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Abstract

The study of min and clouds, even after centuries of rcsearch, is still a subject whose

theoretical basis is obscure. A major cause of this problem is the extreme variability. The

;;1ultiplicative cascade models employed in the study of turbulence lead to fields presenting

the desired variability over wide range of scales. The fields produced with these models have

scale invariant properties expressed by a function specifying the way each statistical moment

is transformed from one scale to the other; they are multifractal. It was proposed to consider

rain and clouds as turbulent fields, thus providing a physical basis to statistical modeling of

these fields. During this worle, we wanted to empirically establish the applicability of these

models. We established the range of scales where scale invariance is observed, we

determined the transformation functions and established the limits of the model for various

fields related to atmospheric water.

This verification is further complicated by the inhomogeneity of the measuring

networks employed to gather data. In fact, the positions of ;.~ndmasses, topography and

economic constraints have resulted in networks which are not distributed on regular grids (as

it might seem desirable) but on the contrary which presents holes at all scales. In fact, it has

been shown that such networlcs are fractals. Rather, we will consider the station density as a

multifractal. Multifractal fields analyzed by multifractal networks, this brings us to review

the problem of removing the effect of the network from the measured data (the problem of

Objective Analysis). The method that we propose (Multifractal Objective Analysis) replaces

the homogeneity and regularity hypothesis more or less implicit in usual methods like

Kriging by inhomogeneity and scaling hypothesis. It is then possible to develop corrections

which allow us to study the multifiactal propel1ies of the analyzed field from the measured

field.
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Résumé

L'étude de la pluie et des nuages demeure malgré des siècles de recherches. un des

domaines que la science a des difficultés à cerner. Une cause majeure de ce problème est

l'extrême variabilité des phénomènes physiques impliqués. Les modèles de cascade

multiplicative employé pour l'étude de la turbulence conduisent à des champs présentant la

variabilité désirée. Les champs produits par ces modèles ont des propriétés d'invariance

d'échelles qui sont exprimés par une fonction spécifiant la façon dont chaque moment

statistique se transforme d'une échelle à l'autre; c'est-à-dire qu'il sont multifractals. Il fut

proposé de considérer la pluie et les nuages comme des champs turbulents. ce qui fournit une

base physique à la modélisation statistique de ces champs. Au cours de nos travaux nous

avons voulus vérifier l'applicabilité de ces modèles. Nous avons entrepris d'établir la gamme

d'échelles où se manifeste l'invariance, de déterminer les fonctions de transformations et

d'établir les limites du modèle pour divers champs reliés à l'eau atmosphérique.

La poursuite de cette vérification est compliquée davantage par l'inhomogénéité des

réseaux de mesures employés pour recueillir les données. En effet, la position des continents,

la topographie de même que les contraintes économiques donne lieu à des réseaux qui loin

d'être distribués sur des grilles régulières, comme il peut paraitre souhaitable, présentent

plutot des lacunes à toutes les échelles. En fait, il a déja été démontré que de tels réseaux ont

un comportement de type fractal. Nous considérons que la densité de stations de ce dernier

est plutot multifractale. Des champs multifractals analysés par des réseaux multifractals, ceci

nous amène à revoir le problème de retirer l'effet du réseau sur les mesures (le problème de

l'analyse objective). La méthode que nous proposons (analyse objective multifractale)

remplace les hypothèses d'homogénéité et de régularité plus ou moins implicites dans les

méthodes usuelles comme le Kriging par les hypothèses d'inhomogénéité et d'invariance

d'échelles. TI nous est alors possible de developper des corrections nous permettant d'étudier

les propriétés multifractales du champ analysé à partir du champ mesuré.
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Contribution to original knowledge

• The main originality of this work is to explore severnl sources of infonnation related to

atmospheric water in search of properties invariant under a change of scale. When this thesis

began virtually the only relevant analyses were monofractal (oriented toward geometrical

sets). 1 am among the fust to systematically investigate rain and cloud data for these

properties. Now with the evolution of the theory and aaalysis methods more and more

publications are appearing on the subject.

Another important contribution is that !pis thesis develop a new techniqut" "multifractal

objective analysis". This is a method for removing the bias introduced by the presence of an

inhomogeneous (multifractal) network from the field measured by this network. Two major

advances were required to develop this method. First, we considered the density of stations as

a multifractal field, and demonstrated this empirically. This is octter than considering the

locations of stations as a fractal se~ of points because monofractals are a parlicular case of

multifractals and for such fields a single fractal dimension is insufficient for their

characterization. The second important point is to consider the measured field as the product

of two multifractal fields (i.e. the density of stations and the analyzed field). Il brings up the

possibility of making statistical corrections on the measured field. 1 have thus replaced the

assumptions of homogeneity and regularity implied by usual objective analysis methc.:i~ such

as Kriging by scaling assumptions. We also adapted many of the multifractal analysis

techniques to the spherical geometry of the eartil.

Using a significant number of satellite pictures from NOAA-9 AVHRR sensor 1

concentrated my study on the critical range of scales (1-512 km) where the standard model of

atmospheric motions predicts a scaling break (=10 km) due to a dimensional transition ("the

mesoscale gap") between two and tbree dimensional regimes of turbulence. Since 1 observed

no such break, this is a new and strong suppon of the alternative unified scaling mode\. 1

extended the range of scales of this study with sorne images from other sources (LANDSAT

_ MSS and METEOSAT), so that an overnll range of l60m to 4000 km was investigated with
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still no sign of a break. TItis analysis covered one of the widest range of scales explored to

yet and was more systematic than any others that l know of.

We also provided the first reliable estimates of the universal scaling parameters Ct (the

degree of multifractality) ;>.nd CI (the sparseness of the mean) for cloud radiances. The

methods previously used to make these estimations where not specifically designed for

universal multifractal contrary te the new double trace moments technique used in this study.

The new meÛlodology results in a more direct estimate (linear instead of problematic non­

linear regressions) and a greater accuracy. We also had a larger dataset to perfonn the

estimates.

We perfonned the first real test of scaling alld universality for radar ref1ectivities. We

have to mention however that some indications of scaling behavior and other preliminary

analyses showing the possible compatibility with universal multifractals were presented in

the past. We are the frrst to attempt an esrimate of the universal multifractal parameters for

radar ref1ectivities (from a scanning and a fixed vertical radar) in the horizontal and vertical

directions as weil as along the rime axis. We were also the first to invoke the semi-empirical

M:.trshall-Palmer relation to explain the agreement between the estimated values of the

parameter Ct for radar ref1ectivities and for daily rainfall accumulations from gages:

We provided the flI'St evidence that the universal multifractal parameter Ct could be

different in rime and in space. This was obsernd for the rainfield and for radar ref1ectivity

fields. In both cases for the temporal scaling we observed Ct =0.5 and for the spatial scaling

we observed Ct = 1.4. This shows that the generl1tors of the cascade processes are

qualitatively different in space and in time.
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• Chapter 1

Introduction

1.1 G::neral Introduction

Strong non-linearities and wild variability have always been bath basic geophysical

problems. They have generally been postponed or ignored bath because of the lack of
•

conviction that they were important and due to the absence of adequate theoretical and

numerical tools to face them. It is no longer possible ta ignore these issues. The tools have

undergone rapid development, they are called chaos, multifractals, self-organized criticality

and many other names that are becoming increasingly familiar ta seientists.

Rain and clouds are certainly among the most variable fields we experience in everyday

life. It's very hard to describe the shape of a cloud because it is so irregular. In fact quite

often when we see something with a very irregular shape we will tend to say it has a cloud

shape. At the level of intuitive notions, if we look at cloud images, and there are no other

reference object in the picture (such as a plane or some recognizable part of land) it is

virtual1y impossible to estimate the size of the cloud, thllS suggesting that some (statistical)

symmetry principle must be obeyed when we change scales. The search for such a

symmetry and its use is at the very basis of this thesis. One place to start such a search is

certainly the basic Navier-Stokes equations governing atmospheric motions. It has been

known for quite some years that this set of equations lacks of characteristic scales thus

leading to scaling dynamics. Scaling or scale invariance indicates that some properties -­

geometrlcal or statistical-- are preserved at different length seales. Transformation from one

seule length ta another will only involve sealing exponents. A simple illustration of sealing

are sets, such as the Cantor set, characterized by a unique scaling exponent. its

(mono)fractal dimension (see Mandelbrot [80]). However more complex fields will have

2



in general their scaling properties characterized by a collection of scaling exponents, a

• dimension function or multifractal dimension.

The standard model of atmospheric dynamics (e.g., Monin [84]) divides the

atmosphere into two fundamentally distinct regimes: a small scale three-dimensional

turbulent regime and a large scale two-dimensional turbulent regime. Both regimes are

scaling (scale invariant, power law spectral and both are considered self-similar (the

combination of scaling with statistical isotropy). Unlike turbulence in three dimensi'ons, in

two dimensions, vortex stretching is irthibited and vorticity is conserved. The standard

model assumes that these different regimes are separated by a "mesoscale gap" whose scale

is expected te be of the order of the scale height of the atmosphere (~I0 km). The existence

of the "gap" has been periodically questioned on empirical grounds since the late sixties.

However, we believe that an equally significant source of doubt concems its theoretical

underpinnings that now appear to be quite ad hoc. This change in perception is possible

due to the remarkable progress in scaling ideas that occurred d'.ui.ng the 1980's and a better

understanding of the nonlinear effects and strong variability.

According to this mode! both regimes of turbulence should be scaling but with

different spectral slope (k-3 in 20 and r 5/3 in 3D) and they should be separated by a sharp

transition. This debate on the dimensionality of atmospheric turbulence teok a new

direction. Schertzer and Lovejoy [105] proposed a new "unified scaling" model in which

the atmosphere is never isotropie (3-D) nor completely fiat (2-D), but anisotropie and

scaling throughout. During this period, scaling ideas were extended beyond the restrictive

bounds of the fractal geometry of sets to directly deal with the multifractal statistics (and

dynamics) of fields. Multifractals are increasingly understood as providing the natural

framework for scale-invariant non-linear dynamics. Furthermore, due to the existence of

stable attractive multifractal generators (Schertzer and Lovejoy [109, Ill, 113, 115], Fan

[31], Brax and Peschanski [Il]) they provide attractive physical models. This implies that

3



many of the details of the dynamics are irrelevant and lead to new and powerful multifractal

• simulation and analysis techniques.

Although these concepts a...... very attractive from a theoretical point they need extensive

confrontation witll real data. In the last few years such verification has gained interest in

almost every field of geophysics. This thesis concentrates on the multiscaling properties of

many fields related to atmospheric water: satellite pictures, radar reflectivity and ground

rainfall accumulations. An attempt is made to coyer the widest range of temporal and spatial

scales. We determined the range of scales where scaling was observed in the available data,

and established the multifractal properties and their limitations for the different fields. For

the raingage accumulations, sensed by a global network we had to develop a new method

to perform this analysis.

1.2 About Objective Analysis

The analysis of ground rainfall accumulations raises a problem that many geophysical

disciplines are forced to deal with: the inhomogeneity of the measuring networks. The

position of the stations is influenced by the position of landmasses, the topography and

economic imperatives. Topography and landmasses distributions are among the fust

domains where fractals were recognized. AlI the nice images (in spite of their unrealistic

monofractal nature) illustrating Mandelbrot's book [80)) showing impressive mountains

imitations and the multifractal improvements of Wilson et al [137] are certainly a good

example. It seems logical that geographic multifractality is reflected in the distribution of

stations. Some attempts have been made in the past to characterize this sparseness by the

fractal dimension of the set of points representing the physicallocation of the stations. This

was the fust rime measuring network scaling properties were recognized. We will improve

on this by considering that the density of stations is the basic field with multifractal

properties.

4



The inhomogeneity of me measuring network certaioly introduces bias in various

• estimates of me measured field. Considering this field as regular and representable by

analytic flinctions leads us to reduce me problem of remov i..-:g me bias te a simple problem

of interpolation. Techniques for filling me holes in me data are cal!ed Objective An;:lysis.

Various techniques were designed to perform this task: polynomial curve fitting, spline,

nearest neighbor, Kriging ete... These memods did not co.!.ider mat me network and me

analyzed field have different dependencies on me resolution of me measurements. For

many geophysical fields, such as rainfall, there is growing evidence that they are

multifractal (in the case ofrain and clouds a signjficant part of mis mesis will he devoted to

adding to mis evidence). We addressed me problem of removing the network bias

differently. The method proposed ("Multifractal Objective Analys!s") replaces the

assumptions of homogeneity and regularity (resolution independence) implicit in ether

memods by inhomogeneity and resolution dependencies. The network and me analyzed

field have different dependence on me resolution and bom fields have to he considered at

me same time since me measured field is me product of me two. The technique we develop

extracts me scaling properties of me analyzed multifractal field from me measured field.

1.3 Scaling of rain

In 1962, Lamperti [56] introduced the simplest scaling hypomesis under the name

"semistable" (laterrenamed "self-similarity" by Mandelbrot and Van Ness in 1968 [77]).

This hypomesis mat is related te fractals could he defined for me rain rate as:
d

ôR(Î..-l~)=Î..-HôR(~) (1.1)

where me smal! scale difference ôR(Î..-1~) = R(XI + Î..-1~) - R(xl ) and the large scale

difference is ôR(~) = R(x2 +~) - R(x2 ) where X1 and X2 are arbitrary, Î.. is a reduction
d

ratio, and H is me (unique) scaling parameter, me equalhy = means equality in probability
d

distribution viz. a= b if and ooly if Pr(a> q) = Pr(b > q) for al! q. When me process is a

Brownian motion and me probability distribution is Gaussian H = 1/2. The previous

5



findings by Hurst [50] of H = 0.7 in sorne river flow records raised the question of type of

• what type of probability distributions and processes were relevant in hydrology.

In 1981, Lovejoy [62] in relation with fractal! geometry (Mandelbrot, [78, 79])

hypothesized that simple scaling hold but with highly nongaussian probability distributions

required te account for the intermittency of rain. He used probability distributions of radar

rain data to test the simple scaling and the "fatness" of the probability tail. The term "fat

tail" was introduced by Waymire [135] te indicate that due to the extreme variability of rain

the probability distribution has algebraic tails instead of gaussian tails. The conclusion was

that simple scaling was reasonably weil respected in space with a value of H = 0.5. In

time, estimates of the area integrated rainrate of isolated storms every five minute for 100

minutes also gave satisfactory re~Jj1ts with H =0.7.

Fat tailed distributions also implied that the probability of a rainfall fluctuation 8r

exceeding a fixed threshold ôR (generally expressed in mm/hr) for hyperbolic tail h given

by:

6

(1.2)

where the subscript D emphasizes the depence of the exponent qO on the dimension of the

space used for averaging (a point that we will develop further in chapter ID). Various

estimates ofthis exponent were performed. For example Segal [124] using 5-15 years time

series of tipping bucket raingages records in Canada came to the conclusion that among the

various functional forms he tested for 1 minute averages of rain rates greater than 3 mm/hr

a power law provided the oost fit with qO = 2.5 ± 0.5 (as shc'v:n in fig. 1-1). Ladoy et al

[55] (fig. 1-2) using daily rain accumulations at Nîmes-Courbessac for 40 years observed

hyperbolic OOhavior with qO =2.6. In mu1tifractals, this hyperbolic OOhavic,' can now 00

associated with :nultifractal phase transitions. A point that we will develop later.

! For review textbook on fra:tai gecmetry consult Mandiebrot [SOl. Feder [321. Falconer [30] and Barsley
[41. .



Other early tests of scaling came from geometrical characterization of cloud fields (from

• radar and satellite). Typical analyses involved comparing the area and the perimeter of

duuds defined as region exceeding a certain level of bla..:k body IR emission. Such

analyses were perfonned by: Cahalan [14], Come [16], Lovejoy [63], Lovejoy et al [64],

Lovejoy and Schertzer [65], Rhys and Waldvogel [101], Welch et al [136], Yano and

Takeuchi [140]. An example ofthis type of analysis is shown in fig. 1-3. In these analyses

the' perimeter P was defined by regions exceeding a threshold. 1t was compared 10 the area

of a c10udy region in a relation of the form P oc (.fAt where D is the fractal dimension of

the perimeter. Sometimes, the scaling was not too evident, or breaks in the scaling were

inferred, and much variation was observed in the value of the dimension. Small databases,

poorly aèlapted (e.g. monofractal) methods influenced these results. Most of these analyses

where examined in Lovejoy and Schenzer [74] to build convincing evidence toward scaling

of cloud radiances.

Geometric approaches have also been made on the fractal sets associated with

thresho1ded time series of rain (Bocquillon and Moussa [9], Hubert and Carbonnel [45, 46,

47], Olsson et al. [90] and Sen et al. [125]). In all these analyses good scaling was

observed but great variations in the value of the exponent D were foand. The reason for

this variation is that fields had to be converted to geometrical sets before any analysis could

proceed and geometrical sets are characterized with only one dimension exponent (D).

Multifractals are the proper framework for fields. In this approach, an infinity of exponents

is needed (one for each moment of the field) thus the unique exponellt D has to be replaced

by a scaling funetion which tells how each statistical moment sca!es.

Scaling could also be searched for in Fourier space. The energy spectrum E(k). k being

the modulus of the wavevector (k = \ki) is of the form Ikl-~ for statistically isotropic scaling

fields, ~ is called the "spectral slope". Ladoy et al [55] found ~ =0.3 with daily raingage

accumulations for periods of 1 to 4 years at a station in Nîmes (shown in fig. 1-4). While

• Rodriguez-Iturbe et al [104] found ~ =1.3 over periods of 1 minute to 2 hours with 15

7



seconds averaged rainrates. Using the log ofradarreflectivity Crane [18] obtained (3 =5/3

• over the range of 1 minute ta 2 hours. With (mono)fractals the exponent H is silllply related

to the spectral slope (3 by (3 =2H+1 and the fractal dimension with D = (5-(3)/2. This

relation has often been used to evaluate the fractal dimension of field. but it does not hold

for multifractals. For the more general multifractals. alternative relations will be exposed in

the next chapter where relations between the scaling exponent for the second order

moment, (3 and H will be given.
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Brunswick) of the extreme rainrate end of one minute resolution rainrate probability
distributions from Segal [124]. Best fitting curve for the log-normal and the hyperbolic
(log-log) distributions are shown.
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exceeding a fixed ôR for daily rain accumulations at Nîmes-Courbessac (France) from
1949-1988 (14245 days). The tail is nearly straight with exponent CID = 3.5. From Ladoy
et al. [55].
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Figure 1-3: Area plotted against perimeter of raïn and cloud areas determined from radar
(filled circles) and satellite data (empty ci."Cles). From Lovejoy [63].
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Figure 1-4: The average of six consecutive 4 year spectra of the daily rainfall accumulations
at Nîmes-Courbessac. The annual peak: is fairly weak, the scaling holds over most of the

regime with slope (=-13)=-0.3. There is no clear evidence for the "synoptic maximum" (i.e.
a break at periods of a few weeks). From Ladoy et al [55].

lA Turbulent Cascades and Rain; beyond simple scaling

Since the intuition of Richardson, 1922 [103] and the frrst concrete model (Novikov

and Stewart, 1964 [86]), many cascade models were elaborated to provide a

phenomenological description of turbu)ence. These models are based on the following

observatio.)s ami hypotheses.

1) The dynamics are invariant under a change of scale over a wide range of scales.

This cornes from the Navier-Stokes equations for a range of scales between the

energy Ï11jection (at large scale) and its dissipation (on scales typically of the order of

1 mm).

