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Abstract

Unsupervised representation learning is a critical component in clustering, enabling data grouping

without labeled supervision. This thesis introduces innovative frameworks to address key limi-

tations in existing deep clustering methods, such as premature cluster assignments, shared loss

functions and/or latent space across clusters, and insufficient leveraging of pairwise relationships.

We introduce Deep Multi-representation Learning (DML), which leverages cluster-specific au-

toencoders to provide tailored latent spaces for diverse cluster characteristics. To mitigate the

instability caused by crisp assignments, DML employs a novel soft assignment mechanism during

training, enabling robust and adaptable clustering. Building on DML, we propose Deep Clustering

with Self-Supervision (DCSS), a memory-efficient framework that integrates cluster-specific losses

and pairwise similarity learning into a single autoencoder architecture. This ensures that learned

representations are both compact and semantically enriched, advancing clustering effectiveness

in complex data distributions. To further enhance clustering performance, we introduce Cross-

instance guided Contrastive Clustering (C3), a novel framework that refines contrastive learning

by leveraging cross-instance relationships. C3 increases positive pair accuracy while reducing the

impact of false negatives, offering scalability and robustness for large-scale datasets. Extending

clustering to streaming data, we present the novel concept of Unsupervised Continual Clustering

(UCC), an innovative concept designed to cluster evolving data streams without access to labels.

Within UCC, we propose a novel Forward-Backward Knowledge Distillation (FBCC) framework

to mitigate catastrophic forgetting—the tendency of a neural network to lose previously learned

information when trained on new data— by enabling effective knowledge retention and adaptation

across tasks.
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These frameworks collectively advance the state of the art in unsupervised learning and contin-

ual learning, addressing critical gaps and offering innovative solutions validated through extensive

experiments on benchmark datasets.
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Abrégé

L’apprentissage non supervisé de représentations constitue un pilier essentiel du clustering, puisqu’il

permet de regrouper des données sans recourir à une supervision étiquetée. Cette thèse introduit

des approches novatrices afin de pallier certaines limites majeures des méthodes de clustering pro-

fond existantes, notamment les affectations de clusters prématurées, l’utilisation d’une fonction de

perte et/ou d’un espace latent partagés entre plusieurs clusters, ainsi que l’exploitation insuffisante

des relations par paires.

Nous présentons tout d’abord le Deep Multi-representation Learning (DML), qui s’appuie sur

des autoencodeurs spécifiques à chaque cluster pour offrir des espaces latents adaptés aux car-

actéristiques variées des différents clusters. Pour atténuer l’instabilité causée par des affectations

trop rigides, DML met en œuvre un nouveau mécanisme d’assignation floue pendant l’entraı̂nement,

rendant le clustering plus robuste et adaptable. En nous appuyant sur DML, nous proposons ensuite

le Deep Clustering with Self-Supervision (DCSS), un cadre économe en mémoire qui intègre si-

multanément des pertes spécifiques aux clusters et l’apprentissage de similarités par paires au sein

d’une architecture unique d’autoencodeur. Cela garantit que les représentations apprises soient à

la fois compactes et sémantiquement riches, améliorant ainsi l’efficacité du clustering dans des

distributions de données complexes. Pour renforcer encore les performances de clustering, nous

introduisons le Cross-instance guided Contrastive Clustering (C3), un nouveau cadre qui affine

l’apprentissage contrastif en tirant parti des relations entre instances. C3 accroı̂t la précision des

paires positives tout en réduisant l’effet des faux négatifs, offrant ainsi une meilleure évolutivité et

une robustesse accrue pour les jeux de données de grande taille.
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Pour étendre le clustering aux flux de données, nous proposons le concept novateur de Unsu-

pervised Continual Clustering (UCC), conçu pour traiter et regrouper des flux de données évolutifs

sans accès aux étiquettes. Dans ce contexte, nous introduisons un nouveau cadre de Forward-

Backward Knowledge Distillation (FBCC) destiné à pallier l’oubli catastrophique—la tendance

d’un réseau de neurones à perdre les informations préalablement acquises lors de l’apprentissage

sur de nouvelles données—en permettant la rétention et l’adaptation efficaces des connaissances à

travers diverses tâches.

Dans leur ensemble, ces approches font progresser l’état de l’art en apprentissage non supervisé

et en apprentissage continu, comblant des lacunes cruciales et proposant des solutions innovantes

validées par de nombreuses expériences menées sur des jeux de données de référence.
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Chapter 1

Introduction

1.1 Clustering

In many scientific and practical scenarios, obtaining category labels for data samples is either

infeasible or sprohibitively expensive. Clustering serves as a fundamental tool in data analysis,

pattern recognition, and machine learning to address this challenge. It enables the extraction of

meaningful patterns and insights from unlabeled data by grouping data points based on predefined

similarity metrics. Traditional clustering algorithms, such as k-means [2] and fuzzy c-means [3],

operate directly in the original data space, which is often high-dimensional and noisy. However,

methods like spectral clustering [4] represent a shift toward identifying latent representations of

data samples before applying clustering, allowing better handling of complex data structures and

intrinsic relationships. This progression in methodology is driven by the need to address limita-

tions in conventional clustering approaches, such as sensitivity to noise and poor performance in

high-dimensional spaces, ensuring more robust and versatile applications across diverse datasets.

With the advancements in deep learning, deep learning-based clustering methods have demon-

strated remarkable effectiveness across a wide range of applications, including image segmenta-

tion [5], social network analysis [6], face recognition [7, 8], and machine vision [9, 10]. These

methods leverage the power of deep neural networks to map the original feature space onto a

lower-dimensional latent space, where similar samples are grouped more effectively. This latent
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space transformation not only reduces noise but also enhances the interpretability of the clustering

results and facilitates the discovery of the data’s intrinsic structure.

Autoencoders (AEs) [11–15] represent a widely-used approach for dimensionality reduction in

deep clustering. An AE consists of two parts: an encoder that compresses the input data into a con-

cise latent representation and a decoder that reconstructs the original input from this compressed

form. By minimizing reconstruction loss, AEs learn a non-linear, lower-dimensional representa-

tion that preserves the most critical features of the original data. Traditional AE-based clustering

methods, such [16], involve applying a clustering algorithm like k-means [2] to the latent rep-

resentation generated by the AE. However, recent advancements in AE-based methods, such as

those presented in [15, 17–19], take this concept further by jointly optimizing dimensionality re-

duction and clustering within the AE framework. These integrated approaches improve clustering

performance by leveraging the representation learning and clustering objectives.

Building upon the principles of AE-based clustering, self-supervised learning has emerged as

a comprehensive framework that eliminates the dependency on explicit labels for representation

learning. This approach leverages the intrinsic structure of data by employing pretext tasks that

generate pseudo-labels or learning objectives from the data itself. Examples of such tasks include

predicting the rotation of data samples, where the model learns to recognize and correct the orien-

tation of input data [20], or predicting relationships between augmentation of data points [21, 22].

These pretext tasks act as a form of guidance, encouraging models to uncover meaningful patterns

and relationships within the data without any external supervision. By integrating these represen-

tation learning strategies with clustering objectives, self-supervised methods significantly advance

the capabilities of traditional AE-based techniques [23, 24]. While autoencoders focus on learn-

ing a compact latent space, self-supervised approaches enhance this process by ensuring the latent

representations are not only compact but also semantically enriched.

While deep clustering methods have demonstrated impressive advancements, they still face no-

table challenges that limit their effectiveness in certain scenarios. To the best of our understanding,

all current deep clustering approaches are affected by at least one of the following issues, which

we aim to address through the innovative frameworks presented in Chapters 3, 4, and 5.
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1- One major issue is the crisp assignment problem during training, where data points are

assigned to clusters prematurely. Many existing algorithms, such as [19, 25–29], approximate

data clustering losses by first performing a crisp cluster assignment and then calculating clustering

losses using the crisply clustered data based on criteria like compactness or density within clusters.

Crisp assignment (as opposed to soft assignment) assigns a data point to only one cluster, typically

the one with the closest center. Since representations are still evolving, this can cause instability,

making it difficult for the model to converge effectively.

2- Another major limitation is the reliance on a shared loss function and/or a shared latent space

for all clusters. This uniform approach fails to account for the inherent differences between clusters

in real-world datasets, where clusters often vary in variance, density, or feature distribution. For

example, in a dataset of vehicle images, clusters representing compact cars and trucks may exhibit

substantial differences in inter-cluster variability in shapes, sizes, and designs. Ignoring these

differences can result in clustering outcomes that do not accurately represent the true structure

of the underlying data. To our knowledge, the only method that explicitly incorporates cluster-

specific losses and representations is [26]. However, this approach is computationally expensive,

as it requires training K separate AEs, where K denotes the number of clusters.

3- Most clustering algorithms neglect pairwise relationships between samples, missing out

on valuable information about the underlying data structure. While a limited number of deep clus-

tering methods, such as [30–33], incorporate pairwise relationships in an unsupervised setting,

they still face notable challenges. For instance, approaches like [30, 32] suffer from high numbers

of false positive pairs during training. This issue arises because their loss functions progressively

include more sample pairs without focusing on highly confident ones, introducing noise into the

clustering process and impacting overall performance. Pairwise information has proven effective in

supervised and semi-supervised learning frameworks. For example, metric learning techniques op-

timize a distance metric by bringing similar samples (belonging to the same class) closer together

while increasing the distance between dissimilar samples (from different classes) [34–38]. These

methods rely on pairwise relationships guided by class labels, yielding significant improvements

in tasks like classification and recognition. Recently, contrastive learning has emerged as a state-

6



of-the-art self-supervised representation learning approach [21]. By bringing augmented views of

the same data point closer in latent space and pushing apart other points, contrastive learning has

achieved remarkable success in tasks such as image classification [21], anomaly detection [39],

and object recognition [40]. Inspired by these results, studies like [23,24] have adapted contrastive

learning to clustering, demonstrating significant improvements over traditional methods. These

methods primarily use data augmentation to generate pairs, assuming augmented views of the

same instance are positive and different instances are negative. However, this approach overlooks

deeper semantic relationships across instances. As a result, semantically similar instances may

be misclassified as negatives (false negatives), and accurately identifying similar instances (true

positives) may be underrepresented in the clustering process.

Research Question: The research question explored in Chapters 3, 4, and 5 is whether a

novel framework can be developed to address the critical limitations of existing deep clustering

methods, thus improving their performance, stability, and scalability. Specifically, the proposed

frameworks aim to tackle three major challenges: (1) the instability caused by the crisp assignment

problem, where data points are prematurely and rigidly allocated to clusters during training; (2)

the assumption of a shared loss function and latent representation across clusters, which fails to

account for the diverse characteristics and inherent variability of real-world clusters; and (3) the

inadequate utilization of pairwise relationships, which are essential for understanding complex

data structures but are often overlooked in current approaches. By overcoming these limitations,

this research aspires to advance deep clustering methodologies and expand their applicability to

diverse real-world scenarios.

1.1.1 Contribution to Original Knowledge of Clustering

The primary contribution of this thesis lies in advancing clustering methodologies by introducing

novel approaches to address the limitations of existing deep clustering techniques. Below is a

summary of the key contributions made in each chapter:

1- In Chapter 3, we propose Deep Multi-representation Learning (DML), a novel framework

for unsupervised data clustering designed to address the limitations of existing methods. Tradi-
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tional clustering techniques typically rely on a single latent space to represent all clusters, which

can hinder their ability to effectively separate overlapping or complex data groups. In contrast,

DML leverages multiple AEs to create specialized latent spaces tailored to cluster-specific char-

acteristics. Specifically, DML assigns cluster-specific latent spaces to ”difficult” clusters, where

cluster centers are closely spaced, enabling better separation and representation. For ”easy” clus-

ters that are well-separated, DML utilizes a shared latent space, efficiently handling simpler cases

while reserving specialized resources for more challenging scenarios. To train multiple AEs, DML

introduces an innovative loss function that combines weighted reconstruction and clustering losses.

The weights dynamically assign higher importance to data points strongly associated with specific

clusters, ensuring that the model learns meaningful and tailored representations. Unlike traditional

approaches that use crisp assignments during training, DML employs soft assignments, which fo-

cus on high-confidence samples to define cluster-specific losses. This strategy enables DML to

improve clustering performance significantly, as evidenced by evaluations on various benchmark

datasets, demonstrating better separation and compactness of clusters compared to state-of-the-

art methods. Despite its strengths, DML has two notable limitations. First, it does not consider

the pairwise relationships between samples, which have been shown to be essential for enhanc-

ing clustering performance [31, 41]. Second, DML is memory-inefficient due to its reliance on

training multiple AEs, each of which may contain millions of parameters, thereby increasing com-

putational overhead. DML idea [42] is published in IEEE Transaction on Neural Networks and

Learning Systems (TNNLS).

2- In Chapter 4, we propose a novel framework, Deep Clustering with Self-Supervision using

Pairwise Similarities (DCSS). This two-phase approach introduces innovative strategies to sig-

nificantly enhance clustering effectiveness while addressing the limitations of DML. In the first

phase of DCSS, we introduce cluster-specific losses, enabling the model to focus on reconstruction

and centering for individual clusters. This results in hypersphere-like representations in the latent

space, where each cluster is well-separated and compact. Unlike DML, which trains multiple AEs

for different clusters, DCSS achieves memory efficiency by training a single AE using a carefully

designed cluster-specific loss function. In the second phase, we introduce a novel approach that
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utilizes additional layers and an auxiliary network, MNet, to refine representations further. MNet

handles pairwise relationships, strengthening similarities between similar data points and weak-

ening dissimilar ones. This refinement ensures that the learned representations are well-suited for

clustering tasks, enhancing performance and adaptability to complex data distributions.

3- In Chapter 5, we introduce the novel Cross-instance guided Contrastive Clustering (C3)

method, designed to enhance contrastive clustering by leveraging cross-instance relationships.

Rather than relying solely on data augmentation, C3 identifies semantically similar instances

within the dataset by analyzing their instance-level representations in the feature space. This ap-

proach enables the method to more effectively identify potential positive pairs. Furthermore, C3

incorporates a novel weighting mechanism to refine the selection of negative samples. This strat-

egy ensures that negative pairs are chosen to mitigate the impact of false negatives, noisy data,

and anomalies during training. C3 is well-suited for the clustering of large-scale datasets, offering

improved scalability and robustness in handling complex, high-dimensional data. C3 idea [43] is

published in the 34th British Machin Vision Conference (BMVC).

1.2 Continual learning

In real-world scenarios, data is often encountered in a sequential manner, with new information

becoming available over time. Traditional machine learning models struggle with this setting be-

cause they are designed to learn from static datasets and typically require retraining from scratch

when exposed to new data. This process is computationally expensive and often impractical, par-

ticularly when previous data cannot be retained due to memory limitations, privacy regulations, or

ethical concerns. Continual Learning (CL) addresses these challenges by enabling models to in-

crementally learn from new data while retaining knowledge from previous tasks. This aligns with

how humans learn, allowing systems to adapt to changing environments, handle evolving data dis-

tributions, and operate efficiently without constant access to the entire dataset. CL is particularly

relevant in scenarios where dynamic, non-stationary data streams are prevalent, ensuring that AI

systems remain adaptive, scalable, and efficient. CL has use in many practical applications such
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as autonomous driving systems [44], healthcare [45], personalized recommendation systems [46],

and robotics [47].

The main challenge of all of the CL approaches is “Catastrophic Forgetting” (CF), where learn-

ing new tasks leads to the model forgetting previously learned ones [48]. To address CF, some

methods [49–51] focus on safeguarding critical model parameters during the learning process for

new tasks. This is achieved by introducing a regularization term into the loss function, designed

to minimize changes to parameters deemed essential for previously learned tasks. Regularization-

based approaches face two key challenges: 1- Excessive emphasis on maintaining prior knowledge

through strong regularization can impair the model’s ability to learn new tasks effectively. 2- Cal-

culating and storing importance measures for a large number of parameters can be computationally

demanding, posing scalability concerns.

An alternative strategy for mitigating CF is the implementation of a memory buffer, as dis-

cussed in [52–54]. This technique involves retaining a subset of previously encountered data,

enabling the model to revisit and strengthen prior learning during training. However, a significant

challenge associated with this approach is the potential privacy concerns arising from storing and

utilizing real data in the buffer, especially in applications involving sensitive information. To ad-

dress this issue, alternative approaches [55–57] employ generative models to synthesize samples

from earlier tasks. However, these methods face significant challenges, including the high com-

putational cost of training generative models and the difficulty in achieving stable convergence to

optimal solutions. Some other algorithms such as [58, 59] employ a technique known as knowl-

edge distillation (KD) to transfer insights from previous tasks. This involves storing models from

prior tasks in memory, leveraging them to assist the current model in retaining past knowledge.

Nonetheless, these methods suffer from memory inefficiency, particularly with deep models con-

taining millions of parameters. Additionally, solutions like [58] only retain a single previous task

model in memory, potentially leading to forgetting when confronted with numerous tasks.

Within the field of Continual Learning (CL), three primary approaches have emerged based

on the availability of data labels: Supervised Continual Learning (SCL): This approach relies on

providing explicit class or task labels for data samples during training [60–62]. SCL focuses on
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sequentially learning from labeled data while maintaining performance across tasks. A practical

example of SCL is in the healthcare domain, where models are designed to progressively learn

from patient data collected over time [45]. 2- Semi-supervised Continual Learning (SeCL): This

method combines the strengths of supervised learning (leveraging labeled data) and unsupervised

learning (utilizing unlabeled data) to enhance performance over time while adapting to new tasks or

evolving data distributions [63,64]. In SeCL, labeled data is used directly for task-specific learning

to guide the model’s predictions and unlabeled data helps in learning generalized representations

that can transfer across tasks. 3- Unsupervised Continual Learning (UCL) [58,65]: Unlike SCL and

SeCL, UCL focuses on learning new representations for unlabeled data streams evolving over time.

These learned representations find utility in subsequent tasks such as data annotation. UCL holds

practical significance in real-world applications, given the frequent unavailability of labeled data

such as anomaly detection [66], autonomous driving [67], and healthcare [68]. While numerous

UCL studies, such as those by [58, 65, 69], strive to continually refine representations for data, to

our knowledge, there exists no continual learning algorithm explicitly tailored for clustering task.

Research Question: The research question addressed in Chapter 6 centers on the develop-

ment of a novel concept of Unsupervised Continual Clustering (UCC), a scenario that has yet to

be explicitly explored within the field of Continual Learning. This research aims to investigate the

unique challenges posed by UCC, including issues related to evolving data distributions, the ab-

sence of labeled data, and the potential for CF in clustering tasks. Furthermore, the study seeks to

design effective strategies to tackle these challenges, ensuring that UCC systems can learn robust

representations, adapt to new data streams, and maintain clustering quality over time. By address-

ing these objectives, the research aspires to advance the state of the art in unsupervised continual

learning, with implications for real-world applications where labeled data is scarce, and clustering

is a critical task.

1.2.1 Contribution to Original Knowledge of Continual learning

In Chapter 6, we introduce the novel concept of Unsupervised Continual Clustering (UCC) within

the realm of UCL, specifically designed for clustering tasks. UCC aims to discern clusters within
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sequentially arriving data across various tasks, with no overlap in cluster contents. This scenario

parallels class-incremental continual learning [70], albeit without access to data sample labels.

UCC is ideal for large dataset scenarios, enabling clustering models to identify and adapt to new

clusters without forgetting previous ones. For instance, consider healthcare organizations col-

laborating on real-time image annotation for medical research. Each hospital specializes in a

domain, such as cardiac imaging or neuroimaging, and cannot share data due to privacy rules.

Traditional methods train separate models for each dataset, which are resource-intensive and lack

cross-domain learning. UCC addresses these limitations by allowing a single model to continually

learn across organizations without sharing data, ensuring both efficiency and privacy preservation.

When a new hospital with an unlabeled dataset (e.g., lung imaging) joins, the UCC model in-

crementally adapts to learn new clusters while retaining prior knowledge, enabling efficient and

integrative cross-domain insights.

The main challenge in UCC, similar to other continual learning approaches, is CF. In Chapter

6, we proposes Forward-Backward Knowledge Distillation (FBCC), which uses a deep “teacher”

network and lightweight “student” models. In the Forward Knowledge Distillation phase, the

teacher learns task-specific representations and clustering while retaining knowledge of previous

tasks through guidance from specialized student models. In the Backward Knowledge Distillation

phase, a student model is trained to replicate the teacher’s behavior for the current task and is stored

to help the teacher recall this task during future training. FBCC balances learning new tasks and

retaining knowledge effectively.

1.3 Contribution of Authors

M. Sadeghi, and N. Armanfard. Deep multi-representation learning for data clustering. IEEE

Transactions on Neural Networks and Learning Systems, vol. 35, no. 11, pp. 15675–15686, 2024.

• The novel concept of providing multiple latent spaces for data clustering was originally

proposed by the supervisor (last author).
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• The first author conducted an extensive literature review, implemented the framework and

performed tests and experiments using benchmark datasets.

• The first and last authors collaboratively refined and enhanced the proposed idea and

formulations to realize the idea, establishing it as a state-of-the-art approach.

• The first author drafted the initial manuscripts.

• The research paper underwent thorough revisions and editorial refinements by the last

author.

M. Sadeghi, and N. Armanfard. Deep Clustering with Self-Supervision using Pairwise Similarities.

Under review, 2024.

• The first and last authors collaboratively developed the methodologies and formulations

to realize the novel concepts discussed in the paper, establishing it as a state-of-the-art

approach.

• The first author conducted an extensive literature review, implemented the framework and

performed tests and experiments using benchmark datasets.

• The first author drafted the initial manuscripts.

• The research paper underwent thorough revisions and editorial refinements by the last

author.

M. Sadeghi, H. Hojjati, and N. Armanfard. C3: Cross-instance guided Contrastive Clustering. The

34th British Machine Vision Conference (BMVC), 2023.

• The first author conducted an extensive literature review, implemented the framework and

performed tests and experiments using benchmark datasets.

• The first and last authors collaboratively developed the methodologies and formulations

to realize the novel concepts discussed in the paper, establishing it as a state-of-the-art

approach.
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• The first author drafted the initial manuscripts.

• The second author helped in the writing of the paper and provided valuable support in

conducting the experiments.

• The research paper underwent thorough revisions and editorial refinements by the last

author.

M. Sadeghi, Z. Wang, and N. Armanfard. Forward-Backward Knowledge Distillation for Contin-

ual Clustering. Under review, 2024.

• The novel concept of deep continual clustering was originally proposed and developed by

the supervisor (the last author).

• The first and last authors collaboratively developed the methodologies and formulations

to realize the novel concepts discussed in the paper, establishing it as a state-of-the-art

approach.

• The first author drafted the initial manuscripts.

• The second author assisted with conducting experiments for other comparining algorithms

and contributed to the writing of the manuscript.

• The research paper underwent thorough revisions and editorial refinements by the last

author.

1.4 Overview

The remainder of this thesis is organized as follows: Chapter 2 provides a comprehensive review

of the existing literature, starting with unsupervised representation learning and extending to clus-

tering methods and continual learning. The focus is on analyzing various approaches and their

strategies for addressing challenges in unsupervised learning, clustering, and continual learning.

In Chapter 3, we introduce our proposed DML framework, which handles the training of multiple
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cluster-specific AEs. We discuss the architecture, its design considerations, and its approach to

clustering. Experiments are presented to demonstrate the effectiveness of DML across different

scenarios. In Chapter 4, we propose the DCSS framework, which addresses the limitations of

DML by utilizing a single AE trained by cluster-specific loss and leveraging pairwise relationships

between samples. The chapter includes detailed explanations of the framework and experiments

to validate its performance improvements over existing methods. Chapter 5 focuses on improv-

ing contrastive clustering by introducing the novel C3 framework. C3 provides a new method for

identifying potential positive pairs and incorporates a weighting mechanism designed to reduce

the effects of false negatives, anomalies, and noisy samples. The effectiveness of C3 is validated

through multiple experiments. In Chapter 6, we propose a new concept of unsupervised continual

clustering (UCC) and address its challenges with the FBCC framework. Detailed methodologies

are provided, along with experiments that showcase the effectiveness of FBCC in handling contin-

ual clustering scenarios. In chapter 7, the thesis concludes with a summary of the key findings and

contributions. We discuss the implications of the proposed methods, their limitations, and potential

avenues for future research.
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Chapter 2

Literature Review and Background

In this chapter, we provide a comprehensive overview of the core research and methodologies that

form the basis of this thesis. We begin by examining the advancements in unsupervised repre-

sentation learning, outlining how various approaches have evolved to help machines effectively

capture and interpret the underlying patterns in unlabeled data. From autoencoder-based meth-

ods to cutting-edge self-supervised learning models, we discuss the merits and drawbacks of each

method, highlighting where the field currently stands. Next, we delve into the domain of cluster-

ing techniques, emphasizing their importance in grouping data points with shared characteristics.

We cover both traditional clustering algorithms and more recent, deep learning–based strategies,

detailing the improvements they offer in terms of handling high-dimensional and complex data.

Finally, we turn our attention to continual learning, a growing area of research focused on en-

abling systems to learn from data that arrive in a sequential or incremental manner. We discuss

key concepts such as catastrophic forgetting and outline a variety of methods developed to tackle

these challenges. By summarizing the progress made in this field, we establish a foundation for

understanding how and why our proposed contributions can further advance ongoing research.

Together, these sections provide a clear picture of the current landscape in unsupervised repre-

sentation learning, clustering, and continual learning. They also help clarify how the new methods

introduced in this thesis build upon and extend the state of the art, addressing the gaps and limita-

tions revealed in our review.
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2.1 Unsupervised Representation Learning

Unsupervised representation learning has emerged as a cornerstone in modern machine learning,

focusing on the extraction of meaningful features from unlabeled data. This field has gained promi-

nence due to its ability to uncover hidden patterns and structures without the need for manual anno-

tations, which are often expensive and time-intensive to obtain. The techniques developed in this

domain are instrumental in transforming raw, high-dimensional data into compact and informative

representations, enabling downstream tasks like clustering, anomaly detection, and classification.

These methods leverage advanced neural network architectures to capture the inherent complexity

of data, ensuring robustness and generalizability across various applications.

A key focus in unsupervised representation learning is the design of models that learn from the

intrinsic properties of the data itself. Autoencoder-based methods are foundational in this regard,

offering a powerful framework for dimensionality reduction and reconstruction. Complementing

these are self-supervised approaches that employ creative pretext tasks, such as predicting rotations

or reconstructing obscured inputs, to generate pseudo-labels and guide the learning process. To-

gether, these techniques address the challenge of learning rich, hierarchical representations while

maintaining computational efficiency and scalability, paving the way for innovative applications in

fields ranging from computer vision to bioinformatics. In the rest of this subsection, we will begin

by exploring different autoencoder-based representation learning methods and their applications.

We will then discuss a range of self-supervised learning techniques and examine how they are

applied in practice.

2.1.1 Autoencoder-based Representation Learning

AEs have become a foundational aspect of deep learning, gaining widespread recognition for their

role in facilitating unsupervised learning and extracting meaningful features from data. By trans-

forming raw input into a compressed, lower-dimensional representation through their hidden lay-

ers, AEs enable the identification of key patterns and structures within the data. Their design

focuses on transforming input data into a latent representation and then reconstructing it back to its
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original form, effectively reconstructing the input while discarding redundant or irrelevant informa-

tion. This dual functionality makes autoencoders an essential tool for data compression and feature

representation, particularly valuable in situations where labeled data is limited or unavailable. The

origin of autoencoders can be traced back to their earlier version as “auto-associators,” [71] a con-

cept aimed at learning compact representations by reconstructing input data. This early version

of autoencoders was primarily focused on capturing the essence of the input within a limited-

dimensional hidden space. Their resurgence in popularity coincided with the rise of deep learning,

where autoencoders offered a solution to some of the most pressing challenges in training deep

neural networks. One such challenge was the difficulty of optimizing deep architectures, which

often suffered from issues such as poor initialization [72]. Autoencoders addressed these issues

through a process known as layer-wise pretraining [73]. This approach involved training each layer

of a deep network sequentially and independently using an autoencoder, which provided well-

initialized weights for subsequent layers. This method significantly improved the training process,

ensuring better convergence and stability for deep models. Over time, autoencoders have evolved

beyond their initial purpose of pretraining. They are now widely employed in various applications,

including anomaly detection [74], denoising [75], dimensionality reduction [76], and generative

modeling [77]. Their capacity to learn rich, hierarchical data representations without depending

on labels has made them exceptionally flexible and effective in tackling complex challenges across

numerous domains, ranging from image [78] and speech [79] processing to recommendation sys-

tems [80] and medical diagnostics [81]. Autoencoders continue to play a vital role in advancing

the capabilities of deep learning, driving both theoretical advancements and practical application.

