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Abstract

Topic of this dissertation is the fast placement of hypergraph nodes into multi-dimensional

grids. Hypergraphs can be used to model electronic circuits and network topologies, and

grids can model the underlying architectures of electronic integrated circuits and optical

systems. Thus, placement of hypergraphs into grids is an important problem as it may

serve, for example, to reduce interconnection wire length in integrated circuits, or to min­

imize communication delays incurred in optical networks by routing around unnecessary

bends. Fast placement techniques that complete in near-linear run time are desirable as

circuit and network topologies are expected to continue to grow in size exponentially. The

term "fast placement" thus refers to (a) the run time of the placement algorithm, and (b)

the lower transmission delays in the resulting placement.

Original research contributions are provided in chapters 1, 4, and 5.

In chapter 1, the extension of relevant combinatorial grid placement problems to hy­

pergraphs and multi-dimensional grids constitute a modest original contribution.

Entirely original work is presented in chapter 4, where we introduce a novel force­

directed iterative placement algorithm for two- and three-dimensional placements. This

algorithm is designed to produce good minimum-wire-Iength placements for large circuits,

for which no comparison results exist. The three-dimensional implementation of our place­

ment algorithm pioneers the 3-D placement field in which previously no efficient algorithms

had been published. In order to avoid operating in a vacuum, we were forced to create a

comparison algorithm based on an accepted standard placement technique. With this ref­

erence placer, we generated the first published 3-D placement results, and 2-D placement

results for large benchmark circuits for which no published comparison results exist. Our

placement algorithm out-performs the reference placer substantially in both run time and

wire length. Further, we use our algorithm to present sorne experimental evidence of the

estimated wire-Iength savings when utilizing the third dimension.

Our final original contribution is a method presented in chapter 5 for efficiently placing

a modern network topology, the star graph, into multi-dimensional grids such that all star

graph neighbours are joined by a common grid line. The basic placement technique, orig­

inally published in [Obe95], is made efficient by compacting and contracting the bendless

embedding in an effective manner.
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Résumé

Cette thèse porte sur le positionnement rapide des nœuds d'hypergraphes sur des grilles

multidimensionnelles. Les hypergraphes peuvent être utilisés afin de modéliser des circuits

électroniques ainsi que des topologies de réseaux, tandis que les grilles peuvent servir

à modéliser l'architecture sous-jacente de circuits électroniques intégrés et de systèmes

optiques.

Le positionnement d'hypergraphes sur des grilles est donc un problème important

puisqu'il peut servir, par exemple, à réduire la longueur des fils d'interconnexion de cir­

cuits intégrés, ainsi qu'à minimiser les délais de communication engendrés par des détours

inutiles dans les réseaux optiques. Le développement de techniques de positionnement

rapide dont le temps d'exécution est quasi linéaire semble souhaitable puisqu'il est très

probable que la dimension topologique des circuits et des réseaux continue de croître de

façon exponentielle. Le positionnement rapide fait donc référence à deux choses, soit (a) le

temps d'exécution de l'algorithme de positionnement, ainsi que (b) la réduction des délais

de transmission découlant de ce positionnement.

Les contributions scientifiques originales se trouvent dans les chapitres 1, 4, et 5.

L'extension de problèmes combinatoires de positionnement de grilles en problèmes

d'hypergraphes et de grilles multidimensionnelles, présentée dans le chapitre 1, constitue

une contribution originale modeste.

Le travail présenté dans le chapitre 4 représente une contribution véritablement orig­

inale. Nous y décrivons un nouvel algorithme de placement itératif basé sur le com­

portement des forces pouvant être utilisé pour des positionnements bidimensionnels ainsi

que tridimensionnels. Cet algorithme permet de trouver de bons positionnements util­

isant une longueur minimale de fil pour les grands circuits pour lesquels il n'existe pas

de résultats pouvant servir de référence. L'implémentation tridimensionnelle de notre

algorithme de positionnement est une première dans le domaine du positionnement tridi­

mensionnel puisque jamais un algorithme efficace n'a été publié. Afin d'avoir un point de

comparaison, nous avons dû créer un algorithme de référence basé sur une technique de po­

sitionnement standard approuvée. Cette référence nous a permis de produire les premiers

résultats de positionnement tridimensionnel publiés. Elle nous a aussi permis d'obtenir

des résultats de positionnement bidimensionnel pour les grands circuits de référence pour

lesquels aucuns résultats pouvant servir de référence n'ont été publiés. Notre algorithme de

positionnement est beaucoup plus performant que l'algorithme de référence au niveau du

temps d'exécution et de la minimisation de la longueur de fil. De plus, nous utilisons notre
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algorithme afin de démontrer expérimentalement l'économie de longueur de fil estimée qui

découle de l'utilisation de la troisième dimension.

Notre contribution originale finale se trouve dans le chapitre 5. Nous y présentons

une méthode permettant de placer de façon efficace une topologie de réseau moderne, le

graphe étoilé, sur une grille multidimensionnelle de telle sorte que tous les graphes étoilés

voisins soient raccordés par une ligne commune. La technique de placement de base que

nous avons publiée dans (übe95], est améliorée grâce à la compaction et à la contraction

efficaces des insertions de graphes étoilés sans inflexions.
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Chapter 1

Introduction

In this chapter, we introduce the concept of placement and examine underlying and

related problems. As notational aids, we will make use of hypergraphs and grids.

This notation and the presented problems will be illustrated in section 1.4 using

a running example. The running example consists of a real electronic circuit and

a fictitious, yet realistic, model of a field-programmable gate array (FPGA), that

can house the circuit. The relevant placement and routing steps and combinatorial

problems are illustrated using this example.

1.1 What is Placement?

Placement is the art of assigning coordinates to nodes of a hypergraph.

Hypergraphs, cf. definition 2 on page 4, can be, for example, computer network

nodes interconnected by a network topology [Tan96], or electronic circuit cells form­

ing a VLSI circuit [WoI94], or graphs in graph theory [Ber85]. The coordinates to

be assigned might represent fioors and rooms in an office building that is to be net­

worked, or they might be positions on a silicon die which is to house an integrated

circuit.

Placement thus forms one part of an embedding process that involves placing

interconnected nodes and routing the interconnections between the placed nodes. In

VLSI chip design this embedding process is generally split into two processes known

as place and route, and in graph theory as graph drawing.

1



• CHAPTER 1. INTRODUCTION

~t

.t

-- 0

Figure 1.1: Bad (left) and good placement of a 5x5 mesh.

Before we formally define a placement in definition 4 on page 11, we first state

qualitatively what a placement is used for. Thus, the mission statement for place­

ment can be defined as follows:

Definition 1 Purpose of Placement

The purpose of determining a node placement is to enable the creation of a good

routing of interconnections.

What constitutes a "good" routing is in the eye of the beholder and we will

look at several popular interpretations in detai1. Within this dissertation we use

the term embedding to refer to the process that maps hypergraphs into another

structure such as a grid. The part of the embedding that assigns coordinates to

the interconnected nodes is referred to as the placement. The part that routes the

interconnections between the placed nodes is called the routing. Thus, placement +
routing = embedding. FormaI definitions of hypergraphs and grids are provided in

section 1.4.

•
1.2 Impact of Placement

Choosing one placement over another can have a profound impact on the desired

parameters of an embedding. Poor placement can lead to excessively long or twisted

2



1.3. DISTINCTION BETWEEN PLACE AND ROUTE•
DI o

•

Figure 1.2: Bad (left) and good routing of a square with a good placement.

interconnections. The example in figure 1.1 illustrates the effect of a good versus a

random placement.

For example, when designing a chip, choosing a bad placement can lead to long

interconnections. Since the sizes of a circuit's components are usually fixed, an

increase in area required for longer wiring leads to an increased chip area [SM91],

and increased chip size translates to higher manufacturing costs.

In different research areas different placement and routing parameters are impor­

tant. While the total wire length may be important in chip design, it may be of no

consequence in other areas. In orthogonal graph drawing, for example, the number

of bends in the drawn edges may be a factor that is to be minimized [DBETT99].

1.3 Distinction Between Place and Route

By definition 1, the purpose of placement is to provide for a good routing. Thus,

a good routing implies a good placement. However, a good placement does not

guarantee that every routing will be good, or that a good routing is easy to find.

For example, suppose our measure for a good routing is the total length of the

routed edges along horizontal and vertical grid lines, then figure 1.2 shows how a

good placement can have a bad routing.

In the next section it is outlined how placement and routing are often both NP­

complete, cf. section 1.4, and hence difficult problems. As both problems, routing

and placement, are difficult problems by themselves, it is even more difficult to

solve them together, and hence they are often treated as two sequential problems:

placement followed by routing. However, we note that approaches that solve both

aspects together exist [SKK+98]. In the more common split place-and-route ap-

3
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proach, a placement is determined first, using estimates on the projected routing,

and then, while aIl nodes are fixed in their positions, an actual routing is performed,

e.g. [Ban94, 8Y95, WoI94]. This dissertation focuses on the placement phase.

1.4 Underlying Combinatorial Optimization Prob­

lems

In this section, sorne of the fundamental problems relevant to embeddings in general,

and placements in particular are outlined. 80me of these problems have previously

been discussed in the context of optical interconnects and networks in [8098].

As the title of this thesis indicates, we will only consider placements and em­

beddings of hypergraphs into grids. Within this dissertation, using grids means

placement coordinates are integers. First, we define the hypergraph and the grid.

Then, we discuss individual embedding problems and their impact on placement

strategies.

Hypergraphs have the main property that a number of interconnections, called

edges, each connect a number of nodes:

Definition 2 Hypergraph

A hypergraph H(V, E) is a set ofnodes, sometimes called vertices, V and a set of

edges E such that V eEE eÇV.

•

The interconnectivity of electronic circuits can be modelled by hypergraphs. In
the context of electronic circuits, the terms net and cell, are often used in place of

hypergraph edge and node. Additionally, the term pin in an electronic circuit is

used to refer to a connection between anode to an edge. As a concrete example

we will look at an 8-to-4 Daisy Chain Concentrator [8898]. An n-to-m Daisy Chain

Concentrator is an efficient way of concentrating the signaIs from n synchronized

inputs to m outputs. An 8-to-4 Daisy Chain Concentrator takes the signaIs from

8 inputs and forwards them to 4 outputs. 8ignals are only blocked if more than 4

inputs are active at the same time. Figure 1.3 shows the schematic of the control

plane of an 8-to-4 Daisy Chain Concentrator. This control plane controls the flow

of data in the data plane, which is not shown.

4
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Figure 1.3: 8-to-4 Daisy Chain Concentrator schematic [8898]: 8 inputs at the 1eft

are forwarded to 4 outputs at the bottom.•
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Control Cell

··················Büsyi~·

Legend

----.- intersecting wires
1 are connected

Input Output

~=O-AandB

~D-AandnotB

~=D-AorB

Figure 1.4: Control cell schematic [889S]: This is the building block for a Daisy

Chain Concentrator.

Control Cell Schematic

····················Büsy·i~··· .

--~

Hypergraph Subgraph

BUSYin

•

Figure 1.5: Conversion of a control cell schematic [889S] to hypergraph representa­

tion: Only the structure of interconnections is preserved.

The control plane of the S-to-4 Daisy Chain Concentrator is made up from eight

rows and four columns of Daisy Chain Concentrator control ceIls, cf. figure 1.4. Each

control cell forwards an input request to the next control cell in the row only if the

output in the ceIl's column is already busy.

In order to focus on the various combinatorial optimization problems associated

with the embedding problem, we transform the electronic schematic into hypergraph

representation. In figure 1.5 we illustrate this transformation for a Daisy Chain Con­

centrator control cell. The structure of interconnections is preserved while the gate

types are ignored. Individual hypergraph nodes are labelled such that this transfor-

6
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Figure 1.6: 8-to-4 Daisy Chain Concentrator in hypergraph representation.•
BusyO Busyl Busy2 Busy3

7



• CHAPTER 1. INTRODUCTION

mation process can be reversed. Big black dots represent nodes of the hypergraph,

and lines represent edges that connect the nodes in which the lines terminate. The

complete 8-to-4 Daisy Chain Concentrator in hypergraph representation is illus­

trated in figure 1.6.

Note, a graph is a hypergraph in which aIl edges have exactly two nodes. A

thorough treatment of graphs and hypergraphs can be found in [Ber85] and [Ber89].

Berge [Ber85] defines the multiplicity of an edge in a graph as the number of edges

connecting the same end points. Formally, the multiplicity of an edge is simply a

positive integer associated with this edge. We define a grid as follows.

Definition 3 Grid

An NI X, .. X Nd grid G(V, E) with k parallel channels is a graph whose nodes are

the points in the d-dimensional integer space {O, ... , NI - I} x ... x {O, ... ,Nd - I},
and whose edges connect nodes that are separated by a euclidean distance of 1. The

multiplicity m(e), i. e., the number of parallel edges, of each edge e is k.

v {v: v E Zd and\fiE{I, ... ,dl O:S Vi < Nd, and

E {{u,v}: u,v E V and lu - vi = I}, and

m E-+{k}.

•

This definition defines the number of parallel channels to be the multiplicity of

the grid edges. If we label parallel grid edges with the numbers from I to k, then we

say that the grid edge labelled i belongs to channel i, and aIl grid edges with label i

together form channel i. This definition of a channel conforms with the terminology

used in communications where channels are often allocated as frequency bands or

wavelengths, for example. In the context of optical systems, e.g. [SH98], a channel

is often understood to be the collection of like-labelled edges that connect nodes

along one grid Hne, i.e., the nodes that differ only in one coordinate. In integrated

circuit design, a channel is often understood as the collection of aIl edges along a

grid line[BFRV92]. Throughout this dissertation we will use the communications

understanding of a channel as described above.
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Figure 1.7: A 3 x 4 grid with 3 parallel channels drawn using a computer science

convention (left) and an engineering convention.

In the computer science community, a graph such as a grid is normally drawn

as dots interconnected by Hnes representing the edges as, for instance, in figure 1.7

(left). The electric~l engineering community often prefers a representation in which

the grid nodes are placed next to the vertical and horizontal edges as shown on

the right of figure 1.7. The latter convention facilitates illustration of embeddings

that include a placement and a routing. Figure 1.8 shows a two-dimensional 10

by 18 grid with three parallel channels using this electrical engineering convention.

The grid nodes are labelled by their coordinates. This grid may be thought of

as a programmable chip, or field-programmable gate array, cf. FPGA, section 2.4.

Every grid node can be programmed to hold a number of logic gates of an electronic

circuit. The dotted Hnes representing the grid edges can be programmed to form

wires interconnecting the logic gates.

Now we can formulate aIl embedding and placement problems in terms of hy­

pergraphs and grids. For this, we define an embedding as the conjunction of a

placement and a routing. Among the many conceivable parameters describing an

embedding are two useful parameters defined by Leighton [Lei92]: The load and the

congestion. Here, the hypergraph is the guest graph, and the grid is the host graph.

The load of an embedding is the maximum number of nodes in a guest graph that

9
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0,5

9iii :TH:Tiil

•
Figure 1.8: 10 x 18 grid with three parallel channels: The grid nodes are labelled

by their coordinates, and the grid edges are shown in triplicate representing the

multiplicity of each edge.

10



fy (B)=(2,2)
•

•

1.4. UNDERLYING COMBINATORIAL OPTIMIZATION PROBLEMS

O+Œ®+2
:::::::::;:;:::::::::::;:;:::::::::::;:;:

----JI-~~--'---_~(@)+ 0+ 0+ 1 grid node

_fY_(D_)=_(l'_O)__~9ç::.····"':':"':2~,j~!1\.d d
fy (C)=(2,O) :.: _._ _:_:_. __.~ gn coor mates

012

Figure 1.9: Placement of the nodes of a square in a 3 x 3 grid with 2 parallel channels.

are placed into the same node of a host graph. The congestion of an embedding is

the maximum number of guest edges routed through a host edge. When we refer

to the load of a particular host node v, we define the load as the number of guest

nodes placed into node v, and similarly the congestion of an edge e is the number

of guest edges routed through edge e. We refer to the load and congestion of an

embedding (Jv, fE) as load(Jv) and congestion(JE), and to the load of a grid node

v and congestion of a grid edge e as load(v) and congestion(e).

We define a hypergraph placement formally:

Definition 4 Placement

A placement fv in n dimensions maps the nodes of a hypergraph H(V, E) ta nodes

in a grid G(Va , E a ) with k parallel channels with a load of 1:

fv :V ----t Va and,

max I{v: f(v) = va}1 = 1.
vGEVG

The left-hand side of the last equation formally defines load of a placement (=
load of an embedding) as load(Jv) - maxvGEVG 1{v : f (v) = va} 1·

In an effort to illustrate this definition of a placement, figure 1.9 shows an example

of a placement of a square into two dimensions. In figure 1.10 we show a placement

of the 8-to-4 Daisy Chain Concentrator into the la x 18 grid with 3 parallel channels.

The nodes from the hypergraph of figure 1.6 are placed "inside" the grid nodes of

the grid from figure 1.8.
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Figure 1.10: Placement of the 8-to-4 Daisy Chain Concentrator into the 10 x 18 grid

with 3 parallel channels. The nodes from the hypergraph of figure 1.6 are placed

"inside" the grid nodes of the grid from figure 1.8.
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Figure 1.11: Routing diagram using a typical FPGA routing model [BFRV92] (a)

and our abstracted routing model (b).
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Figure 1.12: Routing of the edges of a square in a 3 x 3 grid with 2 parallel channels.
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Figure 1.13: Routing of the 8-to-4 Daisy Chain Concentrator in the 10 x 18 grid with

3 parallel channels: The edges from the hypergraph of figure 1.6 are assigned to grid

edges from figure 1.8 such that the original hypergraph connectivity is maintained.
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Given that a the placement assigns hypergraph nodes to grid nodes, a routing

assigns hypergraph edges to sequences of grid edges that connect the placed hyper­

graph nodes. Formally, we say that in a graph G(V, E), two nodes u, v are connected

if either {u, v} E E, or anode connected to u is connected to v. Later in section

1.4.2 and chapter 2, we will see that there are many possible constraints put on

finding a routing depending on which technology underlies it, such as timing con­

straints or segmentability of channels. However, the common denominator of all

routing problems of this kind requires that a routing routes the hypergraph edges

through the grid such that the congestion does not exceed the number of parallel

channels in the grid.

As a notational aid, we say that if fis a function, and 8 is a subset of the domain

of f, then f(8) is the set of values mapped by applying f to the elements in 8.

Definition 5 Routing

Given a hypergraph H(V, E), a grid G(Va, Ea ) with k parallel channels, and a

placement fv, then a routing fE maps every edge e E E to a collection of grid edges

that connects the members of e such that the congestion does not exceed k:

Ve E E fE(e) ç Ea and,

Ve E EVu,vEe fv(u) and fv(v) are connected in (Va,fde)) and,

max I{e : ea E fE(e)} 1::; k.
eaEEa

The left-hand side of the last inequality is a formaI definition of the congestion

of a routing (= congestion of an embedding), i.e., congestion(fE) maxeaEEa I{e :

ea E fE(e)}l·

For illustration purposes, we use an abstracted diagram of a typical FPGA rout­

ing model [BFRV92]. Abstracted and original diagrams for a routed edge are com­

pared in figure 1.11. The abstracted diagram exhibits no routing restrictions beyond

those of definition 5 unlike a typical FPGA model, which is more restrictive. Fig­

ure 1.12 shows such an abstracted diagram of a routing of the edges of the square

previously placed in figure 1.9. The complete routing of the 8-to-4 Daisy Chain

Concentrator in the 10 x 18 grid with 3 parallel channels is illustrated in figure 1.13.
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The edges from the hypergraph of figure 1.6 are assigned to grid edges from figure

1.8 such that the original hypergraph connectivity is maintained.

Optimization problems such as the ones related to embeddings are often phrased

as decision problems that ask whether problems can be solved given a fixed amount

of resources, e.g. channels, wire, etc., rather than asking for the minimum amount

of resources required. Many of these problems are considered particularly difficult

and classified as NP-complete.

1.4.1 NP-Completeness

•

A decision problem that is NP-complete is a difficult problem, whose solution can be

easily verified if it can be found. In the context of NP-completeness, the adjectives

"easy" and "efficient" mean "solvable in polynomial time, i.e., time proportional

to a polynomial of the input size." Adjectives "hard" and "difficult" suggest that

superpolynomial time is required.

NP stands for "non-deterministic, polynomial time." Intuitively, this means a

problem in NP can be solved in polynomial time if you happen to guess the right

answer. If a problem in NP is also NP-complete, it means that every other NP­

complete problem can be transformed into it via a polynomial-time transformation.

Thus if an efficient algorithm can be found for one NP-complete problem, an efficient

algorithm is found for every NP-complete problem. Unfortunately, nobody has ever

discovered a polynomial-time algorithm for any NP-complete problem. Rence, we

require superpolynomial time to solve an NP-complete problem. Problems that

are not necessarily NP-complete but proven to be at least as difficult to solve are

called NP-hard. An in-depth treatment of NP-completeness and a comprehensive

collection of known NP-complete problems can be found in [GJ79].

Knowing that a problem is NP-complete generally means that it is futile to look

for an exact solution. Since many NP-complete problems are important, science has

to give way to art, and heuristics have to be employed in order to find approximate

solutions.
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Figure 1.14: Channel assignment of a square into a 1-D grid.

1.4.2 Minimize Channels: Edge to Channel Assignment

Our definition of a routing, definition 5, purposely omitted the assignment of routed

edges to specifie channels. A channel is a logical entity which can correspond, for

example, to a time slot in time division multiplexing (TDM) communication, a

wavelength in wave division multiplexing (WDM), a frequency band in broadband

communication, or space allotted for a wire track on a chip. Figure 1.14 shows a

one-dimensional grid with three parallel channels hosting a square.

We note that channel 1 carries two edges, one between nodes A and B, and one

between nodes C and D. This means the channel is segmentable, i.e., grid edges

belonging to the same channel may host different hypergraph edges. In an environ­

ment where channels are not segmentable, every edge requires an entire channel for

itself and the channel assignment problem becomes trivial. We will examine only

segmentable channels.

Given a placement and a routing as defined above, we wish to minimize the

number of channels used. Preferably, we only want to use a number of channels

equal to the congestion, i.e., the maximum number of edges routed along a grid

edge. The example in figure 1.14 uses three parallel channels even though at most

two edges are routed in parallel through any given grid edge. We define this problem:

Problem 1 Channel Minimization

Instance: A hypergraph H (V, E), a grid with k parallel channels, a placement

Jv, and a routing JE,

17
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Figure 1.15: Circular one-dimensional grid with 3 parallel channels.

Question: Does there exist a channel assignment f c : E -t {l, ... ,k} such that

no two edges utilize the same grid edge and channel, i. e. ,

•

The simplest form of this problem occurs in an embedding of a hypergraph into

a one-dimensional grid. This form of the problem can be solved in time proportional

to the number of edges and nodes in the hypergraph by the Lejt-Edge Algorithm

[H871 , KP87]. Edges are simply routed starting with the first channel with the

leftmost edge. Then channel after channel are filled from left to right as tight

as possible. The resulting embedding requires exactly as many channels as the

maximum number of edges crossing a cut line between two nodes in the linear

arrangement [Gav77].

If, on the other hand there are additional, circular wrap-around edges that con­

nect the right-most and left-most grid nodes, then the Channel Minimization Prob­

lem becomes NP-complete (Arc Coloring) [GJMP80]. Figure 1.15 shows an example

of a one-dimensional circular grid hosting a square.

In such a circular grid, we have a choice for each edge to be routed. Due to the

circular node arrangement, we can start routing a hypergraph edge at any one of

its member nodes, and assign grid edges of a particular channel in, say, c10ckwise

direction starting at this node and spanning aIl other member nodes of the edge.

Thus, each routed hypergraph edge represents an arc of a circ1e. However, even if
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Figure 1.16: Channel assignment using the Left Edge Aigorithm for selected rows

and columns of the 8-to-4 Daisy Chain Concentrator in the 10 x 18 grid as embedded

in figure 1.13.

we choose the shortest possible arc for each edge, the problem of assigning channels

remains NP-complete (Chord Coloring) [GJMP80]. Tucker [Tuc75] showed that if

we are given the orientation of each edge, Le., clockwise or counter-clockwise, then

it is possible to efficiently find a channel assignment which is within a factor of two

of the minimum number of channels. If we are free to decide the edge orientation

in the circular embedding, we can always find a channel assignment which is within

a factor of two of the minimum number of channels: We simply ignore the wrap­

around edges and apply the Left-Edge Aigorithm.

For higher dimensional grids, the edge to channel assignment becomes a complex
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Figure 1.17: The square can be embedded using two channels (left) or four.

routing problem. Bee [BBG+97] for a brief overview of available techniques. How­

ever, often we can decompose the channel assignment problem into a collection of

grid lines, i.e., one-dimensional grids representing the rows and columns of the orig­

inal grid. In figure 1.16 we illustrate this decomposition of the channel assignment

problem for our 8-to-4 Daisy Chain Concentrator. The channels for the individ­

ual rows and columns are assigned independent of one-another using the Left Edge

Aigorithm.

1.4.3 Maximize Bandwidth: Minimum-Cut LinearjCircular

Arrangement

The available bandwidth in a network or circuit of a given topology can often be

maximized by making an effort to use only a minimum number of channels along any

grid edge, or across any horizontal or vertical cross-section. For example, consider

an embedding of a square into a one-dimensional grid. Figure 1.17 shows how the

square can be embedded using two channels or four channels. If the channels on

this grid were based on time-division multiplexing, for example, then the channels'

time slots could be twice as long in the two-channel embedding, thus doubling the

bandwidth. In such cases we wish to minimize the maximum congestion for any grid

edge, or the maximum cut width for any cross-section orthogonal to a particular grid
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Figure 1.18: Cut width in a 3 x 3 grid with one channel per edge.

dimension. The cut width is the cumulative congestion through the cross-section,

cf. figure 1.18.

Definition 6 Cut Width Cij

The cut width Cij(fE, E) of a routing fE of edges E in a grid G(Va, Ea) is the

number of times that routed edges cross a cross-section between coordinates points i

and i + 1 in dimension j ;1

congestion ({u, v})
{{u,v}:{u,V}EEa and uJ'=i and vj=i+1}

Thus, the problem definition cornes in two flavours: one for the grid edge con­

gestion, and one for the cut width across a grid cross section.

Problem 2 Minimum-Cut Grid Arrangement

Instance: A hypergraph H(V, E), a d-dimensional grid G(Va, Ea) with a number

of parallel channels, and a cut width k.

Question: Is there an embedding (Iv, JE) such that

(a) Minimum Congestion

•
congestion(IE) ::; k?

-------------
1 Notation: Uj is the j-th coordinate of U
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(b) Minimum Cross-Section

\i i E{l, ... ,d}, j E{l, . .. ,Nd

•

In its simplest form, the one-dimensional grid, both Minimum Congestion and

Minimum Cross-Section are identical. In the 1-D grid, an optimal routing JE is

implied by the placement Jv. This simpler problem is NP-complete and known for

graphs as Minimum-Cut Linear Arrangement [GJ79] and thus Minimum-Cut Grid

Arrangement is also NP-complete. For a linear grid arrangement, the maximum cut

width is also the minimum number of channels required [Gav77].

Heuristics for solving Minimum-Cut Linear Arrangements for hypergraphs exist

[CS87], and for special graphs, several polynomial-time algorithms have been found.

Chen and Lee [CL92] provide an algorithm that recognizes graphs with maximum

cut width 3 in linear time with respect to the number of nodes. Chao and Sha [CS92]

provide an algorithm that finds an approximation within a constant factor of the

optimum in linear time with respect to the number of edges for outerplanar graphs.

A more general problem called the Multicommodity Flow Problem is investigated in

[KP8T94] and used to find approximations to Minimum-Cut Linear Arrangement.

Klein et al. [KP8T94] show that anode ordering that approximates Minimum-Cut

Linear Arrangement, such that the maximum cut width is within a multiplicative

factor of O(1og N) of the optimal maximum cut, can be found in O(jEl 2 log lEI)

expected time.

Let us examine how Minimum-Cut Grid Arrangement affects our running exam­

pIe. Let us assume our 10 x 18 grid has a capacity of two parallel channels. Can

we still embed our 8-to-4 Daisy Chain Concentrator, i.e., is there an embedding

Uv, JE) such that congestionUE) :::; 2? If we look at the embedding in figure 1.13

on page 14 we note that sorne grid edges carry three hypergraph edges. However,

if we change the routing of the edges slightly using the same placement, we can re­

duce the maximum number of parallel channels to two. Figure 1.19 shows a routing

using at most two parallel channels. Thus, the answer to the question is "yes, two

parallel channels suffice." What is the answer if the grid has only one channel for

each edge? Can we still find an embedding Uv, JE) such that congestionUE) :::; 1?

Possibly. It is easy to see that the current placement does not permit such a routing.
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Figure 1.19: An embedding of the 8-to-4 Daisy Chain Concentrator into the 10 x 18

grid with two parallel channels.

23



• CHAPTER 1. INTRODUCTION

To see this, we just need to recognize, for example, that the number of hypergraph

edges spanning across the grid edges between columns 2 and 3 exceeds the number

of rows. However, the total number of grid edges, exceeds the cumulative grid edge

congestion: There are 332 grid edges and the routings shown in figures 1.13 and

1.19 have a cumulative grid edge congestion of Le congestion(e) = 309 and 304,

respectively. Thus, until proven otherwise, it may be possible that someone will find

a placement and routing that does not require more than one channel per edge.

The Minimum-Cut Grid Arrangement problem is not to be confused with a sim­

ilar important problem: Minimum-Cut Partitioning. Minimum-Cut Partitioning

splits the nodes of a graph into two or more balanced subsets such that the number

of edges connecting the subsets is minimized. Compared to Minimum-Cut Linear

Arrangement, Minimum-Cut Partitioning only minimizes the centre cut whereas

Minimum-Cut Linear Arrangement minimizes aIl cuts. Still, Minimum-Cut Parti­

tioning is NP-complete, cf. Max-Cut [GJ79].

