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Abstract 

Due to the ill-posed nature of the Electro/Magneto- EncephaloGraphy (EEG/MEG) source 

imaging problem, its ability to localize brain activity, particularly from deep brain generators and 

during the resting state, requires validation. Intracerebral EEG, an invasive method used for the 

presurgical evaluation of some drug-resistant epileptic patients, is considered the gold standard for 

validating non-invasive EEG/MEG source localization. This thesis aimed to validate MEG source 

localization of resting state oscillations and MEG-derived connectivity. This was done first at a 

group level for healthy participants using the intracranial EEG (iEEG) atlas of normal brain 

activity, and then at a single-subject level using simultaneous MEG and intracerebral EEG acquired 

from patients with epilepsy. The EEG/MEG inverse problem was solved using the Maximum 

Entropy on the Mean (MEM), a method capable of accurately localizing superficial cortical 

generators and their spatial extent. The thesis is organized into four manuscript-based studies.  

In Study 1, we adapted the MEM method to localize EEG/MEG resting-state brain activity and 

validated its ability to localize resting-state oscillations from a group of healthy participants using 

the iEEG atlas as the ground truth. The atlas of physiological normal iEEG had been developed by 

pooling data from 110 patients with refractory epilepsy; the atlas included only the electrodes 

implanted in healthy brain regions. We demonstrated that MEG-estimated oscillations were more 

accurately estimated in superficial regions compared to deep regions. We also observed 

widespread leakage of alpha oscillations in MEG in the frontal and deep brain regions, likely due 

to spatial leakage associated with MEG source imaging. 

In Study 2, we proposed a depth-weighted adaptation of the MEM method for EEG/MEG source 

imaging and evaluated it using realistic high-density EEG/MEG simulations and high-density 

EEG/MEG recordings from patients with focal epilepsy. The depth-weighted method significantly 

improved the localization of deep brain activity, particularly from the hippocampus in patients with 

mesial temporal lobe epilepsy.  

In Study 3, we conducted a group-level validation of MEG-derived resting-state connectome using 

the same dataset as in Study 1. Using four widely used connectivity metrics, Amplitude Envelope 

Correlation (AEC), orthogonalized AEC (OAEC), Phase Locking Value (PLV), and weighted-

phase lag index (wPLI), we found that the correlations between MEG and iEEG connectomes were 
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moderate to low, indicating that MEG connectivity results should be interpreted with caution. We 

also found that metrics corrected for zero-lag connectivity to address source leakage issues had a 

lower correlation with iEEG than metrics that were not corrected.  

In Study 4, using simultaneous MEG and intracerebral EEG acquired from patients with epilepsy, 

we validated the group-level findings from Studies 1 and 3 at a single-subject level. We found that 

MEG retrieved oscillatory and connectivity patterns with moderate to low correlations when 

compared to intracerebral EEG. We found that MEG-estimated power was more accurately 

estimated in superficial channels compared to deep channels. The group-level findings in Study 3 

were reflected at the single-subject level: connectivity metrics that correct for zero-lag connectivity 

showed low correlations between MEG and intracerebral EEG. This highlighted the trade-off; 

while EEG/MEG may capture more connectivity due to source leakage, removing zero-lag 

connectivity can eliminate true connections. 

These four studies identified brain regions, frequencies, and connectivity metrics for which non-

invasive EEG/MEG source imaging is likely to be reliable, particularly noting the influence of 

generator depth. The proposed methodological framework and findings can also be applied to 

analyze, understand, and interpret EEG/MEG source imaging in neurodegenerative diseases. 
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Résumé 

Le problème inverse de localisation de sources électro/magnéto-encéphalographiques 

(EEG/MEG) étant mal posé, il est nécessaire de valider sa capacité à localiser l'activité cérébrale, 

en particulier les générateurs cérébraux profonds et pendant l'état de repos. L'EEG intracérébral 

(iEEG), une méthode invasive utilisée lors de l'évaluation préchirurgicale de certains patients 

épileptiques réfractaires, est considéré comme la méthode de référence  pour valider la localisation 

de sources EEG/MEG. Cette thèse a pour but de valider la précision des localisations MEG, pour 

reconstruire les oscillations et profils de connectivité pendant l’état de repos. Pour ce faire, nous 

avons adapté une méthode maximisant l’entropie sur la moyenne (MEM), afin de localiser les 

générateurs corticaux et leur étendue spatiale. Nous proposons une validation du MEM: (i) en 

comparant des données MEG d’un groupe de participants sains avec un atlas iEEG de l'activité 

cérébrale normale, (ii) au niveau individuel à partir d’enregistrements simultanés MEG/iEEG chez 

des patients épileptiques.  

Dans l'étude 1, nous avons adapté le MEM pour localiser les oscillations de l'activité cérébrale au 

repos, en comparant les localisations MEG d'un groupe de participants sains avec l'atlas iEEG. 

L'atlas iEEG combine les données de 110 patients afin de caractériser l’activité intracérébrale 

physiologique et ce en n’incluant que les électrodes implantées dans des régions saines. Nous 

avons démontré que les oscillations localisées en MEG étaient plus exactes dans les régions 

superficielles que profondes. Par ailleurs, les localisations MEG d’oscillations alpha étaient 

faussement localisées de manière étendue dans les régions frontales et profondes, probablement 

en raison de problèmes de conduction volumique. 

Dans l'étude 2, nous avons implémenté une pondération en profondeur de la méthode MEM, puis 

évalué la localisation de sources EEG haute densité et MEG à l’aide de simulations réalistes et de 

données acquises chez des patients épileptiques. Le MEM pondéré en profondeur a amélioré de 

manière significative la localisation de l'activité cérébrale profonde, en particulier au niveau de 

l’hippocampe.  

Dans l'étude 3, nous avons validé au niveau de groupe, les profils de connectivité fonctionnelle 

mesurés à l'état de repos en MEG, en utilisant les mêmes données que dans l'étude 1. À l'aide de 4 

mesures de connectivité fréquemment utilisées, nous avons constaté que les corrélations spatiales 
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entre connectomes MEG et iEEG étaient modérées, suggérant d’interpréter avec prudence les 

connectomes MEG. En utilisant des mesures de connectivité qui corrigent l’influence des 

corrélations synchrones (phase nulle) pour réduire les effets de conduction volumique, nous avons 

obtenu une corrélation spatiale avec l’iEEG plus faible qu’en utilisant des mesures non corrigées.  

Dans l'étude 4, nous avons validé au niveau individuel les résultats de groupe des études 1 et 3 en 

utilisant des données MEG et iEEG acquises simultanément chez des patients épileptiques.  La 

localisation MEG a permis de reconstruire des oscillations et profils de connectivité présentant des 

corrélations spatiales modérées en comparaison aux mesures iEEG. La localisation des oscillations 

était plus précise pour les régions superficielles que profondes. Comme pour l’étude 3, nous avons 

obtenu une corrélation spatiale plus faible entre connectomes MEG et iEEG en considérant des 

mesures de connectivité qui corrigent l’influence des corrélations synchrones, suggérant un 

compromis entre corriger l’effet des conductions volumiques synchrones et le risque d’éliminer de 

vraies connexions. 

Ces études ont identifié les régions du cerveau, les bandes de fréquences et les mesures de 

connectivité pour lesquelles la localisation EEG/MEG est probablement fiable. Le cadre 

méthodologique et nos résultats peuvent être appliqués pour analyser, comprendre et interpréter 

les localisations EEG/MEG dans le cadre des maladies neurodégénératives. 
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Study 1: Validating MEG source imaging of resting state oscillatory patterns with an intracranial 

EEG atlas.  

This study is the first group-level validation of MEG non-invasive localization of resting-state 

oscillations in the whole brain in a healthy population, using an intracranial EEG atlas of normal 

brain activity as the ground truth. We adapted the wavelet MEM source imaging method to localize 

specifically resting-state oscillations of low signal-to-noise ratio data and provided a brain atlas 

identifying regions that can be accurately estimated by MEG in terms of resting-state oscillations. 

For quantitative comparison purposes, we converted MEG sources estimated using wMEM along 

the cortical surface into virtual intracranial EEG data, after applying an intracranial EEG forward 

model to MEG sources. This approach was applied to each intracranial EEG contact of the atlas, 

and we proposed new quantitative metrics to compare the oscillatory patterns in both datasets 

(virtual and real intracranial EEG data).  Our wMEM method adapted for resting state localization 

is available on the open-source platform Brainstorm 

(https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/).  
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274,p.120158. https://doi.org/10.1016/j.neuroimage.2023.120158  

Study 2: EEG/MEG source imaging of deep brain activity within the Maximum Entropy on the 

Mean framework: simulations and validation in epilepsy. 

We proposed and implemented depth weighting in MEM-based source imaging methods to 

improve the usually poor localization of deep brain activity from EEG and MEG recordings. We 

also included an accurate surface segmentation of bilateral hippocampi in our source space, to 

more realistically recover these deep generators. Through extensive simulations using high-density 

EEG and MEG, we demonstrated that the proposed method improves source localization in deep 
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regions. The method showed significant improvement when compared to our previous MEM 

implementation and to standard depth-weighted minimum norm estimate methods in localizing 

deep sources. When applied to real MEG and high-density EEG data from patients with epilepsy, 

we demonstrated that our new implementation significantly improves localization accuracy, 

especially for patients with mesial temporal lobe epilepsy. Our implementation of depth-weighted 

MEM is available for both cMEM and wMEM versions on the open-source platform Brainstorm 

(https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/). 
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and validation in epilepsy. Human Brain Mapping. 2024 Jul 15;45(10):e26720. doi: 
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Study 3: Validating MEG estimated resting state connectome with intracranial EEG 

Using the depth-weighted wMEM method proposed in Study 2, we validated the MEG-derived 

connectome for a group of healthy individuals against the intracranial EEG atlas of normal brain 

activity as the ground truth. We evaluated the effectiveness of four widely used connectivity 

metrics, identifying the specific frequency bands and metrics where the MEG-derived connectome 

was accurately estimated and where it was weakly estimated. To do so, we applied the same 

methodology proposed in Study 1, converting MEG sources into virtual intracranial EEG data. We 

then proposed an original resampling methodology to take into account the limited spatial 

sampling of the MNI intracranial EEG atlas when assessing functional connectivity (since only 

paired electrodes from the same subjects could be considered), proposing for the first time spatial 

correlations between functional connectomes estimated from MEG sources and intracranial EEG 

data at the group level. To the best of our knowledge, this is the first group-level validation of an 

MEG-derived connectome using intracranial EEG. 
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intracranial EEG. Network Neuroscience. 

https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/
https://doi.org/10.1002/hbm.26720


xviii 
 

Study 4: Validating MEG source imaging of oscillations and connectivity using simultaneous 

MEG-intracranial EEG 

Using simultaneous recordings of MEG and intracerebral EEG data in five patients with epilepsy, 

we validated resting-state power and connectivity patterns at the single-subject level. To do so, we 

benefitted from challenging simultaneous MEG/intracerebral EEG data recorded by our 

collaborators at Aix-Marseille University (France, under the direction of Dr. Christian-G. Bénar). 

By applying the original quantification methods proposed in Studies 1 and 3 to individual subject 

recordings, we demonstrated that our main group-level findings from these studies are also 

applicable at the individual level. In our assessment of connectivity metrics, we found that 

amplitude-based metrics were more accurate for estimating the MEG connectome compared to 

phase-based metrics, particularly when these metrics were corrected to remove zero-lag 

connectivity to address the issue of source leakage. 

Afnan, J; Fratello, M.; Bonini, F.; Medina, S.; Cai, Z.; Badier, J.M.; Bartolomei, F.; Gotman, J.; 

Benar, C.; Grova, C., “Validating MEG source imaging of oscillations and connectivity patterns 

using simultaneous MEG-intracranial EEG” in preparation. 
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1 Introduction 

Epilepsy is a neurological disorder that affects approximately 1% of the global population and is 

characterized by spontaneous seizures. Proper diagnosis and medication can prevent seizures in 

about 70% of those affected. However, for the remaining 30% who are drug-resistant, surgery 

becomes an effective treatment option (Guekht et al., 2021) if the epilepsy is focal and presurgical 

evaluation can identify the specific region responsible for seizure generation. In addition to 

seizures, patients with epilepsy also exhibit interictal epileptic discharges (IEDs), which are 

abnormal neuronal discharges typically originating from regions (called the irritative zone) that 

overlap with the seizure generators but occur without any clinical manifestation (Hauf et al., 2012).  

Electroencephalography (EEG) and Magnetoencephalography (MEG) are widely used non-

invasive techniques to detect IEDs and delineate the irritative zone and help define the seizure 

onset zone (Rosenow & Lüders, 2001). EEG and MEG record brain activity with high temporal 

resolution, allowing for the study of brain dynamics during abnormal events such as seizures and 

IEDs, as well as during the resting state, a state when the brain is not engaged in specific activity. 

Resting-state EEG/MEG has been extensively employed in both healthy (Brookes et al., 2011; 

Giraud & Poeppel, 2012; Schnitzler & Gross, 2005b) and diseased brains (Aydin et al., 2020; 

Hirano & Uhlhaas, 2021) to study oscillations and connectivity patterns (Sadaghiani et al., 2022). 

Estimating the neuronal generators from scalp measurements recorded on EEG/MEG sensors 

requires solving an ill-posed inverse problem (Darvas et al., 2004), where no unique solution exists 

unless prior assumptions are made to guide the selection of the solution. Many source imaging 

methods have been developed over the years to address this challenge, yet two main limitations 

persist: (1) the challenge of localizing deep brain activity using EEG/MEG, which remains debated 

(Barkley & Baumgartner, 2003) despite evidence suggesting that deep activity can be recorded by 

surface sensors (Pizzo et al., 2019; Seeber et al., 2019); and (2) the difficulty of localizing and 

analyzing resting-state brain activity, which is often characterized by a low signal-to-noise ratio. 

Importantly, EEG/MEG estimated sources are susceptible to source leakage, which is defined as 

the influence of a source on the estimation of the generators within its neighborhood (Brookes et 

al., 2012; Hedrich et al., 2017). Source leakage affects the spatial accuracy of EEG/MEG estimated 
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sources and introduces spurious false positives in connectivity measures (Palva et al., 2018; Palva 

& Palva, 2012). As more studies use EEG/MEG source localization to detect deep brain activity 

and analyze resting-state oscillations and connectivity, it is crucial to validate the accuracy of these 

methods in such conditions.  

The only gold standard for validating EEG/MEG source imaging is intracerebral EEG, an invasive 

technique used in some epilepsy patients during presurgical evaluation. Based on clinical 

hypotheses, intracerebral EEG electrodes are implanted directly into brain tissue, including deep 

structures such as the hippocampus (Jayakar et al., 2016). Unlike EEG/MEG, the acquisition of 

intracerebral EEG data is invasive and is only used in drug-resistant cases of epilepsy during 

presurgical investigation. Intracerebral EEG records brain activity with high temporal and spatial 

resolution as it is in close proximity to the neuronal generators, making it the best available method 

to validate non-invasive EEG/MEG results, but because of the invasiveness of the implantation 

procedure, spatial sampling remains limited to few regions of interest which are specific to the 

epilepsy of every patient. Ideally, simultaneous recordings of EEG/MEG and intracerebral EEG 

offer the best opportunity for such validation (De Stefano et al., 2022; Pigorini et al., 2024; Pizzo 

et al., 2019). However, this type of simultaneous acquisition is technically challenging (Badier et 

al., 2017; Dubarry et al., 2014) and not feasible for many research groups due to resource 

constraints. Several groups have developed atlases of intracranial EEG by merging data from the 

healthy brain regions from many patients (Bernabei et al., 2022; Frauscher et al., 2018; Taylor et 

al., 2022). These atlases provide a valuable resource for studying brain activity at a group level. 

The main motivation of this thesis is to determine the limitations of non-invasive MEG source 

imaging in accurately identifying intracerebral sources and connectivity. We first aimed to validate 

MEG source imaging of resting-state activity at the group level in a healthy population. As ground 

truth, we exploited the intracranial EEG atlas of normal brain activity developed by Frauscher et 

al. (2018), which compiled data from 110 patients who underwent intracranial EEG implantation 

during presurgical evaluation, only keeping the data from the electrodes implanted in healthy brain 

regions. Next, we aimed to validate the group-level findings at the single-subject level using 

simultaneous MEG and intracerebral EEG data from patients with epilepsy, which were acquired 

by our collaborators at Aix-Marseille University (France, under the direction of Dr. Christian-G. 

Bénar). We hypothesized that MEG source imaging could recover the spectral and connectivity 
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patterns observed in intracerebral EEG more accurately in some regions than in others, and we 

aimed to define regions of high and low accuracy.  

To solve the EEG/MEG inverse problem, we used the Maximum Entropy on the Mean (MEM) 

method (Amblard et al., 2004; Chowdhury et al., 2013), developed by our group. This method has 

been shown to recover the spatial extent of neural generators more accurately than conventional 

distributed source imaging techniques (Abdallah et al., 2022; Chowdhury et al., 2013; Heers et al., 

2016a; Pellegrino et al., 2018; Pellegrino, Hedrich, et al., 2020). MEM has two variants: the 

coherent MEM (cMEM), which assumes a stable organization of the brain along parcels as prior 

information and is suitable for localizing event-related brain activity including spontaneous 

interictal epileptic discharges (IEDs) (Chowdhury et al., 2013; Heers et al., 2016a), and wavelet 

MEM (wMEM), designed for localizing transient oscillations (Avigdor et al., 2021; Lina et al., 

2012; Pellegrino et al., 2016; von Ellenrieder et al., 2016). While MEM methods have been 

successful in accurately localizing superficial cortical generators (Chowdhury et al., 2015; Grova 

et al., 2006), their effectiveness in localizing deep brain activity has been limited. In this thesis, 

we propose and validate two adaptations of MEM. First, we adapted the wMEM method to 

enhance the localization of resting-state oscillations. Second, we introduced a depth-weighted 

adaptation for both cMEM and wMEM to improve the localization of deep brain activity without 

compromising the accuracy of superficial source localization.  

This thesis is organized as follows: Chapters 2 to 5 provide the necessary background information 

for this thesis. In Chapter 2, we briefly introduce epilepsy and different diagnostic tools (including 

but not limited to EEG/MEG and intracerebral EEG) used during the presurgical investigation for 

patients for whom drug therapy is not effective and who are considered for brain surgery. Chapter 

3 covers the history of EEG and MEG, the cellular origins of the signals detected by these 

modalities, and the theory associated with the challenging estimation of neuronal sources from 

surface measurements. It provides a brief overview of various inverse methods, highlighting their 

strengths and limitations, and emphasizes the importance of the validation of source imaging 

methods, particularly for deep source localization. In Chapter 4, we discuss the utility and 

challenges of EEG/MEG in studying resting state brain activity, with a focus on resting state 

oscillations and connectomics research. Chapter 5 provides an overview of intracerebral EEG, 

discussing its role as a ground truth for validating EEG/MEG source localization, the challenges 
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of integrating intracerebral EEG with non-invasive EEG/MEG modalities, and how normative 

atlases enable validation of EEG/MEG localization at a group level. 

The core content of this PhD thesis is then presented in four manuscripts in Chapters 6 to 9. Chapter 

6 presents our first published manuscript (Afnan et al., 2023): Validating MEG source imaging of 

resting state oscillatory patterns with an intracranial EEG atlas. We validated MEG source 

imaging of resting-state oscillations in a group of healthy participants with intracranial EEG of 

normal brain activity using the Montreal Neurological Institute (MNI) intracranial EEG atlas 

(Frauscher et al., 2018) (https://mni-open-ieegatlas.research.mcgill.ca/). We proposed and adapted 

wMEM for resting state localization, i.e. when dealing with the localization of ongoing 

background activity characterized by small signal-to-noise ratio data. wMEM results were 

compared with two widely used source imaging methods: the minimum norm estimate 

(Hämäläinen & Ilmoniemi, 1994) and beamformer (Van Veen et al., 1997).  

Chapter 7 presents our second published manuscript (Afnan et al., 2024): EEG/MEG source 

imaging of deep brain activity within the maximum entropy on the mean framework: Simulations 

and validation in epilepsy. We proposed a depth-weighted adaptation of MEM to improve the 

localization of deep brain activity and added a detailed segmentation of the surface bilateral 

hippocampi in our source space for source imaging. We evaluated this method using extensive 

high-density EEG and MEG realistic simulations of IEDs as well as real IEDs recorded from 

patients with focal epilepsy. The aim of this study was to improve EEG/MEG source localization 

of deep brain activity by MEM, while preserving its capability to localize superficial generators.  

Chapter 8 presents our third manuscript (Afnan et al., in press): Validating MEG estimated resting 

state connectome with intracranial EEG. This study used the same dataset as Chapter 6, i.e. MEG 

resting state source imaging from healthy controls and the MNI intracranial EEG atlas of normal 

brain activity. We validated the MEG-derived connectomes with intracranial EEG connectomes 

for four widely used connectivity metrics (Amplitude Envelope Correlation (AEC), 

orthogonalized AEC (OAEC), Phase Locking Value (PLV), and weighted-phase lag index 

(wPLI)). For those four metrics, the issue of source leakage associated with MEG-derived 

connectivity was investigated.  

https://mni-open-ieegatlas.research.mcgill.ca/
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Chapter 9 presents our fourth manuscript ((Afnan et al., 2024), in preparation): Validating MEG 

source imaging of oscillations and connectivity using simultaneous MEG-intracerebral EEG. In 

this final study, we validated the group-level findings from studies 1 and 3 at a single-subject level 

in patients with epilepsy using simultaneous MEG and intracerebral EEG data. For this study, we 

applied our original adaptation of MEM methods developed in Chapters 6 and 7 to simultaneous 

MEG and intracerebral EEG data acquired by our collaborators at Aix-Marseille University 

(France, under the direction of Dr. Christian-G. Bénar). We applied at the single subject level, our 

specific evaluation metrics proposed in Chapters 6 and 8, to assess MEG accuracy in recovery 

oscillatory and connectivity patterns from resting state data. Finally, Chapter 10 concludes this 

PhD thesis by discussing the key findings and contributions, addressing potential limitations, and 

exploring future directions for the proposed research.  
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2 Fundamentals of epilepsy and pre-surgical investigation  

This chapter will provide a brief overview of epilepsy, classification of seizures and epilepsy, and 

treatment options, especially for patients for whom drug therapy is not effective and who are 

considered for brain surgery. It will also briefly cover different diagnostic tools used during 

presurgical investigation, including but not limited to electrophysiological techniques such as 

electroencephalography (EEG) and magnetoencephalography (MEG). 

2.1 Definition of epilepsy 

Epilepsy is one of the most common neurological diseases. Currently, epilepsy affects 

approximately 65 million people around the world (Milligan, 2021). Epilepsy has been recognized 

since ancient times. The word ‘epilepsy’ is derived from the Greek word ‘epilambanein’ which 

means ‘to seize, possess, or afflict’ (Blair, 2012). An early description of an epileptic seizure was 

found in a 2000 B.C. text in the Akkadian language, where epilepsy was considered to be a form 

of demonic possession. It was described as: “His neck turns left, his hands and feet are tense and 

his eyes wide open, and from his mouth froth is flowing without his having any consciousness.” 

The exorcist named this condition antasubbû, which translates as “the hand of sin” (Labat, 1951; 

Magiorkinis et al., 2010). In the fifth century BC, Hippocrates, who is regarded as the father of 

medicine, disputed the divine origin of epilepsy and formally described it as a disease. He 

attempted a scientific approach to study epilepsy in his book On the Sacred Disease (Magiorkinis 

et al., 2010). In the 19th and 20th centuries, significant advancements were made in the field of 

epilepsy. These advancements were brought about by progress in neurosurgery, the development 

of antiepileptic drugs, a better understanding of disease mechanisms, and the invention of 

electroencephalography (EEG) (Magiorkinis et al., 2014).  

Epilepsy is primarily manifested by unprovoked or spontaneous seizures. A seizure is an abnormal 

and hyper-synchronized neuronal firing in a part of the brain or across the whole brain. The 

International League against Epilepsy (ILAE) and the International Bureau for Epilepsy defined 

epilepsy as “a disorder of the brain characterized by an enduring predisposition to generate 

epileptic seizures, and by the neurobiological, cognitive, psychological, and social consequences 

of this condition. The definition of epilepsy requires the occurrence of at least one epileptic seizure” 

(Fisher et al., 2005). More recently ILAE updated and codified the definition of epilepsy for 
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clinical diagnosis as follows: “Epilepsy is a disease of the brain defined by any of the following 

conditions: 1) At least two unprovoked (or reflex) seizures occurring >24h apart; 2) One 

unprovoked (or reflex) seizure and a probability of further seizures similar to the general 

recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years; 3) 

Diagnosis of an epilepsy syndrome” (Fisher et al., 2014). The term ‘epilepsy syndrome’ will be 

described in the next section. 

2.2 Classification of seizures and epilepsies 

The types of epileptic seizures can vary widely from patient to patient, and many classification 

systems have been used over the years. Accurate classification of seizures and epilepsy is necessary 

for determining the etiology (causes), proper treatment management, and prognosis. According to 

the 2017 ILAE classification system (Fisher et al., 2017), three levels of classification are used: 1) 

Seizure classification, 2) Epilepsy classification, and 3) Epilepsy syndrome classification (Figure 

2-1).  

Seizure classification: Based on seizure onset, seizures are classified as focal, generalized, or 

unknown. Focal seizures (previously called partial seizures) begin in one focus (focal brain region 

in one hemisphere). In contrast, generalized seizures involve both hemispheres at onset. If it is not 

possible to categorize the seizure as focal or generalized, it is classified as ‘unknown onset’. 

Once the seizure onset is determined, further distinctions are made based on whether 

consciousness is impaired: aware or impaired awareness seizures. This classification is specific to 

focal seizures (focal aware or focal impaired awareness seizures). Generalized seizures typically 

impair consciousness. Based on the involvement of motor activity during seizures, focal and 

generalized seizures are also classified as motor onset and non-motor onset seizures. For 

generalized and unknown onset seizures with motor involvement, they are further classified as 

'tonic-clonic' or 'other motor.' If focal seizures spread to involve both hemispheres, they are 

described as 'focal to bilateral tonic-clonic' (previously known as secondary generalized) (Figure 

2-2) (Fisher et al., 2017).  

Epilepsy classification: After determining the seizure type for an individual, the next level is 

diagnosing the type of epilepsy (Figure 2-1). The categories are focal epilepsy (characterized by 

focal onset seizures), generalized epilepsy (characterized by seizures with generalized onset), 
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combined generalized and focal epilepsy (patients presenting both generalized and focal seizures), 

and unknown type epilepsy (not possible to determine whether the epilepsy type is focal or 

generalized) (Fisher et al., 2017).  

Epilepsy syndrome classification: The third level of classification involves making a specific 

syndromic diagnosis. Epilepsy syndrome is different from epilepsy type. Epilepsy syndromes are 

described as combinations of features including seizure types, EEG findings, imaging results, 

genetic factors, and age-dependent characteristics. The diagnosis of epilepsy syndrome allows for 

a broader classification than just identifying the seizure type (Scheffer et al., 2017). 

 

 

Figure 2-1 : Framework for classification of the epilepsies. *Denotes onset of seizure. Reprinted from ILAE 

classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology 

by Scheffer et al. (2017).  
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Figure 2-2 ILAE 2017 classification of seizure types. Reprinted from Operational classification of seizure 

types by the International League Against Epilepsy: Position Paper of the ILAE Commission for 

Classification and Terminology by Fisher et al. (2017)  Reprinted with permission from John Wiley and 

Sons. 

For each level of classification, etiology (causes) is also determined by considering six subgroups: 

structural, genetic, infectious, metabolic, immune, and unknown (Scheffer et al., 2017). The 

etiology of epileptic seizures varies widely across age groups. In children, genetic factors or 

malformations of cortical development are the most common causes. In adults, common causes 

include brain injuries, brain tumors, and neurodegenerative disorders (especially in elderly 

patients) (Falco-Walter, 2020). Additionally, the etiology of seizures is unknown in approximately 

50% of cases (Tanaka et al., 2013). 

2.3 Treatment of epilepsy 

Epilepsy is a serious chronic neurological disease in which mortality is threefold higher than in 

the general population (Levira et al., 2017). The treatment of epilepsy does not cure epilepsy but 

aims to control the frequency and severity of the seizures. The primary treatment for epilepsy is 

the use of antiepileptic drugs to prevent seizures. Approximately 70% of people can achieve 

seizure freedom with proper diagnosis and medication. For the remaining 30% who are resistant 

to drug therapy and have a focal epilepsy, surgical treatment is the most effective way to control 

seizures (Guekht et al., 2021). Surgery targets the focal brain region that generates epileptic 

seizures. The goal is to achieve seizure freedom while preserving essential brain functions. The 

location and the volume (or size) of the brain region targeted for surgical treatment are assessed 

through extensive presurgical investigations which will be discussed in the next section. 

2.4 Presurgical investigation of epilepsy 

The aim of the presurgical investigation is first to delineate the epileptogenic zone (the brain region 

that needs to be removed to prevent a patient’s seizures), assess whether resection of the 

epileptogenic zone is likely to achieve seizure freedom, and minimize the risk of inducing 

postoperative cognitive or neurological deficits (Ryvlin et al., 2014). According to Rosenow and 

Lüders (2001), the cortical zones that are indicative of the location and extent of the epileptogenic 

zones and are important to identify during the presurgical investigation are: the symptomatogenic 
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zone, the irritative zone, the seizure onset zone, the epileptogenic lesion, the epileptogenic zone, 

and the functional deficit zone. The definitions of these cortical zones are as follows:  

Epileptogenic zone: This is the area of the cortex indispensable for generating seizures. This zone 

is a theoretical concept and cannot be directly estimated with current diagnostic methods but is 

inferred from identifying other zones that are defined below.  

Symptomatogenic zone: The area of the cortex that generates ictal (seizure) symptoms when 

activated/stimulated by epileptic discharges. This region is detected through careful analysis of the 

seizure history or long-term ictal video recordings. This zone may or may not overlap with the 

epileptogenic zone.  

Irritative zone: The area of the cortex that generates interictal epileptiform discharges (IEDs), 

which are abnormal neuronal discharges that occur spontaneously between seizures and are 

observed in the EEG. IEDs are more frequent than seizures. They occur without apparent clinical 

manifestation and the irritative zone often overlaps with regions responsible for seizure generation 

(Alarcon et al., 1997).   

Seizure onset zone: The area of the brain where clinical seizures are generated.  

Epileptogenic lesion: A radiographic lesion involved in seizure generation. Not all lesions are 

epileptogenic and many epileptogenic zones do not include visible lesions.  

Functional deficit zone: Brain regions that are functionally abnormal either due to the lesion itself 

or abnormal neuronal activity caused by the epilepsy. These regions can be close to or distant from 

the epileptogenic tissue. 

Identifying these cortical zones is necessary to delineate the possible epileptogenic zone. To define 

the location and volume of these regions, a variety of diagnostic tools are used, including short 

duration scalp EEG, prolonged video-EEG monitoring, magnetoencephalography (MEG), 

magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission 

computed tomography (SPECT), functional MRI (fMRI), neuropsychological tests, and 

intracranial EEG (Rosenow & Lüders, 2001). MRI is a structural neuroimaging technique used to 

identify the location of an epileptogenic lesion such as scar tissue or malformations of cortical 

development, called focal cortical dysplasia (FCD) (Urbach et al., 2022). This is routinely used 
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during presurgical evaluation. EEG and MEG are non-invasive electrophysiological techniques 

that can record neuronal activity related to ictal and interictal epileptiform discharges. EEG and  

MEG provide high temporal resolution of few milliseconds but have relatively poor spatial 

resolution, particularly for deep sources (these issues will be discussed in detail in later part of the 

thesis). They notably require the resolution of an ill-posed inverse problem of EEG/MEG source 

imaging (Baillet et al., 2001). Another non-invasive technique utilized during presurgical 

investigation is fMRI, which indirectly estimates the location of active brain tissue at a high spatial 

resolution by measuring changes in blood oxygen levels resulting from neuronal activity. 

Combining the complementary strengths of fMRI (high spatial resolution) and EEG (high temporal 

resolution, specificity for epilepsy) using simultaneous EEG-fMRI allows for accurate 

identification of the local hemodynamic changes elicited by the occurrence of interictal discharges, 

independently of the depth of the source (Gotman & Pittau, 2011; Ikemoto et al., 2022). PET and 

SPECT are two non-invasive neuroimaging techniques that involve injecting a radioactive tracer. 

PET could be used to measure baseline glucose metabolism in the brain, localizing regions 

exhibiting low metabolism, while SPECT measures cerebral blood flow changes (Kim & Mountz, 

2011). When the radioactive tracer is injected at the time of a seizure, ictal SPECT allows 

capturing, within the whole brain, cerebral blood flow at the time of seizures (O’brien et al., 1999). 

Whereas most of these non-invasive investigations are considered during phase 1 of presurgical 

mapping, an invasive electrophysiological technique called intracranial EEG is regularly used 

during the so-called phase 2 of presurgical evaluation of epilepsy, especially when other non-

invasive techniques do not provide converging results about the underlying epileptogenic zone. 

Intracranial EEG involves placing electrodes directly on or within the brain tissue to record 

electrical activity, thus providing high spatial and temporal resolution. These diagnostic techniques 

collectively provide complementary information about the epileptogenic zone and the other 

cortical zones defined above. The table below summarizes the basic definitions, strengths, 

limitations, and uses of each modality in epilepsy diagnosis (Rosenow & Lüders, 2001). 

Table 2-1 Summary of the strengths and limitations of each modality 

Modality Basics Use in Epilepsy Diagnosis Strengths Limitations 

Structural 

MRI 

Utilizes magnetic 

fields to create 

Identifies structural 

abnormalities such as 

epileptogenic lesions, tumors, 

High spatial 

resolution, non-

invasive. 

Does not provide 

functional 

information. 
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images of brain 

anatomy. 

or cortical malformations 

associated with epilepsy. 

EEG 

(25 

channels) 

Measures electrical 

activity of the brain 

using electrodes 

placed on the scalp. 

Useful in localizing the 

irritative zone (interictal 

epileptic spikes) and the seizure 

onset zone 

High temporal 

resolution, widely 

available, non-

invasive. Allows 

long-term 

monitoring and 

seizure recording 

Low spatial 

resolution for 

standard EEG (25 

channels), limited in 

detecting deep brain 

activity. 

MEG 

(200-300 

channels) 

Measures magnetic 

fields produced by 

neuronal activity in 

the brain. 

Useful in localizing the 

irritative zone (interictal 

epileptic spikes) and 

occasionally the seizure onset 

zone. Complementary to EEG. 

High temporal 

resolution, non-

invasive. After 

applying source 

imaging, relatively 

high spatial 

resolution for 

superficial sources, 

more limited for 

deep generators 

Expensive, limited 

availability, limited 

recording duration, 

limited in detecting 

deep brain activity 

PET 

Involves injecting a 

positron-emitting 

tracer to visualize 

metabolic 

processes as for 

instance baseline 

glucose 

metabolism. 

Identifies areas of hypo- or 

hypermetabolism related to 

functional deficit zone and 

epileptogenic zones 

Provides metabolic 

information, useful 

for localizing 

seizure focus in 

non-lesional 

epilepsy. 

Expensive, radiation 

exposure, limited 

spatial resolution 

compared to MRI. 

SPECT 

Uses gamma rays 

to create 3D images 

by detecting a 

radioactive tracer 

injected into the 

bloodstream. 

Useful in localizing changes in 

blood flow the seizure onset 

zone and the functional deficit 

zone. 

Can capture ictal 

changes in blood 

flow, useful for 

localizing seizure 

onset zones. 

Lower spatial 

resolution than MRI, 

and radiation 

exposure. Requires 

accurate injection of 

radioactive tracer at 

the time of seizure. 

EEG-fMRI 

Measures brain 

activity by 

detecting changes 

Useful in identifying irritative 

zones (interictal epileptic 

spikes). 

High spatial 

resolution, non-

invasive, provides 

Poor temporal 

resolution, indirect 
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in blood flow and 

metabolism. 

functional 

information. 

measure of neural 

activity 

Intracranial 

EEG 

Involves placing 

electrodes directly 

on or within the 

brain tissue. 

Provides precise localization of 

the seizure onset and irritative 

zones, used when non-invasive 

methods are insufficient. 

High spatial and 

temporal resolution, 

direct measurement 

of neuronal activity. 

Invasive, risk of 

infection, bleeding, 

and other 

complications. Poor 

spatial sampling 

(covers a small 

fraction of brain). 

  

The presurgical investigation of epilepsy is usually conducted in two phases. Phase 1 includes 

high-resolution MRI, long-term video scalp EEG, and neuropsychological assessment. If the 

results are ambiguous regarding the location of the possible epileptogenic zone, additional phase 

1 investigations are conducted. These may include high-density EEG, MEG, interictal EEG and 

MEG source imaging (source imaging will be discussed in Chapter 3), simultaneous EEG-fMRI 

to localize the irritative zone, PET to localize the functional deficit zone and ictal SPECT. The 

routine investigation may vary across centers and depending on neuroimaging 

techniques/equipment available. If the results from different phase 1 investigations are still 

inconclusive, intracranial EEG is considered for a phase 2 evaluation (Baumgartner et al., 2019). 

2.4.1 Interictal epileptiform discharges 

Although it is possible to record seizures using long-term video EEG, it may be rare to capture 

seizures using EEG and MEG when recorded for short periods (~1 hour). In contrast, interictal 

epileptiform discharges (IEDs) are spontaneous, abnormal paroxysmal (i.e. sudden and 

uncontrolled) events that occur more frequently than seizures and are easily recorded by 

EEG/MEG; they are not accompanied by overt behavioral manifestations and are not perceived by 

the patient. The brain regions that generate IEDs, called the irritative zones, are often closely 

related to epileptogenic zones (Alarcon et al., 1997). Investigating IEDs and identifying the 

irritative zones are important aspects of the presurgical evaluation of patients. 

Detection of IEDs requires the expertise of a trained epileptologist (Zijlmans et al., 2002). IEDs 

can include EEG/MEG patterns with different characteristics such as spikes, sharp waves, or 

polyspikes. Spikes or sharp waves are transient events whose amplitude is distinguishable from 
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the physiological EEG background. Polyspikes are described as a fast series of spikes. According 

to the International Federation of Clinical Neurophysiology, as described in Kane et al. (2017) and 

nicely illustrated by Kural et al. (2020) used in Figure 2-3, IEDs have to fulfill at least 4 of the 

following 6 criteria in EEG: “(1) di- or tri-phasic waves with sharp or spiky morphology (i.e., 

pointed peak); (2) different wave duration than the ongoing background activity: either shorter or 

longer; (3) asymmetry of the waveform: a sharply rising ascending phase and a more slowly 

decaying descending phase, or vice versa; (4) the transient is followed by an associated slow after-

wave; (5) the background activity surrounding IEDs is disrupted by the presence of the IEDs; and 

(6) distribution of the negative and positive potentials on the scalp suggests a source of the signal 

in the brain, corresponding to a radial, oblique, or tangential orientation of the source”. 

  

Figure 2-3 Criteria of interictal epileptiform discharges according to the International Federation of Clinical 

Neurophysiology, as described in Kane et al. (2017) and illustrated by Kural et al. (2020). Reprinted from 

Criteria for defining interictal epileptiform discharges in EEG: A clinical validation study by Kural et al. 

(2020). Reprinted with permission from Wolters Kluwer Health, Inc. 

The detection criteria for IEDs are formally described for EEG but not for MEG. In practice, 

epileptologists follow a similar approach when marking IEDs in MEG. If simultaneous EEG is 

available, EEG information is also considered for marking IEDs in MEG. More details on IEDs 

detected using scalp EEG/MEG and intracranial EEG, the complementary nature of EEG versus 

MEG in detecting IEDs, and the strengths and limitations of these methods will be discussed in 

Chapters 3.  
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2.5 Conclusion 

Accurate localization of the epileptogenic zone is important for patients with drug-resistant 

epilepsy to assess their eligibility for surgery and to identify the brain regions that need to be 

resected to become seizure-free. Among the various structural and functional neuroimaging 

techniques, non-invasive EEG and MEG are useful diagnostic tools for localizing seizure onset 

zones and irritative zones during presurgical investigation. Intracranial EEG is an invasive 

technique used during presurgical investigation if the results from non-invasive techniques are 

inconclusive. In this thesis, I will focus on EEG/MEG and intracranial EEG. More details about 

these techniques will be discussed in the subsequent chapters. 
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3 EEG/MEG source imaging 

3.1 History of EEG/MEG 

3.1.1 History of EEG 

The Electroencephalogram (EEG) records the electrical fields of the brain (Berger, 1929). The 

concept of electricity in living organisms was first discovered in the 1780s by Dr. Luigi Galvani, 

an Italian professor, who identified "animal electricity" through his experiments with frogs 

(Catacuzzeno et al., 2024). The earliest understanding of brain function through electrical 

stimulation was derived from animal studies, notably by Dr. Fritsch and Dr. Hitzig in Germany in 

1870. Dr. Richard Caton from Liverpool first recorded electrical activity from the exposed brains 

of rabbits and monkeys using a galvanometer in 1875. He is considered the first 

electroencephalographer and discoverer of EEG (Collura, 1993). The first human EEG was 

recorded and discovered by Dr. Hans Berger, a German neuropsychiatrist. He published his first 

report of human EEG in 1929 (Berger, 1929). Figure 3-1 shows a trace of EEG recorded by Dr. 

Berger from his son. He also discovered the dominant 10 Hz waves in human EEG in eyes closed 

condition and coined the term "alpha wave".  

 

Figure 3-1 The first recorded EEG in human brain by Berger from his young son (top) in 1925. The bottom 

line is a 10 Hz sine wave used as a time marker (Brazier 1961) https://psycnet.apa.org/record/1962-05971-

000. 

Berger also recorded human EEG during sleep, brain injury, and epilepsy (Sutter & Kaplan, 2017). 

Berger’s work was initially met with widespread disbelief but ultimately set a milestone in the 

history of clinical EEG, particularly after his findings were replicated by Adrian and Matthews 

(1934) in Cambridge and Hallowell Davis at Harvard in Boston. The use of EEG in North America 

flourished through the work of Frederic Gibbs and Erna Gibbs in the field of epilepsy, Alfred 

Loomis in sleep studies, and psychophysiologist Herbert Jasper and neurosurgeon Wilder Penfield 

(who worked in Montreal, Canada) in the field of focal epilepsy. By the 1950s, EEG had become 

a widely used tool in universities and hospitals for both research and diagnosis (Coenen, 2024). 

https://psycnet.apa.org/record/1962-05971-000
https://psycnet.apa.org/record/1962-05971-000
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3.1.2 History of MEG 

Unlike EEG, the history of MEG is more recent. MEG records the magnetic fields generated by 

the electrical activity of the brain. Recording the magnetic fields of the brain is challenging because 

typical scalp magnetic fields are on the order of 10 billionth of the earth’s magnetic field. To 

capture these minute magnetic fields, sophisticated sensors are required, and thus MEG systems 

are housed inside magnetically shielded rooms. The first MEG recording was performed in the late 

1960s by David Cohen, a physicist at the University of Illinois, using a copper induction coil 

(Cohen, 1968). The detection of the brain magnetic field improved (Cohen, 1972) (Figure 3-2) 

after the invention of Superconducting QUantum Interference Device (SQUIDS) by Silver and 

Zimmerman (1965). SQUIDS are extremely sensitive magnetometers that can measure very small 

changes in magnetic fields in a superconducting environment. Figure 3-2 shows the alpha rhythm 

detected by simultaneous MEG and EEG, placing the detectors at the left occipital region (Cohen, 

1972).   

 

Figure 3-2 MEG recording by Cohen 1972 using SQUID sensors. Simultaneous EEG and MEG traces of 

alpha activity from normal human brain during eyes open and eyes closed conditions. The magnetometer 

was located at the left occipital region, as were the bipolar set of EEG leads. Figure reprinted from 

Magnetoencephalography: Detection of the Brain's Electrical Activity with a Superconducting 

Magnetometer by Cohen (1972). Reprinted with permission from the American Association for the 

Advancement of Science. 

Using SQUID sensors, the first whole-head MEG system with 122 sensors became available in 

1992 (Ahonen et al., 1993), followed by a system with 306 sensors in 1998. MEG is much less 

commonly used than EEG due to the significant difference in the cost of purchasing and 

maintaining MEG equipment. The primary reason for the high cost is the need for a cryogenic 
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system to cool the SQUID sensors, which requires liquid helium. In recent years, new magnetic 

field-sensing technology has been developed using quantum sensors, known as optically pumped 

magnetometers (OPMs). OPM sensors do not require complex maintenance, such as cooling and 

liquid helium (Brookes et al., 2022). Currently more than 200 whole head MEG systems are 

operational around the world (Matsubara et al., 2024).  

3.2 Cellular origin of EEG/MEG signals 

Before describing the cellular origin of EEG and MEG signals, a simplified drawing of the 

cerebrum of the human brain is shown in Figure 3-3. The brain is composed of six regions: the 

medulla, pons, midbrain, cerebellum, diencephalon, and cerebrum or telencephalon (Figure 3-3A) 

(Kandel et al., 2000). The cerebrum consists of two cerebral hemispheres. Each hemisphere 

contains the cerebral cortex (i.e., the wrinkled outer layer, also called gray matter), the underlying 

white matter (featuring fiber tracts connecting different regions) and three deep structures: the 

hippocampus, amygdala, and basal ganglia (not shown). Another major deep structure is the 

thalamus (not shown), which is part of the diencephalon. The thalamus connects the basal ganglia 

and cerebellum to the cerebral cortex and plays an important role in the transmission of 

information. The two hemispheres are connected by the corpus callosum, a large bundle of axons 

(axon is defined in the next paragraph) that links similar regions between the left and right 

hemispheres. Each cerebral cortex can be further described in four lobes: the frontal, parietal, 

temporal, and occipital lobes (Kandel et al., 2000). The cortex is a thin sheet of tissue 

approximately 2-4 mm in thickness with many folds. The folds are called gyri, and the grooves 

between the folds are called sulci or fissures. The fundamental unit of brain and nervous system is 

the neuron, which is a specialized brain cell with intrinsic electrical properties.  



19 
 

 

Figure 3-3 (A) The major divisions of the brain (medial view). (B) Simplified drawing of the cerebral cortex 

of human brain consisting of four lobes: frontal, parietal, temporal, and occipital. Figures are reprinted from 

Principles of Neural Science (Fifth Edition) edited by Eric R. Kandel (Kandel et al., 2021). Reprinted with 

permission from the University of Chicago.Press. 

EEG and MEG signals are generated by the summed electrical activities of populations of neurons 

(Lopes da Silva, 2023). There are approximately 1011 neurons in the human brain. Neurons 

communicate with each other to transfer information. Neurons are composed of three main parts: 

the soma or the cell body, the dendrites, and the axons. The cell body, which contains the nucleus, 

is the main part. Dendrites are branch-like extensions around the cell body that receive incoming 

signals. Dendrites that grow from the apex of the soma are called apical dendrites, and the dendrites 

that grow from the base of the soma are called basal dendrites (Mihaljević et al., 2020). Axons 

provide a pathway to transfer signals from the cell body to other parts of the nervous system. The 

dendrites and soma of neurons are located in the gray matter of the cortical sheet, where EEG/MEG 

signals originate through synchronization. Communication and connectivity between populations 

of neurons are facilitated by axons in the white matter fibers, which enable both local and long-

distance connections. Neurons transmit information from one cell to another using specialized 

contacts called synapses (Stevens, 1979). The neuron that sends information is called the 

presynaptic neuron, and the neuron that receives information is called the postsynaptic neuron. 

The transmission is mediated by chemical messengers called the neurotransmitters located in the 

presynaptic terminal (axon of the presynaptic neuron). The postsynaptic terminal is the location of 

the neuron receiving those neurotransmitters.  

The main contributors to EEG/MEG signals are specific types of neurons called pyramidal 

neurons, located within a few millimeters’ depth of the cortical surface, as well as in deeper 
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structures such as notably the hippocampus and the amygdala. When a sufficient number of these 

pyramidal neurons are aligned in a spatially organized manner and activated in a coordinated way, 

the resulting magnetic fields or electric potentials will add up so that they give rise to EEG and 

MEG signals that can be recorded at a distance from the generators (Lopes da Silva, 2013).  

When activated, neurons generate electrical current at the level of the cellular membrane. Two 

types of neuronal activations are possible: fast action potentials and slower postsynaptic potentials. 

Whereas the resting intracellular potential is -70mV, an action potential is generated when this 

intracellular membrane potential reaches a threshold around -50/-55 mV. The action potentials 

consist in a rapid jump of the intracellular membrane potential (lasting only 1 or 2 ms, like an 

impulse) from negative to positive, before returning to resting membrane potential. The action 

potential is mediated by sodium and potassium voltage-dependent ionic conductance and 

propagates rapidly along the axon, therefore allowing communication between neurons. In 

contrast, the slower membrane potential is due to synaptic activation mediated by 

neurotransmitters. EEG/MEG signals are believed to be generated mainly from slower 

postsynaptic potential. Postsynaptic potentials are slower (around 10ms) so they are easier to 

synchronize in space and time when compared to action potentials (around 1ms).  Two main kinds 

of postsynaptic potentials are the excitatory postsynaptic potentials (EPSPs) and the inhibitory 

postsynaptic potentials (IPSPs). In an EPSP, the membrane potential moves closer to the threshold 

(depolarization), increasing the likelihood of generating an action potential. In contrast, in an IPSP, 

the membrane potential moves further away from the threshold (hyperpolarization), reducing the 

likelihood of generating an action potential. At the level of the synapse, when there is a net positive 

inward current in the neuron (at the apical dendrite), it is called an EPSP. Extracellularly, a current 

sink is created at the apical dendrite by the EPSP. In contrast, for an IPSP, a net outward current 

occurs from the neuron, so extracellularly an active current source is created by the IPSP (Lopes 

da Silva, 2004). In the case of EPSP, the apical dendritic membrane becomes transiently 

depolarized (less negative than the soma and basal dendrites). For this potential difference, the 

distant basal dendrites become a passive source and current flows from the source to the sink at 

the apical dendrites (Gloor, 1985). In this way, a current dipole configuration is created. Generally, 

the apical dendrites of pyramidal cells point towards the cortical surface. 
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Some current will flow directly from the source to the sink. The current loop must be closed, and 

therefore some extracellular current will flow. The intracellular flow of current is called the 

primary current, and the extracellular current is called the secondary or volume conduction current 

(Figure 3-4) (Baillet et al., 2001). These primary and secondary postsynaptic currents are believed 

to be the source of electric potentials and magnetic fields. EEG is driven by extracellular currents, 

while MEG is generated by both primary and secondary currents, with a greater contribution from 

primary currents. 

However, signal generated by one single neuron is not enough to generate a measurable scalp EEG 

or MEG field.  To generate electric and magnetic fields on a macroscopic level, spatial and 

temporal integration is required. This is the main reason EEG and MEG are mainly generated by 

pyramidal neurons since their dendrites are spatially aligned parallel to each other and oriented 

perpendicular to the cortical surface (Nunez & Silberstein, 2000), so that their resulting electrical 

or magnetic fields can sum up, if the postsynaptic potentials of the neurons occur synchronously 

(Lopes da Silva, 2004).  

 

Figure 3-4 Left: Excitatory postsynaptic potentials (EPSPs) are generated at the apical dendritic tree of a 

cortical pyramidal cell and trigger the generation of a current that flows through the volume conductor from 

the non-excited membrane of the soma and basal dendrites to the apical dendritic tree sustaining the EPSPs. 

Some of the current takes the shortest route between the source and the sink by travelling within the 

dendritic trunk (primary current in blue), while conservation of electric charges imposes that the current 
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loop be closed with extracellular currents flowing through the volume conductor, including distant parts 

(secondary currents in red). Right: Large cortical pyramidal nerve cells are organized in macro-assemblies 

with their dendrites normally oriented to the local cortical surface. This spatial arrangement and the 

simultaneous activation of a large population of these cells contribute to the spatio-temporal superposition 

of the elemental activity of every cell, resulting in a current flow that generates detectable EEG and MEG 

signals. Figure retrieved from Electromagnetic brain mapping by Baillet et al. (2001) © 2001 IEEE. 

The concept of open field versus closed field is also important to mention. In synaptic activation, 

the current flow consists of longitudinal and transverse components. The longitudinal component 

is parallel to the main axis of the neuron and will add up if many neurons are aligned parallel to 

each other. This case is called an open field, allowing all electric or magnetic fields to sum up 

efficiently in space, to give rise to EEG/MEG signals. The pyramidal neurons are aligned with 

their apical dendrites perpendicular to the cortical surface and this results in open field.  In contrast, 

if the neurons are not aligned, i.e. have a random geometric organization, the components tend to 

cancel each other out and the resulting net field is decreased or zero; this is called a closed field 

(Lorente De Nó, 1947). This topic will be discussed more in section 3.8. 

3.3 Differences and complementary strengths of EEG and MEG 

EEG and MEG are generated by the same populations of neurons during synaptic activity but 

measure different aspects of neural activity. The main source of EEG signals is extracellular 

volume conduction currents, whereas MEG signals primarily arise from intracellular primary 

currents with a smaller contribution from the volume conduction currents. EEG signals are mainly 

contributed by volume currents that travel through the scalp, skull, and cerebrospinal fluid to reach 

the scalp, which reduces signal strength and makes them more sensitive to noise. An electrical 

contact on the skin is required to record an EEG signal.  In contrast, MEG signals are less affected 

by the scalp, skull, and cerebrospinal fluid, resulting in less attenuation and distortion by these 

tissues (Nunez & Srinivasan, 2006). This is why, to produce a detectable signal or relatively large 

signal-to-noise ratio, for instance, an interictal epileptic spike, EEG requires the activation of 

spatially extended generators covering at least 4 to 8 cm² along the cortical surface (Tao et al., 

2007; von Ellenrieder et al., 2014). On the other hand, MEG requires a generator covering of 3 to 

4 cm² along the cortical surface to produce IEDs with enough signal-to-noise ratio to be detected 

above background data (Oishi et al., 2002). 
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Another important difference between MEG and EEG is that they are sensitive to different 

orientations of sources. When considering the head as a spherical model, MEG measures the 

magnetic field generated mainly by primary currents, which are strongest when the current flow is 

tangential to the head surface. The resulting magnetic fields need to extend outside the head to be 

detected by MEG sensors, which are placed around the head. On the other hand, within this 

spherical head geometry, radial dipoles do not generate magnetic fields outside the head (Figure 

3-5). Consequently, within actual head geometry, MEG becomes mainly sensitive to tangential 

current dipoles, which are overall localized along the sulci of the cortical surface, and poorly 

sensitive to radial current dipoles, which are mainly localized along the gyri of the cortical surface. 

On the other hand,  EEG is sensitive to both radial (along the gyri) and tangential (within the sulci) 

current dipoles sources, but since electrical potentials are decreasing as one over the square of the 

distance, EEG becomes more sensitive to radial current sources on the gyri (Baillet et al., 2001). 

 

Figure 3-5 When considering a spherical head geometry, MEG is only sensitive to tangential current dipoles 

for which the magnetic fields (in blue) extend outside the head, those dipoles are mainly located along the 

sulci of the cortical surface. For purely radial sources, mainly located on the gyri, the magnetic field does 

not extend beyond the head and is invisible to MEG sensors.  For EEG, both radial and tangential dipoles 

will generate electric fields (in red) and measurable electrical potentials, whereas EEG will be more 

sensitive to dipolar current sources located along the gyri, since they will be closer to the sensors, when 

compared to tangential sources along the sulci.   

3.4 EEG and MEG instrumentation 

EEG: To record EEG, sensors or electrodes are either glued directly onto the scalp or placed on 

the head using a cap. It is essential to ensure good electrical conductivity between the skin and the 

electrodes. This can be achieved by cleaning the skin with an abrasive gel and applying a good 
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conductive medium. The electrodes record small bioelectrical potentials, which are then amplified 

and converted into digital signals by a device called an amplifier. The amplified signals are 

subsequently stored on a computer. In some systems, amplification and analog-to-digital 

conversion occur directly at the electrode level, on the participant's head. These 'active electrodes' 

have the benefit of minimizing noise caused by the wires (Xu et al., 2017). The number of 

electrodes may range from a few electrodes to up to 512 electrodes. The positions of the electrodes 

are usually based on a specific configuration known as a montage. In 1958, Dr. Jasper at the 

Montreal Neurological Institute introduced the 10-20 system, consisting of 19 electrodes, 

reflecting a standardized configuration (Figure 3-6). Other montages with a greater number of 

electrodes, such as the 10-10 system (81 electrodes) proposed by Chatrian et al. (1985), and the 

10-5 system (329 electrodes) proposed by Jurcak et al. (2007), have also been developed. Figure 

3-6 illustrates the 10-20 system proposed by Dr. Jasper and the 10-10 system (Nuwer et al., 1998). 

 

 

Figure 3-6 (top) The electrode layout of the 10-20 system (left) and corresponding brain regions (right). 

(Bottom) EEG layout with 10-10 system (Figure from https://info.tmsi.com/blog/the-10-20-system-for-

eeg). A = Ear lobe, C = central, P = parietal, F = frontal, O = occipital, Fp = frontal polar, FT = frontal 

temporal, AF - intermediate between Fp and F, FT - between F and T, TP - between T and P, CP - between 

C and P, PO - between P and O. 

https://info.tmsi.com/blog/the-10-20-system-for-eeg
https://info.tmsi.com/blog/the-10-20-system-for-eeg
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MEG: In contrast to EEG, traditional SQUID MEG sensors are usually placed inside a helmet. A 

SQUID is an ultrasensitive detector consisting of two superconductors separated by thin insulating 

layers that can convert quanta of magnetic flux into electrical voltage (Josephson, 1962). 

Therefore, using SQUID technology requires working in a superconducting state, which 

necessitates cooling the device at a very low temperature within a cryogenic dewar filled with 

liquid helium (Figure 3-7). Importantly, since magnetic fields generated by neuronal activity are 

tiny (order or femto- to picoTesla), one needs to reduce significantly environmental magnetic 

noise. To do so, MEG systems are located inside a magnetically shielded room, gradiometers 

instead of magnetometers as well as additional reference sensors might be considered to reduce 

the influence of magnetic background noise.  

 

Figure 3-7 Schematics of MEG instrumentation. A single-channel axial gradiometer and associated SQUID 

inside a dewar filled with liquid helium. The bottom depicts the sensor array of a 306-channel MEG helmet. 

Illustration taken from IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG) 

by  Hari et al. (2018). 

The simplest type of magnetic field detector is called a magnetometer, which consists of a single 

coil placed close to the head (Figure 3-8). This configuration is highly sensitive to brain magnetic 

flux but also sensitive to environmental noise. Another type of coil configuration is the 
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gradiometer, which consists of two oppositely wound coils. When they are next to each other, 

tangential to the head, it is called a planar gradiometer. When the coils are one above the other, 

radial to the head, it is called an axial gradiometer. Gradiometers therefore measure the gradient 

of magnetic flux. This configuration helps cancel out environmental noise that is common to both 

coils. However, due to this configuration, gradiometers are also less sensitive to deep brain activity, 

an issue that will be discussed in section 3.8.  

 

Figure 3-8 Common pick-up coil geometries. (A) magnetometer, (B) planar gradiometer, (C) axial 

gradiometer. Modified from Magnetoencephalography---theory, instrumentation, and applications to 

noninvasive studies of the working human brain Hämäläinen et al. (1993). Reprinted with permission from 

the American Physical Society. 

Most of the current whole-head MEG systems can contain more than 300 SQUIDS connected to 

sensor coils. The MEG system used for this thesis is the CTF system with 275 SQUID sensors 

connected to axial gradiometers (Figure 3-9). 
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Figure 3-9 Schematic representation of the whole head coverage with 275 MEG sensors in a CTF system. 

