnegative

value, we know that val(ζl) = 0.

61

It follows that val(f l) = val(ζ∗), thus completing the proof.

We now describe an algorithm for converting path flows to edge flows. Unlike

the previous procedure, this algorithm does not always run in polynomial time.

That being said, we shall see that if the path flow is restricted, then we may

circumvent this issue.

Given a path flow (fγ)γ∈Γ through G = (V,E), the algorithm outputs an edge

flow (ζe)e∈E. Initially, we set this edge flow to be identically zero. We then process

the paths between s and t, which route nonzero flow. For each such path γ ∈ Γ,

we assign the value fγ to each of the edges of γ; updating the edge flows in ζ to

account for this change. When all the nonzero path flows have been processed, we

return the final edge flow.

Algorithm 2.1.2 Path Flow to Edge Flow Conversion Algorithm

Let (G,E) be a directed graph.
Let c : E → Q≥0, and (s, t) a pair of distinct vertices.
Let (fγ)γ∈Γ be a path flow.

1: Initialize an identically zero edge flow (ζe)e∈E.
2: while there exists γ′ ∈ Γ with fγ′ 6= 0 do
3: for each e′ ∈ γ′ do
4: Set ζe′ ← ζe′ + fγ′

Set fγ′ ← 0.

5: Return (ζe)e∈E.

We first observe that we can easily characterize the runtime of the above

algorithm. Given a path γ ∈ Γ, we define the length of γ, denoted |γ|, to be its

number of edges. With this notation, suppose f = (fγ)γ∈Γ is the inputed path

62

flow. We define the size of f , denoted |f |, to be the sum of the lengths of its

nonzero paths. That is,

|f | =
∑

γ∈Γ:fγ 6=0

|γ|.

Using this notion of size, we observe the following claim on the runtime of the

above algorithm:

Proposition 2.1.4. The runtime of the above algorithm is O(|f |+ |E|).

Proof. It is clear that at most O(|E|) steps are needed to initialize the edge flow.

Moreover, the runtime of the remaining algorithm is clearly O(|f |).

The result therefore holds.

This proposition immediately allows us to characterize when the conversion to

edge flow can be done efficiently.

Corollary 2.1.5. Algorithm 2.1.2 runs in polynomial time in the size of G, if and

only if |f | is polynomial in the size of G.

We now verify the correctness of Algorithm 2.1.2.

Proposition 2.1.6. Let f = (fγ)γ∈Γ be a path flow through G. The assignment

ζ = (ζe)e∈E returned by the algorithm, is an edge flow for which val(ζ) = val(f).

Proof. For clarity, we denote the initial path flow passed to the algorithm as

f ∗ = (f ∗γ)γ∈Γ. Similarly, we denote the final edge flow returned by the algorithm

as ζ∗∗ = (ζ∗∗e)e∈E. Moreover, we use f and ζ to refer to the edge and path flows

63

as they change throughout the algorithm. The path flow f begins equal to f ∗ and

the edge flow ζ begins identically zero.

Let us now show that the edge flow returned is in fact valid. We first check

that s and t satisfy the necessary conditions. In particular, we claim that both

Z−(s) and Z+(t) remain zero throughout the algorithm. To see this, observe edge

flow is only ever assigned to the edges of the paths of Γ. Since the paths in Γ are

directed and simple, they never contain edges directed into s or out of t. It follows

that these edges avoid edge flow, thus implying the claim.

We now wish to show that the conversation conditions are satisfied by ζ

throughout the algorithm. These conditions are trivially satisfied at the beginning

of the algorithm, as ζ starts identically zero.

Now consider when the algorithm processes a path γ ∈ Γ. If a vertex v ∈ γ

is neither s nor t, then exactly two of its adjacent edges will be assigned flow. In

particular, one will be directed into v, and one will be directed out of it. Moreover,

the amount of flow assigned to each of these edges will be equal. This ensures that

the edge flow ζ will continue to satisfy the conversation conditions throughout

each iteration of the “while loop”. The final edge flow must therefore satisfy the

conservation conditions.

We now verify that the capacity conditions hold. Let us consider an edge

e ∈ E. By the time the algorithm finishes, it is clear that the flow assigned to ζ∗∗e

will be precisely
∑

γ∈Γ:e∈γ f
∗
γ . This implies,

ζ∗∗e =
∑

γ∈Γ:e∈γ

f ∗γ ≤ c(e),

64

as the path flow f ∗ is assumed to valid. It follows that ζ∗∗ will satisfy all of

the relevant capacity conditions.

It remains to check that ζ∗∗ and f ∗ have the same value. We first observe

that at the beginning of the algorithm, val(ζ) = 0. Moreover, each time a path

γ ∈ Γ is processed, an outgoing edge of s is assigned the path flow f ∗γ . Now, the

“while loop” of the algorithm concludes when each path flow has been set to zero.

This tells us that,

∑
e∈δ+(s)

ζ∗∗e =
∑
γ∈Γ

f ∗γ .

We observe that the left-hand side of this equation is precisely val(ζ∗∗),

whereas the right-hand side is exactly val(f ∗). This implies that val(ζ∗∗) =

val(f ∗), therefore completing the proof.

We finish the section with the observation that because of these conversion

algorithms, the value of an optimum solution to the edge flow problem is equal to

the value of an optimum solution to the path flow problem.

Corollary 2.1.7. Suppose we are given a directed graph G = (V,E) with capacity

function c : E → Q≥0, and source sink pair (s, t). If ζ is an optimum edge flow,

and f is an optimum path flow, then we have that val(ζ) = val(f).

65

2.2 Maximum Network Flow and the Ford-Fulkerson Algorithm

In this section, we develop an efficient algorithm for computing maximum

edge flows. In particular, we study the Ford-Fulkerson Aglorithm; a famous

algorithm based on local search techniques. We then see how we can use the

algorithm to also find optimum solutions to the path flow problem; making

extensive use of the results from the previous section. Finally, we investigate a

variation of the Ford-Fulkerson algorithm, and conclude with a statement of the

max-flow min-cut theorem.

Suppose we are given a graph G = (V,E), with capacity function c : E → Q≥0,

together with an edge flow ζ. We saw in the previous section that given an (s, t)

cut (S, V \ S), we may measure the outflow and inflow of S. In particular, we

defined Z+(S) :=
∑

e∈δ+(S) ζe and Z−(S) :=
∑

e∈δ−(S) ζe, to be the outflow and

inflow of S respectively.

In addition to inflow and outflow, we can also quantity the capacity of an

(s, t) cut. Rather, given an (s, t) cut (S, V \S), we define the capacity of (S, V \S),

denoted c(S, V \ S), to be the total capacity of its outgoing edges. Formally, we set

c(S, V \ S) =
∑

e∈δ+(S) c(e).

It terms out that given an edge flow ζ = (ζe)e∈E through G, the capacity of a

cut forms an upper bound on the value of ζ.

Proposition 2.2.1. Let ζ = (ζe)e∈E be an edge flow through G. If (S, V \ S) is an

(s, t) cut, then we have that val(ζ) ≤ c(S, V \ S).

Proof. We observe that if (S, V \ S) is an (s, t) cut, then by Proposition 2.1.1, we

know that val(ζ) = Z+(S)− Z−(S).

66

Observe that for each edge e ∈ δ+(S), we know that ζe ≤ c(e). Thus, we have

that, Z+(S) ≤ c(S, V \ S).

It follows that val(ζ) ≤ c(S, V \ S).

Our goal now will be to establish an algorithm for computing edge flows of

maximum value. Let us suppose we fix an arbitrary (s, t) cut (S, V \ S). As a

consequence of the above proposition, we know that any edge flow through G will

have its value bounded above by c(S, V \ S). Thus, if we can compute an edge flow

ζ for which val(ζ) = c(S, V \ S), we will know that ζ is of maximum value.

We now describe an algorithm for computing maximum edge flows, known as

the Ford-Fulkerson algorithm. At a high level, the algorithm begins with an iden-

tically zero edge flow, say ζ, which it continually augments. The purpose of each

augmentation is to increase the amount of flow that leaves the source. Eventually

the algorithm will no longer be able to perform anymore augmentations, at which

point the procedure will terminate, and ζ will be optimum.

The most natural way to perform an augmentation is to choose a path from s

to t, for which nonzero flow may be routed through. It turns out that this greedy

approach will not always work: there may be no paths for which we can route

flow through, despite ζ not being optimum. As this is the case, we need a way to

undo previous augmentations; that is, reduce the amount of flow currently passing

through an edge.

It will be useful to design a data structure which we can use to track the

status of the edges of G. In other words, if we have already constructed an edge

67

flow ζ, then for each edge e ∈ E, we record the amount that ζe can be changed.

Toward this goal, we must store two quantities for each e ∈ E: the amount that

we can increase the flow through e, namely c(e) − ζe; as well as ζe, the amount we

can decrease the flow through e. As a consequence of these requirements, it will be

convenient to use a multigraph data structure to store the information regarding

these edges.

Let us denote Gζ = (Vζ, Eζ) to be the residual multigraph of G and ζ. Each

edge of Gζ is defined as a 2-tuple: the first coordinate contains a pair of vertices,

whereas the second coordinate contains an integer. We use this second coordinate

to keep track of the multiple edges that may arise between a vertex pair. Observe

the following definition of Gζ:

• Gζ has the same vertex set as G.

• For each edge e = (u, v) ∈ E, if ζe < c(e), then we add (e, 1) to Eζ. An edge

of Gζ is referred to it as a forward edge, when it originates from G in this

way. Clearly, these types of edges run in the same direction as in the original

graph G.

• For each edge e = (u, v) ∈ E, if ζe > 0, then we let e′ = (v, u) and add

the edge (e′,−1) to Gζ. Edges of Gζ added in this manner are referred to

as backward edges. They run in the opposite direction of the edges in which

they originate from.

In addition to specifying the structure of the residual graph, we also associate

a residual capacity function, denoted cζ, to the edges of Gζ. We define this

function as follows:

68

• If (e, l) ∈ Eζ is a forward edge (l = 1), then we set cζ(e, l) = c(e) − ζe.

We may think of this quantity as specifying the remaining potential for flow

through e.

• If (e, l) ∈ Eζ is a backward edge (l = −1), then let e′ be the reversal of e.

We set cζ(e, l) = ζe′ . This quantity may be thought of as the amount we can

reduce the flow going through e.

Let us now define a subroutine critical to the Ford-Fulkerson algorithm.

The subroutine takes in the currently defined edge flow ζ, the residual capacity

function cζ, and a simple path γ from s to t in Gζ. The bottleneck of γ, namely

min(e,l)∈γ cζ(e, l), is then computed and stored in a variable ε. We then use the

path γ, together with ε, to augment the flow ζ through G. For each edge (e, l) ∈ γ,

if (e, l) is a forward edge, then ζe is increased by ε. Similarly, if e = (u, v) and (e, l)

is a backward edge, then ζ(v,u) is reduced by ε. The subroutine then returns the

updated flow ζ.

Let us now formally describe this subroutine. We refer to executions of this

subroutine as augmentations.

69

Algorithm 2.2.1 Augmentation Algorithm

Let γ be a simple path from s to t in Gζ.
Let cζ : E 7→ Q≥0 be the residual capacity of G.
Let ζ be an edge flow through G.

1: Initialize a copy ζ
′

of ζ.
2: Set ε← min(e,l)∈γ cζ(e, l).
3: for (e, l) ∈ γ do
4: if l = 1 then
5: Set ζ

′
e ← ζ

′
e + ε.

6: else
7: Set e = (u, v).
8: Set ζ

′

(v,u) ← ζ
′

(v,u) − ε
9: Return ζ

′
.

We now formulate a result involving the augmentation algorithm.

Proposition 2.2.2. Let ζ be the edge flow passed to Algorithm 2.2.1. The

algorithm takes O(|E|) time to return a valid edge flow, ζ
′
. Moreover, if ζ =

(ζe)e∈E and c : E → Q≥0 take on integral values, then so will ζ
′
.

Let us now introduce the entirety of the Ford-Fulkerson algorithm. We

observe that each path in Gζ has nonzero residual capacity ; rather, all its edges

have nonzero capacity, with respect to cζ. We also denote Γζ to be the simple

paths between s and t in Gζ.

70

Algorithm 2.2.2 Ford-Fulkerson Maximum Flow Algorithm

Let (G,E) be a directed graph.
Let c : E → Q≥0, and (s, t) a pair of distinct vertices.

1: Initialize an identically zero edge flow ζ = (ζe)e∈E.
2: Compute Gζ and cζ : E → Q≥0.
3: while there exists a path from s to t in Gζ do
4: Choose γ ∈ Γζ using an arbitrary algorithm.
5: Run Algorithm 2.2.1 with inputs γ, cζ and ζ.
6: Set ζ

′
to be the result of this algorithm.

7: Update Gζ and cζ with the new edge flow ζ
′
.

8: Return ζ = (ζe)e∈E.

Observe that in Step 4 of the above algorithm, we do not explicitly specify

how the computation of γ is done. In this sense, we may think of the Ford-

Fulkerson algorithm as specifying a general framework for a whole collection of

algorithms. These algorithms all make use of the same general structure, but differ

in how they choose which paths to augment. When we prove claims about the

Ford-Fulkerson algorithm, we are really proving these claims for any algorithm

within this collection. That being said, we state all of these claims in terms of

Algorithm 2.2.2.

We begin by proving that Algorithm 2.2.2 terminates with a valid edge flow.

In order for this claim to be true, we need to ensure that the capacity function,

c : E → Q≥0, takes on integral values. Let us refer to an edge flow which takes on

integral values as an integral edge flow.

Proposition 2.2.3. Let G = (V,E) be a directed graph with capacity function

c : E → Z≥0. Moreover, let α :=
∑

e∈δ+(s) c(e). Algorithm 2.2.2 returns an integral

edge flow in time O(α |E|).

71

Proof. For clarity, we denote ζ∗ := 0 as the initial edge flow. Moreover, we refer

to ζ as the edge flow as it changes throughout the algorithm. Clearly, ζ begins as

equal to ζ∗. Our goal will be to show that at most α iterations of the “while loop”

occur.

We first observe that when ζ is augmented by the “while loop”, its value

increases by a positive integer. This is because at every step of the algorithm, ζ

is an integral flow by Proposition 2.2.1. Moreover, the algorithm only performs

augmentations when they are guaranteed to increase the value of the edge flow.

Let us consider the (s, t) cut S, where S := {s}. We observe that (S, V \S) has

capacity c(S, V \ S) =
∑

e∈δ+(s) c(e). Now, by Proposition 2.2.1, we know that at

any point in the algorithm, val(ζ) ≤ c(S, V \ S). On the other hand, each iteration

of the “while loop” increases the value of ζ by a positive integer. It follows that

there are at most α iterations of the “while loop”. As each iteration by “while

loop” takes time O(|E|), we know that the running time of the algorithm will be

O(α |E|). This completes the proof.

We are now ready to prove that the Ford-Fulkerson algorithm returns an

optimum edge flow. As before, the capacity function c : E → Q≥0 must take

on integer values in order for the algorithm to terminate. We again denote

α =
∑

e∈δ+(s) c(e).

Theorem 2.2.4. Given a directed graph G = (V,E) with capacity function

c : E → Z≥0, the Ford-Fulkerson algorithm returns an integral optimum edge flow

ζ = (ζe)e∈E in time O(α |E|).

72

Proof. We have already proven that the solution returned by the algorithm is

integral and takes O(α |E|) to compute. It remains to show that the solution

returned is optimum.

Let us refer to ζ as the final edge flow returned by algorithm. Moreover, we

again denote Γζ to be the set of simple paths from s to t in the augmented graph

Gζ.

We now consider a subset S of the vertices of G. For each v ∈ V , if there is a

path from s to v in Gζ, then we place v in S. By convention, we also place s in S.

We observe that before the algorithm terminates, ζ must fail the conditions

of the “while loop”. This means that no path from s to t will exist in Gζ, so t will

not be placed in S. Thus, (S, V \ S) forms a partition of the vertex set of G.

Our goal now will be to show that the capacity of (S, V \ S) is in fact equal to

the value of ζ. Rather, we prove that c(S, V \ S) = val(ζ). By Proposition 2.2.1,

all edge flows through G must have their value bounded above by c(S, V \ S). As a

consequence, this will prove that ζ is optimum.

Suppose that e ∈ E is an edge present in δ+(S); that is, it runs from a vertex

in S to a vertex in V \ S. We claim that the edge flow through e is equal to its

capacity. To show this, assume otherwise. Rather, suppose that ζe < c(e). In

this case, forward edge (e, 1) must have been added to Eζ with residual capacity

cζ(e, 1) = c(e) − ζe > 0. If e = (u, v), then since u ∈ S, there must be a path γ

in Gζ between s and u. Observe that we may add edge (e, 1) to γ, forming a path

from s to v in Gζ. As v was assumed to not be in S, this is a contradiction. The

claim therefore holds.

73

Similarly, if e ∈ E is an edge present in δ−(S), then it must have edge flow

equal to zero. To see this, assume that ζe > 0. In this case, backward edge (e′,−1)

must have been added to Eζ, where e′ is the reversal of e. Moreover, the residual

capacity cζ of (e′,−1) will have been set to ζe > 0. Once again, assume that

e = (u, v). In this case, v ∈ S, as e is directed into s. In consequence, we may find

a path from s to u in Gζ, thus contradicting the membership of u. This concludes

the proof of the claim.

These claims imply that the outflow of S, namely Z+(S), is equal to c(S, V \

S). Moreover, the inflow of S, denoted by Z−(S), is equal to zero. By Proposition

2.1.1 this tells us that,

val(ζ) = Z+(S)− Z−(S) = c(S, V \ S).

This completes the proof of the theorem.

We now see how we can use this algorithm to simultaneously solve the path

flow problem (Problem 2.1.1) in an efficient amount of time. We refer to a path

flow which exclusively takes on integral values as an integral path flow.

Theorem 2.2.5. Given a directed graph G = (V,E), source sink pair (s, t) and a

capacity function c : E → Z≥0, an integral optimum path flow f = (fγ)γ∈Γ may

be computed in time O(α |E| + |E|2). In this context, Γ refers to the set of simple

paths between s and t, and α =
∑

e∈δ+(s) c(e).

74

Proof. In order to compute an optimum path flow, we first compute an optimum

edge flow ζ using Algorithm 2.2.2. By Theorem 2.2.4, this computation can be

done in time O(α |E|).

Once we have established this edge flow, we use Algorithm 2.1.1 to convert

ζ to a path flow f . By Proposition 2.1.3, this conversion may be done in time

O(|E|2). Moreover, the value of f will be equal to the value of ζ, so f will be

optimum (see Corollary 2.1.7). The result thus follows.

2.2.1 Edmonds-Karp Maximum Flow Algorithm

The above algorithms provide us with fairly efficient ways to solve each of

our network flow problems. That being said, we measure the size of the capacity

function as the total number of bits needed to store the numbers (c(e))e∈E. If

we assume that each positive integer c(e) is stored in binary notation, then the

size of c(e) is blog2(c(e))c + 1. This implies that the size of c : E → Z≥0 is∑
e∈E(blog2(c(e))c+ 1).

If we once again denote α =
∑

e∈δ+(s) c(e), then suppose α is close to the value

of
∑

e∈E c(e). In this case, our algorithms will run in time exponential in the size

of c, provided alpha many augmentations occur. Thus, if the outgoing edges of s

have large capacity, then our algorithms may not perform well.

To rectify this issue, we consider a specific implementation of the Ford-

Fulkerson algorithm. Currently, the algorithm maintains an edge flow ζ, and

periodically searches for paths between s and t to augment. In particular, it

chooses paths in Γζ , as they can have nonzero flow routed through them. If there

75

exist multiple paths of this form, the algorithm does not explicitly say which path

to choose. Our implementation will choose the candidate which has the fewest

number of edges possible (breaking ties arbitrarily).

Algorithm 2.2.3 Edmonds-Karp Maximum Flow Algorithm

Let (G,E) be a directed graph.
Let c : E → Q≥0, and (s, t) a pair of distinct vertices.

1: Initialize an identically zero edge flow ζ = (ζe)e∈E.
2: Compute Gζ and cζ : E → Q≥0.
3: while there exist a path from s to t in Gζ do
4: Choose γ ∈ Γζ, with the fewest possible edges.
5: Run Algorithm 2.2.1 with inputs γ,cζ and ζ .
6: Set ζ

′
to be the result of this algorithm.

7: Update Gζ and cζ with the new edge flow ζ
′

8: Return ζ = (ζe)e∈E.

Our goal will be to show that the number of augmentations the algorithm

performs is polynomial in the size of G. Let us begin by recalling some definitions

from graph theory:

If G = (V,E) is a directed graph, and (s, t) is a pair of vertices of G, then we

define the distance between s and t, denoted distG(s, t), as the number of edges in

the shortest (directed) path between s and t. If s is not connected to t in G, then

this value is set to positive infinity.

