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Abstract

The study of rain and clouds, even after centuries of rcsearch, is still a subject whose
theoretical basis is obscure. A major cause of this problem is the extreme variability. The
multiplicative cascade models employed in the study of turbulence lead to fields presenting
the desired variability over wide range of scales. The fields produced with these models have
scale invariant properties expressed by a function specifying the way each statistical moment
is transformed from one scale to the other; they are multifractal. It was proposed to consider
rain and clouds as turbulent fields, thus providing a physical basis to statistical modeling of
these fields. During this work, we wanted to empirically establish the applicability of these
models. We established the range of scales where scale invariance is observed, we
determined the transformation functions and established the limits of the model for various
fields related to atmospheric water. )

This verification is further complicated by the inhomogeneity of the measuring
networks employed to gather data. In fact, the positions of i2ndmasses, topography and
economic constraints have resulted in networks which are not distributed on regular grids (as
it might seem desirable) but on the contrary which presents holes at all scales. In fact, it has
been shown that such networks are fractals. Rather, we will consider the station density as a
multfractal. Multifractal fields analyzed by multifractal networks, this brings us to review
the problem of removing the effect of the network from the measured data (the problem of
Objective Analysis). The method that we propose (Multifractai Objective Analysis) replaces
the homogeneity and regularity hypothesis more or less implicit in usua! methods like
Kriging by inhomogeneity and scaling hypothesis. It is then possible to develop corrections
which allow us to study the muitifractal properties of the analyzed field from the measured
field.



Résumé

L'étude de la pluie et des nuages demeure malgré des sigcles de recherches, un des
domaines que la science a des difficultés & cerner. Une cause majeure de ce probléme est
I'extréme variabilité des phénomenes physiques impliqués. Les modeles de cascade
multiplicative employé pour I'étude de la turbulence conduisent & des champs présentant la
variabilité¢ désirée. Les champs produits par ces modeles ont des propriétés d'itvariance
d'échelles qui sont exprimés par une fonction spécifiant la fagon dont chaque moment
statistique se transforme d'une échelle a l'autre; c'est-2-dire qu'il sont multifractals. 1i fut
proposé de considérer la pluie et les nuages comme des champs turbulents, ce qui fournit une
base physique 2 la modélisation statistique de ces champs. Au cours de nos travaux nous
avons voulus vérifier I'applicabilité de ces modeles. Nous avons entrepris d'établir la gamme
d'échelles ot se manifeste I'invariance, de déterminer les fonctions de transformations et

d'établir les limites du modtle pour divers champs reliés A I'eau atmosphérique.

La poursuite de cette vérification est compliquée davantage par 'inhomogénéité des
réseaux de mesures employés pour recueillir les données. En effet, la position des continents,
la topographie de méme que les contraintes économiques donne lieu 3 des réseaux qui loin
d'étre distribués sur des grilles réguliéres, comme il peut paraitre souhaitable, présentent
plutot des lacunes 2 toutes les échelles. En fait, il a déja été démontré que de tels réseaux ont
un comportement de type fractal. Nous considérons que la densité de stations de ce dernier
est plutot multifractale. Des champs multifractals analysés par des réseaux multifractals, ceci
nous amene 2 revoir le probléme de retirer l'effet du réseau sur les mesures (le probleme de
I'analyse objective). La méthode que nous proposons (analyse objective multifractale)
remplace les hypothéses d'homogénéité et de régularité plus ou moins implicites dans les
méthodes usuelles comme le Kriging par les hypothéses d'inhomogénéité et d'invariance
d'échelles. I nous est alors possible de developper des corrections nous permettant d'étudier

les propriétés multifractales du champ analys€ a partir du champ mesuré.
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Contribution to original knowledge

The main originality of this work is to explore several sources of information related to
atmospheric water in search of properties invariant under a change of scale. When this thesis
began virtually the only relevant analyses wers monofractal (oriented toward geometrical
sets). 1 am among the ﬁrst to systematcally investigate rain and cloud data for these
properties. Now with the evolution of the theory and analysis methods more and more
publications are appearing on the subject.

Another important contribution is that this thesis develop a new technique "multifractal
objective analysis”. This is a method for removing the bias introduced by the presence of an
inhomogeneous (multifractal) network from the field measured by this network. Two major
advances were required to develop this method. First, we considered the density of statons as
a multifractal field, and demonstrated this empirically. This is better than cdnsidcring the
locations of stations as a fractal sef. of points because monofractals are a particular case of
multifractals and for such fields a single fractal dimension is insufficient for their
characterization. The second important point is to consider the measured field as the product
of two multifractal fields (i.e. the density of stations and the analyzed field). It brings up the
possibility of making statistical corrections on the measured field. I have thus replaced the
assumptions of homogeneity and regularity implied by usual objective analysis methcds such
as Kriging by scaling assumptions. We also adapted many of the multifractal analysis
techniques to the spherical geometry of the earth.

Using a significant number of satellite pictures from NOAA-9 AVHRR sensor |
concentrated my study on the critical range of scales (1-512 km) where the standard model of
atmospheric motions predicts a scaling break (=10 km) due to a dimensional transition ("the
mesoscale gap") between two and three dimensional regimes of turbulence. Since I observed
no such break, this is a new and strong support of the alternative unified scaling model. |
extended the range of scales of this study with some images from other sources (LANDSAT
MSS and METEQSAT), so that an overall range of 160m to 4000 km was investigated with



still no sign of a break. This analysis covered one of the widest range of scales explored to
yet and was more systematic than any others that I know of.

We also provided the first reliable estimates of the universal scaling parameters o (the
degree of multifractality) and Cy (the sparseness of the mean) for cloud radiances. The
methods previously used to make these estimations where not specifically designed for
universal multifractal contrary to the new double trace moments technique used in this study.
The new meinodology results in a more direct estimate (linear instead of problematic non-
linear regressions) and a greater accuracy. We also had a larger dataset to perform the
estimates.

We performed the first real test of scaling and universality for radar reflectivities. We
have to mention however that some indications of scaling behavior and other preliminary
analyses showing the pussible compatibility with universal multifractals were presented in
the past. We are the first to attempt an estimate of the universal multifractal parameters for
radar reflectivities (from a scanning and a fixed vertical radar) in the horizontal and vertical
directions as well as along the time axis. We were also the first to invoke the semi-empirical
Marshall-Palmer relation to explain the agreement between the estimated values of the
parameter o for radar reflectivities and for daily rainfall accumulations from gages.

We provided the first evidence that the universal multifractal parameter @ could be
different in time and in space. This was observad for the rainfield and for radar reflectivity
fields. In both cases for the temporal scaling we observed o = 0.5 and for the spatial scaling
we observed o = 1.4. This shows that the generators of the cascade processes are

qualitatively different in space and in time.
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Chapter I

Introduction

1.1 General Introduction

Strong non-linearides and wild variability have always been both basic geophysical
problems. They have generally been postponed or ignored both because of the lack of
conviction that they were important and due to the 'abscnce of adequate theoretical and
numerical tools to face them. It is no longer possible to ignore these issues. The tools have
undergone rapid development, they are called chaos, multifractals, self-organized criticality
and many other names that are becoming increasingly familiar to scientists.

Rain and clouds are certainly among the most variable fields we experience in everyday
life. It's very hard to describe the shape of a cloud because it is so irregular. In fact quite
often when we see something with a very irregular shape we will tend to say it has a cloud
shape. At the level of intuitive notions, if we look at cloud images, and there are no other
reference object in the picture (such as a plane or some recognizable part of land) it is
virtually impossible to estimate the size of the cloud, thus suggesting that some (statistical)
symmetry principle must be obeyed when we change scales. The search for such a
symmetry and its use is at the very basis of this thesis. One place to start such a search is
certainly the basic Navier-Stokes equations governing atmospheric motions. It has been
known for quite some years that this set of equations lacks of characteristic scales thus
leading to scaling dynamics. Scaling or scale invariance indicates that some properties --
geometrical or stadstical-- are preserved at different length scales. Transformation from one
scale length to another will only involve scaling exponents. A simple illustration of scaling
are sets, such as the Cantor set, characterized by a unique scaling exponent, its

(mono)fractal dimension (see Mandelbrot [80]). However more complex fields will have



in geheral their scaling properties characterized by a collection of scaling exponents, a

dimension function or multifractal dimension.

The standard model of atmospheric dynamics (e.g., Monin {84]) divides the
ammosphere into two fundamentally ciistinct regimes: a small scale three-dimensional
turbulent regime and a large scale two-dimensional turbulent regime. Both regimes are
scaling (scale invariant, power law spectra) and both are considered self-similar (the
combination of scaling with statistical isotropy). Unlike turbulence in three dimensions, in
two dimensions, vortex stretching is inhibited and vorticity is conserved. The standard
model assumes that these different regimes are separated by a “mesoscale gap” whose scale
1s expected to be of the order of the scale height of the ammosphere (=10 km). The existence
of the "gap" has been periodically questioned on empirical grounds since the late sixties.
However, we believe that an equally significant source of doubt concerns its theoretical
underpinnings that now appear to be quite ad hoc. This change in perception is possible
due to the remarkable progress in scaling ideas that occurred during the 1980's and a better
understanding of the nonlinear effects and strong variability.

According to this model both regimes of turbulence should be scaling but with
different spectral slope (k-3 in 2D and k-3/3 in 3D) and they should be separated by a sharp
transition, This debate on the dimensionality of atmospheric turbulence took a new
direction. Schertzer and Lovejoy [105] proposed a new "unified scaling” model in which
the atmosphere is never isotropic (3-D) nor completely flat (2-D), but anisotropic and
scaling throughout. During this period, scaling ideas were extended beyond the restrictive
bounds of the fractal geometry of sets to directly deal with the multifractal statistics (and
dynamics) of fields. Multifractals are increasingly understood as providing the natural
framework for scale-invariant non-linear dynamics. Furthermore, due to the existence of
stable attractive multifractal generators (Schertzer and Lovejoy [109, 111, 113, 115}, Fan

[31], Brax and Peschanski [11]) they provide attractive physical models. This implies that



many of the details of the dynamics are irrelevant and lead to new and powerful multifractal
simulation and analysis techniques.

Although these concepts ar= very attractive from a theoretical point they need extensive
confrontation with real data. In the last few years such verification has gained interest in
almost every field of geophysics. This thesis concentrates on the muldscaling properties of
many fields related to atmospheric water: satellite pictures, radar reflectivity and ground
rainfall accumulations. An attempt is made to cover the widest range of temporal and spatial
scales. We determined the range of scales where scaling was observed in the available data,
and established the multifractal properties and their limitations for the different fields. For
the raingage accumulations, sensed by a global network we had to develop a new method

to perform this analysis.

1.2 About Objective Analysis

The analysis of ground rainfall accumulations raises a problem that many geophysical
disciplines are forced to deal with: the inhomogeneity of the measuring networks. The
position of the stations is influenced by the position of landmasses, the topography and
economic imperatives. Topography and landmasses distributions are among the first
domains where fractals were recognized. All the nice images (in spite of their unrealistic
monofractal nature) illustrating Mandelbrot's book [80]) showing impressive mountains
imitations and the multifractal improvements of Wilson et al [137] are certainly a good
example. It seems logical that geographic multifractality is reflected in the distribution of
stations. Some attempts have been made in the past to characterize this sparseness by the
fractal dimension of the set of points representing the physical location of the stations. This
was the first time measuring network scaling properties were recognized. We will improve
on this by considering that the density of stations is the basic field with multifractal

properties.



The inhomogeneity of the measuring network certainly introduces bias in various
estimates of the measured field. Considering this field as regular and representable by
analytic functions leads us to reduce the problem of removing the bias to a simple problem
of interpolation. Techniques for filling the holes in the data are called Objective Anclysis.
Various techniques were designed to perform this task: polynomial curve fitting, spline,
nearest neighbor, Kriging etc... These methods did not cousider that the network and the
analyzed field have different dependencies on the resolution of the measurements. For
many geophysical fields, such as rainfall, there is growing evidence that they are
muitifractal (in the case of rain and clouds a significant part of this thesis will be devoted to
adding to this evidence). We addressed the problem of removing the network bias
differently. The method proposed ("Multifractal Objective Analysis") replaces the
assumptions of homogeneity and regularity (resclution independence) implicit in other
methods by inhomogeneity and resolution dependencies. The network and the analyzed
field have different dependence on the resolution and both fields have to be considered at
the same time since the measured field is the product of the two. The technique we develop

extracts the scaling properties of the analyzed multifractal field from the measured field.

1.3 Scaling of rain

In 1962, Lamperti [56] introduced the simplest scaling hypothesis under the name
"semistable” (later renamed "self-similarity" by Mandelbrot and Van Ness in 1968 {77]).
This hypothesis that is related to fractals could be defined for the rain rate as:

AR(XAx)=AMAR(Ax) (1.1)
where the small scale difference AR(A™Ax)=R(x, +X"Ax)—R(x,) and the large scale
difference is AR(Ax) = R{x, + Ax)—R(x,) where x; and x7 are arbitrary, A is a reduction
ratio, and H is the (unique) scaling parameter, the equality s means equality in probability
distribution viz. aib if and only if Pr(a > q) =Pr(b>q) for all . When the process is a

Brownian motion and the probability distribution is Gaussian H = 1/2. The previous



findings by Hurst [50] of H = 0.7 in some river flow records raised the question of type of
what type of probability distributions and processes were relevant in hydrology.

In 1981, Lovejoy [62] in relation with fractall geometry (Mandelbrot, {78, 79])
hypothesized that simple scaling hold but with highly nongaussian probability distributions
required to account for the intermittency of rain. He used probability dis&ibutions of radar
rain data to test the simple scaling and the "famess" of the probability tail. The term "fat
tail” was introduced by Waymire [135] to indicate that due to the extreme variability of rain
thie probability distribution has algebraic tails instead of gaussian tails. The conclusion was
that simple scaling was reasonably well respected in space with a value of H=0.5. In
time, estimates of the area integrared rainrate of isolated storms every five minute for 100
minutes also gave satisfactory results with H=0.7.

Fat tailed distributions also implied that the probability of a rainfall fluctuation Ar
exceeding a fixed threshold AR (generally expressed in mm/hr) for hyperbolic tail is given

by:
PI'(AI - AR) = AR™® (AR >> 1) (1.2)

where the subscript D emphasizes the depence of the exponent gp on the dimension of the
space used for averaging (a point that we will develop further in chapter III), Various
estimates of this exponent were pcrformed. For example Ségal [124] using 5-15 years time
series of tipping bucket raingages records in Canada came to the conclusion that among the
various functional forms he tested for 1 minute averages of rain rates greater than 3 mmy/hr
a power law provided the best fit with gp = 2.5 £ 0.5 (as shewn in fig. 1-1). Ladoy et al
[55] (fig. 1-2) using daily rain accumulations at Nimes-Courbessac for 40 years observed
hyperbolic behavior with gp = 2.6. In multifractals, this hyperbolic bebavic: can now be
associated with multifractal phase transitions. A point that we will develop later.

1 For review textbook on fraztai geemetry consult Mandlebrot [80], Feder (32], Falconer [30] and Barsley
[41.



Other early tests of scaling came from geometrical characterization of cloud fields (from
radar and satellite). Typical analyses involved comparing the area and the perimeter of
clouds defined as region exceeding a certain level of black body IR emission. Such
analyses were performed by: Cahalan [14], Come [16], Lovejoy [63], Lovejoy et al [64],
Lovejoy and Schertzer [65], Rhys and Waldvogel {101], Welch et al [136], Yano and
Takeuchi [140]. An example of this type of analysis is shown in fig. 1-3. In these analyses
the perimeter P was defined by regions exceeding a threshold. It was compared to the area
of a cloudy region in a relation of the form P < (-\JK )D where D is the fractal dimension of
the perimeter. Sometimes, the scaling was not too evident, or breaks in the scaling were
inferred, and much variation was observed in the value of the dimension. Small databases,
poorly adapted (e.g. monofractal) methods influenced these results. Most of these analyses
where examined in Lovejoy and Schertzer [74] to build convincing evidence toward scaling
of cloud radiances.

Geometric approaches have also been made on the fractal sets associated with
thresholded time series of rain (Bocquillon and Moussa [9], Hubert and Carbonnel [45, 46,
47], OQlsson et al, [90] and Sen et al. [125]). In all these analyses good scaling was
observed but great variations in the value of the exponent D were fcand. The reason for
this variation is that fields had to be converted to geometrical sets before any analysis could
proceed and geometrical sets are characterized with only one dimension exponent (D).
Multifractals are the proper framework for fields. In this approach, an infinity of exponents
is needed (one for each moment of the field) thus the unique exponent D has to be replaced
by a scaling function which tells how each statistical moment scales.

Scaling could also be searched for in Fourier space. The energy spectrum E(k). k being
the modulus of the wavevector (k = |Ei) is of the form IE|_B for statistically isotropic scaling
fields, B is called the "spectral slope”. Ladoy et al {55] found P = 0.3 with daily raingage
accumulations for periods of 1 to 4 years at a station in Nimes (shown in fig. 1-4). While

Rodriguez-Iturbe et al [104] found P = 1.3 over periods of 1 minute to 2 hours with 15



seconds averaged rainrates. Using the log of radar reflectivity Crane [18] obtained B = 5/3
over the range of 1 minute to 2 hours. With (mono)fractals the exponent H is simply related
to the spectral slope B by B =2H+1 and the {ractal dimension with D = (5-8)/2. This
relation has often been used to evaluate the fractal dimension of field, but it does not hold
for multifractals. For the more general multifractals, alternative relations will be exposed in

the next chapter where relations between the scaling exponent for the second order

mornent, § and H will be given.
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Figure 1-1: An example (from 10 years of tipping bucket raingage data at St. John, New
Brunswick) of the extreme rainrate end of one minute resolution rainrate probability
distributions from Segal [124]. Best fitting curve for the log-normal and the hyperbolic
(log-log) distributions are shown.
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Figure 1-2: The probability ( Pr(Ar > AR)) of a random (absolute) rain rate differeace Ar,
exceeding a fixed AR for daily rain accumulations at Nimes-Courbessac (France) from
1949-1588 (14245 days). The tail is nearly straight with exponent gp = 3.5. From Ladoy
et al, {55].
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Figure 1-3: Area plotted against perimeter of rain and cloud areas determined from radar
(filled circles) and satellite data (empty circles). From Lovejoy [63].
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Figure 1-4: The average of six consecutive 4 year spectra of the daily rainfall accurnulations
at Nimes-Courbessac. The annual peak is fairly weak, the scaling holds over most of the

regime with slope (=-f)=-0.3. There is no clear evidence for the "synoptic maximum" (i.e.
a break at periods of a few weeks). From Ladoy et al [55]. '

1.4 Turbulent Cascades and Rain; beyond simple scaling

Since the intuition of Richardson, 1922 [103] and the first concrete model (Novikov
and Stewart, 1964 [86]), many cascade models were elaborated to provide a
phenomenological description of turbulence. These models are based on the following
obscwaﬁo;as and hypotheses.

1) The dynamics are invariant under a change of scale over a wide range of scales.
This comes from the Navier-Stokes equations for a range of scales between the
energy injection (at large scale) and its dissipation (on scales typically of the order of
1 mm).

2) The existence of fluxes conserved by the non-linear dynamics such as the energy
flux and the passive scalar flux in passive scalar clouds2.

3) The interactions take place mainly between neighboring scales (the dynamic is

local in Fourier space). This is also a property of Navier-Stokes equations.

2 A passive scalar is a scalar quantity (e.g the concentration of pollutants) that does not influence the
velocity field.