Each sensor is named with 5 digits and the first is M for MEG. The small figure on the upper right corner 

shows the second and the third characters and the bigger figure shows the last three digits of the sensor 

name. Taken from Brainstorm tutorial:   

https://neuroimage.usc.edu/brainstorm/Tutorials/ChannelFile#Display_the_sensors. 

3.5 Estimating the neuronal sources from EEG/MEG measurement 

Since we have now presented and discussed the underlying neuronal generators that give rise to 

electrical and magnetic fields detectable at the scalp level (or a few centimeters away from the 

scalp in the case of MEG),  EEG and MEG sensors can measure these signals, which can be 

interpreted at the sensor level to provide important information, for instance, the posterior alpha 

rhythm in physiological condition or, in the case of epilepsy, which sensors could detect abnormal 

epileptic spikes or seizures. This interpretation is made by assuming that the generator region is 

located below the sensors and associated with a large amplitude signal. To move beyond sensor-

level analysis and localization, estimating more accurately the location of the neuronal sources that 

generate a specific distribution of EEG and MEG recorded at the scalp is known as the inverse 

problem of EEG/MEG. Actually, this inverse problem is mathematically ill-posed since it does not 

have a unique solution. There are indeed an infinite number of possible source combinations that 

can give rise to the same EEG/MEG signals (von Helmholtz, 2004). Therefore, specific 

assumptions are needed to obtain a single estimate of the EEG/MEG sources. Before solving the 

inverse problem, one needs to first solve the so-called forward problem (Figure 3-10). The 

objective of the forward model is to model the EEG/MEG response at the electrodes for a known 

configuration of sources, considering and modeling brain structures such as the scalp, brain, and 

other layers through which the electrical or magnetic fields propagate. Unlike the inverse problem, 

the forward problem is a well-posed problem and admits a unique solution, however underlying 

head modeling may be challenging. 

https://neuroimage.usc.edu/brainstorm/Tutorials/ChannelFile#Display_the_sensors
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Figure 3-10 Key parts of estimating the neuronal sources from EEG/MEG measurement. The inverse 

problem attempts to locate the sources from recorded measurements, whereas the forward problem assumes 

a source definition to calculate a potential distribution map. Illustration taken from EEG/MEG Source 

Imaging: Methods, Challenges, and Open Issues by Wendel et al. (2009), 

https://doi.org/10.1155/2009/656092. 

3.6 EEG/MEG forward problem  

3.6.1 Quasi-static approximation of Maxwell’s equations 

The forward model is solved using Maxwell’s equations of electrical and magnetic fields. The 

following four differential equations are used to calculate the electric field 𝑬, the magnetic field 𝑩 

when the charge density is 𝜌, current density is 𝑱, 𝜖0 and 𝜇0 are the electrical permittivity and the 

magnetic permeability of free space, t is time. The nabla operator ∇ is the vector differential 

operator (∇𝑬  refers to the gradient of the vector 𝑬, ∇.𝑬  refers to the divergence of the vector 𝑬 

and ∇ × 𝑬 refers to the curl of the vector 𝑬). 

{
 
 

 
 ∇. 𝑬 =

𝜌

𝜖0

∇.𝑩 = 0

∇ × 𝑬 = −
𝜕𝐵

𝜕𝑡

∇ × 𝑩 = 𝜇0(𝐽 + 𝜖0
𝜕𝐸

𝜕𝑡
)

           (1) 

https://doi.org/10.1155/2009/656092
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To calculate the electric and magnetic fields, a ‘quasistatic’ approximation is usually considered. 

The term ‘quasistatic’ means a condition where the propagation, conductance, and inductive effects 

can be ignored in a constant conductor (Plonsey & Heppner, 1967). The frequencies of interest for 

EEG and MEG are typically less than 100 Hz in most applications, which is much slower compared 

to the propagation of electromagnetic waves that travel at the speed of light. Moreover, the 

magnetic permeability of biological tissue is approximately similar to that of free space. 

Considering this quasi-static approximation, the time derivatives terms of in Maxwell equations 

can be neglected, resulting in the following:  

{
 
 

 
 ∇. 𝑬 =

𝜌

𝜖0

∇.𝑩 = 0
∇ × 𝑬 ≈ 0
∇ × 𝑩 ≈ 𝜇0𝐽

        (2) 

∇. 𝑬 =
𝜌

𝜖0
 is actually Gauss law, stating that the presence of a static charge density will create an 

electric field, whereas ∇.𝑩 = 0 Gauss law for magnetism states that there is “no magnetic charge” 

creating 𝑩, all magnetic field lines that enter a closed surface should also exit the surface. ∇ × 𝑩 ≈

𝜇0𝐽 is Ampère law mentioning that the presence of a current density, i.e. electric charges in motion, 

will create a magnetic field. Finally, exploiting the fact that ∇ × 𝑬 ≈ 0, the electrical field 𝑬 is 

conservative and could be written as a negative gradient of the electric potential. 

𝑬 = −𝛻𝑉       (3) 

As mentioned before, the current in the brain can be divided into primary and volume conduction 

currents as follows: 

𝑱 = 𝑱𝑝 + 𝑱𝒗         (4) 

This equation can be written as: 

𝑱 = 𝑱𝑝 + 𝜎𝑬 = 𝑱𝑝 − 𝜎∇𝑉      (5) 

Where 𝜎 is the conductivity of the medium (which is related to the local electrical permittivity 𝜖 

of the medium) 
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As the divergence of a curl is zero, ∇. ∇ × 𝑩 = 0 and consequently ∇. 𝐉 = 0, which also means 

conservation of current density (every current density entering a closed surface should also exit 

the surface.  

Combining ∇. 𝐉 = 0 with equation (5), we obtain the following differential equation:   

∇. (𝜎∇𝑉) = ∇. 𝑱𝒑      (6) 

This is the fundamental differential equation to be solved for the EEG/MEG forward problem. It 

will consist in placing a unit current density source 𝑱𝒑 somewhere in the brain before computing 

the electric potential 𝑉 on all EEG electrodes and the corresponding magnetic field  𝑩 on all MEG 

channels. The process is repeated placing 𝑱𝒑 for every possible position in the source space (e.g. 

along a 3D grid inside the brain, along the cortical surface fixing the orientation of the source 

perpendicular to the cortical surface). 

In free space, one can actually directly calculate the magnetic field 𝑩 at location r, for a 

corresponding primary source 𝑱𝒑  placed in 𝑟′, using the Biot-Savart law, 

𝑩(𝑟) =
𝜇0

4𝜋
 𝑱𝒑(𝑟′) ×

𝑟−𝑟′

‖𝑟−𝑟′‖3
 (7)  

Similarly, one can calculate the electric potential V in r, for a corresponding primary source 𝑱𝒑  

placed in 𝑟′, 

𝑉(𝑟) =
1

4𝜋 𝜖0
 𝑱𝒑(𝑟′) .

𝑟−𝑟′

‖𝑟−𝑟′‖3
   (8) 

The solution to the forward problem of EEG and MEG can be obtained using equations 6 , 7 and 

8. In practice, solving the forward problem consists in estimating V first before estimating 

corresponding magnetic position 𝑩, using ∇ × 𝑩 =  𝜇0𝑱 =  𝜇0(𝑱
𝑝 − 𝜎∇𝑉), for each specific 

position of a unit current source 𝑱𝒑. The main difficulty is that one should consider that within the 

head the conductivity values (𝜎 in equation (6)) vary from one tissue to the other and therefore 

head geometry should be accurately modeled. When not in free space, 𝜖0 in Equation (2) should 

be replaced by 𝜖 , which is the electric permittivity of the specific medium (which depends on 𝜎). 

The magnetic permeability of different biological tissues is similar to that of free space (𝜇0). 

Therefore, the geometry of the head model and the electrical conductivities of the different layers 

are the main factors that govern the forward model (Darvas et al., 2004). Detailed reviews on 
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forward solutions with mathematical emphasis can be found in the following papers (Gramfort et 

al., 2011; Hämäläinen et al., 1993; Kybic et al., 2005; Pruis et al., 1993). 

3.6.2 Source model 

The source model describes the organization of the current sources at a macro-scale level that 

generates the EEG and MEG signals (Lecaignard & Mattout, 2015). The most commonly used 

model to describe the current source is the equivalent current dipole (ECD) model. There are two 

main approaches to the ECD model: (i) The dipolar approach: This approach considers that brain 

activity could be modeled considering a small number of ECDs at fixed positions, mimicking the 

activity of small patches of cortex. (ii) The distributed sources or imaging approach: This approach 

considers a few thousand ECDs to model the entire source space. The ECDs can be distributed 

either on a 3D grid covering the whole brain volume with unconstrained orientation or along the 

cortical surface with normal orientation to represent the orientation of pyramidal cells. 

3.6.3 Head model 

After defining the source space model, the head model is another important part of the forward 

model which is computed based on certain assumptions on the geometry of the head and the 

conductivity to allow solving the main differential equation (8).  

Spherical models: The simplest form of the head model assumes that the head can be represented 

using one or more homogenous concentric spheres each representing the layers of head tissue such 

as the scalp, the skull, and the brain. This simple geometry allows finding analytic expressions for 

the electric potentials and the magnetic field on the surface (De Munck et al., 1988; Rush & 

Driscoll, 1968). The 3-shell model proposed in De Munck et al. (1988) used three layers for the 

scalp, skull and brain with isotropic conductivities. Because of the important influence of skull 

conductivity on EEG, which results in spatial smearing of volume conduction currents, spherical 

models are not appropriate for EEG modeling. Spherical models could be more suitable for MEG 

because the magnetic permeabilities of different biological tissues are similar to that of free space. 

Another model usually considered for MEG is called the overlapping spheres,  for which a best-

fit spherical model of the brain is estimated iteratively for each sensor (Huang et al., 1999).  

Realistic models: realistic head models consist in numerical models developed to better represent 

the head tissue properties and their corresponding conductivity values when solving the forward 



32 
 

model for either EEG or MEG. Main realistic head models consist of either Boundary element 

models (BEM) (Hamalainen & Sarvas, 1989) or Finite element models (FEM) (Marino et al., 

1993). BEM: The BEM models use surface meshes extracted from anatomical MRI segmentation 

and assume homogeneous and isotropic conductivity for each of the three layers: brain, skull, and 

scalp. BEM models are computationally heavy compared to spherical models but provide a more 

realistic model of electrical and magnetic field generations (Mosher et al., 1999). The BEM model 

also might have numerical instabilities if the surfaces are not properly closed and non-overlapping 

especially for patients who have holes in their skulls (Von Ellenrieder et al., 2014). This 

OpenMEEG BEM solver (Gramfort et al., 2010; Kybic et al., 2005) has been proposed specifically 

to ensure robustness to numerical instabilities and is the model we have used in this thesis. BEM 

does not handle the anisotropic or heterogeneous conductivity value within head tissues. 

FEM: FEM, on the other hand, uses 3D meshes within the head volume where each mesh element 

can have different conductivity (isotropic or anisotropic), allowing to account for tissue non-

homogeneity. When compared to BEM, FEM can provide a more realistic solution to the forward 

model but is also computationally intensive. FEM models can include various tissues such as blood 

vessels, fat, soft and hard bone, anisotropic white matter, and eyes, but obtaining such detailed 

information from standard MRI is challenging (Medani et al., 2023). 

3.6.4 Tissue conductivities 

The conductivity values of the different head tissues are critical, especially for EEG. In this thesis, 

we have used the BEM model with the inner skull, outer skull, and the scalp surfaces and used the 

corresponding conductivity values of 0.33:0.0165:0.33 S/m respectively (Ferree et al., 2000; 

Hoekema et al., 2003; Lai et al., 2005). We used the OpenMEEG BEM implementation (Gramfort 

et al., 2010) available in the Brainstorm software (Tadel et al., 2011) to solve the forward model. 

Estimating tissue electrical conductivity might be challenging, especially when considering 

advanced realistic FEM models, for which we also might need to estimate conductivity anisotropy 

tensors (von Ellenrieder et al., 2012). In conclusion, solving the forward model for EEG and MEG 

is a well-posed problem that admits a unique solution. However, when considering more and more 

realistic head models, identification of the parameters of the model (tissue conductivity values) is 

becoming challenging, while numeric estimations are becoming computationally intensive.  
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3.6.5 Coregistration of EEG/MEG sensors with anatomy  

Coregistration of EEG/MEG sensors with individual anatomical MRI is essential for accurate 

source localization. This process involves determining the positions of EEG/MEG sensors relative 

to three fiducial points (nasion, left, and right peri-auricular) using a digitization or tracking device 

during the acquisition. These same fiducial points are also marked on the MRI images. An initial 

registration between sensors and MRI is done based on the three fiducial points. However, this 

initial registration is approximate and can be sensitive to errors in identifying the fiducial points. 

To improve accuracy, the shape of the head is sampled using the digitization device and 

subsequently used to coregister with the MRI, resulting in a more precise coregistration. 

In this thesis, to improve coregistration accuracy, the exact positions of the localization coils and 

the shape of the subject's head were digitized using a 3D Polhemus localizer for subsequent 

coregistration with the anatomical MRI. The coregistration was performed using the skin surface 

segmented from a T1-weighted MRI. The iterative closest point algorithm (Besl & McKay, 1992) 

was used to ensure accurate coregistration between the MRI-segmented skin mesh and the head 

shape digitized with the 3D Polhemus localizer. For high density EEG (Chapter 7), same 

coregistration approach was applied, with high density EEG sensor positions estimated using the 

Geodesic Photogrammetry System (GPS, Electrical Geodesics Inc., Eugene, OR) (Hedrich et al., 

2017). 

3.7 EEG/MEG inverse problem 

Once the EEG/MEG forward model is estimated, solving the inverse problem of EEG/MEG source 

localization consists in estimating the cortical current that generates the EEG and MEG data 

recorded at the sensor level. Therefore, detection of the cortical generators from EEG/MEG data 

measured at the scalp or outside the head requires solving the following equation: 

                                                                   𝒎(𝑡) = 𝑮𝐣(𝑡) + 𝒆(𝑡)              (9)                                

Where 𝒎(𝑡) is the 𝑞-dimensional measurement vector for EEG or MEG signal at time 𝑡 where 𝑞 

denotes the number of EEG/MEG sensors, 𝐣(𝑡) is the 𝑟-dimensional vector denoting the current 

density of 𝑟 dipolar sources at time 𝑡 and 𝑮 is the lead field matrix with a dimension of 𝑞 × 𝑟, i.e. 

the resolution of the forward model estimating the contribution of each of the 𝑟 dipolar sources of 

unit 1 on the 𝑞 sensors . 𝒆(𝑡) models an additive measurement noise at time 𝑡. The objective is 
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then to estimate the current density 𝐣(𝑡) from the measured data 𝒎(𝑡)  and the estimated lead filed 

matrix 𝑮 , considering the noise 𝒆(𝑡). 

The inverse problem is fundamentally ill-posed, a fact recognized long before the advent of EEG 

and MEG (Helmholtz, 1853), especially because we are looking for a 3D distribution of currents 

given rise to EEG or MEG signal on the scalp surface.  No unique solution exists for a specific set 

of EEG/MEG sensor-level data; thus, assumptions/constraints must be made about the underlying 

current sources, based on the existing knowledge about the anatomical and neurophysiological 

basis of the brain signals, to formulate a so-called restricted inverse problem (Fender, 1987). 

Therefore, any source localization method depends on these prior assumptions. Three main 

strategies have been proposed for solving the inverse problem: i) dipole fitting approach ii) dipole 

scanning approach and iii) distributed imaging approach. 

3.7.1 Dipole fitting approach 

The dipole fitting approach assumes that neuronal activity can be modeled using one or a few 

equivalent current dipoles (ECDs). This was the first and still a widely used source model in EEG 

and MEG (Ebersole, 1997; Scherg & Von Cramon, 1986; Wendel et al., 2009) mainly popularized 

by the first available commercialized software package (Besa software package developed by the 

team of Dr Scherg notably). A dipole is modeled to represent a small patch of activated cortex, i.e., 

the center of activity of a geometrically restricted collection of synchronously activated neurons 

(Figure 3-11). The dipoles can be modeled as moving dipoles with unknown position, orientation, 

and amplitude; rotating dipoles with fixed position and unknown orientation and amplitude; or 

fixed dipoles with fixed position and orientation and unknown amplitude. Once the position of a 

dipole is known, the problem becomes linear and the orientation and amplitude of this dipole can 

be estimated using a least squares fitting approach. On the other hand, especially since the 

influence of an ECD on EEG or MEG sensors is decreasing as one over the square of the distance, 

estimating the location of a dipole requires solving a non-linear problem (Mosher et al., 1992). An 

important model is the time-varying current dipole model proposed by Scherg (1984), for which 

the position and orientation of a few ECDs are estimated first within a specific time window of the 

signal of interest. In the second step, the positions of the localized ECDs remain fixed and the time 

course of their magnitude over the whole temporal window is estimated using a least square fitting.  
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Figure 3-11 In the dipole fitting approach, a dipole is modeled to represent a patch of activated cortex. From 

Scherg (1984). 

Localization using ECD is a well-established method that can provide very accurate localization 

of focal generators if sufficient knowledge of the cortical generator is available to guide the 

location of the ECDs. One such example is the localization of evoked potentials in EEG or evoked 

fields in MEG, for instance in the somatosensory or auditory cortex (Salmelin, 2010) or during 

epileptic spikes (Merlet & Gotman, 1999; Pellegrino et al., 2018).  

In low SNR conditions, dipole fitting approaches could be inaccurate (Hara et al., 2007; Shiraishi 

et al., 2005). Knowing the underlying number of sources or how many ECDs to fit is indeed a 

tedious task. Importantly, this approach cannot determine the spatial extent of the underlying 

generator. When activation involves spatially extended cortical regions, as is often the case with 

interictal epileptic spikes, it can lead to spurious localization of deep ECD sources (Kobayashi et 

al., 2005). 

3.7.2 Dipole scanning approach 

The dipole scanning approach is an extension of the single dipole fitting approach. One limitation 

of the dipole fitting approach is indeed the unknown number of ECDs to fit. The dipole scanning 

approach considers a 3D grid within the source space and then tests the relevance of fitting a 

dipolar source sequentially on each grid point. Consequently, it provides a 3D map where the local 

maxima are considered as the most relevant dipoles. Some widely used dipole scanning approaches 

are beamforming approaches such as the linearly constrained minimum variance (LCMV) method 
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(Van Veen et al., 1997) and Multiple Signal Classification approach (MUSIC) (Mosher et al., 

1992).  

3.7.2.1 Multiple signal classification approach (MUSIC)  

Mosher et al. (1992) proposed a dipole scanning approach that is based on an eigenvalue 

decomposition of data aiming to isolate the signal of interest (called signal subspace) from noise 

(noise subspace) (the signal subspace and noise subspace being orthogonal to each other). The 

number of sources is assumed to be less than the number of sensors. The whole brain volume is 

scanned to find the source locations that contribute to the signal space. The local maxima of the 

3D MUSIC map will provide the best possible dipole locations for which the time course can be 

estimated using a least square fitting approach once dipole locations are known. Other variants of 

MUSIC such as Recursive-MUSIC, RAP-MUSIC (Mosher & Leahy, 1998) have been proposed; 

they involve an iterative approach of MUSIC to identify the best dipole sources as well as the 

underlying number of ECDs to fit. The main limitation of the MUSIC approach is a lack of an 

objective separation between the signal space and the noise space. 

3.7.2.2 Beamforming (Van Veen et al., 1997) 

Beamforming techniques apply a linear spatial filter at a specific position of the 3D grid to isolate 

the contribution of that particular source while minimizing the activity or interference from all 

other locations on the grid. Similar to MUSIC, beamforming scans all possible locations of the 

grid sequentially. For each position 𝒓,  Beamforming consists in estimating an optimal spatial filter 

𝑾𝒓
   that is applied to the data as: 

𝑺(𝒓) = 𝑾𝒓
𝑡𝒎(t)        (10) 

Where 𝑺(𝒓) is the amount of the contribution at the source location 𝒓. This model also assumes a 

focal generator at each grid point that can be modeled using one ECD model. The main idea of 

Beamforming technique is to estimate for every source location 𝒓, a spatial filter that will extract 

the signal coming from this source location while reducing / cancelling the signal originating from 

other location within but also outside the head. A widely used beamforming approach is called the 

linearly constrained minimum variance (LCMV) method (Van Veen et al., 1997) which estimates 

the spatial filter 𝑾𝒓
   by minimizing the source variance 𝚺. 

𝚺(𝒓) = E[𝑺(𝒓)𝑺(𝒓)𝑡] = 𝑾𝒓
𝑡𝚺𝑚𝑾𝒓

            (11) 
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Where 𝚺𝑚 is the data covariance matrix: 𝚺𝑚 = E[𝒎(𝑡)𝒎(𝑡)𝑡] 

The solution of the minimum variance beamformer filter for a dipolar source at the source location 

𝒓 is then given by: 

𝑾𝐿𝐶𝑀𝑉,𝑟
𝑡 = (𝑮𝑟

𝑡𝚺𝑚
−1𝑮𝑟)

−1𝑮𝑟
𝑡𝚺𝑚

−1          (12) 

Where 𝑮𝑟 is the gain matrix at location 𝒓 considering three orthogonal orientations (i.e. solution 

of the forward model for the location 𝒓). 

The resulting beamformer output signal 𝑺∗(𝒓) = 𝑾𝐿𝐶𝑀𝑉,𝑟
𝑡 𝒎(t) estimated in position 𝒓 is usually 

referred to as a virtual sensor placed at the location 𝒓. 

Beamformer techniques are easy to implement. Key components in LCMV beamformer estimation 

(equation (12)) are modeling of the forward model at the location 𝒓 and an accurate estimation of 

the data covariance matrix, which is usually obtained from a single trial (non-averaged data) and 

requires some numerical regularization. However, this technique is not appropriate when 

correlated sources are involved, since the spatial filter aims to focus on the activity of one source 

while removing the influence of the others (Sekihara et al., 2002). Also, the spatial filter is 

computed from the gain matrix and data covariance matrix. This method is sensitive to errors in 

the forward model (Wax & Anu, 1996). Thus, beamforming is particularly useful for MEG (as 

opposed to EEG), because obtaining an accurate forward model 𝑮 is easier in MEG. Importantly, 

for a stable estimation of the data covariance matrix, long stationary data is ideally required 

(Cheyne et al., 2006; Oswal et al., 2014).  

Limitations of the dipole scanning approach: It is worth mentioning that the dipole scanning 

approach uses a dipole fitting approach and thus has the same limitations while fitting an ECD for 

each position of the grid. Consequently, in theory, these methods remain ideal to localize focal 

generators. To localize spatially extended generators, several attempts were made such as 

beamforming using cortical patches (Hillebrand & Barnes, 2011; Limpiti et al., 2006) or the 2q-

ExSo-MUSIC (2q-th order extended source MUSIC) algorithm (Birot et al., 2011). These methods 

are computationally more demanding and are still facing challenges when localizing correlated 

sources or spatio temporal propagation (Chowdhury et al., 2016). 
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3.7.3 Distributed source imaging models 

Distributed source imaging techniques assume that brain activity is generated by a large number 

of small dipolar sources which are distributed over the source domain (cortical surface or 3D 

volume grid) covering the whole brain (Dale & Sereno, 1993). The position of the dipoles in the 

source space is fixed thus the localization problem becomes linear since only amplitude (and 

orientations) needs to be estimated from the data. The orientation of the dipoles may be 

constrained, typically normal to the cortical surface or free. The solution of the inverse problem 

provides a 3D image of source intensities for each dipole. This is why distributed source models 

are called the imaging approach.  

Unlike the dipole fitting or scanning approach, the number of dipoles in distributed source imaging 

models in the source space is large (typically a few thousand). Thus, although the problem is linear, 

it is still highly underdetermined (the number of sensors being much less than the number of 

sources, a few hundred versus a few thousand). Therefore, solving this underdetermined linear 

problem necessitates additional assumptions to identify the ‘most likely’ solution (Michel et al., 

2004). Different distributed source imaging methods have been proposed using different 

assumptions.   

Two main complementary approaches to handle the underdetermined problem are the 

regularization and probabilistic approaches. The distributed methods often can be described within 

both frameworks and equivalences could be considered to switch from one framework to the other.  

3.7.3.1 Regularization techniques 

The regularization techniques solve the inverse problem 𝒎(𝑡) = 𝑮𝐣(𝑡) + 𝒆(𝑡) by tuning a trade-

off between the data fit (i.e. finding a solution that explains well the data) and a regularization 

function. Regularization is important to account for the noise in data, otherwise, the estimated 

solution would explain 100% variance of the measured data, which would be similar to overfitting. 

The regularization step adds stability to the solution so that adding a small variance in the data 

would not result in a large variation in source estimation (Michel et al., 2004). A commonly used 

regularization technique is Tikhonov regularization, which solves inverse problems by minimizing 

the following cost function: 

�̂�(𝑡) = argmin
𝒋

{((𝒎(𝑡) − 𝑮𝐣(𝑡))𝑇𝑳𝑚(𝒎(𝑡) − 𝑮𝐣(𝑡)))
𝑝 + λ(𝐣(𝑡)𝑻𝑳𝑗𝐣(𝑡))

𝑝
}         (13) 
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Here ((𝒎(𝑡) − 𝑮𝐣(𝑡))𝑇𝑳𝑚(𝒎(𝑡) − 𝑮𝐣(𝑡)))
𝑝 is the data fit term and λ(𝐣(𝑡)𝑇𝑳𝑗𝐣(𝑡))

𝑝
 is the 

regularizing term, defined by a 𝑝-norm where 𝑝 = 1 𝑜𝑟 2 would correspond to L-1 norm and L-2 

norm. λ is a hyperparameter that controls the trade-off between the data fit and the constraint.  𝑳𝑚 

and 𝑳𝑗 are weighting matrices for the data and the regularizing term respectively. Based on the 

choice of these weighting matrices, different variants of distributed source imaging methods have 

been proposed. Some of the widely used inverse solutions based on the Tikhonov regularization 

principle are: 

Minimum norm estimates (MNE)  

The minimum norm solution was the earliest solution to the inverse problem for distributed source 

models (Hämäläinen & Ilmoniemi, 1994). It assumes that the estimated current distribution should 

have minimum overall intensity. This means this method will choose a unique source configuration 

with the minimum overall energy (intensity) among all possible source configurations that equally 

fit the data. It is obtained by choosing a L-2 norm (𝑝 =  2) and using weighting matrices defined 

as 𝑳𝑚 = 𝜮𝒆, representing the inverse of the noise covariance matrix and 𝑳𝑗 = 𝜮𝒔 modeling inverse 

of the source covariance matrix. 

�̂�𝑀𝑁𝐸(𝑡) = argmin
𝐽

{‖(𝒎(𝑡) − 𝑮𝐣(𝑡))‖𝜮𝒆
2  
+ λ‖𝐣(𝑡)‖𝜮𝒔

2  
} = (𝐺𝜮𝒆𝐺

𝑇 + λ𝜮𝒔)
−1𝐺𝑇𝜮𝒆𝒎(𝑡) =

𝑾𝑴𝑵𝑬𝒎(𝑡)      (14) 

Here 𝑾𝑴𝑵𝑬 is the resulting MNE linear operator (or kernel). For MNE solution, 𝜮𝒔 is usually 

considered as the identity matrix.  

Since MNE aims at minimizing the energy of the solution, the standard MNE solution tends to 

bias the estimation toward more superficial sources, since to produce similar amplitude scalp data, 

deep generators would need to exhibit larger source amplitudes. To address this issue,  a depth-

weighted MNE version was proposed by (Lin et al., 2006). To do so, the inverse source covariance 

model 𝜮𝒔  is weighted for each source covariance using a factor that enhances the contribution 

from deep sources and penalizes the contribution from superficial sources. Lin et al (2006) 

proposed to add a weighting coefficient defined as (𝑮𝒓
𝑻𝑮𝑟)

−𝜔, i.e. the inverse of the energy 

corresponding lead field for a source 𝑟 at a specific power 𝜔. This topic will be discussed in more 

detail in Chapter 7. Two other variants of MNE have been proposed for which the contribution 
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from deep sources is enhanced, by using a noise-normalization approach:  dynamic statistical 

parametric mapping (dSPM) (Dale et al., 2000) and Standardized low-resolution electromagnetic 

tomography (sLORETA) (Pascual-Marqui, 2002). 

Dynamic statistical parametric mapping (dSPM) is a variant of MNE method obtained by 

normalizing the MNE solution at each source point by the noise estimate of that location. The 

noise estimation is obtained by applying the MNE operator 𝑾𝑴𝑵𝑬 to the noise covariance matrix 

𝜮𝒆 as: 𝑑𝑖𝑎𝑔(𝑾𝑀𝑁𝐸𝜮𝒆𝑾𝑀𝑁𝐸
𝑇 ). The dSPM solution is obtained by: 

�̂�𝑑𝑆𝑃𝑀(𝑡) =
�̂�𝑀𝑁𝐸(𝑡)

√𝑑𝑖𝑎𝑔(𝑾𝑀𝑁𝐸𝜮𝒆𝑾𝑀𝑁𝐸
𝑇 )

           (15) 

Standard low-resolution electromagnetic tomography (sLORETA) is another variant of MNE 

solution using a noise-normalized approach. Here, the MNE solution is normalized by the total 

variance of the estimated source, not just the noise variance used in dSPM. The estimated total 

variance is given by 𝑑𝑖𝑎𝑔(𝑾𝑀𝑁𝐸(𝑮𝜮𝒔𝑮
𝑇 + λ𝜮𝒆)𝑾𝑀𝑁𝐸

𝑇 ). The sLORETA solution can be obtained 

by: 

�̂�𝑠𝐿𝑂𝑅𝐸𝑇𝐴(𝑡) =
�̂�𝑀𝑁𝐸(𝑡)

√𝑑𝑖𝑎𝑔(𝑾𝑀𝑁𝐸(𝑮𝜮𝒔𝑮𝑇+λ𝜮𝒆)𝑾𝑀𝑁𝐸
𝑇 )

          (16) 

In noise-free condition, this method has been shown to produce zero localization error (Pascual-

Marqui, 2002).   

LORETA 

Low-resolution electromagnetic tomography (LORETA) was proposed by Pascual-Marqui et al. 

(1994). This approach combines the depth weighting MNE with a spatial Laplacian operator to 

introduce a spatial smoothness constraint between sources. Thus, LORETA will select a solution 

exhibiting maximum spatial smoothness. LORETA was originally proposed for a 3D volume grid 

as the source model. When applied on a cortical surface (Wagner et al., 1996), the method was 

called cortical LORETA (cLORETA). The basis of the assumption is that neuronal activities in 

neighboring regions are spatially correlated. This concept has been criticized because this 

assumption could be unreasonable for some cases such as the medial part of two hemispheres, 

which are anatomically very close along a 3D grid but functionally distinct. Consequently, 
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LORETA may provide over-smoothed solutions blurring the medial regions of two hemispheres 

(Fuchs et al., 1999; Michel et al., 2004; Trujillo-Barreto et al., 2004).  

3.7.3.2 Probabilistic approaches 

Another interesting methodological framework to solve the underdetermined inverse problem of 

distributed source imaging is using a probabilistic approach using Bayesian inference. I will briefly 

describe the formulation of the inverse problem within a Bayesian framework. This 

methodological framework is fully complementary to the regularization-based approaches that 

have been described in the previous section, and most methods can be expressed within both 

frameworks.  

When considering a probabilistic approach, any form of uncertainty is formulated in terms of 

probability distribution and therefore variables, such as signals, sources and noise are modeled as 

random variables. Within this probabilistic framework, Bayes rules are formulated as follows:  

𝑝(𝐣|𝒎) =
𝑝(𝒎|𝐣)𝑝(𝐣)

𝑝(𝒎)
          (17) 

Where 𝑝(𝐣|𝒎) is the conditional probability distribution of the sources 𝐣  knowing the measured 

data 𝒎.  𝑝(𝒎) is the distribution of data (also called model evidence). 𝑝(𝐣) is the probability 

distribution of the sources, describing our a priori knowledge on the sources, 𝑝(𝒎|𝐣) is the data 

likelihood, i.e. the conditional probability distribution of observing the data 𝒎, when the 

underlying sources 𝐣 are known, therefore the data likelihood depends on the forward model and 

the noise model. 

Finally,  𝑝(𝐣|𝒎) is called the a posteriori distribution of the sources knowing the measured data 

𝒎. This is the distribution of interest we would like to assess when solving the inverse problem.  

Actually a typical solution to the inverse problem is to choose the Maximum a posteriori (MAP) 

estimate, by choosing the estimation of 𝐣 that maximizes the posterior distribution of 𝐣 for a given 

measurement 𝒎 (Chowdhury, 2017). 

�̂�𝑀𝐴𝑃 = argmax 
𝐣

𝑝(𝐣|𝒎)        (18) 

The assumption or constraint can be modeled by choosing a specific source prior 𝑝(𝐣). It is worth 

mentioning that the methods described above based on regularization techniques such as minimum 



42 
 

norm estimate or beamformer can also be formulated within this Bayesian framework (Baillet et 

al., 2001; Hedrich, 2020; Kaipio & Somersalo, 2006).  

For EEG/MEG source imaging, several Bayesian methods have been proposed (Henson et al., 

2010; Trujillo-Barreto et al., 2004; Wipf et al., 2010). Within this probabilistic framework, another 

method entitled the Maximum Entropy on the Mean (MEM), has been proposed in the context of 

EEG and MEG source imaging by our group in collaboration with Dr. Jean-Marc Lina (Ecole de 

Technologie Supérieure, Montreal). MEM-based methods have been largely investigated for 

EEG/MEG source imaging in this thesis. In the next section, MEM methods will be briefly 

described. 

3.7.3.3 Maximum entropy on the mean (MEM) 

The inverse problem of the distributed source imaging can be solved within the Maximum Entropy 

on the Mean (MEM) framework (Amblard et al., 2004), which uses a Bayesian probabilistic 

approach. 

 

Figure 3-12 (a) MEM uses a reference distribution ν and solves the inverse problem by maximizing the 

relative entropy (minimizing the Kullback-Leibler divergence) between the source distribution and the 

reference distribution under the constraint of explaining the data. (b) Definition of the reference distribution: 

the brain activity is considered to be organized into K cortical parcels. Each cortical parcel k is then 

characterized by an activation hidden state variable Sk, describing if the parcel is active or not. Figure 
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reprinted from Concordance between distributed EEG source localization and simultaneous EEG-fMRI 

studies of epileptic spikes Grova et al. (2008). Reprinted with permission from Elsevier.  

The key feature of the MEM method when applied to EEG/MEG source imaging is that it relies 

on a flexible spatial prior, assuming that brain activity is organized in K cortical parcels (K being 

usually within the order of magnitude of number of sensors). The activity of every parcel is scaled 

by the probability of activation of every parcel 𝛼𝑘, which is tuned through a hidden state variable 

𝑆𝑘. When the parcel is active, a Gaussian distribution is used as the prior of the activity within the 

parcel. When the parcel is inactive, a Dirac distribution is considered that allows to shut down the 

activity from this parcel (Figure 3-12). Starting from such a prior “reference” ν distribution (Figure 

3-12b), the model is fitted to data by maximizing the relative entropy (i.e. minimizing the 

Kullback-Leibler divergence) between a solution explaining the data 𝑝(𝐣) and the prior reference 

ν (Figure 3-12a). In other words, the MEM principle aims to estimate the distribution that provides 

“maximum uncertainty about missing information carried by the data (Jaynes, 1957)” with respect 

to the prior reference distribution. As a result, MEM can either switch off or switch on the parcels 

during the localization process, while still allowing local contrast on the cortical surface within the 

active parcels. Our team proposed and validated two main versions of MEM source localization: 

the coherent MEM (cMEM) originally proposed in Chowdhury et al (2013), is our standard 

variant of MEM and assumes a stable parcellation of the brain along time (Abdallah et al,. 2022; 

Chowdhury et al., 2016; Chowdhury et al., 2013; Grova et al., 2016), as well as the wavelet-based 

extension of the MEM, wMEM (Lina et al., 2012; Pellegrino et al., 2016; von Ellenrieder et al., 

2016). For coherent MEM (cMEM), the term “coherent” refers to the fact that we are using a 

coherent spatial prior, i.e. a data-driven parcellation which is fixed along time (Abdallah et al., 

2022; Chowdhury et al., 2016; Chowdhury et al., 2013; Grova et al., 2016). wMEM consists in 

applying first a discrete wavelet transformation (Daubechies wavelets) to characterize the 

oscillatory patterns in the data before considering the MEM solver to solve the EMSI problem 

(Lina et al., 2012).  

 

Coherent MEM 

As mentioned before, detection of the cortical generators from EEG/MEG data measured at scalp 

or outside the head requires solving equation 8:  𝒎(𝑡) = 𝑮𝐣(𝑡) + 𝒆(𝑡)                                    
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Within the MEM framework (Amblard et al., 2004), 𝐣 denoting the intensities of 𝑟 dipolar sources 

is considered as a random variable described by the probability distribution 𝑑𝑝(𝐣) = 𝑝(𝐣)𝑑𝐣. To 

regularize the inverse problem, we incorporate prior information on j in the form of a reference 

distribution 𝑑ν(𝐣). The Kullback Leibler divergence or ν-entropy is then defined as: 

                         𝑆ν(𝑑𝑝) = −∫ log (
𝑑𝑝(𝐣)

𝑑𝜈(𝐣)
)𝑑𝑝(𝐣) = −∫ 𝑓(𝐣)log (𝑓(𝐣))𝑑𝜈(𝒋)

 

𝐣

 

j
    (19) 

Where 𝑓 is a ν-density of 𝑑𝑝 defined as 𝑑𝑝(𝐣) = 𝑓(𝐣)𝑑𝜈(𝐣). The ν-entropy  𝑆ν(𝑑𝑝) measures the 

amount of information brought by the data with respect to the prior 𝑑𝜈. We introduce a data fit 

constraint as the set of probability distributions on j that explains the data on average. 

                                 𝒎− [𝑮|𝑰𝑞] [ 𝒆
E𝑑𝑝[𝐣] ] = 0,         𝑑𝑝 ∈ 𝐶𝑀             (20) 

Where 𝐶𝑀 is the set of probability distributions on 𝐣 that explains the data on average,  E𝑑𝑝[𝐣] =

∫ 𝐣 𝑑𝑝(𝐣)
 

ℝ
 denotes the mathematical expectation of 𝐣 with respect to the probability distribution 𝑑𝑝 

and 𝑰𝑞 is a 𝑞 × 𝑞 identity matrix. Among all the possible distributions of  𝑑𝑝(𝐣) that explain the 

data 𝒎 on average, MEM solution is derived from maximizing the ν-entropy (i.e. minimizing the 

Kullback-Leibler divergence between a solution explaining the data 𝑝(𝐣) and the prior reference 

ν) (Amblard et al., 2004; Grova et al., 2006). More details on MEM formulations are described in 

Chowdhury et al. (2016). More details including specific additional MEM developments proposed 

in this thesis as well as initialization of the reference distribution ν will be described in detail in 

Appendices of Chapters 6 and 7 which are reported at the very end of this thesis. 

Wavelet MEM 

wMEM is another version of MEM specifically designed to localize brain oscillatory patterns. 

wMEM applies a discrete wavelet transformation (Daubechies wavelets) to characterize the 

oscillatory patterns in the data before applying the MEM solver (Lina et al., 2012). In wMEM, the 

time expansion of data is substituted with a time-scale representation. In terms of wavelet 

expansion, equation 8 can be written as: 

                 𝐝𝑠,𝑛 = 𝑮𝐰𝑠,𝑛 +𝐰
𝜖
𝑠,𝑛

 
                                      (21) 
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Where 𝐝𝑠,𝑛, 𝐰𝑠,𝑛 and 𝐰𝜖
𝑠,𝑛

 
 are the wavelet coefficients for the data, the sources, and the 

measurement noise, respectively, for a particular discrete time index n and scale s (s=1,2,3… with 

s = 0 being the sampling scale). 

cMEM/wMEM for EEG/MEG source imaging have a preference toward superficial solutions 

(Chowdhury, 2017; Grova et al., 2006), since so far, we have not considered any depth-weighted 

strategy for both methods. On the other hand, depth weighted strategy is commonly considered for 

MNE (Hämäläinen & Ilmoniemi, 1994) and Beamformer (Van Veen et al., 1997). This is a core 

topic of this thesis and will be discussed in Chapter 7 (see methodological details in the Appendix 

of Chapter 7, which is reported at the very end of this thesis).  

3.7.4 Other inverse methods 

In the previous section, we have described some of the widely used inverse methods. Our list was 

not exhaustive, and many other inverse methods have been proposed within this framework  such 

as FOCUSS (FOCal Underdetermined System Solution) (Gorodnitsky et al., 1995) and LAURA 

(Local Auto-Regressive Averages) (Rolando Grave de Peralta Menendez et al., 2001). Some 

methods assume that brain activity is sparse. Some methods that use sparsity-induced penalties to 

find the optimal solution are minimum current estimate (Uutela et al., 1999), and mixed-norm 

method (MxNE) (Gramfort et al., 2012). Iteratively reweighted edge sparsity minimization (IRES) 

proposed by (Sohrabpour et al., 2016) is another method based on sparsity on the solution and is 

suggested to be accurate in estimating focally extended sources. Several methods based on deep 

learning have also been proposed (Adler & Öktem, 2017).  

3.8 Challenges and limitations of EEG/MEG source imaging  

The accuracy of the solution to the inverse problem depends on many factors, such as the choice 

of the inverse method, the underlying assumptions associated with the inverse method 

(regularization approach, prior model), the accuracy of the forward model, the sensitivity of the 

sensors (EEG versus MEG or MEG magnetometer versus MEG gradiometer), the sensitivity to 

superficial versus deep brain activity. Some of the factors described in this section include the ill-

posed nature of the inverse problem, challenges of localizing deep brain activity, the sensitivity of 

EEG versus MEG sensors, and the differences between magnetometer and gradiometer sensors. 
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The difficulty of localizing low SNR signals, especially in resting-state activity will be described 

in Chapter 4.  

3.8.1 Ill-posed nature of inverse problem 

The EEG/MEG inverse problem is inherently ill-posed, meaning that a specific EEG or MEG 

measurement can be generated by an infinite number of source configurations. Different source 

imaging methods, as described in the previous section, select a solution based on specific 

assumptions. It is therefore impossible to find a solution with 100% certainty. The solution can be 

called the most probable solution based on certain assumptions. This inherent uncertainty cannot 

be completely overcome, and the results of source imaging should always be interpreted with the 

understanding that they represent the most probable solution given certain assumptions. 

3.8.2 Localizing deep brain activity  

Localization of deep brain activity is a major challenge for EEG/MEG source imaging. Signals 

generated by deep sources quickly decrease in strength, becoming weaker by the time they reach 

the scalp, especially since signals issuing from deep regions will be hidden by stronger signals 

generated in cortical superficial regions. Two main factors that are important to consider in this 

context: the underlying structure of deep brain generators and the differing sensitivities of EEG 

and MEG sensors. 

Closed structure of subcortical regions  

In Section 3.2, I briefly mentioned that the main contributors to EEG/MEG signals are pyramidal 

neurons located in the cortical surface and subcortical structures such as the hippocampus and the 

amygdala. The concept of open and closed fields was also briefly introduced. The population of 

pyramidal neurons in the cortical layers features dendrites that are oriented in parallel (within one 

specific neuron and over population of neurons as well), the overall orientation being 

perpendicular to the circumvoluted cortical surface. When a population of pyramidal cells is 

activated synchronously (i.e. synchronous post-synaptic potentials), the current components add 

up to create an open field. On the other hand, the interneurons which are mainly controlling 

inhibition levels around the pyramidal cell do not feature such spatial organization. The stellate 

interneuron cells indeed feature a closed-loop structure, and they do not contribute to EEG/MEG 

signals. Unlike pyramidal cells along the cortical surface, the subcortical structures are considered 
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generators of closed fields, which means the alignment of the pyramidal neurons is such that the 

current components cancel each other out. This is nicely depicted in Figure 3-13 (Benar et al., 

2021), which shows that the field generated within the subcortical structures can completely cancel 

out, resulting in no detectable signal at the surface.  

Another scenario is that the activity from the subcortical structure propagates to the nearby 

neocortex, creating an open field that is detectable on the surface (Alarcon et al., 1994). However, 

since it is generated very deep in the brain and the signal strength decreases with distance, only a 

very weak signal reaches the surface. It is also possible that not the whole structure of the 

subcortical region is activated. If only part of the subcortical structure is activated and able to 

create an open field, some signal could be detected at the surface, though it would be weak due to 

the depth of generation. Another possibility is that with the activated subcortical structure, a 

simultaneous neocortical source could be activated, generating a larger signal on the surface. Thus, 

the signal detected by the EEG/MEG sensors would be contributed by both cortical and subcortical 

generators.  

While it is generally accepted that detecting activity from deep structures using EEG/MEG 

recordings is challenging, several studies using simultaneous intracerebral EEG and EEG/MEG 

have provided evidence that activity from deep structures can indeed be detected on the surface. 

For instance, Seeber et al. (2019) demonstrated with simultaneous high-density EEG and deep 

brain stimulation electrodes that scalp EEG could detect deep activity from subcortical structures, 

such as the thalamus. Similar findings were reported by Pizzo et al. (2019) using simultaneous 

intracerebral EEG and MEG. This topic will be discussed in more detail in Chapter 5. 

To study deep brain activity, an interesting anatomical and electrophysiological model was 

proposed by Attal et al. (2009). Depending on the types of neural generators (open and closed field 

cells) and their preferred orientation, subcortical structures were modeled as volume grids or 

surface meshes. The thalamus, striatum, and amygdala were modeled by placing current dipoles 

on the volume grid with random orientation; the hippocampus was modeled as a surface mesh 

placing the current dipoles orthogonally to the surface. In this thesis (Chapter 7), we will use the 

model proposed by Attal et al. (2009) to add the hippocampal structure in our source model to 

study EEG/MEG source localization of deep activity.  
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Figure 3-13 Schematic view of different source configurations and their reflection on MEG. (a) Only deep 

sources are active (hippocampus and amygdala). As activation is of a “closed field” type, no visible signal 

is recorded from the surface. (b) Activity from hippocampus propagates to nearby neocortex, which has a 

structured source geometry (open field) and can be seen as a signal at the surface (small because of the 

depth). (c) Only subparts of hippocampus and amygdala are active, producing an open field and small signal 

at the surface. (d) The activity from deep structures is overshadowed by activity from the superficial 

neocortex that has a higher amplitude because of shorter distance to the sensors. Illustration taken from 

Detection and localization of deep sources in magnetoencephalography: A review  Benar et al. (2021). 

Reprinted with permission from Elsevier. 

Sensitivity of sensors 

As mentioned above, the signals from deep brain structures are weak and not easy to detect by 

surface measurements. The ability of EEG/MEG to detect deep brain activity is thus debated, 

especially for MEG (Barkley & Baumgartner, 2003; Kaiboriboon et al., 2010; Leijten et al., 2003; 

Rampp & Stefan, 2007; Shigeto et al., 2002). Both EEG and MEG magnetometers measure signals 

that decrease as 1 over the square of the distance. There are differences between the sensitivity of 

EEG versus MEG sensors; EEG sensors are directly placed on the scalp, whereas traditional MEG 

SQUID sensors are placed inside a helmet around the scalp (not directly touching the scalp). EEG 

is more sensitive to radial and deep sources whereas MEG using gradiometers is more sensitive to 
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tangential and superficial sources (Goldenholz et al., 2009; Kakisaka et al., 2013). Using median 

nerve stimulation, Fuchs et al. (1998) suggested that deep sources mainly contribute to EEG data 

while superficial and tangential sources contribute mainly to MEG data. 

For MEG, the detectability of cortical generators also depends on the coil configurations. 

Magnetometers consist of a single superconducting coil that directly measures magnetic fields. 

Gradiometers, in contrast, consist of two oppositely wound coils that measure the spatial gradient 

of the magnetic fields. In the configuration of gradient coils, environmental noise gets canceled 

out because the noise is assumed to have the same effect on both coils. Magnetometers can pick 

up that noise. Thus, gradiometers are superior in noise cancellation. However, signals coming from 

deep sources are noisy and usually have a low signal-to-noise ratio. Magnetometers can pick up 

that signal, but gradiometers may consider it noise and cancel it out. This is why gradiometers are 

less sensitive to deep source activity (Dash et al., 2021; Hämäläinen et al., 1993). The new 

generation optically pumped magnetometers (OPMs) (which do not require cooling using liquid 

helium) are placed directly on the scalp and thus improve the SNR of the signal by reducing the 

distance between sources and sensors. They also seem to have  a better  ability to measure signals 

from deep sources such as the hippocampus (Tierney et al., 2021).  

3.9 Conclusion 

In this chapter, I briefly described the history of EEG and MEG, the cellular origin of the signals 

detected by EEG and MEG, and the estimation of neuronal sources from surface measurements. 

Different inverse methods have been briefly described with their strengths and limitations. The 

objective of this chapter was to introduce the readers to the challenges and limitations of 

EEG/MEG source imaging. Table 3-1 summarizes the assumptions, advantages, and limitations of 

the source imaging methods described in this chapter.  

Table 3-1 Assumptions, advantages and limitations of different source imaging methods 
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 Method Assumption Advantages Limitations 
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Equivalent 

current dipole 

(ECD) fitting 

(Scherg & Von 

Cramon, 1986) 

The measurement is 

generated by a single 

focal source  

 

The source activity 

can be properly 

modeled as a single 

dipole or a few 

dipoles 

 

The number of 

dipoles is known 

Valid for spatially focal 

sources such as evoked 

sensory motor sources 
Assumption of focal 

sources is not always valid 

 

Knowing the number of 

dipoles a priori is not 

feasible in many 

applications 

D
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o
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 s
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n
n
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g
 a

p
p
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h

 

MUSIC 

(Mosher et al., 

1992) 

• Source space can be 

divided into signal 

subspace and noise 

subspace. 

• Number of sources is 

assumed to be less 

than the number of 

sensors 

Knowing the number of 

dipoles a priori is not 

required 

 

More accurate 

localization compared to 

ECD fitting 

Lack of an objective 

definition of separating the 

signal space from the noise 

space 

 

Limited performance if the 

sources to be localized are 

correlated 

 

Beamformer 

(Van Veen et 

al., 1997) 

Spatial filters to 

isolate the signals 

from specific 

locations in the brain 

while suppressing 

noise and 

Useful for MEG because 

obtaining an estimating 

the forward model is 

usually more accurate  

Spatially separate but 

temporally correlated 

sources can be suppressed 

(Brookes et al., 2007) 

sensitive to errors in the 

forward model 
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 Method Assumption Advantages Limitations 

interference from 

other sources. 

long stationary data is 

ideally required for an 

accurate estimation of the 

data covariance structure 

D
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g
 

Minimum norm 

solution 

(Hämäläinen & 

Ilmoniemi, 

1994) 

Estimated current 

distribution should 

have minimum 

overall intensity 

Linear, easy to 

implement and provides 

good initial results in 

terms of current 

estimation. 

 

Resulting solutions tend to 

be overly smooth, not 

sensitive to spatial extent 

 

Fails to address the issue of 

deep source localization 

which is address in depth 

weighted MNE 

Depth weighted 

MNE (Lin et 

al., 2006) 

Variant of MNE with 

a depth weighting 

parameter to enhance 

contribution from 

deep sources 

Sensitive to deep 

sources 

 

Better spatial accuracy 

than MNE 

 

Not sensitive to spatial 

extent of the source 

sLORETA 

(Pascual-

Marqui, 2002) 

Noise normalized 

variant of MNE 

Sensitive to deep 

sources 

 

Better spatial accuracy 

than MNE 

 

 

Resulting solutions tend to 

be overly smooth, not 

sensitive to spatial extent 

Numerical instabilities in 

deep structures when the 

estimated source variance 

is closed to zero 
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 Method Assumption Advantages Limitations 

dSPM (Dale et 

al., 2000)  

Noise normalized 

variant of MNE 

Sensitive to deep 

sources 

 

Better spatial accuracy 

than MNE 

 

 

Resulting solutions tend to 

be overly smooth, not 

sensitive to spatial extent 

Numerical instabilities in 

deep structures when the 

estimated source variance 

is closed to zero 

LORETA (Pasc

ual-Marqui et 

al., 1994) 

Assumes spatial 

smoothness 

Sensitive to deep 

sources (Asadzadeh et 

al., 2020) 

Slightly sensitive to 

extended sources (Grova 

et al., 2006) 

May provide over-

smoothed solutions 

increased blurring over 3D 

grid 

Numerical instabilities 

when applied on a 

tessellated cortical surface 

(because of the 

computation of the 

Laplacian), regularization 

is required  

cMEM 

(Chowdhury et 

al., 2013) 

Flexible spatial prior, 

assuming that brain 

activity is organized 

in cortical parcels 

Sensitive to spatial 

extent of the source 

 

Poorly sensitive to deep 

sources, no depth weighted 

strategy applied  

wMEM (Lina 

et al., 2012) 

Flexible spatial prior, 

assuming that brain 

activity is organized 

in cortical parcels 

Suitable for the 

localization of transient 

oscillations (seizure 

onset, high frequency 

oscillation) or ongoing 

resting state activity 

Poorly sensitive to deep 

sources, no depth weighted 

strategy applied 



53 
 

4 EEG/MEG in resting state oscillations and connectivity 

4.1 Introduction 

This chapter will discuss the utility and challenges of EEG/MEG in studying spontaneous brain 

activity. Resting-state refers to the state of the brain when the subject is awake but not engaged in 

any specific task or exposed to any external stimuli (Niso et al., 2019). Understanding resting brain 

activity has gained increasing interest. EEG and MEG are widely used to study resting brain 

activity due to their high temporal resolution and non-invasive nature. Analyzing resting-state 

activity in healthy brains provides a baseline for studying alterations associated with diseases such 

as schizophrenia (Hirano & Uhlhaas, 2021), Alzheimer's disease (Montez et al., 2009), Parkinson's 

disease (Bosboom et al., 2006), and epilepsy (Aydin et al., 2020). The resting-state analysis will 

be discussed in two sub-categories: resting-state oscillations and connectomics analysis. 

4.2 Resting-state oscillations 

One of the most studied types of resting-state brain activity is brain oscillations, a concept as old 

as the history of EEG. Berger identified a large amplitude rhythm of approximately 10 Hz, induced 

by eye closure during wakefulness, and named it the alpha rhythm (Berger, 1929). He also named 

the faster, smaller amplitude wave beta, which appears when the eyes are open. Brain oscillations 

have been associated with different brain states (wakefulness or sleep, eyes closed or open), health, 

and disease. This chapter only focuses on wakefulness resting state activity. 

4.2.1 Canonical frequency bands 

EEG/MEG oscillations are classified into canonical frequency bands such as delta (1–4 Hz), theta 

(4–8 Hz), alpha/mu (8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz), although the limits of 

these bands vary slightly in the literature. According to Lopes da Silva (2013), the bands are 

classified as infra low (<0.2 Hz), delta (0.2-3.5 Hz), theta (4-7.5 Hz), alpha and mu (8-13 Hz), beta 

(14-30 Hz), gamma (30-90 Hz), and high-frequency oscillations (HFO; >90 Hz). Slower 

frequencies are generally generated by large spatial regions, whereas higher frequencies are 

generated by more local regions. 
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The terms ‘brain rhythms’ and ‘oscillations’ are often used interchangeably. 'Oscillation' is also 

used to limit analysis to a frequency band of interest. As described by Lopes da Silva (2013), 

“EEG/MEG activity within a given frequency range does not imply that a well-defined oscillation 

exists; to identify an EEG/MEG oscillation, one has to show a spectral peak within the frequency 

band of interest. The oscillation is then defined by the peak frequency, bandwidth, and power (or 

amplitude)”. Studies of brain oscillation are conducted in terms of peak frequency (also called 

spectral peak), power spectral density (PSD), and average band power or amplitude. 

4.2.2 Brain regions associated with different frequencies 

Alpha is the best studied oscillation as it is easily detectable from the occipital lobe when a person 

is at rest with their eyes closed. Alpha oscillation is also found in the parietal and temporal lobes. 

Alpha activity decreases with attention, when performing a task, or visual input (Nunez et al., 

2001). Beta oscillations are mostly found in the pre- and post-central gyri and are associated with 

the motor system (Jensen et al., 2019). Theta oscillations are prominent over frontal midline 

regions (Mitchell et al., 2008). Whereas they constitute a hallmark of sleep rhythms, delta 

oscillations are broadly distributed and prominent in pathological states during wakefulness. 

Gamma oscillations are not always localized in the same regions (Groppe et al., 2013). 

Figure 4-1 shows the group average of brain maps computed from MEG-estimated resting state 

power in source space for five healthy participants reported by Niso et al. (2019) after applying 

dynamic statistical parametric mapping (dSPM). Power was calculated in delta (2–4 Hz), theta (4–

8 Hz), alpha (8–12 Hz), beta (15–30 Hz), gamma1 (30–80 Hz), and gamma2 (80–150 Hz) bands. 

They found strong delta power over fronto-orbital regions and anterior temporal poles, distributed 

theta power bilaterally over the frontal lobe, alpha power over the parieto-occipital regions, strong 

beta power over the pre- and post-central lobules, and low and high gamma power dominant over 

the prefrontal and occipital areas. 
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Figure 4-1 Group average of relative power maps for all frequency bands (delta (2–4 Hz), theta (4–8 Hz), 

alpha (8–12 Hz), beta (15–30 Hz), gamma1 (30–80 Hz), and gamma2 (80–150 Hz)). (A) Top View. (B) 

Left view.  Values range between 0 and 1, indicating the power of cortical signals relatively to the total 
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signal power across the frequency spectrum. Illustration taken from Brainstorm Pipeline Analysis of 

Resting-State Data From the Open MEG Archive by Niso et al. (2019). 

Using resting-state MEG data from 128 healthy participants, Capilla et al. (2022) provided a brain 

map of natural frequency, using linearly constrained minimum variance (LCMV) beamforming 

(Van Veen et al., 1997) to localize resting state MEG data along the cortical surface. Natural 

frequency was defined as “the peak frequency of the most characteristic spectral pattern of a brain 

region in comparison with others.” They found delta and theta band peaks in the medial frontal 

and temporal regions, alpha peaks in posterior occipital-temporal regions, beta peaks in the motor 

and lateral prefrontal cortex, and high alpha and low beta peaks in the parietal region (Figure 4-2). 

This study did not use predefined canonical frequency bands. Using a data-driven approach, they 

showed that the frequencies associated with each brain region were organized in a manner 

resembling the canonical frequency bands. The most dominant frequency band was alpha (8-13 

Hz). Similarly, using ~200 MEG resting-state data from healthy individuals localized using the 

LCMV beamformer, Mahjoory et al. (2020) reported that MEG spectral peaks were indeed 

organized in canonical frequency bands: 4–7.5 Hz (theta), 8.5–13 Hz (alpha), 15–25 Hz (low beta), 

and 27.5–34 Hz (high beta) (Figure 4-3).  

 

Figure 4-2 Brain map of natural frequencies during resting state MEG. Distribution of natural oscillations 

at the single-voxel level exhibiting both a medial-to-lateral and a posterior-to-anterior gradient of increasing 

frequency. Canonical frequency band ranges are color-coded to facilitate interpretation. Illustration taken 

from  The natural frequencies of the resting human brain: An MEG-based atlas by Capilla et al. (2022). 
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Figure 4-3 Histogram of all detected spectral peaks (across ROIs and participants) delineates the classical 

frequency bands used in the EEG and MEG literature (theta 3.5–7.5 Hz, alpha 8.5–13 Hz, low-beta 15–25 

Hz and high-beta 27.5–34). Illustration taken from The frequency gradient of human resting-state brain 

oscillations follows cortical hierarchies by Mahjoory et al. (2020). 

