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Abstract

Quantitative susceptibility mapping (QSM) is an MRI modality that can estimate the magnetic
susceptibility distribution of tissue. QSM uses the assumption that phase shifts in the complex MR
measured data are primarily produced by susceptibility-induced field perturbations within the
volume-of-interest. Thus, QSM calculates the susceptibility distribution by solving the inverse
problem of deriving the susceptibility distribution from the field perturbation in the phase data,
which is an ill-posed inverse problem. To solve the inverse problem, the measured phase data
requires first post-processing (phase offset correction, phase unwrapping, and weighted least
square fit to combine multi-echo phase information) and the removal of background magnetic field
perturbations (field perturbations produced outside the volume-of-interest). The separation of
QSM in three steps corresponds to conventional QSM. The approach adopted in conventional
QSM tends to break down in regions surrounded by steep changes of susceptibility, like the cortical

region of the brain.

Direct inversion methods combine the background removal and dipole inversion steps in a single
algorithm and are proposed as a solution for the shortcomings of conventional QSM. The
hypothesis of this project is thus that direct inversion methods are a better option to measure the

susceptibility in the cortex when compared to conventional QSM.

The results of this project indicate that among the studied methods, conventional QSM is a better
option for measuring the susceptibility in deep grey matter structures, while direct inversion
techniques are a promising approach to measure the susceptibility in the cortex of the brain. But
the lack of refinement of these methods when solving the ill-posed inverse problem highlights the
need to improve current methods or to develop novel techniques based on this approach. Also, it
is proposed in this thesis that direct inversion methods rely on the orthogonality between the
subspaces spanned by dipolar fields inside and outside the volume-of-interest. This theoretical
framework explains why direct inversion methods are a promising technique to measure
susceptibility in the cortex. Moreover, the proposed explanation outlines the path to improve direct

inversion techniques.
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Résumeée

La cartographie quantitative de la susceptibilit¢ magnétique (QSM, Quantitative Susceptibility
Mapping) est une modalit¢ d’IRM qui permet d’estimer la distribution de susceptibilité du tissu.
La QSM part du principe que les variations dans les données complexes mesurées par la résonance
magnétique perturbations du champ induites par la susceptibilité dans la région d’intérét (ROI).
Ainsi, la QSM calcule la distribution de susceptibilité en résolvant le probléme inverse de la
dérivation de la distribution de susceptibilité a partir de la perturbation du champ magnétique dans
les données brutes, qui est un probléme inverse mal-posé. Pour résoudre ce probléme inverse, les
données brutes mesurées doivent d’abord étre traitées (correction du déphasage initial,
déroulement de phase et combinaison des informations de la séquence d’écho de gradient par la
méthode des moindres carrés pondérés) et les champs d’arriére-plan doivent étre éliminés
(perturbations du champ produites a 1’extérieur de la région d’intérét). La séparation de la QSM
en trois étapes est typique de la QSM conventionnel. L’approche adoptée dans la QSM
conventionnelle tend a échouer dans les régions qui présentent de fortes variations de susceptibilité

telle que la région corticale du cerveau.

Les méthodes d’inversion directe combinent les étapes de suppression des champs d’arriere-plan
et d’inversion du dip6le en un seul algorithme et sont proposées comme solution aux défauts de la
QSM conventionnel. L hypothése de ce projet est donc que les méthodes d’inversion directe sont
une meilleure option pour mesurer la susceptibilit¢ dans le cortex par rapport a la QSM

conventionnel.

Les résultats de ce projet indiquent que parmi les méthodes étudiées, la QSM conventionnel
demeure la meilleure option pour mesurer la susceptibilité dans les structures profondes de la
matiere grise alors que les techniques d’inversion directe sont une approche prometteuse pour
mesurer la susceptibilité dans le cortex du cerveau. Cependant, le manque de raffinement de ces
méthodes lors de la résolution du probléme inverse mal-posé souligne la nécessité d’améliorer les
méthodes actuelles ou de développer de nouvelles techniques basées sur cette approche. Aussi,

dans cette thése, nous proposons que les méthodes d’inversion directe reposent sur I’orthogonalité

vii



entre les sous-espaces couverts par les champs dipolaires a I’intérieur et a I’extérieur de la région
d’intérét. Ce cadre théorique explique pourquoi les méthodes d’inversion directe sont une
technique prometteuse pour mesurer la susceptibilité dans le cortex. En outre, I’explication

proposée esquisse la voie a suivre pour améliorer les techniques par inversion directe.
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Chapter 1

Introduction

1.1 Motivation

Quantitative susceptibility mapping (QSM) is an MRI modality that can estimate the underlying
magnetic susceptibility distribution using MRI phase measurements generally obtained from a 3D
GRE sequence [1], [2]. In the brain, the magnetic susceptibility of tissue can be used as a biomarker
to detect several neurodegenerative diseases and a variety of brain lesions since it is mainly
affected by the tissue water content, myelin, iron, and calcium [2]-[5]. A conventional QSM
pipeline has three main steps: phase unwrapping, background field removal, and dipole inversion.
Each step on its own is a challenging problem to solve and the separation into three steps just
makes the outcome less accurate due to error propagation [6], [7]. Moreover, conventional QSM
pipelines tend to perform poorly in the cortical region of the brain due to the nearby presence of
the meninges, cerebrospinal fluid, blood flow, skull cortical bone, subcutaneous fat, and

inaccuracies due to faulty brain extraction and edge erosion [6]—[8].

To overcome the shortcomings of conventional QSM, algorithms that combine the background
removal and the dipole inversion in a single step have been proposed [6]—[10]. These methods will
be referred to in this work as “direct inversion methods”. However, some questions about direct
inversion methods have been not fully addressed in the literature. Notable open questions
regarding direct inversion methods are a comprehensive study of the effect of phase unwrapping
in these methods, a clear delineation of the advantages and/or disadvantages of direct inversion
methods when compared with conventional QSM, a description of the physical or mathematical
assumptions that allow the separation of background and local fields, and a comparison of the

performance of these methods in the cortex of the brain. Addressing these questions would



represent an advancement in the understanding of this particular set of techniques and on QSM in
general. Moreover, addressing these questions could be valuable to refine the existing methods or
to design novel QSM techniques capable of measuring susceptibility in critical regions like the

cortex in the brain.

1.2 Objectives

The overall objective of this work was to determine whether or not direct inversion methods
represent an improvement over conventional QSM when measuring the susceptibility in the
cortical region of the brain. In this thesis, the term “conventional QSM” refers to QSM processing
schemes that have independent steps for phase unwrapping, background field removal, and dipole
inversion. On the other hand, “direct inversion QSM” corresponds to methods that combine the
background removal and dipole inversion steps in a single algorithm while still requiring a separate
step for phase unwrapping. The main objective of this thesis was achieved by building over three

specific objectives designed to provide a compelling answer to the main research question.

The first objective of this work was to create a pipeline capable of producing susceptibility maps
for conventional QSM and direct inversion methods and then compare the susceptibility maps
obtained with both approaches. Also, the results of this work were used to establish the optimal

methods for each step of the pipeline, especially for the direct inversion pipeline.

The second objective was to investigate the physical and mathematical principles behind the

separation of local and background fields in direct inversion methods.

The third and final objective was to assess the performance of conventional QSM and direct
inversion methods in deep gray matter structures and the cortical region of the brain. To
accomplish this goal, the susceptibility was measured in these regions of the brain using numerical

simulations and in vivo datasets.



1.3 Thesis outline and scientific contributions

Chapter 2 is a background chapter containing a brief review of basic MRI theory. Different topics
are covered in this chapter including the interaction of magnetic fields with nuclear spins, the use
of radiofrequency fields and linear gradients fields in MRI, relaxation, and signal detection. To
close this chapter, multi-echo gradient echo sequences are explained since this sequence is the

basis for collecting experimental information for QSM.

Chapter 3 is a literature review of QSM theory. The chapter starts with the theory of the ill-posed
inverse problem for calculating the susceptibility distribution that produces a specific magnetic
field and the relation between MR phase data and susceptibility-induced magnetic field
perturbations. Subsequently, the chapter covers the data acquisition, phase data processing,
background removal, and dipole inversion methods used in conventional QSM. Finally, the chapter
presents a review of direct inversion methods. This review is focused on the methods analyzed in
this thesis Preconditioned Total Field Inversion (pTFI), Least-Norm QSM (LN-QSM), and
Regularized Total Field Inversion (TFIR).

Chapters 4, 5, and 6 are the methods, results, and discussion sections of this thesis. The methods
section describes the design of the QSM pipeline, the design of the numerical models, the
recollection of experimental data, and all the experiments performed with numerical simulations
and in vivo datasets. Results and discussion chapters present the work done to compare the
performance of conventional QSM and direct inversion methods in deep grey matter and the
cortical region of the brain. Also, a theoretical framework for the operation of direct inversion

methods is proposed.

Chapter 7 presents the conclusions for this project and the future work planned to create a novel

direct inversion method.



Chapter 2

Magnetic Resonance Imaging

2.1 Introduction

MRI is a non-invasive imaging modality with a wide range of applications. In addition to anatomic
imaging, MRI can be used for in vivo physiological studies and for mapping a plethora of chemical
and physical parameters. Moreover, when compared with other imaging modalities that use X-rays
for diagnostic purposes, like CT or traditional radiography, MRI offers comparable spatial
resolution, better soft-tissue contrast, and no known health risks for the patient under normal

operating conditions [11].

The name of this modality refers to the assortment of magnetic fields that are used to interact with
the spin of nuclei in the molecules of the imaged object. The purposes of these fields are to set a
net magnetization in the object, to excite the nucleus at frequencies that match the precessional
frequency of the spins, and to encode spatial information regarding the location of the nucleus.
The “nuclear” nature of this modality was omitted from the name to avoid the general public

associating MRI with the use of ionizing radiation [12].

The beginning of MRI as a discipline dates back to two key years, 1946 and 1973. In 1946, Nuclear
Magnetic Resonance (NMR) in condensed matter was discovered independently by Felix Bloch
[13] and Edward Purcell [14] (work for which they shared the Nobel Prize in physics in 1952). In
1973, Paul Lauterbur [15] showed that it was possible to encode spatial information using spatially
varying magnetic fields that change the Larmor frequency across the studied object. Afterward,
during the 1980s, MRI went from being a research topic only limited to academia, to a thriving

developing field in industry and medicine [11], [12].



2.2 Interactions of the main magnetic field with the nuclear spin

MRI is possible thanks to the interaction between nuclear spin and magnetic field, but not all nuclei
are useful in this context. Nuclei used for imaging must have a nonzero intrinsic angular
momentum. For the nuclei of atoms, the magnetic moment (p) and the total angular momentum (I,
also called nuclear spin) are related by p = yI, where v is the gyromagnetic ratio. The total angular
momentum arises from the intrinsic angular momentum (spin) and orbital angular momentum of
the protons and neutrons in the nucleus [16]. But, since the nucleons tend to group in a way in
which the angular momentum vanishes, this property can be described exclusively in terms of the
unpaired nucleons in the outer shell [12]. Thus, only the nuclei with an odd number of neutrons,
protons, or both (since in this case, the unpaired proton and neutron do not interact to create zero
momentum) will have a nuclear spin and magnetic moment different from zero. This dependence
of the angular momentum on the number of nucleons explains why elements like '°O or 12C cannot
be used in MRI [12]. However, the nuclear configuration of an element is not the only criterion
that needs to be considered for imaging purposes. The concentration of the element needs to be
high enough to generate a measurable signal. '"H (which can be described as a single proton of spin
1/2) is the main element used in MRI since it is the most abundant (non-zero spin) nucleus in the

body. Apart from 'H, »*Na and *'P have found some applicability in MRI [12].

When nuclear spins are placed in an external static magnetic field (denoted by By), magnetization
and precession take place. For spin 1/2 particles placed in a magnetic field, there are two possible
energy states in which the spin is parallel or anti-parallel to the By orientation. The parallel spin
state corresponds to the lowest energy level. Although the spins tend to occupy the lowest energy
state, the magnitude of thermal excitations is big enough to exceed the energy gap between the

two states. The ratio of spin populations is described by Boltzmann statistics as [11]:

D= _ o-AE/KT _ —yABo/KT )1

n,
Where n_ and n, are the number of spins in the anti-parallel and parallel states, respectively, AE
is the energy gap, k is the Boltzmann constant, and T is the temperature. This expression can be

used to calculate the small excess of n,, when compared to n_, which explains the macroscopic



magnetization of an object placed in the magnetic field. The equilibrium nuclear magnetization

M, can be calculated as [11]:

_ Ny2R2L,(1, + 1B,

22
0 3KT

Where N is the number of nuclear spins and [, is their spin (for protons, [, = 1/2).
On the other hand, precession can be explained using a classical approach. When a magnetic dipole
u is placed in a static magnetic field By, the equation of motion is described by the Bloch equation

[12]:

dp
dt YR 0

The solution to this equation represents a precessional movement of the magnetic dipole around

the field direction, with an angular frequency given by the Larmor relation [12]:
o =YB, 2.4

Where the angular velocity vector is @ = —wZ since it represents a left-handed rotation. The value
of y depends on the nucleus placed in the magnetic field. In the case of 'H, y=

267.522 x 106[rad - s™* - T~1] (or y/2m = 42.577[MHz - T~] [12]).

2.3 Radiofrequency field and linear gradient fields

In addition to the main magnetic field, other magnetic fields are used in MRI to generate an image.

These two fields are the radiofrequency (RF) field B and linear gradient field G.



Figure 2.1: lllustration of a By RF field circularly polarized and tuned to the Larmor frequency.
The RF field produces the precession of the magnetization towards the x-y plane. Figure

reproduced from [17] with permission.

Due to the application of the main field By, the spins are in equilibrium along the Z direction. To
measure an MR signal, it is required to move the spin out of the equilibrium position, for which
an oscillating magnetic field By with a frequency that matches the precession frequency of the
spins is applied. For the nuclei and magnitude of the main fields used in MRI, the frequency of B4
is within the RF spectrum. The field B4 is oriented in the x-y plane and it is circularly polarized.
The torque that B4 applies over the spins rotates the magnetization vector towards the x-y plane
as illustrated in Figure 2.1. The angle of rotation of the magnetization depends on the magnitude
of the field and the time of duration of the RF pulse. After shifting the magnetization from the
equilibrium position, the rotating component of the magnetization along the x-y plane induces,
according to Faraday’s law, an electromotive force into a receiver coil oriented to detect the

component of the magnetization along the x-y plane [11].

The other magnetic fields used in MRI correspond to linear gradients. These fields are used to
encode spatial information in the signal detected by the receiver coils or to allow the selective
excitation of only certain regions of interest of the element inside the scanner. Three different
gradients are applied to linearly change the magnitude of the main magnetic field in the three
orthogonal directions X, ¥, and Z (while the orientation of the field remains along the Z direction).
Thus, with the combination of the three gradients, the magnitude of the main magnetic field can
be altered such that it represents a spatial position. Consequently, the frequency of the spins also

changes with the position (as described by equation 2.4). By analyzing the frequency content of



the obtained signal, the magnetization can be mapped to a specific spatial position [11]. The change

in frequency due to the linear gradients can be expressed as:
w(r) =yBy+G-r) 2.5

Where G is the linear gradient vector field and r is the position vector. The magnitude of the

gradient field along each orthogonal orientation is usually less than 10 [mT/m] [11].

2.4 Relaxation times

Once the magnetization is moved out of the equilibrium position, it does not stay permanently in
this excited state. The analysis of the magnetization state of the system can be performed by
decomposing the magnetization into parallel or longitudinal (M, ) and transverse (Myy )
components (to the orientation of By). The return to the equilibrium position is called relaxation
and it takes place in both magnetization components. The dominant mechanism that mediates

relaxation in biological tissues is magnetic dipole-dipole interaction [11].

Longitudinal relaxation refers to the recovery of the longitudinal magnetization (M,) after the RF
excitation. This phenomenon is quantified by the relaxation time T;, which represents the time
required to recover about 63% of the maximum magnetization at thermal equilibrium (M,) along
the longitudinal direction (when assuming M, (t = 0) = 0). This process is mainly caused by the
exchange of energy between the nuclei and the surrounding medium. The exchange of energy is
caused by random fluctuations in the magnetic fields due to the motion of the surrounding
magnetic dipoles [11]. Since T; relaxation implies the system returning to thermal equilibrium, the
exchange of energy involves transitions of the spins to the n, population. These transitions involve
the transverse component of the magnetization becoming zero at the same time the longitudinal
component recovers [12]. The magnetic field fluctuations that produce these transitions need to
have an X — y component at a frequency close to the spins’ resonant frequency, which depends on
the main magnetic field. Thus, the value of T; depends on the magnitude of By. The value of T;

increases with increasing By because higher frequencies are linked to higher energy exchanges



required for relaxation [11]. The relaxation of the magnetization along the longitudinal orientation

can be expressed as [11]:

M,(O) = My + (M, (0) ~ M)e ™= 26
On the other hand, the transverse relaxation represents the decay of the transverse magnetization
(Myy) towards zero. It is quantified using the parameter T,, which represents when the transverse
magnetization has fallen to about 37% of its initial value. As mentioned previously, longitudinal
relaxation is accompanied by transverse relaxation. However, there are additional mechanisms that
cause T, relaxation, without altering the longitudinal component. Thus, T, < T; [12]. Transverse
relaxation, in addition to the field fluctuations in the x — y component, is caused by fluctuations
on the Z component due to neighbor dipoles interacting between each other. These fluctuations
dominate this relaxation process and manifest themselves as a dephasing of the transverse
components of the spin system. Consequently, the magnetization in this orientation becomes zero.
Since these field fluctuations do not depend on the main field strength, T, does not depend on B,

[11]. The relaxation of the magnetization along the longitudinal orientation can be expressed as

[11]:

t
M,y (t) = My, (e T2 27

Figure 2.2 illustrates T; and T, behaviors as a function of time. On the other hand, Table 2.1 shows

T; and T, values for representative tissues at By=3 T and 37 °C [18].
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Figure 2.2: Ty, T,, and T; relaxations illustrated in an MR signal over time. (a) T; relaxation
appears as a longitudinal magnetization recovery over time (it is assumed that it occurs after an
RF pulse not showed in the image). (b) T, relaxation takes place as a decay of the transverse
magnetization over time. (c) T, is also a decay of the transverse magnetization. The difference
between these two phenomena is that T, relaxation will naturally take place as observed in c). T,
decay is observed only when additional RF refocusing pulses are used. In the case of the image,
180° RF pulses are used to temporally cause a signal gain due to the rephase of the spins (spin
echo). The maximum gain after each refocusing pulse will not be the same in each case and it will

be affected by T, relaxation. Figure reproduced from [19] with permission.

Table 2.1: Approximate Ty and T, relaxation values of different human body tissues at By=3 T
and 37 °C. Values obtained from [18].

Tissue T; [ms] T, [ms]
Gray matter (GM) 1820+ 114 99 +7
White matter (WM) 1084 + 45 69+3
Skeletal muscle 1412 £13 50+4
Spinal cord 993 + 47 78 +2
Blood 1932 + 85 275+ 50

In reality, the decay of the transverse component is faster than the one predicted by T,. This

additional dephasing is caused by external field inhomogeneities. This effect is described by the
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parameter T,. The total transverse relaxation can be expressed through the value T as T} ' =

T, '+ Tz’_l. The effect of T, can be reversed by the design of the pulse sequence used during
imaging [12]. T, relaxation and an example of how the pulse sequence can make the signal decay

according to T, instead of T, are illustrated in Figure 2.2.

Relaxation can be included in the Bloch equation as:

dM 1 1, ~
EzyMXB—T—l(MZ—MO)z—T—;(MXX+Myy) 2.8

2.5 Signal detection

To produce a measurable signal, a combination of RF pulses is used to produce a non-zero value
for the magnetization in the x — y plane. A model for the complex-valued received signal (s.(t))
generated by a volume of precessing transverse magnetization can be stated as (neglecting gain

factors and constant phase factors) [11]:

t

t
sp(t) = fff My(r)e T2(e iwot exp —iny(t)-rd‘t dv 2.9

0
In the model presented in equation 2.9, the magnetization M, (r) depends on MR paramaters like
the proton density, while the three exponential terms account for relaxation, precession, and the
effect of gradient fields. From a practical perspective, the measured signal is demodulated and
collected using quadrature detection [11]. The physical signal (s, (t)) is demodulated by scaling it
by a reference (sinusoidal or cosinusoidal) signal. The frequency of this reference signal is {1 =
wo + Sw and it may include an offset Sw from the Larmor frequency [12]. Demodulation of the
signal is equivalent to analyzing the recorded signal from the perspective of the rotating frame of
reference [12]. After demodulation of the signal, it is collected as two outputs corresponding to
the real and imaginary components of the baseband signal. Quadrature detection is illustrated in
Figure 2.3. In the figure, the frequency offset was selected as zero. The low-pass filtering step is

required for eliminating high-frequency components that are produced after the introduction of the
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reference signal for demodulation [11]. After demodulation and filtering, real (in-phase) and

imaginary (quadrature) components for the signal are obtained.

cos(wnt)

In-phase

- - Real
| I (t} = {f) cog{q_ﬁ (t:]:l component

Quadrature

/G #) = —ar (1) sin( (1) component

Low-pass filter

sin(wnt)
Figure 2.3: Schematic representation of quadrature detection. Quadrature detection produces two
outputs, real (in-phase) and imaginary (quadrature) components, for the measured physical
signal. The outputs are obtained after demodulation (using sinusoidal/cosinusoidal reference

signals) and low-pass filtering. Figure adapted from [11].

The signal equation (equation 2.9) can be interpreted as a Fourier transform of the magnetization,

where the coordinates in Fourier space (or k-space) are given by [11]:

t

k() = % f G(D)dr 2.10

0

Identifying that the signal equation represents the Fourier transform of the magnetization sheds
some light on how MRI encodes spatial information. By sampling the signal at a specific time, it
is possible to collect information in k-space, which later can be subjected to an inverse Fourier
transform to reconstruct the image. Relation 2.10 shows that the gradient fields establish how the
information for the image reconstruction is collected in k-space. The pulse sequence determines

how the magnetization is excited and the information in k-space is collected.