10



Taken together, these three properties are the basis of cascade models. In 1987, Schertzer
and Lovejoy [109] proposed that rain and non-passive scalar clouds could share some basic
scaling properties that could be modeled by the simpler but alrezdy complex turbulent
cascade processes, thus providing a physical basis to stochastic modelin;z. Such models
have the interesting property that in general they produce multifractal ﬁelds. Furthermore,
in e same manner that gaussian noises are generally produced by a linear sum of random
variables, the cascade processes generally produce universal multifractals by a non-linear
mixing of scale invariant noises. The resulting fields belong to stable and attractive
universality classes for which many of the details of the models are "washed out". The
analysis and simulation of such fields are greatly simplified since only three parameters are
needed to characterize the infinity of scaling exponents (e.g. the scaling function). We
establilshed the region of the scaling function that respects universality and determined the

universal parameters for the different fields we studied.

L5 Confronting models and experience

The direct determination of the spatial and/or temporal distribution of water in any of its
phases in the atmosphere is difficult and limited to in situ measurements. Many of the
current measurement d.iffic‘ulties could be overcome if we were able to model the extreme
variability of the water in the atmosphére because then we would be able to infer and
simulate what different (both remote and in situ) sensors {would measure. For example, one
could simulate the estimation of aerial rainfall from sparse raingage networks, and one
could perform proper radiative transfer calculations to model (Davis et al [23]) what would
be seen from a satellite at various wavelengths or what a weather radar would measure3
(Duncan et al [27]). A primary goal of multifractal analysis is precisely to provide the
information necessary to calibrate such models. Contrary to direct measurement of liquid

water many of the fields dynamically coupled with the latter are relatively easy to measure.

3 See Lovejoy and Schertzer [71, 72] for discussion over various fractal and multifractal effects on radar
reflectivities. -
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This thesis investigates the reultiscaling properties of some of these fields. The purpose of
. this work is to verify the existence of multiscaling properties, analyze them, find their
regions of applicability and the limitations of the available data.

The next chapter presents new analyses of satellite cloud radiances which we believe
are particularly strong endorsements of the unified scaling model. From the perspective of
distinguishing 2D/3D from unified scaling model, it has several unique strengths:

-large samples of satellite pictures spanning wide range of scales are readily
available.

-The pictures from NOAA-9 cover the critical range 1-512 km, i.e. much smaller to
much larger than the = 10 km scale height where 2D/3D break is expected. This
analysis is supplemented by a more limited number of LANDSAT and METEOSAT
images so that the overall range covered by this study is from 160m to 4000 km.

-The raw radiances are sampled on a near rectangular grid so that minimal
reprocessing is required.

We then look at radar reflectivities which complement this study in many ways:

-Even though a narrower range of scale is investigated (=100 m to 10 km) still
minimal reprocessing is required since the raw reflectivities are analyzed.

-The interaction mechanism between the electromagnetic radiation emitted by a radar
and the water vapor of clouds is different from the interaction of clouds with the
incoming solar radiation that is reflected in the visible and infra-red portion of the
spectra that sensed the satellites. Different scaling behavior will result.

-It is possible to separately study the scaling in the horizontal, in the vertical and
along the time axis. "This is not the case with satellite images (except with GOES, but
with a temporal resolution of 1/2 hour),

Chapter 3 is devoted to the spadal distribution-of daily global rainfall accumulations. It

is the test case for the new multifractal objective analysis technique. This dataset has many
‘ special interests to us:
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-It was gathered on one of the largest geophysical networks. It consists of nearly
8000 stations that reported daily rainfall accumulations in 1983.

-1t covers the planet, so the largest earthly scales could be studied with this dataset.
However it has the drawback of being distributed on a sphere, thus the method has to
be adapted to the geometry of the situation.



Chapter I

Multifraciz! theory and Analyses of Remotely Sensed Atmospheric Water
Fields

According to the unified scaling model; the dynamics are governed by anisotropic
(differentially stratified and rotating) cascade processes yielding highly variable
multifractal fields, Just as gaussian random variables are associated with (linear) sums of
random variables, these (nonlinear) multiplicative processes are generically associated
with (special) universal multifractals in which many of the details of the dynamics are
irrelevant. In the first sections, we outlinel these arguments in a widely accessible form
to provide the context and motivation of this work. Next we test these ideas empirically
with remotely sensed data. This is done using LANDSAT, NOAA-9, and METEOSAT
satellite cloud radiances at visible, near infrared and thermal infrared wavelengths with
length scales spanning the range =166m-4000 km, radar reflectivities of rain (in the
vertical and time), and global dzily rainfall accumﬁlaﬁons. We apply spectral analysis as
well as the new Double Trace Moment data analysis technique. In each case, rather than
the sharp dimensional transition predicted by the standard model, we find the scaling to
be relatively well respected right through the mesoscale. We then estimate the three

fundamental universal multifractal exponents and go on to outline how these exponents

~ (with the help of appropriate space-time transformations) can be used to make dynamic

muldfractal models,

IThis summary follows closely Tessier et al (129].

14



1.1 Multifractal Phenomenology of atmospheric turbulence

1J.1.1 Multifractal Processes

The multifractal processes discussed here were first developed as phenomenological
models of turbulent cascades. In hydrodynamic turbulence the governing nonlinear
dynamical ("Navier Stokes") equations have three properties which lead to the cascade
phenomenology: a) scaling symmetry (invariance under dilations (zooms)), b) a quantity
conserved by the cascade (energy fluxes from large to small scale), ¢) localness in Fourier
space (this means that the dynamics are most effective between neighboring scales, direct
transfer of energy from large to small scale structures is inefficient). Cascade models are
relevant in the atmosphere in general and in rain and hydrology in particular since (as
argued in Schertzer and Lovejoy [109]), although the fuil nonlinear partial differential
equations governing the atmosphere will be more complex than those of hydrodynamic
turbulence, they are nonetheless still likely to respect properties a, b, c. To understand
this, consider the simplest strongly nonlinear model of rain, the passive scalar model,
which ignores the effect of rain on the dynamics and assumes that cloud water is simply
advected with the wind. Virtually the same assumptions are used in numerical weather
prediction models. In these models of passive advection of water by a velocity field (v)
the dynamical equations conserve the flux of energy and of scalar variance (with
respective densities € and ). The injection of these quantities at large scale is assumed
constant {(or at least to be a stationary random process) and then there is transfer of these
to smaller scales (hence cascade). By considering statistically stationary fields of these
quantities, dimensional arguments lead to the laws of Kolmogorov [53], Obukhov {87]
and Corrsin [17]

E, (k)= /5 73

_ (2.1)
E,(k) = &5k /5
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where = x%e%, and E,(k) and E,(k)are the power spectra for the velocity and
passive scalar fields, respectively and k is a wavenumber (k = 1/£). Here & is the flux

resulting from the nonlinear interactions of the velocity and water. In real space the

equivalent relations are:
AV() ~ e85
Ap(e) = E5e%

where Av(£) and Ap(£) are the characteristic fluctuatons of the fields v and p at the

(2.2)

scale £. These equations should be understood statistically. A straightforward
interpretation useful in modeling is to view the scaling £1/3 as a power law filter (k*1/3)
of r—:}‘s (Schertzer and Lovejoy [109], Wilson et al [138]). These equations are the result of
wreating passive scalar advection as a nonlinearly coupled cascade process (for & and ).
As we add in more and more coupled equations to account for other interacting fields
(such as radiation or water in its various phases), more and more coupled cascades will be
obtained. The turbulent and multifractal results presented here continue to be valid.

There are now a whole series of such phenomenological models: the "pulse in pulse”
model (Novikov and Stewart [86]), the "lognormal” model (Kolmogorov [54], Obukhov
[89], Yaglom [139]), "weighted curdling” (Mandelbrot [78])), the " model" (Frisch et al.
([331), “the o model" (Schertzer and Lovejoy [105]), the "random § model” (Benzi et al
[7]), the "p model" (Meneveau and Sreenivasan [83]) and the "continuous" and
"universal” cascade models (Schertzer and Lovejoy [109]). It is now clear that scale
invariant multplicative processes generically give rise to multifractals and -- due to the
existence of stable and attractive multifractal generators -- to universal multifractals in
which many of the details of the dynamics are unimportant. These results are important
in hydrology and geophysics since they show that while geometrical fractals are sufficient
to study many aspects of scaling sets, that multifractals (with their statistical exponents)

provide the general framework for scaling fields (measures).
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In contrast to the well-studied case of hydrodynamic turbulence, the dynamical
equations responsible for the distribution of rain and cloud radiances are not known?Z; the
best we can do at present is to speculate on the appropriate fundamental dynamical
quantities analogous to € Since a priori, there is no obvious reason why the rain rate or
cloud radiance fields themselves should be conservative, in analogy with turbulence, we
introduce a fundamental field @3 which has the conservation property <, > = constant
(independent of scale). The observable (non conserved) rainfall (or cloud radiance)

fluctuations (AR}, ) are then given by:

AR, =X (2.3)

Since we have as yet no proper dynamical theory for rain or cloud radiances, we do
not know the appropriate fields ¢ nor the corresponding values of . In the following
discussion, we therefore make the simplifying assumption that a = 1 (changing the value
of a corresponds essentially to changing the parameter Cy; see below). With this in
mind, the scaling parameter H has a straightforward interpretation: it specifies how far the

measured field R is from the conserved field ¢ (]AR,'D =AM, H therefore specifies the

exponent of the power law filter (the order of fractional integration) required to obtain R

from o.

I1.1.2 Some properties of @,

We now focus our attendon on the conserved quantity ¢,. Early scaling ideas were
associated with additive (linear) processes, and unique scaling exponents H (which --only

in these special cases-- were related to unique fractal dimensions by simple formulae).

The properties of @, were quite straightforward, and were usually understood implicitly.

2We exclude here the essentially ad hoc parametrizations employed by numerical cloud and weather
models,
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Turning our attention 10 (nonlinear) multiplicative processes we can consider some of

the properties of ¢, which will generically result from cascades. Fig. 2-1a,b illustrates
such a discrete multiplicative process for @, : a large structure of characteristic length I
with an initial uniform density @g, is broken up (via non-linear interactions with other
structures or through internal instabilify) into smaller sub-structures of characteristic
length I; = Iy/Ag (Ag =2 is thé scale ratio between two construction steps in this particular
example), multiplicatively modulating by a (random) factor the flux on each sub-
structure. When the process is repeated (the overall ratio A is increased; after n iterations,
A=Ag", Ip=lo/Ag") larger and larger values of @; appear, concentrated on smaller and
smaller volumes. In the small scale limit, the result is a highly intermittent multifractal
measure with singularities of all orders 7y distributed on fractal sets with codimension c(y)
(Schertzer and Lovejoy [109), see the schematic iHlustration, fig. 2-2). In the range of
scales A between the injection and dissipation of Energy (i.e. the scaling regime) the

measures on ¢, have the property:

Pr(g, > \T) = K<™ 2.4)

(equality is within slowly varying functions of A such as logs). c¢(y) is therefore the
scaling exponent of the probability distribution. However, when the process is observed
on a low dimensional cut of dimension D (such as the D=1 dimensional simulation shown
in fig. 2-2) it can often be given a simple geometric interpretation. When D>c(y), we
may introduce the (positive) dimension function D(y)=D-c(y) which is then the fractal

dimension of the set with singularities v.
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-1a: A schematic diagram showing a two-dimensional cascade process at
different levels of its construction to smaller scales. Each eddy is broken up into four
sub-eddies, transferring a part or all its energy flux to the sub-eddies. In this process the
flux of the field at large scales multiplicatively modulates the various fluxes at smaller
scales, the mechanism of flux redistribution is repeated at each cascade step (self
similarity). Reproduced from Lavallée [58].
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Figure 2-1b: A discrete (o0 model) cascade in one dimension At each step, the unit
interval is broken up into intervals half the size of the previous step and the energy flux

density (vertical axis) is multiplied by a random factor. In the o model, there are only
two possibilities- a boost or a decrease with probabilities chosen to respect ensemble

conservation <g;>=1. Reproduced from Lavallée [58].
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Figure 2-2: A schematic diagram showing a multifractal energy flux density (g3) with
smallest resolution A-1, and indicating the exceedance sets corresponding 1o two orders of
singularities ¥y, 2.

This geometric interpretation can be useful in data analysis. For example, consider a
data set consisting of N satellite photographs (assumed to be statistically independent
realizations from the same statistical ensemble). A single D dimensional picture (D=2 in
this example) will enable us to explore structures with dimension D2D(y)20; structures
with ¢(y)>D (which would correspond to impossible negative values of D(Y)) will be too
sparse to be observed (they will almost surely not be present on a given realization). This
restriction on the accessible values of c(y) is s.hown in fig. 2-3; to explore more of the
probability space, we will require many photographs. With Ng photographs, the
accessible range of singularities can readily be estimated. If each phoiograph has a range
of scales A (= the ratio of the size of the picture to the smallest resolution = the number of
"pixels” on a side), then introduce the "sampling dimension" (Schertzer and Lovejoy
[114], Lavallée et al [59]): Ds=logNglogh; it is not hard to see (fig. 2-3) that the
accessible range will be y<ys, with c(ys)=D+Ds.



rare * c{y)
events
D+D
S
D
1
> Y
D 'YS
extreme
events

Figure 2-3: A schematic diagram showing a typical codimension function for a
conserved process (H=0). The lines c(Y)=D, y=D indicate the limits of the accessible

range of singularities for a single realization, dimension D. The corresponding lines for
D+Djg, where D is the sampling dimension are also shown. As we analyze more and
more samples, we explore a larger and larger fraction of the probability space of the
process, hence finding more and more extreme (are rare) singularities.

Codimension c{y) has many other properties that are readily illustrated graphically. A
fundamental property which is derived by considering statistical moments (Below), is that
it rnust be convex. It must also be tangent to the line x=y (the bisectrix). This is because
(cpl) = A" = constant, hence the singularity corresponding to the mean of the process,
v=C|, satisfies the fixed point relation C1=c(C;) as indicated in fig. 2-4. Cj is thus the
codimension of the mean process; if the process is observed on a space of dimension D, it
must satisfy D2Cj, otherwise, following the above, the mean will be so sparse that the
process will (almost surely) be zero everywhere; it will be "degenerate”. We can also
consider the (non conserved) ARj; it is obtained from @3 by multiplication by A-H,
wherever, ga=1Y, we have ARa=YH; i.e. by the translation of singularities by -H (see

fig. 2-5). Finally, since c(y) is convex with fixed point C;, it is possible (see fig. 2-6) to
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define the degree of multifractality (&) by the (local) rate of change of slope at Cy, it
radius of curvature R (Cj):

Re(Cr) =223aC, (2.5)

In universal multifractals (below), this local description obtained with just three terms
in Taylor expansion gives all the relevant parameters for a global description of the c(y)
function, and we find an upper bound (maximum degree of multifractality) a=2, yielding
a parabola. The a=0 case is the monofractal extreme (called the "B model”, Frisch et al
[33]) whose singularities all have the same fractal dimension (see fig. 2-6).

Rather than specifying the statistical properties via the scaling of probabilities e(y) it
can (equivalently) be specified by the scaling of the statistical moments. Consider the gt

order statistical moments <@¢39>. We can now define the multiple scaling exponent K(q):

(93) =20, A>1 2.6)
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Figure 2-4: Same as previous, but showing the fixed point C1=c(C;), the singularity
corresponding to the mean of the process. The diagonal line is the bisectrix (y=c(y)).
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Figure 2-5: Same as 2-4, but for a non conserved process. All the singularites are
shifted by -H.
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Figure 2-6: Same as 2-4, but showing the radius of curvature (=223C ) at the fixed
point which locally defines o.. For comparison, the two extreme universal multifractzls
are also shown, corresponding to o=0 (the 3 model), =2 (the lognormal model).
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In parallel to this turbulent multifractal formalism, Hentchel and Procaccia [43],
Grassberger [41), Halsey et al [42] and others elaborated a strange attractor formalism for
dealing with multifractal probability measures in low dimensional phase spaces. They
were primarily interested in the fractal dimensions of geometric sets associated with
singularities of measures (rather than densities). This strange attractor notation is related

to the turbulence notation as follows:
fo(ap) = D-c(Y); ap = D-y 2.7
In turbulence we are interested in stochastic processes defined on (infinite dimensional)

probability spaces, hence the intrinsic (D independent) notation.



K(q), c(y) are related by the following Legendre transformations (Parisi and Frisch,

[94]):

K(q) = maxy (qY - c(¥)) c(y) = maxq (qY — K(qQ)) (2.8)

which relate points on the c(y) function to tangencies on the K{q) function and visa versa;
v=K'(q), g=c'(y). For example, a quantity that will be useful below in estimating the
multifractal parameters of radiances and reflectivities is the sampling moment qg which is
the maximum order moment that can be accurately estimated with a finite sample.
Recalling that the maximum accessible order of singularity was Ys= c-1(D+Dy), we
obtain: qs=c'(¥s). Fig. 2-7 shows a schematic of K{(q); for conserved fields, we have
Cy1=K'(1), (i.e., g=1 corresponds to y=Cjp), the corresponding radius of curvature is
Rg(1)=(1+C12)%3/(Cjat). The functons for the corresponding non conserved fields
(H0) are obtained_by v—y-H, K(q)—K(q)-Hq.

K(q) | w=2 /

1 -9

i

Figure 2-7: The K(q) curves corresponding to the c(Y) curves in fig. 2-6. For o = 0 we

have that K(q) = C1(g-1). Also shown is a typical tangent whose slope K'(q)=Y provides
the one to one correspondence between orders of singularities and moments.
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In summary, this local characterization of the behavior of multifractals near the mean
involves the three parameters (H,Cy,0t) respectively characterizing the deviation of the
observed field from the conserved field @, the sparseness of the latter, and the degree of
“ Figaily, we must make a distincﬁon‘ petween the "bare” and "dressed” multifractal
properties (Schertzer and Lovejoy [109]). The "bare" properties are those which have
been discussed above, they correspond to the construction of the process over a finite
range of scales A. In contrast, the "dressed" quantities are obtained by integrating
(averaging) a completed cascade over the corresponding scale. Experimentally measired
quantities are generally "dressed" since geophvsical sensors typically have resolutions
which are much lower than the scale below which the fields they are measuring become
homogeneous (in the atmosphere, the latter is usually of the order of 1 mm or less). The
dressed quantities generally display an extreme, "hard" behavior involving divergence of
high order statistical moments. Specifically, for averages over observing sets with
dimension D there s a critical order moment qp (and corresponding order of singularity

Yp=K'(gp)) such that:

<@@> = g2qp (2.9)

where qp is given by the following equation:

K(gp)=(qp-1)D (2.10)



II.1.3 Universal multifractals:

The aove discussion is quite general and at this level, it has the unpleasant consequence
that an infinite number of scaling parameters (the entire c(y), K(q) functions) will be
required to fully specify the multiple scaling of our field. Fortunately, real physical
processes will typically involve both nonlinear "mixing " (Schertzer et al 1[116]) of
different multifractal processes, as well as a "densification" (Schertzer and Lovejoy
[110]) of the process leading to a continuum of scales (rather than just the discrete scales
indicated in fig. 2-1a,b). Either of these mechanisms is sufficient so that the above H, C;,
o description becomes global; we obtain the following universal multifractal functions:

r y 1 a‘
G — #1
1[Coc a] *

c(y—-H)=H« 2.11)

Cy exp(%-—l) a=1
L .1

K(q)+qH = { Cll(q -—q) a#l (for0sa<2,q20) (2.12)
Ciqlog(q) a=1

The multifractality parameter a is the Levy index and indicates the class to which the

probability distribution belongs. There are actually 5 qualitatively different cases. The

case ¢ =2 corresponds to lognormal® multifractals, the case 1 < o < 2 corresponds to

(log) Levy processes with unbounded singularities, & = 1 corresponds to log Cauchy

multifractals. These three cases all are "unconditionally hard" multifractals, since for any

D, divergence of moments will occur for large enough q (gp is always finite). When

0 <o <1 we have (log) Levy processes with bounded singularities. By integrating

3 gy keeping the total range of scale A fixed and finite, we may mix (by muluplymg them) independent

pmccsses of the same type, preserving certain characteristics {e.g. the variance of the resulting processes),
Imroducmg more and more intermediate scales in a given multiplicative process.