In contrast, when using intracranial ECoG data from 15 individuals with epilepsy, Groppe et al. 

(2013) reported that the dominant awake resting state frequency was around theta (~7 Hz), unlike 

the ~10 Hz alpha activity reported by EEG/MEG studies. The histogram of spectral peaks showed 

peaks mostly around 7 Hz and also around 3, 9, 15, 22, and 35 Hz respectively (Figure 4-4). 

However, they noted that careful investigation is needed to confirm these differences because the 

data were not representative of normal brain activity. 
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Figure 4-4 Histogram of Spectral Power Density peaks of whitened data found across all electrodes and 

participants. Note that Hertz is scaled logarithmically (applied whitening to dampen the 1/f effect). 

Illustration taken from Dominant frequencies of resting human brain activity as measured by the 

electrocorticogram  by Groppe et al. (2013). Reprinted with permission from Elsevier. 

In summary, while specific brain regions have been robustly associated with particular frequency 

bands in both EEG and MEG studies, it is crucial to validate the localization and spatial extent of 

resting-state oscillations carefully. This is because EEG and MEG require solving the inverse 

problem and reconstructing signals from deep sources is more uncertain than from superficial 

regions. ECoG studies, which are typically restricted to superficial regions, have reported some 

differences in dominant frequency bands and spectral peaks. However, to compare EEG/MEG 

resting state oscillations in healthy brain, intracranial EEG studies should be carefully conducted 

to include electrodes from healthy brain regions, following the methodology proposed by 

Frauscher et al. (2018) when developing the first atlas of physiological intracranial EEG data. We 

will carefully consider this atlas for our validation studies in Chapters 6 and 8.   

4.2.3 Decomposition of power spectrum into periodic and aperiodic components 

Importantly, before assessing oscillatory peaks from electrophysiology signals it is important to 

consider that the power spectrum of electrophysiological signals typically follows a power law 

distribution, i.e., power decreases exponentially with increasing frequency. Actually, when plotting 

the logarithm of power spectrum energy as a function of the logarithm of the frequency, this power 

law (1/f trend) will result in a linear negative slope within this log-log representation. This trend, 

known as the aperiodic component, or 1-over-f (1/f) component (also known as the arrhythmic or 

scale free component of electrophysiological signals), was previously regarded as background 

noise of little interest in the spectra (Bush et al., 2024). Traditionally, most studies did not separate 

this aperiodic component when evaluating power spectra. However, recent research has suggested 

that separating periodic and aperiodic components provides a more accurate estimation of the 

periodic component, especially when analyzing electrophysiological power spectra targeting 

neuronal oscillations (Donoghue et al., 2021; Wen & Liu, 2016). This shift in approach has been 

facilitated by the development of specific methods designed to extract this 1/f component, such as 

irregular-resampling auto-spectral analysis (IRASA) (Wen & Liu, 2016) and ‘Fitting Oscillations 

& One Over F’ (FOOOF or specparam) (Donoghue et al., 2020). FOOOF has become a widely 
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used method (Donoghue et al., 2020) (Huang et al., 2021; Mahjoory et al., 2020; Ramsay et al., 

2021; Senoussi et al., 2022; Wiesman et al., 2022) for separating the periodic components from 

the aperiodic components of the spectra by parameterizing the power spectra as a combination of 

these two elements. The FOOOF algorithm employs an iterative fit-refit process to model the 

power spectral density, where the aperiodic component is represented by an exponential function, 

and each periodic component is modeled as a Gaussian function. The central frequency identified 

in each Gaussian fit is then considered as an ‘oscillatory peak’ (Figure 4-5). 

 

Figure 4-5 Periodic and aperiodic components of the spectra in log-log space shown for an (A) Example of 

a linear 1/f trend and (B) 1/f with a bend called knee. The periodic component is described with a peak 

frequency, power of the peak over the aperiodic component and the bandwidth, or the width of the peak. 

The aperiodic component is characterized by the offset, (overall up/down translation of the whole 

spectrum), the exponent, and the knee. Figure from https://fooof-

tools.github.io/fooof/auto_tutorials/plot_01-ModelDescription.html#sphx-glr-auto-tutorials-plot-01-

modeldescription-py  (Donoghue et al., 2020), https://doi.org/10.1038/s41593-020-00744-x. 

The aperiodic component is typically characterized by its slope (also called the 1/f exponent) and 

the offset of the broadband power of the signal (Figure 4-5) (He, 2014; Pani et al., 2022). When 

plotted in log-log space, the aperiodic component appears as a straight line across frequencies. 

However, depending on the electrophysiological data and frequency range, this component may 

not form a pure line in the log-log plot and could instead display a bend or knee. The knee 

frequency is the point where the slope of the spectrum changes. For instance, knee frequencies 

have been identified at around 20 Hz in resting-state EEG (Colombo et al., 2019) and 15 Hz in 

https://fooof-tools.github.io/fooof/auto_tutorials/plot_01-ModelDescription.html#sphx-glr-auto-tutorials-plot-01-modeldescription-py
https://fooof-tools.github.io/fooof/auto_tutorials/plot_01-ModelDescription.html#sphx-glr-auto-tutorials-plot-01-modeldescription-py
https://fooof-tools.github.io/fooof/auto_tutorials/plot_01-ModelDescription.html#sphx-glr-auto-tutorials-plot-01-modeldescription-py
https://doi.org/10.1038/s41593-020-00744-x
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resting-state MEG (Chaoul & Siegel, 2021). Using ECoG data from patients with Parkinson’s 

disease and intracerebral EEG from patients with epilepsy, Bush et al. (2024) found that cortical 

structures exhibited a knee frequency around 17 Hz, while subcortical structures did not show a 

knee. 

Importantly, the aperiodic components have recently garnered significant interest (Bódizs et al., 

2021; da Silva Castanheira et al., 2024; He, 2014; Ostlund et al., 2021; Ouyang et al., 2020; 

Schaworonkow & Voytek, 2021; Wilkinson & Nelson, 2021). The slope of the 1/f component has 

been associated with factors such as aging (Voytek et al., 2015), different states of consciousness 

(Huang et al., 2020), sleep stages (Miskovic et al., 2019) and disruption of excitation/inhibition 

balance in diseases such as epilepsy, autism, and Alzheimer’s (Martínez‐Cañada et al., 2023; 

Salvatore et al., 2024). Given the recent advancements in understanding these aperiodic 

components, it has become necessary to validate both the periodic and aperiodic components 

estimated by EEG/MEG source imaging and to assess whether these components are influenced 

by source imaging methods and their parameters, modalities and sensor types, and source 

localization from deep brain generators. In this thesis, we primarily focused on the periodic 

component of oscillations, and therefore, the 1/f component was first carefully removed for 

spectral analysis.    

4.3 Resting-state connectome  

Brain connectomics is a field of neuroscience that focuses on the study of the brain's connectome, 

a concept introduced by Sporns et al. (2005). Sporns et al. (2005) defined the connectome as "the 

connection matrix of the human brain." Marc et al. (2013) further described the connectome as "a 

complete graph of a neural network...a comprehensive list of every connection in a defined neural 

region." The scale of the connectome ranges from the micro-scale of individual synaptic 

connections between neurons to the macro-scale of brain regions and interregional pathways. 

Initially, the study of the human brain connectome focused primarily on MRI-based imaging 

modalities (Glasser et al., 2016). Structural connectomes were computed using diffusion-weighted 

MRI (dMRI), providing a static map of anatomical connections (Sporns, 2011). Initiated with the 

seminal work of Biswal et al. (1997), functional connectivity was mainly investigated using resting 

state fMRI, which offers an indirect measure of neural activity by monitoring the whole brain slow 
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hemodynamic fluctuations (Larson-Prior et al., 2013). The great majority of resting state fMRI 

studies in healthy and pathological conditions investigate static correlations between very slow 

hemodynamic fluctuations (< 0.1 Hz) (Fox & Raichle, 2007), whereas dynamic fMRI connectivity 

analysis has recently emerged (Preti et al., 2017). In the neuroimaging field, the term "functional 

connectivity" was first defined by Karl Friston as "the temporal correlations between spatially 

remote neurophysiological events” (Friston et al., 1993).  

In recent years, to better understand dynamic brain activity by leveraging the high temporal 

resolution of electrophysiological methods, EEG and MEG have become popular in functional 

connectome studies. However, these methods have limited spatial resolution. While anatomical 

connectomes can achieve submillimeter precision and fMRI provides approximately 2 mm voxel 

resolution (Uğurbil et al., 2013), the spatial resolution of EEG and MEG remains around 10 mm, 

even after applying source imaging techniques (Lin et al., 2006). See Table 4-1 from (Larson-Prior 

et al., 2013)) summarizing the anatomical connectivity, and functional connectivity by fMRI and 

EEG/MEG. 

Table 4-1 Connectivity characteristics of imaging modalities adapted from Adding dynamics to the Human 

Connectome Project with MEG by Larson-Prior et al. (2013). Reprinted with permission from Elsevier. 

 
Dynamic 

structure 

Imaging basis Imaging 

characteristics 

Variety of 

connectivity 

metrics 

Anatomical 

connectivity 

Static Anisotropic 

diffusion of water 

Recoverable with 

diffusion tensor 

imaging (DTI) 

technique, diffusion 

spectrum imaging 

(DSI) (~ 1 mm 

resolution) 

One 
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Dynamic 

structure 

Imaging basis Imaging 

characteristics 

Variety of 

connectivity 

metrics 

fMRI connectivity frequency 

range 

nominally 

< 0.1 Hz 

Indirect measure 

of neural 

population 

activity 

(hemodynamic 

response to 

synchronized 

neural population 

activity, BOLD) 

Recoverable with fMRI 

(~ 3 mm resolution) 

A few, but 

mainly 

correlation 

between 

BOLD 

signals 

Electrophysiological 

connectivity 

Strongly 

nonstationary, 

frequency 

range from 

DC to 

~ 1000 Hz 

Direct measure of 

synchronized 

neural population 

activity 

(magnetic/electric 

fields generated 

by synchronized 

synaptic current) 

Model dependent 

(~ 4 mm precision for 

sparse cortical 

activations, ~ 10 mm 

spatial resolution) 

Requires solving the 

EEG/MEG source 

imaging inverse 

problem 

 

Many 

 

In the following sections, the use of EEG/MEG in connectomics studies, their strengths, and their 

challenges will be discussed. 

4.4 EEG/MEG based functional connectome  

The use of non-invasive electrophysiological methods such as EEG and MEG in connectomics 

studies offers several advantages. These methods allow for the study of the human brain in both 
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healthy individuals and patient groups. When compared to fMRI studies, they offer high temporal 

resolution for examining brain dynamics and therefore a plethora of possible connectivity metrics, 

where most fMRI connectomes are built using a correlation between fMRI BOLD signals. 

Importantly, EEG/MEG also enables the study of connectomes across different frequency bands. 

However, there are two main challenges: (i) challenges associated with EEG/MEG source imaging 

such as low SNR signal, particularly from deep generators and resting-state activity, and (ii) the 

issue of volume conduction in EEG, and the field spread in MEG, which introduces source leakage 

issues after source reconstruction.  

4.5 Connectivity metrics used in connectome study and challenges 

Connectivity studies in electrophysiological connectomics can be categorized into within-

frequency band and between-frequency band analyses. The connectivity metrics used in within-

frequency band studies can be classified into amplitude-based and phase-based metrics. The same 

metrics can also be considered to study the between-frequency band analyses (will not be 

discussed). In this section, we will first review the different connectivity metrics proposed when 

estimating EEG/MEG connectomes.  

4.5.1 Phase-based metrics 

A common metric to compute functional connectivity between two different brain regions is 

coherence. Coherence measures the linear synchrony between two signals in a specific frequency 

band. Srinivasan et al. (2007) defined coherence as “a measure of synchronization between two 

signals based mainly on phase consistency; that is, two signals may have different phases, but high 

coherence occurs when this phase difference tends to remain constant.” The main limitation of the 

coherence metric is its inability to analyze non-linear and non-stationary signals. Coherence is a 

measure of spectral covariance and does not separate the effects of amplitude and phase (Zhang et 

al., 2014). 

Another widely used phase-based metric appropriate for studying interactions between 

nonstationary data is the Phase Locking Value (PLV) (Lachaux et al., 1999), also known as mean 

phase coherence (MPC) (Mormann et al., 2000). Bruña et al. (2018) defined PLV as: “PLV 

evaluates the spread of the distribution of phase differences, and the connectivity estimation is 

linked to this spread. The narrower the distribution of the phase difference, the higher the PLV 
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value, which ranges between zero (no phase dependence) and one (complete phase dependence)”. 

PLV is similar to coherence but not affected by the signal amplitude. PLV does not require 

stationarity of data.  

However, both PLV and coherence are sensitive to volume conduction (or field spread in MEG) 

and source leakage issue, which introduces spurious connectivity with zero phase difference 

(Bruña et al., 2018). To address this, metrics that discard zero-lag connectivity have been proposed, 

such as the imaginary part of coherency (Nolte et al., 2004), imaginary PLV (iPLV), and corrected 

imaginary PLV (ciPLV) (Bruña et al., 2018). However, it is acknowledged that metrics correcting 

for zero-lag connectivity may also remove genuine zero-lag interactions, resulting in false 

negatives (see our detailed analysis and discussion in Chapters 8 and 9).  

Another phase-based metric is the phase lag index (PLI) (Stam et al., 2007), which measures the 

consistency of phase lags between two signals. Kim and Davis (2021) defined PLI as: “The PLI is 

a mathematical calculation between two signals where nonzero phase lag between two signals are 

calculated and summarized as an index value where 1 represents maximal phase synchrony and 0 

represents no synchrony” PLI and its variations, such as the weighted phase lag index (wPLI) 

(Vinck et al., 2011) and directed phase lag index (dPLI) (Stam & van Straaten, 2012), are by 

definition corrected for zero-lag connectivity as they consider only nonzero phase lags. 

The phase and amplitude (also called envelope) estimates of the signals can be computed using 

the Hilbert transform or by using wavelets (Le Van Quyen et al., 2001; Schnitzler & Gross, 2005a). 

While it is technically feasible to apply this transform and obtain phase and amplitude estimates 

on broadband time series data, it is recommended to apply it on narrowband signals to obtain 

meaningful and interpretable estimates (Cohen, 2014). 

4.5.2 Amplitude-based Metrics 

A popular metric for computing functional connectivity is amplitude envelope correlation (AEC). 

Bruns et al. (2000) defined AEC as: “Amplitude envelope correlation involves the calculation of 

the spectral amplitude envelope from a time series using a Fourier transform, and then the 

correlation between the two envelopes is calculated within a given time window.” Bandpass 

filtering of data in canonical frequency bands using the Hilbert transform to extract the signal 

envelope in a specific frequency band (Brookes et al., 2011) has been commonly used in later 
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studies. AEC is also affected by source leakage, which can be mitigated by a process called 

orthogonalization (Brookes et al., 2012). To address this issue, a pairwise orthogonalization 

process is applied before computing the correlation between the envelopes. Orthogonalization 

between two signals involves removing the signal components that share the same phase between 

the two signals (Brookes et al., 2011; Colclough et al., 2016; Hipp et al., 2012).  

Sadaghiani et al. (2022) summarizes these metrics in Table 4-2. They recommended leakage 

correction for EEG/MEG connectivity analysis while also acknowledging that this process also 

removes true zero-lag connectivity. 

Table 4-2 Mathematical techniques to characterize connectivity between electrical signals derived from 

separate brain regions. Table from Sadaghiani et al. (2022) 

https://doi.org/10.1016/j.neuroimage.2021.118788  

Measurement Mechanism Considerations Methods of application 

 

We seek a fixed 

phase relationship 

between band 

limited signals, 

from spatially 

separated brain 

regions. 

Should always be 

applied in source space 

to mitigate problems 

with volume conduction 

(EEG) or field spread 

(MEG)Signal ‘leakage’ 

between regions can 

lead to artificially high 

phase coupling metrics. 

Consequently leakage 

correction is required. 

Coherence; phase locking 

value (PLV); phase 

difference derivative – all 

assess fixed phase 

relationships but are 

affected by signal 

leakage) 

Imaginary Coherence; 

phase lag index (PLI); 

weighted phase lag index 

(wPLI) - inherently 

correct for leakage by 

removing zero phase lag 

interactions. 

https://doi.org/10.1016/j.neuroimage.2021.118788
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Measurement Mechanism Considerations Methods of application 

 

The amplitude (or 

power) envelope of 

band limited 

oscillations is 

computed and we 

seek to find 

correlations in the 

amplitude 

envelope between 

regions 

Should always be 

applied in source space. 

As with phase 

interactions, ‘leakage’ 

between regions can 

lead to artificially high 

correlation and so 

leakage correction is 

required. 

Amplitude coupling is 

typically measured via 

Pearson correlation 

between envelope signals. 

Prior to this, to mitigate 

source leakage, signal 

orthogonalization should 

be applied using either 

pairwise or symmetric 

methods. 

 

The list of connectivity metrics was not exhaustive and many other metrics exist such as mutual 

information-based metric (Ioannides et al., 2000), metrics based on Granger causality (Granger, 

1969) such as directed transfer function (DTF) (Kaminski & Liang, 2005) and or the partial 

directed coherence (Baccalá & Sameshima, 2001). We refer the readers to the review paper 

(Schoffelen & Gross, 2009) for more details on these metrics. 

4.6 Resting state EEG/MEG connectome studies 

In task-based (stimulus/response) connectivity studies, trials are typically repeated many times and 

averaged. These trials are often compared relative to a baseline period considered as the reference. 

The baseline is usually taken from a pre-stimulus ongoing background. In most task-based studies, 

resting-state activity during the task is normalized with the baseline to identify a contrast. These 

studies also often focus on a few sensors of interest or brain regions of interest instead of whole-

brain coverage (Sadaghiani et al., 2022). However, when studying resting-state activity, the data 

are by definition low SNR. Additionally, resting state EEG/MEG connectome studies usually 

consider the whole brain. Therefore, since we are dealing with whole brain characterization of the 

connectomes using low SNR resting state data, the choice of source imaging method connectivity 

metrics requires careful consideration and caution. Several studies investigated the reliability of 
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the connectivity metrics focusing notably on the source leakage issue. In the next section, a few of 

these studies will be briefly mentioned in this context. 

4.6.1 Which connectivity metrics are suitable for EEG/MEG resting state analysis  

Validation of connectome estimated from EEG/MEG source imaging applied to resting state data 

remains challenging and is the main topic of this thesis.  Due to the lack of a definitive ground 

truth, many studies propose to use numeric simulations (Haufe et al., 2013; Vallarino et al., 2023), 

which are still lacking realism to mimic real resting state data. Another approach, which is not per 

se a proper validation, is to assess consistency or reproducibility, comparing correlations between 

connectivity networks estimated using specific metrics across different sessions or subjects 

(Colclough et al., 2016). Such an approach has been largely considered when assessing the 

consistency of fMRI-based connectomes (Bellec et al., 2010) Additionally, correlations between 

connectomes estimated across different modalities have been also considered (Rizkallah et al., 

2020; Wirsich et al., 2020; Wirsich et al., 2021). The Intraclass Correlation Coefficient (ICC) is 

commonly used to evaluate the consistency of connectivity metrics across various conditions or 

sessions. High ICC values suggest that a metric is consistent and reproducible, while low ICC 

values indicate variability or inconsistency. Various terms such as consistency, reproducibility, and 

reliability have been used across studies to describe these important aspects. 

Using resting-state MEG data, Colclough et al. (2016) reported that metrics that are not corrected 

for zero-lag connectivity (uncorrected) showed higher reproducibility and consistency when 

compared to the metrics that remove zero-lag connectivity (corrected). Among the corrected 

metrics, the most consistent metric was orthogonalized AEC. They reported, “the most consistent 

connectivity measure to employ for resting-state studies is the correlation between orthogonalised, 

band-limited, power envelopes”. Using resting state MEG, Garcés et al. (2016) reported high 

reliability for uncorrected metrics (PLV and AEC) compared to zero-lag-corrected metrics 

(orthogonalized AEC and PLI). Similar results were reported after localizing  EEG resting state 

data by Nagy et al. (2024) and Duan et al. (2021). Using high-density EEG and MEG resting state 

data localized, Rizkallah et al. (2020) compared high-density EEG and MEG connectomes with 

fMRI-derived connectomes, finding significant but low correlations for uncorrected metrics (AEC 

and PLV). Metrics that removed zero-lag connectivity did not exhibit significant spatial cross-

modal correlations. These studies suggested that volume conduction or source leakage might 
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contribute to the high reliability observed for uncorrected metrics and that corrected metrics might 

also eliminate genuine neural synchrony driven by underlying anatomical structures. Generally, 

zero-lag corrected metrics are recommended despite their lower consistency.   

To summarize, uncorrected metrics generally exhibit higher reproducibility and consistency across 

sessions and subjects and stronger correlations with fMRI-derived connectomes. However, they 

are largely influenced by volume conduction and signal leakage. In contrast, corrected metrics aim 

to reduce the effects of volume conduction and signal leakage, and underlying “true” connectivity 

values are more likely an order of magnitude smaller when compared to metrics biased by volume 

conduction and signal leakage. However, removing zero-lag connectivity values may also 

eliminate true neural synchrony, resulting in reduced reproducibility and weaker correlations with 

other modalities.  

Palva et al. (2018) considered MEG simulations to investigate the issue of source leakage. They 

defined two types of false positives associated with EEG/MEG-derived connectivity: artificial 

coupling due to signal spread in source reconstruction and spurious coupling from ghost 

interactions. They defined ‘ghost interactions’ as “false-positive interactions that reflect true 

interactions with misestimated locations.” Their study demonstrated that metrics corrected for 

zero-lag connectivity could address the issue of artificial coupling but remained prone to spurious 

coupling. They concluded that it is challenging to completely eliminate false coupling, even with 

corrected metrics. 

These studies highlight the complexity of assessing connectivity metrics in EEG/MEG research 

and emphasize the importance of careful interpretation of results, especially in the context of 

resting-state data. A major limitation of these studies is the absence of a definitive ground truth 

or reliance on simplistic simulations as ground truth. 

4.6.2 Comparison of EEG/MEG connectome with other modalities 

Several MEG studies that considered amplitude envelope correlation-based metrics have provided 

evidence of the presence of intrinsic connectivity networks (ICNs), similar to the one previously 

established using resting state fMRI studies. For example, using beamformer source imaging and 

AEC metric, Hipp et al. (2012) showed that MEG-derived resting state source space connectivity 

could reflect several typical ICNs such as somatomotor, visual, and auditory networks (Figure 
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4-6A). They reported that typical ICNs were mostly reflected in the alpha and beta bands. Using 

an independent component analysis on connectivity obtained using amplitude envelope correlation 

on MEG resting state data (after beamformer source imaging), Brookes et al. (2011) found that 

several ICNs could be identified and that they were similar to fMRI-derived ICNs with high spatial 

similarity (Figure 4-6B). 

Several studies (Hipp & Siegel, 2015; Wirsich et al., 2020; Wirsich et al., 2021) investigated 

connection-wise spatial similarity between connectomes derived from two types of modalities 

(EEG/MEG and fMRI). Wirsich et al. (2017) reported significant but small cross-modal 

correlations between the two modalities at the individual level using simultaneous fMRI and EEG 

using phase-based and amplitude-based connectivity metrics (after applying minimum-norm 

source imaging). A larger effect size was found when they correlated the group average of EEG 

and fMRI-derived connectomes. This cross-modal correlation with a similar effect size was 

reproduced using simultaneous EEG-fMRI for different EEG montages (from 64 channels to 256 

channels) and MRI field strengths (1.5 to 7T) (Wirsich et al., 2021) (Figure 4-6D).  

Similar cross-modal correlations were found when fMRI-derived connectivity was compared with 

intracranial ECoG (Figure 4-6C) (Betzel et al., 2019). These results were summarized in Figure 

4-6 by Sadaghiani et al. (2022). Although these studies have found consistent cross-modal 

connectivity patterns, fMRI is an indirect measure of neuronal activity that measures the changes 

in blood oxygenation using blood-oxygen-level-dependent (BOLD) contrast. Thus, direct 

comparison between fMRI and EEG/MEG connectomes is not optimal and one-to-one 

correspondence is therefore not expected, since these modalities and proposed metric are sensitive 

to different components of the underlying functional connectome. 
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Figure 4-6: The presence of an intrinsic whole-brain connectivity organization in electrophysiological data. 

A) Sensory and motor ICNs as observed with seed-based connectivity in source-space MEG amplitude 

coupling. The spectral plot (right) indicates a strong contribution from alpha and beta band oscillations to 

these intrinsic networks (adapted from Hipp et al., 2012). B) Temporal ICA of band-specific oscillation 

amplitudes in MEG yields numerous ICNs (four are shown as examples), including sensory/motor as well 

as higher-order networks. Alpha and especially beta bands captured ICN organization well. A direct 

comparison between the MEG-derived (bottom row) and the fMRI-derived (top-row) independent 

component maps demonstrates high spatial similarity (adapted from Brookes et al., 2011). C) Connection-

wise connectivity strength is spatially associated between fMRI and intracranial electrophysiology (ECoG 

amplitude coupling, pooled over patients). The strength of this correlation is around ∼0.35 for all frequency 

bands (adapted from Betzel et al., 2019). D) A similar spatial association of connection-wise connectivity 

strength is observed between fMRI and concurrently recorded scalp EEG (phase coupling). The left 

scatterplot shows an example for the beta band, where each data point is from one connection (region pair) 

of the connectome averaged across subjects (adapted from Wirsich et al., 2017). This relationship is 

reproducible at similar effect size across various MRI field strengths (1.5–7T) and EEG densities (64–256 

channels) (adapted from Wirsich et al., 2021). Illustration taken from Connectomics of human 

electrophysiology by Sadaghiani et al. (2022), https://doi.org/10.1016/j.neuroimage.2021.118788. 

4.6.3 Connectome studies with intracerebral EEG 

Connectivity studies reported using in-situ intracerebral EEG data provide highly accurate 

estimations of connectivity due to the high SNR signals (unlike EEG/MEG) and the ability to 

investigate deep brain structures (unlike ECoG). These techniques do not depend on the resolution 

of an ill-posed source localization problem, but on the other hand, intracranial EEG suffers from 

limited spatial sampling and they do not cover the whole brain, at the single-patient level. Using a 

large cohort of intracerebral EEG, Williams et al. (2023) examined group-level resting-state 

connectomes using PLV. Using the Louvain community detection algorithm (Blondel et al., 2008), 

they identified different modules of networks from the connectome and found that these modules 

consisted of anatomically contiguous regions. Unlike resting-state fMRI, intracerebral EEG-

derived connectomes did not show a distributed pattern, indicating that intracerebral EEG 

connectivity using PLV was more local. They also found that these modules were highly similar 

across canonical frequency bands. One limitation of this study is the data used in this study were 

https://doi.org/10.1016/j.neuroimage.2021.118788
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not from normal brains (i.e. they also included electrodes in pathological regions). In this thesis, 

we used a normative intracranial EEG atlas to validate MEG-derived connectomes (Frauscher et 

al., 2018), assuming both modalities represent normal brain activity. We also validated the 

connectome at a single-subject level using simultaneously acquired MEG and intracerebral EEG 

data, despite the limited spatial coverage at single subject level.  

The overall pipeline for computing connectomes from EEG/MEG is nicely summarized by 

Sadaghiani et al. (2022), as shown in Figure 4-7. The general steps to compute EEG/MEG 

connectome are: (i) select clean segments of resting state data (with no motion artifacts, eyes closed 

or eyes open fixating a cross), (ii) Select the frequency bands of interest, (ii) Use brain parcellation 

for a macroscale connectome analysis, this will reduce the dimensionality of the problem by 

assessing the time course of specific brain regions, defined using an ad-hoc parcellation of the 

whole brain or cortical surface (iii) Apply a source imaging method, (iv) Compute within-

frequency or between-frequency connectivity between two regions using leakage-corrected 

metrics to assess the connectome at the spatial scale defined by the chosen parcellation. The 

properties of the estimated connectome could also be characterized using metrics derived from 

graph theory.  Although, most studies including Sadaghiani et al. (2022) recommended to apply 

leakage-corrected metrics to compute EEG/MEG connectivity, proper validation is necessary to 

confirm this approach. This will be a core focus of this thesis. 

Importantly, they also outlined the pipeline for computing connectomes from intracranial EEG 

(iEEG). The iEEG pipeline is similar to the above steps, except that a few can be skipped, such as 

brain parcellation (although in our intracranial EEG studies at the group level, we also consider 

brain parcellation, described in Chapters 6 and 8), source localization, and leakage correction. This 

figure provides a clear summary demonstrating that iEEG (particularly SEEG), can serve as a 

ground truth because it records brain activity with high SNR directly from the brain tissue, 

including deep structures. Therefore, it does not require source localization and is minimally 

affected by source leakage, eliminating the need for leakage correction. 
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Figure 4-7 Schematic overview showing the process by which connectivity is calculated in 

electrophysiological data. Figure taken from Connectomics of human electrophysiology by Sadaghiani et 

al. (2022), https://doi.org/10.1016/j.neuroimage.2021.118788. 

4.7 Conclusion  

This chapter described the challenges of EEG/MEG source localization of resting state activity in 

terms of oscillations and connectivity. We also briefly mentioned how intracranial EEG can be 

used as ground truth to validate EEG/MEG resting state characteristics. In Chapter 5, more details 

of intracranial EEG will be described. 

 

 

https://doi.org/10.1016/j.neuroimage.2021.118788
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5 Validation of EEG/MEG source imaging 

5.1 Necessity of validation 

Why do we need to validate EEG/MEG source imaging? EEG/MEG source imaging involves 

solving an ill-posed inverse problem. Therefore EEG/MEG source solutions depend on certain 

assumptions associated with the choice of a particular source imaging method, and the underlying 

neuronal generators of the EEG/MEG can never be found with 100% certainty. Source imaging 

results should be interpreted considering these underlying methodological assumptions. 

EEG/MEG source localization accuracy also depends on the quality of the detected signal. A high 

signal-to-noise ratio (SNR) signal is necessary to ensure good and accurate localization. Sources 

generated from deep brain structures are associated with low SNR scalp signals, making them 

more difficult to detect and localize from surface measurements. Localizing low SNR resting state 

or background activity is more difficult than localizing high SNR evoked responses from 

controlled tasks or spontaneous high SNR abnormal activity, such as epileptic discharges. 

Localizing a single evoked response or a spontaneous epileptic event is difficult due to low SNR 

signals, but averaging increases the SNR, thereby improving localization accuracy. However, 

averaging is not meaningful when analyzing ongoing resting state activity. Thus, EEG/MEG 

source localization needs to be validated, especially when localizing resting state activity and deep 

brain activity, which are low SNR signals, but also with high SNR signals because the assumptions 

made in solving the inverse problem are not necessarily correct. 

5.2 Methods of validation  

Validation of EEG/MEG source imaging is difficult due to the lack of ground truth. Two main 

approaches have been considered to validate EEG/MEG source localization: (i) numeric 

simulations involving different levels of realism and (i) comparison with intracranial EEG data.  

5.2.1 Numeric simulation studies 

Simulation models allow us to quantitatively compare the accuracy of EEG/MEG source imaging 

with a simulated perfectly controlled ground truth. Simulations provide a simplistic configuration 

of the generators of brain activity and several levels of simulation realism have been proposed. In 

this section, we are reporting the main trends considered when validating source localization 
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results using simulations, whereas it would be impossible to provide an exhaustive description 

given the very large number of publications considering numeric simulation to validate EEG/MEG 

source localization algorithms. For instance, simulations using a single dipole to represent a brain 

generator have been largely used (Fuchs et al., 1998; Pascual-Marqui, 2002). Recently, Sohrabpour 

et al. (2015) simulated single dipoles at different locations with added white Gaussian noise to 

investigate the relationship between EEG source localization and the number of electrodes. Using 

those approaches, the underlying simulated dipolar sources are too simplistic and can at best mimic 

a few early primary sensory responses (e.g. auditory evoked response, electrical median nerve 

stimulation). Moreover, adding white noise to those simulations is also too simplistic, since real 

EEG/MEG noise or background is known to be correlated in space and time. In epilepsy, the 

expected generators of epileptic discharges are often spatially extended over a few square 

centimeters of the cortex (Tao et al., 2007; von Ellenrieder et al., 2014) and therefore considering 

a single dipole may not be appropriate to simulate generators of epileptic discharges. To address 

specially this issue, simulations of an extended patch of uniform activity along the cortical surface 

have been proposed (Chowdhury et al., 2013; Grova et al., 2006; Liu et al., 2002; Trujillo-Barreto 

et al., 2004). To be realistic, real EEG/MEG background activity can be added as noise to the 

activity of the simulated patch, therefore reproducing also a realistic noise structure mimicking 

real data. This approach provides a way to validate the results of different source imaging methods 

and their ability to recover the spatial extent of the sources. This model can be extended to two or 

more patches of simulations to mimic the propagation of epileptic spikes (Chowdhury et al., 2016; 

Grova et al., 2006). Whereas a large number of source localization techniques were validated 

considering one or several point-like dipolar sources (correlated or not), the main question 

addressed by those techniques was the localization error and the ability to localize superficial 

versus deep focal sources (Fuchs et al., 1999; Pascual-Marqui, 2002; Pascual-Marqui et al., 2002; 

Stephen et al., 2003). Using our proposed realistic simulation framework and the new validation 

metrics based on the area under the ROC curve to assess the sensitivity of source localization 

methods to the spatial extent of the sources (Grova et al., 2006), the MEM-based technique cMEM 

was found to be more accurate in estimating the spatial extent of the simulated generators located 

in superficial regions (Chowdhury et al., 2016; Chowdhury et al., 2013; Chowdhury et al., 2015) 

compared to other distributed source imaging methods such as minimum norm estimate (MNE). 

Whereas our studies demonstrated that linear distributed source imaging techniques are poorly 



76 
 

sensitive to the spatial extent of underlying sources (Chowdhury et al., 2013; Hedrich et al., 2017; 

Pellegrino, Hedrich, et al., 2020), other non-linear methods complementary to our MEM approach 

have also been proposed to assess the spatial extent of epileptic sources (Birot et al., 2011; 

Chowdhury et al., 2016; Sohrabpour et al., 2020; Sohrabpour & He, 2021). Our previous studies 

also reported the limitation of cMEM in localizing deep sources, whereas only the fusion of EEG 

and MEG gradiometers slightly improved the accuracy of cMEM localization for deep generators 

(Chowdhury et al., 2015). Localizing accurately spatially extended generators located in deep 

seated regions is a core part of this thesis. It will be discussed further in Chapter 7, where we 

propose a depth weighting approach in MEM methods and validate it using a realistic simulation 

environment as well as real EEG/MEG data from patients with focal epilepsy. 

Neuronal computational models based on combined biophysical/physiological generative models 

have been also considered to realistically model simulations of brain activity. Neural mass models 

based on excitatory and inhibitory interactions of the neuronal population within a macrocolumn 

of cortex have been proposed to generate realistic physiological and pathological (epileptic) 

signals (Cosandier-Rimélé et al., 2007; Lopes da Silva et al., 1976; Wendling, 2005; Wendling et 

al., 2000; Wilson & Cowan, 1972). Combining these models over different regions, connecting 

these models locally or at a distance have been used to model spatially extended generators of 

epileptic discharges (Cosandier-Rimélé et al., 2008). These simulation models allow varying the 

geometry of the sources while generating a realistic temporal activity that resembles the sensor 

level activity shown by intracerebral electrodes (Cosandier-Rimélé et al., 2007) or MEG sensors 

(Badier et al., 2007). These models are useful to validate the ability of source imaging methods to 

reconstruct the time course of the sources (Chowdhury et al., 2016). Hassan et al. (2017) proposed 

an extensive neural mass model to simulate an extended epileptic network involved during the 

generation and propagation of epileptic spikes measured in EEG, which resulted in an interesting 

realistic simulation framework to validate the accuracy of source imaging techniques and 

connectivity metrics during spike propagation.  

While simulations are often useful, it is important to keep in mind that actual brain activity is 

complex, and modeling brain activity realistically is difficult. Providing realistic simulations of 

resting-state brain activity featuring long-distance connectivity patterns is even more difficult than 

simulating focal or focally extended sources, as usually considered in epilepsy. Moreover, even if 
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it is always possible to simulate connectivity patterns between brain regions (Palva et al., 2018; 

Vallarino et al., 2023), adding realistic noise or background becomes challenging. One could not 

add real background EEG/MEG, as for realistic simulations of epileptic discharges (Chowdhury 

et al., 2013), since such real background will feature unknown connectivity patterns. On the other 

hand, when considering unstructured white noise in those simulations, underlying simulated 

connectivity patterns could be retrieved too easily. Neural mass models have been recently 

proposed to simulate resting state networks (Allouch et al., 2023; Allouch et al., 2022; Bensaid et 

al., 2019) to evaluate source localization and connectivity analyses. However, they often lack 

realism when compared to actual resting state brain activity. This leads to our next section, which 

discusses the use of intracranial EEG as ground truth to validate source imaging techniques. 

Intracranial EEG records brain activity with high temporal and spatial resolution and provides the 

best way to validate non-invasive source imaging results for both event-related brain activity, such 

as epileptic discharges, and resting state activity. 

5.2.2 Intracranial EEG  

When EEG recordings are obtained with electrodes implanted directly inside the skull/brain, they 

are called intracranial EEG (iEEG). iEEG electrodes are mostly implanted in patients with epilepsy 

during presurgical evaluation (Parvizi & Kastner, 2018). The selection of brain sites is based on 

clinical grounds. iEEG can be either in the form of electrocorticography (ECoG), which uses strips 

or grids of electrodes located in the subdural space, or stereotaxic EEG (SEEG), which involves 

bundles of electrodes implanted inside the brain to reach deep sources (Figure 5-1). SEEG is also 

called depth electrodes.  
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Figure 5-1 Schematic of electrocorticography (ECoG) and stereotaxic EEG (SEEG) adapted from Miller 

and Fine (2022). (A) Grids of brain surface ECoG electrodes are placed through large openings in the skull 

(craniotomies), and SEEG electrodes are placed through bolts embedded in the skull. (B) ECoG electrodes 

sample the exposed brain surface covering the targeted neocortical regions. (C) SEEG electrodes are 

implanted irregularly and sparsely, although they can be targeted precisely. (D) SEEG can precisely sample 

surface/deep grey matter and subcortical structures. Figure reprinted from Decision‐making in stereotactic 

epilepsy surgery by Miller and Fine (2022). Reprinted with permission from John Wiley and Sons. 

ECoG and SEEG were introduced for the treatment of patients with drug-resistant epilepsy, 

parkinsonism, and some other diseases (brain tumors) in the late 1940s and early 1950s (Crandall 

et al., 1963; Li & Van Buren, 1972; Penfield & Jasper, 1954; Talairach et al., 1962). SEEG is used 

for investigating deep structures, and ECoG is used for investigating neocortical regions (Reif et 

al., 2016). SEEG is less invasive than ECoG. The placement of ECoG electrodes requires a 

craniotomy (surgical removal of part of the bone from the skull to expose the brain). SEEG 

electrodes are implanted using stereotactic surgery (often robot-guided insertion using individual 

patient MRI) (Parvizi & Kastner, 2018). Each patient is often implanted with 5-15 depth electrodes, 

each consisting of 10-14 contacts (Miller et al., 2009). Both types of electrodes are placed under 

anesthesia and the patients are then transferred to the hospital room where they are recorded 

continuously for days up to two or three weeks. During the continuous recording, seizures and 

interictal epileptic activity are captured, and electrical stimulation procedures and sometimes focal 

thermocoagulation of epileptogenic zones are also performed (Taussig et al., 2015). They are time-

consuming and expensive procedures.  

iEEG records local field potentials (postsynaptic potentials) generated by a large population of 

neurons (~500,000 cells around the electrode (Miller et al., 2009)). As electrodes are placed 

directly into the brain tissue, iEEG can record local in situ signals at millimeter resolution. iEEG 

electrodes are mainly sensitive to local brain activity, depending on the underlying geometry of 

the electrode contacts and space between contacts (von Ellenrieder et al., 2021). The temporal 

resolution of iEEG is at the millisecond level, similar to scalp EEG and MEG.  

However, iEEG is an invasive technique and is only available in a few hospitals, thus having 

limited accessibility. Because there is some risk attached to each implanted electrode, their number 

is limited to what is required clinically and this results in a small fraction of the brain being 
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explored (each electrode contact is only sensitive to generators in a radius of about 5 mm). Most 

focal epilepsy cases are temporal or frontal lobe epilepsy, and thus parietal, occipital, and inter-

hemispheric areas are much less frequently implanted (Parvizi & Kastner, 2018). 

5.3 Integration of SEEG with EEG/MEG  

The motivation for simultaneous recordings of SEEG and scalp EEG/MEG is usually to leverage 

the complementary advantages of the two modalities: EEG/MEG provides a global view of the 

brain but with low spatial specificity and requires solving the source imaging inverse problem, 

while SEEG can detect brain activity with high spatial specificity, even from deep sources, but has 

limited spatial coverage. Additionally, SEEG integration of SEEG with non-invasive techniques is 

an interesting approach to overcome the limited spatial  sampling of SEEG (Gavaret et al., 2016). 

Gavaret et al. (2016) showed a patient in whom epileptic spikes were not visible in scalp 

EEG/MEG. However, spikes identified in MEG using markings from SEEG were detectable when 

averaged. Source localization of MEG data triggered by SEEG data identified a generator that was 

actually missed by SEEG implantation, illustrating the complementarity of both approaches 

However, in this thesis, we did not use iEEG and EEG/MEG as complementary modalities. 

Instead, we used iEEG as the ground truth for validating EEG/MEG source localization results. 

The neuronal generators for both scalp EEG/MEG and iEEG are believed to originate from 

postsynaptic potentials from a large population of neurons. The extent to which signals are detected 

by EEG/MEG or iEEG depends on the proximity of the electrode to the source, as well as the 

location and orientation of the neuronal sources (deep/superficial, gyrus/sulcus). Simultaneous 

recording of EEG/MEG and iEEG provides the best way to validate EEG/MEG source imaging. 

The schematic representation proposed by Hnazaee et al. (2020) (Figure 5-2) is a simplistic 

illustration of this concept. Hnazaee et al. (2020) reported the first study with simultaneous 

EEG/ECoG/SEEG resting state data to quantitatively compare the localization accuracy for EEG 

and ECoG source localization from deep sources, using SEEG recording as the ground truth. For 

two sources, one deep (light blue) and one superficial (dark blue), the ground truth depth electrode 

can detect both sources with high spatial and temporal resolution. The color bar shows the strength 

of the signals detected by each modality (full color from red to green means maximum signal 

strength detected by depth electrodes, whereas only one red bar detected by scalp EEG for deep 

source means the signal is highly attenuated). ECoG can detect the superficial source well but not 
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the deep source (signal attenuated). The signal is attenuated for both the superficial and deep 

sources in scalp EEG. This is a nice illustration of how depth electrodes can be used as ground 

truth for the localization of surface measurements. 

 

Figure 5-2. Use of depth electrodes as ground truth for validating EEG and ECoG source localization for 

superficial and deep sources. Deep and superficial sources are at locations (1) and (2), respectively. The 

color bars indicate the measurement strength of the source activity when measured at the origin of the 

source (maximum strength) and with ECoG or EEG electrodes. Light blue and dark blue represent the 

measured strength for deep and superficial sources, respectively. The measurements of deep and superficial 

sources are attenuated at subdural and scalp levels but to a different extent. From a perspective of the scalp 

(EEG), attenuation is likely so strong that the SNR for deep and superficial sources do not differ as much 

as they do from a subdural perspective (ECoG). Taken from Localization of deep brain activity with scalp 

and subdural EEG by Hnazaee et al. (2020), https://doi.org/10.1016/j.neuroimage.2020.117344. 

5.4 Challenges integrating simultaneous EEG/MEG and SEEG   

Several groups have implemented simultaneous recordings of MEG-SEEG or EEG-SEEG to study 

epilepsy (De Stefano et al., 2022; Kakisaka et al., 2012; Mikulan et al., 2020; Pacia & Ebersole, 

1997; Santiuste et al., 2008) (Figure 5-3) or cognition (Dalal et al., 2009) or to show evidence of 

deep brain activity detected by EEG/MEG sensors (Pizzo et al., 2019; Seeber et al., 2019). 

Integrating EEG/MEG with SEEG has an advantage over ECoG because SEEG is less invasive. 

Since ECoG requires a craniotomy, this procedure distorts the scalp signals (von Ellenrieder et al., 

2014). However, combining these invasive and non-invasive modalities presents numerous 

https://doi.org/10.1016/j.neuroimage.2020.117344
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challenges that must be addressed during the acquisition setup and the data processing steps 

(Pigorini et al., 2024). 

 

Figure 5-3 (A) Simultaneous high density-EEG and SEEG (adapted from ((De Stefano et al., 

2022), (Mikulan et al., 2020))). (B) Simultaneous MEG and SEEG (adapted from (Velmurugan et al., 

2022))) (Figure from Simultaneous invasive and non-invasive recordings in humans: A novel Rosetta stone 

for deciphering brain activity by Pigorini et al. (2024)) 

5.4.1 Technical challenges 

The first report of simultaneous MEG and SEEG recording was published by Santiuste et al. (2008) 

using only one electrode. The first trimodal simultaneous EEG-MEG-SEEG recording was 

published by Dubarry et al. (2014) by our collaborators from Aix-Marseille University (PI of the 

project Dr. C. Bénar). In this study, they reported the challenges of simultaneous recording setup, 

such as the influence of SEEG amplifiers on MEG signal quality. One other challenge of 

simultaneous MEG-SEEG is that patients are implanted with SEEG electrodes which are attached 
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using insertion screws (Figure 5-4a). Finally, the patient's head is wrapped with post-operative 

bandages to limit infection risks. The placement of scalp EEG electrodes or the MEG helmet needs 

to be optimized to avoid the risk of infection that could arise from friction between the iEEG 

electrodes and the scalp electrodes. For MEG, it can be difficult to fit the patient's head inside the 

MEG helmet. For high-density EEG, the bandage needs to be removed to fit the EEG cap on the 

patient's head, increasing the risk of infection due to the contact between the EEG electrodes and 

the iEEG electrodes (Pigorini et al., 2024). In MEG, positioning the patient's head inside the MEG 

helmet might be compromised by the size of the MEG helmet and the size of insertion screws. In 

Badier et al. (2017), they addressed this issue using dedicated small insertion screws (Fig 4-4b,c). 

In addition, using optically insulated amplifiers (Figure 5-5) to reduce the effects of SEEG 

amplifiers on MEG data, Badier et al. (2017) recorded up to 256 SEEG channels without 

compromising signal quality for both MEG and SEEG. For integrating high-density EEG with 

SEEG, (Mikulan et al., 2020) adopted some safety measures such as sterilizing the EEG cap and 

disinfecting the skin before and after using the EEG cap. 

 

Figure 5-4 Comparison of the depth electrode holding screws for the two patients. Reconstructions were 

obtained from post-implantation CT scans. (a) Rear view of the reconstruction for the patient 1 (with long 

screws). (b) and (c) Reconstruction for short screws on profile and rear view respectively for patient 2. 

Figure from Technical solutions for simultaneous MEG and SEEG recordings: towards routine clinical use 

Badier et al. (2017). Reprinted with permission from IOP Publishing. 
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Figure 5-5 Experimental setup within the shielded room of the MEG. (A) Depth electrode connectors. (B) 

Cable extensions. (C) Head boxes. (D) Battery operated amplifiers. (E) Optical fiber for the transmission 

of the data outside the shielded room. Figure from Technical solutions for simultaneous MEG and SEEG 

recordings: towards routine clinical use Badier et al. (2017). Reprinted with permission from IOP 

Publishing. 

In addition, temporal alignment between the invasive and non-invasive recordings should be 

carefully ensured, either by using the same amplifier (Barborica et al., 2021) or accurate external 

triggers (De Stefano et al., 2022). The spatial alignment is equally important when comparing both 

modalities. Therefore, the exact location of the iEEG contacts should be obtained by the co-

registration of preimplantation anatomical MRI and post-implantation CT/MRI (Pigorini et al., 

2024; Villalon et al., 2018; Zelmann et al., 2023), whereas standard head localization and 

coregistration approaches to localize the position of EEG electrodes /MEG sensors with the MRI 

anatomical model (section 3.6.5). For more details, we refer the readers to this recent review article 

describing the technical challenges of these simultaneous recordings (Pigorini et al., 2024).  

5.4.2 Quantitative comparison between EEG/MEG and SEEG 

Most clinical studies comparing EEG/MEG sources imaging with iEEG results are actually done 

qualitatively, usually at a sub-lobar level (Abdallah et al., 2017; Heers et al., 2016b). Studies that 

compare EEG/MEG source imaging with intracranial EEG quantitatively, either for simultaneous 
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or non-simultaneous data, face the challenge of using a common space for both modalities. 

EEG/MEG source imaging is estimated either along a cortical surface or within a 3D grid whereas 

SEEG results consists in discrete sparse measurements located in the intracranial space directly in 

the grey or white matter where electrodes are implanted. To address this comparison issue, a few 

approaches have been proposed.  

Virtual sensor using beamformer: Corona et al. (2023) and Tamilia et al. (2021) used beamforming 

source imaging for EEG/MEG to reconstruct virtual sensors at the positions of the intracranial 

EEG electrodes. For beamforming, they initially used the entire brain volume as the source space. 

The output of the beamformer was then used to reconstruct activity at the virtual sensor locations, 

which were placed at the same locations as the iEEG contacts. To compute the virtual time series 

at each SEEG contact position, they considered all the beamformer grid points within a volume 

around each iEEG contact (within 5 mm for SEEG electrodes and 10 mm for subdural electrodes) 

before averaging these virtual beamformer signals to obtain a single time series for every iEEG 

contact (Figure 5-6). However, it is worth mentioning that Beamformer localization still assumes 

a dipolar model for every point on the grid, limiting the beamformer ability to reconstruct large 

extended generators, as this is the case in epilepsy.  
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Figure 5-6 (i) Virtual sensors (VS) reconstructed at brain locations that matched the iEEG implantation. (ii) 

For each virtual sensor, computation of its mean source activation across time acquired from data recorded 

by the High Density-EEG (HD-EEG) and MEG sensors to reconstruct virtual sensor time series for HD-

EEG (HD-EEG-VSs) and MEG (MEG-VSs), respectively. Figure retrieved from Non-invasive mapping of 

epileptogenic networks predicts surgical outcome by Corona et al. (2023). Reprinted with permission from 

Oxford University Press. 

Virtual iEEG potential: Grova et al (2016) proposed an original method to estimate the electrical 

potential at iEEG electrode locations from EEG/MEG reconstructed source map that allows 

quantitative comparison between EEG/MEG sources and iEEG recordings. Three steps are 

required to obtain virtual iEEG potentials from EEG/MEG source imaging are: (i) obtain 

EEG/MEG source reconstructed maps using any distributed source imaging method that uses a 

cortical surface as a source model, (ii) calculate the iEEG forward model that estimates the 

influence of each dipolar source along the cortical surface to each iEEG channel position; and ii) 

apply the iEEG forward model to the EEG/MEG reconstructed source map to estimate virtual 

iEEG potentials on each iEEG electrode channel (the methodological considerations are described 

in Grova et al. (2016)). To do so, our proposed SEEG forward model GSEEG assumes an infinite 

volume conductor characterized by a conductivity 𝜎 of 0.25 S.m-1  (Cosandier-Rimélé et al., 2008). 

To avoid numerical instabilities, when the sources on the cortical surface were too close to the 

SEEG contacts (cortical source / SEEG contact distance < 3 mm), the distance was set to 3 mm 

instead, keeping the orientation of the dipolar source. This method was evaluated on five clinical 

cases to localize epileptic discharges and reported that the source localization method cMEM 

provided quite accurate results in recovering the location and spatial extent of the underlying 

generators compared to iEEG (as shown in Figure 5-7) (Grova et al 2016). In this study, we also 

demonstrated that when using source localization technique not or less sensitive to the spatial 

extent generators (MNE, LORETA), the spatio-temporal concordance between MEG estimated 

virtual iEEG potentials and real iEEG potentials significantly decreased.  

In Abdallah et al. (2022), this method was used to quantitatively assess the spatial overlap between 

EEG/MEG source imaging with EEG/fMRI in localizing the primary irritative zone, and the 

seizure onset zone defined by iEEG, on a dataset of 17 patients. This approach allows for a direct 

comparison between iEEG potentials and EEG/MEG-estimated virtual iEEG potentials. This is 

the main method we considered to compare MEG source imaging with iEEG data, either from an 



86 
 

iEEG atlas at a group level (Chapters 6 and 8) or when considering simultaneous MEG/SEEG 

recordings (Chapter 9).  

 

 

Figure 5-7 The virtual iEEG potential estimated from MEG using cMEM source localization (left) shows 

good correspondence with recorded iEEG potentials (right) for a patient exhibiting right orbito-frontal 

spikes. Figure reprinted from Intracranial EEG potentials estimated from MEG sources: A new approach 
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to correlate MEG and iEEG data in epilepsy by Grova et al. (2016). Reprinted with permission from John 

Wiley and Sons. 

5.4.3 Limited spatial coverage and lack of normal resting state iEEG 

Finally, another challenge in validating EEG/MEG source imaging with iEEG is that iEEG is only 

implanted in patients who are candidates for surgical procedures such as epileptic surgery or deep 

brain stimulation. Moreover, for a single patient, iEEG provides limited spatial coverage when 

compared to EEG/MEG covering the whole head surface. Additionally, as intracranial electrodes 

are usually implanted in presumably affected brain regions, there is a lack of intracranial 

recordings from normal healthy brain activity. To address these issues, Frauscher et al. (2018) 

published an atlas of iEEG data by pooling iEEG data from many patients but only including 

channels from presumably healthy brain regions (i.e. SEEG contacts that did not exhibit any 

epileptic discharges). This iEEG atlas is described in the next section. 

5.5 iEEG atlas of normal resting state activity 

The atlas of normal intracranial EEG developed by Frauscher et al. (2018) included both SEEG 

and subdural grids/strips from a large number of subjects but only including the electrodes that are 

implanted in presumably healthy brain regions. The inclusion criteria were (quoting from 

(Frauscher et al., 2018)): 

(i) presence of at least one channel with normal activity. Such channels are not common (on 

average 11% of channels per patient as shown in one of our previous studies)(Frauscher 

et al., 2015). A channel with normal activity is defined as a channel localized in normal 

tissue as assessed by MRI, is located outside the seizure onset zone, does not show at any 

time of the circadian cycle interictal epileptic discharges (according to the clinical report 

of the complete implantation and to a careful investigation of one night of sleep by a board-

certified electrophysiologist), and shows the absence of overt slow-wave anomaly;  

(ii) presence of peri-implantation imaging (CT or MRI) for exact localization of individual 

electrode contacts (contacts located in the white matter were excluded);  

(iii) availability of a controlled intracranial EEG recording obtained after a minimum of 72 h 

after insertion of stereo-EEG electrodes or 1 week after placement of subdural grids or 

strips (medications are usually not yet lowered), and at least 12 h after a generalized tonic-
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clonic seizure, 6 h in case of focal clinical seizures, or 2 h in case of purely electrographic 

seizures, and not after electrical stimulation, as done in our previous work (Frauscher et 

al., 2015); and  

(iv) sampling frequency of a minimum of 200 Hz. This minimum sampling frequency was chosen 

to include as many patients as possible for the analysis of frequencies in the classical 

Berger frequency bands (0.3–70 Hz). 

From 106 patients, a total of 1785 iEEG channels were identified (1520 from SEEG and 265 from 

grids/strips, left hemisphere, 1066; right hemisphere, 719) (Figure 5-8). The average number of 

channels per cm3 of cortical grey matter volume was 2.7 channels/ cm3. For each channel, a 60-

second artifact-free section during wakefulness was selected during eyes closed.  

 

Figure 5-8 Localization of the 1785 EEG channels with normal physiological activity analyzed for this 

study. The 1520 channels from stereo-EEG electrodes are visualized in blue, and the 265 channels from 

cortical grids and strips are in yellow. Note that for the ‘inflated’ brain display at the bottom, the electrodes 

are projected on the cortical surface. Figure from Atlas of the normal intracranial electroencephalogram: 

neurophysiological awake activity in different cortical areas by Frauscher et al. (2018). Reprinted with 

permission from Oxford University Press. 
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This atlas provides a unique opportunity to study the characteristics of normal brain activity at a 

group level. This atlas will be used as ground truth to validate the MEG source imaging of resting 

state activity from a group of healthy participants in terms of oscillatory (Chapter 6) and 

connectivity patterns (Chapter 8).  

Another normative atlas of intracranial EEG activity has been developed by merging data from the 

iEEG atlas developed by Frauscher et al. (2018) and data from the Penn Epilepsy Center, reporting 

data from 166 subjects with over 5000 channels (Bernabei et al., 2022). A similar normative iEEG 

atlas was also developed by Taylor et al. (2022) that included 21 598 channels across 234 

participants. Both atlases, like that of Frauscher et al. (2018), still suffer from the unavoidable 

weakness of not being recorded in healthy brains. 

5.6 Conclusion  

In this chapter, I briefly described the validation techniques of EEG/MEG source imaging using 

simulations and using iEEG as the ground truth. Both these techniques are extensively used for 

this thesis and will be discussed again in chapters 6, 7, 8 and 9. I also discussed the challenges 

when comparing EEG/MEG source imaging with intracranial EEG. Finally, the atlas of 

intracranial EEG of the resting state is introduced, which will be used as ground truth to validate 

resting-state MEG source imaging for a group of healthy subjects in chapters 6 and 8. 
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6 Manuscript 1: Validating MEG source imaging of 

resting state oscillatory patterns with an intracranial 

EEG atlas 

6.1 Preface 

EEG/MEG source imaging involves solving an ill-posed inverse problem, which necessitates 

careful validation. This need for validation is even more crucial when dealing with low signal-to-

noise ratio resting-state activity. In the first study of this thesis, we aimed to validate MEG source 

localization of resting-state oscillations in a healthy group, using as gold standard, an intracranial 

EEG atlas of normal brain activity developed by Frauscher et al. (2018). The atlas data were 

collected from 110 patients with refractory epilepsy who underwent iEEG implantation for clinical 

evaluation; it includes only electrodes implanted in healthy brain regions. We used the wMEM 

source localization method, which had previously been evaluated for its ability to recover 

oscillations (Avigdor et al., 2021; Aydin et al., 2020; Lina et al., 2012; Pellegrino et al., 2016; von 

Ellenrieder et al., 2016). We propose several adaptations to wMEM to improve the localization of 

resting-state oscillations and we aim to create a brain atlas highlighting regions and frequencies 

where MEG source localization of resting state oscillations is accurate. We also compared the 

wMEM method with two widely used source imaging methods: minimum norm estimate 

(Hämäläinen & Ilmoniemi, 1994; Lin et al., 2006) and beamformer (Van Veen et al., 1997). MEG 

sources estimated from each method were then converted into virtual intracranial EEG data, by 

applying an iEEG forward model to MEG sources along the cortical surface (Abdallah et al., 2022; 

Grova et al., 2016), providing an ideal framework to compare quantitatively oscillations in MEG 

sources and real iEEG data. This chapter includes the published abstract, introduction, materials 

and methods, results, and discussions. The methodological adaptations of wMEM to localize 

resting state data are detailed in Appendix A for Manuscript 1 in Chapter 6 which is reported at the 

very end of this thesis. 