Below, I outline the key categories of autoencoder AE-based approaches, each addressing specific

challenges and enabling diverse applications:

Regulare autoencoders: a basic AE consists of two non-linear components: an encoder and a

decoder. The encoder fe maps the input data xi into a lower-dimensional representation, denoted

as h = fe(xi). Subsequently, the decoder fd reconstructs this low-dimensional representation hi

back into the original input space, producing x̂i = fd(hi). An effective AE should ideally re-
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construct the input data with minimal loss of information, which shapes its primary optimization

objective. This objective is generally formulated as:

L =
∑
i

||xi − x̂i||2 =
∑
i

||xi − fd(fe(xi))||2 (2.1)

In this context, || · ||2 represents the L2-norm, while ||xi − x̂i||2 denotes the reconstructed data for

the i-th instance.

Regular AEs serve as powerful tools for dimensionality reduction, providing notable benefits

over traditional linear techniques like Principal Component Analysis (PCA) [82]. Unlike PCA,

which is limited to linear transformations, autoencoders utilize neural networks with non-linear

activation functions, allowing them to capture and represent complex, non-linear relationships in

high-dimensional datasets. This capability makes autoencoders particularly well-suited for han-

dling data with intricate patterns and structures that linear methods cannot effectively process.

Regular AEs are widely utilized in image compression [83, 84], where they significantly reduce

the dimensionality of image data while preserving high visual quality, making them ideal for stor-

age and transmission. Additionally, they serve as an effective preprocessing tool for machine

learning tasks [85], by extracting informative features that enhance the efficiency and accuracy of

downstream algorithms, such as clustering and classification. Moreover, their capacity to capture

and process non-linear relationships makes them highly effective for data visualization [86], en-

abling the projection of high-dimensional datasets into two or three dimensions to uncover hidden

patterns and clusters.

Sparse autoencoders: Sparse autoencoders (SAEs) are an extension of regular AEs designed

to learn meaningful and efficient data representations by incorporating a sparsity constraint on the

hidden layer. This constraint ensures that only a small number of neurons in the hidden layer are

activated for any given input, encouraging the model to focus on the most relevant features [87].

To achieve this sparsity, a regularization term, such as the Kullback-Leibler (KL) divergence or an

ℓ1 penalty [88], is added to the reconstruction loss. The KL divergence controls the average activa-
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tion of hidden neurons, aligning it with a predefined sparsity level to keep most neurons inactive.

Alternatively, the ℓ1 penalty directly suppresses the activity of certain neurons, promoting sparsity

in the parameter space. As a pioneer approach, [89] highlights two key aspects of feature distri-

bution: population sparsity and lifetime sparsity. Population sparsity refers to cases where only a

small number of neurons are active at a given time for any specific input, while lifetime sparsity

describes a scenario where individual neurons activate selectively and infrequently across multiple

inputs. [90] introduced the k-sparse autoencoder, which focus on population sparsity (limiting the

number of active neurons per input). This type of AE employs a linear activation function and en-

forces sparsity in its hidden layers by retaining only the top k most active neurons, setting all other

activations to zero. This selection process can be done by sorting activations or by using ReLU

hidden units with adaptively adjusted thresholds to identify the top k activations. Unlike [90] that

concentrate on population sparsity, [91] enforces lifetime sparsity by retaining only the top k%

activations during training and uses corrupted inputs to improve noise robustness.

By combining non-linear feature extraction with constraints that promote sparse and inter-

pretable representations, sparse autoencoders have become a valuable tool for a variety of machine

learning applications. SAEs are particularly effective in tasks like image recognition [92], audio

processing [93], and natural language processing [94], where they extract key features from high-

dimensional data while eliminating redundancy and irrelevant information. Inspired by biological

neural networks [95], where sparse activity improves efficiency and robustness, SAEs excel at

discovering latent patterns within data. They are especially useful for over-complete representa-

tions [96], where the hidden layer has more neurons than the input, as they prioritize the most

significant features by enforcing sparsity. This makes SAEs resilient to noise and capable of pro-

ducing highly discriminative features.

Denoising Autoencoders: The Denoising Auto-Encoder (DAE) is a significant variant of the

Auto-Encoder architecture, proposed by Vincent et al. in 2008 [97], as an enhancement to tradi-

tional feature extraction and unsupervised learning techniques. Unlike conventional Auto-Encoders,

which aim to reconstruct inputs directly, DAEs introduce a noise-corruption process during train-
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ing. This forces the model to reconstruct clean, uncorrupted inputs from their corrupted counter-

parts, thereby learning representations that are robust and generalizable. The corruption process

is typically achieved through various forms of noise, such as additive Gaussian noise [98], salt-

and-pepper noise [99], or masking noise [100]. The encoder maps the corrupted input to a latent

representation, and the decoder attempts to reconstruct the clean version of the input. The training

objective minimizes a reconstruction loss (e.g., mean squared error or cross-entropy) between the

clean input and its reconstruction. Injecting noise into the input data is a fundamental aspect of a

DAE. This concept can be extended by applying noise not only to the input (visible units) but also

to the hidden units of a neural network. This extension forms the basis for a highly efficient yet

effective regularization technique known as dropout [101].

DAEs have numerous practical applications in real-world scenarios. One significant use is in

missing data imputation, as highlighted in [102], where it helps reconstruct incomplete datasets

to enable effective analysis. Additionally, DAEs prove invaluable in domains where acquiring

clean and noise-free data is particularly challenging. For instance, in remote sensing [103], DAEs

are employed to process and enhance data collected from satellite imagery, which often contains

noise or missing values due to environmental and technical factors. Similarly, in the field of med-

ical imaging [98, 104], DAEs assist in improving image quality and filling gaps in medical scans,

ensuring more accurate diagnoses and treatment planning. These applications underline the versa-

tility and significance of DAEs in handling complex data challenges across diverse fields.

Variational autoencoders: The use of Variational Autoencoders (VAEs) as a subclass of autoen-

coders has emerged as a transformative approach within deep learning frameworks, particularly in

representation learning and generative modeling. VAEs extend the traditional autoencoder archi-

tecture by introducing a probabilistic latent space, facilitating the generation of new data samples

and fostering robust learning of underlying data distributions. VAEs operate under the assump-

tion that data x are generated from a latent representation h and then aim to infer the posterior

distribution p(h|x) from the observed data. [105] is a prominent method in this category that uti-

lizes variational inference techniques to maximize the evidence lower bound (ELBO) of the data
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likelihood:

log p(x) ≥ Eq(h|x) [log p(x|h)]−DKL (q(h|x) ∥ p(h)) (2.2)

where DKL(· ∥ ·) indicates the KL-divergence between two probability distributions. The term

p(h) is the prior distribution over the latent variables, and q(h|x;ϕ) serves as the variational ap-

proximation to the true posterior (i.e., q(h|x;ϕ) ≈ p(h|x)), which can be parameterized by the

recognition network with parameters ϕ.

[105] proposes optimizing the Evidence Lower Bound (ELBO) on the marginal likelihood as

the loss function, which consists of two key components: a reconstruction loss (identifying how

effectively the model reconstructs data from latent variables) and a regularization term (quantified

as the KL divergence between the approximate posterior and the prior). This objective promotes

efficient learning by fostering latent representations that are both informative about the data and

consistent with the prior distribution. Building on this framework, [106] introduces a hyperparam-

eter β to modify the balance between reconstruction accuracy and the disentanglement of latent

factors. This unsupervised approach is particularly effective in identifying independent genera-

tive factors from raw data, enabling the model to develop more interpretable and structured latent

representations. The Ladder Variational Autoencoder (LVAE) [107] enhances traditional VAEs

by addressing the shortcomings of their solely bottom-up inference process. In a bottom-up ap-

proach, data is processed layer by layer, starting from raw inputs (such as image pixels) and pro-

gressively forming more abstract representations. While effective for certain tasks, this method

lacks feedback from the model’s overall understanding of the data, which is crucial for refining

and correcting the developed representations. LVAE tackles this issue by incorporating a top-down

feedback mechanism that integrates bottom-up signals with adjustments derived from the model’s

generative understanding. Conditional Variational Auto-Encoders (CVAEs) [108] are an extension

of traditional VAEs designed to generate outputs conditioned on specific input data. Unlike stan-

dard VAEs that learn an unconditional latent representation of data, CVAEs incorporate additional

inputs during both encoding and decoding processes, enabling them to model conditional distri-
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butions. This makes CVAEs ideal for tasks such as image inpainting, where the model generates

plausible completions of missing parts of an image based on the observed pixels, or other tasks

like image colorization and super-resolution.

VAEs are highly versatile tools applied in several domains to solve complex problems. For

instance, in missing data imputation [109, 110], VAEs can reconstruct incomplete datasets by

leveraging their ability to model the underlying patterns of the data distribution. This ability is

particularly crucial in domains where data completeness significantly impacts subsequent analy-

sis and decision-making. In healthcare monitoring [111], VAEs contribute to enhancing patient

care by analyzing and synthesizing medical data. They support the detection of abnormalities,

facilitate personalized health tracking, and improve diagnostic accuracy by effectively handling

high-dimensional and complex health datasets. Within bioinformatics [112, 113], VAEs are used

to analyze intricate biological data, such as genetic sequences and protein structures. By learn-

ing latent representations, VAEs enable researchers to identify hidden relationships and generate

biologically meaningful data, aiding advancements in genomics, proteomics, and other areas of

biological research.

2.1.2 Self-Supervised Representation Learning

Self-supervised learning has revolutionized machine learning by allowing models to leverage large

volumes of unlabeled data for training. This technique operates in two main steps: first, it de-

fines a synthetic supervised task by generating targets for each input, effectively transforming the

problem into a supervised learning framework. Second, it trains the model to map inputs to these

generated targets using standard supervised learning methods. These targets, often created through

predefined rules or neural networks, can evolve dynamically during training. Despite borrow-

ing principles from supervised learning, self-supervised learning is inherently unsupervised, as

it relies entirely on unlabeled data to uncover meaningful representations. This approach driven

substantial progress across numerous domains. In computer vision, it is used for tasks like ob-

ject detection [114] and medical imaging [115], where models pre-trained on unlabeled datasets

are fine-tuned for specific applications. In natural language processing, self-supervised learning
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powers models like GPT [116] and BERT [117], providing applications such as translation, sum-

marization, and conversational AI. In speech processing, methods like Wav2Vec [118] advance

speech recognition and audio synthesis, while in robotics, self-supervised learning helps robots

understand and navigate environments by generating training signals through interaction. Addi-

tionally, it is applied in recommendation systems [119] to predict user preferences without requir-

ing extensive labeled data. By unlocking the potential of unlabeled data, self-supervised learning

is transforming industries and redefining the boundaries of artificial intelligence.

It is essential to explore the key categories that define self-supervised methods. These cate-

gories encapsulate diverse approaches aimed at extracting meaningful representations from unla-

beled data, each with unique strategies and goals. Pretext task methods utilize auxiliary tasks,

like predicting image rotations or solving jigsaw puzzles, to guide models toward learning fea-

tures that generalize to downstream tasks like object detection and classification. Information

maximization methods ensure robust representations by preserving the richness and diversity of

features while maintaining stability under transformations like cropping and color adjustments.

Teacher-student methods employ a dual-network framework, where a teacher model generates

stable representations that a student model learns to emulate, fostering invariance across diverse

data augmentations. Contrastive learning methods train models to distinguish between similar

and dissimilar pairs by pulling representations of similar data closer and pushing apart those of

dissimilar data, enabling the creation of highly generalizable features. Together, these categories

highlight the ingenuity and versatility of self-supervised learning, demonstrating its potential to

revolutionize how machines learn from and understand unlabeled data. Below, we delve into each

of these categories.

Pretext Task Methods: Pretext task methods [20, 120, 121] create auxiliary tasks to enable the

model to learn representations that capture relevant features for downstream tasks. These pre-

text tasks guide the network to extract meaningful information from data without explicit labels.

For instance, Rotation Network (RotNet) [20] trains a model to recognize the angle by which an

image has been rotated (e.g., 0°, 90°, 180°, 270°). By solving this task, the model learns to iden-
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tify spatial and semantic features within the image that generalize to tasks like object recognition

and classification. [120] developed a method where an image is divided into patches that are ran-

domly shuffled, and the model is tasked with predicting the correct order of these patches. This

task encourages the network to learn spatial and contextual relationships within the image, which

improves its ability to recognize complex patterns and structures. Masked AEs [121] extend the

traditional autoencoder framework by masking sections of the image and training the model to

predict or reconstruct the obscured areas. Typically leveraging Vision Transformers, Masked AEs

encourages the model to concentrate on high-level structural and semantic aspects by requiring it

to deduce missing information from the visible portions of the image.

Information Maximization Methods: Information maximization techniques [122–124] aim to

create robust image representations that remain stable under a range of transformations, such as

rotation, cropping, and color adjustments. By maintaining essential details of the image across

transformations, these methods prevent the model from collapsing to trivial representations, where

it might output identical, non-informative representations for different images. To address this,

these methods are designed to maximize the distinctiveness and informational richness in the

learned representations. For instance, Barlow twins [122] seeks to reduce repetitive or redun-

dant information in feature representations. It does so by calculating the cross-correlation between

representations of different augmented views of the same image. The approach applies a special

type of loss that minimizes off-diagonal elements in this correlation matrix, ensuring that each

feature dimension independently captures unique information. Barlow twins faces challenges such

as representation collapse, where learned representations become trivial or identical, and redun-

dancy across dimensions, leading to inefficient feature learning. [125] tackle these challenges by

introducing Mixed Barlow Twins, which improves sample interactions during training using lin-

early interpolated samples. This method incorporates a regularization term into the original Barlow

Twins objective, based on the assumption that linear interpolation in the input domain corresponds

to linearly interpolated features in the representation space. VICReg [123] relies on three key

regularization terms: variance, invariance, and covariance. Variance regularization ensures that
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embedding vectors maintain sufficient diversity by enforcing a minimum variance across dimen-

sions, thus avoiding trivial solutions like collapsed embeddings. Invariance regularization aligns

the embeddings of augmented views of the same image, ensuring robustness to data augmentations.

Covariance regularization reduces redundancy by minimizing off-diagonal terms in the covariance

matrix, encouraging each dimension of the embedding to capture distinct information. Unlike

earlier methods, VICReg does not rely on negative samples, weight sharing, or memory banks,

making it both simple and efficient. VICRegL [124] extends VICReg by incorporating local fea-

ture learning alongside global feature learning. While VICReg focuses on producing global image

representations invariant to transformations, VICRegL simultaneously learns both global and local

features. It applies the VICReg criterion to pairs of global feature vectors as well as pairs of local

feature vectors before the final pooling layer.

Teacher Student Models: Teacher-student approaches [126–128] in self-supervised learning use

a two-network framework, where one model (the “teacher”) provides stable, consistent represen-

tations that guide another model (the “student”) to learn effective representations. This setup is

particularly useful in creating invariance across transformations, as the student model gradually

learns to match the teacher’s representations despite varying inputs. Bootstrap Your Own Latent

(BYOL) [126] uses a teacher-student structure to prevent representational collapse without requir-

ing negative samples. In BYOL, the student model learns to predict the representations produced

by the teacher, and the teacher’s parameters are updated via a moving average of the student’s

parameters. This method has shown that meaningful representations can emerge simply by align-

ing predictions between the student and teacher across different image augmentations. Distillation

with No Labels (DINO) [127] takes a similar approach but with some modifications, including

the use of Vision Transformers (ViTs) as its base architecture. Instead of directly matching repre-

sentations, DINO applies a softmax to the teacher’s output, creating soft targets for the student to

match. This process, known as self-distillation, allows the student to learn finer details by aligning

with the teacher’s soft probability distributions. DINO also utilizes a multi-crop strategy, where

the teacher sees only high-resolution “global” views, and the student sees both global and lower-
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resolution “local” views, promoting the learning of multi-scale features. [128] enhances the DINO

framework by implementing a cluster-aware training strategy, which creates positive pairs using

segments from different utterances within the same cluster instead of relying on segments from

a single utterance. These clusters are formed through a clustering algorithm like k-means. This

method boosts data diversity and reduces segment overlap, thereby decreasing the likelihood of the

model attending to irrelevant details, such as content or channel properties, and directing its focus

toward speaker-specific features.

Contrastive Learning: Contrastive learning [21,22,129,130] has emerged as a leading strategy in

self-supervised learning because it can generate robust representations without relying on labeled

data. Its primary mechanism is to train models to distinguish between pairs of data points that are

similar (positives) and those that are dissimilar (negatives). By pulling positive pairs closer in the

feature space and pushing negative pairs further apart, the model is encouraged to learn features

that are both distinctive and broadly applicable. As a result, contrastive learning has proven highly

effective in diverse downstream tasks, including classification, object detection, and cross-domain

adaptation.

In contrastive learning, an anchor sample serves as a reference point, with a positive sample

generated from it through transformations or augmentations that alter the appearance but retain

core content. Common transformations include cropping, flipping, color changes, and other image

augmentations that create different “views” of the same image. Negative samples, on the other

hand, consist of unrelated samples within the batch or dataset. Through this setup, the model

learns to associate augmented versions of an anchor as similar while recognizing other samples as

distinct. This process is often formalized using the InfoNCE [131] loss, which structures the task

as a classification problem. In this context, the model maximizes the similarity between an anchor

and its positive counterpart, while minimizing similarity with negatives, often through cosine sim-

ilarity or other similarity metrics. While larger numbers of negatives in a batch improve the quality

of the learned features, memory and computational constraints often pose challenges. Methods

like Momentum Contrast (MoCo) [22] address this by introducing a memory bank that stores
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previous representations, effectively enabling a large pool of negative samples without requiring

large batch sizes. MoCo also uses a momentum-based encoder to update stored negatives grad-

ually, ensuring consistency in the learned representations while keeping computational demands

manageable. SimCLR [21] introduces a simple yet effective framework for contrastive learning

of visual representations, designed to maximize the similarity between differently augmented ver-

sions of the same image while minimizing the similarity between these and other samples in the

batch. It consists of three main elements: robust data augmentation techniques, a feature encoder

(commonly a ResNet), and a projection head that transforms encoded features into a space opti-

mized for contrastive learning. A major limitation of SimCLR is its reliance on large batch sizes

to achieve optimal performance. This requirement stems from its contrastive loss, which relies on

comparing positive pairs against a diverse set of negatives, achievable only with larger batches.

Consequently, this approach significantly increases computational and memory demands, making

it resource-intensive and less feasible for systems with limited hardware capabilities. Contrastive

Predictive Coding (CPC) [131] expands contrastive learning to sequential data by making predic-

tions about future states or segments within sequences, allowing contrastive learning techniques

to apply not only to images but also to time-dependent data, such as audio and text. Contrastive

Multiview Coding (CMC) [132] learns from multiple, distinct views of the same data, such as

individual color channels, to build robust representations that capture shared, high-level features.

By contrasting positive pairs from different views against other unrelated data, CMC encourages

consistency across perspectives, making it especially useful for multimodal data. Pretext-Invariant

Representation Learning (PIRL) [133] creates positive pairs by transforming images through tasks

like jigsaw puzzles or rotations, then training the model to treat the original and transformed im-

ages as similar. This strategy drives the model to obtain representations that are invariant to such

transformations, allowing it to focus on core semantic content instead of transformation-specific

details.
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2.2 Clustering

Clustering is a key method in data analysis and machine learning that organizes data points into

groups based on shared characteristics. The fundamental idea is that points in the same group

have greater similarity to each other than to points in other groups. As an unsupervised learning

method, clustering operates without requiring labeled data, making it particularly useful when

the structure or categories within the data are not predefined. The process depends heavily on

defining measures of similarity, such as distance metrics, and selecting appropriate algorithms

and parameters to accurately represent the natural organization of the data. The adaptability of

clustering makes it applicable to both structured and unstructured data, offering significant value

in areas such as natural language processing, image analysis, bioinformatics, market segmentation,

and network studies. Additionally, it is a valuable tool for exploring data, enabling the discovery of

hidden relationships, patterns, and trends that are not immediately apparent. By condensing large

datasets into manageable and meaningful groupings, clustering improves interpretability, reduces

data complexity, and provides a foundation for further analysis and informed decision-making.

Its wide range of applications and ability to uncover insights across various fields highlights its

importance as a versatile method for analyzing and understanding complex data.

2.2.1 Conventional Clustering Methods

K-means [2] is one of the most widely used clustering methods, applicable to a diverse range

of problems. It groups data points into clusters by minimizing the sum of squared distances be-

tween each data point and its cluster’s centroid, which is calculated as the arithmetic mean of all

points in the cluster. Fuzzy C-Means (FCM) [134] is another conventional clustering technique

that permits data points to associate with multiple clusters, each with a certain degree of member-

ship. In contrast to other traditional methods like k-means, which allocate each point to a single

cluster, FCM provides membership probabilities that indicate the extent to which a point is likely

to belong to each cluster. A Gaussian Mixture Model (GMM) [135] is a statistical approach to

clustering that models the dataset as a combination of several Gaussian distributions, where each

29



distribution represents a specific cluster. GMM employs a probabilistic perspective, assigning a

likelihood of belonging to each cluster for every data point. This is accomplished by estimating

parameters such as the mean, covariance, and mixture weight of each Gaussian component, typ-

ically using the Expectation-Maximization (EM) algorithm. While these algorithms are fast and

straightforward to implement, their performance diminishes in high-dimensional spaces. Addi-

tionally, clustering methods such as k-means and FCM struggle to deliver accurate results when

data points are unevenly distributed around their centroids in the original feature space, leading to

suboptimal clustering outcomes. To handle these difficulties, some algorithms such as [136, 137]

perform subspace learning1 (aka dimension reduction) to learn a low dimensional feature space

(aka subspace, latent space) of data points and then employ the trained subspace for data clustering

task. Another category of clustering algorithms, such as [4, 140], consider pairwise relationship

between data points to embed the original high dimensional data points into a lower dimensional

space and then apply k-means algorithm to the new space. These algorithms construct a weighted

graph based on the relationships between the data points in the original space; they then solve an

optimization problem based on Laplacian matrix of the graph. Although these methods outperform

k-means, their computational cost for solving the optimization problem prevents their application

when dealing with large datasets. Some studies, e.g. [141–143], try to handle this problem by us-

ing stochastic optimization methods. For example, [141] formulates an adaptive stochastic gradient

optimization, which is linear in the number of data that does not need storing the complete Lapla-

cian matrix. Although the stochastic optimization based algorithm could outperform the original

ones even in some small datasets, these methods only consider linear transformation of the data.

2.2.2 Deep Neural Network based methods

Deep neural networks (DNNs) have been widely studied and utilized to address clustering tasks,

leveraging their ability to learn complex and hierarchical representations of data. These methods

aim to optimize a DNN model in an unsupervised manner, where the absence of labeled data poses

1Note that there is another branch in data clustering called Subspace Clustering [138, 139], which is different
from subspace learning. Subspace clustering techniques assume that data points are drawn from multiple subspaces
corresponding to different data clusters.
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unique challenges and opportunities. Specifically, DNN-based clustering methods are designed to

automatically discover meaningful patterns and groupings within datasets by extracting high-level

features that preserve the intrinsic structure of the data. For example, [144] introduces a framework

designed to jointly optimize the learning of deep representations and image clustering in an unsu-

pervised manner. This method incorporates agglomerative clustering into a recurrent structure built

on a CNN. During the training process, clusters of images are updated in the forward pass, while

the backward pass refines the deep representations. A unified weighted triplet loss function guides

this simultaneous optimization, improving both clustering accuracy and representation quality. As

another example, rather than treating clustering as a traditional grouping problem, [145] refor-

mulate it as a pairwise classification task, where the similarity between image pairs determines

whether they belong to the same cluster. To overcome the challenge of limited labeled data in an

unsupervised setting, the method employs an iterative learning algorithm that alternates between

training the network and selecting samples to refine clustering. [146] address limitations in [145],

particularly its sensitivity to spatial transformations such as scaling, rotation, and translation, by

adding Spatial Transformer Networks (STNs). STNs act as a form of visual attention mechanism,

enabling the network to learn invariance to scale, rotation, and broader image deformations. By

doing so, the network can focus on extracting meaningful features that are invariant to these trans-

formations, leading to more robust clustering results. Deep Clustering for Unsupervised Learning

of Visual Features (DeepCluster) [27] presents a method that integrates clustering with deep learn-

ing to train CNN without labeled data. This method involves iteratively grouping image features

through k-means clustering, where the resulting clusters are used as pseudo-labels to adjust the

CNN’s parameters. By repeating this process, the network gradually learns to extract discrimina-

tive features without requiring labeled data. [147] presents a flexible vision model that combines

clustering mechanisms with a Transformer architecture to tackle a range of visual tasks such as

image classification, segmentation, and object detection. The model introduces two main inno-

vations: recurrent cross-attention clustering, which iteratively improves cluster centers for better

representation learning, and feature dispatching, which leverages the updated cluster centers to

reassign image features based on similarity-based metrics. [148] introduces a method to enhance
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and control the diversity of clustering results in deep learning frameworks. This approach utilizes

a new loss function designed to manage the diversity between multiple clustering solutions, allow-

ing flexibility in achieving desired diversity levels. This approach is computationally efficient and

seamlessly integrates with existing deep clustering models.

2.2.3 AE-based methods

AE-based algorithms have emerged as powerful tools in unsupervised learning, particularly for

tasks requiring dimensionality reduction and clustering. These algorithms utilize the capabilities

of a deep autoencoder to transform high-dimensional input data into a compact, lower-dimensional

representation, commonly known as the latent space. By performing this transformation, AE-

based approaches allow downstream tasks, such as clustering, to be carried out more effectively

in a simplified feature space. In traditional approaches to clustering, such as those described in

works like [149] and [150], the process of dimensionality reduction is distinct from the clustering

task itself. For instance, to make the learned representations more suitable for clustering, [149]

introduce a locality-preserving constraint on the learned representations, designed to embed the

original data into its intrinsic manifold space. After training the autoencoder and obtaining the

reduced data representation, the k-means clustering algorithm is applied to partition the data into

clusters. This two-step approach highlights the independent nature of dimensionality reduction

and clustering in conventional AE-based methods. A significant application of these techniques

is in graph clustering, which is a specialized domain of clustering aimed at partitioning the nodes

of a graph into distinct groups. In graph clustering, the goal is to separate nodes based on the

relationships implied by their connections, commonly represented as edges in the graph. This

problem is fundamental to graph analysis and has applications across various domains, including

social network analysis, bioinformatics, and recommendation systems. Methods such as those

outlined by Schaeffer [151] and Nascimento et al. [152] emphasize the importance of leveraging

graph structure to inform clustering decisions. Building on these principles, the approach described

in [150] incorporates the use of a deep autoencoder to facilitate graph clustering. In this method,

the autoencoder is employed to learn a reduced representation of the graph’s features, effectively
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condensing the information contained within the graph’s nodes and edges into a lower-dimensional

latent space. Once this feature extraction step is completed, k-means clustering is applied to the

latent space representation. The graph nodes are then assigned to clusters based on their positions

in this lower-dimensional space. This strategy combines the power of deep learning for feature

representation with the simplicity and effectiveness of k-means for cluster assignment, providing

a structured framework for tackling graph clustering problems.

More recent AE-based algorithms have been developed to address clustering challenges by

simultaneously mapping data points onto a lower-dimensional space and performing clustering

within this space. This integrated approach aims to enhance the overall clustering performance by

leveraging the strengths of dimensionality reduction and clustering in a unified framework. One

prominent example of such algorithms is the Deep Embedding Clustering (DEC) method [17].

DEC begins by training a stacked AE in a layer-by-layer fashion. Each layer of the AE func-

tions as a denoising autoencoder, which reconstructs the previous layer’s output even after random

corruption, thereby ensuring robustness. Once the AE training is complete, the decoder part of

the network is discarded, and the encoder part is fine-tuned to optimize clustering performance.

This fine-tuning is achieved by minimizing the Kullback–Leibler (KL) divergence between the

distribution of soft cluster assignments produced by the model and a pre-defined target distribu-

tion. In DEC, the Student’s t-distribution is employed to compute soft assignments, which measure

the similarity between data points and cluster centers. However, because clustering is inherently

unsupervised, the true target distribution of the data remains unknown. DEC circumvents this is-

sue by defining an arbitrary target distribution, which is based on the squared values of the soft

assignments. While this approach enables DEC to effectively perform clustering, it has certain

limitations, particularly in preserving the data’s local structure. To address these limitations, sev-

eral recent algorithms—such as those presented in [15, 18, 19, 25]—leverage both the encoder and

decoder parts of the AE to retain the data’s local structure while clustering. These methods aim to

improve clustering performance by integrating additional objectives into the optimization process.