2.6 Multi-echo gradient echo sequence (mGRE)

An MR pulse sequence is a particular combination of RF pulses and gradients with different
parameters and timing. Depending on the pulse sequence, it is possible to generate MR images
with different appearances or to measure different information [20]. In general, there are two
fundamental types of imaging pulse sequences: spin-echo and gradient-echo. Even though it was

not discussed thoroughly, a spin-echo sequence was shown in Figure 2.2 to illustrate T;, T,, and
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T, relaxation. Conversely, gradient echo sequences will be explored in detail since this sequence

is of great relevance in the following chapters.

Due to relaxation, it is impossible to excite the system with a single RF pulse and collect
information for an infinite amount of time since the measurable signal decays exponentially.
Although, depending on the selected pulse sequence, it is possible to introduce a combination of
excitations and linear gradients (appropriately timed) to collect enough information in k-space to
overcome this limitation and create images (or maps in the case of quantitative MRI) with different
contrasts and spatial resolutions depending on the desired application for the MR image (map).

One specific sequence relevant for this work is called 3D multi-echo gradient echo (mGRE)

sequence.
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Figure 2.4: Spoiled GRE sequence. The diagram at the left shows how a gradient echo is formed
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once the area of the lobes of the gradients in Gpg is equal to zero. The diagram at the right shows
the entire pulse sequence, including the possibility to add variable gradient spoiling to eliminate

the remaining transverse magnetization. Figure reproduced from [21] with permission.

Before diving into 3D mGRE sequences, it is necessary to first explore 2D GRE sequences. In
Figure 2.4, a typical 2D gradient echo sequence is illustrated. First, the volume of interest is divided
into slices through a process called selective excitation. In this case, a linear gradient is set in a

particular direction causing the Larmor frequency to be modulated across this direction. Thus, an
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RF pulse will be capable of exciting only a portion (perpendicular to the orientation of the gradient)
of the volume. The magnitude of the gradient and the position of the slice along the axis set the
central frequency required to excite a slice of infinitesimal width. The shape of the RF pulse
determines the profile and width of the slice generated in the volume of interest. For this work,
the slice selection gradient will be considered as G, and is illustrated in Figure 2.4 in the SS (slice
selection) axis. The first (positive) lobe corresponds to the gradient used to select the slice, while
the second (negative) lobe is used to refocus the spins across the selected slice. Since the slice has
a finite thickness, there would be some linear dephasing proportional to z that can be reversed with
the negative lobe in the slice selection orientation [11]. The additional gradient in SS (spoiler) will

be discussed later.

Once the slice is selected, the data acquisition in k-space turns into a 2D problem. To collect
information, different patterns can be used to sample k-space but in this case, only a 2D grid will
be considered. The position in Ky and Ky is given by equation 2.10. Thus, the position is defined
by two gradients Gy and Gy, which are also called frequency/readout (Ggg) and phase encode (Gpg)
gradients, respectively. These two gradients are illustrated in Figure 2.4. The difference between
the two gradients is that the phase encode gradient is used exclusively to alter the position in k-
space for acquiring data, meaning changing the row in the 2D grid in which information will be
acquired. On the other hand, the frequency encode gradient is used to sample k-space while the

data acquisition is turned on [11].

The use of linear gradients (according to equation 2.9) adds extra dephasing that causes a faster
signal decay than the decay predicted by T, relaxation. However, this dephasing can be reverted.
Since the added phase in the frequency encode direction depends on the integral in equation 2.10,
for G4 the value of the integral can be made zero by considering a negative lobe followed by a
positive lobe as illustrated in Figure 2.4, such that the area under the negative and positive gradients
is zero (in other words when the readout direction coincides with the point ky = 0). The lost phase
due to the negative gradient is recovered as soon as the positive gradient is applied, reaching a
maximum possible recovery once the areas counteract each other. This increase in signal amplitude
is called a gradient echo. The instant in time in which the echo occurs is denominated as TE.

However, regardless of the signal amplitude increased, the magnitude at time TE decays
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exponentially (with time) according to T, relaxation. The effect of relaxation cannot be avoided
and in contrast to other sequences, like a spin echo sequence, no 180° is used to cause T,

relaxation instead of T, [11].

The scan time in a 2D GRE sequence is given by [22]:
Scan time (2D GRE) = TR X Ny, X NEX X number of slices 2.11
Where TR is the repetition time (meaning the time between the RF pulses at the beginning of each

GRE sequence), Ny, is the number of phase encode steps, and NEX is the number of excitations

(the number of times that a given line in k-space is repeatedly taken to improve SNR).

A notable property of the GRE sequence is that its relatively short scan time enables 3D GRE
volume imaging in a reasonable amount of time. Under these circumstances, a volume is selected
instead of a slice and within this volume, the acquisition is done with an extra (secondary) phase
encode gradient in the orientation of the G, gradient. This extra gradient allows the sampling of k-
space equivalently to the phase encode gradient. 3D GRE sequences result in advantages like
thinner “slices” (often referred to as “partitions”) when compared to regular slice selection and
increased SNR (since SNR « \/N—Z , where N, is the number of phase encode steps in the G,
gradient direction). The disadvantage is longer scan times depending on the number of extra phase
encode steps N, added, although scan times can be kept reasonably low by considering short TR
and small flip angles [22]:
Scan time (3D GRE) = TR X Ny X N, X NEX 2.12

The parameters that affect the contrast in a 3D GRE sequence are the flip angle, TR, TE, and
spoiling. The general effect of flip angle, TR, and TE in the contrast in a 3D GRE sequence is
presented in Table 2.2. The combination of these parameters also changes the amount of residual
transverse magnetization remaining before the RF excitation. This residual magnetization appears
when the TR is too short for a given flip angle, such that there is not enough time to allow for
complete T, relaxation. The amount of residual transverse magnetization before the RF pulse
changes from cycle to cycle, but after the first few cycles, this value reaches a steady state. The
steady-state component of the transverse magnetization affects the contrast such that its growth
also increases the amount of T, weighting [22]. Nevertheless, keeping or removing this residual

transverse magnetization requires extra considerations. To keep the residual transversal
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magnetization a combination of alternating RF pulses, spoiling gradients in the SS and readout
directions, and rewinder gradients along the phase-encoding are required as implemented in
GRASS/FISP/FFE sequences. On the other hand, eliminating the transverse magnetization
requires spoiling using RF and variable gradient spoiling as done in SPGR/FLASH/T1-FFE

sequence (the addition of variable gradient spoiling is illustrated in Figure 2.4).

Table 2.2: Contrast in a 3D GRE (non-balanced) sequence as function of flip angle, TE, and TR.
An estimation for “small”, “large”, “short”, and “long” flip angle, TE, and TR values are
included in the table. The combinations of the parameters not presented in the table mostly
corresponds to mixed contrast cases. The information presented in the table was collected from

[22]. PDw =proton density-weighted, TIw = T;-weighted, T2*w = T>"-weighted

Parameter Enhanced PDw Enhanced T1w Enhanced T2*w
Flip angle Small (5° to 30°) Large (60° to 90°) Small (5° to 30°)
TE Short (2-5 ms) Short (2-5 ms) Long (10-100 ms)
TR Short/Long Long (~100 ms) Short (TR < 3T5)

The GRE sequence presented in Figure 2.4 can be modified with additional frequency encode
gradients to include not only one echo but multiple echoes for a single RF excitation, as illustrated
in Figure 2.5. In order to fit more than a single echo acquisition inside an excitation in a GRE
sequence, the readout can be performed either in a single k-space direction or in both. In the first
case, an opposite signed gradient must be applied after each acquisition while the signal is not
sampled to enable the acquisition from the same orientation in k-space as the previous one. This
type of readout with a gradient to reposition the signal sampling is called unipolar readout,
monopolar readout, or flyback readout. In Figure 2.5, the use of a unipolar readout corresponds to
only collecting the blue signal. On the other hand, instead of using a gradient just to change the
position in k-space without sampling the signal, it is possible to acquire information in both
orientations, during the positive and negative lobes of the gradient used to move the acquisition
through k-space in the readout orientation. This type of acquisition is called bipolar readout. In
Figure 2.5, the use of a bipolar readout corresponds to collecting the blue and purple signals.
Generally, in the case of a flyback readout the unused readout pulse lobes (purple lobes) are re-

designed to be as short in duration as possible when used as flyback gradient pulses.
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Figure 2.5: Multi-echo gradient echo sequence (mGRE). Compared to the sequence in Figure 2.4,

more than one echo can be collected by introducing additional frequency encode gradients. Figure
adapted from [21].

Each echo will occur at different times TE;, TE,, TE3, etc. The measurements at the different
echoes will have different T, -weighting. Additionally, a 3D extension to this sequence is also
possible in a similar fashion as discussed for a GRE sequence. The addition of a “phase encode”
gradients in the G, direction would produce a 3D mGRE sequence. This sequence will be the focus

when discussing the acquisition of MR complex data for QSM.
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Chapter 3

Quantitative susceptibility mapping

3.1 Introduction

QSM is an MRI technique that estimates the susceptibility distribution of the underlying tissue [2].
Its development started in the mid-1990s. QSM emerged as further advancement of susceptibility
weighted imaging (SWI). In SWI, phase information is (generally) obtained using a spoiled
gradient echo (GRE) sequence, with long echo times, short flip angles, and high field strengths.
This results in altered T, contrast that depends on the change of susceptibility throughout tissue.
SWI highlights regions of short T,. Thus, small changes in susceptibility are manifested as signal
intensity loss, while steep changes (that lead to short relaxation values) are represented as signal
hyperintensity [23]. In comparison with SWI, which creates magnetic susceptibility weighted
images and depicts its perturbing effect in the main magnetic field; QSM creates quantitative maps

of the susceptibility.

In QSM, phase (and in some cases magnitude) information is combined with post-processing
techniques for the estimation of the susceptibility distribution. In biological tissue, the theoretical
determination of the susceptibility distribution is an extremely complex task due to a myriad of
factors like the variety of molecules and ions forming the tissue, the cellular arrangement of each
tissue, and the complex cellular environment surrounding each tissue. QSM measures the relative
susceptibility variation of the tissue inside a voxel, meaning that the measured values are not
absolute susceptibilities. Generally, CSF is selected as the zero reference [5]. The susceptibility
variation across tissue is what drives the contrast in susceptibility maps. The structures that cause
the biggest contrast are those with strong susceptibilities. Therefore, the source of contrast changes
depending on the tissue. In WM, lipids correspond to the main source of contrast due to the

myelination of axons. In deep brain tissue, such as putamen, globus pallidus, thalamus, and caudate
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nuclei, the contrast is driven by iron-rich molecules which are highly paramagnetic [5]. There are
other structures outside the central nervous system that possess a strong susceptibility including
them the kidneys, heart, and liver. In each case, different structures are the main source of
susceptibility: the membranes of the nephrons in the kidneys, the a-helixes of myofilaments in the
myocardium, and iron concentration in the liver [5]. Although, QSM has found extensive
application for imaging the brain, its use in other regions of the body is an active field of research

[24]-[26].
3.2 Theoretical development

3.2.1 Basic physical definitions and the estimation of the magnetic susceptibility from the

phase of complex MRI data

When a material is placed in an external magnetic field, it may become magnetized. From a
macroscopic point of view, the material can be pictured as an assembly of tiny magnetic dipoles.
When these dipoles interact with a magnetic field, they align parallel (paramagnetism) or
antiparallel (diamagnetism) to the magnetic field. When the material is removed from the magnetic
field, the alignment of the dipoles is lost, except in ferromagnetic material [27]. The magnetization
M is a vector field that represents the magnetic moment per unit of volume and it relates the fields

B and H [27], [28] inside a material (there is no magnetization in vacuum):

B =y, (H+ M) 3.1

In the special case of linear media, M = xH (or equivalently B = p, G+ 1)M ), the

magnetization and the magnetic field are proportional, where the constant of proportionality is the
magnetic susceptibility. The magnetic susceptibility is a macroscopic physical parameter that
describes the response of a material to an applied magnetic field, meaning the magnetic moment
induced by the magnetic field H. The sign of the susceptibility indicates if the material is
diamagnetic or paramagnetic. For y < 0 the material is diamagnetic, while for x > 0 the material
is paramagnetic [28]. The behavior of paramagnetic and diamagnetic materials depending on the

applied field is illustrated in Figure 3.1.
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application of a magnetic field H. Figure reproduced from [29] with permission.

Regardless of the apparent simplicity of relation 3.1, defining magnetic fields in magnetizable
media requires extreme caution. When a magnetizable material is placed inside a magnetic field,
that will be noted as Bey;, the magnetic field that is established inside the material can be
considerably different from the external field. The reason for this difference is that the external
magnetic field induces a magnetization inside the material. This magnetization produces its own
magnetic field named demagnetization field Bgemag(T), which physically arises from the
magnetization at the surface of the material or any region in which V- M # 0 [30], [31]. Thus, the
magnetic field inside the material would be the sum of the external field and the demagnetization

field [28]
B(r) = Bex(r) + Bdemag(r) 3.2

The demagnetizing corrections can be neglected only if the magnetization of the material is
considerably low when compared with the external magnetic field H [28]. However, in the case of
MRI, the demagnetization field can be used to quantify susceptibility-induced perturbations and

consequently, the susceptibility distribution producing these perturbations (as done in QSM) [5].
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Figure 3.2: Illustration of the Lorentz sphere approach to determine the demagnetization magnetic
field in a point of observation. The image illustrates how the volume is divided into two regions by
a virtual surface defined as the Lorentz sphere. The volume outside the sphere generates the distant
magnetic field, while the volume inside generates the near field. The demagnetization field at the
point of observation is the sum of the distant and near fields. Figure reproduced from [2] with

permission.

To calculate the value of Bgemag, it is possible to use the Lorentz sphere formalism. This formalism
is illustrated in Figure 3.2. The main idea behind this approach is to divide the field into two
different contributions that originate in the “distant” region V4 and “near” region V,, such that
Bgemag(T) = Buistant (1) + Bpear(r). In Vg, the dipoles are treated as a continuous magnetic
moment density. In V,, the dipoles are considered discrete elements. The surface (called Lorentz
surface) separating these two regions is arbitrary in shape and size. However, the estimation is
more accurate for a large V,,, although the term linked to this region becomes more complex to
solve. On the other hand, the Lorentz surface cannot be too small since the magnetic field in the
distant region must be modeled as a continuous medium (which would not be possible if V,, is
small). The minimum size of the Lorentz field should be equivalent to the distance between
adjacent dipoles [2]. How to calculate these terms is outside the scope of this thesis (a full
derivation of the terms Bgjstant (T) and Bpea (1) is presented in [2]). But what is relevant in this
case is that the knowledge of these terms enables the calculation of the demagnetization field in
terms of the susceptibility distribution (producing the field perturbations corresponding to the

demagnetization field) and external applied field By = ByZ:
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Bdemag(r) = Bext(Xapp * bx) (r) 33

The term X,pp, (1) is the susceptibility value evaluated at the point r and the symbol * denotes the

convolution. The “app” subscript stands for “apparent” and it was selected to illustrate the fact that

the expression considers the effective susceptibility along the direction of the main external field.

—_

More generally, Xapp = ZT - X - Z where X is the susceptibility tensor. The term b, (r) corresponds
to the dipole kernel, which is the magnitude of the dipolar field (without including the constant )

when the magnetization and field are oriented parallel to Z:

3¢(2- ) — 2

—Z r+0
by (r) = 4||r|3

34

The demagnetization field (in terms of the susceptibility distribution inducing this field) can be
used to derive the backbone equation of QSM. By replacing equation 3.3 in 3.2 and taking the

Fourier transform of the resulting expression the following equation can be obtained:

FT {B(%O_BO} = FT{Xapp (1) JOFT{b, (1)} 3.5
The expression inside the Fourier transform on the left-hand side of the previous expression is
called Relative Difference Field (RDF) in QSM literature [2]. However, in this work, the term
Local Field Shift (LFS) was preferred over RDF to make a clear distinction between the relative
field before and after background field removal (which will be discussed later in this chapter). The
symbol © is the Hadamard product. Lastly, labeling the Fourier transform of the dipole kernel as

b, (k) = FT{bX(r)}, the kernel expressed in Fourier space is ([1], eq. 5):

Lk ok 0
b(k)={3 "}’ [OrX# 3.6
0, fork=0

The definition of this function at k = 0 requires some discussion. As reported by Marques and
Bowtell ([32], [33]), this value corresponds to the average field offset of the magnetic field and it

can be used to adjust the magnetic field to fulfill specific boundary conditions. Setting the value
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of 3.6 as 0 in k = 0 is equivalent to include the Lorentz sphere correction (equivalent to a phase
offset of — % HoM) in equation 3.3 within the volume corresponding to the Lorentz sphere. This

assumption is also equivalent to setting the value over the sphere as zero.

The idea behind QSM is to use equation 3.5 to estimate the value of x,p,, (1) by measuring data

that can be used to infer the susceptibility-induced magnetic field perturbations, which corresponds
to the numerator on the left-hand side of equation 3.5. This information is contained in the phase
of the complex signal obtained using a 3D multi-echo gradient echo (mGRE) sequence. The phase
image can be obtained by taking the arctangent of the ratio the imaginary and real parts of the

complex data, Sj,, and Sge, as in © = tan™1(Sy,/Sre)-

In a 3D mGRE sequence, the FID decays with T, relaxation and the signal is affected by
susceptibility effects [22]. The magnetic field inside the object placed in the scanner changes in
relation to the main field value B, consequently the frequency w, = yYB, also presents shifts
across the object. These shifts (in the magnetic field or frequency) are caused due to intrinsic
inhomogeneities in the main field, chemical shifts, and susceptibility-induced effects. In many
scenarios, from these three sources of field (frequency) inducing inhomogeneities in the main field,
only susceptibility effects are of relevance. In modern scanners, the use of passive shimming
allows for inhomogeneities intrinsic to the particular scanner to be of the order of 1-2 ppm, while
active shimming reduces these inhomogeneities even further [33]. Chemical shift effects can be
neglected in some regions like brain tissue [2]. Consequently, the only effects remaining in the
brain are the ones caused by the bulk susceptibility distribution [33]. Retaining the effects of
susceptibility-induced fields in the signal can be undesirable in some circumstances since it can
lead to various artifacts (especially close to air/tissue interfaces) and fast signal decay due to
transverse dephasing. However, this information can be exploited to quantify the susceptibility

distribution of the underlying tissue in QSM.

Variations in magnetic susceptibility cause long-ranging field distortions that affect the GRE
complex data to produce signal voids and/or geometrical image distortions [34]. Geometric
distortions are a factor that should be accounted for since distortion-free images are desirable when

studying the anatomy in QSM images. However, it has been reported that at 3 T, no noticeable
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geometric distortions have been observed in QSM brain images in deep brain nuclei, peripheral
cortex, and ventricular system [35]. In fact, susceptibility maps can be used to predict and/or
remove air/tissue and bone/tissue interface effects in the complex GRE data [1]. In this thesis, all
the data was acquired at 3 T, and consequently it will be assumed that geometric distortions are
not a factor that will affect the depiction of the anatomy in the brain. This assumption would not
hold for higher field strengths or when considering different acquisitions modes such as echo-

planar imaging (EPI) [36].

In principle, the phase evolves linearly with time. That said, there are second-order effects that
introduce non-linearities in the phase evolution. It is still an open question how these effects can
be accounted for in the QSM problem and how they affect the estimation of the susceptibility in

the resulting map [2], [37]. The linear phase accumulation can be modeled as [1]:
O(r, TE;) = ¢o(r) + ¢(r, TE;) = ¢ (r) + yAB,(r)TE; 3.7

This expression contains two terms, one that is time-independent corresponding to ¢, (r) and a
second term ¢ (r, TE;) = yAB,(r)TE; that depends on the echo time TE and AB,(r) = B(r) — B,
(which represents the field perturbations). The term ¢, is called the transceiver phase offset [2]
and it depends on factors like the phase distribution after RF excitation and receiver coil sensitivity
[37], [38]. This factor needs to be removed before using the phase of the complex signal to
determine the field perturbations. The phase data that includes the phase offset is denoted in this
work by O(r, TE;).

In the case of a single RF coil, equation 3.7 represents the accrued phase measured by it. In the
case of using a phased array, each coil element will collect phase information described by
equation 3.7. Then, the information from each coil must be combined to generate a composite
signal. Generally, during the unification of the phase from different coils, the phase offset of each
coil is eliminated (phase matching), which is not a trivial task since the way in which this parameter
is handled will affect the final susceptibility map. Different methods for phase matching and
combining the phase information of the coils in the assembly are described in [37]. However, even
after phase matching, the composite signal often contains a phase offset due to time-independent

contributions that cannot be removed through phase matching. One particular example is the use
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of parallel imaging in the form of SENSE since this technique keeps transmit phase contributions

[2].

After removal of the transceiver offset, equation 3.7 can be replaced into equation 3.5 to obtain

the following expression:

1
FT {ﬁ ¢(r)} = BoFT{Xapp (D JOFT{b, (1} 3.8

(b)

- - om
Figure 3.3: Representation of the unit dipole response function in image and Fourier space. b)
and d) are surface plots of the unit dipole in image space and Fourier space, respectively. a) and
d) correspond to sagittal slices of b) and d). The red arrows in c) indicate the “problematic”
conic region in Fourier space where the function is zero and close to zero. Figure reproduced

from [2] with permission.

In principle, equation 3.8 is easy to solve for X,p, (). It is simply required to divide each element
at both sides of the equality by the corresponding element of BOFT{bX(r)} and subsequently

perform an inverse FFT. Sadly, the problem is far more complex. Looking at the unit dipole
response function in k-space (illustrated in Figure 3.3), the function is zero in a well-defined region.
Equation 3.6 can be alternatively stated as [2]:

1

- 2
b, (k) = {3 cos“f, fork #0 3.9
0, fork=0

Where f3 is the angle between the vectors k and k,. Then, it is easy to see that dividing an element

by the value of the function b, (K) is not possible when cos?(B) = %, which happens for 8 =
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54.74°. The set of points corresponding to zero in the k-space forms a conical surface. It is
impossible to estimate the information corresponding to FT{)(app (r)} at the points coinciding with
the conical surface from the information of the accumulated phase alone. Moreover, for the points
close to the conical surface, the value of the dipole response is extremely small, making the point-
wise product in equation 3.8 small compared with the noise in the measured data [2]. Due to these

constraints, the inverse problem linked to equation 3.8 becomes ill-posed.