2) The existence of fluxes conserved by the non-linear dynamics such as the energy

flux and the passive scalar flux in passive scalar clouds2•

3) The interactions take place mainly between neighboring scales (the dynamic is

local in Fourier space). This is also a property of Navier-Stokes equations.

2 A passive scaIar is a scalar quantity (e.g the concentration of pollutants) that does not influence the
velocity field.
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Taken togetht;r, these three properties are the basis of cascade models. In 1987, Schertzer

• an:! Lovejoy [109] proposed that rain and non-passive scalar c10uds could share sorne basic

scaling properties that could be modeled by the simpler but alre::.dy complex turbulent

cascade processes, thus providing a physical basis to stochastic modelin~. Such models

have the interesting property that in general they produce multifractal fields. Furthermore,

in LÏle same manner that gaussian noises are gem:rally produced by a linear SUffi of random

variables, the cascade processes generally produce universal multifractals by a non-linear

mixing of scale invariant noises. The resulting fields belong lO stable and attractive

universality classes for which many of the details of the models are "washed out". The

analysis and simulation of such fields are greatly simplified since only three pararneters are

needed to characterize the infinity of scaling exponents (e.g. the scaling function). We

established the region of the scaling function that respects universality and deterrnined the

universal parameters for the different fields we studied.

1.5 Confronting models and experience

The direct determination of the spatial and/or temporal distribution of water in any of its

phases in the atmosphere is difficult and limited to in situ measurements. Many of the

current measurement difficulties could be overcome if we were able to model the extreme

variability of the water in the atmosphere because then we would be able to infer and

simulate what different (bath remote and in situ) sensors would measure. For example, one

could simu!ate the estimation of aerial rainfal! from sparse raingage networks, and one

could perform proper radiative transfer calculations te mode! (Davis et al [23]) what would

be seen from a satellite at various wave!engths or what a weather radar would measure3

(Duncan et al [27]). A primary goal of multifractal analysis is precisely to provide the

information necessary to calibrate such models. Contrary to direct measurement of liquid

water many of the fields dynarnically coupled with the latter are relatively easy te measure.

3 See Lovejoy and Schertzer [71. 72] for discussion over various fractal and multifmctal effects on radar
ref1ectivities. •
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This thesis investigates the multiscaling properties of some of these fields. The purpose of

• this work is te verify the existence of multiscaling properties, analyze them, fmd their

regions of applicability and the limitations of the available data.

The next chapter presents new analyses of satellite cloud radiances which we believe

are particularly strong endorsements of the unified scaling mode!. From the perspective of

distinguishing 2DI3D from unified scaling model, it has severa! unique strengths:

-large samples of satellite pictures spanning wide range of scales are readily

available.

-The pictures from NOAA-9 coverthe critical range 1-512 km, i.e. much smaller te

much larger than the = 10 km scale height where 2D/3D break is expected. This

analysis is supplemented by a more limited number of LANDSAT and METEOSAT

images so that the overal1 range covered by this study is from 160m to 4000 km.

-The raw radiances are sampled on a near rectangular grid so that minimal

reprocessing is required.

We then look at radar refiectivities which complement this study in many ways:

-Even though a narrower range of scale is investigated (=100 m to 10 km) still

minimal reprocessing is required since the raw reflectivities are analyzed.

-The interaetion mechanism between the electromagnetic radiation emitted by a radar

and the water vapor of clouds is different from the interaction of clouds with the

incoming solar radiation that is refiected in the visible and infra-red portion of the

spectra that sensed the satellites. Different scaling behavior will result.

-It is possible to separately study the scaling in the horizontal, in the vertical and

along the rime axis. TIris is not the case with satellite images (except with GOES, but

with a temporal resolution of 1/2 hour).

Chapter 3 is devoted to the spatial distribution·of daily global rainfall accumulations. It

is the test case for the new multifractal objective analysis technique. This dataset has many

special interests te us:

12



•
-It was gathered on one of the largest geopbysical networks. It consists of nearly

8000 stations that reported daily rainfall accumulations in 1983.

-It covers the planet, sa the largest earthly scales could be studied with this dataset.

However it bas the drawback of being distributed on a spbere, thus the method bas to

be adapted ta the geometry of the situation.

13



• ChapterII

Multifractal theory and Analyses of Remotely Sensed Atmospheric Water
Fields

According to the u~fied scaling model; the dynamics are govemed by anisotropic

(differentially stratified and rotating) cascade processes yielding highly variable

multifractal fields. Just as gaussian random variables are associated with (linear) sums of

random variables, these (nonlinear) multiplicative processes are generically associated

with (special) universai multifractals in which many of the details of the dynamics are

irrelevant. In the fust sections, we outline1 these arguments in a widely accessible form

to provide the context and motivation of this work. Next we test these ideas empirically

with remotely sensed data. This is done using LANDSAT, NOAA-9. and METEOSAT

satellite cloud radiances at visible. near infrared and thermal infrared wavelengths with

length scales spanning the range =166m-4000 km, radar reflectivities of rain (in the

vertical and time), and global daily rainfall accumulations. We apply spectral analysis as

well as the new Double Trace Moment data analysis technique. In each case, rather than

the sharp dimensional transition predicted by the standard model, we find the scaling to

be relatively well respected right through the mesoscale. We ther. estimate the three

fundamental universal multifractal exponents and go on to outline how these exponents

(withthe help of appropriate space-time transformations) can he used to make dynamic

multifractal models.

IThis summary follows closely Tessier et al [129].

14



• lU Multifractal Phenomenology of atmospheric turbulence

n.l.l Multifractal Processes

The multifractal proccsses discussed here were Ï1rst developed as phenomenological

models of turbulent cascades. In hydrodynamic turbulence the governing nonlinear

dynamical ("Navier Stokes") equations have three properties which lead to the cascade

phenomenology: a) scaling symmetry (invariance under dilations (zooms), b) a quantity

conserved by the cascade (energy fluxes from large to small scale), c) localness in Fourier

space (this means that the dynamics are most effective between neighboring scales, direct

transfer of energy from large to small scale structures is inefficient). Cascade models are

relevant in the atmosphere in general and in rain and hydrology in particular since (as

argued in Schertzer and Lovejoy [109]), although the full nonlinear partial differential

equations governing the atmosphere will he more complex than those of hydrodynamic

turbulence, they arenonetheless stilllikely to respect properties a, b, c. To understand

this, consider the simplest strongly nonlinear model of min, the passive scalar model,

which ignores the effect of rain on the dynamics and assumes that cloud water is simply

advected with the wind. Virtually the same assumptions are used in numerical weather

prediction models. In these models of passive advection of water by a velocity field (v)

the dynamical equations conserve the flux of energy and of scalar variance (with

respective densities E and X). The injection of these quantities at large sCale is assumed

constant (or at least to he a stationary random process) and then there is transfer of these

to smaller scales (hence cascade). By considering statistically stationary fields of these

quantities, dimensional arguments lead to the laws of Kolmogorov [53], ûbukhov [87]

and Corrsin [17]

15
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•
where ç=x*e-~, and Ev(k} and Ep(k}are the power spectra for the velocity and

passive scalar fields, respectively and k is a wavenumber (k = l/l.). Here ç is the flux

resulting from the nonlinear interactions of the velocity and water. In real space the

equivalent relations are:
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l>V(l}=eXlX

6.p(l} =çXlX
(2.2)

•

where l>v(l} and l>p(l} are the characteristic fluctuations of the fields v and p at the

scale l. These equations should be understood statistically. A straightforward

interpretation useful in modeling is to view the scaling ll/3 as a power law filter (le"1/3)

of eX (Schertzer and Lovejoy [109], Wilson et al [138]). These equations are the result of

treating passive scalar advection as a nonlinearly coupled cascade process (for ç and e).

As we add in more and more coupled equations to account for other interacting fields

(such as radiation or water in its various phases), more and more coupled cascades will be

obtained. The turbulent and multifractal results presented here continue to be valid.

There are now a whole series of such phenomenological models: the "pulse in pulse"

model (Novikov and Stewart [86]), the "lognormal" model (Kolmogorov [54], Obukhov

[89], Yaglom [139]), "weighted curdling" (Mandelbrot [78]), the"~ model" (Frisch et al.

([33]), "the II model" (Schertzer and Lovejoy [105]), the "random ~ model" (Benzi et al

[7]), the "p model" (Meneveau and Sreenivasan [83]) and the "continuous" and

"universal" cascade models (Schertzer and Lovejoy [l09]). It is now clear that scale

invariant multiplicative processes generically give rise to multifractals and -- due to the

existence of stable and attractive multifractal generators .- to universal multifractals in

which many of the details of the dynarnics are unimportant. These results are important

in hydrology and geophysics since they show that while geometrical fractals are sufficient

to study many aspects of scaling sets, that multifractals (with their statistical exponents)

provide the general framework for scaling fields (measures).



In contrast to the well-studied case of hydrodynamic turbulence, the dynamical

• equations responsible for the distribution of min and cloud radiances are not known2; the

oost we can do at present is to speculate on the appropriate fundamental dynamical

quantiti~s analogous ta 1;. Since a priori, there is no obvious reason why the rain rate or

cloud radiance fields themselves should he conservative, in analogy with turbulence, we

introduce a fundamental field <Pot which has the conservation property <<p). > =constant

(independent of scale). The observable (non conserved) rainfall (or cloud radiance)

fluctuations (~~ ) are then given by:

17
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Since we have as yet no proper dynamical theory for rain or cloud radiances, we do

not know the appropriate fields <p~ nor the corresponding values of a. In the following

discussion, we therefore make the simplifying assumption that a = 1 (changing the value

of a corresponds essentially to changing the parameter Cl; see below). With this in

mind, the scaling parameter H has a straightforward interpretation: it specifies how far the

measured field R is from the conserved field Ip :(I~"I) '" ;\.-H. H therefore specifies the

exponent of the power law filter (the order of fractional integration) requir<:d to obtain R

from <p.

II.1.2 Sorne properties of <p;..

We now focus our attention on the conserved quantity (Ç". Early scaling ideas were

associated with additive (!inear) processes, and unique scaling exponents H (which --only

in these special cases-- were related to unique fractal dimensions by simple forrnulae).

The properties of Ip" were quite straightforward, and were usually understood implicitly.

2We exclude here Ûle essentially ad hoc parnmetrizalions employed by numerical cloud and weathcr
models.



Turning our attention te (nonlinear) multiplicative processes we can consider some of

• the properties of CP.. which will generically result from cascades. Fig. 2-1a.,b illustrates

such a discrete multiplicative process for CP.. : a large structure of characteristic length 10

with an initial uniform density <po. is broken up (via non-linear interactions with other

structures or through internal instability) into smaller sub-structures of characteristic

length Il = lr/'A-o 0"0 = 2 is the scale ratio between two construction steps in this particular

example). multiplicatively modulating by a (random) factor the flux on each sub­

structure. When the process is repeated (the overall ratio Â. is increased; after n iterations.

Â.=ÂQn. In=lofÀ()n) larger and larger values of CPÀ, appear. concentrated on smaller and

smaller volumes. In the small scale limit. the result is a highly intermittent multifractal

measure with singularities of ail orders y distributed on fractal sets with codimension c(y)

(Schertzer and Lovejoy [109]. see the schematic illustration. fig. 2-2). In the range of

scales Â. between the injection and dissipation of Energy (Le. the scaling regime) the

measures on <JlA. have the property:

18

(2.4)

(equality is within slowly varying functions of Â. such as logs). c(y) is therefore the

scaling exponent of the probability distribution. However. when the process is observed

on a low dimensional cut of dimension D (such as the D=l dimensional simulation shown

in fig. 2-2) it can often be given a simple geometric interpretation. When D>c(y). we

may introduce the (positive) dimension function D(y)=D-{;(y) which is then the fractal

dimension of the set with singularities y.
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scales. the mechanism of flux redistribution is repeated at each cascade step (self
similarity). Reproduced from Lavallée [58].
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conservation <EI>=!. Reproduced from Lavallée [58].
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Figure 2-2: A schematic diagram showh1.g a multifractal energy flux density (<pD with

smallest resolution Â;l, and indicating the exceedance sets corresponding to !Wo orders of

singularities YI. "/2.

This geometric interpretation can he useful in data analysis. For example. consider a

data set consisting of Ns satellite photographs (assumed to he statistically independcnt

realizations from the same statistical ensemble). A single D dimensional picture (0=2 in

this example) will enable us to explore structures with dimension D:ill(y)~; structures

with c(y»D (which would correspond to impossible negative values of D(y» will he too

sparse to he observed (they will aImost surely not he present on a given realization). This

restriction on the accessible values of c(y) is shown in fig. 2-3; to explore more of the

probability space, we will require many photographs. With Ns photographs, the

accessible range of singularities can readily he estimated. If each photograph has a range

of scales Â. (= the ratio of the sire of the picture to the smallest resolution = the number of

"pixels" on a side), then introduce the "sampling dimension" (Schertzer and Lovejoy

[114], Lavallée et al [59]): Ds=logNs/logÂ.; it is not hard 10 see (fig. 2-3) Ihat the

accessible range will he "f<:Ys, with c(Ys)=D+Ds.
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Figure 2-3: A schematic diagram showing a typical codimension function for a
conserved process (H=O). The lines c(y)=D, y=D indicate the limits of the accessible
range of singularities for a single realization, dimension D. The corresponding lines for
D+Ds, where Ds is the sampling dimension are also shown. As we analyze more and
more samples, we explore a larger and larger fraction of the probability space of the
process, hence fmding more and more extteme (are rdre) singularities.

Codimension c(y) has many other properties that are readily illustrated graphically. A

fundarnental property which is derived by considering Statistical moments (helow), is that

it must he convex. It must also he tangent to the line x=y (the bisectrix). This is because

((j'.) = t..T-'(T) = constant, hence the singularity corresponding to the mean of the process,

"(=Cl, satisfies the fixed point relation CI=c(CI) as indicated in fig. 2-4. Cl is thus the

codimension of the mean process; if the process is observed on a space of dimension D, it

must satisfy D::::CI, otherwise, following the above, the mean will he so sparse that the

process will (almost surely) he zero everywhere; it will he "degenerate". We can also

consider the (non conserved) toRÀ.; it is obtained from (j'À. by multiplication by t..-H,

wherever, CPÀ.~Y, we have ôRÀ.=ï..y--H; i.e. by the translation of singularities by -H (see

fig. 2-5). Finally, since c(y) is convex with fixed point Cl, it is possible (see fig. 2-6) to



define the degree of multifractality (a) by the (local) rate of change of slope at Cio it

• radius of curvature Rc(C}):

23

(2.5)

In universal multifractals (below), this local description obtained with just three terms

in Taylor expansion gives all the relevant parameters for a global description of the c(y)

function, and we find an upper bound (maximum degree of multifractality) a=2, yielding

a parabola. The a=O case is the monofractal extreme (called the "~ model", Frisch et al

[33]) whose singularities all have the same fractal dimension (see fig. 2-6).

Rather than specifying the statistical properties via the scaling of probabilities c(y) it

can (equivalently) be specified by the scaling of the statistical moments. Consider the qth

order statistical moments <<PÀ.q>. We can now define the multiple scaling exponent K(q):

(2.6)
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Fie;ure 2-6: Same as 2-4, but showing the radiu$ oi curvature (=2213C1CI) at the fixed

point which locally defmes CI. For comparison, the two extreme universal multifractlls

are also shown, corresponding to CI=O (the Pmode!), a=2 (the 10gnOlmal model).

In parallel to this turbulent multifractal formalism, Hentchel and Procaccia [431.

Grassberger [41], Halsey et al [42] and others elaborated a strange attractor formalism for

dealing with multifractal probability measures in low dimensional phase spaces. They

were primarily interested in the fractal dimensions of geometric sets associated with

singularities of measures (rather than densities). This strange attractor notation is related

to the turbulence notation as follows:

In turbulence we are interested in stochastic processes defined on (infinite dimensional)

probability spaces, hence the intrinsic CD independent) notation.•
fD(CID) = D-c(y); CID = D-y (2.7)



K(q). c(y) are related by the follow:'.g Legelid.re transformations (Parisi and Frisch.

• [94]):
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K(q) = maxy (qy- c(y»; c(y) = maxq (qy - K(q» (2.8)

which relate points on the c(y) function to tangencies on the K(q) function and visa versa;

y=K'(q). q=c'(y). For example. a quantity that will he useful helow in estimating the

multifractal parameters of radiances and refiectivities is the sampling moment <is which is

the maximum order moment that can he accurately estimated with a finite sample.

Recalling that the maximum accessible order of singularity was Ys= c-I(D+DS>. we

obtain: <is=c'(Ys). Fig. 2-7 shows a schematic of K(q); for conserved fields, we have

CI=K'(l). (Le., q=l corresponds to rel). the corresponding radius of curvature is

RK(1)=(l+C12)213/(CIlX). The functions for the corresponding non conserved fields

(H>'O) are obtained by y-)y-H, K(q)-)K(q)-Hq.

K(q)

1

0.=0

q

Figure 2-7: The K(q) curves corresponding to the c(y) curves in fig. 2-6. For lX = 0 we

have that K(q) = Cl(q-l). AIso shown is a typical tangent whose slope K'(q)=yprovides
the one to one correspondence hetween orders of singularities and moments.



In S1Jmmary, this local characterization of the behavior of multifractals near the mean

• involves the three parameters (lLCl>Cl.) respectively characterizing the deviation of the

observed field from the conserved field <p, the sparseness of the latter, and the degree of

multifractality.
/;"

Finally, we must make a distinction oetween the "bare" and "dressed" multifractal

properties (Schenzer and Lovejoy [109]). The "bare" properties are those which have

been discussed above, they correspond te the construction of the process over a finite

range of scales Â.. In contrast, the "dressed" quantities are obtained by integrating

(averaging) a completed cascade over the corresponding scale. Experirnentally meas;:red

quantities are generally "dressed" since geophysical sensors typically have resolutions

which are much lower than the scale below which the fielùs they are measuring become

homogeneous (in the atmosphere, the latter is usually of the order of 1 mm or less). The

dressed quantities generally display an extreme, "hard" behavior involving divergence of

high order statistical moments. Specifically, for averages over observing sets with

dimension D there is a critical order moment qO (and corresponding order of singularity

YD=K'(qo» such that:
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where qo is given by the following equation:

K(qo)=(qo-l)D

(2.9)

(2.10)



• II.1.3 Universal multifractals:

The ,,:;Ove discussion is quite general and at this level, il has the unpleasant consequence

that an infinite number of scaling parameters (the entire c(1), K(q) functions) will be

required to fully specify the multiple scaling of our field. Formnately, real physical

processes will typically involve both nonlinear "mixing3 " (Schenzer et al 1[116]) of

different multifractal processes, as well as a "densification4" (Schertzer and Lovejoy

[110]) of the process leading to a continuum of scales (rather than just the discrete scales

indicated in fig. 2-1a,b). Either of these mechanisms is sufficient so that the above H, Cl,

CI. description becomes global; we obtain the following universal multifractal functions:
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c(y-H)=

a=l

CI. *1 (for 0 ~ CI. ~ 2, q ~ 0)
CI. = 1

(2.11)

(2.12)

The multifractality parameter CI. is the Levy index and indicates the class to which the

probability distribution belongs. There are actually 5 qualitatively different cases. The

case CI. =2 corresponds to lognormal5 multifractals, the case 1 < CI. < 2 corresponds to

(log) Levy processes with unbounded singularities, CI. = 1 corresponds to log Cauchy

multifractals. These three cases aU are "unconditionally hard" multifractals, since for any

D, divergence of moments will occur for large enough q (qD is always finite). When

o < CI. < 1 we have (log) Levy processes with bounded singularities. By integi:ating

3 By keeping the lOla1 range of scale À flxed and fmile, we may mix (by multiplying them) independent
processes of the same type, preserving eenain characteristics (e.g. the variance of the resulting processes).
4 Introducing more and more intennediate scales in a given multiplicative process.
SThis is nearly the same as the lognonnal multiscaling model of turbulence proposed by Kolmogorov [54],
Obhukhov [89], except !hat the latter missed the essential point about the divergence of high oroer
moments, thinking in lerms of pointwise processes.