Let us suppose that γ is a shortest path between s and t. We may form a new

path γR, by reversing every edge of γ. This path is known as the reversal of γ. If

G is a multigraph, then each edge (e, l) of γ is replaced by (eR,−l) in γR.

Now consider graph G′ = (V ′, E ′), where G′ := G ∪ γR. Rather, G′ has the

same vertex set as G, but its edges include E, together with the edges found in γR.

76

Lemma 2.2.6. Suppose that u∗, v∗ ∈ γ and distG(s, u∗) ≤ distG(s, v∗). It follows

that distG(u∗, v∗) = distG′(u
∗, v∗).

Proof. Let us first consider the case when u∗ = s and v∗ = t.

We know that G ⊆ G′ by definition. Thus, any path in G is present in G′, so

we know that distG′(s, t) ≤ distG(s, t).

We now prove the reverse inequality. Let us suppose that γ is the path

between s and t used to construct G′. Moreover, let us suppose that γR is the

reversal of γ. That is, each edge of γR is the reversal of an edge of γ.

If p is a shortest path between s and t in G′, then we claim that p will

not contain any edges of γR. To see this, let us assume otherwise. We denote

eR = (v, u) as the first edge of p which lies in γR. Observe that the edge e = (u, v)

lies in the path γ.

Let us split the path p into three parts. We denote p1 as the piece between s

and v, p2 as the piece between v and u, and p3 as the piece between u and s.

Observe that since eR is the first edge of p in γR, we know that p1 is entirely

contained in G. This means that |p1| = distG(s, v), as the path p is of minimum

length.

On the other hand, if we denote γ1 as the piece of γ between s and v, then

|γ1| = distG(s, u). This is immediate, as γ is a shortest path in G.

If γ1p3 is the concatenation of γ1 followed by p3, then we observe that,

|γ1p3| = distG(s, u) + |p3| < distG(s, v) + |p2|+ |p3| = |p|

as distG(s, v) = distG(s, u) + 1, and |p1| = distG(s, v).

77

However, γ1p3 is a path from s to t in G′. Since p was assumed to be the

shortest path from s to t in G′, this is a contradiction.

It follows that p contains no edges of γ′, and so is contained in G. Thus,

distG(s, t) ≤ |p| = distG′(s, t). Together with the first inequality proven, this

implies that,

distG(s, t) = distG′(s, t). (2.2.1)

We now consider the general case when u∗ and v∗ are arbitary vertices of γ. It

is obvious once again that, distG′(u
∗, v∗) ≤ distG(u∗, v∗), as G ⊆ G′. Let us assume

that this inequality is in fact strict. In this case, we see that,

distG′(s, t) = distG′(s, u
∗) + distG′(u

∗, v∗) + distG′(v
∗, t)

< distG(s, u∗) + distG(u∗, v∗) + distG(v∗, t)

= distG(s, t),

as γ is a shortest path between s and t in both G and G′. This contradictions

Equation 2.2.1, so the general case for u∗ and v∗ must hold.

We shall also need a strengthening of Lemma 2.2.6. In the notation used

above, let G = (V,E) be a directed graph and (s, t) be a pair of distinct vertices

of G. Moreover, let γ1, . . . γk be k simple paths between s and t of minimal length.

We may form G′ := G ∪
⋃k
i=1 γi. Observe the following lemma:

Lemma 2.2.7. Suppose that u∗, v∗ ∈ γi where 1 ≤ i ≤ k, and distG(s, u∗) ≤

distG(s, v∗). It follows that distG(u∗, v∗) = distG′(u
∗, v∗).

78

Proof. Let us first prove the lemma for vertices s and t. We observe that by

applying Lemma 2.2.6 to G and γ1, we have that distG(s, t) = distγR1 ∪G(s, t).

Similarly, we may the lemma to G ∪ γ1 and γ2, to achieve a similar inequality. The

final inequality, distG(s, t) = distG′(s, t), can be easily seem after k applications of

Lemma 2.2.6 in this manner.

In order to extend this argument to u∗, v∗ ∈ γi, for which

distG(s, u∗) ≤ distG(s, v∗),

we may apply the same argument as seen in the second part of the proof of

Lemma 2.2.6.

Let us now suppose that we pass a directed graph G, a capacity function

c : E → Z≥0, and a source sink pair (s, t) to Algorithm 2.2.3. Algorithm 2.2.3 is

a specific implementation of the Ford-Fulkerson algorithm, so it must terminate

by Proposition 2.2.3. Thus, we may assume that Algorithm 2.2.3 performs q ≥ 0

augmentations when passed the above inputs.

It will be convenient to label the edge flow as it is processed throughout the

algorithm. Let ζ0 := 0, be the edge flow after it is initialized. Moreover, let ζi be

the edge flow after i augmentations (iterations of the algorithm’s “while loop”).

The edge flow ζq will be the output of the algorithm.

We use Gζi to denote the residual multigraph of G with respect to ζi, where

0 ≤ i ≤ q. Similarly, we denote cζi as the residual capacity function. For each

79

0 ≤ i ≤ q, we denote the distance between s and t in Gζi by distGζi (s, t). We

shorten the notations of Gζi and cζi to Gi and ci when the context is clear.

For each 0 ≤ i ≤ q − 1, we refer to γi as the path chosen by the algorithm in

iteration i + 1 of the “while loop”. In this notation, γ0 is the first path chosen by

the algorithm, and γq−1 is the final path chosen by the algorithm.

Lemma 2.2.8. For 0 ≤ i ≤ q − 1, let us denote γRi as the reversal of γi; Gi is

a multigraph, so the labellings of γi are negated in γRi . If we form the multigraph

Gi ∪ γRi , then

Gi+1 ⊆ Gi ∪ γRi .

Proof. Given graph Gi, we form Gi+1 by first choosing a path γi between s and t

in Gi. We then augment the graph (Algorithm 2.2.1), using Gi, γi and ci as inputs.

This is done as follows:

Let ε := min(e,l)∈γi ci(e, l) be the bottleneck of γi. For each edge (e, l) present

in γi, if (e, l) is a forward edge (l = 1) then set ζ i+1
e = ζ ie + ε. Similarly, if (e, l)

is a backward edge, set ζ i+1
eR

= ζi(e
R) − ε, where eR is the reversal of e. The

augmentation algorithm then returns the updated flow ζi+1.

We observe that once the flow ζi+1 is returned, the residual graph Gi+1 is

updated from ζi+1. We may process the edges of γi to see how these graphs differ.

First, suppose (e, l) is a forward edge of γi. If ζ i+1
e = c(e), then (e, l) will not

be present in Gi+1. On the other hand, if ζ ie = 0, then ζ i+1
e > 0, so backward edge

(eR,−l) will be present in Gi+1, where eR is the reversal of e.

80

Let us now consider when (e, l) is a backward edge of γi. We denote eR as the

reversal of e. If ζ i+1
eR

= 0, then (e, l) will be not be present in Gi+1. However, if

ζ ieR = c(eR), then ζ i+1
eR

< c(eR), so forward edge (eR,−l) will be present in Gi+1.

Using these observations, it is clear that Gi+1 ⊆ Gi ∪ γRi .

Proposition 2.2.9. Let 0 ≤ i ≤ q − 1. It follows that, disti(s, t) ≤ disti+1(s, t).

Proof. Let γi and γRi be as above. We form the graph G′ := Gi ∪ γRi

By Lemma 2.2.6, since γi was a shortest path in Gi, we know that,

distG′(s, t) = distGi(s, t)

On the other hand, Lemma 2.2.8 implies that Gi+1 ⊆ G′. Together with the

above equation, this implies that,

distGi(s, t) ≤ distGi+1
(s, t).

The result therefore holds.

As a consequence of this proposition, it follows that (disti(s, t))
q
i=1 forms a

nondecreasing sequence of numbers. In particular, we may assume that β distinct

values are assumed by this sequence, where 0 ≤ β ≤ q. Let us denote these values

as d1 < d2 < . . . < dβ.

We may partition the iterations of the “while loop” by the values in which

they take on. For j = 1, . . . β, we denote Ij := {0 ≤ i ≤ q : disti(s, t) = dj}. We

81

refer to the iterations in Ij as phase j of the algorithm. In this way, β phases of

the algorithm occur. We first observe the following proposition regarding the size

of β.

Proposition 2.2.10. There are at most |V | − 1 phases in the execution of

Algorithm 2.2.3. Rather, in the above notation, β ≤ |V | − 1.

Proof. We may assume that |V | ≥ 2, as G must have at least two vertices in order

to have a distinct source sink pair (s, t).

If β < 2, then the claim holds trivially, as |V | ≥ 2. Let us now assume that

β ≥ 2.

Fix 1 ≤ j ≤ β − 1. During phase j, the algorithm invokes augmentations

using simple paths of length dj. When the algorithm moves into phase j + 1, the

algorithm will instead use simple paths of lenth dj+1. As the longest path used

in any augmentation is |V | − 1, there may be at most |V | − 1 phases. Rather,

β ≤ |V | − 1.

The result therefore follows.

Given 1 ≤ j ≤ β, we may refer to the length of phase j as |Ij|. Our next goal

will be to bound the length of each phase of the algorithm. We first prove a fact

that will be essential in achieving these bounds.

Proposition 2.2.11. Let i∗, i ∈ Ij, where 1 ≤ j ≤ β. If i < i∗, then γi∗ will be

edge disjoint from γRi .

82

Proof. Let us assume that γi∗ and γRi are not edge disjoint. This implies there is

an edge e = (u, v) of γi, such that eR = (v, u) is in γi∗ . Now consider the graph

G′ := Gi ∪
⋃i∗

k=i+1 γ
R
k . By repeated applications of Lemma 2.2.8, we know that Gi∗

will be included in G′, provided we ignore the labellings of each graph.

By Lemma 2.2.7, we know that,

distG′(s, u) = distGi(s, u),

and,

distG′(v, t) = distGi(v, t).

Moreover, as Gi∗ ⊆ G′,

distG′(s, u) ≤ distGi∗ (s, u),

and,

distG′(v, t) ≤ distGi∗ (v, t).

We now split the path γi∗ into pieces γ1
i∗ , γ

2
i∗ and γ3

i∗ . The path γ1
i∗ is the

portion from s to v, γ2
i∗ is the portion from v to u, and γ3

i∗ is the portion from

u to t. We observe that since γi∗ is a shortest path in Gi∗ , |γ1
i∗| = distGi∗ (s, v),

|γ2
i∗| = distGi∗ (v, u) and |γ3

i∗ | = distGi∗ (u, t).

83

Applying the above inequalities to the pieces of γi∗ , we observe that,

|γi∗ | = |γ1
i∗|+ |γ2

i∗|+ |γ3
i∗|

≥ distG′(s, v) + distGi∗ (v, u) + distG′(u, t)

= distGi(s, u) + 1 + distGi∗ (v, u) + distGi(u, t)

= distG′(s, t) + 1 + distGi∗ (v, u)

> distG′(s, t)

= |γi|,

as distG′(s, v) = distGi(s, v) = distGi(s, u) + 1. This allows us to conclude that

γi∗ has greater length than γi.

On the other hand, we assumed that both iterations i and i∗ are in the same

phase. This means that γi∗ and γi should have the same length. As we have

shown they do not, this yields a contradiction. It follows that γi∗ and γRi are edge

disjoint, proving the original claim.

Before we prove a claim which limits the length of the phases of the Edmonds-

Karp Algorithm, we introduce some definitions. Given 0 ≤ i ≤ q − 1, we say

that edge (e, l) is removed at time i, provided (e, l) ∈ Gi, yet (e, l) /∈ Gi+1. By

Lemma 2.2.8, it is necessary that path γi contains (e, l) in order for this to occur.

Similarly, we say that edge (e, l) is added at time i, provided (e, l) /∈ Gi, yet

(e, l) ∈ Gi+1. It is necessary that path γi contains (eR,−l) in order for this to

occur.

84

If we restrict ourselves to a specific phase, then it becomes easy to track which

edges have been added and removed:

Lemma 2.2.12. Let 1 ≤ j ≤ β and i ∈ Ij. Suppose that (e, l) is removed (added)

at time i. If i∗ ∈ Ij, and i < i∗, then (e, l) cannot be added (removed) at time i∗.

Proof. We prove each claim in sequence.

If (e, l) is removed from Gi at time i, then it must have been a member of

path γi by the above remarks. Similarly, in order for it to be added to Gi∗ , its

reversal, namely (eR,−l), must be a member of path γi∗ . By Proposition 2.2.11,

(eR,−l) cannot occur in γi∗ , so this may not happen.

Now assume that (e, l) is added to Gi at iteration i. In this case, edge (eR,−l)

must have been present in γi. In order for it to be removed at iteration i∗, (e, l)

must have occured in γi∗ . Once again by Proposition 2.2.11, this cannot occur. It

follows that (e, l) cannot be removed at iteration i∗.

With this lemma, we are ready to bound the length of the phases of the

algorithm.

Proposition 2.2.13. Each phase of the algorithm has length at most 2|E|.

Rather, for all 1 ≤ j ≤ β, |Ij| ≤ 2|E|.

Proof. For simplicity, we assume that we are working with the first phase of the

algorithm (j = 1). The argument will naturally extend to any arbitrary phase.

85

For each 0 ≤ i∗ ≤ |I1| − 1, let us denote Ri∗ as the edges which are removed

from Gi at times i = 0, . . . , i∗. By Lemma 2.2.12, (Ri∗)
|I1|−1
i∗=0 forms a nondecreasing

sequence with respect to inclusion.

Similarly, we denote Ai∗ as the edges which are added to Gi∗ at times

i = 0, . . . , i∗. Lemma 2.2.12, implies that (Ai∗)
|Ij |−1
i∗=0 forms a nondecreasing

sequence with respect to inclusion.

Observe that for each i∗ = 1, . . . , |Ij| − 1, we know that e(Gi∗) = (e(G0) ∪

Ai∗−1) \ Ri∗−1. That is, the edges of Gi∗ includes the edges of G0 which are not

removed in the first i∗ augmentations, together with the edges that are added after

the first i∗ augmentations.

We observe that if 0 ≤ i∗ ≤ |I1| − 1, then Ai∗ ⊆ ∪i
∗
i=0e(γ

R
i), by repeated

applications of Lemma 2.2.8. On the other hand, if i∗∗ ≤ |I1| − 1 and i∗ < i∗∗, then

we know that by Proposition 2.2.11, γi∗∗ is edge disjoint from ∪i∗i=0e(γ
R
i). It follows

that the edges of γi∗∗ are disjoint from Ai∗ for all 0 ≤ i∗ < i∗∗.

Let 1 ≤ i′ ≤ |I1| − 1, and consider when path γi′ is chosen for augmentation.

First observe that the edges of γi′ are contained in e(Gi) = (e(G0) ∪ Ai′−1) \ Ri′−1.

Moreover, the edges of γi′ are disjoint from Ai′−1. These two statements imply

that,

e(γi′) ⊆ e(G0) \ Ri′−1.

Now, during the augmentation of γi′ , at least one edge of γi′ will be removed.

Moreover, any edge which is removed at this time cannot belong to Ri′−1, by the

preceding equation. This implies that Ri′ will be strictly larger than Ri′−1; rather,

86

Ri′−1 (Ri′ . Thus, the sequence (|Ri|)|I1|−1
i=0 is strictly increasing. In particular,

|R|I1|−2| ≥ |I1| − 1, as |R0| ≥ 1.

Let us now consider the final augmentation of the first phase. As this point,

the edges of path γ|I1|−1 are taken from e(G0) \ R|I1|−2. Now, |e(G0)| ≤ 2|E|, so

e(G0) \ R|I1|−2 has size at most 2|E| − |R|I1|−2| ≤ 2|E| − |I1| + 1. Moreover, γ|I1|−1

takes at least one edge from e(G0) \ R|I1|−2, so

1 ≤ |e(G0) \ R|I1|−2| ≤ 2|E| − |I1|+ 1.

It follows that,

|I1| ≤ 2|E|.

As the length of phase one is defined as the size of I1, the claim holds.

Theorem 2.2.14. Algorithm 2.2.3 returns a maximum edge flow in time

O(|E|2|V |).

Proof. As Algorithm 2.2.3 is a specific implementation of the Ford-Fulkerson

algorithm, we know that it returns an optimum edge flow. It remains to verify that

this computation is done in O(|E|2|V |) many steps.

Observe that the algorithm has at most |V | − 1 phases, by Proposition 2.2.10.

Moreover, each phase has at most 2|E| augmentations, by Proposition 2.2.13. It

follows that the algorithm performs at most 2|E|(|V | − 1) augmentations.

87

We also know that each augmentation involves computing a shortest path

from s to t. This computation can be specifically implemented using a breadth-

first search, thus taking time at most O(|E|).

Putting all these statements together, it is clear that the algorithm takes at

most O(|E|2|V |) many steps. The result thus holds.

Recall that given a capacity function c : E → Q≥0 on a graph G = (V,E), we

defined the capacity of a cut (S, S), to be the sum of the capacities of its outgoing

edges (from S into S). Let us refer to the minimum source-sink cut problem for

directed graphs, as the problem of finding a minimum capacity (s, t) cut for the

graph G = (V,E), with respect to the function c : E → Q≥0. We conclude

this section by stating the famous connection between minimum (s, t) cuts and

maximum edge flows.

Theorem 2.2.15 (Max-flow Min-cut). Given a directed graph G = (V,E) with

capacity function c : E → Z≥0, there exists a maximum edge flow ζ and minimum

(s, t) cut (S, S), for which val(ζ) = c(S, S).

88

2.3 Applications of the Edmonds-Karp Algorithm

In this section we consider some applications of the Edmonds-Karp Algorithm

to a number of important problems in graph theory. Unlike the previous sections,

we primarily focus on problems pertaining to undirected graphs. In particular, we

first investigate the minimum cut problem for undirected graphs. After this, we

consider the problem of routing edge disjoint paths between pairs of vertices in

undirected graphs. We remark that many of the proofs of the claims in this section

are easily verified, and thus have been omitted.

Let us suppose that G = (V,E) is an undirected graph with a cost function

c : E → Q≥0, and a source-sink pair (s, t) of vertices. If S ⊆ V , for which (S, S)

partitions s and t, then we refer to (S, S) as an (s, t) cut. Moreover, we refer to

the cost of (S, S), denoted c(S, S), as the total cost of the edges between S and S.

Rather,

c(S, S) :=
∑
e∈δ(S)

c(e),

where δ(S) contains the edges of G with exactly one end in S. We consider the

minimum cost problem, as stated below:

Problem 2.3.1 (Source-Sink Minimum Cut for Undirected Graphs). Let G =

(V,E) be an undirected graph with cost function c : E → Q≥0, and source-sink pair

(s, t). The objective of this problem is to find an (s, t) cut (S, S) of minimum cost.

We remark that the decision to refer to c : E → Q≥0 as a cost function,

opposed to a capacity function, is purely syntactic. We do not explicitly compute

edge flows on undirected graphs, so the cost terminology better describes the goal

89

of this problem. Let us now describe an algorithm which solves this problem in

polynomial time. We make extensive use of the results from the previous section.

We first introduce a directed graph, denoted G∗ = (V ∗, E∗), known as the

symmetrization of G. This is constructed by replacing each edge e of G with

directed edges pointed in both possible directions of e. Formally, we describe this

process below:

• G∗ has the same vertices as G.

• For each edge e = {u, v} ∈ E, add directed edges (u, v) and (v, u) to G∗.

Additionally, we define a capacity function c∗ : E∗ → Q≥0 for G∗, where

c∗((u, v)) takes on the value c({u, v}) for each edge (u, v) ∈ E∗. We refer to c∗ as

the symmetrization of cost function c. Observe the following lemma:

Lemma 2.3.1. Let G = (V,E) be an undirected graph with cost function c : E →

Q≥0 and source sink pair (s, t). More, let G∗ = (V ∗, E∗) and c∗ : E∗ → Q≥0 be the

symmetrizations of G and c respectively. If (S, S) is an (s, t) cut of G, then it is

also an (s, t) cut of G∗ (and vice versa). Moreover,

c(S, S) = c∗(S, S).

In particular, if (S, S) is a minimum capacity cut for G∗, then it is a minimum

cost cut for G∗.

The algorithm for Problem 2.3.1 first involves building G∗ and c∗ from G and

c. It then computes an edge flow ζ for G∗, of maximum value, using Algorithm

2.2.3 from the previous section. From here, the edge flow is used to build minimum

90

capacity (s, t) cut for G∗, which is then translated into a minimum cost (s, t) for

G.

Before we describe the algorithm in detail, we recall some notation from

the previous sections. Given an edge flow ζ through G∗, we refer to G∗ζ as the

residual multigraph of G∗ with respect to ζ. Similarly, we refer to c∗ζ as the residual

capacity function with respect to ζ. If γ is a path contained in G∗ζ, then we know

it has nonzero residual capacity ; rather, all its edges are nonzero with respect to

c∗ζ.