For instance, the Improved Deep Embedding Clustering (IDEC) algorithm [18] enhances DEC by

introducing a reconstruction loss term in addition to the KL divergence loss. By minimizing both
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the reconstruction loss and the KL divergence, IDEC ensures that the learned representation retains

essential data structure while achieving effective clustering. Building on IDEC, the Improved Deep

Embedding Clustering with Fuzzy Supervision (IDECF) [15] further enhances the DEC frame-

work. IDECF employs a fully connected network known as the Deep Fuzzy C-Means Network

to estimate the target distribution, which introduces an element of fuzzy supervision into the clus-

tering process. Similar to IDEC, IDECF also includes the reconstruction loss in its optimization

problem, thereby improving the preservation of local structure while refining the clustering results.

Adversarial Deep Embedded Clustering (ADEC) [153] tackle two key issues in deep clustering:

feature randomness and feature drift. Feature randomness arises in deep clustering when unreli-

able pseudo-labels distort the latent space due to weak supervisory signals. Feature drift occurs in

autoencoder models when clustering and reconstruction objectives conflict, compromising latent

space quality. ADEC incorporates adversarial training to create a balance between clustering and

reconstruction tasks, ensuring the latent space remains both meaningful and well-structured for

effective clustering. Another notable method is the Deep Clustering Network (DCN) [25], which

takes a different approach by optimizing a combination of the reconstruction loss and the k-means

clustering objective. This joint optimization ensures that the latent space generated by the AE is

k-means friendly, meaning that the cluster centers align well with the underlying data distribution

in the latent space. To achieve this, DCN alternates between updating the network weights and

optimizing the cluster centers. The cluster centers are refined by solving a discrete optimization

problem, which ensures that they are optimally positioned relative to the data points in the latent

space. Deep K-Means (DKM) algorithm [19] builds upon the objective function of DCN but ap-

proaches the optimization process differently. Instead of solving a discrete optimization problem

to update cluster centers, DKM formulates a continuous optimization problem. This continuous

approach allows for simultaneous updates of the AE parameters and the cluster centers, leading to a

more streamlined and efficient optimization process. The Deep Embedded Probabilistic Clustering

(DEPICT) [154] framework takes a probabilistic approach to clustering, combining deep feature

learning with probabilistic cluster assignment. At its core, DEPICT uses a deep convolutional au-

toencoder to extract robust and non-linear features from input data, which are crucial for clustering
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in complex scenarios. The model incorporates a clustering loss based on Kullback-Leibler (KL)

divergence to minimize discrepancies between predicted cluster distributions and their refined ver-

sions. Additionally, DEPICT incorporates a data-dependent regularization term to mitigate over-

fitting. [155] explores the challenges of traditional deep clustering models, which often combine

clustering and reconstruction losses through autoencoders. A common issue with these methods

is the lack of constraints on the latent space, leading to intermediate features that are not ideal

for clustering, particularly when dealing with a high number of clusters. To address this, [155]

introduces an innovative clustering network that utilizes a pre-clustering center codebook. This

design enforces constraints on the latent space, resulting in intermediate features that are better op-

timized for clustering tasks, thus enhancing performance even as the number of clusters increases.

This method presents a significant improvement in clustering complex datasets. [156] presents an

innovative deep clustering approach that combines a Transformer-based Autoencoder (TAE) with

a K-means clustering network (KNet) to tackle the complexities of high-dimensional data cluster-

ing. The TAE employs self-attention mechanisms to capture global features, offering significant

improvements over traditional autoencoders. To enhance clustering performance, the model intro-

duces a Convex Combination Loss (CCL) that encourages features from the same cluster to form

a convex hull, alongside contrastive learning to improve feature distinctiveness. KNet is designed

using a relaxed and differentiable K-means clustering model, enabling seamless integration with

TAE for end-to-end optimization. [157] presents a framework that integrates clustering and feature

selection, tasks traditionally performed independently. By integrating a concrete selector layer into

an autoencoder, the model selects important features while clustering data in a latent space, ensur-

ing more accurate and interpretable results. The concrete selector layer handles feature selection,

while the modified autoencoder facilitates clustering in the latent space by integrating K-means

loss and optimizing inter-cluster distances.

AE-based clustering methods have demonstrated exceptional versatility across various appli-

cation domains. In text and document analysis [158], they enable semantic feature extraction,

making them integral to tasks like topic modeling [159], where they uncover latent structures and

facilitate effective organization and clustering of textual data. In the field of audio and speech
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processing [160], AE-based approaches transform complex acoustic signals into compact repre-

sentations, aiding in pattern recognition and the grouping of similar samples for applications such

as speech recognition, speaker identification, and music categorization. In social network analy-

sis [161], these methods analyze user behavior and relational data to identify clusters of users with

similar activities, preferences, or connections, which is valuable for community detection, user

segmentation, and targeted recommendation systems. These applications underscore the utility of

AE-based clustering methods in extracting meaningful patterns and organizing high-dimensional

data in diverse fields.

2.2.4 Generative based Methods

Variational autoencoders (VAEs) [105] and Generative adversarial networks (GANs) [162] are two

prominent deep generative models that are widely used for tasks such as understanding data dis-

tributions and performing clustering. These models are particularly effective because they can

capture complex patterns in data and facilitate the discovery of latent structures. In the context of

clustering, these generative models provide frameworks for learning underlying distributions and

partitioning data into meaningful groups. For instance, Variational Deep Embedding (VaDE) [163]

models the data generation process using a combination of a GMM and a DNN: (1) the GMM se-

lects a cluster, (2) a latent embedding is generated from the chosen cluster, and (3) the DNN

decodes the latent embedding into an observable output. The model uses a variational inference

framework, employing a neural network to map observable data into latent embeddings. The opti-

mization relies on maximizing the evidence lower bound (ELBO) through the Stochastic Gradient

Variational Bayes (SGVB) estimator and the reparameterization trick. On the other hand, [41]

employs an adversarial autoencoder to build a lower-dimensional code space tailored for cluster-

ing, applying a tunable Gaussian mixture prior to facilitate a joint optimization strategy. [164]

integrates Variational Autoencoders (VAE) with Gamma Mixture Models (GamMM) to address

the challenges of Gaussian-based methods, obtaining higher quality embeddings of the data latent

space. By utilizing GamMM for latent space representation and incorporating a reparameteriza-

tion technique to approximate Gamma distributions, the model improves clustering accuracy and
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generative capabilities. [165] enhances VAEs by employing prototype-based regularization in the

latent space. The method clusters the latent space around defined prototype centroids and utilizes

maximum mean discrepancy loss to ensure effective clustering without compromising reconstruc-

tion quality. Unlike traditional methods, it eliminates the need for auxiliary networks and allows

for controlled data synthesis by introducing noise around prototype coordinates.

GAN-based clustering methods offer an alternative approach by framing clustering as a genera-

tive task. GANs are based on a min-max optimization framework involving two competing models:

the generator, which trains to create realistic data samples, and the discriminator, which evaluates

whether a given sample is real or generated. The adversarial training process drives both models to

improve iteratively, leading to the generator producing data samples that closely resemble the true

data distribution. Several clustering algorithms based on GANs have been presented in [166]. For

example, InfoGAN [167] is an unsupervised GAN variant that learns disentangled representations

by maximizing mutual information between certain latent variables and the generated data. This

property enables InfoGAN to identify meaningful clusters in an unsupervised manner. Another

approach, GAN Mixture Model (GANMM) [168], extends GMM concepts by training a separate

GAN for each cluster, effectively modeling the data as a mixture of GANs. GANs are also applied

in semi-supervised clustering [169], leveraging a small portion of labeled data combined with a

larger pool of unlabeled data to improve clustering performance. By integrating prior knowledge

into the GAN architecture, the process allows for refining clustering outcomes to better align with

existing patterns or predefined labels. However, GAN-based clustering methods encounter chal-

lenges such as vanishing gradients and mode collapse, which hinder stable training and the ability

to capture all modes of the data distribution. Despite these issues, GAN-based models remain a

powerful tool for clustering due to their ability to model highly complex data distributions and

generate synthetic data that can further aid in understanding cluster structures [166].

Generative-based models have been widely applied to clustering tasks due to their capability

to model complex data distributions and produce meaningful latent representations. For example,

these models can be used in segmentation of medical images [170, 171], where clusters corre-

spond to different tissue types or pathological regions, and analysis of single-cell genomics data.
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In social network analysis [172, 173], VAEs and GANs enable the identification of communities

or subgroups by clustering latent representations of user interactions. Moreover, VAEs are also

utilized in anomaly detection [174], where outliers in the latent space are identified as anomalies,

and in personalized recommendation systems [175], where clustering helps group users or items

based on shared preferences. The flexibility and robustness of generative-based models make them

a versatile tool for clustering across diverse fields.

2.2.5 Self-supervised Methods

Self-supervised clustering has emerged as a pivotal research area within deep learning, address-

ing the critical challenge of extracting meaningful and structured information from unlabeled data.

This paradigm combines the strengths of representation learning and clustering objectives, creat-

ing models that not only uncover latent patterns in the data but also optimize the learned repre-

sentations to enhance clustering performance. Self-supervised clustering aims to bridge the gap

between feature learning and clustering accuracy, ensuring that learned embeddings are inherently

clustering-friendly. Self-supervised methods often leverage auxiliary tasks or data augmentations,

such as generating complementary predictions or modifying input data, to further enhance learning

and refine representation quality. Auxiliary tasks, often self-generated, provide pseudo-supervision

that guides the model in learning meaningful representations. Data augmentation plays a comple-

mentary role by enriching the training process through transformations that preserve the semantic

meaning of data points while introducing variability. Techniques like random cropping, flipping,

scaling, and color jittering for image data or masking and token replacement for text data en-

sure the model maintains robustness against variations in input data. Recent algorithms, such

as [23, 176–178], simultaneously learn to extract informative features from data and perform clus-

tering in a single framework. For example, [176] presents the Invariant Information Clustering

(IIC) objective, which maximizes the mutual information between cluster assignments of paired

data samples. This approach encourages the model to find clusters that are both predictable and

balanced, effectively avoiding trivial solutions where all data points are assigned to a single clus-

ter. To generate paired data samples, the method applies random transformations to each image,
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creating pairs that share underlying semantic content. By maximizing the mutual information be-

tween the cluster assignments of these pairs, the model learns representations that are invariant

to such transformations, capturing the essential features of the data. Deep Comprehensive Cor-

relation Mining (DCCM) [177] integrates three key components in its loss function to enhance

clustering performance: pseudo-label supervision, local robustness exploration, and triplet mu-

tual information. 1- pseudo-label supervision, involves assigning provisional labels to data points

based on clustering results. These pseudo-labels enable the model to learn category-level distinc-

tions among data points. 2- local robustness exploration, focuses on ensuring that the learned

features are stable and consistent under various transformations of the input data. 3- triplet mutual

information, extends the traditional notion of mutual information by modeling relationships among

triplets of data points. This approach helps the model capture richer dependencies within the data

by considering interactions beyond pairwise similarities. Deep Semantic Clustering by Partition

Confidence Maximisation (PICA) [178] focuses on improving the overall partition confidence of

the clustering process by ensuring that data separation aligns more closely with semantic cate-

gories. The approach uses a differentiable partition uncertainty index, combined with a stochastic

approximation, to evaluate the quality of clustering. This enables the method to leverage deep

networks and support mini-batch training effectively. By optimizing global partition confidence,

PICA avoids the issues of low intra-cluster compactness and diminished inter-cluster diversity seen

in prior methods. Multi-Modal Deep Clustering (MMDC) [179] utilizes a GMM as the clustering

target. The GMM represents clusters as probabilistic distributions in the feature space, and the

network learns to map image embeddings to these target distributions. The GMM’s parameters

are dynamically updated during training, ensuring that the clustering remains consistent with the

learned representations. To further enhance the quality of the feature representations, MMDC

incorporates a self-supervised auxiliary task of predicting image rotations. This task challenges

the network to recognize and predict the degree of rotation applied to input images (e.g., 0°, 90°,

180°, or 270°). By solving this task, the network is forced to learn semantic information about the

images, which indirectly improves the clustering results.
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As detailed in Section 2.1.2, contrastive learning is a widely used approach within self-supervised

learning. Its primary goal is to enhance data representations by bringing similar samples, known

as positive pairs, closer together in the feature space while pushing dissimilar or unrelated sam-

ples, referred to as negative examples, farther apart. This method is particularly effective in tasks

requiring the discovery of underlying data structures, making it highly popular not only for rep-

resentation learning but also in clustering tasks [23, 24, 180]. By organizing the feature space in

a way that naturally groups similar samples, contrastive learning facilitates the formation of well-

defined clusters, enabling models to better capture meaningful patterns within unlabeled datasets

and improve performance in downstream applications. For example, [180] develop a two-stage

framework that separates the tasks of feature learning and clustering, offering an alternative to

end-to-end clustering methods commonly used. In the first stage, the framework employs self-

supervised learning to extract semantically rich features from images. This is achieved by training

a neural network on a pretext task, which requires no labeled data. In the second stage, it uses

a contrastive learning loss, which helps refine the clustering process. This loss encourages im-

age pairs that belong to the same cluster to remain close in the feature space while pushing apart

those in different clusters. Contrastive Clustering [23] introduces a one-stage online clustering

method that integrates both instance-level and cluster-level contrastive learning. In this approach,

positive and negative instance pairs are generated through data augmentations and then mapped

into a feature space. Within this space, contrastive learning is applied at two levels: instance-level

contrastive learning is conducted in the row space, treating rows of the feature matrix as repre-

sentations of different samples in the batch; cluster-level contrastive learning is performed in the

column space, interpreting columns as cluster representations distributed over the dataset. By max-

imizing the similarity of positive pairs and reducing that of negative pairs at both levels, the model

simultaneously learns representations and cluster assignments in an end-to-end fashion. Distinct

from conventional methods that depend on direct pairwise comparisons, SwAV [181] integrates

clustering with a consistency objective that aligns cluster assignments across different augmenta-

tions of the same image. A core innovation is its ”swapped” prediction strategy, which predicts

the cluster assignment of one augmented view from another. [182] utilizes both weak and strong
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augmentations to enhance model performance. Weak augmentations are defined as minimal trans-

formations that preserve the fundamental structure of the data, such as random cropping, horizontal

flipping, and slight adjustments to color. On the other hand, strong augmentations involve more

drastic changes, including cutout, strong color jittering, and geometric transformations, which sig-

nificantly modify the input data to increase variation.This framework incorporates a shared-weight

model that processes three views of the data: one subjected to strong augmentation and two to

weak augmentations. These views are used for both instance-level and cluster-level contrastive

learning. The weak-weak and strong-weak view pairs enable the model to learn both fine-grained

features and robust representations that are invariant to substantial distortions. [183] introduces a

single-stage framework that merges representation learning with clustering, eliminating the need

for pre-training. It refines traditional loss functions by excluding the impact of negative instances

in cluster center learning, ensuring more stable training in the absence of ground-truth labels. Ad-

ditionally, it incorporates a global entropy constraint to ensure balanced cluster sizes and reducing

the need for hyperparameter tuning.

Self-supervised clustering is a powerful tool for uncovering patterns in data without the need

for labeled samples. It plays a vital role in organizing images by grouping them based on shared

characteristics, which is useful in fields such as facial analysis [184] and medical imaging [185]

for sorting and understanding large datasets. In text processing [186], it helps cluster documents,

articles, or feedback into distinct categories or themes, supporting tasks like customer sentiment

analysis or topic modeling in research. In the biological sciences, self-supervised clustering aids

in grouping genetic sequences [187] or molecular structures [188], offering valuable insights into

evolutionary biology and disease mechanisms. Additionally, it enhances recommendation systems

[189] by identifying clusters of users or products based on behavioral or attribute similarities,

enabling personalized content delivery in sectors like e-commerce and entertainment. By relying

on the intrinsic properties of data, self-supervised clustering provides an efficient means to derive

structure and actionable insights in various domains.
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2.3 Continual Learning

Continual learning (CL), also referred to as lifelong learning, is a key area of artificial intelligence

research focused on empowering systems to incrementally acquire, adapt, and expand their knowl-

edge over time. This capability is crucial for intelligent systems functioning in dynamic, real-world

environments, where they must constantly adapt to new tasks and evolving data streams. Unlike

traditional machine learning models, which are generally trained on static datasets, continual learn-

ing systems aim to preserve and enhance previously learned knowledge while incorporating new

information. In this section, we first explore how various algorithms address the primary challenge

of continual learning, known as catastrophic forgetting. Then, we delve into different scenarios

and applications of CL, highlighting its practical significance.

2.3.1 Catastrophic Forgetting (CF)

One of the principal challenges in continual learning is managing catastrophic forgetting (CF), a

phenomenon where acquiring new knowledge can disrupt or overwrite previously learned informa-

tion. This occurs because the neural network’s weights, optimized for new tasks, may conflict with

those representing earlier tasks. Overcoming this challenge is crucial for maintaining the versatil-

ity and utility of continual learning systems over time. A central focus in addressing catastrophic

forgetting is achieving the delicate balance between stability and plasticity. Stability ensures the

retention of previously acquired knowledge, while plasticity enables the system to integrate new

information. Striking this balance is inherently complex: placing too much emphasis on stability

risks stifling adaptability, whereas excessive plasticity can lead to the erosion of prior knowledge.

Researchers have developed several strategies to mitigate CF and enhance the performance

of continual learning systems. Regularization-based methods introduce constraints on model

updates, penalizing changes to parameters deemed important for previously learned tasks. This

approach encourages the system to preserve critical knowledge while integrating new informa-

tion. Another popular strategy is replay-based methods, which involve retaining a subset of

previously encountered data or generating synthetic examples to reinforce earlier learning dur-
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ing training. Representation-Based methods mitigate CF by focusing on learning and preserving

shared, task-agnostic representations that encapsulate essential features of data across tasks. Lastly,

architecture-based methods allocate or isolate separate subsets of model parameters for different

tasks, effectively minimizing interference between them. In the remainder of this sub-section, we

will delve into the methods used to implement and manage these strategies.

Regularization-based methods: These methods apply constraints on model updates, penalizing

changes to parameters identified as essential for previously learned tasks. This strategy promotes

the retention of crucial knowledge while allowing the integration of new information. some meth-

ods in this category [49, 190] perform weight regularization, which specifically targets the vari-

ability of network parameters. A common approach involves adding penalty to the loss function,

which penalizes the changes in each parameter based on its ”importance” in carrying out the pre-

vious tasks. For instance, Elastic Weight Consolidation (EWC) [49, 50] incorporates a quadratic

regularization term into the loss function, leveraging the Fisher Information Matrix (FIM) to pe-

nalize substantial deviations of critical weight values from their previously learned states. This

approach effectively anchors important parameters near their original values, allowing the net-

work to retain prior knowledge while adapting to new tasks. However, EWC assumes the FIM

is diagonal, implying independence among parameters—a simplification that often does not hold

in practice, thereby limiting its effectiveness. To address this limitation, the reparameterization

method proposed in [191] rotates the parameter space to more accurately align with the true struc-

ture of the FIM, improving the accuracy of its diagonal approximation and enhancing performance.

Synaptic Intelligence (SI) method [51] is another weight regularization method that assigns an im-

portance score to each synaptic weight, indicating its role in the performance of earlier tasks.

These scores are calculated based on the contribution of each parameter to the overall loss func-

tion during training. When a network learns a new task, a regularization component is added to

the training process, discouraging changes to parameters identified as critical for prior tasks. [192]

preserves prior knowledge by employing function-space Bayesian inference. It utilizes Gaussian

processes to model task-specific functions instead of focusing solely on neural network parame-
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ters. The approach summarizes each task using inducing points and posterior distributions, which

act as compact knowledge representations. By incorporating KL-divergence for regularization, the

model effectively balances acquiring new information while maintaining past learning. Memory

Aware Synapses (MAS) [193] draws inspiration from neuroplasticity to prioritize the retention of

essential knowledge. MAS works by assigning an importance value to each parameter, determined

by how sensitive the model’s predicted output is to variations in that parameter. During the learn-

ing of a new task, the approach discourages modifications to parameters identified as crucial for

earlier tasks, thereby safeguarding vital information from being overwritten. Remarkably, MAS

can update these importance values using unlabeled data, allowing the network to adapt to partic-

ular test scenarios and discern which information should be preserved or can be disregarded. [194]

builds upon a key insight into the behavior of loss functions in neural networks: changes in model

parameters affect various regions of the loss landscape asymmetrically. For example, a parame-

ter update that improves performance on one task can inadvertently cause significant degradation

on another. [194] models the loss function as an asymmetric quadratic form, deliberately overes-

timating potential loss in regions that are less directly influenced during training. This strategic

overestimation acts as a protective mechanism, preserving knowledge from prior tasks while en-

abling effective learning of new ones.

Replay based methods: Replay-based strategies in continual learning address the issue of catas-

trophic forgetting by enabling models to maintain and synthesize knowledge from prior tasks while

adapting to new ones. These methods typically utilize a memory buffer to store a selected portion

of past task data, which is replayed during subsequent training phases. The stored data can consist

of real examples from prior tasks or synthetic data generated by methods like generative models,

ensuring a balance between memory usage and data representation. A critical element of these

methods is rehearsal, where the model learns simultaneously from new data and replayed samples,

maintaining task performance across the learning sequence. This approach helps ensure stability

and adaptability in continually learning systems. For example, [52] utilizes experience replay (ER),

which combines training on new task data with examples stored from previous tasks in a small
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memory buffer. [53] presents Meta-Experience Replay (MER), an algorithm that incorporates ex-

perience replay with optimization-based meta-learning. MER is designed to adjust model parame-

ters in a way that reduces the likelihood of future gradient-based interference while enhancing the

potential for positive transfer. This approach enables the model to retain prior knowledge more

effectively and apply it beneficially to new learning scenarios. To enhance storage efficiency, [54]

explores methods for compressing data from non-i.i.d. streams in an online learning framework.

This approach uses an AE and adaptive quantization technique to efficiently store samples in a

memory. [195] balance the quality and quantity of compressed data to optimize memory replay

effectiveness. The authors introduce an approach utilizing determinantal point processes to deter-

mine the appropriate compression quality for incoming training samples efficiently. This method

allows the use of standard data compression algorithms, like JPEG, with carefully selected quality

settings to significantly improve performance over existing baselines without substantial compu-

tational overhead. [196] stores visual explanations, such as saliency maps, in a memory buffer for

each task the model learns. Saliency maps highlight which parts of the input data (e.g., image

regions) are most influential for the model’s decisions. When the model learns new tasks, [196]

ensures that its explanations for the predictions remain consistent with those generated during ear-

lier tasks. By preserving these explanations, the model retains the underlying rationale behind its

past decisions, reducing the risk of forgetting critical information. [60] integrates rehearsal meth-

ods with knowledge distillation by saving the network’s output logits during training and ensuring

they align with the model’s current predictions, preserving consistency with previously acquired

knowledge. The main challenge of retaining data from previous tasks revolves around privacy

issues. In cases involving sensitive information such as personal details, medical records, or con-

fidential datasets, storing raw data for later use may breach privacy laws or violate organizational

guidelines. To address this issue, researchers introduce generative replay. For instance, [57] in-

tegrates a deep generative model (the ”generator”) with a task-solving model (the ”solver”). The

generator creates synthetic data that mimics previously learned tasks, allowing this data to be com-

bined with new task data for training the solver. This eliminates the need to store actual past data

while retaining knowledge from earlier tasks. [55] decompose the network into a feature extrac-
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tor and a classifier. To preserve knowledge, they integrate generative feature replay within the

classifier and apply feature distillation to the feature extractor. This approach simplifies the gen-

erative replay process and effectively addresses the imbalance problem. It is both computationally

efficient and scalable to large datasets. Traditional generative replay methods, which involve a

generator producing samples of past tasks to train a classifier, often suffer from two main issues

(See [56]): a unidirectional flow of information from generator to classifier, and the degradation

of sample quality due to the reuse of generated data. To overcome these limitations, [56] utilizes a

diffusion model as the generator and introduces an instruction-operator derived from the classifier

to guide the sample generation process. By establishing a bidirectional interaction between the

generator and classifier, [56] aims to produce higher-quality samples that better represent previ-

ous tasks. [197] introduces latent matching to enhance the generated features alignment between

the reconstructed and original data. Moreover, based on the observation that reconstructions are

more effective at preserving knowledge, this approach involves cycling generated data through a

pre-trained model to align them more closely with the original data.

Representation-Learning based methods: The representation-learning based methods in con-

tinual learning is designed to enhance the resilience and versatility of representations to effectively

address issues like catastrophic forgetting and inter-task interference. This approach emphasizes

the creation of generalizable and robust features that can adapt to new tasks while preserving

knowledge from previous ones. By minimizing sensitivity to changes specific to individual tasks,

the representation-based method supports smoother task transitions and sustained performance.

One key category of these methods involves self-supervised learning, which frequently employs

contrastive loss to develop robust representations. This technique helps mitigate forgetting and

enhances adaptability across tasks. For instance, [198] focuses on preserving the consistency of

learned representations by introducing an instance-wise relation distillation loss. It measures the

similarity relationships between data points in the current and previously trained models and mini-

mizes any deviation. This self-supervised distillation helps maintain the model’s understanding of

past tasks. Lifelong Unsupervised Mixup (Lump) [65] generates synthetic data points by interpo-
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lating between current and past tasks. This interpolated training data helps the model maintain a

balanced representation of old and new knowledge, reducing the bias toward more recent data that

typically causes forgetting. [199] employs a dual mechanism consisting of a fast learner for super-

vised learning of task-specific representations and a slow learner for unsupervised, task-agnostic

representation learning through self-supervised methods to mitigate CF. This approach is designed

to improve continual learning by reducing catastrophic forgetting and facilitating effective knowl-

edge transfer. [59] presents a dual-network framework composed of a student network and a teacher

network. The student network is designed to acquire knowledge from new tasks, while the teacher

network is responsible for maintaining and integrating previously learned information. A key in-

novation of this approach is the application of contrastive distillation, which aligns the feature

representations of the two networks to ensure the retention of prior knowledge and consistency.

CaSSLe [58] introduces a predictor network that bridges current and past representations. This

predictor aligns the embeddings learned at each training stage with those from previous stages,

effectively acting as a distillation mechanism. By converting standard self-supervised learning

objectives into a form that retains consistency across tasks, CaSSLe preserves essential features

of earlier data while learning new information. One notable drawback of [58, 59] frameworks

is their memory inefficiency, particularly when applied to deep neural networks with millions of

parameters. This inefficiency arises from the need to store a copy of the model from previous

tasks in memory to align current and past representations effectively. [69] introduces a novel ap-

proach by combining a self-supervised forgetting loss with an online memory update strategy. The

self-supervised forgetting loss operates by applying the KL divergence to measure the pairwise

similarity between feature representations of previous and current tasks, ensuring the retention of

learned knowledge. Simultaneously, the online memory update mechanism maintains a fixed-size

buffer, carefully selecting a representative subset of past data to effectively preserve the overall

data distribution. [200] addresses CF by introducing a dual-network approach designed to balance

adaptability and memory retention. It uses an expert network dedicated solely to learning new

tasks, allowing it to focus entirely on acquiring fresh knowledge without constraints related to

retaining previous information. This improves the network’s plasticity, or its ability to adapt to
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new data. To prevent forgetting, the newly learned representations are integrated into a main net-

work through an adaptation-retrospection phase. This phase aligns the representations from both

networks, ensuring that the main network retains past knowledge while incorporating new infor-

mation.

Architecture-Based methods: These methods allocate or isolate subsets of model parameters

for each task, ensuring effective task-specific knowledge retention while minimizing interference

across tasks. By dedicating distinct parameters to individual tasks, these approaches create spe-

cialized subspaces within the model, preventing the overwriting of previously learned informa-

tion. Parameter allocation methods statically or dynamically assign specific parameters to indi-

vidual tasks, ensuring minimal interference. For instance, [201] enables a fixed deep neural net-

work to perform multiple tasks without degrading its performance on previously learned tasks.