This manuscript was published as:  
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Afnan, J., von Ellenrieder, N., Lina, J.M., Pellegrino, G., Arcara, G., Cai, Z., Hedrich, T., 

Abdallah, C., Khajehpour, H., Frauscher, B., Gotman, J., Grova, C., 2023. Validating MEG source 

imaging of resting state oscillatory patterns with an intracranial EEG atlas.  NeuroImage, 

274,p.120158. https://doi.org/10.1016/j.neuroimage.2023.120158 

 

6.2 Abstract: 

Background: Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate 

brain activity with high temporal resolution. However, due to the ill-posed nature of the MEG 

source imaging (MSI) problem, the ability of MSI to identify accurately underlying brain sources 

along the cortical surface is still uncertain and requires validation. 

Method: We validated the ability of MSI to estimate the background resting state activity of 45 

healthy participants by comparing it to the intracranial EEG (iEEG) atlas (https://mni-open-

ieegatlas.research.mcgill.ca/). First, we applied wavelet-based Maximum Entropy on the Mean 

(wMEM) as an MSI technique. Next, we converted MEG source maps into intracranial space by 

applying a forward model to the MEG-reconstructed source maps, and estimated virtual iEEG 

(ViEEG) potentials on each iEEG channel location; we finally quantitatively compared those with 

actual iEEG signals from the atlas for 38 regions of interest in the canonical frequency bands. 

Results:  The MEG spectra were more accurately estimated in the lateral regions compared to the 

medial regions. The regions with higher amplitude in the ViEEG than in the iEEG were more 

accurately recovered. In the deep regions, MEG-estimated amplitudes were largely underestimated 

and the spectra were poorly recovered. Overall, our wMEM results were similar to those obtained 

with minimum norm or beamformer source localization. Moreover, the MEG largely 

overestimated oscillatory peaks in the alpha band, especially in the anterior and deep regions. This 

is possibly due to higher phase synchronization of alpha oscillations over extended regions, 

exceeding the spatial sensitivity of iEEG but detected by MEG. Importantly, we found that MEG-

estimated spectra were more comparable to spectra from the iEEG atlas after the aperiodic 

components were removed.  

https://doi.org/10.1016/j.neuroimage.2023.120158
https://mni-open-ieegatlas.research.mcgill.ca/
https://mni-open-ieegatlas.research.mcgill.ca/
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Conclusion: This study identifies brain regions and frequencies for which MEG source analysis is 

likely to be reliable, a promising step towards resolving the uncertainty in recovering intracerebral 

activity from non-invasive MEG studies. 

Keywords: Intracranial EEG; Magnetoencephalography; Source imaging; Validation; Resting 

state; Spectral analysis. 

6.3 Introduction 

Neuronal oscillations are fundamental properties of brain activity and are considered to play an 

important role in processing and regulating neuronal communication in physiological (Giraud & 

Poeppel, 2012; Pellegrino et al., 2021; Voytek et al., 2010; Wang, 2010) and pathological 

conditions (Buzsáki et al., 2013; Hirano & Uhlhaas, 2021; Schnitzler & Gross, 2005b). 

Electro/magneto-encephalography (EEG/MEG) are widely used non-invasive 

electrophysiological methods to measure neuronal activity. They provide excellent temporal 

resolution in the order of milliseconds, which enables us to study spontaneous brain activity and 

oscillations in different frequency bands. Due to their non-invasive nature, EEG/MEG have been 

used in many studies of brain dynamics and networks, not only during well controlled tasks but 

also during the resting state, a state when the brain activity is spontaneous (thinking of nothing/not 

performing any task) (Matthew J. Brookes et al., 2011; Hipp et al., 2012; Keitel & Gross, 2016; 

Mellem et al., 2017). EEG/MEG have also been widely used as a presurgical tool for drug-resistant 

epilepsy and basic epilepsy research (Dalal et al., 2013; Hamandi et al., 2016; Pellegrino et al., 

2018; von Ellenrieder et al., 2016). Compared to other invasive and non-invasive modalities, 

EEG/MEG have limited spatial resolution, since they consist in scalp recordings and source 

localization requires solving an ill-posed inverse problem (Darvas et al., 2004a). The source 

leakage associated with source imaging is defined as the influence of a source on the estimation of 

the generators in its neighborhood (Brookes et al., 2012; Hedrich et al., 2017). The source leakage 

and the challenges of localizing signals from deep brain structures are of great concern, especially 

when considering clinical applications such as pre-surgical planning for epilepsy (Aydin et al., 

2020; Hedrich et al., 2017) and particularly while interpreting results from resting state activity 

due to its low signal-to-noise ratio, which is even lower for deep sources. Validation is thus 

necessary for non-invasive EEG/MEG techniques, to accurately interpret the results. In this study, 

we aimed to validate the ability of MEG source imaging to estimate resting state oscillations in 
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healthy subjects. Due to the frequent lack of a ground truth, validation of source imaging 

techniques using realistic simulations are common and often useful, such as in the context of 

epileptic spikes (Becker et al., 2015; Chowdhury et al., 2016; Grova et al., 2006) and connectivity 

studies (Wang et al., 2014). However, generating realistic simulations of brain activity is 

challenging and even more so for resting state activity.  

The gold standard to validate non-invasive methods is intracerebral EEG (iEEG), an invasive 

technique employed in some patients with epilepsy during pre-surgical evaluation. In iEEG, 

electrodes are placed on or into brain tissue (Jayakar et al., 2016). They are subdural grid/strip or 

depth electrodes (freehand or using stereoencephalography, SEEG introduced by Bancaud and 

Talairach in the 1950s (Enatsu & Mikuni, 2016)). iEEG thus can measure brain activity directly 

from the regions of interest, however, at a cost of requiring a surgical procedure to implant the 

electrodes and of having a limited spatial coverage. iEEG can record brain activity with excellent 

spatial accuracy, however validation can only be partial because of the limited spatial sampling, 

due to the invasiveness of the procedure.   

Simultaneous recordings of EEG/MEG and iEEG provide an excellent opportunity to validate non-

invasive results (De Stefano et al., 2022; Koessler et al., 2010; Pizzo et al., 2019). However, 

acquiring simultaneous MEG and iEEG is technically challenging (Badier et al., 2017; Dubarry et 

al., 2014; Kakisaka et al., 2012; Pigorini et al., 2024; Rampp et al., 2010; Santiuste et al., 2008) 

and not many groups have the access and technical resources to conduct such acquisitions. Also, 

only the patients who are candidates for epilepsy surgery undergo such invasive iEEG procedures. 

The implantation of intracranial electrodes is usually limited to affected regions, with a few 

electrodes placed in healthy regions, thus providing very limited coverage of the brain. Our group 

developed an atlas of healthy iEEG (Frauscher et al., 2018) at the Montreal Neurological Institute 

(MNI) (https://mni-open-ieegatlas.research.mcgill.ca/). This MNI iEEG atlas was generated by 

pooling iEEG data from 110 patients with refractory epilepsy who underwent iEEG implantation 

for clinical evaluation for epilepsy, only keeping the data from the electrodes implanted in healthy 

brain regions. With a dense coverage of all regions, this atlas provides us with the unique 

opportunity to study the spectral characteristics of normal brain oscillations at a group level. We 

took this opportunity to validate the non-invasive modality, MEG, to localize the spectral 

properties of the normal brain in wakefulness, in a group of healthy participants and compare those 

https://mni-open-ieegatlas.research.mcgill.ca/
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with the MNI iEEG atlas as ground truth, assuming both modalities represent the activity of the 

healthy brain at a group level.  

We assessed MEG source imaging of resting state oscillatory patterns of healthy subjects at a group 

level and validated with the MNI iEEG atlas. We expect that MEG source imaging can recover the 

spectral patterns observed in the MNI iEEG atlas more accurately in some regions than in others. 

To investigate this question, we applied wavelet-based Maximum Entropy on the Mean (wMEM) 

(Aydin et al., 2020; Lina et al., 2012; Pellegrino et al., 2016; von Ellenrieder et al., 2016). wMEM 

is an EEG/MEG source imaging technique we developed and adapted to localize resting state 

oscillatory patterns, which proved its unique ability to recover the location and the spatial extent 

of the underlying oscillatory generators (Avigdor et al., 2021; Aydin et al., 2020; Pellegrino et al., 

2016; von Ellenrieder et al., 2016). An original method proposed by our group (Abdallah, et al., 

2022; Grova et al., 2016) to estimate iEEG signals from MEG sources was then applied to support 

a quantitative comparison between the MNI iEEG atlas (electrical potentials) and MEG sources 

(cortical current densities), at the location of each iEEG electrode contact of the atlas. This is the 

first study to provide a group level validation with iEEG spectral characteristics across the human 

cortex, of non-invasive resting state MEG recordings from the healthy brain.  

6.4 Material and methods 

6.4.1 Experimental design 

Our analysis pipeline is summarized in Figure 6-1. We used the MNI iEEG atlas as ground truth 

to validate MEG source imaging of resting state oscillatory patterns for healthy subjects. The MEG 

data were collected from 45 healthy subjects. To solve the inverse MEG problem, we applied the 

wMEM, developed by our group (Lina et al., 2012). The reconstructed MEG data along subject 

specific cortical surface were projected to the positions of iEEG electrodes used in the atlas, to 

generate virtual iEEG (ViEEG) data using a method proposed by (Grova et al., 2016). To do this, 

the positions of the intracranial electrodes were projected from the template ICBM152 anatomy to 

the anatomy of each healthy subject. By applying an iEEG forward model from the sources 

localized along the cortical surface to all iEEG channel positions, this method allowed a 

quantitative comparison between the spectral properties of MEG-estimated ViEEG with actual 

iEEG atlas for each region of interest (ROI) for each frequency band of interest.  
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Figure 6-1 : Analysis pipeline to compare the spectral properties estimated by MEG with the MNI iEEG 

atlas, as ground truth. Ground truth MNI iEEG atlas (Frauscher et al., 2018) consists of 2300 channels 

collected from 110 subjects with epilepsy, retaining only the healthy brain regions. For each iEEG channel, 

60 seconds of resting state data during wakefulness were used. MEG pipeline: MEG data were collected 

from 45 healthy participants, each having 60 seconds of resting state data during wakefulness (only 10 

seconds of data are shown in this figure). We applied wavelet-MEM (wMEM) to solve the MEG inverse 

problem. For each source map, we estimated virtual iEEG (ViEEG) data at each position of 2300 channels 

(positions obtained from the MNI iEEG atlas). We compared the spectral characteristics (spectra and 

oscillatory peaks) between iEEG and ViEEG for 38 ROIs (MICCAI atlas). To consider only the oscillatory 

components, the aperiodic components were removed from the spectra using the FOOOF toolbox  

(Donoghue et al., 2020). 

6.4.2 Ground truth: MNI iEEG atlas 

The data in the MNI iEEG atlas (Frauscher et al., 2018) were collected from 110 patients with 

refractory epilepsy who underwent iEEG implantation for clinical evaluation for epilepsy surgery. 

The key features of the data are: i) some electrodes were implanted in brain regions that turned out 

to be healthy and only those were retained to construct the atlas, ii) recordings were controlled 

with subjects having their eyes closed, and iii) electrodes were projected on the standard ICBM152 

template. In the intracranial atlas, a total of 2300 channels from 110 patients (age: 31±10 Y, range: 

13-62 Y, M:54) were selected. iEEG data in each patient were re-referenced to a common average 

reference, calculated by taking the average of 5% of the total channels exhibiting the lowest power 

and subtracting that value from each channel. Sixty seconds of resting state data during 

wakefulness were available for each of the 2300 channels. The iEEG channels in the atlas were 
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classified into 38 regions of interest (ROIs) based on the Medical Image Computing and Computer-

Assisted Intervention (MICCAI) (Landman & Warfield, 2019) atlas. The channels from the left 

and the right hemispheres were considered together. The number of channels in each ROI was 

variable but ensured sufficient coverage of all regions: mean ± standard deviation: 60±47 channels 

in each ROI. More details on the data, centers, patient information, and inclusion criteria can be 

found in Frauscher et al. (2018).  

6.4.3 Subject selection criteria for MEG 

57 healthy participants who underwent MEG acquisition were included in this study (Pellegrino 

et al., 2022). MEG data were collected at the MEGLab of the IRCCS San Camillo Hospital in 

Venice, Italy. Eight minutes of resting state were acquired with eyes closed. The participants did 

not have any history of neurological or psychiatric disorders or any irregularity in the cycle of 

sleep-wakefulness. After preprocessing and sleep scoring of data, we finally included 45 

participants (age: 28.67 ± 4.13 Y, range: 20-38 Y, M: 10).  Of the participants, one was excluded 

for sleeping during the acquisition and 11 for coregistration issues such as issues with 

segmentation, or very noisy data. 

6.4.4 MEG data acquisition 

MEG data were acquired using a CTF-MEG system (VSM MedTech Systems Inc., Coquitlam, 

BC, Canada) with 275 axial gradiometers with a sampling rate of 1200 Hz. Bipolar electrodes were 

added to record Electrocardiogram (ECG) and electrooculogram (EOG). The coils were positioned 

on three anatomical landmarks (left and right preauricular points and nasion). These positions, 

along with the shape of the head of each participant were recorded with a 3D Polhemus localizer 

(Pellegrino et al., 2022), which were used for coregistration of MEG sensors with individual 

anatomical MRI of the participants. 

6.4.5 Anatomical MRI, MEG-MRI co-registration and forward model estimation 

For each participant, a T1-weighted-3D-TFE anatomical MRI was performed with a 3T Ingenia 

CX Philips scanner (Philips Medical Systems, Best, The Netherlands). The following parameters 

were used for MRI acquisition: [TR]=8.3 ms, [TE]=4.1 ms, flip angle=8°, acquired matrix 

resolution=288 × 288, slice thickness=0.87 mm) (Pellegrino, 2022). Freesurfer (Dale et al., 1999) 

was used for subsequent brain segmentation and reconstruction of the white/gray matter interface. 

https://link.springer.com/book/10.1007/978-3-319-46723-8
https://link.springer.com/book/10.1007/978-3-319-46723-8
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The coregistration of MEG sensors with anatomical MRI was performed in Brainstorm (Tadel et 

al., 2011), applying a surface fitting between the head shape from MRI and the positions of coils 

and head shape recorded using 3D Polhemus during MEG acquisition. We considered the cortical 

mesh of the mid layer which is equidistant from the white and grey matter interface as source 

space, consisting of around 8000 vertices. The forward model was computed using OpenMEEG 

software (Gramfort et al., 2010; Kybic et al., 2005) implemented in Brainstorm (Tadel et al., 2011). 

We used a 3-layer Boundary Element model (BEM) consisting of brain, skull, and scalp surfaces 

with conductivity values of 0.33, 0.0165, and 0.33 S m-1, respectively (Zhang et al., 2006).   

6.4.6 MEG data preprocessing 

MEG preprocessing was performed with Brainstorm software (Tadel et al., 2011). Preprocessing 

of MEG data included (i) filtering within the 0.5-80 Hz band, (ii) applying a notch filter at 50 Hz, 

(iii) downsampling to 200 Hz, (iv) applying third-order spatial gradient noise correction and (v) 

removal of cardiac and eye movement artifacts using Signal Space Projection (SSP) (Uusitalo & 

Ilmoniemi, 1997) routine available in Brainstorm. A sixty-second segment was extracted for each 

subject, continuous or concatenated (minimum length of the continuous segment: 10 seconds), 

where no artifact was visibly present, ensuring with an EEG expert that the subject was awake 

during this segment. To assess the data for sleep score, some scalp EEG channels were provided 

(F4, C4, O2, Ref left mastoid, Ground left shoulder).  

6.4.7 MEG source imaging using wavelet Maximum Entropy on the Mean 

(wMEM) 

The MEG inverse problem was solved using the Maximum Entropy on the Mean (MEM) 

(Amblard et al., 2004), which we carefully validated in the context of EEG/MEG source imaging 

(Chowdhury et al., 2013). The key feature of this framework is a spatial prior model, assuming 

that brain activity is organized within cortical parcels. MEM is a Bayesian framework, where the 

activity of every parcel is tuned by the probability of activation of a hidden state variable. When 

the parcel is active, a Gaussian prior is assumed to model a priori the activity within the parcel. 

Starting from such a prior “reference” distribution, inference to ensure data fit is then obtained 

using entropic techniques. As a result, MEM is able to either switch off or switch on the 

corresponding parcels during the localization process, while allowing local contrast along the 
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cortical surface within the active parcels. Parcellation of the whole cortical surface (K~228 parcels)  

and initialization of the probability of being active were obtained using a data driven approach, 

based on a Multivariate Source Pre-localization (MSP) method (Mattout et al., 2005), a projection 

technique allowing to define the probability of every source to contribute to the data. The MEM 

specific prior model, using the entropic technique to fit the data, allows accurate localization of 

the underlying generators together with their spatial extent, as previously demonstrated by our 

studies for the standard version of MEM (cMEM) (Abdallah et al., 2022; Chowdhury et al., 2016; 

Chowdhury et al., 2013; Grova et al., 2016; Heers et al., 2016a; Pellegrino, Hedrich, et al., 2020), 

as well as the wavelet-based extension of MEM (wMEM) (Lina et al., 2012). wMEM was 

specifically designed to localize brain oscillatory patterns. wMEM applies a discrete wavelet 

transformation (Daubechies wavelets) to characterize the oscillatory patterns in the data before 

applying the MEM solver (Lina et al., 2012).  We validated wMEM for localizing oscillatory 

patterns at seizure onset (Pellegrino et al., 2016), interictal bursts of high frequency oscillations 

(Avigdor et al., 2021; von Ellenrieder et al., 2016) and MEG resting state fluctuations (Aydin et 

al., 2020). Both wMEM and cMEM implementations are available within the Brain Entropy in 

space and time (Best) plugin of Brainstorm software 

(https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/).  

We incorporated a few changes in standard wMEM implemented in Brainstorm, to localize 

specifically oscillatory patterns in resting state data (more details in the Appendix A). (i) Spatial 

prior model: Our main adaptation of the wMEM spatial prior model consisted in considering one 

stable whole brain parcellation of the cortical surface, following the strategy proposed for cMEM 

(Chowdhury et al., 2013), whereas in our previous wMEM implementation the parcellation was 

varying for every time frequency samples. To do so,  we proposed data-driven whole brain 

parcellation informed by the MSP method (Mattout et al., 2005), a projection technique allowing 

to estimate the probability of every source to contribute to the data, before region growing around 

local MSP peaks. The main adaptation of our current implementation is that the MSP projector is 

applied on all wavelet coefficients of Daubechies time-frequency representation of our data, 

instead of using signals in the time domain (see details in the Appendix A).  (ii) Initialization of 

the probability of being active for each parcel: Following the parcellation, we initialized the 

probability of each parcel of being active, using normalized energy calculated for each time 

frequency sample. (iii) Selection of baseline for resting state localization: There is no ideal baseline 

https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/
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definition when localizing ongoing resting state data.  We proposed to compute the sensor level 

noise covariance matrix from the ongoing resting state data. To do this, we generated a quasi-

synthetic baseline from the signal of interest by randomly modifying the Fourier phase at each 

frequency (Prichard & Theiler, 1994). We also adopted a sliding window approach to generate the 

baseline for a more accurate estimation of the noise covariance matrix for each time frequency 

sample along the time scale. More details of these adaptations are described in the Appendix A.  

Before applying this new implementation of wMEM on resting state MEG data, we validated it 

within a controlled environment with realistic simulation of epileptic spikes and oscillations on 

realistic MEG background, as previously proposed in Chowdhury et al. (2013) and Lina et al. 

(2012) (see supplementary material S.1 and Fig S1). 

6.4.8 Estimation of virtual iEEG (ViEEG) data from the MEG source map 

MEG and iEEG are two modalities each measuring brain activity in different units, MEG 

measurements after source imaging are current densities (in nanoAmpere-meters), whereas iEEG 

measurements are electrical potentials in µVolts. To allow quantitative comparison between these 

two modalities, we converted MEG-reconstructed source maps into iEEG channel space, by 

estimating corresponding iEEG potentials that would correspond to those MEG sources on each 

electrode contact (channel) of the atlas (Abdallah et al., 2022; Grova et al., 2016). To do so, we 

first localized the position of all channels of the atlas within the native MRI referential system of 

all healthy subjects from whom we analyzed MEG data. Co-registration between anatomical MRI 

of each subject and the ICBM152 template where the atlas is defined was obtained using Minctracc 

program (Collins et al., 1994). This is obtained in three steps: (1) estimation of a linear registration 

to account for the linear part of the transformation (using bestlinreg_s tool), (2) estimation of a 

non-linear transformation to account for the variability between the two maps (using minctracc 

tool); (3) application of the resulting non-linear transformation to the coordinates of the electrode 

contacts of MNI iEEG atlas, to convert them from the ICBM152 anatomy to the anatomy of each 

healthy subject.  

Then, for each subject, to estimate the virtual iEEG potentials from MEG-estimated current 

density, JMSI,  we calculated a subject specific iEEG forward model, GiEEG that estimates the 

influence of each dipolar source of the cortical surface on each iEEG channel (Grova et al., 2016).  

Since we did not intend to solve the inverse problem of source localization from iEEG data, we 
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used a simplified iEEG forward model GiEEG assuming an infinite volume conductor characterized 

by a conductivity 𝜎 of 0.25 S.m-1. For a total number of iEEG contacts c, (c = 2300) and n number 

of cortical sources (n = 8000).  GiEEG is a c x n matrix that estimates the electrical potential located 

at each iEEG electrode i (i =1, 2 …c) corresponding to an equivalent current dipole of unit activity 

located on the vertex Sj and oriented along �⃗� j, normal to the cortical surface (j = 1,2,….. n), 

calculated as:  

𝐺𝑖𝐸𝐸𝐺(𝑖, 𝑗) =
�⃗� 𝑗.�⃗⃗� 𝑖𝑗

4𝜋𝜎𝑟𝑖𝑗
2    (1) 

where �⃗� 𝑖𝑗 is a unit vector oriented from the source Sj to the iEEG contact i and rij is the Euclidean 

distance between Sj and contact i. To avoid numerical instabilities, when the sources on the cortical 

surface were too close to the iEEG contacts (𝑟𝑖𝑗 < 3 mm), the distance 𝑟𝑖𝑗 was set to 3 mm instead, 

keeping the orientation �⃗� 𝑖𝑗. Finally, we applied the iEEG forward model, GiEEG to the MEG-

reconstructed source map (JMSI) to estimate iEEG potentials on each iEEG channel, ViEEG as:  

𝑉𝑖𝐸𝐸𝐺 =  𝐺𝑖𝐸𝐸𝐺𝐽𝑀𝑆𝐼   (2) 

Here, we applied a simplified iEEG forward model because Cosandier-Rimélé et al. (2007) showed 

that it could estimate accurately real iEEG measurements. Moreover, von Ellenrieder et al. (2012) 

showed that the use of finite-element models considering the actual size and the shape of the iEEG 

electrodes had almost no influence on local electrical potentials at 2 mm from the electrodes.  

As for each source map obtained for all 45 participants, we estimated ViEEG for each iEEG 

channel in the atlas, we generated more ViEEG channels compared to the MNI iEEG atlas (2300 

channels in the iEEG atlas vs 2300 x 45 channels in ViEEG).   

6.4.9 Frequency specific brain maps of relative power 

For each of the iEEG and ViEEG channels, the power spectral density (PSD) was estimated using 

Welch’s method (Time duration: 0-60 seconds, 2s sliding Hamming windows, overlap: 50%). For 

each channel, a relative PSD was obtained by dividing each PSD value by the total power across 

the whole frequency range. The group average of relative PSD  was calculated across all channels 

within a ROI and all frequency bins in each frequency band of interest: δ (0.5-4Hz), θ (4-8Hz), α 

(8-13Hz), β (13-30Hz), and γ (30-80Hz).   
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To compare the relative PSD before and after applying the conversion from MEG source maps 

into virtual intracranial space, we also calculated the relative PSD after MEG source imaging 

directly along the cortical surface (Fig S12). To obtain a group average of relative PSD for 45 

subjects, we followed the approach described in Niso et al. (2019). We first projected individual 

relative PSD to a default template, ICBM152 (Fonov et al., 2009) and then obtained a group 

average of 45 relative PSD in each frequency band of interest. 

6.4.10  Analysis of spectral oscillatory components 

In this study,  we applied FOOOF (Fitting Oscillations & One-Over-F) (Donoghue et al., 2020), a 

commonly used algorithm (Huang et al., 2021; Mahjoory et al., 2020; Ramsay et al., 2021; 

Senoussi et al., 2022; Wiesman et al., 2022) to separate periodic components from the aperiodic 

components of the spectra by parameterizing the power spectra as a composition of these two 

components. Using an iterative fit-refit method, the FOOOF algorithm models a PSD as a  

combination of an aperiodic component and several periodic component/s, where the aperiodic 

component is modeled as an exponential function and each periodic component is modeled as a 

Gaussian function (Donoghue et al., 2020). The central frequency extracted from each Gaussian 

fit was then considered as an ‘oscillatory peak'. 

For each of the iEEG and ViEEG channels, we decomposed the spectra into periodic and aperiodic 

components using the FOOOF algorithm. The following FOOOF parameters were used: frequency 

range = 0.5–80 Hz; peak type: Gaussian; peak width limits (minimum bandwidth, maximum 

bandwidth) = 1 – 8 Hz; maximum number of peaks = 8; peak threshold: 3.0 dB; proximity 

threshold = 2 SD; aperiodic mode: knee. As we concentrated only on the rhythmic activities of the 

spectra, we subtracted (in the log-log scale) the aperiodic component from the raw PSD. The 

remaining oscillatory component of the spectra (PSDiEEG and PSDViEEG) was considered for further 

analysis and comparison between iEEG and ViEEG.  We also identified the oscillatory peaks 

during the process of finding aperiodic components.  

6.4.11 Comparison of ViEEG spectra with iEEG 

For each ROI, we calculated the median of PSDiEEG (𝑃𝑆�̃�𝑖𝐸𝐸𝐺) across all available channels within 

the ROI (NROI). The median of PSDViEEG (𝑃𝑆�̃�𝑉𝑖𝐸𝐸𝐺) for each ROI was obtained across a total 
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number of channels = NROI x Number of healthy subjects. The overlap between PSDiEEG and 

PSDViEEG was calculated for each frequency bin as: 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = {
1 −

|𝑃𝑆�̃�𝑖𝐸𝐸𝐺−𝑃𝑆�̃�𝑉𝑖𝐸𝐸𝐺|

𝑆𝐷𝑉𝑖𝐸𝐸𝐺
; 𝑖𝑓 𝑃𝑆�̃�𝑉𝑖𝐸𝐸𝐺 − 𝑆𝐷𝑉𝑖𝐸𝐸𝐺 ≤ 𝑃𝑆�̃�𝑖𝐸𝐸𝐺 ≤ 𝑃𝑆�̃�𝑉𝑖𝐸𝐸𝐺 + 𝑆𝐷𝑉𝑖𝐸𝐸𝐺

0 ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

                                (3) 

Where 𝑆𝐷𝑉𝑖𝐸𝐸𝐺   is the standard deviation of PSDViEEG, across all available channels within the ROI 

(NROI). We calculated the average overlap for each ROI before and after removing the aperiodic 

components of the spectra. Average overlap quantifies the distance between 𝑃𝑆�̃�𝑉𝑖𝐸𝐸𝐺  and 

𝑃𝑆�̃�𝑖𝐸𝐸𝐺  at each frequency bin. The value of this metric ranges between 0 and 1 (calculated for 

160 frequency bins). If the 𝑃𝑆�̃�𝑉𝑖𝐸𝐸𝐺  perfectly coincides with the 𝑃𝑆�̃�𝑖𝐸𝐸𝐺  at a specific frequency 

bin, the overlap is 1, and if the 𝑃𝑆�̃�𝑖𝐸𝐸𝐺  is greater or less than one 𝑆𝐷𝑉𝑖𝐸𝐸𝐺 , the overlap is zero at 

that frequency bin. We then obtained average overlap across all the frequency bins within each 

frequency band of interest: δ (0.5-4Hz), θ (4-8Hz), α (8-13Hz), β (13-30Hz), and γ (30-80Hz). 

6.4.12  Comparison of ViEEG with iEEG in terms of peak frequency 

We also compared the oscillatory peaks between the MEG-estimated ViEEG and the MNI iEEG 

atlas. Using FOOOF, we identified all oscillatory peaks in each iEEG and ViEEG channel. For 

each ROI, the number of channels (out of the total number in each ROI NROI) exhibiting an 

oscillatory peak in a specific frequency band was calculated for the iEEG and ViEEG of each 

subject. Then we calculated the percentage difference of the number of channels exhibiting peak 

in a specific frequency band as: 

𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖 =
𝑁𝑝𝑒𝑎𝑘_𝑉𝑖𝐸𝐸𝐺𝑖 − 𝑁𝑝𝑒𝑎𝑘_𝑖𝐸𝐸𝐺

𝑁𝑅𝑂𝐼
× 100            (4) 

Where 𝑁𝑝𝑒𝑎𝑘_𝑉𝑖𝐸𝐸𝐺𝑖
 is the number of channels exhibiting peaks in ViEEG in subject i and 

𝑁𝑝𝑒𝑎𝑘_𝑖𝐸𝐸𝐺  is the number of channels exhibiting peaks in iEEG, in a specific frequency band. This 

measure was obtained for each ROI and each frequency band for each subject i. To obtain a group 

level estimation of channels exhibiting peaks per ROI per frequency band, we calculated the 

median of 𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi over 45 subjects. This metric is a percentage assessing the 

overestimation or underestimation of MEG-estimated ViEEG channels showing oscillatory peaks, 

when compared to iEEG. The value of the Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi) ranges from -100% to 



103 
 

100%. For a particular ROI and frequency band, Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi) = +100% 

indicates that all the ViEEG channels in that ROI (NROI) showed peaks in that frequency band, 

whereas no peak was identified in any of the iEEG channels in that ROI and frequency band. We 

called it a 100% overestimation of peaks by MEG-estimated ViEEG in that ROI. On the contrary, 

a -100% estimation (underestimation) is obtained when all the iEEG channels in a ROI exhibit 

peaks, but ViEEG fails to identify any peak in that ROI. The peaks are well estimated by ViEEG 

if the Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑SUBi) is close to zero.  

6.4.13  Comparison with minimum norm estimate (MNE) and LCMV beamformer 

To check whether the choice of the source imaging method, wMEM, had influenced the results, 

we applied two other source imaging methods: (1) depth-weighted minimum norm estimate 

(MNE) (Hämäläinen & Ilmoniemi, 1994), and (2) Linearly Constrained Minimum Variance 

(LCMV) Beamformer (Van Veen et al., 1997). MNE: To calculate the noise covariance for MNE, 

we used 2 seconds of resting state data from each subject. We estimated the regularization 

hypermeter λ by using the signal-to-noise ratio (SNR) of the data, as λ=1/SNR2, with the SNR set 

to 3 (default value in Brainstorm software). After source reconstruction on the cortical surface, we 

estimated ViEEG potential following the method described in section 6.4.8. LCMV beamformer: 

The source space for the beamformer consisted of the actual iEEG locations from the iEEG atlas 

(after coregistration in each subject native MRI space). The forward model was created using 

OpenMEEG (1-layer boundary element model). Data covariance was calculated from the entire 

resting state data segment (60 seconds) in each subject. Unlike the distributed source imaging 

methods, wMEM and MNE, LCMV beamformer reconstructed the virtual time series as MEG 

current density, directly at the location of iEEG contacts (Tamilia et al., 2021; Van Klink et al., 

2016). For each position, the dipole was modeled with unconstrained orientation. The dipole 

orientation which maximizes the spatial filter output was selected for the final filter computation. 

The forward and inverse solutions for LCMV beamformer were calculated using fieldtrip toolbox 

(Oostenveld et al., 2011). 
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6.5 Results 

6.5.1 Frequency specific brain maps of relative power 

In Figure 6-2, the group average of relative PSD is plotted for 38 ROIs for iEEG and MEG-

estimated ViEEG, as well as a map of the t-statistic comparing PSD in iEEG and ViEEG for each 

ROI and frequency band. For each frequency band in Figure 6-2, we used a common color bar for 

both modalities, thus highlighting how much MEG could estimate relative power when compared 

to iEEG. Fig S2 shows another representation of the same data, the color bar ranging from 

minimum to maximum value for each modality
 
in each frequency band. Fig S2 highlights the 

regions exhibiting the strongest activation of average relative power within each modality.  

Overall, similar patterns of power distribution were observed between iEEG and MEG-estimated 

ViEEG, such as high power in delta, theta, and gamma bands in the anterior ROIs, and high power 

in the alpha band in posterior ROIs. Beta power was strong around the primary and supplementary 

motor regions in both iEEG and ViEEG. However, for all frequency bands in Figure 6-2, the 

relative PSD in each iEEG ROI was very distinct, showing important contrasts and a larger range 

from strongest to weakest activity among ROIs, whereas MEG-estimated ViEEG maps were 

smoother among the neighboring ROIs spanning a smaller range of activity. This was evident 

especially in deeper regions such as the hippocampus and amygdala, which were very 

distinguished in iEEG showing very strong or weak activity, whereas these regions showed 

smoother activation in ViEEG, almost undistinguishable from the neighboring ROIs. We also 

observed high delta power and weak beta power in iEEG in lateral posterior ROIs, which were not 

well estimated by ViEEG. Figure 6-2B and Fig S3 show the difference of relative PSD between 

iEEG and ViEEG for the regions that are statistically different (Welch's unequal variances t-test, p 

< 0.05, Bonferroni corrected for 38 ROIs and 5 frequency bands), further illustrating regions where 

MEG overestimated relative power in alpha, beta and gamma band, and regions where MEG 

underestimated relative power in theta band.    



105 
 

 

Figure 6-2: Group average of relative PSD values across each frequency band and over all the available 

channels in each ROI of the iEEG atlas, the ground truth, the MEG-estimated ViEEG using wavelet-MEM 

(wMEM) method.  The number of channels in each ROI (N
ROI

) in iEEG varies.
 
 For each ROI, ViEEG was 

estimated for 45 x N
ROI

 channels, where the total number of subjects is 45. The relative PSD for each 

channel is calculated as the ratio of the power of the signal in each frequency bin relative to the total power 

of the signal. Relative PSD value for a channel range between 0 and 1. The color bar ranges from minimum 

to maximum value among iEEG and ViEEG in each frequency band, such that the scale is the same for both 

modalities in a given band. The corresponding t_map is shown in (B). We showed with color the ROIs 

which were statistically different (Welch’s unequal variances t-test, p < 0.05, Bonferroni corrected for 38 

ROIs and 5 frequency bands, positive t corresponding to larger PSD in iEEG when compared to ViEEG). 

6.5.2 Analysis of spectral oscillatory components 

In Figure 6-3, for four typical example ROIs selected at different depths (two in the lateral and two 

in the medial side), we show the decomposition of spectra into periodic and aperiodic components 

for iEEG and ViEEG. The spectra are plotted as median ± standard deviation across all available 

channels within a ROI, NROI channels for iEEG, and the number of healthy subjects × NROI channels 

for ViEEG. Figure 6-3 also shows the probability histogram of all identified oscillatory peaks in 

the ROI for ViEEG and iEEG. For comparison between the ViEEG and iEEG spectra, we only 

considered the periodic components of the spectra, after removing the aperiodic components from 
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the original spectra. The comparison between iEEG and ViEEG spectra is discussed in the 

following sections. 

Decomposition of the spectra into periodic and aperiodic components 

 

Figure 6-3: Decomposition of spectra into periodic and aperiodic components shown in a few example 

ROIs for iEEG and ViEEG. For both iEEG and ViEEG, the top panel shows the relative PSD before and 

after removing the aperiodic component and the bottom panel shows the probability histogram of identified 

peaks in δ (0.5-4Hz), θ (4-8Hz), α (8-13Hz), β (13-30Hz) and γ (30-80Hz). The aperiodic fits and oscillatory 

peaks are identified using the FOOOF toolbox (Donoghue et al., 2020). 

6.5.3 Comparison of ViEEG spectra with iEEG 

We show the comparison between iEEG and ViEEG spectra for four example ROIs (two in the 

lateral and two in the medial side) in Figure 6-4, before and after removing aperiodic components. 

We selected these four ROIs based on how MEG estimated the spectra compared to iEEG, 

quantified by the metric average overlap (performance worsening from left to right, after removing 
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the aperiodic components). The figure shows the value of average overlap quantified for each 

frequency band for a ROI. For all four ROIs, the average overlap improved after removing the 

aperiodic components (Figure 6-4C).  

For angular gyrus, the MEG estimated the spectra quite well compared to iEEG, in most frequency 

bands after removing the aperiodic components. The similarity between spectra was quantified by 

average overlap (δ: 0.53, θ: 0.74, α: 0.31, β: 0.77, γ: 0.52). Before removing the aperiodic 

components, the average overlap values in all frequency bands were clearly lower δ: 0.13, θ: 0.13, 

α: 0.16, β: 0.01, γ: 0.08.  

In the middle temporal gyrus, the average overlap in all frequency bands after removing the 

aperiodic spectra are δ: 0.2, θ: 0.55, α: 0.55, β: 0.47, γ: 0.48. Here we chose another ROI for which 

MEG-estimated ViEEG exhibited similar spectra to gold standard iEEG spectra, for all bands 

except delta. Before removing the aperiodic spectra, those values were much worse:  δ: 0.14, θ: 

0.3, α: 0.33, β: 0.01, γ: 0.03. 

The example medial ROI anterior cingulate also showed improvement after removing the 

aperiodic components. The average overlap values in all frequency bands before and after 

removing aperiodic components are δ: 0.09, θ: 29, α: 0.38, β: 0.18, γ: 0.0 and δ: 0.27, θ: 0.3, α: 

0.61, β: 0.2, γ: 0.3, respectively. For this medial structure, more difficult to localize in MEG 

because of its depth, average overlap values were good in the alpha band but lower in other bands 

(around 0.3), when compared to previous examples.    

Finally, we showed an example of deep ROI, the hippocampus. MEG estimated the spectra in the 

hippocampus very poorly compared to iEEG. The average overlap values in all frequency bands 

before and after removing aperiodic components are δ: 0.1, θ: 0.32, α: 0, β: 0, γ: 0.47 and δ: 0.13, 

θ: 0.04, α: 0.29, β: 0.2, γ: 0.37, respectively. Although the spectral comparison improved after 

removing the aperiodic components, they remained inaccurate compared to other lateral superficial 

ROIs. It is worth mentioning that with MEG we estimated a clear peak in the alpha band in the 

hippocampus, whereas iEEG data were exhibiting no alpha band peak.  

For each ROI, Figure 6-4 also shows the frequency bins at which iEEG and ViEEG were 

statistically different using the Mann Whitney U test (p < 0.05, Bonferroni corrected for 38 ROIs 

and 160 frequency bins), before (Figure 6-4A) and after (Figure 6-4B) removing the aperiodic 



108 
 

components from the spectra, which is in agreement with the overall improvement in average 

overlap after removing the aperiodic components (Figure 6-4C). 

The comparison between iEEG and ViEEG spectra after removing the aperiodic components for 

all 38 ROIs is shown in Fig S4. 

 

Figure 6-4: Comparison of periodic components of MEG-estimated spectra with ground truth iEEG, with 

aperiodic components (A)  and without aperiodic components (B) shown for a few selected ROIs. For each 

spectrum, we are reporting the median value (black, blue and orange straight lines) together with 

corresponding standard deviation (shaded area) over all channels. Average overlaps between ViEEG and 

iEEG spectra across each spectral band are shown in (C). The value of overlap is calculated at each 

frequency bin and ranges from 0 to 1. For a ROI, if the median of PSD
ViEEG

 perfectly coincides with the 

median of PSD
iEEG

 at all frequency bins within a specific frequency band, the average overlap is 1. In A 

and B frequency bins are marked as red dots when iEEG and ViEEG are statistically different (Mann 

Whitney U Test, p < 0.05, Bonferroni corrected for 38 ROIs and 160 frequency bins). 
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In Figure 6-5, we summarized the average overlap for all 38 ROIs before and after removing the 

aperiodic components. It shows that for all frequency bands, the average overlap values improved 

after we removed the aperiodic components. If we compare the ROIs after removing the aperiodic 

spectra, we observe that the spectra in lateral regions are overall better estimated when compared 

to the medial ROIs. It was clearly the case for deeper regions like the hippocampus and amygdala, 

for which MEG-estimated ViEEG spectra did not accurately recover the actual iEEG spectra. On 

the other hand, the PSD in lateral temporal and parietal regions were localized accurately for all 

bands, as well as the medial posterior cingulate region. Especially, the medial ROIs in the theta 

band were very poorly estimated compared to other frequency bands. The delta band was very 

poorly estimated in occipital ROIs. This was also the case when we compared relative power in  

Figure 6-2, iEEG showed high activation in the delta band in the occipital regions which were not 

well estimated by MEG. Fig S5 shows the difference of relative PSD between iEEG and ViEEG 

before and after removing the aperiodic components for the regions that are statistically different 

(Welch's unequal variances t-test, p < 0.05, Bonferroni corrected for 38 ROIs and 5 frequency 

bands).  

Spectral components estimated by MEG compared to MNI iEEG atlas: 38 ROIs  

 



110 
 

Figure 6-5: Average overlap between ViEEG and iEEG spectra across each spectral band for each of the 

38 ROIs, (A) with and (B) without aperiodic components. The value of overlap is calculated at each 

frequency bin and ranges from 0 to 1. For a ROI, if the median of PSD
ViEEG

 perfectly coincides with the 

median of PSD
iEEG

 at all frequency bins within a specific frequency band, the average overlap is 1. 

6.5.4 Comparison of ViEEG with iEEG in terms of oscillatory peaks 

Oscillatory peaks in each band were estimated using the FOOOF algorithm, after removing the 

aperiodic component. When we compared MEG-estimated spectra with the MNI iEEG atlas in 

terms of oscillatory peaks, we found that the probability histogram of peaks from all ROIs (Figure 

6-6A) in iEEG has more variability in all frequency bands, whereas MEG-estimated peaks are 

more narrowly concentrated within each frequency band, especially exhibiting high concentration 

in the alpha band. Also, the MEG-estimated peaks in the theta band were much fewer than in iEEG. 

Figure 6-6B shows the probability histogram of peaks identified in iEEG, and ViEEG for an 

example ROI (hippocampus) for one subject. It also shows the value of the percentage difference 

of the number of channels exhibiting peaks in a specific frequency band, as a proportion of the 

total number of channels in that ROI (Peak_estimatedSUBi) (Eq. 4). For instance, iEEG found peaks 

in the theta band, whereas no peak was found in ViEEG channels in this band. This was quantified 

in terms of the percentage difference of the number of channels exhibiting peak, 

Peak_estimatedSUBi = -40% (underestimation) in the theta band. Thus, in the hippocampus, MEG 

clearly underestimated peaks in the delta, theta, and gamma band by 36%, 40%, and 31% 

respectively. On the other hand, we observed a large overestimation of channels exhibiting peaks 

in ViEEG in the alpha band by 83%. In the beta band, the estimation of peaks by ViEEG was 

comparable with those in iEEG (Peak_estimatedSUBi = 0).  The probability histograms of peaks 

identified in iEEG and ViEEG for all 38 ROIs are shown in Fig S6. 
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Figure 6-6: (A) Probability histogram of all identified peaks in all ROIs for iEEG and ViEEG using the 

FOOOF toolbox.  (B) Probability histogram for all identified peaks in hippocampus for iEEG and ViEEG 

for one subject. We also show the percentage difference of the number of channels exhibiting spectral peaks 

in ViEEG compared to iEEG in each spectral band, as a proportion of the total number of channels in the 

ROI. The value of 𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖 ranges from -100% to 100%. The peaks are well estimated by 

ViEEG in comparison with iEEG, for a specific frequency band, if 𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖  is close to zero. 

In Figure 6-7, we summarized the percentage difference of the number of channels exhibiting a 

peak in a specific frequency band for 45 subjects, by plotting the median of Peak_estimatedSUBi 

(calculated for each subject) over 45 subjects and shown for 38 ROIs. Warmer colors indicate an 

overestimation and cooler colors indicate an underestimation of channels exhibiting peaks by 

MEG when compared to the MNI iEEG atlas. We observe that MEG overestimated peaks in the 

alpha band for most ROIs, especially higher in frontal (lateral and medial) ROIs (>40%) and 

deeper ROIs such as hippocampus and amygdala (~100% overestimation). The peaks in the delta 

band were well estimated in most ROIs except the occipital ROIs (like Figure 6-2 and Figure 6-5), 

and deep ROIs such as the hippocampus and posterior cingulate, where peaks were underestimated 

by MEG (<-35%). We observe an underestimation of peaks in beta and theta bands, in frontal and 

central ROIs (both lateral and medial) (<-35%). MEG moderately overestimated beta peaks in 

posterior regions and gamma peaks all over the brain regions. Those regions also showed higher 

relative power in MEG ( Figure 6-2) compared to iEEG.  

 



112 
 

Figure 6-7: Median values of 𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖 over 45 subjects are plotted for 38 ROIs. 

𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖 measures the percentage difference of the number of channels exhibiting spectral 

peaks in ViEEG compared to iEEG, as a proportion of the total number of channels in each ROI, for each 

spectral band and ROI, calculated for each subject i. The value of the median 𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖 over 

all subjects ranged from -100% to 100%. Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖) = +100% indicates that all the 

channels from ViEEG in a ROI (NROI) showed a peak in that frequency band, whereas no peak was 

identified in any of the iEEG channels in that ROI. We called it a 100% overestimation of oscillatory peaks 

by MEG-estimated ViEEG in this ROI. On the contrary, a -100% estimation is obtained when all the iEEG 

channels in a ROI exhibit peaks, but no peak was identified in ViEEG in that ROI, resulting in a 100% 

underestimation. The peaks were better estimated by ViEEG for the ROIs if the median 

(𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖) was close to zero. The values in the color bar are ranging from underestimation (-

100%, negative values, cooler color) to overestimation (+100%, positive values, warmer color) of channels 

exhibiting peak by MEG-estimated ViEEG. 

It is also important to mention that all our results were reported in a common average montage. 

We also produced these results for bipolar montage and a similar pattern was found. Please see 

supplementary Fig S7 and Fig S8 comparing the results from the two montages. Although the 

spectral components recovered by both montages were very reproducible, bipolar montage was 

slightly better at estimating the oscillatory peaks in the alpha band, especially in the frontal regions. 

6.5.5 iEEG and ViEEG amplitude 

In  Figure 6-8, the average amplitude across the iEEG and ViEEG channels in each ROI is plotted 

for the 38 ROIs, where each ROI amplitude was normalized by the average amplitude of all 38 

ROIs (supplementary Fig S9 shows actual values in µV). The mean amplitude across 38 ROIs was 

28.4 µV for iEEG, and 0.67 µV for ViEEG, since underestimation of the amplitude after solving 

the MEG inverse problem was expected by the regularization procedure. Thus, we normalized 

iEEG and ViEEG amplitudes to be comparable. A strong positive correlation (Spearman’s R = 

0.69, p < 0.001) was found for the amplitudes of 38 ROIs between iEEG and ViEEG. In Figure 

6-8, we also plotted the difference of normalized amplitudes between iEEG and ViEEG for each 

ROI and the corresponding t_map (the ROIs with color which were statistically different, Welch’s 

unequal variances t-test, p < 0.05, Bonferroni corrected for 38 ROIs). We represented the absolute 

value of amplitude difference in the bar plot and showed the signed amplitude difference on the 

inflated cortical surface. In the lateral parietal and lateral temporal regions, the ViEEG amplitudes 
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were significantly larger than the iEEG amplitudes (p < 0.05, Bonferroni corrected for 38 ROIs). 

On the other hand, in the medial frontal regions and some deep regions such as the hippocampus, 

the iEEG amplitudes were significantly higher than the MEG-estimated ViEEG amplitudes (p < 

0.05, Bonferroni corrected for 38 ROIs). 

 

Figure 6-8: Average amplitude across the channels in each ROI, normalized by the average amplitude 

across all ROIs. The bar plot shows the absolute difference of normalized amplitude between iEEG and 

ViEEG. The right panel shows the difference of normalized amplitude between iEEG and ViEEG on the 

inflated cortical surface (lateral and medial views) (top) and the corresponding t_map (bottom). For t_map, 

we showed the ROIs which were statistically different (Welch’s unequal variances t-test, p < 0.05, 

Bonferroni corrected for 38 ROIs, positive t corresponding to larger amplitude in iEEG when compared to 

ViEEG). 

We calculated the correlation between the signed amplitude difference and the average overlap 

(calculated in Figure 6-5) for 38 ROIs in all frequency bands. It showed moderate negative 

correlation in alpha band (Spearman’s R = -0.33, p = 0.04) and beta band (Spearman’s R = -0.3, p 

= 0.08). A negative correlation indicates that for regions exhibiting higher ViEEG amplitude when 

compared to iEEG amplitudes, the average overlap between ViEEG and iEEG spectra was better. 
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In delta and theta frequency bands, weak negative correlation was found (δ: Spearman’s R = -0.19, 

p = 0.25, θ: Spearman’s R = -0.22, p = 0.18). No correlation was found in gamma band (Spearman’s 

R = -0.03, p = 0.8).  

6.5.6 Comparison with minimum norm estimate (MNE) and LCMV beamformer 

The comparison among three source imaging methods (i.e. wMEM, MNE and LCMV 

Beamformer) is described in detail in the supplementary material. In Fig S10 and Fig S11, the 

group average of relative PSD is plotted for 38 ROIs for iEEG, and MEG-estimated ViEEG from 

wMEM, MNE, and beamformer. Fig S10 shows that the group average of PSD maps estimated 

from wMEM, MNE, and beamformer are overall similar. Compared to the iEEG atlas (Fig S11), 

ViEEG estimated from MNE underestimated the theta band when compared to wMEM and 

beamformer. An overestimation in the gamma band was found in ViEEG estimated using MNE 

and beamformer. In contrast, ViEEG power in the theta and gamma bands estimated from wMEM 

was in a closer range to iEEG (see details in the supplementary material section S.3). The relative 

PSD estimated by the distributed source imaging methods, wMEM and MNE on the cortical 

surface (Fig S12) also showed similar patterns in all frequency bands, except for gamma (see 

details in the supplementary material section S.2). We also showed a detailed comparison between 

iEEG and ViEEG spectra for four example ROIs (the same presented in Figure 6-4) using MNE 

(Fig S13) and beamformer (Fig S14), before and after removing aperiodic components. Overall, 

for all three methods, MEG-estimated spectra were more comparable to iEEG spectra after we 

removed the aperiodic components (as demonstrated by increased average overlap). The spectra 

provided by wMEM were more accurately estimated in beta and gamma bands when compared to 

the beamformer and MNE (Figure 6-4A, Fig S13A and Fig S14A). In Fig S15, we also plotted the 

aperiodic components estimated from wMEM, MNE and beamformer for those four example 

ROIs, and assessed them using the average overlap metric calculated as described in section 6.4.11.  

We can see that wMEM is performing better than MNE and beamformer in beta and gamma bands.  

Fig S16 summarizes the overlap between the aperiodic components estimated from iEEG and 

ViEEG for all 38 ROIs for wMEM, MNE and beamformer. Further details are found in the 

supplementary materials. 
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6.6 Discussion  

We aimed to assess the reliability of MEG source imaging of awake resting state oscillations by 

comparing with the MNI iEEG atlas as ground truth (Frauscher et al., 2018). We compared MEG-

estimated ViEEG spectra from a healthy group of participants (Pellegrino et al., 2022) with the 

atlas of healthy brain activity, in terms of (i) oscillatory components of the spectra, (ii) oscillatory 

peaks, and (iii) relative power. This is the first study using an iEEG atlas of healthy awake activity 

to validate quantitatively the accuracy of MEG source imaging of resting state activity.  We 

investigated the performance of our source imaging technique, the wavelet based Maximum 

Entropy on the Mean (wMEM) (Aydin et al., 2020; Lina et al., 2012; Pellegrino et al., 2016). A 

quantitative comparison between iEEG and ViEEG spectra showed that the ViEEG spectra were 

closer to the iEEG spectra after the aperiodic components were removed from the spectra ( Figure 

6-5). The estimation of the ViEEG spectra was more accurate in the lateral regions compared to 

the medial regions (Figure 6-5B). Especially better estimation was found in the regions exhibiting 

higher ViEEG amplitude compared to iEEG ( Figure 6-8), such as the lateral parietal, lateral 

temporal, and some lateral occipital regions (Figure 6-5B). We found that the estimation of ViEEG 

resting state spectra was particularly inaccurate in deep regions such as the hippocampus and 

amygdala, for most frequency bands. Our study also found that MEG-estimated spectra were 

dominated by oscillations in the alpha band, especially in anterior and deeper regions, unlike the 

actual in situ measurements from the atlas ( Figure 6-4,  Figure 6-7, Fig S4). This observation is 

consistent with the finding of dominance in alpha oscillations reported in previous studies (Capilla 

et al., 2022; Keitel & Gross, 2016; Mahjoory et al., 2020). In our study, the MNI iEEG atlas as 

ground truth enabled us to quantify the extent of overestimation or underestimation of alpha 

dominance in MEG-estimated spectra. A quantitative comparison of oscillatory peaks showed that 

MEG overestimated peaks in the alpha band in most brain regions, especially in the frontal and 

deep regions ( Figure 6-7). In the delta, theta, and gamma bands, the peaks in the deep regions 

were underestimated, whereas they were more accurately estimated in lateral cortical regions. In 

terms of relative power, the distribution of MEG relative power reported in our study was 

consistent with the previous MEG studies in different frequency bands ( Figure 6-2, Fig S2, Fig 

S12) (Hillebrand et al., 2012; Mahjoory et al., 2020; Mellem et al., 2017; Niso et al., 2016; Niso 

et al., 2019). However, when compared to the MNI iEEG atlas ( Figure 6-2, Fig S3), important 

differences in average relative power were observed in the anterior regions for alpha, in the 
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posterior regions for delta, beta and gamma, and in deep regions (such as hippocampus and 

amygdala) for all bands. Especially in theta, MEG largely underestimated relative power compared 

to iEEG in all brain regions.  

We also calculated the relative power for MEG and performed the spectral comparison using two 

other source imaging methods, depth-weighted MNE and LCMV beamformer (Fig S10-S16), to 

determine if our findings were not mainly driven by our source imaging method, wMEM. Indeed, 

results were overall similar when depth-weighted MNE and beamformer were applied. 

Investigating carefully the comparison between MNE, beamformer and wMEM, ViEEG estimated 

using wMEM exhibited better performance (i.e., closer to iEEG) in relative power, when compared 

to MNE and beamformer, especially in beta and gamma (Fig S11).  

6.6.1 Removing the aperiodic component improves the spectral comparison 

between ViEEG and iEEG 

Electrophysiological power spectra are composed of periodic components, typically characterized 

by spectral peaks and aperiodic components, also known as 1/f-like or arrhythmic components 

(He, 2014). While analyzing electrophysiological power spectra of neuronal oscillations, the 

separation of periodic and aperiodic components allows a better estimation of the periodic 

component (Donoghue et al., 2021; Wen & Liu, 2016). We applied FOOOF (Donoghue et al., 

2020)  to separate the periodic and aperiodic components of the spectra from iEEG and ViEEG. 

We quantitatively compared the iEEG and ViEEG spectra before and after removing the aperiodic 

components. The spectra estimated by MEG became more comparable to iEEG after the aperiodic 

components were removed ( Figure 6-5). This is reflected by the metric average overlap, which 

quantifies the overlap between iEEG and ViEEG spectra. In Figure 6-5A, the average overlap 

values of the spectra, which include the aperiodic components, were very low for all frequency 

bands, with most ROIs exhibiting an average overlap < 0.2. The average overlap values of the 

ROIs were much improved after removing the aperiodic components (Figure 6-5B). This indicates 

that the discrepancies between iEEG and ViEEG spectra were mostly driven by the variations in 

the aperiodic components between the two modalities (Fig S16A). The aperiodic component might 

be generated by spatial interactions among neuronal populations (Aguilar-Velázquez & Guzmán-

Vargas, 2019). The iEEG records brain activity locally, with a spatial sensitivity of less than 1cm 

(von Ellenrieder et al., 2021), and would therefore not pick up all the spatial interactions, leading 
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to a different aperiodic component from the one recorded by the more spatially spread sensitivity 

of scalp EEG or MEG. Moreover, in a recent study based on computational modeling using the 

virtual brain project, we found that anatomical and forward model properties of EEG and MEG 

resulted in different aperiodic components between EEG and MEG (Bénar et al., 2019).  

The differences in the aperiodic components between MEG and iEEG could also result from the 

differences in the inherent mechanism of generation of the signals in those two modalities. The 

local bioelectrical environment contributes to the generation of the local field potential of iEEG 

(Bédard & Destexhe, 2009), whereas MEG mainly originates from the activation of pyramidal 

sources.  

6.6.2 MEG spectra were better estimated in lateral regions than in medial regions 

MEG-estimated spectra were better estimated in lateral regions compared to the medial regions in 

most frequency bands (Figure 6-5B). The lateral parietal and lateral temporal regions in most 

frequency bands showed average overlap values greater than 0.5. In contrast, for most of the medial 

ROIs, the average overlap values were less than 0.5 in all frequency bands (except gamma). We 

found a negative correlation between the signed difference of iEEG and ViEEG amplitude ( Figure 

6-8) and the average overlap values (Figure 6-5B) in all bands except gamma. These negative 

correlations were moderate in the alpha and beta bands, and weak in the delta and theta bands. 

Such negative correlations indicate that average overlap values were better in regions having 

ViEEG amplitudes greater than iEEG amplitudes, which means MEG could estimate the spectra 

from these ROIs more accurately when underlying signals were of larger amplitudes for those 

regions. Example regions include the lateral parietal, lateral temporal, and some lateral occipital 

regions, which exhibited ViEEG amplitudes much higher than iEEG amplitudes ( Figure 6-8) and 

also resulted in higher average overlap (Figure 6-5B). Overall, an important finding was that deep 

regions were not well estimated by MEG; results were similar for wMEM, MNE and beamformer 

(section 6.6.5 and supplementary material). For instance, the average overlap values were less than 

0.3 in the hippocampus for all bands except gamma, and less than 0.25 in the amygdala for all 

bands. The reason for such poor estimation could be the large underestimation of the ViEEG 

amplitude compared to iEEG ( Figure 6-8). Similarly, in the lingual gyrus and occipital fusiform 

gyrus, the ViEEG amplitude was largely underestimated compared to iEEG ( Figure 6-8). The 

average overlap in this ROI was less than 0.25 in all bands except gamma.  



118 
 

6.6.3 Dominance of alpha oscillations in MEG 

Oscillatory peaks in the alpha band were largely overestimated by MEG, especially in frontal 

regions (Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖) = ~45-84%) and deep regions such as the hippocampus 

(Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖) = 86%) and amygdala (Median (𝑃𝑒𝑎𝑘_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑈𝐵𝑖) 

=100%). We found widespread alpha oscillations in all brain regions ( Figure 6-7, Fig S4, Fig S6). 

A quantitative comparison between the spectra from MEG-estimated ViEEG and the atlas (Figure 

6-5B) showed, in most of the lateral frontal and medial regions, an average overlap in alpha of less 

than 0.5. A similar dominance of alpha oscillations in MEG was also reported in MEG resting state 

studies (Capilla et al., 2022; Keitel & Gross, 2016; Mahjoory et al., 2020). Using eyes open MEG 

data, Capilla et al. (2022) reported the dominance of alpha oscillations in all posterior regions. 