Alternatives to solve the ill-posed inverse problem will be explored in the following subsections
when addressing either dipole inversion process or direct field inversion methods. However, even
reaching the point in which is it necessary to solve the inverse problem first requires to overcome
other obstacles. Therefore, an entire pipeline to process the information from the complex signal

is required.
3.2.2 Data acquisition and phase processing

The most widely used pulse sequence to obtain MR complex data for QSM is 3D mGRE sequence.
As described in the previous subsection, the signal obtained from this sequence contains
information on the magnetic susceptibility-induced effects. The phase information at multiple echo
times can be used to determine the phase offset ¢ (r) and magnetic field shift AB,(r) in equation
3.7. Other acquisition techniques can be used instead of GRE. This work is exclusively based on
3D mGRE data acquisition, but there is research for QSM involving other acquisition techniques
like balanced Steady-State Free Precession (bSSFP) [37], Magnetization-Prepared two Rapid
Acquisition Gradient Echoes MP2RAGE [39], multi-echo, and multi-flip angle data collected
using Strategically Acquired Gradient Echo (STAGE) [40].

From this point, it will be assumed that the information from multiple coil elements has been
combined and multiple echoes were acquired at different echo times. To combine the data from all
the echoes, it is required to first eliminate the remaining phase offset ¢, (r). However, analyzing
the phase and removing the phase offset first requires further consideration about whether the
readout gradients were unipolar or bipolar. Each readout type has its advantages and disadvantages,

and the selection will affect how phase offset corrections and echo combination are performed.
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Unipolar gradients provide consistency to the measured phase at different echo times since the use
of bipolar gradients introduces discrepancy between odd and even (or positive and negative
gradient lobes) echoes due to non-ideal effects like waveform delays and eddy currents caused by
the rapid sign switching of the gradients. In contrast, bipolar readout allows for better acquisition
efficiency and reduced echo spacing. Since QSM relies on small field perturbations to estimate the
susceptibility distribution, unipolar readouts are better for achieving higher accuracy. Although, if
better acquisition efficiency is required, bipolar readouts can be used in QSM after considering
corrections to mitigate non-ideal behaviors. Gradient waveform polarity and its effect in QSM
have been studied in detail in [41]. For this research project, unipolar readout gradients were used

to collect data, thus every technique discussed will be centered around this case.

For a unipolar acquisition, one way to calculate the phase offset for all echoes consists in using the
phase measured during the first two echoes. Denoting the phase unwrapping operation as U[ |,
the unwrapped phase with symbols ¢, and ©,, and the wrapped phase with ¢,, and ©,, the

unwrapped phase for the first echo can be determined as:

U [A[exp(i(i)w(l‘, TE,))exp(—0y(r, TEl))]]

= TE 3.10
This phase can then be used to estimate the correction factor:
exp(ido) = exp(i0,,(r, TE;)) exp(—id, (r, TE,)) 3.11

The correction factor can be used through complex division to eliminate the phase offset from each
measurement. The advantage of this approach is that it enables an optimal SNR in the phase images
since it includes smoothing of the ¢ correction before it is applied [37]. Moreover, imposing
smoothness in ¢ is consistent with the assumption that this distribution is dominated by the phase
of the B; transmit and receive fields [3]. The drawback is that the method is relatively
computationally demanding (compared with other methods) since it requires unwrapping of the

phase difference in equation 3.10. Another advantage of this method is that it can be easily adapted
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to bipolar readouts, in which case a correction for odd and even echoes can be created using the

first two odd and first two even echoes separately [42].

Once the phase offset has been removed using complex division, it is necessary to unwrap the
phase data ¢ (r, TE;) at each echo time. Unwrapping was already introduced in equation 3.10 but
it has not been explained yet. When measuring phase as part of a complex signal, the values of the
phase can be retrieved only in an interval of 2. In this case, the interval will be defined as (—Tt, 1],
but in reality, any interval of the form (¢, &, + 2] for a lower limit ¢y, can be used. Choosing
a particular value for ¢y, can be convenient to avoid phase wrapping as discussed in [37]. Any
value of phase measured outside the range (—, 7] would be “wrapped” inside the range by the
addition or subtraction of a multiple integer of 2. These wraps are discontinuities following phase
isocontours that manifest themselves as 2D closed isolines or 3D closed isosurfaces [37]. The
problem in principle can be solved simply by adding or subtracting the opposite phase shift that
caused the wrapping, but this is an ill-posed problem since there is an infinite number of solutions
but only a single correct physical solution [43]. To solve this problem, additional assumptions are
generally required. Most often, spatial and temporal smoothness of the unwrapped phase is
assumed [1]. Moreover, the phase unwrapping problem becomes even more challenging due to
unreliable phase values produced by noise and phase aliasing that produce abnormal fringe lines
[44]. One example of these abnormalities is open-ended fringe lines, meaning non-closed
isocontours that are interrupted by residues (a 2-by-2 voxel loop) that cannot be unwrapped by

adding a multiple of 2m [37].

The most basic algorithm to unwrap phase in a 1D case is Itoh’s method, but this method can be
severely affected by sampling and noise [45]. Additionally, it cannot be efficiently generalized to
higher dimensions. For phase unwrapping in the context of MRI, there are different types of
algorithms to handle this problem. In this work, three of the main categories will be considered:
Laplacian unwrapping, path-following methods, and temporal unwrapping. Other categories
include region-growing unwrapping like PRELUDE [46] and its successor SEGUE [47]), and
graph-cut unwrapping like SPURS [48]. The theory presented below about phase unwrapping
technique is mostly (except where it is explicitly cited) supported by [37].
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Laplacian unwrapping exploits the fact that even though the phase is limited to the interval (—, 1]
and it is discontinuous due to phase wraps, the exponential function is continuous in the complex

plane and el®w(® = ei®u() [43] Then, the unwrapped phase can be determined as [43]:
V2, = Im(e 1®w « V2ei®w) = cos(dy,) V2 sin(d,) — sin(dy) V2 cos(dy,)  3.12

This relation corresponds to a discrete Poisson equation, which can be solved to find the
unwrapped phase. The solution can only be obtained up to harmonic terms (terms whose Laplacian
vanishes). These terms cannot be accurately retrieved unless boundary conditions for the problem
are considered. In the case of QSM, getting the solution without the contribution of these terms
can actually be desirable since these phase contributions would correspond to harmonic fields and
consequently backgrounds fields that would be eliminated by some of the background field
removal algorithms. Background fields, and the methods to remove them, will be explained in
subsection 3.2.3 On the other hand, the inclusion of a second-order operator suppresses large phase

changes in the unwrapped phase modifying large field shifts [4], [49], [50].

There are several ways to solve equation 3.12 and a detailed study of each possible solution is
outside the scope of this thesis, but a brief overview of how these methods work will be provided
here. The basic idea consists in solving the right-hand term in equation 3.12 using the collected
experimental information, which will be equivalent to find the (discrete) Laplacian of the
unwrapped phase. Then, the unwrapped phase can be obtained through a deconvolution with the
Laplacian kernel. Then, this approach requires a definition of the forward and inverse discrete
Laplacian kernels (meaning the kernel used for the deconvolution) to be used. The most common
discrete operators used to build Laplacian kernels correspond to the finite difference operator, fast
Fourier transform (FFT), and the discrete cosine transform (DCT). A deeper overview of many
variations to implement these operators and some of their characteristics in the context of QSM
are provided in [1], [37]. However, it is important to highlight that when defining the forward and
inverse Laplacian kernels, it is better to use the same discrete operators for both kernels [43]. Also,

the boundary conditions are often implicitly or explicitly defined when setting the kernels [37].

Path-following methods unwrap the phase of adjacent voxels by comparing their phase and

determining whether their phase difference is greater than . Generally, the phase comparison is
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performed along regions that are guided based on the reliability/quality of the phase, for example
labeling noisy voxels as less reliable. One of the key elements of these methods is the unwrapping
of phase starting from the most reliable phase value towards the least reliable phase. This type of
method has been widely adopted in QSM. Some examples of these methods are Quality Guided
unwrapping (QG) [49], best path unwrapping [51], and ROMEO [51].

The last category of methods considered for this work corresponds to temporal unwrapping. This
type of unwrapping resolves wraps caused due to temporal effects, throughout the phase evolution
with time. In principle, these techniques can only be applied on phase images at more than one
echo time and they only offer voxel-wise unwrapping across time (generally relying on the
assumed linear phase evolution and short echo spacing), but they are incapable of resolving phase
wraps between neighbor voxels at a fixed time, requiring additional spatial unwrapping or uneven
echo spacing [2], [37]. One recent temporal unwrapping method knowns as UMPIRE [52] has

overcome some of the limitations of these methods, but it still requires non-uniform echo spacing.

When comparing the three types of algorithms, Laplacian unwrapping corresponds to a relatively
easy method to implement and it has the advantage to be robust to noise and phase errors like open
fringe lines. But, the downside is that the unwrapped phase retrieved using these methods is
generally not quantitatively accurate [4], [49], [50], although a better approximation for the
unwrapped phase can be achieved by employing heuristics or adding other sophisticated
algorithms to the unwrapping. On the other hand, spatial unwrapping using path-following
techniques generally offers greater accuracy than other methods, but they are computationally
more demanding and more prone to errors due to noise when compared to Laplacian methods.
Additionally, path-following algorithms tend to introduce post hoc 2m temporal wraps in all the
voxels at an echo time. As a result, these methods also need temporal unwrapping or methods
specifically design to correct these wraps like THUMPR [50] or the use of phase difference images
[2]. Temporal unwrapping is better at unwrapping complex topographies, but it is more vulnerable
to noise and generally considerably dependent on the assumption of linear phase evolution with

time.
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Finally, after all the echoes have been unwrapped, the data can be used to create a frequency shift
map, meaning a quantitative map of yAB,(r). Equation 3.7 reflects the linear relation connecting
the phase at each echo time and the frequency shift, which in this case would correspond to the
slope of the equation. To find the slope of the equation given the heteroskedasticity in the problem
(meaning the variability of the phase noise or standard deviation with echo time), a weighted least

square fit is optimal [53]. The weights commonly used for the fit are the inverse of the variance
1 / 52 of the phase measured at each echo, which for each echo corresponds to the squared SNR of

the magnitude image [54]. Thus, the weights used in the solution for the slope can be the inverse
square of the magnitude image. Other authors have used different weights like the magnitude

image (not squared) [7] or the factor proposed by Wu et al. [55].

Since the weighted least square fit can estimate the slope and intercept of equation 3.7, the phase
offset correction can also be calculated during this step. This is an alternative approach to the use

of phase difference maps and complex division to eliminate the phase offset (equations 3.10 and

3.11).

3.2.3 Background removal

After obtaining the unwrapped phase for each echo and combining all echoes into a single map
containing information about the magnetic field shift, it is time to find the magnetic susceptibility
distribution that produces these magnetic field perturbations. However, there is a caveat. The
magnetic field information is not limited to the field produced by sources exclusively inside the
volume-of-interest. Due to the non-local (long-range) nature of magnetic field interactions,
demagnetization fields originated outside the volume-of-interest or scanner-related field
inhomogeneities seep into the volume-of-interest. These contributions are defined as background
magnetic fields and they need to be removed to determine the local field (magnetic field due to
sources exclusively inside the volume-of-interest). For this work, the magnetic susceptibility
distribution generating the local field will be denoted as xj. The distribution producing the
background field will be xg. Additionally, in this thesis, the quantitative maps containing
information about the total field (local field + background field) and local field will be denoted as
“Total Field Shift” (TFS) and “Local Field Shift” (LFS), respectively. This notation was chosen
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to make a clear distinction between the magnetic fields before and after the background removal

step.

Most of the background removal algorithms rely on physically and/or mathematically motivated
properties of the background field that enable the separation of background fields from local
contributions. The principles behind three different algorithms will be presented: Projection onto
Dipole Fields (PDF) [56], Sophisticated Harmonic Artifact Reduction for Phase (SHARP) [57],
and Laplacian Boundary Value (LBV).

PDF separates magnetic field contributions based on the projection theorem in Hilbert space.

According to this theorem, the background susceptibility distribution can be obtained as:
* . 2
Xp = argmin, ||W(8B — b, * XB)”z 3.13

where w is a weight derived from the magnitude images and 6B =A B, /B, is the measured data.

Then, it is possible to estimate the “true” local field as Bj, = 6B — b, * xg, where By is an element

of the space spanned by all the background unit dipole fields (B). B is a space orthogonal to the
space spanned by all the local unit dipole fields (L). Thus, PDF relies on B L L and it basically

projects the experimental data into the space B [2].

SHARP separates the magnetic fields by imposing the background fields as harmonic fields. A
function f is harmonic when it satisfies the Laplace equation, meaning V2f = 0. It also implies that
the spherical mean value (SMV) of these functions is the same as the value of the function at the
center of the sphere. Denoting the SMV of a function f as (f)g = S * f (where S is a kernel
representing a normalized solid sphere) and the value of the function at the center of the sphere as
fy, then, (f)s = f,,. It is possible to use this idea to create an expression only dependent on the non-
harmonic contributions of the fields. By subtracting the SMV of the measured field shift from the
field shift itself, it is possible to calculate the map &B':

SBIZSB—S*SBZSBnh—S*SBnh 3.14
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where 6By, is the non-harmonic contributions in 6B. Then, the local field perturbations can be

calculated using the kernel (8 — S) for & the Dirac delta function:
8By, = (6 —S) 1 8B’ 3.15

SHARP has some limitations that have been addressed by variations of this algorithm. The
spherical kernel S cannot be used at the boundary of the ROI because the sphere cannot cover
regions outside the ROI, leading to the necessity of edge erosion and artifacts at the boundary [58].
To mitigate this effect, V-SHARP uses varying radius kernels, decreasing the radius for regions
close to the boundary [59]. Other variations of SHARP use different strategies to improve the
calculated LFS. For example, RESHARP adds Tikhonov regularization to enhance small norm
features in the calculated local field [60], while E-SHARP extrapolates the calculated field to
estimate the values omitted in SHARP close to the boundary [58].

LBV removes the background field by explicitly solving the Laplacian boundary value problem.
To define the boundary conditions, the value of the local field at the boundary is assumed to be
zero, while the value of the background field is the same as the value of the total field [61]. This
approximation is feasible because the background field is generally one or two orders of magnitude

greater than the local field [2].

Other algorithms for background removal are discussed and compared in [58]. From the algorithms
presented in that paper, one notable algorithm is HARPERELLA, since it performs unwrapping

and background removal simultaneously [62].

All the algorithms mentioned above separate the local and background fields by exploiting some
mathematical and/or physical properties of these fields. The properties used in each case are rather
different, which raises an important question regarding the uniqueness of the separability of the
fields and the accuracy of the calculated local field. As discussed in [58], it is impossible to
uniquely separate the two categories of magnetic fields without prior assumptions. Without these
assumptions, it cannot be guaranteed that a background field would not be produced by an internal
susceptibility distribution or inversely, an internal field produced by susceptibility placed outside

the volume-of-interest. The use of additional assumptions allows a unique separation of the fields.
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However, a unique separation does not ensure the estimation of the “correct” local field. For
example, orthogonality breaks at regions close to the boundary of the volume-of-interest. Thus,
the field obtained in these regions would have some degree of contamination from background
fields erroneously considered as local fields. Although the consequences of these spurious fields
on the final susceptibility map are not entirely clear, since it is possible that the dipole inversion
technique corrects (to some degree) the erroneously interpreted information during background
field removal [58]. On the other hand, assuming the harmonic nature of background fields and the
use of an SMV operation to eliminate the harmonic contributions make it impossible to retrieve
information close to the boundary of the ROI. In conclusion, even though a unique separation
between background and internal fields is possible thanks to a priori assumptions, the uniqueness
of the solution is not a guarantee of the accuracy of the estimation of the internal field, especially

at regions where the considered physical/mathematical assumptions break.

3.2.4 Dipole inversion

After calculating the LFS (i.e., after the phase processing and background removal steps), it is
possible to solve the ill-posed inverse problem linked to equation 3.5. There are several ways to
handle the inverse problem and to cover every algorithm in the literature is outside the scope of

this work. But a general overview of the basic ideas common to many methods will be provided.

Dipole inversion methods can be classified depending on whether the problem is solved in the

Fourier space or the image space [2].

Fourier-based solutions (as the name suggests) solve the problem by first subjecting all the LFS
information to a Fourier transform like equation 3.5. In Fourier space, a simple inverse filtering
solution is not possible since FT{bX(r)} is equal to zero in a well-defined region of Fourier space
as illustrated in Figure 3.3. One way to get around this obstacle is to regularize the Fourier
transform of the dipole kernel [32], [63]. The regularization will have consequences in the amount
and type of artifacts present in the final susceptibility map [2]. This approach is called truncated
k-space division (TKD).
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Regularizing the dipole kernel as done in TKD-type solutions is not the only way to solve the
inverse problem in Fourier space. There are other methods that tackle the inverse problem in
Fourier space, for example in [64], the dipole inversion is performed by calculating the gradient
of the LFS in Fourier space. In another example [65], some regions of Fourier space in the dipole
kernel that correspond to vanishingly small regions in Fourier space are excluded from the dipole

inversion and then recovered using compressed sensing.

Solutions in the image domain generally consist of iteratively determining a susceptibility
distribution that after being forward modeled generates a magnetic field shift close to the one
obtained from the experimentally collected data. Moreover, treating the inverse problem as an
optimization problem enables the implementation of regularization techniques in the optimization
algorithm. Thanks to the regularization, it is possible to explicitly or implicitly add a priori
information to determine the susceptibility distribution [2]. Among all the methods in this category,
the most popular is called Morphology Enabled Dipole Inversion (MEDI). This method exploits
the similarity between magnitude images and the spatial distribution of the susceptibility by
imposing the same edges from the magnitude image in the susceptibility map while sparsifying

the edges that do not coincide between both representations [66].

Other methods do not strictly fit in these two categories. These methods are called hybrid methods
[2]. They combine the information in Fourier space and image space. One example of this approach
is iterative Susceptibility Weighted Imaging and Mapping (iISWIM). In this case, the regularization
of the problematic regions in k-space is iteratively improved using information from a binary mask
of predefined high susceptibility regions extracted from the susceptibility map generated in the
previous iteration. The binary mask is created by thresholding the susceptibility map available at
the beginning of the iterative step. The information extracted from the binary mask is Fourier
transformed and used to supply information to the ill-defined conical region in k-space. This
approach reduces streaking artifacts since the artifacts are mostly located outside the structures
defining the binary mask, thus the values in the conic region in k-space contain no artifact either

[67].
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There are dipole inversion methods that handle the ill-posed inversion problem by collecting
experimental information with the volume-of-interest at different orientations. These methods do
not exactly fit in the previously stated categories. Notable examples of these types of methods are
Calculation of Susceptibility through Multiple Orientations Sampling (COSMOS) and
Susceptibility Tensor Imaging (STI). In COSMOS, by acquiring phase data for at least three
different orientations of the volume-of-interest, it is possible to remove the ill-conditioning of the
inverse problem. Since the problematic conical surface in k-space will be oriented in different
directions for each measurement, it is possible to avoid this problematic region. The regions that
are problematic in one measurement become well behave in another measurement due to the
change of orientation [2]. On the other hand, STI accounts for anisotropy in the tissue and it enables
the measurement of the susceptibility tensor. For this method, the measurements must be
performed through (at least) six orientations [2]. Although these techniques solve the theoretical
obstacles of solving the inverse problem, they are impractical to implement, especially in a clinical

setting.

3.2.5 Direct field inversion methods

Traditional QSM estimates the susceptibility distribution by dividing the inverse problem (after
phase unwrapping) into two different steps: background removal and dipole inversion. However,
this approach still has some shortcomings that could be improved. First, many of the inaccuracies
in the susceptibility map originate in the background removal step. The source of these
inaccuracies is the breakdown of most of the mathematical and/or physical assumptions at the
boundary of the brain. These limitations hinder the quantification of susceptibility in structures
like the cortical region of the brain or the superior sagittal sinus [6]. Second, the separation of the
process into two steps results in error propagation from the background removal to the dipole
inversion. Error propagation can have a significant effect on the final susceptibility map depending
on the selected dipole inversion technique, since these present various degrees of sensitivity to
errors in the input field [2]. Finally, due to large susceptibility variations in the brain, susceptibility
maps often present streaking artifacts. Alternatives to mitigate these artifacts have been proposed
in traditional QSM, such as regularization [66] and non-linear susceptibility-to-field relationships

[68].
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To address the challenges of conventional QSM, methods that jointly perform the background field
removal and dipole inversion have been developed. These techniques perform the dipole inversion
directly from the TFS map. Chronologically, the first methods created in this category were single-
step QSM methods that used TV (Total Variation) and TGV (Total Generalized Variation)
regularization [69], [70]. These methods still required explicit removal of the background field by
removal of the harmonic contributions in the magnetic field, either by implementation of
constraints over the Laplacian of the measured shift phase [69] or SMV filtration (similar to

SHARP) [70].