This approach utilizes binary masks to adaptively select task-specific parameters from a shared

network. These masks are trained in an end-to-end differentiable manner, adding minimal over-

head—approximately 1 bit per network parameter for each task. Similarly, [202] introduce a task-

based hard attention mechanism that assigns specific network parameters to each task, effectively

isolating them to preserve prior learning. [203] leverages network pruning techniques to eliminate

redundant parameters in large networks, thereby freeing up capacity to learn new tasks. Multiple

tasks can be ”packed” into a single model with little loss of performance and little storage overhead

by iteratively pruning and retraining the network. [204] evaluates and manages the relationships

between tasks, identifying whether prior knowledge is helpful or harmful to the learning of new

tasks. Their framework includes a global feature extractor and task-specific classifiers, enabling the

system to retain beneficial knowledge while mitigating interference from detrimental information.

A sensitivity measure is introduced to quantify the impact of prior tasks on the current task’s loss,

guiding the selective transfer of supportive knowledge. [205] introduces neuron-specific masking

to selectively activate particular neurons and their corresponding weights for each task. This ap-

proach facilitates forward knowledge transfer by reusing less critical weights while preserving the

more significant ones from prior tasks. Fixed allocation approaches like [201, 202] may face diffi-
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culties with constrained model capacity as the number of tasks grows. To address these problems,

some alternative methods adopt dynamic strategies, expanding the model architecture as necessary

to effectively handle new tasks. [206] address CF by allocating a distinct neural network, referred

to as a ”column,” for each new task. These columns are interconnected through lateral connections,

enabling the transfer of knowledge from earlier tasks to subsequent ones. [207] presents a dynamic

expansion strategy that incorporates small task-specific decoders to handle new tasks or classes

while preserving knowledge from previously learned tasks. The architecture consists of a shared

multi-scale encoder and multiple compact task-specific decoders. The shared encoder is designed

to transform the input sample into an intermediate representation, while each task-specific decoder

is responsible for performing classification. Dense Network Expansion (DNE) [208] presents a

strategy that incorporates dense connections among the intermediate layers of task-specific net-

works. This approach promotes the transfer of knowledge from prior tasks to new ones by enabling

feature sharing and reuse. A central element of DNE is the Task Attention Block, a cross-task at-

tention mechanism that functions at the feature-mixing level, independently of spatial attention.

DNE maintains the feature space of old classes while extending the network and feature scale at

a slower rate than traditional methods. Dynamic methods address the issue of scalability by in-

creasing the size of the network as new tasks are introduced. This strategy enables the model to

flexibly adjust its capacity to meet the demands of additional tasks. However, this flexibility has

its trade-offs. Expanding the network can lead to challenges such as overfitting, particularly when

the data for the new tasks is insufficient, as the additional parameters might overly specialize to

the training data. Moreover, this approach tends to raise computational demands, requiring more

resources during both the training phase and inference due to the growing network complexity.

2.3.2 Continual Learning Scenarios

Continual learning comprises diverse strategies designed to handle the challenges of adapting to

shifting data and tasks over time, all while maintaining previously gained knowledge. Among

these, supervised continual learning (SCL), semi-supervised continual learning (SeCL), and un-

supervised continual learning (UCL) highlight the diversity of real-world scenarios that require
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adaptive solutions.

Supervised Continual Learning: Supervised continual learning (SCL), which relies on labeled

data, can be further categorized into task-incremental learning (TIL) [205,206] and class-incremental

learning (CIL) [70], each suited for different real-world requirements. TIL involves scenarios

where task identifiers are accessible during both training and evaluation. This explicit task infor-

mation allows the model to tailor its learning strategy for each task, minimizing interference with

previously learned tasks. Conversely, CIL introduces a more demanding situation where task labels

are provided only during training but are absent during evaluation. Here, the model must differen-

tiate between classes from different tasks without direct cues, necessitating sophisticated strategies

to preserve performance on earlier tasks while assimilating new ones. As an example, consider

two binary classification tasks: distinguishing between ”zebra” and ”elephant” and another task

between ”cat” and ”dog”. In TIL, the model uses task identities to separate predictions for the first

task from the second, simplifying classification. In contrast, CIL demands that the model classify

all four classes simultaneously without task-specific hints.

TIL has broad applications in various real-world domains, including robotics [62], 3D ob-

ject detection [209], machinery fault diagnosis [210], and human activity recognition [211]. For

instance, [62] address the need for assistive robotics to adapt to dynamic environments. It in-

volves learning tasks sequentially, with each task presenting progressively varied challenges, such

as changes in illumination, occlusion, camera-object distance/angle, and clutter. [209] explores 3D

object detection within a TIL framework by utilizing a Bayesian-enhanced KD method. It is based

on Region Proposal Networks (RPNs) tailored for 3D object detection, which analyze point clouds

to extract features and produce 3D bounding boxes for identifying objects. [210] is designed in

a typical TIL context, where sequential fault diagnosis tasks for different machinery components

(bearings, gears, discs) are introduced incrementally. In human activity recognition, [211] intro-

duces a framework that creates task-specific feature extraction branches for each new task and a

feature redistribution layer. This approach emphasizes extending the feature extraction branches
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to handle new inputs from diverse sensor modalities while ensuring the classifier outputs remain

consistent in both dimensions and quantity.

CIL problems are characterized by two core challenges: within-task prediction and task-identity

prediction [212,213]. While within-task prediction involves distinguishing between classes within

a single task, task-identity prediction addresses the broader challenge of determining which task a

sample belongs to in the absence of explicit task labels during inference. This lack of task iden-

tity significantly complicates CIL compared to task-incremental learning setups, as models must

effectively classify all learned classes simultaneously without the contextual aid of task-specific

information. CIL has broad range of real-world applications such as Few-shot learning [214],

audio-visual video recognition [215], image classification [216], and object detection [217]. For

example, [215] emphasizes the challenges arising from the multi-modal characteristics of audio-

visual data. The proposed method maintains semantic similarities both within and across audio

and visual modalities throughout tasks, while also preserving audio-guided visual attention mech-

anisms established in earlier tasks. This approach effectively prevents the model from losing crit-

ical cross-modal relationships. [216] enhances memory efficiency in CIL setting by preserving a

greater number of low-fidelity auxiliary exemplar samples instead of fewer high-fidelity ones for

image classification task.

Semi-Supervised Continual Learning: Semi-supervised continual learning provides an inno-

vative solution to the challenge of limited labeled data by utilizing a combination of labeled and

unlabeled datasets. This approach reduces the dependency on extensive labeling efforts, which

are often costly and labor-intensive [218, 219]. Semi-supervised methods address CF through

techniques like knowledge distillation [220], which helps preserve prior knowledge, and self-

supervised learning [221], which identifies intrinsic patterns in data without needing labels. These

strategies, along with representation learning, enhance the model’s ability to generalize effectively

across different tasks and datasets. For example, [222] tackles challenges in semi-supervised

continual learning using a nearest-neighbor classifier to partition the feature space non-linearly,

promoting robust and adaptable representation learning. Their method ensures the model cap-
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tures meaningful features for the current task while effectively distilling knowledge from prior

tasks through a novel semi-supervised distillation loss. Unlike traditional approaches that focus

solely on class- or sample-level information, this method integrates sample-class level relation-

ships within the nearest-neighbor classifier. [223] leverages a combination of metric learning and

consistency regularization to optimize learning from limited labeled data. By enforcing consis-

tency among augmented and interpolated examples and imposing contrastive constraints between

representations of different tasks, [223] effectively exploits unlabeled data while retaining task-

specific information.

Replay mechanisms are also integral to semi-supervised continual learning. Techniques such

as generative replay [63, 224], which synthesizes past data examples, and feature preservation,

which secures essential learned features, enable the model to retain knowledge from earlier tasks

while accommodating new information. These methods ensure that the model remains stable and

capable even when faced with dynamically changing data and tasks. For example, [63] presents a

method where a classifier is jointly trained with a conditional GAN, which continuously provides

the classifier with the learned data distribution. This method enables the classifier to replay data

sampled from the conditional generator in an online fashion, leveraging unlabeled data efficiently

in terms of both time and storage. Additionally, to address the challenge of CF for unlabeled data,

the approach selectively stabilizes the discriminator’s parameters that are crucial for distinguishing

between pairs of previously seen unlabeled data and their pseudo-labels generated by the classi-

fier. [224] Combines a continually trained classifier with a diffusion-based generative model in a

unified, jointly optimized neural network. This method illustrates that shared parameterization,

alongside knowledge distillation techniques, ensures stable adaptation to new tasks while effec-

tively reducing catastrophic forgetting (CF).

Unsupervised Continual Learning Unsupervised continual learning is a cutting-edge approach to

machine learning that addresses scenarios where labeled data is entirely unavailable, emphasizing

the need to extract meaningful patterns and uncover hidden structures from a continuous stream of

data. Unlike SCL, which depends on labeled datasets for training, unsupervised continual learning
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focuses on creating adaptable systems that can learn incrementally without explicit guidance or

predefined labels. This paradigm has gained significant attention due to its potential to operate in

dynamic and ever-changing environments, where data evolves over time and labels are impractical

or impossible to obtain.

Unsupervised continual learning is especially relevant in fields where data evolves dynamically

over time rather than remaining static, such as in anomaly detection [66]. The continual prompt-

ing module leverages a compact memory bank of key-prompt-knowledge pairs to facilitate task-

invariant anomaly predictions by incorporating task-specific ”normal” knowledge. Additionally,

structure-based contrastive learning, developed in conjunction with the segment anything model,

enhances prompt learning and significantly improves the accuracy of anomaly segmentation. [67]

presents a method that enables self-driving car perception systems to adapt continuously to new,

unseen environments without requiring access to previous training data. This approach addresses

challenges such as varying weather, lighting, and geographical conditions that autonomous ve-

hicles encounter. [225] presents a specialized framework for image classification tasks, focusing

on enabling continual learning in an unsupervised environment. This approach replaces ground

truth labels with pseudo labels, generated through a global clustering algorithm. The framework

utilizes the model from the previous incremental step as a feature extractor to derive these pseudo

labels for new data, facilitating a seamless update and adaptation process. [68] tackles a significant

challenge in implementing EEG-based models in real-world scenarios, especially in clinical and

healthcare applications. The proposed approach facilitates continuous and autonomous adaptation

of EEG models to new subjects without the need for labeled data. This method achieves a deli-

cate balance between plasticity (ensuring adaptation to new individuals) and stability (maintaining

and generalizing prior knowledge). [226] introduces a framework that bridges unsupervised do-

main adaptation and CL to tackle gradually evolving target domains. Rather than relying on fully

available target data, this method processes sequential, unlabeled batches from dynamic domains,

utilizing a memory buffer and contrastive loss to ensure effective domain alignment and retention

of learned knowledge.
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While unsupervised continual learning frameworks show immense promise in real-world ap-

plications, to the best of our knowledge, there is a notable gap in algorithms specifically designed

for clustering tasks within this paradigm. Addressing this limitation could open new avenues for

leveraging unsupervised continual learning in broader, more complex scenarios.
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Chapter 3

Deep multi-representation learning (DML)

In this chapter, we introduce a pioneering approach called Deep Multi-representation Learning

(DML), a framework designed to enhance unsupervised data clustering by overcoming the con-

straints of conventional methods. Traditional clustering approaches often depend on a single latent

space to represent all clusters, which can limit their effectiveness in distinguishing complex or

overlapping data groups. DML addresses this issue by utilizing multiple AEs to generate tailored

latent spaces that align with the specific characteristics of individual clusters. It assigns unique

latent spaces to “challenging” clusters, where cluster centers are densely packed and overlapping,

while reserving a shared latent space for “easier” clusters that are well-separated and clearly de-

fined. To facilitate the training of these multiple AEs, DML introduces a novel loss function

that integrates weighted reconstruction and clustering losses. This loss function adapts dynami-

cally, placing greater emphasis on data points that strongly align with specific clusters, ensuring

the model develops meaningful and cluster-specific representations. Unlike conventional methods

that rely on rigid cluster assignments during training, DML employs soft assignments, focusing on

high-confidence samples to effectively train distinct AEs for different clusters. This multirepresen-

tation approach significantly enhances clustering performance, as demonstrated by experiments on

various benchmark datasets, showing improved cluster separation and compactness compared to

leading methods.

55



1𝑠𝑡 Encoder 1𝑠𝑡 Decoder ℒ (1)

𝝁(1)

(L − 1)𝑡ℎEncoder (L − 1)𝑡ℎDecoder ℒ(L−1)

𝝁(L−1)

.

.

.

Cluster-specific AEs

L𝑡ℎ Encoder L𝑡ℎ Decoder ℒ(L)

𝝁(L)

𝝁(L+1) . . .

𝝁(K)

General AE

a) Training Procedure of DML

1𝑠𝑡 Encoder

(L − 1)𝑡ℎEncoder

L𝑡ℎ Encoder

.

.

.

C
risp

  A
ssign

m
en

t

b) Clustering phase of DML
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3.1 Notation

K-clustering problem aims to divide the given dataset X = {x1,x2, ...,xN} with N samples into

K disjoint groups (aka clusters), where the ith data sample is denoted by xi and K is the predefined

number of groups. In this chapter, we aim to address the K-clustering problem by proposing DML

framework. Assume there are L−1 difficult clusters (hence there are K-L+1 easy clusters), where

L ≤ K. DML trains an individual AE for everyone of the difficult clusters and a single common AE

for the easy clusters. We refer to the lth AE of DML as AE(l), l = 1, . . . ,L; where AE(L) denotes

the general AE assigned to the easy clusters and the remaining AEs, i.e. AE(l) l = 1, . . . ,L − 1,

are assigned to the L−1 difficult clusters.

The cluster centers, i.e. µ(k) k = 1, . . . ,K, are initialized to the centers obtained by M.

Consequently, all the DML’s autoencoders are initialized with the M’s autoencoder.

The AE of M is denoted by ÃE. The encoder and decoder of ÃE are respectively denoted

by f̃(.) and g̃(.). Representation of X in the latent space of ÃE is denoted by Ũ = {ũ1, ..., ũN},

where ũi = f̃(xi; θ̃e) ∈ Rd, d indicates dimension of the latent space, and θ̃e represents parameters

of the encoder network. The reconstructed output of ÃE is shown by x̃i = g(ũi; θ̃d), where θ̃d

denotes the decoder parameters of ÃE.

The encoder and decoder parameters of the lth autoencoder of DML, i.e. AE(l), are respectively

shown by f (l)(.) and g(l)(.). U (l) = {u(l)
1 , ...,u

(l)
N } denotes the representation of X in the latent

space of AE(l), where u
(l)
i = f (l)(xi;θ

(l)
e ) ∈ Rd and θ

(l)
e shows AE(l)’s encoder parameters. Also,

the reconstructed output of AE(l) is denoted by x̂
(l)
i = g(l)(u

(l)
i ;θ

(l)
d ), where θ(l)

d denotes the decoder

parameters of AE(l).

In the following, for simplicity, we use notation (.)(lk) to refer to the DML’s latent space asso-

ciated to the kth data cluster. In general, if D = {d1, ..., dL−1} is the set of difficult clusters and

and E = {e1, ..., eK−L+1} is the set of easy clusters, then lk can be obtained as below:

lk =
L−1∑
i=1

i1{k = di}+ L1{k ∈ E}. (3.1)
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As an instance, assume there are four data clusters, i.e. k ∈ {1, 2, 3, 4} and K = 4, of which the

second and third ones (i.e. k ∈ {2, 3}) are difficult and the first and fourth clusters (i.e. k ∈ {1, 4})

are easy. Therefore, in this example, L = 3, D = {2, 3}, E = {1, 4}, and lk for k = 1, 2, 3 and

4 are respectively equal to 3, 1, 2 and 3 – e.g. the DML’s AE associated to k = 2 is AE(1), and

the representation of xi in the latent space corresponding to the data cluster k = 2 is u(1)
i because

l2 = 1. Note that lk ∈ {1, 2, ..,L}.

3.2 Soft assignment

To focus AE(lk) on creating a latent space specialized in the kth cluster, we devise a novel loss

function that navigates the training process of AE(lk)’s encoder and decoder networks to pay more

attention to the data points similar to µ(k). To measure the similarity between a data point xi and the

cluster centre µ(k), denoted by pik where pi = [pi1, . . . , piK ], we propose to solve the optimization

problem shown in (3.2a) where m ≥ 1 is the level of fuzziness 1. As is shown in (3.2b), we use the

Lagrangian multiplier method [227] to solve (3.2a) where the Lagrange multiplier γ is computed

by substituting pik from (3.2b) in the constraint of (3.2a), as is shown in (3.2c). The final value

for the similarity of data point xi to the kth cluster, i.e. pik, is obtained by substituting γ from

(3.2c) in (3.2b), as is shown in (3.2d). It can be seen that samples that are closer to µ(k), in the

1(3.2a) is inspired by the fuzzy c-means clustering method; the main difference is that in (3.2a) there are multiple
representations for a single data point while in fuzzy c-means each data point has a single representation.
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corresponding latent space U (lk), take higher similarity values.

minpik

∑K
k=1 p

m
ik||u

(lk)
i − µk||22

s.t.
∑K

k=1 pik = 1 (3.2a)

S =
∑K

k=1 p
m
ik||u

(lk)
i − µ(k)||22 − γ(

∑K
k=1 pik − 1)

∂S
∂pik

=0

−−−−→ pik = ( γ

m||u(lk)

i −µ(k)||22
)

1
m−1 (3.2b)

∑
k pik=1

−−−−−→ γ = 1
m

(∑K
k=1

1
1

||u
(lk)
i

−µ(k)||2/(m−1)
2

)m−1 (3.2c)

3.2b−−→ pik =

1

||u
(lk)
i

−µk||2/(m−1)
2∑K

j=1
1

||u
(lj)

i
−µj ||

2/(m−1)
2

(3.2d)

Note that, since
∑K

k=1 pik = 1, one can also think of pik as a soft assignment of data point xi to the

kth cluster; hence, the two terms “similarity” and “soft assignment” are interchangeable throughout

this proposal.

3.3 Training Procedure

As discussed before, we propose to use weighted samples when training the autoencoder corre-

sponding to the kth cluster, i.e. AE(lk). We consider the soft assignment pik (defined in Section

3.2) as the weight of sample xi when training AE(lk). This is to realize the idea of assigning higher

weights to the samples closer to the target cluster centre µ(k), in the corresponding latent space

U (lk).

We define the loss function L(lk), shown in (3.3), to be minimized when training AE(lk), where

L(lk)
r and L(lk)

c respectively denote the weighted reconstruction and clustering losses, and λ is a

hyperparameter that indicates the effect of the clustering loss in the networks training. AE(lk)’s

parameters, i.e. θ
(lk)
e and θ

(lk)
d for k = 1, . . . ,K, are optimized in an end-to-end manner using the

back-propagation algorithm while minimizing L(lk), k = 1, . . . ,K.
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L(lk) = L(lk)
r + λL(lk)

c (3.3a)

L(lk)
r =

∑
xi∈B pmik||xi − x̂

(lk)
i ||22 (3.3b)

L(lk)
c =

∑
xi∈B pmik||u

(lk)
i − µk||22 (3.3c)

Most of the existing deep-clustering methods (see Chapter 2) only consider the reconstruction

loss, to be minimized, in the hope of making the latent space more discriminative for data cluster-

ing, while the reconstruction loss has no substantial connection with the clustering performance.

The proposed loss function shown in (3.3) considers both of the influential factors reconstruction

and clustering performances through incorporating their corresponding losses. This allows AE(lk)

to simultaneously learn a feature representation and compact data points with similar latent repre-

sentations around their corresponding cluster center.

By incorporating the soft assignment pik in the reconstruction loss L(lk)
r , we direct the encoder

and decoder networks to be specialized in reconstructing samples that are more probable to belong

to the kth cluster. Similarly, including pik in the clustering loss L(lk)
c encourages data points that

are more probable to belong to the kth cluster to sit close to their corresponding cluster center

µ(k), in the latent space U (lk). Thus, by minimizing L(lk)
c , we implicitly minimize the intra-cluster

distances between samples of the kth cluster.

Finally, to update the cluster center µ(k), we define total loss function L(lk)
t , k = 1, ...,K, and

set its derivative to 0, as is shown in (3.4).

L(lk)
t =

∑
xi∈X

pmik

(
||xi − x̂

(lk)
i ||22 + λ||u(lk)

i − µk||22
)

∂L(k)
t

∂µk
=0

−−−−−→ µk =

∑
xi∈X pmiku

(lk)
i∑

xi∈X pmik
(3.4)
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Algorithm 1 DML Algorithm

Input: Data points X , θ̃e, θ̃d, µ(k) for k = 1, . . . ,K, τ , and MaxIter.
Output: θ

(l)
e , θ(l)

d for l = 1, . . . ,L.
1: Find sets D and E based on Section 3.1.
2: Initialize θ

(l)
e and θ

(l)
d for l = 1, . . . ,L with θ̃e and θ̃d respectively.

3: for iter ∈ {1, 2, ...,MaxIter} do
4: for k ∈ {1, 2, ...,K} do
5: Compute soft assignments pik using (3.2d), for i ∈ B
6: Update AE(lk)’s parameters employing loss function (3.3)
7: end for
8: end for
9: Use crisp assignment based on Section 3.4 to assign data point to clusters

3.4 Final Cluster Assignments

We utilize the trained encoders and cluster centers to compute the final degree of membership, pik,

based on (3.2d). Each data point is assigned to the most probable cluster. The pseudo code of

DML is presented in Algorithm 1. Block diagram of DML is shown in Fig. 3.1.

3.5 Experiments and Results

In the previous sections of this chapter, we introduced the DML algorithm, designed to enhance

autoencoder-based methods by leveraging cluster-specific autoencoders for “difficult” clusters.

Within the DML framework, we propose a novel loss function that places greater emphasis on data

points closer to cluster centers, ensuring that the model develops meaningful, cluster-specific rep-

resentations. In this section, we evaluate the effectiveness of our proposed DML framework and its

novel loss function using six benchmark datasets: MNIST [228], Fashion MNIST [229], 2MNIST,

CIFAR-10 [230], STL-10 [231], and CIFAR-100 [230]. To achieve this, we conduct an extensive

set of experiments and assess the performance using two standard clustering metrics: clustering

accuracy (ACC) [232] and normalized mutual information (NMI) [233]. ACC represents the per-

centage of data points correctly assigned to their clusters out of the total number of data points,

offering a straightforward measure of the clustering algorithm’s effectiveness. Conversely, NMI

evaluates the similarity between two clusterings by determining the mutual information shared
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among their cluster assignments. Both ACC and NMI scores range from 0 to 1, with higher values

indicating superior clustering performance. In accordance with standard practices in the clustering

literature [234–236], we present the mean and standard deviation of the results across random ex-

periments. For DML specifically, we conduct 10 experimental runs to ensure the robustness and

reliability of our evaluation.

3.5.1 Clustering Performance

The clustering performance of the DML framework is compared against thirteen traditional and

state-of-the-art clustering methods. k-means [2], large-scale spectral clustering (LSSC) [237], and

locality preserving non-negative matrix factorization (LPMF) [238] are among the most commonly

used conventional clustering algorithms. Deep learning-based algorithms include deep embedding

clustering (DEC) [17], improved deep embedding clustering (IDEC) [18], deep clustering network

(DCN) [25], deep k-means (DKM) [19], variational deep embedding (VaDE) [239], GAN mixture

model for clustering (GANMM) [168], and very recent methods contrastive clustering (CC) [23]

and deep successive learning (DSL) [240]. In addition to these algorithms, we compare our results

with scalable deep k-subspace clustering (SDkC), which offers a scalable and efficient approach for

subspace clustering through the application of deep learning. SDkC is one of the few deep subspace

clustering (DSC) methods capable of handling large-scale datasets that feature high-dimensional

features and multiple subspaces. Furthermore, we report the clustering performance of the baseline

approach AE + k-means, in which k-means is simply applied to the latent representation of an

AE that has a similar architecture to the AE’s used in the DML method; the AE in AE + k-

means is trained to minimize the data reconstruction loss. Note that, in all the below Tables

and Figures, for the comparison methods, we executed the code released by the authors with the

same hyper-parameters specified in the original papers if the results of interest are not reported in

the corresponding original paper. When the code is not publicly available or not applicable to the

dataset, we put dash marks (-) instead of the corresponding results.

The effectiveness of DML in boosting the performance of the state-of-the-art AE-based cluster-

ing methods is shown in Table 3.2. Note that in general, DML would be effective for the AE-based
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clustering algorithms which aim at creating hyperspheres of data clusters in a lower dimensional

space, such as DCN [25], DKM [19] and DSL [240]. In Table 3.2, DML-M refers to the perfor-

mance of DML when the AE of algorithm M is used as the DML’s autoencoders. As it can be

seen from the table, DML significantly improves the clustering performance of the base method

M mainly due to assigning cluster-specific AEs to the difficult data clusters. On average, DML

improves ACC (NMI) of DCN, DKM, and DSL, respectively, by 2.50% (2.48%), 2.84% (2.75%),

and 0.42% (0.55%). Less significant improvement in DSL compared to that of DCN and DKM

could be associated with the fact that DSL implicitly has some sort of cluster-specific training pro-

cedure when training its AE, but note that DSL still trains a single common latent space for all of

the data clusters. To further show the effectiveness of the proposed DML framework, considering

that DSL [240] is the most recent and effective AE-based clustering algorithm, we pick DSL as the

base of DML and compare DML-DSL with more SOTA algorithms in Table 3.1. As can be seen,

DML-DSL outperforms all comparison methods on 75 out of 76 reported results. Each dataset’s

best result is shown in bold. The second-top results are denoted by an asterisk (*).

For the DML-M method, we use the same network structure suggested by the M method for

each dataset, where M ∈ {DCN [25], DKM [19], DSL [240]}. We first train a single AE using

the M method to obtain the initial network parameters (θ̃e and θ̃d) and cluster centers µ(k). We

then train L AEs and update cluster centers based on our proposed algorithm in Section 3. For all

datasets τ = dmin+dmax

4
, where dmin and dmax are the minimum and maximum distance between

initial cluster centers, respectively. We choose λ ∈ {0.001, 0.01, 0.1} based on the accuracy of

our model on the validation set for each dataset. Moreover, in DML-M, we use the same data

pre-processing technique as what is used in the original M method.

3.5.2 t-SNE Visualization

In Fig. 3.2, we further demonstrate the effectiveness of the proposed DML framework, by compar-

ing different data representations of the MNIST dataset, using t-SNE visualization [241]. To this

end, we use the trained cluster-specific AEs and the general AE to obtain the L latent representa-

tions of each data point. Then the most probable one is selected as the latent representation of the
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(b) DEC (d) DCN (e) DKM(a) Raw data (c) IDEC (f) DSL

(h) AE + k-means(g) CC (i) DML-DCN (j) DML-DKM (k) DML-DSL

Figure 3.2: Clustering visualization of different methods using t-SNE, for MNIST dataset. Axes

range from -100 to 100.

data, i.e., the latent space that provides the closest representation of the data to its corresponding

center is chosen. Afterward, t-SNE method is utilized to map the latent representation to a 2D-

space. The benefit of the proposed DML method in providing a clear distribution structure is more

apparent if we compare t-SNE representation.

The effectiveness of our proposed multi-representation learning framework, and the proposed

loss function, in minimizing intra-cluster distance(s) is apparent when we compare the clusters

obtained by DML-M shown in Fig.3.2- (i), (j), (k) with M shown in Fig. 3.2- (d), (e), (f). The

DML-M clusters are much more compactly distributed around their corresponding cluster centers.

The improved performance of DML-M compared with M is more significant when looking at the

separation of clusters colored in magenta and purple (digits 4 and 9), as well as the separation of

clusters in cyan, olive and orange (digits 3, 5 and 8) when comparing Fig. 3.2-(i) with 3.2-(d), and

Fig. 3.2-(j) with 3.2-(e), and Fig. 3.2-(k) with Fig. 3.2-(f).

3.5.3 Performance on Imbalanced Datasets

One of the main advantages of the proposed multi-representation learning method is its outstand-

ing ability in dealing with imbalanced datasets since, in contrast with the state-of-the-art methods

that provide a common latent space for all clusters, DML dedicates cluster-specific AEs for diffi-

cult clusters. To show the effectiveness of the proposed framework on imbalanced data, we sample

subsets of MNIST with various retention rates r ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, where data points of
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Table 3.3: ACC and NMI on imbalanced datasets for different clustering methods. The mean is

on the first line, and the standard deviation is placed on the second line for our algorithms.