The first widely used fast algorithm to approximate Minimum-Cut Partition­

ing is due to Kernighan and Lin [KL70]. Currently, the partitioner that generally

produces the the smallest cut widths among the fast, near-linear time, partitioners

is hMetis [KAKS97]. Minimum-Cut Partitioning plays an important role in parti­

tioning placement, a dass of approximate solutions to Shortest Total Distance, cf.

sections 1.4.4 and 3.3.

1.4.4 Minimize Latency: Shortest (Total) Distance

This problem deals with minimizing the propagation delay, or latency, of signaIs

between nodes. The doser the nodes of an edge are placed in the grid, the shorter

the propagation delay. Thus, we may want to find an embedding that minimizes the

maximum distance between two neighbours. First, we define the distance between

two nodes, and then the diameter of a graph.

•
Definition 7 distance

The distance between two nodes u and v in a set of edges E is the cardinality of the

smallest subset of E in which u and v are connected.
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The distance may be thought of as the number of "hops" over edges separating

u and v, or the length of the shortest path between u and v as measured in edges.

The diameter is the maximum of all distances:

Definition 8 diameter

The diameter(V, E) oJ a graph G(V, E) is the maximum distance between any two

nodes.

Using this definition, we can define the problem Shortest Distance as the search

for an embedding with a bound on the diameter of the subgraphs induced by each

routed hypergraph edge:

Prohlem 3 Shortest Distance

Instance: A hypergraph H(V, E), a grid G, and a distance k.

Question: Does there exist an embedding Uv, JE) such that

'VeEE diameterUV(e),JE(E)) :s; k?

In the absence of any constraints on routing JE and given sufficient parallel

channels, one can always use column routing [Lei92] where the distance between

placed nodes is simply the Manhattan distance between the nodes. Thus the em­

bedding problem reduces to a placement problem. In a one-dimensional grid, this

is equivalent to the NP-complete problem Bandwidth [GJ79].

A related problem deals with the reduction of the average separation of nodes in

the grid embedding. The problem has two flavours.

Prohlem 4 Shortest Total Distance

Instance: A hypergraph H(V, E), a grid G, and a distance k.

Question: Does there exist an embedding Uv, JE) such that

(a) Latency

L diameter(fv(e) , IE(e)) < k?
eEE

•
(h) Wire Length

L IJE(e)1 < k?
eEE

(1.1)
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Figure 1.20: Difference between wire length and diameter for edge {A, E, C, D}.

Problem 4a asks to minimize the average delay, or lateney, for each net assuming

that signal delay is proportional to the distance travelled. Problem 4b, on the other

hand, asks to reduce the average length of a net without specifie regard to the

maximum distance between any of the edges' nodes. Figure 1.20 illustrates this

difference.

In one dimension, the routing follows from the placement and problems 4a and

4b become identical. This one-dimensional version is the NP-complete problem

Optimal Linear Arrangement [GJ79] extended to hypergraphs. Optimal Linear Ar­

rangement is a classic problem often used to reduce the totallength of wire required

to interconnect circuit components in a linear arrangement. Bhasker and 8ahni

[B887] provide an overview.

In two or more dimensions, a routing to satisfy 4a is still easily derived from

a placement by connecting aIl pairs of nodes in one hypergraph edge using column

routing. Unfortunately, for 4b, the routing does not follow easily from the placement.

To connect several points in a grid using a minimum of wire requires the computa­

tion of a Reetilinear Steiner Tree [Han66]. Finding a Reetilinear Steiner Tree is in

itself an NP-complete problem, cf. Geometrie Steiner Tree [GJ79]. Consequently,

approximations of the wire length are used during the search for a placement.

Wire-Iength placement according to problem 4b is of great importance in chip

manufacturing because wire length influences the size, and thus cost, of a chip.

Further, a good solution to 4b is normally also a good solution to 4a, and the

26



•

•

1.4. UNDERLYING COMBINATORIAL OPTIMIZATION PROBLEMS

combination of smaller chip size and shorter latency may allow a circuit to operate

at a higher speed.

The study of problem 4b is often referred to as VLSI2 placement or simply

placement. Chapters 2.2-4 discuss VLSI placement in detai1.

The routings for our running example, cf. figures 1.13 and 1.19 on pages 14 and

23, have a total wire length of L: IfEl = 309 and 304, respectively.

1.4.5 Minimize Routing: Straight Line on a Grid

For certain technologies, routing edges around corners in a grid may result in large

latency penalties at each bend as signaIs may have to be routed from one grid

dimension to another. In this case, it is desirable to embed aIl hypergraph neighbours

on a straight line, if possible.

Problem 5 Straight Line on a Grid

Instance: A hypergraph H(V, E), and a grid G(Ve , Ee ) with a number of par­

allel channels.

Question: 1s there a placement fv such that all nodes of an edge differ only in

one grid coordinate, i. e.,3

'ï/eEE::Ji 'ï/u,vEe 'ï/j=fi fv(u)j=fv(v)/?

This problem is known to be NP-complete for graph embeddings III a two­

dimensional grid. This restricted version is called Edge Embedding on a Grid [GJ79].

This problem is a true decision problem and not a disguised minimization problem.

For hypergraph topologies of a more-or-Iess random nature, such as an electronic

circuit, a solution is unlikely to exist. However, for sorne popular topologies, such

embeddings exist, cf. chapter 5, and Edge Embedding on a Grid can be solved for

these instances. Given a placement that solves Straight Line on a Grid, we can

always embed the edges in a straight line, provided there are sufficient channels. To

determine the number of channels required, we solve Channel Minimization from

section 1.4.2 for the subhypergraphs induced by each grid row or column.

2Very Large Scale Integration
3Notation: fV(U)i indicates the dimension-i grid coordinate of fv(u) .
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1.5 Focus Areas

The focus of the remaining chapters lies in the study and proposaI of fast solutions

to problem 4b Wire Length and 5 Straight Line on a Grid.

In chapter 2, we examine the technologies that provided sorne of the motivation

for researching the placement problem. Section 2.2 examines technologies for three­

dimensional VLSI and sets up a model such that solutions to problem 4b, Latency,

can be brought to bear. The remaining sections of chapter 2 describes how this

model can be extended to deal with other, more traditional problems, namely two­

dimensional VLSI placement and Field Programmable Gate Array (FPGA) layout,

as weIl as examples of opto-electronic systems.

Existing algorithms for wire-Iength placement are the focus of chapter 3. Almost

aIl deal with traditional two-dimensional VLSI as very little work has been done in

the emerging field of three-dimensional VLSI.

In chapter 4 we introduce a new algorithm, Gravity that exhibits significant

speed improvements over existing algorithms while producing competitive results.

Gravity's results are compared to existing two-dimensional algorithms and to a

generic partitioning placement method extended to three dimensions using a leading

partitioner.

FinaIly, we turn our attention to placement problem 5, Straight Line on a Grid.

We examine how sorne existing interconnection topologies can be placed into a grid

without bends. Then we present a method for embedding the newer star graph

topology efficiently without bends. Since its first publication in 1987 [AHK87), the

star graph has received a lot of attention because it exhibits important topological

parameters that are superior to established topologies such as the hypercube and

the torus.
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Chapter 2

Placement Model Motivation

In this chapter, we will take a doser look at the motivations leading to the placement

model. First, we revisit the generic d-dimensional grid model, which was introduced

in section 1.4. Then, we will examine several technologies from the fields of VLSI

(3-D VLSI, 2-D VLSI, and FPGAs) and optics. For each technology, we explain

how their physical implementations are modelled by the generic grid model.

2.1 d-Dimensional Grid Madel

We recall definition 3 from page 8:

Definition 3 Grid

A n NI x ... X Nd grid G (V, E) with k parallel channels is a graph whose nodes are

the points in the d-dimensional integer space {O, ... ,NI - 1} x ... x {O, ... ,Nd - 1},

and whose edges connect nodes that are separated by a euclidean distance of 1. The

multiplicity m(e), i.e., the number of parallel edges, of each edge e is k.

•
V

E

m

{V: v E Zd andV'iE{l, ... ,dl O:S; Vi < Ni}' and

{{u,v}: u,v E V and lu - vi = 1}, and

E-'t{k}.
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This d-dimensional grid model captures important layout characteristics of the

physical implementations of various technologies with respect to the placement prob­

lem. In the following sections we will explain in more detail how this grid model

is derived from several technologies: 3-D and 2-D VLSI, FPGAs, and sorne optical

systems. This grid model also allows an extension of the presented research to other

technologies that favour grid-like structures.

All technologies modelled by this d-dimensional grid have three key features in

common: array-like shape of the overall implementation, square-like shape of the

individual elements within, and straight-line orthogonal orientation of interconnec­

tions.

All technologies favour a physical implementation in a rectangular area, volume,

or space-time region. Conventional 2-D VLSI houses an electronic circuit on a rect­

angular die made from silicon. 3-D VLSI is often implemented as an interconnected

stack of rectangular 2-D silicon dies, forming a rectangular box-like volume, and

an optical system like a photonic backplane (cf. section 2.5) is implemented as a

one-dimensional array, and can be conceptually extended into a two and three di­

mensional array structure. The one-, two- and three-dimensional array structures

may be reconfigured in real-time yielding an implementation in a rectangular four­

dimensional structure. In this dissertation we will primarily examine the two and

three dimensional case but we will make sorne remark on higher dimensions are the

opportunity arises.

•

Secondly, the elements interconnected in these rectangular structures are often

rectangular and of similar size. The circuit elements on a silicon die are usually

blocked together as rectangular cells. In programmable chips (FPGAs), all cells are

identical and in conventional VLSI, cells are often standardized. All cells are taken

from a library of cells and have the same height and vary in width only. In optical

systems, the nodes are typically identical, and their spacing dictated by their size

and required infrastructure. We will explore sorne of these implementations in more

detail in the remaining sections of this chapter. In order to simplify research in the

placement problem the individual elements are treated as being of identical unit

square or cube size.
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Finally, many implementations of these technologies favour rectangular intercon­

nections along horizontal and vertical lines. In 2-D VLSI, horizontal and vertical

wiring layers encourage rectangular interconnections. In 3-D VLSI, layers are typ­

ically connected by vertical metal or laser connections. FPGAs have horizontal

and vertical routing channels. The optical backplane developed in part at McGill

through a Network of Centres of Excellence program of the Government of Canada

[SH98] has parallel optical channels along a one-dimensional grid.

Together, these three reasons justify the abstraction of the various physical im­

plementations into a uniform grid as described in definition 3. Now, we will examine

in detail how the grid model can be derived independently from several technologies.

2.2 3-D VLSI

One approach for dealing with the ever increasing complexity of integrated circuits is

to extend conventional two-dimensional VLSI technology into the third dimension.

Three dimensional chips are more compact and thus have shorter interconnection

delays due to shorter connections. Such a reduction in interconnection length for

3-D VLSI has been predicted in [VMVC97] and [MM98], and in [OS99] we presented

sorne experimental results that showed that larger benchmark circuits exhibited a

reduction of interconnection length of over 50% in three dimensions as compared to

a two-dimensional chip, cf. chapter 4.

Implementations of 3-D VLSI vary considerably from theoretical [LR86, Ohm98,

RT86, TW95] to practical [CV98, DNVM+94, LMV+98]. However, these implemen­

tations have in common that several 2-D chip layers are stacked and interconnected

vertically by either metal vias or by optics. One of the more advanced implementa­

tions of 3-D VLSI [LMV+98] cornes very close to the homogeneous 3-D grid model

(cf. definition 3) which we use in this dissertation, and which has been used in

previous 3-D VLSI papers [LR86, Ohm98, SvC97].

Leeser et al.'s three dimensional chip [LMV+98] consists of a stack of two di­

mensional programmable logic dies (cf. section 2.4). These layers of dies are inter­

connected with metal micro vias in the vertical dimension. This architecture, which

the authors call Rothko, consists of layers of two-dimensional field-programmable
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• CHAPTER 2. PLACEMENT MODEL MOTIYATION

Figure 2.1: Routing-and-Iogic block interconnectivity in the 3-D Rothko [LMY+98]

architecture (routing channels between columns not shown).

gate array (FPGA) layers. The elements of a layer are routing-and-Iogic blocks.

These routing-and-Iogic blocks are arranged in a grid fashion and interconnected to

routing channels to the left and right, to their neighbouring blocks to the left and

right, their diagonal neighbours, as weIl as the neighbours in the layers above and

below. Figure 2.1 shows the interconnectivity of a 3-D Rothko chip.

As mentioned above, the vertical inter-layer connections are implemented as

metal vias. Such vias are metal connections through holes in the die. The diameter

of these vias is 6,um. In comparison, Rothko has a 1.2,um feature size. This means

a via is only about five times the size of a transistor. Consequently, inter-layer

connections are possible for aH routing blocks. Further, Leeser et al. [LMY+98]

did not notice a difference in signal delay between diagonal intra-Iayer and vertical

inter-layer connections.

•
More interesting than the detailed workings of the Rothko chip is that this tech­

nology demonstrates that dense vertical inter-layer connectivity is possible with cur­

rent technology. This lends credence to the homogeneous grid model which has been

used for 3-D YLSI as early as 1986 [LR86], and which we use in this dissertation,

cf. definition 3 on page 8.
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Figure 2.2: Simplified illustration of applying a layer of material to a silicon wafer:

These steps are repeated many times for different materials.

2.3 2-D VLSI

Today, the vast majority of integrated circuits are made from, and on, rectangu­

lar slices of silicon. First, circular slices of purified silicon are eut from cylindrical

silicon crystals. These slices, which are called wafers, are up to 30cm in diameter.

Wafers are subdivided into dozens or hundreds of usually rectangular areas called

dies. The integrated circuits are created on the dies in repeated photolithographie

steps. The silicon is doped by depositing ions that alter the electrical properties

of the silicon. Figure 2.2 illustrates this photolithographie doping step. The area

to be doped is determined by the layer mask. In similar photolithographie steps,

using chemical vapor deposition and metal sputtering, layers of insulators and metal

interconnections are deposited. These insulator and metallayers complete the elec­

tronic circuit components, such as transistors, and their interconnections. After the

circuits have been created, the wafer is eut into its individual dies, and the dies are

packaged in ceramic or plastic packages with metal pins. During the fabrication

process, flaws may be introduced into the circuit due to impurities in the silicon, or

dust particles in the air, for instance. These damaged dies are discarded lowering

the yield of the process. The yield is the number of good dies over the total number

of manufactured dies. Yields vary from a few percent for new technologies to close

to 100% for mature technologies. The finished product is often called a chip. Before

a chip can be mass-produced, it has to undergo several cycles of functional testing
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Wafer Die

•

Figure 2.3: A grid of base cells on a silicon die for a channelless sea-of-gates array.

and improvement by the designer.

When chip designers design circuits from scratch, they could treat the silicon

die as a blank piece of paper and create a circuit on it by manually defining all

the necessary layers. This method would be the equivalent to a software designer

writing a program in machine language. There may be a place for this approach,

but usually it is faster and more reliable to take a more high-Ievel approach.

Two popular high level design approaches are sea-of-gates and standard cell

designs.

In channelless sea-of-gates chips, the chip die is pre-populated with a grid of

generic base cells, cf. figure 2.3. The functionality of these base cells, as well as

their interconnectivity, is defined by a few top metal layers. The chip designer

can only customize these top layers. This design process reduces design time and

manufacturing costs as wafers of dies with grids of base cells can be manufactured

in advance and in bulk. The responsibility that remains with the chip designer is

the placement of circuit components ("Which base cell should house which circuit

element?") and the routing of the interconnections. In terms of the terminology

used in this dissertation, sea-of-gates designers perform the following three steps.

(1) Decide on a hypergraph, cf. definition 2 on page 4. The designer chooses a

circuit and, by a similar transformation as described for the 8-to-4 Daisy Chain

Concentrator circuit in section 1.4, a hypergraph is defined. (2) Choose a placement,

cf. definition 4 on page 11, of hypergraph nodes into the grid, cf. definition 3. (3)

Find a routing, cf. definition 5 on page 15, of edges in the grid.
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Figure 2.4: Standard cell placement on a die.

Another chip design method that uses standardized cells is standard cell design.

Unlike a sea-of-gates dies, standard cells are not pre-manufactured. Standard cells

exist in libraries for computer aided design tools. Standard cells are rectangular and

have the same "height" on a die. However, cells in a standard cell library differ in

functionality and "width". In the finished design, the standard cells are placed in

rows onto the die. Between rows, space is left for horizontal wire tracks. Vertical

connections cross standard cells at designated points called "feed-throughs." Figure

2.4 shows an example of a standard cell placement before routing of the metal

interconnections. Even though the x-coordinate of a cell in its row is no longer an

integer, the hope is that, with smaIl modifications, a placement algorithm that is

good for pure grid designs will also produce good solutions for standard cell designs.

In this section, we have overlooked another wide-spread design method, namely

programmable chips. The functionality of a programmable chip is only defined after

the chip has been manufactured. Programmable chips are described in the following

section.

2.4 FPGA

Field-programmable gate arrays (FPGAs) form a distinct and important class of

integrated circuits. The functionality of an FPGA is programmed by the customer

in the "field". Thus, FPGAs are manufactured in bulk as standard parts.

FPGA technology varies, but sorne basic features are common to aIl FPGAs. The

35



• CHAPTER 2. PLACEMENT MODEL MOTIVATION
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Figure 2.5: Typical FPGA topology.

die of an FPGA holds a grid of generic logic cells, the gate array, similar to base

cells in the sea-of-gates architecture discussed in section 2.3. Further, horizontal and

vertical tracks are set aside for interconnection routing. The customer can program

the interconnections within the generic logic cells and on the routing tracks in order

to define the functionality and interconnection of those logic cells. A simplified

typicallayout structure on an FPGA die is shown in figure 2.5.

There are three dominant kinds of technologies for these programmable inter­

connections. These technologies vary from permanent one-time programming, over

erasable semi-permanent, to temporary programming.

The most permanent technology uses so called anti-fuses to make permanent

connections. When a programming current is forced through an anti-fuse, the gen­

erated heat causes a chemical reaction in the anti-fuse, which establishes the desired

connection.

A semi-permanent method for establishing FPGA (dis)connections is provided

through electrically programmable read-only memory (EPROM) technology. With

this technology, a connection through a programmable transistor can be severed

by increasing the transistor's activation voltage with the help of a programming

voltage. Such connections remain severed until the FPGAs programming is erased

by ultra-violet light or by an erasing-voltage.

The most temporary FPGA programming technology uses static random-access

memory (SRAM) technology to program connections. Each connection has a static

state memory that remembers if a connection is open or closed. This state infor­

mation must be downloaded into the FPGA at power-up. An SRAM based FPGA
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Figure 2.6: Linear array processors with pipelined buses.

maintains its programming only as long as it is supplied with power.

An in-depth treatment of FPGA technologies can be found in [Smi97].

Due to the additional space required for the programming infrastructure, and

the generic nature of the cells, FPGAs contain less circuit elements then the custom

made chips described in section 2.3. In volume, this makes FPGAs more expensive

than conventional chips. Thus, FPGAs are used for prototyping, or when only small

quantities of a particular circuit are needed, or when there is no time to wait for the

fabrication of a custom-made chip.

As with the VLSI technologies described in the previous section, FPGA designers

need to decide only on a circuit (=hypergraph), on the placement of the circuit

elements in the FPGA grid, and on the routing of the interconnections (=edges).

2.5 Optical Systems

Besides integrated circuits, other technologies also benefit from good grid placement

methodologies. A few newer technologies for which grid-like implementations are

proposed are in the field of opties. In particular, [Dow92, GMH+91, SH98] propose

multi-dimensional grid structures.

In [GMH+91] Guo et al. introduce array processors with pipelined buses. A one

dimensional array of this kind features n processors in a row. All ofthese processors

are connected to two directional optical buses of opposite direction. Optical signaIs

carrying packets of bits originating from upstream processors can be received, and

signaIs can be sent to downstream nodes. Figure 2.6 shows a schematic for n pro-
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Figure 2.7: 5 x 5 array processors of pipelined buses.

•

cessors connected to up- and downstream buses. These buses are caUed "pipelined

buses" because several optical signaIs from different processors can be on the bus

at the same time in pipeline fashion. Guo et al. [GMH+91] caU the maximum time

required for a packet to travel from node 0 to node n - 1 on the bus the bus cycle.

The nodes on a bus are synchronized to simultaneously transmit packets at the be­

ginning of each bus cycle. Thus, a bus cycle represents one hop of a packet from any

node on the bus to any other node. Effectively, there exists one non-segmentable

channel per node.

Despite sorne performance limitations of Guo et al.'s [GMH+91] proposed archi­

tecture, as noted in [Szy95], the concept of "bus cycle" has an interesting implication

in higher dimensions. Guo et al. [GMH+91] propose an extension of their architec­

ture to two dimensions by forming rows and columns of one-dimensional buses. In
this case, every processor is connected to two uni-directional row buses and two
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Figure 2.8: A 3 x 3 grid of communication nodes is connected by star couplers along

every grid line.

uni-directional column buses. Figure 2.7 shows the schematic of four-by-four array

processors on pipelined buses. In this two-dimensional arrangement, source and

destination nodes do not necessarily share a common row or column bus. In this

case, transmission of one packet requires at least two bus cycles since the packet

has to traverse a row and a column bus. However, when source and destination

nodes share a row or column, transmission requires only one bus cycle. With this

consideration, Guo et al. [GMH+91] suggest that a bendless embedding of a network

topology would be beneficial as synchronized transmission of packets between neigh­

bours would require only one bus cycle as opposed to two or more in an embedding

with bends. This problem is modelled by a grid in which the array processors form

the grid nodes, a hypergraph which describes the topology to be embedded, and by

the placement problem Straight Line on a Grid, cf. problem 5 on page 27. Guo et al.

[GMH+91] examine bendless embeddings of binary trees and hypercubes. We will

consider bendless embeddings in more detail in chapter 5. This architecture of ar­

rays with pipelined buses is described and analysed in greater detail by Akl [Ak197]

and Pavel and Akl [PA96], where bounds on time and area for certain applications

are presented.

In [Dow92], Patrick Dowd introduces a different grid-like optical architecture
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Figure 2.9: Schematic of an intelligent optical network as described in [SH98]
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for two and three dimensions. In this architecture, aIl communication nodes on

the same grid Hne are interconnected by optical fibres via a star coupler. A star

coupler is a passive device that physicaIly fuses n input fibres and broadcasts the

input signaIs to n output fibres. Thus, a signal sent by any of the grid nodes is

received simultaneously by aIl other nodes on the same grid Hne. Figure 2.8 shows

a two-dimensional three-by-three grid with star couplers connecting aIl nodes along

the same row or column. Multiple paraIlel channels are achieved for each grid Hne

by using multiple wavelengths (WDM) and time division multiplexing (TDM).

When source and destination nodes are on the same grid Hne, i.e., connected by

a star coupler, transmission of a packet requires one hop. If source and destination

nodes do not share a common grid line, packet transmission requires at least two

hops. Thus Dowd points out the advantages of finding bendless embeddings in

which aIl neighbour to neighbour transmissions can be completed in one hop. For

this purpose, Dowd examines sorne bendless hypercube embeddings.

In [SH98], Szymanski and Hinton describe the architecture of an optical network

and discuss its extensions to two and three dimensions. The one-dimensional version

of this network, prototypes of which have been built, features printed circuit boards

aligned in an optical support structure. The printed circuit boards communicate
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Figure 2.10: Operation of smart pixels.

with their neighbouring boards via thousands of parallei optical channels. Figure

2.9 shows a simplified schematic of the physical arrangement.

The thousands of parallei optical channels that interconnect the printed circuit

boards are controlled by an array of smart pixels connected to each board. These

smart pixels can relay an optical signal from one printed circuit board to the next, cf.

figure 2.10a. Alternatively, the smart pixels can extract an optical signal and convert

it into an electronic signal, cf. 2.10b, or they can convert an electronic signal from

the printed circuit board into an optical signal and inject it into the optical channel

in the backplane, cf. 2.10c. Combinations of relaying and extraction, cf. 2.10d, or

extraction of one signal and injection of another are also possible, cf. 2.10e.

Besides being able to implement hundreds or thousands of parallei channels,

a further benefit of using smart pixel technology is that the optical channels are

segmentable, Le., different signaIs can use the same channel as long as they do not

use overlapping segments between boards. For instance, in figure 2.10, the signal

relayed by board 1 to board 2, and the signaIs originating from boards 3 and 5,

respectively, aIl use the same optical channel over different segments. The resulting

topology of this one-dimensional backplane thus resembles a one-dimensional grid

with multiple channels, cf. definition 3, similar to the illustration in figure 1.14

on page 17. In contrast, the proposed architectures of Guo et al. [GMH+91], and
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Figure 2.11: Best known minimum-cut embedding of a 120-node star graph.
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Dowd [Dow92] do not allow for segmentable channels and thus impose additional

routing constraints. For Szymanski and Hinton's architecture, the problems Channel

Minimization, cf. problem 1 on page 17, and Minimum-Cut Grid Arrangement, cf.

problem 2 on page 21, are of particular interest. The channel assignment that

solves Channel Minimization can be computed in linear time using the Left Edge

Algorithm, cf. section 1.4.2. The Minimum-Cut problem has been investigated for

selected interconnection topologies in [Obe95, SH98]. Figure 2.11, for example,

shows the best known embedding of a 120-node star graph. More general solutions

were addressed in section 1.4.3.

Szymanski and Hinton extend this architecture to two and three dimensions by

arranging rows, columns, and layers of printed circuit boards, and connecting them

to one dimensional optical backplanes in each dimension. Despite the differences

with respect to Guo et al.'s [GMH+91] and Dowd's [Dow92] architectures, the optical

backplane also benefits from bendless embeddings. In a bendless embedding, the
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routing is simplified since no provisions have to be made for routing a signal from one

one-dimensional backplane to another. In addition, any possible latency penalties

resulting from these backplane transitions are avoided with a bendless embedding.

In this chapter, we have reviewed several technologies from the fields of VLSI

and optics. We have shown how aIl these technologies are modelled by our grid and

embedding definitions from chapter 1. In the remaining chapters, we will examine

sorne methodologies for solving the Wire-Length and Straight-Line problems (cf.
problems 4b and 5). Chapter 3 takes a look at previous placement algorithms for

the Wire-Length problem. In chapter 4, we introduce a new placement algorithm

that finds competitive solutions to the Wire-Length problem in a fraction of the

time of previous algorithms. FinaIly, in chapter 5, we look at sorne embeddings of

popular interconnection topologies without bends, and we show how the star graph

can be embedded efficiently without bends into grids.
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Chapter 3

Existing Wire-Length Placement

Approaches

This chapter provides an overview of the extensive research dedicated to the wire­

length placement problem, cf. problem 4b. As briefly mentioned in section 1.2, the

wire-length minimization problem is an important problem because it translates di­

rectly into manufacturing cost savings in VLSI. Shorter interconnections require less

space, and have less capacitance and inductance. Reducing the length of intercon­

nections thus shrinks expensive chip dies and speeds up circuitry, cf. [SM91].

Before we look at various placement methodologies for arbitrary circuits (=hy­

pergraphs), we will explore in section 3.1 what sorne of the analytical bounds for

minimum wire-length placements are. Afterward, we turn our focus to the research

in competing placement methodologies. In particular, we will study four classes

of approaches: placement using simulated annealing, partitioning placement, force­

based placement, and quadratic placement. Before we close this chapter with a sum­

mary, we include two short sections on genetic placement and a look at placement

algorithms in three dimensions.

3.1 Analytical Estimates

In light of the cost savings and performance gains associated with a reduced total

connection length, it would be desirable to have a reasonably tight upper bound
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Figure 3.1: Rent's Rule

on the minimum wire length required to place-and-route a circuit. If such a bound

could be computed in a reasonable amount of time for a given circuit, we could then

compare how weIl our placement algorithm performed and perhaps try harder to

improve the placement.

The only useful bound for general VLSI placement is due to Donath [Don79].

Donath derived an upper bound on the minimum total wire length. This upper

bound is of closed form and based on an empirical rule called Rent's Rule [LR71].

In a graph used to represent an electronic circuit, Rent's Rule relates the number of

edges leaving a partition of the graph to the number of nodes in a partition. This

rule is not universally applicable to all graphs and should be treated as a rule of

thumb for electronic circuits.

Definition 9 Rent's Rule (empirical rule for electronic circuits)

where P is the number of edges leaving a subgraph of a circuit graph, d is the average

degree of a node in the graph, N is the number of nodes in the subgraph, and r is

the empirical Rent exponent between 0 and 1.

Figure 3.1 illustrates Rent's Rule. Rent's Rule was significant because it was

observed to hold recursively for hierarchical subdivisions of circuit graphs. However,

Rent's Rule does not hold for many degenerate graphs, as, for example, the complete

graph. For electronic circuits, the Rent exponent r usually ranges from 0.5 to 1.

Based on Rent's Rule, Donath developed an upper bound on the minimum wire

length of a placement in a square grid assuming a recursive partitioning that obeys
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Figure 3.2: Virtual placement procedure employed by Donath. [Don79]

Rent's Rule. These partitions are then virtually assigned to corresponding partitions

of a square grid which represents the chip die. Figure 3.2 illustrates this virtual

placement procedure. This placement is virtual and not real because the actual

circuit is not known. All that is known about the circuit is its size, and that it

obeys Rent's Rule with a Rent exponent r. Based on this virtual placement and

the Rent exponent, Donath derived the expected interconnection lengths and found

an estimate for the average wire length R of an interconnection. For r > 1/2, the

average interconnection length in a VN x VN grid is

(3.1)

While 1/2 < r < 1 and as N becomes large, the terms Nr-3/2 and Nr-l become

zero. Thus, asymptotically, this estimate approaches

14 1 - 4r - 1
1

R ~ N r -2
9 4r-~ - 1

rv Nr-~.