Algorithm 2.3.1 Source-Sink Minimum Cut Algorithm

Let (G,E) be an undirected graph.
Let c : E → Q≥0, and (s, t) a pair of distinct vertices.

1: Initialize S ← {s}
2: Compute G∗ and c∗, the symmetrizations of G and c.
3: Compute an optimum edge flow ζ = (ζe)e∈E∗ , using Algorithm 2.2.3.
4: for each v ∈ V ∗ do
5: if there is a path p from s to v in G∗ζ then
6: S ← S ∪ {v}.
7: Return (S, S).

Theorem 2.3.2 (Source-Sink Minimum Cut). Algorithm 2.3.1 returns a minimum

(s, t) cut in polynomial time.

Proof. It is clear that the algorithm will run in polynomial time, as Theorem

2.2.14 proves that the Edmonds-Karp algorithm executes in polynomial time.

Moreover, the for loop of the above algorithm can be implemented using a depth-

first search on the graph G∗ζ, where the vertices that are found are added to

S.

91

Let us now consider the correctness of the algorithm. We first observe that

in the proof of Theorem 2.2.4, the main goal was to show that (S, S) has capacity

equal to the value of ζ. Rather,

c∗(S, S) = val(ζ).

As a consequence of the max-flow min-cut theorem (Theorem 2.2.15), this implies

that (S, S) is a minimum capacity cut. Moreover, Lemma 2.3.1 implies that (S, S)

is a minimum cost cut for G.

We now consider another problem in graph theory. Suppose G = (V,E) is an

undirected graph with source-sink pair (s, t). Moreover, suppose we wish to find

paths between s and t which are edge disjoint. It is natural to wonder how many

such paths exist in G. We summarize this problem below:

Problem 2.3.2 (Path Routing in Undirected Graphs). Let G = (V,E) be an

undirected graph with source-sink pair (s, t). If l ≥ 1, then we wish to find a

selection of simple paths from s to t, denoted p1, . . . , pl, which are edge disjoint.

Rather, for all 1 ≤ i < j ≤ l, e(pi) ∩ e(pj) = ∅. The goal of the problem is to find

the largest selection of such paths.

We wish to find an algorithm for this problem that runs in polynomial time.

Given G = (V,E), it will once again be useful to consider the symmetrization of

G, denoted G∗. We can also associate a cost function c : E → Q≥0 to G, where c

is identically one. As before, we denote c∗ as the symmetrization of c. Let us now

outline the steps of this algorithm:

92

At a high level, we first compute a maximum edge flow through G∗. We

then use the conversion algorithm from Section 2.1 (Algorithm 2.1.1), to build a

maximum path flow through G∗. With this path flow, we can derive a selection

of paths in G that are guaranteed to be edge disjoint. The optimality of the path

flow will then ensure that the selection of paths in G is as large as possible.

Before we implement this algorithm in detail, it will be convenient to focus

on flows through G∗ that satisfy additional constraints than we’ve previously

seen. Let us suppose that ζ is an edge flow through G∗, in which for each each

{u, v} ∈ E, at most one of ζ(u,v) and ζ(v,u) is nonzero. We refer to an edge flow ζ

with this property as being canonical. We also classify path flows through G. Let

f be a path flow through G∗, such that for each edge {u, v} ∈ E, at most of one

(u, v) or (v, u) is contained in a nonzero path of f . In this case, we refer to f as a

canonical path flow.

If we once again consider the conversion algorithm from Section 2.1, namely

Algorithm 2.1.1, then it is clear that this algorithm maps canonical edge flows to

canonical path flows.

Lemma 2.3.3. Let G = (V,E) be an undirected graph with an identically one cost

function c : E → Q≥0, and a source-sink pair (s, t). More, suppose G∗ and c∗ are

the symmetrizations of G. If ζ is a canonical edge flow through G∗, then the path

flow f returned from Algorithm 2.1.1 is also canonical.

We also observe the following lemma:

93

Lemma 2.3.4. Given any edge flow ζ through G∗, there exists a canonical edge

flow ζ
′

through G∗, such that val(ζ) = val(ζ
′
). Moreover, given ζ as input, ζ

′
may

be computed from it in polynomial time.

Let us now state a detailed description of how to build an optimum selection

of paths from s to t. We denote Γ as the set of directed simple paths from s to t in

G∗.

Algorithm 2.3.2 Path Routing Algorithm

Let (G,E) be an undirected graph.
Let c : E → Q≥0, and (s, t) a pair of distinct vertices.

1: Initialize P ← ∅.
2: Compute G∗ and c∗, the symmetrizations of G and c.
3: Compute an optimum edge flow ζ = (ζe)e∈E∗ , using Algorithm 2.2.3.
4: Update ζ such that it is canonical.
5: Run Algorithm 2.1.1 with the above inputs.
6: Let f be the path flow returned from this subroutine.
7: for each γ ∈ Γ do
8: if fγ 6= 0 then
9: Convert γ to a undirected path p.
10: Add p to P .

Return P .

In the above algorithm, the optimality of f ensures that the collection of

edges P will itself be optimum. This leaves us with the following theorem:

Theorem 2.3.5. Algorithm 2.3.2 returns a selection of edge disjoint paths,

denoted P, which run from s to t in G. Moreover, the size of P is optimum, and is

returned in polynomial time.

94

CHAPTER 3
The Multiway Cut Problem

This chapter focuses on a problem known as the multiway cut problem, which

is a generalization of the minimum cut problem on undirected graphs. The first

section begins with a detailed introduction to the problem, culminating in the

design of a combinatorial algorithm for finding multiway cuts. This approximation

algorithm is based on a greedy approach, where it routinely makes use of the

minimum cut algorithm as a subroutine. The algorithm is seen to attain a

performance guarantee of 2 − 2/k, where k ≥ 1 is the number of source-sink pairs

that are separted from the input graph G = (V,E). The analysis of this algorithm

is based on the material from the book “Approximation Algorithms” [Vv11].

In the following section, an IP formulation of the problem is presented,

and relaxed to an LP formulation. This linear program has exponentially many

constraints, and so a polynomial time separation oracle is designed to help solve

the program. Using an optimum solution to this program, a randomized rounding

algorithm is used to derive a (integral) solution to the IP formulation of the

problem. This algorithm is proven to attain an expected approximation guarantee

of 2 − 2/k, using a proof technique typically used in rounding algorithms. A

derandomization algorithm is then derived, and seen to attain an identical

approximation guarantee deterministically. The section ends by matching the

upper and lower bounds of the integrality gap of this integer program. While the

95

randomized algorithm of this section is referenced in the book “Approximation

Algorithms” [Vv11], the derandomization of this algorithm is original, as is the

analysis of both algorithms.

The final section of the chapter introduces a second IP formulation of the

multiway cut problem, motivated by the shortcomings of the previous formulation.

An LP relaxation of this integer program is taken, whose optimum solution is

then used to design another randomized rounding algorithm. This algorithm is

then seen to achieve an expected approximation guarantee of 3/2. Once again, a

derandomization process is outlined, and argued to deterministically achieve an

approximation guarantee of 3/2. The majority of the material from this section is

adapted from the book “The Design of Approximation Algorithms” [WS11].

96

3.1 Introduction to Multiway Cut

Suppose we are given an undirected graph G = (V,E) with a cost function

c : E → Q≥0. If we are also given a source-sink pair (s, t) of distinct vertices, then

we may consider a cut F ⊆ E, whose removal leaves s disconnected from t in G.

The cost of the cut F , denoted c(F), is defined to be the sum of the costs of its

edges. The problem of finding a cut of minimal cost is known as the minimum

cut problem. We saw in the previous chapter that there exists polynomial time

algorithms for computing such cuts (see Theorem 2.3.2 Section 2.3).

In this chapter, we will primarily be interested in a generalization of this

problem. Instead of a single source sink pair, we are given k distinct source nodes

s1, . . . , sk, and asked to find a subset of edges F ⊆ E, whose removal disconnects

the source nodes from each other. As before, we are interested in finding cuts that

are of optimum cost. Let us formally state this problem below:

Problem 3.1.1 (Multiway Cut). Suppose we are given an undirected graph

G = (V,E), with cost function c : E → Q≥0. Moreover, let s1, . . . , sk be k ≥ 2

distinct vertices of G, which we refer to as source nodes of G. We wish to find

a subset F ⊆ E, for which s1, . . . , sk are disconnected in G \ F . If F satisfies

this condition, we refer to it as a multiway cut. We denote the cost of F as c(F),

where c(F) :=
∑

e∈F c(e). The goal of the problem is to find a multiway cut of

minimum cost.

Unlike the minimum cut problem, it is known that for fixed k ≥ 3, an

optimum cut with this property is NP-hard to find. As this is the case, we provide

a number of algorithms throughout this chapter which efficiently approximate this

97

problem. We begin with a simple combinatorial algorithm, which is based on a

greedy strategy. In the later sections, we shall see more sophisticated algorithms,

which employ the use of linear programming techniques.

We now outline our greedy combinatorial algorithm. At a high level, this

algorithm sequentially processes the source nodes of the graph in an arbitrary

order. When it reaches source node si, it computes a cut Fi ⊆ E, which optimally

separates si from the other sources. We shall see how this computation is done,

but first we formalize this algorithm below:

Algorithm 3.1.1 Greedy Multiway Cut Algorithm

Let G = (V,E) be an undirected graph.
Let c : E → Q≥0, and {s1, . . . , sk} ⊆ V .

1: Initialize F ← ∅.
2: for i=1 to k do
3: Compute a minimum cost cut Fi, which separtes si from the other source

nodes.
4: Let F ← F ∪ Fi
5: Compute the cut of greatest cost among the candidates, F1, . . . , Fk.
6: Denote Fj as this cut.
7: Return F \ Fj

In order to perform Step 3 of the above computation, we must first introduce

a graph augmentation. Let us suppose s1 is the selected vertex, and we wish to

optimally separate it from s2, . . . , sk; the other cases can be done analogously. We

first define a new graph G1 = (V1, E1) with cost function c1 : E1 → Q≥0:

• For each vertex v ∈ V , if v 6= s2, . . . , sk, then add v to V1.

• Add an augmented vertex with label νa to V1.

98

• For each edge e ∈ E, if neither end of e is in {s2, . . . , sk}, then add e to E1

with cost c1(e) = c(e).

• If e = {si, v}, where 2 ≤ i ≤ k, and v /∈ {s2, . . . , sk}, then add edge {νa, v} to

G1 with cost equal to c(e).

• If e has both ends in {s2, . . . , sk}, then we make no changes to G1.

We refer to G1 = (V1, E1) as an augmented graph, with augmented cost

function c1 : E1 → Q≥0. Its use can be summarized in the following proposition:

Proposition 3.1.1. Let G1 and c1 : E1 → Q≥0 be as above. Moreover, suppose

F1 is a minimum cost cut of s1 and νa. Given F1 as input, we may recover a

minimum cost cut of s1 and s2, . . . , sk in polynomial time.

We may use Algorithm 2.3.1 to build a minimum cost cut of s1 and the

augmented vertex va. From here, we can use the above proposition to recover a

minimum cost cut of s1 and s2, . . . , sk in polynomial time.

Having justified the time complexity of Step 3, it is clear that the algorithm

executes in polynomial time. Moreover, F clearly separates the sources, so

the algorithm is correct. Let us now state the approximation guarantee of this

algorithm.

Theorem 3.1.2. Algorithm 3.1.1 achieves an approximation guarantee of 2- 2/k.

Proof. Let us assume that B ⊆ E is a minimum cost multiway cut of G. As B is a

feasible solution to the multiway cut problem, we know that G\B is a graph which

places s1, . . . , sk into separate components. Moreover, as the solution is minimum,

there exists exactly k components of G \B.

99

Let us denote these components by C1, . . . , Ck, where si ∈ Ci for i = 1, ..., k.

More, for i = 1, .., k, set Bi := e(Ci, V \ Ci), where e(Ci, V \ Ci) is the edges of G

with exactly one end in Ci.

Observe that each edge of B occurs in exactly two of the Bi sets. Thus we

have that B = ∪ki=1Bi, and c(B) =
∑k

i=1 2 c(Bi).

It is also clear that each Bi separates the source si from the remaining source

nodes. Thus, as the cuts in Algorithm 3.1.1, optimally perform this function, we

know that c(Fi) ≤ c(Bi) for i = 1, .., k.

Let us assume without loss of generality that Fk is the most costly of the cuts

F1, . . . , Fk. We observe then that the cost of Fk is at least
∑k

i=1
c(Fi)
k

, the average

cost of the cuts.

We know that since F ⊆ ∪k−1
i=1Fi,

c(F) ≤
k∑
i=1

c(Fi)− c(Fk) ≤ (1− 1

k
)

k∑
i=1

c(Fi)

Now,

(1− 1

k
)

k∑
i=1

c(Fi) ≤ (1− 1

k
)

k∑
i=1

c(Bi) ≤ (1− 1

k
) 2 c(B)

Thus,

c(F) ≤ (1− 1

k
)2 c(B)

It follows that the algorithm returns a multiway cut with cost at most

(2− 2
k
)OPT .

100

3.2 Randomized Region Cut

In this section, we explore the use of linear programming techniques in the

context of the multiway cut problem. The algorithm we intoduce in this section

uses a linear programming paradigm known as randomized rounding. While

the algorithm does not provide a better approximation guarantee than we saw

in the previous section, it allows us to introduce techniques that are widely

used throughout the text. In particular, we shall later see how to use the same

techniques to attain significant improvements over the approximation guarantee of

the greedy algorithm from the previous section.

We begin by introducing the necessary framework to structure the multiway

cut problem as a integer program. For i = 1, . . . , k, let Pi be the set of all

simple paths from si to any source vertex. Moreover, we denote P as the union of

P1, . . . ,Pk. If we introduce a variable de for each edge e ∈ E, then we have the

following integer programming formation of the multiway cut problem:

minimize
∑
e∈E

c(e)de

subject to
∑
e∈pi

de ≥ 1 ∀i = 1, . . . , k, pi ∈ Pi

de ∈ {0, 1} ∀e ∈ E

(3.2.1)

The constraints of the integer program ensure that if d = (de)e∈E is a valid

solution, then each path between source nodes will have at least one edge selected

in d. Rather, if F ⊆ E is such that e ∈ F if and only if de = 1, then F will form a

valid multiway cut.

101

We now consider a relaxation of this integer program. For each e ∈ E, we

allow de to take values in the unit interval [0, 1]. This leaves us with the following

linear program:

minimize
∑
e∈E

c(e)de

subject to
∑
e∈Pi

de ≥ 1 ∀i = 1, . . . , k, pi ∈ Pi

0 ≤ de ≤ 1 ∀e ∈ E

(3.2.2)

Before we analyze this relaxation, it will be convenient to simplify the

constraints of the program. Observe that the cost function c : E → Q≥0 is

nonnegative by definition. Combined with the fact that we are interested in

optimum solutions to LP (3.2.2), we may forgo the upper bounds placed on the de

variables. This leaves us with the following linear program in standard form:

minimize
∑
e∈E

c(e)de

subject to
∑
e∈Pi

de ≥ 1 ∀i = 1, . . . , k, pi ∈ Pi

de ≥ 0 ∀e ∈ E

(3.2.3)

We now focus our attention on this simplified linear program. From the

outset, it is clear that it may have an exponential number of constraints. Rather,

if the graph G has a source si for which the size of Pi is exponential in the size

of the graph, then our linear program will be exponential in size. As this is the

case, it seems that we cannot hope to solve the program in polynomial time via

standard LP solvers.

102

Fortunately, there exists an approach that allows us to circumvent this issue.

Firstly, we recognize that our linear program has a polynomial time separation

oracle (see Subsection 1.3.1 for a general definition). Rather, given a potential

solution d to LP (3.2.3), we can compute in polynomial time whether there exists

an inequality of LP (3.2.3) which d violates. Moreover, if such an inequality exists,

then the oracle will provide an inequality which is violated. If no inequality is

violated, then the oracle will indicate that the solution is valid.

Before we implement this polynomial time separation oracle, we introduce

a means of measuring distance in the graph G. Let d = (de)e∈E be an arbitrary

edge assignment, where de ∈ Q≥0 for all e ∈ E (d may or may not be a valid

solution to LP (3.2.3)). If p is a path in G, then we refer to the length of p with

respect to d, as the quantity,
∑

e∈p de. Moreover, if u and v are two vertices in G,

then the distance between u and v with respect to d, is the length of the shortest

path between them. We denote this quantity distG,d(u, v), and simply distd(u, v)

when the context is clear. Computing a shortest path between any two vertices

(with respect to d) can be done in polynomial time using Dijkstra’s algorithm for

instance. We now introduce the polynomial time separation oracle:

103

Algorithm 3.2.1 Separation Oracle for LP (3.2.3)

Let G = (V,E) be an undirected graph.
Let c : E → Q≥0, and {s1, ..., sk} ⊆ V .
Let d = (de)e∈E be a potential solution to LP (3.2.3).

1: for i=1, . . . ,k do
2: for j=i+1, . . . ,k do
3: Compute a shortest path p∗i,j between si and sj.
4: if

∑
e∈p∗i,j

de < 1 then

5: The solution d is marked as invalid.
6: The inequality involving path p∗i,j is returned.

7: The solution d is marked as valid.

Proposition 3.2.1. Algorithm 3.2.1 is a polynomial time separation oracle which

can be used to solve LP (3.2.3) in polynomial time.

Proof. We first observe that Algorithm 3.2.1 executes in polynomial time. It

remains to show that it satisfies the properties of a separation oracle.

Let us consider the edge assignment d, which is passed to Algorithm 3.2.1. We

first assume that the solution is infeasible. Rather, there exists 1 ≤ i′ < j′ ≤ k,

such that p′ lies between si′ and sj′ , yet p′ has length less than 1. That is,

∑
e∈p′

de < 1.

In this case, consider the step of the algorithm when it computes a shortest path

p∗i′,j′ between si′ and sj′ . As p∗i′,j′ is a shortest path, its length cannot exceed the

length of p′. In particular, ∑
e∈p∗

i′,j′

de ≤
∑
e∈p′

de < 1.

104

The algorithm will therefore mark d as infeasible, and return the inequality

pertaining to p∗i′,j′ as violated.

It remains to prove that if the algorithm marks a solution as feasible, then it

will satisfy LP (3.2.3). Let us suppose that d is marked as feasible. We observe

that in this case, the algorithm will verify that for each 1 ≤ i < j ≤ k,

1 ≤
∑
e∈p∗i,j

de,

where p∗i,j is the shortest path from si to sj that the algorithm computes. On the

other hand, if p ∈ P is a simple path from si to sj, then we know that,

1 ≤
∑
e∈p∗i,j

de ≤
∑
e∈p

de,

as p∗i,j is a shortest path from si to sj. It follows that d does in fact satisfy all

the inequalities of LP (3.2.3), so the algorithm made the correct assignment. We

have therefore shown that Algorithm 3.2.1 is in fact a polynomial time separation

oracle.

Using this algorithm as a subroutine, we may appeal to Theorem 1.3.5 from

Subsection 1.3.1 to provide us with a polynomial time algorithm for solving LP

(3.2.3).

In light of this proposition, let us suppose that we compute an optimum

solution to LP (3.2.3), which we label d. Solutions of this form have a number

of desirable properties. In particular, we observe that d satisfies the triangle

inequality for any selction of edges. Rather, if u, v and w are vertices of G, then we

105

have that,

du,v ≤ du,w + dw,v,

where {u, v}, {u,w} and {w, v} are edges of G. We now prove this property.

Proposition 3.2.2. If d is an optimum solution to LP (3.2.3), then it satisfies the

triangle inquality for any selection of edges of G.

Proof. We first observe that de ≥ 0 for each edge e ∈ E, as d is a solution to LP

(3.2.3).

It remains to check that d satisfies the triangle inequality on E. Suppose that

this is not the case. That is, there exist vertices u, v and w with edges between

them, such that,

du,v > du,w + dw,v (3.2.4)

Moreover, observe that since d is an optimum solution to LP (3.2.3), du,v

cannot be decreased without violating a constraint of the linear program.

Thus, there exists a pair of sources, say s1, s2, with a simple path p between

them, such that, ∑
e∈p

de = 1,

where the edge {u, v} is guaranteed to lie in p.

Observe that if we remove {u, v} from p, and replace it with {u,w} followed

by {w, v}, then we are left with a new path p′ between s1 and s2. We also build a

path p′′, whose edges are contained in p′, and which is guaranteed to be simple.

106

As consequence of Equation 3.2.4, we know that the length of p′ is strictly less

than the length of p. Moreover, as the edges of p′′ are contained in p′, we know

that the length of p′′ is also less than the length of p.