(smoothing) such multifractals over an observing set with large enough dimension D it is

• possible to tame all the divergences yielding "soft" behavior, these multifractals are only

conditionally "hard". Finally IX ~ 0 corresponds to the most popular and (too!) well­

known monofractal "\3 model", Novikov and Stewart [86], Mandelbrot [78] and Frisch et

al. [33]). A more detailed discussion about these five cases and in particular about the

generators of the Levy variables can be found in Schenzer et al [112], Fan [31]. and

Schertzer and Lovejoy [113] (see also Lovejoy and Schenzer [71, 73] for some

applications and review). Universal multifractals have been empirically found in both

turbulent temperature and wind data (Schmitt et al [119, 120]). They have also recently

found applications in high energy physics (Brax and Peschanski [Il]), as well as

oceanography (Tessier et al. [130]). earthquakes (Beltrami et al. [6]) and landscape

topography (Lavallée et al [59]). The first empirical estimates of Cio IX in cloud radiances

are discussed in Lovejoy and Schcnzer [71] (see also Gabriel et al [34]) and for rain

rer1ectivities, Seed [123].

Using the universal multifractal formulae above, some of the results discussed earlier

may be expressed in simpler form. Formulae which will prove useful below are for qs

(the maximum order moment that can be reliably estimated with a finite sample), and qo,

the critical order for divergence (obtained by solving 2.10 for qo:
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...fL go" - go D
IX-l qO-1

(2.13a)

(2.13b)

Formula 2.13a is only valid for qs < qo. Both of these critical moments are associated

with "multifractal phase transitions" (Schertzer et al [117]), and algebraic probabilities

(finite qO) are considered a basic characteristic of self-organized criticality (Bak et al [3]).



• n.2 The Double Trace Moment Technique:

n.2.1 Basic Ideas :

We have argued above that atmospheric fields are multifractal, in'iolving an infmite

number of scaling exponents (the functions c(y), K(q», but that due to universality, the

latter may 00 characterized by the three basic parameters (H, Cl, a). In this section we

briefly discuss how this idea may 00 tested, and how the parameters estimated. There are

methods other than the DTM that can 00 used te evaluate those parameters and we will

discuss them in other chapters but since this is the oost one and that we will 00 using it

most we decided te explain it in this introduction chapter.

The physics literature is now replete with different methods developed for estimating

multifractal parameters. Unfortunately, the great majority of these have OOen designed

for the particularly "calm" multifractals associated with strange attractors, a few for the

slightly less calm "microcanonical" multifractals6, but virtually none for the general

("canonical") multifractals involving the occasional "hard" singularities discussed earlier.

When applied to turbulent and/or geophysical data involving extreme variability, they

will have limited accuracy. A fmallimitation on their accuracy comes from the fact that

they have attempted to estimate an infinite numOOr of parameters with fmite data sets (the

entire c(y), K(q) function, each value of which is a scaling exponent). We now descriOO a

simple technique that overcomes these problems by exploiting the universality te estimate

CI and a directly; c(y), K(q) are then obtained using eqs. 2.11, 2.12. His then estimated

by combining the CI and a estimates with the scaling exponent of the energy spectrum

(section II.2.2).

6This is true for example of approaches bases on partition fWlCtions and moments (Halsey et al [42]), single
seale ItislOgrams (Aunanspacher et al [1]. Paladin and Vulpiani [91], multipliers (Chabra and Sreenïvasan
[15]) and wavelets (Bacry et al [2]).
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Consider the conserved (H=O) multifractal flux density at (fine) resolution A (the ratio

• of the outer (largest) scale of interest to the smallest scale of homogeneity7). The

(dressed) flux over an observing set (B:\., this corresponds to a single lower resolution

"pixel") with dimension D, resolution 'A.<.A is simply an integral over the density:
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IIA(B,)= JcpAdDx
B.

(2.14)

We may now define the qth order ''Trace moments" (Schertzer and Lovejoy8 [109])

by summing II~ (B~) over each individual realization9 (each satellite picture. covering

the region A has 'A.D disjoint covering sets B:\. which are summed over in eq. 2.15. see the

schematic illustration, fig. 2-8 with 'Tl = 1), and then ensemble averaging over all the

realizations:

(2.15)

where the sum is over all the i "balls" B.,; needed to cover A. This formula will break

down for moments q>qn, and (when finite samples are used to estimate the ensemble

average) when q>qs. Although it allows the determination of K(q) (at least for small

enough q), and hence in principle the determination of Cl. Ct (via eq. 2.12) this method

will involve ill-conditioned nonlinear regressions (K(q) vs. q). The double trace moment

(DTM) technique (Lavallée et al 1[59], Lavallée [58]) avoids this problem by

generalizing the trace moment; it inttoduces a second moment 'Tl by transforming the high

resolution field cp1\~ cp~. This transforms the flux TI into an Tl flux TI(ll):

II~)(BÀ.) =Jcp~dDx
B.

(2.16)

7 For scaIes small~ titan the scale of homogeneity we assume that the field is homogeneous (bclow the
scale al wlùch we have dissipation of en~gy the field is assume to be homogeneous.). In the acwa1 use of
the DTM method we rake:\.' as the srnallest scale known (the pixel scale) for the analysed field.
8A1though the formalism above was developed in Schertzer and Lovejoy [109]. essentiaJly the same
method was empirica11y applied to on raiD in SCbertzCl and Lovejoy [107].
9This yields a paItÏtion fWlCtion. .



• The double trace moment can then he defmed as:

Tr..(cp1t =(t[I1~)(B"'i)t) ~ Â,K(q,'l)-(q-J)D (2.17)
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where we have introduced the (double) exponent K(q;rl), which reduces te the usual

exponent when TI=I: K(q, l)=K(q).

The entire transformation from single to double traCe moments can he snmmarized in

the following formulae (where the prime indicates transformed, double traCe quantities,

not differentiation):

Y~"( = TlY- K(TI)

c(y) ~ c'("() =c(y)

q ~q' =q/rJ

K(q) ~ K'(q') = K(q,TI) = K(Tlq') - q'K(TI)

(2.18a)

(2.18b)

(2.18c)

(2.18d)

Note the fine point in the above is that due to the integration, we are dealing with dressed

rather than bare quantities, hence the dressed singularities (eq. 2. 18a) transform with an

extra term (-K(TI»; necessary since the dressing operation enforces conservation of the TI

flux.

The real advantage of the DTM technique becomes apparent when il is applied to

universal multifractals (Lavallée [58]) since we obtain the following transformations of

dK ,dK'
Cl ( = dq 1q=l) ~ Cl (='dq' 1q'=l) = CITla

Therefore, K'(q') = K(q,TI) has a particularly simple dependence on TI:

(2.19)

(2.20)



II can therefore he estimated on a simple plot of log K(q.11) vs. log 11 for flxed q. By

• varying q, we improve our statistical accuracy. Finally, note that due to eq. 2.l8d,

whenever =(q11,q»min(~,'ID) thé above relation will break down; K(q,11) will become

independent of 11. For more details on the double trace moment, see Lavallée et al [59].

Lavallée [58]. We shall see that effective exploitation of the above involves a "bootstrap"

procedure in which the weil esrlmated low q, 11 exponents are used to estimate a, CI. and

then eqs. 2.1la,b can he used to predict the range ofreliable estil1!'ates.
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Fi~ 2-8: A schematic diagram illustrating the different averaging scales used in the
double trace moment technique.



• 11.2.2 Estimating H:

We have seen that in multiplicative proc~sses, it is convenient to isolate an underlying

conserved quantity which has bas\c physical signific~nce; in turbulence it was the energy

flux to smaller scales, in rainfall we denoted it by lp, and related it to the rain

fluctuations via eq. 2.2. ln terms of the scaling, conservation means <lpÂ.> = constant

(independent10 of 1..), hence K(l)=O. If we considerthe energy spectrum of lpÂ., it is of

the form k-~ withIJ ~ = 1 - K(2) , Le., the spectrum is always less steep than a IIf noisel2•

The reason for dwelling on this is that it illustrates a basic point common to many

geophysical fields viz., their spectra have ~> l, hence they cannot be stationary processes,

they must be (fractionally) differentiated13 by order -H (the spectra must be power law

fùtered by kH) to become stationary. For rain and clouds, this will mean removing the

À.-H term in order to obtain the stationary lp" from the non stationary t.RÂ.. The

importance of this for analysis has long been realized; for example standard geophysical

statistics use variograms rather than autocorrelation functions 14 to avoid convergence

problems when ~>l. The same considerations apply to the use of the DTM technique.

Fig. 2-9 (from Lavallée [58]) shows the result when a simulated conserved process is

fractionally integrated and differentiated by varying amounts: as long as we differentiate

(fùter by kH with H>O) we obtain stable and accurate estimates of both Cl and o..

However when we fractionally integrate (H<O), we only recover o.; Cl is not accurately

10 Rccall from section 3 lba1 Â. is the ratio of the largest 10 the smallesl scale. hence taldng the largesl scale
=1 for simpücity. we have Â. =1-l,
Il This formula is a consequence of the facllba1 the energy spectrum is the fourier transform of the
autoeorrelation function wlùch is a second order moment
12 The difference is oCten not great since K(2) is usually small: = CI(2a..2)/(a-I). and QSœ;;2.

13 See Schertzer and Lovejoy [115] appendix B.2 for more discussion of fractional derivatives and
integrals.
14 In lime series we analyse the differences (f1IÙt.e derivatives) rather than the series itself.
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determinedlS. This figure also clearly indicales that as long as the spectrum is less steep

• than the underlying conserved process (fkl-K(2», that we can recover Cl' From the Cl,

eL estimated this way, we can determine K(2) from eq. 2.10 and ~ence the ~ of the

conserved process, and ir':~ the amount of fractional integration required to go from the

underlying conserved process to the observed non conserved process16. Writing ~ for the

spectral slope of the observed process, the order of fractional integration required to go

from the conserved process to the non conserved (observed) process is therefore given

by:

35

H= ~-I+K(2)

2

~ - 1 ...=C-,-,\(.:::...2u 2;:.<.)
--+~

2 2(a-l)
(2.21)

-l.v

-2.0 ."
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• ._ ..a

l:T . . ....
~ • ••••:..: • .. .

-3.0 • .. . .. .
" •- • • ..

g, • •0 • •...J
-4.0 ••

-5.0 +-,....-,,..........--r-.--.-~-,.-.....-.,---,....-l

-1.0 -0.8 -0.6 -0.4 -o.i. 0.0 0.2

Log 10 '1

Figure 2-9: 10g(IK(q,TJ)I) versus 10g(TJ) with a = 2 (lognormal), Cl =0.15, D =2, are
given for q = 0.5. The curve of the stationary processes (big hollow square) is compared
to those of the same processes after fractional differentiation (white symbols, H =-2, -1
and -0.5 from top to bonom). The fractional differentiation and integration does not affect
the estimate of a (ail the slopes are parallel), but fractional integration leads to biased
estimates of Cl (the curve with black symbols are ail shifted downwards compared to the
theoretical stationary processes shown by the lïne. Reproduced from Lavallée [58].

ISNcte that in many geophysica1 fields, the absolule value of !he field may not be important Il may be
sufficient 10 OIÙY consider fluctuations, hence we may put the mean=O by setting \he ath fourier compoocnt
=O. In sorne cases this component may be important and must be carefu1ly dealt with in reaI space - sec
appendix B.2, Schertzer and Lavejoy [115].
16In the case of turbulence, it is not necessary 10 infer the relation since it is given by dirncnsional anaIysis
from Imown dynamica1 quantities. For rainfall and cloud rndïances, we don'\Imow the conèspoiICling
dynamica1 (partial differential) equations, ncr their conserved quantities, sc that this type of empirica1
inference is unavoidable.



• As a final co=ent before turning to the actual data analysis, we describe a short-eut

which in many cases enables us to avoid the use of Fourier space. In l-D we have

already recalled that replacing the rime series by its differences is approximately the same

as multiplying by k in Fourier space17• To generalize this to (Wo (or more) dimensions,

one possibility is to use a finite difference Laplacian. This multiplies by 1k 12 in Fourier

space, hence the spectrum by 1k 14 ; although this is quite drastic we will see that it

apparently works fairly weil. Differencing the experimental data also remove the

problem of physical quantities that are only defmed within additive constant. This also

has the advantage that it removes any (unknown) additive constant that would mask the

scaling behavior. Denoting the modulus of the gradient of the rain (or radiance) field by

jVRI wehave

36

(aR)2 (aR)2
IVR(x,y~ = a; + ay

which can be approximated by the finite difference

IVR(i.j~ ~ ~(R(i + l,j) - R(i _1,j»)2 + (R(i,j +1)- R(i,j -l)f

(2.22)

(2.23)

with .ix = .iy = 1. The index i and j are respectively the horizontal and vertical

coordinates, the fmite difference operations are effectuated without privileging any

particular direction; problems related to anisotropy are neglected. In the sarne manner the

Laplacian:

is approximated by:

IV2R(x,y)1 ~ ~(4R(i,j) - R(i + l,j) - R(i -l,j)- R(i,j + 1) - R(i,j-l»)\ (2.25)

17TIlis will not be exacüy lrue al the Iùghest frequencies corresponding ID the resolution the series.



• II.3 The role of satellite radiances and radar reflectivities:

Even before the theoretical basis of the standard model was brought into question. a

series of in situ velocity measurement campaigns (Vinnechenko [133]. Gage [35]. Lilly

[61], Nastrom and Gage [85]-· for discussions and references see Schertzer and Lovejoy

[107], Lovejoy and Schertzer [67]) -- failed to find evidence for the meso~cale "gap"

anywhere near the designated 1-100 km range. However, even though these campaigns

did measure velocity fluctuations over various ranges (severa! meters to thousands of

kilometers) with sufficient statistical reliability to eliminate the possibility of a significant

gap. the extreme intermittency of the atmosphere and various experimental diffkulties

has hindered the emergence of a clear overall (large to small scale) statistical picture of

the wind field. One way of attempting to overcome the limitation of in situ wind

measurements -- which we explore below -- is to exploit the burgeoning masses of

remotely sensed satellite and radar data. Because of the strong (nonlinear) couplings

between the various atmospheric fields. any fundamental break in the scaling symmetry

in the dynamical (wind) field will be reflected in the latter. Conversely, if the latter are

scaling over the observed ranges, we may infer that the symmetry is not broken in the

former. The symmetry will be respected unIess specific (and strong enough) mechanism

exists to break it. A scaling break in one field would constitute a sufficient mechanism to

cause a break in any other strongly dynamically coupIed field. The cloud, radiance and

velocity are strongly coupled. This result follows from the consideration of scale

invariance as a symmetry principle.

In any case, satellite cloud radiances and radar min reflectivities are interesting in

their own right, and .- as argued elsewhere (Lovejoy and Schertzer [71], Lovejoy et al

[75]) -- provide unique data sets for testing new ideas in scaling and multifractals18.

l8It is significant that the fust empirical data set (in meleOrology or elsewhere) whose mulûliactal
dimensions were esûmaled was the radar reflecûvity field of rain. Schenzer and Lovejoy [1081.
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ln this cha~;ter, we fecus on the scaling properties of various fields related to the

• liquid water field. The distribution of cloud and rain liquid waler is important bath for

our understanding Qf atmospheric dynamics, but alse in its own right: it is a fundamental

part of the water cycle, and (when il reaches the ground) is the basic hydrological field.

The data sets used include LANDSAT, NOAA-9, ME1EOSAT satellite cloud radiances

in the visible, thermal mfra red and near infra red wavelength bands (from =166m to

=4000 km overall). ln section n.5 we analyze radar ref1ectivities of rain in bath lime and

space and include a comparisen of the latter with· global in situ raingage measurements.

On all of these data sets we not only test the scaling (which is generally found to hold

quite weil), but also estimate the fundamental universal multifractal exponents

characterizing the fields. Finally in section n.6, we briefly indicate how knowledge of

these exponents can he used to create (bath static and dynamic) multifractal models of the

corresponding fields.

lIA The Horizontal scaling properties of cloud radiances:

We have already discussed scale invariance as an important atmospheric symmetry

principle. If, over the range in which most of the interactions with the solar and

blackbody radiation fields occur, it applies to the distribution of water in the atmosphere

then the radiance fields will also he scale invariant over the corresponding range19.

Although the multifractal parameters of the radiation fields will he non-trivially related to

those of the liquid water field they will still give us valuable information abaut the limits

10 scaling, anisotropic scaling (Pflug el al. [97], Lovejoy et al [75]) and the re!ation

helWeen cloud and radiation fields.

Because of the ready availability of high quality satellite data, and our desire to obtain

a resolution independent characterization of the satellite data, we analyzed images

emanating from severa! different satellites and sensors (snmmarized in table 2-1).

19 i.e. they will IlOt break the scaling symmetry. FOlmally, this is because the radiative transfec equalions
have no characteristic length associated with them.
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• Locanon :Satellite :Sensor wave-Iength resolunon plcmre Slze
Tropical Pacific LANDSAT MSS 0.49 to U.61 166m2O 512x512

J.l!lI 89 km

Atlannc METEu:sAT YlSIble 0.4 to 1.1 8 km21 5I:lx512
West of Spain Channel llJI1 4000 km

Atlannc METEOSAT infrared 10.5 to 12.5
West of Spain Channel llJI1
Atlannc . NOAA-9 AYHRR 0.5 to U.7 1.1 km 1512x512
East of Florida Channel! !lIll 550 km

AYHRR 0.7 to Lu
Channel 2 llJI1
AYHRR i 3.6 to 3.!:I
Channel 3 llJI1
AYHRR 10.4 to 11.1
Channel 4 llJI1
AYHRR 11.4 to 12.2
Channel 5 llJI1

Table 2-1: The characterisncs 0 the different satellite Images analyzed.