(3.2)

(3.3)

•

This estimate can be used as an upper bound on the minimum wire length

required to place-and-route a circuit. Unfortunately, this bound is exponentially

sensitive to the empirical Rent exponent r. In order to measure r, the circuit has to

be recursively partitioned. But such a measurement of r is essentially equivalent to

performing a partitioning placement, cf. section 3.3. Donath acknowledged that an

actual placement would normally produce a shorter wire length, and thus produce
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Figure 3.3: Virtual placement according to Donath (left) and Stroobandt and van

Campenhout (right).

a tighter bound. Nevertheless, Donath's bound may serve as a rule-of-thumb if the

Rent exponent is known, or can be estimated from experience.

Recently, Stroobandt and van Campenhout [SvC97] improved Donath's estimate.

When computing average interconnection lengths between circuit elements of neigh­

bouring virtual partitions, Donath assumed that these elements would be uniformly

distributed over the square area assigned to them. Stroobandt and van Campenhout

made the assumption that a good placer could always place these elements close to

the border of their assigned areas. Figure 3.3 illustrates this difference. Although

this assumption is not always justified, it lead Stroobandt and van Campenhout

to arrive at an estimate that is closer to wire lengths that have been obtained ex­

perimentally using placement algorithms. Stroobandt and van Campenhout also

extended their estimates to three dimensional VLSI. However, for lack of a 3-D

placement algorithm, they where unable to compare their results to experimental

values.

3.2 Simulated Annealing

One of the most powerful methods for VLSI placement is placement by simulated

annealing [KSS98, SS93, SS95, SS97]. Simulated annealing and its application to

VLSI was introduced by Kirkpatrick et al. in 1983 [KGV83]. This method mimics

a physical annealing process in which a liquid slowly freezes and becomes a solid

crystal. In this context, an unsolved optimization problem such as VLSI place­

ment, initially in a random state, represents the liquid. An optimal solution to this
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Figure 3.4: Simulated annealing mimics the formation of a crystal.

optimization problem corresponds to a perfect crystal. The simulated annealing

algorithm performs a simulated cooling of the "liquid" into a "crystal". The slower

the algorithm's cooling schedule, the more perfect the crystal, and thus the solution.

Figure 3.4 illustrates this principle.

At the heart of any simulated annealing algorithm are three elements: astate

generator, an energy function, and a cooling schedule. The state generator generates

(usually in a randomized fashion) a new state. In the VLSI placement problem,

each state represents a valid VLSI placement. Typically, but not necessarily, a new

state is generated by permuting the current state. The energy function computes

the "energy" of a state. The energy is a measure of the badness of a state. In

VLSI placement, the energy function would usually compute an estimate of the wire

length of the placement. Astate that forms an optimal solution has the lowest

possible energy. The cooling schedule determines how a number T which represents

the "temperature" is monotonically reduced over the run time of the simulated

annealing algorithm.

With these elements in place, a simulated annealing algorithm works as shown

in figure 3.5. First, the state generator F generates a new state S', usually by

permuting the current state S, cf. step 3. The change in energy !:lE is computed, cf.
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Input: initial state S,

final temperature TF.

Required subroutines:

cooling schedule {Ta, Tl, ... },

state generator FO,
energy function E O.

1: i +- 0

2: while Ti > TF do

3: S' = F(S) generate new state

4: M = E(S') - E(S) compute change in energy

5: if random([O, 1)) < e-till /T

6: S' = S accept S' with probability e-till / T

7: i +- i + 1

8: output S

Figure 3.5: Generic simulated annealing algorithm.

•

step 4, and the new state is accepted if the new energy is lower, or with probability

e-till / T , cf. steps 5 and 6. The process is repeated until the temperature Ti at step

i has dropped to the final temperature TF.

In 1985, Mitra et al. [MRSV85] proved that simulated annealing would settle in

an optimal solution state provided that the state transitions were weIl behaved and

cooling was slow enough. By "weIl behaved" state transitions, we mean that after

a start-up period, there must be a non-zero probability that any given state is the

current state at every iteration. Further, the cooling schedule has to maintain the

temperature roughly at 1/ log i at step i. We will look at Mitra et al. 's results in more

detaillater. First, we note that given any finite run time, simulated annealing cannot

be guaranteed toproduce an optimal result, even if we know that the algorithm will

settle into an optimal state eventuaIly. We know as a fact, that at time step i,

there is always a possibility the simulated annealing algorithm is in a suboptimal

state. This possibility results from the simulated annealing algorithm accepting a
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Figure 3.6: Possible linear placements of a simple circuit.

Figure 3.7: Markov chain of the possible placement with transition probabilities.

worse state with finite probability e-MJ/ T . However, it is comforting to know that

simulated annealing becomes more and more likely to be in an optimal state as

time progresses. This is a guarantee that the algorithm will not settle into a local

minimum.

For purposes of illustrating VLSI placement by simulated annealing and Mitra

et al.'s results, we consider a circuit with three elements A, B, and C. Ais connected

to B, and B is connected to C. A, B, and C are to be placed into a linear order such

that the wire length is minimized. Figure 3.6 shows the possible placements and

their energies, Le., wire lengths. As our state generator, we choose a function that

randomly exchanges the positions of two neighbouring elements. Figure 3.7 shows

the resulting Markov Chain at temperature T. A Markov Chain lists aH possible

states, and their transition probabilities.

We observe two relevant parameters of the Markov Chain. The first parameter

r is the radius, Le., the maximum distance to reach any state s' from astate s

that is not a maximum-energy state, and for which this maximum distance is a
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minimum: r = minsES-Smax maxs'ES distance(s, s'). In our example r = 3 is the

maximum number of hops to reach any state from the two non-maxima ABC and

CBA. The other parameter L is the maximum possible change in energy in astate

transition. In our example, L = 1. Mitra et al. proved that if the cooling schedule

sets temperature Ti at time step i at at least

'YTi =
log(i + c)
for any constant c > 1

and 'Y 2: rL,

(3.4)

then the simulated annealing algorithm will settle in an optimal state. For our

example, this results suggests a cooling schedule of

3
Ti = log(i + 2)" (3.5)

After k iterations, Mitra et al. showed that the probability of being in a subop­

timal state Psuboptimal is bounded by

Psuboptimal

where

O( kmi:(a,b) ) (3.6)
wr

a=-­
rrL-y'

w = minimum probability that any one neighbour state is

generated,
8

b = -, and
'Y

8 = (next to minimum energy) - (minimum energy).

In our example, 8 = 1, W = 1/2, r = 3, L = 1, 'Y = 3, thus b = 1/3, and

a = 1/157,464. Consequently, the probability that we are in a suboptimal state at

step k is bounded by

1
Psuboptimal = 0 (k 1/ 157,464)' (3.7)

•
Probably the most successful simulated annealing placement algorithm, called

Timberwolf, is due to 8un and 8echen [8893, 8895, 8897]. Timberwolf is basically an

implementation of the cell-swapping algorithm we employed in our example above
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(cf. figure 3.7), adapted for standard cell placement. Recall that in standard cell

placement, cells of varying widths are placed onto a chip into several rows. Tim­

berwolf sets a maximum row length at the start of the algorithm. Empirically,

they determined a length limit of 12% over the average row length (cumulative cell

length/rows) works well. For the state generation (step 3 of figure 3.5) at each it­

eration of Timberwolf, a random cell A is selected, and a second random location

is chosen. If cell A can be inserted at the new location without exceeding the new

row's length limit, it will be inserted. Otherwise, cell A and the cell B at the new

location are exchanged, provided neither row's length limit is violated. Then, the

change in wire length is estimated, and the new state is accepted if it has an im­

proved wire-Iength estimate, or with probability e-t:.E/T. Sun and Sechen further

improve the runtime of Timberwolf by inc1uding hierarchical c1ustering in which net­

lists of the circuit are contracted to form c1usters of cells. These c1usters can then

be used by Timberwolf to compute a coarse placement. After the coarse placement

has been computed, the c1usters are broken up and a fine placement is computed.

In all, there are three levels of hierarchy processed in different stages: plain cells

(stage 3), c1usters of cells (stage 2), and c1usters of c1usters of cells (stage 1). The

cooling schedule drops the temperature quickly during stage one to a constant level

at which it is held throughout stage 2, and then drops off during stage 3 to its final

level.

3.3 Recursive Partitioning

A generally much faster approach to VLSI placement is partitioning placement

[Bre77, SK88, GLC93, YW96]. The most basic partitioning placement algorithm

was pioneered by Breuer [Bre77]. In Breuer's algorithm, the circuit is recursively

partitioned into equal halves until only one node remains. At the same time, the

chip area is split in halves, alternately vertically and horizontally. When only one

circuit node remains, it is assigned to the corresponding piece of the chip area.

When partitioning the circuit, care is taken to cut only through a minimum number

of interconnections. Figure 3.8 illustrates this placement method.

Although minimum-cut partitioning is as NP-complete a problem as minimum
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Figure 3.9: Quadrisection placement (thicker lines indicate earlier cuts)

wire-length placement, cf. [GJ79] and section 1.4.3, several good and fast approxi­

mation algorithms exit, e.g. [FM82, DD96, KAKS97]. The utilization of fast par­

titioners ensures that a placement can be computed in a relatively short period of

time. Unlike simulated annealing where ultimately the optimal placement will be

found, a good wire-length placement is only a wanted by-product of a partitioning

placer. No direct effort is made to minimize the over-all wire length of the placement.

However, by performing minimum-cut partitioning, the most heavily interconnected

parts ofthe circuit are severed last, and those cells are placed most closely together.

Suaris and Kedem [SK88] suggested to recursively partition the circuit into four

subcircuits and simultaneously divide the chip area into four quadrants, cf. figure 3.9.
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Figure 3.10: Non-optimal partition placement: the placement on the right has longer

wire length, although both are results of perfect partitionings.

This placement method, called quadrisection, was expected to take advantage of the

two-dimensional nature of the placement problem. Traditional partitioning place­

ment can lead to non-optimal placements by ignoring the two dimensional nature

of a chip die, e.g. figure 3.10. Quadrisection can avoid these problems. Whether

quadrisection actually leads to better results is not clear. Suaris and Kedem did

not offer a direct comparison to traditional partitioning placement, and our own

tests have been inconclusive. However it is unlikely that quadrisection can perform

worse than traditional partitioning placement. Leeser et al. [LMV+98] mentioned

an extension of quadrisection to three dimensional VLSI where the chip volume was

recursively subdivided into octants. However, no details were published.

Partitioning placement draws its strength from the quality of the underlying par­

titioner. Most algorithms use an implementation based on a method by Kernighan

and Lin [KL70] which was later extended and refined by Fiduccia and Mattheyses

[FM82]. Fiduccia and Mattheyses' algorithm consists of several passes that run in

linear time, each. The algorithm starts with two random partitions. For each node a

gain, i.e., the improvement in cut width that would result in moving the node to the

other side, is computed. Then, the node with the highest gain and which does not

violate the arbitrarily preset balance criterion is moved to the other side and locked

in place. The gains of the other nodes are updated, and of the remaining nodes

the one with the highest gain is moved. This process continues until all nodes are

locked or until no more moves are possible because they would violate the balance

criterion. The partitioning with the smallest cut width during the previous run is
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Figure 3.11: One run in the Fiduccia-Mattheyses algorithm.

used as the starting point for the next run where all nodes are unlocked again. The

best partitioning is not likely to occur at the end of a run because, towards the

end, the remaining gains are likely to be negative. The runs continue until no more

improvement in cut width is achieved. Figure 3.11 illustrates one such run. In this

example, the balance criterion is assumed to impose a 3:2 or 2:3 distribution. If

there are ties during a step, they are arbitrarily broken, e.g. step 3, where two nodes

in the right partition have gain -1. Both, steps 2 and 3, have a cut width of 1, and

can be used as the starting point for the next run.

•
While the Fiduccia-Mattheyses algorithm is still the most well-known and used

partitioning algorithm, a plethora of refinements and alternate algorithms have been

published [AK93, AK94, AY95, CSZ94, CW91, CLS96, DD96, HK97, KAKS97,

Kri84, KK89, MD97, Saa95, San89, SK96, SSB98, YCL94]. Currently the best and

fastest efficient partitioning algorithm, called hMetis, was developed by Karypis et
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Figure 3.12: Clustering step in hMetis.

al. [KAK897]. hMetis combines c1ustering with the Fiduccia-Mattheyses method.

hMetis first generates a hierarchy of c1usters. At each level of the hierarchy, edges

(the nets in a circuit) are contracted such that each edge's member nodes form

a new c1uster node. Every node can only be part of one c1uster node. Figure

3.12 shows an example of such a c1ustering step. This is repeated several times to

form several levels of c1ustering until only a small hypergraph of c1usters remains.

This top-level hypergraph is randomly partitioned. Then, the top level c1ustering is

undone, and the resulting second level hypergraph is partitioned using the Fiduccia­

Mattheyses algorithm with the top level partition as a starting point. This procedure

is continued until the base level is reached and partitioned. Details and variations

of this implementation can be found in [KAK897, KK98b, KK98a]. We will use

hMetis in chapter 4 as the partitioner in a partitioning placer which we developed

for comparison purposes.

In their 1991 placement survey, 8hahookar and Mazumder [8M91] found parti­

tioning placement to produce results that are in solution quality "second only to

simulated annealing", but with substantially shorter run times. 8ince then, a c1ass

called force-directed placement has produced sorne good results which may even

exceed partitioning placement in quality. Force-directed placements are the focus of

the next section.

3.4 Force-Directed

Force-directed methods are inspired by attractive physical forces such as springs

or gravitation acting on circuit elements. Their implementations vary substantially

from analytical to iterative. In this section we will provide an overview of force-
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Figure 3.13: Node exchange in Goto's algorithm[Got81].

•

directed placement approaches.

Typically, a force such as one exerted by a spring attracts connected circuit

cells toward each other. A set of repelling forces usually prevents all cells from

occupying the same space. Implementation of the attractive and repulsive forces

and the computation of a placement varies a great deal. Goto [Got81], for instance,

places nodes on a grid as an initial solution and then iteratively exchanges nodes to

place them closer to the median of its neighbours, cf. figure 3.13. Thus, in Goto's

approach, the repulsive forces are implied by never allowing two cells to occupy the

same grid position. An approach by Tia and Liu [TL93] has attractive forces acting

on neighbours and, iteratively, nodes are moved proportionally to, and in direction

of, the force acting on them. Unlike Goto's method, overlaps are not avoided by

node-swapping, but rather by employing strong forces similar to Pauli's exclusion

principle in physics, which forbids two particles to occupy the same space. No two

nodes may inhabit the same grid positions. Consequently, as two nodes overlap, a

repulsive force forces them apart.

An early analytical approach by Antreich et al. [AJK82] solves the placement

problem by solving a system of equations describing the attractive and repulsive

forces between nodes. Antreich leaves the final positions assignment to an interactive

transformation from computed relative positions to grid positions on the chip.

Repulsive forces do not have to be intrinsic to each iteration. For instance, in

an iterative approach, disguised as a neural net, by Chang and Hsiao [CH93] nodes

are moved closer to their neighbours and then their positions are linearly scaled

to map within the range of the chip area without regrad to local node densities .
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uniform negative
charge density

uniform positive
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•

Figure 3.14: Spring-like and electrostatic field-like forces balance each other in the

Eisenmann-Johannes[EJ98] method.

A two-phased approach recently patented by Koford [Kof98] has contracting forces

iteratively drawing anode to the centre of its neighbours until a certain density

is reached. This contraction phase is followed by an expansion phase in which

cells repel each other. The contraction and expansion cycles are repeated until a

termination criterion is met.

Unlike Koford's method, an algorithm by Eisenmann and Johannes [EJ98] com­

bines contraction and expansion phases into one set of forces applied at the same

time. This algorithm also combines both iterative and analytical approaches. The

Eisenmann-Johannes algorithm claims the best results of any force-directed method

to date. For this reason, we shall investigate their force model in a little more detail.

As for many force-directed methods, the attractive forces in the Eisenmann­

Johannes method are spring like forces. Input/output pads, which are normally

placed near the perimeter of a die, and other fixed connections as well as density­

based repulsive forces counter the attractive forces. These repulsive forces mathe­

matically mimic a static electric field. Consider the cells having a positive charge

of equal charge density over all the cells' areas. Equivalently, imagine the empty

chip surface having a constant negative charge density. The resulting electrostatic

field determines the repulsive forces at any point on the chip. Figure 3.14 illustrates

this set-up of attractive spring and repulsive electric-field-like forces. As a note to

the physicist, we observe that the electrostatic-field-like forces acting on a cell do
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Figure 3.15: Force on centre node is minimised, wire length is not.

not vary with size, or "charge" of the cell. The force depends solely on the ceIl's

position, and thus the magnitude of the electrostatic field, and not the electrostatic

force.

The Eisenmann-Johannes algorithm works iteratively. For each iteration, a sys­

tem of equations is set-up and solved with the repulsive forces being held constant

for the current iteration. Next, the repulsive forces are updated, and the next itera­

tion is started. The iterations are stopped when the cells are sufficiently uniformly

distributed. After the end of the iterations, sorne cells may still overlap. For this

reason, and to force a standard ceIllayout, Eisenmann and Johannes employa fine­

grain post-placer called Domino [DJA94]. Domino uses a maximum-flow model to

rearrange the cells on a locallevel to form standard cell rows. The published stan­

dard cell placement results of the Eisenmann-Johannes method rival or better the

best published simulated annealing results.

Two problems are inherent to force-directed methods. Forces always act on pairs

of nodes and thus, in the past, hypergraph edges usually were converted into cliques

or similar constructs, thus altering the problem. Further, even an optimal solution to

a force-directed placement problem may exhibit non-optimal wire length, cf. figure

3.15.

The time complexity of force-directed methods varies. Implementations that

run in 8(p) time, where p is the number of pins, are conceivable, e.g. iterative

algorithms that use a constant number of iterations. NaturaIly, forcing linear run

time may have an adverse affect on the solution quality. Numerical solutions that
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Figure 3.16: Example solution to quadratic placement equations: Nodes duster in

the centre.

solve systems of linear equations will require superlinear time, i.e., w(N) where N is

the number of nodes, since the problem matrices will be sparse but cannot expected

to be band matrices.

Shahookar and Mazumder's survey [SM91] provides a good overview of force­

directed methods. Force-directed methods are well respected in the graph drawing

community[DBETT99] and a fundamental technique by Tutte [Tut60, Tut63] is also

at the heart of a successful hybrid placement method called quadratic placement.

3.5 Quadratic Placement

Quadratic placement [KSJA91, PBS98, TK91, TKH88, Vyg97, WWM82] tries to

combine the strengths of partitioning and force-based placement. A force-based

method similar to the barycentric graph drawing method [DBETT99, Tut60, Tut63]

is used to determine an initial relative placement of the nodes. These relative po­

sitions provide location information to create the initial partitions for a partitioner

which splits the nodes. Then the process is repeated recursively on the two halves.

This method is called quadratic placement because the force-based method solves

a system of linear equations that minimise the sum of the squares of the wire lengths

between nodes L:{a,b}EE(xa - Xb?' Incidentally, this is same for spring-like forces,

which are used in many force-based methods. Thus, force-directed methods could

also lay daim to the name "quadratic placement", but they never did. As in the
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barycentric graph drawing method, sorne nodes need to be fixed at the perimeter

of the chip area to prevent the trivial solution where aIl nodes have the same posi­

tion. In VLSI placement, the fixed nodes on the perimeter are called input/output

pads. Solving the system of equations typically leads to a solution with many nodes

c1ustered in the centre, cf. figure 3.16.

Using the squared wire-Iength objective allows for a linear system of equations to

solve for the solution where the net force on aIl nodes is zero. These linear equations

can be solved in w(N) and O(N3) time. Partitioning in its simplest form requires

8(N) time. Since we have log N levels of recursion, the overall time complexity of

quadratic placement is w(N log N).

Even though quadratic placement is estimated to be utilised by many commercial

tools, doubts have recently been raised about its efficiency. Alpert et al. [ACH+97]

examined quadratic placement and compared the improvement in partitioning due

to the numerical engine which solves the system of equations to a modern-generation

partitioner. They found that modern partitioners do not benefit from the relative

placement provided by a numerical engine. Since Alpert et al.'s paper was published,

a still faster and better partitioner has been developed [KAKS97]. Thus, pure

partitioning placers might outperform quadratic placement in the future.

3.6 Genetic Algorithms

•

A different c1ass of placement algorithms deserves a brief note. Genetic placement

algorithms are not as widely used as the other methodologies presented in this

chapter. Standard benchmark results are also not easily available. Nevertheless,

they form an interesting c1ass of algorithms.

In genetic placement algorithms, a pool of random placements is generated.

Probabilistically, placements with lower wire lengths are selected and paired to pro­

duce "offspring". These children are formed by crossing elements from both parents,

and applying random mutations. To maintain the pool size, older and/or placements

with long wire length are eliminated from the pool. After several generations, the

best placement may serve as the solution. Genetic algorithms are similar to simu­

lated annealing in that they work in a probabilistic way to evolve toward a better
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solution. However genetic algorithms work on many solutions simultaneously, while

simulated annealing constantly mutates only one solution. Thus, while genetic al­

gorithms model biological evolution, simulated annealing behaves like an imperfect

cloning factory. An overview of genetic VLSI design algorithms, including placement

algorithms, is provided by Mazumder and Rudnick [MR99].

3.7 3-D Placement Approaches

Now that technology has made three-dimensional VLSI possible, cf. section 2.2, re­

search into three-dimensional placement methods is emerging. Ohmura [Ohm98] has

published a first three-dimensional placement algorithm. Given N circuit elements

and M interconnections, Ohmura's algorithm runs in O(N . M) time. Iteratively,

the algorithm interchanges pairs of nodes that promise the best wire-length improve­

ment. Due to its high run-time complexity, it is unlikely Ohmura's algorithm will

perform weIl for large circuits which are expected to best benefit from 3-D VLSI.

The largest circuits the algorithm was tested on had 60 nodes, weIl short of the

hundreds of thousands of nodes present in more complex modern circuits.

In a more practical approach, Leeser et al. suggested to use a three dimensional

extension of quadrisection placement. As mentioned in section 3.3, this method

splits a chip's volume recursively into eight subsections while simultaneously parti­

tioning the circuit into eight subcircuits. However, no results were published.

Even though sorne theoretical work has been done on 3-D layouts [LR86] and

routing [TW95], no practical placement algorithms have been published. In the fol­

lowing chapter, we provide two such algorithms, one newly developed force-directed

placement algorithm for two and three dimensions, and a partition placement algo­

rithm for 3-D VLSI, which we use to compare the results of our force-based methods.

Sorne results of the latter algorithm were recently presented in [OS99].

3.8 Summary

Despite a wealth of published placement methods, it is difficult to pick a clear win­

ner. Two main reasons are absence of comparable wire-length results and differences
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in run-time complexity. Placement algorithms have been developed over many years

with the earliest ofthe modern placement methods originating in 1977 [Bre77). Over

the years, electronic circuits that needed to be placed grew exponentially following

Moore's Law and doubling in size approximately every 18 months. During the early

90s, a collection of benchmark circuits was made available under the ACM/SIGDA

umbrella [Brg93). The circuits in the suite range from a few hundred nodes to ap­

proximately 25,000 nodes. They used to be a valuable comparison platform through

the mid-nineties. However, comparing modern placement algorithms using these

smaller circuits is not effective for two reasons. Most modern algorithms yield the

same or similar solutions to these small problems, and algorithms performing well

on small circuits may have a large run-time or memory complexity that prevents

them from yielding good results for larger circuits. In order to deal with modern

circuit sizes, algorithms have to have a low run-time complexity which should not

be significantly above linear-time. Thus, modern algorithms may perform poorly

on smaller older circuits for which results have been published. However, the newer

algorithms may be of much higher quality for larger circuits. Placement algorithms

thus have to be compared as much qualitatively as quantitatively. It is clear, though,

that a modern placement algorithm has to exhibit closer to linear-time behaviour

than previous generation placers due to the ever increasing size of circuitry.
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Chapter 4

Gravity

In this chapter, we present a new placement technique for minimum wire-length

placements in two and three dimensions. Our placement method, which we named

Gravity (Global rescaling and attraction between vertices using iterative trans­

formation yields), is an iterative, force-directed technique which runs in linear time

with respect to the circuit size. Gravity's low run-time complexity and efficient

implementation make it a good placement algorithm for large circuits in three­

dimensional and traditional two-dimensional VLSI.

The chapter is organized as follows. Section 4.1 explains the details of the place­

ment algorithm in two dimensions. Section 4.2 provides a comparison of 2-D place­

ment results measured against a generic partitioning placer using a set of standard

benchmark circuits. We also include a comparison of standard cell placements for

circuits for which standard cell placement results have been published. Section 4.3

explains how Gravity is extended to produce three-dimensional placements, and in

section 4.4 we compare how our 3-D placement results compare against a generic

3-D partitioning placement algorithm.

4.1 Two Dimensional Aigorithm

The Gravity placement algorithm has four simple steps. The first step is a random

placement of nodes into the unit square. This is followed by a force-based iteration

that moves neighbouring nodes closer together. After a number of these iterations,
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Figure 4.1: Step 1: Random initial placement of nodes.

node positions are rescaled in step three to re-achieve an approximately even node

distribution. After a number of repetitions of steps two and three, step four deter­

mines the final placement through a linear-time recursive partitioning phase based

on the nodes' computed coordinates.

In this implementation, we will only consider circuit elements of uniform area.

We will point out how trivial modifications can be applied to accommodate arbitrary­

area circuit nodes without loss of performance.

In this section, we will explain each step, and provide a complexity analysis.

4.1.1 Step 1: Initial Placement

InitiaIly aIl circuit nodes are assigned a random initial position with a uniform

distribution over the unit square. Edges, i.e., nets, connecting the nodes are ignored.

Further, circuit elements may overlap. In fact, we will tolerate node overlap until

the final placement step, cf. section 4.1.4. Figure 4.1 shows a random placement of

nodes of a 25-element circuit.

4.1.2 Step 2: Force-Directed Step

•
A force-directed iteration computes a new node position for aIl nodes. Each node u's

new position (x~, y~) is the weighted average of its own position, and the positions

of its neighbours.
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Figure 4.2: Step 2: Gravitate nodes.
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Figure 4.3: Example of a force step computation: The nodes of a hypergraph (a)

are initially randomly placed (b). Then, node positions are updated according to

equation (4.1) (c) .
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hypergraph graph

u v

X
s t s

X'u
X u + (x s + Xi + XV)

1+3
X u + X s + Xi + Xv

1+1+1+1

hypergraph computation with W e = 1 graph computation

Figure 4.4: Position computation according to equation (4.1) for a hypergraph and

an equivalent graph in which the hypergraph edge has been replaced by a clique,

and the weight W e was fixed at 1.

X'u
Xu + L::eEEu We [(L::vEe xv) - xu ]

1 + L::eEEu We(lei - 1)
(4.1)

This is the average of aH positions of node u and aH its neighbours. In a hypergraph,

an edge could have many nodes. In fact, if the weight was fixed at 1, then the position

(4.2)X'u

where

Eu set of edges incident to node u,

lei cardinality of (or nodes in) edge e,

W e (1~1) - lel(le~ _ 1) = weight of edge e.

Equation (4.1) computes the average of the positions of node u, and aH its

neighbours as weighted by the edge weight W e . In order to understand our arbitrary

choice of the edge weight formula W e , let us first assume we are placing a graph, and

then discuss the implications for hypergraphs. If the hypergraph is a graph, i.e., for

each edge e, lei = 2, then aH edge weights W e = 1, and equatian (4.1) reduces ta

_ Xu+ L::eEEu [(L::vEe xv) - xu]
1 + L::eEEu (lei - 1)
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computations for the hypergraph nodes would be equivalent to the computations of

positions for a graph in which each hypergraph edge was replaced by a clique l of

its member nodes, e.g. figure 4.4. In this case, every hypergraph edge e would be

replaced by (I~I) graph edges. A good placement algorithm for a graph where aIl

hypergraph edges are replaced by cliques would try to minimize the projected overaIl

wire length for aIl edges including aIl clique edges. However, in reality, a hypergraph

edge only contributes to the overaIl wire length once, and not (I~I) times. Thus, we

scale the weight for each hypergraph edge by 1/ (I~I). Ultimately, the choice of

the edge weight is arbitrary, and can only be justified by the placement results it

yields. In trial fUns, the choice of W e = 1/ (I~I) showed the best results, and choices

of W e = l/lel, or W e = 4/[leI 2 (lel - 1)], for instance, exhibited consistently worse

placement results.

It should be observed that the cardinalities and weights of aIl edges have to be

computed only once since they are constants. Further, the position sums EVEe Xv

have to be computed only once for each edge e at each iteration. Thus, this iteration

step's execution time is linear in the number of pins p = Ee lei-

Let us consider an example of one such force-directed computation. Let the

random initial positions of the nodes in the hypergraph of figure 4.3a be Xo =
(0.50, 0.70), Xl = (0.40, 0.90), X2 = (0.00, 0.30), and X3 = (0.90, 0.10), cf. figure

4.3b. The position update equations given by equation (4.1) simplify to

1 A clique is a graph or subgraph in which every node is connected to every other node.•

X'o

X'l

X'2

X'3

Xo + HXI +X2)

1~
3

(0.38, 0.66),

xI+Hx o+X2)+X3

2~
3

(0.55, 0.50),

X2 + HXo + Xl) + X3

2~
3

(0.45, 0.35), and
X3 + X2 + Xl

3
(0.43, 0.43).

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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of pointers
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referencing node

Figure 4.5: Diagram of the data structures representing the edges and nodes of a

circuit hypergraph for 2-D placement

The updated positions are shown in figure 4.3c.