However, since p has length one, p′′ must have length less than one. As p′′ is

a simple path between source nodes s1 and s2, this means that d is not a valid

solution to 3.2.3. This is a contradiction, so the violation in Equation 3.2.4 cannot

occur. It follows that d satisfies the triangle inquality everywhere, and so the claim

holds.

Let us once again consider the distance function distd(·, ·), when d is a

solution to LP (3.2.3). It is clear that distd(·, ·) forms a metric on the vertices

of G. On the other hand, if we also assume that d is an optimum solution to LP

(3.2.3), then we can think of distd(·, ·) as extending d from edges to paths.

Proposition 3.2.3. Let d be a solution to LP (3.2.3). The function distd : V 2 →

Q≥0, forms a metric on the vertices of G. Moreover, if d is an optimum solution

to LP (3.2.3), then

du,v = distd(u, v),

for each each {u, v} ∈ E.

We now return to the original problem of desiging an approximation algorithm

for finding multiway cuts. Let us once again assume that d is an optimum solution

to LP (3.2.3). As observed in the above proposition, we can use d to form a metric

distd(·, ·) on the vertices on our graph. Once we have this metric, we can pick a

107

radius 0 ≤ r < 1
2
, and grow regions of the given radius about each source node,

s1, . . . , sk.

Namely, for i = 1, . . . , k, let Bdr (si) be the vertices of G with distance from si

less than or equal to r (with respect to distd(·, ·)). We denote these sets by Br(si)

when the context is clear. Observe that since r < 1
2
, we know that the regions will

be disjoint. This is easily seen, for if 1 ≤ i < j ≤ k, then suppose Br(si) and Br(sj)

share a vertex v ∈ V . In this case, distd(si, v) < 1
2

and distd(sj, v) < 1
2
, so by the

triangle inequality,

distd(si, sj) < 1.

As d was assumed to be a valid solution to 3.2.3, this is a contradiction. It follows

that Br(si) and Br(sj) are disjoint for all 1 ≤ i < j ≤ k. That being said,

there may exist vertices that lie outside of the regions Br(s1), . . . , Br(sk). In other

words, V \ ∪ki=1Br(si) may be nonempty.

Once we form these disjoint regions, we collect the edges which lie between

them. We begin by selecting the edge set F1 := δ(Br(s1)); rather, the edges

of G with exactly one end in Br(s1). We then iterate this process, where edges

Fi := δ(Br(si)) \ ∪i−1
j=1Fj are selected for 2 ≤ i ≤ k. After this process, the most

costly of these edges set, say Fi′ , is computed. The edge set F is then returned,

where F := ∪i=1Fi \ Fi′ .

108

Algorithm 3.2.2 Region Multiway Cut Algorithm

Let G = (V,E) be an undirected graph.
Suppose c : E → Q≥0, and {s1, ..., sk} ⊆ V .
Let 0 ≤ r < 1

2
.

1: Initialize F, F1, . . . , Fk ← ∅.
2: Find an optimum solution d of LP (3.2.3).
3: for i = 1, . . . , k do
4: Set Fi ← δ(Br(si)) \ F .
5: Let F ← F ∪ Fi .

6: Compute 1 ≤ i′ ≤ k, such that Fi′ is the most costly of F1, . . . , Fk.
7: Set F ← F \ Fi′ .
8: Return F

We observe that since we can solve LP (3.2.3) in polynomial time, the

algorithm itself will run in polynomial time. Moreover, the algorithm will always

return a multiway cut.

Proposition 3.2.4. For any value of 0 ≤ r < 1
2
, Algorithm 3.2.2 will run return a

valid multiway cut.

Proof. Let consider the edge set F returned by the algorithm. We may assume

that if Fi′ is the most costly of F1, . . . , Fk, then i′ = k. Thus, F = ∪k−1
i=1Fi.

We now consider the edge set F ∗, defined to be the union of

δ(Br(s1)), . . . , δ(Br(sk−1)).

It is clear from construction that since Fk ⊆ δ(Br(sk)), we know that,

F ∗ ⊆ F,

as F = ∪ki=1δ(Br(si)) \ Fk. Thus, if we can show that F ∗ is a multiway cut, then F

will also be one.

109

Observe that for each i = 1, . . . , k, the region Br(si) is disjoint from the

other regions (see the discussion above Algorithm 3.2.2). In particular, si is the

only source node present in Br(si). This means that the edge set δ(Br(si)) will

separate si from the other source nodes. Rather, each path pi ∈ P will share

an edge with δ(Br(si)). Thus, each path in P must share an edge with one of

δ(Br(s1)), . . . , δ(Br(sk−1)), as any path in Pk must also be in one of P1, . . . ,Pk−1.

It follows that F ∗ is a multiway cut, thus completing the proof.

Now that we have an algorithm which is guaranteed to return a valid multi-

way cut, we would like to alter it in such a way that this multiway cut has cost

close to optimum. A natural approach to this problem is to optimize the radius

chosen based on the inputs given. While this will indeed be possible, it turns out

that it is easier to analyze a randomized version of Algorithm 3.2.2, in which the

radius is chosen uniformly at random from the interval [0, 1
2
).

More specifically, we first fix the inputs G, c and s1, . . . , sk. We then sample a

number ρ uniformly at random from [0, 1
2
). Using the source nodes together with

G and c, we run Algorithm 3.2.2 with ρ as the radius. The result will be a random

edge set F , which is guaranteed to be a multiway cut. Let us formally outline this

procedure:

110

Algorithm 3.2.3 Randomized Multiway Cut Algorithm

Let G = (V,E) be an undirected graph.
Suppose c : E → Q≥0, and {s1, ..., sk} ⊆ V .

1: Sample 0 ≤ ρ < 1/2, uniformly at random
2: Run Algorithm 3.2.2 with the above inputs.
3: Let F be the output of this subroutine.
4: Return F .

We remark that we can model the randomness present in the above algorithm

by considering an abstract probability space, (Ω,B,P), for which ρ is a random

variable; rather, ρ : Ω→ R. In this sense, the law of ρ, denoted L(ρ), is distributed

as a normalized Lebesgue measure on [0, 1
2
). This means that for each interval

[a, b] ⊆ [0, 1
2
), we have that,

P(ρ ∈ [a, b]) = 2(b− a).

We may also view F as a random element from Ω to the power set of E (the

collection of all edge subsets of E). When we sample ω ∈ Ω, F (ω) can be thought

of as the edges selected by the algorithm, when ρ(ω) is passed as the radius.

Theorem 3.2.5. Algorithm 3.2.3 has an expected approximation guarantee of

2− 2
k
.

In order to prove this theorem, we first prove a useful lemma. Let us suppose

Bρ(s1), . . . , Bρ(sk) are the random regions formed in Algorithm 3.2.3. Rather, if

1 ≤ i ≤ k, then we have that Bρ(si)(ω) := Bρ(ω)(si) for ω ∈ Ω.

Lemma 3.2.6. We observe that if {u, v} is an edge of G, then

P({u, v} ∈ ∪ki=1δ(Bρ(si))) ≤ 2 du,v.

111

Proof. Consider the edge e = {u, v} of G. Given a source node sj for 1 ≤ j ≤ k,

we say that sj separates e, provided exactly one end of e is in Bρ(sj). As ρ is

generated randomly, we denote Sj as the event in which this occurs. It is clear that

P(e ∈ ∪ki=1δ(Bρ(si))) = P(∪ki=1Si)

by definition. On the other hand, let us now consider when the event Sj oc-

curs. We may first assume that sj is closer to u than v; rather, distd(sj, u) ≤

distd(sj, v). Observe that Sj occurs if and only if ρ falls in the interval,

[distd(sj, u), distd(sj, v)).

In order for this to happen, it is necessary that distd(sj, u) < 1/2, as ρ < 1/2. We

refer to the source node sj as having the potential to separate e through u, provided

it has this property. Notice that this is an entirely deterministic classification; it

depends only on the edge assignment d and the structure of G.

Similarly, if sj is closer to v than u, then Sj occurs if and only if

ρ ∈ [distd(sj, v), distd(sj, u)).

Moreover, it remains necessary for distd(sj, v) < 1/2. In this case, we refer to

source node sj as having the potential to separate e through v. Once again, this

classification is deterministic.

We observe that there is at most one source node which has the potential to

separate e through u. To see this, observe that were it not the case, then there

would exist two source nodes with distance between them strictly less than one.

112

As d is a feasible solution to LP (3.2.3), this cannot occur. Similarly, there is at

most one source node with the potential to separate e through v.

In light of this observation, we may assume that s1 is the only source node

with distd(s1, u) < 1/2, and s2 is the only source node with distd(s2, v) < 1/2. We

first recognize that,

1 ≤ distd(s1, s2) (3.2.5)

= distd(s1, v) + distd(v, s2) (3.2.6)

by Proposition 3.2.3 and the feasibility of d. Let us now assume that distd(s1, v) ≤

1/2. As consequence of Equation 3.2.5, this means that,

distd(s2, v) ≥ 1

2
.

However, we assumed that s2 had potential to separate e through v, so this cannot

occur. It follows that,

distd(s1, u) <
1

2
< distd(s1, v)

Using a symmetrical argument, we also arrive at the conclusion,

distd(s2, v) <
1

2
< distd(s2, u).

Let us now consider the probabilities of S1 and S2 occuring. As a result of the

above equations,

P(S1) = P(ρ ∈ [distd(s1, u),
1

2
))

= 2(
1

2
− distd(s1, u)),

113

as ρ is drawn uniformly at random from the interval [0, 1
2
). Similarly,

P(S2) = P(ρ ∈ [distd(s2, v),
1

2
))

= 2(
1

2
− distd(s2, v)).

Finally,

P(S1 ∩ S2) = P(ρ ∈ [distd(s2, u),
1

2
))

= 2(
1

2
− distd(s2, v),

provided we assume that distd(s1, u) ≤ distd(s2, v). It follows that,

P(S1 ∪ S2) = P(S1) + P(S2)− P(S1 ∩ S2)

= 2 (
1

2
− distd(s1, u))

≤ 2 (distd(s1, v)− distd(s1, u))

= 2 du,v.

where the last line follows from the optimality of d and Proposition 3.2.3. As s1

and s2 were assumed to be the only source nodes with the potential to separate e,

we have that

P(∪ki=1Si) = P(S1 ∪ S2)

= 2 du,v.

The only remaining case to consider is when there exists exactly one source

node with the potential to separate e. If we assume sj is such a vertex, then it is

114

clear that,

P(Sj) ≤ 2 (distd(sj, v)− distd(sj, u))

= 2 du,v,

provided sj is closer to u than v. In any case, we arrive at the conclusion,

P(∪ki=1Si) = P(Sj)

≤ 2 du,v,

as before. This concludes the proof of the lemma.

With this lemma, we are now able prove the statement of Theorem 3.2.5.

Proof. Ultimately, we would like to show that,

EF ≤ 2 (1− 1

k
) OPTf ,

where OPTf is the cost of an optimum solution to LP (3.2.3), and F is the

random multicut returned by the algorithm. It will be useful to first examine the

random edge set F ∗, defined below:

For each i = 1, . . . , k, we may consider the random edge subset, F ∗i :=

δ(Bρ(si)), together with the random variable, c(F ∗i). Let us denote F ∗ := ∪ki=1F
∗
i .

Our first goal will be to show that,

E c(F ∗) ≤ 2OPTf .

115

For each edge e ∈ E, let us denote Ae as the event in when e ∈ F ∗. Moreover, we

denote 1Ae as the indicator variable for this event.

It is clear that,

c(F ∗) =
∑
e∈E

c(e) 1Ae .

Moreover, by linearity of expectation,

E c(F ∗) =
∑
e∈E

c(e)P(Ae)

≤
∑
e∈E

2 c(e) de,

by Lemma 3.2.6. On the other hand, we know that,

OPTf =
∑
e∈E

c(e) de,

as d was assumed to be an optimum solution to LP (3.2.3). Thus,

E c(F ∗) ≤ 2OPTf .

Let us now consider the random multicut F once again. We recall that since

the randomized algorithm invokes Algorithm 3.2.2, it forms the random edge

subsets F1, . . . , Fk as it executes. As a result, c(Fi) is a random variable describing

the cost of Fi for i = 1, . . . , k. We can also denote τ as the index of the most costly

of these edge subsets. Rather,

τ := min{1 ≤ i′ ≤ k : c(Fi′) = max
1≤i≤k

c(Fi)}.

116

Clearly, τ is a random variable with range [k]. Moreover, c(Fτ) is a random

variable describing the cost of Fτ .

It is clear that for i = 1, . . . , k, Fi ⊆ F ∗i . This implies that F ⊆ F ∗, and so

c(F) ≤ c(F ∗). In particular, this means that,

E c(F) ≤ E c(F ∗) ≤ 2OPTf ,

so already the multicut F achieves an expected approximation guarantee of 2. We

shall improve this factor slightly by comparing E c(F) and E c(F ∗) more closely. In

particular, we claim that,

E c(F) ≤ k − 1

k
E c(F ∗).

In order to see this, first observe that,

c(F ∗) =
k∑
i=1

c(Fi)− c(Fτ),

as F1, . . . , Fk were designed to be disjoint in Algorithm 3.2.2. On the other hand,

we know that

c(Fτ) ≥
k∑
i=1

c(Fi)

k
,

as Fτ is the most costly of F1, . . . , Fk. This implies that,

E c(Fτ) ≥
k∑
i=1

E
c(Fi)

k
,

117

after taking expectations. Combining these equations, we see that,

E c(F ∗) =
k∑
i=1

E c(Fi)− E c(Fτ)

≤ k − 1

k

k∑
i=1

E c(Fi)

=
k − 1

k
E c(F ∗),

where the last line follows since F ∗ = tki=1Fi. To conclude, we have that,

E c(F ∗) ≤ k − 1

k
E c(F ∗)

≤ 2 (1− 1

k
)OPTf ,

thus proving the initial claim.

While the randomized algorithm achieves an expected performance guarantee

that is reasonably low, it still has a few shortcomings. Firstly, we are only aware of

the expectation of the random variable c(F). We have no information about how

this random variable is distributed, and whether it is tightly concentrated about

its expectation. As a result, c(F) may vary greatly from its mean depending on

the value ρ takes on. Moreover, the algorithm involves sampling a real number

from the interval [0, 1
2
). As we formalize algorithms using Turing machines

which work exclusively on rational numbers, this sampling process is outside of

the capabilities of our computational model. This can be solved by sampling a

rational number ρ∗ which is approximately uniformly random on [0, 1
2
), but this

118

is computationally expensive, and involves comparing the cumulative distribution

functions of ρ and ρ∗.

To get around these issues, we instead consider a process known as the

derandomization of Algorithm 3.2.3. Broadly, this process modifying the algorithm

in such a way that it no longer relies on randomness, without increasing its

approximation guarantee. There are a number of widely used strategies for

achieving this goal. We focus specifically on analyzing the various values that c(F)

may take on, as ρ varies throughout the interval [0, 1
2
). We shall see that there

are in fact a finite number of values r1, . . . , rl in [0, 1
2
) for which the value of c(F)

changes. Moreover, we are able to compute these values in polynomial time, thus

giving us a natural way to optimize the cost of F . Let us now outline how this is

done:

Let e be an edge of G. For each j = 1, . . . , k, let Ije be the half open interval

on [0, 1
2
), such that for each r ∈ Ije , e ∈ δ(Br(sj)). Moreover, set Ie := ∪kj=1I

j
e to be

the union of these intervals.

We define a function φ : [0, 1
2
)→ R, such that

φ :=
∑
e∈E

c(e)χIe ,

where χIe is the indicator function for the interval Ie.

If we once again consider the random variable ρ defined on the probability

space (Ω,B,P), then suppose F ∗ is the random edge set formed by taking the

union of δ(Bρ(s1)), . . . , δ(Bρ(sk)) (see the proof of Theorem 3.2.3). Observe that

119

for all ω ∈ Ω,

φ(ρ(r)) = c(F ∗)(ω),

where c(F ∗) is the random variable describing the cost of F ∗. As a result of this

equation, we have that

E c(F ∗) = 2

∫ 1
2

0

φ(r) dr.

In particular, this implies that

inf
0≤r<1/2

φ(r) ≤ E c(F ∗) (3.2.7)

≤ 2OPTf . (3.2.8)

The second line follows as a result of the analysis of c(F ∗) in the proof of Theorem

3.2.5. We also observe that we can find a value 0 ≤ rmin < 1/2 which attains this

infimum. This is done by evaluating φ on the endpoints of each interval Ije , for

e ∈ E and j = 1, . . . , k. Clearly, this may be done in O(k |E|) many steps.

We now pass the radius rmin to Algorithm 3.2.2, yielding the determinisitc

regions Brmin(s1), . . . , Brmin(sk), and the disjoint edge sets Fmin
1 (s1), . . . , Fmin

k (sk).

If we assume that Fmin
k is the most costly of these edge sets, then Algorithm 3.2.2

returns the multicut Fmin = ∪k−1
i=1F

min
i . We claim that Fmin has cost at most

2(1− 1
k
)OPTf .

120

To see this, first observe that,

φ(rmin) =
∑
e∈E

c(e)χIe(rmin)

= c(∪ki=1Brmin(si))

=
k∑
i=1

c(Fmin
i)),

as tki=1F
min
i = ∪ki=1Brmin(si) (where the left-hand side involves a disjoint union).

Moreover, c(Fmin
k) ≥

∑k
i=1

c(Fmini)

k
, as Fmin

k is the most costly edge subset.

Thus,

c(Fmin) =
k∑
i=1

c(Fmin
i)− c(Fmin

k)

≤ k − 1

k

k∑
i=1

c(Fmin
i)

=
k − 1

k
φ(rmin)

≤ 2 (1− 1

k
)OPTf ,

where the last inequality follows from Equation 3.2.7. We now state an

explicit implementation of this deterministic algorithm

121

Algorithm 3.2.4 Derandomization of the Region Cut Algorithm

Let G = (V,E) be an undirected graph.
Suppose c : E → Q≥0, and {s1, . . . , sk} ⊆ V .

1: Set Fmin ← E.
2: for e ∈ E and j = 1, . . . , k do
3: Initialize r′ and r′′ as the endpoints of Ije .
4: Run Algorithm 3.2.2 with inputs r′ and r′′.
5: Let F ′ and F ′′ be the cuts returned.
6: Set Fmin to be the cheaper of the cuts F ′ and F ′′.

7: Return the multiway cut Fmin.

Using the above discussion, we arrive at the following theorem:

Theorem 3.2.7. Algorithm 3.2.4 runs in polynomial time, and achieves an

approximation guarantee of 2− 2
k
.

If we restrict our attention to IP (3.2.1) when k ≥ 2 is fixed, then Theorem

3.2.7 places an upper bound of 2 − 2
k

on the integrality gap of this restricted

integer program. This is because it compares the cost of its multicut Fmin, with

the value of an optimum solution to LP (3.2.3). Rather, if I ′ corresponds to the

arbitrary problem instance of G, c and s1, . . . , sk (here k is fixed), then the analysis

of Theorem 3.2.7 yields the comparison,

OPT (I ′) ≤ c(Fmin) ≤ 2 (1− 1

k
)OPTf (I

′),

where OPT (I ′) is the cost of an optimum solution to IP (3.2.1), and OPTf (I
′) is

the cost of an optimum solution to LP (3.2.3), both involving instance I ′.

On the other hand, the integrality gap of IP (3.2.1) is defined to be,

sup
I

OPT (I)

OPTf (I)
,

122

where the supremum is taken over all problem instances of multiway cut, in which

k source nodes are to be separated. The combination of these inequalities yields

the upper bound on the integality gap. We now observe that this bound is in fact

tight, as evident from the following example:

Example 3.2.8. Let H = (V,E) be an undirected graph with source nodes

s1, . . . , sk and regular nodes v1, . . . , vk. More, let us denote its capacity function by

c : E → Q≥0. We now construct the edges of H. For i = 1, . . . , k,

• Add edge {si, vi} to H.

• If i < k, add edge {vi, vi+1} to H.

Moreover, all the edges of H are defined to have cost equal to one; rather, c(e) = 1

for all e ∈ E. We denote I as this particular problem instance, where I includes

G,c and s1, . . . , sk.

Let us first denote F ∗ := {{si, vi} : i = 1, . . . , k − 1}. We observe that F ∗ is an

optimum multiway cut. Rather,

OPT (I) = c(F ∗) = k − 1.

We also denote d = (de)e∈E as a fractional multiway cut, where dsi,vi := 1
2

for

i = 1, . . . , k, and zero everywhere else. It is clear that d is an optimum solution to

LP (3.2.3). Rather,

OPTf (I) =
∑
e∈E

c(e) de =
k

2
.

On the other hand, we have that,

OPT (I)

OPTf (I)
= 2− 2

k
.

123

Thus, the integrality gap of instance I is precisely 2− 2
k
.