The fust analysis performed was the estintation of the (isOLropic) energy (power)

spectrum which is the modulus squared of the Fourier amplitudes integrated over ail

angles in Fourier space and ensemble averaged over all realizations of the process. As

usual the ensemble averaging was approximated by averaging over ail the available

samples with the same wavelength bands and resolution. Figure 2-10 shows the results

for the satellite images and the frequency range of the images (following the sarne

classification as in table 2-1). For all the spectra we observe reasonable scaling behavior

for the entire range accessible to each satellite. We obtained the following results (from

bottom to top): LANDSAT (visible) ~ =1.7, METEOSAT (visible) ~ =1.4, METEOSAT

(infra red) ~ = 1.7, NOAA-9 (channel 1 to 5) ~ = 1.67, 1.67, 1.49, 1.91, 1.85. The

variations in the exponents have bath statistical and systematic origins. First spectral

exponents of intermittent data are notoriously difficult to estimate requiring very large

sample sizes. Second, the spectral bands vary from one satellite to another. Even if wc

20 The resolution of the sensor is 83 m but we hall ta degrnde this resolution in arder ta avoid ccnain
~roblems discussed in the texl
1 The visible channel data was originally al a higher resolution and was resampled on a 8 km grid.
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have labeled them as being in the same group (visible, near infra red, thermal infra red)

• they are not ccmpletely coincident as can he seen in table 2-1. Roughly speaking the

radiaùve transfer in the visible is dominat";:1 by scattering, in the nea:- infra red it

combines both scanering with absorption and emission while in the thermal infra red it is

dominated by absorption and thermal .:mission. Since these radiative transfer processes

are quite different we expect some systemaùc variation in the power spectra. We take

these results as good evidence that the basic scaling is respected over the range of -200

-2-3-4
9-t--.--,---.----,-...,.--.--....-::"'--r"'''-',...........:>t

-7 -6 -5

L09101 k 1 (m -1)
Figure 2-10: Average power spectrum for the satellites images grouped according te the
satellite and the frequency range of the images (from bottom to top); LANDSAT (visible)

~ = 1.7, METEOSAT (visible) ~ = lA, METEOSAT (infra red) ~ = 1.7, NOAA-9

(channel 1 to 5) ~ = 1.67, 1.67, 1.49, 1.91, 1.85.

m to -4000 km.
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The DTM analysis was done on each group of images considering each scene as a

separale ~zation. In figure 2-11 wc show log(TrÂ. (<plt) yS 10g(À-) for severa! values

(lf 11 for me LANDSAT images. The ~ .~Ie plot is shown in figure 2-12 for METEOSAT

images in the visible and infra red channels. We also show the corresponding graph
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• (figure 2-13) for ail the channels of NOAA-9. As expected from the spectral analysis,

these graphs are nearly linear over ail the accessible range. This is another confirmation

t.h.at scaling is obeyed over the observed range. So from here on we could concentrate on

the determination of thé universal parameters.
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= 3.2, 2.5, 1.2, 0.35, 0.15) using q = 0.5 for the gradient of 3 images taken by
LANDSAT. e
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Figure 2-12: left) 10g(Tr1.(<p~.t) versus 10g(Â) for several values of 1'\ (from top to

bottom,1'\ = 3.2, 2.5, 1.2,0.35, 0.15) using q = 0.5 for the gradient of images taken by
METEOSAT in the visible. right) Same as left) but for the infra red channel and using
q =2.0
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• From these 10g(TrÀ.(<p~t) versus 10g(À) curves we obtained the 10g(K(q.ll» versus

log(ll) from whose slope we deduce the universal parameter Ct ll1id from whose intercept

with the line 10gTJ = 0 we estimate Cl' In figure 2-14 we show a typical result for our

analysis. In this case we performed the analysis cn the gradient of one image and we

obtained the values Ct = 1.3 and Cl = 0.1. The deviation from lineur behavior at high

values of 11 is due to undersarnpling problems. this problem should occur for values of

max(Qll,11) = min(CI&<1o) = CIs (<10 > 50 here22) which in this case (since only one image is

used) is estimated to he
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[DJlIa. [2 1'1.3C\s = Cl = 0.1 = 10 (2.26)

which is close to the value estimated directly on the graph: the straight line behavior

breaks down at 11 - 5 (q = 2 here). As expected this is roughly were the curve becomes

horizontal.
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Figure 2-14: 10g(lK(q,11)I) versus 10g(11) for the gradient of an image taken by the channel
5 of NOAA-9, we used a value of q = 2.0 and the sll'aight line corresponds to the

regression line from which we deduce Ct = 1.3 and Cl = 0.1.

.'.2 EvaIuated using 0=2. =ent anaIysis suggest it could not be the case. D may be lower thus qj) rnight be
of the same rnagniblde of lis.
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For the reason given in section 3.2 (i.e.• the possibility of non-conserved fields) we

• analyzed the modulus of the gradient and the modulus of the Laplacian of the radiance

fields. As expeeted. both methods always gave simila-r results so in order to assure the

reader about this fact we reproduce the resulting 10g(1K(q.TJ)I) versus 10g(TJ) for the

modulus of the gradient and the modulus of the gradient of one of the analyzed images

(fig. 2-15). From here on all the analyses will he performed using the gradient except

where stated otherwise.
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Fjfiure 2-15: 10g(IK(q.TJ)I) versus 10g(TJ) for the Laplacian and the gradient of an image
taken by the L<\NDSAT satellite. The fllied circles are calculated using the Laplacian
and for the empty squares we used the gradient. In both case q =2.0. The straight line

. corresponds to a =1.1 and Cl =0.1.



• Fig. 2-16 shows a plot of 10g(\K(q, 11~) versus log 11 for ail the images taken in the

visible wavelength channel. We can see that even if the images are covering different

scales and have slightly different wavelengths there is good agreement between the

different satellites. We obtain lX = 1.2 and Cl = 0.0.8 for LANDSAT, lX = 1.12 and C~ =

0.12 for METEOSAT and lX = 1.07 and Cl = 0.12 for NOAA-9 channel 1. The break in

the linear behavior for low values of 11 should not be interpreted as a scaling break. In this

range of 11 the analysis is sensitive to extremely low values of the field, noise will

overcome the signalleading to a deviation from the expected linear behavior. Of course,

different sensors will have different noise level and this is why ail the curves don't break

at the same place. The next graph (figure 2·17) performs the same exercise for the

thermal infra red sensors (channel 4 and 5 of NOAA-9 and METEOSAT VISSR infra red

channel). The straight portions of the curves are nearly parallel and both channels of

NOAA are almost on top of one another. The estimates for lX are still close to one another

(lX = 1.21 for METEOSAT and lX = 1.35 for NOAA-9) and the estimates for Cl are also

compatible (C; = 0.17 for METEOSAT and C1= 0.09 for NOAA·9). Table 2-2

SUIIllI'.arize ail results for the different satellites and sensors.
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Fiwe 2-17: 10g(lK(q,T])I) versus 10g(T]) with q =2.0 for the gradient of images from· ;.île
infra red sensors. The diamonds are for NOAA-9 pictures (empty: channel 4, filled:
channel 5) and the fùled squares are for METEOSAT pictures. The straight lines
correspond to linear regression fit on the linear part of the curves.



• Satellite Sensor wave-length scaling range Cl H
Cl

NOAA9 AVHRR 0.5 to 0.7 JlIIl It0512km 1.13 0.09 0.4
channel 1

NOAA9 AVHRR 0.7 to 1.0 JlIIl It0512km LlO 0.09 0.4
channe12

NOAA9 AVHRR 3.6 to 3.9 Jl1Il 1 t0512km Lll 0.07 0.3
channel 3

NOAA9 AVHRR 10.4 to ILl JlIIl It0512km 1.35 0.10 0.5
channe14

NOAA9 AVHRR 11.5 to 12.2 JlIIl 1 to 512 km 1.35 0.10 0.5
channel 5

METEOS VIS 0.4 to 1.1 JlIIl 8 km 10 4000 km 1.35 0.10 0.3
AT

METEOS IR 10.5 to 12.5 JlIIl 8 km 10 4000 km 1.21 0.09 0.4
AT

LANDSA MSS 0.49 to 0.61 JlIIl 166m to 83 km 1.23 om 0.4
T
Table 2-2: The evaluated uruversal multifractal parameters for each group of plctures.
The accuracy on the values of a. is ±D.2, on Cl it is ±0.1 and on H it is ±0.2.

Ali the observed values for a. lie between 1 and 2. Since we always obtained a. > 1,

the corresponding radiance fields will be unconditionally hard multifractal processes

(section 2): i.e. sufficiently high order moments will diverge when the reflectivity field is

average over a space of dimension D. The critical order for divergence is given by eq.

2.13b taking D = 2 it gives values of CID > 50 which is sufficiently large that il would

require enormous sample sizes to be observed directly23.

There are many possible explanations for the spread in these values. First we have to

remember that these universal parameters are weil defined ooly for ensemble average

23 The relevant value of D may he much smaller, in which case !iD will also he much smaller, and hence
the divergence deteetable. This is because research in progress indicaLes that the relevant D :nay be the
order of fractional inLegration .
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qua,ntities so that some statistical variation is certainly ta he expected. For example, using

• numerical simulations with 25 independent one-dimensional samples with 1024 points

each, Lavallée et al [59] estimated that cr. could he estimated to an accuracy of - ±G.l

which is a rough indication of the enormous sample sizes that are theoretically required

(note that what is most fundamental is the range of scales and the number of independent

realizations: here 1.. = 256 or 512 and 3 - 5 realizations were used). Second, different

satellites have different problems. For example, LANDSAT was not designed for the

observation of clouds so that occasionally (<30% of the images in this case) the deteetor

was saturated by particularly bright cloud regions (with albedo ~ 0.45). Roughly the

effect of· this on the multifractal analysis is to cut off high order singularities

corresponding to the saturation level. Fortunately our estimates of cr. and Cl from the

DTM technique mainly rely on the less extreme values (i.e., the low order moments 1'\, q1'\

'" 1) near the mean and should not he badly biased. Some METEOSAT images were not

completely over the ocean and it was possible to see landmasses under the cloucis, so the

analyzed albedo field is not purely due to clouds but in some pan also ta the land heneath

them (which will presumably have different multifractal properties and exponents).

However, since at visible wavelengths the land has much lower radiance than clouds, this

will primarily affect the·very low 1'\, q1'\ scaling and K(q,1'\) estimates, again allowing

reasonable Cl' cr. estimates from the DTM technique.

Selection bias was avoided as much as possible. AIl images in our largest set (NOAA-

9) were taken with the sensor centered at a longitude of 700 west and a latitude of 27.5"

north. This point is situated over the Atlantic ocean, east of Florida. The 15 scenes were

each taken at about 1400 ± 20 local rime during the month of February 1986 (the exact

dates are the 10-20, 22, 24, 25 and 27). The three LANDSAT images are part of a bigger

(400 x 400 km) picture which itself was selected to have 90% cloud coverage. And the

three METEOSAT images are part of a sequence taken at 1/2 br intervals at the same
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location. So within each set, the images are not completely independent as we would like

• them to be. Clearly in the furure, massive systematic analyses must be undertaken.

Another problem that might have contributed to th", spread of values for 0. i s

anisotropie scaling. Both the spectra and the DTM method as implemented here are

entirely isotropie analysis techniques since the resolution of the fields is degraded

isotropically (e.g. by using square boxes at all scales in the DTM method). However. as

shown by Pflug et al. [97] rotation and stratification of strllcrures (due here to the Coriolis

force) are important, hence more precise analyses should use generali:zt:d scale changes.

Recalling that Cl characterizes the sparseness of the mean whereas 0. characterizes

the rate at which the sparseness varies as we go away from the mean, we expect Cl to be

more accurately estimated than o.. This is indeed the case since for Cl the range of values

observed varies between 0.07 and 0.13. Such low values of Cl are an indication that the

conserved multifractal <p is not too sparse (a space filling mean would have CI = 0). It

also explains the relative success of monofractal analyses (e.g., Lovejoy [63]), since near

the mean, the parameter H will provide a reasonable approximation to the scaling.

However since 0. is fairly large (far from the monofractal value of 0), as we move away

from the mean value, the mëmofractal approximation rapiclly becomes poorer. For more

discussion of monofractal cloud analyses, their limitations and biases (due to multifractal

effects), see Lovejoy and Schertzer [73], especially the appendices.

n.5 The Horizontal Scaling of Rain Reflectivities

The relative success of satellite based rainfall estimation schemes (such as RAINSAT,

Bellon et al [5]) --which use both radar reflectivities and rain gage measurements for

ground trllth-- proves that there is indeed an intimate relation between visible and infra

red radiances, rain, and radar reflectivities of rain. We therefore tum our attention from

the radiances to data sets more closely related to rainfall. The frrst such data set we

studied was obtained using a scannhlg radar situated in Montreal. This radar provides
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information for 24 elevation angles, at a wavelength of 10 cm with a pulse repetition rate

• of 300 Hz, and a downrange resolution of 75 m. We analyzed scans during a convective

storm over Montreal that took place at 22.00 EST 1 May 1992. From these scans w..:

analyzed 256 x 256 square section images (avoiding the center and the outer limit which

were biased due te ground echo and the curvature of the earth). In order to avoid ground

clutter contamination we did not use the smallest elevation angles. The first analysis was

the isotropic power speetrum which is shown on figure 2-18. We observe that scaling is

observed on the range of 75 m to 10 km. From a linear regression we deduce that the

negative spectral slope is ~ = 1.45. Figure 2-19, where it is shown 10~TrÂ.(<p~t) vs log

Â. for various 11, confmns that there is scaling over the entire range studied. The

10g(IK(q,11)I) vs log 11 curve, calculated from the previous graph is shown on figure 2-20.

In this case we estimate cr. =1.4 and Cl =0.12.
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Figure 2- 18: Isotropic power spectrum for radar ppi's. We included a line of slope 1.45 so
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• II.6 . The Vertical scaling of rain reflectivities:

52

In the previous section we obtained an estimate of the universal parameters for the

horizontal radar reflectivity field. In order to examine the vertical structure we turned our

attention to another data set. The data we studied was obtained using a vertically

pointing (3 cm wavelength) radar with a pulse repetition rate of 004 Hz. We analyzed a

data set lasting for 5 hours, 41 minutes, 20 seconds (8192 consecutive pulses), with near

range of 171m altitude above the radar and far range of 695Sm above (in 325 equally

spaced bins, 21.4 m pulse length). The vertical structure of rain reflectivities is quite

different from the horizontal structure due to the strong stratification caused by gravity

(Lovejoy et al [70]).

The meteorological situation involved stratiform rain ahead of the warm sector of a

iow. The surface temperature varied between S·C and 10·C during the storm. There was a

bright band (Le., melting snow and ice) between 1.5 and 2.5 km altitude. A small portion

of the raw data is shown in figure 2-21. When we analyzed the horizontal cloud

radiances, we immediately calculated the (usual) isotropic energy spectrurn obtained by

integrating the Fourier square moduli over angles in Fourier space (and then estimating

the ensemble average by averaging over the available data). This was natura! since in the

horizontal plane, the anisotropy Wafj not too pronounced. Here the situation is quite

different since a priori, the vertical and temporal characteristics of rain are very differenl,

the (k,ro) (Fourier space, corresponding to (z,t) real space) will he quite anisotropic -­

strongly stratified in the z direction (as may he seen in figure 2·22). The proper

framework for analyzing this anisotropy is OSI and the related space-time

transformations that are discussed more in detail in section II.S. In this section we limit

ourselves to more straightforward analyses. Firsl, we calculate lines of constant Fourier

amplitudes in the two dimensional (k,ro) space (fig. 2-22). As expected, we roughly

• obtain ellipses whose stratification is opposite that of :.he real space (z,t) stratification



(and increases with increasing k). The slight overall rotation corresponds to a constant

• advection velocity. This differential stratification corresponds to the fact that (one

dimensional) temporal and (one dimensional) spatial spectra will have different spectral

exponents (~l> ~v). Indeed. the one dimensional vertical spectrum for the region below the

bright band (fig. 2-23, averaged over aIl the pulses in time) shows ~v - lA whereas the

corresponding temporal spectrum (fig. 2-24) average over different portions

corresponding te different ranges of altitudes yields ~t - 1.2. The break in the vertical

spectrum occurs at scales of -100 m and roughly coincides with the horizontal scale of

averaging --the pulse vrvidth in the horizontal was ~ 100m at 3 km distance. In fig. 2-22,

we can see the "spheroscale" which is the scale over which the (near) elliptical contours

become (near) circles indicating approximate isotropy at the corresponding scale (~ 1 km

here). The existence of a bright band limited these analyses in fig. 2-23 to a range of only

a factor 64. This vertical scaling confl11I1S that already reported using an entirely different

method: "functional box-counting", Lovejoy et al. 1987 found that reflectivities of 10

stratiform and 10 cumuloform storms were fairly accurately scaling over the range 1 - 8

km.

For each pulse we calculated trace moment statistics of 64 levels below bright band

levels and accumulated the statistics over the 8192 pulses. In fig. 2-25 we show the log of

the trace moment of order q = 2 against the log of the scale ratio À for different values of

the exponent 1'\. It can be secn that we obtained scaling over nearly 2 orders of magnitude

in À (corresponding to the high frequency scaling in fig. 2-24). In fig. 2-26 we show log

IK(q,1'\)1 vs. log 1'\ for q = 0.5 and q = 2.0 from which we deduce a ~ 1.35 and Cl ~ 0.1.
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Figure 2-21: A portion of the raw data (reflecdvity for elevation against time) for the
vertically pointing radar reflectivities. We show 1024 time steps by 318 vertical bins
section. The gray scale is proportional to the dbZ value.
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Figure 2-22: 2-D Power spectrum isolines for radar reflectivities. We can see that the
isolines are highly elongated in the temporal frequency direction for high frequencies and
in the s,Jatial direction for low frequencies.
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e
n.? Isotropie (Self-Similar) Simulations of Rainfall

In this section we indicate briefly how to exploit me universality (and me measured H.

Cl> a parameters) to perform multifractal simulations. The frrst multifractal models of

this type were discussed in Schenzer and Lovejoy [109], and Wilson et al [1381 gives a

comprehensive discussion including many practical (numerical) details. In particular, he

describes me numerical simulation of clouds and topography, including how to iteratively

"zoom" in, calculating details to arbitrary resolution ill selected regions. Almough we

will Ilot repeat mese details here, enough information has been given in me previous

sections ta understand how mey work. First, for a conserved (stationary) multifractal

process <PA. we define me generator rA.= 10glpA.' To yield a mu1tifractal <PA.' it must be

exactlya llf noise, Le., its generalized spectrum is E(k)~k-l (this is necessary·to ensure

me multiple scaling of me moments of <PA.)' To produce such a generator, we star! wim a

stationary gaussian or Levy "subgenerator". The subgenerator is a noise consisting of

independent random variables wim eimer gaussian (a=2) or extremal Levy distributions

(characterized by me Levy index a), whose amplitude (e.g., variance in me gaussian

case) is determined by Cl. The subgenerator is men fractionally integrated (power law

fùtered in Fourier space) to give a k- l spectrum. This generator is men exponentiated to

give me conserved <p).. which will mus depend on bom Cl and a. Finally, ta obtain a non

conserved process wim spectral slope ~, me result is fractionally integrated by

multiplying me Fourier transform by k-H where H is given in eq. 3.8. The enme process

involves !WO fractional integrations and hence four FFT's. 5l2X5l2 fields can easily be

modeled on personal computers (mey take about 3 minutes on a Mac II). and 256 x 256 x

256 fields (e.g., space-time simulations of dynamically evolving multifractal clouds) have

been produced on a Cray 2 (Brenier 24[12], Brenier et al [13]).

24Such clouds simulation have been turned into a video called "MuitifracraJ dynamics".
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We peI":ormed simulations using universal multifractal parameters close to what have

• been observed for cloud radiances. They are shown in fig. 2-27 and 2-28. We used lX =

1.35, Cl = 0.1 and we vary the value ofH because this seemed to he the most important

difference be1"Ween visible and infra red images. For fig 2-27 we used H = 0.3 and for fig

2-28 we used H= DA. For infra red images the value of His higher giving it the smoother

look that meteorologist are familiar with.
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Figure 2-27: 2-D simulation using a. - 1.35, Cl - 0.1 and H - 0.3. The values of the
parameters are close to what bas been estimated for cloud radiance pictures in the visible
frequencies range.

Figure 2-28: simulation using a. - 1.35, Cl - 0.1 and H - 0.4. The values of the
parameters correspond to wbat bas been evaluated for cloud raèi~nce pictuœs in the
tbermal infra red frequencies range.
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•
11.8. The Multifractal Atrnosphere:

We have briefly sketched some arguments in favor of unified scaling and presented

sorne of the muItifractal notions. The object was te bath motivate the various empirlcal

analyses which followed, as weil as to explain the ideas in sufticient detail so that the

workings of the new Double Trace Moment (DTM) analysis technique couId he grasped.