PPPPPPPPPMethod
r 0.1 0.2 0.3 0.4 0.5

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

AE + k-means 82.61 78.51 83.11 78.99 84.78 81.48 84.83 81.55 85.60 83.70

DCN 72.74 68.80 73.02 72.91 79.60 72.80 74.52 73.61 76.32 74.62

DKM 45.96 39.21 46.21 39.54 48.56 38.96 51.25 42.10 50.98 43.27

DSL 83.73 81.38 89.86 82.30 90.40 83.55 92.14 84.71 94.22 88.15

DML-DCN 75.34 69.83 80.32 73.51 81.23 73.05 79.20 75.59 77.58 75.37

±0.35 ±0.38 ±0.29 ±0.28 ±0.35 ±0.30 ±0.20 ±0.26 ±0.33 ±0.28

DML-DKM 67.25 61.32 74.35 66.24 68.31 63.17 79.24 77.12 80.16 78.12

±0.27 ±0.25 ±0.16 ±0.17 ±0.28 ±0.25 ±0.31 ±0.39 ±0.22 ±0.19

DML-DSL 85.35 81.92 90.63 83.44 91.22 84.57 92.44 85.72 94.63 88.68

±0.30 ±0.38 ±0.27 ±0.27 ±0.22 ±0.26 ±0.24 ±0.27 ±0.19 ±0.21

class 0 are kept with probability r and class 9 with probability 1, with the other classes linearly in

between 0 and 1. As such, the smallest cluster is r times smaller than the largest cluster. ACC and

NMI for various r on all datasets are shown in Table 3.3. It can be seen that the proposed DML-M

method significantly outperforms M for all r values, where M ∈ {DSL, DKM, DCN}. DML-

DCN, DML-DKM, and DML-DSL improve the performance of DCN, DKM, and DSL by 0.79%

(0.85%), 25.25% (28.57%), and 3.51% (0.94%) in ACC (NMI) in average on the five datasets,

which shows the effectiveness of our proposed training procedure of DML in learning useful rep-

resentation of data points. For reference, the performance of the baseline method AE + k-means is

also reported in Table 3.3.

3.5.4 Soft Assignments Visualization

Fig. 3.3 depicts soft cluster assignment vectors, i.e. pi, corresponding to samples from various

data clusters for DML-DSL. The kth element of pi shows the probability of sample xi belonging

to the kth cluster. We observe that, with a high probability, the index of the highest element in

vector pi of samples from the same ground-truth labels, are the same – in other words, with a
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(d) CIFAR-10

(c) STL-10

(a) MNIST

(b) Fashion MNIST

Figure 3.3: Visualization of soft assignments vector pi for samples from (a) MNIST, (b) Fashion

MNIST, (c) STL-10, and (d) CIFAR-10 datasets. The vertical axes range from 0 to 1.

high probability, samples from the same ground truth class are mapped to the same cluster. Since

DML dedicates an individual AEs to difficult clusters, it is capable of distinguishing more complex

clusters, such as deer and horse. Moreover, DML reasonably recognizes the second most probable

cluster for each sample. For example, in the STL-10 dataset, the second most probable cluster for

truck is car, which is also a vehicle. One limitation of DML is that soft assignments often fail to

fully converge to one-hot vectors when applied to more complex datasets like STL-10 and CIFAR-

10. This can lead to negative effects, such as training instability and reduced cluster specificity in

autoencoders. A key reason for this issue lies in the DML loss function, which aims to bring data

samples closer to cluster centers. However, the cluster centers themselves may be positioned too
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𝑓𝑐 𝑓𝑟 𝑓

c) DML− DSL

a) DML− DCN

b) DML− DKM

Figure 3.4: The average reconstruction loss Lr, clustering loss Lc, and total loss L of DML-M
methods, M ∈ {DCN, DKM, DSL}, for different datasets.

closely in the latent space, exacerbating the problem. In the next chapter, we address this challenge

by introducing a novel loss function based on pairwise similarity between samples. This approach

encourages cluster assignments to be more closely aligned with one-hot vectors during training.
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a) DML-DSLb) DML-DKMc) DML-DCN

ACC NMI

Figure 3.5: Effect of number of networks on clustering performance of DML-M where M ∈
{DCN, DKM, DSL}.

3.5.5 Loss Function Convergence

The plot in Fig. 3.4 illustrates the average behavior of the reconstruction loss, clustering loss, and

total loss across various DML-M methods. These values are computed by averaging over multi-

ple networks and different batches of data points, providing a holistic view of the performance and

consistency of the methods. The figure captures the convergence of all loss functions as training

progresses. Notably, the significant reduction in the clustering loss demonstrates the effective-

ness of our DML framework in enhancing clustering performance. This is achieved by moving

data points closer to their corresponding cluster centers in the latent space, ultimately resulting in

a more structured and optimized latent representation. Such an outcome indicates that the frame-

work successfully aligns the latent space geometry with the underlying cluster structure in the data,

improving the framework’s utility for clustering tasks. Moreover, the reduction in reconstruction

loss reflects the framework’s ability to maintain accurate reconstructions of the original data. When

combined, these improvements in reconstruction and clustering losses contribute to the minimiza-

tion of the total loss, which is evident from the observed convergence at the end of training. These

results underline the capability of the DML framework to balance reconstruction and clustering

objectives effectively, enabling it to build a robust and meaningful latent space representation.
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b) DML-DKM

a) DML-DSL

c) DML-DCN

Figure 3.6: Effect of hyperparameter λ on clustering performance of DML-M where M ∈
{DCN, DKM, DSL}.

3.5.6 Hyperparameters Sensitivity

In Fig. Fig. 3.5 and 3.6, we investigate the effect of the DML’s hyperparameters λ and the number

of AE networks on the clustering performance of DML-M.
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In Fig. 3.5, we explore the impact of the total number of AEs on the clustering performance

of DML-DCN, DML-DKM, and DML-DSL for the MNIST dataset. What we can infer from this

figure are as follows. 1) there is a significant improvement in the clustering performance of DML-

DCN and DML-DKM when we increase number of networks from one to three, which shows

the effectiveness of having multiple AEs in finding effective representations for data points. The

fact that the DSL itself implicitly includes some form of cluster specific training technique when

training its AE could explain the less significant improvement obtained for DSL compared to the

DCN and DKM cases. 2) As is expected, increasing the number of networks does not always

lead to a model with better performance. For example, the best model performance in terms of

ACC and NMI for DML-DSL is achieved when four cluster-specific networks are trained for the

MNIST dataset. Note that, we proposed an automatic approach, using τ , to determine the number

of required AEs per dataset (see Section 3.5.1).

In Fig. 3.6, we scrutinize the effect of hyperparameter λ on clustering performance of DML-

M for the Fashion MNIST dataset, where λ ∈ {0, 0.01, 0.1, 1}. λ indicates importance of the

clustering loss in the total loss function of DML (See Section 3.3). We observe that for large

values of λ, e.g., λ = 1, DML mainly concentrates on centering the data points near cluster centers

and ignores the informative features that provide a low data reconstruction error. For relatively

small values of λ, e.g. λ = 0, DML ignores the clustering loss and only focuses on minimizing the

data reconstruction loss, which may mislead the DML in assigning the data points to the correct

clusters. The best clustering performance of DML-DCN, DML-DKM, and DML-DSL on the

Fashion MNIST dataset are respectively obtained when λ is 0.1, 0.1, and 0.01.

3.6 Limitations of DML

In this chapter, we have explored Deep Multi-Assignment Learning (DML), a framework designed

to improve clustering performance in AE-based methods by assigning cluster-specific autoen-

coders to challenging clusters. While DML shows promise in addressing some of the challenges
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inherent in clustering complex datasets, it also presents some limitations that hinder its scalability

and effectiveness in certain scenarios.

One of the primary limitations of DML is its memory inefficiency, which becomes particu-

larly problematic when dealing with a large number of difficult clusters. Since DML assigns a

separate autoencoder to each challenging cluster, it requires storing all these networks in memory

during both the training and inference phases. As the number of clusters increases, the mem-

ory requirements scale proportionally, creating a significant bottleneck for applications involving

large datasets. Also, assigning samples to different clusters can be computationally expensive and

time-intensive, making DML less suitable for real-time clustering applications where efficiency

is critical. Another drawback of DML is its inability to utilize the pairwise relationships between

samples for clustering, a strategy proven effective in other methods such as [31,43]. This limitation

can result in the soft assignments of samples failing to converge to one-hot vectors during training,

particularly for challenging datasets like STL-10 and CIFAR-10 (see Section 3.5.4). When cluster

assignments do not converge, the associated AEs face difficulty in adequately specializing for their

respective clusters, which ultimately reduces the overall performance of the framework.

To address these challenges, we propose significant improvements in the next chapter. First, we

replace the cluster-specific autoencoders with a single unified autoencoder that is trained to handle

all clusters. This approach drastically reduces memory overhead while retaining the capacity to

process challenging clusters effectively. Second, we introduce a novel loss function based on

pairwise similarity between samples. Unlike the current DML loss, this new objective encourages

cluster assignments to align more closely with one-hot vectors during training. By fostering clearer

and more distinct cluster assignments, the new loss function enhances the stability and specificity

of the clustering process, even for complex datasets.

3.7 Summary

In this chapter, we presented an effective and practical method for obtaining cluster-specific latent

spaces for data clustering. Unlike most deep learning-based clustering methods, which rely on a
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single global latent space to represent all clusters, the proposed algorithm introduces a novel ap-

proach that assigns individual cluster-specific latent spaces to challenging clusters while leveraging

a shared, common latent space for clusters that are comparatively easier to separate. This adaptive

strategy is designed to enhance the representation quality and clustering performance by address-

ing the diverse complexities of different clusters within the data. The core of our method lies in the

introduction of cluster-specific losses, which are formulated based on a combination of weighted

reconstruction losses and clustering losses. These losses are carefully designed to ensure that

the latent representations are not only compact and discriminative but also tailored to the specific

characteristics of each cluster. The proposed multi-representation learning framework dynami-

cally allocates resources to improve the separability of difficult clusters without compromising the

overall performance of the model on easier clusters. The effectiveness of the proposed framework

and loss functions is rigorously validated through an extensive set of experiments conducted on

multiple benchmark datasets. Our results consistently demonstrate that the method outperforms

existing state-of-the-art clustering approaches in terms of clustering accuracy, robustness, and rep-

resentation quality. Additionally, we analyze the impact of the cluster-specific latent spaces on the

overall clustering process and provide insights into how the proposed method achieves superior

performance by mitigating challenges such as imbalanced cluster sizes.
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Chapter 4

Deep clustering with self-supervision

(DCSS)

In this chapter, we present a groundbreaking framework called Deep Clustering with Self-Supervision

using Pairwise Similarities (DCSS). This method employs a two-phase approach designed to over-

come the challenges of DML while significantly improving clustering performance. In the first

phase, DCSS introduces cluster-specific loss functions, enabling the model to focus on recon-

structing and centering individual clusters. This process creates hypersphere-like representations

in the latent space, ensuring clusters are both compact and well-separated. Unlike DML, which

requires multiple AEs for different clusters, DCSS optimizes memory usage by employing a sin-

gle AE with a specially designed cluster-specific loss function. The second phase incorporates a

novel strategy using additional layers and an auxiliary network, MNet, to refine the representations.

MNet manages pairwise relationships by enhancing the similarity of related data points while di-

minishing the similarity of unrelated ones. This refinement produces representations tailored for

clustering, improving both performance and adaptability to complex data structures. Our DCSS

framework demonstrates superior performance, outperforming state-of-the-art and conventional

algorithms on challenging datasets. This advantage highlights its robustness and effectiveness in

handling complex data distributions, setting a new benchmark for clustering methodologies.

75



Figure 4.1: (a) Training scheme of DCSS Phase 1. (b) Phase 2 training of DCSS: Initially, when

iter2 ≤ T2, MNet uses pairwise similarities in the u space, defined by the dot product of pi and pj .

For iter2 > T2, similarities are measured directly in the q space using qT
i qj .

4.1 Notation

The K-clustering problem seeks to partition a dataset X = {x1,x2, . . . ,xN}, consisting of N

samples, into K non-overlapping groups (or clusters). Here, the i-th data sample is denoted by xi,

and K is the predefined number of clusters. In this chapter, we consider K-clustering and propose

DCSS frameworks to address the problem. DCSS utilizes an AE, consisting of an encoder and
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a decoder network respectively denoted by f(.) and g(.). Latent representation of X is denoted

by U = {u1,u2, ...,uN}, where ui = f(xi;θe) ∈ Rd, d indicates dimension of the latent space,

and θe denotes parameters of the encoder network. The reconstructed output of the AE is denoted

by x̂i = g(ui;θd), where θd represents the decoder parameters. Center of the kth data group in

the u space is denoted by µ(k). To accommodate complex cluster distributions, we propose to

employ pairwise data similarities in DCSS. To this end, we employ the fully connected network

MNet which takes the latent representation of each data point, i.e. ui, as input and maps it to a K-

dimensional vector qi whose kth element indicates the probability of xi belonging to the kth data

cluster. In this chapter, the output of MNet for the ith data point is denoted by qi = M(ui;θM),

where M(.) and θM respectively shows MNet and its corresponding parameters.

The proposed DCSS method consists of two phases. The first phase is to provide hypersphere-

like data clusters through training an AE using weighted reconstruction and centering losses, and

the second phase is to employ pairwise data similarities to self-supervise the remaining training

procedure.

4.2 Phase 1: AE training

At each training batch B, we propose to train the AE in K successive runs, where at each run a

specific loss corresponding to a specific data cluster is minimized. More specifically, at the kth

run, the AE focuses on reconstruction and centering of the data points that are more probable to

belong to the kth data cluster.

Loss function of the kth run, i.e. L(k)
u , is shown in (4.1a) where L(k)

r and L(k)
c , shown in (4.1b)

and (4.1c), respectively denotes weighted summation of the sample reconstruction and centering

losses. α is a hyperparameter indicating the importance of centering loss vs. reconstruction loss.

77



m indicates the level of fuzziness and is set to 1.5 in all experiments.

L(k)
u = L(k)

r + αL(k)
c (4.1a)

L(k)
r =

∑
xi∈B pmik||xi − x̂i||22 (4.1b)

L(k)
c =

∑
xi∈B pmik||ui − µ(k)||22 (4.1c)

pik =

1

||ui−µ(k)||2/(m−1)
2∑K

j=1
1

||ui−µ(k)||2/(m−1)
2

(4.2)

Since data clustering is an unsupervised task, the data cluster memberships are unknown at the

problem outset. As such, at the kth run, we use the Euclidean distance between ui and µ(k) as a

means of measuring the membership degree of xi to the kth data cluster, denoted by pik defined in

(4.2) where pi = [pi1, . . . , piK ]. The cluster memberships are used as the sample weights in (4.1b)

and (4.1c). The closer a sample is to the cluster center µ(k), the higher contribution that sample

has in minimizing the loss function corresponding to the kth run.

Every T1 training epochs, we update the centers to the average of weighted samples in the u

space, as is shown in (4.3), where samples closer to µ(k) have more contribution to updating.

µ(k) =

∑
xi∈X pmikui∑
xi∈X pmik

(4.3)

Block diagram of the first phase is shown in Fig. 4.1(a). As is demonstrated in our experi-

ments (see Section 4.6.4), minimizing (4.1a), results in forming hypersphere-like groups of similar

samples in the u space, one hypersphere per cluster. A preliminary version of the first phase of

DCSS [240] is accepted by International Joint Conference on Neural Networks (IJCNN).
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4.3 Phase 2: self-supervision using pairwise similarities

To allow accommodating non-hypersphere shape distributions and to employ the important infor-

mation available in the pairwise data relations, we propose to append a fully connected network,

called MNet, to the encoder part of the AE, trained in Phase 1, while discarding its decoder net-

work. The MNet’s output layer, i.e. the q space, consists of K neurons where each neuron corre-

sponds to a data cluster. We utilize the soft-max function at the output layer to obtain probability

values employed for obtaining the final cluster assignments. More specifically, for an input sample

xi, the output value at the jth neuron, i.e. qij , denotes the probability of xi belonging to the jth

cluster.

MNet aims to strengthen (weaken) similarities of two similar (dissimilar) samples. MNet pa-

rameters, i.e., θM , are initialized with random values. Hence, at the first few training epochs, when

q is not yet a reliable space, pairwise similar and dissimilar samples are identified in the u space.

Then after a few training epochs, pairs of similar and dissimilar samples are identified in the q

space. In both of the u and q spaces, we define two samples as similar (dissimilar) if the inner

product of their corresponding cluster assignment vectors is greater (lower) than threshold ζ (γ).

More specifically, knowing that the kth element of pi (qi) denotes the membership of xi to the kth

cluster in the u (q) space, the inner product of pi (qi) and pj (qj) is considered as the notion of

similarity between data points xi and xj .

The loss function proposed for the MNet training, at the first T2 training epochs, is shown in

(4.4) where ζ and γ are two user-settable hyperparameters, and 1{.} is the indicator function.

LM =
∑

xi,xj∈B

1{pT
i pj ≥ ζ}(1− qT

i qj) + 1{pT
i pj ≤ γ}(qT

i qj) (4.4)

As can be inferred from (4.4), only similar and dissimilar samples, identified in the u space,

contribute to the MNet training and a pair of samples with a similarity value between ζ and

γ, i.e. in the ambiguity region, does not contribute to the current training epoch. Therefore,

minimizing LM strengthens (weakens) the similarity of similar (dissimilar) samples, in the q

space. Along with training the MNet parameters, the encoder parameters θe are also updated
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through back-propagation, in an end-to-end manner. After completing each training epoch, centers

µ(k), k = 1, . . . ,K, are also updated using (4.3).

After T2 epochs, when q becomes a relatively reliable space for identifying similar and dissim-

ilar samples, we further train MNet using the loss function L′
M defined in (4.5). A pair contributes

to L′
M if its corresponding similarity value, in the q space, is not in the ambiguity region. As is

demonstrated in Section 4.6, as the MNet training phase progresses, more and more pairs contribute

to the training procedure. Again, the u space receives small updates through the back propagation

process when minimizing L′
M .

L′
M =

∑
xi,xj∈B

1{qT
i qj ≥ ζ}(1− qT

i qj) + 1{qT
i qj ≤ γ}(qT

i qj) (4.5)

As is proved in Section 4.5, a proper choice of hyperparameters ζ and γ is respectively 2
3
< ζ

and γ < ζ2. In our experiments ζ and γ are set to 0.8 and 0.2, respectively. Moreover, Section 4.5

presents several mathematical proofs that show, under certain assumptions, the final q vector for a

query sample is very close to an one-hot vector where the index of the maximum element of the

vector indicates the cluster label. This also shows that similar (dissimilar) samples tend to sit in

the same (different) data cluster(s). Fig. 4.1(b) shows the overall training procedure of the DCSS’s

second phase.

4.4 Final Cluster Assignments

To determine the final cluster assignment of a data point xi, we utilize the trained encoder and

MNet networks to obtain the data representation in the q space, i.e. qi. xi is assigned to the most

probable cluster, i.e. the index corresponding to the highest element of qi is the cluster label of xi.
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Algorithm 2 Clustering procedure using DCSS

Input: Data points X , θe, θd, θM , µ(k) for k = 1, . . . ,K
Output: θe, θM

Phase 1:
1: Initialize θe and θd with a pre-trained network (see Section 4.6.2).
2: for iter1 ∈ {1, 2, ...,MaxIter1} do
3: for k ∈ {1, 2, ...,K} do
4: Compute pik using (4.2), for i ∈ B
5: Update AE’s parameters by employing (4.1a) as loss function
6: end for
7: Every T1 iterations, update cluster centers using (4.3)
8: end for

Phase 2:
9: for iter2 ∈ {1, 2, ...,MaxIter2} do

10: if iter2 ≤ T2 then
11: Compute vectors pi for i ∈ B
12: Compute vectors qi for i ∈ B
13: Update θe and θM to minimize (4.4)
14: Update centers µ(k), k = 1, . . . ,K , using (4.3)
15: else
16: Compute qi for i ∈ B
17: Update θe and θM to minimize (4.5)
18: end if
19: end for

Final Cluster Assignments:
20: Compute qi for xi, i = 1, . . .N
21: Assign each data sample to the most probable cluster

4.5 Proper choice of ζ and γ

In this section, we discuss the selection of optimal hyperparameters ζ and γ for our model. It

is crucial to choose appropriate values for these hyperparameters, as the model’s performance is

greatly impacted by their values. When the value of ζ is high and γ is small (e.g., ζ = 0.9 and

γ = 0.1), the model tends to consider only a small subset of the available data during the second

training phase, resulting in the neglect of crucial information between true similar and dissimilar

samples. Conversely, when the value of ζ is low and γ is high (e.g., ζ = 0.5 and γ = 0.5), the
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model may struggle to accurately distinguish between similar and dissimilar samples. Therefore,

selecting optimal values for ζ and γ is critical to ensure the effectiveness of our model.

Notation clarification: Representation of the ith sample in the q space is shown by qi. The kth

element of qi is shown by qik, k = 1, . . . , K, where K is the number of data clusters. Note that

qi is the MNet output when the input sample is xi. Since we employ soft-max as the final layer of

MNet, 0 ≤ qil ≤ 1 where 1 ≤ l ≤ K and the ℓ1-norm of qi is equal to 1. Furthermore, parameters

ζ and γ are values between 0 and 1.

Definition 4.5.1. Two data points, i.e. i and j, are adjacent (aka similar) if and only if qT
i qj ≥ ζ .

Definition 4.5.2. Two data points, i.e. i and j, are in the same cluster if and only if the index of the

maximum value in their corresponding q vector (i.e. qi and qj) are equal.

Theorem 1. Consider the ith and jth data points. Then :

qT
i qj ≤ min

{
max

l
{qil},max

l
{qjl}

}
(4.6)

where qT
i qj is the inner product of the two vector qi and qj .

Proof. Assume q∗
j is a maximal vector that satisfies the below inequality:

qT
i qj ≤ qT

i q
∗
j , (4.7)

where ||q∗
j ||1 = 1. In addition, assume the index of the maximum element of qi is r:

r = argmax
l

{qil} (4.8)

In the following, we first prove by contradiction that q∗
j must be a one-hot vector. Then we prove

(4.6).
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Assume q∗
j is not a one-hot vector. Therefore, there exists at least one index, i.e. e, whose corre-

sponding element q∗je is non-zero:

∃ e : e ̸= r and q∗je ̸= 0. (4.9)

Now, let’s define a vector q̂j as follows:

q̂jl =


q∗je + q∗jr if l = r

0 if l = e

q∗jl O.W

, (4.10)

where q̂jl denotes the lth element of q̂j . Since ||q∗
j ||1 = 1, we can immediately show that ||q̂j||1 =

1. Moreover, we can represent the inner products qT
i q

∗
j and qT

i q̂j as shown in (4.11) and (4.12),

respectively.

qT
i q

∗
j = qirq

∗
jr + qieq

∗
je +

∑
l ̸=r,e

qilq
∗
jl (4.11)

qT
i q̂j = qir(q

∗
jr + q∗je) + qie × 0 +

∑
l ̸=r,e

qilq
∗
jl (4.12)

Since qir is the maximum element of qi, we can readily show that qT
i q

∗
j ≤ qT

i q̂j , which contradicts

the assumption shown in equation (4.7); thus, q∗
j must be a one-hot vector. Therefore:

qT
i q

∗
j ≤ max

l
{qil} (4.13)

Considering (4.13) and (4.7), we have:

qT
i qj ≤ max

l
{qil}. (4.14)
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Similarly, for the ith sample, we can show that q∗T
i qj ≤ maxl{qjl}, hence:

qT
i qj ≤ max

l
{qjl}. (4.15)

(4.14) and (4.15) proves (4.6).

Corollary 1.1. For two adjacent samples, denoted as i and j, the maximum value among their q

representations (i.e qi and qj) are greater than ζ .

Proof. This statement serves as a corollary derived from Theorem 1, which is established through

equations (4.6), (4.14), and (4.15), along with the adjacency definition provided in Definition 4.5.1.

In this context, we denote the indices of the maximum elements of qi and qj as r and o respectively,

where r = argmaxl{qil} and o = argmaxl{qjl}.

ζ ≤ qT
i qj ≤ min(qir, qjo) −→


ζ ≤ qir

ζ ≤ qjo

(4.16)

Figure 4.2: Number of data points that do not have any adjacent neighbors during the DCSS

training in the second phase.

Corollary 1.2. If a data point has at least one adjacent neighbor, the maximum element of its

corresponding q is greater than ζ .

84



Proof. We first empirically test the validity of the employed assumption, i.e. the existence of at

least one adjacent (i.e. similar) sample for a data point, on our datasets. Fig. 4.2 shows the number

of data samples that are not similar to any other data points in the q space. As it can be seen, at

the beginning of the second phase of DCSS, since MNet is initialized randomly, many data points

do not have any adjacent neighbor (i.e. almost ∀ i, j, i ̸= j : qT
i qj < ζ .). By minimizing (4)

and (5) in the second phase of DCSS, similar samples are tightly packed in the q space; therefore,

almost all samples have at least one adjacent neighbor. For example, only 0.5% of the samples

in the CIFAR-100 dataset have no adjacent sample by the end of the training phase. Note that

CIFAR-100 presents the worst case among the other datasets shown in Fig 4.2. All in all, we can

roughly assume that each data point has at least one adjacent sample.

Let us consider an arbitrary data point, i, and one of its adjacent data points, j. From Corollary

1.1, we can conclude that: 
ζ ≤ maxl{qil}

ζ ≤ maxl{qjl}
. (4.17)

Thus, we proved that the maximum element of qi, where i is an arbitrary data point, is greater than

ζ .

Corollary 1.3. Assume each data point has at least one adjacent neighbor and γ < ζ2. If two data

points, i and k, are dissimilar, i and k are not from the same cluster.

Proof. We prove this corollary by contradiction where the contradiction assumption is: i and k are

dissimilar, yet from the same cluster where γ < ζ2.

Since i and k are in the same cluster, the index of the maximum element of qi and qk are the

same. (i.e. β = argmaxl{qil} = argmaxl{qkl}). Since each data point has at least one adjacent
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neighbor, from Corollary 1.2, we can conclude that:


ζ ≤ qiβ

ζ ≤ qkβ

. (4.18)

and we can represent qT
i qk as follow:

qT
i qk = qiβqkβ +

∑
l ̸=β

qilqkl (4.19)

Therefore, qiβqkβ ≤ qT
i qk. Also, we know i and k are dissimilar. From (4.18), we can conclude

that:

ζ2 ≤ qiβqkβ ≤ qT
i qk ≤ γ (4.20)

(4.20) contradicts the assumption of γ < ζ2. Hence, i and k are in different clusters.

Theorem 2. For 2
3
≤ ζ , if i and j are adjacent, they are in the same cluster – i.e. r is equal to o

where r = argmaxl{qil} and o = argmaxl{qjl}.

Proof. First, we find an upper bound for qT
i qj , when the ith and jth samples are adjacent but from

different clusters.
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Since i and j are not from the same cluster, we can represent qT
i qj as follows:

qT
i qj = qirqjr + qioqjo +

∑
l ̸=o,r

qilqjl

∀l: qjl≤qjo−−−−−−→ ≤ qirqjr + qioqjo +
∑
l ̸=o,r

qilqjo

= qirqjr + qjo

(∑
l ̸=r

qil

)
∑

l̸=r qil=1−qir−−−−−−−−−→ = qirqjr + qjo(1− qir)

qjr≤1−qjo−−−−−−→ ≤ qir(1− qjo) + qjo(1− qir)

from (4.16)−−−−−−→ ≤ qir(1− ζ) + qjo(1− ζ)

{qir, qjo}∈[0,1]−−−−−−−−→ ≤ 2(1− ζ). (4.21)

Note that qjr ≤ 1− qjo because
∑

l ̸=o qjl + qjr + qjo = 1. Note that all elements of a q vector are

probability values between 0 and 1.

Hence, as is shown (4.21), if two samples are not from the same cluster, then the inner product

of their corresponding q has an upper bound of 2(1 − ζ). Therefore, if two samples i and j are

adjacent (see Definition 1) but from different clusters, then:

ζ ≤ qT
i qj ≤ 2(1− ζ)

−→ζ ≤ 2(1− ζ) −→ ζ ≤ 2

3
. (4.22)

Thus, for 2
3
< ζ , i and j cannot be from two different clusters. In other words, if two samples i

and j are adjacent AND the user-settable parameter ζ is set to a value greater than 2
3
, then the two

samples are from similar clusters, i.e., r = o. Based on the experiment is Section 4.6.8, we set

ζ = 0.8 > 2
3
.