SThis is nearly the same as the lognormal multiscaling mode! of turbulence proposed by Kolmogorov [54],

Obhukhov {89), except that the latter missed the essential point about the divergence of high order

moments, thinking in terms of pointwise processes,
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(smoothing) such multifractals over an observing set with large enough dimension D it is
possible to tarne all the divergences yielding "soft” behavior, these multifractals are only
conditonally "hard". Finally a =0 corresponds to the most popular and (too!) well-
known monofractal “f model”, Novikov and Stewart [86], Mandelbrot [78] and Frisch et
al. [33]). A more detailed discussion about these five cases and in particular about the
generators of the Levy variables can be found in Schertzer et al [112], Fan [31], and
Schertzer and Lovejoy [113] (see also Lovejoy and Schertzer [71, 73] for some
applidaﬁons and review). Universal multifractals have been empirically found in both
turbulent temperature and ﬁnd data (Schmitt et al [119, 120]). They have also recently
found applications in high energy physics (Brax and Peschanski {11]), as well as
oceanography (Tessier et al. [130]). earthquakes (Beltrami et al. [6]) and landscape
topography (Lavallée et al [S9]). The first empirical estimates of Cy, & in cloud radiances
are discussed in Lovejoy and Schertzer {71] (see also Gabriel et al [34]) and for rain
reflectivities, Seed {123].

Using the universal multifractal formulae above, some of the results discussed earlier
may be expressed in simpler formn. Formulae which will prove useful below are for g
(the maximum order moment that can be reliably estimated with a finite sample), and gp,

the critical order for divergence (obtained by solving 2.10 for qp:

D+D, {*
= . (2.13a)
! [ G ]

C_ap?-9p_p,
a-1 9ol

(2.13b)
Formula 2.13a is only valid for qg < gp. Both of these critical moments are associated
with "multifractal phase transitions"” (Schertzer et al [117]), and a.lgcbrﬁic probabilites

(finite qp) are considered a basic characteristic of self-organized criticality (Bak et al [3]).



I1.2 The Double Trace Moment Technique :
I1.2.1 Basic Ideas :

We have argued above that atmospheric fields are multifractal, involving an infinite
number of scaling exponents (the functions c(y), K(q)), but that due to universality, the
latter may be characterized by the three basic parameters (H, Ci, ). In this section we
briefly discuss how this idea may be tested, and how the parameters estimated. There are
methods other than the DTM that can be used to evaluate those parameters and we will
discuss them in other chapters but since this is the best one and that we will be using it

most we decided to explain it in this introduction chapter.

The physics literature is now replete with different methods developed for estimating
multifractal parameters. Unfortunately, the great majority of these have been designed
for the particularly "calm" multifractals associated with strange attractors, a few for the
slightly less calm "microcanonical” multifractals®, but virtally none for the general
("canonical™) muldfractals involving the occasional "hard" singularities discussed earlier.
When applied to turbulent and/or geophysical data involving exireme variability, they
will have limited accuracy. A final limitation on their accuracy comes from the fact that
they have attempted to estimate an infinite number of parameters with finite data sets (the
entire c(Y), K{(q) function, each value of which is a scaling exponent), We now describe a
simple technique that overcomes these problems by exploiting the universality to estimate
C1 and « directly; c(y), K(q) are then obtained using egs. 2,11, 2.12. H is then estimated
by combining the C; and o estimates with the scaling exponent of the energy spectrum

(section 11.2.2).

SThis is true for example of approaches bases on partition functions and moments (Halsey et al [42]), single
scale histograms (Atmanspacher et al [1], Paladin and Vulpiani [91], multipliers (Chabra and Sreenivasan
[15]) and wavelets (Bacry et al [2]).
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Consider the conserved (H=0) multifractal flux density at (fine) resolution A (the ratio
of the outer (largest) scale of interest to the smallest scale of homogeneity?). The

(dressed) flux over an observing set (Bj, this corresponds to a single lower resolution

"pixel") with dimension D, resolution A<A is simply an integral over the density:

[IA(B,)= [p,dPx (2.14)
B,

We may now define the g order "Trace moments" (Schertzer and Lovejoy® [109])

by summing H‘i (B;) over each individual realization? (each satellite picture, covering

the region A has AP disjoint covering sets B, which are summed over in eq. 2.15, see the
schematc illustration, fig. 2-8 with § = 1), and then ensemble averaging over all the

realizations:
Tra(a)* = <Z I13 (B, ; )> ~ @D (2.15)

where the sum is over all the i "balls" B, ; needed to cover A. This formula will break

down for moments q>qp, and (when finite samples are used to estimate the ensemble
average) when q>qs. Although it allows the determination of K{q) (at least for small
enough q), and hence in principle the determination of C;, & (via eq. 2.12) this method
will involve ili-conditioned nonlinear regressions (K(q) vs. g). The double trace moment
(DTM) technique (Lavallée et al 1{59], Lavallée [58]) avoids this problem by
generalizing the trace moment; it introduces a second moment 1 by transforming the high

resolution field ¢~ 4. This transforms the flux I into an 7 flux [1(M):

IT(8,) = [oRd®x (2.16)
B,

7 For scales smaller than the scale of homogeneity we assume that the field is homogeneous {(below the
scale at which we have dissipation of energy the ficld is assume to be homogenecus.). In the actual use of
the DTM method we take A' as the smallest scale known (the pixel scale) for the analysed field.

8 Although the formalism above was developed in Schertzer and Lovejoy [109], essentially the same
method was empirically applied to on rain in Schertzer and Lovejoy [107].

9This yields a partition function. '



The double trace moment can then be defined as:

1

Try(0}) = <Z[Hf{')(3u)]q> = AR@m-(4-DD @2.17)

where we have introduced the (double) exponent K(q,n), which reduces to the usual
exponent when N=1: K(g,1)=K(q).
The entire transformation from single to double trace moments can be summarized in

the following formulae (where the prime indicates transformed, double trace quantities,

not differentiation):
Y—=v =ny-Km) (2.18a)
c(y) = c'(Y) =cy) (2.18b)
q—q =a/n (2.18¢c)
K(g) = K'(q@) = K(gm) =K(ng") - g’ K1) (2.18d)

Note the fine point in the above is that due to the integration, we are dealing with dressed
rather than bare quantities, hence the dressed singularities (eq. 2.18a) transform with an
extra term (-K(1)); necessary since the dressing operation enforces conservation of the 1
flux.

The real advantage of the DTM technique becomes apparent when it is applied to
universal multifractals (Lavallée [58]) since we obtain the following transformations of

Cu:

Cy (=%’|F1) —)Cl'("'-'g%lq':l):clna (2.19)

Therefore, K'(q") = K{g,n) has a particularly simple dependence on n:

K(g,n) =n*K(q) (2.20)
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« can therefore be estimated on a simple plot of log K(q,n) vs. log 1 for fixed q. By
varying q, we improve our statistical accuracy. Finally, note that due to eq. 2.18d,
whenever max(qn,q)>min(qs,qp) the above relation will break down; K(g,n) will become
independent of 11. For more details on the double trace moment, see Lavailée et al [59],
Lavallée [58]. We shall see that effective exploitation of the above involves a "bootstrap”
procedure in which the well estimated low q, 1| exponents are used to estimate o, Cy, and

then eqs. 2.11a,b can be used to predict the range of reliable estimates.
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Figure 2-8: A schematic diagram illustrating the different averaging scales used in the
double trace moment technique.




I1.2.2 Estimating H:

We have seen that in multiplicaive processes, it is convenient to isolate an underlying
conserved quantity which has basic physical significonce; in turbulence it was the energy
flux to smaller scales, in rainfall we denoted it by @, and related it to the rain
fluctuations via eq. 2.2. In terms of the scaling, conservation means <> = constant
(independent!® of ), hence K(1)=0. If we consider the energy spectrum of @, itis of
the form kB with!1 B =1 - K(2), i.e., the spectrum is always less steep than a 1/f noise!2,

The reason for dwelling on this is that it illustrates a basic point common to many
geophysical fields viz., their spectra have B>1, hence they cannot be stationary processes,
they must be (fractionally) differentiated!3 by order -H (the spectra must be power law
filtered by kH) to become stationary. For rain and clouds, this will mean removing the
A% term in order to obtain the stationary ¢, from the non stationary ARj. The
importance of this for analysis has long been realized; for example standard geophysical
statistics use variograms rather than autocorrelation functions!4 to avoid convergence
problems when B>1. The same consideratons apply to the use of the DTM technique.
Fig. 2-9 (from Lavallée [58]) shows the result when a simulated conserved process is
fracdonally integrated and differentiated by varying amounts: as long as we differentiate
(filter by kH with H>0) we obtain stable and accurate estimates of both C; and ¢

However when we fractionally integrate (H<0), we only recover a; C; is not accurately

10 Recall from section 3 that A is the ratio of the largest to the smallest scale, hence taking the largest scale
= 1 for simplicity, we have L =1 -1,

11 This formula is a consequence of the fact that the energy spectrum is the fourier transform of the
autocorrelation function which is a second order moment.

12 The difference is often not great since K(2) is usually small: = C;(2%-2)/(a-1), and 052,

13 See Schertzer and Lovejoy {115] appendix B.2 for more discussion of fractional derivatives and
integrals.

12 1 time series we analyse the differences (finite derivatives) rather than the series itself.
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determined!5. This figure also clearly indicates that as long as the spectrum is less steep
than the underlying conserved process {B<1-K(2)), that we can recover C;. From the Cy,
o estimateqd this way, we can determine K(2) from eq. 2.10 and hence the B of the
conserved process, and ir.”> the amount of fractional integration required to go from the
underlying conserved process to the observed non conserved process!®, Writing B for the
spectral‘.slope of the observed process, the order of fractional integration required to go
from the conserved process to the non conserved (observed) process is therefore given

by:

g B-I+K@ _B-1 C(2*-2)

(2.21)

2 2 2(a-1)

Log |Kk(am)]

5.0 +—r— . .
-1.0 -0.8 -06 -04 -02 00 02

Log M

'g;g_'g -0: log(1K(qn)!) versus log(n) with & = 2 (lognormal), Cy =0.15, D = 2, are
given for g = 0.5. The curve of the stationary processes (big hollow square) is compared
to those of the same processes after fractional differentiation (white symbols, H = -2, -1
and -0.5 from top to bottom). The fractional differentiation and integration does not affect

the estimate of o (all the slopes are parallel), but fractional integration leads to biased
estimates of C; (the curve with black symbols are all shifted downwards compared to the
theoretical stationary processes shown by the line. Reproduced from Lavallée {58].

15Ngte that in many geophysical fields, the absolute value of the field may not be important. It may be
sufficient 10 only consider fluctnations, hence we may put the mean=0 by setting the Ot fourier component
=0. In some cases this component may be important and must be carefully dealt with in real space - se¢
appendix B.2, Schertzer and Lovejoy [115].

1611 the case of turbulence, it is not necessary t infer the relation since it is given by dimensional analysis
from known dynamical quantities. For rainfail and cloud radiances, we don’t know the corrésponding

dynamical (partial differential) equations, nor their conserved quanities, so that this type of empirical
inference is unavoidable.
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As a final comment before turning to the actual data analysis, we describe a short-cut
which in many cases enables us to avoid the use of Fourier space. In 1-D we have
already recalled that replacing the time series by its differences is approximately the same
as multiplying by k in Fourier spacel”. To gencraiizc this to two (or more) dimensions,
one possibility is to use a finite difference Laplacian. This multiplies by lk | 2 in Fourier
space, hence the spectrum by ll-:_l"'; although this is quite drastic we will see that it
apparently works fairly well. Differencing the experimental data also remove the
problem of physical quantities that are only defined within additive constant, This also
has the advantage that it removes any (unknown) additive constant that would mask the
scaling behavior. Denoting the modulus of the gradient of the rain (or radiance) field by

|VR| we have .
aRY (aRY
IVR(x, y)= ‘K—) + (—)
x/ \d 2.22)

which can be approximated by the finite difference
IVRG, i = (RG+1,) —RG—1 )Y + (RG,j+ D—RG, j— D)) (2.23)

with Ax = Ay = 1. The index i and j are respectively the horizontal and vertical
coordinates, the finite difference operations are effectuated without privileging any
particular direction; problems related to anisotropy are neglected. In the same manner the
Laplacian:

’R  o°R

‘a? + 'gz' (2.24)

V2R (x,y)|=

is approximated by:
[V2R(x,y)|= &(41&(1. D-RGE+LP~RE-LD-RGj+D-RGj-D)  (2.25)

17 This will not be exactly true at the highest frequencies corresponding to the resolution the series.
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11.3 The role of satellite radiances and radar reflectivities:

Even before the theoretical basis of the standard model was brought into question, a
series of in situ velocity measurement campaigns (Vinnechenko [133], Gage [35], Lilly
[61], Nastrom and Gage [85] -- for discussions and references see Schertzer and Lovejoy
[107], Lovejoy and Scherticr [67]) -- failed to find evidence for the mesoscale “gap”
anywhere near the designated 1-100 km range. However, even though these campaigns
did measure velocity fluctuations over various ranges (several meters to thousands of
kilometers) with sufficient statistical reliability to eliminate the possibility of a significant
gap, the extreme intermittency of the atmosphere and various experimental difficulties
has hindered the emergence of a clear overall (large to small scale) statistical picture of
the wind field. One way of attempting to overcome the limitaton of in situ wind
measurements -- which we explore below -- is to exploit the burgeoning masses of
remotely sensed satellite and radar data. Because of the strong (nonlinear) couplings
between the various atmospheric fields, any fundamental break in the scaling symmetry
in the dynamical (wind) field will be reflected in the latter. Conversely, if the latter are
scaling over the observed ranges, we may infer that the symmetry is not broken in the
former. The symmetry will be respected unless specific (and strong enough) mechanism
exists to break it. A scaling break in one field would constitute a sufficient mechanism to
cause a break in any other strongly dynamically coupled field. The cloud, radiance and
velocity are strongly coupled. This result follows from the consideration of scale
invariance as a symmetry principle.

In any case, satellite cloud radiances and radar rain reflectivities are interesting in
their own right, and -- as argued elsewhere (Lovejoy and Schertzer [71], Lovejoy et al

[75]) -~ provide unique data sets for testing new ideas in scaling and multifractals!®.

18y is significant that the first empirical data set (in meteorology or elsewhere) whose multifractal
dimensions were estimated was the radar reflectivity field of rain, Schertzer and Lovejoy [108].
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In this charier, we focus on the scaling properties of various fields related to the
liquid water field. The distribution of cloud and rain liquid water is important both for
our understanding of atmospheric dynamics, but also in its own right: it is a fundamental
part of the water cycle, and (when it reaches the ground) is the basic hydrological field.
The data sets used include LANDSAT, NOAA-9, METEOSAT satellite cloud radiances
in the visible, thermal infra red and near infra red 'wavclengr.h bands (from =166m to
=40} km overall). In section I1.5 we analyze radar reflectivities of rain in both time and
space and include a comparison of the latter with global in situ raingage measurements.
On all of these data sets we not only test the scaling (which is generally found to hoid
quite well), but also estimate the fundamental universal multifractal exponents
characterizing the fields. Finally in section II.6, we briefly indicate how knowledge of
these exponents can be used to create (both static and dynamic) multifractal models of the

corresponding fields.

1.4 The Horizontal scaling properties of cloud radiances:

We have already discussed scale invariance as an important atmospheric symmetry
principle. If, over the range in which most of the interactions with the solar and
blackbody radiation fields occur, it applies to the distribution of water in the atmosphere
then the radiance fields will also be scale invariant over the corresponding rangel9.
Although the multifractal parameters of the radiation fields will be non-trivially related to
those of the liquid wﬁter field they will still give us valuable information about the limits
to scaling, anisotropic scaling (Pflug et al. [97], Lovejoy et al [75]) and the relation
between cloud and radiation fields.

Because of the ready availability of high quality satellite data, and our desire to obtain
a resolution independent characterization of the satellite data, we analyzed images

emanating from several different satellites and sensors (summarized in table 2-1).

19 ¢, they will not break the scaling symmetry. Formally, this is because the radiative transfer equations
have no characteristic length associated with them.
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Location Satellite Sensor wave-iength | resolution picture size
Tropical Pacitic| LANDSAT | MS9 0.49t00.61 | 166m20 512x512
um 89 km

Atlantic METEOSAT] Visible 0.4t 1.1 8 km?! 512x512
West of Spain Channel pm 4000 km
Atlantic METEOSAT | infrared 10.5t0 12.5
West of Spain Channel pm
Atlantic TNOAA-9 AYHRR = [0.5t00.7 1.1 km 512x512
East of Florida Channel 1 um 550 km

AVHRR 0.7t0 1.0

Channel 2 pm

AVHRR 3.01039

Channel 3 wm

AVHRR 10.4t0 11.1

Channel 4 Hm

AVHRR 11.4t0 12.2

Channel 5 um

Table 2-1: The characteristics of the different satellite images analyzed.

The first analysis performed was the estimation of the (isoiropic) energy (power)

spectrum which is the modulus squared of the Fourier amplitudes integrated over all-

angles in Fourier space and ensemble averaged over all realizations of the process. As
usual the ensemble averaging was approximated by averaging over all the available
samples with the same wavelength bands and resolution. Figure 2-10 shows the results
~ for the satellite images and the frequency range of the images (following the same
classification as in table 2-1). For all the spectra we observe reasonable scaling behavior
for the entire range accessible to each satellite. We obtained the following results (from
bottom to top): LANDSAT {visible) p = 1.7, METEOSAT (visible) § = 1.4, METEOSAT
(infra red) B = 1.7, NOAA-9 (channel 1 to 5) B = 1.67, 1.67, 1.49, 1.91, 1.85. The
variations in the exponents have both statistical and systematic origins. First spectral
exponents of intermittent data are notoriously difficult to estimate requiring very large

sample sizes. Second, the spectral bands vary from one satellite to another. Even if we

20 The resolution of the sensor is 83 m but we had 1o degrade this resolution in order to avoid certain
roblems discussed in the text.

1 The visible channel data was originally at a higher resolution and was resampled on a 8 km grid.
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have labeled them as being in the same group (visible, near infra red, thermal infra red)
they are not completely coincident as can be seen in table 2-1. Roughly speaking the
radiative transfer in the visible is dominated by scattering, in the near infra red it
combines both scattering with absorption and emission while in the thermal infra red it is
dominatcd by absorption and thermal emission. Since these radiative transfer processes
are quite different we expect some systematic variation in the power spectra. We take
these results as good evidence that the basic scaling is respected over the range of ~200
m to ~4000 km.

20
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Figure 2-10: Average power spectrumn for the satellites images grouped according to the
satellite and the frequency range of the images (from bottom to top): LANDSAT (visible)

B = 1.7, METEOSAT (visible) B = 1.4, METEOSAT (infra red) B = 1.7, NOAA-9
(channel 1 to 5) B = 1.67, 1.67, 1.49, 1.91, 1.85.