•
Gravity is implemented in C. In order to ensure linear time behaviour and ef­

ficient execution of the force-directed position computation, the data structures,

computation loops, and arithmetic have to be designed carefully. We first examine

the selection of data structures. Then, we discuss the construction of the computa­

tion loops, and finally we explain the implementation of the arithmetic.
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4.1.2.1 Data Structures

•

The data structures of interest are those that describe the circuit hypergraph. These

data structures have been optimized for speed of execution of the placement algo­

rithm rather than aesthetics. Figure 4.5 shows a diagram of these data structures

describing edges and nodes. Both nodes and edges of the hypergraph are represented

by two data structures each. Nodes are described by NDDLadmin and NDDE_struct

data structures. The NDDE_struct data structure, cf. figure 4.5 top right, con­

tains only the data required to compute a node's position according to equation

(4.1). The NDDLadmin data structure, cf. figure 4.5 top left, contains aIl other node

data such as the position whose iteration yielded the best estimated wire length,

a final placement position, the node's degree, a list of pointers to edges that are

incident to the node, cf. figure 4.5 centre left, and a pointer to the correspond­

ing NDDLstruct data structure. Assuming there are N nodes in the hypergraph,

there will be two arrays, nodes and node_admins, each containing N data struc­

tures of type NDDE_struct and NDDLadmins, respectively. Similarly, for each of

the lEI edges, there are two data structures, one of type EDGLadmin, and one nuIl­

terminated list. The null-terminated list, cf. figure 4.5 bottom right, contains aIl

relevant data for the force-directed computation step. Stored at the head of each

such list is the weight of the edge followed by a list of pointers to the edge's member

nodes (pins). AlI other data is stored in the EDGE_admin data structure, cf. figure

4.5 bottom left, such as the edge's cardinality, a list of pointers to the member

nodes' NDDE_admin data structures, cf. figure 4.5 centre left, and a pointer to the

null-terminated list of pins. The EDGLadmin data structures are contained in an

IEI-element array called edge_admins and the lEI pin lists are stored head-to-tail

in an array called pins. By reducing the size of the data structures required for the

force-step computation, more nodes can be kept in the computer's cache memory,

thus speeding up execution. We will revisit caching optimization in section 4.1.2.3

where we discuss the initialization of these data structures. This choice of data

structures yielded approximately 20% faster execution times than an earlier imple­

mentation in which aIl node and aIl edge data were stored in one data structure per

node or edge.

For a circuit with N nodes (ceIls), lEI edges (nets), and P pins, the total memory
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1: for each edge e

2: position...sum +-- 0

3: for each node u in e

4: position..sum +-- position..sum + positionu
5: for each node u in e

6: numeratoru +-- numeratoru + weighte • ( position..sum - positionu)

7: for each node u

8: numeratoru +-- numeratoru + positionu
9: positionu +-- numeratoru/denominatoru
10: numeratoru +-- 0

Figure 4.6: Pseudo code for the inner loops which update the node positions at each

iteration.

requirement M for these data structures in the two-dimensional version of Gravity

in a 32 bit architecture is

M (14N + 61EI + 3P) . 32bit

O(P).

(4.8)

(4.9)

•

4.1.2.2 Computation Loops

Equation (4.1) must be computed at every iteration of Gravity for every node. In

order to avoid duplication of effort and guarantee efficient execution, the compu­

tation loops have to be selected with care. We first show how the selection of the

loops yields linear run time. Then we show how the initialization and selection of

the data structures serves in increasing the efficiency of the execution.

First, we note that the denominator in equation (4.1) is constant for each node

and does not need to be re-computed for each iteration. Secondly, we note that the

inner sum in the numerator, L:vEe Xv, needs to be computed only once per iteration

for every edge. With these observations in mind, we implement the computation of

equation (4.1) in two loops as shown in figure 4.6. The first loop, which we refer

to as the edge loop (steps 1-6), loops through each edge. For each edge, this loop
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computes the inner sum 2:vEe Xv (steps 2-4), and then computes one summand of

the outer sum 2:eEE
u
We[(2:vEe xv) - xu] for each of the edge's nodes and adds

it to the corresponding node's numerator (steps 5-6). The time-complexity of this

first loop is the number of pins (cumulative cardinality of aIl edges) as each pin

is visited once in each of the two loops of steps 3-4 and 5-6. After the edge loop

has been completed, the numerator for each node has the value of the outer sum

2:eEE
u
We [(2:vEe xv) - xu]. To complete the numerator, the position of each node

X u remains to be added. Following the edge loop is the node loop (steps 7-10). In the

node loop, the numerator is completed by adding the node position (step 8), and the

new node position is computed by dividing the numerator by the denominator, which

has been precomputed during initialization, (step 9). FinaIly, the numerators are

reset to 0 for the next iteration. The loop executes three constant-time operations

for each node. Thus, its time complexity is linear with the number of nodes.

4.1.2.3 Depth First Search

In order to execute these loops efficiently, it is desirable to keep as much of the

required data in the CPU registers and level-one cache as possible. A CPU's level­

one cache keeps recently used data close to the execution units and can be accessed

considerably faster than higher level caches or main memory. In the case of a

Pentium II processor, which we used for comparing performance results, the level­

one cache holds 16kB of data, and can be accessed with a latency ofthree clock-cycles

and a throughput of one operand access per cycle [Int97].

We need to look at the actual implementation of the inner loops described by

pseudo code in figure 4.6 to help us understand how we can improve the cache hit

ratio. Figure 4.7 shows the unedited C code used in Gravity. In parenthesis next

to the line numbers are the corresponding line numbers in the pseudo code. The

added length in the C code is due to syntactical constructs and additionalloops for

the calculations for each dimension. The only data structures accessed in the inner

loops that cannot be kept in registers are members of the pins array and the nodes

array, cf. figure 4.5.

Improving the cache hit ratio can be achieved by frequently re-accessing recently

used data, or by accessing data in consecutive memory locations. Accessing data
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/* compute edge position sums and update numerators */

for(pin=O,edge=Ojedge<nonzero_nedgesjedge++,pin++){

unsigned long weight,positions_sum[DIMENSIDNS] j

int first_pinj

weight=(unsigned long)pins[pin] j

for(d=O;d<DIMENSIDNSjd++)

positions_sum[d]=OUj

pin++j

first_pin=pinj

for(jpins[pin] jpin++)

for(d=Ojd<DIMENSIDNSjd++)

positions_sum[d]+= ((NDDE_struct *)(pins[pin]))->positions[d] j

for(pin=first_pinjpins[pin]jpin++)

for(d=Ojd<DIMENSIDNSjd++)

((NDDE_struct *)(pins[pin]))->numerators[d]+=

(weight*(positions_sum[d]

-((NDDE_struct *)(pins[pin]))->positions[d]))»BYTEj

/* compute new node positions */

18(7):for(i=Oji<nnodesji++){

19: NDDE_struct *node=&nodes[i]j

20: for(d=Ojd<DIMENSIDNSjd++){

21(8): node->numerators[d]+=node->positions[d]j

22(9): node->positions[d]=

23: (((long long unsigned) (node->numerators[d]))

24: *node->inversedenominator»>(WDRD+node->shift)j

25(10): node->numerators[d]=OUj

26: }

27: }

•
Figure 4.7: Unedited C source code for the inner loops that update the node positions

at each iteration. In parenthesis next to the line numbers are the corresponding line

numbers of the pseudo code of figure 4.6.
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1: DFS(node u)
2: if u is not placed

3: place u into nodes array

4: for each edge e connected to u

5: if e is not placed

6: place e into pins array

7: for each node v in e

8: DFS(v)

9: set pointer to v in pins array

Figure 4.8: Depth first search algorithm for assigning elements in the pins and

nodes arrays.

in consecutive memory locations improves the cache hit ratio because memory is

copied to the cache in chunks, called cache lines. In case of the Pentium II, these

chunks are of 32 byte length. In the edge loop (figure 4.6, steps 1-6, and figure 4.7,

steps 1-17) the elements of the pins array are accessed consecutively. Similarly the

node loop (figure 4.6, steps 7-10, and figure 4.7, steps 18-27) accesses the elements of

the nodes array consecutively. These consecutive accesses ensure that the majority

of these memory accesses are to level-one cache.

The remaining memory accesses are due to pointers in the pins array to elements

in the nodes array, cf. figure 4.5, from within the edge loop (figure 4.7, lines 11

and 16). The order in which these nodes are accessed from the pins array is less

predictable. To improve the cache hit-ratio, we would like to arrange the elements

in the nodes and pins arrays such that consecutive references from the pins array

to the nodes array reference mostly consecutive or recently used elements. One way

of approaching this goal is to perform a depth first search on the hypergraph and to

store nodes and edges in the pins and nodes array in the order in which they are

encountered. The algorithm in figure 4.8 shows the procedure DFS used in Gravity

for traversing the hypergraph. This procedure initializes the pins and nodes arrays.

Figure 4.9 shows a simple example hypergraph and how DFS places the edges and

nodes in the pins and nodes arrays. Using this depth-first search initialization we
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Figure 4.9: Depth first search of a hypergraph and resulting order of elements in

the pins and nodes array.

noticed an approximate 2% speed improvement of the force-directed step loops for

the largest circuits.

4.1.2.4 Arithmetic

•

Having addressed time-complexity, and caching issues, we can still take advantage

of the superscalar, pipelined nature of current CPUs. The Pentium II, for example,

has two integer pipelines, but only one floating point pipeline. Further, integer

operations complete in fewer clock cycles. For this reason, Gravity uses fixed point

arithmetic by way of integer operations. Different CPU architectures may have

faster floating point units or more floating point pipelines such that floating point

arithmetic may be more efficient. By using integer arithmetic, we observed an

approximate 40% speed improvement for the node position computation loops on

the Pentium II. Figure 4.10 provides an overview of the integer arithmetic and

the involved bit-accounting. Node position coordinates faU within a [0,1) range.

Gravity stores these coordinates with a 24-bit resolution inside a 32-bit integer.

The low order bit of the 32-bit integer thus represents a value of 2-24 . When the
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line 11: += position __ maximumsize
24 bit

result after loop:
(c iterations)

~
32 bit

'\,. 24 bit

8
shift

position) ]
24 bit

/32 bit

[weight * (positions_sum­
log22I[1el<lel-l)]+8 bit

1 D

\
+=numeratorline 14:

result after loop:
(d iterations
per node)

line 21: += position
24 bit

result:

line 22: position =
shift

(numerator * inversedenominator) --- 32+shift
32 bit 32 bit

'\,. 24 bit

•
Figure 4.10: Fixed point arithmetic for solving equation (4.1) using integer opera­

tions. The corresponding Hne numbers of figure 4.7 are provided.
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sum L::vEe Xv of all the c coordinates of an edge's c member nodes are computed

in steps 9-11 of figure 4.7, the result has a size of up to log21el + 24 bits. At line

14, a summand of the outer sum L::eEE
u

W e [(L::vEe xv) - xu ] is computed. First, a

24-bit position coordinate is subtracted from the previously computed inner sum,

yielding a result of at most log2(le! - 1) + 24 bits. This is multiplied by a weight

of 8 + log2 lel(I;I-l) bits. The size of the weight is arbitrarily set to 8 bits with

the low order bit representing 2-8 . A higher resolution has not shown to result in

improved results. The reason for this is that the weight is mainly a heuristic value.

As long as the 8-bit weight is used consistently, slight deviations from the desired

value of lel(I;I-l) are of no consequence. The value of the resulting product has at

most 32 bits with a low order bit value of 2-32 . We right-shift this product by 8

bits. This 24-bit value is then added to the numerator which has a low order bit

value of 2-24 . After adding the d summands of the outer sum for anode with degree

d, the node's numerator has a value of at most log2 d + 24 bits. This value might

exceed the alloted 32 bits for the numerator if the node had a degree of over 256.

However, such nodes are extremely rare and comparison runs have shown that errors

due to these nodes can safely be ignored. After adding the node's own position in

step 21, the numerator's final value has at most log2(d + 1) + 24 bits which is by

design no more than 32 bits. Finally, the node's new position is computed in step

22 by dividing the node's numerator by its denominator. The denominator is fixed

for each node and can be precomputed during initialization. The inverse of this

precomputed denominator is stored with a 32-bit resolution. The low-order bit of

the inverse denominator represents a value of 2-shift. To complete the computation

this 64-bit product has to be right shifted by 32+shift bits.

•

We call this a force based method because an attractive force between neighbours

exerts a pull on each node, thus reducing the total wire length needed to embed the

circuit. The overall effect is that all nodes are slowly pulled to the centre of the chip

area, cf. figures 4.2 and 4.3. In contrast to most previous methods, we allow nodes

to move freely, even if nodes overlap and occupy the same area. In the next step,

we counter the pull toward the centre through rescaling.
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Figure 4.11: Step 3: Rescaling of nodes.

4.1.3 Step 3: Bucket-Rescaling

•

After a few iterations, it becomes necessary to counter the nodes' tendency to c1uster

near the centre. If the nodes are allowed to contract further, arithmetic precision will

begin to introduce unacceptable errors. Another issue is that the more nodes c1uster

in the centre, the more the optimization problem changes: we wish to minimize the

total wire length of the final embedding which does not allow a c1ustering of nodes;

the final embedding resembles an even distribution of nodes.

The rescaling step performs a bucket mapping and rescaling operation. The

unit square area is sliced into a grid of m by m buckets. Each bucket has a height

and width of l/m. The nodes in each bucket are counted. Then, the number of

nodes ni in each column i of buckets determines the width Wi of the scaled column,

Wi = ni!N. Next, the number of nodes ni,j in each bucket i, j determines the height

hi,j of each bucket, hi,j = ni,j/ni' If nodes had different individual areas, the total

areas in each bucket could be counted and bucket sizes could be adjusted to refiect

their total contained area. The positions of aIl nodes are consequently adjusted to

refiect the new heights and widths of their buckets. Figure 4.11 illustrates such a

rescaling using a grid of 5 by 5 buckets. The number of nodes in each bucket are

indicated.

This rescaling method may introduce discontinuities in the neighbourhoods of

sorne nodes. However, empirical results have shown that smoother, computationally
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more expensive, rescaling methods do not improve the overall performance of the

algorithm. In practice, circuits placed by Gravity have at least several hundreds of

nodes, and thus discontinuities at bucket borders are affect relatively fewer nodes

than in smaller circuits.

This rescaling step is repeated until a certain uniformity criterion is met. We

found a good threshold to be if the smallest bucket count is within 20% of the mean.

That is, after a rescaling step, the unit square is divided into the same number of

buckets as before the rescaling, and the number of nodes in each bucket are counted.

IdeaIly, they should be the same for every bucket, however we will be satisfied if aIl

bucket counts are within 20% of the mean and refrain from further rescaling of the

buckets. The threshold value of 20% is an arbitrary value chosen because we believe

it to yield a node distribution over the unit square that is relatively even but that

does not disturb node neighbourhoods too much through repeated rescaling steps.

Experiments with different values, e.g. 10% or 40%, have yielded either excessive

rescaling iterations, and/or worse results.

UsuaIly, not more than one repetition is required. At this point, the buckets

are not resized and Gravity proceeds with further force-based iterations. In the case

where significant node overlap occurs, sometimes multiple repetitions are ineffective.

In these cases, after more than a dozen iterations, the number of buckets is reduced

to from m x m to (m - 1) x (m - 1), and the node positions are jarred by a small

random amount between 2ffi and 2~' Thus a node's position may fall anywhere

within a square of size l/VN x l/VN about its original position. We chose this

value because it corresponds to the spacing of N nodes in a VN x VN grid placing

in the unit square. Since this kind of jarring of nodes is rare, the exact size of this

random node movement is unimportant as long as it is relatively small but still

separates nodes with identical positions. Such a reduction in the number of buckets

happens typically once or twice for sorne circuits and never for most circuits. We

found it best to perform a bucket-mapping for every ten force-based iterations.

•
4.1.3.1 Number of Buckets

We want to select the number of buckets such that node neighbourhoods at bucket

borders are disturbed as little as possible while at the same time insuring that aIl
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buckets are approximately equally filled after rescaling. Before a the rescaling, the

node density will be higher in the centre and lower at the borders since nodes are

drawn toward the centre by each force-directed position computation. Increasing the

number of buckets will ensure that neighbouring buckets vary less in node density,

thus disturbing node neighbourhoods less. On the other hand, having more buckets

increases the probability that sorne buckets will fall outside the allowable deviation

from the mean bucket size. If this is that case, another rescaling is required.

For a truly uniform distribution, the number of nodes in each of the M = m x m

buckets is governed by a binomial distribution. The probability Pk of having k nodes

out of a total of N nodes in a particular bucket is

(4.10)

If we approximate the binomial distribution using a normal distribution, we can

approximate the probability that aIl buckets are within a factor of c of the mean

number of nodes in a bucket N/m2
:

[P(IX - N/MI :S cN/M)]M

[~:~~:M G) (~)i (1- ~r-r

[ ( )]

M

f cN/M + 1/2
er J2JN/M(1 -1/M)

(4.11)

(4.12)

•

For small values of N / M using a normal distribution to approximate a binomial

distribution is not valid. However, the smallest value of N / M which we are inter­

ested in is 833/25, and the approximation is sufficiently close. For example, using

N = 833, M = 25, and2 c = 0.37, equation (4.11) yields PO.37 ~ 0.50, and the

approximation using a normal distribution in equation (4.12) yields PO.37 ~ 0.55.

Since Gravity is expected to create an approximately symmetrical node distri­

bution peaked at the centre, we will consider only odd numbers of bucket columns

and rows. For even numbers, the centre rows and columns would become virtually

one double sized row or column. Further, on the average, we want to do no more

2This is é = 0.2 multiplied by a fudge factor of 1.85 as discussed in the following paragraphs.
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Figure 4.12: Computed and observed best number of buckets m x m for a = 1.85.

than 2 rescaling steps to meet our uniformity constraint. With more consecutive

rescalings, the algorithm would slow down, and more node neighbourhoods would

be disrupted. Thus, we select the largest odd number of bucket rows and columns

that guarantees that Pe ~ 0.5:

m = max {m' : m' odd and Pe ~ 0.5}. (4.13)

•

Once the uniformity constraint c is met, our rescaling step will have produced a

node distribution that is more evenly distributed than a uniform distribution. By

adjusting c in the formula for Pe by an empirical1y determined fudge factor a, we can

take this evenness of the node distribution into account. We performed a number

of runs for varying bucket numbers and circuit sizes. By selecting the number of

buckets that contributes the shortest wire lengths while maintaining acceptable run

times, we determined a to be approximately 1.85. Figure 4.12 shows that a = 1.85

is a good match for the observed best number of buckets. Using c = 0.2, the applied
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Figure 4.13: Step 4: Recursive partitioning (left) leads to final placement of nodes

(right).

formula for the number of buckets m x m becomes:

m = max { m' : m' odd and M = m" and

[
erf( 1.85éN/ M + 1/2 )]: 0.5}.

v'2JN/M(l -l/M) -
(4.14)

Best results were observed if a rescaling step was performed after every 10 force­

directed steps, and when the orientation of the bucket columns, alternates between

the horizontal and vertical dimension. Then, after a preset number of iterations of

steps two and three, typically several hundred to a few thousand, Gravity proceeds to

the final placement step in which aIl node positions are adjusted to remove overlap.

4.1.4 Step 4: Final Placement

•

After a number of iterations, sorne nodes are expected to overlap partially or com­

pletely. This final placement step removes such an overlap. AlI nodes are recursively

bipartitioned based on their positions. This is a simple and fast technique for arriv­

ing at a final node placement which can easily be compared to a generic partitioning

placement algorithm. However, a more refined "fine-grain" placement method for

computing a final placement such as DOMINO [DJA94] should be of benefit, par-
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ticularly for standard ceIl placements, cf. sections 2.3 and 4.2.4. Unfortunately,

DOMINO was not made available to us.

First, we sort aIl nodes by their x- and y-positions and store these two sorted

node lists. At this point, the coordinates determined through numerous iterations

of steps two and three, have served their purpose and can be forgotten. Then, we

split the list of x-sorted nodes in half. The first half will be assigned coordinates

in the left half of the chip area, and the second half gets coordinates in the right

half. If the nodes were of different areas, the split could divide the nodes into two

halves weighted by area. The list of y-sorted nodes has to be parsed completely and

split according to the split in the x-sorted list. Then for each half, we perform a

vertical split on the y-sorted list. We continue recursively until aIl nodes are placed.

The recursion will reach a maximum depth of POg2 Nl. Since one of the two x- and

y-sorted lists have to be parsed at each step, the total execution time of this step

is 0 (N log N). Figure 4.13 demonstrates this placement process for our 25-node

circuit.

For any number of nodes other than N = 22i for any integer i, there will be an

uneven node distribution with different areas assigned to nodes, cf. figure 4.13(right),

where the nodes on the top row occupy twice as much area as the nodes on the

bottom row. It is certainly possible to use a final placement scheme that does not

produce final placements with such uneven node distributions, cf. the grid splitting

technique in section 4.3.2. However, this final placement method lets us easily

compare our algorithm to placement methods build on recursive partitioning alone.

•

TypicaIly, we perform a final placement step 25 times during a run, i.e., after

every k/25 of k force-step iterations. This lets us sample the solution over the

maximum number of iterations in an effort to eliminate noise and to help us avoid

potentiallocal maxima. The number of 25 final placement steps is another arbitrary

parameter. With more final placements we observed an increase in the run time

without achieving noticeably better placements. Less final placements did not reduce

the run time significantly while placement quality started to suffer.
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4.1.5 Complexity

The overall time-complexity of Gravity is 8(p+ N log N), and the space complexity

is the size of the input, i.e., 8(p).

Time complexity is the sum of step one, random placement, i.e., 8(N), a con­

stant number kl of iterations of steps two and three, force based gravitation and

bucket rescaling, i.e., 8 (k l . (p + N)) = 8(p), and a constant number k2 of final

placement computations, i.e., 8(k2NlogN). Due to the large but constant num­

ber of iterations, effectively, we observe a run-tîme complexity of 8(p), as long as

N < 2k1 Hz. The reader may question if the number of iterations kl is indeed a

constant. The answer is "yes." For one, kl is preselected, and the algorithm will

terminate after kl iteration no matter how well the placement job has been accom­

plished. Secondly, and more importantly, all test runs have shown that circuits

converge to their best results after about 2000 iterations, independent of their size,

provided the circuits are not trivial. Constant k2 is the number of intermittent

placements that are computed. This number is preset independently of the number

of iterations chosen.

The run-tîme constant is dominated by the number of iterations k, and by how

fast each iteration completes. In sections 4.1.2.1-4.1.2.4, we showed how the run time

of Gravity is reduced by simplifying the data structures, simplifying the arithmetic,

and improving cache hit ratios. The data structures accessed in the force step are

stripped to the minimum information necessary. Thus, more nodes and edges can

be kept in cache and fewer pointer dereferences have to be performed. Secondly, we

use integer operations to simulate fixed point arithmetic. Finally, we arrange the

node and edge data arrays according to the order of a depth first search before we

start the iterations. This helps keeping more nodes and edges in level-one cache.

4.2 2-D Results

•
The two-dimensional version of Gravity is compared with a generic partitioning

placement algorithm. Section 4.2.1 outlines the implementation of the partitioning

placement algorithm. Section 4.2.2 provides an overview of the benchmark circuits

used for comparing Gravity and the partitioning placer. The results of both algo-
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rithms are compared in section 4.2.3. In section 4.2.4, we add a comparison with

previously published standard cell placement results.

4.2.1 Recursive Partitioning Placement

Partitioning placement algorithms work almost exactly like our final placement step

described in section 4.1.4. At every recursive iteration, the remaining chip area

is split into two halves, and nodes are bipartitioned and assigned to one of the

halves. Then we iterate recursively on each half until only one node remains. If we

wanted to take node areas into account we would split the nodes based on equal

cumulative node areas rather than equal node counts. The difference between our

final placement and this partitioning placement algorithm is that during our final

placement we bipartition on the basis of the computed node positions whereas with

partitioning placement nodes are partitioned without prior knowledge. This lack of

knowledge makes the computation of the partitioning considerably more complicated

than the simple split-partitioning of Gravity's final placement step.

Most partitioners use a "min-cut" strategy that aims to reduce the number

of edges that cross between the partitions. Even though min-cut is not directly

related to placement wire length, the resulting placements obtained from a min-cut

partitioningplacements are quite good, cf. [Har86, SM91]. Good results are achieved

because typically short wires mean most edges are contained in one partition, and

vice versa. Recursive partitioning placement was discussed in more detail in section

3.3.

•

For comparison with Gravity, we use a hypergraph partitioning algorithm called

hMetis 1.5[KAKS97, KK98a]: hMetis is on the average faster and achieves smaller

cut widths than previous published algorithms. To eliminate any artificial perfor­

mance disadvantage that hMetis suffers from partitioning very small subcircuits, we

partition subcircuits with four or less nodes optimally without calling hMetis. These

subcircuits contribute about 3/4 of the partitioning problems.
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4.2. 2-D RESULTS

Circuit Nades Nets Pins Pins Pins Circuit Nades Nets Pins Pins Pins
Node Net Node Net

19ks 2844 3282 10547 3.71 3.21 s15850P 10470 10383 24712 2.36 2.38

avq.large 25178 25384 82751 3.29 3.26 s35932 18148 17828 48145 2.65 2.70

avq.small 21918 22124 76231 3.48 3.45 s38417 23949 23843 57613 2.41 2.42

baluP 801 735 2697 3.37 3.67 s38584 20995 20717 55203 2.63 2.66

biamedP 6514 5742 21040 3.23 3.66 s9234P 5866 5844 14065 2.40 2.41

galem3 103048 144949 338419 3.28 2.33 structP 1952 1920 5471 2.80 2.85

industry2 12637 13419 48158 3.81 3.59 t2 1663 1720 6134 3.69 3.57

industry3 15406 21923 65791 4.27 3.00 t3 1607 1618 5807 3.61 3.59

pl 833 902 2908 3.49 3.22 t4 1515 1658 5975 3.94 3.60

p2 3014 3029 11219 3.72 3.70 t5 2595 2750 10076 3.88 3.66

s13207P 8772 8651 20606 2.35 2.38 t6 1752 1641 6638 3.79 4.05

Table 4.1: The 1993 ACM/SIGDA benchmark circuits.

Circuit Nades Nets Pins Pins Pins Circuit Nades Nets Pins Pins Pins
Node Net Node Net

ibm01 12752 14111 50566 3.97 3.58 ibmlO 69429 75196 297567 4.29 3.96

ibm02 19601 19584 81199 4.14 4.15 ibm11 70558 81454 280786 3.98 3.45

ibm03 23136 27401 93573 4.04 3.41 ibm12 71076 77240 317760 4.47 4.11

ibm04 27507 31970 105859 3.85 3.31 ibm13 84199 99666 357075 4.24 3.58

ibm05 29347 28446 126308 4.30 4.44 ibm14 147605 152772 546816 3.70 3.58

ibm06 32498 34826 128182 3.94 3.68 ibm15 161570 186608 715823 4.43 3.84

ibm07 45926 48117 175639 3.82 3.65 ibm16 183484 190048 778823 4.24 4.10

ibm08 51309 50513 204890 3.99 4.06 ibm17 185495 189581 860036 4.64 4.54
ibm09 53395 60902 222088 4.16 3.65 ibm18 210613 201920 819697 3.89 4.06

Table 4.2: The 1998 ISPD benchmark circuits.
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4.2.2 Benchmark Circuits

•

Placement methods are commonly compared with the aid of benchmark circuits.

We compare the performance of Gravity using two benchmark circuit suites, the

ACMjSIGDA suite [Brg93] and the ISPD98 suite [Alp98].

The ACMjSIGDA suite is well established. Circuits in this suite have been used

since the late 80s to compare placement and partitioning algorithms. This suite's

main advantage is that standard cell placement results have been published. The

biggest disadvantage is that this suite is relatively old, and its circuits are small in

comparison with today's circuits. Even though its largest circuit has approximately

100,000 nodes, the remaining circuits only coyer the dynamic range from 800 to

26,000 nodes. Table 4.1 shows the basic circuit characteristics of the ACMjSIGDA

suite.

The newer ISPD98 circuit suite consists of circuits covering the dynamic range

from 12,000 to 210,000 nodes. The circuits are typical integrated circuits designed

at IBM representing "bus arbitrators, bus bridge chips, memory and PCI bus in­

terfaces, communication adaptors, memory controls, processors, and graphics adap­

tors" [Alp98]. The circuit data provided with this suite are the cells, the nets, and

a scalar number to indicate cell area. All other electrical information as well as cell

dimensions have been stripped. Even though this suite is not as established as the

ACMjSIGDA suite, its circuits are needed to measure the placement performance

on larger modern circuits. Table 4.2 lists the characteristics of the ISPD98 circuits.

The ACMjSIGDA and ISPD98 are the only published and commonly used cir­

cuits suites of this kind. Although the ISPD98 suite is more often used for parti­

tioning comparisons, it is important that we include placement results for this suite

because of its larger sizes and circuit characteristics. The larger sized circuits are

essential as placement algorithms have to cope with ever increasing circuit sizes as

observed in Moore's Law. Further, the circuit characteristics should refiect modern

circuit design. Among the characteristics that can be objectively measured are the

distributions of net lengths. The number of pins per net, and pins per node, cf.

tables 4.1 and 4.2, are relatively consistent throughout the circuits of both suites.

However, despite the variety of circuit types, the circuits of the newer ISPD98 suite

have a much more even distribution of nets. Figure 4.14 shows the distribution
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Figure 4.14: Distribution of pins sorted by net lengths for the ACM/SIGDA circuits

(left) and the ISPD98 circuits (right). Smaller circuits are at the top, larger circuits

at the bottom. 89•
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of pins sorted by net-Iengths. While the number of pins belonging to nets of dif­

ferent lengths is approximately equally distributed for aIl circuits of the ISPD98

suite, the distributions of pins in the ACMjSIGDA suite vary considerably between

circuits. This may be an indication that modern circuit designs uses a more consis­

tent design methodologies, i.e., methodologies may have evolved to the point where

large variances are suppressed. Alternatively, it may indicate that the circuits in

the ACMjSIGDA suite do not mirror the bulk of circuits designed nowadays, per­

haps because modern integrated circuits are composed of many of the older smaller

circuits, thus averaging out variances of smaller circuits.