Corollary 2.1. Assume ζ > 2
3
. Consider three data points: i, j, and k. If i and j, and also i and k

are adjacent, then j and k are from the same cluster.
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Proof. Since i and j (i and k) are adjacent and ζ > 2
3
, from Theorem 2, we can conclude that i and j

(i and k) are in the same cluster; hence, the three samples i, j, and k all are in the same cluster.

Theorem 3. Consider three data points i, j, and k where i and j also i and k are adjacent (aka

similar). Assume ζ > 2
3
. If γ < ζ2, then the two samples j and k are not dissimilar (i.e. qT

j qk ≮ γ).

Proof. Considering Theorem 2, i and j and k are in the same cluster. Therefore, we do not want to

include the pair of j and k samples as a dissimilar pair when minimizing the loss function defined

in equation (4.5).

Since j and k are in the same cluster and knowing that the index of the maximum element in a q

vector shows the cluster of the corresponding sample, we have:

η = argmax
l

{qjl} = argmax
l

{qkl}. (4.23)

Thus,

qT
j qk =

∑
l ̸=η

qjlqkl + qjηqkη. (4.24)

Therefore,

qT
j qk ≥ qjηqkη. (4.25)

Since ζ ≤ qT
i qj and ζ ≤ qT

i qk, we can infer (4.26) from (4.16).


ζ ≤ qjη

ζ ≤ qkη

. (4.26)

From (4.25) and (4.26), we can obtain below:

ζ2 ≤ qjηqkη ≤ qT
j qk. (4.27)
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Thus, if we choose γ < ζ2, we will not include the pair of samples j and k as a dissimilar pair in

equation (4.5). Based on the experiment is Section 4.6.8, γ is set to 0.2, i.e. γ = 0.2 < 0.82.

4.6 Experiments and Results

In the previous sections of this chapter, we introduced a two-phase DCSS framework. In the first

phase, DCSS leverages a novel cluster-specific loss function to train a single autoencoder, enabling

the model to reconstruct and center individual clusters. In the second phase, DCSS incorporates

an innovative strategy using additional layers and an auxiliary network, MNet, to further refine

these representations. To train MNet, we propose a novel loss function that manages pairwise

relationships by enhancing the similarity of related data points while reducing that of unrelated

ones, thereby producing representations optimized for clustering. In this section, we assess the

performance of our proposed DCSS framework and our novel loss functions using eight bench-

mark datasets: MNIST [228], Fashion MNIST [229], 2MNIST, USPS [242], CIFAR-10 [230],

STL-10 [231], CIFAR-100 [230], and ImageNet-10 [243]. To accomplish this, we perform a thor-

ough series of experiments and evaluate performance using two widely used clustering metrics:

clustering accuracy (ACC) [232] and normalized mutual information (NMI) [233]. ACC mea-

sures the proportion of correctly clustered data points relative to the total, providing a simple yet

effective way to gauge the algorithm’s clustering accuracy. In contrast, NMI assesses the similar-

ity between two clustering outcomes by quantifying the mutual information shared between their

cluster assignments. Both metrics, ACC and NMI, fall within the range of 0 to 1, where higher

values indicate better clustering quality. Consistent with established practices in clustering re-

search [234–236], we report the mean and standard deviation of the results from multiple random

experiments. Specifically, for DCSS, we carry out 5 experimental runs to ensure a more consistent

and reliable evaluation of our results.
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Figure 4.3: Structure of the proposed asymmetric autoencoder. In the encoder part, in order to

obtain an informative lower-dimensional representation of the data points, we propose to use a

Bottleneck layer. Following [1], we use the bottleneck layer after 5 × 5 and 3 × 3 convolutional

layers. The hyperparameter values are presented in Section 4.6.2.

4.6.1 Networks Architecture

The proposed DCSS method includes an autoencoder and a fully connected MNet. This section

presents the structure of these networks. We use two variations of autoencoders, depending on the

nature of the dataset (i.e. RGB or gray-scale), when training the proposed DCSS framework.

For gray-scale datasets, we propose to use an asymmetric autoencoder, where, following [1],

we propose to use the bottleneck layer shown in Fig. 4.3(c) in the encoder structure. Fig. 4.3(a) and

(b) respectively show the encoder and decoder structures of the proposed asymmetric AE. Employ-

ing such an asymmetric structure provides a more discriminative latent space. Hyperparameters of

the proposed AE for each dataset are indicated in Section 4.6.2

For the RGB datasets, we use a simple framework for Contrastive Learning (SimCLR) [21]

algorithm as a means of feature extractor. The extracted features are then fed to the DCSS method

to perform clustering. In the feature extraction phase using SimCLR, we employ ResNet-34 as the

backbone network, and we resize images of all RGB datasets to 224. Also, we consider the output

of the ResNet after the average pooling layer as the final extracted features. Then, we feed the

extracted features to the DCSS’s AE, which is a symmetric, fully connected autoencoder. Inspired

by [17], we set the AE architecture to 512-500-500-2000-d for RGB datasets, where the ReLU

activation function is utilized in all layers.

MNet is a fully connected network that takes the d dimensional latent space of the AE (u space)

as input and generates a K dimensional output q. The architecture of MNet is d-128-128-128-K
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for all datasets except CIFAR-100. Since CIFAR-100 is a more complicated dataset, it needs

a more complex MNet architecture, so we set the MNet architecture for CIFAR-100 to d-1000-

1000-1000-K. Batch normalization and ReLU activation functions are utilized for all datasets in

all layers of MNet except the last layer in which we use the soft-max function.

4.6.2 Implementation Details

In this section, we discuss hyperparameter values and implementation details of DCSS. Hyperpa-

rameters n, p1, s1, p2, s2, p3, s3, f1, and f2 (shown in Fig. 4.3) are respectively set to 28, 2, 2,

1, 2, 2, 2, 5, and 4 for MNIST, Fashion MNIST, and 2MNIST; these parameters are set to 16, 1,

1, 2, 2, 0, 1, 4, and 5 for the USPS dataset. The latent space dimension d is set to 10 for gray-

scale images and 20 for RGB images. Following [17–19, 25], in order to initialize θe, θd and µ(k)

for k = 1, . . . , K, we train an autoencoder where the end-to-end training is performed by only

minimizing the samples reconstruction losses. Adam optimization method [244], with the same

parameters mentioned in the original paper are used for training. θe, θd are then initialized with

the parameters of the trained autoencoder’s parameters. We apply k-means algorithm [2] to the

latent space of the trained autoencoder and initialize µ(k), k = 1, . . . , K to the centers defined by

k-means. For all datasets, hyperparameters α, Maxiter1, T1, and m are respectively set to 0.1, 200,

2, and 1.5. The second phase hyperparameters ζ , γ, T2, and MaxIter2 are respectively set to 0.8,

0.2, 5, and 20. We utilize the Adam optimizer for updating weights of the AE and MNet and their

learning rates are set to 10−5 and 10−3, respectively. All algorithms were implemented in Python

using the PyTorch framework.

4.6.3 Clustering Performance

The effectiveness of our proposed DCSS method is compared against seventeen well-known algo-

rithms, including conventional and state-of-the-art deep-learning-based clustering methods. The

conventional clustering methods are k-means [2], large-scale spectral clustering (LSSC) [237],

and locality preserving non-negative matrix factorization (LPMF) [238]. Deeplearning-based al-
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gorithms are deep embedding clustering (DEC) [17], improved deep embedding clustering (IDEC)

[18], deep clustering network (DCN) [25], deep k-means (DKM) [19], variational deep embed-

ding (VaDE) [239], GAN mixture model for clustering (GANMM) [168], deep adaptive cluster-

ing (DAC) [30], and the very recent clustering methods such as contrastive clustering (CC) [23],

deep semantic clustering by partition confidence maximization (PICA) [178], efficient deep em-

bedded subspace clustering (EDESC) [245], instance discrimination and feature decorrelation

(IDFD) [246], Mixture of contrastive experts for unsupervised image clustering (MICE) [247],

and deep comprehensive correlation mining (DCCM) [31]. In addition, we report the clustering

performance of a baseline method AE + k-means in which k-means is simply applied to the latent

representation of an AE that has a similar architecture as the AE used in the DCSS method, trained

based on minimizing the dataset reconstruction loss.

We also demonstrate the success of the first phase of DCSS, presented in Section 4.2, in cre-

ating the reliable subspace u in which the data points form hypersphere-like clusters around their

corresponding cluster center. To this end, we only implement the first phase of the DCSS algorithm

– i.e., we train the DCSS’s AE through minimizing the loss function presented in (4.1), where the

AE architecture and its initialization are similar to those presented in Section 1 of the supplemen-

tary material file. After training the u space, we perform a crisp cluster assignment by considering

each data hypersphere-like group in the u space as a data cluster and assigning each data point to

the one with the closest center. In the following tables and figures, clustering using only the first

phase is shown as DCSSu. A preliminary version of DCSSu is presented in [240].

The clustering performance of DCSSu and DCSS, along with the comparison algorithms, are

shown in Table 4.1. For the comparison methods, if the ACC and NMI of a dataset are not reported

in the corresponding original paper, we ran the released code with the same hyper-parameters

discussed in the original paper. When the code is not publicly available or not applicable to the

dataset, we put dash marks (-) instead of the corresponding results. The best result for each dataset

is shown in bold. The second top results are shown with *. Also. the standard deviation over 5

experiments is reported in this table.
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Several observations can be made from Table 4.1: (1) The proposed DCSS method outperforms

all of our comparison methods on all datasets. (2) The first phase of DCSS (shown as DCSSu) ef-

fectively groups the data points around their corresponding centers. This can be inferred from

DCSSu’s ACC and NMI values. When measuring ACC, DCSSu outperforms other methods in

five out of eight datasets, and it exhibits even stronger performance by outperforming competitors

in six out of eight datasets when considering NMI. (3) Effectiveness of the self-supervision with

similar and dissimilar pairs of samples can be inferred by comparing DCSS with DCSSu. It can

be seen that DCSS significantly outperforms DCSSu on all datasets. (4) Effectiveness of the AE’s

loss function proposed in equation (4.1) compared to the case of training AE with only the re-

construction loss can be inferred by comparing the DCSSu performance with the baseline method

AE+k-means. As can be seen, the DCSSu clearly outperforms AE+k-means on all datasets.

4.6.4 t-SNE visualization

Fig. 4.4 illustrates the effectiveness of different phases of our proposed DCSS framework for all

datasets, where t-SNE [241] is used to map the output of DCSS’s encoder and MNet to a 2D space.

The different colors correspond to the different data clusters.

The first row of Fig. 4.4 shows the representation of different data points in the u space, i.e. the

latent space of the DCSS’s AE, only after completing the first phase discussed in Section 4.2. As

it can be seen, after completing the first phase of DCSS, different clusters of data points are fairly

separated, sit near their corresponding centers, and form spheres; however, not all clusters are well

separated. For example, in the USPS dataset, the data clusters shown in pink, purple, and magenta

are mixed together. This indicates the insufficiency of the reconstruction and centering losses for

the clustering task.

The second row of Fig. 4.4 shows the data representations in the u space after completing the

second phase of DCSS discussed in Section 4.3, where u is refined by minimizing (4.4) and (4.5).

As it can be seen, refining the u space employing pairwise similarities results in more dense and

separate cluster distributions. For example, the pink, purple, and magenta clusters of USPS are

now well distinguishable in the new refined u space. As another example, see samples of the three
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Figure 4.4: Clustering visualization of different phases of DCSS using t-SNE for different bench-

mark datasets. For reference, the visualization for the baseline model AE+k-means is shown in the

first row. Axes range from -100 to 100.

clusters shown in red, olive, and brown of the 2MNIST dataset. These clusters are more separable

in the refined u space compared to the corresponding representation shown in the first row.

The last row in Fig. 4.4 depicts the output space of MNet (i.e. the q space), in which we make

decisions about final cluster assignments of data points. As is expected, clusters in this space have

low within- and high between-cluster distances, and cluster distributions can take non-hypersphere

patterns. As an example, consider the cyan and the purple clusters of the Fashion MNIST. These

clusters are mixed in the u space, but they are completely isolated in the q space.
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Figure 4.5: The reconstruction loss Lr, centering loss Lc, and total loss Lu of the first phase of

DCSS vs. training epochs, for different datasets.

Figure 4.6: The second phase’s loss function of DCSS for different benchmark datasets.

4.6.5 Loss function convergence

Fig. 4.5. depicts the average, over different clusters on different batches of data points, of the

reconstruction, centering, and total losses corresponding to the first phase of DCSS (i.e. DCSSu)

shown in (4.1). As can be seen, all losses are converged at the end of training. The noticeable

reduction in the centering loss shows the effectiveness of our proposed approach in creating a reli-

able u space in which the data points are gathered around the centers. Moreover, the figures show

that at the first training epochs, our method trades the reconstruction loss for improved centering

performance. This proves the insufficiency of the reconstruction loss in creating a reliable latent

space for data clustering.

In Fig. 4.6, we investigate the convergence of the second phase losses, shown in equations

(4.4) and (4.5). Since we initialize the MNet randomly, at the first few epochs, MNet has little
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knowledge about the lower-dimension representation of the data points in the q space; thus, we

face a high loss value. As the training process progresses, the loss value drops and converges to

zero at the end of the training process. In the first T2 epochs (T2 = 5), the algorithm minimizes

the loss presented in (4). It minimizes (5) in the remaining epochs. The continuity of the loss

reduction over epochs, along with the sharp loss drop at the 5th epoch, confirms the effectiveness

of our proposed strategy in employing u for similarity measurements in the early epochs and then

q in the later epochs.

4.6.6 Performance on Imbalanced Dataset

Figure 4.7: The clustering performance of different methods on imbalanced samples of MNIST.

To demonstrate the effectiveness of our proposed DCSS method on an imbalanced dataset, we

randomly collect five subsets of the MNIST dataset with different retention rates r ∈ {0.1, 0.2, 0.3, 0.4, 0.5},

where samples of the first class are chosen with the probability of r and the last class with proba-

bility of 1, with the other classes linearly in between. Hence, on average, the number of samples

for the first cluster is r times less than that of the last cluster. As is shown in Fig. 4.7, our pro-

posed DCSS framework significantly outperforms our comparison methods for all r values. This

indicates the robustness of DCSS on imbalanced data. As is expected, in general, for all methods,

increasing r results in a higher performance because the dataset gets closer to a balanced one.

Higher performance of DCSS on imbalanced datasets can be associated with two factors: (1) con-
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sidering an individual loss for every cluster in the 1st phase, and (2) considering the pairwise data

relations.

4.6.7 Visualization of q vectors

Figure 4.8: Visualization of q for samples from (a) MNIST and (b) Fashion MNIST datasets. The

q vector for each image is depicted beside the image. The vertical axes range from 0 to 1.

Fig. 4.8 shows the representations of the data points from various clusters in the q space. As

can be seen, the proposed DCSS method results in representations that are very close to the one-hot

vectors. Note that the kth element of qi denotes the probability of sample xi being in the kth data

cluster. The closer qi is to the one-hot vector, the more confidently a crisp cluster assignment can

be made. As is proved in Corollary 1.2 of Section 4.5, if data point xi has at least one similar

neighbor, the maximum element of qi is greater than ζ . In our experiments, ζ is set to 0.8. This

can justify the aggregation of the data points near the one-hot vectors in the q space.

To further demonstrate convergence of the q representations to one-hot vectors, histogram

of residuals hi = ||Ii − qi||1, i = 1, . . . , N for MNIST, Fashion MNIST, 2MNIST, and USPS

are shown in Fig. 4.9; where ||.||1 indicates the ℓ1-norm and Ii is the one-hot crisp assignment

corresponding to qi – i.e. the index of the non-zero element of Ii is equal to the index of the

maximum element of qi. As can be seen in Fig. 4.9, the representation of almost all data points in

the q space is very close to their corresponding one-hot vector.
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Figure 4.9: Histogram plot of hi = ||Ii − qi||1, i = 1, . . . , N where Ii is the one-hot crisp

assignment corresponding to qi.

4.6.8 Ablation Studies

Effectiveness of the First Phase: To demonstrate the efficacy of introducing cluster-specific losses

and the adopted approach in iteratively updating the network’s parameters over K successive runs,

as is discussed in Section 4.2, we present a comparative analysis against an alternative approach

where all loss terms are aggregated in the initial phase, followed by a single backward pass to up-

date the network parameters at once. The results are presented in Table 4.2 as DCSSagg, highlight-

ing a consistent trend. Across all experiments and datasets, the performance of DCSSu surpasses

that of DCSSagg showing the advantages of employing cluster-specific loss functions and itera-

tively updating the network parameters in K successive runs. To ensure a fair comparison, in all

experiments, the number of iterations of DCSSagg is K times greater than the number of iterations

in DCSSu.

Hyperparameters Sensitivity: In Fig. 4.10, we investigate the effect of different hyperparameters
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Table 4.2: ACC and NMI on the benchmark datasets for different methods. We report the average

of 5 random runs.

XXXXXXXXXXXXMethod
Datasets

MNIST Fashion MNIST USPS CIFAR-10 STL-10 CIFAR-100

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

DCSSagg 87.22 81.39 59.76 58.63 76.46 75.09 81.41 70.64 85.51 76.19 43.52 43.02

DCSSu 95.99 89.95 62.90 63.58 82.93 81.84 82.43 71.32 86.47 76.52 44.08 43.70

on DCSS clustering performance. For hyperparameters of the first phase (i.e. α, m, and T1), we

report the performance of clustering using DCSSu (as is presented in Section 4.6.3).

In our proposed method, hyperparameters are fixed across all datasets, i.e. no fine-tuning is

performed per dataset. Hence, one may obtain more accurate results by tuning the hyperparameters

per dataset.

In Fig. 4.10 (a), we explore the importance of the centering loss in the first phase’s loss func-

tion, shown in (4.1), by changing α ∈ {0, 0.01, 0.1, 1} for MNIST dataset. As is shown in this

figure, by increasing the value of α from 0 to 0.1, our DCSS performance significantly enhanced

in terms of ACC and NMI, which demonstrates the effectiveness of incorporating the centering

loss beside the reconstruction loss in the first phase’s loss function. We observed a similar trend

across all the other datasets. In all our experiments, for all datasets, α is set to 0.1.

Fig. 4.10 (b) shows the impact of the level of fuzziness m on the clustering performance of

DCSSu for the Fashion MNIST dataset, where m ∈ {1.1, 1.3, 1.5, 1.7}. In the case of m→ 1

(m→ ∞), group membership vectors converge to one-hot (equal probability) vectors. As shown

in this figure, as desired, the DCSS method is not too sensitive to m when it is set to a reasonable

value. We observed a consistent pattern across all the remaining datasets. In all our experiments,

for all datasets, m is set to 1.5.

In Fig. 4.10 (c), we scrutinize the effect of update interval T1 in the clustering performance of

the first phase for T1 ∈ {2, 5, 10, 15}. As is expected, better clustering performance in terms of

ACC and NMI is acquired for a smaller value of T1 for the USPS dataset. Consistently, the same

behavior was observed across all remaining datasets. In our experiments, for all datasets, T1 is set

to 2.
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Figure 4.10: Sensitivity of DCSS to different hyperparameters.

In Fig. 4.10(d), we change the number of training epochs T2, defined in Section 4.3, for Fashion

MNIST dataset, where T2 ∈ {1, 5, 10, 20}. As is expected, for a very small T2 value, e.g. T2 = 1,

where training the q space is mainly supervised by the q space itself even at the MNet training
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Figure 4.11: Changing hyperparameters ζ and γ for different datasets. (a) Number of data pairs

participating in the second phase of DCSS. (b) Clustering performance in terms of ACC and NMI

for different datasets for different values of ζ and γ; the clustering performance of DCSS is less

sensitive to the choice of ζ and γ in the range of [0.5,0.9] and [0.1,0.5], respectively.

outset, DCSS cannot provide a proper q space, since q is not a sufficiently reliable space to be

used for self-supervision. The figure also shows that for a very large T2 value, e.g. T2 = 20, when

we only trust the u space for supervising the q space, we cannot train an effective q space. As

shown, a good clustering performance can be obtained when T2 is set to a moderate value. In our

experiments, for all datasets, T2 is set to 5. This demonstrates the effectiveness of the proposed

strategy in supervising the MNet training using both the u and q spaces.

In Fig. 4.11, we change ζ and γ in range [0,1], where ζ+γ = 1, to observe model convergence

and accuracy for different lengths of the ambiguity interval, defined as ζ−γ, ranging from 1 (when

ζ = 1) to 0 (when ζ = 0.5). Fig. 4.11(a) shows the number of pairs participating in minimizing

the loss functions defined in (4.4) and (4.5). As can be seen, at the beginning of the second phase,
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our model can make a decisive decision only about a few pairs, and the remaining pairs are in the

ambiguous region. As the second phase of the training process progresses, more and more pairs

are included in the loss functions optimization process. Finally, at the end of the second phase,

almost all pairs contribute to the training.

Furthermore, in Fig. 4.11(b), we investigate the influence of ζ and γ in clustering performance.

As it can be seen, as is desired, the final clustering performance of our DCSS framework is not

highly sensitive to the choice of ζ and γ when these are set to reasonable values. In all our experi-

ments, ζ = 0.8 and γ = 0.2 for all experiments and datasets.

Figure 4.12: Sensitivity of DCSS model to the initial number of clusters (K).

In Figure 4.12, we investigate the impact of initializing the number of clusters to values smaller

or larger than the actual number of clusters on the performance of our DCSS model using the Fash-

ion MNIST dataset, where the true number of clusters is 10. When the initial number of clusters

(e.g., K = 4) is smaller than the actual number, the model is forced to group data samples from

multiple clusters into a single cluster, resulting in a decrease in the DCSS model’s performance in

terms of ACC and NMI. Conversely, with higher values of K (e.g., K = 16), the algorithm may tend

to over-segment the data, creating smaller clusters that may not well align with the true structure

of the data. In an extreme scenario where K is set to a very large value, the over-segmenting of the

data may cause overfitting to the training data. Employing a validation set becomes valuable when

conducting a parameter sweep to identify an appropriate value for K.
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Figure 4.13: (a) samples of MNIST, Fashion MNIST, 2MNIST, and USPS. The output of the first

convolutional layer using (b) the unsupervised DCSS method, (c) a supervised manner employing

the same network structure.

4.6.9 Features visualization

In order to investigate the effectiveness of our model in extracting useful features for different

datasets, we train a deep neural network with the same structure as is presented in Section 1 of the

supplementary material file in a supervised manner, and then we compare the output of the first

convolutional layers for the trained model and our proposed DCSS model. As it can be seen in Fig.

4.13, our DCSS learns a variety of low- and high-frequency features, which are similar to features

learned in a supervised manner. This demonstrates the effectiveness of our framework in finding

informative features in an unsupervised manner.
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4.7 Limitation of DCSS

In this chapter, we introduced the DCSS framework, a novel two-phase approach designed to en-

hance clustering performance. The framework operates as follows: in the first phase, it focuses

on defining cluster-specific loss functions to train a single AE. In the second phase, it determines

clusters by leveraging pairwise relationships between data samples. While the DCSS framework

demonstrates remarkable performance on challenging datasets, it is not without its limitations.

A significant limitation of the DCSS framework is its reliance on a single network for training,

which constrains its ability to capture cluster-specific characteristics when the number of clusters

is large. This issue becomes especially pronounced when the network’s capacity remains con-

stant while the complexity of the clustering task increases. For instance, as highlighted in Table

4.1, DCSS exhibits lower performance on the CIFAR-100 dataset compared to others. This is be-

cause CIFAR-100’s large number of clusters makes it challenging for DCSS to extract and encode

cluster-specific patterns effectively. To address this limitation, employing networks with greater

capacity could help capture the intricate patterns across numerous clusters. However, this solution

comes with trade-offs: larger networks demand more memory and significantly increase train-

ing time, potentially reducing the framework’s practicality for large-scale or resource-constrained

applications.

4.8 Summary

In this chapter, we introduced a novel deep clustering framework, DCSS, which leverages the con-

cept of self-supervision to improve clustering performance. The proposed framework is designed

as a two-phase approach, each contributing uniquely to the clustering process. In the first phase,

we employed an autoencoder trained with cluster-specific losses to form hypersphere-like groups

of similar data points in its latent space. Each cluster is represented as a hypersphere, enabling

the model to capture fundamental clustering structures effectively. This latent space representation

serves as the foundation for the subsequent phase. In the second phase, pairwise data similari-

ties were utilized to project the data into a K-dimensional space, where K represents the number
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of clusters. This additional transformation enables the framework to accommodate more complex

cluster distributions, improving the granularity and accuracy of the clustering process. By integrat-

ing pairwise relationships, this phase enhances the clustering performance by providing a richer

representation of the underlying data structure. The effectiveness of the DCSS framework was

rigorously evaluated across eight benchmark datasets, demonstrating its ability to outperform tra-

ditional and state-of-the-art clustering algorithms. Our experiments highlight the complementary

nature of the two phases, with the latent representations generated in the first phase significantly

contributing to the success of the second phase. Together, these phases offer a cohesive and pow-

erful approach to tackling challenging clustering tasks.
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Chapter 5

Cross-instance guided Contrastive

Clustering (C3)

In this chapter, we present a novel framework, Cross-instance Guided Contrastive Clustering (C3),

which addresses key limitations in traditional contrastive clustering approaches by leveraging the

power of cross-instance relationships. Unlike conventional methods that predominantly rely on

data augmentation, C3 delves deeper into the semantic connections among instances within the

dataset. By analyzing instance-level representations in the feature space, it identifies semanti-

cally similar samples, enabling the formation of more meaningful positive pairs. This approach

captures richer, more nuanced patterns in the data, resulting in significantly enhanced clustering

performance. A distinguishing feature of C3 is its sophisticated weighting mechanism for refining

negative sample selection. In many contrastive learning paradigms, the choice of negative pairs

can introduce errors, particularly in the presence of false negatives (semantically similar instances

incorrectly treated as dissimilar), noisy data, or anomalies. C3 tackles this challenge with an in-

telligent weighting strategy that minimizes the impact of such detrimental factors. By carefully

selecting negative pairs that contribute constructively to the learning process, C3 avoids pitfalls

that could compromise model performance, ensuring the integrity and robustness of the cluster-

ing outcomes. To validate the effectiveness of the proposed framework, we conducted extensive

experiments on a variety of datasets, spanning different domains and complexities. The results,
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discussed in detail in the subsequent sections, demonstrate that C3 consistently outperforms state-

of-the-art methods across multiple metrics. These findings underscore the framework’s ability to

produce robust and high-quality clustering outcomes, further affirming its potential for practical

applications.

5.1 Notation

Like other contrastive learning methods, we apply two data augmentations T a and T b, sampled

randomly from a pool of transformations, T , to form a true positive pair (xa
i , xb

i ) for a sample xi,

where xa
i = T a(xi) and xb

i = T b(xi). In this chapter, we used SimCLR transformation pool [21].

As is shown in Fig. 5.1. We use the encoder network f(.) to extract features of augmented samples,

i.e, ha
i = f(xa

i ) and hb
i = f(xb

i). Inspired by CC [23], we devise instance-level and cluster-

level contrastive networks, denoted by gI(.) and gC(.), respectively. The instance-level network

maps the extracted feature of augmented samples to the latent representation (aka z-space), i.e.

zai = gI(h
a
i ) and zbi = gI(h

b
i). The output of the cluster-level network is the cluster assignments

of samples to different clusters, i.e. cai = gC(h
a
i ) and cbi = gC(h

b
i). We call the output of the

cluster-level network c-space. We first initialize our networks, i.e. f(.), gI(.), and gC(.) using the

CC algorithm. If we do such initialization process for a sufficient number of epochs, a partially

reliable z-space will be obtained. However, the z-space obtained by minimizing the CC loss is sub-

optimal for clustering, which results in a large false-negative-pair rate and a low true-positive-pair

rate. To mitigate this issue, our method incorporates cross-sample similarities.

5.2 Proposed C3 Loss

Since our framework is unsupervised and we do not have access to the data labels to identify

samples belonging to the same cluster, we use a notion of self-supervision to refine clusters. We

employ the cross-sample similarities in the partially trained z-space to realize the self-supervision

concept. The cross-sample similarity is measured by the cosine distance of samples in the z-space.
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Figure 5.1: An overview of the training phase of our proposed C3 method.