This technique is the frrst to he designed to direetly estimate the universal multifractal

parameters; it is considerably more statistically robust than previously c.xisting analysis

methods. and it applies not only to "calm" multifractals (of the sort associated with

strange attractors), but alse to the "hard" (extremely variable) multifractals found :n
geophysics (indeed, we quantitatively confmn the "hard" nature of the cloud radiances

"Uld rain reflectivities).

We apülkd not only the DTM, but also conventional energy spectra to analyze

satellite cloud radiances from LANDSAT, NOAA-9, and METEOSAT satellites in the

~isible, near IR, and thermal IR wavelengths. Overall, the data sets spanned the range

166m to =4000 km; and were found to he scaling through the entire region, including the

mesoscale. Although we conclude that the evidence for horizontal scaling is good it

shouId he stressed that e'.mous, systematically sampled data sets will he needed to fully

characterize the; scaling of atmospheric fields as weil as the corresponding inner and outer

limits. This study only provides an early exploration of what is largely unknown

terrltory.
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Moving on from the horizontal scaling oi cloud radiances, we analyze data from a

vertically pc,inting radar measuring reflectivities of min with a resolution of 2.5 seconds

in time, 21m in space. In the vertical, the scaling was followed at high frequencies, but

we found a spectral bump corresponding in size (=1 km) to the thickness of the bright

band which was present throughout the sequence. Since other studies with larger samples

(e.g., 20 cases instead of one) found vertical scaling over the corresponding range, the

• bump is likely to he consistent with statistical (sample to sample) fluctuations.



Finally, we sketched how our empirically determined multifractal e;,;ponents,

• combined with appropriate spaceltime transformations can enable us to make dynamical

multifractal simulations. These simulations will he necessary to further our

understanding of the underlying atmospheric dynamics. They will help us tame the

ubiquitous extreme atmospheric variability, and may have far reaching implications for

remote sensing, objective analy~is, and (stochastic) forecasting.

•
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Çhapter III

Multifractal Objective Analysis and Global Rainfall

In every objective analysis technique a co=on goal is to obtain information on a

field sensed by an in situ measuring network. Meteorological data sets gathered from

such networks, have many problems due to bath their spatial resolutions and their

heterogeneity (sparseness). In particular, observations are not homogeneously distributed

around the planet and leave large geographical gaps where no data are available.

Furthermore, conventional in situ observations are not truly point measurements since

there is usually a certain amount of spatial averaging (even if on a ve:)' sm::!l scale) and

there is also a significant amount of temporal averaging which •• due to the relation

between spatial and temporal statistics -- smoothes out sufficiently small spatial

variations and is essentially equivalent to spatial averaging. This finite resolution is rarely

explicitly considered. The variability of the meteorological fields is considered to he

essentially independent of the spatial resolution of the measurements. Multifractals

specifically address these finite resolution and large variability problems, this is the basic

motivation of tIlt: analyses performed in this chapter.

III.!. Critic:ù review of Objective Analysis Methods:

In his historicat outline Daley [21] explains that the advance of Numerical Weather

forecasts required efficient methods of obt:lining information at certain locations in order

to initialize their models based on primitive equations. This was first done by dressing up

synoptic charts where from known data trained meteorologists could traCe all kinds of

isolines according tei their judgment. These subjective maps were then digitized and

entered into the computer model. This time consurning task called for robust procedures

to estimate the atmospheric dependent variables on regular two or three dimensional
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grids. Furthermore, the subjective element had to be eliminated since the analysis should

• not rely on know-how. The research field devoted to the development of such techniques

came to be known as objective analysis.

The fust techniques that were developed considered the analyzed fields as being

deterministic. The problem was to minimize the effect of random measurements eITors.

For this Teason, we will refer to these as deterministic techniques, even though statistical

techniques are used to minimize the eITors.

In fac!, the fust and simplest technique even predates the first numerical forecast

experiments of Richardson (1922) [103]. The method is knQWn as Thiessen's polygons

(Thiessen, 1911 [132]). The purpose of the method was mainly to get a rough estimate of

the amount of water received by a region in order to design proper drainage equipment.

Polygons are defmed by the mediatrix of the segments joining neighboring stations and

the amount of min is considered uniform within a polygon. If the total amount of rain

over a region is desired then the precipitation heights are weighted by the area of the

polygons, so the total precipitation over an area is given by:
LSihi

P=-'--
A

where Si is the surface of the ith polygon witl! a precipiLltion height hi and A is the total

area of the region of interest. This method is still widely used in hydrology; for exarnple,

Diskin (1970) [25] proposed an automated version of this method.

Another old and simple technique is the arithmetic mean which assumes that the

rainfall depth is constant over a certain region and the amount is simply the arithrnetic

mean of all the measurements inside that region.

A more refined '1Y,thod was proposed by Panofsky [92]. He perforrned a polynomial

least squares fit that would englobe ail the data points in a certain area. Sorne

improvements to this method were done by Gilchrist and Cressman [37] by making the fit

locally: ;. polynomials were fitted to all observations in a local region surrounding each
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(3.3)

gridpoint. The polynomial fit methods have the shortComing of generating uncontrolled

• oscillations.

Another class of deterministic techniques is known as the weighted interpolation

methods. In these methods, a value is obtained for the missing data using a weighted

average of the surrounding data values. Le.
N'
I,b;W(r;)

z(ro) = .!::i=:rrk-­
I,W(rj)
;=1

where z(ro) is the estimated value at the point XQ, W(ri) is the weighting function

applied to a station i a distance ri from XQ. The bi are the weights obtained by least

squares fittings of the function W(r) with the available data. Various functional forms

were tested. For example Cressman [19] used the function

R2 r2
W(r)= 2- 2; r=lxO-xil; W(r)=O r>R

R +r

where R is some arbitrarily defined rlu-;ge of action (the distance at which the function

goes to zero). Other functional forms have been tried by MacCraken and Sauter [76],

Hovland et al [44], Endlich and Mancuso [29] and others. A r.urvey of these techniques

applied to wind and concentration fields can be found in Goodin et al [40].

These regression methods assumed gaussian distributions of the residues as weil as

certain smoothness and analyticity properties of the field that are absent in the analyzed

data. Methods wlrlch exactly fit al! data points were believed to he a solution to the poer

performance of the previous techniques. In this direction, the most sophisticated method

we will present is Lhe spline surface fitting. The method consists in finding the surfacê

s(r), interpolating the observed points Le. s(r;) = z(rj) i = 1, 2, N and minimizing the

functional I[Vs(r)]'dr over the domain n (it is a frrst approximation of the average
Q

curvature or of the bending energy of a thin elastic sheet). Apart from the computational

problems this technique provides artificial!y smooth surfaces that were not acceptable.

• Further details on this method can be found in Duchon [26] and Wahba [134].
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To remedy to the problem it was proposed that instead of relying on an arbitrary

• choice of surface type and optimality condition that the field should be considered as a

realization of a random process and an optimal estimate of missing data wouln be

performed by minimizing a quantity such as the variance. This leads to what are called

statistical methods. Two methods for performing statisticallinear interpolation have been

developed and are widely used. They both try to estimate a missing value z(ro) with a

relation of the form:
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The difference in the two methods resides in the way the weights bl; are obtained. For

Gandin's method (Gandin [36]) they are found by solving :
N
I,b;C(r;.rj) = C(rj.ro) j = 1•..... ,N
;=t

with C(ri,rj) = E(z(ri)z(rj)] i.e. the covariance

(3.5)

Since the correlation between the point where an estimate is desired and the measured

points is generally unknown assumptions of homogeneity and isotropy are generally

made i.e. C(ri.r j ) = C(~i -rjl). the correlation depends only on the distance between the

stations. A correlation function can then be fitted empirically from the known data points

and used for the interpolation.

Another condition that must he satisfied is that in arder ta get an unbiased estimator

(E(z(ro)) = E(z{ro))) there should either be a constraint on the bi or the expectation

E{z(r)) = O. For Gandin's method this condition is usually satisfied by using deviations

from the climatological average rather than the actual field.

Putting the constraint on the bi bears another name: Kriging (Matheron [81, 82].

Ricardo [102]). It alse stans with equation (3.4) but the constraint is replaced by:
N N
I,b;C(r;,rj)+v=Chro)I,b; =1 (3.6)
;=1 i=1

where v is a Lagrange multiplier. The variance estimator is generally replaced by the

semi-variogram:



• then it is postulated that the semi-variogram is only a function of the distance, Le.

y(ri,r;) =,,:,~ri -r;1)

(3.7)

(3.8)
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It is calledthe weak stationarity or "intrinsic" hypothesis.

In order to include slow but systematic variations assumed to break the ttanslational

invariance (such as orographic1 effeets), the interpolated fie~d can be split in a stochastic

component with known spatial covariance plus a stochastic trend that can be modeled

using orthogonal functions (typically, a low order polynomial function of the location

variable is used). Not surprisingly. since these methods are basically linear interpolation,

they will result in fields much smoother than we would expect for multifractals.

Another method that has been used is the empirical orthogonal function (EOF)2

method which consists of expanding the random process in a linear combination of

orthogonal eigenfunctions lp,:

z(r) = 2:Y,lp,(r),., (3.9)

For orthogonal function on a finite domain [a,bl and uncorrelated coefficient, these

eigenfunctions have to satisfy a homogeneous Fredholm inv.;grar equation that can be

solved numerically:
(3.10)

•

where C(r, r') is the correlation function of the process.

An estimate of missing data points can be obtained using truncated expansions:
hl

z(ro) = 2:Y,lp,(ro) (3.11)
l=l

1 Systematic variation with altil1lde. This is particularly imponanl for mountainous regions.
2 In one dimension, titis technique is named the Karhunen-Loeve expansion. Il is explained in Davenport
and RoO! [22]. Obukhov [88] and Papoulis [93].
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•

Creutin and Obled [20] tested most of these methods3 for rainfall and came to the

conclusion that the best method is Gandin's method since mcthods like Kriging nr the

EOF technique did not perform significantly better but are more difficult to implem"nt

A basic problem encountered with even the most advanced "statistical" methods of

investigation of objective analysis is that the grid, the measuring network, and the

measured phenomena are all strOngly variable with heterogeneities down to very small

scales. This strong sub resolution variability leads to i'<:solution dependencies that we

have argued to be nearly power law (scaling) functions of the resolution. Due to the rapid

advances in scaling notions in the last ten years -- esp;:dally the possibility Illat scale

invariance is a fundamental and unifying geophysical symmetry principle -- it is urgent to

replace many of the hypotheses such as regularity (non-scaling) and statistical

homogeneity, by scaling (inhomogeneity) assumptions. Our effort is to develop

techniques thaL r::spect both the scaling symmetries of the network as wen as of the

phenomenon being measured. Contrary to the usual methods, there is no need to smooth

the original field and th.ere are no artificial assumptions of "regularity", differentiability,

ete.

In this chapter, we will present the entire analysis and correction procedure somewhat

differently, assuming that the obsel"Ved field is simply the product of a multifractal station

density field and a multifractal rain rate field. We will examine the statistical properties

of rainfall; the parameters we estimate are ensemble averaged quantities, they will vary

considerably from one individual realization to another. Although we won't make any

attempt at estimating the field at locations where measurements were not made (leaving it

for future developments) we will obtain extensive statistical information about the spatial

variability \lf the t.'linfield corrected for mea!>urement bias. ln our view such knowledge

must precede the choice and implementation of any interpolation scheme because it must

be adapted to the variability of both the sensed field and the measuring network.

3 Other reviews could he fOWld in Thiébaux and Pedder, [131l and Bras and Rodriguez.[l11rbe. [lOl.
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• ffi.2 Analysis of The Measuring Network

III.2.1 Monofra::t'.lJ Analysis of a Raingage network:

When we examine the distribution of stations that reported daily rainfall accumulation

for the synoptic stations archived at the National Meteorological Center (NMC) of the

National Oceanographic and Attnospheric Administration (NOAA) during 1983 (figure

3-1) il is clear that this distribution is far from being homogeneous: in fact -- not

surprisingly -- the inhomogeneity of the network is highly correlated with landmasses and

economics.

Fi gure 3-1; Position of the stations reporting daily rainfall accumulations in 1983 that
have been used in our analysis. We also plotted the continent layouts for reference.

Lo·_-ejoy et al [68] performed monofractal analyses of the scaling properties of the

World Meteorological Organization (WMO) network, showing that the scaling was fairly

weIl respected over the range of 1 to 5000 km which was nearly the maximum possible

given the fmite sample size (on1y -9600 stations were available). They calculated the

average number of stations in a circle of radius L surrounding each station and found

scaling (power) laws with exponent D = 1.75 being the "correlation dimension" of the

network. Montarlol and Giraud [39\ ~tudieà the US. Synoptic and Clirnatic network
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(3.12)

(excluding Hawaii and Alaska). They went beyond this monofracml framework and

• calculated multifracml dimensions associated with Statistical moments of the station

density. In a IL'>t attempt to srudy rainfall as sensed by a network they calculated the

dimensions of the subset of stations that observed rainfall on a particular day.

A common definition of the dimension Dm of a set is given by the variation of the

number of points <n(L» with the size of the region (L): (n(L») ~ LO
•• If the region is

centered uniformly with respect to the set, Dm is the box dimension, if the regions are

centered on points on the set, Dm is the correlation diQension. Because of the "bias"

introduced in the latter, the correlation and box dimensions will not generally he identical

(the latter is necessarily ~ the former). The estimate of fractal dimensions is usually

performed on fiat surfaces, but the earth is not fiat. To account for the curvature of the

earth we must choose a method of defining scales. We do it in the following manner: if

the planet (a perfect sphere) is covered uniformly with stations in an area S, then <n(L»

~ S. Taking S(a) as the area of the spherical cap defined by 2 points subtending an angle

a at the earth's center (radius r). The scale L(a) may he defined as:

[
4 J1I2 112

L(e) = ïtS(e) = [21tr2(1 - cos(e»]

This definition used by Lovejoy et al [68] reduces to the usual great circle distance (=ra)

for small a, and has the required property that the dimension of an homogeneously

distributed network has the fractal dimension Dm = 2. An estiInate of the fractal

dimension Dm, the correlation dimension, is obtained by estimating the average numher

of pairs within a certain distance L (showed in fig. 3-2).

Performing the same analysis as Lovejoy et al. [68] we <Jbserved scaling over roughly

the same range (l to 5000 km) and the dimension obtained is also almost the sarne (they

obtained = 1.75 and we got 1.79). It is expected that there will he sorne difference in both

dimensions since they studied the WMO network (9563 stations). The network Wc

analyzed cont:lÏns 7983 stations. Apart from the fact that both networks follow similar

g';ographic and economic constraint for their location, most of the stations are parts of

69



70

both networks4. This explains the similarity in the correlation dimension of the two

6.0 6.5 7.0

La g 1 0 L (m l
FiMe 3-2: Log of numOOr of pairs of stations against the log of the distance OOtween two
stations. The solid line is the oost mean square regression line fitting the data, the slope of
this line gives the correlation dimension of the rain gauge network.

The estimate of the fractal dimension of experimental data is usually carried out by

• networks.
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•

box-counting, a technique that consists in covering the embedding space into non­

overlapping boxes of size L, and counting the number of boxes containing at least 1 point

OOlonging to the set under study, repeating this for different values of L. Since N - L-D

the absolute slope of the 10g(N) vs. 10g(L) curve gives the fractal dimension.

The box-counting and correlation methods have different advantages and

disadvantages. The fundamental difference OOtween the two is that the correlation method

involves frequent sampling of rain near clusters of stations; in this sense it is biased. In

comparison, box-counting uniforrnly samples space since the boxes form a disjoint

covering. Another difference is that with correlation methods it is easier to take into

account the eanh's curvature than with boxes or grids. This makes it more sensitive to

low probability events OOcause on a fractal it is more likely that a point OOlonging to the

4 Unfortunately we have no quantitative informations 001 this.



fractal will, be near another point on it than a point taken at random. In this way it makes

• more intensive use of the data than box-counting. The main disadvantage to the

correlation method is that we have to remove this bia:; frr m the analysis.

m.2.2 Multifractal Analysis of the network:

(Mono) fractal techniques consider the measuring network as a geometric set of

points. The significant advances were the recognition that the exact positions of the

individual stations not the fundamental problem and the introduction of the scaling

hypothesis. However. only one exponent was used to describe the scaling (the scaling of

every statistical moment was expected to be derivable from it. it proved to be a particular

case). With multifractals. the quantity of interest is the number density of measuring

stations. We will empirically show that it is approxirnately a scale invariant measure

underlying the actual station locations. This treatment of the stations is similar to that

used in the characterization of strange attractors where the multifractal probability

measure defines the probability of fmding the system in a givcn state is stable under a

change of initial conditions but the detailed distribution of points on the flow or mapping

may vary a lot from one realization to another. Here an infinity of exponents (a scaling

function) is needed to characterize the scaling behavior. one for each statistical moment.

m.2.2.1 Power Spectrum:

In order to gel a good idea of the limits of the scaling regime. the flfst step we take

when performing any of the analysis presented in the following sections of this chapter is

to estimate the (isotropic) energy (power) spectrum which is the modulus squared of the

Fo·mer amplitudes integrated over all angles in Fourier space and ensemble averaged

over all realizations of the process. Since the field for the density of stations is distributed

on a sphere we should really use a decomposition into sphcical harmonics rather than
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Fourier analysis, however for simplicity, we chose to perform the analysis on equal area

• projections of portions of the earth and use Fourier spectra. For each projection we

generated 10 maps of 8000 by 8000 km sections of the earth (5 in the northern

hemisphere and 5 in the southern) centet,:d 72' of longitude apart. We then aVe'taged the

power spectrum of aIl the sections. One of these results is shown in figure 3-3. On this

figure we see that there is a region in the low frequency range that could be fitted fairly

weil by a straight line. This indicates that scaling is respected in the range of 200 te. 8000

km. For aIl the projections œsted (Mercator, Aitoff, Sinusoidal), the scaling region is the

same (as it should be) and the slope of the best fitting straight line in this region (the

spectral slope ~) is 0.63 ± 0.13. This V:llue will be used to determine the multifractal

parameter H aft'~r the orner parameters have been determined by other methods. The

regular oscillations in. the power spectrum seem to b caused by a large localized

concentration of stations in real space.
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Power spectrum for the density of station field using the Aitoff equal areaFigure 3-3:
projection.



•
m.2.2.2 Probability Distribution / Multiple Scaling:

This approa.ch is lUl effort 10 apply directly eq. 3.13 which is a fundamental property

of multifractal fields. We desire to obtain directly the c(y) from histograms using the

"Probability Distribution Multiple Scaling" (PDMS) technique. (Lavallée et al. [60]) and

from there estimate the universal multifractal parameters.

The memod b oased on:
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(3.13)

and consists in plotting log Pr vs log 1.. for y constant. In this manner it accounts for the

non unity prefactors in equation (3.13).

We partition the globe with a 256x256 grid using the sinusoidal (equal area)

projection, estimated me density of stations in each grid element and from mere we

estimated me different probabililies. Some of me log Pr vs log 1.. curves are presented in

fig. 3-4. We see that good scaling is observed for 0 :$; log 1.. :$; 2.0 (i.e. from 200 km to 20

000 km). c(y) i~ obtained from the slope of mese lines and are reported on fig. 3-5.