Log . E (Arbitrary units)

The DTM analysis was done on each group of images considering each scene as a
separaie realization. In figure 2-11 we show log(Trl(cp}'{ )q) vs log(A) for several values
“i of  for the LANDSAT images. The ¢ e plot is shown in figure 2-12 for METEOSAT

images in the visible and infra red channels. We also show the corresponding graph
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(figure 2-13) for all the channels of NOAA-9. As expected from the spectral analysis,
these graphs are nearly linear over all the accessible range. This is another confirmation
that scaling is obeyed over the observed range. So from here on we could concentrate on

the determination of the universal parameters.
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a\PA

= 3.2, 2.5, 1.2, 0.35, 0.15) using q = 0.5 for the gradient of 3 images taken by
LANDSAT. '
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Figure 2-12: left) log(Trl(tpg )q) versus log(A) for several values of  (from top to

bottom, M = 3.2, 2.5, 1.2, 0.35, 0.15) using q = 0.5 for the gradient of images taken by

METEOSAT in the visible. right) Same as left) but for the infra red channel and using
q=20
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Figure 2-13: Iog(Trl(cp’A )q )versus log(A) for several values of 7} (from top to bottom, 1

=32, 2.5, 1.2, 0.35, 0.15) for gradient of images of all channels of NOAA-9 AVHRR
using q = 0.5; statistics were accumulated for 15 images. a) channel 1, b) channel 2, c)
channel 3, d) channel 4, e) channel 5)
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From these log(Trl((pR)q) versus log(A) curves we obtained the log(K(q,n)) versus

log(m) from whose slope we deduce the universal parameter & aiid from whose intercept
with the line logn = 0 we estimate C;. In figure 2-14 we show a typical result for our

analysis. In this case we performed the analysis cn the gradient of one image and we

obtained the values @ = 1.3 and C,; = 0.1. The deviation from linear behavior at high
values of 7 is due to undersampling problems, this problem should occur for values of

max(qm,7N) = min(qgqp) = qs (qp > 50 hereZ2) which in this case (since only one image is

. [CRI ]lla. =[ 0%1 ]1/1.3 10 226)

which is close to the value estimated directly on the graph: the straight line behavior

used) is estimated to be

breaks down at M ~ 5 (q = 2 here). As expected this is roughly were the curve becomes

horizontal.
1
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Figure 2-14: log(IK(q,n)!) versus log(n) for the gradient of an image taken by the channel
5 of NOAA-9, we used a value of q = 2.0 and the staight line corresponds to the

regression line from which we deduce a = 1.3 and C; =0.1.

22 Evaluated using D=2, recent analysis suggest it could not be the case. D may be lower thus qp might be
of the same magnitude of qs,
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For the reason given in section 3.2 (i.e., the possibility of non-conserved fields) we
analyzed the modulus of the gradient and the modulus of the Laplacian of the radiance
fields. As expected, both methods always gave similar results so in order to assure the
reader about this fact we reproduce the resulting log(IK(q,n)i) versus log(n) for the
modulus of the gradient and the modulus of the gradient of one of the analyzed images
(fig. 2-15). From here on all the analyses will be performed using the gradient exéept

where stated otherwise.

Log, 7

Figure 2-13: log(’K(g,n)l) versus log(n) for the Laplacian and the gradient of an image
taken by the LANDSAT satellite. The filled circles are calculated using the Laplacian
and for the empty squares we used the gradient. In both case q = 2.0, The straight line

.. corresponds to o = 1.1 and Cy = 0.1.



Fig. 2-16 shows a plot of log(ll((q,n)l) versus log n for all the images taken in the

visible wavelength channel. We can see that even if the images are covering different
scales and have slightly different wavelengths there is good agreement between the
different satellites. We obtain a = 1.2 and C; = 0.0.8 for LANDSAT, = 1.12and C: =
0.12 for METEOSAT and « - 1.07 and C;y = 0.12 for NOAA-9 channel 1. The break in
the linear behavior for low values of 1 should not be interpreted as a scaling break. In this
range of M the analysis is sensitive to extremely low values of the field, noise will
overcome the signal leading to a deviation from the expected linear behavior. Of course,
different sensors will have different noise level and this is why all the curves don't break
at the same place. The next graph (figure 2-17) performs the same exercise for the
thermal infra red sensors (channel 4 and 5 of NOAA-9 and METEOSAT VISSR infra red

channel). The straight portions of the curves are nearly parallel and both channels of
NOAA are almost on top of one another. The estimates for ¢ are still close to one another
(a = 1.21 for METEOSAT and o = 1.35 for NOAA-9) and the estimates for C, are also
compatible (C, =0.17 for METEOSAT and C,= 0.09 for NOAA-9). Table 2-2

sumrnarize all results for the different satellites and sensors.
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Figure 2-16: log({K(q,n)I) versus log(n) with q =2.0 for the gradient of all the images in

the visible range. The straight line corresponds to & = 1.1 and C; = 0.1. The empty

squares are for LANDSAT, the empty circles for NOAA-9 channel 1 and the filled
circles for METEOSAT visible channel.
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Figure 2-17: log(IK(q,m)!) versus log(n) with q = 2.0 for the gradient of images from-lne
infra red sensors. The diamonds are for NOAA-9 pictures (empty: channel 4, filled:
channel 5) and the filled squares are for METEOSAT pictures. The straight lines
correspond to linear regression fit on the linear part of the curves.



Satellite  Sensor wave-length  scaling range o C1 H

NOAA Y9 AVHRR 0.5100.7 pm 1t0 512 km 1.13 0.0% 0.4
channel ! ' :

NOAA9 AVHRR 1to512km 0.09 04
channel 2. 0.7 t0 1.0 pum 1.10

NOAA9 AVHRR 3.610 39 im 1to512km 1.11 0.07 0.3
channel3 )

NOAA9 AVHRR 110512 km 0.10 0.5
“hannel 4 10.4t0 11.1 ym 1.35

NOAAS9 AVHRR 11.5t0 12.2 pm 1t0512km 1.35 0.10 0.5

channel 5
X['IETEOS VIS 0.4to 1.1 pm 8 km to 4000 km 1.35 0.10 0.3
RA%TEOS R 10.5to 12.5 ym 8 km to 4000 km 1.21 0.09 04
%ANDSA MSS 0.49 t0 0.61 pm 166m to 83 km 1.23 0.07 0.4

ity

Table 2-2: The evaluated umversal multifractal parameters for each group of pictures.
The accuracy on the values of ais30.2,on Cyitis+ 0.1 and on Hitis + 0.2.

All the observed values for ¢ lie between 1 and 2. Since we always obtained o > 1,
the corresponding radiance fields will be unconditionally hard multifractal processes
(section 2): i.e. sufficiently high order moments will diverge when the reflectivity field is
average over a space of dimension D. The critical order for divergence is given by eq.
2.13b taking D = 2 it gives values of qp > 50 which is sufficiently large that it would
require enormous sample sizes to be observed directly2,

There are many possible explanations for the spread in these values. First we have to

remember that these universal parameters are well defined only for ensemble average

23 The relevant value of D may be much smaller, in which case gp will also be much smaller, and hence

the divergence detectable. This is because research in progress indicates that the relevant D may be the
order of fractional integration .
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quanttdes so that some statistical variation is certainly to be expected. For example, using
numerical simulations with 25 independent one-dimensional samples with 1024 points
each, Lavallée et al [59] estimated that & could be estimated to an accuracy of ~ 10.1
which is a rough indication of the enormous sample sizes that are theoretically required
(note that what is most fundamental is the range of scales and the number of independent
realizations: here A = 256 or 512 and 3 - 5 realizations were used). Second, different
satellites have different problems. For example, LANDSAT was not designed for the
observation of clouds so that occasionally (<30% of the images in this case) the detector
was saturated by particularly bright cloud regions (with albedo 2 0.45). Roughly the
effect of this on the multifractal analysis is to cut off high order singularities
corresponding to the saturation level. Fortunately our estimates of o and C; from the
DTM technique mainly rely on the less extreme values (i.e., the low order moments 1}, N
= 1) near the mean and should not be badly biased. Some METEOSAT images were not
completely over the ocean and it was possible to see landmasses under the clouds, so the
analyzed albedo field is not purely due to ciouds but in some part also to the land beneath
them (which will presumably have different multifractal properties and exponents).
However, since at visible wavelengths the land has much lower radiance than clouds, this
will primarily affect the-very low M, qn scaling and K(q,n) estimates, again allowing
reasonable Cy, o estimates from the DTM technique.

Selection bias was avoided as much as possible. All images in our largest set (NOAA-
9) were taken with the sensor centered at a longitude of 70° west and a latitude of 27.52
north. This point is situated over the Atlantic ocean, east of Florida. The 15 scenes were

each taken at about 1400 % 20 local time during the month of February 1986 (the exact

dates are the 10-20, 22, 24, 25 and 27). The three LANDSAT images are part of a bigger

(400 x 400 km) picture which itself was selected to have 90% cloud coverage. And the
three METEOSAT images are part of a sequence taken at 1/2 hr intervals at the same
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location. So within each set, the images are not completely independent as we would like
them to be. Clearly in the future, massive systematic analyses must be undertaken.
Another problem that might have contributed to the spread of values for a is
anisotropic scaling. Both the spectra and the DTM method as implemented here are
entirely isotropic ahalysis techniques since the resolution of the fields is degraded

isotropically (e.g. by using square boxes at all scales in the DTM method). However, as

shown by Pflug et al. [97] rotation and stratification of structures (due here to the Coriolis

force) are important, hence more precise analyses should use generalized scale changes.
Recalling that C; characterizes the sparseness of the mean whereas ¢ characterizes
the rate at which the sparseness varies as we go away from the mean, we expect Cj to be
more accurately estimated than a. This is indeed the case since for Cy the range of values
observed varies between 0,07 and 0.13. Such low values of C; are an indication that the
conserved multifractal @ is not too sparse (a space filling mean would have C; = 0). It
also explains the relative success of monofractal analyses {e.g., Lovejoy [63]), since near
the mean, the parameter H will provide a reasonable approximation to the scaling.
However since « is fairly large (far from the monofractal value of 0), as we move away
from the mean value, the monofractal approximation rapidly becomes poorer. For more
discussion of monofractal cloud analyses, their limitations and biases (due to multifractal

effects), see Lovejoy and Schertzer [73], especially the appendices.

[.5 The Horizontal Scaling of Rain Reflectivities

The relative success of satellite based rainfall estimation schemes (such as RAINSAT,
Bellon et al {5]) --which use both radar reflectivities and rain gage measurements for
ground truth-- proves that there is indeed an intimate relation between visible and infra
red radiances, rain, and radar reflectivities of rain. We therefore turn our attention from
the radiances to data sets more closely related to rainfall. The first such data set we

studied was obtained using a scanning radar situated in Montreal. This radar provides
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information for 24 elevation angles, at a wavelength of 10 ¢cm with a pulse repetition rate
of 300 Hz, and a downrange resolution of 75 m. We analyzed scans during a convective
storm over Montreal that took place at 22.00 EST 1 May 1992. From these scans we
analyzed 256 x 256 square section images (avoiding the center and the outer limit which
were biased due to ground echo and the curvature of the earth). In order to avoid ground
clutter contamination we did not use the smallest elevation angles. The first analysis was
the isotropic power spectrum which is shown on figure 2-18. We observe that scaling is

observed on the range of 75 m to 10 km. From a linear regression we deduce that the

negative spectral slope is P = 1.45. Figure 2-19, where it is shown log(Trl(q)}{)q) vs log

A for various M, confirms that there is scaling over the entire range studied. The

log(lK(q,n)l) vs log 1 curve, calculated from the previous graph is shown on figure 2-20.

In this case we estimate o = 1.4 and Cj = 0.12.
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Figure 2-18: Isotropic power spectrumn for radar ppi's. We included a line of slope 1.45 so
that the scaling behavior is more apparent.
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Figure 2-19: Iog(Trl(tpR )q) versus log(A) for several values of 1y (from top to boitom, 1
=2.7, 1.61, 0.4, 0.2) using q = 2.0 for the gradient of radar ppi's.
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Figure 2-20: log(lK(q,'q)l) versus 1szn) with q = 2.0 (tdp curve) and q = 0.5 (bsiar
. curve) for radar ppi's. The straight lines correspond to . = 1.4 and Cy = 0.12.



I1.6 . The Vertical scaling of rain reflectivities:

In the previous section we obtained an estimate of the universal parameters for the
horizontal radar reflectivity field. In order to exarnine the vertical structure we turned our
attention to another data set. The data we studied was obtained using a vertically
pointing (3 cm wavelength) radar with a pulse repetition rate of 0.4 Hz. We analyzed a
data set lasting for 5 hours, 41 minutes, 20 seconds (8192 consecutive pulses), with near
range of 171m altitude above the radar and far range of 6958m above (in 325 equally
spaced bins, 21.4 m pulse length). The vertical structure of rain reflectivities is quite
different from the horizontal structure due to the strong stratification caused by gravity
(Lovejoy et al [70]).

The meteorological situation involved stratiform rain ahead of the warm sector of a
low. The surface temperature varied between 8°C and 10°C during the storm. There was a
bright band (i.e., melting snow and ice) between 1.5 and 2.5 km altitude. A small portion
of the raw data is shown in figure 2-21, When we analyzed the horizontal cloud
radiances, we immediately calculated the (usual) isotropic energy spectrum obtained by
integrating the Fourier square moduli over angles in Fourier space (and then estimating
the ensemble average by averaging over the available data). This was natural since in the
horizontal plane, the anisotropy was not too pronounced. Here the situation is quite
different since a priori, the vertical and temporal characteristics of rain are very different,
the (k,w) (Fourier space, corresponding to (z,t) real space) will be quite anisorropic --
strongly stratified in the z direction (as may be seen in figure 2-22). The proper
framework for analyzing this anisotropy is GSI and the related space-time
transformations that are discussed more in detail in section II.5. In this section we limit
ourselves to more straightforward analyses. First, we calculate lines of constant Fourier
amplitudes in the two dimensional (k,w) space (fig. 2-22). As expected, we roughly

obtain ellipses whose stratification is opposite that of the real space (z,t) stratification
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(and increases with increasing k). The slight overall rotation corresponds to a constant
advection velocity. This differential stratification corresponds to the fact that (one
dimensional) temporal and (one dimensional) spatial spectra will have different spectral
exponents (B, By). Indeed, the one dimensional vertical spectrum for the region below the
bright band (fig. 2-23, averaged over all the pulses in timc_z) shows B, ~ 1.4 whereas the
corresponding temporal spectrum (fig. 2-24) average over different portions
corresponding to different ranges of altitudes yields By ~ 1.2. The break in the vertical
spectrum occurs at scales of ~100 m and roughly coincides with the horizontal scale of
averaging --the pulse width in the horizontal was = 100m at 3 km distance. In fig. 2-22,
we can see the "spheroscale” which is the scale over which the (near) elliptical contours
become (near) circles indicating approximate isotropy at the corresponding scale (= 1 km
here). The existence of a bright band limited these analyses in fig. 2-23 to 2 range of only
a factor 64. This vertical scaling confirms that already reported using an endrely different
method: "functonal box-counting”, Lovejoy et al. 1987 found that reflectivides of 10
stratiform and 10 cumuloform storms were fairly accurately scaling over the range 1 - 8
km.

For each pulse we calculated trace moment statistics of 64 levels below bright band
levels and accumulated the statistics over the 8192 pulses. In fig. 2-25 we show the log of
the trace moment of order q = 2 against the log of the scale ratio A for different values of
the exponent 11. It can be seen that we obtained scaling over nearly 2 orders of magnitude
in A (corresponding to the high frequency scaling in fig. 2-24). In fig. 2-26 we show log
IK(q,m)! vs. log 1 for q = 0.5 and q = 2.0 from which we deduce & = 1.35 and C; = 0.1.
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: A portion of the raw data (reflectivity for elevation against time) for the
vertically pointing radar reflectivities. We show 1024 time steps by 318 vertical bins
section. The gray scale is proportional to the dbZ value.

(1)

W

;
\.

: 2-D Power spectrum isolines for radar reflectivities. We can see that the

1solmes are hlghly elongated in the temporal frequency direction for high frequencxes and
in the spatial direction for low frequencies.
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Figure 2-23: Power spectrum for the radar refiectivities against elevation. From the slope
of the regression line fp = 1.4.
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Figure 2-24: Power spectrum for the radar reflectivities against ime, From the slope of

the regression line we deduce P = 1.2. The bottom curve corresponds to an average for
the 32 lower levels, the next one is an average of the next 32 levels (displaced by 3) and
the same for the next two curves.
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Figure 2-23: log Trl((p/’l)q) versus log(A) for several values of n (from top to bottom, n|

= 1.2, 0.7, 0.3, 0.1) for radar reflectivities against elevadon and statistics accumulated in
time. We used q =0.5.
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~Eignre 2-26: log(IK(q.n)i) versus log(n) for the radar reflectivities against elevation and
‘sturistics accurnulated in time. The filled squares are for q = 0.5 and the empty squares

are for q = 2.0. From the regression lines we deduce ¢ = 1.35 and C1 = 0.1.
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IL7. Isotropic (Self-Similar) Simulations of Rainfall

In this secdon we indicate briefly how to exploit the universality (and the measured H,
C1, o parameters) to perform multifractal simuladons. The first multifractal models of
this type were discussed in Schertzer and Lovejoy [109], and Wilson et al [138] gives a
comprehensive discussion including many practical (numerical} details. In particular, he
describes the numerical simulation of clouds and topography, including how to iteratively
‘“zoom” in, calculating details to arbitrary resolution in selected regions. Although we
will not repeat these details here, enough information has been given in the previous

sections to understand how they work. First, for a conserved (stationary) multfractal

process @), we define the generator I')= logp, . To yield a multifractal @3, it must be
exactly a 1/f noise, i.e., its generalized spectrum is E(k)=k-! (this is necessary to ensure
the multiple scaling of the moments of P, )- To produce such a generator, we start with a
stationary gaussian or Levy “subgenerator”. The subgenerator is a noise consisting of
independent random variables with either gaussian (a=2) or extremal Levy distributions
(characterized by the Levy index o), whose amplitude (e.g., variance in the gaussian
case) is determined by C;. The subgenerator is then fractionally integrated (power law
filtered in Fourier space) to give a k-! spectrum. This generator is then exponentiated to
give the conserved ¢, which will thus depend on both Cy and c.. Finally, to obtain a non
conserved process with spectral slope B, the result is fractionally integrated by
multiplying the Fourier transform oy k-H where H is given in eq. 3.8. The entire process
involves two fractional integrations and hence four FFT's. 512X512 fields can easily be
modeled on personal computers (they take about 3 minutes on a Mac II), and 256 x 256 x
256 fields (e.g., space-time simulations of dynamically evolving mulufractal clouds) have
been produced on a Cray 2 (Brenier 24[12], Brenier et al {13]).

245uch clouds simulation have been nrned into a video called “Multifractai dynamics”,
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We perlurmed simulations using universal multifractal parameters close to what have
been observed for cloud radiances. They are shown in fig. 2-27 and 2-28. We uszd & =
1.35, {1 = 0.1 and we vary the value of H because this seemed to be the most important
difference between visible and infra red images. For fig 2-27 we used H = 0.3 and for fig
2-28 we used H=0.4. For infra red images the value of H is higher giving it the smoother

look that meteorologist are familiar with.
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Figure 2-27: 2-D simulation using o0 = 1.35, C; = 0.1 and I-.I'- 03 "I'hc values of the
parameters are close to what has been estimated for cloud radiance pictures in the visible
frequencies range.
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Figure 2-28: simulation using o = 1.35, C{ = 0.1 and H = 0.4. The values of the
parameters correspond to what has been evaluated for clond radiance pictures in the
thermal infra red frequencies range.
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I1.8. The Multifractal Atmosphere:

We have briefly sketched some arguments in favor of unified scaling and presented
some of the multitractal nodons. The object was to both motivate the various empirical
analyses which followed, as well as to explain the ideas in sufticient detail so that the
workings of the new Double Trace Moment (DTM) analysis technique could be grasped.
"This technique is the first to be designed to directly estimate the universal multifractal
parameters; it is considerably more statistically robust than previously c¢xisting analysis
methods, and it applies not only to "calm" multifractals (of the sort associated with
strange attractors), but also to the "hard” (extremely variable) multifractals found in
geophysics {indeed, we quantitatively confirm the “"hard" nature of the cloud radiances
and rain reflectivities). |

We apslicd not only the DTM, but also conventional energy spectra to analyze
satellite cloud radiances from LANDSAT, NOAA-9, and METEOSAT satellites in the
visible, near IR, and thermal IR wavelengths. Overall, the data sets spanned the range
166m to =4000 km; and were found to be scaling through the entire region, including the
mesoscale. Although we conclude that the evidence for horizontal scaling is good it
should be stressed that e _}mous, systematically sampled data sets will be needed to fully
characterize the scaling of atmospheric fields as well as the corresponding inner and outer
limits. This study only provides an early exploration of what is largely unknown
territory.