Although TV/TGV methods enable single-step QSM (even obviating the phase unwrapping step),
these methods still preserve some of the fundamental problems of conventional QSM [6], [7] like
requiring edge erosion or inaccurate susceptibility quantification of the cortical region. Thus, to
further improve the susceptibility maps, new methods appeared combining the background
removal and the dipole inversion. Three methods will be considered in this thesis and they will be
presented in subsections 3.2.5.1-3.2.5.3: Preconditioned Total Field Inversion (pTFI), Least-Norm
Quantitative Susceptibility Mapping (LN-QSM), and Regularized Total Field Inversion (TFIR)

The three direct inversion algorithms considered for this project are not the only methods that exist
in this category. TV and TGV methods are not included in the “direct inversion methods” category
since they also eliminate the phase unwrapping step. Other methods are fast Total Field Inversion
(fast TFI) [9] and automated Total Field Inversion (automated TFI) [10]. Fast TFI uses L,
regularization that relies on the assumption of sparsity of the susceptibility distribution to reduce
the number of artifacts and enabling the solution of the inverse problem without requiring
background removal. According to the authors of this method, the use of the Ly norm outperforms
pTFI or MEDI [9]. On the other hand, automated TFI is a refinement of pTFI that calculates the
preconditioner automatically. These two methods will not be explored any further since they would
require to explore two topics that are outside the scope of this thesis: the use of Ly-norm instead

of L;-norm and the automation of the calculation of the preconditioner.
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3.2.5.1 Preconditioned Total Field Inversion (pTFI)

This method uses a preconditioner (or rather a priorconditioner according to [71]) P that assumes
that the final susceptibility distribution follows a Gaussian distribution with mean 0 and covariance
matrix ' such that PPH ~ T'. the preconditioner increases the convergence speed of the solution

when used in conjunction with a conjugate gradient (CG) optimization algorithm [6].

In pTFI, the optimization problem is designed to find the susceptibility distribution x* = x; + Xz-
For a binary mask M representing the volume-of-interest, x; = My* and x;z = (1 — M)x". Then,

the susceptibility distribution can be calculated as (the symbol * denotes the convolution):
* . 1 2
X = argmin, > ||W(SB — b, * X)Hz + A[[MVy||4 3.16

In this method, total variation (TV) regularization is added using the term A||MVy||,. TV
regularization promotes smoothness and sparsity in the final susceptibility map [72], [73]. TV
regularization also penalizes variations in the gradient of the susceptibility, and it is suitable to
deal with piecewise continuous functions, unlike other types of regularization [74]. The variable A
is the regularization parameter for the TV regularization term. In pTFI, this parameter should be

chosen such that it minimizes the root-mean-square error (RMSE) in a numerical phantom [6].

The variable w inside the least squares term corresponds to a weighting matrix that accounts for
the nonuniform phase noise and is derived from the magnitude images [6], [72]. The entries of the
matrix are the inverse of the standard deviation for the values in each voxel of the TFS map [75].

The elements of the matrix w are calculated as [7]:

1/2
2ij Mj
Wi; = (Z Magi,j,k2> ( Ni/2 3.17
m ¥ii(XkMag;ji*)

The matrix w is the normalized values of the square root of the added (over all echoes) squared

values of the voxels in the magnitude image. In equation 3.17, Mag;; are the elements in the matrix
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representing the magnitude image in the k-th echo and the sum over K is a sum across echoes. M;;;

are the elements in the matrix representing the binary mask.

By adding a preconditioner to equation 3.16, the argument that minimizes the expression becomes

X = Py. Here, P is a matrix that represents the preconditioner and it has entries P,;:

(1, ijeM
Pi,]-—{PB’ Pig M 3.18

The value Py (for Py > 1) is an integer value selected ad hoc to reproduce the susceptibility gap
between the susceptibility sources in the background and inside the volume-of-interest. The
preconditioner assigns high values to the sources in the background [6], and Pg = 30 was

determined as the optimal value for QSM in the brain.

3.2.5.2 Least-Norm Quantitative Susceptibility Mapping (LN-QSM)

LN-QSM uses Tikhonov regularization to avoid the use of a preconditioner. Tikhonov
regularization separates the background field from the local field by exploiting the fact that the
background field is approximately two orders of magnitude greater than the local field [7]. In
principle, Tikhonov regularization enforces distributions with small values for the susceptibility
inside the volume-of-interest enabling the separation of local and background fields. The

optimization problem for this method corresponds to the following equation:

x* = argminy ||[w(8B — by *X)||> + A, IMVxIl; + A /IMxII3 3.19

In this case, regularization is added by the two last terms on the right-hand side of equation 3.19.
The L;-norm term adds TV regularization (similarly to 3.16) to ensure a smooth solution. The L,-
norm term adds Tikhonov regularization. The accompanying constants A; and A, are
regularization constants. In [7] the value of A, was calculated for brain imaging using the L-curve

criterion [75]. On the other hand, the value of A, for brain imaging (in the same paper mentioned
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before) was selected empirically and in agreement with the literature [76]—[78] about L;-norm

regularization in QSM.

In the optimization problem established in equation 3.19, the matrixes w and M are the same as in
pTFI. The matrix w is a weighting matrix that accounts for the noise in the phase measurements

and it is calculated according to 3.17.

3.2.5.3 Regularized Total Field Inversion (TFIR)

TFIR uses spatially varying regularization and it is presented by the authors as an improvement
over other methods like pTFI and LN-QSM. This method regularizes the problem by adding a
weighting matrix built by low-pass filtering a map of R, estimates obtained from the magnitude
data of the mGRE sequence [8]. The susceptibility maps from TFIR reportedly provide a better

depiction of regions of high susceptibility, while reducing streaking artifacts.

In TFIR, the optimization problem for calculation of the susceptibility distribution is:
* L1 2 —|TLRS 7 o |12
X' = argmin, 5 [[W(8B — by = )|, + A1lIMVxlly + A, [|e~T™RelLy]|] 3.20

R’ information is added in the model within the L,-norm regularization (the third term in equation
3.20). The use of e~ IRzl 45 4 weight in the regularization term is justified by the resemblance
between the susceptibility values and the point-wise inverse of this weighting matrix [8]. In this
case, L is the SMV operator with radius k. T is a constant parameter that modifies the penalty
imposed by the L,-norm regularization. For brain imaging, k and T were optimized by minimizing

the difference between susceptibility maps obtained from COSMOS and TFIR, in a single subject.

The values A; and A, are regularization parameters. In the original publication of TFIR, A, was
selected to minimize the difference between susceptibility maps from COSMOS and TFIR results,
with the same selection method as for the parameters k and t. The value of A; was selected

empirically.
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Finally, similar to pTFI and LN-QSM, the L; -norm regularization corresponds to TV
regularization and the matrices M and w are a brain binary mask and a weighting matrix,

respectively. The entries of w are calculated as established in 3.17.
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Chapter 4

Methods and materials

4.1 QSM pipeline for conventional QSM and direct inversion methods

For this project, a QSM pipeline capable of producing susceptibility maps using conventional
QSM and direct inversion methods was created. A schematical representation of the established
QSM pipeline is presented in Figure 4.1. This pipeline corresponds to a modified version of the

pipeline proposed in [7].

Since this work was focused exclusively on brain QSM, the first step in the pipeline was to produce
a binary brain mask from the magnitude images. The binary mask to define the volume-of-interest
for determining the susceptibility distribution was obtained using the Brain Extraction Tool (BET)
[79]. This software tool separates whole-head magnitude images into brain and non-brain tissue
by first creating a rough mask using histogram-based thresholding. Then, the rough brain/non-
brain separation is improved by creating a triangular tessellated sphere centered at the centre of
gravity estimated from the initial brain/non-brain thresholding. Finally, each vertex of the sphere
is moved toward the brain edge and the new tessellated surface is iteratively modified until
achieving a smooth and optimal solution [79]. The BET function is part of the Functional Magnetic
Resonance Imaging of the Brain (FMRIB) Software Library (FSL) developped by the FMRIB
Analysis group at the University of Oxford. FSL is a set of analysis tools for brain imaging data

focused on functional, structural, and diffusion MRI [80], [81].

For the QSM pipeline used in this project, phase offset correction was performed using the first
two echoes and implemented before phase unwrapping (as illustrated in Figure 4.1). The phase
offset correction was applied to all echo at each echo time and it was calculated as described in

section 3.2.2 and based on the methods presented in [42], [58], [82]. After obtaining the phase
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offset correction and the binary brain mask, the next step in the pipeline was unwrapping. Phase
unwrapping is this work was understood as a two-stage process consisting of spatial phase
unwrapping followed by temporal unwrapping (used to correct 2w jumps introduced during spatial
unwrapping). The implemented spatial unwrapping algorithms were: a local implementation of
Laplacian unwrapping denominated as “discrete Laplacian unwrapping” (dLu) in [1], SEGUE [47],
and Quality Guided unwrapping QG [49]. THUMPR was used for temporal unwrapping [50].

THUMPR is capable of correcting phase jumps of magnitude 2nm, where n is an integer.

After phase unwrapping, all echoes were combined into a single (Total Field Shift) TFS map,
shown in Figure 4.1. The echo combination was performed using a weighted least-squares fit with
weights corresponding to the inverse of the variance of the phase measured at each echo, which is
proportional to the SNR of the magnitude image for each echo [54]. Using the fitting residuals, a
reliability mask was created to exclude voxels with a non-linear temporal evolution, which may
be induced by flow artifacts (turbulent flow), partial volume effects, and/or excessive noise levels
[3]. To create the reliability map, the map of fitting residuals was first smoothed (Gaussian
smoothing). Then, every voxel corresponding to a value greater than an ad hoc threshold (selected

according to the pipeline used in [7]) was excluded from subsequent steps in the pipeline.

From the magnitude images, two additional pieces of information were derived to use in
conventional QSM and direct inversion. First, a weighting matrix w was calculated from the
magnitude information to account for the nonuniform phase noise. The entries of this matrix were
calculated according to relation 3.17. Second, a mask of cerebrospinal fluid (CSF) voxels was also
derived from the magnitude information. The CSF mask was used to set the zero reference of the
susceptibility distribution calculated by the QSM pipeline. The CSF mask was calculated by first
determining the R map from the magnitude images obtained from the mGRE sequence. The R},
map was calculated using an algorithm for fast mono-exponential fitting based on Auto-Regression
on Linear Operations of data (ARLO) [83]. Subsequently, the R, map was used to estimate the
CSF mask using the CSF extraction tool provided in the MEDI toolbox [72]. CSF is not the only
option for the reference tissue in QSM [84], but it was selected in this case as the most practical

approach as a suitable reference tissue for QSM [85], [86].
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The final steps in the pipeline consisted in estimation of the susceptibility distribution of the
volume-of-interest (brain) either by background removal and dipole inversion (conventional QSM)
or by direct field inversion. For this work, the background removal techniques considered were
RESHARP [60], PDF [56], and LBV [61]. All of these background removal techniques were
paired with two different dipole inversion algorithms, iISWIM [67] and MEDI+0 [85]. These dipole
inversion techniques were selected to represent methods that operate in the Fourier and image
domain, respectively. Moreover, MEDI+0 was selected since it uses L, regularization in the same
fashion as the MEDI version presented in [66], but it also automatically zero-referenced the
obtained susceptibility map using CSF as a reference, which is coherent with the selected reference
for this work. On the other hand, the direct inversion methods selected here were pTFI [6],
preconditioned LN-QSM (pLN-QSM) [7], and TFIR [8]. LN-QSM was implemented using the
code made freely available by the authors of the method!. A preconditioner (as specified in
equation 3.18) was added to the method for pLN-QSM. The addition of a preconditioner to LN-
QSM is suggested in the original pipeline made available by the authors of the method, but it is
not discussed in the original publication [7]. pTFI and TFIR were included in the pipeline via local

implementations according to the theory detailed in the original publications for each method.

1 Repository for the original implementation of LN-QSM: https://github.com/sunhongfu/QSM
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Figure 4.1: Schematic representation of the QSM pipeline created for this work. The pipeline is a
modified version of the pipeline used in [7]. The phase unwrapping was performed by using
discrete Laplacian unwrapping, SEGUE, or QG for spatial unwrapping, and THUMPR for
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temporal unwrapping (temporal phase correction). The background field removal techniques
were: SHARP, PDF, and LBV. These techniques were paired with two different dipole inversion
algorithms: iSWIM and MEDI+0. The direct field inversion techniques implemented were pLN-
OSM, pTFI, and TFIR.

4.2 [Evaluation of susceptibility maps using numerical simulations

4.2.1 Designing a brain numerical model for QSM

To study direct inversion methods, two numerical models of the head were created. These
numerical models were used as input for the pipeline described in section 4.1. Both numerical
models were composed of two different parts, a numerical model of the head and a numerical
model of the brain, as illustrated in Figure 4.2. The numerical model of the head (Figure 4.2 b))
contained regions representing scalp (soft tissue), skull, and air. The numerical model of the brain
(Figure 4.2 c¢) and d)) was placed inside the head model. The difference between the two numerical
models, denoted as “model A” and “model B”, resided in the structures added inside the brain.
Model A only contained regions corresponding to gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF). The susceptibility of each region was assigned according to Table 4.1
[87]. In comparison with Model A, model B added deep gray matter structures inside the brain.
The structures added to model B were the thalamus (TH), caudate nucleus (CN), putamen (PU),
and globus pallidus (GP). In these regions of the brain (TH, CN, PU, and GP), the susceptibility

values in model A were replaced by the values in Table 4.2 [88].

The structures in the head model were used to generate a realistic background field model for the
brain, as done in [89]. To create the background field, air pockets were considered in the model to
reproduce high susceptibility changes produced by the presence of structures like frontal sinus,

sphenoid sinus, nasal cavity, and ear canal.
To create the head and brain numerical models a T1-weighted (T1w) dataset (Figure 4.2 a)) was

used as a template. This dataset was acquired from a healthy male volunteer (43 years old) who

gave written informed consent (Resarch Ethics Board of the RI-MUHC). To perform the
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measurements, a Siemens Prisma 3T MRI scanner with a 20 channel head/neck coil was used. To
obtain the T1w dataset, a magnetization-prepared rapid gradient echo (MP-RAGE) sequence was
used with a voxel size of 0.879 x 0.879 X 0.9 mm® (repetition time TR = 2300 ms, echo time
TE = 2.33 ms, inversion time TI = 900 ms, flip angle FA = 8°, bandwidth BW = 200 Hz/pixel,

matrix size 256 X 256 X 192). This dataset was used for automatic tissue segmentation.

An mGRE sequence was used to obtain magnitude and phase data for QSM. The sequence
parameters for this acquisition were TR = 50 ms, time for the first echo TE; = 4.9 ms, echo
spacing ATE = 5.4 ms, number of echoes =5, flip angle FA = 15°, readout bandwidth BW = 470
Hz/pixel, voxel size 0.8 X 0.8 X 1.5 mm?, and matrix size 288 X 288 X 104. Further detail about

the experimental data collection for this project are presented in section 4.3.1.

Before image registration, the voxel size of the magnitude and phase images of the mGRE
sequence was transformed from 0.8 X 0.8 X 1.5 mm?® to 0.78 x 0.78 x 0.78 mm® isotropic voxel
size by zero padding the complex data in Fourier space. The size of the padding was established
by modifying the matrix size and voxel size while keeping the size of the field of view (FOV)
constant. The size of the padding along the three dimensions was given by integer numbers that
are calculated after rounding the results from the operation VS©OMS/min(VS) — MS, where VS
and MS are three-dimensional vector containing the voxel size and matrix size and © represents
the point-wise product between the elements of the matrices. In a similar way, the voxel size of

the T1w dataset was modified to match the voxel size 0.78 X 0.78 X 0.78 mm?>.
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Figure 4.2: Axial, sagittal, and coronal views of the T1-weighted dataset used to create numerical
models, head numerical model, and brain numerical models A and B. a) T1w brain image used as
a template to create the numerical brain models. b) Head numerical model without brain
parenchyma, including air pockets for the frontal sinus, sphenoid sinus, nasal cavity, and ear
canal. c¢) Numerical model A of the brain containing grey matter (GM), white matter (WM), and
CSF. d) Numerical model B, containing the structures in model A plus deep gray matter structures
for the thalamus (TH), caudate nucleus (CN), putamen (PU), and globus pallidus (GP). Numerical

brain models A and B are placed in the skull model to create a realistic background in simulations.

Image registration between the magnitude image of the mGRE sequence and the T1w dataset was

performed using 3D 12 degrees of freedom affine registration in MATLAB with the function
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imregister (which uses to intensity-based image registration), setting the initial step size (initial
radius) of the optimizer to 1.78 X 1073 and the number of iterations to 400. These two parameters
were selected by gradually modifying them until good visual alignment was observed between the
two datasets in bony structures and gyri of the brain . The result of image registration is illustrated
in Figure 4.3, showing a slice of both datasets in three planes after image registration. The function
imregister performs image registration using an algorithm based on Pyramiding affine

registration [90] and a bilinear optimization.

Following image registration, the T1w dataset was used for automatic tissue classification.
BrainSuite software was used for this purpose [91], [92]. BrainSuite was selected because it is
extremely user friendly, it has a very intuitive GUI, its applications are well documented, it allows

for manual corrections of many of the results obtained with the software and there are several

video tutorials explaining different aspects of the software (from basic to advanced applications).

and b) are axial, sagittal, and coronal slices of the TIw image and magnitude image of the mGRE

sequence, respectively, after registration. c) presents the slices overlapped.

To create the head model, the skull stripping tool of BrainSuite was used to delimit the boundary
between the brain and the skull (7 diffusion iterations, diffusion constant 26.042, edge constant
0.64, and erosion size 2). Subsequently, the mask generated in this step was manually corrected in

regions where the brain and skull were incorrectly separated. The next step to create the model
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was to use the skull and scalp tool to automatically classify the structures in the T1w image as
scalp/soft tissue, skull/bone, air, CSF, and brain tissue. Some regions that were incorrectly flagged
when compared with the magnitude image or altered due to artifacts were manually corrected.
After these processing steps, BrainSuite generated a NIfTI? file with tags representing each of the
structures previously mentioned. These files were imported into MATLAB and the tag values
generated by BrainSuite were replaced by the corresponding susceptibility values. The tags used
by BrainSuite and the susceptibility values assigned in the model are presented in Table 4.1. The
susceptibility values were retrieved from literature [87]. An illustration of the tissue classification

for the head model is presented in Figure 4.4.

Table 4.1: BrainSuite tags and susceptibility values used to identify regions in the head and brain
tissue. The susceptibility values were retrieved from [87)]. The susceptibility values for regions
containing a mixture of components were determined as the average values of the susceptibility of

the individual components.

Structure BrainSuite tag Susceptibility [ppm]

Air 0 9.4
Scalp/soft tissue 16 0.6
Skull/bone 17 -2.5

CSF 18 0

GM 2 0.02

WM 3 -0.033
GM/CSF 4 0.01
GM/WM 5 -0.006

2 NIfTI data format details, source code, and documentation: https://nifti.nimh.nih.gov/
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Table 4.2: BrainSuite tags and susceptibility values for deep grey matter structures included in
model B. The values presented in the table were collected from [84] and correspond to the average

values for each structure using CSF as the zero reference.

Structure BrainSuite tag Susceptibility [ppm]
Right thalamus 640
-0.007
Left thalamus 641
Right caudate nucleus 612
0.029
Left caudate nucleus 613
Right putamen 614
0.026
Left putamen 615
Right globus pallidus 616
sre 0.104
Left globus pallidus 617

Brain mask | ’ — . — | CSF

—

Scalp/soft tissue

Figure 4.4: Illustration of tissue classification for the numerical head model using BrainSuite.

To create numerical brain model A, the T1w dataset was processed using BrainSuite. After using
the skull stripping and skull/scalp tools, the tissue inside the brain was classified first by applying
a non-uniformity correction using Bias Field Corrector (BFC) followed by the tissue classification
tool using the Partial Volume Classifier. Non-uniformity correction was used to mitigate intensity

variations caused in the image due to transmit/receive fields imperfections and artifacts due to
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magnetic susceptibility. The BFC parameters were selected automatically using the iterative mode.
The Partial Volume Classifier was used to classify the brain tissue into GM, WM, CSF, and regions
containing a mixture of these three regions. The mixtures considered in the model were GM/CSF
and GM/WM. In a similar fashion to the head model, the output of BrainSuite was imported to
MATLAB and the tags for each region were replaced by the susceptibility values. These values
are presented in Table 4.1. The value of the susceptibility in the regions where there is a mix of
components was established as the average value of the susceptibility of each component since the

magnetic susceptibility is an additive property.

To create numerical brain model B, model A was used in conjunction with the cortical surface
extraction and surface/volume pipelines in Brainsuite. The cortical surface extraction pipeline was
used to define the cortical region of the brain and to create a cortical mask for models A and B.
The surface/volume pipeline registered the input MRI dataset to a brain atlas where the structures
were already classified and labeled. The output of this tool was a NIfTI file containing the input
dataset segmented into different cortical and subcortical regions. The surface/volume pipeline was
used to include deep gray matter structures in model B in the form of TH, CN, PU, and GP and to
create masks for measuring the susceptibility in anatomical ROIs for these regions. The structures
included in model B and their susceptibility values are presented in Table 4.2. Deep grey matter
structures that are also high susceptibility sources such as the substantia nigra and red nucleus were

not included in the model since BrainSuite cannot automatically segment them.

All steps in the cortical surface extraction pipeline were executed either using an iterative solver
(when available) or using the defaults values for each step. Subsequently, the results for the
cerebral mask and the inner and pial surfaces were inspected for major errors. When inspecting
the inner and pial surfaces, two aspects were considered to identify errors in the definition of these
surfaces. 1) Appropriate delineation between grey and white matter. 2) Discontinuities or gaps in
gyri that are challenging to depict accurately due to their thickness or to their location near regions
of possible signal dropout. The first aspect was assessed by inspecting coronal slices and verifying
that the gray/white junction determined by BrainSuite coincided with the observable separation in
each slice of the T1w image. The second aspect was evaluated by looking at obvious missing gaps

or discontinuities in the parahippocampal gyrus, gyrus rectus, and superior temporal gyrus, which

52



is where the most common errors occur due to their shape and size [91], [92]. Good agreement
between the observable and calculated junctions was observed and no major discontinuities in the

gyri were found.

After importing the .nii files to MATLAB and replacing the susceptibility values, the brain models
A and B were placed inside the head model. Then, the susceptibility values were used to forward
model the corresponding magnetic field shift according to equation 3.5. Since the numerical
simulation was used for QSM considering the brain as the volume-of-interest, the field produced
by the susceptibility distribution in the head model was assumed to be the background field.
Meanwhile, the field that was produced by the susceptibility distribution of the brain model was

assumed as the local field.