4.2.3 Result Comparison

•

To evaluate the performance of Gravity, we compared it against recursive parti­

tioning using todays fastest and best bipartitioner hMetis [KAKS97]. Since both

placement algorithms, Gravity and hMetis recursive partitioning placement, are ran­

domized algorithms, we performed 10 runs for each circuit. The wire lengths were

estimated using semi-perimeter bounding box approximations of the lengths of rec­

tilinear Steiner trees [Han66]. This approximation, which simply adds the horizontal

and vertical spread of nodes in a net, is easy to compute and commonly used. It

gives exact results for nets with two or three pins which form the large majority of

aIl nets.

For every circuit, we ran the hMetis-based algorithm 10 times. Similarly, we ran

Gravity 10 times for each circuit. We repeated these 10 runs for Gravity using 500,

1000, and 2000 iterations of step 2, cf. section 4.1.2. In every case, we performed the

rescaling step 3, cf. section 4.1.3, after every ten iteration of step 2. For the rescaling

step, we used buckets as determined by equation 4.14 until aIl bucket counts were

within 20% of the average bucket count.

As can be seen in tables 4.3 and 4.4, Gravity achieves competitive results even

with only 500 iterations. On the ACMjSIGDA suite, Gravity performs 4% better

than hMetis, and on the ISPD98 suite Gravity even outperforms hMetis on the

average by more than 8%. Using 2000 iterations, the wire-Iength advantage of

Gravity increases to over 12%, on the average.

During our experiments, we found that wire length decreases steadily up to

90



•

•

4.2. 2-D RESULTS

Circuit hMetis 500 iterations 1000 iterations 2000 iterations

length length % change speed-up length % change speed-up length % change speed-up

19ks 450 355 -21.17 21.04 350 -22.30 12.26 343 -23.68 6.61

avq.large 1089 1176 8.00 15.42 1002 -7.99 8.43 915 -15.94 4.38

avq.small 1054 1071 1.63 16.13 955 -9.39 8.85 869 -17.54 4.57

baluP 167 145 -13.14 20.87 143 -14.47 11.35 140 -16.16 5.74

biomedP 514 455 -11.55 16.36 450 -12.52 8.99 441 -14.27 4.68

golem3 4720 6944 47.11 12.90 6306 33.60 7.60 5888 24.74 4.17

industry2 1278 1297 1.48 14.51 1288 0.74 8.51 1286 0.63 4.85

industry3 2389 2088 -12.61 16.30 2030 -15.05 9.05 2004 -16.13 4.66

pl 214 168 -21.33 17.35 166 -22.33 9.41 166 -22.51 5.31

p2 599 497 -17.01 17.77 483 -19.25 10.28 492 -17.86 5.83

s13207P 401 381 -4.97 15.37 360 -10.17 8.49 351 -12.39 4.47

s15850P 443 434 -2.13 15.21 405 -8.74 8.18 394 -11.06 4.37

s35932 579 746 28.87 15.52 628 8.51 8.67 562 -3.00 4.47

s38417 684 872 27.56 13.29 755 10.36 6.79 709 3.72 3.38

s38584 757 889 17.45 13.20 815 7.61 7.10 790 4.35 3.77

s9234P 350 327 -6.60 17.00 310 -11.33 9.42 305 -12.93 5.05

structP 228 187 -18.03 20.75 181 -20.81 12.03 172 -24.69 6.69

t2 333 255 -23.49 19.05 253 -24.03 10.79 251 -24.48 5.80

t3 304 249 -18.06 18.75 237 -22.06 10.52 238 -21.87 5.66

t4 292 239 -18.23 18.14 238 -18.39 10.16 236 -19.15 5.64

t5 390 328 -15.74 17.33 328 -15.97 10.35 331 -15.17 5.48

t6 304 254 -16.56 17.65 258 -15.40 10.85 254 -16.42 5.76

Average -4.02 16.81 -9.52 9.46 -12.36 5.06

Table 4.3: Wire-length comparison of Gravity vs. hMetis for ACM/SIGDA bench­

marks. Average over 10 funs .
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Circuit hMetis 500 iterations 1000 iterations 2000 iterations

length length % change speed-up length % change speed-up length % change speed-up

ibm01 1545 1331 -13.83 18.51 1305 -15.51 10.29 1293 -16.29 5.39

ibm02 3176 2847 -10.34 19.74 2771 -12.73 11.22 2717 -14.43 5.98

ibm03 3557 3178 -10.64 17.48 3105 -12.71 9.72 3083 -13.31 5.17

ibm04 4020 3436 -14.54 15.34 3291 -18.14 8.55 3279 -18.45 4.58

ibm05 5786 4719 -18.45 19.37 4656 -19.53 11.12 4675 -19.21 5.97

ibm06 4224 3472 -17.80 17.01 3355 -20.55 9.56 3306 -21.73 5.05

ibm07 5230 4506 -13.86 17.03 4320 -17.40 9.50 4305 -17.69 5.02

ibm08 5533 4887 -11.69 16.87 4796 -13.32 9.91 4688 -15.27 5.58

ibm09 5046 4859 -3.70 13.31 4712 -6.61 7.39 4609 -8.67 3.92

ibm10 7292 6546 -10.23 17.67 6282 -13.85 9.77 6180 -15.25 5.23

ibm11 6727 6288 -6.53 15.28 5968 -11.29 8.35 5863 -12.84 4.42

ibm12 9168 8236 -10.17 17.21 8064 -12.04 10.35 8026 -12.46 5.76

ibm13 7464 6929 -7.17 16.66 6708 -10.14 9.12 6668 -10.67 4.82

ibm14 10784 10524 -2.41 17.62 9800 -9.12 9.85 9640 -10.60 5.18

ibm15 13095 13212 0.89 17.73 12494 -4.59 9.76 12295 -6.11 5.13

ibm16 13557 13369 -1.39 18.68 13034 -3.86 10.44 12524 -7.62 5.43

ibm17 17033 16631 -2.36 19.95 15681 -7.94 11.27 15520 -8.88 6.14

ibm18 12283 13461 9.59 18.90 12809 4.28 10.53 12356 0.59 5.61

Average -8.03 17.46 -11.39 9.82 -12.72 5.24

Table 4.4: Wire-length comparison of Gravity vs. hMetis for ISPD98 benchmarks.

Average over 10 runs.

•

1000 iterations, but only marginally above 1000 iterations. This observation is

refiected in the provided tables. We feel 1000-iteration Gravity produces the best

cost-performance trade-off.

In appendix A, we offer detailed comparison tables between hMetis and Grav­

ity. We note that the standard deviations of the individual runs are approximately

equally small for both methods. The relative smallness of the standard deviations

shows that both methods are very stable.

When we compare the run times of Gravity and the hMetis placer on a 300MHz

Pentium II system with 100MHz memory bus, 512kB level-two cache and 16kB

levek-one data cache, Gravity is considerably faster. For 500 iterations, Gravity
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requires only about 1/17 of the time that the hMetis placer requires. With 2000

iterations, Gravity still requires less than 1/5 the time of the hMetis placer.

4.2.4 Standard Cell Placement Comparison

This section outlines the performance of a first implementation of standard cell

placement using the Gravity placement algorithm. Unlike in the placements com­

puted above where aIl nodes are of unit size, in standard cell placements nodes vary

in size. We compare our algorithm, Gravity, to the best published algorithm for

standard cell placement [EJ98]. The integrated circuit standard cells have variable

sizes, and the total integrated circuit area depends on the cell area and the area of

the wiring.

4.2.4.1 Standard Cell Placement

As presented in section 2.3, standard ceIllayout is a popular integrated circuit design

method. Standard ceIllayouts consist of multiple horizontal rows of cells. Each cell

has its own width, and aIl cells have the same height. Between rows of cells is

space for horizontal interconnections, and vertical interconnections cross cells at

predefined feed-throughs. These interconnections are called nets. Each net connects

two or more cells. These connections are often called pins. Figure 2.4 on page 35

shows a standard cell placement.

In the past, placement papers used standard cell placements of benchmark

circuits to compare their performance. Since placement algorithms do not per­

form routing, wire lengths are estimated using the semi-perimeter bounding box

method [SM91], and routing space between rows, i.e., the row separation, is fixed

at one row-height. We will compare the 2-D version of our algorithm versus the

leading published placement algorithm by Eisenmann and Johannes [EJ98]. This

Eisenmann-Johannes algorithm solves the "coarse-grain" placement problem which

computes relative node positions which can be located anywhere on the placement

area. This "coarse-grain" placement is comparable to Gravity before its final place­

ment step. For the fine-grain standard ceIllayout, they use the existing DOMINO

algorithm[DJA94]. Eisenmann and Johannes published their wire-Iength results for
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max. p such that less than 90% of

Circuit Nodes Nets Pins pins pins nets have p or less pins, i.e.,
nodes nets

max {p : 1{e : 1el::; p}1< 0.91 El}
avq.large 25178 25384 82751 3.29 3.26 2

avq.small 21918 22124 76231 3.48 3.45 3

biomedP 6514 5742 21040 3.23 3.66 3

industry2 12637 13419 48158 3.81 3.59 4

industry3 15406 21923 65791 4.27 3.00 4

pl 833 902 2908 3.49 3.22 4

p2 3014 3029 11219 3.72 3.70 6

structP 1952 1920 5471 2.80 2.85 2

Table 4.5: 8 circuits from the ACM/SIGDA benchmark suite.

Eisenmann-Johannes Gravity

Circuit length (m) Time (s)
Average

% change
Mlmmum

% change Speedup
Length (m) Length (m)

avq.large 5.38 1487.83 7.85 45.93 7.56 40.48 3.79

avq.small 4.91 1275.38 7.11 44.79 6.79 38.28 3.80

biomedP 1.78 208.05 2.05 15.26 1.97 10.74 2.53

industry2 14.60 939.87 15.12 3.56 14.45 -1.04 5.22

industry3 45.10 1175.76 45.59 1.09 44.46 -1.42 4.44

pl 0.87 27.10 0.81 -6.51 0.79 -9.07 2.96

p2 3.72 111.35 3.62 -2.65 3.52 -5.38 3.15

structP 0.34 29.30 0.35 2.84 0.34 0.13 1.77

Average 13.04 9.09 3.46
Average for p > 3

-1.13 -4.23 3.94
in 1'J'lhlp 4 fi

Table 4.6: Gravity standard cell placements vs. Eisenmann-Johannes.

•
8 circuits from the 1993 ACM/SIGDA benchmark circuit suite [Brg93]. Table 4.5

shows these circuit characteristics.
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4.2.4.2 Results

The current implementation of Gravity for standard ceIllayouts does not yet include

a fine grain final placement step. In order to compensate, we increased the run

time of Gravity substantially by letting it run longer. Nevertheless, Gravity's run

time is still approximately 3.5 times faster3 than for Eisenmann-Johannes while the

wire-Iength results are approximately 13% worse on the average. Table 4.6 shows

a comparison of wire-Iength results and run times. However, Gravity outperforms

Eisenmann-Johannes on the circuits which do not suffer a heavy short edge bias.

The last column in table 4.5 refiects the distribution of number of standard cells

per wire (i.e., pins per net)4. For example, in the top three circuits, avq.large,

avq.smaIl, and biomed, approximately 90% of aIl wires interconnect 3 or fewer stan­

dard cells. Gravity does not perform very weIl for these circuits. In the next four

circuits (industry2, industry3, pl, p2), the nets with at least four pins do not add

up to 90% of the nets, which means that a larger number of pins are part of longer

nets. VisuaIly, this difference in pin distribution can be observed in figure 4.14 on

page 89. For industry2, industry3, pl, and p2, the transitions of shading from light

to dark is more graduaI than for the circuits avq.large, avq.smaIl, and biomed. Such

a smoother transition of shading in figure 4.14 corresponds to a more balanced dis­

tribution of pins over nets of different sizes. With their smoother shading transition,

circuits industry1, industry2, pl, and p2 are closer in their pin-distribution char­

acteristics to the ISPD98 circuits, cf. figure 4.14 (right). Since Gravity produces

competitive results for these circuits (cf. average 1.1% improvement on bottom row

in table 4.6), it seems possible that Gravity may outperform Eisenmann-Johannes

on the larger ISPD98 circuits. We expect a further improvement in Gravity's stan­

dard cell placements if a good "fine-grain" placer is employed. Unfortunately, no

standard cell placement results have been published for the ISPD98 suite, and so

the anticipated standard cell placement performance of Gravity remains conjecture.

•
3The Eisenmann-Johannes run times have been scaled from a DEC Alpha 250/4-266 to compare

run times our Pentium II-300 reference platform.
4This is the maximum number p such that aH nets with p or less pins combined do not add up

to 90% of aH nets E, Le., max{p: I{e : e E E and lei:::; p}1 < 0.9IEI}.

95



• CHAPTER 4. GRAVITY

4.3 Three Dimensional Aigorithm

As integrated circuits become more complex, utilization of the third dimension is

becoming a more realistic implementation solution. In section 2.2 on page 31 we

have shown how recent work has resulted in near uniform three dimensional field

programmable gate arrays (FPGAs). However, cell placement for three dimensional

integration is still in its infancy, cf. section 3.7 on page 63. If 3-D integration is

to help the implementation of very large circuits, efficient placement and design

tools are required. In this section, we will detail the differences between the three

dimensional Gravity algorithm and the two-dimensional version presented in section

4.1.

The three dimensional version of Gravity varies from its two dimensional imple­

mentation by placement geometry, the size of the data structures, the selection of

rescaling buckets, and by the final placement step.

The most obvious difference is the placement geometry. Where 2-D Gravity

internally used a unit square to track node positions, 3-D Gravity uses a unit cube.

Thus, the random initial placement assigns nodes to coordinates in the unit cube.

The data structures shown in Figure 4.5 are extended to hold the three-di­

mensional data by adding an additional placedpositions [2] field and bestposi­

tians [2] field to the NODLadmin data structure, and an additional positions [2]

and numerator [2] field to the NODLstruct data structure.

4.3.1 Bucket Rescaling

•

During the bucket rescaling step in the 2-D algorithm, cf. section 4.1.3, the unit

square placement area would be sliced into m x m square buckets, with m being

odd. In the 3-D case, our placement "area" becomes a unit cube. The cube is sliced

into box-like buckets. Then, the thickness of slices of buckets is rescaled to refiect

the number of nodes within, e.g. see figure 4.15. Within each slice the columns

of buckets and the individual buckets in each column are rescaled as in the two­

dimensional rescaling step, cf. section 4.1.3. The dimension along which the bucket

slices are sliced rotates between the x, y, and z-axes for each rescaling step as not

to interrupt node neighbourhoods in a systematic fashion. The natural extension of
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Figure 4.15: Rescaling of a slice of buckets in the 3-D rescaling step.

the 2-D method would suggest to carve the volume into m x m x m cubic buckets.

However, reducing m to the next lowest odd number m-2 changes the total number

of buckets by 6m2 - 12m + 8. Experience has shown that this selection of buckets

is too coarse. Rence it becomes difficult to achieve a good tradeoff between gaining

an even node distribution by using a larger number of buckets, and not have to

rescale multiple times by choosing less buckets, cf. section 4.1.3.1. For this reason,

we allow the number of buckets in each dimension, ml, m2, and m3, to vary from

the others by at most 2. As in the 2-D case, given M buckets, the probability

PE: for a uniform distribution to have no bucket size varying by more than E from

the mean is given by equation (4.12). Since we expect the node distribution to be

symmetrical, we choose an odd number of buckets mi in each dimension i for a total

number of M = ml x m2 x m3 buckets. Starting with a 3 x 3 x 3 grid of buckets, we

increase each mi in turn by 2 as long as PE: ~ 50%. This ensures that the expected

number of rescaling iterations is no more than 2. The actual node distribution after

a rescaling step outlined in section 4.1.3 is not a true uniform distribution. In fact,

the resulting distribution exhibits a smaller variance in bucket counts as is the aim

of our rescaling technique. By empirical observation, we determined that E should
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be scaled by 1.85. Thus, the actual number of buckets used by Gravity, M' is

M' = max {M: P1.85E: 2: 0.5

and M = mlm2m3

and ml, m2, m3 odd

and max{ml' m2, m3} - min{ml, m2, m3} ::; 2}. (4.15)

Observation has shown that choosing the initial number of buckets according

to (4.15) leads to very good placement results for aIl benchmark circuits ranging

from 833 nodes for p1 to 210,613 nodes for ibm18. Occasionally, degenerate circuit

features can stilllead to excessive rescaling iterations. In the case where more than

12 rescaling iterations occur, we reduce ml, m2, or m3 in turn by 2 and move the

node positions by a random amount between - 2JN and +2JN.

4.3.2 Final Placement

•

In two dimensions, the final placement was determined by recursively splitting the

nodes and the unit square in halves in order to facilitate comparison with a recursive

partitioning placement algorithm, cf. sections 3.3 and 4.1.4.

Figure 4.13 showed how this could lead to non-homogeneous grids when the

number of nodes was not a power of 4. In three dimensions, this problem becomes

more acute as nodes would have to be a power of 8 to result in a homogeneous three

dimensional grid. In order to avoid this problem, and to cornply with the definition

of the placement definition, cf. definition 4 on page Il, we use a grid-splitting scheme

in order to generate placements into arbitrary 3-D grids.

This grid-splitting method recursively splits an arbitrarily chosen nI x n2 x n3

grid along the largest dimension. At the same time, the nodes are recursively split

according to their position along the same dimension. This splitting process is

continued until each node u is assigned to a unique position fv(u) E {l, ... ,nd x

{l, ... ,n2} x {l, ... ,n3}' For illustration purposes, figure 4.16 shows a 2-D version

of this recursive grid-splitting procedure for a 25-node circuit and a 5 x 5 grid.

The size of the grid dimensions nI, n2, and n3, is chosen such that the grid closely

resembles a cube with approximately N nodes. The exact grid dimensions for an N

98



• 4.4. 3-D RESULTS

1 1. 1 • 1 1 1
1--.r--- I • 1 • • 1 • 1 • 5(.----- 1 1

J • 1 1 -----l-----------l-----r-----
-----:J- -1 1 • 1 1 1 ,
• r---- J • • • • 1 • 4

- -.1 r - 1 1 -L 1 1

• • 1 f--- - - r- -__ ~... L: -- r- I 1 1

1 • • • 1 • 1 • 1 • 1 • 3
1 I. I ,-e-I -'••

1.. --t- -~ -t- - ,.. -·L 1· 1 1 1

- - 1 1 1 1 • • 1 • • 1 • 2
L L 1

1 r -,- - - - - - r- -le • 1 1 1 ,
• 1 • - 1 , • • • • , • 1

1 • 1 • 1 1 1 ,

coordinates: 1 2 3 4 5

Figure 4.16: Step 4: Recursive grid splitting (left) leads to final placement of nodes

(right).

node circuit are given by

1ijNl
1JN/n1l

In~J .

(4.16)

(4.17)

(4.18)

•

The quality of the three dimensional implementation of Gravity will be measured

in the next section by comparing Gravity's wire-Iength results against a recursive

partitioning placer that implements a similar grid-splitting strategy to the one de­

scribed above.

4.4 3-D Results

Bince no 3-D placement results have been published before, we needed to create a

3-D placement comparison basis on a fundamentally proven and strong technique.

Partitioning placement is one of the basic and proven placement schemes in two

dimensions, cf. section 3.3. Based on the simplicity of the partitioning placement

method, and recent advances in partitioning algorithms, it is natural to extend
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Figure 4,17: Partition placement process: simultaneous splitting of the grid and

partitioning of the circuit.

partitioning placement to three dimensions for comparison purposes. In the follow­

ing section we describe the 3-D partitioning placement algorithm which we used to

present the first 3-D placement results for benchmark circuits at VL8I'99 [0899].

In section 4.4.2 we compare the results of this 3-D partitioning placer with the 3-D

results produced by 3-D Gravity. Finally, in section 4.4.3, we compare how three­

dimensional placements compare to two-dimensional placements in terms of wire

lengths for selected circuits.

4.4.1 Recursive Partitioning Placement using Grid Splitting

•
As outlined in section 3.3 on page 53, partitioning placement is one of the fun­

damental placement methodologies. For our 3-D recursive partitioning placer, we

implement a grid splitting technique that mirrors 3-D Gravity's final placement step

with the important difference that here the node partitioning has to be computed

using a partitioner, whereas in Gravity the splitting of nodes is based on its com-
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Variables and predicates:

V = {Vl, ... ,vIVI}

xlv]
(al, a2, a3)

(b l , b2 , b3 )

(nl,n2,n3)

set of circuit nodes

coordinates of gate for circuit node v

coordinates of lower left front corner

lengths of sides of gate array box

initial size of gate array box

4.4. 3-D RESULTS

•

Initial CalI:

place(V,(O, 0, O),(nl, n2, n3))

place(V,(al' a2, a3),(bl , b2, b3))

1: if IVI=l then

2: X[Vl] := (al, a2, a3)

3: else

find largest side of box

4: k := i such that bi = max(bl , b2, b3)

split box b into two boxes b1 and b2

5: (b1 l , b12, b13) := (bl , b2, b3)

6: b1k := lbl/2J

7: (b2l , b22, b23) := (bl , b2, b3)

8: b2k := rbl/21

determine coordinates of lower left front corner of b1 and b2

9: (a1 l ,a12,a13):= (al,a2,a3)

10: (a21,a22,a23):= (al,a2,a3)

11: a2k := ak + b1k

partition V into subcircuits Vl and V2
of sizes no more than b1l ·b12·b13 and b2l ·b22·b23, respectively

12: (V1, V2) := partition(V,b1l·b12·b13,b2l·b22·b23)

invoke placement routine on subcircuits

13: place(V1,(a1 l , a12,a13),(b1l , b12, b13))

14: place(V2,(a2l , a22,a23),(b2l , b22, b23))

Figure 4.18: Generic partitioning placement algorithm.
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•

puted coordinates. Figure 4.17 illustrates how this algorithm proceeds, and figure

4.18 provides the pseudo code of this partition placement algorithm.

As briefly mentioned in section 3.7 on page 63, partitioning placement in three

dimensions has been suggested before. Leeser et al. [LMY+98] used a partition­

ing placement method for placement in the Rothko architecture. Their partition

placement method was based on a 2-D variation of partitioning placement, called

quadrisection [SM91]. In quadrisection, the chip area is recursively split into four

quadrants and circuits are recursively partitioned four ways. They extended this

method into three dimensions by splitting the chip's volume into eight octants while

concurrently partitioning the circuit eight ways. However, no placement results were

published.

As our partitioner, we chose the hMetis hypergraph partitioner developed by

Karypis et al. [KAKS97]. To our knowledge, this partitioner is currently the best of

the published near-linear-run-time partitioners. Although we use recursive two-way

partitioning, we could easily implement 3-D quadrisection with a few modifications

to the hMetis library interface. Restrictions in the current hMetis library interface

made it necessary to compute a recursive, balanced (k+l)-way partitioning to achieve

a k:l split as is sometimes necessary in step 12 of the algorithm in figure 4.18 when

an odd number of rows, columns, or layers needs to be split. While recursive multi­

way partitioning increases run-time and memory requirement, it does not affect the

quality of the cut [Kar99]. According to Karypis, the hMetis interface could easily

be adapted to allow explicit k:l cuts.

In order to compensate for the excessive memory requirement for large (k+l)-way

partitionings, we restricted the largest dimensions of the grid for the largest circuits

to be of even length. Consequently, the largest cuts are balanced two-way cuts which

require substantially less memory resources. Further, to obtain accurate estimates

of the run time, assuming the hMetis interface was adapted to allow explicit k:l

splits, we ran the algorithm while forcing balanced splits at an levels of recursion

down to 8 or less nodes when no more partitioning intelligence is required. This

is one recursion level less than for the 2-D partitioning placer, and thus, the three

dimensional version is expected to have shorter run times.

Wire-length placement results for this generic partitioning placer have been pre-
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Circuit Nades 3-D Gravity Grid 3-D hMetis Grid Circuit Nades 3-D Gravity Grid 3-D hMetis Grid

19ks 2844 15 x 14 x 14 15 x 14 x 14 s15850P 10470 22 x 22 x 22 22 x 22 x 22

avq.large 25178 30 x 29 x 29 30 x 30 x 28 s35932 18148 27 x 26 x 26 27 x 26 x 26

avq.small 21918 28 x 28 x 28 28 x 28 x 28 s38417 23949 29 x 29 x 29 29 x 29 x 29

baluP 801 10 x 9 x 9 lOx9x9 s38584 20995 28 x 28 x 27 28 x 28 x 27

biamedP 6514 19 x 19 x 19 19 x 19 x 19 s9234P 5866 19 x 18 x 18 19 x 18 x 18

galem3 103048 47 x 47 x 47 48 x 48 x 45 structP 1952 13 x 13 x 12 13 x 13 x 12

industry2 12637 24 x 23 x 23 24 x 23 x 23 t2 1663 12 x 12 x 12 12 x 12 x 12

industry3 15406 25 x 25 x 25 26 x 25 x 24 t3 1607 12 x 12 x 12 12 x 12 x 12

pl 833 10 x 10 x 9 lOxlOx9 t4 1515 12 x 12 x 11 12 x 12 x 11

p2 3014 15 x 15 x 14 15 x 15 x 14 t5 2595 14 x 14 x 14 14 x 14 x 14

s13207P 8772 21 x 21 x 20 21 x 21 x 20 t6 1752 13 x 12 x 12 13 x 12 x 12

Table 4.7: 3-D placement grids for the ACM/SIGDA suite

Circuit Nades 3-D Gravity Grid 3-D hMetis Grid Circuit Nades 3-D Gravity Grid 3-D hMetis Grid

ibm01 12752 24 x 24 x 23 24 x 24 x 23 ibm10 69429 42 x 41 x 41 42 x 41 x 41

ibm02 19601 27 x 27 x 27 28 x 28 x 26 ibmll 70558 42 x 41 x 41 42 x 41 x 41

ibm03 23136 29 x 29 x 28 30 x 30 x 27 ibm12 71076 42 x 42 x 41 42 x 42 x 41

ibm04 27507 31 x 30 x 30 32 x 30 x 29 ibm13 84199 44x44x44 44x44x44

ibm05 29347 31 x 31 x 31 32 x 32 x 30 ibm14 147605 53 x 53 x 53 54 x 54 x 52

ibm06 32498 32 x 32 x 32 32 x 32 x 32 ibm15 161570 55 x 55 x 54 56 x 56 x 54

ibm07 45926 36 x 36 x 36 36 x 36 x 36 ibm16 183484 57 x 57 x 57 58 x 58 x 57

ibm08 51309 38 x 37 x 37 38 x 38 x 36 ibm17 185495 58 x 57 x 57 58 x 58 x 57

ibm09 53395 38 x 38 x 37 38 x 38 x 37 ibm18 210613 60 x 60 x 59 60 x 60 x 59

Table 4.S: 3-D placement grids for the ISPD9S suite

sented at VLSI'99 [OS99].

4.4.2 Result Comparison

•
We compare the placement results of our 3-D Gravity algorithm against the perfor­

mance of the 3-D partitioning placer described above, cf. section 4.4.1. As a com­

parison basis we used the ACM/SIGDA and ISPD9S benchmark circuit suites, cf.

section 4.2.2. For each benchmark circuit with N nodes, both algorithms computed
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a placement into a homogeneous cube-like three-dimensional grid with a cube-edge

length of approximately <IN nodes. The exact 3-D grid dimensions are governed by

equations (4.16) - (4.18), subject to the constraints described in section 4.4.1 above.

Tables 4.7 and 4.8 show the exact grid dimensions. The cumulative wire lengths were

estimated using an extension to three dimensions of the semi-perimeter bounding

box method. This 3-D extension adds the height, width, and length of the volume

spanned by the nodes in a net. This estimate is exact for nets with two or three

nodes, which form the majority of an nets.

Tables 4.9 and 4.10 show wire-length and run-time comparisons on a Pentium

II/300 for the ACM/SIGDA and ISPD98 circuit suites, for 250, 500, 1000, and 2000

force-step iterations. Gravity outperforms generic partitioning placement using the

most powerful efficient partitioning algorithm currently available. On the more

established ACM/SIGDA suite, Gravity with 250 force-step iterations runs on the

average a factor of 12.5 faster while producing placements with approximately 12%

less wire length. By increasing the number of iterations to 2000, Gravity can improve

the wire-length advantage to over 15% while still requiring only half the time of the

hMetis partitioning placer. For the newer ISPD98 circuit suite with the larger and

more modern circuits, Gravity performs even better. With a 1/13 of the run time,

250-iteration Gravity produces results that are on the average almost 20% better

than the partitioning placer. This advantage can be increased to 22.6% with a speed­

up of 2.3 by using 2000 iterations. Detailed tables of the wire-lengths comparisons

can be found in appendix A.

The target circuits for which Gravity is expected to compute placements in the

future are expected to be large. For this reason it is encouraging to observe that

Gravity performs even better and faster on the benchmark circuit suite with the

larger circuits.