Moving on from the horizontal scaling of cloud radiances, we analyze data from a
vertically peinting radar measuring reflectivities of rain- with a resolution of 2.5 seconds
in time, 21m in space. In the vertical, the scaling was followed at high frequencies, but
we found a spectral bump corresponding in size (=1 km) to the thickness of the bright
band which was present throughout the sequence. Since other studies with larger samples
(e.g., 20 cases instead of one) found vertical scaling over the corresponding range, the

bump is likely to be consistent with statistical (sample to sample) fluctuations.



Finally, we sketched how our empirically determined multifractal exponents,
combined with appropriate space/time transformations can enable us to make dynamical
maultifractal simulations. These simulations will be necessary to further our
understanding of the underlying atmospheric dynamics., They will help us tame the
ubiquitous extreme atmospheric variability, and may have far reaching implications for

remote sensing, objective analysis, and (stochastic) forecasting.
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Chapter ITI
Multifractal Objective Analysis and Global Rainfall

In every objective analysis technique a common goal is to obtain information on a
field sensed by an in situ measuring network. Meteorological data sets gathered from
such networks, have many problems due to both their spatial resolutions and their
heterogeneity (sparseness). In particular, observations are not homogeneously distributed
around the planet and leave large geographical gaps where no data are available.
Furthermore, conventional in situ observations are not truly point measurements since
there is usually a certain amount of spatial averaging (even if on a very small scale) and
there is also a significant amount of temporal averaging which -- due to the relation
between spatial and temporal statistics -- smoothes out sufficiently small spatial
variations and is essentially equivalent to spatial averaging. This finite resolution is rarely
explicitly considered. The variability of the meteorological fields is considered to be
essentially independent of the spatial resolution of the measurements. Multifractals
specifically address these finite resolution and large variability problems, this is the basic

motivation of ihe analyses performed in this chapter.

[I.1. Critical review of Objective Analysis Methods:

In his historical outline Daley [21] explains that the advance of Numerical Weather
forecasts required efficient methods of obtzinin g informeation at certain locations in order
to initialize their models based on primitive equations. This was first done by dressing up
synoptic charts where from known data trained meteorologists could wace all kinds of
isolines according to their judgment. These subjective maps were then digitized and
entered into the computer model. This time consuming task called for robust procedures

to estimate the ammospheric dependent variables on regular two or three dimensional



grids. Furthermore, the subjective element had to be eliminated since the analysis should
not rely on know-how. The research field devoted to the development of such techniques
carne to be known as objective analysis.

The first techniques that were developed considered the analyzed fields as being
detenninis;ic. The problem was to minimize the effect of random measurements errors.
For this veason, we will refer to these as deterministic techniques, even though statistical
techniques are used to minimize the errors.

In fact, the first and simplest technique even predates the first numerical forecast
experiments of Richardson (1922) [103]. The method is known as Thiessen's polygons
(Thiessen, 1911 [132]). The purpose of the method was mainly to get a rough estimate of
the amount of water received by a region in order to design proper drainage equipment.
Polygons are defined by the mediatrix of the segmeants joining neighboring stations and
the amount of rain is considered uniform within a polygon. If the total amount of rain
over a region is desired then the precipitation heights are weighted by the area of the

polygons, so the total precipitation over an area is given by:
Ts;h;

P= 'A (3.1

where s; is the surface of the ith polygon with a precipitation height h; and A is the total
area of the region of interest. This method is still widely used in hydrology; for example,
Diskin (1970) [25] proposed an automated version of this method.

Another old and simple technique is the arithmetic mean which assumes that the
rainfall depth is constant over a certain region and the amount is simply the arithmetic
mean of all the measurements inside that region.

A more refined ma+thod was proposed by Panofsky [92]. He performed a polynomial
least squares fit that would englobe all the data points in a certain area, Some
improvements to this method were done by Gilchrist and Cressman {37] by making the fit

locally: . polynomials were fitted to all observations in a local region surrounding each
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gridpoint. The polynomial fit methods have the shortcoming of generating uncontrolled
oscillations.

Another class of deterministic techniques is known as the weighted interpolation
methods. In these methods, a value is obtained for the missing data using a weighted

average of the surrounding data values. i.e.
N

2.b:W(r;)
3(rp) = E—— (32)

2 W(r;)

i=1
where #(r,) is the estimated value at the point xg, W(r;) is the weighting function
applied to a station i a distance r; from xg. The bj are the weights obtained by least
squares fittings of the function W(r) with the available data. Various functional forms
were tested. For example Cressman [19] used the function

R2 _2
W(r)=—R—2:-:-:1-; 1'=lx0 —Xii; W(r) =0 r>R (3-3)

where R is some arbitrarily defined range of action (the distance at which the function
goes to zero). Other functional forms have been tried by MacCraken and Sauter [76],
Hovland et al [44], Endlich and Mancuso [29] and others. A survey of these techniques
applied to wind and concentration fields can be found in Goodin et al [40].

These regression methods assumed gaussian distributions of the residues as well as
certain smoothness and analyticity properties of the field that are absent in the analyzed
data. Methods which exactly fit all data points were believed to be a solution to the poor
performance of the previous techniques. In this direction, the most sophisticated method
we will present is the spline surface fitting. The method consists in finding the surface
s(r), interpolating the observed points i.e. s(ri) = z(rp) i = 1, 2,....... N and minimizing the
functional j[Vs(r)]zdr over the domain £ (it is a first approximation of the average
curvature o: of the bending energy of a thin elastic sheet). Apart from the computational
problems this technique provides artificially smooth surfaces that were not acceptable.

Further details on this method can be found in Duchon [26] and Wahba [134].



To remedy to the probler: it was proposed that instead of relying on an arbitrary
choice of surface type and optimality condition that the field should be considered as a
realization of a random process and an optimal estimate of missing data would be
performed by minimizing a quantity such as the variance. This leads to what are called
statistical methods. Two methods for performing statistical linear interpolation have been

developed and are widely used. They both try to estimate a missing value i(ro) with a

relation of the form:

N
(ro) =Y biz(r;) (3.4)

i=1
The difference in the two methods resides in the way the weights by are obtained. For
Gandin's method (Gandin [36]) they are found by solving :
ibgc(ri.rj) = C(rj,ro) i=1,.....N (3.5)
i=
with C(ri,r )= E[z(ri)z(rj)] i.e. the covariance
Since the correlation between the point where an estimate is desired and the measured

points is generally unknown assumptions of homogeneity and isotropy are generally
made i.e. C(ri,r j) = C(Iri =T, ), the correlation depends only on the distance between the

stations. A correlation function can then be fitted empirically from the known data points

and used for the interpolation.

Another condition that must be satisfied is that in order to get an unbiased estimator

(E(z(ry)) =E(2(r,))) there should either be a constraint on the bj or the expectation
E(z(r)) = (). For Gandin's method this condition is usually satisfied by using deviations
from the climatological average rather than the actual field.

Putting the constraint on the bj bears another name: Kriging (Matheron (81, 82],

Ricardo {102]). It also starts with equation (3.4) but the constraint is replaced by:

N N
ZbiC(ri,rj)+V=C(rj,r0)2bi =1 (36)
i=1

i=1
where v is a Lagrange multiplier. The variance estimator is generally replaced by the

semi-variogram:
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¥(rr;) = %E[(Z(ri)-— z(rj))z] a7
then it is postulated that the semi-variogram is only a function of the distance, i.e.

1(ror;) =?ﬂri - ’JD (3.8)
It is called the weak stationarity or "intrinsic” hypothesis.

In order to include slow but systematic variations assuraed to break the iranslational
invariance (such as orographic! effects), the interpolated fieid can be split in a stochastic
component with known spatial covariance plus a stochastic trend that can be modeled
using orthogonal functions (typically, a low order polynomial function of the location
variable is used). Not surprisingly, since these methods are basically linear interpoladon,
they will result in fields much smoother than we would expect for multifractals.

Another method that has been used is the empirical orthogonal function (EOF)?

method which consists of expanding the random process in a linear combination of

orthogonal eigenfunctions @,: . :
2(r) = £Y 9,(r) | 39

£=al
For orthogonal function on a finite domain {a,b} and uncorrelated coefﬁcient, these
gigenfunctions have to satisfy a homogeneous Fredholm ii:\;gra1 equation that can be
solved numerically:
LC(r,I’)‘P,(I’)dI’ =R, P,(7') (3.10)

where C(r, r') is the correlatdon function of the process.

An estimate of missing data points can be obtained using truncated expansions:
M
z(ro) = EYcCP:(ro) (3.11)

! Systematic variation with altitude. This is particularly important for mountainous regions.
2 In one dimension, this technique is named the Karhunen-Loeve expansion. It is explained in Davenport
and Root [22], Obukhov {88) and Papoulis [93].



Creutin and Obled [20] tested most of these methods?® for rainfall and came to the
conclusion that the best method is Gandin's method since methods like Kriging or the
ECF technique did not perform significantly better but are more difficult to implemuat.

A basic problem encountered with even the most advanced "statistical” methods of
investigation of objective analysis is that the grid, the measuring network, and the
measured phenomena are all su'ohgly variable with heterogeneities down to very small
scales. This strong sub resolution variability leads to resolution dependencies that we
have argued to be nearly power law (scaling) functions of the resolution. Due to the rapid
advances in scaling notions in the last ten years -- especially the possibility that scale
invariance is a fundamental and unifying geophysical symmetry principle -- it is urgent to
replace many of the hypotheses such as regularity (non-scaling) and statistical
homogeneity, by scaling (inhomogeneity) assumptions. Our effort is to develop
techniques thai rispect both the scaling symmetries of the network as well as of the
phenomenon beiqg measured. Contrary to the usual methods, there is no need to smooth
the original field and there are no artificial assumptions of "regularity"”, differentiability,
ete.

In this chapter, we will present the entire analysis and correction procedure somewhat
differently, assuming that the bbse!;'ved field is simply the product of a multifractal station
density field and a multifractal rain rate fizcld. We will examine the statistical properties
of rainfall; the parameters we estimate are ensemble averaged quantities, they will vary
considerably from one individual realization to another. Although we won't make any
attempt at estimating the field at locations where measurements were not made (leaving it
for future developments) we will obtain extensive statistical information about the spatial
variabilitv of the rainfield corrected for measurement bias. In our view such knowledge
must precede the choice and implementation of any interpolation scheme because it must

be adapted to the variability of both the sensed field and the measuring network.

3 Other reviews could be found in Thiébaux and Pedder, [131] and Bras and Rodriguez-lurbe, [10].
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[1.2 Analysis of The Measuring Network
111.2.1 Monofra:ta! Analysis of a Raingage network:

When we examine the distribution of stations that reported daily rainfall accumulation
for the synoptic stadions archived at the National- Meteorological Center (NMC) of the
National Oceanographic and Atmospheric Administration (NOAA) during 1983 (figure
3-1) it is clear that this distribution is far from being homogeneous: in fact -- not
surprisingly -- the inhomogeneity of the network is highly correlated with landmasses and

economics.

Figure 3-1: Position of the stations reporting daily rainfall accumulations in 1983 that
have been used in our analysis. We also plotted the continent layouts for reference.

Lovejoy et al [68] performed monofractal analyses of the scaling properties of the
World Meteorological Organization (WMO) network, showing that the scaling was fairly
well respected over the range of 1 to 5000 km which was nearly the maximum possible
given the finite sample size (only ~9600 stations were available). They calculated the
average number of stations in a circle of radius L surrounding each station and found
scaling (power) laws with exponent D = 1.75 being the “correlation dimension" of the

network. Montariol and Giraud [397, studied the US. Synoptic and Climatic network
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(excluding Hawaii and Alaska). They went beyond this monofractal framework and
calculated multifractal dimensions associated with statistical moments of the station
density. In a {irst attempt to study rainfall as sensed by a network they calculated the
dimensions of the subset of stations that observed rainfail on a particular day.

A common definition of the dimension Dy, of a set is given by the variaton of the
number of points <n(L)> with the size of the region (L): {n(L))e< L. If the region is
centered uniformly with respect to the set, Dy, is the box dimension, if the regions are
centered on points on the set, D, is the correlation dimension. Because of the "bias"
introduced in the latter, the correlation and box dimensions will not generally be identical
(the latter is necessarily = the former). The estimate of fractal dimensions is usually
performed on flat surfaces, but the earth is not flat. To account for the curvature of the
earth we must choose a method of defining scales. We do it in the following manner: if
the planet (a perfect sphere) is covered uniformly with stations in an area S, then <n(L)>
o< S. Taking S(6) as the area of the spherical cap defined by 2 points subtending an angle
0 at the earth’s center (radius r). The scale L{8) may be defined as:

L@ = %S(G)]m - (21 - cos@®)] (3.12)

This definition used by Lovejoy ¢t al [68] reduces to the usual great circle distance (=r0)
for small 6, and has the required property that the dimension of an homogeneously
distributed network has the fractal dimension Dy = 2. An estimate of the fractal
dimension Dy, the correlation dimension, is obtained by estimating the average number
of pairs within a certain distance L (showed in fig. 3-2).

Pertforming the same analysis as Lovejoy et al. [68] we observed scaling over roughly
the same range (1 to 5000 km) and the dimension obtained is also almost the same (they
obtained = 1.75 and we got 1.79). It is expected that there will be some difference in both
dimensions since they studied the WMO network (9563 stations). The network we
analyzed contzins 7983 stations., Apart from the fact that both networks follow similar

geographic and economic constraint for their location, most of the statiuns are parts of
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both networks4. This explains the similarity in the correlation dimension of the two

networks.
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-2: Log of number of pairs of stations against the log of the distance between two
stations. The solid line is the best mean square regression line fitting the data, the slope of
this line gives the correlation dimension of the rain gauge network.

The estimate of the fractal dimension of experimental data is usually carried out by
box-counting, a technique that consists in covering the embedding space into non-
overlapping boxes of size L, and counting the number of boxes containing at least 1 point
belonging to the set under study, repeating this for different values of L. Since N ~ L-D
the absolute slope of the log(N) vs. log(L) curve gives the fractal dimension.

The box-counting and correlation methods have different advantages and
disadvantages. The fundamental difference between the two is that the comrelation method
involves frequent sampling of rain near clusters of stations; in this sense it is biased. In
comparison, box-counting uniformly saiaples space since the boxes form a disjoint
covering. Another diffeience is that with correladon methods it is easier to take into

account the earth’s curvature than with boxes or grids. This makes it more sensitive to

low probability events because on a fractal it is more likely that a point belonging to the

4 Unfortunatcly we have no quantitative informations oa this.
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fractal will be near another point on it than a point taken at random. In this way it makes
more intensive use of the data than box-counting. The main disadvantage to the

correlation method is that we have to remove this bias frr m the analysis.

11.2.2 Multifractal Analysis of the network:

{Mono) fractal techniques consider the measuring network as a geometric set of
points. The significant advances were the recognition that the exact positions of the
individual stations not the fundamental problem and the introduction of the scaling
hypothesis. However, only one exponent was used to describe the scaling (the scaling of
every statistical moment was expected to be derivable from it, it proved to be a particular
case). With multifractals, the quantity of interest is the number density of measuring
stations. We will empirically show that it is approximately a scale invariant measure
underlying the actual station locations. This treatment of the stations is similar to that
used in the characterization of strange attractors where the mulifractal probability
measure defines the probability of finding the system in a given state is stable under a
change of initial conditions but the detailed distribution of points on the flow or mapping
may vary 2 lot from one realization to another. Here an infinity of exponents (a scaling

function) is needed to characterize the scaling behavior, one for each statistical moment.

[I1.2.2.1 Power Spectrum:

In order to get a good idea of the limits of the scaling regime, the first step we take
when performing any of the analysis presented in the following sections of this chapter is
to estimate the (isotropic) energy (power) spectrum which is the modulus squared of the
Fourier amplitudes integrated over all angles in Fourier space and ensemble averaged
over all realizations of the process. Since the field for the density of stations is distributed

on a sphere we should really use a decomposition into spherical harmonics rather than
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Fourier analysis, however for simplicity, we chose to perform the analysis on equal area
projections of portions of the earth and use Fourier spectra. For each projection we
generated 10 maps of 8000 by 8000 km sectons of the earth {5 in the northern
hemisphere and 5 in the southern) center: 722 of longitude apart. We then averaged the
power spectrum of all the sections. One of these results is shown in figare 3-3. On this
figure we see that there is a region in the low frequency range that could be fitted fairly
well by a straight line. This indicates that scaling is respected in the range of 200 t¢ 8000
km. For all the projections tested (Mercator, Aitoff, Sinusoidal), the scaling region is the
same (as it should be) and the slope of the best fitting straight line in this region (the
spectral slope B) is 0.63 + 0.13. This vaiue will be used to determine the ruultifractal
parameter H after the other parameters have been determined by other methods. The
regular oscillations in the pbwcr spectrum seem to b caused by a large localized

concentration of stations in real space.
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Figure 3-3: Power spectrum for the density of station field using the Aitoff equal area
projection,
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Ii7.2.2.2 Probability Distribution / Multiple Scaling:

This approach is an effort to apply directly eq. 3.13 which is a fundamental property
of multifractal fields. We desire to obtain directly the c¢(y) from histograms using the
“Probability Distribution Multiple Scaling” (PDMS) technique, (Lavallée et al. [60]} and
from there estimate the universal multifractal parameters.

The method i based on:

Pr(R, >AT) = (3.13)

and consists in plotting log Pr vs log A for -y constant. In this manner it accounts for the
non unity prefactors in equation (3.13).

We partition the globe with a 256x256 grid using the sinusoidal (equal area)
projection, estimated the density of stations in each grid element and from there we
estimated the different. probabilities. Some of the log Pr vs log A curves are presented in
fig. 3-4. We see that good scaling is observed for 0 S log A < 2.0 (i.e. from 200 km to 20
000 km). c(Y) is obtained from the slope of these lines and are reported on fig. 3-5.

We could already note that for high values of v, instead of following universal relations
we observe a linear behavior that is associated with a first order multifractal phase
wransition will be explained in the next section. The straight line for large ¥'s has a siope
of gp = 3.6t0.1 as expected. A value close to this one (qp = 3.740.1) is observed on the
histograms. On fig. 3-6 we show logg Pr(pl > P) vs log,o P, P being the threshold
density. For this figure we used = 800 km x 800 km grid elements (which is well within
the scaling range).
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Figure 3-4: PDMS analysis on the network. Log of the probability against the log of the
scale ratio A for different values of the singularity order 7y varying in steps of 0.1 from y=

0 (empty squares) 1o y= 0.8 (filled circles).
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Figurg 3-5: c(y) vs. v for the network deduced from the previous graph as well as a

theoretical curve with the parameter obtained by the DTM technique (solid line); i.e. o =
0.85 Cy=0.37 and H = 0. The straight iine has a slope qp = 3.620.1.

74



0_
T -2
A -
- .
a
- " 4-
Q.
(=] -
g -1
- 8 T T L4
-5 -4 -3 -2 -1
lo P
g10
Figure 3-6: log of the probability of finding a density of station greater than p in a circle

of 800 km against log p. The asymptotic slope gives directly the exponent qp that we
estimate to be 3.730.1.