Alpha is of much higher amplitude with eyes closed than with eyes open. Thus, with eyes closed 

data, the dominance of alpha oscillations is expected to be more widespread and could explain 

why we found an overestimation of the alpha peak identified in MEG in most frontal regions. On 

the other hand, the large predominance of alpha oscillations found in deeper regions, which also 

had weak amplitudes, could be explained by source leakage from cortical signals getting localized 

with very low amplitude in deep regions. Nunez et al. (2001) and Srinivasan et al. (2006) also 

reported alpha dominance in brain regions with scalp recordings, including frontal regions. It is 

quite evident from intracranial EEG that alpha is not as prominent and widespread as seen from 

scalp recordings, especially not in the frontal regions (Groppe et al., 2013; Penfield & Jasper, 

1954).  

With electrocorticography (ECoG) recordings in patients with epilepsy, Groppe et al. (2013) 

reported that most dominant oscillations tended to be around ~7 Hz (in the theta range), not in the 

alpha range (8-13Hz) typically reported in scalp recordings. This is also evident from the peak 

histogram of iEEG and MEG (Figure 6-5A), iEEG tends to have the highest number of peaks 

around ~7Hz, within theta and alpha bands, whereas MEG peaks were around ~10-12Hz, in much 

higher proportions. Compared to iEEG, MEG underestimated theta and overestimated alpha, 

which was also evident in the relative power calculated in  Figure 6-2. The reason EEG/MEG sees 

higher alpha oscillations might be a phase synchronization over larger extents than other bands 

(Groppe et al., 2013). The iEEG having a very local sensitivity profile, would pick up the activity 

from the alpha band, but also from other bands with low spatial phase synchronization. MEG, on 
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the other hand, having a more extended spatial profile, would pick up the generators of 

synchronous alpha activity interfering constructively, but generators of theta activity (or other 

poorly synchronized bands) would partially cancel out, leading to a dominant alpha rhythm.  

To tackle the dominance of alpha oscillations, a few previous studies normalized each ROI 

spectrum by considering the average spectra of all other brain regions. Such normalization gives a 

measure of the characteristic features of each ROI spectrum compared to other brain regions, 

resulting in a less widespread influence of alpha oscillations in all brain regions (Capilla et al., 

2022; Keitel & Gross, 2016). We did not incorporate such normalization in this study, as we aimed 

to compare the MEG-estimated spectra for each ROI with the MNI iEEG atlas, not with other 

ROIs. We also investigated iEEG and ViEEG data in a bipolar montage (Fig S7 and Fig S8). The 

spectral components estimated by MEG compared to the MNI iEEG atlas were very similar for 

bipolar and average montages (Fig S7). However, the peaks estimated by MEG were less dominant 

in the frontal regions in the alpha band in the bipolar montage, when compared to an average 

reference montage (Fig S8).    

6.6.4 Differences in signal relative power 

A qualitative comparison of relative power between MEG-estimated spectra and the atlas ( Figure 

6-2, Fig S2) showed that in general, both modalities have similar brain distributions, such as strong 

delta and theta power in frontal regions, alpha power in posterior regions, beta power in motor and 

frontal regions, and gamma power in frontal areas. However, when compared to the MNI iEEG 

atlas, the MEG-estimated relative power was spatially much more smoothly distributed. For 

instance, the atlas showed low power in the hippocampus in theta, alpha, and beta bands, in contrast 

to strong power in its neighboring region the para-hippocampal gyrus. In MEG, due to source 

leakage, such separation was not possible, resulting in similar distributions in the para-

hippocampal gyrus, the hippocampus, and the neighboring regions for all frequency bands ( Figure 

6-2, Fig S2). The contrast between strong and weak relative power was reflected in MEG only 

where an extended area in iEEG exhibited a similar contrast. For instance, frontal regions showed 

weak alpha power compared to posterior regions in iEEG, a pattern that was also found in ViEEG 

(Fig S2). Similarly, posterior regions in theta and the orbito-frontal region in beta showed weak 

power compared to other regions within the specific band in iEEG, which were also reflected in 

ViEEG (Fig S2). Due to the source leakage in MSI, subtle changes in relative power in brain 
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regions (as seen in the atlas) were not accurately retrieved using MEG ( Figure 6-2). This was 

particularly the case for deep regions localized with small amplitude in MEG. Similar 

mislocalization patterns were found with wMEM, MNE and beamformer (section 6.6.5, 

supplementary S.3).  

Our MEG relative power maps were quite consistent with previous MEG studies (Niso et al., 2016; 

Niso et al., 2019). We also compared the MEG relative power on the cortical surface and MEG-

estimated ViEEG relative power in the intracranial space in Fig S12 (described in the 

supplementary material). Fig S12 confirms that the conversion from the MEG source map to 

intracranial space (ViEEG) did not add any discrepancy, and the relative power in the virtual 

intracranial space (ViEEG) was concordant with the MEG relative power on the cortical surface.   

6.6.5 wMEM for resting state localization and comparison with MNE and 

beamformer   

We implemented and validated an adapted version of wavelet MEM to solve the inverse problem 

in the context of resting state source imaging. wMEM is a MEM framework specifically designed 

to localize oscillatory brain patterns in the context of EEG/MEG signals utilizing discrete wavelet 

transformation (Daubechies wavelets). Taking advantage of the MEM specific prior model 

(Chowdhury et al., 2013), wMEM can accurately localize the oscillatory patterns together with 

their spatial extent. We further adapted wMEM to localize wide band oscillations in resting state 

EEG/MEG data.  

We observed that this new wMEM demonstrated improvement in localizing the underlying spatial 

extent of the generators when compared to the previous wMEM implementation (Lina et al., 2012) 

(results not shown) and depth-weighted MNE (Fig S1), therefore justifying our rationale for 

incorporating the adaptations when localizing resting state data.  

We also included additional results when considering depth-weighted MNE and beamformer 

source localization in the supplementary material (Fig S10-S16). Overall, we show that the 

findings were not driven by our source imaging method, wMEM. Both MNE and beamformer are 

widely used source imaging methods. For MNE, we performed first source imaging on the cortical 

surface and then applied a forward model to convert MEG current density into intracranial 

electrical potential in µV, for each iEEG contact, as done for wMEM. On the other hand, 
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beamformer estimated the virtual time courses directly on the iEEG contacts locations, consisting 

in local estimates of current density as proposed in Tamilia et al. (2021). For all methods, we found 

an overall similar pattern in terms of relative PSD, and removal of the aperiodic component made 

the spectra estimated from MEG more comparable to iEEG spectra. When compared to iEEG 

spectra, wMEM performed better than MNE and beamformer in the beta and gamma bands (see 

spectra shown in  Figure 6-4, Fig S13, Fig S14 and the estimated aperiodic components shown in 

Fig S15). It is worth mentioning that our method consisting in converting MEG sources into virtual 

iEEG potentials (Abdallah et al., 2022; Grova et al., 2016) offers a solid quantification approach 

to compare MEG sources estimated using different source imaging techniques with actual iEEG 

in situ recordings, taking into account spatial sampling of iEEG data.. 

6.6.6 Limitations 

One limitation of this study is that the normative MNI iEEG atlas was collected from patients with 

epilepsy, although by including only the iEEG electrodes implanted in the brain regions which 

turned out to be healthy. This limitation cannot be overcome, as iEEG data are never collected 

from healthy subjects. Such normative iEEG atlas data are so far the best ground truth and provide 

us with a unique opportunity to validate non-invasive source imaging techniques. Another 

limitation is the heterogeneity of iEEG channels in different ROIs. The sampling of iEEG channels 

was higher in lateral temporal, parietal, and frontal regions compared to medial and occipital 

regions. This might have biased our results, but not severely. We found a mild to moderate positive 

correlation between the number of channels in a ROI and the average overlap value (calculated in 

Figure 6-5B) in delta and beta bands (results not shown). It is worth mentioning that the 

distribution of patients’ age in the iEEG atlas (31±10 Y, range: 13-62 Y) was wider when compared 

to our MEG dataset (28.67 ± 4.13 Y, range: 20-38 Y), and such a difference could affect our spectral 

comparison due to the age-dependency of spectral characteristics (Hoshi & Shigihara, 2020). 

However, these effects are small (Hoshi & Shigihara, 2020) and given the fact that in the iEEG 

atlas, only three patients were above 55 and that the healthy subjects were covering the range 

between the 25% (25 Y) and the 75% (40 Y) quartile of the patients’ age distribution, we believe 

our results to be minimally biased by age. We also combined channels in both hemispheres to 

maximize the sampling and the coverage of the brain. Thus, any effect of hemispheric asymmetry 

on oscillatory characteristics was lost. Also, the MEG data and iEEG data in this study were not 
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simultaneously recorded. Simultaneous iEEG-MEG recordings would give us more opportunities 

to validate region specific spectral components (De Stefano et al., 2022; Pizzo et al., 2019), which 

we plan to do in the future. However simultaneous iEEG-MEG recordings have limited spatial 

sampling, whereas we could study the whole brain with the normative MNI iEEG atlas. 

6.7 Conclusion 

We aimed to address the reliability of MEG source imaging by validating source imaging results 

with the MNI iEEG atlas as ground truth. We quantitatively estimated the concordance of MEG-

estimated spectral components with the atlas and identified the regions for which MEG-estimated 

spectra are reliable and regions for which we should be cautious while interpreting MEG results. 

We found widespread source leakage in the alpha band oscillations in MEG-estimated spectra in 

frontal and deep brain regions, which was present before and after the removal of aperiodic 

components. In the future, we are planning to investigate these issues on simultaneous MEG-iEEG 

data and validate MEG source imaging of spectral components at the single-subject level.  
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7 Manuscript 2 EEG/MEG source imaging of deep brain 

activity within the Maximum Entropy on the Mean 

framework: simulations and validation in epilepsy 

7.1 Preface 

Localizing deep brain activity with EEG/MEG is challenging. In Study 1, when we validated MEG 

source imaging of resting-state oscillations using an intracranial EEG atlas, we found that MEG 

estimation was inaccurate for sources in deep structures such as the hippocampus. Although MEM-

based techniques like cMEM and wMEM have been demonstrated to accurately estimate spatial 

extent, they did not incorporate depth weighting, limiting their ability to localize deep brain 

activity. In this second study of the thesis, we proposed a depth-weighted adaptation of cMEM and 

wMEM to improve the localization of deep generators. We also included an accurate surface 

segmentation of bilateral hippocampi in our source space, to more realistically recover these deep 

generators. We evaluated this method and the required tuning for depth weighting using realistic 

MEG/high-density EEG simulations of epileptic activity across various spatial extents, source 

depths, and signal-to-noise ratio (SNR) levels, as well as actual MEG/HD-EEG recordings from 

patients with focal epilepsy. We compared the proposed method with previous MEM techniques 

and depth-weighted minimum norm estimate (MNE). This chapter includes the published abstract, 

introduction, materials and methods, results, and discussions. Details of the depth-weighted MEM 

implementations are provided in Appendix B for manuscript 2 in Chapter 7 which is reported at 

the very end of this thesis. 

This manuscript was published as:  

Afnan, J; Cai, Z; Lina, J.M.; Abdallah, C; Delaire, E.; Avigdor, T.; Ros, V.; Hedrich, T.; von 

Ellenrieder, N.; Kobayashi, E.; Frauscher, B; Gotman, J., and Grova, C., 2024. EEG/MEG source 

imaging of deep brain activity within the Maximum Entropy on the Mean framework: simulations 

and validation in epilepsy. Human Brain Mapping. 2024 Jul 15;45(10):e26720. doi: 

https://doi.org/10.1002/hbm.26720  
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7.2 Abstract 

Electro/Magneto- EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity 

from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial 

regions and to the spatial configuration of subcortical structures. We previously demonstrated the 

ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the 

superficial cortical generators and their spatial extent. Here, we propose a depth-weighted 

adaptation of cMEM to localize deep generators more accurately. These methods were evaluated 

using realistic MEG / high-density EEG (HD-EEG) simulations of epileptic activity and actual 

EEG/HD-MEG recordings from patients with focal epilepsy.  

We incorporated depth-weighting within the MEM framework to compensate for its preference for 

superficial generators. We also included a mesh of both hippocampi, as an additional deep structure 

in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for 

MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) 

levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. 

Clinical interictal epileptic discharges were marked by visual inspection. We applied 3 EMSI 

methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). 

The ground truth was defined as the true simulated generator or as a drawn region based on clinical 

information available for patients.  

For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and 

depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy 

for superficial regions. For patients’ data, we observed improvement in localization for deep 

sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to 

reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG 

(gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting 

for the wavelet extension of MEM. 

In conclusion, depth-weighted cMEM improved the localization of deep sources without or with 

minimal deterioration of the localization of the superficial sources. This was demonstrated using 

extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy 

patients.   
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7.3 Introduction 

In addition to seizures, patients with epilepsy present inter-ictal epileptic discharges (IED), 

characterized by spontaneous abnormal neuronal discharges usually generated from regions 

overlapping with the regions generating seizures (Hauf et al., 2012), but without clinical 

manifestation. IEDs occur more frequently than seizures and the localization of IED generators is 

crucial during the  pre-surgical evaluation of patients with drug-resistant epilepsy (Bautista et al., 

1999; Hufnagel et al., 2000).  

Electro/Magneto- EncephaloGraphy (EEG/MEG) are widely used non-invasive techniques to 

detect IEDs and delineate the seizure onset zone and irritative zone (Rosenow & Lüders, 2001). 

The ability of EEG/MEG to detect deep brain activity is often debated, especially for MEG 

(Barkley & Baumgartner, 2003; Kaiboriboon et al., 2010; Leijten et al., 2003; Rampp & Stefan, 

2007; Shigeto et al., 2002). Detection and localization of deep subcortical sources by EEG/MEG 

is challenging for several reasons: (i) rapid attenuation of the signals generated from deep 

structures as a function of the distance of the generator to the EEG/MEG sensors, which is more 

pronounced for MEG when considering gradiometers (Barkley & Baumgartner, 2003; Malmivuo 

& Plonsey, 1995). (ii) ‘closed field’ structure of the subcortical regions such that the generators 

cancel each other (Lorente De Nó, 1947; Murakami & Okada, 2006) and are difficult to detect by 

distant sensors and (iii) signals from deep structures propagate rapidly to the lateral cortex resulting 

in the superposition of the low signal to noise ratio (SNR) signals from deep structures and high 

SNR signals from superficial regions; this makes it difficult to disentangle those sources (Attal & 

Schwartz, 2013; Benar et al., 2021). This is especially true for mesial temporal lobe epilepsy, a 

common type of epilepsy where the IEDs generated in mesial temporal regions propagate to 

neocortical temporal regions with a 10 to 50 ms delay (Merlet & Gotman, 1999). However, 

compelling evidence is available now suggesting that deep brain activity can be recorded by EEG 

(Seeber et al., 2019) and MEG (Alberto et al., 2021; Kaiboriboon et al., 2010), as demonstrated by 

simultaneously recorded intracranial EEG (Dalal et al., 2009; Koessler et al., 2015; Pizzo et al., 

2019). 
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The spatiotemporal localization of underlying neuronal generators from EEG/MEG sensors, called 

EEG/MEG source imaging (EMSI), is an ill-posed inverse problem. Solving the ill-posed EMSI 

problem requires making assumptions (constraints added for regularization), which vary for 

different methods. Minimum-norm estimate (MNE) is a widely used EMSI method (Hämäläinen 

& Ilmoniemi, 1994) choosing the solution that best fits the sensor data with a minimum overall 

energy of brain activity.  As the amplitude of electrical potentials or magnetic fields decreases with 

the square of the distance from generators to sensors, EEG and MEG sensors have a higher 

sensitivity to superficial compared to deep generators  (Heller & van Hulsteyn, 1992). Because of 

the constraint of minimum energy,  standard MNE solutions have natural preferences toward 

localizing activity in superficial sources for which the sensors are more sensitive (Jeffs et al., 1987; 

Uutela et al., 1999), resulting in an underestimation of deep sources. A depth-weighted version of 

MNE was proposed (Fuchs et al., 1999; Jeffs et al., 1987; Lin et al., 2006) to improve the accuracy 

of source localization for deep sources, by weighting the covariance structure of the source to 

allow enhancing activity from deep generators. In parallel, two noise-normalized versions of MNE 

have been proposed, dynamic statistical parametric mapping (dSPM) (Dale et al., 2000) and 

standardized low-resolution electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002). 

These noise-normalized versions of MNE also allow for enhancing the contribution of deep 

sources when solving the EMSI problem (Lin et al., 2006). Exploiting the depth-weighted and 

noise-normalized versions of MNE, while using a realistic anatomical and electrophysiological 

model of deep brain activity, Attal and Schwartz (2013) showed that signals from subcortical 

sources can be detected by MEG with good accuracy, especially when considering single source 

activation. The localization from subcortical regions becomes more challenging when a cortical 

source is simultaneously active. In Attal and Schwartz (2013), for accurate localization,  the 

simulated subcortical activity had an energy SNR of 20 (amplitude SNR of ~4.5 or 13dB), which 

roughly corresponds to an evoked cortical MEG response obtained after averaging ~ 100 to 200 

trials. In a low SNR scenario, which is usually the case for single events generated from deep 

structures, EEG/MEG source localization remains quite challenging. In addition, to study deep 

brain activity, an interesting anatomical and electrophysiological model was proposed by Attal et 

al. (2009) and Attal and Schwartz (2013). Depending on the types of neural generators (open and 

closed field cells) and their preferred orientation, subcortical structures were modeled as volume 

grids or surface meshes.  The thalamus, striatum, and amygdala were modeled by placing current 
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dipoles on the volume grid with random orientation; the hippocampus was modeled as a surface 

mesh placing the current dipoles orthogonally to the surface (similar to cortical source space) (Attal 

& Schwartz, 2013; Meyer et al., 2017). 

In the context of epilepsy, recovering the spatial extent of the generator is also of importance in 

addition to localizing its origin. It has been reported that the generators of IEDs often are associated 

with a large area of cortex, for instance with a minimum area of 4-8 cm2 for EEG (Ebersole, 1997; 

Merlet & Gotman, 1999; Tao et al., 2007; Von Ellenrieder et al., 2014) and 3-4 cm2 for MEG (Hari, 

1990; Mikuni et al., 1997; Oishi et al., 2002). The Maximum Entropy on the Mean (MEM) is an 

EMSI technique that can accurately localize the superficial generators together with their spatial 

extent, which we previously demonstrated for coherent MEM (cMEM), the standard variant of 

MEM, assuming a stable parcellation of the brain along time in the prior model and which is ideal 

for localization of epileptic spikes (Abdallah et al., 2022; Chowdhury et al., 2016; Chowdhury et 

al., 2013; Grova et al., 2006). Our team also developed the wavelet MEM (wMEM) which is 

another variant of MEM, designed to localize the oscillatory components by transforming the data 

in the time-frequency domain before applying MEM localization (Afnan et al., 2023; Lina et al., 

2012). In the present study, we propose a depth-weighted extension of cMEM and wMEM, 

following the depth-weighted strategy implemented by Cai et al. (2022) to reconstruct functional 

Near-InfraRed Spectroscopy data. We also added the hippocampus as a surface mesh in our source 

model, as proposed by Attal et al. (2009). Our objective is to demonstrate the ability of depth-

weighted MEM methods to localize deep generators accurately while largely retaining their ability 

to localize superficial generators. We considered high-density EEG (HD-EEG) and MEG realistic 

simulations of single-source epileptic activity (Chowdhury et al., 2013; Grova et al., 2006) as well 

as more complex scenarios involving epileptic activity in the hippocampus and neocortical regions. 

The mixed sources scenario was generated to mimic IEDs in mesial temporal lobe epilepsy 

characterized by initial mesial activity followed by propagated neocortical activity (Merlet & 

Gotman, 1999). Finally, we evaluated the performance of depth-weighted MEM methods with 

IEDs recorded from HD-EEG and MEG in patients with focal epilepsy for whom the presumed 

localization of the focus was defined as a region along the cortical surface (including the 

hippocampus) using all available information from presurgical evaluation. 
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7.4 Materials and methods 

7.4.1 Experimental design 

The analysis pipeline is summarized in  Figure 7-1. We propose depth-weighting in cMEM 

implementation (section 7.4.2). The depth-weighted cMEM was first evaluated using realistic 

simulations of IED on MEG and HD-EEG (section 7.4.3), before localizing actual IEDs from 

MEG, and HD-EEG (section 7.4.6) from patients with drug-resistant focal epilepsy. The proposed 

method was compared with standard cMEM and depth-weighted MNE. We included a surface of 

both hippocampi, as an additional deep structure in the source model (section 7.4.7). 

 

Figure 7-1 Analysis pipeline to evaluate depth-weighted cMEM compared to standard cMEM and depth-

weighted MNE using MEG and HD-EEG simulations of epileptic discharges, as well as actual interictal 

epileptic discharges from MEG and HD-EEG in patients with focal epilepsy.  

7.4.2 Maximum entropy on the mean method and depth weighting 

The EEG/MEG inverse problem was solved using the Maximum Entropy on the Mean (MEM) 

(Amblard et al., 2004; Chowdhury et al., 2013). The key feature of this method is that it relies on 

a flexible spatial prior, assuming that brain activity is organized in cortical parcels. The activity of 

every parcel is scaled by the probability of activation of every parcel, which is tuned through a 

hidden state variable. When the parcel is active, a Gaussian distribution is used as the prior of the activity within 

the parcel. When the parcel is inactive, a Dirac distribution is considered that allows to shut down 

the activity from this parcel. Starting from such a prior “reference” distribution, the model is fitted 
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to data by maximizing the relative entropy between the solution and the prior. As a result, MEM 

can either switch off or switch on the parcels during the localization process, while still allowing 

local contrast on the cortical surface within the active parcels. MEM provides accurate localization 

of the generators together with their spatial extent, as demonstrated by the standard variant of 

MEM, cMEM (Abdallah et al., 2022; Chowdhury et al., 2016; Chowdhury et al., 2013; Grova et 

al., 2016), as well as the wavelet-based extension, wMEM (Lina et al., 2012; Pellegrino et al., 

2016; von Ellenrieder et al., 2016). For coherent MEM (cMEM), the term “coherent” refers to the 

fact that we are using a coherent spatial prior, i.e. a data driven parcellation which is fixed along 

time (Abdallah et al., 2022; Chowdhury et al., 2016; Chowdhury et al., 2013; Grova et al., 2016). 

wMEM consists in applying first a discrete wavelet transformation (Daubechies wavelets) to 

characterize the oscillatory patterns in the data before considering the MEM solver to solve the 

EMSI problem (Lina et al., 2012). cMEM and wMEM implementations are available in the 

BrainEntropy plugin of Brainstorm software (Tadel et al., 2011) 

(https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/).  

cMEM/wMEM for EMSI have a preference toward superficial solutions (Afnan et al., 2023; Grova 

et al., 2006), since so far, we have not considered any depth-weighted strategy for both methods. 

On the other hand, depth weighted strategy is commonly considered for MNE (Hämäläinen & 

Ilmoniemi, 1994) and Beamformer (Van Veen et al., 1997). To solve the EMSI inverse problem 

for each source location, the uncertainty of the activity of the underlying sources is modeled by 

the source covariance matrix. Deeper sources tend to have greater uncertainty in EMSI, resulting 

in higher values in the covariance matrix compared to superficial sources. Therefore, an a priori 

source covariance matrix should appropriately account for the variance differences across source 

locations. To do so, the diagonal of the source covariance can be weighted by the forward model 

of each source, quantifying the influence of source depth of each source at a specific power 𝜔. 

This standard approach is used as a default implementation of depth-weighted MNE (Fuchs et al., 

1999; Lin et al., 2006). A similar depth-weighted strategy was implemented within the cMEM 

framework by Cai et al. (2022) for the reconstruction of functional Near-InfraRed Spectroscopy 

data. We weighted the source covariance for each parcel when generating the spatial prior (see 

additional details in the Appendix B). The depth weighting parameter was set to 𝜔 = 0.5 as this is 

also used as a default value for depth-weighted MNE implemented in Brainstorm. We also 

https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/
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investigated the depth weighting parameter ω for a range of values: ω = 0.1, 0.3, 0.5, 0.7 and 0.9.  

The results are presented in the supplementary material.  

Here, we evaluated the newly proposed depth-weighted cMEM (cMEMω, ω being the depth 

weighting factor) and compared with original cMEM (no depth-weighted) and depth-weighted 

MNE (MNEω) using first simulated IEDs (section 7.4.3) and then actual IEDs from MEG and HD-

EEG (section 7.4.6). To calculate the noise covariance, we used two seconds of resting state data 

from each subject. For MNEω, we estimated the regularization hypermeter λ by using the SNR of 

the data, as λ=1/SNR2, with the SNR set to 3 (default value in Brainstorm).  

We applied a similar depth weighting strategy for wMEM and validated it using the same dataset 

of simulated IEDs. Since wMEM considers discrete wavelets and is designed to localize oscillatory 

components of the signals, IEDs signals might not be ideal for validation of wMEM. However, 

our focus was on the improvement of depth-weighted wMEM (wMEMω) compared to original 

wMEM, not on the comparison between wMEM and cMEM. We compared wMEMω with cMEM, 

wMEM, cMEMω and MNEω in section 7.5.5 and Supplementary material S1. However, since this 

study focuses mainly on cMEM and cMEMω, the wMEM results are reported in the Supplementary 

Material.  

7.4.3 MEG and HD-EEG realistic simulations  

7.4.3.1 Realistic simulation parameters 

The realistic simulation framework was developed by adding simulated epileptic activity to a real 

MEG or HD-EEG resting state background  (Chowdhury et al., 2016; Grova et al., 2006; Lina et 

al., 2012) using the following steps: (i) the time course of an interictal epileptic spike was modeled 

with three gamma functions for each vertex within a specific generator defined along the cortical 

surface (ii) the simulated time courses of the generator defined in the source space were multiplied 

by the forward model to obtain sensor level data (more details in Chowdhury et al. (2013) and 

Grova et al. (2006)); (iii) the simulated sensor level data was finally superimposed on real resting 

state MEG or HD-EEG background obtained from a healthy subject. The maximum amplitude of 

each vertex of the simulated source was set to 2.85 nA.m. This value has been chosen to mimic 

the realistic amplitude of a typical epileptic spike. In each simulation, one trial of background HD-

EEG/MEG was used, thus mimicking the occurrence of a single non-averaged epileptic spike. The 
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simulations were prepared separately for MEG and HD-EEG using resting state data and head 

models obtained from two different healthy subjects. 

The spatial extent (SE) of the generator was obtained by expanding the region around a randomly 

chosen location (called the seed) in a geodesic manner on the cortical surface (or hippocampus 

surface), using different spatial neighborhood order. The actual SNR of the simulated sensor signal 

was defined as the ratio of maximum activity at the peak of the simulated epileptic activity to the 

standard deviation estimated within 300 ms background activity for the channel exhibiting this 

peak (Eq 1). 

𝑆𝑁𝑅 (𝑑𝐵) = 20𝑙𝑜𝑔10
|maximum activity at the peak |

  standard deviation for 300 ms background  
                (1)  

Depending on the location and spatial extent of the generator, the SNR of the sensor-level signal 

varied, although the signal strength of the generators for each vertex was kept equal to S0 = 2.85 

nA.m at the peak of the simulated spikes. In other words, the SNR of the simulations varied 

depending on the location, spatial extent and orientation of the sources. As expected, it was higher 

for the superficial sources and lower for the deep sources and resulted in relatively realistic SNR 

expected at the sensor level (see supplementary Fig S1 and S2 for actual sensor level SNR of the 

simulated signals).   

Simulation of a single epileptic source: For each modality (MEG/HD-EEG), we generated 2700 

simulations for 3 levels of the spatial extent (i.e. spatial neighborhood order around the seed) of 

the generators (SE=2 (~5cm2), 3 (~10cm2), 4 (20cm2)) and 3 levels of source amplitude strength   

(2S0, 3S0, 4S0 where S0 = 2.85 nA.m), while keeping the amplitude of sensor level background at 

the same level. Since changing source amplitude strength directly impacted SNR at the sensor 

level, for simplification purposes, we denoted these 3 levels of source strengths as the SNR of 

2,3,4 in this document. For each combination of SE and SNR, 300 simulations were performed 

where the location of each generator was selected randomly on the cortical or hippocampal 

surfaces. The proportion of simulated generators involving the hippocampus for each combination 

was 2.2 ± 0.8 % for MEG and 1.9 ± 0.3% for HD-EEG. The resulting sensor level SNRs of those 

hippocampal generators were 11.3 ± 4.09 dB for MEG and 18 ±4.6 dB for HD-EEG. In Fig S3, 

we showed all the single hippocampal sources generated among the total 300 MEG simulations, 

considering one combination of SE and SNR (SE3 SNR2). We also reported the amplitude of the 

sensor exhibiting the highest amplitude and the corresponding sensor-level SNR. In addition, Fig 
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S4 illustrates the decomposition of the simulated signals into the simulated spike and the MEG 

background for two examples in Fig S3. 

Simulation of the mixture of cortical and hippocampal sources in MEG: We also simulated 100 

sets of epileptic activity on MEG, involving a mixture of two generators, one in the hippocampus 

and the other in the lateral temporal cortex with a 15ms delay. These simulations mimicked typical 

epileptic discharges in a mesial temporal epilepsy case, where the signal is generated in the 

hippocampus and rapidly propagates to the lateral part of the temporal cortex (Merlet & Gotman, 

1999). The seeds were chosen randomly but restricted to the hippocampus and the ipsilateral 

temporal cortex. Unlike the single source simulations in the hippocampus (low SNR), we 

generated higher SNR signals in the hippocampus for this set by increasing the number of vertices 

in the hippocampus (see section 7.4.7). The resulting sensor level SNR of the simulated signals 

was 14 ±4.3 dB for the hippocampal generators and 20 ± 5.4 dB for the cortical generators. The 

average spatial extent was ~6 cm2 for hippocampal sources and ~10 cm2 for cortical sources. 

7.4.4 Resting-state data acquisition for simulation 

The resting state MEG and HD-EEG trials were acquired from two different healthy subjects  

(Hedrich et al., 2017). These studies (Principal Investigator: Dr. C. Grova) were approved by the 

Research Ethics Board of the Montreal Neurological Institute and Hospital and a written informed 

consent was signed by all participants before the procedures. MEG: We acquired MEG in a 

magnetically shielded room at the MEG center of the Montreal Neurological Institute (MNI) using 

a 275-channel CTF system (MISL, Vancouver, Canada) with a sampling rate of 1200 Hz. The 

participant was seated and instructed to keep eyes open. Continuous head localization was obtained 

using three localization coils attached to the nasion and left and right peri-auricular points on each 

subject. The exact position of the localization coils, as well as the shape of the head of the subject, 

were digitized with a 3D Polhemus localizer for subsequent coregistration with the anatomical 

MRI. The co-registration was done using the skin surface segmented from a high-resolution T1 

weighted MRI acquired on the same subject at the MRI center of the MNI. The iterative closest 

point algorithm implemented in Brainstorm (Tadel et al., 2019) was used to ensure accurate 

coregistration between the skin mesh segmented from the MRI and the head shape digitized using 

the 3D Polhemus localizer, to estimate a rigid transformation matrix (3 rotations, 3 translations).  

HD-EEG: HD-EEG was recorded using a 256-electrode EGI system (Magstim Electrical 
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Geodesics Inc., Eugene, Oregon) with a sampling rate of 1000 Hz. A high-resolution T1-weighted 

MRI was acquired on the same subject using the scanner located at the MNI. Co-registration was 

done using individual T1 MRI and EEG sensor positions estimated using the Geodesic 

Photogrammetry System (GPS, Electrical Geodesic Inc., Eugene, OR) (Hedrich et al., 2017). The 

same coregistration approach employed for MEG was applied to HD-EEG and MRI. 

7.4.5 Data preprocessing 

The selected data were investigated to remove artifacts from eye blinks and muscle activity.    

Cardiac artifact and eye movement artifacts were removed from HD-EEG and MEG using Signal 

Space Projection method (Uusitalo & Ilmoniemi, 1997). The preprocessing included applying a 

bandpass filter between 0.3-70Hz, a notch filter at 60Hz, noisy channels removal, and 

downsampling to 600Hz. For MEG, the third-order gradient compensation was also applied. A 

total of 103 segments each lasting 0.7s were extracted from the clean MEG data. A total of 50 

segments of 0.7s were extracted from the clean HD-EEG data. These segments were selected to 

be added as background realistic noise to simulated epileptic spikes.  

7.4.6 IEDs from patients with focal epilepsy 

For patients’ data, both MEG and HD-EEG studies were approved by the Research Ethics Board 

of the Montreal Neurological Institute and Hospital and a written informed consent was signed by 

all participants before the procedures.  

MEG: MEG from 14 patients with focal epilepsy (7 F; mean age, 31.4 ± 11.0 Y, 8 mesial temporal) 

were acquired in supine position on the same 275-channel CTF system as mentioned in section 

7.4.4 at 1200Hz sampling rate. MEG data were acquired between 2008 and 2018 for presurgical 

evaluation (see Supplementary Table 1). We included patients for whom at least 5 IEDs were 

marked by visual inspection and enough clinical information was available to estimate a reasonable 

ground truth (by C.A and V. R). MEG was performed with the patient lying down in a supine 

position, lasting ~1 hour (10 runs of 6 minutes each). HD-EEG: The HD-EEG patient cohort 

included 16 patients (7 F; mean age, 33.6 ± 10.9 Y, 9 mesial temporal) with drug-resistant focal 

epilepsy who underwent 24 - 48 hour long HD-EEG recordings (83 electrodes, sampling 1000Hz) 

during presurgical evaluation at the MNI epilepsy unit between 2019 and 2022 (see Supplementary 

Table 2). The HD-EEG dataset was part of another study published by our group (Avigdor et al., 
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2024). HD-EEG was performed using the Nihon Koden system (Tokyo, Japan) using 83 collodion 

glued electrodes (10-10 EEG system). Note that we used a different HD-EEG system (256-

electrode Magstim EGI system) for recording background activity from healthy participants. Co-

registration for MEG and HD-EEG with corresponding anatomical MRI was done as described in 

section 7.4.4. Preprocessing of data included: bandpass filtered between 0.3-70Hz, notch filter at 

60Hz, downsampling to 600 Hz and removal of channels with artifacts by visual inspection. EEG 

data were analyzed using average reference montage.  

Marking of IEDs and clinical ground truth: IEDs were visually marked by a board-certified 

epileptologist (MEG: C.A. and V.R., HD-EEG: C.A and B.F.). The number of IEDs marked for 

each patient is summarized in Supplementary Tables 1 and 2. We analyzed the average IED for 

each patient, considering a 200ms window around the peak of the IED. To quantify the accuracy 

of source imaging, the presumed clinical ground truth for each patient was drawn as a region on 

the cortical surface (including the hippocampus) using all clinical information available from 

presurgical evaluation with long-term video EEG monitoring,  anatomical MRI,  

fluorodeoxyglucose-positron emission tomographic,  neuropsychological evaluation, intracranial 

EEG results or surgical cavity drawn using pre- and post-surgical MRI for patients who became 

seizure-free (for MEG), varying based on the availability of the information.  Our evaluation was 

therefore performed based on a semi-quantitative definition of the presumed ground truth, as 

reported in our previous studies (Pellegrino et al., 2018; Pellegrino, Xu, et al., 2020).  

7.4.7 Source space and forward model estimation 

Brain segmentation and reconstruction of the white/gray matter interface for the cortex were 

obtained using recon-all from FreeSurfer software package (Dale et al., 1999). The subcortical 

structures were also segmented using FreeSurfer. The subsequent analysis to create the source 

model and forward model was conducted in Brainstorm (Tadel et al., 2011). We considered the 

cortical mesh of the middle layer which is equidistant from the white matter and pial surfaces 

consisting of ~300,000 vertices. We included the two hippocampi from the subcortical structures. 

Each hippocampus consisted of ~3000-4000 vertices (depending on the subject anatomy). For both 

the cortex and the hippocampus, the sources were located on the surface of the structures with a 

fixed orientation orthogonal to the surface at each point. Then we merged the cortical and 

hippocampal surfaces and downsampled the source space to ~8000 vertices. This resulted in ~4 
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vertices/cm2 on the cortical and the hippocampal surface. A uniform density of vertices was used 

for both surfaces for simulations of single source generators and patients’ data. Only for the 

simulations of mixed sources in MEG (section 7.4.3), we used a source model where the density 

of vertices was double in the hippocampus (~8 vertices/cm2). The reason was to generate higher 

SNR simulations in the hippocampus while keeping other simulation parameters similar compared 

to single source simulations. Once our source space was defined, the forward model was computed 

using OpenMEEG software using a 3-layer Boundary Element model (BEM) (Kybic et al., 2005) 

consisting of brain, skull, and scalp surfaces with conductivity values of 0.33, 0.0165, and 0.33S 

m-1, respectively (Zhang et al., 2006).  

7.4.8 Validation metrics 

The performance of three source imaging methods (cMEM, cMEMω and MNEω) was assessed 

using the following three validation metrics (i) Area Under the ROC Curve (AUC): A detection 

accuracy index to assess the sensitivity to the spatial extent of the sources in the context of 

distributed sources model (adapted by Grova et al. (2006) for the specific problem of EMSI 

validation while allowing unbiased estimates, more details provided in Chowdhury et al. (2013)). 

(ii) Dmin: the minimum distance localization error was the Euclidean distance in mm from the 

maximum of the map to the closest vertex belonging to the ground truth. When this maximum was 

located inside the simulated source, Dmin was set to 0 mm (Hedrich et al., 2017) (iii) Spatial 

dispersion (SD): the SD metric measured the spatial spread (in mm) of the localization around the 

Ground Truth. To estimate SD, we considered the root mean square of the square of the distance 

from the estimated source to the ground truth weighted by the energy of the source localization 

map at each vertex (Hedrich et al., 2017). For each IED, we estimated those metrics at the peak of 

the IEDs for simulations, and at the midpoint of the rising spike for patients’ averaged IEDs. We 

assessed AUC, SD, and Dmin of each simulated source as a function of the eccentricity of the source, 

defined as the mean of the distance between all the vertices in the ground truth and the center of 

the head. Deep sources have therefore low eccentricity and superficial sources have high 

eccentricity. We applied the non-parametric Friedman test to compare the three source imaging 

methods (Durbin-Conover test for pair-wise comparisons, p-value corrected for multiple 

comparisons using Bonferroni). Similar analyses were also performed to evaluate wMEM and 

wMEMω methods, results are reported in the supplementary material.  
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7.5 Results 

7.5.1 Simulation of single epileptic source: MEG 

 Figure 7-2 summarizes the performance of our three validation metrics – AUC, SD and Dmin for 

cMEM, cMEMω and MNEω estimated for 300 MEG simulations with spatial extent SE=3 (11.8 ± 

2.1 cm2) and SNR=2 (11.6 ± 5.4 dB). Figure 7-2D shows the average eccentricity values for those 

300 generators. In  Figure 7-2, the metrics are shown as colormap for 300 generators, where all 

the vertices within a generator are represented by one color associated with the value of the 

corresponding metric. The AUC values were overall improved when considering cMEMω in 

comparison to cMEM, especially in mesial regions. cMEMω performances in terms of SD and Dmin 

were also improved in deeper regions when compared to cMEM. Both cMEM and cMEMω 

exhibited smaller SD values when compared to MNEω.  
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Figure 7-2: (A) AUC, (B) SD, and (C) Dmin for three source imaging methods are shown on the cortical 

surface at the locations of 300 simulated sources in MEG. The average eccentricity values for those 300 

generators are shown in (D). Each parcel is one simulated source with the color representing the metric 

value associated with it. Regions where no sources were generated are shown as grey. When there was 

overlap between sources, a line was superimposed on the new color to illustrate the overlap from the 

previous source. Increases in AUC and decreases in SD and Dmin by cMEMω were observed mostly for the 

medial regions, whereas cMEMω and cMEM presented similar performances for superficial sources. Brain 

maps are shown for 6 views: right lateral, left lateral, right medial, left medial, hippocampi top and 

hippocampi bottom. 

The improvement in localization for deep sources by cMEMω compared to cMEM is more clearly 

presented in  Figure 7-3, which illustrates that cMEMω improved the localization mostly on the 

medial side (deep sources) without or with minimal worsening of the localization in the lateral and 

superficial regions. The statistical comparisons for these maps are presented in  Figure 7-4 for deep 

sources and Fig S5 for superficial sources. 
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Figure 7-3: The differences in AUC, SD, and Dmin between cMEMω and cMEM (cMEMω – cMEM) are 

shown on the cortical surface at the locations of 300 simulated sources in MEG. Increases in AUC and 

decreases in SD and Dmin (warmer color) were observed mostly for the deeper regions. Regions where no 

sources were generated are shown as grey. When there was overlap between sources, a line was 

superimposed on the new color to illustrate the overlap from the previous source. Brain maps are shown 

for 6 views: right lateral, left lateral, right medial, left medial, hippocampi top and hippocampi bottom. 

Figure 7-4A presents the detailed distributions of validation metrics AUC, SD and Dmin as a 

function of eccentricity for the 300 MEG simulations shown in  Figure 7-2 and Figure 7-3. Similar 

to Figure 7-3,  Figure 7-4 shows that the localization improved for regions with low eccentricity 

(0 - 60 mm, deep sources). We compared the metrics for cMEMω, cMEM and MNEω for regions 

with eccentricity less than 60 mm ( Figure 7-4 B1, B2, B3). The localization for those regions was 

significantly improved by cMEMω compared to cMEM in terms of AUC, SD and Dmin (p < 0.001, 

AUCcMEMω-cMEM: 0.14 ± 0.11, SDcMEM-cMEMω: 3.9 ± 2.8 mm, DmincMEM-cMEMω: 3.1 ± 3.3 mm, the 

effect being reported as median ± median absolute deviation of the difference between cMEMω 

and cMEM. Compared to MNEω, the localization was also significantly improved by cMEMω in 

terms of AUC and SD (p < 0.001, AUCcMEMω-MNEω: 0.11 ± 0.07, SDMNEω -cMEMω 19.5 ± 5.6 mm). 

Dmin by cMEMω was also improved when compared to MNEω but did not pass the significance 

threshold (DminMNEω-cMEMω: 0.3 ± 7.6 mm). 

For regions with eccentricity > 60mm (Fig S5), the AUC and Dmin for cMEMω were overall similar 

to cMEM (AUCcMEMω-cMEM:  -0.01±0.02, DmincMEM-cMEMω: 0.0 ± 0.0 mm). The SD was slightly 

worsened by cMEMω when compared to cMEM (p < 0.001, SDcMEM-cMEMω: -2.9 ± 1.8 mm). 

However, the SD was significantly improved by cMEMω compared to MNEω (p < 0.001, SDMNEω 

-cMEMω: 23.8 ± 5.3 mm). In terms of SD, both cMEM and cMEMω were still largely significantly 

lower than MNEω (p < 0.001, SDMNEω-cMEM: 26.0 ± 4.9 mm). The lowest median Dmin was found 

for MNEω, however, it was not significantly lower than cMEMω. See also supplementary figures 

S6 -S16 for 2400 MEG simulations with other combinations of SE and SNR. Similar improvement 

by cMEMω was found compared to cMEM and MNEω for all combinations.  

Supplementary Fig S17 presents the distribution of AUC, SD and Dmin for 300 MEG simulations 

as a function of eccentricity for cMEMω for five different values of depth weighting parameter ω 

(ω = 0.1, 0.3, 0.5, 0.7, and 0.9). As ω increases, the localization accuracy for deep sources 
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improves. However, for higher ω values, localization for superficial sources deteriorates, as 

observed in SD for ω = 0.7, 0.9, and in AUC, SD, and Dmin for ω = 0.9. 

 

Figure 7-4: For 300 MEG simulations at SE=3 and SNR =2, the plot of AUC (A1), SD (A2), and Dmin (A3) 

as a function of eccentricity for cMEM, cMEMω and MNEω. The comparison of the three methods is 

summarized for AUC (B1), SD (B2), and Dmin (B3) for 99 (out of 300) sources with an eccentricity of less 

than 60 mm. On each boxplot, the central mark indicates the median, and the bottom and top edges of the 
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box indicate the 25th and 75th percentiles, respectively. If the groups are statistically different after post-

hoc analysis, the significance levels are shown as: ‘***’ for p < 0.001, ‘**’ for p < 0.01, and ‘*’ for p < 

0.05. 

7.5.2 Simulation of mixed sources in the hippocampus and the neocortex in MEG 

 Figure 7-5 shows an example simulation of a complex or mixed source scenario, the first 

simulated generator is in the hippocampus (peak at 358 ms) and is followed by another generator 

along the lateral temporal cortex after a 15 ms delay (peak at 373 ms), mimicking a situation likely 

occurring in patients with mesial temporal lobe epilepsy. We calculated the metrics at 358 ms for 

the hippocampus and at 373 ms for the neocortex, considering the two sources are independent. 

We considered the whole cortex when estimating the metrics for both sources. For the hippocampal 

source, cMEMω localized the generator whereas cMEM failed, as reflected by AUC, SD and Dmin. 

The metrics by cMEM and cMEMω were (cMEM/cMEMω): AUC:0.38/0.74, SD: 

25.9mm/20.2mm, Dmin: 25.3mm/24.9mm. The metrics for MNEω for the hippocampal source 

were: AUC: 0.71, SD: 34.5mm, Dmin: 23.5mm. For the superficial source at 373 ms, both cMEM 

and cMEMω localized the generator. The metrics for cMEM and cMEMω were (cMEM/ cMEMω): 

AUC:0.93/0.90, SD: 12.2mm/15.3mm, Dmin: 0mm/0mm. The metrics for MNEω for the superficial 

source were: AUC: 0.81, SD: 28.8mm, Dmin: 0mm. 
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Figure 7-5: Example of two simulated generators first in the hippocampus (A) and then in the lateral 

neocortex after 15 ms delay (B). Three source imaging methods were applied to the averaged interictal 

epileptic discharges. The surface of the hippocampus is included in the source model (and presented in the 

figure as separate structures). The metrics AUC, SD, and Dmin were calculated at 358 ms (peak of the source 
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in the hippocampus) and at 373 ms (peak of the neocortical source). The scale is different for the 3 methods 

but source maps have been interpreted relatively for each method. 

 Figure 7-6 summarizes the metrics for 100 simulations of mixed sources, following a complex 

scenario similar to the one illustrated in Figure 7-5. The first column shows the AUC, SD and Dmin 

at 358 ms for the source simulated in the hippocampus. AUC and SD were significantly improved 

by cMEMω compared to cMEM and MNEω (p < 0.001, AUCcMEMω-cMEM: 0.26 ± 0.08, AUCcMEMω-

MNEω: 0.11 ± 0.09, SDcMEM-cMEMω: 4.3 ± 2.6 mm, SDMNEω-cMEMω: 17.6 ± 6.2 mm). Dmin was 

significantly improved by cMEMω compared to cMEM (p < 0.001, DmincMEM-cMEMω: 3.3 ± 3.3 

mm). Compared to MNEω, Dmin was also significantly improved by cMEMω (p < 0.05, DminMNEω-

cMEMω: 5.2 ± 8.1 mm). 

For the neocortical generator simulated at 373 ms, cMEMω showed similar AUC but slightly 

decreased SD compared to cMEM (AUCcMEMω-cMEM: 0.01 ± 0.03, SDcMEM-cMEMω: -1.7 ± 2.6 mm). 

Both cMEM and cMEMω showed improved AUC and SD compared to MNEω (p < 0.001, 

AUCcMEMω-MNEω: 0.09 ± 0.05, AUCcMEM-MNEω: 0.06 ± 0.06, SDMNEω-cMEMω: 20.6 ± 5.1 mm, 

SDMNEω-cMEM: 21.5 ± 5.3 mm). Dmin was slightly improved in cMEMω compared to cMEM (p < 

0.01, DmincMEM-cMEMω: 0.0 ± 2.8 mm). Similar Dmin was found for cMEMω and MNEω (DminMNEω-

cMEMω: 0.0 ± 3.7 mm).   
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Figure 7-6: Source imaging for 100 simulations of mixed generators in the hippocampus and the ipsilateral 

neocortex after 15 ms delay. AUC, SD and Dmin are calculated separately for each generator at the peak of 

the spike (358 ms for hippocampal generator and 373 ms for neocortical generator). On each boxplot, the 

central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th 

percentiles, respectively. If the groups are statistically different after post-hoc analysis, the significance 

levels are shown as: ‘***’ for p < 0.001, ‘**’ for p < 0.01, and ‘*’ for p < 0.05. 

7.5.3 Simulation of single epileptic source: HD-EEG 

Similar to the MEG results in  Figure 7-3,  Figure 7-7 shows the improvement in AUC, SD and 

Dmin for 300 EEG simulations of epileptic activity (SE=3, SNR=2). The HD-EEG equivalent of  
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Figure 7-2 is shown in supplementary Fig S18. Figure 7-7 illustrates that HD-EEG localization 

improved mostly on the medial side (deep sources) without or with minimal worsening of the 

localization in the lateral and superficial regions.  

 

Figure 7-7: The differences in AUC, SD, and Dmin between cMEMω and cMEM (cMEMω – cMEM) are 

shown on the cortical surface at the locations of 300 simulated sources in HD-EEG. Increases in AUC and 

decreases in SD and Dmin (presented warmer color) were observed mostly for the deeper regions. Regions 

where no sources were generated are shown as grey. When there was overlap between sources, a line was 

superimposed on the new color to illustrate the overlap from the previous source. Brain maps are shown 

for 6 views: right lateral, left lateral, right medial, left medial, hippocampi top and hippocampi bottom. 

 Figure 7-8 presents the metrics as a function of eccentricity for the 300 EEG simulations (SE=3 

and SNR=2), showing that the localization accuracy improved with cMEMω for regions with low 

eccentricity (deep sources, eccentricity < 45 mm). The eccentricity threshold was chosen based on 

the results from 2700 HD-EEG simulations where the localization accuracy from cMEM and 

cMEMω started to converge at ~45 mm, ( Figure 7-8, and Fig S19-21). For MEG, this threshold 
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was ~60mm. We summarized the results from cMEM, cMEMω and MNEω as boxplots for regions 

with eccentricity < 45 mm ( Figure 7-8) and regions with eccentricity > 45 mm (Fig S22).  

 

Figure 7-8: For 300 HD-EEG simulations at SE=3 and SNR =2, the plot of AUC (A1), SD (A2), and Dmin 

(A3) as a function of eccentricity for three source imaging methods. The comparison of the three methods 

is summarized for AUC (B1), SD (B2), and Dmin (B3) for 56 (out of 300) deep sources with an eccentricity 

less than 45 mm.  For each boxplot, the central mark indicates the median, and the bottom and top edges of 

the box indicate the 25th and 75th percentiles, respectively. If the groups are statistically different after 
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posthoc analysis, the significance levels are shown as: ‘***’ for p < 0.001, ‘**’ for p < 0.01, and ‘*’ for p 

< 0.05. 

For sources with eccentricity < 45 mm, the localization was significantly improved by cMEMω in 

terms of all 3 metrics compared to cMEM (p < 0.001, AUCcMEMω-cMEM: 0.05 ± 0.03, SDcMEM-cMEMω: 

2.4 ± 2.8 mm, DmincMEM-cMEMω: 5.5 ± 5.0 mm) and MNEω (p < 0.001, AUCcMEMω-MNEω: 0.20 ± 

0.05, SDMNEω-cMEMω: 17.1 ± 3.2 mm, DminMNEω-cMEMω: 11.8 ± 10.0 mm).   

For regions with eccentricity > 45 mm (Fig S22), AUC and Dmin for cMEMω were similar to cMEM 

(AUCcMEMω-cMEM: 0.00 ± 0.02, DmincMEM-cMEMω: 0 ± 0 mm). In terms of SD, cMEMω worsened 

slightly but significantly compared to cMEM (p < 0.001, SDcMEM-cMEMω: -2.1 ± 1.1 mm). On the 

other hand, AUC and SD for cMEMω were significantly improved compared to MNEω (p < 0.001, 

AUCcMEMω-MNEω: 0.13 ± 0.05, SDMNEω-cMEMω: 13.3 ± 3.8 mm). Even if we observed slight 

worsening of cMEMω compared to cMEM for SD (SDcMEM-cMEMω: -2.1 ± 1.1 mm), SD values 

remained low for both cMEM and cMEMω when compared to MNEω (SDMNEω-cMEM: 15.2 ± 3.0 

mm, SDMNEω-cMEMω: 13.3 ± 3.8 mm).  In terms of Dmin, all 3 methods exhibited similar accuracy 

(DmincMEM-cMEMω: 0.0 ± 0.0 mm, DminMNEω-cMEMω: 0.0 ± 3.8 mm, DmincMEM-MNEω: 0.0 ± 1.8 mm). 

See also supplementary Fig S23 - 30 for 2400 HD-EEG simulations with other combinations of 

SE and SNR. Similar improvement by cMEMω was found compared to cMEM and MNEω for all 

combinations.   

7.5.4 Evaluation on clinical MEG/HD-EEG data from patients with focal epilepsy 

MEG: Figure 7-9A shows an example of MEG source localization for a patient with mesial 

temporal lobe epilepsy. The source imaging methods were applied on an averaged IED (number 

of IEDs: 16, sensor level SNR at the peak: 30dB). The metrics were calculated at the midpoint of 

the rising phase of the spike (-10ms, sensor level SNR at -10ms: 26dB).  cMEM was not able to 

localize the underlying hippocampal generator, whereas the depth-weighted methods, cMEMω and 

MNEω could localize this deep generator during the rising phase of the averaged IED. The metrics 

for cMEM/cMEMω were: AUC: 0.43/0.79, SD: 21.7/16.6 mm and Dmin: 18.3/10.6mm. The results 

for MNEω were: AUC: 0.76, SD: 27.5mm, Dmin: 13.0mm. All three methods mainly retrieved the 

propagated activity within temporal neocortical regions. Figure 7-9B compares the metrics for 3 

source imaging methods in MEG for 8 patients with mesial temporal lobe epilepsy, where the 

clinical ground truth involved the mesio-temporal structures including the hippocampus. The 
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sensor level SNR of the averaged IEDs were 22.7 ± 6.6dB at the peak and 20.33 ± 7.05dB at the 

midpoint of the rising phase of the spike. The localization was significantly improved by cMEMω 

compared to cMEM in terms of AUC, SD (AUCcMEMω-cMEM: 0.19 ± 0.04, SDcMEM-cMEMω: 4.9 ± 0.3 

mm, p < 0.001) and Dmin (DmincMEM-cMEMω: 7.6 ± 6.3 mm, p < 0.05).  Compared to MNEω, cMEMω 

improved the localization significantly in terms of AUC (p < 0.05, AUCcMEMω-MNEω: 0.13 ± 0.04) 

and SD (p < 0.001, SDMNEω-cMEMω: 11.7± 1.7 mm). The median Dmin was lower for cMEMω 

compared to MNEω (DminMNEω-cMEMω: 0.0 ± 2.8 mm), but not statistically significant. 

 

Figure 7-9: (A) Example of a MEG patient with mesial temporal lobe epilepsy. The source imaging methods 

were applied to the average of 16 selected interictal epileptic discharges. The surface of the hippocampus 

is included in the source model (shown as separate structures). The metrics AUC, SD, and Dmin were 

calculated at the midpoint of the rising phase of the spike (-10ms). The scale is different for the 3 methods, 
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but source maps are interpreted relatively for each method. (B) Comparison of the MEG source imaging 

methods in terms of the validation metrics AUC, SD and Dmin for 8 patients with mesial temporal lobe 

epilepsy. Each boxplot represents metrics from one source imaging method. On each boxplot, the central 

mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 

respectively. If the groups are statistically different after post-hoc analysis, the significance levels are shown 

as: ‘***’ for p < 0.001, ‘**’ for p < 0.01, and ‘*’ for p < 0.05. 

Fig S31 (A) summarizes the metrics estimated for 14 patients including the mesial temporal cases 

and also other superficial cases. The sensor level SNR of the averaged IEDs were 24.0 ± 7.7dB at 

the peak and 20.7 ± 7.4dB at the midpoint of the rising phase of the spike. Overall improvement 

by cMEMω was observed compared to cMEM (not statistically significant). Compared to MNEω, 

cMEMω slightly improved the localization in terms of AUC (not statistically significant) and SD 

(p < 0.001). The lowest median of Dmin was found for MNEω when compared to cMEM and 

cMEMω. We also verified that the improvement brought by depth weighting was not dependent on 

the overall quality of the ground truth data, when comparing results between the seizure-free group 

and the other group for both MEG and HD-EEG data (see details in the Supplementary material 

S2). 

HD-EEG: Figure 7-10A presents an example of HD-EEG source localization for a patient with 

mesial temporal lobe epilepsy. Unlike the MEG result shown in Figure 7-9A, cMEM could localize 

the hippocampal generator for HD-EEG. cMEMω improved the localization compared to cMEM 

in terms of AUC, SD and Dmin. The metrics for cMEM/cMEMω were: AUC: 0.60/0.67, SD: 

21.0/15.6 mm and Dmin: 30/0mm. The results for MNEω were: AUC: 0.36, SD: 47mm, Dmin: 30mm.   

Figure 7-10B shows the boxplots summarizing the metrics for cMEM, cMEMω and MNEω for 9 

patients with mesial temporal lobe epilepsy, for which the ground truth involved the mesio-

temporal structures that include the hippocampus. The sensor level SNR of the averaged IEDs 

were 28.60 ± 4.95dB at peak and 26.92 ± 5.88dB at the midpoint of the rising phase of the spike. 

cMEMω significantly improved the localization compared to cMEM in terms of AUC (p < 0.001, 

AUCcMEMω-cMEM: 0.04 ± 0.01) and SD (SDcMEM-cMEMω: 2.9 ± 0.7 mm). Dmin was also improved by 

cMEMω compared to cMEM (DmincMEM-cMEMω: 0.4 ± 1.1 mm) but not statistically significant. 

Compared to MNEω, cMEMω provided improved AUC (p < 0.001, AUCcMEMω-MNEω: 0.10 ± 0.03), 

SD (p < 0.001, SDMNEω-cMEMω: 16.0 ± 3.2 mm) and slightly improved Dmin (DminMNEω-cMEMω: 3.2 

± 5.2 mm, not statistically significant). 
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Fig S31 (B) summarizes the metrics for all 16 HD-EEG patients including mesial temporal cases 

and other extra-temporal cases. The sensor level SNR of the averaged IEDs were 28.09 ± 4.40dB 

at the peak and 25.40 ± 5.00dB at the midpoint of the rising phase of the spike. Overall 

improvement by cMEMω was observed compared to cMEM (not statistically significant). 

Compared to MNEω, cMEMω significantly improved the localization in terms of AUC (AUCcMEMω-

MNEω: 0.11 ± 0.06), SD (SDMNEω-cMEMω: 16.7 ± 6.0 mm) and Dmin (DminMNEω-cMEMω 3.0 ± 9.0 mm).   
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Figure 7-10: (A) Example localization of HD-EEG source imaging methods for a patient with mesial 

temporal lobe epilepsy. The source imaging methods were applied to an average of 28 interictal epileptic 

discharges. The surface of the hippocampus is included in the source model (shown as separate structures). 

The metrics AUC, SD, and Dmin were calculated at the midpoint of the rising phase of the spike (-10ms). 

The scale is different for the 3 methods but source maps are interpreted in a relative manner for each method.  

(B) Comparison of the EEG source imaging methods in terms of the validation metrics AUC, SD and Dmin 

for 9 patients with mesial temporal lobe epilepsy. Each boxplot represents metrics from one source imaging 

method. On each boxplot, the central mark indicates the median, and the bottom and top edges of the box 

indicate the 25th and 75th percentiles, respectively. If the groups are statistically different after posthoc 

analysis, the significance levels are shown as: ‘***’ for p < 0.001, ‘**’ for p < 0.01, and ‘*’ for p < 0.05. 