We could already note that for high values of Y. instead of foUowing universal relations

we observe a linear behavior mat is assodated with a frrst order multifractal phase

transition will be explained in me next section. The straight line for large ys !las a slûpe

of qD = 3.6±O.1 as expected. A value close to mis one (qo = 3.7±O.I) is observed on the

histograms. On fig. 3-6 we show loglo Pr(P.. > p) vs loglo p. P being the threshold

density. For this figure we used = 800 km x 800 km grid elements (which is well within

me scaling range).
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Figure 34: PDMS analysis on the network. Log of the probability against the log of the
scale ratio ï.. for different values of the singularity order y varying in steps of 0.1 from y=

o(empty squares) 10 y= 0.8 (filled circles).
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Figure 3-5: c(y) vs. y for the network deduced from the previous graph as weIl as a

theoretical cW'Ve with the parameler obtained by the DTM technique (solid line); i.e. a =
0.85 Cl = 0.37 and H = O. The straight ;me has a slope qD = 3.6±O.1.

•



• 0

..... 20.
/1

o."':
- 4--..0.

Q-CI - 6,g

- 8
- 5 • 4 - 3 . 2 • 1

log P
1 0

Figure 3-6: log of the probability of finding a density of station greater than p in a circle

of 800 km against log p. The asymptotic slope gives directly the exponent qo that we
estimate to he 3.7±O.1.

In orl1<:r to estimate the different universal multifractal parameters we tried to fit eq

(2.11) with the data of fig. 3·5. Non-linear curve fitting algorithms such as the

Levenherg-Marquant [98] or the simplex method [126] failed badly to converge to a

solution. The regœssions problems are very likely due to the high degree of correlation

between the parameters and the limited range of 1s accessible to our analysis. The

theoretical curve shown on the same figure was calculated using the parameters obtained

with the double ttace moment technique. A method that we used in the previous chapter

and the results on this particular field will he presented in section 112.2.5.

m.2.2.3 Sampling limits, detectability and Multifractal Phase transitions:

The scaling exponent functions have analogs in thermodynamics (Tél [127], Shuster

[122], Schenzer et al [117]). The probability description (y, c(y» is the multifractal

analog of the (energy, entropy) description of standard thermodynamics and the moment

• description (q, K(q» is the analog of the (inverse temperature, Massieu Potential)
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description. Discontinuities in these funetions (phase transitions) could he caused by two

• different statistical mechanisms (these are very different from the "high temperature"

transitions discussed in relation ta strange attractors). Finite sample sizes gi';e rise to

second order transitions. First order phase transitions (discontinuities in the frrst

derivative of moments function) occurs for.larger samples and are due to divergence of

moments tha: take place when a cascade process is obse...ved at a scale larger than its

homogeneity scale (the smallest scale used in building the process), Le. il appends for

dressed cascade processes.

When an investigation of a multifractal process is performed we will typically have NS

independent realizations, cach of dimension Dand each covering a range of scales À.

With more realizations (increased Ns) a larger portion of the probability space will he

(3.14)D =10gN,
, logÀ

explored. Thus, extreme but rare events that were missed with a smaller sample will he

encountered. The extent of the portion of the probability space sampled can he quantified

by the sampling dimension Ds (Schertzer and Lovejoy [114], Lavallée et al [60]). From

eq. (3.13) and using the fact that there lll"e a total of N. Ns = ÀD+Ds structures in the

sample, the dimension corresponding to the highest order of singularity likely observed

with Ns independent realizations is given by:

c(1,) =D+ D, =Â,;

where Â, is the overal1 effective dimension.

When 1, <10' the upper bound 1, for observable singularities leads to a second order

multifractal phase transition. The Legendre transform of C(1) with 1> 1, leads to a

spurious linear estimate Ks instead of the nonlinear K for q > qs; q, = c' (1,) heing the

maximum moment that can accurately he estimated. Ks(q) will follow the relation:

K.(q) = 1,(q - q,) +K(q,) q ~ q,

(3.15)

•
K,(q)= K(q)

This is a second order phase transition associated with a jump in the second derivative of

the (free energy/Massieu potential; ÂK"(q,) = -K"(q,)).



(3.16)

When constructing a cascade process, me multiplicative iterations will generally be

• performed down to a scale 1'\ (me inner scale of me process), but it will generally be

observed by spatial and/or temporal averaging on scales l» 1'\ (wim corresponding

adimensional quantities Î.. = L Il, A = L 11'\, L being me outer scale of me process). The

variability at me. observation scale ratio À may be wilder man me corresponding field

obtained by stopping me cascade at me same scale ratio. We say mat me observation is

dressed by me small scale activity, and mat the process wimout smaller scale activity is

bare. For small ,,/s this won't affect their computed values. Above a certain critical

singularity order 'Yo the dressed codimension will be determined by maximizing the

probability (minimize c) with the only constraint being me convexity, the dressed

codimension (Cd) \\i11 mus follow me tangent and me dressed quantities follow:

Cd('Yd)=qO('Yd -'Yo)+c('Yo) 'Yd ~'Yo

Cd ('Yd)= C('Y) 'Yd $'Yo

where qo = c' ('Yo) and is me slope of me algebraic fall-off of me dressed probability

distribution, il is the critical order of divergence of statistical moments «(eq
) = 00;

Kd(q) = 00, q ~ qo). Schertzer and Lovejoy [106, 107, 109] have shown that~ is the

solution of:

77

(3.17)

(3.18)

(3.19)

When 'Ys < 'Yo , it is important to estimate me maÀimum observable dressed

singularity for a given sample size with 6.s = Cd ('YdoS) by taking me Legendre transform

of Cd wim me restriction 'Yd < 'Yd.s' The fmite sample Kd.s (q) is given by:

Kd.s(q) = 'Yd.s(q -qo)+ K(qo) q> qo

Kd.s(q) = K(q) H< qo

For Ns ~ 00, 'Yd.s ~ 00 and for q > qo, Kd,s (q)~ Kd(q) = 00. For a large but finite

NS mere will be a high q (low temperature) fmt order phase transition corresponding to a

jump in me fll"St derivative of K(q):
AV'( . K ( ) K'() . 6.s -c('Yo)
un. qoj?E ds qo - qo. ='Y"s-'Yo=

• u, qo



•
for small samples (~s = C(1D)' this transition will be missed, the free energy simply

becoming "frozen".

Later on we will estimate (using the double ù.-ace moments method) that Il = 0.85,

Cl =0.4 and H = 0 for the network station density. Since we have ooly one realization

(Ns = l, Ds = 0, ~s = D = 2, c("(J=2), we estimate with the universality relations (eqs.

2.11 and 2.12) that'Ys =0.9. froti1 C!. =c· (1.) we obtain CIs = 7.3. However we already

mentioned that C(1) manifest a linear behavior before reaching this limit. We interpret this

result as a manifestation of a first order phase transition with: CID =3.6±O.1; c(îb) = 1.1;

10 = 0.7. This is in agreement with the observed probability tai1 (fig. 3-6) reported for a

scale in the sçaling regime (we estimated CID =3.7±O.1).

m.2.2A Trace Moments:

This is a technique that deals directly with multifractal measures. It is a generalization

of thl:: partition function approach of Hentschel and Procaccia [43], Grassberger [41], and

Halsey-et-al [42], although since we are dealing with stochastic processes, it also involves

ensemble averaging. In this method, contrary to the double trace moment method (DTM),

no functional form of K(q) is assumed. It is only in a second step that claims about

universality could be made.

The simplest method we used to obtain the scaling exponents K(q) is to estimate the

statistical moments of order q at different resolutions. Since our data. set is distributed

over a sphere. we first hav~ to derme the field at a resolution À. We chose to use grids

such that each box has the same area. This is easily accomplished. We partitioned the axis

of the globe into slices of equal z (where z is the length of the projection of the slice onto

the axis that goes from the center of the earth to the north pole) so that the area of the

intersection of each slice with the earth's surface will be the same. We pnrtitioned the
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globe in sUces of equal longitudes. The intersection of those IWO partitions gives a

• coverïng with boxes of equal areas. We also tried displacing the poles of this partition 10

check for po~>Îble N-S/E-W dependence on the grid chosen due 10 the fact thal the boxes

do not all have the same shape (boxes near the poles are elongated in the north-south

direction while boxes near the equator are elongated in the easl-west direction). No

significant differences were observed. The coarse graining process is performed in an

isotropic manner. It doesn't matter that the boxes have a preferred orientation. We should

also not confuse this with possible :urisotropy of the field under study. For example, the

raingage network shows sorne anisotropy that manifests when we perfonn quasi-ID

analysis like the one that is presented in appendix B.

At a certain box size Â. for a series of values of q we estimale:

(pi) = Nb1(Â.) i~b(f!rY (3.20)

where PÂ. is the density of stations (= ni 1Â.-2 for the box i) and Nb is the number of

boxes needed to disjointly cover the sel. Then we repeat the procedure for different box

sizes Â.. This procedure was implemented in a very efficient manner, that avoids spending

calculation time on empty boxes. using the Hunl and Sullivan [49] algorithm (explained

in appendix A). Figure 3-7 shows the results of this analysis for a few values of q. We

can see that the scaling is observed in the range 0 ~ log Â. ~ 2.0 (200 10 20 000 km:

roughly the same as before). In previous section we mentioned that for a multifractal field

(pi) - Â.K(q) so by taking the slope of the curves of fig 3-7 in the scaling region we can

deduce the K(q) function that is shown on fig. 3-8.
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We fitted the K(q) function to the fonn given by eq. 2.12 by the Levenberg-Marquant

• Method (Press et al. [98]) using the portion of the curve expected to follow this relation.

We obtained Ct = 1.0 and C I = 0.23. The theoretical curve for these parameters is alse

reported in fig. 3-8. On this figure we observe for large q a 1inear behavior, the

multifractal phase transition explained before, for q>qD ~ 3.6, aI.d as expressed by

relation 3.18 whose slope is estimated as 'Yd,s =O.8±O.1. TIlls is comparable to what can

be directly observed in fig. (i.e. 'Yd,s =0.9). For smal1 values of q the fitted K(q) doesn't

follow the experimental data points either. This can be explained by the fact that this

portion of the curve is determined by small values of the field, since the number of

stations is an integer number we miss very small values of the multifractal field. This

implies an effective detectability limit that can be expressed by a minimum correctly

estimated moment <!min and correspondingly a 'Ymin' We estimate 'Ymin by the slope of the

linear portion in the small q region and we obtain 'Ymin = 0.2±O.1 from which we deduce

~ =0.6±O.1. TIlls effect will be further discussed in a following section were we build

up a simulated network.

III.2.2.5 Double Traœ Moment Analysis of the network

We wish to apply the same technique that we used on reflectivity fields (previous

chapter) te estimate the universal multifractal parameters describing the scaling of the

raingage network. The fust step in applying the DTM technique is to check the scaling

range ofvarious moments. Figure 3-9 shows 10gTr((<plt) vs. log À. for q = 2. We used

a 256 x 256 regular grid (sinusoidal projection) to analyze the density of stations. As we

can see, scaling is observed for log Trace moment vs log À. (for different values of q, 11 =

1) in the range 0 ~ log À. ~ 2.2 which, as expected, is roughly the same as what we

deduced from fig. 3-7. From these curves we obtain by linear regression over the scaling

region the double trace moment that we show on fig. 3-10. On this graph we have plotted

log IK(q, 11)1 vs. log 11. From a regression on the straight portion of this curve we deduce
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•
that for the network 0: =0.8S±O.2 and Cl =0.35:i:O.1. On the same figure we have plotted

the result of the analysis for a simulated field using the estimated parameters and a

simulated network consisting of 7CJ77 stations generated from this simulated field (details

of the simulation are given in the next section). These three curves will serve to illustrate

t,vo important points about the double trace- moments technique. First we note that for

high values of 1'\ all the curves become flat. This is because eq. 2.20 breaks down

whenevermax(q1'\, q) > min(q,s,qn). We observed a break in K(q) forqD = 3.6 ± 0.1. This

break was interpreted as a fmt order phase transition. It is reflccted in K(q,1'\). For the

value of q that we used (q = 2.0) we expect the br-..ak to IlCcur for 1'\ '" 3.6 (log 1'\ '" O.SS)

which is observed. The second point that fig. 3·10 illusttates is the behavior of the

moments for low values of 1'\. The curves for the real li:.1d the simulated network depart

from linearity. In this region of the curve the analysis depends on low values of the field

and since we only have a fmite number of stations the low values of the density field will

be badly estimated leading to a rleparture from linearity in the log IK(q, 1'\)1 vs. log 1'\

curves. This effect will show whenever max(q1'\,q) < qmin. In the previous section we

estimated that CIrnin = 0.6 ± 0.1 and indeed this corresponds to the break observed in the

K(q,1'\) curve.

Now that we have an estimate of the CL and Cl parameters (0: = 0.8S±O.2 and

Cl =0.3S±O.1) and that we know the spectral slope 13 we are able to determine the third

pararneter H. By the use of equation 2.21 we obtained H = O.OS ± 0.1.
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• rn.2.2.6 Simulation of the network

In the previous sections we presented some results for a s;mullitee! neN.'ork. These

simulations were mainly used to test the different methods and to venfy our

understanding of the different techniques. In this section we will present some more

details on the method usee! to produce those simulations and sorne further results. We

show a simulated network in fig. 3-11

Fjgure 3-Il; Position of the 7077 stations for the simulatee! network usee! for testing the
different methods.

The simulations were performee! using a discrete cascade (Schertzer and Lovejoy

[109]) on a 256x256 grid (this is roughly the observee! range of scaling found empirically

for the network. see fig 3-9). The field producee! by the simulation with the parameters

deducee! by the DTM method was taken as the density field. Wa multipliee! this field by

the expectee! total number of stations in arder to obtain a simulatee! network with a total

number of stations near the total number of stations in the real network that we linaIyzed.

With the same total number of stations we should be able to reproduce roughly the same
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Ymin as the real network since Ynùn =logpnùn /log/... We rounded the nwnber of stations

in each box to the nearest integer value. Within each box we distributed the stations

according ta a uniform random distribution and then extraeted a database with the same

resolution as the real network. Note that bath the total scaling range as weIl as the total

nwnber of stations are important parameters in the simulation.

We estimated the usual statistical moments using the regular grid (fig 3-12). As we

can see the simulation is in very good agreement with the scaling properties of the real

network. We were even able to reproduce the scaling break due ta the finite nwnber of

stations (introducing the homogeneity scale). Figure 3-13 shows the c(y) curve obtained

by the PDMS method. Here again the empirical and simulated curves are in good

agreement. From the statistical moments on a regular grid of fig. 3-12 we produced the

K(q) curve for both networks (fig. 3-14). We can see that except for smaIl differences for

large q. bath curves faIl on top of one another. It is also the case for the DTM technique

shown in the previous section (fig. 3-10). The departure from the theoretical curve is due

to the fmite number of stations which result in a minimum value of q and y for the

analysis is valid (as discussed in section ill.2.2.4).
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(3.21)

• 1II.3 übtaining Infonnation About the Measured Field: 'The Example of Rain

ill.3.1 Conected Double Trace Moment Analysis of the rainfield

Now that we have a weil characterized network it is possible to get sorne information

about the statistical properties of the spatial distribution of the field of interest: here the

min field. Tc extract the infoI'IIlation for the min from the network, we assume (as a frrst

approximation) that the rain and the network are totally uncorrelated phenomenon, e.g.

we ignore the problem of correlations between rain events and the physicallocation of the

stations (such as the so-called "island effecth which may give subtle biases to rain

estimates over the ocean, etc..). In future, the problem of correlations between the

network and climatological rainfall which theoreticaJy can he dealt with by considering

joint probability distribution between rainfall and the network and using vector

singularities as outlined in Schertzer and Lovejoy [115, 118].

A station measures the rainfield only over a fmite area around its location. Consider

the sum over the ith grid box (or circ1e) scale Î.. (B,) of the raw rainfall5 (Ml)

accumulations raïsed to a power Tl: I,Ml. The subscript A is used in the sarne sense as
B~.

eq. 2.17 for the DTM, it is the spatial scale associated with the (daily) accumulation

period (averaging in time will smooth in space at a scale determined by the corresponding

space/time transformation). Perhaps the simplest derivation is as follows (see Tessier et al

[129] for a slightly different presentation). Consider that at the finest resolution A the

station density is an indicator function Ph of the measurements of RA; at scale Î.., the

measured rain is the product: MÀ, = PÀ,RÀ,' The trace moments are given by:

TrÀ,(Ml) =TrÀ,(plRl) =Î..KM(q,T\)-(q-I)D =Î..K,(q,T\)+KR(q,T\)-(q-I)D

It is now straightforward to see that

88

(3.22)

5 We consider that the original measuremenlS Mi have an inlrinsic (generally unknown) resolution h To
circumvent titis problem we raised the raw daIa to the power TI.



• since p" is an indicator function, we can make the following approximation:
K,,(q, TJ) = Kp(q,l) (3.23)
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Note that this approximation only holds at the s:;ale A where PAis necessarily a 1 or 0;

p~ =P"

The measured multiple scaling function KM(q,TJ) can readily be used to determine

KR(q,TJ) by exploiting the fact mat KR(q,O) = 0, hence:
KM(q,O) = Kp(q,l) (3.24)

KR(q,TJ) = KM(q,TJ)- KM (q, 0) (3.25)

The 10g(TrÀ.(q>~t) versus logO.) before corrections are shown on fig 3-15. We can

see that scaling is observed over a large region. From such an analysis we obtain the

(network corrected) values cr; = 1.35 ±O.1 and Cl =0.15 ±O.05 as may be seen on fig. 3­

16 where we have ploned 10gIK(q,TJ)1 vs. 10gT] for q = 0.5, 1.5 and 2.0. The log TJ

horizontal asymptote at K = 1 is close to the accuracy of the estimates of K.

The third pararneter H also needs corrections that can be obtained from the following:

J.""M~ = Â.H'p~Â.H·R~ = Â.H,+H·p~R~ (3.26)

where the primes designate the corresponding conserved quantities. Here the degree of

non-conservation H for the "true" process is simply given by the difference

HM -Hp =~(~M-~P) which can be deduced with the formula 2.21. In the

determination of ~M (see fig. 3-17) we fined only the region over which good scaling was

observed with other methods (Le. 400 to 8000 km). The estimated spectral slope is

~M = 0.2 ± 0.2. Since we have already estimated (from fig. 3-3) that Hp =0 ± 0.1 and

KM(2) =1 ± 0.1 we therefore obtain HR = O.2± Q.3•
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ill.3.2 Trace Moment Analysis of the Rain

As we have seen with the analysis of the network, more information could he gained

with the (single) trace moments. In particular a hetter estimate of the range of validity of

universal relations (eqs. 2.12).The correction scheme we have developed for the double

trace moment could also he applied to regular trace moments. Taking Tl = l, in equation

(3.25);
KR (q) =KM (q) - Kp(q) (3.27)

The 10g(Mi) versus 10gÎ.. curves are shown in fig. 3-18. The scaling range is slightly

smaller than for the network. We observe scaling over the range: 0 ~ log ï.. ~ 1.8. From

this we deduce the KM(q) function which is shown in fig. 3-19. AIso shown in this figure

•
are Kp(q) and KR(q).



92

32t1o
-6

Log 10 Â.

Fj~re 3-18: Log of the statistical moments against Log of the scale ratio Â. for the
network for moments of oIder q = 0.3, 0.8, 1, 1.4, 2.1 (from top to bottom). The arrow
indicates the approximate lower limit of the scaling range of the rainfieid.