After forward modeling the magnetic field shift produced by the susceptibility distribution, this
value was used in each voxel as the slope in equation 3.7 to generate the phase evolution as a
function of echo time (assuming a linear relationship). The time-independent phase contribution
in equation 3.7 was assumed to be zero, and no phase offset was added to the model. 5 echoes
were generated using the same echo times as the magnitude image in the mGRE sequence describe
before (time for the first echo TE; = 4.9 ms, echo spacing ATE = 5.4 ms). The complex signal
for each echo time and each voxel was composed of the magnitude information from the mGRE
sequence (for a specific echo time and voxel) combined with the simulated phase (at the same echo
time and voxel considered for the magnitude data). The wrapped phase was finally obtained as the

phase of the complex signal.

Noise was added to the model to enable the study of QSM with varying levels of SNR. The noise
was included in the model by adding white gaussian noise to the real and imaginary parts of the
complex signal. The noise at each echo was included by creating a matrix (of the same size as the
matrix containing the complex signal) of normally distributed random values using the randn
function in Matlab. The standard deviation of the noise distribution was set by multiplying the
noise matric by the mean value of the magnitude image in the first echo divided by a fixed SNR

value. The values considered for SNR were 10, 20, 40, and 60. The minimum value of 10 was
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selected since the BET function failed to create a binary brain mask for the numerical model with

lower SNR.

All the experiments described below were performed using model A and model B. The goal behind
model A was to determine if the presence of high susceptibility sources affected the measurement
of the susceptibility at the cortical region of the brain, by removing them. Thus, the results from
both models will be presented when showing the measured susceptibility in anatomically relevant
ROIs. For all other cases, only the results for the more realistic model B will be shown since only
negligible variations between the results for both models were observed for unwrapping,
background removal, and the appearance of the susceptibility maps (except for the presence of

deep gray matter structures).

4.2.2 Comparison of phase unwrapping algorithms

In the numerical models, the unwrapped phase was studied after spatial and temporal unwrapping,
i.e. after applying THUMPR. Two criteria were contemplated to select the spatial unwrapping
algorithms. 1) The inclusion of path-following unwrapping techniques, considered as the most
accurate, and of Laplacian unwrapping, considered as the most robust approach to noise and a
large number of wraps [93]. 2) The selected methods were based on previous work done in our
research group for conventional QSM [50]. The objective of the unwrapping comparison was to
determine if the techniques that performed well in conventional QSM also performed well with

direct inversion methods.

To assess the performance of the three unwrapping algorithms considered for this project, the
unwrapped phase was studied and compared with the ground truth. The comparison was done in
axial slices, one-dimensional profiles across axial slices, and using maximum intensity projection
(MIP) difference maps. Additionally, the RMSE metric was used as a global quantitative metric
to represent the agreement between the calculated unwrapped phase and the true phase. For each
unwrapping technique, the accuracy of the technique and the source of errors for the unwrapped
phase was determined. The performance of the algorithms was studied in the noiseless model and

for varying levels of SNR.
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The MIP difference maps were calculated by taking the absolute value of the voxel-wise difference
between the ground truth and the calculated unwrapped phase. Then, the maximum values were
projected onto a plane parallel to an axial slice (superior/inferior view) or parallel to a sagittal slice

(lateral view). On the other hand, the RMSE value was calculated as:

Ixe =%,

Vn

RMSE = 4.1

X represents the 3D matrix containing the calculated unwrapped phase, while x4 is the ground

truth phase. The L,-norm in the formula is the Frobenius norm. n is the number of voxels in the

matrices.

4.2.3 Interaction between the unwrapping and the background removal techniques in

conventional QSM

Local field shift (LFS) maps were created for the numerical simulations to study the performance
for every possible combination of the selected unwrapping (dLu, QG, and SEGUE) and
background removal (PDF, RESHARP, and LBV) techniques. The three background removal
techniques were selected to cover as many as possible of the physical/mathematical principles
behind the operation of background removal algorithms [2], [58]. The LFS maps were compared
to the ground truth using difference maps and the RMSE metric (equation 4.7). The difference
maps were used to qualitatively identify spurious local fields and errors at the edge of the brain.
The RMSE was calculated using three different masks to evaluate the performance of the
techniques in an eroded brain mask (which roughly represents the performance of the techniques
for subcortical structures), at the edges of the brain (defined by the volume that was excluded from
the eroded mask), and in the whole brain (using the original binary brain mask). These masks were
designed to quantitatively determine the accuracy of background removal at the edge of the brain,
where the assumptions in PDF and LVB break down. Also, the three masks was were used to
compare PDF and LBV with RESHARP, since this last technique requires edge erosion. The

eroded mask for comparison was selected according to the erosion required in RESHARP (6
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voxels for numerical model B). The RMSE values for the edge of the brain and the whole brain

were not calculated for RESHARP.

MIP difference maps were created comparing the calculated LFS maps and the ground truth from
the numerical model. These maps were also used to show error propagation between the

unwrapping to the background removal step

4.2.4 Evaluation of susceptibility maps using numerical simulations

4.2.4.1 Unwrapping and background removal in QSM

After finding the best background removal technique for conventional QSM, susceptibility maps
were created for numerical model B using MEDI+0, iSWIM, pTFI, pLN-QSM, and TFIR, and all
unwrapping techniques. The reasons behind using all unwrapping techniques were two-fold. First,
when studying the best background removal technique for the numerical model, similar
performance was observed for the methods paired with SEGUE and QG, thus it was not possible
at that stage to establish the best unwrapping technique for comparison. Second, it was to verify
that the unwrapping technique that performs better in conventional QSM [49], [50] was also the

best option for direct inversion methods.

From the three direct inversion techniques considered for this project, pTFI and TFIR were local
implementations created for this project, while LN-QSM was implemented using the code
provided by the authors of the method. However, it was not possible to reproduce the results in [7]
using the freely available code. The addition of a preconditioner (as suggested in pTFI and showed
in equation 3.18) significantly improved the quality of the susceptibility maps obtained with LN-
QSM. This method with a preconditioner was named preconditioned LN-QSM (pLN-QSM) and
was used in all cases instead of LN-QSM. The use of a preconditioner is justified in the discussion

section.

To solve the inverse problem in the three direct inversion methods, a non-linear conjugate gradient

method was used. The initial distribution for the solver was a zero matrix. The iteration in the case
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of pLN-QSM was stopped when one of two conditions was met: either the norm of the change in
the solution was less than 0.01% of the norm of the current solution (the default value in the
original LN-QSM code [7]) or the number of iterations exceeded 200. The default value for the
maximum number of iterations in the original code was set to 500, even though the paper
describing the method [7] established a limit of 200. The value of 200 in this work was selected
first to emulate the value established in the cited paper, and because the results obtained with
numerical simulations showed minimal improvement in RMSE beyond 150-200 iterations, when
comparing the ground truth with the estimated susceptibility distribution. The same conditions to
stop the conjugate gradient solver were used for the other two methods since comparable quality
susceptibility maps and reconstruction times to pPLN-QSM were achieved in both cases with this

threshold.

The reconstruction parameters selected for direct inversion methods were as suggested by the
authors for healthy brain QSM. For pTFI, parameters were Py = 30 and A = 8 X 10~* [6]. For
pLN-QSM, parametres were A; = 1 X 10™* and A, = 1 X 1073 as in LN-QSM [7], with an extra
preconditioner with Pg = 30. For TFIR, parameters were A; = 1 X 1073,1, = 1 x 1071, k = 2,
T = 0.05 [8].

The comparison of the impact of unwrapping on susceptibility maps was performed using the
RMSE metric, a visual assessment of artifacts in the maps, and MIP difference maps. With this
information, it was possible to establish the best unwrapping technique for direct inversion

methods.

4.2.4.2 Comparison of conventional QSM and direct field inversion methods

To understand the advantages or disadvantages of direct inversion methods over conventional
QSM, a qualitative assessment of the artifacts in the susceptibility maps of direct inversion
methods was done (using only the best unwrapping technique) by comparison with conventional
QSM. The comparison of the results was performed in representative axial and sagittal slices and

one-dimensional profiles through the selected axial slice.
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MIP difference maps comparing the LFS maps obtained from conventional QSM after background
removal and the LFS map produced after forward modeling the susceptibility distribution obtained
from the direct inversion method (pTFI, pLN-QSM, and TFIR) were created. These maps were
used to show the reduced error in the local field estimated by direct inversion methods when

compared with conventional QSM.

4.2.4.3 Decoding the operation of direct inversion methods

To provide insight into the mechanisms behind the operation of direct inversion methods, the
estimated susceptibility distributions calculated by direct inversion methods inside and outside the
volume-of-interest (in this case the brain, defined by the binary mask) in the numerical models
were used to calculate the local (LFS) and background fields. The local field was derived from the
susceptibility distribution estimated inside the brain. The background field was considered as the
field produced by the susceptibility distribution estimated outside the brain and multiplied by a
preconditioner (for the methods which consider the use of a preconditioner). The calculated local
and background fields were compared to the ground truth obtained from the numerical model. The
comparison of these two fields was done to establish how the estimated susceptibility distribution
in direct inversion methods contains information about the background field, while also generating
a local field coherent with the modeled susceptibility distribution (in other words, a magnetic field
that would allow accurate estimation of the susceptibility distribution inside the volume-of-
interest). The metric for comparing the local and background magnetic field contributions with

their respective ground truths was the RMSE.

4.2.4.4 Measurement of the susceptibility in anatomical ROIs

To understand how QSM depicts the susceptibility in specific anatomical ROIs, the true discrete
susceptibility distribution in numerical model B was compared with the estimated susceptibility
distribution from conventional QSM and direct inversion methods, using histograms. Numerical
model B is a set of discrete regions that represent structures inside the brain, and the histogram of
its susceptibility distribution is a set of discrete bars representing the number of voxels and

susceptibility of each structure. A good agreement between the ground truth and the estimated
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susceptibility distribution from the selected QSM method should feature a multimodal distribution
with peaks in the same positions as the discrete values in the ground truth.This was investigated

for MEDI+0, iSWIM, pTFI, pLN-QSM, and TFIR.

A quantitative analysis of the susceptibility values in deep gray matter structures (TH, CN, PU,
and, GP) and the cortical region of the brain was performed by measuring the mean and standard
deviation of the susceptibility in ROIs representing these structures, in the numerical models. The
values in the cortex were measured in models A and B. The susceptibility in deep gray matter
structures was measured in model B. The measurement in each region was performed using the
mask generated during the creation of the numerical models (subsection 4.2.1). The mean values
measured in ROIs for the susceptibility distributions calculated by MEDI+0, iSWIM, pTFI, pLN-
QSM, and TFIR were compared with the ground truth using the percentage error as a measurement

of accuracy.

|Measured value — Theoretical value|
x 100 4.2

Percentage error [%] = Theoretical value

4.2.4.5 Susceptibility estimation for varying SNR

The performance of direct inversion methods and conventional QSM with varying levels of SNR
was evaluated in numerical model B by analyzing the artifacts in the susceptibility maps. For each
value of SNR (10, 20, 40, 60) susceptibility maps were created for MEDI+0, iSWIM, pTFI, pLN-
QSM, and TFIR. Reconstruction parameters listed in subsection 4.2.4.1 were used. The
susceptibility distributions in each map inside the cortex and GP were also studied using box charts
to analyze the change due to SNR in the distributions in the cortical brain and the deep gray matter

structure with the highest susceptibility value included in the numerical model.
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4.3 Evaluation of susceptibility maps using in vivo datasets

4.3.1 Invivo data acquisition

In vivo datasets were collected from five healthy volunteers (three males aged 26, 27, and 43, and
two females aged 25 and 27). Informed consent under the approval from the Research Ethics Board
of the McGill University Health Center (MUHC) was obtained for all the volunteers. Two different
MRI scanners were used to collect information: a MAGNETOM Prisma 3T manufactured by
Siemens Healthineers (Scanner I) and an Ingenia 3T manufactured by Philips Healthcare (Scanner
II). For head imaging, the scanners were paired with a 20-channel head coil in the case of Scanner
I, while for Scanner II a 15-channel was used. Scanners I and II had slightly different centre

frequencies f,, which were 123.258 MHz and 127.765 MHz, respectively.

The difference in centre frequency between Scanners I and I, due to a difference in main magnetic
field, was accounted for in the QSM pipeline. The magnitude of the magnetic field is calculated as
By = 2rf, /v, where f, is the centre frequency in Hz. The use of two different scanners implies
possible differences in shimming for the data collected in each scanner. Differences in By field
homogeneity and shimming alter the effect that air/tissue interfaces have over the QSM results
[94], [95]. The differences in QSM arise due to the variability in the separation between
background and local fields due to the shimming near air cavities [95]. The variability introduced
due to the use of different scanners when studying anatomical ROIs is not significantly larger to
the variability introduced when using the same scanner for different measurements (with the same
acquisition parameters) [95]. To avoid the introduction of bias due to the variability between
datasets when assessing the performance of the considered techniques, the datasets were not
directly compared. Results for different datasets were only contrasted when there were
qualitatively noticeable differences in the appearance of the susceptibility maps or when a

technique failed in a particular dataset.

For all acquisitions, a 3D mGRE sequence was used to collect magnitude and phase information.
Additionally, for three volunteers imaged in Scanner I, T1w datasets were collected using the MP-

RAGE sequence (described in section 4.2.1). For all acquisitions, flow compensation and unipolar
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readout gradients were employed. In the datasets acquired with Scanner II, parallel imaging
(SENSE) was used (acceleration factor 2.4 and 1.5 in the phase encode directions). The sequence
parameters are summarized in Table 4.3 and

Table 4.4 for mGRE and MP-RAGE protocols, respectively. The collected datasets were labeled
by combining a letter, representing the volunteer, with a number representing the dataset from the

specified volunteer.

Table 4.3: 3D mGRE sequence parameters for collecting complex data for OSM experiments. The
letter in the name of the dataset denotes the volunteer. Datasets Bl, C3, and E1 were obtained
using Scanner 1. All other datasets were collected using Scanner II. All acquisitions were designed

to have five echoes, except B3 which had seven echoes.

Dataset | TR TE, | ATE | FA BW Voxel size Matrix size
o Hz 3
[ms] | [ms] | [ms] | [°] [pixe I [mm°] [voxel]
Al 51 4.9 54 20 483 0.60 x 0.60 x 1.00 | 336 x 336 x 155
A2 51 5.0 54 20 322 0.70 x 0.70 x 1.00 | 288 x 288 x 155
A3 51 5.6 6.1 20 241 0.70 x 0.70 x 1.00 | 288 x 288 x 155
Bl 50 4.9 54 15 470 0.80 x 0.80 x 1.50 | 288 x 288 x 104
B2 56 4.5 54 20 477 0.54 x 0.54 x 1.00 | 400 x 400 x 168
B3 56 4.5 54 20 482 0.60 x 0.60 X 1.00 | 336 X 336 X 162
Cl 51 4.9 54 20 483 0.60 x 0.60 X 1.00 | 336 X 336 X 162
C2 51 5.0 54 20 322 0.70 x 0.70 X 1.00 | 288 x 288 x 162
C3 60 8.0 8.0 20 465 1.00 X 1.00 x 1.00 | 224 x 186 x 176
D1 51 54 5.5 20 280 0.53 x 0.53 x 1.00 | 400 x 400 x 168
D2 51 5.4 5.5 20 481 0.55 x 0.55x 1.00 | 384 x 384 x 168
D3 51 5.4 5.5 20 653 0.55 % 0.55x 1.00 | 384 x 384 x 168
El 50 5.0 5.0 20 465 1.00 X 1.00 x 1.00 | 224 x 186 x 176
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Table 4.4: MP-RAGE sequence parameters for Tlw images. These datasets were collected with

the corresponding 3D mGRE sequences using Scanner 1.

Dataset TR TE TI FA BW Voxel size Matrix size
o [ HZ 3 1
[ms] [ms] | [ms] [°] pixel [mm?°] [voxel]

B1 2300 | 2.33 | 900 8 200 0.879 x 0.879 x 0.9 | 256 x 256 x 192

C3 2300 | 2.26 | 900 8 200 1.0x1.0x 1.0 192 X 256 x 256

El 2300 | 2.26 | 900 8 200 1.0x1.0x 1.0 192 x 256 x 256

All datasets excluding C3 and E1 were originally collected for previous work in the MRI Methods
Group in the McGill Medical Physics Unit [50].

4.3.2 Unwrapping algorithms comparison

Similar to the analysis done with numerical simulations, the performance of the unwrapping
technique in the measured datasets was done studying the unwrapped phase in an axial slice and
one-dimensional profiles. However, in contrast with the numerical models, no ground truth was
available for comparison. The closest data to the true phase, in this case, was the phase measured
in regions where there were no phase wraps. These regions were used as a point of reference to
identify alterations in the unwrapped phase due to the unwrapping process. A qualitative
comparison between the wrapped phase and unwrapped phase between all three techniques (dLu,

QG, and SEGUE) was performed for all collected datasets.

For the QSM npipeline of this project, the phase offset correction was performed before
unwrapping, rather than during the weighted least-squares fit during echo combination to generate
the total field shift (TFS) map. For the measured experimental data, the effect of phase offset
correction before unwrapping and after unwrapping was studied to establish the optimal approach
to process the phase information. The phase offset correction before unwrapping corresponded to
the calculation of the phase offset through a phase difference map and then the elimination of the

offset in the data through complex division as outlined in section 3.2.2 (equations 3.10 and 3.11).
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On the other hand, phase offset correction after unwrapping assumed that the phase changes
linearly with time. Then, the phase offset was removed during the weighted least square fit by
using the intercept of the linear fit as the correction. This aspect was not studied in numerical

simulations since they were designed with zero phase offset.

To determine the optimal phase offset correction approach, the wrapped and unwrapped phase data
were compared using one-dimensional profiles and violin plots for the correction performed before
and after unwrapping. Moreover, the artifacts caused by the phase offset correction were analyzed
in the total field shift (TFS) and local field shift (LFS) maps. However, the results for the study of
the TFS and LFS maps are presented in the section corresponding to the study of background

removal in the collected data because background removal is required to produce LFS maps.

4.3.3 Unwrapping and background removal techniques in conventional QSM

The different combinations of unwrapping and background removal techniques were tested for in
vivo datasets by comparing the LFS maps obtained for each combination with the best combination
determined according to numerical simulations. The unwrapping algorithms considered were dLu,
QG, and SEGUE. The background removal techniques used were PDF, RESHARP, and LBV. The
comparison was done using difference maps and the RMSE metric to quantify the difference
between the selected reference technique (according to the best performing combination in
numerical simulation) and the results obtained for every other combination. The presence of
incorrectly identified local fields and errors close to the edge of the brain were also identified
qualitatively by visually analyzing the LFS maps and difference maps. Qualitatively, in numerical
simulation, it was observed that erroneously identified local fields (meaning background fields
that were incorrectly considered as local fields) can be identified as abnormally bright or dark

regions in the LFS maps.
As explained in section 4.3.2, the presence of artifacts in the TFS and LFS maps due to the phase

offset correction performed before and after phase unwrapping was studied by comparing (through

difference maps) the TFS and LFS maps calculated for each case. The background removal

63



algorithm used to generate the LFS map (and to compare the two scenarios) was the technique

deemed the best option according to the results in numerical simulations and in vivo datasets.

4.3.4 Evaluation of susceptibility maps using in vivo datasets

Analogous to what was done in numerical simulations, the quality of the susceptibility maps
depending on unwrapping technique and dipole inversion/direct inversion method was assessed
by comparing the appearance of the susceptibility maps created for each case. All susceptibility

maps were calculated using the reconstruction parameters listed in subsection 4.2.4.1.

In vivo datasets were used to illustrate the effect of the preconditioner in LN-QSM and the
improved quality of the susceptibility maps in pLN-QSM. Five different susceptibility maps were
created for LN-QSM (Pz = 0) and pLN-QSM (Pg = 30) for different numbers of iterations of the
non-linear conjugate gradient solver. The iterations considered for each case were 100, 200, 300,
400, and 500. Representative axial slices for the estimated susceptibility maps were presented for

each result.

When processing the datasets, the performance of pTFI and pLN-QSM changed depending on the
dataset, even when the same regularization parameters were used. To illustrate the variations in
the susceptibility maps for these two techniques between datasets, the results were calculated
(using MEDI+0, iISWIM, pTFI, pLN-QSM, and TFIR) for datasets D1, D2, D3, and B2 and
compared considering representative axial slices for each dataset. Datasets D1, D2, and D3 were
selected since these datasets correspond to the same volunteer scanned three times in a single day
with slightly different sequence parameters. On the other hand, dataset B2 was selected among all
datasets as it presented the most noticeable changes in the appearance of the susceptibility maps

calculated with pTFI or pLN-QSM.

Finally, as done with numerical simulation, anatomical ROIs were used to measure the mean and
standard deviation of the susceptibility in deep gray matter structures and the cortical region of the
brain. The measurements were performed for dataset Bl using the automatic segmented ROIs

produced during the creation of the numerical models. Unbalanced two-way analysis of variance
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(ANOVA) with repeated measurements was performed to determine if susceptibility values from
different methods were statistically different (significance level p < 0.05). The test was set up
with two factors: methods and ROIs. Within the factor “methods”, five levels corresponding to
MEDI+0, iSWIM, pTFI, pLN-QSM, and TFIR were considered. Within the factor “ROIs”, five
levels corresponding to the cortex, thalamus, caudate nucleus, putamen, and globus pallidus were
considered. The ANOVA test also included a heteroskedasticity-consistent (HC) correction [96].
After finding significant differences with the ANOVA test, post-hoc multiple pairwise
comparisons with Bonferroni adjustments to the p-values was performed. The ANOVA test and

post-hoc testing were performed in RStudio.
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Chapter 5

Results

5.1 Evaluation of susceptibility maps using numerical simulations

5.1.1 Comparison of phase unwrapping algorithms

In the numerical simulation (model B), QG and SEGUE phase unwrapping results (after correction
using THUMPR) were equivalent and coincided with the ground truth of the unwrapped phase,
while dLu modified the phase when compared with the ground truth. Figure 5.1 shows a visual
comparison between the wrapped and unwrapped phases in numerical model B. The top row of
the figure contains an axial slice showing the phase wraps (in all five echoes) produced due to the
steep change in susceptibility caused by the presence of the air pocket simulating the frontal sinus.
In the bottom row, the profiles of the phase values (taken across the red line in the selected axial
slice) are shown. This trend was observed consistently across most of the volume-of-interest

(brain) when comparing the unwrapped phase for all techniques and the ground truth.
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Figure 5.1: Unwrapped phase in a one-dimensional profile across an axial slice of the numerical

model B. The three unwrapping techniques were dLu: discrete Laplacian, QG: quality guided, and
SEGUE. The curve corresponding to QG is not observable in the diagram since the results from

SEGUE and QG coincide.