If, for a pair of instances, the similarity is greater than or equal to a threshold ζ , we consider those

samples to be similar and pull them closer together by minimizing the loss function LC3 defined

below:

LC3 =
1

2N

N∑
i=1

(ℓ̃ai + ℓ̃bi) (5.1)

ℓ̃ai = − log

∑
k∈{a,b}

∑N
j=1 1{za

⊺

i zkj ≥ ζ} exp(za⊺i zkj )∑
k∈{a,b}

∑N
j=1w

k
ij exp(z

a⊺
i zkj )

, (5.2)

where 1{.} denotes the indicator function. Analogous to ℓ̃ai , we define ℓ̃bi that considers similarity

of zbi and other samples in the batch. Furthermore, in the denominator of the proposed loss function,

we included wk
ij to consider higher weights for the samples that are neither close together nor far

from each other. In this way, we realize the goal of decreasing the false negative pair selection rate

as, in the traditional CC-based methods, all augmented samples in the batch are equally considered

when forming negative pairs, regardless of the possibility of them belonging to the same cluster

and the difficulty of the samples to cluster.

We assume that the weight terms are given when minimizing the C3 loss defined in (5.2). To

obtain an optimum value for a weight term wk
ij , we propose solving the below optimization problem

while the networks are frozen. The first term of the below optimization problem is defined based
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on our motivation to assign a very low weight to too close and too far away samples and, instead,

let the remaining samples, which are more probably located on the cluster boundaries, take higher

weights. The second term is to avoid the trivial solution of assigning a weight equal to one to the

sample providing the maximum value of 1−|za⊺i zkj |. To avoid instability, we include the constraint

by which the summation of all weights must be equal to 1.

min
wk

ij

∑
k∈{a,b}

N∑
j=1

−wk
ij(1− |za⊺i zkj |)−

1

Γ
H(Wi) s.t.

∑
k∈{a,b}

N∑
j=1

wk
ij = 1 (5.3)

In the above equation, Γ is a hyperparameter, Wi = {wk
ij|j ∈ {1, 2, .., N}, k ∈ (a, b)} is the set of

all weights, and H(.) is the entropy function. We solve the optimization problem defined in (5.3)

using the Lagrange multiplier technique as below:

L =
∑

k∈{a,b}

N∑
j=1

−wk
ij(1− |za⊺i zkj |) +

1

Γ

∑
k∈{a,b}

N∑
j=1

wk
ij log(w

k
ij) + λ(

∑
k∈{a,b}

N∑
j=1

wk
ij − 1) (5.4)

∂L

∂wk
ij

= 0 −→− (1− |za⊺i zkj |) +
1

Γ
log(wk

ij) +
1

Γ
+ λ = 0

wk
ij = exp(Γ(1− |za⊺i zkj |)− 1− Γλ) (5.5)

Where λ is the Lagrange multiplier. By substituting (5.5) into the constraint of (5.3), we have:

∑
k∈{a,b}

N∑
j=1

wk
ij = 1 −→

∑
k∈{a,b}

N∑
j=1

exp(Γ(1− |za⊺i zkj |)− 1− Γλ) = 1

exp(−1− Γλ) =
1∑

k∈{a,b}
∑N

j=1 exp(Γ(1− |za⊺i zkj |))
(5.6)
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If we substitute (5.6) to (5.5), we have the final values for wk
ij as below:

wk
ij =

exp(Γ(1− |za⊺i zkj |))∑
k∈{a,b}

∑N
j=1 exp(Γ(1− |za⊺i zkj |))

(5.7)

When comparing the loss function of other contrastive clustering algorithms, such as CC, with

the loss of C3 (shown in Eq. (5.2)), several differences become apparent. Firstly, while other

contrastive algorithms typically only allow one positive pair to appear in the numerator, C3 enables

the networks to be trained by considering a much larger number of positive pairs. This leads to

more efficient training and better performance. Secondly, C3 adopts a weighting scheme when

creating the negative pairs; the scheme assigns lower weights to samples that are either too close

or too far from each other while assigning higher weights to those that are more in the mixing

cluster areas. This approach reduces the impact of false positive, noisy, and anomaly samples on

the learning of representations.

5.3 C3 Experiments

In the previous sections of this chapter, we introduced the C3 algorithm, designed to enhance the

clustering performance of the CC. Our approach leverages additional potential positive pairs and

mitigates the effects of false negatives samples through a novel weighting scheme. In this section,

we demonstrate the effectiveness of the proposed C3 algorithm and its components by presenting

rigorous experimental evaluations. We evaluated our method on five challenging computer vi-

sion benchmark datasets: CIFAR-10, CIFAR-100 [230], ImageNet-10, ImageNet-Dog [243], and

Tiny-ImageNet [248]. For CIFAR-10 and CIFAR-100, we combined the training and test splits.

Also, for CIFAR-100, instead of 100 classes, we used the 20 super-classes as the ground-truth.

To evaluate the performance, we use three commonly-used metrics in clustering namely clustering

accuracy (ACC) [232], Normalized Mutual Information (NMI) [233], and Adjusted Rand Index

(ARI) [249]. ACC quantifies the proportion of data points that are placed in the correct cluster

relative to the entire dataset, providing a clear-cut gauge of a clustering algorithm’s accuracy. In
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contrast, NMI measures how closely two sets of clusters match by capturing the mutual infor-

mation shared in their assignments. Both ACC and NMI produce values between 0 and 1, with

higher scores indicating better clustering performance. ARI evaluates the similarity between two

clusterings while accounting for random chance; it spans from −1, denoting weak agreement, to

1, denoting a perfect match, making it a dependable tool for comparing clustering outcomes.

For the sake of fair comparison, for all datasets, we used ResNet34 [1] as the backbone of our

encoder f(.), which is the same architecture that previous algorithms have adopted. We set the

dimension of the output of the instance-level projection head gI to 128, for all datasets. The output

dimension of the cluster-level contrastive head is set to the number of classes, M, in each dataset.

All networks are initialized by the CC [23] algorithm with the hyperparameters suggested by its

authors. The Adam optimizer with an initial learning rate of 0.00001 and batch size of 128 is used

for C3. All networks are trained for 20 epochs. The experiments are run on NVIDIA TESLA V100

32G GPU.

5.3.1 Comparison with State-of-the-art

Table 5.1 shows the results of our proposed method on benchmark datasets, compared to state-

of-the-art and some common traditional clustering methods. For CC, we run the code provided

by its authors for all datasets, and the results are indicated by (*). As is evident in this table,

our proposed method significantly outperforms all other baselines in all datasets. Quantitatively,

comparing to the second best algorithm (i.e. CC), C3 improves the ACC by 6.6%, 3.3%, 5.0%,

1.3% and 0.3%), the NMI by 6.5%, 1.4%, 5.5%, 1.1% and 0.4%, and the ARI by 9.6%, 1.3%,

4.9%, 1.2% and 0.2%, respectively on CIFAR-10, CIFAR-100, ImageNet-10, ImageNet-Dogs,

and Tiny-ImageNet. The main difference between our framework and other baselines, such as CC,

is that we exploit an additional set of information, i.e. the similarity between samples, to further

enhance the learned representation for clustering. In our approach, we increase the number of

positive samples, which improves the true-positive-pair rate, and put more weight on clustering the

samples that are more probably located on the boundary of the clusters, which leads to a decrease in
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the false-negative-pair selection rate. We believe this is the main reason our method’s performance

is superior compared to the baselines.

As opposed to the CC method that misses the global patterns present in each data cluster,

C3 correctly tries to consider such patterns (at least partially) by employing cross-instance data

similarities. Looking at (5.2) and (5.3), one can infer that C3 implicitly reduces the intra-cluster

distance while maximizing the inter-cluster distance, which is what an efficient grouping technique

would do in the presence of the data labels. This can be confirmed by visualizing the clusters before

and after applying the C3 loss. As Fig. 5.4 show, the samples are fairly clustered after initialization

with CC, i.e. before the start of training using the C3 loss. However, some of the difficult clusters

are mixed in the boundaries. After initialization, clusters are expanded with a considerable number

of miss-clustered data. However, after training with the proposed C3 method, we observe that the

new cluster space is much more reliable, and individual clusters are densely populated while being

distant from each other.

5.3.2 Convergence Analysis

Figure 5.2: C3’s performance vs epochs.
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Figure 5.3: Performance of CC and C3 after 1020 epochs.

Results of section 5.3.1 depict the superiority of our proposed scheme. Now, we analyze C3’s

convergence and the computational complexity to evaluate at what cost it makes such an improve-

ment over other baselines. We plotted the trend of clustering accuracy and NMI for four datasets

during the training epochs in Fig. 5.2. We can readily confirm that although we are just training

the C3 step for 20 epochs, the graphs quickly converge to a settling point, which corresponds to

the peak performance. Also, we can observe that both ACC and NMI are improved throughout the

C3 training phase in all datasets. The performance at epoch = 0 corresponds to the clustering per-

formance after initialization with CC. These figures clearly show that C3 improves its clustering

quality and justifies the qualitative results shown in Section 5.3.1.

One may naively think that the better performance of C3 is because it is being trained for 20

more epochs; note that in all our experiments, as suggested by the CC authors, we trained the CC

algorithm networks for 1000 epochs. We train the C3 networks for 1020 epochs. We reject this

argument and support it by training the CC networks for the same number of epochs as what the

C3 is trained for, i.e. 1020 epochs. We observe that no improvement is obtained for CC when

trained for an extra 20 epochs. The result of such an experiment on CIFAR-10 is shown in Fig.

5.3.

5.3.3 How does C3 loss improve the clusters?

As we saw in Fig. 5.4, the improvement that C3 achieves is mainly because it is able to reduce

the distance between instances of the same cluster while repelling them from other clusters. We

can justify this observation by considering the loss function of C3, i.e. Eq. (5.2). In this function,

115



Figure 5.4: t-SNE visualization of clusters learned by the CC and C3 methods.

(a) Average Loss (b) Average of Positive Pairs

CIFAR-10 CIFAR-100 ImageNet-10 ImageNet-Dogs Tiny-ImageNet

Figure 5.5: Plot of loss and number of positive pairs versus epoch.

the term 1{za⊺i zkj ≥ ζ} indicates that if the cosine similarity of two samples is greater than ζ , they

should be moved further close to each other.

At the beginning of training with the C3 loss, since the networks are initiated with CC, we can

assume that the points that are very similar to each other have a cosine distance, in the z-space,

less than threshold ζ , so they will become further close by minimizing the C3 loss. For instance,

take two points z1 and z2 with a cosine similarity larger than ζ , and assume that z3 has a similarity

greater than ζ with z1, but its similarity with z2 is smaller than ζ . Therefore, according to the loss

function, z1 and z2, as well as z1 and z3, are forced to become closer, but it is not the case for z2 and

z3. However, these two points will also implicitly move closer to each other because their distance

to z1 is reduced. As the training continues, at some point, the similarity of z2 and z3 also may

pass the threshold ζ . Therefore, as the similar pairs move closer to each other during the training,

a series of new connections will be formed, and the cluster will become denser. To support this

hypothesis, we plotted the average of the loss function and the average number of positive pairs

of each data sample in Fig. 5.5-a and Fig. 5.5-b, respectively. We can observe that the number of

positive pairs exponentially increases during the training until it settles to form the final clusters.
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Corresponding to this exponential increase, we can see that the loss is decreasing, and the network

learns a representation in which clusters are distanced from each other while samples of each

cluster are packed together.

We can also deduct from this experiment that the number of positive pairs is also related to the

number of classes in each dataset. For example, if we have an augmented batch size of N = 256,

for Tiny-ImageNet that has 200 classes, we expect to have 256
200

= 1.28 positive pairs per sample

which is very close to 1 and it is the reason that we do not see the same sharp increasing trend as

other datasets in Tiny-ImageNet.

5.3.4 Effect of Hyperparameter ζ and Γ

Our method, C3, introduces two new hyperparameter ζ and Γ. ζ is a threshold for identifying simi-

lar samples. Throughout the experiments, we fixed ζ = 0.6, which yielded consistent results across

datasets. Now, we carry out an experiment in which we change ζ and record the performance. Note

that since za
⊺

i zkj ∈ [−1, 1], we can technically change ζ from -1 to 1. Intuitively, for a small or

negative value of ζ , most points in the z-space will be considered similar, and the resulting clusters

will not be reliable. Therefore, in our experiment, we change ζ from 0.4 to 0.9 in 0.1 increments

for CIFAR-10. For Tiny-ImageNet, as there are lots of clusters, we set ζ ∈ {0.60, 0.85, 0.90, 0.95}.

We then plot the accuracy, NMI, average loss, and the average of positive pairs per sample. The

graphics are shown in Fig. 5.6.

In CIFAR-10 experiments, in Fig. 5.6-a and Fig. 5.6-b, we see that for ζ = 0.4, accuracy and

NMI are indeed decreasing during the C3 training. This is because this value of ζ is too lenient

and considers the points not in the same cluster to be similar. We can confirm this explanation by

looking at Fig. 5.6-d. We can see that for smaller ζs, we will have more average positive pairs

per sample. As we increase the ζ , we can see that the performance begins to improve. For larger

values such as ζ = 0.9, we can see that the performance does not significantly change during the

training. This is because ζ = 0.9 is a strict threshold, and if we look at the number of positive

pairs, only a few instances are identified as similar during the training.
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Figure 5.6: Performance and behavior of C3 for different values of ζ , for CIFAR 10 (top row) and

Tiny-ImageNet (bottom row).

Comparing the results of CIFAR-10 and Tiny-ImageNet experiments shows that the value of ζ

also depends on the number of clusters. Since we have 200 classes in Tiny-ImageNet, a smaller

value of ζ might yield two or more clusters merging together and this would decrease the accuracy.

Therefore, we should choose a more strict threshold such as ζ = 0.9 or ζ = 0.95 to improve. For

this dataset, if ζ is set to a small value, the model might mistakenly include less similar or even

false negative samples as positive pairs, weakening the quality of the training signal. This can

severely impact the model’s ability to learn strong feature representations, potentially hindering

its convergence to an optimal solution. In Fig. 5.6-c and Fig. 5.6-g, the average loss plot also

conveys interesting observations about the behaviour of ζ . We can see that for smaller values, the

loss is exponentially converging to the minimum, but for larger ζ , the rate is much slower. This can

be due to the fact that a smaller ζ considers most points to be similar and of the same class, and

therefore, it can yield the trivial solution of considering all points to be similar and mapping them

into one central point. In the extreme case of ζ → 1, C3 considers a few samples as positive pairs,

and therefore, we will not have any major improvement. In contrast, if we set ζ → −1, the loss

considers all points to be positive and the numerator and denominator of Eq. (5.2) become equal.
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Γ = 0.4Γ = 0.1 Γ = 0.3Γ = 0.2

Figure 5.7: Performance of C3 for different values of Γ, for CIFAR 10.

Therefore, the loss function becomes zero and the network does not train. Following the above

discussion, we suggest a value like ζ = 0.6, which is a good balance. However, the choice of ζ

might be influenced by the number of clusters in the data. If we have a large number of clusters, it

would be better to choose a large ζ . On the other hand, if the data has a small number of clusters,

a smaller ζ (but not too small) is preferred since it trains faster. In our experiments, we set ζ = 0.6

unless in Tiny-ImageNet which has 200 classes where we used ζ = 0.95.

Fig. 5.7 illustrates the impact of hyperparameter Γ on the performance C3. For very low values

of Γ (i.e., Γ −→ 0), all weights converge to the same value of wk
ij = 1

2N
. Conversely, for very

high values of Γ (i.e., Γ −→ ∞), the effect of entropy in Eq. (5.3) is neglected, leading to a trivial

solution where our weighting function in Eq. (5.7) selects one negative sample having the highest

value of 1 − |za⊺i zkj | to minimize the first term in Eq. (5.3). In all our experiments for all the

datasets, Γ is set to 0.1 though a better performance may be obtained if we fine-tune it per dataset.

Overall, our results demonstrate the importance of selecting an appropriate value for Γ to optimize

the performance of our proposed method.

5.4 Limitations of C3

In this chapter, we introduce a novel approach, called C3, to enhance the inclusion of true positive

pairs while mitigating the impact of false negatives, noisy samples, and anomalous pairs during

the training of contrastive clustering algorithm. The C3 methodology demonstrates significant

efficacy in achieving better feature representations for clustering tasks, addressing critical chal-
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lenges in contrastive learning frameworks. However, while C3 exhibits notable advantages, it also

has certain limitations that must be acknowledged and addressed for broader applicability.

One prominent limitation of C3 arises when applied to datasets with a large number of clusters,

such as Tiny-ImageNet [248]. As detailed in Section 5.3.3, the average number of positive pairs

in a typical batch size of 256 for the Tiny-ImageNet dataset is approximately 1.28 per sample.

This scarcity of positive pairs within a batch makes it challenging for C3 to effectively capture

and leverage informative features among the positive pairs. While increasing the batch size could

theoretically address this issue by providing a larger pool of positive pairs, it introduces significant

practical challenges. The loss function in C3 relies on pairwise relationships between samples,

making it computationally and memory intensive. Scaling the batch size to accommodate datasets

like Tiny-ImageNet becomes non-trivial due to the exponential growth in memory requirements

and processing overhead. Moreover, careful consideration must be given to the parameter ζ when

working with datasets containing a large number of clusters such as Tiny-ImageNet (See Section

5.3.4). If ζ is set to a small number, the model may include less similar or true negative samples as

positive pairs, which can dilute the quality of the training signal. This issue can significantly hinder

the model’s ability to learn robust feature representations, potentially preventing convergence to a

good solution.

5.5 Summary

In this Chapter, we introduced C3, a novel algorithm designed for contrastive data clustering. The

primary aim of C3 is to leverage the inherent similarity between different data instances to develop

more effective representations for clustering tasks. By integrating contrastive learning principles

with clustering objectives, our approach ensures that similar instances are brought closer in the

representation space while maintaining separability between dissimilar instances. This process re-

sults in a more structured and cluster-friendly embedding space, which is critical for improving

clustering performance. To validate the effectiveness of our approach, we conducted extensive

experiments across five challenging computer vision datasets. These experiments demonstrated
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that C3 significantly outperforms the current state-of-the-art clustering methods in terms of key

performance metrics. The results highlight the robustness and adaptability of our algorithm across

diverse datasets with varying characteristics, underscoring its practical utility in real-world appli-

cations.
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Chapter 6

Forward-Backward Knowledge Distillation

for Continual Clustering (FBCC)

The field of Unsupervised Continual Learning (UCL) is evolving, aiming to allow neural net-

works to learn tasks sequentially without needing explicit labels. This is crucial because, in many

scenarios, acquiring labeled data is impractical. A major hurdle in this area is Catastrophic For-

getting (CF), which occurs when a model forgets previously learned tasks as it learns new ones.

This issue is particularly challenging in UCL due to the absence of labeled data, making tradi-

tional CF mitigation techniques like knowledge distillation and replay buffers less effective due

to memory inefficiency and privacy concerns. To address this, this chapter introduces a novel

concept called Unsupervised Continual Clustering (UCC) and proposes a method named Forward-

Backward Knowledge Distillation for unsupervised Continual Clustering (FBCC) to tackle CF

within UCC. FBCC employs a unique setup with a “teacher” model that learns and retains knowl-

edge across tasks, and “student” models that specialize in specific tasks. This method involves

two main phases: Forward Knowledge Distillation, where the teacher model learns new clusters

with help from the student models, and Backward Knowledge Distillation, where a student model

replicates the teacher’s task-specific knowledge, aiding it in future tasks. This approach stands out

by showing improved performance and memory efficiency in task-specific clustering compared to
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applying traditional clustering algorithms to the latent spaces generated by state-of-the-art UCL

methods.

6.1 Notation

We introduce the UCC problem which involves learning a sequence of N tasks. Here, the set

of tasks is denoted as Ω = {D1,D2, ...,DN}, where Dt corresponds to the dataset from task t

(1 ≤ t ≤ N ). In the UCC setting, although labeled information is not available, it is known that

data samples belonging to different tasks are from distinct classes. In other words, if Yi and Yj

respectively represent sets of class labels from task i and task j (i ̸= j), then Yi ∩ Yj = ∅. This

scenario is similar to unsupervised class-incremental setting [48, 58]. Following the clustering

literature where the number of clusters is predetermined, we assume that the number of clusters

present in every task is known in the UCC set-up. The number of cluster for task t is denoted by

λt.

Given the recent success of contrastive clustering methods, we propose training FBCC’s net-

works using losses inspired by contrastive learning. In line with other contrastive learning method-

ologies, we employ two sets of augmentations a, b on each sample within the dataset Dt =

{x1, ..., x|Dt|} at task t, yielding Dta = {x1a, ..., x|Dt|a} and Dtb = {x1b, ..., x|Dt|b} respectively.

As depicted in Figure 6.1, our approach involves training a deep teacher encoder denoted as

T (.). The primary function of T (.) is to derive a suitable clustering-friendly latent representation

for the current task while also retaining knowledge from the previous tasks. The latent representa-

tions of T (.) for xik is denoted as hT
ik = T (xik). Hereafter, we use k ∈ {a, b} to represent different

augmentations.

In Section 6.5.5, we demonstrate that considering all previous tasks in training the current

teacher is not essential. We propose training up to M light-weight student encoders, where M

is a hyperparameter with 1 < M ≤ N , to alleviate catastrophic forgetting. Specifically, when

t < M , we train t students, and when t ≥ M , we retain the last M students while removing all

others from memory. Henceforth, we denote the number of students for task t as lt = 1{t <
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M}t + 1{t ≥ M}M , where 1{.} is an indicator function. The r-th student encoder is denoted as

Sr(.), where 1 ≤ r ≤ lt. The latent representations of the r-th student encoder for xik is denoted

as hSr
ik = Sr(xik). Hereafter, we utilize the notation r to denote indices ranging from 1 to lt, i.e.

1 ≤ r ≤ lt.

To reduce dimensionality and define our contrastive loss, we employ lt instance-level pro-

jectors. The r-th instance-level projector is denoted by Ir(.). For 1 ≤ r ≤ lt − 1, the r-th

instance-level projector aims to map hSr
ik to obtain zSr

ik = Ir(h
Sr
ik ). We propose to share the lt-th

instance-level projector between the lt-th student and the teacher . Hence, Ilt(.) is responsible for

creating z
Slt
ik = Ilt(h

Slt
ik ) and zTik = Ilt(h

T
ik).

In the following sections, we delve into our forward-backward knowledge distillation approach

for continual clustering (FBCC). Firstly, we introduce forward distillation, where our teacher is

trained to learn the new task t while leveraging the knowledge of previous tasks present in the

previously trained student networks, i.e. students from 1 to lt − 1; this is to retain the memory

of previous tasks. In the forward mode, all parameters of the students are frozen, and our focus

lies solely on training the teacher encoder. Conversely, in the backward mode, we propose a novel

approach for training the lt-th student, enabling it to grasp the latent representation of the teacher

encoder for task t. In the backward mode, all parameters of students ranging from 1 to lt−1, as well

as the teacher encoder, are frozen, and our attention is directed towards updating the parameters of

student lt.

6.2 Forward Knowledge Distillation

Training Teacher on the Current Task: Since we lack access to labeled information for dataset

Dt, inspired by [21, 23], we train our teacher encoder on samples xia and xib, which are two

augmentations of the same sample xi ∈ Dt, in order to maximize the similarity between zTia and

zTib, while minimizing the similarity of zTia and zTib with the remaining 2|B|− 2 samples in the batch

B, where |B| denotes the batch size.
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Figure 6.1: Overview of FBCC framework for task t.

Moreover, to further segregate representations of the current task from those of previous tasks,

given the absence of datasets from previous tasks, we propose ensuring that augmentations of

the current task t are distinctly distant from prototypes learned from previous tasks ranging from

the first task up to task t − 1. We discuss the way of defining prototypes later in this section.

We present the set of prototypes from the first task up to task t − 1 as Pt−1. This approach

facilitates the preservation of task-specific information and aids in reducing interference between

tasks, thereby enhancing the model’s performance on sequential learning tasks. We propose the

following contrastive loss function (i.e. Lcon) for training our teacher encoder at task t.

Lcon =
1

2|B|
∑
xi∈B

(ℓconia + ℓconib ) (6.1)

ℓconia = − log(
exp(sim(zTia, z

T
ib))∑j ̸=i

j∈B
∑

k∈{a,b} exp(sim(zTia, z
T
jk)) +

∑
zp∈Pt−1

exp(sim(zTia, zp))
) (6.2)
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In this study, sim(.) denotes the cosine similarity between two vectors. Analogous to ℓconia , we

define ℓconib , which assesses the similarity between zTib and other samples in the batch as well as the

prototypes set.

Knowledge Distillation from Students to Teacher: In task t, since we do not have access to

D1, ...,Dt−1, we propose to utilize lt − 1 student networks trained on the last lt − 1 tasks to aid our

network in not forgetting the previous tasks. Our objective is to ensure that zTik contains at least as

much information as (and ideally more than) all zSr
ik , where 1 ≤ r ≤ lt − 1. Instead of enforcing

similarity between zTik and zSr
ik , which could discourage the new model from learning new concepts,

we draw inspiration from [58] and propose to map zTik using fully connected predictor networks

gr(.) to the previous task learned by the r-th student (e.g. zSr
ik ), while freezing the parameters of

the r-th student and r-th instance-level projector. Given the well-studied effectiveness of utilizing

contrastive loss between the output of the predictor and the latent representation of the previous

task for the current dataset in [58], we define our loss as follows:

Ldis =
1

2|B|
∑
xi∈B

(ℓdisia + ℓdisib ), (6.3)

ℓdisia = − 1

lt − 1

∑
1≤r<lt

log(
exp(sim(gr(z

T
ia),∆(zSr

ia )))∑j ̸=i
j∈B

∑
k∈{a,b} exp(sim(gr(zTia),∆(zSr

jk )))
), (6.4)

where ∆(.) denotes the detaching operation, in which we detach vectors from a network and do

not have a backward path to this network from our loss. With this approach, our teacher network

aims to imitate the behavior of students, which serve as estimations of the previous teacher. The

primary distinction between our proposed distillation framework and [58] lies in our approach to

addressing the catastrophic forgetting issue. We train multiple light-weight students, each capable

of serving as a reliable estimation of our teacher network, allowing us to remember more than one

previous task while storing a lower number of parameters in memory. In contrast, [58] relies solely

on the large-scale deep network learned in the previous task, potentially leading to forgetting of the
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initial tasks when confronted with numerous tasks. Moreover, in Section 6.5.4, we elucidate the

significance of retaining memories of more than one previous task in mitigating the catastrophic

forgetting issue.

Clustering Samples of the Current Task: Inspired by [23], for clustering samples belonging

to Dt, we propose to train a cluster-level projector network for task t, denoted by Ct(·). This net-

work consists of a 2-layer fully connected network followed by a softmax function, which maps

the latent representation of the teacher encoder to a suitable space designed for the clustering

task. The first layer and the last layer of Ct(·) are denoted as Cfirst
t and C last

t , respectively, i.e.

Ct = C last
t (Cfirst

t ). At the beginning of task t, where 2 ≤ t ≤ N , we initialize Cfirst
t with Cfirst

t−1.

This initialization is intended to retain the information from previous tasks during this stage. The

output of Cfirst
t for sample xik is denoted by ĥik = Cfirst

t (T (xik)). Also, we propose to store C last
t−1 in

memory for use during the test phase. Within C last
t , we allocate λt neurons to transform ĥik into a

specialized space designed for the clustering of data samples within the current task. We initialize

C last
t with random values. For instance, if we assume 2 clusters per task, in Figure 6.1, for the

new task, we add two new neurons, shown in dark blue, to create C last
t . Also, we store neurons of

previous tasks shown in light blue in memory.

In every task, for a batch of data B, we create two augmentations of the batch to obtain Bk,

where k ∈ {a, b}. We then pass these two augmented batches to the teacher network and the

cluster-level projector to obtain Fk = Ct(T (Bk)), where Fk = [f1k|f2k|...|fλtk] ∈ R
|B|×λt , and

fjk ∈ R
|B| represents the probability vector for assigning samples from Bk to cluster j. Inspired

by [23], we apply contrastive loss on the features of Fk (e.g., fjk) instead of applying the con-

trastive loss between samples. The motivation stems from the derivation of Fa and Fb from two

augmentations of the same batch. Therefore, similar clusters represented in Fa and Fb (e.g., fia

and fib) are expected to possess matching probability assignments and ideally be situated far apart

from dissimilar clusters. This strategy is designed to promote distinct and well-separated clusters,
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thereby improving the overall quality of the clustering process. The loss is defined as follow:

Lclu =
1

2λt

λt∑
i=1

(ℓcluia + ℓcluib )−H(F ), (6.5)

ℓcluia = − log(
exp(sim(fia, fib))∑λt

j=1 j ̸=i

∑
k∈{a,b} exp(sim(fia, fjk)

), (6.6)

where H(F ) =
∑

k∈{a,b}
∑λt

j=1−Q(fjk) log(Q(fjk)) is the entropy of cluster assignments proba-

bilities, where Q(fjk) = ||fjk||1/||Fk||1 and ||.||1 denotes the ℓ1 norm. We maximize the entropy

to avoid the trivial solution of converging all assignments to one cluster.