With this class of examples, together with Theorem 3.2.7, we observe the

following theorem and corollary.

Theorem 3.2.9. If k ≥ 2 is fixed for IP (3.2.1), then its integrality gap is exactly

2(1− 1
k
).

Corollary 3.2.10. If k ≥ 2 is allowed to vary in IP (3.2.1), then its integrality

gap is exactly 2.

124

3.3 A Second IP Formulation of Multiway Cut

Let us suppose that A is an arbitrary algorithm for approximating optimum

multiway cuts. Moreover, suppose that we are able to prove that there is some

α ≥ 1, such that that for any instance I ′ of the problem, A returns a solution with

cost at most αOPTf (I
′). That is, if the instance I ′ contains a graph G = (V,E),

together with a cost function c : E → Q≥0, and k ≥ 2 distinct source nodes, then

A returns a multiway cut F ⊆ E, for which,

c(F) ≤ α
∑
e∈E

c(e) de = αOPTf (I
′),

where d = (de)e∈E is an optimum solution to LP (3.2.3). In this case, we may

conclude that,

OPT (I ′) ≤ c(F) ≤ αOPTf (I
′),

where OPT (I ′) is the cost of an optimum solution to IP (3.2.1). On the other

hand, the integrality gap of IP (3.2.1) is defined as,

sup
I

OPT (I)

OPTf (I)
,

where the supremum is taken over all instances of the multiway cut problem. As

we saw in the previous section, this integrality gap is precisely two, so it follows

that α ≥ 2.

Thus, the integrality gap of IP (3.2.3) limits how well a large class of algo-

rithms can approximate optimum multiway cuts. In particular, algorithms which

apply linear programming techniques to round solutions of LP (3.2.1) to solutions

125

of IP (3.2.3) typically fall into this category. As this is the case, we can’t expect

there to exist a smarter rounding algorithm than we saw in the previous section.

If we would like to improve upon the approximation guarantees that we’ve

seen, then one approach is to introduce a new integer programming formulation

of the multiway cut problem. Ideally, this alternative formulation will have a

smaller integrality gap than seen in IP (3.2.1). If this is indeed the case, then

(randomized) rounding algorithms will not suffer the same restrictions as outlined

above. The primary goal of this section is to explore this approach.

Suppose we are given a connected graph G = (V,E), a cost function c :

E → Q≥0, and source nodes s1, . . . , sk. Moreover, assume we are given a minimal

multiway cut F of G. That is, a multiway cut which doesn’t contain any multiway

cut of lesser cost. Once we remove F from G, we know that G \ F has at least k

distinct components - one for each source node. In turns out that the minimality

of F ensures that G \ F has exactly k components. To see this holds, suppose

we assume otherwise. In this setting, there are components U1, . . . , Uk in G \ F

for which si ∈ Vi, i = 1, . . . , k. Moreover, we have that U := G \ ∪ki=1Ui is

nonempty and contains no source node. As G is connected, we know that there

is a component, say Ui, such that eG(U,Ui) 6= ∅. Observe that if e is any edge

between U and Ui, then e is a member of F . Moreover, if F ′ := F \ e, then F ′

separates all the source nodes, is contained in F , and yet has cost strictly less than

F . As F was assumed to be minimal, this is a contradiction.

This means that given any minimal multiway cut F , we know that G \ F

has exactly k components. We can therefore associate to F a partition of the

126

vertices into k components. Conversely, given any partition of the vertices into k

components, each containing exactly one source node, we can recover a multiway

cut for G. This is easily done by collecting all edges in G that lie between distinct

components. It is clear that this cut will indeed be minimal.

We now introduce an integer program which formulates this interpretation

of the multiway cut problem. Suppose we are given a solution in the form of a

partition U1, . . . , Uk of V , where si ∈ Ui for i = 1, . . . , k. For each vertex v ∈ G, we

introduce the variables xvi for i = 1, . . . , k. We ensure that xvi is one, provided vi is

placed into Ui, and zero otherwise. Moreover, for each edge e ∈ E, we define the

variables yei for i = 1, . . . , k, where yei is one if e ∈ δ(Ui), and zero otherwise. If the

multiway cut F := ∪ki=1δ(Ui), then the cost of F , denoted c(F), may be related to

these variables as follows:

c(F) =
1

2

∑
e∈E

c(e)
k∑
i=1

yei .

We introduce the factor of 1
2

in front of this sum, as each edge e ∈ F occurs in

exactly two δ(Ui) edge subsets.

Our goal now is to encode the restrictions of these variables as an integer

program. First, observe that each variable is restricted to the range {0, 1}.

Moreover, we enforce that xsii = 1, as every solution must have si ∈ Ui, for each

i = 1, . . . , k. We also observe that
∑k

i=1 x
v
i = 1 for each v ∈ G, as U1, . . . , Uk form a

partition of the vertices of G.

127

The final requirement of the integer program is that for each edge e ∈ E,

yei ≥ xui − xvi and yei ≥ xvi − xui , where e = {u, v}, and i = 1, . . . , k. These

inequalities ensure that yei = 1, if and only if e ∈ δ(Ui).

Summarizing, we have the following integer program:

minimize
1

2

∑
e∈E

c(e)
k∑
i=1

yei

subject to
k∑
i=1

xvi = 1 ∀v ∈ V,

xisi = 1 ∀i = 1, . . . , k,

yei ≥ xui − xvi ,

yei ≥ xvi − xui ∀i = 1, . . . , k, and e = {u, v} ∈ E ,

yei , x
v
i ∈ {0, 1} ∀i = 1, . . . , k, e ∈ E and v ∈ V .

(3.3.1)

We now wish to consider a relaxation of this integer program. For each

variable in IP (3.3.1), let us extend its domain to the interval [0, 1]. Since the

objective function is to be minimized, and the cost function c is nonnegative, we

can in fact relax the upper bound on these variables. This yields the following

128

linear program:

minimize
1

2

∑
e∈E

c(e)
k∑
i=1

yei

subject to
k∑
i=1

xvi = 1 ∀v ∈ V,

xisi = 1 ∀i = 1, . . . , k,

yei ≥ xui − xvi ,

yei ≥ xvi − xui ∀i = 1, . . . , k, and e = {u, v} ∈ E ,

yei , x
v
i ≥ 0 ∀i = 1, . . . , k, e ∈ E and v ∈ V .

(3.3.2)

Observe that given an optimum solution to LP (3.3.2), we have that yei = |xvi − xui |

for each e = {u, v} ∈ E, and i = 1, . . . , k. Thus, we can restrict our attention to

solutions to LP (3.3.2), for which this property is satisfied. This leaves us with a

simplified optimization problem, in which we eliminate the edge variables:

minimize
1

2

∑
e={u,v}∈E

c(e)
k∑
i=1

|xui − xvi |

subject to
k∑
i=1

xvi = 1 ∀v ∈ V,

xisi = 1 ∀i = 1, . . . , k,

xvi ≥ 0 ∀i = 1, . . . , k, e ∈ E and v ∈ V .
(3.3.3)

We can simplify this formulation further, by introducting a vector xv ∈ Rk for

each v ∈ V , where xv := (xv1, . . . , x
v
k). For each i = 1, . . . , k, we also introduce a

vector ei ∈ Rk, which is zero everywhere, except for its ith component, where it is

129

one. If ∆k is the convex hull of e1, . . . , ek, then it is clear that,

∆k = {x ∈ Rk :
k∑
i=1

xi = 1}.

Moreover, we have the following optimization problem, which we refer to as a

vector optimization problem (VOP):

minimize
1

2

∑
e={u,v}∈E

c(e)‖xu − xv‖1

subject to xv ∈ ∆k ∀v ∈ V,

xsi = ei ∀i = 1, . . . , k.

(3.3.4)

A feasible solution to this optimization problem is an assignment to each

vector xv for v ∈ V , such that (xv)v∈V satisfies the constraints of the problem.

While VOP (3.3.4) is technically not a linear program, we have shown that it can

be reduced to LP (3.3.2). In particular, this means that an optimum solution to

this problem can be found in polynomial time. Our goal now will be to show how

we can use this solution to find a find an approximately optimum solution to IP

(3.3.1).

Let us suppose that (xv)v∈V is an optimum solution to VOP (3.3.4). We may

think of this solution as an embedding of the vertices of G into the k-simplex,

∆k. That is, vertex v is mapped to the vector xv of ∆k for each v ∈ V . We

may think of ∆k as equipped with the `1 norm. In particular, for x ∈ ∆k,

Br(x) := {x′ ∈ ∆k : ‖x− x′‖1 ≤ r} for r ≥ 0.

Now, for each i = 1, . . . , k, we know that si is mapped to the vector ei in ∆k.

The goal of our algorithm will be to choose a radius r ≥ 0, and sequentially grow

130

a region Br(e
i) about each vertex ei for i = 1, . . . , k. The vertices of V whose

embedding falls into Br(e
i), will then be included into set Ui for i = 1, . . . , k. Any

vertices which fail to be partitioned can then be arbitarily assigned to U1, . . . , Uk.

In order to ensure that each vertex is assigned to exactly one partite set,

we shall give precedence to source vertices whose regions are processed earliest.

Thus, in addition to providing a radius r, we must also provide a permutation

π : [k] → [k], which specifies when each source node should be processed. We

outline the above algorithm in detail below:

Algorithm 3.3.1 Multiway Partition Algorithm

Let G = (V,E) be a connected and undirected graph.
Suppose c : E → Q≥0, and {s1, ..., sk} ⊆ V .
Let 0 < r < 2.
Let π be a permutation of [k].

1: Initialize F ← ∅.
2: Initialize L← ∅.
3: Solve VOP (3.3.4), and obtain an optimum embedding, where xv ∈ ∆k for each
v ∈ V .

4: for i = 1, . . . k − 1 do
5: Let Uπ(i) ← {v ∈ V : xv ∈ Br(e

π(i)) and v /∈ L}.
6: Let L← L ∪ Uπ(i).

7: Let Uπ(k) ← V \ L.
8: Let F ← ∪ki=1δ(Ui).
9: Return F.

We remark that the value of the radius is bounded above to ensure that the

source nodes remain in disjoint sets. It follows that for any choice of 0 < r < 2 and

permutation π, the algorithm returns a valid multiway cut.

Let us now outline a randomized algorithm which attains a better approxi-

mation guarantee than seen in the previous sections. We first choose ρ uniformly

131

at random from the interval (0, 2), and then we independently choose σ from

all the permutations of [k], uniformly at random. Using these values as inputs,

we run Algorithm 3.3.1 and then return the resulting output, thus completing

the computation. We observe the following theorem regarding this randomized

algorithm:

Theorem 3.3.1. The randomized version of Algorithm 3.3.1 runs in polynomial

time and achieves an expected approximation guarantee of 3
2
.

In order to prove this theorem, we first consider an essential lemma stated

below:

Lemma 3.3.2. If e = {u, v} is an edge of G, then P(e ∈ F) ≤ 3
4
‖xu − xv‖1,

where xu and xv are the embeddings of u and v used in the randomized version of

Algorithm 3.3.1.

Let us assume for now that this lemma is true. We shall first see how we can

use it to prove Theorem 3.3.1.

Proof. Let G = (V,E) be a connected graph, c : E → Q≥0 a cost function,

and S a collection of k ≥ 1 source nodes of G. We denote this problem instance

of multiway cut by I := (G, c,S). Moreover, we may denote the multiway cut

returned by executing Algorithm 3.3.1 with these inputs by F . If c(F) is the cost

of this cut, then c(F) is a random variable. Our goal is to show that,

E c(F) ≤ 3

2
OPT (I),

where OPT (I) is the cost of an optimum multiway cut for the problem

instance I.

132

For each edge e = {u, v} ∈ E, we introduce an indicator random variable Ze,

which is nonzero if and only if e ∈ F . This yields the following relation:

c(F) =
∑
e∈E

c(e)Ze

Taking expectations on both sides, we see that:

E c(F) =
∑
e∈E

c(e)EZe

=
∑
e∈E

c(e)P(e ∈ F)

≤ 3

4

∑
e={u,v}∈E

c(e)‖xu − xv‖1,

after applying Lemma 3.3.2. Now, (xv)v∈V is assumed to be an optimum solution

to VOP 3.3.4. Thus, if OPTf (I) is the cost of an optimum solution to LP (3.3.2),

we know that,

OPTf =
1

2

∑
e={u,v}∈E

c(e)‖xu − xv‖.

Moreover, as LP (3.3.2) is the linear relaxation of IP (3.3.1), we have that

OPTf (I) ≤ OPT (I). It follows that

E c(F) ≤ 3

2
OPT (I),

thus proving the claim.

Our goal now is to prove Lemma 3.3.2. In order to do so, we first prove a few

results regarding the `1-norm on ∆k.

133

Lemma 3.3.3. If x,y ∈ ∆k, then for j = 1, . . . , k, |xj − yj| ≤ 1
2
‖x− y‖1.

Proof. Assume without loss of generality that xj ≥ yj. It follows that,

|xj − yj| = xj − yj = (1−
∑
i 6=j

xi)− (1−
∑
i 6=j

yi) =
∑
i 6=j

(xi − yi).

Now, ∑
i 6=j

(xi − yi) ≤
∑
i 6=j

|xi − yi|.

Thus,

2|xj − yj| ≤
∑
i 6=j

(xi − yi) + |xj − yj| = ‖x− y‖1.

The result therefore follows.

Lemma 3.3.4. If x ∈ ∆k and r ≥ 0, then we have that for 1 ≤ j ≤ k, x ∈ Br(e
j)

if and only if 1− xj ≤ r
2
.

Proof. We first observe that,

‖x− ej‖1 = 1− xj +
∑
i 6=j

xi.

Now, 1− xj =
∑

i 6=j xi. Thus,

2 (1− xj) = ‖x− ej‖1.

It follows that,

x ∈ Br(e
j), if and only if 2 (1− xj) ≤ r.

134

Proof. Let us now return to the statement of Lemma 3.3.2. We recall that σ is

a uniformly random permutation of [k], and ρ is a uniformly random number

from (0, 2). By definition, σ and ρ are drawn independently. Given an edge

e = {u, v} ∈ E, we shall show that P(e ∈ F) ≤ 3
4
‖xu − xv‖1.

We first introduce a number of events involving the fixed edge e. For 1 ≤ i ≤

k, we say that source node si affects e, provided σ−1(i) is the smallest index in [k],

for which at least one of u, v is in Bρ(e
i). We denote Ai to be the event in which

this occurs.

Similarly, we say that si separates e, provided exactly one of u, v is in Bρ(e
i).

We denote this event by Si. It is clear that the event Si is independent of the

random permutation σ, as it only depends on the value of ρ.

We observe that e ∈ F , if and only if there is some 1 ≤ i ≤ k, for which si

affects and separates e. Thus, applying the union bound, we have that,

P(e ∈ F) = P(∪ki=1Ai ∩ Si)

≤
k∑
i=1

P(Ai ∩ Si).

We now estimate the value of P(Ai ∩ Si) for i = 1, . . . , k. Let us fix source

node si. Moreover, assume that ‖xu − ei‖1 ≤ ‖xv − ei‖1. That is, ei is closer to xu

than xv in ∆k. This implies that, xui ≥ xvi .

By applying Lemma 3.3.4, we see that Si occurs if and only if 1 − xui ≤
ρ
2
<

1− xvi . Thus, P(Si) = |xui − xvi |.

135

Immediately, we may conclude that,

P(e ∈ F) ≤
k∑
i=1

|xui − xvi |

= ‖xu − xv‖1.

In order to improve this upper bound, we need to incorporate the likelihood of

a source vertex affecting the edge e.

Toward this goal, for each i = 1, . . . , k, let us first consider the smaller of the

distances ‖ei−xu‖1 and ‖ei−xv‖1. We refer to this value as the distance between

si and e. Observe that there is an index 1 ≤ l ≤ k, for which the distance between

sl and e is minimal. That is, el is the closest point to one of xu and xv, among all

source node candidates.

We observe that for any 1 ≤ i ≤ k, if σ−1(l) < σ−1(i), then si cannot

separate e. Thus, if i 6= l, we have that, P(Ai ∩ Si|σ−1(l) < σ−1(i)) = 0. Applying

conditional probabilities, this implies that,

P(Ai ∩ Si) = P(Ai ∩ Si|σ−1(i) < σ−1(l))P(σ−1(i) < σ−1(l)).

Now, we know that since σ is a uniformly random permutation,

P(σ−1(i) < σ−1(l)) =
1

2
.

Moreover,

P(Ai ∩ Si|σ−1(i) < σ−1(l)) ≤ P(Si|σ−1(i) < σ−1(l)).

136

Of course, Si is independent of σ, and so in particular, it is independent of the

event, σ−1(i) < σ−1(l). Thus, P(Si|σ−1(i) < σ−1(l))) = P(Si) = |xui − xvi |. It follows

that P(Ai ∩ Si) ≤ 1
2
|xui − xvi |, provided i 6= l. Thus,

P(e ∈ F) ≤
k∑
i=1

P(Si ∩ Ai)

= P(Sl ∩ Al) +
∑
i 6=l

P(Si ∩ Ai)

≤ |xul − xlv|+
1

2

∑
i 6=l

|xui − xvi |

=
1

2
|xul − xlv|+

1

2
‖xu − xv‖1.

Now, by Lemma 3.3.3,

|xul − xlv| ≤
1

2
‖xu − xv‖1.

Thus, we have that,

P(e ∈ F) ≤ 3

4
‖xu − xv‖1,

concluding the proof of the initial claim.

As consequence of the proof of this Lemma, we have shown that the random-

ized version of Algorithm 3.3.1 has an expected approximation guarantee of 3
2
.

That being said, we can reduce the number of random bits needed to execute this

algorithm by a significant degree. To see this, consider permutations π1 and π2,

where π1(i) := i and π2(i) := k − (i− 1) for i = 1, . . . , k. Our alternative algorithm

selects a random permutation σ that is π1 or π2 with equal probability. It then

137

independently chooses a radius 0 < ρ < 2 uniformly at random. Using these

parameters as inputs, it then executes Algorithm 3.3.1. Let us formally outline this

procedure:

Algorithm 3.3.2 Efficient Randomized Multiway Partition Algorithm

Let G = (V,E) be an undirected graph.
Suppose c : E → Q≥0, and {s1, ..., sk} ⊆ V .

1: Generate 0 < ρ < 2 uniformly at random.
2: Generate σ at random, with equally probable outcomes π1 and π2.
3: Execute Algorithm 3.3.1 with the above inputs.
4: Let F be the multiway cut returned from this algorithm.
5: Return F .

Theorem 3.3.5. Algorithm 3.3.2 achieves an expected approximation guarantee of

3
2
.

Proof. We observe that, for fixed 1 ≤ i < j ≤ k, the events σ−1(i) < σ−1(j) and

σ−1(j) < σ−1(i) occur with equal probability.

This is the main property required of the random permutation in the proof

of Lemma 3.3.2. As the generation of σ is the only way in which the algorithm

changes, we may apply the same analysis as previously seen.

It turns out that restricting the assignments of σ allows us to derandomize

Algorithm 3.3.2. At a high level, this procedure first involves fixing one of the

two assignments that σ may take on. Once this is done, an optimum choice of ρ

is found, using a procedure similar to that of Algorithm 3.2.4 from the previous

section. At this point, the multiway cuts F1 and F2 are stored, each respectively

corresponding to the permutations π1 and π2. The cut of smaller cost is then

138

returned as the output of this procedure. This derandomization procedure

achieves an approximate guarantee no worse than Algorithm 3.3.2, thus yielding

a deterministic algorithm for computing a multiway cut of the desired optimality.

We leave the details of this argument to the reader.

Theorem 3.3.6. There exists a derandomization of Algorithm 3.3.2, which

achieves a performance guarantee of 3
2
.

139

CHAPTER 4
The Multicut Problem

This chapter focuses specifically on the multicut problem, a further generaliza-

tion of the multiway cut problem. The first section provides a detailed explanation

of the problem, and relates it back to the cut problems previously studied. It

also considers a restriction of the problem to connected noncyclic graphs (trees).

An approximation preserving reduction is then presented from the vertex cover

problem to the multicut problem on trees of height one. This establishes the

NP-hardness of the multicut problem on trees, thus motivating the development of

approximation algorithms in the subsequent sections.

The second and third sections of the chapter focus exclusively on the multicut

problem on trees. An IP formulation of this problem is presented, together with

a simplified LP relaxation of this program. The dual of this LP is then taken,

and defined to be the multi-commodity flow problem on trees. As in the case

of a single-source pair for network flow, this multi-commodity flow problem has

an integral version, in which the flows are restricted to integers. A primal-dual

algorithm is then presented, which simultaneously builds both a multicut as well as

an integral multi-commodity flow. In the former case, an approximation guarantee

of 2 is witnessed, whereas in the later case, an approximation of 1/2 is seen.