In general, the biggest differences when comparing the performance of all unwrapping techniques
in the numerical simulation were observed in regions close to the sinuses and the ear canal, as
expected due to the steep change in susceptibility. Additionally, differences between the
performance of SEGUE and QG (which appear equivalent in Figure 5.1) were observed in some
voxels at the edges of the brain. These differences were caused by phase wraps at the edge of the
brain. The source of these wraps was the susceptibility change in the regions representing CSF and
bone near the edge of the brain. To demonstrate the errors caused by air pockets and at the edges
of the brain (which are not observable in Figure 5.1), Figure 5.2 presents maximum intensity
projection (MIP) difference maps for each method using as a reference of comparison the true

phase from the numerical model.
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Figure 5.2: Maximum intensity projection (MIP) difference maps comparing the ground truth for
the unwrapped phase in numerical model B with the results calculated with different unwrapping
techniques (dLu: discrete Laplacian, QG: quality guided, and SEGUE). Superior/inferior and
lateral views are presented for each case. The range to display the images was selected as 25
radians, which is the same range selected in Figure 5.1. The red arrows point to the highest
magnitude deviations from the ground truth due to the air pockets representing sinuses and the
ear canal. Black arrows point to high magnitude errors caused by wraps due to bone and CSF at

the edge of the brain.

Table 5.1: RMSE values calculated in radians for each echo time and each unwrapping technique
(dLu: discrete Laplacian, QG: quality guided, and SEGUE.). For each value at a determined echo
time, the corresponding unwrapped phase extracted from numerical model B was used as ground

truth.

TE, TE, TE3 TE, TEg
[rad] [rad] [rad] [rad] [rad]
dLu 0.74 1.53 2.41 3.35 4.19
QG 0.11 0.20 0.31 0.47 0.68
SEGUE | 0.12 0.23 0.35 0.46 0.58

To establish a quantitative comparison and to put all the errors in a global context, the RMSE
values comparing the unwrapped phase and the true phase for each echo are presented in Table 5.1
for the noiseless numerical model and in Table 5.2 for varying levels of SNR in the simulated

complex data.
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In the noiseless case (Table 5.1), the RMSE increased with echo time for all unwrapping
techniques, which is congruent with Figure 5.2. For TE;, TE,, and TE; QG presented the smallest
RMSE. For TE, and TE; SEGUE presented the smallest RMSE. Once again, these results agree
with Figure 5.2, which indicates that for the last two echoes, the errors in QG were more spread

out inside the brain.

The RMSE increased with decreasing SNR for all three unwrapping techniques, meaning that the
accuracy of the methods decreased with noise. When adding noise to the numerical model, QG
was the best performing method (lowest RMSE values across all echoes) for SNR 10 and 20. For
SNR 40 and 60, the trend observed in the noiseless case was repeated, in other words, QG had
smaller RMSE for the three first echoes, while SEGUE performed better for the last two. This
result would suggest that QG is less affected by noise when compared to SEGUE. Finally, the
results in the table suggest that the precision of dLu does not decrease compared to the other
methods, although the accuracy of dLu was still the lowest. This can be confirmed by looking at
the RMSE values for the last echo for SNR 10 and SNR 60. In the case of QG and dLu, the value
doubled from SNR 60 to SNR 10, while in dLu, it just increased by approximately 2%.

Table 5.2: RMSE values (in rad) for SNR 10, 20, 40, and 60 comparing the unwrapped phase for
all techniques (dLu: discrete Laplacian, QG: quality guided, and SEGUE.) with the ground truth
in model B.
SNR: 10 20
TE; | TE, | TE; | TE, | TEs | TE; | TE, | TE; | TE, | TEg
dLu 0.72 | 1.57 | 246 | 338 | 429 | 0.72 | 1.55 | 2.44 | 3.37 | 4.24
QG 025 | 047 | 0.72 | 1.00 | 1.30 | 0.14 | 0.26 | 0.40 | 0.58 | 0.83
SEGUE | 0.28 | 0.55 | 0.83 | 1.11 | 1.45 | 0.19 | 0.36 | 0.55 | 0.73 | 0.92
SNR: 40 60

TE, | TE, | TE; | TE, | TEs | TE, | TE, | TE; | TE, | TEs
dLu | 073 | 1.54 [ 242 [ 336 | 422 | 073 | 1.53 | 2.42 | 3.36 | 4.21
QG 0.12 | 023 | 036 | 0.54 [ 0.76 | 0.12 | 0.22 | 0.34 | 0.52 | 0.75

SEGUE | 0.14 | 027 | 0.40 | 0.54 | 0.68 | 0.13 | 0.24 [ 037 | 0.49 | 0.62

69



5.1.2 Unwrapping and background removal techniques in conventional QSM

PDF was the background removal algorithm that produced the local field shift (LFS) maps with
the least amount of erroneously identified local fields. Moreover, PDF did not require edge erosion.
It was possible to compare the performance of PDF, RESHARP, and LBV through a visual
inspection of the results for each technique. In Figure 5.3, PDF produced the most visually
appealing results when paired with QG or SEGUE. That said, PDF presented errors at the edge of
the brain, marked by orange arrows in Figure 5.3. Contrarily, this figure illustrates that RESHARP
and LBV have the biggest amount of background fields (in the displayed slice) incorrectly
identified as local fields (inaccurate background removal). These errors can be observed close to
the anterior region of the brain, especially when these methods were paired with dLu (as indicated
by the green arrows in Figure 5.3). Moreover, the difference maps also make apparent how
RESHARP requires erosion of the LFS map since it is easier to compare the size of the result and
the true local field map in the selected slice. LBV also presented errors at the edges of the brain
but their appearance was different when compared to PDF, and they are marked in Figure 5.3 with
red arrows. The errors at the edge of the brain in PDF were constrained to the very edge of the
brain. These artifacts produced a characteristic “texture” at the edge of the LFS maps absent in
RESHARP or LBV. In LBV the errors at the edge looked like spurious fields that propagate

towards the interior of the brain.
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Figure 5.3: Comparison of background removal algorithms and the effect of unwrapping

techniques on numerical model B. The left image shows LFS maps. The right image shows
difference maps for each LFS map using as ground truth the local magnetic field derived from the
numerical model. The background removal techniques were PDF, RESHARP (6 voxels radius),
and LBV. The green arrows indicate examples of incorrectly identified local fields in the anterior
region of the brain. The orange and red arrows indicate errors at the edges of the brain in PDF

and LBV, respectively.

Using the RMSE as a metric to assess the performance of the background removal techniques,
PDF was the most accurate algorithm. The RMSE values are presented in Table 5.3. When
comparing the performance of PDF and LBV depending on unwrapping technique, QG+PDF or
LBV performed better in the eroded mask, while dLu+PDF or LBV performed better at the edge
of the brain. dLu+PDF or LBV also performed better overall in the entire brain (due to the
relatively small error at the edge). PDF performed better than LBV and RESHARP in the entire
brain and eroded mask, respectively, when paired with any of the three unwrapping techniques.
PDF outperformed all methods in the eroded brain mask when paired with QG or SEGUE. PDF
does not require explicit edge erosion (in contrast with RESHARP). Consequently, PDF was

selected as the best background removal technique. However, the best unwrapping technique to
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combine with PDF (for QSM) remains an open question, since the RMSE suggests that SEGUE
and QG provided comparable performance, while dLu generated better results at the edge of the
brain and in all the volume-of-interest. The question of the best unwrapping technique will be

addressed in subsection 5.1.3.1.

Table 5.3: RMSE calculated for the combination of unwrapping and background removal
techniques for numerical model B. Three different volumes were considered for calculating the
RMSE. 1) A mask eroded by 6 voxels. 2) A mask representing the edge of the brain, this mask was
created by subtracting the mask for the entire brain and the eroded mask. 3) The mask covering
the entire brain. In the case of RESHARP, the RMSE values were only calculated for the eroded

mask since the method cannot recover information outside the eroded mask.

Phase
dLu QG SEGUE
unwrapping
Eroded | Brain Entire | Eroded | Brain Entire | Eroded | Brain Entire
Mask erosion
mask edge brain mask edge brain mask edge brain
RMSE for PDF
5.0 13.0 12.3 2.6 18.4 16.4 2.6 19.1 17.0
[ppb]
RMSE for
4.0 - - 3.1 - - 3.1 - -
RESHARP [ppb]
RMSE for LBV
17.2 11.6 18.3 14.5 20.8 22.4 14.9 22.3 23.7
[ppb]

The degree of error in PDF at the edge of the brain was considerably higher when compared to the
error at the eroded mask. According to the RMSE in Table 5.3, this result held for the three
unwrapping techniques. Additionally, LBV presented the same trend. This trend in LBV and PDF
was coherent with the images displayed in Figure 5.3. With PDF, the errors in the anterior part of
the brain were mostly gone while the errors in the edge of the brain were less spread out across the
edges when compared with LBV. dLu+LBYV produced the lowest RMSE at the edge of the brain
but, due to the poor performance of LBV in the eroded mask and full brain, this technique was

discarded for the following subsection.
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In PDF, the largest inaccuracies were constrained at the edges of the brain. MIP difference maps
were created in an eroded mask (Figure 5.4) and in the full brain mask (Figure 5.5) to illustrate
how the biggest errors in the LFS map were constrained at the edges. When comparing the maps
for PDF in Figure 5.4 and Figure 5.5, the amount of high magnitude errors increased in the second
case. The errors in PDF in Figure 5.5 could be traced back to the inaccuracies in the unwrapping
technique caused by air pockets (sinuses and the ear canal) and wraps due to CSF and bone
interfaces. However, compared to the result from unwrapping, the errors in PDF were much more
spread across the edges of the brain. A similar observation can be done for LBV, although the
errors in the eroded mask in LBV were higher than for PDF and RESHARP (which is consistent
with Table 5.3).

PDF RESHARP LBV

. |

0 0.025 0.05 0.075 0.1
[ppm]
Figure 5.4: Maximum intensity projection (MIP) difference maps in an eroded mask (6 voxels)

comparing the ground truth for the local field shift (LFS) in numerical model B with the results

calculated with different unwrapping techniques (dLu: discrete Laplacian, QG: quality guided,
and SEGUE) and background removal algorithm (PDF, RESHARP, and LBYV). Superior/inferior

and lateral views are presented for each case.
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Figure 5.5: Maximum intensity projection (MIP) difference maps in a mask covering the entirety

of the brain comparing the ground truth for the local field shift (LFS) in numerical model B with
the results calculated with different unwrapping techniques (dLu.: discrete Laplacian, QG: quality
guided, and SEGUE) and background removal algorithm (PDF, RESHARP, and LBYV).
Superior/inferior and lateral views are presented for each case. The MIP maps for RESHARP

were not calculated since this method cannot retrieve information outside the eroded mask.

5.1.3 Evaluation of susceptibility maps using numerical simulations

5.1.3.1 Unwrapping and background removal in QSM

According to the results from subsection 5.1.2, it was established that PDF was the best option for
the background removal step. Thus, the susceptibility maps for comparison between conventional
QSM and direct inversion methods were generated using PDF. However, in subsection 5.1.2, it
was not possible to define the best unwrapping technique to pair with PDF. Consequently, different
unwrapping techniques are used in this subsection. Moreover, consideration of different
unwrapping techniques (despite findings in subsection 5.1.1) was also done to establish how

unwrapping affects direct inversion methods.
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Considering the RMSE values presented in Table 5.4 comparing the ground truth of the
susceptibility map and the susceptibility distributions estimated using different techniques, the best
unwrapping technique for QSM was QG. Almost all the techniques performed better when paired
with QG. TFIR was an exception since it performed better when paired with dLu. However, the
RMSE of dLu+TFIR was around 1.5 to 2.6 times bigger than QG paired with dipole inversion
algorithms, pTFI, or pPLN-QSM. Therefore, QG produced the most accurate susceptibility maps.

Table 5.4: RMSE in ppb for numerical model B for different combinations of unwrapping
techniques and conventional and direct inversion QSM techniques. All conventional QSM

susceptibility maps were created using PDF as the background removal algorithm.

MEDI+0 iSWIM pTFI pLN-QSM TFIR
[ppb] [ppb] [ppb] [ppb] [ppb]
dLu 60.2 42.7 32.7 35.1 49.9
QG 323 33.3 19.0 19.6 72.4
SEGUE 101.0 91.4 64.4 69.5 88.6

Using the RMSE as a metric of accuracy, the three most accurate methods were pTFI, pLN-QSM,
and MEDI+0 paired with QG (and PDF in the case of conventional QSM). The most accurate
method was pTFI. This result suggests that direct inversion methods are more accurate than

conventional QSM.

When qualitatively comparing the visual appearance of the susceptibility maps depending on the
unwrapping technique, the techniques paired with QG presented fewer artifacts. Figure 5.6 shows
axial and sagittal views for numerical model B and different combinations of QSM and
unwrapping techniques. In the numerical model, when using SEGUE or dLu, there were several
“bright and dark” artifacts (red arrows), ringing artifacts (blue arrows), and streaking artifacts
(green arrows) close to the anterior part of the brain. Most of those artifacts were much less
prominent when using QG. Most of the artifacts remaining in direct inversion methods when paired
with QG corresponded to regularization artifacts that manifest themselves as shadows or “non-

uniform” intensity across the image.

75



0.05

Ground truth

pTFI

pLN-QSM

unwrapping techniques using conventional QSM and direct field inversion techniques. For all
conventional OSM results, the background removal was performed with PDF. The susceptibility
mapping algorithms considered were MEDI+0, iSWIM, pTFI, pLN-OSM, and TFIR. The rows
represent the unwrapping method, while the columns are the dipole inversion or direct inversion
technique. The arrows point to “bright and dark” artifacts (red arrows), ringing artifacts (blue

arrows), and streaking artifacts (green arrows).

MIP difference maps (Figure 5.7) depict pTFI and pLN-QSM paired with QG as the methods with
the smallest errors when comparing the estimated susceptibility distributions and the ground truth
for numerical model B, which is coherent with the RMSE metric and the visual assessment of the
susceptibility maps. The location of the errors in pTFI and pLN-QSM (black arrows) coincided
with errors that can be traced back to deviations from the true phase during unwrapping, meaning
errors due to air pockets simulating sinuses and ear canals. Additional high magnitude errors (red
arrows) presented in the space corresponding to deep gray matter structures (thalamus, caudate
nucleus, putamen, and globus pallidus). In conventional QSM, the maps showed high magnitude
errors that were much more spread throughout the volume-of-interest (compared to direct

inversion methods).
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MEDI+0 iSWIM pTFI pLN-QSM TFIR

m b ! Tivs

Maximum intensity projection (MIP) difference maps comparing the ground truth in

Figure 5.7:
numerical model B and the susceptibility maps for different unwrapping techniques using
conventional OSM and direct field inversion techniques. Superior/inferior and lateral views are
presented for each case. The display range was selected as the same in Figure 5.6. The black
arrows point to regions of high magnitude errors due to air pockets (sinuses and ear canal). Red

arrows point to errors in deep gray matter structures.
In subsequent subsections, QG was used in all results for the numerical simulations.

5.1.3.2 Comparison of conventional QSM and direct field inversion methods

In pTFI and pLN-QSM, the combination of background removal and dipole inversion in a single
step reduced the number of errors in the final susceptibility map. This result is observable in Figure
5.7 by comparing the susceptibility maps for QG. In this figure, the maps from pTFI and pLN-
QSM presented fewer errors than MEDI+0 and iSWIM. To show that the elimination of an explicit
background removal step was the element that lead to fewer errors in QSM, Figure 5.8 showed a
comparison of the LFS maps produce by QG+PDF and by forward modeling the susceptibility
distribution in pTFI, pLN-QSM, and TFIR. In pTFI and pLN-QSM, the errors were considerably
less spread across the edge of the brain in comparison to PDF. TFIR, which according to the RMSE
in Table 5.4 produced the worst susceptibility maps among all direct inversion methods, also
generated a susceptibility map that corresponded to an LFS map with fewer errors than the

conventional pipeline.
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Figure 5.8: Maximum intensity projection (MIP) difference maps comparing the ground truth of

the local field shift (LFS) maps obtained using PDF and forward modeling the susceptibility
distribution estimated by direct inversion methods. Superior/inferior and lateral views are

presented for each case.

pTFI and pLN-QSM retained less structural information when compared to MEDI+0, but these
two direct inversion methods also produced fewer artifacts close to the edges (in comparison to
conventional QSM). In Figure 5.9 a) and b), the distribution of errors depicted in the difference
maps show how pTFI and pLN-QSM struggled to reproduce susceptibility changes, which is more
apparent in the axial view of the susceptibility maps. The profiles (for the susceptibility values) in
Figure 5.9 c) support this statement by showing that pTFI and pLN-QSM produced smooth
susceptibility profiles (due to the added regularization in these methods) that cannot accurately
reproduce the discontinuities in the initial numerical model. On the other hand, when compared to
the other techniques, MEDI+0 retained more structural information causing “flat” looking

difference maps.
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Figure 5.9: Comparison of conventional OSM and direct inversion methods in axial and sagittal

Susceptibility in model B [ppm]

slices, and one-dimensional profiles. a) Susceptibility maps (superior row) and difference maps
(inferior row) for an axial slice in numerical model B. b) Susceptibility maps (superior row) and
difference maps (inferior row) for a sagittal slice in numerical model B. c) One-dimensional profile
representing the susceptibility across the red line illustrated in a). The red arrows indicate

artifacts in conventional QSM that are not present in direct inversion methods.

pTFI and pLN-QSM showed fewer artifacts close to the anterior regions of the brain in axial and
sagittal views. Moreover, these techniques did not present the abnormal “textured” edge that

appears in conventional QSM due to PDF, which makes these methods overall more accurate.
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These artifacts are indicated in Figure 5.9 a) and b) by red arrows. Finally, iSWIM and TFIR
produced the susceptibility with the most amount of artifacts for conventional QSM and direct
inversion methods. iISWIM produced susceptibility maps with a “salt and pepper” texture that
translates into an irregular profile in Figure 5.9 c¢). TFIR presented ringing artifacts due to the

inclusion of spherical mean value (SMV) filtration.

5.1.3.3 Decoding the operation of direct inversion methods

Direct inversion methods work by creating a susceptibility distribution outside the brain to model
the background field. The background field corresponds to dipolar fields produced by sources
outside the volume-of-interest. By studying the susceptibility distributions produced by direct
inversion methods inside and outside the volume-of-interest (in this case, defined by the brain
binary mask), it was verified that the estimated susceptibility distribution outside the brain was
different from zero. Figure 5.10 presents a comparison between the ground truths and estimated
maps for the background field, local field shift (LFS), and susceptibility distribution. A good
agreement was observed between the estimated background field (produced by the susceptibility
outside the brain) and the true background field included in the model, according to the RMSE
metric. The same was observed when comparing the estimated LFS with the true local field
included in the model. The RMSE when comparing the background field and LFS maps were
0.0899 ppm and 0.0050 ppm, respectively. The values make sense when considering the order of
magnitude in each case. Background field are expected to be around unity of ppm, while in the
case of local fields the order of magnitude is tenths of ppm. In both cases, the RMSE was two
orders of magnitude smaller than the corresponding range of values. This small error signals
agreement between the forward models from the ground truth and the estimated solution. It
confirms that the susceptibility distribution established outside the brain is how pLN-QSM
determines the background field. Figure 5.10 was created from the results obtained for numerical
simulation in model B and pLN-QSM. Similar agreement and consequently the same mechanism

to model the background field was observed for pTFI and TFIR (images not presented).

80



a)

~10° Hi m for the < ty inside the VOI

~10° Histogram for the susceptibility outside the VOI
8 7 4
16
6 1

14
5 ]
3 J
2 ]
1 1
o R .