7.5.5 Depth-weighted wMEM 

Similar to cMEM, depth weighting improved the localization for deep sources for wMEM method 

as well. Fig S32 shows the metrics AUC, SD and Dmin as a function of eccentricity for the 300 

MEG simulations presented in Figure 7-4, but also this time considers wMEM and its depth 

weighted implementation, wMEMω. Overall, the findings for wMEM versus wMEMω were similar 

to cMEM versus cMEMω. Detailed statistical comparisons are presented in the Supplementary 

material (section S1, Fig S32 and Fig S33). We also provided wMEM results as a function of 

eccentricity for all combinations of SE and SNR levels for MEG simulations in Fig S34-36 and 

HD-EEG simulations in Fig S37-39. For all combinations of MEG and HD-EEG, similar trends 

were found as described in Fig S32 and Fig S33. We decided not to provide detailed statistical 

comparisons for wMEM results for other combinations of HD-EEG and MEG simulations. Our 

results were overall similar to the ones reported in Fig S32 and Fig S33, suggesting that depth 

weighting also improved the ability of wMEM to localize deep generators, while preserving good 

accuracy when localizing superficial generators, which could be of great interest when localizing 

specific oscillations using this wavelet extension of MEM framework. 

7.6 Discussion 

In this study, we proposed a depth-weighted implementation of cMEM for EEG/MEG source 

imaging to localize deep source activity accurately, while maintaining cMEM's ability to recover 

the spatial extent of the underlying generators for both deep and cortical generators. We assessed 

the ability of the depth-weighted method, cMEMω to localize simulated epileptic activity at 
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different locations on the cortical and hippocampal surface. Compared to cMEM and MNE as 

benchmarks, the new version could estimate the deep generators more accurately, without or with 

minimal worsening of the localization for superficial regions. This was robust for HD-EEG and 

MEG, different spatial extents of the generator, and different SNR levels. A similar improvement 

was found for the wavelet version of the MEM method. We also demonstrated the utility of 

cMEMω in localizing EEG/MEG epileptic spikes from patients with mesial temporal lobe epilepsy.  

7.6.1 Including hippocampus in the source model 

The source model included the surface mesh of the cortex, with an additional subcortical structure, 

the hippocampus. The sources were located along the surface of the structures, with a fixed 

orientation normal to the surface as proposed by Attal and Schwartz (2013) and used in other 

studies (Calvetti et al., 2019; Meyer et al., 2017). Such modeling is motivated by the morphological 

and organizational similarity of the layer of the pyramidal cells in the hippocampus and neocortex 

(Meyer et al., 2017). Other subcortical structures such as the thalamus, amygdala, or brainstem can 

be modeled as a volume grid for better anatomical approximation (Attal & Schwartz, 2013). 

Including those structures in the volume grid would require handling parcellation in both surface 

and volume for the MEM framework, which was out of the scope of this study, as in MEM the 

parcellation is guided along the surface in a geodesic manner.  

7.6.2 Depth-weighted cMEM improved localization for deep sources 

For MEG and HD-EEG simulations of epileptic activity involving different locations covering the 

whole brain, cMEMω provided more accurate localizations for deep sources than cMEM and 

MNEω. For superficial regions, cMEMω exhibited similar performance as cMEM in terms of AUC 

and Dmin, but worsened slightly the SD. Compared to MNEω, cMEMω localizations for superficial 

regions were also better in terms of AUC and SD, along with our previous findings comparing non 

depth-weighted cMEM to MNEω (Chowdhury et al., 2016; Chowdhury et al., 2013; Chowdhury 

et al., 2018). Although cMEMω slightly worsened the SD compared to cMEM (by ~3mm), it still 

provided improved SD compared to MNEω (by ~24mm in MEG and ~14mm for HD-EEG) and 

therefore excellent sensitivity to the spatial extent of the generators.  

Our simulation results showed that the cMEMω was sensitive to mesial sources, and we found rare 

spurious localization of deep structures when they were not simulated. MEG and HD-EEG source 

imaging results were robust for all other combinations of spatial extent and SNR levels. Compared 
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to HD-EEG, we observed high variance in SD and Dmin for MEG simulations and worsening of 

SD and Dmin for some superficial regions (Fig S5, Fig S22,  Figure 7-3, Figure 7-7). This was 

related to the lower level of sensor level SNR for MEG simulations compared to HD-EEG. The 

sensor level SNR of the simulated signal for MEG/HD-EEG is reflective of the sensitivity of the 

sensors to different source locations and orientations. For instance, EEG is more sensitive to radial 

and deep sources whereas MEG using gradiometers is more sensitive to tangential and superficial 

sources (Goldenholz et al., 2009; Kakisaka et al., 2013). This is also why the improvement in MEG 

due to depth weighting was more pronounced compared to HD-EEG ( Figure 7-3 and Figure 7-7). 

However, the low SNR of MEG simulations also resulted from the simulation model used in this 

study. As we used a uniform signal strength for all the vertices within a patch, the generators that 

consisted of two opposite walls of the sulcus would lead to more signal cancellation for MEG than 

EEG (Chowdhury et al., 2016; Chowdhury et al., 2015). Therefore, several MEG sources 

simulated in this study resulted in lower sensor level SNR when compared to HD-EEG. This could 

explain the large variance observed in SD and Dmin in MEG localizations for both deep and 

superficial sources even after applying depth weighting. 

Although cMEMω improved localization accuracy for deep sources compared to cMEM and 

MNEω, the localization accuracy was still associated with source depth (i.e. lower accuracy for 

deeper sources). This is consistent with the findings reported in previous studies using EEG 

(Krings et al., 1999; Mikulan et al., 2020; Unnwongse et al., 2023; Whittingstall et al., 2003) and 

MEG (Chowdhury et al., 2015). Using simultaneously acquired HD-EEG and intracerebral 

stimulation as ground truth,  Pascarella et al. (2023) compared ten source imaging methods and 

explored different depth weighting parameters. They found the lowest localization error (within 

10mm) was obtained for dipolar and sparsity-promoting localization methods. Larger localization 

errors (mean ~15-20 mm) were found for distributed source imaging methods such as the MNEω, 

sLORETA, eLORETA (Pascual-Marqui et al., 2006) and Beamformer (Van Veen et al., 1997), with 

large localization errors associated with deeper sources, even after applying depth weighting. In 

our HD-EEG simulations, we observed a similar range of localization error and SD for MNEω as 

reported by Pascarella et al. (2023). We found the lowest localization error (4.8±6.8mm) for 

cMEMω. Both cMEM and cMEMω provided much lower SD compared to MNEω, consistent with 

our previous studies (Chowdhury et al., 2016; Chowdhury et al., 2013; Pellegrino, Hedrich, et al., 

2020) reporting the ability of the MEM method to recover the spatial extent accurately. Pascarella 
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et al. (2023) used real intracerebral stimulations resulting in very focal generators associated with 

high SNR, whereas we used realistic numerical simulations involving spatially extended 

generators and different SNR levels. Another important difference is we considered a fixed value 

of depth weighting factor (ω = 0.5) for cMEMω and MNEω in the whole study. However, we also 

investigated the depth weighting parameter ω for a range of values: ω = 0.1, 0.3, 0.5, 0.7 and 0.9 

for one set of 300 MEG simulations (Fig S17). For deep sources, increasing the depth weighting 

parameter ω improved localization accuracy as expected, but choosing higher ω values penalized 

the localization of superficial sources. This observation aligns with Pascarella et al. (2023), who 

investigated different depth weightings between 0 and 5 in MNE, Mixed Norm Estimate (Gramfort 

et al., 2012), dSPM and Beamformer for various sources and found optimal localizations with 

either ω = 0 or 1. This suggests that for superficial sources, ω = 0 would provide the best 

localization, while for deep sources, ω = 1 would be optimal. Without a ground truth, determining 

whether a source is superficial or deep is unknown. Therefore, choosing ω = 0.5 appears as a 

reasonable compromise, whereas using 0 or 1 could potentially lead to complete mislocalization 

of sources. Moreover, the depth weighting factor also depends on the sensitivity of the modality. 

For instance, Lin et al. (2006) reported the best localization accuracy for MNEω for a depth 

weighting factor ranging from 0.6 to 0.8 for MEG, and from 2 to 5 for EEG. Recently, in Cai et al. 

(2022), our group evaluated a range of ω when reconstructing functional Near-InfraRed 

Spectroscopy data using cMEMω, most accurate results were found for depth weighting factors 

ranging between 0.3 and 0.5. 

The simulations generated in this study were controlled to remain within a realistic range. Most of 

the hippocampal IEDs were nearly obscured by the background (as depicted in Supplementary 

Figs S3 and S4). In contrast to single simulations in MEG, for the mixture of cortical and 

hippocampal sources, we intentionally applied a higher SNR for the hippocampus to highlight that 

even with a good SNR signal, the standard cMEM failed to localize accurately to the hippocampus. 

In scenarios with very low SNR, none of the methods would be able to effectively localize deep 

sources when they are obscured by the superficial component. However, this limitation would be 

due to the low SNR of deep sources rather than the methods themselves.  

We also demonstrated the applicability of cMEMω by evaluating the source localization of actual 

IEDs from patients with focal epilepsy. For the patients with mesial temporal lobe epilepsy, 

localization was significantly improved by cMEMω compared to cMEM and MNEω. The MEG 
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localizations of IEDs by cMEM were almost blind to the deep hippocampal or the mesial part of 

the sources. Depth weighting was necessary to localize these hippocampal sources during the 

rising phase of the spike. In contrast, HD-EEG localizations by cMEM were still behaving better 

(when compared to MEG) and some activity in the hippocampus and other deep regions was 

localized with cMEM, but incorporating depth weighting improved the localization accuracy. 

7.6.3 Complex simulations involving mesial and neocortical sources 

It is evident from simultaneous recording of scalp EEG/MEG and intracerebral EEG that the IEDs 

generated in deep mesial structures are hardly observable (often missed during visual 

interpretation) from scalp measurements when confined to mesial structures only (Merlet & 

Gotman, 1999). The spikes generated from mesial structures are more detectable on the sensors 

when they propagate and involve the activation of neocortical sources (Koessler et al., 2015; 

Merlet & Gotman, 1999). To mimic such concurrent activation of mesial plus neocortical interictal 

spikes, we simulated complex epileptic spikes on MEG, including the first generator at the 

hippocampus propagating to a second generator on the temporal neocortex after 15ms. We only 

ran these simulations for MEG, not HD-EEG, because it was more difficult for MEG data acquired 

with gradiometers to localize deep sources without depth weighting, when compared to our HD-

EEG results. We considered source imaging at the peak of the hippocampal sources, which 

corresponded approximately to the midpoint of the rising phase of the spike we used when 

localizing clinical data. Compared to cMEM and MNEω, cMEMω was more accurate when 

localizing the hippocampal source. cMEM could not localize the hippocampal source, mistakenly 

placing it on the lateral neocortex. cMEMω localized the source in the hippocampus, but also 

exhibited spurious localizations on the lateral neocortex, reflected by a large localization error 

(~20mm) and SD (~25 mm). MNEω also showed this spurious localization on the lateral neocortex 

reflected by large localization error (~28mm) and spatial spread (SD: ~48mm). For superficial 

regions, localizations by both MEM methods were more accurate than MNEω in terms of AUC 

and SD, not in terms of Dmin, as we previously reported (Hedrich et al., 2017).  

Although cMEMω was more accurate than cMEM in localizing the deep hippocampal activity, the 

maximum activity was mostly found on the lateral cortex (see Dmin in  Figure 7-6). This activation 

in the lateral cortex was also contributed by the simulation of the neocortical generator that already 

started at that point. However, we also observed spurious activity on the lateral neocortex for the 
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single sources simulated in the hippocampus only, which was reflected by high SD. Thus, the 

challenge to completely disentangle the mesial from neocortical sources remains (Benar et al., 

2021; Krishnaswamy et al., 2017), even if depth weighting shows improved accuracy in localizing 

deep generators. Independent component analysis (ICA) based source separation techniques could 

be employed to disentangle deep versus superficial sources (Pizzo et al., 2019). However, ICA-

based approach has been found to worsen MEG source localization accuracy for interictal activity 

and is suggested to be applied with caution (Pellegrino, Xu, et al., 2020).  

7.6.4 Sensitivity of EEG/MEG sensors to deep activity 

As the simulations for MEG and HD-EEG were implemented using background activity and 

anatomical head models from two different subjects, it was difficult to compare different source 

localization methods between these modalities directly. However, MEG was found overall less 

sensitive to deep sources than HD-EEG. One of the main reasons is that we considered 

gradiometers only, whereas magnetometers have a higher sensitivity to deep sources, at the price 

of more sensitivity to environmental noise (Malmivuo & Plonsey, 1995; Parkkonen et al., 2009). 

Our results are therefore consistent with studies using MEG gradiometers and suggesting that 

MEG is less sensitive to deep sources (Agirre-Arrizubieta et al., 2009; Baumgartner et al., 2000; 

Leijten et al., 2003; Shigeto et al., 2002; Wennberg et al., 2011). Few studies localizing subcortical 

activity using gradiometers benefitted from evoked responses with large SNR data (Barry et al., 

2019; Coffey et al., 2016; Taylor et al., 2011). In contrast, most studies reporting that deep activity 

is indeed detectable by MEG, used magnetometers (Dalal et al., 2013; López‐Madrona et al., 2022; 

Pizzo et al., 2019; Plummer et al., 2019; Santiuste et al., 2008). Fusion of EEG and MEG can also 

be exploited to recover some deep activity which we previously demonstrated using cMEM 

(Chowdhury et al., 2018; Chowdhury et al., 2015). Even though gradiometers are less sensitive to 

deep sources, we showed that the proposed cMEMω method would be useful for localizing deep 

source activity, even for gradiometers.  

7.6.5 Depth-weighted wMEM 

wMEM represents the data on the time-frequency domain, using discrete wavelets, before applying 

MEM solver for localization. Since discrete wavelets only consider the oscillatory part of the 

signal, wMEM was therefore proposed as a method particularly adapted to localize brain 

oscillations (Lina et al., 2012). The depth-weighted wMEM (wMEMω), the wavelet version of 
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cMEMω, showed similar improvement for MEG and HD-EEG simulations. Compared to cMEMω, 

wMEMω results exhibited similar performances in terms of AUC and Dmin, but slightly larger SD 

values. We expect that wMEM localization of epileptic spikes, mainly characterized by a transient 

shape and not by oscillations, will often result in higher SD than cMEM. The depth-weighted 

version of wMEM is more suitable for the localization of resting state oscillations (Afnan et al., 

2023), epileptic burst activity, or high-frequency oscillations from deep sources (Avigdor et al., 

2021; von Ellenrieder et al., 2016) and oscillatory activity at seizure onset (Pellegrino et al., 2016).  

7.6.6 Limitations 

One limitation of this study is that the MEG and EEG simulations were generated using anatomical 

head models and background recordings from different subjects, thus it was difficult to directly 

compare these two modalities. Simultaneous recording of EEG and MEG on the same subject 

would allow a comparison of the sensitivity of detecting deep source activity by EEG versus MEG. 

Moreover, the ground truth used for patients was still semi-quantitative. Further examination 

showed that the differences in localization improvement by depth weighting between the seizure-

free group and the other group were not likely influenced by the quality of ground truth and 

possibly by the number of patients with deep generators included in that group (see Supplementary 

material S2, Tables 1 and 2). Comparison of simultaneous scalp recording with intracranial EEG 

will be considered in our future investigations.  

7.7 Conclusion 

We proposed depth-weighted cMEM (cMEMω) source imaging and demonstrated that it improved 

the EEG/MEG localization of deep sources compared to standard cMEM and depth-weighted 

MNE. We validated this method using extensive MEG and EEG realistic simulations of epileptic 

spikes, covering all brain regions including the hippocampus. We demonstrated the improvement 

by cMEMω in localizing deep brain activity, especially in a low SNR environment. Finally, we 

showed that cMEMω could localize the hippocampal activity more accurately for patients with 

mesial temporal lobe epilepsy, in cases for which standard cMEM would fail in recovering these 

deep generators. It is notable that the localization of superficial sources was hardly affected by 

depth weighting both for MEG and HD-EEG. 
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8 Manuscript 3: Validating MEG estimated resting state 

connectome with intracranial EEG 

8.1 Preface 

This is the third study of this thesis and the second part of our group-level validation of MEG 

source imaging of resting-state activity using the intracranial EEG atlas. The first part, covered in 

Study 1, focused on resting-state oscillations, while this second part now examines estimation of 

functional connectivity from MEG data. In Chapter 4, we addressed the challenges of estimating 

connectivity from EEG/MEG source localization due to source leakage issues. Previous studies 

have recommended metrics that remove zero-lag connectivity to mitigate this issue, but such 

metrics can also eliminate some genuine zero-lag connectivity. 

In this study, we applied the same methodology proposed in Study 1 (Chapter 6), converting MEG 

sources into virtual intracranial EEG data, using the intracranial EEG electrode position of the 

MNI intracranial EEG atlas. We are proposing an original resampling methodology to take into 

account the limited spatial sampling of the MNI intracranial EEG atlas when assessing functional 

connectivity (since only paired electrodes from the same subjects could be considered), proposing 

for the first time spatial correlations between functional connectomes estimated from MEG sources 

and intracranial EEG data at the group level. We evaluated four widely used connectivity metrics 

to determine which ones more accurately estimate MEG-derived connectomes compared to the 

intracranial EEG atlas. We used the same healthy datasets from MEG and the intracranial EEG 

atlas as in Study 1 but applied the depth-weighted wMEM method for MEG source localization, 

which was proposed and validated in Study 2. This chapter includes the following sections: 

abstract, introduction, materials and methods, results, and discussion.  

This manuscript is in press, Network Neuroscience as: 

Afnan, J., Cai, Z., Lina, J. M., Abdallah, C., Pellegrino, G., Arcara, G., Khajehpour, H., Frauscher, 

B., Gotman, J., & Grova, C. (in press). Validating MEG estimated resting state connectome with 

intracranial EEG. Network Neuroscience.  
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8.2 Abstract 

MEG is widely used for studying resting-state brain connectivity. However, MEG source imaging 

is ill-posed and has limited spatial resolution. This introduces source-leakage issues, making it 

challenging to interpret MEG-derived connectivity in resting states. To address this, we validated 

MEG-derived connectivity from 45 healthy participants using a normative intracranial EEG 

(iEEG) atlas. 

The MEG inverse problem was solved using the wavelet-Maximum Entropy on the Mean method. 

We computed four connectivity metrics: Amplitude Envelope Correlation (AEC), orthogonalized 

AEC (OAEC), Phase Locking Value (PLV), and weighted-phase lag index (wPLI). We compared 

spatial correlation between MEG and iEEG connectomes across standard canonical frequency 

bands. 

We found moderate spatial correlations between MEG and iEEG connectomes for AEC and PLV. 

However, when considering metrics that correct/remove zero-lag connectivity (OAEC/wPLI), the 

spatial correlation between MEG and iEEG connectomes decreased. MEG exhibited higher zero-

lag connectivity compared to iEEG. 

The correlations between MEG and iEEG connectomes suggest that relevant connectivity patterns 

can be recovered from MEG. However, since these correlations are moderate/low, MEG 

connectivity results should be interpreted with caution. Metrics that correct for zero-lag 

connectivity show decreased correlations, highlighting a trade-off; while MEG may capture more 

connectivity due to source-leakage, removing zero-lag connectivity can eliminate true 

connections. 

Keywords: MEG source imaging, Intracranial EEG, connectivity, source leakage, resting state 

connectome 

8.3 Introduction 

The study of brain connectomes is a rapidly growing field in neuroscience which explores both 

the structural and functional patterns of resting-state brain connectivity, whereas electrophysiology 

plays a key role in disentangling static versus dynamic aspects of resting-state functional 

connectivity (Sadaghiani et al., 2022). Historically, MRI has been widely employed to investigate 
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brain connectomes, encompassing structural connectivity assessed through diffusion MRI and 

functional connectome evaluated using functional MRI (fMRI). In contrast, the utilization of 

electrophysiological methods, such as non-invasive electro/magneto-encephalography 

(EEG/MEG), in connectome research has experienced a notable surge in recent years. Due to their 

high temporal resolution and accessibility, EEG/MEG-based connectome studies have been 

undertaken to address a broad spectrum of questions in physiological and pathological conditions 

(Aydin et al., 2020; Xie & He, 2012). However, the main limitation of EEG/MEG-based 

connectome studies is that, as they involve scalp recordings and source localization, they require 

solving an ill-posed inverse problem (Darvas et al., 2004), and are therefore susceptible to source 

leakage. Source leakage, defined as the influence of a source on the estimation of the generators 

within its neighborhood (Brookes et al., 2012; Hedrich et al., 2017), is a significant concern, 

particularly for resting-state activity due to its low signal-to-noise ratio (SNR) condition. This 

affects the spatial accuracy of EEG/MEG estimated sources and introduces false positives in 

connectivity measures. Additionally, use of connectivity measures that are insensitive to true near-

zero-lag synchronization leads to false negatives (Palva et al., 2018; Palva & Palva, 2012). 

Validation is thus essential for non-invasive EEG/MEG resting-state source imaging techniques to 

ensure appropriate interpretation of connectome results.  

Researchers have investigated EEG/MEG connectivity for resting-state activity, using simulations 

to study source leakage (Palva et al., 2018) or to assess the effect of source imaging parameters or 

the choice of regions of interest extraction on connectivity (Brkić et al., 2023; Hincapié et al., 

2016; Vallarino et al., 2023),  or when comparing networks derived from EEG/MEG sources with 

those from fMRI (Brookes et al., 2011; Rizkallah et al., 2020). Recently, a few studies have 

compared whole-brain EEG connectomes with fMRI-derived ones and found moderate spatial 

correlations between the two modalities in canonical frequency bands (Wirsich et al., 2020; 

Wirsich et al., 2021; Wirsich et al., 2017). However, because these modalities capture different 

brain mechanisms, electrophysiology in EEG versus hemodynamic activity in fMRI, direct 

comparisons are limited, particularly for specific frequency bands. 

Compared to EEG/MEG, intracranial EEG (iEEG), commonly used in epilepsy presurgical 

evaluation, offers highly accurate estimation of brain activity with excellent spatial and temporal 

resolution, including good SNR from deep structures. iEEG measurements are also negligibly 
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affected by volume conduction (Arnulfo et al., 2015; O’Reilly & Elsabbagh, 2021). However, it 

requires an invasive implantation procedure and has intrinsically limited spatial coverage, 

targeting only suspected regions of abnormal epileptic activity (Jayakar et al., 2016). 

Simultaneously recording EEG/MEG and iEEG provides probably the most reliable validation for 

non-invasive measurements (Koessler et al., 2010; Pizzo et al., 2019), as both modalities capture 

the same brain activity at the same temporal scale. However, validating whole-brain connectome 

estimates from EEG/MEG with iEEG is not feasible, as iEEG implantation covers the brain only 

partially. Therefore validation is limited to the implanted brain regions only (Nir et al., 2008). 

In this context, the iEEG atlas of resting-state human activity developed by Frauscher et al. (2018) 

at the Montreal Neurological Institute (MNI) (https://mni-open-ieegatlas.research.mcgill.ca/)  

offers a unique opportunity for validating whole-brain connectome estimates from non-invasive 

EEG/MEG at the group level. This atlas pools data from many patients with epilepsy monitored 

during presurgical evaluation, retaining only iEEG electrodes implanted in healthy regions, i.e. 

regions not exhibiting any epileptic discharges. We have successfully used this atlas to validate 

how the power spectra of resting-state oscillations could accurately be localized using MEG 

(Afnan et al., 2023). In this study, we propose a similar methodology to validate the resting-state 

connectome estimated from MEG within a group of healthy participants against the resting-state 

iEEG connectome derived from the MNI iEEG atlas. To our knowledge, this is the first study to 

compare cross-modal correlations between MEG and iEEG at a group level to validate MEG-

derived connectivity in widespread brain regions. Even though MEG and iEEG data were not 

recorded simultaneously, they both represent connectivity of the healthy adult brain and should 

ideally be strongly correlated. 

8.4 Materials and methods 

8.4.1 Experimental design 

The iEEG connectome was constructed from the MNI iEEG atlas (110 subjects) of resting state 

data (sec 2.2). For MEG, resting state data were obtained from 45 healthy subjects (Pellegrino et 

al., 2022). Wavelet-based Maximum Entropy on the Mean (wMEM) was applied to solve the MEG 

inverse problem (sec 2.3.2) (Afnan et al., 2023; Lina et al., 2012). MEG was reconstructed on 

subject-specific cortical surfaces and then projected to the positions of iEEG electrodes specified 
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in the MNI iEEG atlas, using a method proposed by Grova et al. (2016) (sec 2.3.3). Projecting the 

MEG source maps to the intracranial space facilitated a quantitative comparison between MEG 

and iEEG (sec 2.3.3). MEG connectomes were constructed using a bootstrapping approach 

described in sec 2.3.4. Finally, we quantified the cross-modal spatial correlations between these 

two connectomes for six frequency bands: delta (0.5-4Hz), theta (4-8Hz), alpha (8-13Hz), beta 

(13-30Hz), low gamma (30-55Hz) and high gamma (55-80Hz). For each frequency band, the 

connectomes were constructed for four connectivity metrics; amplitude envelope correlation 

(AEC), AEC after pairwise orthogonalization (OAEC) (Hipp et al., 2012), phase locking value 

(PLV) and a modified version of weighted phase lag index (wPLI) (Vinck et al., 2011) keeping 

only phase information (sec 2.5). We will denote the 'MNI iEEG atlas' as the 'iEEG atlas' for the 

remainder of the article. 

8.4.2 Ground truth: iEEG atlas 

The iEEG atlas (Frauscher et al., 2018) was developed from 110 patients (age: 31 ± 10 years, 

range: 13-62 years, Male: 54) with refractory epilepsy who underwent iEEG implantation for 

presurgical epilepsy evaluation. The number of patients in the original paper was 106. However, 

by the time we started our project, additional patient data had been added.The atlas included 

electrodes in confirmed healthy brain regions, i.e. channels that did not exhibit any epileptic 

discharges. It comprises 1712 channels in a bipolar configuration. Each of the 1712 channels has 

60 seconds of resting-state data, recorded with eyes closed (sampling rate: 200Hz). Preprocessing 

of iEEG data included filtering within the 0.5-80 Hz band and applying a notch filter at 50 Hz and 

60Hz to remove the line noise considering in which center (North America or Europe) the data 

were acquired. iEEG data were downsampled to 200 Hz if the original sampling rate was higher 

(original sampling rates were 200, 256, 512, 1000, 1024, and 2000 Hz). The 60-second data were 

selected visually (either continuous or consecutive discontinuous > 5-second segments after 

artifact exclusion) (Frauscher et al., 2018).  The iEEG channels were grouped into 76 regions of 

interest (ROIs) based on the MICCAI atlas (38 ROIs in each hemisphere) (Landman & Warfield, 

2019). More details can be found in Frauscher et al. (2018). 

8.4.2.1 Construction of iEEG connectome 

To compute connectivity between two ROIs in the iEEG atlas, it is necessary to have at least one 

pair of channels connecting them in the same subject (connectivity cannot be computed for pairs 
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of ROIs recorded in different subjects). We identified all pairs of ROIs that exhibited at least one 

pair of channels between them. All local connections within the same ROI were discarded from 

further analysis. The number of channels between the ROI pairs and the number of subjects 

contributing to each ROI pair varied. For instance, some ROI pairs featured one or more pairs of 

channels from a single subject, while others could be contributed by up to 10 subjects, each 

providing one or more pairs of channels. Therefore, the average number of channels in all ROI 

pairs was 14 ranging from 1 to 217 channel pairs. For each pair of channels (between ROIs), 

connectivity was calculated using the four connectivity metrics described in section 8.4.5. The 

connectivity values for each ROI pair were then averaged, irrespective of whether they belonged 

to the same or different subjects, resulting in a single connectivity value per ROI pair. This process 

resulted in a connectome covering 44% of the whole connectome, consisting of 1278 pairs of ROIs, 

involving 100% of the MICCAI atlas (i.e. all 76 ROIs). Most connections were intra-hemispheric, 

covering 62% of the left hemispheric connectome, 59% of the right hemispheric connectome and 

28% of interhemispheric connectome (see Supplementary Fig S1 for more details).  

8.4.3 MEG  

This study included 57 healthy participants who underwent MEG acquisition (resting state, with 

eyes closed), collected at the MEGLab of the IRCCS San Camillo Hospital in Venice, Italy 

(Pellegrino et al., 2022). MEG was acquired using a CTF-MEG system (VSM MedTech Systems 

Inc., Coquitlam, BC, Canada) with 275 axial gradiometers with a sampling rate of 1200 Hz. MEG 

preprocessing was performed with Brainstorm software (Tadel et al., 2011). Preprocessing of MEG 

data included (i) filtering within the 0.5-80 Hz band, (ii) applying a notch filter at 50 Hz, (iii) 

downsampling to 200 Hz, (iv) applying third-order spatial gradient noise correction and (v) 

removal of cardiac and eye movement artifacts using Signal Space Projection (SSP) (Uusitalo & 

Ilmoniemi, 1997) routine available in Brainstorm. A sixty-second segment was extracted for each 

subject, continuous or concatenated (minimum length of the continuous segment: 10 s), where no 

artifact was visibly present, ensuring with an EEG expert that the subject was awake during this 

segment. Following data preprocessing and sleep scoring, a total of 45 participants were ultimately 

included in the analysis (age: 29± 4years, range: 20-38 years, Male: 10). Notably, 1 participant 

was excluded due to sleeping during the acquisition, while 11 were excluded for coregistration, 

segmentation issues, or exceptionally noisy data.  
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8.4.3.1 Source space and forward model estimation 

For each participant, a T1-weighted-3D-turbo field-echo (TFE) anatomical MRI was performed 

with a 3T Ingenia CX Philips scanner (Philips Medical Systems, Best, The Netherlands). 

Freesurfer (Dale et al., 1999) was used for subsequent brain segmentation and reconstruction of 

the cortical surfaces. The coregistration of MEG sensors with anatomical MRI and analysis for 

creating the source model and forward model were performed in Brainstorm (Tadel et al., 2011). 

The cortical mesh of the middle layer (white/gray matter interface), equidistant between the white 

matter and pial surfaces and comprising approximately 300,000 vertices, was considered as the 

source space. Additionally, the two hippocampi from the subcortical structures were included, each 

hippocampus consisting of around 3,000-4,000 vertices depending on the subject's anatomy. For 

the cortex and hippocampus, sources were placed on the surface of the structures with a fixed 

orientation orthogonal to the surface at each point. The cortical and hippocampal surfaces were 

then combined as the source space and was downsampled to approximately 8,000 vertices. The 

forward model was computed using OpenMEEG software (Gramfort et al., 2010; Kybic et al., 

2005) implemented in Brainstorm. We used a 3-layer Boundary Element model (BEM) consisting 

of brain, skull, and scalp surfaces with conductivity values of 0.33, 0.0165, and 0.33 S m−1 (Zhang 

et al., 2006). 

8.4.3.2 MEG source imaging using wavelet Maximum Entropy on the Mean (wMEM)  

The MEG inverse problem was solved using the Maximum Entropy on the Mean (MEM) 

framework (Amblard et al., 2004), a Bayesian approach validated in the context of EEG/MEG 

source imaging (Chowdhury et al., 2013). The key feature of MEM is a spatial prior model, 

assuming that brain activity is organized within cortical parcels, where the activity of every parcel 

is tuned by the probability of activation of a hidden state variable. When the parcel is active, a 

Gaussian prior is assumed to model a priori the activity within the parcel. Starting from such a 

prior “reference” distribution, inference is then obtained by maximizing the relative entropy to the 

prior. MEM can either switch off or switch on the corresponding parcels during the localization 

process while allowing local contrast along the cortical surface within the active parcels. Wavelet 

MEM (wMEM) is a variant of the MEM method specifically designed to localize brain oscillatory 

patterns (Afnan et al., 2023; Amblard et al., 2004; Lina et al., 2012). wMEM applies a discrete 

wavelet transformation (Daubechies wavelets) to characterize the oscillatory patterns in the data 

before applying the MEM solver for source imaging (Lina et al., 2012). wMEM was validated for 

https://www.sciencedirect.com/science/article/pii/S1053811923003099?via%3Dihub#bib0050
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localizing oscillatory patterns at seizure onset (Pellegrino et al., 2016), interictal bursts of high-

frequency oscillations (Avigdor et al., 2021; von Ellenrieder et al., 2016) and MEG resting state 

fluctuations (Aydin et al., 2020). We proposed and implemented several changes in standard 

wMEM to localize specifically oscillatory patterns in the resting state (details in Afnan et al. 

(2023)), and evaluated the accuracy of reconstructions with the MNI iEEG atlas. In the current 

study, we used the wMEM version proposed by Afnan et al. (2023) adding the depth weighting 

parameter proposed and validated in Afnan et al. (2024) to localize deep brain activity more 

accurately. 

To estimate a noise-covariance model from resting state data, we created a quasi-synthetic baseline 

from the signal of interest to compute the noise covariance by randomly shuffling the Fourier phase 

at each frequency (Prichard & Theiler, 1994). We employed a sliding window approach (window 

length: 1 second) to generate the baseline, ensuring a more precise estimation of the noise 

covariance matrix for each wavelet sample across the time scales (Afnan et al., 2023). wMEM 

implementation is available within the BEst plugin of Brainstorm software 

(https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/).  

8.4.3.3 Estimation of virtual iEEG data from the MEG source map 

MEG measures current densities (in nanoAmpere-meters) after source imaging, while iEEG 

records electrical potentials in µVolts. For a quantitative comparison, we converted MEG-

reconstructed source maps into iEEG channel space by estimating corresponding electrical 

potentials for each electrode channel on the iEEG atlas (Abdallah et al., 2022; Grova et al., 2016). 

This involved localizing iEEG channels in the native MRI of MEG healthy subjects, by co-

registering each subject MRI with the ICBM152 template using Minctracc (Collins et al., 1994), 

and applying a linear and non-linear transformation to align electrode coordinates from the iEEG 

atlas to each subject's anatomy. More details about this projection can be found in the 

Supplementary material S1. For each source map acquired from all 45 participants, we obtained 

MEG data converted into µVolts to the corresponding locations of 1712 channels available in the 

iEEG atlas. This resulted in a larger number of MEG channels compared to the iEEG atlas (1712 

channels in the iEEG atlas versus 1712×45 channels in MEG). We used a bipolar montage for both 

iEEG and MEG-converted virtual iEEG. In our comparison of MEG-estimated oscillations with 

the iEEG atlas in Afnan et al. (2023), we used a common average montage and found similar 

https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/
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results for a bipolar montage. However, we used a bipolar montage for the connectivity analysis 

as a common average montage can introduce spurious connections between channels (Bastos & 

Schoffelen, 2016; Shi et al., 2024).  

8.4.3.4 Construction of reliable MEG connectomes using Bootstrap resampling 

We constructed 45 MEG connectomes, retaining only the connections present in the iEEG 

connectome (see Fig S1). The key contrast between the iEEG connectome and MEG connectomes 

is that the iEEG connectome can reflect contributions from multiple subjects, while each MEG 

connectome represents contributions solely from one subject. To address this, we employed a 

bootstrapping approach to develop a MEG connectome contributed by a group of participants, 

similar to the one considered when using the iEEG atlas. The iEEG connectome consists of 

connectivity metrics between channel pairs, obtained by pooling the contribution from 110 

patients. For example, consider two regions of interest (ROIs) - the hippocampus and angular 

gyrus, including four iEEG pairs of electrodes: The first and fourth connection pairs were obtained 

from one subject (iEEG_subject-1), while the second was obtained from iEEG_subject-2 and the 

third one from iEEG_subject-3. On the other hand, in each of 45 MEG connectomes, all 

connections would originate from a single subject. To create a MEG connectome mimicking the 

one obtained when using the iEEG atlas, we randomly select MEG subjects to contribute 

connection pairs between these two ROIs (hippocampus and angular gyrus). For instance, the first 

and fourth connection pairs came from one randomly selected MEG subject (e.g. MEG_subject-

40), while the second and third connections were sampled from two other randomly selected MEG 

subjects (e.g. MEG_subject-8 and MEG_subject-1). As illustrated in Figure 8-1, this process was 

repeated for all ROI pairs to generate a bootstrap resampled MEG connectome, mimicking the 

same subjects group distribution as our original iEEG connectome. This overall process was 

repeated 5000 times and resulted in 5000 bootstrap resampled MEG connectomes (Figure 8-1). 
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Figure 8-1: The iEEG connectome consists of connectivity metrics between pairs of channels, obtained 

from a total of 110 patients. In each of 45 MEG connectomes, all connections originated from a single 

subject. To generate a new MEG connectome comparable to the original iEEG connectome, MEG subjects 

were randomly chosen to contribute connections between ROIs while preserving spatial information. This 

process was repeated for all ROI pairs, resulting in a bootstrap resampled MEG connectome,  mimicking 

the same subjects group distribution as our original iEEG connectome. The spatial Pearson correlation 

between the original iEEG connectome and the bootstrap resampled MEG connectome was computed. This 

overall process was iterated 5000 times, yielding 5000 correlation values. 

8.4.4 Cross-modal correlation 

We computed the spatial Pearson correlation between the original iEEG connectome and the 5000 

bootstrap resampled MEG connectomes. As a result, we obtained 5000 Pearson correlation values, 

representing the spatial cross-modal correlation between iEEG and MEG data. To statistically 

assess the significance of cross-modal correlations, we also generated 5,000 cross-modal 

correlation values to build an empirical null distribution. To do so, for each iteration, we permuted 

randomly the anatomical labels of the channel pairs in the bootstrapped MEG connectomes, 

therefore effectively destroying the underlying spatial correlation structure. Then, we calculated 

the Pearson correlation between the iEEG connectome and the spatially permuted  MEG 
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connectomes, creating an empirical null distribution from those 5000 correlation values. We 

defined a range for the null distribution, known as the Region of Practical Equivalence, which 

included 95% of the distribution centered around the median of the null. A cross-modal (MEG 

connectome-iEEG connectome) correlation was considered significant if less than 2.5% of the 

actual distribution lay inside the null range (equivalent to a 5% two-tailed threshold, with 2.5% in 

each tail). 

8.4.5 Estimation of connectivity metrics 

For analyzing electrophysiological data, various connectivity metrics are available, mainly 

classified into two categories: amplitude-based and phase-based metrics. In this study, we 

employed a widely-used amplitude-based metric—the amplitude envelope correlation (𝐴𝐸𝐶) 

(Matthew J Brookes et al., 2011) and a phase-based metric, the phase locking value (𝑃𝐿𝑉) 

(Mormann et al., 2000). Additionally, we utilized two metrics that correct/remove zero-lag 

connectivity: orthogonalized AEC (𝑂𝐴𝐸𝐶) (Hipp et al., 2012) and a modified version of the 

weighted phase lag index (𝑤𝑃𝐿𝐼) (Vinck et al., 2011), which was modified to consider only the 

phase information. 

Let us consider two signals 𝑋 and 𝑌. To obtain their corresponding amplitude envelope and 

instantaneous phases, we computed the Hilbert transform for the entire 60-second signals. The 

Hilbert transform was initially calculated for each 0.5 Hz frequency band and then averaged to 

obtain one transform for six canonical frequency bands (delta (0.5-4Hz), theta (4-8Hz), alpha (8-

13Hz), beta (13-30Hz), low gamma (30-55Hz) and high gamma (55-80Hz)) (Aydin et al., 2020).  

 𝑋𝐵𝑃,𝐻 and 𝑌𝐵𝑃,𝐻 (𝐵𝑃 stands for bandpass and 𝐻 stands for Hilbert) are the Hilbert analytical 

signals of each narrow frequency band for signals 𝑋 and 𝑌, described as 𝑋𝐵𝑃,𝐻(𝑡) =

|𝑋𝐵𝑃,𝐻(𝑡)|𝑒
𝑗𝜑𝑋(𝑡) = 𝐴𝑋(𝑡)𝑒

𝑗𝜑𝑋(𝑡) and 𝑌𝐵𝑃,𝐻(𝑡) = |𝑌𝐵𝑃,𝐻(𝑡)|𝑒
𝑗𝜑𝑌(𝑡) = 𝐴𝑌(𝑡)𝑒

𝑗𝜑𝑌(𝑡) respectively. 

Here,  𝐴𝑋(𝑡) and 𝐴𝑌(𝑡) denote the instantaneous amplitude of 𝑋𝐵𝑃,𝐻(𝑡) and 𝑌𝐵𝑃,𝐻(𝑡), 𝜑𝑋(𝑡) and 

𝜑𝑌(𝑡) denote the instantaneous phase of 𝑋𝐵𝑃,𝐻(𝑡) and 𝑌𝐵𝑃,𝐻(𝑡), respectively. We considered the 

whole 60-second dataset to estimate AEC and OAEC. For PLV and wPLI, we used 6-second 

epochs and averaged the connectivity over the epochs.  
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Amplitude Envelope Correlation (AEC): AEC between two signals, 𝑋 and 𝑌, is obtained by 

computing the Pearson correlation between the envelopes of 𝑋𝐵𝑃,𝐻 and 𝑌𝐵𝑃,𝐻. (Matthew J Brookes 

et al., 2011). 

𝐴𝐸𝐶 =
∑ (𝐴𝑋(𝑡)−𝐴𝑋)(𝐴𝑌(𝑡)−𝐴𝑌)
𝑇
𝑡=1

√∑ (𝐴𝑋(𝑡)−𝐴𝑋)2
𝑇
𝑡=1 ∑ (𝐴𝑌(𝑡)−𝐴𝑌)2

𝑇
𝑡=1

             (1) 

Where 𝑇 is the length of the signal (we considered 60-sec at 200 Hz sampling, 𝑇 = 12000 

samples) and 𝐴𝑋 and 𝐴𝑌 are the mean values of 𝐴𝑋(𝑡) and 𝐴𝑌(𝑡) respectively.  

Orthogonalized Amplitude Envelope Correlation (OAEC): OAEC was proposed by Hipp et al. 

(2012) following a pairwise orthogonalization between two signals.  

𝑌⏊𝑋 = 𝑖𝑚𝑎𝑔(𝑌𝐵𝑃,𝐻
𝑋𝐵𝑃,𝐻

∗

|𝑋𝐵𝑃,𝐻|
)                               (2) 

𝑋⏊𝑌 = 𝑖𝑚𝑎𝑔(𝑋𝐵𝑃,𝐻
𝑌𝐵𝑃,𝐻

∗

|𝑌𝐵𝑃,𝐻|
)                                      (3)    

Here ∗ means complex conjugate and 𝑖𝑚𝑎𝑔 means the imaginary part of the complex number. 

We calculated the Pearson correlation between the envelopes of 𝑋𝐵𝑃,𝐻 and 𝑌⏊𝑋. Similarly, the 

correlation between the envelopes of 𝑌𝐵𝑃,𝐻 and 𝑋⏊𝑌 is calculated and then the average of these 

two correlation values is considered as the final OAEC value. 

Phase Locking Value (PLV): PLV was originally proposed in Lachaux et al. (1999) in the context 

of evoked activity considering a stable phase-difference along trials. We calculated PLV for each 

epoch of 6 seconds using an extended definition of PLV (Equation 3), a version proposed by 

Mormann et al. (2000) in the context of resting-state data, by assessing phase locking as a stable 

phase difference over time: 

𝑃𝐿𝑉𝑋,𝑌 =
1

𝑇
|∑ exp (𝑗(𝜑𝑋(𝑡) − 𝜑𝑌(𝑡)))

𝑇
𝑡=1 |           (4) 

Where 𝑇 is the length of the signal (we considered 6-sec epochs at 200 Hz sampling, 𝑇 = 1200 

samples), 𝑗 denotes the imaginary unit, 𝜑𝑋(𝑡) and 𝜑𝑌(𝑡) are respectively the corresponding 

instantaneous phases of signals 𝑋 and 𝑌 at time point 𝑡. We implemented PLV following the 

derivation proposed by Bruña et al. (2018) as:  
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𝑃𝐿𝑉𝑋,𝑌 =
1

𝑇
|∑ �̇�𝐵𝑃,𝐻(𝑡). (�̇�𝐵𝑃,𝐻(𝑡))

∗𝑇
𝑡=1 |               (5) 

Where �̇�𝐵𝑃,𝐻(𝑡) =
𝑋𝐵𝑃,𝐻(𝑡)

|𝑋𝐵𝑃,𝐻(𝑡)|
 and �̇�𝐵𝑃,𝐻(𝑡) =

𝑌𝐵𝑃,𝐻(𝑡)

|𝑌𝐵𝑃,𝐻(𝑡)|
.  

Finally, we averaged the PLV values across all the epochs.   

Modified Weighted Phase Locking Index (wPLI*):  

The original formula of wPLI is proposed by Vinck et al. (2011): 

𝑤𝑃𝐿𝐼 =
|∑ 𝐴𝑋(𝑡)𝐴𝑌(t)sin (𝜑𝑋(𝑡)−𝜑𝑌(𝑡))
𝑇
𝑡=1 |

∑ |𝐴𝑋(𝑡)𝐴𝑌(t)sin (𝜑𝑋(𝑡)−𝜑𝑌(𝑡))|
𝑇
𝑡=1

              (6) 

If we consider the amplitudes of the channels in a particular frequency band are stable in time and 

not involved in the coupling of the channels, the coupling will be strictly described by the phase 

synchronization and driven by the constant phase shift. Under this assumption, the modified 

version of wPLI becomes: 

𝑤𝑃𝐿𝐼∗ =
|∑ sin (𝜑𝑋(𝑡)−𝜑𝑌(𝑡))
𝑇
𝑡=1 |

∑ |sin (𝜑𝑋(𝑡)−𝜑𝑌(𝑡))|
𝑇
𝑡=1

                               (7) 

Where 𝑇 is the length of the signal (we considered 6s epochs at 200 Hz sampling, 𝑇 = 1200 

samples). We averaged the 𝑤𝑃𝐿𝐼∗ values across all the epochs. 

The results obtained when considering the original wPLI formula are also provided in the 

Supplementary material. 

8.5 Results 

8.5.1 Connectivity estimated by MEG versus iEEG 

Figure 8-2 shows the distribution of connectivity values estimated by MEG and iEEG for four 

connectivity metrics over the whole available iEEG connectome. Here we used all the original 

MEG connectomes estimated from 45 subjects, not the resampled MEG connectome as described 

in section 8.4.3.4. In this figure, iEEG connectivities were averaged across 6 frequency bands and 

MEG connectivities were averaged across 45 subjects and 6 frequency bands. Each boxplot shows 

1278 connectivity values (from 1278 ROI pairs) for iEEG and MEG.    
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Figure 8-2: Connectivity averaged across frequency bands estimated by MEG and iEEG calculated using 

(A) 𝐴𝐸𝐶, (B) 𝑂𝐴𝐸𝐶, (C) 𝑃𝐿𝑉, and (D) 𝑤𝑃𝐿𝐼∗. For iEEG, we considered all 1278 iEEG ROI pairs available 

from all patients of the iEEG atlas and showed the averaged connectivity across six frequency bands. For 

MEG we considered 1278 virtual iEEG ROI pairs from each of the 45 subjects and showed the averaged 

connectivity across 45 subjects and six frequency bands. The median value of each distribution is displayed. 

This figure provides a general overview of the scale of connectivity values one could expect from 

MEG versus iEEG connectomes. We found large differences in 𝐴𝐸𝐶 and 𝑃𝐿𝑉  connectivity values 

estimated from MEG when compared to iEEG, given that those two metrics are sensitive to volume 

conduction leakage. For 𝑂𝐴𝐸𝐶 and 𝑤𝑃𝐿𝐼∗ which removed zero-lag connectivity, MEG and iEEG 

connectivity values were found within a more similar range, but both were very low. We will 

investigate those connectivity values as a function of the distance between two ROIs in section 

8.5.5. 

8.5.2 Cross-modal spatial correlation: AEC and OAEC 

After considering 5000 bootstrap resampled MEG connectomes mimicking the same 

spatial/population distribution as our original iEEG connectome, Figure 8-3A presents the results 

of cross-modal spatial correlations between MEG and iEEG connectomes for six frequency bands 

calculated from 𝐴𝐸𝐶 and 𝑂𝐴𝐸𝐶, when compared to null distributions obtained by spatial 

permutation of the ROI pairs. The differences between the cross-modal correlations and the null 

distributions were as follows: For AEC: δ: 0.29±0.03, θ: 0.30± 0.03, α: 0.29±0.03, β: 0.38±0.02, 
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low γ: 0.27±0.02 and high γ: 0.29±0.02 (values reported as median ± median absolute deviation). 

For OAEC: δ: 0.06±0.03, θ: 0.11± 0.03, α: 0.15±0.03, β: 0.26±0.03, low γ: 0.07±0.03 and high γ: 

0.11±0.03.  

Fig 3B displays the median value of the distribution for each cross-modal correlation and 

highlights correlations that were significantly larger than null. Unless specified otherwise, the 

correlation was considered significant if its overlap with the null range was less than 2.5% 

(equivalent to a 5% two-tailed threshold, with 2.5% in each tail). When considering 𝐴𝐸𝐶 metric, 

MEG-estimated connectomes were moderately correlated with iEEG connectomes across all 

frequency bands (~0.25-0.37), with the highest correlation observed in the beta band (0.37). When 

considering 𝑂𝐴𝐸𝐶 metric, the median of cross-modal correlations decreased compared to 𝐴𝐸𝐶, 

but they remained significantly higher than null distribution in the alpha, beta and high gamma 

bands, with the highest correlation still observed in the beta band (0.26). 
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Figure 8-3: (A) Distribution of cross-modal correlations as well as the null distribution (red) between MEG 

and iEEG for six frequency bands calculated for AEC (blue) and OAEC (green). (B) The medians of the 

distribution of cross-modal correlations are shown in the bar plot. The correlation was considered 

significant if its overlap with the null range was less than 2.5% (equivalent to a 5% two-tailed 

threshold, with 2.5% in each tail). The frequency bands that showed significantly higher 

correlations than the null distribution are marked with an asterisk (*)  

Figure 8-4 further presents intra-hemispheric and inter-hemispheric connections, alongside all 

available connections. Similarly to Figure 8-3, intra-hemispheric connectomes estimated from 

MEG using 𝐴𝐸𝐶 were moderately correlated to those from iEEG across all frequency bands 

(significantly higher than the null distribution). Inter-hemispheric cross-modal correlations were 

significantly higher than the null distribution in all bands except alpha. For 𝑂𝐴𝐸𝐶, inter- and intra-

hemispheric correlations decreased compared to 𝐴𝐸𝐶 in all frequency bands (Figure 8-4B). Intra-

hemispheric correlations were significantly higher than the null distribution for the beta band, 

whereas inter-hemispheric correlations were not found statistically significant in any band.  

 

Figure 8-4: The median of the distribution of cross-modal correlations is depicted, considering all 

connections, intra-hemispheric connections, and inter-hemispheric connections for (A) AEC  and (B) 

OAEC. The correlation was considered significant if its overlap with the null range was less than 2.5% 
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(equivalent to a 5% two-tailed threshold, with 2.5% in each tail). Frequency bands with significantly higher 

correlations than the null distribution are marked with an asterisk (*). 

To assess the reliability of our findings, we conducted a supplementary investigation using a 

bootstrap resampling strategy to generate the iEEG connectomes. We divided the 60 seconds of 

iEEG data into ten 6-second segments and performed bootstrapping with replacement 100 times 

(similarly to the approach we proposed in Aydin et al. (2020)). More details are provided in 

Supplementary material S2. The spatial correlations between MEG and iEEG for AEC and OAEC, 

computed from the 100 bootstrapped iEEG datasets, are shown in Fig S2. The patterns for AEC 

and OAEC were similar to those shown in Figure 8-3B, suggesting robustness of our findings. 

8.5.3 Cross-modal spatial correlation: 𝑃𝐿𝑉 and 𝑤𝑃𝐿𝐼∗ 

Figure 8-5A presents the cross-modal correlation between MEG and iEEG connectomes, depicted 

for 6 frequency bands, using the connectivity metrics 𝑃𝐿𝑉 and 𝑤𝑃𝐿𝐼∗. 𝑃𝐿𝑉 exhibited moderate 

cross-modal spatial correlation across all frequency bands, with the highest correlation in the beta 

band. The differences between the cross-modal correlation and the null distribution for all 

frequency bands were as follows: δ: 0.29±0.03, θ: 0.34±0.03, α: 0.25±0.04, β: 0.36±0.03, low γ: 

0.31±0.03, and high γ: 0.34±0.03. For 𝑤𝑃𝐿𝐼∗, these differences were: δ: 0.14±0.03, θ: 0.2±0.03, 

α: 0.13±0.04, β: 0.15±0.03, low γ: 0.12±0.03, and high γ: 0.25±0.03.  

In Figure 8-5B, the median values of each cross-modal correlation distribution are presented as a 

bar plot for both 𝑃𝐿𝑉 and 𝑤𝑃𝐿𝐼∗, highlighting correlations significantly larger than the empirical 

null distribution. For 𝑃𝐿𝑉, MEG-estimated connectomes were moderately correlated to iEEG 

connectomes across all frequency bands (~0.3). With 𝑤𝑃𝐿𝐼∗, the median of cross-modal 

correlations decreased compared to 𝑃𝐿𝑉, but remained significantly higher than the null 

distribution for all frequency bands.  

The spatial correlations between MEG and iEEG for intra- and inter-hemispheric connectomes for 

𝑃𝐿𝑉 and 𝑤𝑃𝐿𝐼∗ are presented in Supplementary Fig S3. For 𝑃𝐿𝑉, significant cross-modal 

correlations were observed for both intra-hemispheric connectomes in all frequency bands. Inter-

hemispheric correlations were statistically significant in all frequency bands except alpha. 

Interestingly for 𝑤𝑃𝐿𝐼∗, the inter-hemispheric correlations were statistically significantly higher 

than the null distribution in all frequency bands, whereas the left hemispheric correlations were 
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not significantly higher than null in any band.  Moreover, the right hemispheric correlations were 

found higher than the left hemispheric correlations in all frequency bands. To further investigate 

this surprising result, we also evaluated the raw 𝑤𝑃𝐿𝐼∗ separately for iEEG and MEG for left-

hemispheric versus right-hemispheric connectomes, and the distributions of 𝑤𝑃𝐿𝐼∗did not show 

such laterality differences.  

 

Figure 8-5: Distribution of cross-modal correlations as well as the null distribution (red) between MEG and 

iEEG for six frequency bands calculated for 𝑃𝐿𝑉 (blue) and 𝑤𝑃𝐿𝐼∗ (green) (A). The medians of the 

distribution of cross-modal correlations were shown as a bar plot (B). The correlation was considered 

significant if its overlap with the null range was less than 2.5% (equivalent to a 5% two-tailed threshold, 

with 2.5% in each tail).  The frequency bands that showed significantly higher correlations than the null 

distribution were marked with an asterisk (*).   

To assess if the left versus right and inter-hemispheric asymmetry found by 𝑤𝑃𝐿𝐼∗ could be 

influenced by the choice of the source imaging method (wMEM), we also repeated this analysis 

using another standard source imaging method, the minimum norm estimate (Hämäläinen & 

Ilmoniemi, 1994). We found a similar trend, i.e., the inter-hemispheric correlations were higher 

than left/right hemispheric correlations and right hemispheric correlations were higher than left 
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hemispheric correlations (result not shown). In Supplementary Fig S4, we also provided the 

correlations between MEG and iEEG for intra- and inter-hemispheric connectomes for 𝑤𝑃𝐿𝐼 ,  

calculated using the original definition, which also included envelope amplitudes, as described in 

equation (7). Using this implementation, the resulting correlations were overall very low and not 

statistically significant in any frequency bands. 

8.5.4 Cross-modal spatial correlation for superficial versus deep sources 

In Figure 8-6, we investigated the cross-modal correlations between MEG and iEEG for superficial 

and deep ROI pairs. For each iEEG channel, we measured the eccentricity, defined as the distance 

between the channel location and the center of the head. Deep channels have therefore low 

eccentricity and superficial channels have high eccentricity. Figure 8-6A shows the distribution of 

eccentricity values for all the channels, using 80% transparency of the cortical mesh so that all 

channels are visible in the figure. A threshold of 85 mm eccentricity was selected to classify the 

channels into superficial and deep channels. We used this threshold of 85 mm to have a similar 

number of ROI pairs in superficial versus deep connectomes. The distributions of the distance 

between ROI pairs for two groups (eccentricity > 85 mm for both ROIs of the pair and eccentricity 

< 85 mm for both ROIs of the pair) are shown in Figure 8-6B. The cross-modal correlations 

between MEG and iEEG connectomes for these two groups are depicted for the 6 frequency bands 

for 𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, 𝑃𝐿𝑉, and 𝑤𝑃𝐿𝐼∗ (Figure 8-6C-F). For 𝐴𝐸𝐶 and 𝑃𝐿𝑉, the cross-modal correlations 

were significantly higher than the null distribution for all frequency bands for both groups. 

However, the cross-modal correlations for deep ROI pairs had a trend of decrease when compared 

to superficial ROI pairs for delta, theta, alpha, and beta bands. For 𝑂𝐴𝐸𝐶, the cross-modal 

correlations were significantly higher than the null distribution in the beta band for both superficial 

and deep ROI pairs. On the other hand, the correlation for deep ROI pairs in the alpha band was 

found significantly higher than null whereas the correlation for superficial ROI pairs did not reach 

the significant threshold. Interestingly for 𝑤𝑃𝐿𝐼∗, the correlations for superficial ROI pairs were 

significantly higher than the null distribution for all frequency bands except low gamma, whereas 

the correlations for deep ROI pairs were very low and did not reach the significant threshold in 

any frequency band. 
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Figure 8-6: (A) Eccentricity of iEEG channels shown on the brain cortex with 80% transparency to ensure 

all deep iEEG channels are visible. (B) Distribution of the distances between ROI pairs for all pairs 

exhibiting either an eccentricity > 85 mm (top) or < 85 mm (bottom). The cross-modal correlation between 

MEG and iEEG for two groups (both eccentricity values > 85 mm in blue and both eccentricity values  < 

85 mm in red) for 𝐴𝐸𝐶 (C), 𝑂𝐴𝐸𝐶 (D), 𝑃𝐿𝑉 (E), and 𝑤𝑃𝐿𝐼∗ (F). The correlation was considered significant 

if its overlap with the null range was less than 2.5% (equivalent to a 5% two-tailed threshold, with 2.5% in 

each tail).  The frequency bands that showed significantly higher correlations than the null distribution were 

shown with a *. 

8.5.5  Connectivity as a function of distance between two ROIs 

In this section, we investigated raw connectivity values from iEEG and MEG. Figure 8-7A shows 

the 𝐴𝐸𝐶 and 𝑂𝐴𝐸𝐶 values as a function of the distance between two ROIs for iEEG and MEG for 

beta band results. For MEG, the connectivity values were averaged over 45 subjects. As expected, 

both 𝐴𝐸𝐶 and 𝑂𝐴𝐸𝐶 decreased as a function of distance between the two ROIs. However, for 

𝐴𝐸𝐶, MEG connectivity values were greater than iEEG. After orthogonalization, both MEG and 

iEEG connectivity values decreased, but the decrease in MEG was higher than iEEG, which was 

quantified and plotted in Figure 8-7B. The 𝐴𝐸𝐶 and 𝑂𝐴𝐸𝐶 for all frequency bands are presented 

in Supplementary Fig S5. Across all frequency bands, the reduction in MEG connectivity 
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following orthogonalization exceeded that of iEEG (see Fig S6). The raw 𝑃𝐿𝑉 and 𝑤𝑃𝐿𝐼∗ values 

as a function of distance between ROIs for all frequency bands are presented in Fig S7. Similar to 

𝐴𝐸𝐶 and 𝑂𝐴𝐸𝐶, 𝑃𝐿𝑉 also decreased as a function of the distance between two ROIs for both MEG 

and iEEG. 𝑃𝐿𝑉 estimated by MEG were greater than iEEG. However for 𝑤𝑃𝐿𝐼∗, the relationship 

of the values as a function of the distance between ROI pairs is not as clear as found for other 

metrics. 