The material from these sections is heavily based on the material from the book

“Approximation Algorithms” [Vv11].

140

The final section of this chapter involves a study of the multicut problem on

general graphs. An IP formulation of this problem is again presented, generalizing

the formulation of the previous section. Unlike before, this integer program has

exponentially many constraints, and so its LP relaxation requires a polynomial

time separation oracle to remain solvable. Such an oracle is presented, and used

to solve the LP relaxation in polynomial time. Two rounding algorithms are then

analyzed, where the first achieves an expected approximation guarantee of k,

where k ≥ 1 is the number of source-sink pairs to be separated. I independently

designed this algorithm as a extension of the techniques used in the multiway

cut problem. This algorithm is then improved to deterministically achieve an

approximation guarantee of 4 ln(k + 1). The section ends with a brief discussion

of the integrality gap of the multicut problem on general graphs. The majority of

the material from this section is based on the books “Approximation Algorithms”

[Vv11] and “the Design of Approximation Algorithms” [WS11].

141

4.1 Introduction to Multicut

Suppose we are given undirected graph G = (V,E), together with and a cost

function c : E → Q≥0. Moreover, suppose {(si, ti)}1≤i≤k is a collection of k ≥ 1

distinct vertex pairs of G. For each 1 ≤ i ≤ k, we refer to (si, ti) as a source-sink

pair, where si is the source and ti is the sink. Given an edge subset, F ⊆ E, we

refer to F as a multicut, provided each source-sink pair is disconnected in G \ F .

We typically denote c(F) as the cost of F , where c(F) :=
∑

e∈F c(e). The goal of

the problem is to compute multicuts of small cost.

Problem 4.1.1 (Multicut on General Graphs). Let G = (V,E) be an undirected

graph, and c : E → Q≥0 a cost function. Moreover, suppose {(si, ti)}1≤i≤k is a

collection of k ≥ 1 distinct source-sink pairs, The goal of the multicut problem is

to choose a multicut F of G, whose cost is minimal; rather, c(F) is as small as

possible.

We observe that if k = 2, then the multicut problem is equivalent to the

minimum cut problem on undirected graphs, and thus can be solved in polynomial

time (see Section 2.3). If we instead look at the problem any fixed k ≥ 3, then it

is NP-hard. This can easily be seen, as the multicut problem is a generalization

of the multiway cut problem. In particular, if we are given l ≥ 1 source nodes

s1, . . . , sl of G, then finding a minimum multiway cut for these nodes is equivalent

to finding a multicut for the
(
l
2

)
source-sink pairs {(si, sj)}1≤i<j≤l (see Section 3.1)

We shall first consider a special case of the multicut problem, where we

restrict our attention to trees instead of general graphs. It turns out that even if

we limit ourselves further to trees of height one, the problem remains NP-hard.

142

Recall that given a graph G = (V,E) with vertex weight w : V → Q≥0, the

goal of the vertex cover problem is to find a minimum weight subset of vertices,

U ⊆ V , for which each edge of E is incident to a vertex of U . If U satisfies these

covering properties, then it is referred to as a vertex cover for G. In this case, we

denote the weight of U by w(U), where w(U) :=
∑

v∈U w(v). If we restrict our

attention to graphs with unit weight vertices, then this is known as the cardinality

vertex cover problem. It is well known that both variants are NP-hard. There is a

natural correspondence between the multicut problem on trees of height one, and

the vertex cover problem.

Proposition 4.1.1. There exists an approximation preserving reduction from the

vertex cover problem, to the multicut problem on trees of height one (see Definition

1.2.5 from Subsection 1.2.1).

Moreover, if we restrict ourselves to the cardinality vertex cover problem, then

the reduction is to the multicut problem on trees of height one and unit weight

edges.

Proof. For convenience, let us denote Π1 as the vertex cover problem, and Π2 as

the multicut problem on trees of height one.

If G = (V,E) is a graph with a weight function w : V → Q≥0, then let us

assume that G has n vertices and m edges. We note that (G,w) is an instance of

the vertex cover problem. Our first goal is to design a polynomial time algorithm

A1, which inputs the instance (G,w), and returns an instance of the multicut

problem on trees of height one.

143

Let T be a tree which is isomorphic to K1,n, a star on n + 1 vertices. Fur-

thermore, let us assume that the leaves of T are in fact the vertices of G, and the

non-leaf of T is labelled by ν. For each edge {u, v} ∈ E, we add the source-sink

pair (u, v) to the collection S, leaving us with a total of m pairs.

It remains to construct a cost function c for the edges of T . If v ∈ V and ν is

the root of T , then c(e) := w(v), where e := {u, ν}. We are now left with (T,S, c),

an instance to the multicut problem on trees of height one. It is clear that the

algorithm A1 may be designed to construct (T,S, c) from (G,w) in polynomial

time. Thus, we have that A1(G,w) := (T,S, c).

In order to complete the reduction, we must design an algorithm A2, whose

inputs include (G,w), as well as a multicut F of T . This algorithm must output a

vertex cover of U of G.

Let us suppose that F ⊆ E is a multicut of T . For each edge (u, r) ∈ F , we

include u in our set U . We observe that since each source-sink pair is separated by

F , we know that each edge of G will be incident to a node in U . It follows that U

is a vertex cover of G. It is clear that the construction of U can be completed by

A2 in time polynomial in the size of F , so we set A2(G,w, F) := U .

It remains to verify that this reduction is in fact approximation preserving. In

other words, we must show that,

OPTΠ2(A1(G,w)) ≤ OPTΠ1(G,w),

and that

w(A2(G,w, F)) ≤ c(F).

144

It is clear that the second equation holds, as the weight of U is equal to the cost of

F , and A2(G,w, F) = U .

In order to prove the first inequality, we observe that given any vertex cover

U ′ of G, we can construct a multicut F ′ of T , such that,

c(F ′) ≤ w(U ′),

by reversing the steps of the algorithm A2. It follows that,

OPTΠ2(T,S, c) ≤ w(U ′)

for all vertex covers U ′ of G. Thus,

OPTΠ2(T,S, c) ≤ OPTΠ1(G,w),

so the first equation holds since A1(G,w)) = (T,S, c). The reduction is therefore

approximation preserving, thus proving the initial claim. The same reduction can

be used when looking at the cardinality vertex cover problem, and the multicut

problem on unit weight trees of height one.

We therefore have the following corollary regarding the multicut problem:

Corollary 4.1.2. The multicut problem on trees of height one and unit weight

weights is NP-hard.

Proof. It is known that the cardinality vertex cover problem is NP-hard. As

a consequence of the approximation preserving reduction, this implies that the

145

multicut problem on trees of height one and unit weight edges is also NP-hard, by

Proposition 1.2.6 from Subsection 1.2.1.

146

4.2 Multi-Commodity Flow on Trees

We now return to our original goal of designing an approximation algorithm

for the multicut problem on trees. Let T = (V,E) be a tree with k ≥ 1 source-sink

pairs S = {(si, ti)}ki=1, and a cost function c : E → Q≥0. For each 1 ≤ i ≤ k, let pi

be the unique path from si to ti in T .

Let us introduce an integer program that incorporates the restrictions of

the problem. For each edge e of the tree T , we associate an indicator variable de,

which is nonzero, if and only if the edge e is taken in the multicut F ⊆ E. In order

to enforce that the source-sink pairs should be disconnected in T \ F , we impose

the condition, ∑
e∈pi

de ≥ 1

for each i = 1, . . . , k.

We are now left with choosing the appropriate objective function of the

integer program. It is clear that if F is the multicut chosen, then we have that

c(F) =
∑

e∈E c(e)de. To summarize, we observe the following integer program:

minimize
∑
e∈E

c(e) de

subject to
∑
e∈pi

de ≥ 1 ∀i = 1, . . . , k,

de ∈ {0, 1} ∀e ∈ E

(4.2.1)

Each solution d = (de)e∈E is of course associated with a multicut F of G.

We will sometimes refer to d as an integral multicut. This will help us distinguish

147

between solutions to IP (4.2.1), as well as the integer program’s linear relaxation,

which we now define:

For each edge variable de, we relax its value to the unit interval [0, 1]. As

the cost function c is positive, we may further forgo the upper bound on these

variables. This yields the following linear relaxation of IP (4.2.1):

minimize
∑
e∈E

c(e) de

subject to
∑
e∈pi

de ≥ 1 ∀i = 1, . . . , k,

de ≥ 0 ∀e ∈ E

(4.2.2)

We refer to a solution d = (de)e∈E of LP (4.2.2) as a fractional multicut. In

this sense, the variable de specifies the amount that e is included in the solution.

As any integral multicut is a fractional multicut by definition, an optimum

solution to LP (4.2.2) places a lower bound on an optimum solution to IP (4.2.1).

Moreover, we observe that we can solve LP (4.2.2) in polynomial time.

Let us now consider the dual of LP (4.2.2). We shall interpret its significance

once the entire program is stated. For each i = 1, . . . , k, we introduce a variable fi,

associated to path pi.

Each edge yields a constraint to the dual program. In particular, if e ∈ E,

then we have that,
∑

j:e∈pj fj ≤ c(e). These are the only constraints present in the

dual program.

148

Finally, the objective function of the dual program is
∑k

i=1 fi. The problem is

known as the multi-commodity flow problem on trees. We summarize this program

below:

maximize
k∑
i=1

fi

subject to
∑
j:e∈pj

fj ≤ c(e) ∀e ∈ E,

fi ≥ 0, ∀i = 1, . . . , k

(4.2.3)

We interpret a solution to the dual program as specifying a multi-commodity

flow through T . For each 1 ≤ i ≤ k, we route a separate commodity between si

and ti, using the path pi. The variable fi quantifies the amount of the flow being

routed through this path.

The cost function associates a capacity to each edge e ∈ E. The capacity of

a given edge restricts the total amount of flow that may pass through it. If the

total flow through an edge is equal to its capacity, then we say that the edge is

saturated. Similarly, if the total flow through an edge exceeds its capacity, then the

solution is infeasible, and we say that the edge is oversaturated. The objective is

then to maximize the total amount of flow routed between the source-sink pairs,

without oversaturating any edges. As this linear program has a polynomial number

of constraints, we can find an optimum solution to this problem in polynomial

time.

149

We also introduce an integral version of this program, in which the variables

are restricted to nonnegative integers. This problem is known as the integral

multi-commodity flow problem on trees.

maximize
k∑
i=1

fi

subject to
∑
i:e∈pi

fi ≤ c(e)

fi ∈ Z≥0, i = 1, . . . , k

(4.2.4)

We refer to a solution to this problem as a integral multi-commodity flow. As

any integral multi-commodity flow forms a multi-commodity flow, the maximum

value of a solution to LP (4.2.3) places an upper bound on the maximum value of

a solution to IP (4.2.4).

We observe that this problem in fact has a polynomial time algorithm,

provided we restrict the capacities of the edges. This algorithm is based on

dynamic programming techniques, however we do not explore the details of this

procedure.

Proposition 4.2.1. If T = (V,E) is a tree, and c : E → Z≥0 is identically one,

then an integral multi-commodity flow through T may be found in polynomial time.

On the other hand, if we place no restrictions on the capacities of the edges,

then this problem is NP-hard for trees of height greater than three.

150

4.3 Primal-Dual Multicut Algorithms for Trees

In this section, we focus on designing algorithms for the multicut problem as

well as the integral multi-commodity flow problem. In both cases, we restrict our

attention to trees which have nonnegative integer capacities. Rather, if T is a tree,

then the cost function c is a map from E into Z≥0. As we saw that both of these

problems are NP-hard for trees with unrestricted capacites, we specifically focus

on designing approximation algorithms for these problems.

The approximation algorithm that we consider simutaneously builds an

integral multi-commodity flow, as well as a multicut of T . In this sense, we obtain

a means of approximating optimum solutions to both the integral multi-commodity

flow problem as well as the multicut problem.

We first introduce some terminology which will be vital to this algorithm.

Given a tree T = (V,E), we arbitrarily choose a root ν from the vertex set V . If

v is any vertex of T , we refer to its depth as the number of edges in the unique

path in T from ν to v. If u and v are two vertices of T , we refer to the lowest

common ancestor, denoted lca(u, v), as the vertex of least depth on the unique

path between u and v.

Our algorithm is based on the primal-dual method. It begins with a trivial

solution (fi)
k
i=1 to the dual program, LP (4.2.4), as well as an infeasible solution,

F := ∅, to the multicut problem. Among the source-sink pairs that remain

connected in T \ F , a pair (si, ti) will be chosen whose lca(si, ti) is of maximum

depth. The algorithm then routes as much flow as possible between si and ti; later

updating the variable fi to reflect this change. When this routing causes an edge

151

to become saturated, we then add it to F . This procedure terminates when no

source-sink pair remains connected in T \ F . At this point, we scan over the edges

of F in the order opposite to which they were added, removing edges which are not

essential to the multicut. The output of the algorithm includes both the multicut

F , as well as the integer multi-commodity flow (fi)
k
i=1.

Before we formally outline this algorithm, we first specify the subroutine used

to route flow between source nodes. Given a multi-commodity flow (fi)
k
i=1 through

T and a source-sink pair (sj, tj) for 1 ≤ j ≤ k, we greedily route flow between sj

and tj as follows:

Algorithm 4.3.1 Greedy Routing Algorithm

Suppose T = (V,E) is an undirected tree.
Suppose c : E → Z≥0, and {(si, ti)}ki=1 are k ≥ 1 distinct vertex pairs.
Suppose (fi)

k
i=1 is a multi-commodity flow through T , with index j ∈ [k] speci-

fied.
1: Compute the path pj between source-sink pair (sj, tj).
2: Initialize ε← 0
3: for each edge e ∈ pj do
4: ε← min{ε, c(e)−

∑
i:e∈pi fi}

5: Let fj ← fj + ε.
6: Return (fi)

k
i=1.

With this subroutine, we now state our main algorithm:

152

Algorithm 4.3.2 Primal Dual Tree Multicut Algorithm

Suppose T = (V,E) is an undirected tree.
Suppose c : E → Z≥0, and {(si, ti)}ki=1 are k ≥ 1 distinct vertex pairs.

1: Initialize F = ∅, and fi ← 0 for i = 1, . . . , k.
2: for v ∈ V ; processed in decreasing order of depth do
3: for j = 1, . . . , k do
4: if lca(si, ti) = v then
5: Compute the path pj, and note its currently saturated edges.
6: Run Algorithm 4.3.1, to route flow between sj and tj.
7: Mark the edges of pj, which have now become saturated.
8: In any order, add these newly marked edges to F .

9: Set l← |F |.
10: Label the edges of F by e1, . . . , el; the order in which they were added.
11: for i = 0, . . . , k − 1 do
12: if F \ ek−i is a multicut then Set F ← F \ ek−i.
13: Return F and (fi)

k
i=1.

For a fixed vertex v of T , we refer to Steps 2 to 8, as the time in which v is

processed by the algorithm. These are the steps executed by the outermost loop,

when v is held as its parameter.

It is clear that the above algorithm will run in polynomial time. Moreover, the

multi-commodity flow (fi)
k
i=1 is guaranteed to be feasible, as the algorithm never

oversaturates an edge. To see that the edge set F is in fact a multicut, we first

observe that (fi)
k
i=1 is maximal. In other words, we cannot increase an fi variable

by an integral amount, without oversaturating an edge. This implies that for each

i = 1, . . . , k, there exists a saturated edge present in the path pi between si and ti.

By Step 10 of the algorithm, all of these saturated edges will have been added to

F . Thus, at this point, F is a multicut. Moreover, F remains a multicut through

the final steps of the algorithm, as only redundant edges are removed.

153

Now that we have verified Algorithm 4.3.2 is both efficient and correct, we

shall prove a guarantee on the optimality of its ouputs. In order to prove this

theorem, we first observe an essential lemma:

Lemma 4.3.1. Let v be a vertex of T . If there is some 1 ≤ i ≤ k, such that

lca(si, ti) = v, then once the algorithm processes v, an edge from pi will have been

added to F .

Moreover, suppose that we also know that nonzero flow is routed from si to ti.

In this case, if e is an edge of pi and F , then it must have been added when v was

processed or in subsequent iterations of the outermost loop.

Proof. We begin by proving the first part of the lemma. Let us consider Step 2 of

the algorithm, in which we begin to process v. If an edge from pi has already been

added to F , then the statment holds. Otherwise, no edge of pi has been added to

F at this point. In particular, this implies that none of the edges of pi have been

saturated. It follows that we can greedily route nonzero flow through pi. Once

this is done, at least one edge of pi must now be saturated. This edge will then be

added to F .

For the second part of the lemma, let us assume that an edge e of pi is added

to F before v has been processed. Since this edge was added to F , we know that it

must have been saturated at some point. When the algorithm eventually processes

v, it will fail to route nonzero flow through pi, as any amount would oversaturate

e. This yields a contraction, so we know that e cannot have been added before v

was processed.

154

Proposition 4.3.2. Let (fi)
k
i=1 and F denote the outputs returned by Algorithm

4.3.2 as above. For each i = 1, . . . , k, if fi > 0, then at most two edges of F belong

to pi.

Proof. Let us fix a source sink pair (si, ti). We shall prove the statement of the

theorem for this vertex pair. For simplicity, we may assume that i = 1.

We denote v to be lca(s1, t1). Moreover, we denote s1 − v and t1 − v to be the

paths from s1 to v and t1 to v, respectively. Our goal is to show that F takes at

most one edge from each of s1 − v and t1 − v . We shall prove this statement for

s1 − v. The argument will extend to t1 − v by symmetry.

Let us suppose that this statment does not hold. Rather, there exists edges

e and e′ in F , each of which belongs to s1 − v. We observe that since both occur

on the same path to v, they cannot be of the same depth from ν. We may assume

that e occurs at a lower depth than e′.

Consider Step 12 of Algorithm 4.3.2, when the membership of e is reviewed.

Since the algorithm does not remove e from F , there must be some source-sink

pair (sj, tj), such that e is the only member of pj in F at this time.

Let us suppose that u = lca(sj, tj). We observe that since e′ does not lie in

pj, u must have greater depth than v. In particular, this means that u is processed

before v. Moreover, by Lemma 4.3.1, when u is processed, an edge e′′ is added to

F .

On the other hand, we know that f1 > 0. By Lemma 4.3.1, this implies that

the earliest time at which the edge e could have been added to F was when v was

processed. As v was processed after u, this means that e′′ was added to F before

155

e. Thus, when e was reviewed by the algorithm, e′′ was also present in F . As e was

supposed to be the only edge of pj present at this time, this yields a contradiction.

The result thus holds.

We are now ready to state and prove the approximation guarantees of our

algorithm. As the algorithm simutaneously builds solutions to two optimization

problems, we include both guarantees in the following theorem:

Theorem 4.3.3. Algorithm 4.3.2 achieves an approximation of 2 for the multicut

problem, and 1/2 for the multi-commodity flow problem.

Proof. Let f = (fi)
k
i=1 and F be the outputs of the algorithm. We introduce the

variables, d = (de)e∈E, where de = 1 if and only if e ∈ F . Our goal will be to show

that approximate complementary slackness conditions hold for f and d (see the

discussion before Proposition 1.3.9 in Section 1.3).

First, consider the solution d. If e ∈ E has de = 1, then by definition, it is

included in F . On the other hand, if e is placed in F , then Algorithm 4.3.2 must

have saturated this edge. In other words,
∑

i:e∈p1 fi = c(e). This tells us that the

primal complementary slackness conditions are satisfied.

Now consider the solution f . For each i = 1, . . . , k, we know that if fi > 0,

then at most two edges of pi are in F , by Proposition 4.3.2. Moreover, F is a valid

multicut, so at least one edge of pi is in F . In terms of the solution d, this means

that,

1 ≤
∑
e∈pi

de ≤ 2

156

for each i = 1, . . . , k. This implies that the dual complementary slackness

conditions are also satisfied. The approximation guarantees therefore follow by

Proposition 1.3.9 from Section 1.3.

157

4.4 Multicut on General Graphs

In this section, we once again consider the multicut problem. However, unlike

before, we do not restrict our attention to dealing specifically with trees. Instead,

we design an algorithm for generating multicuts that can be applied to any graph.

As finding optimum multicuts is NP-hard, we instead build an algorithm with a

good approximation guarantee. This algorithm uses the same techniques as seen in

Section 3.2. As this is the case, many of the initial claims are slight generalizations

of propositions which were seen earlier, and so can be skimmed over quickly. That

being said, the later analysis is more sophisticated, and yields an algorithm with

a better approximation guarantee than we’d achieve from exactly replicating the

work done earlier.

Let G = (V,E) be an undirected graph, together with a cost function

c : E → Q≥0. Moreover, let {(si, ti)}1≤i≤k be k ≥ 1 distinct source-sink pairs of

G. We wish to find a multicut F ⊆ E of close minimal cost, with respect to cost

function c.