2 03 04

1.2

[ppm]
Number of voxels
=

0.8

Number of vaxels

0.6
0.4

0.2

L-)(127 -0.‘15 0.1 -0.05 o 0.05 01 0. l15 0.4 03 -0.2 -0.1 0 0.1 0
Susceptibility [ppm] Susceptibility [ppm]
b)
Ground truth Estimated maps Difference maps
Background field 08 Background field 08 RMSE = 0.0899 ppm 08
0.525 0.525 0.525
0.25 é 025 é 0.25 §
-0.025 -0.025 -0.025
0.3 0.3 0.3
Local field Local field RMSE = 0.0050 ppm
0.04 0.04 0.04
0.02 0.02 0.02
0 E 0 é 0 E
-0.02 0.02 -0.02
-0.04 0.04 -0.04
Susceptibility map Susceptibility map o RMSE = 0.0198 ppm o
0.05 0.05
o & o & o &
2 & 2

0.1

0.05

-0.05

-0.1 -0.1 -0.1

Figure 5.10: Representation of the operation of direct inversion methods. pLN-QSM was selected
to illustrate how these methods work. a) The figure shows an axial slice of the estimated
susceptibility for model B. The histograms show the susceptibility distribution inside and outside
the brain (in the entire brain). b) The susceptibility distributions inside and outside the brain were
forward modeled to generate the corresponding background field and local field (LFS), which
were compared with the ground truth from numerical model B. The estimated and true

susceptibility maps are also compared. The RMSE was used as a metric for comparison.
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5.1.3.4 Measurement of the susceptibility in anatomical ROIs

One small detail in Figure 5.10 that should catch the attention of the attentive reader is that the
estimated susceptibility distribution inside the brain is gaussian, even though the input model
(model B) was composed of a discrete set of susceptibility values. To estimate the susceptibility,
iISWIM, pTFI, pLN-QSM, and TFIR produced gaussian susceptibility distributions. These
behaviors are presented in Figure 5.11. The initial numerical model is a set of discrete
susceptibility values, but the LFS calculated from these values (as showed in the figure) is normally
distributed. Thus, the QSM inverse problem, in the context of these numerical simulations, can be
considered as seeking a discrete solution (susceptibility distribution) from the normally distributed
LFS. MEDI+0 was the only method that produced a multimodal distribution. When comparing
this distribution to the ground truth in Figure 5.11 b), it is possible to see how the peaks in MEDI+0
are reminiscent of the position of the peaks at -0.033, -0.006, and 0.02 ppm in the ground truth.
However, the multimodal distribution does not exactly coincide with the distribution of the
numerical model. All other methods generate gaussian susceptibility distributions (Figure 5.11 b)
and c)). Finally, it is important to highlight that all the histograms are normalized to the number of
voxels, consequently, the height of the bars in the histogram also has valuable information. In all
cases, the height of the bars in the ground truth is around one order of magnitude greater than in

the estimated susceptibility distributions.
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Figure 5.11: Histograms comparing the susceptibility distribution estimated by conventional QSM
and direct inversion methods with the ground truth in numerical model B. a) Ground truth
susceptibility distribution for numerical model B. b) Histogram of the LFS forward-modeled from
the susceptibility by c). Histogram of estimated susceptibility distribution for conventional QSM
on the left axis and ground truth susceptibility distribution on the right axis. d) Histogram of
estimated susceptibility distribution for direct inversion QSM on the left axis and ground truth

susceptibility distribution on the right.

pTFI and pLN-QSM more accurately described the susceptibility in the cortical region of the brain,
as supported by the RMSE presented in Table 5.5. However, pTFI and pLN-QSM tended to
underestimate the susceptibility in the considered ROIs when compared to the ground truth or
conventional QSM. The mean and standard deviation of the measurements in anatomical ROIs are
presented in Figure 5.12. pTFI and pLN-QSM returned lower mean values compared to MEDI+0
and ground truth. This is especially noticeable in deep gray matter structures, such as the globus
pallidus (the highest susceptibility source included in the model), where pTFI and pLN-QSM
estimated the lowest susceptibility values from all the QSM techniques considered. In the
thalamus, Figure 5.12 also shows that pTFI and pLN-QSM failed to estimate a negative average
value for the susceptibility of the structure. TFIR, when compared to the other two direct inversion

methods, was more accurate in the globus pallidus. Moreover, TFIR generated a negative mean
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value in the thalamus, where pTFI and pLN-QSM estimated positive mean values. But TFIR was
the least accurate method in all other structures (except the globus pallidus). The 95% confidence
intervals for the data Figure 5.12, not shown in the plot due to their small scale, suggested that
almost all measurements were significantly different since the confidence intervals did not overlap
for the measurements in the ROIs (the only exception was pTFI and pLN-QSM in the putamen).

In no case did the confidence intervals contain the true value.
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Figure 5.12: Bar plot of the mean and standard deviation in anatomical ROIs in the numerical

models of the brain. The susceptibility of the cortical region of the brain was measured in model
A (Cortex A) and model B (Cortex B). The susceptibility of the thalamus (TH), caudate nucleus
(CN), putamen (PU), and globus pallidus (GP) are reported only for model B. The image on the
left shows an axial slice of numerical model B with the position of the ROIs highlighted in different

colors for each structure.
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Table 5.5: RMSE (in ppb) for anatomical ROIs and the true values for the cortical region of the
brain (Cortex A and Cortex B for numerical models A and B, respectively), thalamus (TH), caudate
nucleus (CN), putamen (PU), and globus pallidus (GP).

Cortex A Cortex B TH CN PU GP
[ppb] [ppb] [ppb] [ppb] [ppb] [ppb]

MEDI+0 33.1 34.1 10.6 18.6 18.4 15.8
iSWIM 31.2 31.1 15.1 16.7 20.1 35.1
pTFI 14.8 16.2 9.9 11.9 11.4 13.6
pLN-QSM 14.9 16.5 11.0 12.5 12.4 17.5
TFIR 52.3 53.7 21.1 25.2 14.9 13.7

5.1.3.5 Susceptibility estimation for varying SNR

When including noise in numerical model B, the appearance of the susceptibility maps changed
depending on the amount of noise and dipole inversion or direct inversion technique. Axial slices
for the results obtained at different SNRs in model B are showed in Figure 5.13. In the case of
conventional QSM, the susceptibility maps presented speckle due to the increase in noise. This
effect was much more prominent in iSWIM, in which case the “salt and pepper” appearance of the
susceptibly maps was very noticeable at an SNR of 10 and still present at an SNR of 60. In
MEDI+0, this effect was observed at an SNR of 10, although less noticeable when compared with
iISWIM, and at an SNR of 40 the speckle was barely noticeable. With direct inversion methods
pTFI and pLN-QSM, some speckle was observed in the susceptibility map especially at SNRs of
10 and 20. The speckle was more noticeable in the pLN-QSM output when compared with pTFI.
Finally, in TFIR, ringing artifacts were more noticeable at smaller SNRs. These artifacts in TFIR
appeared at all noise levels. Also, a very faint salt and pepper pattern appeared in the TFIR output
for the lowest SNR.
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Figure 5.13: Axial slice of numerical model B for different SNR values and QSM techniques.

In MEDIH0, the precision of the susceptibility measured in ROIs corresponding to the TH, CN,
PU, and GP increased with decreasing noise. A similar effect was noticed in the cortex of the
numerical brain. However, the effect was much less pronounced compared to the deep gray matter
structures. To illustrate this observation for varying levels of SNR in model B, box charts are
presented in Figure 5.14 for the susceptibility measured in the cortical region of the brain and the
GP. In these two structures, the measured susceptibility was found to be normally distributed. With

1ISWIM, little change in the precision of the measurement was observed, in contrast with MEDI+0.

86



In pTFI and pLN-QSM, in contrast with MEDI+0, the most noticeable consequence of a change
in the SNR was a shift of the values measured in anatomical ROIs. This behavior can be observed
in Figure 5.14. In the susceptibility maps, this is observable as subtle changes in susceptibility
values. The shift of values was also accompanied by a small change in precision in the
measurement. Once again, this behavior was much more noticeable in deep gray matter structures
than in the cortical region of the brain. Finally, TFIR presented a behavior closer to MEDI+0,

especially for deep grey matter structures.
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Figure 5.14: Box charts for the susceptibility measured at different SNRs (10, 20, 40, and 60) in
model B for the cortical region of the brain (left) and the globus pallidus (right). The ground truth
for the susceptibility values of the cortical region and globus pallidus are 0.020 and 0.104 ppm,
respectively. These values are represented by black dashed lines. The diagram on the left does not

show outlier values since their quantity prevents a good visualization of the boxes.
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5.2 Evaluation of direct field inversion methods using in vivo datasets

To illustrate the results in each section related to in vivo datesets, a single representative dataset

(unless otherwise stated) exemplifying the general behaviors observed across all datasets was used.

5.2.1 Unwrapping algorithm comparison

When comparing the performance of unwrapping techniques, the unwrapped phase produced by
dLu considerably differed from the phase estimated by QG and SEGUE. One example of the phase
modification due to dLu unwrapping can be seen in the first echo in Figure 5.15. In the first echo,
for the selected slice and profile orientation, a single wrap appears in the profile. Consequently,
the wrapped phase (after phase offset correction), in this case, would be the closest data to the
ground truth for the unwrapped phase. When comparing the true phase with the unwrapped phase

obtained with dLu, the two phases are considerably different.

On the other hand, SEGUE and QG performed very similarly in the volume-of-interest (brain).
However, the results of these two techniques differed in regions close to the sinuses and air canals
and regions corresponding to vasculature. In regions corresponding to vasculature inside the brain,
the algorithms handle the phase unwrapping differently due to flow artifacts. Examples of errors
in the unwrapped phase for these two algorithms due to flow artifacts are present in the fifth echo
in Figure 5.15. QG presents a very high maximum (orange arrow) in the location corresponding to
the great vein of Galen (this maximum is not present either in the wrapped phase or in SEGUE),
while SEGUE presents a minimum at approximately the same location (this minimum is not
present either in the wrapped phase or in QG). Also, both QG and SEGUE failed to estimate the
correct phase in the internal cerebral veins (green arrow) when compared to the true phase (since

no wraps are presented in that region).
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Figure 5.15: Unwrapped phase in a one-dimensional profile across an axial slice in a in vivo
dataset. The three unwrapping techniques considered were dLu. discrete Laplacian, QG: quality
guided, and SEGUE. The data for this figure was obtained from dataset D1 and the unwrapping
was performed after phase offset correction. The green and orange arrows correspond to errors

in the unwrapped phase in the internal cerebral veins and great vein of Galen.

One noticeable difference between the QG and SEGUE is that in all datasets studied, SEGUE
tended to fill some regions of rapidly changing phase with zeros, while QG filled the same spaces
with non-zero values. This behavior is illustrated in Figure 5.16 in axial slice where the anterior
portion of the slice is close to the sinuses or close to ear canals. SEGUE places zeros in the
unwrapped phase map in regions where the wrapped phase is not well-behaved, where isocontours

do not form closed loops or where they terminate at the brain edge.
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Figure 5.16: SEGUE and QG unwrapping difference in regions where the phase wraps are not
well-behaved. Both images were obtained from the fifth echo in datasets B3 and D1 and represent
the regions where SEGUE was observed to fail in all datasets. The images at the left corresponds
to the result from SEGUE, while the image at the right is the result from QG. SEGUE tend to
assign zero value to voxels inside regions of high value and rapid changing phase values close to

air pockets (sinuses and ear canals).

The unwrapped phase predicted by QG and SEGUE, in some cases, differed from the wrapped
phase, even where there were no phase wraps (meaning where the wrapped phase coincided with
the true phase). This behavior is observable in Figure 5.15 (and it also was observed in all datasets),

particularly at the beginning and at the end of the curves representing the phase across a one-
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dimensional profile. As shown below, this difference was not an unwrapping error, but rather

evidence of the phase offset correction performed before phase unwrapping.
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Figure 5.17: Violin plots representing the phase distribution after spatial unwrapping (using QG)
at each echo before (left column) and after (right column) temporal phase unwrapping using
THUMPR. The two images at each row (a and b) represent different methods to handle the phase
offset correction. a) The phase offset correction was done before temporal unwrapping using a
phase difference map and complex division. B) The distributions are presented without phase offset
correction, which would take place during the weighted linear fit to combine the phase data. In
the first case, the temporal wrap appears between the second and third echoes, while in the second
case the wrap appears between the first and second echoes. The phase information used

corresponds to dataset C2.

The discrepancies between the true phase and the unwrapped phase at the edges of the profiles in

Figure 5.15 were due to the phase offset correction. The phase offset correction causes the wrapped
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and (consequently) the unwrapped phase to change. In Figure 5.18 the wrapped phase without
phase offset correction (as in Figure 5.15) is compared with the wrapped phase with phase offset
correction. The figure also compares the unwrapped phase (using QG) with and without phase
offset correction. As can be seen in Figure 5.18 (and in contrast with Figure 5.15), the unwrapped
phase indeed coincides with the wrapped phase when considering phase offset correction. Figure
5.18 basically presents the unwrapped phase across a single one-dimensional profile for the
unwrapped phase (after THUMPR) presented in Figure 5.17 a) and b). The difference in the
profiles for the unwrapped phase with and without phase correction manifest as differences in the

phase distribution in Figure 5.17 or the profiles in Figure 5.18.

The position of the introduced temporal wraps by spatial unwrapping changes depending on the
postprocessing of the data after acquisition. Figure 5.17 illustrates the effect caused by handling
the phase offset correction differently. In a) the phase offset correction was done before phase
unwrapping and using a phase difference map and complex division (meaning the approach used
in this project and described in the Methods section 4.1). In contrast, b) presents the phase when
not corrected by phase offsets before unwrapping. In this case, the correction is performed during
the linear fitting to combine the phase data (to generate the TFS map). In both cases, the temporal
wrap produced by QG unwrapping occurs at different positions. The location of the wrap does not
affect the performance of the unwrapping technique used to correct the evolution of phase with
time (THUMPR). However, the phase distribution for each echo changes across all echoes, which
is expected since in a) the phase distribution corresponding to the phase offset was removed (in

contrast with b)).

The phase offset correction before unwrapping also caused fewer artifacts in the LFS map. This

effect is shown in section 5.2.2 in Figure 5.20.
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Figure 5.18: Wrapped phase in an axial slice and one-dimensional profiles to study the changes
in wrapped and unwrapped phase (using QG) due to phase offset correction. The unwrapped phase
including phase offset correction before unwrapping is labeled as “‘unwrapped phase a)”, while
without this correction it is labeled as “unwrapped phase b)”. The data for this figure was

obtained from dataset C2.

5.2.2 Unwrapping and background removal techniques in conventional QSM

Visually, the best results for the calculated LFS maps were obtained with the methods paired with
QG unwrapping, which lead to the maps with the least amount of background fields erroneously
identified as local fields. Also, among the background removal techniques (paired with QG), PDF
presented the least amount of background fields erroneously identified as local fields. These
spurious local fields can be identified in Figure 5.19 as abnormally bright or dark regions in the
LFS maps. Moreover, the errors at the edge of the brain when comparing PDF with LBV were
gathered and highly constrained at the edges of the brain in PDF (orange arrows), while in LBV
the artifacts that originated at the edges penetrated further inside the ROI (red arrows). The same
trend was observed for all datasets collected in this study and these results are consistent with those
from numerical simulations in Figure 5.3. For dataset D2, when comparing PDF and LBV (paired

with QG) RMSE was 53.0 ppb. On the other hand, when comparing PDF and RESHARP and PDF
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and LBV in an eroded mask (8 voxels) RMSE was 10.2 ppb and 23.9 ppb, respectively.
Consequently, for calculating the susceptibility in deep gray matter structures, PDF and
RESHARP would likely produce results more consistent with each other than LBV. On the other
hand, the different interpretation of the local field close to the edges of the brain in LBV and PDF

considerably increased (the RMSE doubles) the disagreement between these two methods.

PDF RESHARP LBV PDF RESHARP LBV

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
[ppm]
Figure 5.19: Comparison of background removal algorithms and the effect of unwrapping

techniques on an in vivo dataset. The left image shows LFS maps. The right image shows difference
maps for each LFS map using as ground truth the local magnetic field derived from the numerical
model. The background removal techniques used were PDF, RESHARP (8 voxels radius), and
LBYV. The green arrows indicate examples of incorrectly identified local fields in the anterior
region of the brain. The orange and red arrows indicate errors at the edges of the brain in PDF

and LBV, respectively. The images showed correspond to dataset D2.

The quality of the LFS maps calculated after background removal was impacted by the approach
considered for phase offset removal. By performing the phase offset removal before phase

unwrapping, the presence of artifacts decreased in the calculated TFS and LFS maps as shown in
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Figure 5.20. This figure shows the TFS (before background removal with PDF) and LFS (after
background removal) maps (axial and sagittal) for dataset C2. When the phase offset correction
was done during the weighted least square fit, after phase unwrapping, artifacts appeared in the
inferior part of the brain. These artifacts appeared in both the TFS and LFS maps, and are indicated

by arrows in Figure 5.20.

a) Correction Correction Difference b) Correction Correction Difference
before unwrap. after unwrap. map before unwrap. after unwrap. map

LFS

LFS

-0.05 -0.025 [p;())m] 0.025 0.05 -0.05 -0.025 [pgm] 0.025 0.05
Figure 5.20: Effect of phase offset correction in TFS and LFS maps. a), b), c), and d) present the
maps generated with different methods to calculate the phase offset correction and the
corresponding difference maps. a) and c) are coronal and sagittal views of the TF'S maps. b) and
d) are LFS maps calculated using PDF. The arrows indicate artifacts that were present in the TFS
and LFS maps when performing the phase offset correction during weighted least squares fit. The

images showed correspond to dataset C2.

95



5.2.3 Evaluation of susceptibility maps using in vivo datasets

pLN-QSM_TFIR

F igur .21 : usceptibili : mapsuper image) and difference maps (inferior image) for all
dipole inversion and direct inversion methods paired with different unwrapping techniques. All
susceptibility maps were obtained from dataset Cl. The difference maps were created using
GORG+PDF+MEDI+0. Red, green, and blue arrows indicate “bright and dark” artifacts,

ringing artifacts, and streaking artifacts, respectively.

When comparing the performance of conventional QSM and direct inversion methods, the use of
QG generated the susceptibility maps with the least amount of artifacts. Susceptibility maps
obtained for each case in dataset C1 are displayed in Figure 5.21. The dynamic range was selected
to highlight the artifacts present in the susceptibility maps. The susceptibility maps showed an
increased number of “bright and dark” artifacts close to the anterior and lateral regions of the brain
for SEGUE and dLu when paired with MEDI+0, pTFI, and pLN (red arrows). TFIR and iSWIM

presented ringing artifacts that are more noticeable when pairing the techniques with SEGUE
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(green arrows). MEDI+0 and iISWIM presented streaking artifacts that, similar to ringing artifacts,
were more prominent when using SEGUE (blue arrows). The same trend was observed in all

datasets.

In LN-QSM, the use of a preconditioner was indispensable to obtain acceptable quality
susceptibility maps. The same preconditioner that was used in pTFI was also used in LN-QSM in
all susceptibility maps shown in this project, using the method described as pLN-QSM. The effect
of the preconditioner in LN-QSM is illustrated in Figure 5.22. Without a preconditioner and for a
given number of iterations in the conjugate gradient algorithm, the quality of the susceptibility
maps was noticeably worse when compared to the susceptibility maps that included the

preconditioner.

[Ppm]
Figure 5.22: Effect of adding a preconditioner in LN-OQSM. In the superior row, the image shows

susceptibility maps obtained for LN-QSM without including a preconditioner (Pg = 0). In the
inferior row, the image shows susceptibility maps obtained for pLN-OSM, including the same
preconditioner as in pTFI (Pg = 30). In both cases, susceptibility maps for a different number of
iterations in the conjugate gradient algorithm are shown. The iterations considered in the images

are 100, 200, 300, 400, and 500. The susceptibility maps correspond to dataset C2.
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Figure 5.23: Axial and sagittal views for conventional QSM and direct inversion methods. All

results were obtained with QG and PDF in the case of MEDI+0 and iSWIM. The susceptibility

maps were obtained from dataset D1.

When comparing the susceptibility maps obtained for conventional QSM and direct inversion
methods, fewer artifacts were observed in the susceptibility maps for pTFI and pLN-QSM. Figure
5.23 presents axial and sagittal views for the susceptibility maps obtained with all the techniques
(paired with QG and PDF). Figure 5.23 is presented to allow a better visualization of the
susceptibility maps presented in Figure 5.21. pTFI and pLN-QSM presented fewer streaking
artifacts due to sinuses (blue arrows) and artifacts at the edges of the brain (orange arrows), as
indicated in Figure 5.23 in conventional QSM. TFIR presents ringing artifacts in the anterior
region of the brain (green arrows) and fewer artifacts at the edges when compared to MEDI+0 or
1ISWIM. pTFI and pLN-QSM produced susceptibility maps with a “softer” texture when compared
with the other methods, which is observable in the sagittal view (white arrows) and the (relatively)

less sharp depiction of vasculature in these two techniques.
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Figure 5.24: Systematic underestimation of susceptibility values in pTFI and pLN-OQSM. These

two techniques generate susceptibility maps with susceptibility values smaller than conventional

OSM or TFIR. The figure also illustrates how this effect changes across datasets.

Direct inversion methods (pTFI and pLN-QSM) tended to estimate lower susceptibility values,
especially for high susceptibility regions when compared to conventional QSM. This behavior was
first noticed in numerical simulations (in the globus pallidus). The difference maps in Figure 5.21
show how pTFI and pLN-QSM differ from MEDI+0 in structures of high susceptibility like the
putamen, globus pallidus, and caudate nucleus. However, in contrast to numerical simulations, for
in vivo datasets, the tendency of estimating lower susceptibility values when compared to
conventional QSM was more prominent all across the brain. The difference in susceptibility (lower

values compared to conventional QSM) was visually perceptible in the susceptibility maps shown
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in Figure 5.23. Moreover, the effect was variable depending on the dataset. This variability is
illustrated in Figure 5.24, where datasets D1, D2, and D3 were selected to show the variability
across the same volunteer, scanned the same day, with the bandwidth being the only parameter
that changed across datasets. Dataset Bl was also included in this figure since this dataset

presented the most extreme difference between pTFI and pLN-QSM and the other methods.
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Figure 5.25: Bar plot of the mean and standard deviation in anatomical ROIs in dataset B1. The
structures where the susceptibility was measured were the cortical region of the brain, thalamus

(TH), caudate nucleus (CN), putamen (PU), and globus pallidus (GP).

When analyzing the values of the susceptibility in anatomical ROIs, the values measured for TH,
CN, PU, and GP by pTFI and pLN-QSM were smaller than the values measured for MEDI+O0.
When comparing the values of these two techniques with iISWIM, the values were considerably
smaller only in the GP. On the other hand, TFIR tended to produce higher susceptibility values
than all other techniques in TH, CN, PU, and GP. In the case of the cortical region of the brain,
TFIR was the only technique measuring positive susceptibility values, while all other techniques
measured negative values. In the cortical region of the brain, pTFI and pLN-QSM measured
comparable values for the susceptibility. The ANOVA performed to compare the effects of

methods and ROI on the measured susceptibility values revealed that there was a statistically
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significant difference between at least two methods. The p values for the two effects (methods and
ROIs) and their interactions were well below 0.05. Post-hoc pairwise testing notably showed a
significant difference between MEDI+0 and direct inversion methods (adjusted p-values values
below 0.05). Since the numerical simulations indicated MEDI+0 as the most accurate conventional
QSM method, the disagreement of MEDI+0 and direct inversion methods questions the reliability
of pTFI, pLN-QSM, and TFIR in deep gray matter structures.
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Chapter 6

Discussion

6.1 Evaluation of susceptibility maps using numerical simulations

6.1.1 Comparison of phase unwrapping algorithms

In numerical simulations, QG and SEGUE performed similarly according to the RMSE metric.
QG was able to recover the true phase more accurately for early echoes and was more robust to
noise when compared to SEGUE. On the other hand, SEGUE was more accurate for late echo
times. This subtle difference between the accuracy of the methods depending on echo time
contributes to QG being a better option for QSM. To combine the phase data, a weighted least
square fit is used and the weights are proportional to the square of the magnitude signal [55]. Since
the value of the magnitude decays with echo time, the data at earlier echoes is given higher weights.
Higher accuracy in the unwrapped phase at early echoes could contribute to a better estimation of

the total field shift (TFS) map.