In oruer to estimate the different universal multifractal parameters we tried to fit eq
(2.11) with the data of fig. 3-5. Non-linear curve fitting algorithms such as the
Levenberg-Marquant [98] or the simplex method [126] failed badiy to converge to a

solution. The regressions problems are very likely due to the high degree of correlation

between the parameters and the limited range of ¥s accessible to our analysis. The
theoretical curve shown on the same ﬁgure was calculated using the parameters obtained
with the double trace moment technique. A method that we used in the previous chapter

and the results on this particular field will be presented in section 11.2.2.5.
111.2.2.3 Sampling limits, detectability and Multifractal Phase transitions:

The scaling exponent functons have analogs in thermodynamics (Tél [127}, Shuster
[122], Schertzer et al [117]). The probability description (y, c(Y)) is the multifractal
analog of the (energy, entropy) description of standard thermodynamics and the moment

description {(q, K(q)) is the analog of the (inverse temperature, Massieu Potential)
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descripton. Discontinuities m these functions (phase transitions) could be caused by two
different statistical mechanisms (these are very different from the "high temperature”
transitions discussed in relation to strange attractors). Finite sample sizes give rise to
second order transitions. First order phase transidons (discontinuities in the first
derivative of moments function) occurs for. larger samples and are due to divergence of
moments tha: take place when a cascade process is observed at a scale larger than its
homogeneity scale (the smallest scale used in building the process), i.e. it appends for
dressed cascade processes.

When an investigation of a multifractal process is performed we will typically have Ng
independent realizations, each of dimension D and each covering a range of scales A.
With more realizations (increased Ng) a larger portion of the probability space will be
explored. Thus, extreme but rare events that were missed with a smaller sarple will be
encountered. The extent of the portion of the probability space sampled can be quantified
by the sampling dimension Dg (Schertzer and Lovejoy [114], Lavallée et al [60]). From
eq. (3.13) and using the fact that there are a total of NeNg =2P*Ds srructures in the
sample, the dimension corresponding to the kighest order of singularity likely observed
with Ng independent realizations is given by:

; IOgN
=D+D,=A,; D,~—2-= 3.14
c(’Yl) 3 ] ] logl ( )

where A, is the overall effective dimension.
When ¥, <7, the upper bound ¥, for observable singularities leads to a second order
multifractal phase transition. The Legendre transform of c(y) with v >, leads to a

spurious linear estimate X instead of the nonlinear K for q > q; q, =¢' (‘y,) being the

maximum moment that can accurately be estimated. K (q) will follow the relation:
K.@=7(a-q,)+K,) q2q,
(3.15)
K, (9)=K(q) q=q,

This is a second order phase transition associated with a jump in the second derivative of
the (free energy/Massieu potential; AK"(q,}=-K"(q,)).
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When constructing a cascade process, the multiplicative iterations will generally be
performed down to a scale 1 (the inner scale of the process), but it will generally be
observed by spatial and/or temporal averaging on scales £>>T1 (with corresponding
adimensional quantities A=L /£, A=L/7,L being the outer scale of the process). The
va.riabilhy at the,observati_on scale ratio A may be wilder ﬁm the corresponding field
obtained by 'stopping the cascade at the same scale ratio. We say that the observation is
dressed by the small scale activity, and that the process without smaller scale activity is
bare. For small ¥'s this won't affect their computed values. Above a certain critical
singularity order yp the dressed codimension will be determined by maximizing the

probability (minimize ¢) with the only constraint being the convexity, the dressed
codimension (c4) will thus follow the tangent and the dressed quantities follow:

ca{¥e) =ap(¥q -YD) +c(Yp) Ya27p

cal¥a)=c(¥) Ya$Yp (3.16)

where qp =c'(Yp) and is the slope of the algebraic fall-off of the dressed probability

distribution, it is the critical order of divergence of statistical moments ((eq) = oo

K4(q) =<0, q2qp). Schertzer and Lovejoy [106, 107, 109] have shown that qp is the
solution of:

D =qpD ~K(ap)=ap(D-¥p)+<(Yp) 317

When y5<vYp , it is important to estimate the maximum observable dressed

singularity for a given sample size with Ag=c4(y4;) by taking the Legendre transform

of cy with the restriction ¥4 < Y4 . The finite sample K44(q) is given by:
Kis(@=74s@-9p)+K(p) gq>qp

3.18
Ky, (@ =K() a<ap (3.19)

For Ng —o,74; = and for q > qp, Kqy;(q) — K (q) = ee. For a large but finite

Ng there will be a high q (low temperature) first order phase transition corresponding to a

jump in the first derivative of K(q):
Ag—c(Yp)

AK'(QD)?EKd,s(qD)—K' (Ap)=Y4s—Tp= q
D

(3.19)
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for small samples (Ag ==c('yD)), this transition will be missed, the free energy simply
becoming "frozen".

Later on we will estimate (using the double trace moments method) that o = 0.85,
C; = 0.4 and H = 0 for the network station density. Since we have only one realization
(Ng =1, Dg =0, Ag = D = 2, c(v=2), we estimate with the universality relations {eqs.
2.11 and 2.12) that yg = 0.. frouz g, = (¥,) we obtain qg = 7.3. However we already
mentioned that c(y) manifest a linear behavior before reaching this limit. We interpret this
result as 2 manifestation of a first order phase transition with: qp = 3.640.1; c(}p) = 1.1;
¥p = 0.7. This is in agreement with the observed probability tail (fig. 3-6) reported for a
scale in the scaling regime (we estimated qp = 3.740.1).

111.2.2.4 Trace Moments:

This is a technique that deals directly with multifractal measures. It is a generalization
of the partition function approach of Hentschel and Procaccia [43], Grassberger [41], and
Halsey-et-al [42], although since we are dealing with stochastic processes, it also involves
ensemble averaging. In this method, contrary to the double trace moment method (DTM),

-no functional form of K(q) is assumed. It is only in a second step that claims about

universality could be made.

The simplest method we used to obtain the scaling exponents K(q) is to estimate the
statistical moments of order q at different resolutions. Since our data set is distributed
over a sphcre,.we first have to define the field at a resolution A. We chose to use grids
such that each box has the same area. This is easily accomplished. We partitioned the axis
of the globe into slices of equal z (where z is the length of the projection of the slice onto
the axis that goes from the center of the earth to the north pole) so that the area of the

intersection of each slice with the earth's surface will be the same. We partitioned the
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globe in slices of equal longitudes. The intersection of those two partitions gives a
covering with boxes of equal areas. We also tried displacing the poles of this partition to
check for possible N-S/E-W dependence on the grid chosen due to the fact that the boxes
do not all have the same shape (boxes near the poles are elongated in the north-south
direction while boxes near the equator are elongated in the east-west direction), No
significant differences were observed. The coarse graining process is performed in an
isotropic manner. It doesn't matter that the boxes have a preferred orientation. We should
also not confuse this with possible znisotropy of the field under study. For example, the
raingage network shows some anisotropy that manifests when we perform quasi-1D
analysis like the one that is presented in appendix B.
At a certain box size A for a series of values of q we estimate:

1 i=Nb n: q
qy_ i
- 3

i=1

where pj is the density of stations (=n; / A2 for the box i) and Ny is the number of
boxes needed to disjointly cover the set. Then we repeat the procedure for different box
sizes A. This procedure was implemented in a very efficient manner, that avoids spending
calculation time on empty boxes, using the Hunt and Sullivan [49] algorithm (explained
in appendix A). Figure 3-7 shows the results of this analysis for a few values of q. We
can see that the scaling is observed in the range 0 < log A <20 (200 to 20 000 km:

roughly the same as before). In previous section we mentdoned that for a multifractal field

(pg) ~ A% 50 by taking the slope of the curves of fig 3-7 in the scaling region we can

deduce the K{q) function that is shown on fig. 3-8,
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Figure 3-7: Log of the statistical moments against Log of the scale ratio A for the network

for moments of order q = 0.5 (empty squares), q = 1.0 (filled circles) and q = 1.5 (filled
squares). The arrows indicate the limits of the scaling region. A = 1 corresponds
approximately to 20 000 km.
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Figure 3-8: The scaling exponent K(q) vs. q with the fitting curve having scaling

parameters & = 0.85 and C; = 0.37. On the top figure the asymptotic linear region (after a
multifractal phase transition) is fitted to a straight line of slope Yy = 0.8+0.1. On the
bottom figure, the linear region for small q is fitted to a straight of slope Yp,jp = 0.240.1
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We fitted the K(q) function to the form given by eq. 2.12 by the Levenberg-Marquant
Method (Press et al. [98]) using the portion of the curve expected to follow this relation.
We obtained a = 1.0 and C;= 0.23. The theoretical curve for these parameters is also
reported in fig. 3-8. On this figure we observe for large q a linear behavior, the
multifractal phase _transition explained before, for q>qp = 3.6, and as expressed by
relation 3.18 whose slope is estimated as Y4 ; = 0.810.1. This is comparable to what can
be directly observed in fig. (i.e. Yg 5 = 0.9). For small values of g the fitted K(q) doesn't
follow the experimental data points either. This can be explained by the fact that this
portion of the curve is determined by small values of the field, since the number of
stations is an integer number we miss very small values of the multifractal field. This
implies an effective detectability limit that can be expressed by a minimum correctly
estimated moment Qmin and correspondingly a Y. We estimate Ymin by the slope of the
linear portion in the small q region and we obtain Y,;;, = 0.240.1 from which we deduce
Qmin = 0.620.1. This effect will be further discussed in a following section were we build

up a simulated network.
I0.2.2.5 Double Trace Moment Analysis of the network

We wish to apply the same technique that we used on reflectivity fields (previous
chapter) to estimate the universal multifractal parameters describing the scaling of the
raingage network. The first step in applying the DTM technique is to check the scaling
range of various moments. Figure 3-9 shows log Tr(((p}l )q) vs. log A for q = 2. We used

a 256 x 256 regular grid (sinusoidal projection) to analyze the density of stations. As we
can see, scaling is observed for log Trace moment vs log A (for different values of g, 1 =
1) in the range 0 <log A <2.2 which, as expected, is roughly the same as what we
deduced from fig. 3-7. From these curves we obtain by linear regression over the scaling
region the double trace moment that we show on fig. 3-10. On this graph we have plotted

log IK(g, n)! vs. log 1. From a regression on the straight portion of this curve we deduce



that for the network o = 0.8510.2 and C; = 0.3550.1. On the same figure we have plotted
the result of the analysis for a simulated field using the estimated parameters and a
simulated network consisting of 7077 stations generated from this simulated field (details
of the simulation are given in the next section). These three curves will serve to illustrate

two important points about the double trace moments technique. First we note that for

high values of N all the curves become flat. This is because eq. 2.20 wreaks down
whenever max{qn, q) > min(qsqp). We observed a break in K(q) for qp = 3.6 £ 0.1. This
brzak was interpreted as.a first order phase transition. It is reflected in K(g,n). For the
value of q that we used (g = 2.0) we expect the break to ixccur for | = 3.6 (log 1 = 0.55)
which is observed. The second point that fig. 3-10 illustrates is the behavior of the
moments for low values of 1. The curves for the real and the simulated network depart
from linearity. In this region of the curve the analysis depends on low values of the field
and since we only have a finite number of stations the low values of the density field will
be badly estimated leading to a departure from linearity in the log IK(g, n)I vs.logn
curves. This effect will show whenever max(qn,q) < qmin. In the previous section we
estimated that qmin = 0.6 £ G.1 and indeed this corresponds to the break observed in the
K(q,n) curve.

Now that we have an estimate of the & and C; parameters (o =0.85%0.2 and
C1 =0.3530.1) and that we know the spectral slope B we are able to determine the third

parameter H. By the use of equation 2,21 we obtained H = 0.05 £ 0.1.
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Figure 3-9: Iog(Tr;_(qJE )q) versus log(A) for several values of 1} (from top to bottom,

n =1.2, 0.7, 0.3, 0.1) for the network , We used q = 2, and the scale ratio A = 1 for a
distance of 20 000 km.

0.5

e
g -05
-
'1 -0 1 T —T g
-1.0 -0.5 0.0 0.5 1.0 1.5
Log o N
Figure 3-10: log IK(q, n)! vs. log N for the network (filled squares), a fieid (without any

minimum thresholding) having the same parameters as the network (filled circles) and a
simulated network obtained from the simulated field (empty squares).
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II1.2.2.6 Simulation of the network

In the previous sections we presented some results for a sumulated network. These
simulations were mainly used to test the different methods and to verify our
understanding of the different techniques. In this section we will present some more

details on the method used to produce those simulations and some further results. We

show a simulated network in fig. 3-11
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Figure 3-11; Position of the 7077 stations for the simulated network used for testing the
different methods.

The simulations were performed using a discrete cascade (Schertzer and Lovejoy
[109]) on a 256x256 grid (this is roughly the observed range of scaling found empirically
for the network, see fig 3-9). The field produced by the simulation with the parameters
deduced by the DTM method was taken as the density field. We multiplied this field by
the expected total number of stations in order to obtain a simulated network with a total

number of stations near the total number of statons in the real network that we analyzed.

With the same total number of stations we should be able to reproduce roughly the same
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Ymin a5 the real network since Y, = 08P mi / 10gA . We rounded the number of stations
in each box to the nearest integer value. Within each box we distributed the stations
according to a uniform random distribution and then extracted a database with the same
resolution as the real network. Note that both the total scaling range as well as the total

number of stations are inzportant parameters in the simulation.

We estimated the usual statistical moments using the regular grid (fig 3-12). As we
can see the simulation is in very good agreement with the scaling properties of the real
network. We were even able to reproduce the scaling break due to the finite number of
stations (introducing the homogeneity scale). Figure 3-13 shows the c(y) curve obtained
by the PDMS method. Here again the empirical and simulated curves are in good
agreement. From the statistical moments on a regular grid of fig. 3-12 we produced the
K(q) curve for both networks (fig. 3-14). We can see that except for small differences for
large g, both curves fall on top of one another. It is also the case for the DTM technique
shown in the previous section (fig. 3-10). The departure from the theoretical curve is due
to the finite number of stations which result in a minimum value of q and 7 for the

analysis is valid (as discussed in section [11.2.2.4).

0 1 2 3

Logw Y )

Figure 3-12: Log of the statistical moments against Loy A for the network. q = 0.5 (empty
diamonds for real network, plus sign for the simulated network), q = 1.0 (empty circles
for the real network and x for the simulated network) and q = 1.5 (empty squares for the
real network and x for the simulated network).
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Figure 3-13: c(y) vs. vy for the real network (filled circles) and for the simulated network
(empty diamonds). The solid line is the theoretical curve for the K(g) function using the

parameters determined by the double trace method. i.e. & = (1.85 and C; = 0.35.
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Figure 3-14 : K(q) vs. q for a simulated network of 7077 stations having parameters & =

0.8 and Cj = 0.4 (diamonds) and the same function for the real network (empty squares).
We also show the theoretical curve for a = 0.85 and C; = (0.35.
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II1.3 Obtaining Information About the Measured Field: The Example of Rain

I0.3.1 Corrected Double Trace Moment Analysis of the rainfield

Now that we have a well characterized network it is possible to get some information
about the statistical properties of the spatial distribution of the field of interest: here the
rain field. To extract the information for the rzin from the -network, we assume (as a first
approximation) that the rain and the network are totally uncorrelated phenomenon, e.g.
we ignore the problem of correlations between rain events and tﬂe physical location of the
stations (such as the so-called "island effect" which may give subtle biases to rain
estimates over the ocean, etc..). In future, the problem of correlations between the
network and climatological rainfall which theoreticaily can be dealt with by considering
joint probability distribution between rainfall and the network and using vector
singularities as outlined in Schertzer and Lovejoy [115, 118).

A station measures the rainfield only over a finite area around its location. Consider
the sum over the ith grid box (or circle) scale A (By) of the raw rainfalls (M} )

accumulations raised to a power 1| : ¥, M} . The subscript A is used in the same sense as
By

eq. 2.17 for the DTM, it is the spatial scale associated with the (daily) accumulaton
period (averaging in time will smooth in space at a scale determined by the corresponding
space/time transformation). Perhaps the simplest derivation is as follows (see Tessier et al
[129] for a slightly different presentation). Consider that at the finest resolution A the
station density is an indicator function pa of the measurements of R, ; at scale A, the
measured rain is the product: M; = p; R, . The trace moments are given by:

T"x(MR ) = TTL(PR R ) = 3Knla.m-(q-1D _ 3K (an)}+Kg(a.n)-(a~1)D (3.21)

It is now straightforward to see that

Ky(q,7) = Ky(q,m+K (g,M) (3.22)

5 We consider that the original measurements M; have an intrinsic (generally unknown) resolution A To
circumvent this problem we raised the raw data to the power 1.
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since p, is an indicator function, we can make the following approximation:
K.{q,mM=K,{(qD) - (3.23)

Note that this approximation only holds at the szale A where py is necessarily a 1 or 0;
PA =Pa
The measured multiple scaling function Ky(q,1) can readily be used to determine

Kgr(g,n) by exploiting the fact that Kg(q,0) = 0, hence:
Ku(@,0)=K,(q,D (3.24)
Kp(q,1) =Ky (q, )~ Ky(q,0) (3.25)

The log(Trl((pR)q) versus log(A) before corrections are shown on fig 3-15. We can

see that scaling is observed over a large region. From such an analysis we obtain the
(network corrected) values o = 1.35 0.1 and C; = 0.15 $0.05 as may be seen on fig. 3-
16 where we have plotted loglK(g,n)l vs. !og'n forg = 0.5, 1.5 and 2.0. The logn
horizontal asymptote at K ~ 1 is close to the accuracy of the estimates of K.

The third parameter H also needs corrections that can be obtained from the following:
M, =AMl AR, = A Hrgl RE (3.26)

where the primes designate the corresponding conserved quantities, Here the degree of

uwon-conservation H for the "true" process is simply given by the difference

Hy ~H, = :—;-(BM _—ﬁp) which can be deduced with the formula 2.21. In the
determination of By (see fig. 3-17) we fitted only the region over which good scaling was
observed with other methods (i.e. 400 to 8000 km). The estimated spectral slope is
Bm = 0.2 + 0.2. Since we have already estimated (from fig. 3-3) that Hp = 0 0.1 and

KM(2) = 1 £ 0.1 we therefore obtain HR = 0.2+ G.3.
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Figure 3-15: log(Trl((pR)q) versus log(A) for several values of | (from top to bottom, 1
=1.2,0.7, 0.3, 0.1) for daily rainfall accumulations on a global network .
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Figure 3-16: log(iK(g,n)l) versus log(n) for daily raiafall accumulations on a global

network after the needed corrections ¢xplained in the text. From top to bottom curves for
q =2.0, 1.5 and 0.5 are shown. The regression lines on the different curves give a value

of & = 1.3540.1 and C; =0.15 +0.05.
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Figure 3-17: Power spectrum for daily rainfall acculaulations as measured by a global

network. The regression line for the region from 400 km to 8 000 ki gives a spectral
siope = 0.240.15.

[11.3.2 Trace Moment Analysis of the Rain

As we have seen with the analysis of the network, more information could be gained
with the (single) trace moments. In particular a better estimaté of the range of validity of
universal relations (egs. 2.12).The correction scheme we have developed for the double

trace moment could also be applied to regular trace moments. Taking 1 = 1, in equation

(3.25):
Kq(q)=Ky(9)-K,(q) 3.27)

The log{Mj} versus log) curves are shown in fig. 3-18. The scaling range is slightly
smaller than for the network. We observe scaling over the range: 0 € log A £ 1.8. From
this we deduce the Ky(q) function which is shown in fig. 3-19. Also shown in this figure
are Ko(q) and Kr(q).