It will be useful to establish an integer program which encodes this problem.

For each i = 1, . . . , k, we denote Pi as the set of simple paths from si to ti in

G. Moreover, we denote P as the union of P1, . . . ,Pk. For each edge e ∈ E, we

introduce a {0, 1} variable de, which is nonzero if and only if e is placed in the set

F . In order to ensure that F is a valid multicut, we must have
∑

e∈p de ≥ 1, for all

p ∈ P . Clearly, the objective function
∑

e∈E c(e)de encodes the proper cost of F .

To summarize, we have the following integer program:

158

minimize
∑
e∈E

c(e) de

subject to
∑
e∈p

de ≥ 1 ∀p ∈ P

de ∈ {0, 1} ∀e ∈ E

(4.4.1)

This formulation explicitly generalizes IP (4.2.1), which was introduced in

the previous section, as well as IP (3.2.1) from Section 3.2. It will once again be

useful to obtain a linear relaxation of this integer program. For each e ∈ E, we

relax variable de to the unit interval [0, 1]. As the cost function c : E → Z≥0 is

nonnegative, we can forgo these upper bounds, yielding the linear program below.

We refer to this program as the fractional multicut problem:

minimize
∑
e∈E

c(e) de

subject to
∑
e∈p

de ≥ 1 ∀p ∈ P

de ≥ 0 ∀e ∈ E

(4.4.2)

Given a solution d = (de)e∈E to this problem, we refer to it as a fractional

multicut. The quantity de may be thought of as representing the fractional extent

to which edge e is included in the multicut. While this linear program may

have exponentially many constraints, we shall see that it can still be solved in

polynomial time.

Before we prove this claim, we recall a means of measuring paths in the graph

G, which was introduced in Section 3.2. Let d = (de)e∈E be an arbitrary edge

assignment, where de ∈ Q≥0 for all e ∈ E (d may or may not be a valid solution to

159

LP (4.4.2)). If p is a path in G, then we refer to the length of p with respect to d as

the quantity
∑

e∈p de.

Proposition 4.4.1. An optimum solution to LP (4.4.2) may be found in polyno-

mial time in the size of G = (V,E) and c : E → Q≥0.

Proof. We observe that a polynomial time separation oracle exists for this linear

program. To see this, let us suppose that d = (de)e∈E is a potential solution to LP

(4.4.2). For each i = 1, . . . , k, let us compute a shortest path pi from si to ti, with

respect to edge weight d (we measure the length of a path as the sum of its d edge

weights). If there exists some 1 ≤ i′ ≤ k, such that,

∑
e∈pi′

de < 1

then we mark d as infeasible, and return this violated constraint.

On the other hand, if for each i = 1, . . . , k, we have that,

1 ≤
∑
e∈pi

de,

then we know that d is a feasible solution to the linear program.

To see this, observe that if p ∈ P is a path from si∗ to ti∗ for some 1 ≤ i∗ ≤ k,

then we know that,

1 ≤
∑
e∈pi∗

de ≤
∑
e∈p

p

as pi∗ is a shortest path from si∗ to ti∗ with respect to edge weight d.

In this scenario, our separation oracle simply validates the solution d as

feasible. Clearly, it is possible to implement this algorithm in polynomial time.

160

Using this oracle, we may appeal to Theorem 1.3.5 from Subsection 1.3.1 to

provide us with a polynomial time algorithm for LP (4.4.2).

In the preceding proof, it was convenient to use the potential solution d of LP

(4.4.2) to measure path lengths in G. We can extend this notion to vertices of G

as well. Rather, if u and v are two vertices of G, then the distance between u and

v with respect to d, is the length of the shortest path between them. We denote

this quantity by distG,d(u, v), and simply distd(u, v) when the context is clear.

If d is an optimum solution to LP (4.4.2), then it satisfies the triangle

inequality for any selection of edges. Rather, if u, v and w are vertices of G, then

we have that,

du,v ≤ du,w + dw,v,

where {u, v}, {u,w} and {w, v} are edges of G. Before we prove this claim,

we remark that it is a generalization of Proposition 3.2.3 from Section 3.2.

Moreover, the proof of the below proposition is effectively the same as the proof of

Proposition 3.2.3, but we include it again for convenience.

Proposition 4.4.2. If d is an optimum solution to LP (4.4.2), then it satisfies the

triangle inquality for any selection of edges of G.

Proof. We first observe that de ≥ 0 for each edge e ∈ E, as d is a valid solution to

LP (4.4.2).

It remains to check that d satisfies the triangle inequality on E. Suppose that

this is not the case. That is, there exist vertices u, v and w with edges between

161

them, such that,

du,v > du,w + dw,v (4.4.3)

Moreover, observe that since d is an optimum solution to LP (4.4.2), du,v

cannot be decreased without violating a constraint of the linear program.

Thus, there is some source-sink pair, say (si, ti) for 1 ≤ i ≤ k, with a simple

path p between them, such that ∑
e∈p

de = 1,

where the edge {u, v} is guaranteed to lie in p.

Observe that if we remove {u, v} from p, and replace it with {u,w} followed

by {w, v}, then we are left with a new path p′ between si and ti. We may also

build a path p′′, whose edges are contained in p′, and which is guaranteed to be

simple.

As a consequence of Equation 4.4.3, we know that the length of p′ is strictly

less than the length of p. Moreover, as the edges of p′′ are contained in p′, we know

that the length of p′′ is also less than the length of p.

However, since p has length one, p′′ must have length less than one. As p′′ is

a simple path between nodes si and ti, this means that d is not a valid solution to

LP (4.4.2). This is a contradiction, so the violation in Equation 4.4.3 cannot occur.

It follows that d satisfies the triangle inquality everywhere, and so the claim holds.

If d is an optimum solution to LP (4.4.2), then we can view distd(·, ·) as an

extension of d.

162

Proposition 4.4.3. Let d be a nonnegative edge assignment of G. The function

distd : V 2 → Q≥0, forms a metric on the vertices of G. Moreover, if d is an

optimum solution to LP (4.4.2), then,

du,v = distd(u, v)

for each each {u, v} ∈ E.

Given an optimum solution d to LP (4.4.2), we may devise a region growing

process for computing multicuts. We begin by describing a procedure that is a

natural generalization of the techniques used in Algorithm 3.2.3 of Section 3.2. In

particular, a radius 0 ≤ ρ < 1 is chosen uniformly at random, which we then use

to build the regions, Bdρ (s1), . . . Bdρ (sk). Unlike the regions built in Algorithm 3.2.3,

there is no guarantee that these balls will be disjoint. This is because the multicut

problem does not impose restrictions on how close source nodes can be.

Once these regions are built, we collect the edges which are separated by each

source node. Rather, for i = 1, . . . , k, we set Fi := δ(Bdρ (si)). If e = {u, v} is

an edge of G, let us assume that si is closer to u than v. In this case, e will be

placed in Fi if and only if ρ ∈ [distd(si, u), distd(si, v)). As ρ is chosen uniformly at

random from the interval [0, 1), it follows that for i = 1, . . . , k,

P(e ∈ Fi) ≤ distd(si, v)− distd(si, u) (4.4.4)

= de, (4.4.5)

where the second equality follows from Proposition 4.4.3.

163

On the other hand, the edge set F := ∪ki=1Fi is clearly a multicut, as it

separates all the source-sink pairs. Rather, for i = 1, . . . , k, ti /∈ Bdρ (si) as

distd(si, ti) ≥ 1, and r < 1. Using the above equations,

P(e ∈ F) ≤ k de

by the the union bound. Thus, if we consider the random variable c(F), we have

that,

E c(F) =
∑
e∈E

c(e)P(e ∈ F)

≤ k
∑
e∈E

c(e) de

= k OPTf

≤ k OPT,

where OPTf is the value of an optimum fractional multicut, and OPT is the value

of an optimum integral multicut.

We remark that as in the case of Algorithm 3.2.3 of Section 3.2, there exists a

derandomization of this algorithm (see Algorithm 3.2.2). By the above discussion,

we arrive at the following theorem:

Theorem 4.4.4. There exists an algorithm for Problem 4.1.1 which achieves an

approximation guarantee of k.

While the above algorithm is reasonably effective for small values of k, it

yields very poor approximation guarantees if k is proportional to the size of G.

As we are often in situations were we would like to separate large numbers of

164

source-sink pairs, this algorithm alone will not suffice. To rectify this issue, we

introduce another algorithm which is based upon similar techniques, yet achieves a

much better approximation guarantee.

Our first goal will be to modify the above algorithm, such that it is guaran-

teed to build disjoint regions. This will be accomplished by building our regions

sequentially, processing the source nodes in the order in which they are indexed.

When a region is built, we remove its vertices from the graph G. This ensures

that when the next source node is processed, its region will be disjoint from its

predecessors. Let us now formally describe this process.

It will be convenient to refer to G as G1, and the edge assignment d by d1.

We next choose k radii r1, . . . , rk ∈ [0, 1
2
), and then build the region, U1 := Bd

1

r1
(s1)

(we shall see later why it is necessary to restrict the range of the radii). In order to

build the next region, we first remove the vertices of U1 from G1, leaving us with

subgraph G2. This will of course remove a number of edges from G1, so we denote

d2 as d1 restricted to the edges of G2. If source node s2 is not present in G2, then

we set U2 := ∅. Otherwise, we set U2 := Bd
2

r2
(s2), and in each case remove U2 from

G2. In general, if 1 ≤ i ≤ k, then suppose we currently have graph Gi with edge

weight di. If source node si is not present in Gi, then we set Ui := ∅. If the source

node is present, then we set Ui := Bd
i

ri
(si). If i+1 > k, then the process terminates,

and we are left with regions U1, . . . , Uk. Otherwise, the process continues, and we

form the graph Gi+1 := Gi \ Ui. The edge weight di is then restricted to the edges

of Gi+1, yielding the new edge weight di+1.

165

Once the regions U1, . . . , Uk have been formed, we collect the edges that lie

between them. Namely, for i = 1, . . . , k, we set Fi := δGi(Ui). In other words, Fi

contains the edges of Gi with exactly one vertex in Ui. We then collect the edge

set F := ∪ki=1Fi, and return F as the output of the algorithm.

Algorithm 4.4.1 Disjoint Region Growing Algorithm

Let G = (V,E) be an undirected graph.
Let c : E → Q≥0 be a cost function.
Let {(si, ti)}ki=1 be a collection of k ≥ 1 source-sink pairs of G.
Let r = (r1, . . . , rk) ∈ [0, 1

2
)k.

1: Compute an optimum solution d to LP (4.4.2).
2: Initialize G1 ← G, and d1 ← d.
3: for i = 1, . . . , k do
4: Initialize Ui ⊆ Gi.
5: if si ∈ Gi then
6: Set Ui ← Bd

i

ri
(si).

7: else
8: Set Ui ← ∅.
9: Initialize Fi ← δGi(Ui).
10: if i < k then
11: Initialize graph Gi+1, and edge assignment di+1.
12: Set Gi+1 ← Gi \ Ui.
13: Set di+1 as di restricted to e(Gi+1).

14: Initialize F := ∪ki=1Fi.
15: Return F .

While the algorithm stores the collection of graphs (Gi)
k
i=1 and their respec-

tive edge assignments (di)ki=1, this is simply to clarify how the algorithm executes.

It is not necessary in practise. In any case, since we can solve LP (4.4.2) efficiently,

it is clear that the algorithm will execute in polynomial time.

Proposition 4.4.5. Algorithm 4.4.1 returns a valid multicut in polynomial time,

provided it is passed radii from the interval [0, 1
2
).

166

Proof. As in the Algorithm 4.4.1, let us denote the regions formed by U1, . . . , Uk.

Moreover, let us consider source-sink pair (s, t). Suppose that there exists some

1 ≤ i ≤ k, for which both s and t reside in Ri. In this case, we know that by

definition, s, t ∈ Bd
i

ri
(si). This means that if we consider the distance function

distdi(·, ·),

distdi(si, s) ≤ ri <
1

2
.

Similarly,

distdi(si, t) ≤ ri <
1

2
.

On the other hand, distdi(·, ·) forms a metric on ther vertices of Gi, as it is

derived from the edge assignment di (see Proposition 4.4.3). In particular, this

implies that.

distdi(s, t) < 1,

by the triangle inequality.

If we now consider the original edge assignment d of G, then since Gi ⊆ G, we

know that,

distd(s, t) ≤ distdi(s, t),

as di retains the same edge values as d. As a consequence, it follows that,

distd(s, t) < 1.

Since d was assumed to be a valid solution to LP (4.4.2), this is a contradic-

tion. It follows that for each source-sink pair (s, t) and 1 ≤ i ≤ k, at most one of s

and t is contained in Ui. In other words, there is no region which contains both a

167

source and a sink. This implies that the edge set F will correctly separate all the

relevant vertex pairs.

Now that we have proven the correctness and efficiency of Algorithm 4.4.1, we

shall derive a variation of it that achieves a desirable performance guarantee. In

order to do this, it is convenient to introduce a weight function w which assigns a

value to each region computed in the above algorithm. Let us once again assume

that d is an optimum solution to LP (4.4.2). We denote β as the cost of this

solution. Rather,

β =
∑
e∈E

c(e) de.

We then assign w(si) := β/k for i = 1, . . . , k. These are the only vertices of G

which are given nonzero weight. In order to extend w to regions, we first add a

weight to each edge e ∈ E, where w(e) is set to ce de. The weight of a region is

roughly defined as the weight of its source node, together with the weight of all

edges with at least one end in the region. We refine this definition slightly, where

given region Ui, edges with exactly one end in Ui are only given a proportion of

their total weight. Rather,

w(Ui) := w(si) +
∑

e={u,v}∈Gi:
u,v∈Ui

c(e) de +
∑

e={u,v}∈Gi:
u∈Ui,v /∈Ui

c(e) (ri − distdi(si, u)) (4.4.6)

for i = 1, . . . , k, where Gi = (Vi, Ei) is the graph constructed after i − 1 iterations

of the “for loop” of Algorithm 4.4.1, and di is the restriction of d to Ei. If Ui = ∅,

168

then we set this value to zero. We refer to w(Ui) as the weight of region Ui.

Similarly, if Fi := δ(Ui) as in Algorithm 4.4.1, then we set

c(Fi) :=
∑
e∈Fi

c(e).

If Fi = ∅, then this value is set to zero. We refer to c(Fi) as the cost of Fi, for

i = 1, . . . , k.

Let us suppose that we are allowed the vary the radii of Algorithm 4.4.1,

whereas the input graph, cost function and source-sink pairs must remain fixed. In

this case, the region Ui is built from Gi, and thus depends on the radii r1, . . . , ri,

where 1 ≤ i ≤ k. As a consequence, we replace Ui with Uri to indicate that Ui

depends on r. Similarly, Fi is replaced with F ri for i = 1, . . . , k.

Our goal will be to show that if ε := 2 ln(k + 1), then there exists r∗ ∈ [0, 1
2
)k,

such that,

c(F r
∗

i) ≤ εw(Ur
∗

i)

for each i = 1, . . . , k. Let us assume for now that such a vector r∗ exists. In

this case, let F r
∗

be the multicut returned by executing Algorithm 4.4.1 with r∗

as input. We observe that the cuts F r
∗

1 , . . . , F r
∗

k will be disjoint, as the regions

themselves are disjoint by construction. In particular,

c(F r
∗
) =

k∑
i=1

c(F r
∗

i)

≤
k∑
i=1

εw(Ur
∗

i),

169

where the second line follows by the assumption involving r∗ in the above

inequality. On the other hand, if we set βri :=
∑

e∈Ei:
e∩Ur∗i 6=∅

c(e) de, then

w(Ur
∗

i)− w(si) ≤ βri ,

as a consequence of Equation 4.4.6, for i = 1, . . . , k. Thus, we have that,

c(F r
∗
) ≤ ε

k∑
i=1

(βri + w(si)) = ε (β +
k∑
i=1

βri), (4.4.7)

as each source node takes on weight β/k.

Let us now suppose that e = {u, v} is an edge of G. Since Ur
∗

1 , . . . , Ur
∗

k are

disjoint, the term c(e) de will occur in at most one of βr1 , . . . , β
r
k . It follows that,

k∑
i=1

βri =
k∑
i=1

∑
e∈Ei:

e∩Ur∗i 6=∅

c(e) de ≤
∑
e∈E

c(e) de = β.

Combining this observation with Equation 4.4.7, we have that,

c(F r
∗
) ≤ 2 ε β = 4 ln(k + 1)OPTf ,

where OPTf is equal to the cost of the optimum solution d of LP (4.4.2). We

summarize these observations in the following proposition:

Proposition 4.4.6. If r∗ ∈ [0, 1
2
)k is such that,

c(F r
∗

i) ≤ 2 ln(k + 1)w(Ur
∗

i)

for i = 1, . . . , k, then the multicut F r
∗

will have cost,

c(F r
∗
) ≤ 4 ln(k + 1)OPTf ,

170

where OPTf is the value of an optimum solution to LP (4.4.2).

In light of this proposition, Algorithm 4.4.1 will yield an approximation

guarantee of 4 ln(k + 1), provided we devise a means to compute r∗. It turns

out that it is possible to find a collection of radii which satisfy these properties in

polynomial time. Our next goal will be to prove their existence, and outline how

this computation can be done.

Proposition 4.4.7. We may compute a collection of radii, r∗ ∈ [0, 1
2
)k, satisfying

the inequality,

c(F r
∗

i) ≤ εw(Ur
∗

i)

for i = 1, . . . , k. Moreover, this computation can be done in polynomial time.

Before we prove this proposition, it will convenient to state a simple lemma

from calculus. We omit the proof as it is elementary.

Lemma 4.4.8 (Generalized Fundamental Theorem of Calculus). Let a < b be real

numbers and h, g : [a, b] → R. Assume that h is integrable, and g is continuous.

Moreover, assume that there are x1 < . . . < xl in [a, b], where for x ∈ (a, b), g is

differentiable at x and

g′(x) = h(x),

provided x 6= xi, for 1 ≤ i ≤ l. In this case,∫ b

a

h(x) dx = g(b)− g(a).

We are now ready to prove Proposition 4.4.7

171

Proof. We outline a way to efficiently compute r∗1, . . . , r
∗
k, which satisfy the in-

equality of Proposition 4.4.7. This computation is done dynamically as Algorithm

4.4.1 is executed, so we reuse much of the terminology developed earlier.

Let us begin by describing how to find the radius r∗1. We recall that G1 =

(V1, E1) denotes the graph G, before the first region about s1 is grown. Moreover,

the edge weight d1 denotes the edge weight d, before any edges of G are removed.

For each edge e = {u, v} ∈ E1, we define the interval I1
e := [distd1(s1, u), distd1(s1, v)),

where distd1(s1, u) ≤ distd1(s1, v). We denote the indicator function of the interval

I1
e by χI1e . Let us suppose c̃1 : [0, 1/2)→ R, for which

c̃1 :=
∑
e∈E1

c(e)χI1e .

If r ∈ [0, 1/2)k, then suppose Algorithm 4.4.1 returns edge set F r1 when passed

radii r. In this case, we have that,

c(F r1) =
∑
e∈E

c(e)χI1e (r1),

where c(F r1) denotes the cost of F r1 . Thus, we have that,

c̃1(r1) = c(F r1).

for all r = (r1, . . . , rk) ∈ [0, 1/2)k. In other words, c̃1(r1) describes the cost of the

edge set F r1 . We shall now build a similar function to describe the weight of the

region Ur1 .

172

For each edge e = {u, v} ∈ E1, let us define φe1 : [0, 1/2) → R, where for

r1 ∈ [0, 1/2),

φe1(r1) =

0 if r1 < dist1(s1, u)

r1 − distd1(s1, u) if distd1(s1, u) ≤ r1 < distd1(s1, v)

du,v if distd1(s1, v) ≤ r1,

provided we assume distd1(s1, u) ≤ distd1(s1, v). Moreover, we define w̃1 :

[0, 1/2)→ R, where

w̃1 := w(s1) +
∑
e∈E1

c(e)φ1
e.

Recall that if r = (r1, . . . , rk) ∈ [0, 1/2)k, then the weight of Ur1 , denoted

w(Ur1), is defined as

w(Ur1) := w(s1) +
∑

e={u,v}∈G1:
u,v∈Ur1

c(e) de +
∑

e={u,v}∈G1:
u∈Ur1 ,v /∈Ur1

c(e) (r1 − distd1(s1, u)),

where the region Ur1 is returned by executing Algorithm 4.4.1 with radii r. Clearly,

we have that,

w̃1(r1) := w(Ur1),

for all r = (r1, . . . , rk) ∈ [0, 1/2)k.

We observe that w1 and c1 have a number of desirable properties.

• w̃1 is continuous on [0, 1/2).

• For each r1 ∈ (0, 1/2), if w̃1 is differentiable at r1, then

w̃′1(r1) = c̃1(r1).