•
We observe, that in three dimensions, the wire-length improvement of Gravity

over partitioning placement is roughly twice that in two dimensions, even though

the run-time advantage is less due to the additional coordinate to be computed by

Gravity, and the one-less level of recursion required by the partitioning placer.
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4.4. 3-D RESULTS

Circuit hMetis 250 iterations 500 iterations 1000 iterations 2000 iterations

length time change speed- change speed- change speed- change speed-

(s) (%) up (%) up (%) up (%) up

19ks 14,493.3 37.41 -19.87 13.87 -20.95 8.61 -21.58 4.69 -22.50 2.49

avq.large 104,104.1 302.81 -14.54 10.00 -20.54 5.83 -23.91 2.96 -25.68 1.51

avq.small 94,688.0 277.32 -15.68 10.52 -20.23 6.18 -23.70 3.17 -24.95 1.65

baluP 3,263.5 13.34 -16.05 14.79 -16.02 8.69 -16.70 4.49 -16.41 2.34

biomedP 25,239.2 106.47 -13.08 15.74 -14.64 9.65 -15.57 5.02 -16.01 2.66

golem3 687,104.9 1,519.41 -3.58 10.97 -12.25 7.24 -16.58 3.96 -18.89 2.07

industry2 78,997.7 201.72 -7.04 11.22 -7.04 6.92 -6.83 3.79 -6.15 2.00

industry3 152,962.3 300.69 -18.36 13.20 -19.13 7.75 -19.17 4.26 -19.21 2.27

pl 4,156.1 14.11 -17.70 15.93 -17.54 9.43 -18.09 5.07 -19.22 2.63

p2 18,562.5 43.16 -15.50 13.00 -16.42 7.70 -15.98 4.12 -15.69 2.13

s13207P 26,501.3 103.16 -13.32 12.17 -15.94 7.34 -17.31 3.76 -17.20 1.93

s15850P 30,950.7 121.61 -8.92 11.30 -12.16 6.59 -13.49 3.36 -12.93 1.84

s35932 57,926.1 218.19 -4.92 11.11 -10.42 6.46 -14.51 3.26 -15.67 1.70

s38417 73,282.6 252.72 2.44 8.55 -2.77 4.78 -4.10 2.45 -3.43 1.29

s38584 72,643.9 258.05 -2.10 9.78 -4.76 5.46 -5.43 2.92 -5.26 1.56

s9234P 17,670.1 85.74 -6.88 16.57 -8.46 9.99 -9.41 5.49 -9.19 2.82

structP 7,064.1 22.93 -13.33 13.31 -15.09 8.24 -15.99 4.46 -16.48 2.31

t2 8,501.9 22.21 -19.47 13.71 -20.78 8.24 -21.49 4.44 -21.08 2.23

t3 7,828.2 22.00 -14.65 13.09 -14.80 7.88 -14.54 4.21 -14.80 2.15

t4 7,375.9 21.88 -11.89 12.68 -12.20 7.61 -13.06 4.04 -13.49 2.06

t5 12,568.2 36.24 -12.35 11.99 -11.69 7.30 -11.20 3.99 -10.79 2.05

t6 7,968.1 22.52 -14.27 11.66 -14.20 6.71 -14.72 3.45 -14.52 1.79

Average -11.87 12.51 -14.00 7.48 -15.15 3.97 -15.43 2.07

Table 4.9: Overview of 3-D placement results for the ACM/SIGDA suite
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Circuit hMetis 250 iterations 500 iterations 1000 iterations 2000 iterations

length time change speed- change speed- change speed- change speed-

(s) (%) up (%) up (%) up (%) up

ibm01 92,601.5 239.33 -15.16 13.87 -16.39 8.18 -16.63 4.38 -17.20 2.38

ibm02 202,121.7 391.13 -15.44 13.69 -15.78 8.23 -15.98 4.46 -16.45 2.31

ibm03 234,600.9 432.92 -16.24 12.17 -18.42 7.05 -19.00 3.81 -18.97 2.05

ibm04 301,324.1 497.46 -22.79 11.96 -23.47 7.36 -23.99 3.90 -24.45 2.05

ibm05 367,004.5 553.55 -23.79 13.79 -25.11 8.44 -25.11 4.58 -26.00 2.40

ibm06 333,985.0 655.11 -21.58 13.21 -22.93 8.01 -24.08 4.28 -24.37 2.17

ibm07 473,844.3 1,084.43 -20.14 15.04 -22.07 9.15 -23.39 4.92 -22.98 2.56

ibm08 531,860.7 1,191.15 -22.54 14.79 -23.64 9.39 -24.42 5.17 -24.73 2.73

ibm09 617,201.7 1,263.16 -23.44 13.13 -24.49 7.95 -25.24 4.43 -25.27 2.36

ibmlO 832,125.1 1,761.46 -22.16 15.04 -24.57 9.12 -25.22 4.82 -26.18 2.50

ibm11 872,118.2 1,660.90 -26.25 13.72 -27.83 8.28 -29.17 4.40 -29.83 2.29

ibm12 991,783.9 1,863.66 -20.84 14.57 -21.12 9.56 -21.59 5.40 -22.10 2.89

ibm13 1,000,941.8 1,864.37 -19.58 12.49 -21.08 7.59 -21.80 4.03 -22.27 2.12

ibm14 1,657,408.1 3,064.37 -17.56 12.07 -20.12 6.84 -21.58 3.70 -21.89 1.98

ibm15 1,994,685.8 3,768.55 -10.54 12.19 -13.31 7.27 -14.07 3.89 -14.27 2.13

ibm16 2,222,138.0 4,029.56 -14.28 11.52 -17.02 7.13 -18.07 3.84 -18.65 2.04

ibm17 2,745,042.7 4,462.59 -18.23 12.66 -20.31 7.83 -21.32 4.21 -21.72 2.18

ibm18 2,639,356.6 4,284.66 -24.62 11.47 -27.01 7.07 -28.92 3.66 -29.61 1.94

Average -19.73 13.19 -21.37 8.03 -22.20 4.33 -22.61 2.28

Table 4.10: Overview of 3-D placement results for the ISPD98 suite

4.4.3 From 2 to 3 Dimensions

•

It is expected that 3-D VLSI will have shorter average wire lengths than traditional

2-D VLSI. For instance, the average distance between neighbours in a N-node square

grid is 8(VN), but only 8( -ifN) in an N node cubic grid. How this expectation

translates into wire-length improvement for actual circuits is not easy to estimate.

For this reason, we have compiled in table 4.11 wire-length results for four circuits

evenly covering the dynamic range from 800 to 210,000 nodes. For each circuit 3-D

Gravity computed a placement in d = 2, 2~, 2~, and 3 dimensions. These non­

integer dimensions mean to indicate that the base of the grid has an edge length of

ifN. Thus a 2-D grid, is of size VN x VN x 1, and a 3-D grid of size -ifN x -ifN x \IN.
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4.4. 3-D RESULTS

Circuit Nodes Grid An Nets Counted 2- and 3-node Nets

Length Change Length Change

pl 833 29 29 1 5027.6 2778.9

17 17 3 3751.3 -25.38% 2202.3 -20.74%

12 12 6 3418.3 -32.00% 2032.3 -26.86%

10 10 9 3385.9 -32.65% 2021.6 -27.25%

s9234P 5866 77 77 1 27055.6 18728.4

39 38 4 18749.9 -30.69% 13745.2 -26.60%

26 26 9 16573.6 -38.74% 12570.3 -32.88%

19 18 18 16041.9 -40.70% 12241.2 -34.63%

ibm06 32498 181 180 1 712282.8 233084.3

81 81 5 365606.2 -48.67% 126683.4 -45.64%

49 48 14 277323.5 -61.06% 101553.6 -56.43%

32 32 32 254276.8 -64.30% 95390.0 -59.07%

ibm18 210613 459 459 1 7128339.7 2179268.3

188 187 6 3140755.9 -55.93% 1011482.3 -53.58%

98 98 22 2111055.3 -70.38% 728096.2 -66.58%

60 60 59 1875854.6 -73.68% 655591.2 -69.91%

Table 4.11: Wire-length improvement moving from 2-D to 3-D.

In general, for dimension d and an N-node circuit, we selected a grid size close to

~x~XN/(~)2.

Next to the usual total wire-length estimate, table 4.11 also shows the total wire

lengths of nets with 2 and 3 nodes. For such nets, the semi-perimeter bounding box

approximation of the wire length is exact.

We notice that a substantial wire-length advantage can be achieved for large cir­

cuits even when only a few layers in the third dimension are employed. While small

circuits exhibit only a modest wire-length improvement in 3-D, larger circuits clearly

benefit from the third dimension. Small circuits pi and s9234P experience only a

30%-40% improvement in a 3-D placement, whereas ibmi8 saves approximately 55%

wire length in 2~ dimensions and over 70% in three dimensions.
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4.5 Summary

In this chapter, we have presented a new iterative force-directed placement algorithm

which uses a bucket rescaling technique in lieu of repulsive forces. We have shown

how this algorithm, which we called Gravity, runs in linear time with respect to

circuit size, and how its data structures and implementation have been designed to

take advantage of cache memory and superscalar features common to modern CPUs.

We compared the placement results to the proven technique of partitioning place­

ment using the best efficient minimum-cut partitioner available to date. Our algo­

rithm outperformed the partitioning placer in time and wire length in both two

and three dimensions. Gravity bettered the wire-Iength results of the partitioning

placer using an order of magnitude less run time. In three dimensions, Gravity's

wire-Iength improvement was approximately 20% for the benchmark circuit suite

with the larger, more modern circuits.

For completeness we also compared Gravity to standard cell placement results of

the best published standard cell placer for smaIler, older circuits. Lacking a refined

final placement step for standard ceIllayouts, Gravity produced wire-Iength results

that were on the average approximately 13% larger when using comparable run

times. However, Gravity's strength is expected to lie with modern larger circuits

for which we believe Gravity may perform better: When comparing standard cell

placements only for circuits which have pin distributions closer to those typical for

the larger circuit suite, Gravity managed to produce slightly better wire-Iengths

(approximately 1% improvement).

Lastly, we presented a wire-Iength comparison as the placement grid dimensions

were varied from two to three dimensions. While smaller circuits showed sorne wire­

length improvement, the larger circuits showed a remarkable reduction in wire length

of approximately 50% for a small number of verticallayers, and as much as 70% for

a true 3-D cubic grid.
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Chapter 5

Bendless Embeddings

In section 2.5 on page 37, we encountered sorne optical grid-based architectures in

which a potentially significant latency penalty was incurred whenever a signal had

to be routed from one grid line to an intersecting grid line in order to reach its

destination. In section 1.4.5 on page 27, we defined this problem for hypergraphs

and n-dimensional grids as Straight Line on a Grid. Straight Line on a Grid is an

extension of the 2-D problem Edge Embedding on a Grid for graphs formalized by

Garey and Johnson [GJ79]. We also note that in the case of bendless embeddings,

the routing of edges is implied to follow the grid lines that join neighbours. Thus, we

use the terms "straight-line placement" and "bendless embedding" interchangeably.

In this chapter, we examine how sorne popular modern network topologies can

be embedded into a grids without bending edges, thus facilitating speedy commu­

nications in technologies in which bends incur large latency penalties. First, we

will describe sorne of the terminology used when describing graph embeddings, and

how sorne optical architectures may benefit from a bendless embedding. In sec­

tion 5.2, we present straight-line embeddings for the traditional network topologies

torus, hypercube, and binary tree. Finally, in section 5.3, we introduce an efficient

straight-line placement of a more modern topology, the star graph, which has been

suggested as an alternative to the hypercube.
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5.1 Embedding Model

•

In [Lei92], Leighton defines several terms to describe embeddings. When embedding

one graph into another, we say we embed the guest graph into the host graph. We calI

the ratio of the number of host graph nodes over the number of guest graph nodes the

expansion of the embedding. The dilation of an embedding is the maximum path

length in the host graph between neighbours in the guest graph. The maximum

number of guest graph nodes that are embedded into the same host graph node is

called the load of an embedding.

Consider a grid-based computing architecture, with nd electronic nodes arranged

in a d dimensional array and with an optical medium interconnecting the n nodes in

each row, column or dimension. The electronic nodes can represent printed circuit

boards, multi-chip modules, or integrated circuits. Hence, each node may contain

multiple processing elements. Due to the bandwidth advantage of optics, the optical

medium within a row or column can support multiple channels; in a typical config­

uration, each electronic node may reserve its own contention-free broadcast channel

along a row and a column. This optical multi-channel mesh architecture has been

called a hypermesh [Szy95].

This optical model assumes that the passing of a packet between any nodes

along one dimension requires one logical hop. For example, passing a packet from

one node to another node along a contention-free optical channel in the same row

takes one hop regardless if the nodes are spatially nearest neighbours or at opposite

ends of the row. This model is valid whenever the transmission delay along a grid

line is shorter than the switching delay from one grid line to another, e.g. Dowd's

star coupler architecture (figure 2.8 on page 39), or when such dimensional "hops"

are mandated by synchronization requirements, e.g. Guo et al's bus cycles (section

2.5 on page 37). When embedding a guest graph into this optical grid model, the

number of dimensions traversed in an edge embedding is more relevant than the

physical distance, since broadcasts along a row or column require one logical hop

regardless of the destination's position within the row. In the architecture of Guo

et al. [GMH+91], such a "hop" is referred to as a bus cycle, cf. section 2.5 on page

37. Equivalently, the number of bends of an embedding is more important than its

dilation. If an embedding of a guest graph edge into the optical multi-channel grid
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5.2. TORUS, HYPERCUBE, TREE

Topology Nodes Degree Diameter

n2
n if n even

n x n torus 4
n-1 if n odd

helght-n
2n+l - 1 3 2n

binarv tree
n-cube 2n n n

n-star n! n-1 lHn - l)J

Table 5.1: Characteristics of sorne topologies.

has k bends, then a packet requires k + 1 hops to get from one guest node to its

neighbour. In this model, the number of bends replaces the dilation as a distance

measure of an embedding. As a result, the diameter of this optical grid-like network

can be much smaller than that of the electrical grid [Szy95]. In the worst case, it

requires d logical hops to transmit a packet between the furthest apart nodes in an d­

dimensional optical multi-channel grid model. In the conventional grid model, where

packets can only hop along host graph edges between physically nearest neighbours,

it requires d . (n - 1) logical hops to transmit a packet between the furthest apart

nodes in the worst case.

Before we present a bendless embedding of the newer star graph topology in

section 5.3, we first show how simple transformations can be used to find straight­

line placements for the torus, hypercube, and tree.

5.2 Torus, Hypercube, Tree

Tori, hypercubes, and trees have long been studied and used as popular high­

performance network topologies [Lei92]. Table 5.1 compares these topologies. AlI

three topologies have an underlying orthogonal structure which makes them ideal

candidates for bendless embeddings into grids. In this section, we will demonstrate

such embeddings first for the torus, then for the hypercube, and finally for the tree.

A torus is a double-ring structure in three dimensions resembling a doughnut.

Figure 5.1 (left) shows a 5 x 5 torus: five small rings of five nodes each, are inter-
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Figure 5.1: A 5 x 5 torus (left) is placed into a 5 x 5-grid without bending edges.

connected on a large doughnut-like ring. Such a 3-D torus can be fiattened into a

two-dimensional grid, where it represents a mesh with wrap-around edges, cf. figure

5.1 (right). In general, a (d+1)-dimensional torus, can be placed into a d-dimensional

grid, by reusing the d torus ring coordinates as the d grid coordinates.

Bendless Torns-to-Grid Mapping Given a (d + 1)-dimensional torus T whose

nodes are labelled by dring coordinates t = (t l , ... ,td), and a d-dimensional grid G

whose nodes have coordinates x = (Xl,'" ,Xd), the grid coordinates of each torus

node tare

X = t. (5.1)

•

For grids of less than d dimensions, the higher ring coordinates can be projected

onto lower dimensional grid coordinates.

Mapping a tree into a grid is only slightly more involved. Consider a binary tree

and a square. We place the root into the centre of the square. Then, we partition

the square horizontally into two halves and place the children of the root at the

centres of the subpartitions. This process continues recursively, alternating between

horizontal and vertical partitionings. Such a tree is sometimes called an H-tree.

Figure 5.2 shows how a 31-node binary tree can be placed into a 7 x 7 grid.
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Figure 5.2: A 31-node binary tree (left) is placed into a 7 x 7-grid without bending

edges.

Bendless Binary-Tree-to-Grid Mapping Given a complete binary tree of

height h whose nodes are labeHed by counting tree nodes in depth-first-search order,

and a d-dimensional grid. Let bo, . .. ,bLlog2 tJ the bits in the binary representation

of node label t, and let l = {î1 , ... ,îd } be the set of d coordinate base vectors. The

grid position of tree node t is given by

(5.2)

•

Incomplete binary trees are placed by omitting absent nodes, and k-ary trees can

be placed by subdividing the square into k subpartitions at each tree level at the

cost of increased edge congestion. Variations of the above embedding are possible

as long as each child node and its parent share a grid line. Guo et al. [GMH+91]

provide an alternative style for bendless binary tree embeddings.

A hypercube is the extension of a three dimensional cube to arbitrary dimensions.

The n-dimensional hypercube is also a special case of an n-dimensional torus, where

aH n-rings have exactly two nodes. A one-dimensional hypercube is just a point.

Given two n-dimensional hypercubes (or n-cubes) with the same node labels, a

(n + 1)-cube is constructed by connecting aH pair of nodes with the same labels.

Hypercube nodes carry a binary labelling. Each bit in the n-bit label of a node in

an n-cube, represents its coordinate, 0 or 1, in one of the n dimensions. Labels of
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n-node n-node
hypercube hypercube

!oct +:1::
00 01 -------

2n - node
hypercube

Figure 5.3: Two n-node bendless hypercube embeddings are placed side-by-side to

form a bendless 2n-node hypercube embedding.

neighbours in a hypercube differ in exactly one bit. Figure 5.3 shows how to 2-cubes

(squares) are combined to form a 3-cube. Similarly, if a bendless embedding of

an (n - l)-cube is known, an n-cube can be placed without bends by placing two

(n -l)-nodes side-by-side such that alllike-labelled nodes share the same row. Such

a recursive placement definition was previously suggested by Guo et al. [GMH+91]

and can be formalized as follows.

Bendless n-cube Grid Placement Given an n-cube, a d-dimensional grid, a

dimension k. Let u(i) = (UI (i), ... ,Ud(i)) be the coordinates of node i in a bendless

embedding of an (n - l)-cube. Let w = maxO~i<2n-l uk(i) be the maximum coordi­

nate in dimension k of any node. Then the coordinates v (i) = (VI (i), ... ,Vd(i)) of

node i of an n-cube are given by

if j =1- k,

if j = k.
(5.3)

•

The aspect ratio (heightjwidth) of the grid holding a hypercube varies depending

on in which dimensions two lower level hypercubes have been placed side-by-side to

form a higher level cube. By choosing alternate dimensions for each level, the aspect

ratio can be kept at unity for even-n-dimensional hypercubes in a 2-D grid. Figure

5.4 shows a straight line placement of a 7-cube into a 4 x 32 grid.

These embeddings of the torus, tree, and hypercube, all have a load of one. The

expansion is also one for the torus and hypercube, and ~2hh+~~: for a binary tree when
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Figure 5.4: Bendless embedding of a 128-node hypercube into a 4 x 32-grid.
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h is a multiple of d.

5.3 Star Graph

In this section, we describe an embedding of the star graph into a rectangular grid

of d dimensions such that the embedding has no bends, that is, neighbours in the

star graph always differ in exactly one coordinate in the grid. This embedding was

based on an idea presented in [Obe95], and refined and optimized in [0897]. In

particular, [0897] introduces an asymptotically tight bound on the expansion of the

embedding in two dimensions, and an efficient contraction method for reducing the

aspect ratio of the embedding to near unity.

To embed an n-star, the grid can have any number of dimensions d between 1

and n - 1. The embedding has load 1 and an expansion of at most nd
-

1Id!. The

size of the grid will be at most n x· .. x nx(n!ld!). We optimize the size of the
~

d-l
host grid using clique-partitioning to produce embeddings with expansions as low

as unity. In two dimensions, for even n, the grid will be no larger than n x n(n - 2)!,

and have an expansion of no more than In~l' Further, we show how we can use

a contraction method to efficiently embed the star graph into an optical grid with

near-unity aspect ratios. Contraction on a two dimensional embedding will yield a

grid of size no larger than n x n for even n with a load of (n - 2)!.

5.3.1 Introduction

5.3.1.1 Motivation

•

Akers et al. [AHK87] introduced the star graph as an alternative to the hyper­

cube. The n-star is an n!-node regular automorphic graph. Nodes are labelled by

different permutations of n symbols. Nodes are neighbours if the label of one can

be transformed into the label of the other by swapping the first symbol with one

of the other symbols. Due to its small diameter (l3(n - 1)/2J) and sublogarithmic

degree (n - 1), the star graph out-classes the hypercube in many aspects. 8ee Day

and Tripathi [DT94] for a comparative study. A more detailed analysis of star­

graph properties was provided by Qiu et al. [QAM94]. Akl [Ak197] offers a study of
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applications on the star graph.

A way of embedding grids into the star graph has been shown by Ranka et al.

[RWY93]. Thus a star graph can simulate an n-dimensional grid efficiently. We are

proposing the opposite, an embedding of the star graph into a grid.

Motivated by the need for embeddings of star graphs on two dimensional devices

such as a printed circuit board, Hoelzeman and Bettayeb [HB94] investigated the

genus of a star graph. The genus of a graph determines the number of "bridges"

that have to be placed on a two dimensional surface to avoid edge crossings. They

found that the star's genus is lower than the hypercube's, and conc1uded that the

layout of a star graph should be more efficient than the layout of a hypercube of

similar size.

In contrast to board layouts, edge crossings are not a problem in free-space op­

tics, for example. However, unnecessary bends can be problematic. Up to this

point, there has not been a convenient way of embedding a star graph into a com­

mon rectangular physical device. We propose a way of embedding star graphs into

two, three, or more dimensions, such that the positions of neighbours differ in one

coordinate only. Hence, in a two dimensional embedding, neighbours always share

the same row or column.

5.3.1.2 Embedding Overview

Our unoptimized embedding of the star graph into the d dimensional grid will have

a load of 1, an expansion of at most nd-1/d!, and a dilation of at most nI/dl - 1.

Most importantly, the embedding will have no bends. Finding a embedding of

a graph into a grid without bending edges and having load and expansion one

is a known NP-complete problem called Edge Embedding on a Grid [GJ79]. Our

proposed embedding solves Edge Embedding on a Grid for selected even-n n-star

embeddings in two dimensional grids. When the expansion-one condition is removed,

our proposed embedding strategy solves Straight Line on a Grid, cf. 5 on page 27,

for aIl n-stars in arbitrary dimensional grids.

We also present two optimization methods, called group optimization and con­

traction, which can reduce the expansion and dilation considerably. In two dimen­

sional grid embeddings, group optimization guarantees an expansion below 1n=-l
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while maintaining unity load. Contraction increases the load without increasing the

degree or introducing internaI edges within vertices in the contracted node. At the

same time, contraction improves the aspect ratio of the host grid, and thus the dila­

tion of the embedding. In two dimensions, the dilation is no more than n + 1 while

the aspect ratio is no greater than n + 1 : n. As well as improving the aspect ratio,

the contraction operation we propose solves the known NP-complete problem Graph

Homomorphism [GJ79] for n-stars embedded into selected d-dimensional grids.

In the remainder of this section, we will first describe the star graph introduced

by Akers et al. [AHK87] and the d-dimensional grid. Then we will present and prove

the embedding strategy. Finally, we show a few examples of embeddings.

5.3.2 Grid and Star Graph

Recalling definition 3b on page 8, a d-dimensional grid G(Ve ,Ee ) of size N =

ni x ... x nd has N nodes and extends ni nodes into dimension i. The N grid nodes

in Ve are labelled by d coordinates, that is

v E Ve

{:}V (Vl,V2"" ,Vd)

where 0 ::; Vi ::; ni - 1 and 1 ::; i ::; d.

(5.4)

(5.5)

Two nodes u, v E Ve are neighbours, i.e., {u, v} E Ee , if their labels only differ by

one in exactly one coordinate, that is

{u,V} E Ee

{:} lu - vi = 1.

(5.6)

(5.7)

An n symbol star graph S = (Vs, Es), or n-star as introduced in [AHK87], is

a graph with N = n! nodes of degree n - 1. The n! nodes are each labelled by a

different permutation of n symbols from a set S= {SI, S2, ... ,sn}' We will choose

these symbols to be the numbers 0 ... n - 1. Formally, we say,
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v E Vs

{:} V (VI, V2, •.. ,vn ) and {VI, V2,'" ,Vn } = S.

(5.8)

(5.9)
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Figure 5.5: The 4-Star (left) and the 4 x 6-Grid

As mentioned in section 5.3.1.1, two nodes u, v E Vs are neighbours if the label

of u can be transformed into the label of v by exchanging the first symbol of u's

label with one of the n - 1 remaining symbols in its label, that is

{u,V} E Es

{::? ::Ji =1= 1 Ul = Vi and 'lfj rt. {l, i} Uj = Vj.

(5.10)

(5.11)

•

For example, node 23410 of the 5-star has the four neighbours 32410, 43210,

13420, and 03412. Figure 5.5 shows a 4-star and a 6 x 4-grid.

For comparison, respectively, n!-node star graphs and n!-node square grids have

degrees n - 1 and 4, diameters l3(n - 1)/2J and 2Jnf - 2, and average distances

n + 2/n - 4 + I:~=ll/i and 2(Jnf - 1/Jnf)/3.

5.3.3 Embedding

Until now, it has been unknown if the star graph could be embedded into an orthog­

onal structure such that an neighbours are in either the same row or column. For­

tunately, we were able to determine such embeddings for arbitrary size star graphs

and arbitrary dimensional host-grids. Hereafter, we will assume that the grid which

is to host an n-star is of n or less dimensions. The grid may have higher dimensions,

but we will not utilize more than n dimensions.
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Let us introduce and prove the embedding strategy in section 5.3.3.1. In section

5.3.3.2, we will show a way of minimising the expansion of the embedding through

a method we calI group optimization, and will show sorne example embeddings.

FinalIy, in section 5.3.3.3, we use a contraction method to improve the aspect ratio

of the embedding to near unity.

5.3.3.1 Embedding Strategy

To construct an embedding, we will look at every star node, and insert it into two

appropriate sets. We call these sets clusters and groups. The label of a node will

determine its group and cluster, which in turn will determine the node's position

in the grid. First, we describe how such an embedding is found. Then, we shall

formally prove that such an embedding can always be found.

Assume we are dealing with an n!-node n-star, and assume we are trying to

embed it into a rectangular grid of d dimensions. In this case, we will put each node

into one of n!ld! groups, each containing d! nodes, and into one of n!/(n - d + 1)!

clusters, each containing (n - d + 1)! nodes.

Clusters A cluster is a (n - d + l)-substar within the n-star. For each node, its

cluster is determined by the last d - 1 symbols in the label. For example, if we want

to find the correct cluster for node v = 30421 given that we want to embed it into

a three-dimensional grid, then the last d -1 symbols in label of v are 21, and hence

v belongs into cluster 0 21 ,

More formally,

(5.12)

•

In order to specify a node's position in the d-dimensional grid, we need to specify

d coordinates. The first d - 1 coordinates are determined from the cluster, and the

last coordinate follows from the node's group.

We use the d - 1 symbols that mark a cluster as the first d - 1 grid coordinates

of the nodes in that cluster. Nodes in our example-cluster 0 21 will have 2 and 1 as

their first two coordinates when embedded into the grid host-graph. It should be
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noted that not aH grid positions will be associated with a c1uster. Host graph nodes

whose labels have duplicates in their first d - 1 coordinates cannot be associated

with any star graph nodes since it would imply that such a star graph node had

duplicate symbols in its label. For example, host graph node 2,2,3,1 will always

remain unoccupied by guest nodes because the label of a guest node would have to

end with 223. However, no permutation of different symbols has any duplicates.

Groups To find the last coordinate of anode, we look at its group. A node's

group is determined by the n - d symbols in positions 2 through n - d + 1 in its

label. For instance, v = 30421 would be a member of group G04 because symbols 2

through n - d + 1 in v's label are D and 4. The other members of G04 are 10423,

10432, 20413, 20431, and 30412. FormaHy, we say

(5.13)

Since IGI = dl, we have n!ld! groups. We arbitrarily assign an ordering to the

groups and number them accordingly from D to n!ld! - 1. In the proof we will

caH this ordering mapping O. The group's index in the ordering will serve as the

dth coordinate for aH of the group's nodes. Thus, the group and c1uster of anode

determine aH d coordinates of the node's embedding in the host graph. See figure

5.6 for a visualization of the grid coordinate assignment procedure.

Now, we are ready to state the embedding as a theorem.

Theorem 1 Assume an n-star S(Vs , Es) where all nodes are labelled using symbols

from set S= {D, ... ,n - 1}, and a d-dimensional grid host graph G(Va , E a ) of size

n x ... x n x(n!ld!). Further, consider a one-to-one mapping 0: {all permutations
"-v-'"

d-l

of n - d symbols from S} -+ {D,l, 2, ... ,n!ld! -1}. Then Scan be embedded into

G with no bends and load 1. Such an embedding is achieved by embedding every

node v E Vs into anode U E Va such that

•
(Ul, U2,··· ,Ud-2, Ud-l, Ud)

= (Vn-d+2' Vn -d+3, ... ,Vn-l, Vn , 0 ((V2, V3, ... ,Vn-d+l))) . (5.14)
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star graph node

\
04 2nd through n-d+1st

symbols--- ...." "-
"30412 '.. G

" 30421 \ group 04
110432 1
1 10423 1

"20413 I~ 01

" 20431/102
', __ - ,; 203

1 ~304
dth 410
d· 512

COOf mate 6 ...
guest graph node

host graph node

Figure 5.6: Finding the coordinates in the host graph.

•

Proof We caU S the guest graph, and G the host graph.

No two different nodes can belong to the same group and the same c1uster since

nodes with the same group symbols (symbols 2 n - d + 1) have a different per-

mutation of c1uster symbols (symbols n-d+2 n), and vice versa. Hence, every

guest graph node is embedded into a unique host graph node.

To show that there are no bends between guest graph neighbours in the host

graph, we need to show that the labels of host graph nodes of neighbours in the

guest graph differ by one coordinate only.