0 1 2 3
T Log 0 M
Figure 3-18: Log of the statistical moments against Log of the scale ratio A for the

network for moments of order q = 0.3, 0.8, 1, 1.4, 2.1 (from top to bottom). The arrow
indicates the approximate lower limit of the scaling range of the rainfield.
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Figure 3-19: K(q) vs. q for the measured rainfall (filled diamonds), the network (empty
circles) and the corrected rainfall (filled squares). In the high q region straight lines have

been fitted in order to obtain YR 4.5, YM d.s» Yp d.s-
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Figure 3-20: K(q) vs. q for the corrected rainfall determined using the regular grid
showing the asymptotic linear regions of the curve whose slapes give Ymin = -0.13 (small

q) and Y45 = 0.21 (large q). The continuous line was calculated using the parameters a
and C; obtained by the DTM method.

In order to interpret the empirical K(q), we estimate the maximum value of q attainable
(due to sampling effect) with the dataset. The number of realizations investigated is 365
(one each day for a year) but since we observed a scaling break at time scales of roughly
16 days (see chapter IV), if we interpret this as an outer scale for the scaling regime we
obtain:

365

N, =22 =23
16

where N, is the number of independent realizations since we observed scaling of the

network for 0 >log A > 1.8:
D, = log23
1.8

* the dimension of the embedding space is 2, Ag=D+D5=2.76

=0.76
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With the fitted parameters for the rzinfield (i.e., @ = 1.35, C; = 0.16 we therefore
estimate that ¥, = 0.95 and q; = ¢'(y,) = 7.0. However the rainfield manifests a divergence
of moments for gp < 7. The point where the curve calculated from the estimates of & and
C; obtained with the DTM method and the experimental points depart indicates a value
of opy = 2 corresponding to yp = 0.3. Many estimates of qp {mainly from histograms) can
be found in the literature (see table 3-2). Our estimate is comparable to the ones cited. At
the present time, it is still nct clear if the spread in the different estimates is due to the
accuracy of the different ::valuations or if reflect more profound differences between the
dataset used. From the asymptotic siope of K(q) (large q region) we can estimate a Yy ¢ for
each of the three curves of fig. 2-19. We obtain Yy g5 = 1.1, 1p q s~ 0.8 and 1z g5 = 0.3.
With egs. 3.18 and 3.27 we can see that: " ds T™ds Tods is approximately verified.
In thz small q region (fig. 3-20) we calculate the minimum observable singularity, Y0 —
-0.13 £ 0.1. As before, using q = c'(y) we deduce qp;,; = 0.2. Table 3-1 summarizes all the
quantities we have estimated for the raingage network density field and the rainfield.

o & H g Y 9 Yo 9as  Yas  %min _ Ynin
Network 085 037 005 73 091 36 074 3.1 0.7 0.6 02
135 015 02 70 095 20 030 20 04 02 -0t

gb ¢ 3-1: Summary of the universal multifractal parameters estimated for the raingage
station densny and the rainfield as well as phase transiticns critical points for these fields.
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Data Types Locations qp References
Radar rain Tropical Atlantic 2 Lovejoy, 1981 [62]
differences (space)
Radar rain Tropical Atlantic 1.7 Lovcjoy, 1981 [62],
differences (tirne) Lovejoy and

Mandelbrot, 1985 {66]
Radar reflectivity Montréal 1.1 Schertzer and Lovejoy,

1987 [109]
Vertical pointing Montréal 3.0 (rain) Duncan et al., 1952
radar reflectivity 2.4 (snow) [28]

3.9 (bright band)
Daily raingages Nimes-Courbessac 2.6 Ladoy et al., 1991 [55]
accumulations
Tipping bucket Montréal 2 Zawadzld, 1987 [142]
gages :
Tipping bucket Western Canada 2.580.5 Segal, 1979 [124]
ages

gR.'En drop volumes Hawaii 1.6+0.5 Blanchard, 1953 [8]
Daily raingages World 2.0 This thesis
accumulations

Table 3-2: A companson of various empirical estimates of the divergence of moments
exponents qp. Adapted from Lovejoy and Schertzer [74].

HI.4 Conclusion

The inhomogeneity in the spatial distribution of stations of geophysical networks has
always been a problem. Different techniques have been used to attempt to solve this
problem but the recognition of the scale invariant properties of at least some of these
networks is very recent. The first scaling attempts treated the problem by considering the
location of stations as a set of points with fractal properties. We proposed a different
approach. What matters is the density of stations field underlying this set. This field can
be multifractal. For the global raingage network we have shown that it is the case. We
established that scaling is observed over the range of scales of 200 km to 8 000 km.
Using different techniques: (single and double) trace moments, PDMS and spectral
analysis, we were able to estimate that the universal multifractal parameters for this

network density field, which are ¢ = (.8530.2, C;=0.410.2 and H = 0£0.2. This universal
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multifractal behavior could be observed for K(q) between qmin = 0.530.6 and
gp = 3.610.5. Below qmip there are not enough stations to get a good estimate of the
scaling function and above qp divergence of moments causes a first order phase
transition in the scaling functions. These transition points have analogues in the
singularity space. By Legendre transformation we could derive the minimum observable

order of singularity Ymin = 0.2340.1 and the maximum observable order of singularity is

Yds =0.7140.1.

In the previous chapter we presented evidence for multifractal behavior of different
remotely sensed fields related to atmospheric water. Based on some early analysis
(Hubert and Carbonnel [45, 46, 47], Lovejoy and Schertzer [71, 73], Schertzer and
Lovejoy [109]) pointing in the direction that surface rainfall should also be a spatio-
temporal multifractal field. Removing the network bias with the help of a new framework
("multifractal objective analysis") amounts to replacing the usual small scale
homogeneity and regularity assumptions {(implicit in standard "objective" techniques such
as Kriging) by more realistic scaling (inhomogeneity) assumptions. We iﬁtroduccd the
idea that the measured field is the product of two multifractal fields: the density of
stations and the analyzed field (in our case the daily rainfall accumulations). The
corrections could then be expressed as simple subtraction of scaling exponents and
spectral slopes. We tested this technique, and found that it seems to hold fairly well over
the range of scales of 400 km to 8000 kan. We estimated the universal multifractal
parameters and obtained o = 1.35+0.2, C;=0.1520.1 and H = 0+0.3. These values of o
and C; are compatible with estimates of these parameters for the spatial variability of
radar reflectivities. It could be justified by the fact that a transformation such as the semi-
empirical Marshall-Palmer relation which is widely used for converting reflectivities into

rainrate (Z=aRP) conserves the value of . The limits to this universal multifractal

behavior are qmin = 0.240.5 and gqp = 2.040.3. The corresponding point in the singularity
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space gives a minimum observable order of singularity Ymin = -0.110.1. and the
maximum observable order of singularity ¥4 s = 0.310.1.

We developed a new method to treat the problem of multifractal fields sensed by
inhomogeneous (multifractal) networks. We applied it to global rainfall but we think that
the method will be most helpful for the analysis of many other geophysical fields that
presents the same difficulties such as the temperature, pressure, pollution records,
earthquakes and many others. The interpolation problem which has been up to now the
work-horse of the objective analysis practitioner will certainly have to be revisited since
all the usual methods do not consider the basic scaling properties of both the measuring

network and the analyzed (but this is at least another thesis!).
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Chapter IV
The Temporal Scaling of Water Fields

IV.1 Spatial and temporal scaling:

We have discussed the spatial variability of various fields related to the distribution
of water in the atmosphere, we now turn our attention to the problem of temporal
variability. There are many reasons for studying this variability. In many applications
knowledge of how the rainfall intensity at a point varies with time is an important issue
all by itself. More fundamentally, the relation between the spatial and the temporal
variability of turbulent fields is an outstanding theoretical problem. An understanding of
the space/time relation is necessary in estimating water budgets as well as in making
predictions (as is already recognized by various data assimilation schemes). Probably the
. most cited and widely used method of relating time and space is "Taylor's hypothesis of
frozen turbulence” (Taylor [128]) which basically states that temporal (t) and spatial
averages (/) are related by a constant velocity (v) in a relation of the form [ = vt.
Although this hypothesis has been widely used since the 30's in both atmospheric and
laboratory turbulence, Zawadski [141] was the first to give it a (limited) test in rain using
radar data. Although turbulence in the atmosphere is not "frozen", a statistical version of
the hypothesis might still apply: i.e. the statistical properties in space and time are the
same (if appropriately rescaled using a velocity parameter). If this statistical version held
then rain would be isotropic in space-time. Recently Lovejoy and Schertzer [73] have
analyzed lidar data of rain indicating that an anisotropic generalization of Taylor's
hypothesis (discussed below) based on a turbulent (i.¢., scale dependent) velocity is more
appropriate than assuming frozen turbulence and space-time isotropy. Below we do not

presuppose any specific relation between time and space: we seek to determine the
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universal parameters characteristic of the process in time and in space separately. This
will provide us with some of the information needed to determine the space-time

transformation operator, an issue that is still under actve development.

IV.2 Functional Box Counting on time series

The first analysis we performed in the time domain was using Functional Box
Counting analysis {Lovejoy et al. [70]). It consists in performing ordinary box-counting
on sets obtained by thresholding the time series. In this analysis the distance used was the
difference in time between events, we did this for every station, and accumulated the
number of events for all stations (this corresponds to intersection of the measurements
with the time axis). As we can see on figures 4-1 and 4-2 when the threshold value is 0
we get a dimension of nearly 1 which is to be expected sirce it only means that reports
were distributed uniformly (missing reports were uniformly distributed in time; there was
no significant clustering). The dimension decreases as expected, as we increase the
threshold, this is because the exceedance set for large thresholds are sub-sets of those of
small thresholds. As we increase the threshold an interesting phenomenon appears: we
get a break in the scaling at times between 10 and 20 days, It is interesting since this time
duration corresponds to the so called "synoptic maximum"” (Kolesnikov and Monin [52])
which is generally interpreted as being the time that takes a perturbation to spread all
over the world. This makes sense in the context of Taylor's hypothesis of frozen
turbulence where each space scale has a corresponding time scale. We can see tw¢;
different scaling regimes; the first for times smaller than the synoptic maximum and the
second for times longer than this. Hubert and Carbonnel [45] also observed a scaling
break at time scales comparable to what we obtained; they got a break around 8 to 16
days for their daily rainfall accumulations for a time series of 214 days compiled for
Dedougou (Burkina Faso), and they observed a break between 5 and 11 days for their
hourly time series compiled for a nearby location. Larnder and Fraedrich [57] observed a
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break for the same period in a spectra for daily rainfall accumulation on a 45 year period
for a station in Germany. Lovejoy and Schertzer [69] and Ladoy et al. [55] obtained a
similar result for surface temperature spectra in France.

Although it would be possible to estimate the K(q) scaling function and then the
universal multifractal parameters with this technique experience proved that it is not
efficient to do so. These results are presented because they constitute one of the best
demonstration of the two scaling regimes present in temporal series of rain. The universal

multifractal exponents will be estimated with the Double Trace Moment, as before.
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Figure 4-1a: Log of the number of events above a certain threshold against the log of the
time interval (in days) for different threshold: 0 mm (empty circles), 0.1 mm (empty
squares), 12.8 mm (filled circles) and 10.24 cm (filled squares).
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Figure 4-2¢: Same as the previous graph but divided into different figures according to
the different threshold: a) 0 mm (empty circles), 0.1 mm (empty squares) b) 12.8 mm c)
10.24 cm. There is a scaling break at time of the order of 10 to 20 days corresponds to the
synoptic maximum.

IV.3 Power Spectrum Of Daily Accumulation Records

Another confirmation of the 1 to ~20 day scaling regime comes from inspection of
the power spectrum (square of the modulus of Fourier amplitudes) which is shown on fig.
4-3. We had to compromise between the length of the series available without missing
data and the number of reports. The best compromise we could obtain is with 2000
stations reporting for 128 consecutive days. In this scaling regime the spectral slope (fig.
4-3) estimated by linear regression is B = 0.4. We will use this value later in conjuncton
with estimation of & and C; to compute the parameter H. It will certainly be interesting in
future studies to extend this analysis in both directions, especially if we consider that both
(most obvious) forcing frequencies of the system are missed. i.e. the daily and annual

cycles.
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Figure 4-3: Averaged power spectrum for 128 days time series of 2000 sites around the
world. The estimated spectral slope is f = 0.4.

IV.4 DTM analysis of raingage data

The estimation of the universal multifractal parameters is one of the most
interesting points. For o and C; it could be most efficiently performed by the DTM
method that we already used in preceding chapters. We calculated the double trace

moment in 1D for a period of 128 days, accumulating histograms for 2000 stations.
Figure 4-4 shows log Tr(((p}{ )q) vs log A for q = 2.0. Again, we observe a break around

16 days in the scaling. In order to increase the statistics we performed the DTM on series
of 64 days for 4000 stations. Since the log Tr((cp}{)q) vs log A curves looked very

similar to the 128 day case we preduce only the log IK(q, 1))l vs log 1} curves on figure 4-
3. From these we deduce, using the 1 to 16 days region, a = 0.5, C1 =0.6, Recently, many
other analyses have corroborated this estimate. lancing at table 4-1 should provide

convincing evidence that « lies in the vicinity of 0.5. We also report a figure (fig. 4-6)
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taken from Schmitt et al where the same values are observed for a 40 years series
recorded in Nimes (France) The third parameter H can easily be determined by fonnula
2.21. We obtain H = 0.0540.1.
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Figure 4-4: log(Trl(ch )q) versus log(A) for several values of 1 (from top to bottom, 1y

1.2, 0.7, 0.3, 0.1) for time series of rainfall 128 days for 2000 stations, We used
=2,

q=2.0.
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Figure 4-5: log(IK(q,n)l) versus log(n) for daily rainfall accﬁmulations oL a global
network were we have considered the time series of 64 days for each station and
accumulated statistics for 4000 stations. We used q = 2.0 (circles) and q = 0.5 (squares).

The regression line gives a value of a = 0.5 and C1 = 0.6.

Gage, daily Gage, 6 Gage, daly Gage, daily Gage, 15 Mean and
accumulation minutes accumulation accumulation minutes standard
resolution resoludon deviation
Locanon  Global Reunion ~  Nimes Deédougou Alps
Network Islands (France) (Burkina Faso) (France)
(France)
Stations 4000 1 1 28
Duration 1 year (scaling 1 year 40 years 45 years 4 years
regime upto  (scaling (scaling
16 days regime yp 10 regime up to
30 days 16 days
o 0.5 0.5 045 0.59 0.5G 0.5140.05
C 0.6 0.20 0.6 0.32 047 0.4410.16
Yo 1.20 0.40 1.09 0.78 0.94 0.8810.30
Ys 0.84 0.36 0.83 0.57 0.72 0.6640.18
reference Hubertetal Ladoy etal Hubertetal Desurosne
[48] [121) [48] et al (24]

Table 4-1: Values of the universal multifractal parameters as evaluated by different

authors on different «fata sets.
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Figure 4-6: log(IK(q,n)!) versus log(n) with q = 2.0, for daily rainfall accumulations
recorded in Nimes (France) for a period of 30 years. The regression line gives a value of

o = 0.5 and C} = 0.6. ( Kindly provided by F. Schmitt, P. Ladcy).

IV.5 Extreme Rainfall Events

In Hubert et al [48] we used the empirical evidence for a value of a ~ 0.5
independent of the geographic location to explained a curve that could be found in just
about any hydrology book (Jennings [51], Gilman [38], Paulhus [95], Remenieras [100],
Raudkivi [99]) but that still lacked an explanation. We reproduce this curve on fig. 4-7.
On this graph we see that for world record rainfall events the log of the accumulated rain
against the log of the duration of the events seems to fall more or less on a line of slope
near 0.5. This could be explained in the foilowing manner: consider the extreme rainfall
events occurring within a duration T. Whenever there is a maximum order of singularity

Ymax, thén the maximum accumulation Aj, will be:
A, =N'R, = AT=" = g T (4.1)

which gives a straight line of slope (1-Ymax) in log-log (Ymax = 0.540.1).
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Figure 4-7: The world's record point rainfall values, reproduced from Raudkivi [99]. 1 -
Cherrapunji, India; 2 - Silver Hili Plantation, Jamaica; 3 - Funkiko, Taiwan; 4 - Baguio,
Philippine Is.; 5 - Thrall, Texas; 6 - Smethport, Pa; 7 - D'Hani, Texas; 8 - Rockport,
W.Va; 9 - Holt, Mo.; 10 - Cutea de Arges, Romania; 11 - Plumb Point, Jamaica; 12 -
Fussen, Bavaria; 13 - Unionville, Md.; values from Jennings Jenning, [51]. (+) La
Reunion, France; (o) Paishih, Taiwan; values from Paulhus [95]. Reproduced from
Hubert et al [48].

There are many mechanisms which can give rise to finite Ypax. For universal
multifractals, when o = 1, the orders of singularities are unbounded, however when 0 < o

< 1 there is a finite maximum order of singularity g given by:
G

Yo=7T7—

l-a (4.2)

The limitaton of the observable space due to a finite sample that has been
discussed in section I11.2.2.3 could also produce a Ymax. Again, using the concept of
sampling dimension Dg = log N / log A where N is the number of samples and A the
ratio between the largest and smallest scales. The dimension of the probability space
explored is D+Djs < c(y). For time series D =1. The maximum attainable ¥ yielding a non-

negative dimension is
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D+D

Y5 =c(D+Dg)= Yo[l - O{HS_]%}

(4.3)
for & < 1, o'<0 the following inequality is satisfied:

_}I/:.'
vo{l-a(Df‘D ] }SYS <Y,

where the upper bound corresponds to an infinite sample size (Dg -> o) and the lower

(4.4)

bound to a single sample (Dg = 0).

From table 4-1 we obtaini that & = 0.51 £ 0.05, C; = 0.44 -+ 0.18. Using the o and
Ci values (and with D = 1, Dg = 0), we can make the various estimates of v, Vg reported
in table 4-1 from which we get 'Yy = 0.54 £ 0.20. We see that within one standard
deviation this is cqual to the value deduced from fig. 4-7 (y_,, = 0.5 £ 0.1). The estimates
from 7, are also quite compatible (1-7,) = 0.88 + 0.31).

There exist presently two rather opposite views on extreme precipitation. One
school of thought relies deeply on the notion of the "possible maximum precipitation”
(PMP) considered as a physically based notion. In order to estimate the possible
maximum precipitation at a given locaticn (and implicidy at a given scale) a sophisticated
analysis of the rainfall process in an attexﬁpt to address all its relevant and physical
aspects (meteorology, orography, etc.) is required. However, such an approach is often
considered as remaining too speculative or qualitative, especially with respect to
engineering needs.

On the other hand, supporters of statistical analysis consider rainfall rate as a
random variable and time series as a stochastic process. Statistical approaches lead to
rainfall rate probabilities useful in engineering designs. However, without any reference
to any physical processes. the role of hydrologists could easily be reduced to fitting
empirical data to ad hoc statistical laws.

These early results may help to reconcile the two points of view since they are

based on both physics and statistics. Indeed, in our approach the multiplicative cascade
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accounts for turbulent processes resulting from nonlinear interactions between different
scales and fields and leads to the statistical description of rainfall (eqs.2.4, 2.11, 2.12).
We are thus able to give a precise (statistical) definition of uie possible maximum
precipitation at a given scale: we not only clarify the role of scales for the definition of
the PMP, but also the role of the limited size of samples used for its estimation. We
furthermore showed that the two basic multifractal exponents (Ci, &) determine the

maximum attainable singularities (Yp and <ys) and hence the possible maximum

precipitation at a given scale and on a given sample.