 

Figure 8-7: (A) 𝐴𝐸𝐶 and 𝑂𝐴𝐸𝐶 as a function of distance between two ROIs plotted for iEEG and MEG in 

the beta band. (B) The distribution of differences between 𝑂𝐴𝐸𝐶 and 𝐴𝐸𝐶 (𝑂𝐴𝐸𝐶 minus 𝐴𝐸𝐶) for MEG 

and iEEG.   

8.5.6 Cross-modal spatial correlation and the number of subjects averaged in ROI 

pairs 

In previous results, we actually estimated the iEEG connectomes (real or virtual) by averaging all 

possible pairs of channels between each ROI pair (section 8.4.2.1). The results shown so far were 

produced using this criterion: at least one pair of channels connecting the ROI pair, which resulted 

in a connectome containing 1,278 ROI pairs (out of 2,888 possible ROI pairs, resulting in 44% 

coverage of the whole connectome). To assess the effect of the number of subjects having an ROI 

pair, we further investigated the cross-modal spatial correlations between MEG and iEEG 

connectomes while increasing the minimum number of subjects to be averaged for each ROI pair. 

However, increasing the minimum number of subjects in each ROI pair limits the coverage of the 

iEEG connectome we could consider (some ROI pairs have only one subject, some have two, etc).  
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Figure 8-8: Distribution of cross-modal spatial correlations between MEG and iEEG connectomes in the 

beta band obtained using 𝐴𝐸𝐶 and 𝑂𝐴𝐸𝐶 (obtained from 5000 bootstrap MEG samples), as we increase 

the minimum number of subjects from 1 to 5 in each ROI pair. Increasing the minimum number of subjects 

in each ROI pair (as shown on the left) decreases the available coverage of the iEEG connectome from 44% 

to 3% (as shown on the right).  For example, the bottom row displays histograms of the correlations between 

MEG and iEEG connectomes when the iEEG connectome was created with ROI pairs that include at least 

1 patient, covering 44% of the connectome. 

Figure 8-8 shows the cross-modal correlations for 𝐴𝐸𝐶 and 𝑂𝐴𝐸𝐶 in the beta band as an example. 

On the y-axis, we show the minimum number of subjects on the left and the percentage coverage 

of the whole connectome on the right. The cross-modal correlations between MEG and iEEG 

increased as the minimum number of subjects included in each ROI pair increased. The lowest 

value of the minimum number of patients (= 1) means including all possible ROI pairs, thus 

maximizing the connectome coverage. Using a minimum number of patients of 1 provided 1,278 

ROI pairs, covering 44% of the whole connectome. Increasing the minimum number of patients 

in each ROI pair to 2, 3, 4, and 5 decreased the connectome coverage to 20%, 10%, 6%, and 3% 

of the whole connectome, respectively. We did not show results for a minimum number of patients 

greater than 5, as the coverage of the connectome decreases to less than 1%.  
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The cross-modal correlations for six frequency bands as we increased the minimum number of 

subjects in each ROI pair are shown in Supplementary Fig S8. A similar trend of increased cross-

modal correlation was found for 𝐴𝐸𝐶 and 𝑂𝐴𝐸𝐶 in delta, theta, alpha, beta and low gamma bands.  

In Supplementary  Fig S9, the cross-modal correlations obtained using 𝑃𝐿𝑉 and 𝑤𝑃𝐿𝐼∗are shown 

for all six frequency bands as we increased the minimum number of subjects in each ROI pair. For 

all frequency bands, the cross-modal correlations for 𝑃𝐿𝑉 increased as the minimum number of 

subjects in each ROI pair increased. However for 𝑤𝑃𝐿𝐼∗, we did not find the trend of increasing 

cross-modal correlation as we increased the minimum number of subjects. 

8.6 Discussion 

Our objective was to validate the ability of MEG to estimate resting state connectomes for healthy 

subjects by comparing them with an iEEG atlas. To compare the two modalities in the same space, 

we converted MEG sources into virtual iEEG potentials (Abdallah et al., 2022; Grova et al., 2016). 

As opposed to estimating virtual channels using beamforming approaches (Tamilia et al., 2021), 

our strategy is to combine a MEG source imaging method that was evaluated for its ability to 

localize accurately resting-state MEG data and notably oscillations, the wavelet-based MEM 

(wMEM) (Afnan et al., 2023), followed by applying an iEEG forward problem to estimate virtual 

iEEG potentials in microVolts that correspond to our MEG sources (Abdallah et al., 2022; Grova 

et al., 2016). This offers a solid quantification approach to compare MEG sources (estimated by 

solving an inverse problem) with actual iEEG in situ recordings. Consequently, the two modalities 

were associated with different distributions of available data when estimating connectomes. For 

MEG, we were able to estimate 45 connectomes, each coming from one subject, and providing 

virtual iEEG data on all channels of the iEEG atlas. Thus each connectome was contributed by the 

same subject. In contrast, when considering the multicentric iEEG atlas, we were able to estimate 

one iEEG connectome, which was obtained by pooling data from 110 subjects, each subject 

contributing to a subset of the connectome. To address the discrepancy between MEG and iEEG 

data distribution when estimating connectomes, we proposed a bootstrap resampling approach to 

create a MEG connectome spatially sampled in the same way as the iEEG connectome, such that 

each bootstrapped MEG connectome was built by pooling data in a similar way of constructing 

iEEG connectome.  
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Spatial cross-modal correlations between MEG and iEEG ranging from ~0.25 to 0.38 were 

observed for 𝐴𝐸𝐶 and 𝑃𝐿𝑉. As expected, we found that considering 𝑂𝐴𝐸𝐶 or 𝑤𝑃𝐿𝐼∗, as metrics 

that correct/remove zero-lag connectivity, led to a reduction in cross-modal correlations. This 

highlights the trade-off: while MEG may exhibit more connectivity due to source leakage, 

removing zero-lag connectivity also eliminates genuine connections, thereby decreasing overall 

cross-modal correlation. These results are also supported by the fact that even for the original 

iEEG, we found a small decrease in connectivity when removing zero-lag connectivity. This 

suggests that the observed connectivity is more likely to be genuine time-locked zero phase 

connectivity (see Figure 8-7), as iEEG, being local in-situ measurements, are less sensitive to 

source leakage and volume conduction (O’Reilly & Elsabbagh, 2021). These findings are 

consistent with prior studies (Colclough et al., 2016; Palva et al., 2018) that were conducted using 

simulations. In addition, there was a general trend of higher cross-modal spatial correlations 

between MEG and iEEG for superficial ROI pairs compared to deep ROI pairs, with a few 

exceptions.The decrease in correlations for deep ROI pairs was more prominent in phase-based 

metrics compared to amplitude-based metrics. The differences in cross-modal correlations for 

amplitude- and phase-based metrics also highlight that those metrics are capturing distinct 

information, more likely supported by different underlying mechanisms (Siems & Siegel, 2020). 

Moreover, to the best of our knowledge, our study is the first to quantify the extent of 

overestimation of MEG connectivity when compared to ground truth iEEG data, at the population 

level. This overestimation was consistently observed across all frequency bands. This is also the 

first study to quantify and compare MEG and iEEG connectomes. For both MEG and iEEG, 𝐴𝐸𝐶 

and 𝑃𝐿𝑉 values decreased with increasing distance between two ROIs, consistent with previous 

studies with animal electrophysiology (Leopold et al., 2003) and human iEEG (Arnulfo et al., 

2015). The decrease in connectivity with increasing distance between regions was also found for 

𝑂𝐴𝐸𝐶, but not much for 𝑤𝑃𝐿𝐼∗ for which we mainly found very small connectivity values on 

those resting state data.  

8.6.1 Moderate correlations between MEG and iEEG connectome  

The cross-modal correlations between MEG and iEEG connectomes for different metrics across 

all frequency bands were generally moderate to low (~0.12 to 0.37 for all connections, when 

statistically significant). It is however important to note that we did not expect very high 
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correlations between these two modalities due to several factors contributing to the differences, 

such as: (i) non-simultaneous data from two different groups, (ii) different subjects contributing to 

the single iEEG connectome versus each of the 45 participants contributing to the MEG 

connectome (45 MEG connectomes), although we attempted to address this by adopting a 

bootstrap resampling approach, and (iii) different levels of averaging for different ROI pairs 

(ranging between 1 to 217 channel pairs). Considering these variabilities, the cross-modal 

correlations found between MEG and iEEG suggest that we can recover some relevant 

connectivity patterns from MEG. However, since these correlations are moderate to low and vary 

across different metrics, the choice of metrics is important and the results of MEG connectivity 

should be interpreted with caution. 

For connectivity metrics that do not remove zero-lag connectivity (𝐴𝐸𝐶/𝑃𝐿𝑉), moderate but 

significant cross-modal correlations (~0.25 to 0.45) between MEG and iEEG were found in all 

frequency bands. For connectivity metrics that corrected/removed the zero-lag connectivity, the 

cross-modal correlations decreased. When compared to the empirical null distribution of cross-

modal correlation, the resulting correlations were found significant in alpha and beta bands for 

𝑂𝐴𝐸𝐶. For 𝑤𝑃𝐿𝐼∗, although the correlations were low (~0.15 to 0.25), they were statistically 

significant in all frequency bands. Overall, we observed the highest cross-modal correlation in the 

beta band for 𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, and 𝑃𝐿𝑉. 

Previous studies suggested that intrinsic networks estimated by MEG show the strongest 

correlation with fMRI-derived networks in the alpha and beta bands estimated by amplitude 

envelope correlation (Brookes et al., 2011). They proposed that the frequency of the amplitude 

envelope in these bands might better match slower fMRI signal fluctuations.  Similarly, Wirsich et 

al. (2020) estimated the cross-modal correlation between simultaneous fMRI and EEG 

connectome generated using imaginary coherence (Nolte et al., 2004) and reported similar cross-

modal correlations as those we obtained (~0.29-0.36), with the highest correlations also found in 

the beta band. They found consistent results with multiple datasets using imaginary coherence 

(Wirsich et al., 2020; Wirsich et al., 2017) and across different MRI systems using 𝐴𝐸𝐶/𝑂𝐴𝐸𝐶 

and imaginary coherence (Wirsich et al., 2021). In Wirsich et al. (2021), the cross-modal 

correlations between fMRI and EEG connectivity using 𝑂𝐴𝐸𝐶 were lower compared to 𝐴𝐸𝐶, 

which is consistent with our findings.  
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In contrast to the studies mentioned above, where two modalities were compared across various 

frequency bands, Shafiei et al. (2022) adopted a different approach to compare fMRI and MEG-

derived connectivity using OAEC. They illustrated that MEG oscillations across multiple bands 

might combine to give rise to the fMRI functional networks. They reported that while all frequency 

bands contribute to forming fMRI networks, beta band connectivity made the largest contribution, 

followed by theta and alpha connectivity. This was consistent with previous studies (Matthew J. 

Brookes et al., 2011; Deligianni et al., 2014; Sadaghiani et al., 2022) suggesting that the frequency 

of the slower oscillation (i.e. extracted from the envelope of the alpha/beta oscillations) would be 

more similar to the fMRI fluctuations. 

Unlike those studies, which compared hemodynamic correlations measured with fMRI with 

EEG/MEG connectivities, known to capture different brain mechanisms at varying time scales, we 

aimed to compare two modalities, iEEG and MEG, capturing essentially the same brain dynamics 

at the same time scale. For this reason, it is surprising that the cross-modal correlations between 

MEG and iEEG were in a similar range as, and not higher than those observed in studies comparing 

fMRI with EEG/MEG. The reasons for the frequency-specific cross-modal similarities, as well as 

why correlations in the beta band were higher than in other bands, remain unclear and pose 

important questions for future studies. 

However, it is interesting to observe higher cross-modal correlations between MEG and iEEG for 

𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, and 𝑃𝐿𝑉 when we increase the number of subjects to average in each ROI pair to 

construct the connectome, but at the cost of reducing overall connectome coverage. For instance, 

when we ensured at least 3 subjects in each ROI pair to construct the connectome, the cross-modal 

correlations between MEG and iEEG for 𝐴𝐸𝐶, 𝑃𝐿𝑉 and 𝑂𝐴𝐸𝐶 were 0.6, 0.6, and 0.45 (Figure 

8-8, Fig S8, S9), respectively, compared to 0.37, 0.36, and 0.26 (Figure 8-3, Figure 8-5), values 

found when we used at least one subject for each ROI pair. However, even if we found larger cross-

modal correlations when averaging more subjects, we could hardly consider this a comprehensive 

connectome because it covered only 10% of the entire connectome. Thus, we chose to use at least 

one subject to create the connectome, which maximized connectome coverage (44%). More 

surprisingly, 𝑤𝑃𝐿𝐼∗ did not follow this trend. 

Increasing the minimum number of subjects to create the connectome likely removes noisy 

connections contributed by single subjects. In another study using simultaneous EEG-fMRI 
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(Wirsich et al., 2021), the authors compared cross-modal correlations between EEG and fMRI. 

Although the data were simultaneous, the cross-modal correlation between EEG and fMRI for 

individual subjects was very low across all frequency bands. They found moderate cross-modal 

correlations (~ 0.3 to 0.4) when averaging at least 7-12 subjects. This finding is interesting, and 

we expect that cross-modal correlations between MEG and iEEG connectomes could similarly 

benefit from averaging more subjects to reduce noisy connections. However, drawing such 

conclusions from our iEEG data is challenging, as increasing the number of subjects in each ROI 

pair drastically decreases the coverage of the iEEG connectome. We would require more subjects 

in the iEEG atlas to fully assess this. Nevertheless, our results suggest that cross-modal correlations 

between MEG and iEEG connectomes may increase when the iEEG connectome includes more 

subjects in each ROI pair. 

8.6.2 Compromise between removing spurious connectivity and genuine zero-lag 

connectivity  

The issue of source leakage or volume conduction in EEG/MEG connectivity, as well as the search 

for the best connectivity metric, has been a topic of discussion for the past few years. Several 

studies reported the source leakage issue involved with EEG/MEG-derived connectivity and 

recommended to use connectivity metrics that remove zero-lag connections for obtaining 

interpretable results (Hipp et al., 2012; Palva & Palva, 2012; Schoffelen & Gross, 2009). Garcés 

et al. (2016) investigated the test-retest reliability of MEG resting-state functional connectivity for 

𝑃𝐿𝑉, 𝑃𝐿𝐼, 𝐴𝐸𝐶, and 𝑂𝐴𝐸𝐶 by evaluating the within- and between-subject variability using the 

intraclass correlation coefficient. They found higher reliability for 𝑃𝐿𝑉 across theta to gamma 

bands and for 𝑂𝐴𝐸𝐶 and 𝐴𝐸𝐶 in the beta band. They suggested that volume conduction effects 

could contribute to high reliability for 𝑃𝐿𝑉 and 𝐴𝐸𝐶. Rizkallah et al. (2020) compared resting-

state EEG/MEG connectomes with fMRI-derived connectomes and reported significant 

correlations (but very low) between EEG/MEG connectomes and fMRI connectomes for 𝐴𝐸𝐶 and 

𝑃𝐿𝑉, whereas metrics that remove zero-lag connectivity exhibited no significant spatial cross-

modal correlations. Finger et al. (2016) proposed a computational model and structural data from 

diffusion MRI tractography to simulate functional connectivity in the alpha band and compared it 

with empirical EEG functional connectivity for six connectivity metrics. They found high 

correlations between simulated and empirical functional connectivity for 𝑃𝐿𝑉 and coherence 
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(~0.6), whereas the other metrics that remove zero-lag connectivity including 𝑃𝐿𝐼 and 𝑤𝑃𝐿𝐼 

exhibited low correlations (~0.18). While they did not rule out the possibility that the high 

correlation found for 𝑃𝐿𝑉 and coherence could be influenced by volume conduction, they 

questioned the use of metrics that remove zero-lag connectivity, as they might eliminate genuine 

neural synchrony mainly driven by the underlying anatomical structure. 

Unlike previous studies that attempted to address this issue either through simulations or by 

comparing modalities known to detect different brain mechanisms at varying time scales, such as 

EEG/MEG with fMRI, we compared the MEG connectome with the iEEG connectome, both of 

which record similar brain activity. When compared to the iEEG connectome, we observed 

moderate correlations between the MEG connectome and iEEG connectome for 𝐴𝐸𝐶 and 𝑃𝐿𝑉. 

The comparison of raw connectivity values revealed that MEG exhibited higher connectivity than 

iEEG across all frequency bands, confirming the inflated connectivity associated with EEG/MEG 

source leakage and volume conduction. However, for 𝑂𝐴𝐸𝐶 and 𝑤𝑃𝐿𝐼∗, metrics that remove or 

correct zero-lag connectivity (recommended to avoid spurious connectivity), although the raw 

connectivity values were found more similar for both modalities (Figure 8-2), the spatial 

correlations between MEG and iEEG connectomes decreased (Figs 8-3,8-5). In addition, the 

quantification of the difference between 𝐴𝐸𝐶 and 𝑂𝐴𝐸𝐶 for MEG versus iEEG provided a clear 

representation that MEG indeed exhibits more zero-lag connections compared to iEEG, 

consistently observed across all frequency bands (Fig 8-7, Fig S6).  

Thus the question of which metric is best for EEG/MEG connectivity analysis remains difficult to 

answer. The choice of metric should depend on the research question. Based on our findings, for 

resting-state connectivity analysis at the connectome level, it may be important to use metrics that 

preserve zero-lag connections. If the study necessitates removing volume conduction, 𝑂𝐴𝐸𝐶 could 

be a good compromise as it corrects for zero-lag connectivity and also shows significant 

correlations between MEG and iEEG in the alpha and beta bands. Moreover, the cross-modal 

correlations for 𝑂𝐴𝐸𝐶 increased when we increased the minimum number of subjects to create the 

iEEG connectome, a trend also observed for 𝐴𝐸𝐶 and 𝑃𝐿𝑉. For 𝑤𝑃𝐿𝐼∗, we found significantly 

higher cross-modal correlations in all frequency bands, which were consistently significant when 

only superficial ROIs were included. However, 𝑤𝑃𝐿𝐼∗ for deep ROI pairs showed very low and 

statistically non significant correlations in all frequency bands. The number of subjects averaged 
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in each ROI pair also did not affect 𝑤𝑃𝐿𝐼∗ results, unlike what was observed for 𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, and 

𝑃𝐿𝑉 (Fig S8, S9). Unlike 𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, and 𝑃𝐿𝑉, the 𝑤𝑃𝐿𝐼∗ metric was also not affected by the 

distance between the two ROIs (Fig S7). Furthermore, it remains unclear why there was 

asymmetry in cross-modal correlations computed for left, right, and inter-hemispheric 

connectomes using 𝑤𝑃𝐿𝐼∗. These surprising trends reported using 𝑤𝑃𝐿𝐼∗ should be further 

investigated and this metric should therefore be considered with caution. Carefully assessing the 

reliability of 𝑤𝑃𝐿𝐼∗ but also other metrics, using test/retest reliability (Garcés et al., 2016) could 

be very important but this was out of the scope of present study. It is important to note that we only 

considered the phase information to calculate the 𝑤𝑃𝐿𝐼∗. When analyzed with the original 

definition, which includes the amplitude information of Hilbert, the cross-modal correlations were 

very low (clearly lower than 𝑤𝑃𝐿𝐼∗ results) and not significant in any frequency band, suggesting 

some instabilities when considered this family of metric.  

8.6.3 Cross-modal correlations for deep versus superficial ROIs 

The raw connectivity values for superficial versus deep ROIs had similar distributions for both 

iEEG and MEG. However, the correlations between MEG and iEEG connectomes for superficial 

ROIs were higher than for deep ROIs. This is not surprising because detecting and localizing deep 

subcortical sources by EEG/MEG is challenging for several reasons, such as the rapid attenuation 

of signals generated from deep structures with the distance of the generator from the EEG/MEG 

sensors, a phenomenon more pronounced for MEG when considering gradiometers (Barkley & 

Baumgartner, 2003; Malmivuo & Plonsey, 1995). The spatial configuration of the deep/subcortical 

structures also results in signal cancellation (Lorente De Nó, 1947; Murakami & Okada, 2006) and 

are difficult to detect by distant sensors.  In Afnan et al. (2024), we proposed a depth weighting 

parameter in MEM methods that significantly improved EEG/MEG localization from deep 

sources. In this study, we used the depth weighted wMEM proposed in Afnan et al. (2024). 

Although depth weighting in the source imaging methods can improve localization accuracy from 

deep generators (Lin et al., 2006), these are often associated with large localization errors 

compared to superficial sources (Pascarella et al., 2023; Unnwongse et al., 2023). Interestingly, 

we found that the decrease in correlations between MEG and iEEG for deep ROIs was more 

pronounced in phase-based metrics than in amplitude-based metrics. This could be because AEC 

is estimated from the signal envelope, which is associated with synchronization over a larger scale, 
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resulting in a higher SNR and reduced sensitivity to noise (Matthew J Brookes et al., 2011). 𝑃𝐿𝑉 

and 𝑤𝑃𝐿𝐼∗, on the other hand, rely on instantaneous phases and are linked to local synchrony. 

Phase-based measures could be more sensitive to noise and would therefore be more difficult to 

estimate from resting-state and deep sources using EEG/MEG source imaging. The assessment of 

phase and amplitude-based connectivity for superficial versus deep sources could be investigated 

in future studies and was beyond the scope of the current study. For the deep ROIs estimated by 

𝑤𝑃𝐿𝐼∗, the cross-modal correlations between MEG and iEEG were very low and not statistically 

significant in any frequency bands. The reason why 𝑤𝑃𝐿𝐼∗ estimations from deep sources were 

more affected than 𝑃𝐿𝑉 was not clear. We repeated this analysis using another source imaging 

method (minimum norm estimate) and found a similar trend (result not shown). Comparison with 

minimum norm estimate was to check whether the choice of the source imaging method, wMEM, 

had influenced the results.   

8.6.4 Limitations 

One limitation of this study is that the connectome available from the iEEG atlas covered only 

44% of the whole brain. Despite not encompassing the entire brain, this approach represents the 

best means available to validate EEG/MEG-derived connectomes. Further validation could be 

considered with simultaneous EEG/MEG and iEEG recordings, although this can only provide 

even more limited spatial coverage unless it can be done on a large number of subjects. Another 

limitation is that we utilized a regularization parameter in wMEM which was optimized for source 

estimation. The spatial prior model used in wMEM initializes each parcel using the MNE energy 

of the sources, and therefore would be influenced by MNE regularization (Afnan et al., 2023). 

Through extensive MEG simulations, Vallarino et al. (2023) demonstrated that the regularization 

optimal for MEG source estimation was suboptimal for connectivity estimation. They showed an 

increased risk of being affected by spurious connections when using the regularization optimized 

for source estimation. Their findings suggested the need for less regularization to mitigate false 

positives. It may be necessary to reduce the regularization to improve the estimation of 

connectivity, a topic we plan to explore in future research. Additionally, since the study was 

conducted using simplistic simulated data, investigating how regularization could impact 

connectivity measures in the context of our multimodal real MEG/iEEG data could be valuable.   
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Another limitation is that the iEEG atlas, which is developed using iEEG channels from healthy 

brain regions, is still derived from patients with epilepsy. Studies using fMRI, EEG/MEG, and 

iEEG suggest that seizures or interictal epileptic activity  can affect brain network properties even 

in regions distant from the epileptic focus (Aydin et al., 2020; DeSalvo et al., 2014; Lee et al., 

2018; Taylor et al., 2022; van Diessen et al., 2013). However,  this limitation is unavoidable since 

iEEG data are never collected from healthy subjects. Also, while regions may exhibit abnormalities 

in iEEG, these are unlikely to be consistent across patients as these are caused by the specific 

epileptic focus. Increasing the number of subjects/patients in each ROI pair (as illustrated in Fig 

8-8, S7, and S8) could mitigate these effects, potentially explaining the increased cross-modal 

correlations between MEG and iEEG when averaging more subjects.  

Our goal was to validate the assessment of functional connectivity of normal brain activity using 

healthy MEG data. Currently, the iEEG atlas of normal brain activity (i.e. using iEEG channels 

exhibiting no epileptic activity) provides the best available ground truth for such validation with 

global brain coverage. One could argue that a more comparable MEG cohort would be a group of 

patients with epilepsy, excluding pathological regions as done in the iEEG atlas. However, 

excluding pathological regions from MEG would imply that we already trust MEG source imaging 

to identify these regions, which would make our validation objective redundant. The ideal dataset 

for this validation would be to consider challenging simultaneous iEEG and MEG recordings 

(Pizzo et al., 2019), but from a large group of patients, allowing for whole-brain coverage. 

However, such data are not yet available. 

Another limitation of this study is that the distribution of patients’ ages in the iEEG atlas (31 ± 10 

years, range: 13-62 years) was wider than that of the MEG dataset (28.67 ± 4.13 years, range: 20-

38 years). We also acknowledge that the male-female ratio was balanced in the iEEG dataset (F: 

56, M: 54), whereas there were more females than males in our MEG dataset (F: 35, M: 10). Age 

and sex could influence resting-state oscillation properties (Hoshi & Shigihara, 2020; Schäfer et 

al., 2014). However, these effects are small (Hoshi & Shigihara, 2020), and given that the healthy 

subjects covered the range between the 25th (25 years) and 75th (40 years) percentiles of the 

patients’ age distribution, we believe our results to be minimally biased by age. Moreover, the 

effects of male-female differences were found to be less pronounced in eyes-closed conditions 

compared to eyes-open conditions (Hoshi & Shigihara, 2020), as this was the case for our study. 
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For the comparisons between metrics such as AEC versus orthogonalized AEC and PLV versus 

wPLI, both metrics are likely to be influenced by the same factors (age/sex), so we believe this 

should not bias our comparisons between metrics at the group level. 

8.7 Conclusions  

This is the first validation of the MEG-derived connectome with the iEEG connectome at a group 

level. Based on the moderate spatial correlations between the two modalities, we can conclude that 

they share some commonalities. Differences in correlations estimated from different metrics may 

suggest that these metrics capture different/complementary aspects of brain activity. Moderate 

correlations were found between MEG and iEEG connectomes for metrics that include zero-lag 

connectivity. For metrics that removed or corrected zero-lag connectivity, the cross-modal 

correlations between MEG and iEEG decreased. This suggests that although correction of zero-

lag connections may help in removing false connectivity related to volume conduction, it also 

removes true connections, as reflected in the overall decrease in cross-modal correlation between 

MEG and iEEG. In addition, a higher prevalence of zero-lag connectivity in MEG compared to 

iEEG was quantitatively presented.  
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9 Manuscript 4: Validating MEG source imaging of 

oscillations and connectivity using simultaneous MEG-

intracerebral EEG 

9.1 Preface 

In Studies 1 and 3, we validated MEG source localization of resting-state oscillations and 

connectivity in healthy participants using an intracranial EEG atlas of normal brain activity. Since 

the groups in Studies 1 and 3 were drawn from different populations—healthy individuals and 

patients with epilepsy— and since the MEG and intracranial EEG recordings were obviously not 

performed simultaneously, there were some uncertainties in interpreting the differences between 

the two modalities. Additionally, across all three studies (1, 2, and 3), we also observed that 

EEG/MEG source localization of deep brain activity remains challenging, despite some significant 

improvement after applying depth weighting within the MEM and adding surface segmentation of 

bilateral hippocampi in the MEG source space. 

In this final study, we considered simultaneous intracerebral EEG and MEG data acquired from 

five patients with epilepsy. Our overall objective was to validate at the single subject level, our 

group-level findings reported in Studies 1 (Chapter 6) and 3 (Chapter 8) and to further assess the 

ability of MEG source imaging to accurately estimate deep brain activity in the resting state, using 

the methodology proposed in Study 2 (Chapter 7). Access to these unique data was provided by 

our collaborators, the team of Dr. Christian Benar at Aix-Marseille University, France (Pizzo et al., 

2019). Using resting state segments which did not feature any spontaneous epileptic discharges, 

we applied the same methodology proposed in Studies 1 and 3 to assess MEG's ability to recover 

oscillatory and connectivity patterns when compared to intracranial EEG findings. This chapter 

includes the following sections: abstract, introduction, materials and methods, results, and 

discussion. The manuscript is currently under preparation. 
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Afnan, J; Fratello, M.; Bonini, F.; Medina, S.; Cai, Z.; Badier, J.M.; Bartolomei, F.; Gotman, J.; 

Benar, C.; Grova, C., “Validating MEG source imaging of oscillations and connectivity patterns 

using simultaneous MEG-intracranial EEG” in preparation. 

9.2 Abstract 

Due to the ill-posed nature of EEG/MEG source imaging, the accuracy of EEG/MEG estimated 

sources requires validation, before considering localization of epileptic discharges and resting-

state analysis for clinical applications. We previously validated MEG source imaging with an 

intracranial EEG atlas of physiological brain activity at a group level in terms of resting-state 

oscillations and connectivity. In this study, we aimed to validate MEG source imaging of resting-

state activity at a single-subject level using simultaneous MEG and stereotaxic EEG (SEEG). 

We considered simultaneous MEG and SEEG acquired from 5 patients with epilepsy. For each 

patient, a 1-min segment of data featuring resting state oscillations in a dominant frequency band 

was marked in MEG, where no artifact or epileptic discharge was visible. The MEG source 

imaging inverse problem was solved using wavelet Maximum Entropy on the Mean method. To 

quantitatively compare MEM results estimated along the cortical surface with SEEG, we projected 

MEG sources at each SEEG channel position using an SEEG forward model. We computed the 

relative power for MEG and SEEG data for each channel. The spatial correlation between the two 

modalities was calculated for the average relative power in the frequency band of interest. For 

connectivity analysis, we computed pairwise connectivity using Amplitude Envelope Correlation 

(AEC), orthogonalized AEC (OAEC), Phase Locking Value (PLV) and Weighted Phase Lag Index 

(wPLI). We compared the spatial correlation between MEG and SEEG connectomes for each 

metric. 

For the 5 patients, when assessing the power of oscillatory patterns, the cross-modal correlations 

between SEEG and MEG estimates for average relative power was 0.31 ± 0.18. When the 

correlation was computed for superficial and deep channels based on an eccentricity threshold of 

60 mm (a measure of source depth, with low values indicating deep channels), the cross-modal 

correlation was 0.42 ± 0.25 for superficial and 0.12 ± 0.22 for deep channels. For functional 

connectivity, we found moderate correlations between MEG and SEEG connectomes for AEC 

(0.25±0.06), OAEC (0.23±0.04) and PLV (0.16±0.07). For wPLI, the correlations between MEG 
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and SEEG connectomes were close to null or negative, indicating that the MEG-estimated 

connectome was inaccurate.   

MEG retrieved oscillatory and connectivity patterns when compared to SEEG, although less 

accurately for deep activity. For connectivity, the decrease in cross-modal correlations found by 

the metrics corrected for zero-lag connectivity highlights a trade-off: although MEG may capture 

erroneous connectivity due to source leakage, removing zero-lag connectivity also eliminates true 

connections, leading to a decrease in cross-modal correlation. Our study suggests that MEG could 

still accurately estimate connectomes using the amplitude-based metric OAEC, but connectomes 

estimated using wPLI were inaccurate. 

9.3 Introduction 

Electro-/Magneto-EncephaloGraphy (EEG/MEG) are widely used non-invasive 

electrophysiological methods to measure neuronal activity in healthy subjects (Giraud and Poeppel 

(2012); (Pellegrino et al., 2021; Voytek et al., 2010; Wang, 2010) and pathological conditions 

(Buzsáki et al., 2013; Hirano & Uhlhaas, 2021; Schnitzler & Gross, 2005b). The high temporal 

resolution of EEG/MEG allows us to study brain activity in well-controlled tasks or spontaneous 

abnormal discharges in epilepsy (Dalal et al., 2013; Hamandi et al., 2016; Pellegrino et al., 2018; 

von Ellenrieder et al., 2016) as well as during the resting state, a state when the brain activity is 

spontaneous (thinking of nothing/not performing any task) (Matthew J. Brookes et al., 2011; Hipp 

et al., 2012; Keitel & Gross, 2016; Mellem et al., 2017; Wirsich et al., 2020). However, EEG/MEG 

has limited spatial resolution because it involves scalp recordings, and estimating the neuronal 

generators from these recordings (called source imaging) requires solving an ill-posed inverse 

problem (Darvas et al., 2004b). Localizing deep generators using EEG/MEG is more challenging 

because signals originating from these sources are often associated with low signal-to-noise ratio 

(SNR) data at the surface, due to the distance and the spatial configuration of subcortical structures 

(Attal & Schwartz, 2013). EEG/MEG source imaging is also affected by source leakage, defined 

as the influence of a source on the estimation of the generators within its neighborhood (Brookes 

et al., 2012; Hedrich et al., 2017). Source leakage introduces spurious false positives in EEG/MEG-

derived connectivity measures. It also leads to false negatives in connectivity measures that are 

insensitive to true near-zero-lag synchronization (Palva et al., 2018; Palva & Palva, 2012). Thus, 

the validation of EEG/MEG source imaging is important when interpreting results from deep brain 
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structures and resting-state activity, as both cases are associated with low SNR data. This is 

especially critical in clinical applications, such as pre-surgical planning for epilepsy.  

Due to the frequent lack of ground truth, validation of EEG/MEG source imaging techniques often 

relies on simulations. Realistic simulations have been useful in contexts such as validating source 

imaging for epileptic discharges (Becker et al., 2015; Chowdhury et al., 2016; Chowdhury et al., 

2013; Grova et al., 2006) and in connectivity studies (Brkić et al., 2023; Palva et al., 2018; 

Vallarino et al., 2023). Neuronal computational models, that consider combined 

biophysical/physiological generative models to simulate realistic data are also useful for validating 

the performance of source imaging methods (Badier et al., 2007; Chowdhury et al., 2016; 

Wendling, 2005). However, generating realistic simulations of brain activity is difficult. Whereas 

simulations of pathological discharges mimicking epileptic discharges are more and more realistic 

(Cosandier-Rimélé et al., 2007; Cosandier-Rimélé et al., 2008), and it becomes even more difficult 

when considering background resting-state activity. Few studies have used functional MRI (fMRI) 

to compare with EEG/MEG-derived connectivity (Matthew J Brookes et al., 2011; Wirsich et al., 

2020; Wirsich et al., 2021; Wirsich et al., 2017). Whereas assessing such multimodal concordance 

is interesting at a global level, these modalities capture different underlying brain mechanisms 

(electrophysiology in EEG/MEG versus slow hemodynamic activity in fMRI) and thus direct 

comparisons are impossible, since one-to-one local correspondence could not be expected. 

The gold standard for validating EEG/MEG source imaging is intracerebral EEG or stereotaxic 

EEG (SEEG), an invasive technique commonly used in the presurgical evaluation of epilepsy. 

SEEG can record brain activity directly from brain tissue, including deep structures, with high 

SNR and high spatial and temporal resolution (Bartolomei et al., 2018; Lagarde et al., 2022). SEEG 

measurements are also negligibly affected by volume conduction (Arnulfo et al., 2015; O’Reilly 

& Elsabbagh, 2021). However, SEEG requires a surgical procedure to implant the electrodes and 

has limited spatial coverage. Normative atlases of intracranial EEG (iEEG) (Bernabei et al., 2022; 

Frauscher et al., 2018; Taylor et al., 2022) have been developed by pooling iEEG data from 

patients, but only including channels that were implanted in presumably healthy regions. Such 

atlases provide a unique opportunity to validate EEG/MEG source imaging at a group level. We 

previously leveraged the atlas of normal iEEG developed at the Montreal Neurological Institute 

(Frauscher et al., 2018) to validate MEG source imaging of resting-state oscillations and 
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connectivity patterns for a group of healthy subjects (Afnan et al., in press; Afnan et al., 2023). 

Although the normative iEEG atlas provided an excellent way to validate MEG source imaging at 

a whole-brain level, several limitations were unavoidable, such as the heterogeneity of iEEG 

sampling across the brain, variability in the number of channels contributed by different patients, 

and the non-simultaneity of the MEG and SEEG recordings (Afnan et al., 2023). 

Simultaneous recording of EEG/MEG and SEEG provides the most reliable validation for 

EEG/MEG (Badier et al., 2017b; De Stefano et al., 2022; Koessler et al., 2010; Pigorini et al., 

2024; Pizzo et al., 2019), although limited to the implanted brain regions. SEEG has been used to 

determine the detectability of epileptic abnormalities by simultaneously acquired scalp EEG/MEG 

(Cosandier-Rimélé et al., 2012; Dubarry et al., 2014; Koessler et al., 2015; Merlet & Gotman, 

1999; Ramantani et al., 2016). Using simultaneously acquired SEEG, two recent studies provided 

evidence of detectability from deep subcortical structures by high-density EEG (Seeber et al., 

2019) and MEG (Pizzo et al., 2019). However, studies using simultaneous EEG/MEG and SEEG 

to investigate resting-state oscillations are very few (Hnazaee et al., 2020; Seeber et al., 2019), and 

connectivity was not investigated. To fill this gap, we aimed to validate MEG source imaging of 

resting-state oscillations and connectivity patterns by comparing them with simultaneously 

acquired SEEG as the ground truth in five patients with epilepsy. 

9.4 Materials and methods 

9.4.1 Experimental design 

The analysis pipeline is summarized in Figure 9-1. Simultaneous MEG and SEEG acquired in 5 

patients were considered (section 9.4.2). 60 seconds of resting period without artefact or epileptic 

discharge was marked in MEG by the epileptologist F. P; the predominant frequency band of that 

resting state section was also determined visually. Using the marker identified in MEG, we 

obtained the 60 seconds from simultaneously acquired SEEG. To solve the MEG inverse problem, 

we used the wavelet MEM (wMEM) method (Lina et al., 2012) that we recently adapted for resting 

state localization (Afnan et al., 2023) (section 9.4.6). The reconstructed MEG source map along 

the cortical surface was then projected to the positions of SEEG channels to generate virtual SEEG 

potentials using a method proposed by Grova et al. (2016) (section 9.4.7), using an SEEG forward 

model to link MEG sources and virtual SEEG potentials. This conversion allows a quantitative 
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comparison of MEG-estimated virtual SEEG and actual SEEG (Abdallah et al., 2022). Finally, we 

compared the relative oscillatory power (section 9.4.8) and connectivity patterns (section 9.4.9) 

between the two modalities in the frequency band dominant for the section. 

9.4.2 Simultaneous SEEG-MEG data 

Simultaneous MEG and SEEG were recorded at the Epileptology and Cerebral Rhythmology Unit 

of the Timone Hospital (Assistance Publique Hôpitaux de Marseille, APHM) in Marseille, France 

and provided by our collaborators (team of Drs. F. Bartolomei / C.G. Bénar). Technical setup of 

these challenging simultaneous MEG/SEEG recordings was described in previous publication 

from the group of Dr. Bénar (Badier et al., 2017; Dubarry et al., 2014; Pizzo et al., 2019). MEG 

was acquired using a 4D Neuroimaging™ 3600 whole-head system (248 magnetometers) at a 

sampling rate of 2034.51 Hz. The patients were lying down. They were instructed to be relaxed 

with their eyes closed. Simultaneous SEEG was recorded on 256 channels (256 channel 

BrainAmp, Brain Products GmbH, Munich, Germany), sampled at 1024 Hz. SEEG electrodes 

were implanted based on clinical hypotheses. 
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Figure 9-1 Analysis pipeline to compare the spectral and connectivity patterns estimated by MEG with the 

simultaneously acquired SEEG, as ground truth. MEG: 60 s of resting state data during wakefulness were 
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marked in MEG in a dominant frequency band. Using the marking from MEG, 60 s data were obtained 

from the simultaneously acquired SEEG, which is considered the ground truth. Virtual SEEG: The MEG 

source map, obtained with wMEM, was converted to virtual SEEG potentials for each SEEG channel. 

Comparison between virtual SEEG and SEEG: The virtual SEEG estimated from MEG were quantitatively 

compared with SEEG in terms of power spectral density and connectivity.  For each SEEG and virtual 

SEEG channel, the relative power spectral density was computed and averaged across all the frequency 

bins within the dominant canonical frequency band. The spatial correlation between the SEEG and virtual 

SEEG relative power was computed. The spatial correlation between the SEEG and virtual SEEG 

connectomes was computed.    

9.4.3 SEEG contact localization 

Each patient underwent a pre-operative T1-weighted MRI on a 3T MRI system. Additionally, pre-

implantation MRI and post-implantation CT scan were performed. The post-implantation CT scan 

was co-registered with the pre-implantation anatomical MRI to obtain the exact locations of the 

SEEG channels in each patient's individual MRI. Brain segmentation and reconstruction of the 

white/gray matter interface for the cortex were obtained using recon-all from FreeSurfer software 

package (Dale et al., 1999). Co-registration of anatomical MRI with post-implantation CT images 

was performed and the locations of the SEEG channels were estimated in patient-specific MRI 

space using GARDEL software (https://meg.univ-amu.fr/wiki/GARDEL:presentation) (Pizzo et 

al., 2019). The subsequent analysis for MEG source imaging and comparison between MEG and 

SEEG was performed in Brainstorm software (Tadel et al., 2011). 

9.4.4 MEG Source space and forward model estimation 

The coregistration of MEG sensors with anatomical MRI and analysis for creating the source 

model and forward model were performed in Brainstorm using the reconstructed cortical and 

subcortical surfaces using FreeSurfer, following the methodology described in (Afnan et al., 2024). 

The cortical mesh of the middle layer (white/gray matter interface), equidistant between the white 

matter and pial surfaces was considered as the source space. Additionally, the two hippocampi 

from the subcortical structures were also included in the source space. For the cortex and 

hippocampus, dipolar sources were placed along the surface of the structures with a fixed 

orientation orthogonal to the surface at each point. The cortical and hippocampal surfaces were 

combined and downsampled to reach a total ~8,000 vertices. The forward model was computed 

https://meg.univ-amu.fr/wiki/GARDEL:presentation
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using OpenMEEG software (Gramfort et al., 2010; Kybic et al., 2005) implemented in Brainstorm. 

We used a 3-layer Boundary Element model (BEM) consisting of brain, skull, and scalp surfaces 

with conductivity values of 0.33, 0.0165, and 0.33 S m−1 (Zhang et al., 2006).  

9.4.5 MEG and SEEG data preprocessing 

Data preprocessing was performed with Brainstorm. Preprocessing included (i) online correction 

based on reference channels for MEG; (ii) filtering within the 0.5-80 Hz band, (iii) applying a 

notch filter at 50 Hz, and (iv) downsampling to 200 Hz. 

9.4.6 MEG source imaging using wavelet Maximum Entropy on the Mean 

(wMEM)  

The MEG inverse problem was solved using the Maximum Entropy on the Mean (MEM) 

framework (Amblard et al., 2004), a Bayesian approach validated in the context of EEG/MEG 

source imaging (Chowdhury et al., 2013). Wavelet MEM (wMEM) is a variant of the MEM 

method specifically designed to localize brain oscillatory patterns (Afnan et al., 2023; Amblard et 

al., 2004; Lina et al., 2012). wMEM applies a discrete wavelet transformation (Daubechies 

wavelets) to characterize the oscillatory patterns in the data before applying the MEM solver for 

source imaging (Lina et al., 2012). We proposed and implemented several changes in standard 

wMEM to localize specifically oscillatory patterns in the resting state (details in Afnan et al. 

(2023)), and evaluated the accuracy of reconstructions with the iEEG atlas (Afnan et al., 2023). In 

the current study, we used the wMEM version we proposed in Afnan et al. (2023) adding the depth 

weighting parameter we proposed and validated in Afnan et al. (2024) to localize deep brain 

activity more accurately. Since there does not exist a clear baseline when localizing resting state 

data, to estimate a noise-covariance model from resting state data, we created a quasi-synthetic 

baseline from the signal of interest to compute the noise covariance by randomly shuffling the 

Fourier phase at each frequency (Prichard & Theiler, 1994). We employed a sliding window 

approach (window length: 1 second) to generate the baseline, ensuring a more precise estimation 

of the noise covariance matrix for each wavelet sample across the time scales (Afnan et al., 2023). 

wMEM implementation is available within the BEst plugin of Brainstorm software 

(https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/).  

https://www.sciencedirect.com/science/article/pii/S1053811923003099?via%3Dihub#bib0050
https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/
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9.4.7 Estimation of virtual SEEG data from the MEG source map 

To compare MEG-estimated results with SEEG quantitively, we converted MEG-reconstructed 

source maps (in nanoAmpere-meters) into SEEG channel space by estimating corresponding 

electrical potentials (µVolts) for each SEEG channel of a patient  (Abdallah et al., 2022; Grova et 

al., 2016). More details about this conversion method can be found in Grova et al. (2016). For each 

patient, to estimate the virtual SEEG potentials from MEG estimated current density along the 

cortical surface, 𝒋𝑤𝑀𝐸𝑀(𝑡), we calculated a patient-specific SEEG forward model, GSEEG that 

estimates the influence of each dipolar source of the cortical surface on each SEEG channel. To do 

so, our proposed SEEG forward model GSEEG assumes an infinite volume conductor characterized 

by a conductivity 𝜎 of 0.25 S.m-1  (Cosandier-Rimélé et al., 2008).  For each patient, for a total 

number of SEEG contacts c, and n number of cortical sources (n = 8000),  GSEEG is a c x n matrix 

that estimates the electrical potential at each SEEG channel i (i =1, 2 …c) corresponding to an 

equivalent current dipole of unit activity located on the vertex Sj and oriented along �⃗� j, normal to 

the cortical surface, calculated as:  

𝐺𝑆𝐸𝐸𝐺(𝑖, 𝑗) =
�⃗� 𝑗.�⃗⃗� 𝑖𝑗

4𝜋𝜎𝑟𝑖𝑗
2    (1) 

where �⃗� 𝑖𝑗 is a unit vector oriented from the source Sj  to the SEEG channel 𝑖 and 𝑟𝑖𝑗
  is the Euclidean 

distance between Sj and contact i. To avoid numerical instabilities, when the sources on the cortical 

surface were too close to the SEEG contacts (𝑟𝑖𝑗
  < 3 mm), the distance 𝑟𝑖𝑗

  was set to 3 mm instead, 

keeping the orientation (Grova et al., 2016). Finally, we applied this SEEG forward model, GSEEG 

to the MEG reconstructed source map (𝒋𝑤𝑀𝐸𝑀(𝑡)) to estimate virtual SEEG potentials on each 

SEEG channel, VSEEG as:  

𝑉𝑆𝐸𝐸𝐺(𝑡) =  𝐺𝑆𝐸𝐸𝐺𝒋𝑤𝑀𝐸𝑀(𝑡)   (2) 

9.4.8 Frequency specific relative power 

For each SEEG and MEG estimated virtual SEEG channel, the power spectral density was 

estimated using Welch's method (time duration: 0-60 s, 2 s sliding Hamming windows, overlap: 

50%). For each channel, the relative power spectral density was obtained by dividing the power at 

each frequency bin by the total power across the whole frequency range. Within the dominant 

frequency band marked for each patient, we averaged the relative power across all frequency bins 
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within that band. The dominant frequency bands were selected as follows: Patient #1: Beta (13-30 

Hz), Patient #2 and #3: Alpha (8-13 Hz), and Patient #4 and #5: Theta (4-8 Hz).  

9.4.9 Connectivity metrics 

For SEEG and virtual SEEG estimated from MEG, connectivity between each channel pair was 

computed using amplitude envelope correlation (𝐴𝐸𝐶) (Matthew J Brookes et al., 2011), phase 

locking value (𝑃𝐿𝑉) (Mormann et al., 2000), orthogonalized AEC (𝑂𝐴𝐸𝐶) (Hipp et al., 2012) and 

a modified version of the weighted phase lag index (𝑤𝑃𝐿𝐼) (Vinck et al., 2011) considering only 

the phase information, as we proposed in (Afnan et al., in press). The details formulations are 

described in more detail in (Afnan et al., in press). 

9.4.10 Cross-modal spatial correlation between MEG and SEEG results 

We computed the spatial Pearson correlation between the SEEG and virtual SEEG estimated from 

MEG in terms of (i) the average power map for the selected dominant frequency band and (ii) 

connectome created using the four connectivity metrics. To statistically assess the significance of 

cross-modal correlations, we also generated 5,000 cross-modal correlation values to build an 

empirical null distribution. To do so, we permuted randomly the anatomical labels of the channel 

pairs in the MEG, therefore effectively destroying the underlying spatial correlation structure. 

Then, we calculated the Pearson correlation between the SEEG and the spatially permuted MEG, 

creating an empirical null distribution from those 5000 correlation values. We defined a range for 

the null distribution which included 95% of the distribution centered around the median of the null. 

A cross-modal (MEG-SEEG) correlation was considered significant if the actual correlation was 

positive and higher than the null range.  

9.5 Results 

We will present the results from each patient individually in their dominant frequency band. We 

will then summarize the common trends in the results. We need to be careful when interpreting the 

results from all five patients together due to the differences in their dominant frequency bands. For 

the result and discussion sections, we will now use the term ‘MEG’ instead of ‘virtual SEEG 

estimated for MEG’ for simplification wording purposes. 
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9.5.1 Relative power spectral density 

Figure 9-2A shows the qualitative comparison of average relative power estimated by MEG and 

SEEG for each channel in patient #1 in the β band (13-30Hz). The quantitative representation of 

these values is shown in Figure 9-2B, suggesting a clear linear relationship between the relative 

power of all SEEG contacts as of function of all MEG virtual contacts. The spatial correlation 

between the two modalities was 0.54, significantly larger than the null distribution (Figure 9-2C).  
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Figure 9-2 (A) Relative power spectral density averaged for all frequency bins within the frequency band 

of interest (Beta: 13-30Hz) for each channel of SEEG and MEG for patient #1 (two views). A threshold of 

50% of the maximum activity is used for display. (B) MEG average relative power as a function of SEEG 

average relative power plotted for all channels in the beta band. The spatial correlation between MEG and 

SEEG average power was 0.54. (C) The observed spatial MEG/SEEG correlation of 0.54 is shown as a 

blue dot compared to the null distribution. (D) Distribution of eccentricity, which is a measure of the 

distance between the center of the head and the location of the SEEG channel. Low eccentricity and high 

eccentricity are associated with deep channels and superficial channels, respectively. (E) Using an 

eccentricity threshold of 60 mm, the correlations between MEG and SEEG relative power for channels > 

60 mm and < 60 mm are shown. The spatial correlation between MEG and SEEG for superficial channels 

was higher than for deep channels. 

In Figure 9-2D and Figure 9-2E, we investigated the cross-modal correlations between MEG and 

SEEG for superficial and deep channels. For each SEEG channel, we measured the eccentricity, 

defined as the distance between the channel location and the center of the head. Deep channels 

have therefore low eccentricity and superficial channels have high eccentricity. Fig 2D shows the 

distribution of eccentricity values for all the channels. A threshold of 60 mm eccentricity was 

selected to classify the channels into superficial and deep. The cross-modal correlations between 

MEG and SEEG for these two groups, along with all channels, are depicted in Fig 2E. The cross-

modal correlation for superficial channels was 0.68, whereas it dropped to 0.17 for deep channels 

(still significantly higher than null). In this section, all correlations reported are significantly higher 

than null unless mentioned otherwise. 

In Figure 9-3, following the same methodology, we present the cross-modal correlations between 

MEG and SEEG for Patients #2-5. For Patients #2 and #3, the dominant frequency band was the 

alpha band (8-13Hz). The spatial cross-modal correlations for Patients #2 and #3 for the average 

relative power considering all channels were 0.40 and 0.31, respectively. For both patients, the 

cross-modal correlations for deep channels were lower than for superficial channels 

(deep/superficial correlations in #2: 0.34/0.51 and #3: 0.12/0.14). 

For Patients #4 and #5, the dominant frequency band was theta (4-8Hz) and the spatial cross-modal 

correlations for the average relative power were lower when compared to the three other patients, 

0.19 and 0.12, respectively. For Patient #4, the correlations for superficial and deep channels were 

0.25 and -0.03 (not significant), respectively. For Patient #5, the correlations for superficial and 
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deep channels were 0.42 and -0.03 (not significant), respectively. It is worth mentioning that the 

negative correlations for deep channels for those patients mean that the average power estimated 

using MEG was completely inaccurate. The cross-modal correlations for all 5 patients are also 

summarized in Table 9-1.  

 

Figure 9-3(A-D) For patients #2-5, (top) The spatial correlation between MEG and SEEG relative power 

spectral density is shown as a blue dot compared to the null distribution. (Bottom) Using an eccentricity 

threshold of 60 mm, the correlations between MEG and SEEG relative power for channels > 60 mm and 

channels < 60 mm are shown. For Patients #2 and #3, the analysis was done in the alpha band (8-13Hz). 

For Patients #4 and #5, the analysis was done in the theta band (4-8Hz). 

Table 9-1: Summary of spatial cross-modal correlations between MEG and SEEG for average relative 

power (correlations that were significantly higher than the null distribution are reported using bold font) 

  Spatial correlation between MEG and SEEG 

Patient ID Frequency band All channels Superficial channels Deep channels 

Patient #1 Beta 0.54 0.68 0.17 

Patient #2 Alpha 0.40 0.51 0.34 

Patient #3 Alpha 0.31 0.14 0.12 

Patient #4 Theta 0.19 0.25 -0.03 

Patient #5 Theta 0.12 0.42 -0.03 
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9.5.2 Connectivity  

Fig 4A shows the connectivity values estimated by MEG and SEEG for four connectivity metrics 

for all possible channel pairs available from Patient #1. Patient #1 had 96 channels in bipolar 

montage resulting in 4560 possible channel pairs. The points in Figure 9-4A are 4560 connectivity 

values computed for those channel pairs. This figure provides a general overview of the scale of 

connectivity values retrieved from MEG versus SEEG connectomes. We found that the MEG 

connectivity values exhibited a larger distribution than SEEG, when not corrected for zero-lag 

connectivity using 𝐴𝐸𝐶 and 𝑃𝐿𝑉. For 𝑂𝐴𝐸𝐶 and 𝑤𝑃𝐿𝐼∗ which removed zero-lag connectivity, 

MEG and SEEG connectivity values were within a more similar range.  

In Figure 9-4B, the spatial cross-modal correlations between MEG and SEEG for these 4 metrics 

are shown. For amplitude-based metrics, the cross-modal correlations for 𝑂𝐴𝐸𝐶 decreased when  

𝐴𝐸𝐶 (𝐴𝐸𝐶 / 𝑂𝐴𝐸𝐶: 0.37/0.24) but correlation remained significantly larger than the null 

distribution of connectivity values for both methods. For phase-based metrics, although a 

significant spatial cross modal correlation was found for 𝑃𝐿𝑉, for 𝑤𝑃𝐿𝐼∗, the spatial correlation 

was close to null and not significant (𝑃𝐿𝑉 /𝑤𝑃𝐿𝐼∗: 0.28/-0.01).   

 

Figure 9-4 (A) Connectivity between all 4560 channel pairs estimated by MEG (orange) and SEEG (green) 

in Patient #1 calculated using  𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, 𝑃𝐿𝑉, and  𝑤𝑃𝐿𝐼∗ in the Beta band (for a total of 96 channels 
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in bipolar reference montage).  In addition to every channel pair connectivity values (every point on the 

graph), the underlying distribution of connectivity values is also presenting using a boxplot representation 

and the median value of every distribution is indicated. (B) The spatial cross-modal correlations between 

MEG and SEEG for 𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, 𝑃𝐿𝑉, and  𝑤𝑃𝐿𝐼∗ in the Beta band is presented as a blue cross, whereas 

the connectivity null distribution estimated using surrogate data for each metric is shown in red. 

Figure 9-5 summarizes the spatial cross-modal correlations for Patients #2-5. Except for Patient 

#2, all patients exhibited similar results as Patient #1. The correlations for OAEC were lower than 

AEC (𝐴𝐸𝐶 / 𝑂𝐴𝐸𝐶 for Patient#3: 0.29/0.23, Patient#4: 0.25/0.08, Patient#5: 0.21/0.12) but 

remained significantly larger than the null distribution. For Patient #2, the correlation for 𝑂𝐴𝐸𝐶 

was slightly larger than AEC (𝐴𝐸𝐶 / 𝑂𝐴𝐸𝐶: 0.23/0.26). For all 4 patients, although significant 

spatial correlations were found between the two modalities when considering 𝑃𝐿𝑉, 𝑤𝑃𝐿𝐼∗ did not 

show any significant spatial  correlation (𝑃𝐿𝑉 /𝑤𝑃𝐿𝐼∗ for Patient#2: 0.13/0.04, Patient#3: 

0.21/0.03, Patient#4: 0.16/-0.09, Patient#5: 0.11/-0.05). The negative correlations for 𝑤𝑃𝐿𝐼∗ mean 

that the connectivity estimated by MEG was clearly inaccurate. The cross-modal correlations for 

all 5 patients are also summarized in Table 9-2.   

 

Figure 9-5 Spatial cross modal correlation between MEG and SEEG connectome for 𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, 𝑃𝐿𝑉, 

and  𝑤𝑃𝐿𝐼∗ for patients #2 to #5. For Patients #2 and #3, the analysis was done in the alpha band (8-13Hz). 

For Patients #4 and #5, the analysis was done in the theta band (4-8Hz). The null distribution of connectivity 

values estimated from surrogate data  for each metric is shown in red.  
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Table 9-2 Summary of spatial cross-modal correlations between MEG and SEEG for connectome 

(correlations that were significantly larger than the null distribution are reported using bold font)) 

  Spatial cross-modal correlations between MEG and SEEG 

Patient ID Frequency band 𝐴𝐸𝐶 𝑂𝐴𝐸𝐶 𝑃𝐿𝑉 𝑤𝑃𝐿𝐼∗ 

Patient #1 Beta 0.37 0.24 0.28 -0.01 

Patient #2 Alpha 0.23 0.26 0.13 0.04 

Patient #3 Alpha 0.29 0.23 0.21 0.03 

Patient #4 Theta 0.25 0.08 0.16 -0.09 

Patient #5 Theta 0.21 0.12 0.11 -0.05 

 

9.6 Discussion 

In this study, we aimed to validate MEG source imaging of resting state activity with 

simultaneously acquired SEEG data. We solved the MEG inverse problem using the wMEM 

method which was previously validated for accurately localizing oscillatory patterns at seizure 

onset (Pellegrino et al., 2016), interictal bursts of high-frequency oscillations (Avigdor et al., 2021; 

von Ellenrieder et al., 2016) and MEG resting state oscillations in epilepsy (Aydin et al., 2020) and 

healthy subjects (Afnan et al., 2023). By converting MEG source maps into virtual SEEG 

potentials using an SEEG forward model, we quantitatively compared MEG sources with actual 

SEEG recordings at each SEEG channel location (Abdallah et al., 2022; Afnan et al., 2023; Grova 

et al., 2016).   

Results from the average power within the dominant frequency band showed that the MEG-

estimated power retrieved accurately oscillatory patterns in superficial regions but was less 

accurate in deep channels for all five patients, even after adding depth-weighting to wMEM source 

imaging(Afnan et al., 2024).  MEG source imaging of deep sources was quite inaccurate in two 

patients, resulting in negative cross modal correlations for Patients #4 and #5 for oscillations in 

the theta band.  Thus, interpreting source imaging results from ongoing oscillatory patterns still 

requires caution for deep generators. Adding more realistic head modeling of underlying 

subcortical structures, as suggested in (Attal & Schwartz, 2013),  could improve the localization 

accuracy of oscillation in deep structures. Such a development was out of the scope of this study 

and will be considered in our future developments. 