Updating Prototype Set: At the end of training of task t, we propose to define λt new proto-

types that are representatives of task t. These prototypes, denoted as pv for 1 ≤ v ≤ λt, are

intended for use in (6.1) where we generate representations of future tasks to be distinct from the

representations learned during the current task. pv is designed to maintain the same distance with

samples belonging to the v-th cluster. Given cia and cib as the cluster assignments of xia and xib

(i.e. cia = argmax[Ct(T (xia)] and cib = argmax[Ct(T (xib)]), we can formulate the following

equation for determining pv.

pv =

∑
xi∈B 1{cia = v and cib = v}(zTia + zTib)

2
∑

xi∈B 1{cia = v and cib = v}
(6.7)

To enhance the quality of prototypes for the clusters of task t, the prototype of the v-th cluster is

the center of the “reliable” augmented samples in the z space. We consider a sample as “reliable”

if both of its augmentations are assigned to the same cluster. Once new prototypes have been iden-

tified for task t, we incorporate them into the existing set of prototypes obtained from preceding

tasks Pt−1 to constitute the updated prototype set Pt.
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6.3 Backward Knowledge Distillation

In task t, we propose training a light-weight student encoder with significantly fewer parameters

compared to our teacher encoder, with the aim of replicating the behavior of the teacher encoder

on task t. Our objective is to store this student model in memory for use in knowledge distillation

for future tasks. For each task, we limit the memory storage to at most M student encoder net-

works, ensuring that the total number of parameters across these networks is less than that of our

teacher network. This approach enhances memory efficiency compared to methods such as [58],

which necessitate storing their large-scale network from the current task in memory for knowledge

distillation in subsequent tasks. In task t, we propose to train the lt-th student network with the

following loss function, while keeping the parameters of the teacher encoder and all other student

encoders frozen.

Lstu =
1

2|B|
∑
xi∈B

(ℓstuia + ℓstuib ) (6.8)

ℓstuia =
1

|hSlt
ia |

||hSlt
ia −∆(hT

ia)||22 − log(
exp(sim(z

Slt
ia ,∆(zTia)))∑j ̸=i

j∈B
∑

k∈{a,b} exp(sim(z
Slt
ia ,∆(zTjk)))

) (6.9)

Where ||.||2 represents the ℓ2 norm and |hSlt
ia | shows the number of elements in h

Slt
ia . With this

loss function, we aim to instruct our student network in two critical aspects: 1- Our student must

grasp the representations produced by the teacher network irrespective of other samples. This is

achieved through the first component of our loss. 2- Our student network must follow the same

structural relationships established by the teacher encoder within a batch; we propose to enforce

such behavior through defining a contrastive loss between the student and teacher network outputs,

as is shown in the second term of the loss defined in (6.9). These two components of the loss

function enable the lt-th student to learn both the output and the relationships between samples

produced by the teacher encoder.
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6.4 Overall Training Scheme

For the batch B comprising data samples from task t, we initially fix the parameters of all students

and conduct forward distillation to minimize the combined losses of contrastive, distillation, and

clustering (i.e., Lcon+Ldis+Lclu). Subsequently, we proceed with backward distillation, wherein

we freeze the parameters of the teacher and unfreeze the parameters of the lt-th student, minimiz-

ing Lstu for the same batch B. Figure 6.1 shows the overall training scheme for task t.

Assigning Samples to Clusters: For the UCC setting, after completing training on the last task

N , to find the final cluster assignments for sample xi, we propose to use the trained teacher

encoder (i.e., T ), the first layer of the cluster projector (i.e., Cfirst
N ), which is shared among all

tasks, and the last layers of the cluster projector, which are task-specific and stored in mem-

ory (i.e., C last
1 , ..., C last

N ). To assign cluster label ci to data sample xi, we propose to obtain the

latent representation of data ĥi = Cfirst
N (T (xi)), then map ĥi to different clustering spaces us-

ing the last layers trained for each task and pick the index of the maximum value, i.e., ci =

argmax[C last
1 (ĥi), ..., C

last
N (ĥi)].

6.5 Experiments and Results

In the previous sections of this chapter, we introduced the FBCC framework to mitigate catas-

trophic forgetting (CF) in unsupervised continual clustering (UCC). By employing a teacher–student

setup, FBCC reduces the number of parameters compared to similar methods (e.g., [58]) while ef-

fectively learning new tasks without forgetting previous ones. FBCC operates in two phases: for-

ward KD, during which the teacher model learns new clusters with support from student models,

and backward KD, in which a student model replicates the teacher’s task-specific knowledge to aid

in future tasks. In this section, we conduct comprehensive experiments to illustrate the effective-

ness of our proposed FBCC. We assess our model’s performance on three challenging computer

vision benchmark datasets: CIFAR-10 [230] (with 10 classes and 5 tasks), CIFAR-100 [230] (with

100 classes and 10 tasks), and Tiny-ImageNet [243] (with 200 classes and 10 tasks). To train

our model, we concatenate the train and test sets of the datasets, a common practice in clustering
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research (e.g., [17, 23]). Also, we run each experiment 5 times to measure mean and standard

deviation.

6.5.1 Evaluation Metrics

We evaluate the performance of our continual clustering model (FBCC) using two key metrics:

average clustering accuracy (ACC) and average forgetting (F), where ACC [232] is a widely used

metric for assessing clustering performance and average forgetting is a common metric used to

measure how much information the model has forgotten about previous tasks. ACC and F are

defined as follows:

ACC =
1

N

N∑
t=1

ACCt,N (6.10)

F =
1

N − 1

N−1∑
i=1

max
t∈{1,..,N−1}

(ACCi,t − ACCi,N), (6.11)

where ACCi,j is ACC of task i at the end of training of task j. ACC ranges from 0 to 1, with higher

values indicating better performance, while F typically ranges from 0 to 1, but in this case, lower

values are preferable.

6.5.2 Implementation Details

We utilize ResNet-18 [1] as our teacher network, which comprises approximately 11.5 million

(11.5m) parameters. As for our student networks, we employ SqueezeNet 1.1, containing around

1.2m parameters. To align the output dimension of SqueezeNet with that of ResNet-18, we append

a single-layer fully connected network without an activation function at the end of SqueezeNet.

The maximum number of students (i.e M ) is determined as ⌈N
2
⌉; for example, for CIFAR-10, M is

set to 3. Both instance projectors and predictors are implemented as 2-layer fully connected neural

networks, with dimensions d −→ 512 −→ 128, where d = 512 for instance projectors and d = 128

for predictors. The cluster projector is designed as a 2-layer fully connected neural network with

dimensions 512 −→ 512 −→ λt, where λt denotes the number of clusters in the current task. It’s
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worth re-emphasizing that the first layer of the cluster-projector is shared between tasks, and we

store the last layer in memory for predicting cluster assignments. In all experiments the batch size

is 256.

6.5.3 Comparison Results

Table 6.1: FBCC Performance Comparison in terms of ACC(%) and F(%).

Algorithms
CIFAR-10 CIFAR-100 Tiny-ImageNet

ACC (↑) F (↓) ACC (↑) F (↓) ACC (↑) F (↓)

CC (offline) 79.00 - 42.90 - 14.00 -

Co2L (SCL) 28.35 14.05 19.88 10.30 8.69 4.95

OCD-Net (SCL) 40.41 7.03 18.06 7.46 7.97 5.31

CCL 36.56 6.21 19.59 8.51 8.21 4.68

STAM 39.61 5.15 25.34 6.25 9.21 4.26

LUMP 56.43 12.76 19.53 6.16 10.53 2.51

CaSSLe 40.56 3.28 36.67 3.92 17.45 2.69

POCON 57.20 3.59 35.29 4.28 16.25 3.54

FBCC 75.28 ± 0.81 2.29 ± 0.29 38.73 ± 0.64 3.62 ± 0.21 18.36 ± 0.32 1.95 ± 0.27

To the best of our knowledge, no existing continual learning algorithm is designed explicitly

for the clustering task. Therefore, in this section, we compare our proposed FBCC algorithm with

state-of-the-art UCL algorithms such as CCL [260], STAM [261], LUMP [65], CaSSLe [58]. Also,

we compare our FBCC with two state-of-the art SCL method Co2L [198] and OCD-Net [59] on

three benchmark datasets. Note that Co2L and OCD-Net are supervised methods that make use

of data labels during their training phase. We adopt a common approach followed in the field, as

outlined in [69], by applying the spectral clustering algorithm to the latent representations learned

by other algorithms. This approach allows us to evaluate and report ACC and F for these methods.

Comparison results are presented in Table 6.1.

Moreover, we compare our FBCC with a baseline CC [23] algorithm. CC possesses the flexi-

bility to define its loss function using any pair of samples from distinct clusters, rendering it more

potent compared to FBCC, which, in each step, only has access to partial clusters. Consequently,
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we employ CC as a proxy upper bound for assessing the performance of our algorithm. Note

that the lower performance of CC on the Tiny-ImageNet compared to FBCC can be associated

with the fact that CC is a memory-hungry algorithm, and running it for more than 256 samples

per batch is practically impossible [23, 43] while the given 256 samples might not be enough for

defining relationship between samples when dealing with numerous clusters like the case of Tiny-

ImageNet. Yet, CC serves as a proper upper bound for datasets with a small number of classes,

such as CIFAR-10 and CIFAR-100.

As illustrated in Table 6.1, FBCC demonstrates notable superiority over alternative algorithms

concerning both ACC and F. Notably, FBCC surpasses Co2L and OCD-Net, which learns latent

representations of data in a supervised manner, and the state-of-the-art UCL algorithm, CaSSLe,

while employing fewer parameters. Specifically, FBCC utilizes 15.1m parameters for CIFAR-10

and 17.5m for CIFAR-100 and Tiny-ImageNet, whereas CaSSLe employs 23m parameters across

all datasets. The advantage of FBCC stems from two key factors: Firstly, FBCC is tailored for clus-

tering tasks, concurrently learning data sample representations and performing clustering, whereas

other UCL algorithms primarily focus on refining data representation. Secondly, FBCC adeptly

retains knowledge from multiple previous tasks by leveraging multiple, but a limited number of,

specialized student models to mimic the representations acquired by the teacher model for specific

tasks.

6.5.4 Ablation Study

Effectiveness of Prototypes in Forward Knowledge Distillation: To demonstrate the effective-

ness of including prototypes learned from the previous task (i.e., Pt−1) during training in the for-

ward distillation phase, we propose to exclude prototypes and focus solely on the contrastive loss,

i.e., we remove the second term in the denominator of (6.2). All other model configurations remain

unchanged. This setup is labeled as FBCC w/o Pro in Table 6.2.

Upon comparing the results obtained from FBCC and FBCC w/o Pro, it is evident that the

inclusion of prototypes in forward distillation leads to improved ACC and F across various tasks.

This enhancement is attributed to our model’s ability to effectively distinguish between data from
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Table 6.2: Ablation study of FBCC in terms of ACC(%) and F(%). The best result for continual

learning algorithms in each column is highlighted in bold. We report the average performance over

5 experiments with the same initialization for each network.

Algorithms
CIFAR-10 CIFAR-100 Tiny-ImageNet

ACC (↑) F (↓) ACC (↑) F (↓) ACC (↑) F (↓)

FBCC w/o Pro 74.81 2.49 37.73 4.18 17.82 2.45

FBCC w/o KD 67.39 9.01 32.58 13.25 14.35 6.62

FBCCCaSSLe 70.81 4.54 35.29 6.58 15.36 2.98

FBCC 75.28 2.29 38.73 3.62 18.36 1.95

the current task and prototypes, which serve as representatives of previous tasks.

Effectiveness of Students in Forward Knowledge Distillation: In Table 6.2, we present a com-

parison of our proposed method with two alternative configurations in terms of ACC and F . In

one of these configurations, denoted as FBCC w/o KD, we exclude the knowledge distillation loss

from students to the teacher (i.e., Ldis) when updating the parameters of the teacher encoder. In the

second configuration, inspired by [58], instead of training multiple students, we employ a strategy

where we utilize a previously trained teacher model to mitigate catastrophic forgetting. We freeze

the parameters of this copied network, and the knowledge distillation loss is defined in [58]. This

configuration is labeled as FBCCCaSSLe in Table 6.2.

If we compare FBCC w/o KD with FBCC, we observe approximately a 5.88% improvement

in terms of ACC and 7.05% improvement in terms of F across all datasets. This improvement is

primarily attributed to the effectiveness of knowledge distillation from students to the teacher using

Ldis in retaining knowledge from previous tasks.

Moreover, upon comparing results obtained from FBCC + CaSSLe with those from FBCC, we

can conclude that the effectiveness of having multiple students lies in retaining knowledge from

more than one previous task. It is worth noting that the number of parameters for FBCC on CIFAR-

10, CIFAR-100, and Tiny-ImageNet are 15.1m, 17.5m, and 17.5m, respectively, while the number

of parameters for FBCC + CaSSLe for all datasets is 23m. Our FBCC achieves better results in

terms of 3.58% improvement in ACC and exhibits 2.03% improvement in terms of F across all

datasets despite having fewer parameters.
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Figure 6.2: Average ACC and Average Forgetting of different values of M .

6.5.5 Effect of Number of Students in Forward Knowledge Distillation:

In this section, we investigate the effect of the number of students (i.e., M ) on the performance

of FBCC in terms of ACC and F. We vary M from 2 to 10 for the CIFAR-100 dataset and report

the results in terms of ACC and F. The findings are illustrated in Fig. 6.2. As shown in this

figure, we observe a significant improvement in performance when changing M from 2 to 5. This

improvement is attributed to our model’s ability to effectively remember previous tasks. However,

when changing M from 6 to 10, we do not observe much improvement. This is because forcing

our model to remember numerous previous tasks limits its ability to learn new tasks effectively.

6.5.6 Effectiveness of Backward Distillation

In this section, we delve into the effectiveness of Lstu in transferring knowledge from teacher to

student on CIFAR-100 dataset. To achieve this, we define an average over the difference between

ACC of the teacher and the ACC of the student. This is defined as follows:

ˆACC =
1

N

∑
t∈{1,...,N}

(ACCT
t,t − ACCSlt

t,t ) (6.12)

where ACCT
t,t and ACCSlt

t,t represent the ACC of the teacher and the student on the task t af-

ter completing training on the task t, respectively. To obtain ACCSlt
t,t for dataset Dt, after com-

pleting training on Dt, we take the output of the student, i.e. h
Slt
Dt

, and feed it into the clus-
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ter projector learned during forward distillation to obtain cluster assignments for the dataset, i.e.

cDt = argmax[Ct(h
Slt
Dt
)]. Subsequently, we compare these assignments with the true cluster assign-

ments to compute the ACCSlt
t,t .

Moreover, we consider three architectures for the student, namely MobileNetV3 Small [262],

ShuffleNetV2 (0.5x) [263], and SqueezeNet 1.1 [264]. Inspired by [265], to select the best model

for our student, we define a distillation score (DS) that takes into account the size and accuracy of

the student relative to those of the teacher network. This score helps us identify the optimal model

for the student. The formula for DS is defined as follows:

DS = α(
#ParamS

#ParamT

) + (1− α)(1− 1

N

N∑
t=1

ACCSlt
t,t

ACCT
t,t

), (6.13)

where #ParamS and #ParamT represent the number of parameters of the student and teacher

network, respectively, and α ∈ [0, 1] is a hyperparameter that highlights the importance of the first

ratio over the second one. Lower DS values indicate better models. In our experiments, α is set to

0.5 and the teacher network is ResNet-18 with 11.5 million parameters.

Table 6.3: Comparison of Different Student Architectures in Terms of number of parameters,
ˆACC(%) and DS. The Best Result in Each Column is Highlighted in Bold

Students
CIFAR-100

#ParamS (↓) ˆACC (↓) DS (↓)

MobileNetV3 Small 2.5m 1.05 0.120

ShuffleNetV2 (0.5x) 1.3m 1.91 0.081

SqueezeNet 1.1 1.2m 1.68 0.075

Table 6.3 shows the comparison of different student architecture in terms of number of pa-

rameters, ˆACC(%), and DS. By comparing the ˆACC of students with different architectures, we

can infer the effectiveness of Lstu in knowledge distillation from the teacher to the students. For

instance, the ACC of SqueezeNet 1.1 with 1.2 million parameters is 1.68% less than the ACC

of ResNet-18 with 11.5 million parameters on average across different tasks on the CIFAR-100

dataset. Based on DS reported in Table 6.3, we choose SqueezeNet 1.1 as our student network for
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(a) (b)

Figure 6.3: Experiments on imbalanced data.

the CIFAR-100 dataset, as it has the lowest DS among the other architectures. We observe similar

pattern for the other datasets as well.

6.5.7 Imbalanced Dataset

In this section, we delve into assessing the efficacy of our proposed FBCC in tackling learning

tasks characterized by highly imbalanced sample distributions. To accomplish this, we adopt a

strategy wherein we selectively sample data from task t within the CIFAR-10 dataset. Instances

from the first task are incorporated into the training set with a likelihood of 0.1, while instances

from the final task are included with a likelihood of 1. Instances from intermediate tasks are chosen

proportionally, following a linear progression. The inherent challenge posed by imbalanced data

lies in the scenario where our model is trained on a limited number of instances from the current

task, yet it encounters increasingly more samples from subsequent tasks. This imbalance heightens

the risk of CF wherein the model’s performance on the current task deteriorates as it learns new

tasks, potentially leading to performance degradation in future tasks.

In Figure 6.3-(a), we present a comparative analysis between our proposed FBCC approach

and FBCC + CaSSLe. The figure illustrates ACC achieved on the first three tasks (1 ≤ t ≤ 3)

after completing training on each task. As depicted in the figure, transitioning from task t to task

t + 1 reveals that the performance of FBCC + CaSSLe for task t surpasses that of FBCC. This

discrepancy arises due to the utilization of a teacher network explicitly trained on task t within
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the FBCC + CaSSLe framework. In contrast, FBCC employs a student network with notably

fewer parameters for task retention. However, following task t + 2, a reversal in performance is

observed. FBCC exhibits superior performance on task t compared to FBCC + CaSSLe. This shift

can be attributed to FBCC’s utilization of multiple specialized student networks, thereby enhancing

its capacity to retain knowledge from previous tasks effectively. For example, this characteristic

becomes particularly evident when examining the performance on task 1. At the conclusion of

training on task 2, FBCC + CaSSLe exhibits superior performance compared to FBCC. However,

after completing task 3, the trend reverses, with FBCC surpassing FBCC + CaSSLe in terms of

ACC.

Furthermore, to demonstrate the effectiveness of training students to mimic the behavior of the

teacher network on imbalanced data, we plot ACCT
t,t and ACCSlt

t,t , as discussed in Section 6.5.6,

for imbalanced data in Figure 6.3-(b). For our experiments, we utilize SqueezeNet 1.1 [264].

As depicted in the figure, our student network adeptly follows the teacher network in generating

quality representations for the each task on imbalanced datasets.

6.5.8 Effectiveness of FBCC in Heterogeneous Tasks

In this section, we delve into the impact of heterogeneous tasks, where the number of clusters

varies across tasks. The primary challenge posed by such heterogeneity for a continual learner lies

in addressing catastrophic forgetting (CF), wherein the model must retain knowledge from tasks

with a high number of clusters while adapting to subsequent tasks. To assess our model’s ability

to handle such scenarios, we delineate two cases using the CIFAR-100 dataset, aiming to evaluate

its performance and compare it with the state-of-the-art UCL algorithm CaSSLe [58]. In Case 1,

we define the number of clusters as 50-10-10-10-10-10 for tasks 1 through 5, respectively, from

left to right. Here, our model encounters half of the total clusters in the initial task before facing

a consistent number of clusters across subsequent tasks. In Case 2 (50-30-10-5-5), we present a

more challenging setup where our model encounters a higher number of clusters initially, followed

by tasks with progressively fewer clusters. This case emphasizes the significance of ensuring that

the model retains knowledge from tasks with a greater number of clusters while adapting to those
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with fewer clusters. Comparison results are presented in Table 6.4. In this section, we employ three

students for conducting experiments. As depicted in Table 6.4, the performance of FBCC surpasses

that of CaSSLe. This superiority can be attributed to the fact that most forgetting occurs after task 1

and then task 2 for both Case 1 and Case 2. Our model exhibits the capability to remember previous

tasks more effectively due to the utilization of multiple well-trained students. In contrast, CaSSLe

relies on a single teacher for retaining knowledge from each preceding task, leading to a gradual

forgetting phenomenon. This effect is particularly pronounced for tasks 1 and 2. Additionally,

it is worth noting that the number of parameters in our model for this experiment is 15.1 million,

whereas the number of parameters in CaSSLe is 23 million. This significant difference in parameter

count underscores the efficiency of our approach in achieving competitive performance with fewer

parameters.

Table 6.4: FBCC and CaSSLe performance on heterogeneous tasks scenario in terms of ACC(%)

and F(%). The best result for continual learning algorithms in each column is highlighted in bold.

Algorithms
Case 1 Case 2

ACC (↑) F (↓) ACC (↑) F (↓)

CaSSLe 48.74 7.89 45.61 8.51

FBCC 51.33 ± 0.26 4.33 ± 0.20 48.83 ± 0.49 4.61 ± 0.19

6.6 Limitations of FBCC

In this chapter, we introduce the FBCC framework, a novel approach designed to tackle key chal-

lenges within the field of UCC. FBCC demonstrates its effectiveness in addressing several critical

issues faced by continual learning systems, particularly in mitigating CF and maintaining robust

performance across a sequence of tasks. However, despite its strengths, the framework is not with-

out limitations, which we detail in this section. A significant limitation of FBCC stems from its

reliance on cluster-level contrastive learning to define its clustering loss. This method aims to

distinguish between clusters by maximizing inter-cluster contrast (see Section 6.2). While this ap-

proach is highly effective for tasks with multiple clusters, it faces a fundamental issue when a task
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consists of only a single cluster. In such cases, FBCC cannot compute the clustering loss because

contrastive learning requires the presence of at least two clusters for meaningful comparisons.

Moreover, as discussed in Section 6.5.6, the process of KD from teacher models to student models

is inherently imperfect, often leading to a performance drop during Forward KD. For example, as

shown in Table 6.3, experiments on the CIFAR-100 dataset reveal an average ACC drop of 1.68%

when transitioning from ResNet-18 to SqueezeNet 1.1 across different tasks. While it is acknowl-

edged that smaller student networks may not achieve the same level of performance as their larger

teacher counterparts for a specific task, FBCC distinguishes itself from algorithms like [58] by em-

phasizing the retention of knowledge across multiple tasks. This advantage is particularly evident

when dealing with imbalanced tasks, as highlighted in Section 6.5.7.

6.7 Summary

UCL has emerged as a promising approach for sequential learning tasks where explicit labels are

not available. However, a critical challenge in this domain lies in the lack of effective unsuper-

vised continual clustering methods. This limitation is further compounded by the phenomenon of

CF, where models lose previously acquired knowledge when exposed to new data. Current strate-

gies to address CF, such as knowledge distillation and replay buffers, provide partial solutions but

come with their own set of limitations. To address this, we propose FBCC, which uses a continual

learner (the “teacher”) and multiple student models to effectively combat CF. Through Forward

and Backward Knowledge Distillation, FBCC allows the teacher to learn new clusters while re-

taining past knowledge. We validate the effectiveness of FBCC through a series of experiments

across various datasets and dynamic environments. Our results demonstrate that FBCC not only

outperforms existing CF mitigation strategies but also sets a novel benchmark for unsupervised

continual clustering.
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Chapter 7

Conclusions and Discussion

In this thesis, we have presented several innovative deep learning-based clustering frameworks

that address prevailing challenges in the field, such as crisp assignment issues, the neglect of

pairwise relationships, and the uniform treatment of clusters. Our Deep Multi-Representation

Learning (DML) framework introduces multiple optimized latent spaces tailored to cluster data

effectively, significantly improving performance on imbalanced datasets. Furthermore, the Deep

Clustering with Self-Supervision using Pairwise Data Similarities (DCSS) model leverages hyper-

sphere formations and enhanced pairwise data considerations, advancing the state of clustering be-

yond conventional methods. Additionally, the Cross-instance guided Contrastive Clustering (C3)

method enhances clustering accuracy by focusing on cross-instance relationships, effectively re-

ducing false-negative rates and improving positive pair identification. Lastly, our exploration into

Unsupervised Continual Clustering (UCC) with the Forward-Backward Knowledge Distillation

(FBCC) approach innovatively tackles Catastrophic Forgetting in a clustering context, paving the

way for more robust and memory-efficient unsupervised learning applications.

Collectively, these methodologies not only surpass existing state-of-the-art clustering approaches

but also open new avenues for research in complex and dynamic data environments. Future work

may expand upon these frameworks to include more adaptive and scalable solutions, potentially

integrating these techniques with real-world applications across various domains to further validate

and enhance their practicality and effectiveness.
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All in all, the primary challenge with DML lies in its reliance on multiple expert models to clus-

ter dataset samples. Despite our efforts to minimize the total number of expert models, datasets

with a large number of clusters tend to require more networks compared to those with fewer clus-

ters. Therefore, DML proves to be more effective and applicable for datasets with a lower number

of clusters, provided there are many samples within each cluster to mitigate the risk of overfitting.

On the other hand, DCSS and C3 algorithms are better suited for more complex datasets. This

is because the number of parameters in their network does not depend on the number of clusters.

Additionally, they utilize the pairwise relationships between samples to assign them to clusters,

making them a more scalable and efficient approach for handling intricate data structures. In this

thesis, we aim to address the clustering problem under the assumption that the number of clusters

(e.g., K) is known. When K is unknown, our algorithm’s performance can be significantly hin-

dered. For instance, DML relies on K to determine the number of cluster-specific autoencoders,

DCSS requires K to specify the number of neurons at the end of the MNet, and C3 depends on K

to define the cluster-level projector. In scenarios where K is not provided, an alternative approach

is to estimate K beforehand using techniques such as the elbow method [266]. The elbow method

evaluates the variance explained by different numbers of clusters and identifies an optimal K based

on where the rate of improvement decreases.

7.1 Future Works

7.1.1 Improving our image clustering frameworks using LLMs

Traditional image clustering methods often focus on single objects, which becomes problematic

when an object naturally spans multiple clusters. However, recent developments in large lan-

guage models (LLMs) and vision-language models (VLMs) offer promising ways around this is-

sue. LLMs have excelled at handling and generating natural language, and their capabilities have

been extended to image data as well. Meanwhile, VLMs—or multimodal models—combine visual

and textual information to tackle complex tasks requiring an understanding of both modalities. A

key breakthrough in these models is their ability to learn shared representations of images and
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text, typically by first pretraining on extensive datasets of paired image-text samples and then fine-

tuning for specific tasks. This joint representation allows the model to use text-based context to

enhance its interpretation of images, and vice versa, resulting in more accurate and context-aware

outputs in applications like content generation, interactive AI, and cross-modal retrieval. To ad-

dress the single-object clustering challenge, we propose using a pretrained VLM to derive rich

information from each image in a dataset by creating high-dimensional feature vectors based on

text embeddings. Incorporating these vectors and evaluating the relationships between samples

allows us to assign data points to multiple clusters, thus boosting both accuracy and robustness.

By leveraging the advanced capabilities of VLMs, this approach moves beyond the constraints of

traditional clustering methods and enables more sophisticated, precise clustering solutions.

7.1.2 Efficient Knowledge Distillation for LLMs

In Chapter 6, we introduced a knowledge distillation strategy between teacher and student models

for continual clustering of image datasets. This method effectively lowers model complexity while

preserving performance. Building on this foundation, our approach presents exciting possibili-

ties for future work, particularly in reducing the size of language models. Since language models

typically consume significant computational and memory resources, applying our distillation tech-

nique can lead to more compact architectures that still achieve high accuracy. Such a reduction in

model size is especially advantageous for real-time settings, where both rapid inference and effi-

cient memory usage are critical. A prime example is autonomous driving, where vast quantities of

data must be processed instantly to make accurate decisions. Incorporating our distillation-based

techniques into lightweight language models could substantially enhance the performance of au-

tonomous systems by offering fast and reliable language processing without overstepping the strict

resource limits these systems must observe.
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