4 • -l• ';",,2

~

v= 0-CI
0

...J •-2

-4

9...---------------"".......,

......
.,.5.....
:.t

3

-1
108642o q

Figure 3-19: K(q) vs. q for the measured rainfall (filled diamonds), the network (empty
circIes) and the corrected rainfall (filled squares). In the high q region straight Iines have

been fitted in oIder to obtain 'YR d,s' 'YM d,s, Yp d,s·



• 0.15-r----------------,

0.50

-C" 0.25........
~

0.00

31
-0.25 +----.----,r---':::.-....---r--....---;

o 2
q

Figure 3-20: K(q) vs. q for the correctt>,d rainfall determi'led using the regular grid
showing the asymptotic linear regions of t.l:le curve whose sbpes give 'Ymin = -0.13 (small

q) and 'Yd.s = 0.21 (large q). The continuous Une was calculated using the parameters CL

and Cl obtained by the DTM method.

In order to interpret the empirical K(q), we estimare the maximum value of q attainable

(due to samplù>g effect) with the dataset The number of realizations investigated is 365

(one each day for a year) but since we observed a scaling break at lime scales of roughly

16 days (see chapter IV), if we interpret this as an outer scale for the scaling regime we

obtain:

N=365=23
• 16

where N. is the number of independent rea1izations since we observed scaling of the

network for 0 > log Î.. > 1.8:

D = log23 =0.76
• 1.8

•
the dimension of the embedding space is 2, 6.s =D+Ds = 2.76



With the fined parameters for the rcinfield (Le., a = 1.35, CI = 0.16 we thereforee estimate that Ys = 0.95 and Cl. = c'(yJ = 7.0. Howeve.· the rainfield rnanifests a divergence

of moments for qD < 7. The point where the CUive calculated from the estimates of a and

Cl obtained \Vith the DTM method and the experimental points depart indicates a value

of (J.o = 2 ç(lrresponding to î'D = 0.3. Many estimates of CID (rnainly from histograrns) can

he fowld in the Iiterature (see table 3-2). Our estimate is comparable to the ones cited. At

the present time, it is still not clear if the spread L'1 the different estimales is due to the

accuracy of the different 'Jvaluations or if reflect more profound differences between the

dataset used. From the asymptotic S]'1pe of K(q) (large q region) we can estimate a Yd,s for

each of the three cwves of fig. 3-19. We obtain 'YM doS = 1.1, Yp d,s = 0.8 and 'YR doS =0.3.

With eqs. 3.18 and 3.27 we can see that:;~ doS = YM doS -Yp doS is approximately verified.

In the smaIl q region (fig. 3-20) we calculate the minimum observable singularity. Ymin ~

-0.13 ± 0.1. As before, 11Sing q =c'(y) we deduce ~in =0.2. Table 3-1 surnmarizes aIl the

quantities we have estimated for the raingage network density field and the rainfield.

a Cl H lis "ls qD "ID !LI S "Id S qmin "lm;n
Network 0.85 0.37 0.05 7.3 0.9\ 3.6 0.74 3.\ 0.7 0.6 0.2
Rain \.35 0.\5 0.2 7.0 0.95 20 0.30 2.0 0.4 0.2 -0.1
Table 3-1: Su=ary of the universal multifractal parameters estimated for the raingage
station density and the rainfield as well as phase transitiol:s critical points for these fields.
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Montréal

Western Canada

Nîmes-Courbessac

• Data Types Locations

Radarrain Tropical Atlantic
differences (space)
Radarrain Tropical Atlantic
differences (time)

Radar reflectivity Montréal

Vertical pointing Montréal
radar reflectivity

Daily raingages
accumulations
Tipping bucket
gages
Tipping bucket
gages
Rain drop volumes Hawaii
Daily raingages World
accumulations

qD

2

1.7

1.1

3.0 (rain)
2.4 (snow)
3.9 (bright band)
2.6

2

2.5±O.5

1.9±O.5
2.0

References

Lovejoy, 1981 [62]

Lov<:joy, 1981 [62],
Lovejoyand
Mandelbrot, 1985l66]
Schertzer and Lovejoy,
1987 [109]
Duncan et al., 1992
[28]

Ladoy et al, 1991 [55]

Zawadzkï. 1987 [142]

Segal. 1979 [124]

Blanchard, 1953 [8]
This thesis
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Table 3-2: A companson of vanous empmcal estunates ot the divergence ot moments
exponents qD. Adapted from Lovejoy and Schertzer [74].

IlIA Conclusion

The inhomogeneity in the spatial distribution of stations of geophysical networks has

always been a problem. Different techniques have been used to attempt to solve this

problem but the recognition of the scale invariant properties of at least sorne of these

networks is very recent. The first scaling attempts treated the problem by considering the

location of stations as a set of points with fractal properties. We proposed a different

approach. What matters is the density of stations field underlying this set. This field can

be multifractal. For the global raingage network we have shown that it is the case. We

established that scaling is observed over the range of scales of 200 km to 8 000 km.

Using different techniques: (single and double) trace moments, PDMS and spectral

analysis, we were able to estimate that the universal multifractal parameters for this

network density field, which ;lIe lX = 0.85±O.2, Cl=O.4±O.2 and H = 0±0.2. This universal



multifractal behavior could be observed for K(q) between qmin = O.5±O.6 and

• qD =3.6±0.5. Below qmin there are not enough stations to get a good estimate of the

scaling function and above qD divergence of moments causes a fust order phase

transition in the scaling functions. These transition points have analogues in the

singularity space. By Legendre transformation we could derive the minimum observable

order of singularity 'Ymin = O.2±O.1 and the maximum observable order of singularity is

'Yd,s =O.7±O.1.

In the previous chapter we presented evidence for multifractal behavior i)f different
•

remotely sensed fields related to atmospheric water. Based on some early analysis

(Ruben and Carbonnel [45, 46, 47], Lovejoy and Schenzer [71, 73], Schenzer and

Lovejoy [109]) pointing in the direction that surface rainfall should also be a spatio­

temporal multifractal field. Removing the network bias with the help of a new framework

("multifractal objective analysis ") amounts to replacing the usual small scale

homogeneity and regwarity assumptions (implicit in standard "objective" techniques such

as Kriging) by more realistic scaling (inhomogeneity) assumptions. We introduced the

idea that the measured field is the product of two multifractal fields: the density of

stations and the analyzed field (in our case the daily rainfall accumulations). The

corrections could then be expressed as simple subtraction of scaling exponents and

spectral slopes. We tested this technique, and found that it seems to hold fairly weil over

the range of scales of 400 km to 8000 km. We estimated the universal multifractal

parameters and obtained a = l.35±O.2, CI=O.15±O.1 and H = 0±0.3. These values of a

and Cl are compatible with estimates of thése parameters for the spatial variability of

radar reflectivities. It could be justified by the fact that a transformation such as the semi­

empirical Marshall-Palmer relation which is widely used for converting reflectivities into

rainrate (Z=aRb) conserves the value of a. The limits to this universal multifractal

behavior are qmin =O.2±O.5 and qo =2.0±0.3. The corresponding point in the singularity
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space gives a minimum observable order of singularity 'Ymin = -O.l±O.l. and the

maximum observable order of singularity 'Yd,s = O.3±O.1.

We developed a new method to treat the problem of multifractal fields sensed by

inhomogeneous (multifractal) networks. We applied it to global rainfall but we think that

the method will he most helpful for the analysis of many other geophysical fields that

presents the same difficulties such as the temperature, pressure, pollution records,

earthquakes and many others. The interpola'don proble:n which has been up to now the

work-horse of the objective analysis practitioner will certainly have to he revisitcd since

all the usual methods do not consider the basic scaling properties of bath the measuring

network and the analyzed (but this is at least another thesis!).
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ChapterIV

The Temporal Scaling ofWater Fields

IV.l Spatial and temporal scaling:

We have discussed the spatial variability of various fields related to the distribution

of water in the atmosphere, we now turn our attention to the problem of temporal

variability. There are many reasons for studying this variability. In many applications

knowledge of how the rainfall intensity at a point varies with time is an important issue

all by itself. More fundamentally,. the relation between the spatial and the temporal

variability of turbulent fields is an outstanding theoretical problem. An understanding of

the space/time relation is necessary in estimating water budgets as weil as in making

predictions (as is already recognized by various data assimilation schemes). Probably the

Most cited and widely used method of relating time and space is "Taylor's hypothesis of

frozen turbulence" (Taylor [128]) which basically states that temporal (t) and spatial

averages (l) are related by a constant velocity (v) in a relation of the form 1 = vt.

Although this hypothesis has been widely used since the 30's in both atmospheric and

laboratory turbulence, zawadski [141] was the ftrSt to give it a (limited) test in rain using

radar data. Although turbulence in the atmosphere is not "frozen", a statistical version of

the hypothesis might still apply: Le. the statistical properties in space and time are the

same (if appropriately rescaled using a velocity parameter). If this statistical version held

then rain would be isotropic in space-time. Recently Lovejoy and Schertzer [73] have

analyzed lidar data of rain indicating that an anisotropic generalization of Taylor's

hypothesis (discussed below) based on a turbulent (Le., scale dependent) velocity is more

appropriate than assuming frozen turbulence and space-time isotropy. Below we do not

presuppose any specific relation between time and space: we seek to determine the
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universal parameters characteristic of the process in rime and in space separately. This

• will provide us with some of the information needed to determine the space-time

transformation operator, an issue that is still under ar.::ive development

IV.2 Functional Box Counting on time series

The fmt analysis we performed in the rime domain was using Functional Box

Counting analysis ('....ovejoy et al. [70]). It consists in performing ordinary box-eounting

on sets obtained by thresholding the rime series. In this analysis the distance used was the

difference in time between events, we did this for every station, and accumulated the

number of events for al! stations (this corresponds to intersection of the measurements

with the rime axis). As we can see on figures 4-1 and 4-2 when the threshold value is 0

we get a dimension of nearly 1 which is to be expeeted sir.ce it only means that reports

were distributed uniformly (missing reports were uniformly distributed in rime; there was

no significant clustering). The dimension decreases as expected, as we increase the

threshold, this is because the exceedance set for large thresholds are sub-sets of those of

smal! thresholds. As we increase the threshold an interesting phenomenon appears: we

get a break in the scaling at rimes between 10 and 20 days, It is interesting since this rime

duration corresponds to the so cal!ed "synoptic maximum" (Kolesnikov and Monin [52])

which is generally interpreted as being the time that takes a perturbation to spread al!

over the world. This makes sense in the context of Taylor's hypothesis of frozen

turbulence where each space scale has a corresponding rime scale. We can see two

different scaling regimes; the first for rimes smaller than the synoptic maximum and the

second for rimes longer than this. Huben and Carbonnel [45] also observed a scaling

break at rime scales comparable to what we obtained; they got a break around 8 to 16

days for their daily rainfall accumulations for a time series of 214 days compiled for

Dedougou (Burkina Faso), and they observed a break between 5 and 11 days for their

hourly rime series compiled for a nearby location. Larnder and Fraedrich [57] observed a
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break for the same period in a spectra for daily rainfall accumulation on a 45 year period

• for a station in Germany. Lovejoy and Schertzer [69] and Ladoy et al. [55] obtained a

similar result for surface temperature spectra in France.

Although it would be possible to estimate the K(q) scaling function and then the

universal multifractal parameters with this technique experience proved that it is not

efficient to do so. These results are presented because they constitute one of the best

demonstration of the two scaling regimes present in temporal series of rain. The universal

multifractal exponents will be estimated with the Double Trace Moment, as before.
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Figure 4-1 a: Log of the number of events above a certain threshold against the log of the
rime interval (in days) for different threshold: 0 mm (empty circles), 0.1 mm (empty
squares), 12.8 mm (filled circles) and 10.24 cm (filled squares).
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10.24 cm. There is a scaling break at lime of the order of 10 to 20 days corresponds to the
synoptic maximum.

IV.3 Power Spectrurn Of Daily Accumulation Records
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Another confirmation of the 1 to -20 day scaling regime comes from inspection of

the power spectrum (square of the modulus of Fourier amplimdes) which is shown on fig.

4-3. We had to compromise OOtween the length of the series available without missing

data and the numOOr of reports. The oost compromise we could obtain is with 2000

stations reporting for 128 consecutive days. In this scaling regime the spectral slope (fig.

4-3) estimated by linear regression is ~ '" 0.4. We will use this value later in conjunction

with estimation of II and Cl to compute the parameter H. It will certainly 00 interesting in

future studies to extend this analysis in both directions, especially if we consider that both

(most obvious) forcing frequencies of the system are missc:d. Le. the daily and annual

cycles.
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Figure 4-3: Averaged power spec01lm for 128 days time series of 2000 sites around the
world. The estimated spectral slope is ~ = 0.4.

IV.4 DTM analysis of raingage data

The estimation of the universal multifractal parameters is one of the most

interesting points. For a; and Cl it could he most efficiently performed by the DTM

method that we already used in preceding chapters. We calculated the double trace

moment in ID for a period of 128 days, accumulati.lIg histograms for 2000 stations.

Figure 4-4 shows log Tr((<Illr) vs log À. for q = 2.0. Again, we observe a break around

16 days in the sca1ing. ln order to inerease the statistics we performed the DTM on series

of 64 days for 4000 stations. Since the log Tr((<Illr) vs log Â. curves looked very

similar to the 128 day case we prc.ùuce only the log IK(q, Tl)1 vs log Tl curves on figure 4­

5. From these we deduce, using the 1 10 16 days region, a; = 0.5, Cl =0.6, Recently, many

other analyses have corroborated this estimate. '3lancing at table 4-1 should provide

• convincing evidence that a; lies in the vicinity of 0.5. We aise report a figure (fig. 4-6)
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taken from Schmitt et al where the same values are observed for a 40 years series

• recorded in Nîmes (France) The third parameter H can easily he detennined by fonnula

2.21. We obtain H =o.OS±O.1.
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Figure 4-4: log(TrÀ.(<p~t)versus 10g(Â) for severa! values of" (from top to bottom. TI

= 1.2, 0.7, 0.3, 0.1) for time series of rainfall 128 days for 2000 stations, We used
q =2.0.
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Figure 4-6: 10g(IK(q,T1)I) versus log(T1) with q = 2.0, for daily rainfalI accumulations
recorded in Nîmes (France) for a period of 30 years. The regression !ine gives a value of
a =0.5 and Cl =0.6. ( Kindly provided by F. Schmitt, P. Ladcy).

!V.S Extreme Rainfall Events

In Hubert et al [48] 'Ne used the empirical evidence for a value of a ~ 0.5

independent of the geographic location to explained a curve that could he found in just

about any hydrology book (Jennings [51], Gilman [38], Paulhus [95]. Remenieras [100],

Raudkivi [99]) but that stilliacked an explanation. We reproduce this curve on fig. 4-7.

On this graph we see that for world record rainfalI events the log of the accumulatcd rain

against the log of the duration of the events seems to falI more or 1ess on a !ine of slope

near 0.5. This could he explained in the following manner: consider the extreme rainfall

events occurring within a duration 't. Whenever there is a maximum order of singularity

'Ymax, then the Illwdmum accumulation kA. will he:
A), = Â,-IR), ~ Â,T_-l ~ 'tl - T-

which gives a straight line of slope (1-'Ymax) in log-log ('Ymax = O.5±O.I).
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Figure 4-7: The world's record point rainfall values, reproduced from Raudkivi [99]. 1 ­
Cherrapunji, India; 2 - Silver Hill Plantation, Jamaica; 3 - Funkiko, Taiwan; 4 - Baguio,
Philippine Is.; 5 - Thrall, Texas; 6 - Smethport, Pa; 7 - D'Hani, Texas; 8 - Rockport,
W.Ya; 9 - Holt, Mo.; 10 - Cutea de Arges, Romania; Il - Plumb Point, Jamaica; 12 ­
Fussen, Bavaria; 13 - Unionville, Md.; values from Jennings Jenning, [51]. (+) La
Reunion, France; (0) Paishih, Taiwan; values from Pau1hus [95]. Reproduced from
Hubert et al [48].

There are many mechanisms which ;an give rise to fmite 'Ymax. For universal

multifractals, when Ct ::: l, the orders of singll1arities are unbounded, however when 0 ~ Ct

~ 1 there is a finite maximum order of singularity 'YO given by:

C
y --'­o-l_Ct (4.2)

The limitation of the observable space due to a finite sample that has been

discussed in section III.2.2.3 could also produce a Ymax. Again, using the concept of

sampling dimension Ds = log Ns 1log 1.. where Ns is the number of samp1es and 1.. the

ratio hetween LlJe largest and smallest scales. The dimension of the probability space

explored is D+Ds S c(y). For rime series D =1. The maximum attainab1e y yie1ding a non·

• negative dimension is



•
for ct < l, ct'<ü the following inequality is satisfied:

yJ1-ct( CI )-Ya']$YS $yoL D+Ds

(4.3)

(4.4)
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where the upper bound corresponds to an infinite sample size (Ds -> 00) and the lower

bound to a single sample (Ds =0).

From table 4-1 we obtain that ct =0.51 ± 0.05, Cl =0.44 ± 0.18. Using the ct and

Cl values (and wi'h D = l, Ds = 0). we can make the various estimates of y0' Ys reported

in table 4-1 from which we gel Ys = 0.54 ± 0.20. We see that within one standard

deviation this is cqual to the value deduced from fig. 4-7 (ymu = 0.5 ±0.1). The estimates

from Yo are also quite compatible (1-yo) = 0.88 ±0.31).

There exist presenùy two rather opposite views on extreme precipitation. One

school of thought relies deeply on the notion of the "possible maximum precipitation"

(PMP) considered as a physically based notion. In order to estimate tlJe possible

maximum precipitation at a given location (and impliciùy at a given scale) a sophisticated

analysis of the rainfall process in an attempt to address all its relevant and physical

aspects (meteorology, orography, ete.) is required. However, such an approach is often

considered as remaining too speculative or qualitative, especially with respect to

engineering needs.

011 the other hand, supporters of :;tatistical analysis consider rainf:ùl rate as a

random variable and lime series as a stochastic process. Statistical approaches lead to

rainfall rate probabilities useful in engineering designs. However, without any reference

to any physical processes, the IOle of hydrologists could easily be reduced to fitting

empirical data to ad hoc statisticallaws.

These early results may help to reconcile the two points of '1iew since they are

based on both physics and statistics. Indeed. in our approach the multiplicative cascade



accounts for turbulent processes resulting from nonlinear interactions between different

• scales and fields and lea.ds to the statistical description of rainfall (eqs.2.4, 2.11, 2.12).

We are thus able to give a precise (statistical) definition of lhe possible maximum

precipitation at a given scale: we not only clarify the role of scales for the definition of

the PMP, but also the role of the limited size of samples used for its estimatioll. We

furthermore showed that the two basic multifracta! exponents (Cl, a) determine the

maximum attainable singularities (10 and 1s) and hence the possible maximum

precipitation at a given scale and on a given sample.

IV.5 Scaling Limits and Phase Transitions

It is important to identify when universality is respected, when it is not and the

statistical mechanism responsible for breaking universality. In this section we will argue

that divergence of moments cause a first order phase ttansition in the scaling functions.