208 
 

Regarding functional connectivity, as expected, MEG exhibited larger connectivity values than 

SEEG for both amplitude and phase-based metrics that included zero-lag connectivity 

(𝐴𝐸𝐶/ 𝑃𝐿𝑉), in agreement with our previous findings at the group level (Afnan et al., in press). 

For 𝑂𝐴𝐸𝐶 and 𝑤𝑃𝐿𝐼∗, the metrics that are corrected for zero-lag connectivity, the MEG and SEEG 

connectivities were found in a more similar range. However, the spatial cross-modal correlations 

for all connectivity pairs (connectome) between the two modalities revealed that the MEG-

estimated connectome was more accurately estimated using 𝐴𝐸𝐶 than 𝑂𝐴𝐸𝐶, but in both cases 

spatial correlation were significantly larger than the null distribution suggesting that relevant 

patterns were retrieved by MEG using both metrics. For phase-based metrics, although MEG 

estimated connectome showed significant spatial correlations with SEEG when considering 𝑃𝐿𝑉, 

𝑤𝑃𝐿𝐼∗, surprisingly exhibited no correlations or even negative correlations, indicating that the 

MEG connectome estimated using 𝑤𝑃𝐿𝐼∗ was completely inaccurate when compared to SEEG 

connectomes. Our results are similar to the group-level findings we reported in Afnan et al. (in 

press) using non-simultaneous MEG and intracranial EEG (iEEG) atlas data. 

Most studies investigating resting-state oscillations and connectivity in EEG/MEG use canonical 

frequency bands. However, in many cases, it is not initially confirmed whether oscillations exist 

in all these frequency bands. This makes it challenging to interpret results in frequency bands when 

there is actually no evidence of such oscillations. In this study, we only analyzed the dominant 

frequency band, which was carefully identified to confirm the presence of oscillations.  

9.6.1 Deep source localization 

The ability of EEG/MEG to detect deep brain activity has been debated for a long time, especially 

for MEG (Barkley & Baumgartner, 2003; Kaiboriboon et al., 2010; Rampp & Stefan, 2007; 

Shigeto et al., 2002). Recently, however, compelling evidence has been reported suggesting that 

deep brain activity can be recorded by high-density EEG (Seeber et al., 2019) and MEG (Alberto 

et al., 2021; Benar et al., 2021; Dalal et al., 2009; Koessler et al., 2015; Pizzo et al., 2019). Even 

if some signals from deep subcortical sources are detectable on the scalp EEG/MEG, they are often 

usually associated with very low SNR, hidden by higher amplitude signals from superficial 

regions. Source localization of low SNR signal remains difficult for any source imaging method. 

In addition, source localization underestimates deep sources because EEG and MEG sensors have 

a higher sensitivity to superficial than deep generators. To address this issue, a depth-weighting 
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approach is used in source imaging methods to enhance the contribution from deep sources (Lin 

et al., 2006). We used a depth-weighted version of wMEM, a method we recently proposed and 

validated to improve EEG/MEG localization of deep sources (Afnan et al., 2024). In (Afnan et al., 

2024), we demonstrated significant improved accuracy of MEM source imaging techniques 

(cMEM and wMEM) by adding a depth-weighting strategy and including a surface mesh of 

bilateral hippocampi in our source space. Despite improved localization accuracy for deep 

structures, we also demonstrated that all source imaging techniques were also biased by spurious 

ghost localization on the superficial cortex adjacent to the deep generators. Therefore, even when 

localizing high amplitude spikes, it is still challenging to assess whether generators are only deep 

or associated with deep and superficial sources. In present study, when applying the same methods 

to localize ongoing resting state oscillations, MEG source imaging results were still poorly 

accurate for deep generators when compared for superficial generators. Our results were notably 

completely inaccurate for two patients, when considering localizations in the theta band. These 

results are however not surprising. Although depth weighting in source imaging methods can 

improve localization accuracy for deep generators (Lin et al., 2006), these methods are often 

associated with larger localization errors compared to superficial sources. This was demonstrated 

using focal brain stimulation or realistic simulations of epileptic discharges (Afnan et al., 2024; 

Pascarella et al., 2023; Unnwongse et al., 2023). With simultaneous SEEG data, it was evident that 

although some deep brain activity may be detected by EEG/MEG (Pizzo et al., 2019; Seeber et al., 

2019), the source localization of resting state activity from deep sources needs to be interpreted 

with caution, as the localization of low SNR data may be inaccurate.  

9.6.2 Compromise between removing spurious connectivity and genuine zero-lag 

connectivity  

Due to the source leakage issue inherent with EEG/MEG-derived connectivity, it is often 

recommended to use connectivity metrics that remove zero-lag connections to obtain interpretable 

results (Hipp et al., 2012; Palva & Palva, 2012; Schoffelen & Gross, 2009). However, this approach 

also means accepting that these metrics could remove actual zero-lag connectivity. Several studies 

investigated the reliability of connectivity metrics based on the test-retest reliability (Garcés et al., 

2016) or by comparing the EEG/MEG-estimated connectomes with fMRI-derived connectomes 

(Rizkallah et al., 2020). Those studies reported that connectivity metrics that are not corrected for 
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zero-lag connectivity are generally more reliable across subjects and trials compared to the metrics 

that are corrected for zero-lag connectivity.  

Unlike studies that addressed source leakage issues in connectivity using numeric simulations or 

comparisons with modalities like fMRI that detect different brain mechanisms, we validated MEG-

estimated connectivity using an iEEG atlas with data from a group of healthy participants (Afnan 

et al., in press). In our group-level comparison, we found that MEG exhibited higher connectivity 

than SEEG for 𝐴𝐸𝐶 and 𝑃𝐿𝑉, although the spatial correlations between the two modalities for the 

entire connectome were moderate to low, but still significantly larger than the null distribution. 

Conversely, for metrics that corrected for zero-lag connectivity, 𝑂𝐴𝐸𝐶 and 𝑤𝑃𝐿𝐼∗, the 

connectivity values between the two modalities were more similar, but the spatial correlation 

between the MEG and SEEG connectomes decreased, but still remained significantly different 

from the null distribution for 𝑂𝐴𝐸𝐶 in alpha, beta and high gamma bands, and for 𝑤𝑃𝐿𝐼∗  in all 

frequency bands. A key limitation of this group-level study was that MEG and SEEG data were 

acquired from two different groups of subjects, healthy subjects for MEG versus intracranial EEG 

contacts exhibiting normal activity in epilepsy contacts. To address this, we aimed to validate the 

group-level findings at a single-subject level using simultaneous SEEG and MEG. 

Our current results align with the findings from our group-level study. The raw connectivity 

obtained in this study was similar to the values reported by (Afnan et al., in press). Comparing raw 

connectivity estimates from MEG with SEEG revealed that MEG connectivity, as estimated by 

𝐴𝐸𝐶 and 𝑃𝐿𝑉, was overestimated compared to SEEG, which was expected since those metrics are 

sensitive to volume conduction and source leakage. For metrics involving the correction or 

removal of zero-lag connectivity, the values from the two modalities were more similar. However, 

the spatial cross modal correlation between the connectomes derived from these four metrics 

showed that the connectomes were spatially more similar for metrics that did not correct or remove 

zero-lag connectivity (𝐴𝐸𝐶 versus 𝑂𝐴𝐸𝐶 and 𝑃𝐿𝑉 versus 𝑤𝑃𝐿𝐼∗). Although OAEC correlations 

decreased compared to 𝐴𝐸𝐶 in 4 out of 5 patients, it is important to mention that results remained 

significantly higher than the null distribution, suggesting relevant connectivity information 

recovered using MEG. These findings were overall consistent with our group-level results, except 

for 𝑤𝑃𝐿𝐼∗. While we obtained significant 𝑤𝑃𝐿𝐼∗ correlations in our group-level study in all 

frequency bands, the 𝑤𝑃𝐿𝐼∗ results in the current study showed close to zero or negative 
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correlations. A near-zero or negative correlation between the two modalities indicates that the 

connectome estimated from MEG was inaccurate.  

9.6.3 Moderate to low correlations between MEG and SEEG connectome  

The correlations between MEG and SEEG connectomes were moderate to low for 𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, 

and 𝑃𝐿𝑉 (0.08 to 0.37). To the best of our knowledge, the only study comparing MEG-derived 

connectomes with iEEG was conducted by our group (Afnan et al., in press). In that study, the 

cross-modal correlations for 𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, and 𝑃𝐿𝑉 ranged from 0.15 to 0.38 across theta, alpha, 

and beta frequency bands. Intuitively, the cross-modal correlations in the current study, which uses 

simultaneous data, should be higher than those in our group-level study with non-simultaneous 

data. However, several factors need to be considered before comparing the correlation values. 

Although the two studies are methodologically similar, the datasets are very different. In (Afnan 

et al., in press), the data were non-simultaneous and acquired from two different populations. The 

iEEG connectome provided more coverage (44%) of the brain but was derived by combining data 

from different subjects. The comparison was therefore done at the region of interest (ROI) level, 

not at the channel level, considering 76 ROIs covering the whole brain (Afnan et al., in press) . 

Each ROI was actually associated with a different number of channels that were averaged, and 

many ROIs were contributed by only a single pair of channels. In (Afnan et al., in press), we 

proposed an original resampling strategy to carefully take into account these sampling disparities 

when comparing both modalities. Despite these variabilities, the resulting cross-modal correlations 

ranged from 0.15 to 0.38. Therefore, we could expect higher cross-modal correlations for our 

simultaneous datasets at the single-subject level. 

In another type of cross-modal comparisons using whole-brain EEG connectomes with 

simultaneously acquired fMRI connectomes, Wirsich et al. (2021) suggested that averaging 

connectomes across subjects before computing the cross-modal correlation results in a higher 

correlation than computing the cross-modal correlation for individuals and then averaging. 

Although the data were simultaneous, the cross-modal correlation between EEG and fMRI for 

individual subjects was still low (0.08 to 0.22) across all frequency bands. They found moderate 

cross-modal correlations (~0.3 to 0.4) when averaging at least 7 to 12 subjects. This suggests that 

averaging the connectomes separately for the two modalities before computing the cross-modal 

correlation may remove some noisy structures from individual subjects, thus providing a more 
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robust correlation between the modalities. Similarly, in our previous group-level comparison using 

the MEG and iEEG atlas, we observed higher cross-modal correlations between MEG and iEEG 

connectomes for 𝐴𝐸𝐶, 𝑂𝐴𝐸𝐶, and 𝑃𝐿𝑉 when we increased the number of subjects averaged in 

each ROI pair to construct the connectome (see Figure 8-8 in (Afnan et al., in press)). Increasing 

the minimum number of subjects likely removed noisy connections contributed by single subjects 

but came at the cost of reducing overall spatial coverage of the connectome. Therefore, concluding 

that averaging more subjects would increase the cross-modal correlation between the two 

modalities was not possible from the group-level comparison. 

This could explain why we did not obtain higher correlations with our simultaneous data at the 

single-subject level compared to our previous group-level comparison. If we had an atlas of 

simultaneous SEEG and MEG that allows for ROI-level analysis, this effect could be tested.  

9.6.4 Limitations 

The limited number of patients reduces the generalizability of our findings. Comparison between 

different frequency bands was not possible as we only focused on the dominant frequency band in 

each patient. In this study, we focused on analyzing one minute of resting-state activity, averaging 

measures such as power and connectivity across that period. Benefitting from simultaneous 

MEG/SEEG recordings, one could assess the dynamic evolution of connectivity metrics across the 

two modalities. This interesting investigation was out of the scope of present study.  Comparing 

cross modal MEG/SEEG correlations during ongoing low SNR resting state activity and high SNR 

signals measured during epileptic discharges (Pizzo et al., 2019) could be of great interest to assess 

the dependence of this cross modal correlation on the SNR of the data.  The current sample size 

was insufficient to perform an ROI-based analysis, and the spatial coverage was overall limited. 

Recruiting more patients will enhance the spatial coverage, allowing for a more comprehensive 

analysis of whole-brain connectivity. Addressing these limitations in future studies will provide a 

more complete understanding of the correlation between MEG and SEEG, particularly in the 

context of source imaging and connectivity analysis. 

9.7 Conclusions 

To the best of our knowledge, this is the first study to validate MEG source imaging of resting 

state, particularly MEG-derived connectivity and source leakage issues, with simultaneously 
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acquired SEEG. Based on the moderate spatial correlations between the two modalities, we can 

conclude that MEG can estimate resting state activity with reasonable accuracy. However, MEG 

source imaging for deep sources is often inaccurate, and interpreting results from deep activity 

should be done with caution. For connectivity, MEG showed inflated connectivity compared to 

SEEG for metrics that include zero-lag connectivity (AEC/PLV). In contrast, for metrics that are 

corrected for zero-lag connections (OAEC/wPLI), MEG estimated connectivity values are more 

similar to SEEG. On the other, when measuring spatial correlation between MEG derived and 

SEEG connectomes, MEG-derived connectomes were more similar to SEEG when the metrics 

include zero-lag connectivity (AEC/PLV) than when using corrected ones (OAEC/wPLI). MEG 

could still accurately estimate connectomes using the amplitude-based metric OAEC, but wPLI 

results were inaccurate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



214 
 

10  Overall discussion and conclusions 

In this section, we begin by revisiting the primary question that motivated this thesis and assess 

how effectively it has been addressed. We will summarize the key contributions of each 

manuscript, noting the main findings and any limitations that should be considered. Finally, we 

will explore how these results can inform future research directions and studies. Additionally, we 

will discuss the role of intracranial EEG, not only as a validation tool but also as a complementary 

method with EEG/MEG in the study of brain activity. 

10.1 Main methodological contributions and limitations 

The aim of this thesis was to assess the reliability of EEG/MEG source localization for resting-

state activity, particularly given the inherent uncertainties in these methods, which are even more 

pronounced when dealing with low signal-to-noise ratio signals, such as those associated during 

background resting-state activity or those involving deep generators of brain activity. While 

EEG/MEG source localization of resting-state brain activity is widely used in both healthy and 

diseased brain studies, there has been a lack of validation to guide the community on which brain 

regions, frequency bands, and connectivity metrics can be interpreted with confidence, and where 

caution is warranted. This thesis aims to address specifically these important questions.  

EEG/MEG source localization requires incorporating prior knowledge to select a solution from 

the infinite number of possible solutions to the inverse problem. Based on the assumption it makes, 

each source imaging method has its strengths and limitations, as discussed in Chapter 3. For 

example, the MEM-based methods developed by our lab in the context of EEG/MEG have shown 

great accuracy in estimating the spatial extent of underlying neuronal generators, which is critical 

in applications like epilepsy, where the sources of interictal epileptic discharges are often spatially 

extended (Abdallah et al., 2022; Chowdhury et al., 2016; Chowdhury et al., 2013; Hedrich et al., 

2017; Pellegrino, Hedrich, et al., 2020). However, MEM implementation was overall poorly 

sensitive to deep brain generators (Chowdhury et al., 2015), also combining EEG/MEG within a 

fusion scheme slightly improved depth accuracy according to our numerical simulations. Adapting 

MEM methods for localizing resting state activity and deep brain activity were important parts of 

this thesis, which are included in manuscripts 1 (Chapter 6) and 2 (Chapter 7).  
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In our first manuscript presented in Chapter 6 (Afnan et al., 2023), we evaluated MEG source 

imaging of resting-state oscillations in a healthy population by comparing MEG sources to an 

intracranial EEG atlas of normal brain activity. Although the intracranial EEG data were obtained 

from patients with epilepsy, only recordings from healthy brain regions were used. Given that 

intracranial EEG is never performed on healthy subjects, this atlas of normal brain activity serves 

as the best available ground truth for validating normal resting-state brain activity at a group level. 

This study was the first group-level validation of non-invasive source imaging methods, leveraging 

the dense coverage of intracranial EEG to study the whole brain at a spatial region of interest (ROI) 

level. 

The key findings from this study were that, on a global brain level, MEG source imaging of resting-

state power or amplitude correlates well with intracranial EEG, with some specific areas of 

difference.  The distribution of MEG relative power in different brain regions reported  in our study 

was consistent with the previous MEG studies for the different canonical frequency bands 

(Mahjoory et al., 2020; Mellem et al., 2017; Niso et al., 2016; Niso et al., 2019). We provided a 

brain map showing, for each region, a measure of overlap that indicates the similarity in power 

spectral density between MEG sources and intracranial EEG data, after carefully converting MEG 

sources intro virtual intracranial EEG data for comparison purposes (Grova et al., 2016). Overall, 

our results suggested that for most cortical regions, MEG sources recovered oscillatory activity 

accurately when compared to data from the intracranial EEG atlas. In terms of oscillatory peaks, 

our comparison reflected the differences previously observed between EEG/MEG and intracranial 

ECoG recordings (Groppe et al., 2013). Specifically, MEG-estimated spectral peaks were 

dominated by 10-12 Hz alpha peaks, whereas intracranial EEG showed the highest alpha peaks 

around 7-8 Hz. In MEG, alpha peaks were actually present in most brain regions, including the 

frontal and deep regions (bilateral hippocampi), whereas these peaks were clearly absent in the 

frontal and deep regions in intracranial EEG. This is an important finding suggesting how source 

localization within deep structures, like the hippocampus, can be biased by source leakage, 

resulting in spurious high alpha power localized in those regions, whereas real in situ intracranial 

EEG are not exhibiting alpha oscillations in the hippocampus. Additionally, MEG estimates of 

theta band peaks were significantly underestimated compared to intracranial EEG. These 

differences could be attributed to the two distinct population involved in our comparison: one being 

completely healthy (MEG) and the other comprising normal intracranial EEG data from patients 



216 
 

with epilepsy. Although the intracranial EEG electrodes were located in healthy brain regions, they 

were still obtained from patients. This limitation can only be fully addressed with simultaneously 

acquired MEG and intracranial EEG data. For instance, using simultaneous MEG and intracerebral 

EEG data from five patients in Study 4, we observed that, when considering resting state data not 

exhibiting any epileptic discharges, MEG-estimated alpha peaks in patients were also found 

around 7-8 Hz (and not around 10-12 Hz as in our Study 1), similar to the alpha peaks measured 

using intracerebral EEG. This important issue needs to be investigated carefully with simultaneous 

recordings from more patients.  

In this study, we focused on the ‘periodic component’ of the oscillations and removed the 1/f 

aperiodic components, which were estimated using the FOOOF algorithm (Donoghue et al., 2020). 

Our results are suggesting that after removing the aperiodic components, we found a better 

concordance between MEG sources and intracranial EEG data in different frequency bands. 

However, we did not thoroughly investigate the 1/f components, which are also of interest. A recent 

study (Bush et al., 2024) using intracranial EEG demonstrated that cortical regions typically 

exhibit a clear knee in the power spectra (in log-log space), whereas subcortical regions do not. 

Consistent with this, our findings showed that intracranial EEG revealed a distinct knee or bend in 

the spectra of cortical regions, while this feature was absent in subcortical regions such as the 

hippocampus. It is important to note that this distinction is not evident in MEG-estimated spectra, 

where, the knee was present in both cortical and subcortical regions when using the wMEM 

method for MEG estimation. We also observed that the 1/f component differed significantly 

between MEG and intracranial EEG and varied depending on the source imaging methods used. 

Compared to intracranial EEG, while wMEM more accurately estimated the spectra with a knee 

component, the spectra appeared more linear in the log-log space when using the other two source 

imaging methods (MNE and beamformer). The reason wMEM localized the 1/f component with 

a clear knee more accurately (similar to intracranial EEG) might be explained by the sparse/optimal 

data representation of oscillatory components obtained using Daubechies discrete wavelets. 

However, these discrepancies suggest that the 1/f component is influenced not only by different 

modalities but also by the choice of source imaging methods. Further research is needed to 

understand these differences and their implications. 
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Moreover, we found that all aspects of oscillations, including power in a frequency band, and 

oscillatory peaks were highly inaccurate in deep structures such as the hippocampus. Although this 

finding with the wMEM method was consistent with two other source imaging methods (depth-

weighted MNE and beamformer), it highlighted some areas for improvement in the MEM method. 

We recognized that the wMEM (and cMEM) method are not sensitive to deep sources, leading to 

underestimation of medial brain regions. Moreover, our source model did not include the 

hippocampus, although we projected MEG-estimated source maps to the hippocampal intracranial 

EEG channels. These limitations led to our second study, which aimed to improve MEM-based 

methods for more accurate detection of deep brain activity. 

In our second study presented in Chapter 7 (Afnan et al., 2024), we introduced a depth-weighting 

adaptation to the MEM method to improve its capability in localizing deep brain activity. We also 

included the hippocampus in the source model with the cortical surface. This newly adapted 

method accurately estimates the spatial extent of brain generators while addressing the previous 

limitations related to detecting deep brain activity. Through extensive realistic simulations of 

interictal epileptic discharges (IEDs) in high-density EEG and MEG, we demonstrated that this 

method significantly improves the localization of deep brain activity when compared to the 

previous MEM implementation and another source imaging method, the depth-weighted MNE. 

The proposed method was further validated using high-density EEG and MEG data from patients 

with epilepsy. Significant improvements were obtained for patients with mesial temporal lobe 

epilepsy. Unlike the other three studies, Study 2 utilized both high-density EEG and MEG. The 

ability to detect deep brain activity was also influenced by the type of sensors used. Even after 

applying depth-weighting, deep brain activity was more challenging to localize with MEG 

gradiometers compared to high density EEG. It is well-known that MEG gradiometers are less 

sensitive to deep brain activity than MEG magnetometers (Malmivuo & Plonsey, 1995), meaning 

that studies relying on MEG gradiometers require further caution when interpreting deep brain 

localization.   

Through extensive simulations, this study provides an improved method and offers 

recommendations for tuning the depth weighting parameter to effectively localize deep brain 

activity without compromising the superficial source localization. Compared to standard MEM 

and depth-weighted MNE as benchmarks, our  new cMEM version could estimate deep generators 
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more accurately, with minimal or no worsening of localization for superficial regions. This 

improvement was robust across high-density EEG and MEG, different spatial extents of the 

generator, and varying SNR levels. The improvement in MEG by depth weighting was more 

pronounced/necessary compared to high density‐EEG. This could be because EEG is more 

sensitive to radial and deep sources, whereas MEG using gradiometers is more sensitive to 

tangential and superficial sources (Goldenholz et al., 2009; Kakisaka et al., 2013). However, we 

acknowledge that the localization error associated with deep sources remains larger than that of 

superficial sources. This was consistent with the findings reported in previous studies (Chowdhury 

et al., 2015; Mikulan et al., 2020; Pascarella et al., 2023; Unnwongse et al., 2023).The key 

takeaway is that, while our method (and other source imaging methods with depth weighting) 

improves deep source localization, caution is still necessary when interpreting deep sources. 

Specifically, our simulations showed that while superficial sources can be accurately localized, 

deep sources, especially those with low SNR, may also produce superficial ‘ghost localization’. 

Without a ground truth, it is challenging to determine whether a superficial component is merely 

a 'ghost localization' of an actual deep generator or if there are genuinely two generators, one deep 

and one superficial. Current distributed source imaging methods cannot resolve this uncertainty, 

highlighting the need for more sophisticated techniques in the future. Simultaneous intracranial 

EEG with scalp EEG or MEG recordings will be required to assess specifically this challenging 

localization problem. 

In Study 3 presented in Chapter 8 (Afnan et al., in press), we validated MEG-derived resting-state 

connectivity in the healthy population from Study 1 using the intracranial EEG atlas. We applied 

the newly proposed depth weighted wMEM method (from Study 2) by adding depth weighting 

and incorporating the hippocampus into the source model. For this study, we applied the same 

methodology proposed in Study 1, converting MEG sources into virtual intracranial EEG data. We 

then proposed an original resampling methodology to take into account the limited spatial 

sampling of the intracranial EEG atlas when assessing functional connectivity (since only paired 

electrodes from the same subjects could be considered), proposing for the first time spatial 

correlations between functional connectomes estimated from MEG sources and intracranial EEG 

data at the group level. The challenges associated with conducting a group-level connectivity study 

using the intracranial EEG atlas have been detailed in Chapter 8 and will not be discussed here.  
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The goal of this study was to investigate MEG-derived connectivity and the issue of source leakage 

using four popular connectivity metrics.  

In Chapter 4, we reviewed previous studies that recommended using connectivity metrics corrected 

for zero-lag connectivity to address the issue of EEG/MEG source leakage, often based on 

simulations or comparisons with fMRI-derived connectivity (Sadaghiani et al., 2022). It is worth 

mentioning that correcting those metrics for source leakage may remove real zero-lag connectivity 

measured using intracranial EEG. Our Study 3 presented in Chapter 8 was the first to validate non-

invasive MEG-derived resting state connectivity with intracranial EEG as ground truth at a group 

level. Contrary to common recommendations, we found that using metrics corrected for zero-lag 

connectivity could be risky when analyzing brain connectomes. When using connectivity metrics 

not corrected for zero-lag connectivity, we found that MEG-derived connectivity values were 

inflated when compared to intracranial EEG connectivity values.  When using connectivity metrics 

corrected for zero-lag connectivity, MEG-derived connectivity measures were closer to those of 

intracranial EEG. On the other, when measuring spatial correlation between MEG derived and 

intracranial EEG connectomes, MEG-derived connectomes were more similar to intracranial EEG 

when using uncorrected metrics than when using corrected ones. However, in both cases, spatial 

correlations between modalities were found significant when compared to surrogate data, notably 

in the alpha and beta bands, suggesting that MEG was able to retrieve some relevant connectivity 

patterns even when correcting for zero-lag connectivity. For the corrected metrics, we observed 

more consistent results when considering amplitude-based metrics compared to phase-based 

metrics. This finding aligns with the work of Colclough et al. (2016), which proposed 

orthogonalized amplitude envelope correlation as a superior metric to other metrics that are 

corrected for zero-lag connectivity. 

Studies 1 (Chapter 6) and 3 (Chapter 8) provided a group-level validation of MEG source 

localization for resting-state activity, examining different aspects such as power, oscillatory peaks, 

1/f components, and connectivity patterns. In Study 1, we were able to analyze the entire brain at 

the ROI level, while in Study 3, we explored nearly 46% of the whole-brain connectome at such a 

ROI level. However, the main limitation is that the MEG data and the intracranial EEG atlas were 

derived from two different population groups, introducing several variables that constrained a 
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direct one-to-one comparison between the two modalities. Despite these intrinsic limitations, our 

group-level comparison provided valuable insights. 

In our last study (Study 4 presented in Chapter 9), we further validated MEG's ability to recover 

resting-state power and connectivity patterns more directly at the individual subject level using 

simultaneous MEG and intracerebral EEG data. As discussed in Chapter 5, integrating invasive 

intracerebral EEG with non-invasive EEG/MEG techniques has many challenges, and few groups 

have the resources to conduct such complex acquisitions (Badier et al., 2017). Through 

collaboration with Dr. Bénar’s group in Aix-Marseille University (France), we investigated MEG 

localization of resting-state activity with simultaneous intracerebral EEG in five patients who 

underwent intracerebral EEG implantation during their presurgical evaluation. Unlike Studies 1 

and 3, this study provided limited spatial coverage for each patient, considerably restricting ROI-

level analysis but offering a better opportunity to directly validate MEG-estimated oscillations and 

connectivity, benefitting from simultaneous recordings. Despite the small sample size, our results 

were encouraging and supported our group-level findings. The study also demonstrated that MEG-

estimated oscillatory power from deep channels may often be inaccurate.  

To the best of our knowledge, no other study has validated EEG/MEG-derived connectivity from 

resting-state data with intracerebral EEG, either at a single-subject level with simultaneous data or 

at a group level with non-simultaneous data. A recent study by (Liu et al., 2024) investigated the 

effects of inverse methods and connectivity measures using simultaneous EEG and SEEG signals 

evoked by electrical stimulation applied on SEEG contacts. They reported that deep sources 

performed poorly across all source imaging methods. They identified wPLI as the most accurate 

connectivity measure among the six metrics studied. However, since they used stimulation-evoked 

data, the signals were much stronger than when considering resting-state brain activity. The direct 

applicability of these results to interpret connectivity measures in a resting-state context is 

therefore uncertain.  

In our study 4, using simultaneous MEG and intracerebral EEG, we found that MEG-derived 

connectomes using wPLI were not accurate. A group-level connectome study using intracerebral 

EEG by Williams et al. (2023), computed with PLV, showed that the identified network modules 

consisted of anatomically contiguous regions. Unlike resting-state fMRI, intracerebral EEG-

derived connectomes exhibited more local, anatomically contiguous connections rather than a 
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distributed pattern, indicating that intracerebral EEG connectivity patterns were more local. This 

could explain why MEG-derived connectomes using wPLI were inaccurate. If the connectome 

derived using a phase-based metric primarily consists of local connections, removing zero-lag 

connectivity would result in a noisy connectome that excludes actual zero-lag connections. In 

contrast, amplitude envelope-based metrics, which are derived from signal envelopes (associated 

with larger-scale synchronization) could capture more long-distance connections and thus reflect 

underlying distributed networks similar to the one we can retrieve from resting state  fMRI data 

(Matthew J Brookes et al., 2011). In our study, even after correcting for source leakage 

(orthogonalized AEC), amplitude envelope-based metrics were able to accurately estimate MEG 

connectomes at a group level in alpha and beta bands (Study 3) and at a single-subject level in 

alpha, beta, and theta bands (Study 4). This finding is consistent with a previous study by 

Colclough et al. (2016) using resting-state MEG data, which compared different metrics to assess 

consistency across different sessions or subjects (without using any ground truth).  

The spatial correlations we observed between connectomes estimated from MEG and the iEEG 

atlas, as well as between those estimated using simultaneous MEG and SEEG, were within the 

same range as those reported in previous studies comparing simultaneous EEG and fMRI derived 

connectomes (Wirsich et al., 2020; Wirsich et al., 2024; Wirsich et al., 2021). In Wirsich et al. 

(2021), after applying minimum norm source imaging to localize resting state EEG data acquired 

in the scanner, cross-modal correlations between fMRI and EEG connectivity using orthogonalized 

amplitude envelope correlation were lower compared to non-corrected amplitude envelope 

correlation, which aligns with our findings in Studies 3 and 4. They also found significant 

correlations between EEG and fMRI connectomes when EEG connectivity was estimated using 

imaginary coherence, a metric that excludes zero-lag connectivity. In our group-level comparison 

in Study 3, we found significant correlations between MEG and intracranial EEG atlas when MEG 

connectivity was estimated using wPLI. However, at a single-subject level comparison with 

simultaneous MEG and intracerebral EEG data in Study 4, no correlation was found between MEG 

and intracerebral EEG connectomes for wPLI. Detailed comparisons with these studies are 

presented in Chapters 8 and 9, where we also highlight the differences between our studies and 

those comparing EEG and fMRI connectomes. Although their studies used simultaneous data, 

EEG and fMRI capture different brain mechanisms, electrophysiology in EEG versus 

hemodynamic activity in fMRI, and thus direct comparisons are limited. In contrast, we compared 



222 
 

two modalities, iEEG and MEG, capturing essentially the same underlying generators and brain 

dynamics.  

10.2 Future directions 

We emphasize the need to develop a simultaneous intracerebral EEG and EEG/MEG atlas that 

combines data from multiple patients, similar to the existing atlas created using only intracranial 

EEG data. Such an atlas would be invaluable for validating results from non-invasive methods and 

for generating a brain map that highlights regions with greater accuracy and those associated with 

localization inaccuracies. This type of atlas would serve as the most reliable ground truth not only 

for validating resting-state oscillations but also for evaluating different source imaging methods 

and parameters. 

In Study 2, we validated the depth-weighted MEM method by simulating a ground truth or using 

a ground truth in epilepsy patients based on presurgical clinical information or surgical resection 

outcomes in seizure-free patients. Simultaneous EEG/MEG and intracerebral EEG would actually 

be the most effective way to validate these method parameters. For instance, using data from a 

patient in Study 4, who had SEEG implantation in the left and right hippocampi and simultaneous 

MEG recording, we compared the performance of depth-weighted cMEM (cMEMω) with standard 

MEM (Figure 10-1). The standard cMEM failed to localize IED activity in the hippocampus, 

whereas depth-weighted cMEM (cMEMω) successfully localized the IED, consistent with the 

SEEG ground truth.  
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Figure 10-1:  (A) A patient with intracerebral EEG (stereotaxic EEG or SEEG) implanted in left and right 

hippocampus. (B) Example SEEG electrode shown that has some contacts in deep hippocampus and some 

contacts in the superficial regions. (C) Example of an interictal epileptic discharge in SEEG. The same IED 

was marked in simultaneous MEG and reconstructed using (D) standard cMEM (no depth weighting) and 

(E) depth weighted cMEM (cMEMω). The MEG source maps were finally converted to SEEG space for (F) 

cMEM and (G) depth weighted cMEM (cMEMω).  Compared to SEEG IED in C, cMEM could not localize 

the spike within deep contacts but depth weighted cMEM provided more accurate localization in deep 

hippocampus contacts. 

However, it is important to note that, although the depth-weighted cMEM localized the 

hippocampal source, it also produced some ghost localizations on the lateral superficial cortex 

(Figure 10-2). Further investigation using more patients with simultaneous EEG/MEG and 

intracerebral EEG is necessary to thoroughly evaluate these challenging localization scenarios and 

compare with other source imaging techniques. Open-source datasets, such as the first publicly 

available dataset of simultaneous high-density EEG and SEEG recordings of IEDs by  Zauli et al. 

(2024) (https://osf.io/89ndr/), are invaluable resources for such research. 

https://osf.io/89ndr/
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Figure 10-2 Interictal epileptic discharge (IED) for all electrodes (color shows activity thresholded at 50% 

of the maximum) for (A) stereotaxic EEG or SEEG, (B) MEG estimated using cMEM  and converted to 

the SEEG space and (C) MEG estimated using depth weighted cMEM (cMEMω) and converted to the SEEG 

space. cMEM failed to localize activity in the hippocampus, whereas the depth-weighted cMEM 

successfully localized it, consistent with the SEEG ground truth. However, depth-weighted cMEM also 

produced some ghost localizations on the lateral cortex.  

Validation of non-invasive EEG/MEG methods has also been performed using electrical 

stimulation applied on intracranial EEG to generate ground truth data (Liu et al., 2024; Pascarella 

et al., 2023; Unnwongse et al., 2023). Pascarella et al. (2023) compared ten source imaging 

methods and explored various depth-weighting parameters using simultaneously acquired high-
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density EEG and intracerebral ‘electrical stimulation pulses’ as ground truth. However, whereas 

these studies are valuable, it is worth mentioning that the generators of these stimulations are 

highly focal, and the resulting elicited signals feature high signal-to-noise ratios. In epilepsy, the 

generators are usually spatially extended and thus these focal electrical stimulations are not ideal 

for validation. When considering either electrical stimulation or recording of ongoing 

epileptic/resting state data, simultaneous EEG/MEG and intracerebral EEG provide the best 

framework for testing and validating source imaging methods. 

While we have so far used intracerebral EEG as a ground truth to validate non-invasive EEG/MEG 

results, combining these modalities for complementary use has a great potential (Dubarry et al., 

2014; Gavaret et al., 2016; Koessler et al., 2015; Pigorini et al., 2024; Zauli et al., 2024). 

EEG/MEG offers global recordings with limited spatial resolution but overall good spatial 

accuracy for most superficial cortical regions. On the other hand, intracerebral EEG provides high 

spatial resolution and signal-to-noise ratio (SNR) and can record almost anywhere in the brain, but 

with limited spatial coverage. By leveraging EEG/MEG for a broad coverage of superficial cortical 

regions and intracerebral EEG for deep regions, we can effectively investigate a larger fraction of 

the brain than with any modality by itself. The poor spatial coverage of intracerebral EEG may 

result in implantations missing the actual epileptogenic zone. For instance, Gavaret et al. (2016) 

utilized multi-modal EEG/MEG and stereotaxic EEG (SEEG) recordings to guide the localization 

of epileptogenic zones by leveraging the strengths of each modality while complementing 

information that might be missed by individual techniques. They selected IEDs from SEEG that 

were not visible in EEG/MEG, and by using these SEEG-marked IEDs in the EEG/MEG data 

(even if single events were not visually detectable), the localization of averaged EEG/MEG IEDs 

revealed a generator that was not captured by SEEG alone.  

Multimodal fusion of source imaging applied on EEG/MEG and intracerebral EEG, could improve 

the issue of limited sampling in intracerebral EEG, particularly in cases of implantation missing 

the epileptogenic zone. For instance, this fusion source imaging could localize interictal epileptic 

discharges (IEDs) accurately that may be missed by intracerebral EEG alone. Our group previously 

implemented a fusion of EEG and MEG source imaging within the MEM framework (Chowdhury 

et al., 2015) and demonstrated that EEG/MEG fusion significantly improved the reliability of 

source localization results when localizing single non-averaged epileptic discharges (Chowdhury 
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et al., 2018). This fusion methodology framework we proposed within the context of MEM is 

sufficiently flexible and can therefore be extended to combine EEG/MEG with intracerebral EEG 

source imaging to optimally incorporate information measured from complementary recordings 

into the source imaging problem. We believe this is a topic of great interest that we will investigate 

in our future investigations.  

In the future, we will also analyze the aperiodic components using simultaneous MEG and 

intracerebral EEG data, particularly to investigate whether there are significant differences in the 

estimation of these components between the two modalities. The difference observed in the 'knee' 

component between cortical and subcortical structures in intracerebral EEG spectra (Bush et al., 

2024) should also be explored to determine whether EEG/MEG sources can similarly estimate 

these features. The origin of these differences in cortical and subcortical structures remains unclear, 

making this an important area for future research.  

When incorporating subcortical structures into the source model, we included only the 

hippocampus alongside the cortical surface. Integrating the hippocampus was straightforward 

because it was modeled as a surface mesh, with current dipoles oriented orthogonally to the 

surface, similar to the cortical source space. Our results in Study 2 are demonstrating the relevance 

of adding a surface segmentation of bilateral hippocampi to improve source imaging accuracy. 

This is a modeling approach we are now considering in all our EEG/MEG source imaging studies.  

In contrast, structures like the thalamus, striatum, and amygdala should rather be modeled using a 

volume grid with current dipoles placed in random orientations (Attal et al., 2009; Attal & 

Schwartz, 2013). Other source imaging methods that can handle both cortical surface and volume 

grid models can incorporate these subcortical structures using a mixed source model. However, 

including these subcortical structures in the MEM framework would require adapting the 

parcellation process, which is currently guided along the surface in a geodesic manner. Extending 

the MEM method to handle a combination of surface models and volume grids would facilitate 

the inclusion of mixed hybrid models, allowing the integration of additional subcortical structures 

into the source space.  

In this thesis, we focused on analyzing one minute of resting-state activity, averaging measures 

such as power spectra and connectivity across that period. However, brain activity is highly 

dynamic. Using simultaneous MEG and intracerebral EEG, future work will aim to explore brain 
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dynamics both during the resting state and in the context of epilepsy, including the propagation of 

interictal epileptic discharges and seizures.  A recent study using intracerebral EEG and structural 

connections derived from diffusion weighted MRI  data (Azeem et al., 2024) demonstrated that 

seizure propagation is mediated by white matter tracts. Previously, Azeem et al. (2021) showed 

that the epileptic network can be delineated through the propagation of interictal epileptiform 

discharges using intracerebral EEG. This relationship between structural connectivity and seizure 

propagation in epilepsy, as well as the detection of epileptic networks through interictal discharge 

propagation, could potentially be explored using non-invasive EEG/MEG connectivity based on 

source imaging and simultaneous EEG/MEG and intracerebral EEG. Similarly, simultaneous 

EEG/MEG and intracerebral EEG, associated with the methodological development proposed in 

this thesis would provide the ideal framework to study the dynamic of brain activity, during 

epileptic activity (interictal discharges or seizures), but also during ongoing resting state activity 

which is not always stationary.  

 

 

 

 

 

 

 

 

 

 

 

 

 



228 
 

Appendix A for manuscript 1 in Chapter 6 

The maximum entropy on the mean (MEM) is a Bayesian inference technique that regularizes the 

inverse problem using prior information. This prior relies on the notion of functional parcellation 

of brain activity over the cortical surface, and hidden state variables describing each parcel being 

active or inactive. A data driven parcellization (DDP) based on Multivariate Source Pre-

localization (MSP) method (Mattout et al., 2005) was used to guide the parcellation of the cortical 

surface into non-overlapping and functionally homogeneous parcels (Lapalme et al., 2006). For 

each parcel, the prior is then defined as a mixture of Gaussians, each Gaussian of each parcel will 

be related to a state as active and inactive controlled by a hidden state variable. In the context of 

resting state EEG/MEG, we adapted wMEM by incorporating a few changes in the prior model 

and initialization of the parcels.  

Spatial prior model:  

Parcellation of the whole cortical surface was obtained using a data driven approach, based on the 

Multivariate Source Pre-localization (MSP) method (Mattout et al., 2005), a projection technique 

allowing to estimate the probability of every source contributing to the data. The MEG data (M) 

were first normalized (across sensors) and then wavelet transformed (�̃�). In the present 

implementation of wMEM, time expansion was thus substituted with a time-scale representation. 

The contribution of each source to the data (called the MSP score) is obtained using the normalized 

MEG data (�̃�) and the normalized lead field matrix (�̃�), where the normalization was performed 

by the norm of each column. �̃� is the sensor space data in the wavelet domain (dimension: number 

of sensors × discrete wavelet time-frequency indices), whereas the normalized lead field �̃� is of 

dimension number of sensors × n; n is the total number of sources. The MSP score for each source 

(ai), i= 1,…. n, is calculated in the following steps: 

The normalized lead field matrix �̃� is decomposed into d mutually orthogonal eigenvectors ui 

using singular value decomposition (SVD). We selected a subspace, Us = [u1, u2, … us], by 

projecting these orthogonalized projectors onto the normalized data �̃� as 𝑈𝑡�̃��̃�𝑡𝑈 and taking 

the diagonal of 𝑈𝑡�̃��̃�𝑡𝑈 that captures 95% of the variability.  
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In the data subspace spanned by Us, the data that can be explained within this subspace is calculated 

as: 

𝑊𝑠 = 𝑈𝑠 𝑈𝑠
𝑡 �̃�    (A.1) 

The projector in this subspace is defined by  

𝑃𝑠 = 𝑊𝑠(𝑊𝑠
𝑡𝑊𝑠)

−1𝑊𝑠
𝑡   (A.2) 

Finally, the MSP score between 0 and 1 for each source i is then calculated by the norm of the 

projection of its associated lead field,  

𝑎(𝑖) = �̃�𝑖
𝑡𝑃𝑠�̃�𝑖                (A.3) 

where �̃�𝑖 is the ith column of �̃�. 

Parcels are then constructed using a region-growing algorithm, selecting sources according to 

decreasing MSP scores. In this version of wMEM, assuming a stable parcellation of the cortex for 

all the time-frequency samples for resting state data, we followed the strategy proposed for cMEM 

(Chowdhury et al., 2013), ensuring that the same underlying parcellation was considered when 

localizing all the time-frequency samples (dimension of �̃� as number of sensors × number of 

discrete time frequency boxes).  In our previous implementation (Lina et al., 2012), a specific 

parcellation was computed for each time-frequency box to localize. 

Initialization of the parcels:  

The probability 𝛼𝑘 for each parcel k to be active was then initialized as the amount of ‘normalized 

energy’ in the parcel, for each time-frequency sample. Given the minimum norm estimated energy 

of the sources, for a specific time-frequency sample (a column in �̃�) �̃�,   

𝑗 = �̃� 
𝑡(�̃��̃� 

𝑡)−1�̃�  (A.4) 

 

𝛼𝑘 = √
∑ 𝑗(𝑖)2𝑖∈𝑘

∑ 𝑗(𝑖)2𝑖=1,….𝑛
  (A.5) 

Although the parcels were identical across time-frequency samples, this quantity initializing the 

probability of each parcel to be active changed with time and frequency. 
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Selection of baseline for resting state localization:  

A baseline is needed to complete the initialization of the prior, to define the variance of the active 

state and inactive state, in comparison to the noise variance at the sensor level. This is an important 

feature that will allow switching off parcels in the model when they are not active. The idea of 

selecting a baseline is to choose a segment of data with an amplitude significantly lower than the 

signal of interest. However, the selection of such segments in resting state data is not 

straightforward. In  Aydin et al. (2020), the baseline was defined as a two-second segment 

exhibiting low amplitude in the alpha band, since we were investigating amplitude envelope 

correlation in the alpha band, as a connectivity metric. This approach worked reasonably when 

localizing in a specific and narrow frequency band, however, becomes inappropriate when 

localizing in a wide frequency band. Here, we propose to generate a quasi-synthetic baseline from 

a segment of the signal of interest. The baseline was obtained by randomly modifying the Fourier 

phase at each frequency, for all the sensors (originally proposed by Prichard & Theiler 1994). This 

baseline preserves the coherence between the sensors and the power spectrum of the signals while 

destroying only the temporal coherence. To consider this new baseline, we adopted a sliding 

window approach to calculate the baseline. For each window with one second duration along the 

sixty second resting state MEG data, a quasi synthetic “shuffled” baseline was thus generated. To 

solve the inverse problem for each time frequency box, we selected the corresponding one second 

“shuffled” baseline along the time scale. We adopted this sliding window approach considering 

that the selection of baseline is an important aspect of the initialization of the prior, allowing the 

parcels to be active or not, and thus would be more reasonable to use the baseline which is 

temporally associated with the time frequency sample. 
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Appendix B for manuscript 2 in Chapter 7 

Coherent Maximum Entropy on the mean (cMEM)  

The relationship between source amplitudes and EEG/MEG measurements is expressed by the 

following linear model: 

                                                                   𝒎(𝑡) = 𝑮𝐣(𝑡) + 𝒆(𝑡)                                         (B.1) 

𝒎(𝑡) is the 𝑞-dimensional measurement vector for EEG or MEG signal at time 𝑡 where 𝑞 denotes 

the number of EEG/MEG sensors, 𝐣(𝑡) is the 𝑟-dimensional vector denoting current density of 𝑟 

dipolar sources at time t and G is the lead field matrix with a dimension of 𝑞 × 𝑟. e(t) models an 

additive measurement noise at time t. We assume an anatomical constraint that the dipoles are 

orientated orthogonally to the surface of the cortex and hippocampus.  

Within the MEM framework (Amblard et al., 2004), 𝐣 denoting the intensities of 𝑟 dipolar sources 

is considered as a random variable described by the probability distribution 𝑑𝑝(𝐣) = 𝑝(𝐣)𝑑𝐣. To 

regularize the inverse problem, we incorporate prior information on j in the form of a reference 

distribution 𝑑ν(𝐣). The Kullback Leibler divergence or ν-entropy is defined by: 

                         𝑆ν(𝑑𝑝) = −∫ log (
𝑑𝑝(𝐣)

𝑑𝜈(𝐣)
)𝑑𝑝(𝐣) = −∫ 𝑓(𝐣)log (𝑓(𝐣))𝑑𝜈(𝒋)

 

𝐣

 

j
    (B.2) 

Where 𝑓 is a ν-density of 𝑑𝑝 defined as 𝑑𝑝(𝐣) = 𝑓(𝐣)𝑑𝜈(𝐣). The ν-entropy  𝑆ν(𝑑𝑝) measures the 

amount of information brought by the data with respect to the prior 𝑑𝜈. We introduce a data fit 

constraint as the set of probability distributions on j that explains the data on average. 

                                 𝒎− [𝑮|𝑰𝑞] [ 𝒆
E𝑑𝑝[𝐣] ] = 0,         𝑑𝑝 ∈ 𝐶𝑀             (B.3) 

Where 𝐶𝑀 is the set of probability distributions on 𝐣 that explains the data on average,  E𝑑𝑝[𝐣] =

∫ 𝐣 𝑑𝑝(𝐣)
 

ℝ
 is the mathematical expectation of 𝐣 with respect to the probability distribution 𝑑𝑝 and 

𝑰𝑞 is a 𝑞 × 𝑞 identity matrix. Among all the possible distributions of  𝑑𝑝(𝐣) that explain the data 

𝒎 on average, MEM solution is derived from maximizing the ν-entropy (Amblard et al., 2004; 

Grova et al., 2006). More details on MEM formulations are described in Chowdhury et al. (2016). 

The key feature of this framework is a spatial prior model, assuming that brain activity is organized 
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within a set of 𝐾 non-overlapping and independent parcels. The reference distribution 𝑑𝜈(𝐣) for 𝐾 

parcels is defined as a joint distribution: 

                                       𝑑ν(𝐣) = 𝑑ν1(𝐣1)𝑑ν2(𝐣2)𝑑ν3(𝐣3)… . . 𝑑ν𝑘(𝐣𝑘)… . . 𝑑ν𝐾(𝐣𝐾)            (B.4) 

The spatial parcellation used in MEM method uses a data driven parcellation technique (Lapalme 

et al., 2006). Each parcel 𝑘 is characterized by an activation state S𝑘, which is a hidden state 

variable controlling the activation of the parcel. The reference distribution for each parcel is 

defined as: 

                                                   𝑑ν𝑘(𝐣𝑘) = [(1 − 𝛼𝑘)𝛿(𝐣𝑘) + 𝛼𝑘𝒩(𝝁𝑘, 𝚺𝑘)(𝐣𝑘)]𝑑𝐣𝑘          (B.5) 

Where 𝛼𝑘 is the probability of the kth parcel to be active (𝑃𝑟𝑜𝑏(S𝑘 = 1)). 𝛿 is a Dirac function 

which is used to switch off the parcel when S𝑘 = 0. 𝒩(𝝁𝑘, 𝚺𝑘) is a Gaussian distribution of the 

intensities of the kth parcel, 𝝁𝑘 describing the mean and 𝚺𝑘 describing the covariance of all the 

sources within that kth parcel.  

In this study we considered the “coherent” version of MEM, entitled cMEM, originally introduced 

in Chowdhury et al 2013 and fully described in Chowdhury et al 2016. The term “coherent” refers 

to the fact that we are using a coherent spatial prior, i.e. a data driven parcellation in 𝐾 parcels 

which is fixed along time, while the probability of being active 𝛼𝑘 can evolve dynamically. In 

cMEM implementation, we also included local spatial smoothness within each parcel of the model.  

Therefore, in cMEM, to initialize the spatial prior model, 𝝁𝑘 is set to zero and 𝚺𝑘 is defined as 

follows, 

                                                        𝚺𝑘(𝑡) = 𝜂𝑘(t)𝑾𝑘(𝜎)
𝑇𝑾𝑘(𝜎)                                         (B.6) 

Where 𝚺𝑘(𝑡) is the source covariance of parcel k at each time sample t, 𝑾𝑘(𝜎) is a spatial 

smoothness matrix which controls the local smoothness within the parcel (𝜎 set to 0.6 (Chowdhury 

et al., 2013; Friston et al., 2008)) and 𝜂𝑘(t) is defined as 5% of the energy of minimum norm 

estimate (MNE) solution (Lin et al., 2006) of all the 𝑟𝑘  sources within the parcel kth.  

                                                     𝜂𝑘(t) = 0.05
1

𝑟𝑘
∑ ĵ𝑀𝑁𝐸

2
𝑖∈𝑟𝑘 (𝑖, 𝑡)                                          (B.7) 

The MNE solution �̂�𝑀𝑁𝐸 was calculated using: 
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                 �̂�𝑀𝑁𝐸 = 𝑎𝑟𝑔𝑚𝑖𝑛(‖𝒎− 𝑮𝐣‖𝚺𝑑
2 + λ‖𝐣‖𝚺

2) = (𝑮𝑇𝚺𝑑𝑮 + λ𝚺 )
−1𝑮𝑇𝚺𝑑𝒎                   (B.8) 

Where 𝚺𝑑 is the inverse of the noise covariance, 𝚺 is the inverse of the source covariance (𝚺 = 𝑰𝑟, 

an 𝑟 × 𝑟 identity matrix), and λ is a hyperparameter to regularize the inversion. Standard L-Curve 

method was used to estimate  λ. 

After the reference distribution 𝑑ν is initialized, the MEM solution is finally obtained through an 

optimization of a convex function obtained from the dual formulation of the maximum entropy 

principle (Amblard et al., 2004; Chowdhury et al., 2016; Chowdhury et al., 2013).  

Depth-weighted cMEM (cMEMω) 

We are introducing a new parameter for cMEM implementation. Depth weighting within cMEM 

framework was first proposed and implemented by Cai et al. (2022) for functional Near InfraRed 

Spectroscopy 3D reconstruction. Similarly to the depth weighting strategy proposed for MNE (Lin 

et al., 2006),  we introduced a location penalty in the source covariance by scaling it with the 

forward model and thus penalizing the superficial sources that exhibit larger amplitude and 

enhancing the contribution from deep sources. This penalization was tuned by the weighting 

parameter 𝜔. Therefore, 𝜔 = 0.0 refers to no depth weighting whereas increasing the value of 𝜔 

would refer to more contribution from deep sources.  

Therefore, in cMEMω depth weighting was implemented when initializing the spatial prior. The 

parcels are initialized using the source covariance of the parcel, 𝚺𝑘  (Eq B.6). The source 

covariance in Equation B.6 was weighted by the forward model of each vertex, quantifying the 

influence of source depth, to a specific power 𝜔. Therefore, following the method proposed and 

validated by Cai et al (2022), depth weighting was added at two levels: 

1) To initialize the spatial prior model, we applied depth weighting in the source covariance for 

each parcel, 𝚺𝑘(𝑡)𝜔 as:                                          

𝚺𝑘(𝑡)𝜔 = 𝚲𝑟𝑘𝜂𝑘(𝑡)𝜔𝑾𝑘(𝜎)
𝑇 𝑾𝑘(𝜎)                                                (B.9) 

where 𝚲𝑟𝑘 is the depth weighting matrix defined as the diagonal matrix of (𝐆𝑘
𝑇𝐆𝑘)

−𝜔, where 𝑮𝑘 

is the gain matrix for 𝑟𝑘 sources in parcel k. 
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2) For cMEM, 𝜂𝑘(t) was defined as 5% of the energy of MNE solution of 𝑟𝑘 sources within the 

parcel k (Eq. A.7). In cMEMω, we replaced the MNE solution with the depth-weighted MNE 

solution. Equation B.7 and B.8 are modified as follows: 

          𝜂𝑘(𝑡)𝜔 = 0.05
1

𝑟𝑘
∑ �̂�𝑀𝑁𝐸𝜔(𝑖, 𝑡)

2
𝑖∈𝑟𝑘                                        (B.10) 

Where �̂�𝑀𝑁𝐸𝜔 is the depth-weighted version of �̂�𝑀𝑁𝐸 in equation B.8, where we used the diagonal 

of the source covariance matrix 𝚺, weighted by the forward model, as follows: 

                                                                𝚺 = 𝑰𝑟(𝑮
𝑇𝐆)−𝜔                                                  (B.11) 

In this study, we considered a fixed depth weighting factor, 𝜔 = 0.5 (zero would represent no depth-

weighting) for the two levels reported in Equations B.9 and B.11. This is different from Cai et al. 

(2022), where they explored different pairs of weighting factors for Equations B.9 and B.11 using 

realistic simulations of Functional Near-infrared spectroscopy data and reported the best 

reconstruction accuracy for 𝜔 = 0.3 for Equation B.9 and 𝜔 = 0.5 for Equation A.11. In our 

EEG/MEG study, 𝜔 = 0.5 was chosen to be consistent with the default value used in depth-

weighted MNE (MNEω) implementation for EEG/MEG source imaging in Brainstorm (Tadel et 

al., 2011). We also explored ω values ranging between 0.1 and 0.9 for one set of MEG simulations 

and observed that higher ω values enhanced the localization of deep sources but adversely affected 

the localization of superficial sources. Therefore, choosing ω = 0.5 appeared as a reasonable 

compromise.  

Wavelet Maximum Entropy on the mean (wMEM) 

wMEM is another version of MEM specifically designed to localize brain oscillatory patterns. 

wMEM applies a discrete wavelet transformation (Daubechies wavelets) to characterize the 

oscillatory patterns in the data before applying the MEM solver (Lina et al., 2012). In this work, 

we are introducing a new parameter for wMEM implementation to allow depth weighting, 

resulting in the method wMEMω with 𝜔=0.5. wMEMω method was validated using the same 

simulation datasets as cMEMω and MNEω for localizing epileptic spikes. More details on wMEM 

implementation can be found in  Lina et al. (2012) and Afnan et al. (2023).  

In wMEM, the time expansion of data is substituted with a time-scale representation. In terms of 

wavelet expansion, equation A.1 can be written as: 
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                 𝐝𝑠,𝑛 = 𝑮𝐰𝑠,𝑛 +𝐰
𝜖
𝑠,𝑛

 
                                      (B.12) 

Where 𝐝𝑠,𝑛, 𝐰𝑠,𝑛 and 𝐰𝜖
𝑠,𝑛

 
 are the wavelet coefficients for the data, the sources, and the 

measurement noise, respectively, for a particular discrete time index n and scale s (s=1,2,3… with 

s = 0 being the sampling scale). Depth weighting is implemented for the step when we initialize 

the spatial prior (as described for cMEMω). The time-scale representation of Equation B.6 and B.7 

are: 

                                                 𝚺𝑘(𝑠, 𝑛) = 𝜂𝑘(s, 𝑛)𝑾𝑘(𝜎)
𝑇𝑾𝑘(𝜎)                                       (B.13) 

                                             𝜂𝑘(𝑠, 𝑛) = 0.05
1

𝑟𝑘
∑ �̂�𝑀𝑁𝐸(𝑖, 𝑠, 𝑛)

2
𝑖∈𝑟𝑘                                       (A.14) 

Where 𝚺𝑘(𝑠, 𝑛) is the source covariance of parcel k at a particular discrete time index n and scale 

s. 𝜂𝑘(s, 𝑛) is defined as 5% of the energy of MNE solution of all the sources (𝑟𝑘) within the parcel 

k for a particular discrete time index n and scale s. The MNE solution �̂�𝑀𝑁𝐸 is calculated in time-

scale domain as: 

         �̂�𝑀𝑁𝐸 = 𝑎𝑟𝑔𝑚𝑖𝑛 (‖𝐝𝑠,𝑛 − 𝑮𝐰𝑠,𝑛‖𝚺𝑑

2
+ λ‖𝐰𝑠,𝑛‖𝚺

2
) = (𝑮𝑇𝚺𝑑𝑮 + λ𝚺 )

−1𝑮𝑇𝚺𝑑𝐝𝑠,𝑛     (B.15) 

Where 𝚺 = 𝑰𝑟, an 𝑟 × 𝑟 identity matrix. 

Depth-weighted wMEM (wMEMω) 

Similar to cMEMω, the depth weighting was applied in wMEM at two levels. First, we applied 

depth weighting in the source covariance for each parcel, 𝚺𝑘(𝑠, 𝑛)𝜔 as:  

                                         𝚺𝑘(𝑠, 𝑛)𝜔 = 𝚲𝑟𝑘  
𝜂𝑘(𝑠, 𝑛)𝜔𝑾𝑘(𝜎)

𝑇𝑾𝑘(𝜎)                               (B.16) 

where 𝚲𝑟𝑘 is the depth weighting matrix defined as the diagonal matrix of (𝐆𝑘
𝑇𝐆𝑘)

−𝜔, where 𝑮𝑘 

is the gain matrix for 𝑟𝑘 sources in parcel k. Second, we defined 𝜂𝑘(𝑠, 𝑛)𝜔 as 5% of the energy of 

the depth-weighted MNE solution, for which we modified equation A.15 by using the diagonal of 

the source covariance matrix 𝚺, weighted by the forward model (see equation A.11: 𝚺 =

𝑰𝑟(𝑮
𝑇𝐆)−𝜔). Similar to cMEMω, we considered a fixed depth weighting factor, 𝜔 = 0.5 for 

wMEMω at the two levels described by equations A.16 and A.11.    
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