IV.5 Scaling Limits and Phase Transitions

It is important to identify when universality is respected, when it is not and the
statistical mechanism responsible for breaking universality. In this section we will argue
that divérgcnce of moments cause a first order phase transition in the scaling functions.
As explained in the previous chapter this can be seen on the c(y) vs 7y curve (fig. 4-8). On
this curve divergence of moments is manifested by a linear behavior of slope qp =
1.940.2 following the tangent (at the point yp) to the theoretical curve calculated using
the parameters o = 0.5 and C; = (.6 (obtained by the DTM method) and formula 2.11
from which we aiso deduce that yp = 0.8. This transition can also be observed on K(q)
(fig. 4-9) At the point q = gp the slope is yp = 0.810.1 in agreement with estimates from
c(y). However, the experimental points seem to follow reasonably well the theoretical
curve for K(q) (without divergence) far above this limit. There is also appearance of
linearity in K(q) for large q. This is expected since in the limit q -> ee, for a < 1, K(q)
becomes linear with a slope of Cja'/e = 1.2 (around q =10 it looks like a linear region of
slope = 1.0). We think that using a larger sample (a few orders of magnitude larger)
should make the divergence more apparent. In the low q region using the first few points
of K(q) (fig. 4-10) we can get a rough estirnate of the smallest ¥ that can be detected
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because of noise problems. We estimate this limit to be of the order of Yg;, = 0.09, using

universality relations (eq. 2.11) it corresponds to q;, = 0.3.
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Figure 4-8: c(¥) vs y for 1-16 days scaling regime of 4000 stations around the world. The
straight line as slope slope qp = 1.9+0.2.
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Figure 4-9: K(q) vs q for 1-16 days scaling regime of 4000 stations around the world.

The theoretical curve for a = (0.5 and C; = 0.6 is given by the dashed line and the tangent
at the point q = qp = 1.9 is given by the straight line.
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Figure 4-10: K(q) vs q for 1-16 days scaling regime of 4000 stations around the world.
The line of slope Y,;, = 0.09 is also shown.

IV.6 DTM on radar reflectivities:

The fixed vertical radar offered the possibility to study the scaling in the vertical
direction but it also provided good temporal data of the reflectivities that we had just
begun to explore in chapter 2. We will now estimate the universal multifractal parameters
for this dataset. We have already indicated that the temporal scaling is well respected
(fig. 2-24). We applied DTM analysis (on the modulus of the gradient) of a section of
duration 8192 x 2.5 secs (i.e., 5 hr., 41 min., 20 sec.) and we accumulated statistics for
the 256 levels closest to the ground. In fig. 4-11 we show the log of the trace moment of
order q against the log of the scale ratio A for different values of the exponent 7). Again, it
can be seen that we obtained scaling over the range of 3 orders of magnitude in A (60 to
20,000 sec). In fig. 4-12 we show log IK(q,n)l vs. log 7 for ¢ = 0.5 and q = 2.0 from
which we deduce & = 0.740.2 and C; = 0.5+0.2. The spectral slope for the radar scans
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was already found to be P ~ 1.2 (fig. 2-24) which gives (using the above values of o and
Cl) a value of H = 0.4 (this is close to the value H = 0.5 found in Lovejoy [62] for

isolated rain siorms evolving in dme using probability distributions, see Lovejoy and

Mandelbrot [66]).
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Figure 4-11: log|Tr, (p2)*] versus log(L) for several values of 1 (from top to bottom, 1|
kY cpl.

=2.1, 1.1, 0.6, 0.4, 0.2) for the gradient of radar reflectivities against time and statistics
accumulated for different elevations. We used q = 2.0.
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Figure 4-12: log({K(g,n)I) versus log(r) for the gradient of the radar reflectivities against
time and statistics accumulated for different elevation. The empty squares are for g = 0.5

and the filled circles are for q = 2.0. From the regression lines we deduce o = 0.7 and C1
= (.3,

IV.7 The theoretical Framework for space/time transformations: Generalized

Scale Invariance

If, as we argued, the scaling of cloud radiance, rain reflectivities and other
atmospheric fields continues from small scales right through the mesoscale (there is no
mesoscale gap), then no large scale forcing velocity can be appealed to in order to
transform from space to time, and turbulent velocities must be used instead. At scale A
they will have amplitudes vy = <g)!3>A-18 where A~ 1is the scale of the eddy, &) is the
energy flux through the eddy to smaller scales (eq. 2.1 with [ = A-1), Although <g;> is
scale independent, <galP> =~ AK(/3), Since K(1/3) is small compared to 1/3, we will

write it as 8. Rather than being scale independent, the space-time transformation will
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thus have a scale dependent velocity! vy, = A~H with H=1/3+8. The two geophysically
relevant Taylor's hypotheses therefore correspond to H=0 or H=1/3+3 depending on the
existence (or not) of the "gap".

The theoretical arguments mentioned above make it clear that the turbulent velocity
is likely to be the relevant one for space-time transformations. The space-time
transformation we infer from the turbulent value of H (=1/3) can be easily expressed in
the formalism of Generalized Scale Invariance. Consider (x, y, t) space, the space-time
transforination can be simply expressed by statistical invariance with respect to the

following transformation: x—x/A, y->y/A, t—= Al-H or using the notation r=(x,y,t),

=Tyr; with Ta= A-G and:
10 0
G:[ 01 0 } (4.5)

0 01H
The matrix G could also have off diagonal elements to account for stratification and
rotation. The elements of this matrix G could be identified using the Monte-Carlo
Rotating ellipse technique. Pflug et al. [97] used successfully this technique to classify
satellite cloud images according to the amount of stratification and rotation present. This

formalism when applied to the space-time problem is expected to be quite complex since
o for the velocity field is ~ 1.3 (Schmitt et al. [119]) and we have already seen that ¢ is

different in ime and space for the rain field.

IV.7. Comparison of Temporal and Spatial scaling exponents

In our analyses we obtained o = 0.6+ 0.2 for all the time series of fields related to

rainfall that have been analyzed. In spatial analysis radar scans and daily rainfall
accumulations both give o = 1.4 £ 0.1. The agreement on the values of this fundamental

parameter coming from disparate types and sources of data gives us confidence in these

! Each moment of the rain field will require a different §. For simplicity, we ignore this
complication here,
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values, although the theoretical reasons why we should get agreement between doesn't
stand on firm ground. It is interesting to compare these results to those obtained for cloud
radiances. If we take the mean of all the visible and near infra red images we get € = 1.135
+0.2 and if we také the mean of all the thermal IR images we get a = 1.3 £ 0.2 which are
both (to within statistical uncertainty) close to the & = 1.4 value, especially if we consider
all the poorly understood effects that could bias our estimates of o discussed in section
4.1. In this case there is less g priori reason to expect the existence of simple statistical
relation between rain and radiance singularities, although if the values of & were the same
such a relation might indeed exist.

The finding that the values of o for spatial and temporal processes belong to
qualitatively different classes of probability distribution (unconditionally hard, @ > 1,
conditionally soft, o < 1) has profound consequences because it means that we will
observe qualitatively different multifractal behavior in space and in time. Since & < 1,
there will be a maximum order of singularity = C1/(1-a) = 1.2 in time (see section 2.3)
whereas in space, ¥y is unbounded (actually in béth cases we will obtain hard multifractal
processes since even in time Ci/(a-1) > 1 implies a finite gp. We classify ine
multifractals in time as being conditionally soft and those in space as being
unconditionally hard. This distinction may also have consequences for the interpolation

and extrapolation problem ("objective analysis" and "forecasting”).
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Chapter V

Conclusion

In times of the ecological awareness of society it becomes very important to
recognize the basic properties of the atmosphere. We realize the immensity of this task,
even concentrating on a single constituent (water), it is still a formidable enterprise. The
fundamental knowledge of invariant properties of atmospheric fields, and water in
particular, are still debated. The standard model of atmospheric motions proposed two
regimes, one of two dimensional and one of three dimensional turbulence separated by a
transition zone (the mesoscale gap). It will certainly be very hard to reconcile this theory
with the experimental evidences presented here indicates the absence of this gap. In view
of this we adopted the alternative unified scaling model, that involves no such transition.
In this model, turbulent fields that are produced by cascade processes and generally result
in universal multifractals. The different analyses we performed convinced us that the

different fields related to atmospheric water are good examples of such turbulent fields.

We applied conventional energy spectra on a significant number of NOAA-9
AVHRR images which covered scales (1-512 km) where the standard model predicted a
scaling break (= 10 km). We extended the investigated range with a few LANDSAT MSS
and METEOSAT images. We effectively studied scaling from 160m to 4000 km and no
evident scaling break was found, this is a strong support of the unified scaling model.
We also used the new Double Trace Moments method to analyze scaling. With this
method we showed that the cloud radiances in all available wavelengths are consistent
with universal exponents o between 1.1 £0.05and 1.3510.05,C; =0.1£0.02 and B
between 0.3 £0.05 and 0.5 1 0.05 with some variations depending on the wavelength of
the sensors. Although we conclude that the evidence for horizontal scaling is good, it

should be stressed that enormous, systematically sampled data sets will be needed to fully
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o
characterize the scaling of atmospheric fields as well as their limits. This study provides

an early exploration of what is largely unknown territory.

Moving on from the horizontal scaling of cloud radiances, we analy.e data from a

vertically pointing radar measuring reflectivities of rain with a resolution of 2.5 seconds
in time, 21m in space. Here the corresponding scale ratios (the largest divided by the
smallest scale) were 213, and 28 respectively. In time, the scaling was well followed over
the range of nearly ~20 to 20000 secs. In the vertical, the scaling was followed at high
frequencies, but we found a spectral bump corresponding in size (=1 km) to the thickness
of the bright band which was present throughout the sequence. Since other studies with
larger samples (e.g., 20 cases instead of one) found vertical scaling over the
corresponding range, the bump is iikely to be consistent with statistical (sample to
sample) fluctuations. This conclusion is supported by é space/time DTM analysis which
yielded very similar universal multifractal parameters in global daily rainfall
accumulations (for 1983). Specifically, the degree of multifractality (characterized by &)
was found (within experimental error) to be the same for the in situ gage measurements
and the radar reflectivities. We estimated that & = 0.5 in time and 1.4 in space. This is
perhaps not surprising since « is invariant urider the operation of taking powers (such as
the Marshall-Palmer Z-R relation).

The search for spatial scaling from records of daily rainfall accumulation lead us to
consider the problem of removing the bias introduced by the presence of a sparse
measuring network. We realized that conventional objective analysis methods for treating
the problem such as Kriging made the more or less implicit unrealistic assumptions of
homogeneity and regularity of the field and the network. We devsloped a new method
that replaces these by scaling assumptions. We called this technique "multifractal
objective analysis”. Further more, in these conventional methods the network is
generally considered as a fixed ("deterministic") object, we considered it as a realization

of a stochastic multifractal process. This hypothesis seemed to be justified over the range
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of scales from 200 km w© 8000 km. Furthermore, it could be well described with universal
scaling exponents o = 0.8510.2, C; = 0.230.1 and H = 0.0%0.1. 'This is also an
improvement on {mono)fractal, since with these perameters all the statistical moments of
the density of stations field could be obtained. Since the resulting field is certainly
dressed, this déscription is valid between moments of order qmin = 0.640.2 and qp =
3.640.1, at these points phase transitions occurs due to detectability (noise) limits (qmin)
and to divergence of moments (qp) that cause a first order transition thus limiting the
range of q where universality can be observed.

There is more and more evidence, including that presented in this thesis, that different
fields related to atmospheric water are multifrlactal. It seems natural to suppose that the
rainfield is no zxception. The objective analysis problem can be stated in terms that are
very likely shared by numerous geophysical experimentation: hbw to get the most
information on a multifractal field with a multifractal network. In this first study we
assumed uncorrelated field and networks (leaving for future development this problem).
In this view, the measured field is the product of the analyzed field and the density of
stations. This leads us to simple additive corrections on the scaling exponents describing
the scaling of the different statistical moments. It allowed us to deduce the scaling
properties of the analyzed field from the scaling properties of the measured field and the
network. Scaling was observed on the measured field in the range of scales from 400 to
8000 km. The universal multifractal exponents obtained after correcting for the presence
of the network are & = 1.35£0.2, C; = 0.1510.1 and H = 0.240.3. The critical order of
statistical moments are the detectability lower limit qmip = 0.240.3 and the divergence of
moments (first order) phase transition point gp = 2.040.3.

We discussed at length the spatial propertiés but all these fields vary considerably in
time, Global rainfall daily accumulations provided important information on this aspect
also. We observed thzi in time there are two distinct scaling regimes with a transition at

time scales of 10 to 20 ¢uys which corresponds to the "synoptic maximum” where such a
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symmetry break is expected due to the finite size of the earth. Using the time series we
got o = 0,5, Cy = 0.6 which is in agreement with other works. Again three regions were
seen. One below Qin = 0.310.1, one above gp = 1.940.1 and one between whers the bare

and dressed properties are the same.
The fact that & and C, for the rainfield are so different when evaluated from a time

series and when evaluated from a spatial field called for a review of the theories about
space-time transformation of a turbulent field. Such transformations like the Taylor's
"frozen turbulence" concept needs tc be revisited to account for theses different statistical
behavior. Another question that we will have to address is: what is exactly the accuracy
of the method? The answer to this question will have to rely on simulation and further
theoretical development. For the moment, simulating the field and the measuring process
is the easiest way to get a good idea of the accuracy of the parameters we have estimated.

We sketched how our empirically determined multifractal exponents, combined with
appropriate space/time transformations can enable us to make dynamical multifractal
simulations. These simulations will be necessary to further our understanding of the

underlying atmospheric dynamics. They will help us tame the ubiquitous extreme

atmospheric variability, and may have far reaching implications for remote sensing, -

objective analysis, and (stochastic) forecasting.

Also being able to do simulations which have realistic variability and scaling
behavior, that are able to explain even the scaling breaks induced by the measuring
network will be of great help in designing and exploiting measurement networks for
geophysical quantities. It will also help m testing and improving the current and future
objective analysis schemes used to produce maps used in weather and hydrologic
forecasting.

We identified the range of scales where scaling is observed for different fields related
to atmospheric water. We calculated the universal multifractal exponents for these fields

and identified different phases of scaling and their critical points. The exact numerical
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value of the parameters may prove to be not so important but a fundamental point that
should be remembered is that scaling symmetries which were mostly hypothesis derived
from phenomenological models of turbulence showed up in the fields we analyzed. These
symmetries can be exploited. As an example, we used the scaling symmetries of a sparse
network to deduce the symmetries of the rainfield. In the future, these propertes will
certainly prove useful in estimating missing data poiats (the old concept of objective
analysis) and in prediction scheme. The utility of such objective analysis techniques will
certainly outpass the hydrometeorologic studies on which this thesis was centered and
find applications in many riclds where a sparse network is used to collect measurements.
The knowledge gained on the variability of atmospheric water fields should also be
considered in planetary water, radiation and energy budget which are so important for

global warming (or cooling) studies.



Appendix A
Faster Box-Counting Algorithm

A.l The Hunt and Sullivan Algorithm

When dealing with very large dataset in more than one dimension performing
calculations of the box-counting type con}d easily become out of hands. The algorithm
presented in this section greatly reduce the memory requirement and the speed of
computation. When performing computations like box-counting or evaluating diverse
statistical moments at different resolution (like we did in the trace moment analysis) the
majority of boxes are empty. These zeros take a lot of place (and time) this algorithm
adapted from the box-counting algorithm of Hunt and Sullivan [49] present an efficient
way to avoid allocating memory and spending computation time on the zeros.

For purpose of exposition we take the embedding dimensiond = 1 and Q € [0,1],
where Q is a compact point set contained in the unit cube of Euclidean dimension d. The
interval [0,1] can be associated with a binary tree. On the first level is the entire interval.
Level 1 has two branches for the half intervals; level two has four branches, etc.

Each point x of Q is associated with a path p(x) in this tree determined by the
binary expansion of x. Since the position of x has finite precision, the tree has only
finitely many levels. If Q is a set of uniformly distributed random numbers, all paths in
the finite tree are equally likely. In case Q is not uniformly distributed the situation is
different, paths do not have equal weight, and in fact some paths never occur.

The following method was dcveloped£ Begin §vith an empty tree, Foreachx € Q
create a path p in T by adding nodes and left or right branches as needed, according to the
binary expansion of x. As new nodes are added record their levels. Early in the
computation when only a few elements of Q have been added to the tree, most branches

will call for the creation of new nodes. Later many nodes will be already occupied. As the
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calculation proceed it is easy to keep a record of the total number of paths which have
passed through a given node. After the tree has beer. constructed statistics can be
gathered.

For the points distributed on a sphere, assume that Q € [0,27n] x [-1,1]. Each point is
a pair (6,z) of real numbers. Denote the binary expansion of 8 by byb,......by.... and the
expansion of z by a,a,.....ay.... A unique base-4 number q with expansion q;qs....Qx.... can

now be generated according to the prescription
Qg = by +2a, (4.19)

Now, sort the base-4 numbers for the different measurement points. As you inspect
this array at a certain level £ you know that you hit a "box" that has not been visited if the
expansion of the coordinate of the point is not the same as the expansion for the
coordinates of the previous point. Calculating the statistical moments of order q at a
resolution k is simply done by adding all the measurements with the same address, take
the qth power and average for all the boxes, but don't forget the empty boxes!

Proceeding in such a manner has the great advantage that you allocate memory
space only f01; non-empty boxes Regardless of the embedding dimension the algorit’s will
perform at the same speed for the same number of measurement points. This is sémctimc
a limiting factor in this type of analysis.

To get statistics at other scale A what can be done is to‘pcrform other expansion of

the coordinates than just binary. For example in our study we also used base 3 and base 5

expansions.



Appendix B
Digression On Anisotropy

B.1 The Anisotropy of the Network

In order to quantify the anisotropy in the scaling of the measuring network we
partitioned the axis of the globe into slices of equal z (where z is the length of the
projection of the slice onto the axis that goes from the center of the earth to the north
pole) so that the area of the intersection of each slice with the earth's surface will be the
same. We partitioned the earth in such a fashion because we need to perform the analysis
on one dimensional intersections of the original set. The codimensions are invariant under
intersection, so that corresponding dimensions will simply be reduced by 1. In contrast
taking one dimensional projections (i.e. just considering the latitudes of stations
irrespective of longitude will have dimension 1, since the measuring stations have
dimension > 1, and hence will be uninteresting. We performed a regular box-Counting
analysis on each slice using the definition of distance that L =10, — 65] and then we
averaged the N(L) value for all slices. We then rotated the coordinate system and
performed the same analysis in the other direction . For both analysis the results are
shown on figure B-1. It could be seen that there is a small anisotropy in the measuring
network since the fractal dimension calculated in the North-South direction is 0,85 and in
the East-West direction we get 0,77. The anisotropy of the network could further be
characterized by the use of the elliptical dimension D, (Lovejoy et al. [1987), Schertzer
and Lovejoy [1985, 1987]) which in this case is given by:

. Cns .. 0.18530.0035

where Cy_g and Cg_w are the codimension in the north-south and east-west directions

respectively; the codimension is the difference between the dimension of the embedding
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space (in our case 1.0) and the fractal dimension. If the network was isotropic we would
have obtained D, = 2.0. The accuracy of D,; is evaluated by assuming an accuracy of 1%
on individual points from which we evaluated a minimum %2 line,

One way to generalize these results would be to introduce a scale changing operator

(Ty) where A is the ratio between the two scales. Consider r = (8,¢), i, = Tar; with T), =

a b
AG and: G =|:c d]' The diagonal elements of the matrix G are related to the fractal

dimension and the offdiagor~! elements accounts for stratification and rotation. This
formalism is known as generalized scale invariance. For satellite pictures, Pflug et al [96,
07] identified the elements of the matrix G using the Monte-carlo rotating ellipse
technique. They used this to classify cloud images according to the amount of
stratification and rotation present. This will very likely be the next step in the

caracterization of the anisotropy of the network.

0
D(N-S) = 0.85
2 -1
=
2 ) D(E-W) = 0.77

o
=]
-l

-2

-3 Y T ¥ 1 ' T v

1 2 3 4 5

Lt.wg1 0 L (m)

Figure B-1: Log of the number of pairs of station divided by the total number of boxes
within a certain "Slice" averaged over all slices against the log of the distance for North-
South oriented slices (empty squares) and East-West oriented slices (filled triangie.
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