As explained in the previous chapter this can be seen on the c(1) vs 1 curve (fig. 4-S). On

this curve divergence of moments is manifested by a linear behavior of slope CiD =
1.9±O.2 following the tangent (at the point 'YI» to the theoretical curve calculated using

the parameters 0.= 0.5 and Cl = 0.6 (obtained by the DTM method) and formula 2.11

from which we also deduce that'YI> =O.S. This ttansition can also be observed on K(q)

(fig. 4-9) At the point q = CiD the slope is 'YI> = O.S±O.l in agreement with estimates from

c(iJ. However, the experimenta! points seem to follow reasonably weil the theoretical

curve for K(q) (without divergence) far above this limit. There is also appearance of

linearity in K(q) for large q. This is expected since in the limit q -> co, for a < l, K(q)

becomes linear with a slope of Cla'/a = 1.2 (around q =10 it looks Iike a linear region of

slope = 1.0). We think that using a larger sample (a few orders of magnitude larger)

should make the divergence more apparent. In the low q region using the first few points

of K(q) (fig. 4-10) we can get a rough estirnate of the smallest 1 that can be detected

•
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because of noise prob1ems. We estimate this limit to be of the arder of Ymin ~ 0.09, using

• universality relations (eq. 2.11) it corresponds to 'lmin =0.3.
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Figure 4-8: c(y) vs Yfor 1-16 days scaling regime of 4000 stations around the world. The
straight line as slope slope qD = 1.9±0.2.
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Figure 4-9: K(q) vs q for 1-16 days scaling regime of 4000 stations around the world.

The theoretical curve for Cl = 0.5 and Cl = 0.6 is given by the dashed \ine and the tangent
at the point q = qD = 1.9 is given by the straight \ine.
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IV.6 DTM on radar reflectivities:

The fixed vertical radar offered the possibility ta study the scaling in the vertical

direction but il also provided good temporal data of the reflectivities that we had just

begun to explore in chapter 2. We will now estimate the universal multifractal parameters

for this dataset. We have already indicated tha! the temporal scaling is weil respected

(fig. 2-24). We applied DTM analysis (on the modulus of the gradient) of a section of

duration 8192 x 2.5 secs (Le., 5 br., 41 min., 20 sec.) and we accumulated statistics for

the 256 levels c10sest 10 the ground. In fig. 4-11 we show the log of the trace moment of

order q against the log of the scale ratio Â. for different values of the exponent 11. Again, it

can be seen that we obtained scaling over the range of 3 orders of magnitude in Â. (60 to

20,000 sec). In fig. 4-12 we show log IK(q,,,)1 vs. log" for q = 0.5 and q = 2.0 from

• which we deduce a. .. 0.7±O.2 and Cl .. 0.5±O.2. The spectral slope for the radar scans



was already found to he ~ '" 1.2 (fig. 2-24) which gives (using the above values of lX and

• Cl) a value of H '" 0.4 (this is close to the value H '" 0.5 found in Lovejoy [62] for

isolated rain SiOrms evolving in time using probability distributions, see Lovejoy and

Mandelbrot [66]).
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IV.7 The theoretical Framework for space/time transfonnations: Generalized

Scale Invariance

If, as we argued, the scaling of cloud radiance, rain reflectivities lind other

atmospheric fields continues from small scales right through the mesoscale (there is no

mesoscale gap), then no large scale forcing velocity can he appealed to in order to

transform from space to rime, and turbulent velocities must he used instead. At scale À

they will have amplitudes VÀ = <EÀ1/3>À-1/3 where À-1 is the scale of the eddy, EÀ is the

energy flux through the eddy to smaller scales (eq. 2.1 with 1 = À-1). Although <EÀ> is

scale independent, <EÀ1/3> =ÀK(1/3). Since K(1I3) is small compared to 1/3, we will

• write it as O. Rather than being scale independent, the space-time transformation will



thus have a scale dependent velocityl v~ = Â.-H with H=1/3+o. The two geophysically

• relevant Taylor's hypotheses therefore correspond to H=O or H=1/3+l5 depending on the

existence (or not) of the "gap".

The theoretical arguments mentioned above make it clear that the turbulent velocity

is likely to be .the relevant one for space-time transformations. The space-time

transformation we infer from the turbulent value of H (=1/3) can be easily expressed in

th~ formalism of Oeneralized Scale Invariance. Consider (x, y, t) space, the space-time

transformation can be simply expressed by statistical invariance with respect to the

following transformation: x~x/Â., y~y(),., t~ tA1-H or using the notation r=(x,y,t),

~=T~l with T~= Â..(l and:
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[
100]

0= 0 1 0
o 01-H

(4.5)

The matrix 0 could also have off diagonal elements to account for stratification and

rotation. The elements of this matrix 0 could be identified using the Monte-Carlo

Rotating ellipse technique. Pflug et al. [97] used successfully this technique to classify

satellite cloud images according to the amount of stratification and rotation present. This

formalism when applied to the space-time problem is expected to he quite complex since

lX for the velocity field is - 1.3 (Schmitt et al. [119]) and we have already seen that lX is

different in time and space for the rain field.

IV.? Comparison of Temporal and Spatial scaling exponents

In our analyses we obtained lX = 0.6. ±0.2 for all the time series of fields related to

rainfall that have been analyzed. In spatial analysis radar scans and daily rainfall

accumulations both give lX = 1.4 ±0.1. The agreement on the values of this fundamental

•
parameter coming from disparate types and sources of data gives us confidence in these

1 Each moment of the rain field will require a different O. For simplicity, we ignore this
complication here.



values, although the theoretical reasons why we should get agreement between doesn't

• stand on fi.rm ground. It is interesting 10 compare these results to those obtained for cloud

radiances. Ifwe take the mean of ail the visible and near infra red images we get a =1.15

± 0.2 and ifwe take the mean of ail the thermal IR images we get a =1.3 ± 0.2 which are

bath (10 within statistical uncertainty) close to the a =1.4 value, especially ifwe consider

all the poorly understood effects that could bias our estimates of a discussed in section

4.1. In this case there is less a priori reason to expect the existence of simple statistical

relation between rain and radiance singularities, although if the values of a were the sarne

such a relation might indeed exist.

The finding that the values of a for spatial and temporal processes belong to

qualitatively different classes of probability distribution (unconditionally hard, a > 1,

conditionally soft, a < 1) has profound consequences because it means that we will

observe qualitatively different multifractal behavior in space and in time. Since a < 1,

there will be a maximum order of singularity =CI/(l-a) = 1.2 in time (see section 2.3)

whereas in space, ris unbaunded (actually in bath cases we will obtain hard multifractal

processes since even in time Cl/(a-l) > 1 implies a finite <ID. We classify the

multifractals in time as being conditionally soft and those in space as being

unconditionally hard. This distinction may also have consequences for the interpolation

and extrapolation problem ("objective analysis" and "forecasting").

•
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• ChapterV

Conclusion

In times of the ecological awareness of society it becomes very important to

recognize the basic properties of the atmosphere. We realize the immensity of this task,

even concentrating on a single constituent (water), it is still a formidable enterprise. The

fundamental knowledge of invariant properties of atmospheric fields, and water in

particular, are still debated. The standard model of atmospheric motions proposed two

regimes, one of two dimensional and one of three dimensional turbulence separated by a

transition zone (the mesoscale gap). It will certainly be very hard to reconcile this theory

with the expetimental evidences presented here indicates the absence of this gap. In view

of this we adopted the alternative unified scaling model, that involves no such transition.

In this model, turbulent fields that are produced by cascade processes and generally result

in universal multifractals. The different analyses we perfonned convinced us that the

different fields relattd to atmospheric water are good examples of such turbulent fields.
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We applied conventional energy spectra on a significant number of NOAA-9

AVHRR images which covered scales (1-512 km) where the standard mode! predicted a

scaling break ('" 10 km). We extended the investigated range with a few LANDSAT MSS

and ME'IEOSAT inuges. We effectively studied scaling from 160m to 4000 km and no

evident scaling break was found, this is a strong support of the unified scaling mode!.

We also used the new Double Trace Moments method to analyze scaling. With this

method we showed that the cloud radiances in aIl available wavelengths are consistent

with universal exponents lX between 1.1 ± 0.05 and 1.35 ± 0.05, CI = 0.1 ± 0.02 and H

between 0.3 ±0.05 and 0.5 ±0.05 with sorne variations depending on the wavelength of

the sensors. Although we conclude that the evidence for horizontal scaling is good, it

• should be stressed that enormous, systematicaIly sampled data sets will be needed to fully



characterize the scaling of atmospheric fields as weIl as their limits. This study provides

• an early exploration of what is largely unknown territory.

Moving on from L!Je horizontal scaling of cloud radiances, we analy.:.e data from a

vertically pointing radar measuring reflectivities of rain with a resolution of 2.5 seconds

in rime, 2lm in space. Here the corresponding scale ratios (the largest divided by the

smallest scale) were 213, and 28respectively. In rime, the scaling was weIl foIlowed o'ler

the range of nearly -20 te 20000 secs. In the vertical, the scaling was foIlowed at high

frequencies, but we found a spectral bump corresponding in size (=1km) to the thickness

of the bright band which was present throughout the sequence. Since other studies with

larger samples (e.g., 20 cases instead of one) found vertical scaling over the

corresponding range, the bump is iikely to he consistent with statistical (sample to

sample) fluctuations. This conclusion is supported by a space/rime DTM analysis which

yielded very similar universal multifractal parameters in global daily rainfall

accumulations (for 1983). Specifically, the degree of multifractality (characterized by o.)

was found (within experimental error) to he the same for the in situ gage measurements

and the radar reflectivities. We estimated tha.t a. '" 0.5 in time and 1.4 in space. This is

perhaps not surprising since a. is invariant under the operation of taking powers (such as

the Marshall-Palmer Z-R relation).

The search for spatial scaling from records of daily rainfall accumulation lead us to

consider the problem of removing the bias introduced by the presence of a sparse

measuring network. We realized that conventional objective analysis methods for treating

the problem such as Kriging made the more or less implicit unrealistic assumptions of

homogeneity and regularity of the field and the network. We dev::loped a new method

that replaces these by scaling assumptions. We called this technique "multifractal

objective analysis". Further more, in these conventional methods the network is

generally considered as a fixed ("deterministic") object, we considered it as a realization

• of a stochastic multifractal process. This hypothesis seemed to he justified over the range
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of scales from 200 km ID 8000 km. Funhermore, it c.()uld be weil de;s..-ribed with U1Ùversal

• scaling exponents a = 0.85±O.2, Cl = 0.2±O.1 and H =0.0±0.1. This is also an

improvement on (mono)fractal, sinCtl with these p::"'QJIleters ail the statistical moments of

the density of stations field could be obtained. Since the resulting field is certainly

dressed, this description is valid between moments of order qmin = 0.6±O.2 and qD '"

3.6±o.l, at these points phase transitions occurs due to deteetability (noise) 1imits (qmin)

and to divergence of moments (qn) that cause a first order transition thus limiting the

range of q where U1Ùversality can be observed.

There is more and more evidence, inCluùi.116 that presented in this thesis, that differem

fields related to atmospheric water are multifractal. It seems natural to suppose that the

rainfield is no exception. The objective analysis problem can be stated in terms that are

very likely shared by numerous geophysical experimentation: how to get the most

information on a multifractal fie!!!. with a multifractal network. In this fU"st study we

assumed uncorrelated field and networks (leaving for future development this problem).

In this view, the measured field is the product of the anZ\lyzed field and the density of

stations. This leads us to simple additive corrections on the scaling exponents describing

the scaling of the different statistical moments. It allowed us to deduce the scaling

properties of the analyzed field from the scaling properties of the measured field and the

network. Scaling was observed on the measured field in the range of scales from 400 to

8000 km. The universal multifractal exponents obtained after correcting for the presence

of the network are a = l.35±O.2, Cl = 0.15±O.1 and H = 0.2±O.3. The critical order of

statistical moments are the detectability lower 1imit Clmin = 0.2±O.3 and the divergence of

moments (first order) phase transition point lJj) = 2.0±0.3.

We discussed at length the spatial proper\ies but ail these fields vary considerably in

lime. Global rainfail daily accumulations provided important information on this aspect

also. We observed th~t in lime there are two distinct scaling regimes with a transition at

• lime scales of 10 to 20 d:tys which corresponds to the "synoptic maximum" where such a

118



symmetry break is expeeted due to the finite size of the earth. Using the time series we

• got 0: =0,5, Cl =0.6 which is in agreement with other works. Again three regions were

seen. One below qmin = O.3±O.l, one above qp = 1.9±O.1 and one between whtre the bare

and dressed properties are the same.

The fact that 0: and Cl for the rainfield are so different when evaluated from a time

series and when evaluated from a spatial field called for a review of the theories about

space-time Ird.nsformation of a turbulent field. Such transformations like the Taylor's

"frozen turbulence" concept needs te he revisited to account for theses different statistical

behavior. Another question that we will have to address is: what is exacdy the accuracy

of the method? The answer to this question will have to rely on simulation and further

theoretical development. For the mocent, simulating the field and the measuring process

is the easiest way to get a good idea of the accuracy of the paramerers we have estimated.

We sketehed how our empirically determined multifractal exponents, combined with

appropriate space/time transformations can enable us to make dynamical multifractal

simulations. These simulations will he necessary to further our understanding of the

underlying atmospheric dynamics. They will help us tame the ubiquitous extreme

atmospheric variability, and may have far reaching implications for remote sensing,

objective analysis, and (stochastic) forecasting.

Also being able to do simulations which have realistic variability and scaling

behavior, that are able to expJain even the scaling breaks induced by the measuring

network will be of great help in designing and exploiting measurement networks for

geophysical quantities. It will also help in testing and improving the current and future

objective analysis schemes used to produce maps used in weather and hydrologic

forecasting.

We identified the range of scales where scaling is observed for different fields related

to atmospheric water. We c::..lculated the universal multifracta! exponents for these fields

• and identified different phases of scaling and their critical points. The exact numerical
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value of the parameters may prove to be not so imponant but a fundamental point that

• should be remembered is that scaling symmetries which were mostiy hypothesis derived

from phenomenological models of turbulence showed up in the fields we analyzed. These

symmetries can be exploited. As an example, we used the scaling symmetries of a sparse

network to deduce the symmetries of the rainfield. ln the future, these properties will

certainly prove useful in estimating missing data points (the old concept of objective

analysis) and in prediction scheme. The utility of such objective analysis techniques will

certainly outpass the hydrometeorologic studies on which this thesis was centered and

find applications in many fields where a sparse network is used to collect measurements.

The knowledge gained on the variability of atmospheric water fields should also be

considered in planetary water, radiation and energy budget which are so important for

global warming (or cooling) studies.

•
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AppendixA

Faster Box-Counting Algorithm

A.l The Hunt and Sullivan Algorithm

121

When dealing with very large dataset in more than one: dimension performing

calculations of the box-counting type could easily become out of hands. The algorithm

presented in this section greatly reduce the memory requirement and the speed of

computation. When performing computations like box-counting or evaluating diverse

statistical moments at different resolution (like we did in the trace moment analysis) the

majority of boxes are empty. These zeros take a lot of place (and rime) this algorithm

adapted from the box-counting algorithm of Hunt and Sullivan [49] present an efficient

way to avoid alIocating memory and spending computation rime on the zeros.

For purpose of exposition we take the embedding dimension d = 1 and Q E [0,1],

where Q is a compact point set contained in the unit cube of Euclidean dimension d. The

interval [0,1] can be associated with a binary tree. On the first level is the entire interval.

Level 1 has two branches for the half intervals; level two has four branches, etc.

Each point x of Q is associated with a path p(x) in this tree determined by the

binary expansion of x. Since the position of x has finite precision, the tree has only

fmitely many levels. If Q is a set of uniformly distributed random numbers, all paths in

the finite tree are equally likely. In case Q is not uniformly distributed the situation is

different, paths do not have equal weight, and in fact some paths never occur.

The following method was developed: Begin with an empty tree. For each x E Q

create a path p in T by adding nodes and left or right branches as needed. according to the

binary expansion of x. As new nodes are added record their levels. Early in the

computation when only a few elements of Q have been added to the tree, most branches

• will cali for the creation of new nodes. Later many nodes will be already occupied. As the



calcu1ation proceed it is easy to keep a record of the total number of paths which have

• passed tbrough a given node. After the tree has been constructed staùsùcs can be

gathered.

For the points distributed on a sphere, assume that Q E [O,2lt) x [-1,1]. Each point is

a pair (e,z) of real numbers. Denote the binary expansion of e by bl~ ~ and the

expansion of z by ata2.....llJc.... A unique base-4 number q with expansion ql~ !Jk..•• can

now be generated according to the prescription
!Jk = ~ + 2llJc (4.19)

Now, sort the base-4 numbers for the different measurement points. As you inspect

this array at a certain level l you know that you hit a "box" that has not been visited if the

expansion of the coordinate of the point is not the same as the expansion for the

coordinates of the previous point. Calcu1ating the statistical moments of order q at a

resolution k is simply done by adding all the measurements with the same address. take

the qth power and average for all the boxes, but don't forget the empty boxes!

Proceeding in such a manner has the great advantage that you allocate memory

space only for non-empty boxes Regardless of the embedding dimension the algorit:! will

perform at the same speed for the same number of measurement points. This is sometime

a limiting factor in this type of analysis.

To get statistics at other scale Â. what can be done is to perform other expansion of

the coordinates than just binary. For example in our study we also used base 3 and base 5

expansions.

•
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•

Appendix B

Digression On Anisoo'cPY

RI The Anisotropy of the Network

In order to quantify the ani5Olr0py in the scaling of the measuring network we

partitioned the axis of the globe into slices of equal z (where z is the length of the

projection of the slice onto the axis that goes from the center of the earth to the north

pole) so that the area of the intersection of each slice with the earth's surface will be the

same. We partitioned the earth in such a fashion because we need to perform the analysis

on one dimensional intersections of the original set The codimensions are invariant under

intersection, 50 that corresponding dimensions will simply be reduced by 1. In contrast

taking one dimensional projections (i.e. just considering the latitudes of stations

irrespective of longitude will have dimension 1, since the measuring stations have

dimension> 1, and hence will be uninteresting. We performed a regular box-Counting

analysis on each slice using the definition of distance that L = le1 - e21and then we

averaged the N(L) value for all slices. We then rotated the coordinate system and

performed the same analysis in the other direction. For both analysis the results are

shown on figure B-l. It could be seen that there is a small aniSOlrOPY in the measuring

network since the fractal dimension calculated in the North-South direction is 0,85 and in

the East-West direction we get 0,77. The ani5Otropy of the network could further be

characterized by the use of the elliptical dimension Del (Lovejoy et al. [1987], Schertzer

and Lovejoy [1985, 1987]) which in this case is given by:
D -1 +~-1 o.185±O.OO35 170±006

el - CE_W - + 0.23±O.OO5 ' .

where CN_S and CE_Ware the codimension in the north-south and east-west directions

respectively; the codimension is the difference between the dimension of the embedding
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space (in our case 1.0) and the fractal dimension. If the network was isotropic we would

• have obtained Del = 2.0. The accuracy of Del is evaluated by assuming an accuracy of 1%

on individual points from which we evaluated a minimum X2 line.

One way to generalize these results would be to introduce a scale changing operator

(T)) where Â. is the ratio between the two scales. Consider r =(8,<p), I1. =T:\.rl with T:\. =

Â.-G and: G =[: :]. The diagonal elements of the matrix G are related to the fractal

D(E-W) = 0.77

D(N-S) = 0.85

• 2

- 1
.....
..1....
Z

CI

or
o

..1

dimension and the offdiagoI: ,.) elements accounts for stratification and rotation. This

formalism is known as generalized scale invariance. For satellite pictures, Pflug et al [96,

97] identified the elements of the matrix G using the Monte-carlo rotating ellipse

technique. They used this to classify cloud images according to the amount of

stratification and rotation present. This will very likely be the next step in the

caracterization of the anirotropy of the network.

o

- 3

1 2 3 4 5

LOQ10 L (m)

Figure B-I: Log of the number of pairs of station divided by the total number of boxes
within a certain "Slïce" averaged over all slices against the log of the distance for North­
South oriented slices (empty squares) and East-West oriented slices (filled triangle.
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