All members of one c1uster differ in only one coordinate in their host graph labels

since the c1uster determines d - 1 of d coordinates, which are common. Further,

recall that the labels of neighbours of a star graph node are found by swapping the

first symbol in a node's label with one of the n - 1 other symbols. It follows that
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a node in a cluster C must have n - d of its n - 1 neighbours in C since d - 1

neighbours can only be reached by changing one of the last d - 1 symbols. But n - d

neighbours leave the last d - 1 symbols unchanged and those neighbours are thus

within the same cluster.

The remaining d - 1 neighbours of a node v (which are found by swapping the

first symbol with one of the d - 1 last ones of node v) are in the same group as v

since the labels of those neighbours have the same symbols 2 through n - d + 1.

v and its neighbours in the same group share the same dth coordinate in the host

graph label. Moreover, these d - 1 neighbours of v in v's group differ with v in only

one of the last d - 1 symbols, and since the last d - 1 symbols are the first d - 1

coordinates in the host graph, the labels of these guest graph neighbours differ by

only one coordinate in the host graph.D

5.3.3.2 Group Optimization

According to theorem 1 we embed the 4-star of figure 5.5 into a 4 x 12-grid as shown

in figure 5.7. In figure 5.7, every group occupies one row and sorne nodes are left

"idle". We can improve the efficiency of the embedding by mapping two groups into

every row in order to reduce the number of idle nodes, thus reducing the expansion

of the embedding. Ideally, two groups will occupy distinct nodes and fully occupy all

the nodes in a row, resulting in an embedding with unity load and unity expansion.

To achieve this improvement, we need to find a perfect matching between pairs of

groups. Figure 5.8 illustrates an embedding of the 4-star into a 4 x 6 grid (from the

original embedding into a 4 x 12 grid shown on figure 5.7) obtained using a perfect

group matching.

For general d-dimensional embeddings, we shall refer to a group's dth coordinate

as its row, just as in the 2-dimensional case. We can put two groups with all

their nodes onto the same row if none of their nodes claim the same grid node, as

determined by the nodes' clusters. As we will show in theorem 2, it turns out that

we can put those groups that differ by two or more symbols in their labels onto the

same row.

In order to determine which groups can be placed on the same row in a group­

optimized embedding, we shall place all groups with the same symbols into a meta

123



• CHAPTER 5. BENDLESS EMBEDDINGS

Figure 5.7: Unoptimized embedding of the 4-star into a 4 x 12-grid as yielded by

theorem 1.
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Figure 5.8: Group-optimized embedding of the 4-Star in a 2-d grid.

group r such that

G919Z ...9n-d E r buyz,... ,'l'n-d}

{:} (91,92, ... ,9n-d) is a permutation of {'YI, 'Y2, ... ,'Yn-d}' (5.15)

Each meta group r holds lfi = (n - d)! groups.

Groups that differ in two or more symbols can share a row, cf. proof of theorem

2. Thus, we construct a meta group graph Mn,d = (VM , EM ) in which nodes

represent meta groups and an edge is present whenever two meta groups differ in at

least two symbols:

and

{v : v is a set of n - d symbols from S }

E M = {{u, v} : lu n vi S n - d - 2}.

(5.16)

(5.17)

•
Now, we show how we can use a method called clique-partitioning and a meta

group graph to group-optimize the embedding of a star graph. Note, that a meta

group graph Mn,d = (VM, EM) can always be partitioned into c cliques for sorne

cs IVMI·
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... -- ....'0--''. /0 ''.
1 0 1 \ 1 1
, 1 \ /

\. / ,--_ ...... _... ... ... _....

Figure 5.9: Clique partitionings of M4,3' MS,2' and M6,2.

Theorem 2 Given a clique-partitioning of a meta group graph Mn,d into c cliques,

we can embed an n-star into a d-dimensional grid of size n x ... x n xc· (n - d)!
'----v----"

d-l
with load one and no bends.

Proof A clique partitioning of an Mn,d is a partitioning of the nodes of Mn,d into

cliques, i.e., complete subgraphs, such that every node is a member of exactly one

of these cliques.

Take any two groups Cl and C2 whose meta groups are neighbours in Mn,d. Cl

and C2 's symbols differ in at least two. Consequently, their respective clusters differ

in at least one symbol (recall: SI~ !n-d+:' .. Sn) and so members of Cl
group cluster

and C2 can never occupy the same grid node even if placed onto the same row.

In a clique, all meta groups are neighbours, and hence we can embed one group

from each meta group in a clique into the same row. There are c cliques and (n - d)!

groups per meta group. Thus, we can embed the n-star in a d-dimensional grid of

size n x ... x n xc· (n - d)! with load one.D
'----v----"

d-l
We observe that the expansion e is
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01234sJ1-node
.odd{I:~~!1 05

dIstance :l--'-- L......J '--T:
L_:':":'~r -r- -- ------

. even { 1 L......-J l 'èlique
dIstance 1 L......-J 1

Figure 5.10: A clique-partitioning of M 6,4/M 6,2.

It is desirable to partition Mn,d into as few cliques as possible in order to minimize

the expansion. However, clique partitioning is a well known and hard problem. AI­

gorithms for clique partitioning exist, and a survey can be found in [PuI82]. Optimal

partitionings of M4,3' MS,2' and M6 ,2 are shown in figure 5.9.

In two dimensions, we can determine an upper bound on the expansion by ex­

ploiting symmetry in the meta group graph M n ,2' First, we show how to partition

an Mn2 .,

Lemma 3 An M n ,2 can be partitioned into n cliques if n is even, and n + 1 cliques

if n is odd.

Proof The labels of M n ,2 consist of n - 2 symbols. For simplicity, we may

alternatively identify an M n ,2 node by the two symbols that are missing from its

label. For example, node 0145 in M 6,2 can be uniquely identified by its missing

symbols 23. Using these new labels, Mn,2 becomes Mn,n-2' In fact, this symmetry

holds for all d and clique-partitioning an Mn,d is equivalent to clique-partitioning an

Mn,n-d.

In an Mn,n-2' neighbours have no symbols in common. We select cliques by

choosing pairs of symbols, corresponding to Mn,n-2 node labels, that do not overlap.

For instance, symbol pairs 01, 23, and 45 form a clique. Let us define the distance

between two symbols SI and S2 as the smallest integer .6. such that S2 = (SI + .6.)

mod n. Every symbol needs to pair up with rn ;11 odd, and ln;1 J even distance

symbols in order to form the (~) meta group graph node labels.

When n is even, we pair up symbols at odd distances n - 1, n - 3, ... , 1 to form

n/2 cliques that coyer all the odd distance symbol pairings. Similarly, we create n/2
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Star 2-dimensional grid

n Nodes unoptimized group optimized contracted

n! size expansion size expansion size load

4 24 4 x 12 2 4x6 1 4x3 2

5 120 5 x 60 21 5 x 30 11 5 x 5 6
2 4

6 720 6 x 360 3 6 x 120 1 6x5 24

7 5040 7 x 2520 31 7 x 840 11 7x7 120
2 6

8 40320 8 x 20160 4 8 x 5040 1 8x7 720

9 362880 9 x 181440 41 9 x 45360 11 9x9 5040
2 8

Table 5.2: Star graph embeddings in two dimensions.

cliques to coyer aIl the even symbols pairings. See figure 5.10 for an example. This

way, we partition M n ,n-2 and consequently Mn ,2 with n cliques.

When n is odd, we introduce a ghost symbol n+ 1 to make the number of symbols

even, and then proceed as in the even case. 0

Now, we use lemma 3 to get an upper bound on the expansion.

Theorem 4 A group-optimized unity-load embedding with no bends of an n-star

into a two dimensional grid has an expansion of no more than 1n~1 if n is even,

and 1n':'l if n is odd.

•

Proof: The proof foIlows from lemma 3 and the formula for expansion (5.18)

where the number of cliques c is n or n + 1 when n is even or odd, respectively.D

Theorem 4 guarantees us that we can always find a near unity expansion em­

bedding in two dimensions. In tables 5.2 and 5.3, we have compiled parameters of

actual embeddings. Table 5.2 obeys the expansion bound of theorem 4 and even

suggests a tighter actual bound of unity if n is even, and 1n~1 if n is odd. Table 5.3

suggests that the expansion also approaches unity as the star graph size increases.

Figures 5.11 and 5.12 show example embeddings of the 5-star in two dimensions,

and the 4-star in three dimensions.

In the next section we will show how the high aspect ratio of the larger embed­

dings can be reduced to yield aspect ratios of approximately unity.
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Star 3-dimensional grid

n Nodes unoptimized group optimized contracted

n! size expansion size expansion size load

4 24 4x4x4 2~ 4x4x4 2~ 4x4x4 13 3

5 120 5 x 5 x 20 41 5 x 5 x 10 21
1
2 5x5x5 26

6 720 6 x 6 x 120 6 6 x 6 x 36 li 6x6x6 65

7 5040 7 x 7 x 840 81 7 x 7 x 168 119 7x7x7 246 30

8 40320 8 x 8 x 6720 10~ 8 x 8 x 840 11 8x8x7 1203 3

9 362880 9 x 9 x 60480 131 9 x 9 x 5040 11 9x9x7 7202 8

Table 5.3: Star graph embeddings in three dimensions.

14203 03412 34201 23410
14023 03142 34021 23140
12403 04312 32401 24310
12043 04132 32041 24130
10423 01342 30421 21340
10243 01432 30241 21430

23104 43102 03241 13240
23014 43012 03421 13420
21304 41302 02341 12340
21034 41032 02431 12430
20314 40312 04321 14320
20134 40132 04231 14230
13204 04213 43201 34210
13024 04123 43021 34120
12304 02413 42301 32410
12034 02143 42031 32140
10324 01423 40321 31420
10234 01243 40231 31240
03214 24103 34102 43210
03124 24013 34012 43120
02314 21403 31402 42310
02134 21043 31042 42130
01324 20413 30412 41320
01234 20143 30142 41230
32104 42103 13402 23401
32014 42013 13042 23041
31204 41203 14302 24301
31024 41023 14032 24031
30214 40213 10342 20341
30124 40123 10432 20431

Figure 5.11: Embedding of the 5-Star into a two-dimensional grid.
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Figure 5.12: 3-d embedding of the 4-Star.

5.3.3.3 Contraction

For large star graphs, the high aspect ratio of the grid, e.g. 8 x 5040 for the 8-star

in 2 dimensions, may complicate physical implementation. In this section, we will

show how we can use contraction to efficiently improve the aspect ratio, and thus

the dilation of the embedding by reducing the number of rows in the embedding to

be equal to the number of cliques in a clique-partitioned meta group graph. In two

dimensional embeddings, we will have no more than n + 1 rows, implying a dilation

of at most n.

We can reduce the aspect ratio by contracting several nodes into one, thus in­

creasing the load. Two caveats have to be avoided, though. For one, contraction

should not increase the degree of anode. Otherwise, the aspect ratio problem

would merely be shifted from a large-size problem to a large-degree problem [BS96].

Secondly, contracted nodes should not have internaI edges. If internaI edges were

present, potentially slow electrical intra-node connections might have to replace

otherwise fast optical inter-node links.
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A solution to the second caveat in the contraction problem can onee again be

found in the meta group graph introdueed in section 5.3.3.2. Every star graph node

is part of a group and meta group, which in turn make up the meta group graph,

and within a meta group, aU star graph nodes of a given c1uster are isolated.

Theorem 5 Star Graph nodes of the same cluster have no neighbours in their meta

group.

Proof: Let nodes U = (Ul,'" ,un) and v = (VI,'" ,Vn) be any two distinct mem­

bers of the same c1uster and meta group. Then (uz, ... ,un) is a permutation of

(vz, ... ,vn ). Consequently, Ul = VI, and U and V cannot be neighbours in the star

graph. D.

By theorem 5, we can contract aU (n - d)! star graph nodes of the same c1uster

and meta group into one grid node without introducing any potentiaUy slow elec­

trical intra-node connections. Further, we can show that although contraction may

increase the load of the embedding substantiaUy, the degree of the host node will

remain at n - 1, Le., the degree of the star graph.

Theorem 6 The degree of a contracted node containing all nodes of a meta group

for a given cluster is equal to the degree of the individual nodes.

Proof For each i = 1, ... , (n - d)!, let ui denote a subset of the nodes in a meta

group r hl '00' ,'Yn-Û which share the same c1uster. AU nodes u i are embedded in the

contracted node u. For example in figure 5.13, contracted node U = (3,0,1,2,4)

in the upper right corner holds nodes u l = (3,0,1,2,4), U
Z = (3,0,2,1,4), u3 =

(3,1,0,2,4), u4 = (3,1,2,0,4), u5 = (3,2,1,0,4), and u6 = (3,2,0,1,4). These

ui are aU part of c1uster C4 and members of meta group r{O,l,Z} We label u by

(Ul' 'YI, ... ,'Yn-d, Un-d+Z,··· ,Un)' We observe that for aU i = 1, ... , (n - d)!,

ul = Ul, and (U~-d+Z"" ,u~) = (Un-d+Z"" ,un)' The c1uster of aU nodes in U is

CUn - d+2,'" ,Un' Within CUn _ d+2,... ,Un' every u i connects to anode with the same label

only with symbols ul and 'Yk, where k = 1, ... ,n-d, exchanged. Sinee ul = u{ = Ul

for an nodes in r hl '00' ,'Yn-d} and in c1uster CUn - d+2,'" ,Un' an 'Yk-symbol edges of the

nodes in U will connect to contracted node V of meta group r{ulm,oo.,'Yn-Û-hk} in

c1uster CUn _d+2,oo' ,Un' Intra-group edges will also connect to the same contracted node

in a different c1uster sinee the neighbours meta group remains r hl,,,, ,'Yn-d}' D
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Figure 5.13: Contracted embedding of a 5-Star in two dimensions.

input: n,d dimensions of star and mesh
contraction 'true' if contraction is desired

Embed(n,d,contraction)

Q=clique-partitioning of ~,d
row=O
foreach clique C in Q

foreach meta group r in C
thisRow=row
foreach group Gin r

foreach permutation (Pl ,···,Pd) of {O,oo.,n-l }-{YI ,... ,y n-d}
[iuestnode of (P2 ,···,Pd ,thisRow)=(I1,gl'oo·,gn_d ,P2"",Pd)

if contraction=false then
thisRow = thisRow+1

if contraction=false then
row=row+(n-d) !

else
row=row+l

Figure 5.14: Group-optimized embedding algorithm with optional contraction.
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Since we contract aU nodes of the same cluster in one meta group into one

contracted node, we only require as many rows for our embeddings as there are

cliques in a clique partitioned meta group graph. Thus, in two dimensions, by

lemma 3, we require no more than n + 1 rows.

A contracted embedding of the 5-star in two dimensions is shown in figure 5.13.

The aspect ratio of the embedding is now reduced from 30 : 5 to 5 : 5 with a load

of (n - d)! = 6. The degree of the contracted nodes is still n - 1 = 4.

Tables 5.2 and 5.3 show parameters of contracted embeddings for star graphs of

up to 9! nodes. Figure 5.14 shows the algorithm for group-optimized embeddings

with optional contraction.

5.3.4 Conclusion

Star graphs can be embedded in rectangular grids in up to n - 1 dimensions with­

out bends, thus aUowing for one-hop optical communication between star graph

neighbours in a rectangular implementation.

These embeddings exhibit load 1, and expansion of at most nd - 1Id!. Using

clique-partitioning, we were able to reduce the size of the host graph and produce

embeddings with expansions as low as unity for 2-dimensional embeddings and close

to unity in three-dimensional embeddings. In general, the expansion of a group

optimized two-dimensional embedding is guaranteed not to exceed 1n:'l .
By increasing the load in a contraction process, we were able to reduce the

aspect ratio to values near unity without requiring potentiaUy slow electrical intra­

node edges. Further, we managed to keep the degree of a contracted node at n - 1,

the degree of the embedded n-star.

After Latifi and Bagherzadeh [LB94] have overcome the scalability problem on

the n!-node star graph, our embedding procedure eliminates one more obstacle that

has hindered the practical use of star graphs.
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Chapter 6

Conclusion

With this dissertation, we provided a discussion of fast placement methods of hy­

pergraphs into grids.

In chapter 1, we explained why hypergraph placement into grid structures is an

important problem for modern electronic and networking technology, and we pro­

vided a collection of the most relevant underlying combinatorial placement problems.

Then in chapter 2.1, we showed how the grid model for placement was derived from

a number of modern electronics technologies and optical networking architectures.

In particular, we detailed how the wire-length placement problem, cf. problem 4b

on page 25, was important for the placement of electronic circuits into emerging

three-dimensional VLSI as weIl as traditional 2-D VLSI, and programmable VLSI.

Further, we showed how the problem of finding straight Hne placements, cf. problem

5 on page 27, was a consideration for sorne optical architectures in which straight

Hne communication was considerably faster than communication that needs to be

routed between intersecting optical buses.

In chapter 3, we summarised previous approaches to solving the wire-length

placement problem. Among the most successful methodologies were placement by

simulated annealing, which is proven to converge to an optimal solution, placement

by recursive partitioning, and force-directed placement which emulates a set of at­

tractive and repulsive forces acting on nodes.

In chapter 4, we provided a detailed exposition of a new force directed wire-length

placement algorithm, which we termed Gravity, that produces good results using
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near-linear run time with respect to the input circuit size. Gravity was designed

to produce good results with effectively linear run times so that it could cope with

large circuit sizes that are characteristic of modern VLSI. For this purpose, and

for the lack of existing benchmark results for large circuits, we compared Gravity's

results with the results of a generic partitioning placer using the currently best

fast partitioner available. In two dimensions, Gravity used an average 8% less wire

length and 1/17 the run time of the partitioning placer. In three dimensions, Gravity

required on the average 20% less wire length, and 1/13 the run time. Thus, Gravity

is a fast algorithm that produces placements which result in fast circuits due to

shorter wire length. Compared with standard cell placement of a small number of

older, smaller benchmark circuits using a state-of-the-art standard-cell-placement

algorithm[EJ98], Gravity produced weaker results with 13% longer wire lengths on

the average. However, Gravity does not have a good standard cell final placement

routine, and Gravity did outperform the state-of-the-art standard cell placer by 1%

average wire length on circuits which had a pin distribution doser to the ones typical

for the larger, more modern benchmark circuits.

Further, we provided a comparison of wire-Iength savings when moving from

two to three dimensions. For the largest circuits, Gravity's placement required an

estimated 50% savings using only a small number of layers in the third dimension,

and approximately 70% less wire length in a fully three dimensional placement.

Finally, in chapter 5, we suggested how sorne popular traditional networking

topologies, i.e., the torus, the tree, and the hypercube, can be placed into a grid

without bending edges by simple transformations. Then we showed how a modern

topology, the star graph, which has many superior topological features can also be

placed bendlessly into arbitrary grids. We showed how such embeddings can be

optimized in size and aspect ratio.

•
In focus of this dissertation were fast placement methods that have low run-time

complexities, and that resulted in fast operation of the underlying technology, be

it fast straight-line communication, or highly-clocked electronic circuits benefitting

from reduced size by conserving wire length.
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6.1. ORIGINALITY
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Original research was presented in modest part in chapter 1, wholly in chapter 4,

and building on results we derived in [Obe95] in chapter 5.

The generalization of several combinatorial problems to hypergraphs and multi­

dimensional grids was original research which was published in part in [8098].

The fast placement algorithm of chapter 4, Gravity, was entirely original re­

search, in both the two and three dimensional versions. 8ince there are no published

wire-Iength results for modern larger electronic circuits, we constructed partitioning

placement algorithms for 2-D and 3-D using an existing partitioner. These par­

titioning placers were used to compute wire-Iength results for a new benchmark

circuit suite with modern large circuits. Without this reference partitioning placer,

Gravity's placement results would have been presented in a vacuum. In three dimen­

sions, no placement algorithms of reasonably low run-time complexity, have been

published, and thus no placement results for larger circuits are available. In two

dimensions, placement results where only available for an older benchmark circuit

suite which we believe is no longer representative of modern circuit structures and

sizes. 3-D results for the our reference partitioning placer where published in [0899].

FinaIly, in chapter 6, we presented a bendless embedding of the star graph. This

work was the extension of an idea developed in [Obe95]. We provided an asymptot­

ically tight lower bound on the expansion of a bendless star graph embedding into

a two dimensional grid, and we showed how such an embedding can be constructed.

Further we showed how the aspect ratio of a bendless star graph embedding can

be reduced to near unity by using a contraction method that increases the load,

without increasing the degree of the graph, and without introducing node internaI

edges. This work was published in [0897].

6.2 Future Work

Future work mainly involves the placement algorithm Gravity. Gravity needs to be

made more compatible with current circuit design tools, and its performance may

be improved further.

Gravity requires a post processor for efficient standard cell placement, as weIl as
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provisions for recognizing different cell dimensions internalIy. The former could be a

separate algorithm in the form of Domino [DJA94]. The latter can be integrated into

Gravity without structural changes to Gravity, by adding cell weights proportional

to the cell areas.

Gravity's run time may also be improved through parallelization. By min-cut

partitioning the circuit according to the number of processors, force-directed position

updates at every iteration can be computed in parallel for different subcircuits.

Between iterations, only border node positions would have to be exchanged between

processors. Designing an efficient implementation may be a suitable topie for a

Master's thesis.

Lastly, hierarchieal c1usterization may be required in Gravity for very large cir­

cuits. Clusterization c1usters several ceIls into one in order to reduce the run time

requirement for the initial placement. Clusterization by edge contraction was em­

ployed, for example, in the simulated annealing placer Timberwolf [SS97], and in

the hMetis partitioner [KAKS97]. Hierarchical c1usterization may help with the

detection of coarse circuit structures, and thus allow the separation of sparsely in­

terconnected subcircuits which may otherwise overlay on the same placement area.
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Appendix A

Detailed Gravity Results

A.l Results in Two Dimensions
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• APPENDIX A. DETAILED GRAVITY RESULTS

Circuit hMetis 500 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

19ks 450 2.94 422 355 -21.17 2.22 337 -20.20

avq.large 1089 1.86 1059 1176 8.00 3.86 1121 5.87

avq.small 1054 1.30 1039 1071 1.63 3.71 1019 -2.01

baluP 167 2.27 161 145 -13.14 2.01 138 -14.15

biomedP 514 1.19 503 455 -11.55 2.64 437 -13.11

golem3 4720 0.93 4660 6944 47.11 0.83 6848 46.96

industry2 1278 1.77 1223 1297 1.48 1.43 1264 3.39

industry3 2389 1.50 2354 2088 -12.61 2.48 1991 -15.40

pl 214 2.51 204 168 -21.33 1.55 165 -19.28

p2 599 2.15 580 497 -17.01 2.43 477 -17.77

s13207P 401 2.34 377 381 -4.97 1.97 368 -2.23

s15850P 443 1.16 436 434 -2.13 1.32 423 -2.94

s35932 579 1.22 569 746 28.87 2.56 707 24.29

s38417 684 1.36 671 872 27.56 2.33 840 25.10

s38584 757 1.09 740 889 17.45 1.54 870 17.57

s9234P 350 2.27 336 327 -6.60 2.25 311 -7.38

structP 228 3.12 215 187 -18.03 2.56 180 -16.52

t2 333 2.42 317 255 -23.49 1.95 246 -22.26

t3 304 1.93 295 249 -18.06 3.26 238 -19.29

t4 292 2.33 280 239 -18.23 1.83 230 -17.67

t5 390 2.74 381 328 -15.74 2.43 316 -16.98

t6 304 1.95 296 254 -16.56 2.24 243 -18.02

Average 1.93 -4.02 2.24 -4.64

Table A.1: Detailed wire-length comparison of 500-iteration Gravity vs. hMetis for

ACMjSIGDA benchmarks, 10 runs.
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A.1. RESULTS IN TWO DIMENSIONS

Circuit hMetis 500 iterations
mean % standard mean % standard
length deviation minimum length % change deviation minimum % change

ibm01 1545 1.41 1507 1331 -13.83 3.38 1263 -16.24

ibm02 3176 2.31 3064 2847 -10.34 2.26 2744 -10.44

ibm03 3557 1.87 3472 3178 -10.64 2.05 3084 -11.19

ibm04 4020 1.55 3942 3436 -14.54 2.58 3257 -17.38

ibm05 5786 1.68 5618 4719 -18.45 2.37 4561 -18.81

ibm06 4224 3.20 4032 3472 -17.80 2.75 3298 -18.22

ibm07 5230 2.48 5027 4506 -13.86 4.57 4206 -16.34

ibm08 5533 1.44 5394 4887 -11.69 3.53 4640 -13.99

ibm09 5046 1.44 4919 4859 -3.70 2.84 4641 -5.64

ibm10 7292 2.10 7006 6546 -10.23 4.26 6073 -13.31

ibm11 6727 2.31 6475 6288 -6.53 2.37 6119 -5.50

ibm12 9168 1.48 8841 8236 -10.17 1.68 7994 -9.58

ibm13 7464 1.03 7324 6929 -7.17 2.98 6626 -9.53

ibm14 10784 3.47 9976 10524 -2.41 2.60 10144 1.67

ibm15 13095 2.68 12502 13212 0.89 2.38 12696 1.56

ibm16 13557 1.81 13236 13369 -1.39 2.73 12749 -3.68

ibm17 17033 3.45 16254 16631 -2.36 2.76 16157 -0.60

ibm18 12283 2.01 11820 13461 9.59 2.74 12670 7.19

Average 2.10 -8.03 2.82 -8.89

Table A.2: Detailed wire-length comparison of 500-iteration Gravity vs. hMetis for

ISPD98 benchmarks, 10 runs.
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• APPENDIX A. DETAILED GRAVITY RESULTS

Circuit hMetis 1000 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

19ks 450 2.94 422 350 -22.30 1.17 340 -19.45

avq.large 1089 1.86 1059 1002 -7.99 4.70 944 -10.85

avq.small 1054 1.30 1039 955 -9.39 2.82 909 -12.52

baluP 167 2.27 161 143 -14.47 1.65 139 -13.61

biomedP 514 1.19 503 450 -12.52 2.27 433 -13.95

golem3 4720 0.93 4660 6306 33.60 0.97 6193 32.91

industry2 1278 1.77 1223 1288 0.74 2.73 1247 1.98

industry3 2389 1.50 2354 2030 -15.05 2.33 1967 -16.43

pl 214 2.51 204 166 -22.33 1.27 163 -20.20

p2 599 2.15 580 483 -19.25 2.09 472 -18.71

s13207P 401 2.34 377 360 -10.17 2.95 343 -8.89

s15850P 443 1.16 436 405 -8.74 3.13 389 -10.83

s35932 579 1.22 569 628 8.51 2.25 608 6.89

s38417 684 1.36 671 755 10.36 3.87 710 5.71

s38584 757 1.09 740 815 7.61 3.06 764 3.26

s9234P 350 2.27 336 310 -11.33 2.03 301 -10.36

structP 228 3.12 215 181 -20.81 2.76 169 -21.27

t2 333 2.42 317 253 -24.03 1.11 248 -21.82

t3 304 1.93 295 237 -22.06 2.42 228 -22.76

t4 292 2.33 280 238 -18.39 1.42 233 -16.58

t5 390 2.74 381 328 -15.97 2.49 316 -16.91

t6 304 1.95 296 258 -15.40 2.30 249 -15.82

Average 1.93 -9.52 2.35 -10.01

Table A.3: Detailed wire-Iength comparison of 1000-iteration Gravity vs. hMetis for

ACMjSIGDA benchmarks, 10 runs.
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A.1. RESULTS IN TWO DIMENSIONS

Circuit hMetis 1000 iterations
mean % standard mean % standard
length deviation minimum length % change deviation minimum % change

ibm01 1545 1.41 1507 1305 -15.51 2.56 1274 -15.49

ibm02 3176 2.31 3064 2771 -12.73 2.65 2609 -14.84

ibm03 3557 1.87 3472 3105 -12.71 1.74 3014 -13.21

ibm04 4020 1.55 3942 3291 -18.14 1.61 3200 -18.84

ibm05 5786 1.68 5618 4656 -19.53 1.79 4553 -18.95

ibm06 4224 3.20 4032 3355 -20.55 3.61 3169 -21.42

ibm07 5230 2.48 5027 4320 -17.40 2.46 4150 -17.46

ibm08 5533 1.44 5394 4796 -13.32 1.84 4692 -13.01

ibm09 5046 1.44 4919 4712 -6.61 1.68 4571 -7.06

ibmlO 7292 2.10 7006 6282 -13.85 2.76 6069 -13.37

ibmll 6727 2.31 6475 5968 -11.29 2.49 5783 -10.70

ibm12 9168 1.48 8841 8064 -12.04 1.41 7928 -10.33

ibm13 7464 1.03 7324 6708 -10.14 1.89 6510 -11.11

ibm14 10784 3.47 9976 9800 -9.12 1.16 9640 -3.38

ibm15 13095 2.68 12502 12494 -4.59 2.47 12144 -2.86

ibm16 13557 1.81 13236 13034 -3.86 2.05 12639 -4.51

ibm17 17033 3.45 16254 15681 -7.94 2.23 15175 -6.64

ibm18 12283 2.01 11820 12809 4.28 3.04 11807 -0.11

Average 2.10 -11.39 2.19 -11.29

Table A.4: Detailed wire-length comparison of 1000-iteration Gravity vs. hMetis for

ISPD98 benchmarks, 10 runs.
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Circuit hMetis 2000 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