173

• w̃1 is differentiable at all but finitely many points of [0, 1/2).

• c̃1 is integrable.

We now define functions h1 : [0, 1/2) → R and g1 : [0, 1/2) → R, where

h1(r1) := c̃1(r)/w̃1(r1), and g1(r1) := lnw1(r1) for each r1 ∈ [0, 1/2).

We observe that both g1 and h1 are well defined, as w̃1 ≥ wt(s1) = β/k > 0,

where β :=
∑

e∈E c(e) de. Moreover, we observe the following facts regarding these

functions, as a consequence of the properties of w̃1 and c̃1:

• g1 is continuous on [0, 1/2)

• For all but finitely many points of (0, 1/2), g1 is differentiable, and

g′1(r1) = h1(r1)

where r1 ∈ (0, 1/2).

• h1 is integrable

As a consequence of Lemma 4.4.8 and the above properties, we have that,∫ 1/2

0

c̃1(r1)

w̃1(r1)
dr1 =

∫ 1/2

0

h1(r1) dr1

= g1(1/2)− g1(0)

= ln(w̃1(1/2))− ln(w̃1(0))

On the other hand, we know that w1(0) = β/k, and w1(1/2) ≤ β + β/k, as the

weight of a region based about s1 cannot exceed β. It follows that,∫ 1/2

0

c̃1(r1)

w̃1(r1)
dr1 ≤ ln(k + 1).

174

In particular, if M := inf0≤r′1<1/2
c̃1(r′1)

w̃1(r′1)
, then

∫ 1/2

0

M dr1 ≤
∫ 1/2

0

c̃1(r1)

w̃1(r1)
dr1 ≤ ln(k + 1).

Thus,

inf
0≤r′1<1/2

c̃1(r′1)

w̃1(r′1)
≤ 2 ln(k + 1).

It is possible to efficiently compute a radius which matches this infimum. Observe

that since c̃1 =
∑

e∈E c(e)χI1e , and w̃1 =
∑

e∈E c(e)φ
e
1, it is sufficient to evalutate

c̃1/w̃1 on the endpoints of Ie1 for each e ∈ E. Moreover, the endpoints of an edge

{u, v} ∈ E1 are precisely distd1(s1, u) and distd1(s1, v), so these can be computed

in polynomial time.

As a result of these observations, we may compute 0 ≤ r∗1 < 1/2 in polynomial

time, such that

c̃1(r∗1) ≤ 2 ln(k + 1) w̃1(r∗1).

Once we compute this radius r∗1, we may grow the first region Br∗1
(s1), and

then remove it from G1. This leaves us with a new graph G2 and a restricted edge

assignment d2.

In order to continue this process, we may suppose that 1 ≤ i ≤ k, and that

we have already found the radii r∗1, . . . , r
∗
i−1. We may assume at this point that the

graphs G1, . . . , Gi and edge assignments d1, . . . ,di have been computed using these

radii as parameters to Algorithm 4.4.1.

We now generalize the functions w̃1 and c̃1, by defining w̃i, c̃i : [0, 1/2)→ R. If

ri ∈ [0, 1/2), then we may define w̃i(ri) to be the weight of the region Bri(si), and

w̃i(ri) as the cost of the edge set δ(Bri(si)). Using an identical analysis as before,

175

we arrive at the conclusion that,

inf
0≤r′i<1/2

c̃i(r
′
i)

w̃i(r′1)
≤ 2 ln(k + 1).

Moreover, we can once again evaluate w̃i and c̃i at the points distdi(si, u)

and distdi(si, v) for each {u, v} ∈ Ei. This will be sufficient to find a radius r∗i ,

witnessing the above infimum. Rather,

c̃i(r
∗
i) ≤ 2 ln(k + 1) w̃i(r

∗
i),

where r∗i is computed in polynomial time. At this point, the region Br∗i
(si) is

grown about si, and if i + 1 ≤ k, then we update Gi+1 by removing this region

from Gi. The edge assignment di is then restricted to the edges of Gi+1, yielding

the assignment di+1.

Once the growing process finishes, we are left with regions, Br∗1
(s1), . . . , Br∗k

(sk)

and edge sets, δ(Br∗1
(s1)), . . . , δ(Br∗k

(sk)). It is clear that,

c(δ(Br∗i
(si))) ≤ 2 ln(k + 1)w(Br∗i

(si))

for i = 1, . . . , k.

These are precisely the regions and edge sets formed by passing r∗ :=

(r∗1, . . . , r
∗
k), to Algorithm 4.4.1, so the claim holds.

Let us now summarize an algorithm which makes use of our work so far.

We first compute a selection of radii which satisfy the above proposition, run

176

Algorithm 4.4.1 with these radii as inputs, and then return the subsequent

multicut.

Algorithm 4.4.2 Efficient Disjoint Region Growing Algorithm

Let G = (V,E) be an undirected graph.
Let c : E → Q≥0 be a cost function.
Let {(si, ti)}ki=1 be a collection of k ≥ 1 source-sink pairs of G.

1: Compute r∗ ∈ [0, 1
2
)k, which satisfies Proposition 4.4.6

2: Execute Algorithm 4.4.1 with the above inputs.
3: Store the above output in edge set F r

∗
.

4: Return F r
∗
.

We remark that while the above algorithm computes r∗ before executing Al-

gorithm 4.4.1, this is not necessary in practise. A closer examination of the proof

of Proposition 4.4.7 shows that the indices of r∗ may be computed dynamically

as Algorithm 4.4.1 executes. Namely, given r∗1, . . . , r
∗
i−1, where 1 ≤ i ≤ k, let us

suppose we have computed the graph Gi and edge assignment di, as in Algorithm

4.4.1 (if i = 1, then no radii have yet been computed). At this point, we may

mimic the procedure outlined in the proof of Proposition 4.4.7 to find a raidus r∗i

for which,

c(δ(Br∗i
(si))) ≤ 2 ln(k + 1)w(Br∗i

(si)),

where Br∗i
(si) is the region formed using radius r∗i about source node si in Gi. As

this equation will clearly hold for each i = 1, . . . , k, the analysis of this dynamic

algorithm will be identical to that of Algorithm 4.4.2.

Theorem 4.4.9. Algorithm 4.4.2 achieves an approximation guarantee of 4 ln(k +

1) in polynomial time.

177

Proof. We first observe that the above algorithm is able to compute r∗ efficiently,

as a result of Proposition 4.4.7. As Algorithm 4.4.1 is known to execute in

polynomial time, it is clear that the above algorithm will as well.

Let us now suppose that F r
∗

1 , . . . , F r
∗

k and Ur
∗

1 , . . . , Ur
∗

k are the cuts and

regions formed while executing Algorithm 4.4.1. We observe that by Proposition

4.4.7,

c(F r
∗

i) ≤ 2 ln(k + 1)w(Ur
∗

i),

for i = 1, . . . , k. This implies that if F r
∗

is the output of the above algorithm, then

by Proposition 4.4.6,

c(F r
∗
) ≤ 4 ln(k + 1)OPTf ,

where OPTf is the cost of an optimum solution to LP (4.4.2). Thus, the above

algorithm achieves an approximation guarantee of 4 ln(k + 1), as OPTf ≤ OPT ,

where OPT is the cost of an optimum multicut of G.

We remark that Algorithm 4.4.2 can be thought of as the derandomization

of a certain randomized algorithm we now describe. This randomized algorithm

first samples ρ1, . . . , ρk from [0, 1
2
) independently and uniformly at random. It then

passes ρ := (ρ1, . . . , ρk) to Algorithm 4.4.1, together with G, c and the source

nodes s1, . . . , sk. Using these parameters as inputs, Algorithm 4.4.1 returns a

random multicut F which is used as the output of the randomized algorithm.

178

Algorithm 4.4.3 Randomized Disjoint Region Growing Algorithm

Let G = (V,E) be an undirected graph.
Let c : E → Q≥0 be a cost function.
Let {(si, ti)}ki=1 be a collection of k ≥ 1 source-sink pairs of G.

1: Sample ρ1, . . . , ρk independently and uniformly at random from [0, 1
2
).

2: Initialize ρ← (ρ1, . . . , ρk).
3: Execute Algorithm 4.4.1 with the above inputs.
4: Initialize F , and use it to store the above output.
5: Return F .

As the above algorithm invokes Algorithm 4.4.1, we can denote the random

regions it builds by U1, . . . , Uk, and the random cuts by F1, . . . , Fk. Moreover, the

random variables w(U1), . . . , w(Uk) and c(F1), . . . , c(Fk) describe the weights and

costs of their respective regions and cuts. A similar computation involving the

integrals seen in the proof of Proposition 4.4.7 allows us to conclude that,

E c(Fi) ≤ 2 ln(k + 1)Ew(Ui)

for i = 1, . . . , k.

We can now mimic the remarks before Proposition 4.4.6, by defining the

random variables βi :=
∑

e∈Ei:
e∩Ur∗i 6=∅

c(e) de, for i = 1, . . . , k. Clearly, w(Ui) ≤ βi+β/k,

after accounting for the potential weight based at source node si. Moreover, since

the regions U1, . . . , Uk are disjoint, we have that

k∑
i=1

w(Ui) ≤
k∑
i=1

βi + β ≤ 2 β,

179

where β is the deterministic quantity,
∑

e∈E c(e) de. Combining these equations,

E c(F) =
k∑
i=1

E c(Fi)

≤ 2 ln(k + 1)
k∑
i=1

Ew(Fi)

≤ 4 ln(k + 1)β,

after taking expectations. As β is equal to OPTf , the optimum value of a frac-

tional multicut of G, we arrive at the following theorem:

Theorem 4.4.10. Algorithm 4.4.2 achieves an expected approximation guarantee

of 4 ln(k + 1) in polynomial time.

We now return to analyzing Algorithm 4.4.1, and its implications towards the

integrality gap of IP (4.4.1).

Suppose we fix k ≥ 1, and restrict our attention to multicut problem instances

with exactly k source-sink pairs. In particular, the problem instance I consists of a

graph G = (V,E), a cost function c : E → R, and k source-sink pairs {(si, ti)}ki=1.

Algorithm 4.4.1 then computes a multicut F , for which

c(F) ≤ 4 ln(k + 1)OPTf (I),

where OPTf (I) is the value of an optimum solution to LP (4.4.2). As a result of

this comparison, if we restrict IP (4.4.1) to instances with exactly k source-sink

pairs, then its integrality gap is bounded above by 4 ln(k + 1).

180

Theorem 4.4.11. Let k ≥ 1 be fixed, and suppose we only consider multiway cut

problem instances with exactly k source-sink pairs. The integrality gap of the IP

(4.4.1) restricted to problem instances of this type is at most 4 ln(k + 1).

On the other hand, suppose we view the integrality gap as a function of k.

That is, for each k ≥ 1, define

φ(k) := sup
I
{ OPT (I)

OPTf (I)
: I has k source-sink pairs}

where φ : Z≥0 → [1,∞). If we consider the asymptotic behaviour of φ

as k becomes large, then we can lower bound its growth. It turns out that up

to a constant factor, this lower bound matches the approximation guarantee of

Algorithm 4.4.1. Thus, we may conclude that the integrality gap as a function of

k is Θ(ln(k)). In order to prove this claim, we first consider a definition for graphs

which are regular.

Given a d-regular graph H, let us refer to it as an expander graph provided for

each non-empty subset S ⊆ V (H), S 6= V

e(S, S) ≥ min{|S|, |S|}, (4.4.8)

where e(S, S) is the number of edges between S and S. This definition is often

stated in the terminology of graph conductance, however Equation 4.4.8 will suffice

for our purposes.

It turns out that for each even d ≥ 4, there exists some ld ≥ 1 such that for

all l ≥ ld, there is a d-regular graph on l vertices which is an expander graph.

This can be proven by the probabilistic method, where one shows that a uniformly

181

random d-regular graph has a positive probability of having the expansion property

of Equation 4.4.8. We shall not include the proof of this statement here, but the

reader may consult the book “Introduction to Random Graphs” by Frieze and

Karonski for the details of this argument [FK16].

Let us now fix an even d ≥ 4 and some l ≥ ld. Moreover, assume that

Hl = (Vl, El) has l vertices, satisfies the expansion property above, and has unit

capacity edges. We first observe that if we fix v ∈ Vl and take some integer β ≥ 1,

then there are at most
β−1∑
i=0

di < dβ, (4.4.9)

many vertices in Hl with distance at most β − 1 from v. In particular, if we

set β = blogd(l/2)c, then there are at least l/2 vertices at distance β or more away

from v.

Let us now define Sl to be the source-sink pairs of Hl, where a distinct pair of

vertices s, t ∈ Vk is contained in Sl, if and only if dist(s, t) ≥ β. As a consequence

of the above observations, we may conclude that |Sl| ≥ l2/4, and so |Sl| = Θ(l2).

If we now consider a multicut M of Hl which separates Sl, then we claim that

|M | ≥ l/2. In order to see this, consider the components U1, . . . , Uq of Hl \M ,

where 1 ≤ q ≤ l. In light of the definition of Sl, we know that for each i = 1, . . . , q,

diam(Hl[Ci]) < β, where diam(Hk[Ci]) is the diameter of the the induced subgraph

Hl[Ci]. Using the same computations as in Equation 4.4.9, we may conclude that

|Ci| < dβ ≤ l/2. In particular, this implies that |Ci| ≤ |Ci|, and so e(Ci, Ci) ≥ |Ci|

for each i = 1, . . . , l, by the expansion property of Hl.

182

As a result of these computations, we know that

q∑
i=1

e(Ci, Ci) ≥
q∑
i=1

|Ci| = l.

On the other hand, each edge of M occurs in at most two components of

Hl \M , so we know that |M | ≥ l/2. If OPT (Hl,Sl) is the value of an optimum

multicut of (Hl,Sl), then this result implies that OPT (Hl,Sl) ≥ l/2. Our goal

will now be to bound the value of a fractional multicut of Hl. Combined with

the above result, this will imply a lower bound of the integrality gap of (Hl,Sl);

namely, the quantity

OPT (Hl,Sl)
OPTf (Hl,Sl)

,

where OPTf (Hl,Sl) is the value of an optimum solution to LP (4.4.2).

By the duality theorem for linear programs, a maximum multi-commodity

flow has value equal to the size of a minimum fractional multicut. We shall

therefore work with (fractional) multi-commodity flows, opposed to directly

considering fractional multicuts of (Hl,Sl).

Let us suppose that (fp)p∈P is a multi-commodity flow through (Hl,Sl), where

P is the set of all simple paths between members of Sl. We first observe that by

the feasibility of the solution, ∑
p∈P:e∈p

fp ≤ 1

for each e ∈ E, as the graph Hl has unit capacity edges. By summing over all

the edges, this implies that

∑
e∈E

∑
p∈P:e∈p

fp ≤ |El| =
ld

2
,

183

where the last equality follows from the d-regularity of Hl. On the other hand,

we know that for each p ∈ P ∑
e∈E:e∈p

fp ≥ βfp,

as each path p connects a pair of vertices at least distance β away. It follows

that

β
∑
p∈P

fp ≤
∑
e∈E

∑
p∈P:e∈p

fp ≤
ld

2
,

after exchanging the summation of the above equation. We may therefore

conclude that ∑
p∈P

fp ≤
ld

2β
.

Thus, each multi-commodity flow has value at most ld
2β

, and so if OPTf (Hl,Sl)

is the value of an optimum solution to LP (4.4.2), then we know that

OPTf (Hl,Sl) ≤
ld

2β
.

As a result,

OPT (Hl,Sl)
OPTf (Hl,Sl)

≥ β

d
= αd ln(l),

for some constant αd > 0 dependent on d. Moreover, if we set kl := |Sl|, then

we know that l2/4 ≤ kl ≤ l2, and so

OPT (Hl,Sl)
OPTf (Hl,Sl)

≥ αd
2

ln kl.

Thus, for every l ≥ ld, the existence of (Hl,Sl) implies that

φ(kl) ≥
αd
2

(kl),

184

where φ(kl) is the integrality gap of multicut instances with exactly kl source-

sink pairs. On the other hand, since |Sl| → ∞ as l →∞, this means that there are

infinitely many k ≥ 1 such that

φ(k) ≥ αd
2

(k).

As the integrality gap as a function of k is clearing increasing, this implies the

result below.

Theorem 4.4.12. There exists a constant α > 0 and some k0 ≥ 1 such that for all

k ≥ k0,

α ln(k + 1) ≤ φ(k) ≤ 4 ln(k + 1).

Rather, the integrality gap of the restricted IP (4.4.1) is between α ln(k + 1)

and 4 ln(k + 1), when considered as a function of k.

As a result of this theorem, we know that Algorithm 4.4.1 has a perfor-

mance guarantee that is best possible among algorithms which employ rounding

techniques, up to a constant factor.

185

CHAPTER 5
Conclusion

After an introduction to some basic concepts from complexity theory and lin-

ear programming, the thesis presented a number of approximation algorithms for

a variety of network flow and minimum cut type problems. More specifically, the

multiway cut problem was examined, and seen to have an algorithm achieving an

approximation guarantee of 3/2. When we later considered the multi-commodity

flow problem on trees, an approximation guarantee of 1/2 was witnessed, together

with a performance guarantee of 2 for the restricted multicut problem. The thesis

concluded with an examination of the multicut problem on general graphs, where

an approximation guarantee of 4 ln(k + 1) was seen, assuming k source-sink pairs

were to be separated. All of these claims are known as positive results, as they

establish upper bounds on how well their respective problems can be approximated

(lower bounds in the case of maximization problems).

A natural question to wonder is whether there exist algorithms whose per-

formance guarantees are better than previously seen. In the context of the first

IP formulation of the multiway cut problem, an integrality gap of 2 (k − 1)/k

was established, thus limiting the performance guarantees of algorithms which

apply primal-dual and randomized rounding techniques. Similarly, the multicut

problem on general graphs was seen to have an integrality gap of Ω(log(k)), when

viewed as a function of its number of source-sink pairs. This confirmed that the

186

approximation algorithm presented is best up to a constant factor, among algo-

rithms which employ linear programming techniques. Both of these claims are

known as hardness of approximation results, or negative results, as they estab-

lish lower bounds on how well their respective (minimization) problems can be

approximated, assuming LP techniques are used.

While limiting the effectiveness of LP techniques is useful, it does not discount

what combinatorial algorithms may achieve, or LP algorithms whose analysis is

nonstandard (no comparison between OPT and OPTf is made in the analysis).

It is therefore often desirable to extend these hardness results in such a way that

they account for all possible approximation algorithms. The highest possible

standard for such a result is to witness an algorithm achieving an approxima-

tion guarantee of α, and to prove a hardness result limiting any approximation

algorithm from improving on α, assuming P 6= NP.

The multicut problem on general graphs is known to not have an approxima-

tion algorithm achieving a constant factor of α ≥ 1, assuming the Unique Games

Conjecture - a stronger assumption than P 6= NP, but still believable [CKKRS06].

It would of course be desirable to investigate whether this assumption could be

dropped without weakening this claim. Another well studied problem is the ver-

tex cover problem, which cannot be approximated by a constant smaller than

1.3606, assuming P 6= NP [DS05]. This of course also limits how well the multicut

problem can be approximated on trees, in light of the approximation preserving

reduction from the vertex cover problem to the multicut problem presented earlier.

Improving the gap between these bounds in the case of the multicut problem on

187

trees is thus a natural question to consider. There are of course many other unre-

solved questions on optimization problems on graphs. Frequently, these problems

have gaps between their best known positive and negative approximation results.

Better understanding the state of these results would serve as a natural followup to

the work done in this thesis.

188

REFERENCES

[Vv11] Vazirani, V., Approximation Algorithms, Berlin: Springer, 2011.

[WS11] Williamson, D., & Shmoys, D., The Design of Approximation Algorithms,
Cambridge: Cambridge University Press, 2011.

[AB16] Arora, S., & Barak, B., Computational Complexity, New York (NY):
Cambridge University Press, 2016.

[KT14] Kleinberg, J., & Tardos, E., Algorithm Design, Boston, Mass. [u.a.]:
Pearson/Addison-Wesley, 2014.

[FK16] Frieze, A., & Karonski, M., Introduction to Random Graphs, Cambridge
University Press, 2016.

[Cp97] Crescenzi, P., A Short Guide to Approximation Preserving Reductions,
IEEE Conference on Computational Complexity, 1997.

[EK72] Edmonds, J., & Karp, R.M., Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems,Combinatorial Optimization, 1972.

[CKKRS06] Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., & Sivakumar,
D. On the hardness of approximating multicut and sparsest-cut, Comput.
Complexity 15 (2006), no. 2, 94114.

[DS05] Dinur, I., & Safra, S., On the hardness of approximating minimum vertex
cover. Ann. of Math. (2) 162 (2005), no. 1, 439485.

189