19ks 450 2.94 422 343 -23.68 1.89 329 -22.11

avq.large 1089 1.86 1059 915 -15.94 3.21 855 -19.28

avq.small 1054 1.30 1039 869 -17.54 3.54 833 -19.82

baluP 167 2.27 161 140 -16.16 1.63 136 -15.32

biomedP 514 1.19 503 441 -14.27 1.75 431 -14.38

golem3 4720 0.93 4660 5888 24.74 1.42 5702 22.38

industry2 1278 1.77 1223 1286 0.63 2.26 1234 0.95

industry3 2389 1.50 2354 2004 -16.13 1.60 1954 -16.98

pl 214 2.51 204 166 -22.51 1.86 160 -21.27

p2 599 2.15 580 492 -17.86 2.59 472 -18.59

s13207P 401 2.34 377 351 -12.39 1.92 339 -9.90

s15850P 443 1.16 436 394 -11.06 2.07 386 -11.45

s35932 579 1.22 569 562 -3.00 1.99 545 -4.25

s38417 684 1.36 671 709 3.72 1.62 687 2.37

s38584 757 1.09 740 790 4.35 2.61 762 2.99

s9234P 350 2.27 336 305 -12.93 1.65 297 -11.61

structP 228 3.12 215 172 -24.69 1.93 168 -21.76

t2 333 2.42 317 251 -24.48 1.33 247 -22.19

t3 304 1.93 295 238 -21.87 2.37 230 -21.93

t4 292 2.33 280 236 -19.15 1.82 229 -18.15

t5 390 2.74 381 331 -15.17 1.87 320 -15.81

t6 304 1.95 296 254 -16.42 1.52 250 -15.65

Average 1.93 -12.36 2.02 -12.35

Table A.5: Detailed wire-Iength comparison of 2000-iteration Gravity vs. hMetis for

ACM/SIGDA benchmarks, 10 runs.
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A.1. RESULTS IN TWO DIMENSIONS

Circuit hMetis 2000 iterations
mean % standard mean % standard
length deviation minimum length % change deviation minimum % change

ibmOl 1545 1.41 1507 1293 -16.29 2.95 1234 -18.15

ibm02 3176 2.31 3064 2717 -14.43 1.83 2623 -14.40

ibm03 3557 1.87 3472 3083 -13.31 1.97 2987 -13.97

ibm04 4020 1.55 3942 3279 -18.45 1.59 3203 -18.74

ibm05 5786 1.68 5618 4675 -19.21 1.76 4526 -19.43

ibm06 4224 3.20 4032 3306 -21.73 3.45 3137 -22.20

ibm07 5230 2.48 5027 4305 -17.69 3.04 4081 -18.82

ibm08 5533 1.44 5394 4688 -15.27 1.96 4506 -16.47

ibm09 5046 1.44 4919 4609 -8.67 1.54 4462 -9.29

ibm10 7292 2.10 7006 6180 -15.25 2.25 5914 -15.59

ibm11 6727 2.31 6475 5863 -12.84 1.70 5732 -11.47

ibm12 9168 1.48 8841 8026 -12.46 1.75 7744 -12.41

ibm13 7464 1.03 7324 6668 -10.67 1.44 6448 -11.96

ibm14 10784 3.47 9976 9640 -10.60 1.24 9435 -5.43

ibm15 13095 2.68 12502 12295 -6.11 2.56 11771 -5.84

ibm16 13557 1.81 13236 12524 -7.62 1.11 12210 -7.75

ibm17 17033 3.45 16254 15520 -8.88 2.68 14707 -9.52

ibm18 12283 2.01 11820 12356 0.59 1.67 12002 1.54

Average 2.10 -12.72 2.03 -12.77

Table A.6: Detailed wire-length comparison of 2000-iteration Gravity vs. hMetis for

ISPD98 benchmarks, 10 runs.
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Circuit hMetis 500 iterations 1000 iterations 2000 iterations

time(s) time(s) speed-up time(s) speed-up time(s) speed-up

19ks 57.9 2.8 21.0 4.7 12.3 8.8 6.6

avq.large 487.2 31.6 15.4 57.8 8.4 111.1 4.4

avq.small 436.3 27.1 16.1 49.3 8.8 95.5 4.6

baluP 14.2 0.7 20.9 1.3 11.4 2.5 5.7

biomedP 114.1 7.0 16.4 12.7 9.0 24.4 4.7

golem3 2189.8 169.7 12.9 288.2 7.6 525.0 4.2

industry2 277.5 19.1 14.5 32.6 8.5 57.3 4.8

industry3 383.3 23.5 16.3 42.4 9.0 82.2 4.7

pl 14.9 0.9 17.3 1.6 9.4 2.8 5.3

p2 64.6 3.6 17.8 6.3 10.3 11.1 5.8

s13207P 134.3 8.7 15.4 15.8 8.5 30.0 4.5

s15850P 169.3 11.1 15.2 20.7 8.2 38.7 4.4

s35932 314.8 20.3 15.5 36.3 8.7 70.4 4.5

s38417 401.6 30.2 13.3 59.1 6.8 118.8 3.4

s38584 388.6 29.5 13.2 54.7 7.1 103.0 3.8

s9234P 92.8 5.5 17.0 9.9 9.4 18.4 5.1

structP 32.1 1.5 20.7 2.7 12.0 4.8 6.7

t2 30.5 1.6 19.1 2.8 10.8 5.3 5.8

t3 30.6 1.6 18.8 2.9 10.5 5.4 5.7

t4 31.3 1.7 18.1 3.1 10.2 5.6 5.6

t5 55.4 3.2 17.3 5.3 10.3 10.1 5.5

t6 32.8 1.9 17.7 3.0 10.9 5.7 5.8

Average 16.8 9.5 5.1

Table A.7: CPU-time comparison of Gravity vs. hMetis for ACM/SIGDA bench­

marks, 10 runs.
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A.1. RESULTS IN TWO DIMENSIONS

Circuit hMetis 500 iterations 1000 iterations 2000 iterations

time(s) time(s) speed-up time(s) speed-up time(s) speed-up

ibm01 320.0 17.3 18.5 31.1 10.3 59.3 5.4

ibm02 575.9 29.2 19.7 51.3 11.2 96.3 6.0

ibm03 626.3 35.8 17.5 64.4 9.7 121.1 5.2

ibm04 685.0 44.7 15.3 80.1 8.6 149.6 4.6

ibm05 847.5 43.8 19.4 76.2 11.1 142.0 6.0

ibm06 921.7 54.2 17.0 96.4 9.6 182.4 5.1

ibm07 1347.1 79.1 17.0 141.8 9.5 268.3 5.0

ibm08 1585.9 94.0 16.9 160.1 9.9 284.2 5.6

ibm09 1495.1 112.3 13.3 202.4 7.4 381.8 3.9

ibmlO 2266.7 128.3 17.7 231.9 9.8 433.7 5.2

ibm11 2065.0 135.2 15.3 247.2 8.4 467.0 4.4

ibm12 2428.0 141.1 17.2 234.5 10.4 421.7 5.8

ibm13 2687.4 161.3 16.7 294.5 9.1 557.6 4.8

ibm14 4745.9 269.3 17.6 481.7 9.9 916.9 5.2

ibm15 5850.4 330.0 17.7 599.6 9.8 1141.0 5.1

ibm16 6763.3 362.1 18.7 648.0 10.4 1245.5 5.4

ibm17 7680.3 385.0 20.0 681.6 11.3 1251.4 6.1

ibm18 7320.2 387.4 18.9 695.2 10.5 1304.6 5.6

Average 17.5 9.8 5.2

Table A.8: CPU-time comparison of Gravity vs. hMetis for ISPD98 renchmarks, 10

runs.
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A.2 Results in Three Dimensions

Circuit hMetis 250 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

19ks 14493.3 1.61 14123 11613.2 -19.87 1.80 11293 -20.04

avq.large 104104.1 1.22 101693 88972.1 -14.54 1.09 86868 -14.58

avq.small 94688 0.88 93823 79836.9 -15.68 1.32 78204 -16.65

baluP 3263.5 1.77 3164 2739.8 -16.05 1.09 2694 -14.85

biomedP 25239.2 0.80 24839 21937 -13.08 1.35 21457 -13.62

golem3 687104.9 0.68 679554 662483.2 -3.58 0.83 655517 -3.54

industry2 78997.7 0.92 78052 73438.1 -7.04 1.55 71884 -7.90

industry3 152962.3 1.05 149592 124871.3 -18.36 1.09 123098 -17.71

pl 4156.1 2.17 4071 3420.6 -17.70 1.66 3340 -17.96

p2 18562.5 1.64 18044 15685.2 -15.50 1.98 15004 -16.85

s13207P 26501.3 2.15 25617 22972 -13.32 0.75 22649 -11.59

s15850P 30950.7 0.65 30729 28190.1 -8.92 1.20 27496 -10.52

s35932 57926.1 1.74 56120 55075.2 -4.92 0.89 54432 -3.01

s38417 73282.6 1.21 72355 75072.1 2.44 1.00 73989 2.26

s38584 72643.9 1.10 71560 71116.1 -2.10 0.70 70501 -1.48

s9234P 17670.1 0.89 17463 16454.4 -6.88 0.78 16236 -7.03

structP 7064.1 1.41 6879 6122.3 -13.33 0.97 6042 -12.17

t2 8501.9 1.44 8337 6846.3 -19.47 1.60 6661 -20.10

t3 7828.2 1.42 7658 6681.6 -14.65 0.96 6549 -14.48

t4 7375.9 1.63 7242 6499.1 -11.89 1.19 6350 -12.32

t5 12568.2 0.57 12481 11015.9 -12.35 1.56 10778 -13.64

t6 7968.1 1.51 7785 6831.3 -14.27 0.97 6724 -13.63

Average 1.29 -11.87 1.20 -11.88

•
Table A.9: Detailed wire-Iength comparison of 250-iteration 3-D Gravity vs. hMetis

for the ACMjSIGDA benchmark suite, 10 runs.
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A.2. RESULTS IN THREE DIMENSIONS

Circuit hMetis 250 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

ibm01 92601.5 0.91 90591 78560.8 -15.16 0.81 78033 -13.86

ibm02 202121. 7 0.65 199264 170906.7 -15.44 1.14 167051 -16.17

ibm03 234600.9 0.94 231824 196508.4 -16.24 1.14 193369 -16.59

ibm04 301324.1 1.07 297370 232650.4 -22.79 1.02 229315 -22.89

ibm05 367004.5 1.27 360659 279691.6 -23.79 1.06 273955 -24.04

ibm06 333985 3.21 323919 261922.1 -21.58 1.53 253716 -21.67

ibm07 473844.3 1.82 458047 378412 -20.14 1.36 369334 -19.37

ibm08 531860.7 1.38 521203 412004.1 -22.54 2.31 398982 -23.45

ibm09 617201.7 2.56 587107 472501.7 -23.44 1.48 461762 -21.35

ibm10 832125.1 3.79 796763 647698.6 -22.16 1.61 632117 -20.66

ibm11 872118.2 2.72 842491 643165.8 -26.25 1.34 629650 -25.26

ibm12 991783.9 1.63 959567 785136.4 -20.84 1.34 766362 -20.13

ibm13 1000941.8 2.05 971330 804966.6 -19.58 0.69 796481 -18.00

ibm14 1657408.1 1.12 1630502 1366391.4 -17.56 1.41 1335308 -18.10

ibm15 1994685.8 1.38 1957427 1784492.6 -10.54 0.65 1767102 -9.72

ibm16 2222138 1.05 2190510 1904852.6 -14.28 1.66 1855758 -15.28

ibm17 2745042.7 1.16 2680986 2244711 -18.23 0.81 2219649 -17.21

ibm18 2639356.6 4.29 2504083 1989565.2 -24.62 1.08 1938687 -22.58

Average 1.83 -19.73 1.25 -19.24

Table A.lO: Detailed wire-length comparison of 250-iteration 3-D Gravity vs. hMetis

for the ISPD98 benchmark suite, 10 runs.
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• APPENDIX A. DETAILED GRAVITY RESULTS

Circuit hMetis 500 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

19ks 14493.3 1.61 14123 11456.9 -20.95 0.71 11308 -19.93

avq.large 104104.1 1.22 101693 82725.1 -20.54 1.29 80963 -20.38

avq.small 94688 0.88 93823 75536.1 -20.23 0.88 74522 -20.57

baluP 3263.5 1.77 3164 2740.8 -16.02 0.90 2703 -14.57

biomedP 25239.2 0.80 24839 21544.6 -14.64 1.03 21082 -15.13

golem3 687104.9 0.68 679554 602956.9 -12.25 0.59 595765 -12.33

industry2 78997.7 0.92 78052 73435.2 -7.04 1.10 72168 -7.54

industry3 152962.3 1.05 149592 123694.6 -19.13 0.77 122626 -18.03

pl 4156.1 2.17 4071 3427.2 -17.54 0.88 3363 -17.39

p2 18562.5 1.64 18044 15515.3 -16.42 1.18 15149 -16.04

s13207P 26501.3 2.15 25617 22278 -15.94 0.44 22125 -13.63

s15850P 30950.7 0.65 30729 27187.1 -12.16 0.85 26909 -12.43

s35932 57926.1 1.74 56120 51887.5 -10.42 0.77 51354 -8.49

s38417 73282.6 1.21 72355 71251.7 -2.77 1.17 70101 -3.12

s38584 72643.9 1.10 71560 69189.5 -4.76 0.89 68074 -4.87

s9234P 17670.1 0.89 17463 16175.4 -8.46 0.66 15979 -8.50

structP 7064.1 1.41 6879 5998.4 -15.09 1.34 5814 -15.48

t2 8501.9 1.44 8337 6735.5 -20.78 1.01 6641 -20.34

t3 7828.2 1.42 7658 6669.8 -14.80 0.75 6591 -13.93

t4 7375.9 1.63 7242 6476.2 -12.20 1.02 6339 -12.47

t5 12568.2 0.57 12481 11099 -11.69 1.77 10731 -14.02

t6 7968.1 1.51 7785 6836.3 -14.20 1.29 6694 -14.01

Average 1.29 -14.00 0.97 -13.78

Table A.ll: Detailed wire-Iength comparison of 500-iteration 3-D Gravity vs. hMetis

for the ACM/SIGDA benchmark suite, 10 runs.
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A.2. RESULTS IN THREE DIMENSIONS

Circuit hMetis 500 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

ibmOl 92601.5 0.91 90591 77424.2 -16.39 0.64 76673 -15.36

ibm02 202121.7 0.65 199264 170217.9 -15.78 1.13 167303 -16.04

ibm03 234600.9 0.94 231824 191398.2 -18.42 0.54 190048 -18.02

ibm04 301324.1 1.07 297370 230593.3 -23.47 0.58 228139 -23.28

ibm05 367004.5 1.27 360659 274860.4 -25.11 1.16 271107 -24.83

ibm06 333985 3.21 323919 257418.3 -22.93 1.23 249835 -22.87

ibm07 473844.3 1.82 458047 369258.2 -22.07 0.95 364914 -20.33

ibm08 531860.7 1.38 521203 406123.5 -23.64 1.35 394683 -24.27

ibm09 617201.7 2.56 587107 466055.6 -24.49 0.67 460634 -21.54

ibm10 832125.1 3.79 796763 627657.9 -24.57 0.85 619369 -22.26

ibm11 872118.2 2.72 842491 629399.5 -27.83 0.69 621890 -26.18

ibm12 991783.9 1.63 959567 782332.6 -21.12 1.07 768835 -19.88

ibm13 1000941.8 2.05 971330 789944.2 -21.08 0.67 783356 -19.35

ibm14 1657408.1 1.12 1630502 1323871.9 -20.12 1.27 1293537 -20.67

ibm15 1994685.8 1.38 1957427 1729273.6 -13.31 0.77 1710715 -12.60

ibm16 2222138 1.05 2190510 1843830.2 -17.02 1.28 1785091 -18.51

ibm17 2745042.7 1.16 2680986 2187596.3 -20.31 0.81 2152381 -19.72

ibm18 2639356.6 4.29 2504083 1926444.7 -27.01 1.25 1892589 -24.42

Average 1.83 -21.37 0.94 -20.56

Table A.12: Detailed wire-Iength comparison of 500-iteration 3-D Gravity vs. hMetis

for the ISPD98 benchmark suite, 10 runs.
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Circuit hMetis 1000 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

19ks 14493.3 1.61 14123 11365.3 -21.58 0.93 11234 -20.46

avq.large 104104.1 1.22 101693 79211.4 -23.91 0.53 78570 -22.74

avq.small 94688 0.88 93823 72251.2 -23.70 0.96 70508 -24.85

baluP 3263.5 1.77 3164 2718.6 -16.70 0.99 2684 -15.17

biomedP 25239.2 0.80 24839 21308.6 -15.57 0.85 20973 -15.56

golem3 687104.9 0.68 679554 573173.2 -16.58 0.71 566362 -16.66

industry2 78997.7 0.92 78052 73598.3 -6.83 0.97 72397 -7.25

industry3 152962.3 1.05 149592 123638.6 -19.17 0.83 121940 -18.48

pl 4156.1 2.17 4071 3404.3 -18.09 1.97 3297 -19.01

p2 18562.5 1.64 18044 15596.9 -15.98 1.32 15361 -14.87

s13207P 26501.3 2.15 25617 21914.5 -17.31 0.56 21742 -15.13

s15850P 30950.7 0.65 30729 26776.8 -13.49 0.50 26572 -13.53

s35932 57926.1 1.74 56120 49519.1 -14.51 0.66 49078 -12.55

s38417 73282.6 1.21 72355 70281.3 -4.10 0.98 69118 -4.47

s38584 72643.9 1.10 71560 68699.7 -5.43 1.07 67563 -5.59

s9234P 17670.1 0.89 17463 16007.3 -9.41 0.69 15816 -9.43

structP 7064.1 1.41 6879 5934.8 -15.99 0.87 5833 -15.21

t2 8501.9 1.44 8337 6674.7 -21.49 0.91 6583 -21.04

t3 7828.2 1.42 7658 6689.6 -14.54 1.31 6544 -14.55

t4 7375.9 1.63 7242 6412.6 -13.06 0.78 6300 -13.01

t5 12568.2 0.57 12481 11160.7 -11.20 1.83 10741 -13.94

t6 7968.1 1.51 7785 6795.3 -14.72 1.33 6646 -14.63

Average 1.29 -15.15 0.98 -14.91

Table A.13: Detailed wire-length comparison of 1000-iteration 3-D Gravity vs.

hMetis for the ACM/SIGDA benchmark suite, 10 runs.
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A.2. RESULTS IN THREE DIMENSIONS

Circuit hMetis 1000 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

ibm01 92601.5 0.91 90591 77198.4 -16.63 0.57 76481 -15.58

ibm02 202121.7 0.65 199264 169815.4 -15.98 0.79 167707 -15.84

ibm03 234600.9 0.94 231824 190025.4 -19.00 0.69 188051 -18.88

ibm04 301324.1 1.07 297370 229038.2 -23.99 0.87 226212 -23.93

ibm05 367004.5 1.27 360659 274843.8 -25.11 0.90 271640 -24.68

ibm06 333985 3.21 323919 253564.6 -24.08 0.75 249904 -22.85

ibm07 473844.3 1.82 458047 363000.5 -23.39 1.27 351606 -23.24

ibm08 531860.7 1.38 521203 402003.2 -24.42 0.88 392906 -24.62

ibm09 617201. 7 2.56 587107 461399 -25.24 0.91 455776 -22.37

ibm10 832125.1 3.79 796763 622283 -25.22 0.65 613295 -23.03

ibm11 872118.2 2.72 842491 617703.6 -29.17 0.57 612347 -27.32

ibm12 991783.9 1.63 959567 777615.3 -21.59 1.27 765212 -20.25

ibm13 1000941.8 2.05 971330 782729.9 -21.80 0.66 775145 -20.20

ibm14 1657408.1 1.12 1630502 1299724.5 -21.58 0.80 1280357 -21.47

ibm15 1994685.8 1.38 1957427 1714002.6 -14.07 0.62 1697900 -13.26

ibm16 2222138 1.05 2190510 1820492.6 -18.07 0.80 1795440 -18.04

ibm17 2745042.7 1.16 2680986 2159900.5 -21.32 1.02 2119537 -20.94

ibm18 2639356.6 4.29 2504083 1876039.6 -28.92 0.87 1845377 -26.31

Average 1.83 -22.20 0.83 -21.27

Table A.14: Detailed wire-length comparison of 1000-iteration 3-D Gravity vs.

hMetis for the ISPD98 benchmark suite, 10 runs.
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Circuit hMetis 2000 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

19ks 14493.3 1.61 14123 11232 -22.50 1.30 10965 -22.36

avq.large 104104.1 1.22 101693 77368.4 -25.68 0.73 76497 -24.78

avq.small 94688 0.88 93823 71065.2 -24.95 1.21 69772 -25.63

baluP 3263.5 1.77 3164 2727.9 -16.41 0.57 2707 -14.44

biomedP 25239.2 0.80 24839 21199 -16.01 0.83 20852 -16.05

golem3 687104.9 0.68 679554 557303.9 -18.89 0.55 551397 -18.86

industry2 78997.7 0.92 78052 74138.1 -6.15 0.82 73360 -6.01

industry3 152962.3 1.05 149592 123573.2 -19.21 0.69 121455 -18.81

pl 4156.1 2.17 4071 3357.5 -19.22 0.95 3309 -18.72

p2 18562.5 1.64 18044 15650.7 -15.69 1.06 15349 -14.94

s13207P 26501.3 2.15 25617 21943.4 -17.20 0.84 21677 -15.38

s15850P 30950.7 0.65 30729 26948.1 -12.93 1.14 26527 -13.67

s35932 57926.1 1.74 56120 48848.3 -15.67 0.75 48417 -13.73

s38417 73282.6 1.21 72355 70769.2 -3.43 1.27 69071 -4.54

s38584 72643.9 1.10 71560 68822.4 -5.26 1.37 67084 -6.25

s9234P 17670.1 0.89 17463 16046.1 -9.19 0.88 15886 -9.03

structP 7064.1 1.41 6879 5899.7 -16.48 0.85 5792 -15.80

t2 8501.9 1.44 8337 6709.5 -21.08 1.41 6580 -21.07

t3 7828.2 1.42 7658 6669.5 -14.80 1.61 6526 -14.78

t4 7375.9 1.63 7242 6381.2 -13.49 1.23 6256 -13.62

t5 12568.2 0.57 12481 11211.6 -10.79 1.15 10977 -12.05

t6 7968.1 1.51 7785 6811.5 -14.52 1.10 6658 -14.48

Average 1.29 -15.43 1.02 -15.23

Table A.15: Detailed wire-length comparison of 2000-iteration 3-D Gravity vs.

hMetis for the ACM/SIGDA benchmark suite, 10 mns.
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A.2. RESULTS IN THREE DIMENSIONS

Circuit hMetis 2000 iterations
% standard % standard

length deviation minimum length % change deviation minimum % change

ibm01 92601.5 0.91 90591 76677.5 -17.20 0.89 75549 -16.60

ibm02 202121.7 0.65 199264 168871.8 -16.45 0.69 167382 -16.00

ibm03 234600.9 0.94 231824 190093.1 -18.97 0.82 186704 -19.46

ibm04 301324.1 1.07 297370 227659.4 -24.45 0.94 222997 -25.01

ibm05 367004.5 1.27 360659 271572.3 -26.00 0.59 267895 -25.72

ibm06 333985 3.21 323919 252607.6 -24.37 1.00 248437 -23.30

ibm07 473844.3 1.82 458047 364976.6 -22.98 1.00 358872 -21.65

ibm08 531860.7 1.38 521203 400305.7 -24.73 0.70 395468 -24.12

ibm09 617201.7 2.56 587107 461238.2 -25.27 0.49 457856 -22.01

ibm10 832125.1 3.79 796763 614281.7 -26.18 0.72 606702 -23.85

ibm11 872118.2 2.72 842491 611976.8 -29.83 0.88 605889 -28.08

ibm12 991783.9 1.63 959567 772627.1 -22.10 0.97 762112 -20.58

ibm13 1000941.8 2.05 971330 778011.1 -22.27 0.70 771750 -20.55

ibm14 1657408.1 1.12 1630502 1294570.1 -21.89 0.85 1271832 -22.00

ibm15 1994685.8 1.38 1957427 1710050.3 -14.27 0.50 1700391 -13.13

ibm16 2222138 1.05 2190510 1807631 -18.65 0.72 1785101 -18.51

ibm17 2745042.7 1.16 2680986 2148845.2 -21.72 0.67 2132214 -20.47

ibm18 2639356.6 4.29 2504083 1857957 -29.61 0.53 1839756 -26.53

Average 1.83 -22.61 0.76 -21.53

Table A.16: Detailed wire-length comparison of 2000-iteration 3-D Gravity vs.

hMetis for the ISPD98 benchmark suite, 10 runs.
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• A.2. RESULTS IN THREE DIMENSIONS

Glossary

{... } {... } denotes a set whose elements are listed between the braces.

{elernent : condition}

{element : condition} is the set of aH elements that satisfy the given condi­

tion.

c A ç B, set A is a subset of B.

V Ve: For aH elements e...

E e E A means element e is a member of set A.

::J ::Je: There exists and element e...

u Au B is the union of sets A and B.

U U e is the union of aH elements in E.
eEE

n A n B is the intersection of sets A and B.

L: L:eEE is the sum over aH elements e in set E.

wO Asymptotic strict lower bound of the argument [CLR90]:

w(g(n)) = {f(n) : ::Je, no > 0 such that Vn ~ no 0:::; eg(n) < f(n)}.

•
no Asymptotic lower bound of the argument [CLR90]:

n(g(n)) = {f(n): ::Je, no >0 such that Vn~noO:::;eg(n):::;f(n)}.
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80 Asymptotically tight bound of the argument [CLR90]:

bendless embedding

See straight-line placement.

bisection cut width

Cij is the bisection cut width of an embedding. It is the number of times

that routed edges cross a cut line between coordinates points i and i + 1 in

dimension j.

Cij See bisection cut width.

cache Cache memory stores a small copy of part of the main memory. Data in the

cache can be accessed much faster than main memory. A cache hit means

that a required piece of data was found in the cache, and no slow main

memory access was required. The cache hit ratio is the ratio of cache hits

over total memory accesses. Modern CPUs have several levels of caching,

with level-one cache being the fastest.

cardinality

The cardinality of an edge (net) is the number of nodes (ceIl, pins) connected

by the edge.

cell A cell is a node in a circuit. Cell and node are used interchangeably in this

dissertation.

channel

In a grid with k parallei channels, parallei grid edges are labelled from 1

to k. A grid edge labelled i belongs to channel i. AIl grid edges labelled i

together form channel i.

•
clique A clique is a graph or subgraph in which every node is connected to every

other node.

cluster

Cf. paragraph "Clusters" in section 5.3.3.1 on page 120.
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coarse-grain placenaent

A coarse-grain placement determines node positions in a placement without

regard to final placement constraints such as grid coordinates or standard

celllayout. A fine-grain placement needs to be performed to achieve a good

final placement.

congestion

The congestion of a grid edge is the number of hypergraph edges that get

routed through thie grid edge.

connected

In a graph G(V, E), two nodes u, v are connected if either {u, v} E E, or a

node connected to u is connected to v.

CPU Central Processing Unit.

depth first search

A depth first search of a graph visits every node of a graph by visiting every

unvisited node along one path continuing along the next possible path.

die A small, usually rectangular area of silicon, onto which an integrated circuit

is deposited.

dilation

The dilation of an embedding is the maximum path length in the host

graph between neighbours in the guest graph.

dianaeter

The diameter(V, E) of a graph G(V, E) is the maximum distance between

any two nodes.

distance

The distance between two nodes u and v in a set of edges E is the cardinality

of the smallest subset of E in which u and v are connected. The distance

may be thought of as the number of hops over edges separating u and v.

dynanaic range

A dynamic range, also called a log range, covers several orders of magnitude.

Entities distributed evenly over a dynamic range have an equal logarithm

spacing, e.g. 10, 100, 1000, etc.
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edge An edge interconnects nodes in a hypergraph. An edge is formally a set of

nodes.

EPROM

Eiectrically Programmable Read-Only Memory

expansion

We calI the ratio of the number of host graph nodes over the number of

guest graph nodes the expansion of the embedding.

fO f(S):If S is a set and f is a function, then f(S) is the set of values mapped

by applying f to the elements of S.

fOi f (U)i indicates the dimension-i grid coordinate of f (u).

fine-grain placement

A fine grain placement take the output of a coarse-grain placement and gen­

erates a placement that conforms to placement constraints such as standard

celIlayouts.

FPGA

Field-Programmable Gate Array

genetic algorithms

Genetic algorithms find a solution to an optimization problem by randomly

combining two sample solutions and generating new solutions.

grid See definition 3 on page 8.

grid Hne

A grid line is the subgraph of a grid induced by aIl grid nodes that differ only

in one coordinate. Thus, in a d-dimensional grid, a grid line is identified by

the d - 1 coordinates that the grid-line nodes have in common.

group Cf. paragraph "Groups" in section 5.3.3.1 on page 121.

interconnection

See edge.

•
leg
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• A.2. RESULTS IN THREE DIMENSIONS

load The maximum number of guest graph nodes that are embedded into the

same host graph node is called the load of an embedding.

multiplicity

The multiplicity of an edge is the number of parallei edges connecting the

same nodes. Formally, the multiplicity of an edge is simply a positive integer

associated with this edge.

net An interconnection, such as a wire, that connects several elements of an

electronic circuit is often called a net. The terms edge and net are often

used interchangeably.

00 Asymptotic upper bound of the argument [CLR90]:

O(g(n)) = {j(n): 3c,no>O such that \ln~noO:::;j(n):::;cg(n)}.

partitioning

Partitioning divides a graph or hypergraph into two or more subsets. Nor­

mally attempts are made to reduce the number of edges crossing the parti­

tion.

pin A pin is a connection of a circuit cell (node) to a net (edge).

segment cut width

C{x,y} is the segment cut width of an embedding. It is the number of edges

thatare routed through grid segment {x, y}.

simulated annealing

Simulated annealing algorithms find a solution to an optimization problem

by mimicking the freezing of a liquid.

SRAM

•

Static Read-Only Memory

straight-line placement

A straight-line placement, or bendless embedding, of a hypergraph places aIl

nodes onto a grid such that aIl hypergraph neighbours share a grid line.

VLSI Very Large Scale Integration
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wafer A thin slice from a purified silicon cylinder which can he eut into many

silicon dies.

Xi Xi is the i-th coordinate of x.

Z Z is the set of aH integers. zn is the n-dimensional integer space.
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