In simulations, QG and SEGUE were more accurate than dLu, which significantly modified the
retrieved phase. Despite modifying the phase, dLu led to more accurate susceptibility maps than
SEGUE, based on smaller RMSE values and fewer artifacts for all cases. It was found that SEGUE
tends to create regions of zero-valued voxels inside the brain (which was also observed for in vivo
datasets and illustrated in Figure 5.16). This observation is consistent with the reported errors
produced by SEGUE close to the sinuses [50]. However, the assigned zero value to these patches
inside the volume-of-interest suggests that SEGUE is deliberately excluding these voxels from the
calculation and labeling them as unreliable (instead of producing an incorrect unwrapped phase in
these regions). These regions may be created during the “partitioning” step in the algorithm [47].

These regions propagate to the TFS after weighted least squares fit and they are interpreted during
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the dipole inversion step as a steep change in the field, which produces artifacts. The failure of
SEGUE in QSM shows that in addition to quantitative accuracy, smoothness and continuity are

also desirable properties in the estimated phase.

The results show that dLu is the least accurate method. Although, the precision of dLu (compared
to the other techniques) is unaffected by the increase of noise level. The lower accuracy of
Laplacian unwrapping techniques is generally rooted in their inability to retrieve the exact phase
and, depending on the implementation of boundary conditions, the introduction or removal of
harmonic components when compared to the true phase. That said, the use of the Laplacian
operators enforces smoothness in the calculated unwrapped phase and it makes these techniques
more robust against noise [37]. Although not all Laplacian unwrapping techniques are created
equal, the properties listed above are technically intrinsic to Laplacian unwrapping. Prioritizing
Laplacian unwrapping over path-following techniques can be justified in scenarios where
quantitative accuracy is not the main goal, as in SWI [97]. Laplacian unwrapping can be a good
option in cases when sacrificing accuracy is justifiable in exchange for robustness to noise and a
large amount of phase wraps or when the priority is to retrieve a smooth and continuous phase that

still maintains enough structural information [50], [93].

6.1.2 Unwrapping and background removal techniques in conventional QSM

According to the results for the numerical simulations, the best performing method that does not
require edge erosion was PDF. The different physical and mathematical assumptions driving the
background removal algorithms explain the differences in the performance observed between the
methods [2]. However, it is worthwhile to note that the background field in the numerical models
was produced by susceptibility sources corresponding to anatomy simulated outside the brain.
Thus, the background field in the numerical model is harmonic and produced by dipolar sources
that are near the brain. This approach to simulate the background field is favorable for PDF. PDF
models the background field by placing dipole sources outside the volume-of-interest but within
the field of view (FOV) of the image, which corresponds to a model of the background field as a
subspace of harmonic functions [58]. However, it has been reported in the literature that PDF

cannot model background fields that are non-harmonic or that are harmonic but generated by

103



sources far from the brain. For example, this includes the background fields that are produced by

the susceptibility change caused by the lungs/surrounding tissue interfaces [2].

The background field fitting approach in PDF outperformed spherical mean value filtration in
RESHARP when comparing both methods in an eroded brain mask. Moreover, RESHARP (and
for that matter, any variation of SHARP) requires edge erosion to remove the background field.
The edge erosion is caused by the use of the spherical mean value (SMV) theorem to remove the
harmonic contributions in the field caused by background fields [58]-[60]. Edge erosion renders
this method inappropriate to measure susceptibility in cortical regions of the brain. Although, in
this case, the method was included to evaluate how SMV filtration works when compared with the
background field fitting that PDF performs. The worse performance of RESHARP when compared
to PDF (in an eroded mask) can be explained due to averaging effect of SMV filtration that tends
to suppress spatial information from the anatomy in the brain, producing flat LFS maps [98]. An
aspect where RESHARP is better than PDF is to remove background fields due to non-harmonic
contributions, which is possible due to the inclusion of Tikhonov regularization in the method [58],
[60]. This aspect could not be evaluated since the background field was modeled only using

harmonic contributions.

The goal of Tikhonov regularization in RESHARP is to suppress noise and error amplification
when removing the background field [60]. Tikhonov regularization can also bring undesirable
consequences like oversmoothing of the local field when a large regularization parameter is used
[99], suppression of large and rapidly changing susceptibility (~0.3 ppm) regions [49], and an
increase in artifacts (regularization artifacts) in the estimated local field [58]. In the numerical
simulations presented in subsection 5.1.2, accuracy was greater with RESHARP than with SHARP
(results not shown) in the description of deep gray matter structures, which is coherent with an
other report [60]. Since this study was limited to brain parenchyma, no phase suppression as
reported in [49] was observed. Finally, the numerical simulation considered in this work is
basically a piecewise continuous model. Thus, it was not possible to evaluate if oversmoothing
would affect the natural susceptibility variation within each of the structures added to the

numerical model (since no natural variation or “texture” was added to the model). On the other
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hand, oversmoothing did not appear to affect the resolution of the boundaries between the

structures in the numerical model.

The errors at the edge of the brain in PDF and LBV are caused by violations of the physical
assumptions close to the edges. In PDF, the assumption of orthogonality between the spaces
spanned by background dipolar fields and local dipolar fields holds relatively well in the interior
of the brain, but close to the edges the inner product between background and local fields is no
longer close to zero—due to the spatial proximity between dipoles in the background and inside
the brain—breaking the algorithm [56]. In LBV, the errors are not only constrained at the edges of
the brain as showed in Figure 5.4, but high magnitude errors also appeared inside the eroded mask.
In the case of SEGUE+LBYV or QG+LBYV, the errors at the edge of the brain are greater than in the
eroded mask. The errors in LBV are caused due to erroneous boundary conditions introduced by
an inaccurate brain mask. An inaccurate brain mask that extends beyond brain tissue introduces
noisy voxels that produce incorrect boundary conditions. On the other hand, a brain mask that
underestimated the extension of brain tissue introduces voxels where the value of the local field

does not match the assumption of LBV [6], [58], [61].

6.1.3 Evaluation of susceptibility maps using numerical simulations

To evaluate the susceptibility maps obtained from conventional QSM (MEDI+0 and iISWIM) and
direct inversion (pTFI, pLN-QSM, and TFIR) methods, four approaches were considered. 1) In
numerical models, the comparison of the estimated solution with the ground truth (when available)
using difference maps and the RMSE as a quantitative metric was used to determine the accuracy
of the methods. 2) For in vivo datasets, the evaluation of direct inversion methods was done through
comparison with conventional QSM. 3) In numerical models and in vivo datasets, the performance
of the methods was assessed by evaluating the susceptibility in anatomically relevant ROIs. 4) In
numerical models and in vivo datasets, the evaluation of the visual appearance and artifacts spread

across the brain was considered to determine the best method.

The use of the RMSE as the main quantitative metric was motivated by prior verification of its

high correlation with other global metrics like Structural Similarity Index Measure (SSIM) and
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High Frequency Error Norm (HFEN) [100]. In [100], it was also shown that the visual quality of
the maps, qualitatively evaluated using a scale from 0 (best) to 3 (worst), correlated fairly well
with the value of RMSE metrics. However, global metrics alone do not tell the full story since
these metrics tend to favor reconstructed susceptibility maps that are over-smoothed or/and over-
regularized [101]. Consequently, the analysis required additional qualitative visual inspection,
evaluation of artifacts, and evaluation of accuracy in anatomically relevant ROIs. In the case of in
vivo datasets, a quantitative comparison is more challenging since there is no ground truth or even
a “gold standard” for comparison. Conventional QSM was chosen as a reference since the
performance of these methods (MEDI+0 and iSWIM) is well documented in the literature. The

best approach to evaluate QSM results is still an open question in simulation and in vivo datasets.

6.1.3.1 Unwrapping and background removal in QSM

In numerical model B, the best performing methods according to the RMSE metric were those
paired with QG. This result was also consistent with improved visual quality and reduced artifacts
compared to the methods paired with SEGUE or dLu. Considerable variations of the QSM result
were observed depending on the combination of unwrapping technique and dipole inversion or

direct inversion method.

Among conventional QSM methods, MEDI+0 produced better results than iSWIM, especially in
model B. iSWIM iteratively adds information to k-space, while MEDI+0 includes L,
regularization in the spatial domain. Although iSWIM reduces streaking artifacts, it has been
shown in other works that MEDI-type solutions lead to better results [4], which is consistent with
the results obtained in this work. However, one outcome of this project is that iISWIM failed to
produce a satisfactory result when paired with SEGUE (in both numerical models). The zero-
valued patches created by SEGUE when finding unreliable voxels considerably affect iSWIM
performance. MEDI+0 was more robust against this type of effect produced during the unwrapping
step in the numerical model B. This information can be interpreted as a cautionary tale for
designing QSM techniques or for using existing methods in regions outside the brain. QSM
methods that use information from the Fourier domain tend to require information throughout all

space and they are generally unable to exclude information from specific spatial regions [2].
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Moreover, the methods that operate over the Fourier space do not allow the addition of the same

regularization added in the methods that work with spatial information.

Direct inversion methods presented similar artifacts to MEDI+0, which was expected since these
methods also solve the problem in image space and use similar regularization. It was also observed
that the range of susceptibility values estimated by TFIR differed from the range obtained from
pTFI and pLN-QSM. The range of values in TFIR was biased towards the value of -0.033 ppm
(WM), which corresponded to the largest number of voxels in the numerical model (this is
illustrated in Figure 5.11). The modification in the dynamic range is a consequence of the spherical
mean value (SMV) filtration included in TFIR, since SMV filtration causes bias towards high-
frequency fitting [8]. By applying SMV filtration to the ground truth in the numerical model, it
was observed that this low-frequency filter tends to favor keeping the information in some regions
more than in others. This was especially true in WM in both numerical models, and it resulted in

the observed susceptibility range modification.

6.1.3.2 Comparison of conventional QSM and direct inversion methods

When comparing the appearance of the susceptibility maps obtained with conventional QSM and
direct inversion methods, pTFI and pLN-QSM presented fewer streaking artifacts and artifacts at
the edges of the brain. TFIR also showed fewer streaking artifacts than conventional QSM, but
ringing artifacts (in axial slces) appeared in the anterior region of the brain. However, it was
observed that the susceptibility maps produced by direct inversion methods struggled to reproduce
the structural features included in the numerical model, giving these susceptibility maps a
“smoother” look when compared with conventional QSM (which was also observable in one-
dimensional profiles). The simultaneous artifact suppression and ‘“smoother” appearance of
susceptibility maps in direct inversion methods are due to the regularization included in these
methods akin to other QSM techniques that use regularization to solve the ill-posed inverse

problem [36], [64], [73], [75].

The type and amount of regularization in QSM should be chosen according to the intended use of

the susceptibility maps: namely, voxel-based study of the map, measurement of the susceptibility
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in anatomical ROIs, or visual inspection by radiologists [101]. The fact that pTFI and pLN-QSM
produced the smallest RMSE values and the lack of artifact in numerical simulations and in vivo
datasets suggests that these methods are well suited for voxel-based studies and even visual
inspection by radiologists in regions close to the brain edge (due to the relatively small amount of
artifacts in this region). On the other hand, the results in this thesis suggest that to quantitatively
determine the susceptibility in anatomical regions, conventional QSM with MEDI+O0 is a better
alternative than direct inversion methods. Direct inversion methods are promising techniques
thanks to reduced artifacts and reduced errors at the edge of the brain (when compared with
conventional QSM). However, these methods’ lack of refinement when solving the ill-posed
inverse problem (as discussed further in subsection 6.1.3.4) or their questionable
robustness/practicality (as discussed in subsection 6.2.3) are a signal that further development is

required for this category of methods.

6.1.3.3 Decoding the operation of direct inversion problems

Direct inversion methods eliminate the explicit background removal step by estimating a
susceptibility distribution outside the volume-of-interest (brain) that accurately reproduces the
background field when compared to the ground truth. In simulations, there was a good agreement
between the field derived from the susceptibility distribution outside the brain and the ground truth
for the background field. This mechanism of action was already hinted at in the publications for
each direct inversion method [6]-[10] when it was established that the susceptibility distribution
X = X1 + Xg 1s estimated (for the susceptibility distribution y; that produces the local field and the
distribution xg that produces the background field). Direct inversion methods are generally stated
as unaffected by the imprecise separation between background and local fields when the physical
and mathematical assumptions used in conventional background removal are broken (especially
close to the edges of the volume-of-interest) [6], [7]. That said, there has yet to be an explanation
of the principles that allow the separation between local and background fields in the case of direct
inversion methods. Consequently, an explanation of how direct inversion methods operate is
included below, along with an explanation of why these methods appear “immune” to the

shortcomings of conventional background removal algorithms.

108



The direct inversion methods considered in this project rely on the same physical assumption as
PDF, meaning that the background field is estimated by projecting the total field onto the space
spanned by dipolar fields produced due to susceptibility variation outside the volume-of-interest
(brain). To support this claim and to simplify the explanation (without losing generality), it is
possible to consider the least-squares norm term in TFI with no preconditioning (meaning that the
starting point from the derivation presented below corresponds to the least-squares term in

equation 3.76, subsection 3.2.5.1) and state the problem in an equivalent form:

Iw[8B — b, * (s + X[l = Iw[8B — (b * x) — (by * x0)]II;
= lw[8B — Bg — BL1II5
= |lw[8B — Bglll5 + lIlwBL I3 — 2(w[8B — Bg], wBL)g

Here, Bg = (bx ¢ XB)= B, = (bx * XL) and (, )g is the Frobenius inner product. For a detailed

description of the notation used in this derivation, refer back to Chapter 3. Derivation 6.1

illustrates how direct inversion methods work. First, consider the minimum solution:
min||w[68 —by,* (xg + XL)]”z =0 6.2
When minimizing the new expression in 6.1, the zero value is obtained only when:
lw[8B — Bg]lI + [IWBLII3 = 2(w[8B — Bg], wBL)g 6.3

This solution is possible according to the projection theorem [56] only when argming |[w[6B —
Bglll3 = Bj has a unique solution such that 8B — B = B; for B and B;, the true background and
local magnetic fields, respectively. Then, both sides of 6.3 are equal to two times the squared value
of the Frobenius norm of the local magnetic field (times the weighting matrix w). Consequently,
direct inversion methods also depend on the assumption of orthogonality between the spaces
spanned by the background and local dipole fields. From a minimization problem standpoint, the

terms in 6.1 can be interpreted as:

- The first term ||w[8B — Bg]||3 calculates the background field and is equivalent to PDF.
- The second and third terms ||wBy ||% and 2(w[8B — Bg], wB_)f calculate the local field.
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Although direct inversion methods use the same physical principles as PDF, the resulting
susceptibility maps present fewer artifacts close to the edges of the brain and provide a more
accurate description of the local/background field separation due to a priori information added to
the model. Establishing a preconditioner in the susceptibility distribution as proposed in [6] is
equivalent to a priori defining the background field as one or two orders of magnitude larger than
the local field. Due to how the preconditioner is built, the established constraint (difference
between local and background fields) “softens” towards the interior of the brain, which explains
the better performance reported for pTFI close to the boundary of the brain [6]. On the other hand,
PDF assumptions break down close to the boundary. But, by adding the preconditioner, the direct
susceptibility reconstruction is aided in the regions where PDF breaks down. In the case of LN-
QSM [7], the a priori information and the difference in magnitude between the local and
background magnetic fields is supposedly introduced thanks to Tikhonov regularization. In this
work it was found that Tikhonov regularization was not sufficient to create plausible susceptibility
maps. This effect was illustrated in Figure 5.22 and will be discussed in subsection 6.2.3. TFIR [8]

adds a priori information by including filtered R’ information (equation 3.20).

6.1.3.4 Measurement of the susceptibility in anatomical ROIs

When studying the susceptibility in the deep gray matter structures included in numerical model
B, MEDI+0 was the most accurate technique to estimate the susceptibility in the four structures
included in the model. pTFI and pLN-QSM failed to estimate the susceptibility in the thalamus.
TFIR also failed to estimate susceptibility accurately, especially in the thalamus and caudate,
although it was the most accurate method in the globus pallidus and the only direct inversion
method that estimated a negative mean susceptibility value for the thalamus. Relation 6.1 sheds
some light on the explanation behind direct inversion methods failing to estimate susceptibility
values in ROIs. pTFI includes a priori information added to the model to aid the separation
between background and local magnetic fields [6] since the preconditioning will exclusively affect
the terms in 6.1 containing the background field. On the other hand, the ill-posed inverse problem
of estimating the susceptibility distribution from the local magnetic field is not aided with any
additional information. In the case of pLN-QSM, extra regularization is added in the form of

Tikhonov regularization. But this regularization is stated to aid the background/local field
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separation [7]. Once again, no a priori information is added to the model to solve the ill-posed
inverse problem. Moreover, even if Tikhonov regularization affects the estimation of the local
susceptibility, the rather similar performance of this method compared to pTFI and the necessity
of extra preconditioning (Figure 5.22) suggests that this is not the most appropriate way to aid the
ill-posed inverse problem. Finally, TFIR performs a bit better in some structures thanks to the
addition of R, information (equation 3.20). The filtration required to include this information in
the model brings new problems and the best way to include R information in direct inversion

methods is still an open question [8].

For susceptibility measurements in the cortical region of the numerical brain, the only noticeable
difference between models A and B was that the values measured in model A for pTFI and TFIR
were slightly smaller when compared with model B. First, the intention behind having two
different models was to determine if the presence of high susceptibility sources in the brain and
consequently the increase of susceptibility dynamic range affects the measurement of the
susceptibility in the cortical region of the brain. This approach was adopted since large
susceptibility dynamic ranges degrade the quality of QSM, not only causing streaking artifacts but
also altering the obtainable contrast and susceptibility values as observed in whole head QSM [7],
one of the most extreme cases. The reasons why the values obtained in model A were slightly
different from model B are still not entirely clear. One factor that contributed to the change in
values between models was the “blurring” effect that QSM has over the numerical models
considered. Discrete values corresponding to different structures were not recovered as sharp
discrete values, but as highly blurred versions of the discrete distribution as in MEDI+0 or
normally distributed susceptibility distributions in all other QSM techniques. By adding high
susceptibility sources, the obtained susceptibility distributions were different when comparing
models A and B. The “blurring” effect introduced by high susceptibility sources could affect the

measurement in the cortical region of the brain.

6.1.3.5 Susceptibility estimation for varying SNR

Lower SNR values produced more artifacts in the susceptibility maps, but the types of artifacts for

each technique were different. The artifacts were more noticeable in iISWIM than in MEDI+0,
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pTFI, pLN-QSM, and TFIR. This result was coherent with [102], where Bayesian methods that
use noise weighting matrices dealt better with noise compared to other methods. In MEDI+0, pTFI,
pLN-QSM, and TFIR the weighting matrix accounting for noise in the measurements contained

the inverse of the standard deviation for each voxel [75].

In direct inversion methods, when measuring the susceptibility in anatomical ROIs, the change in
SNR caused changes in the precision of the measurement and ad hoc shifts in the distribution of
the susceptibility values for each region. The effect was more noticeable for deep grey matter
structures than the cortical region of the brain. The change in the precision of the measurements
was directly related to the noise level. With less noise, the precision of the measurements was
better. On the other hand, the shift of the susceptibility distributions and the accompanying change
in appearance of the susceptibility maps did not follow a clear trend with SNR. This shift is similar

to the effect illustrated for in vivo datasets in Figure 5.24 and will be discussed in subsection 6.2.3.

6.2 Evaluation of susceptibility maps using in vivo datasets

6.2.1 Unwrapping algorithms comparison

In the measured datasets, the closest data to the “ground truth” for the unwrapped phase is the
phase at early echoes when there are few phase wraps. When comparing the phase from the
selected phase unwrapping algorithms with the “true” phase in axial slices, similar results to the
numerical models were obtained. SEGUE and QG performed similarly according to the profiles
studied in several axial slices for all datasets. SEGUE produced zero-valued patches close to
regions of steep phase change as discussed in subsection 6.1.1. Finally, similar to the numerical
models, dLu altered the phase when compared with the unwrapped phase of other techniques. The
modified phase from dLu, similar to numerical simulation, was produced due to the use of the

Laplacian operator [2], [58]

The phase offset correction step was implemented using a similar approach to the one proposed in
[37], [82] but applied to the phase information combined over channels. This correction was

performed since even if matched phase information is used to create the composite phase image
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combined over channels [37], there might be time-independent contributions in the composite
phase images that are not removed during phase matching or channel information combination [2].
By implementing the phase offset correction in the proposed way, instead of during the weighted
least square fit to calculate the total field shift, fewer artifacts were observed in the TFS and LFS
maps. By removing time-independent phase contributions before phase unwrapping, singularities
(open-ended fringelines) are removed facilitating the operation of path-following phase
unwrapping techniques [82]. Moreover, there is a possibility that an optimal SNR is achieved by
removing the phase offset using a smooth version of the ¢, map, which would improve the
performance of unwrapping algorithms over the wrapped phase in each echo. This would be an
effect similar to the one observed when considering the multi-channel phase difference

combination method [37].

6.2.2 Unwrapping and background removal techniques in conventional QSM

For QSM of deep grey matter structures, PDF or RESHARP are suitable options for background
removal in conventional QSM, while LBV was found as the method that differs the most when
compared to the other techniques. In the entire brain, the disagreement between PDF and LBV just
increases due to the different depictions of the local field close to the edges. The agreement
between PDF and RESHARP can be explained since both techniques work by minimizing the
norm of the internal field [58]. When comparing the errors at the edges of the brain it was observed
that for in vivo datasets (and numerical simulations) the errors were more spread towards the
interior of the brain, in contrast with the highly localized errors in PDF. This observation is
consistent with a previous report [58], where the spread of the errors was explained due to
violations of the assumption of zero local field at the boundary of the brain. Moreover, the better
performance of PDF over LBV in the collected datasets and observed in this thesis is consistent
with prior findings [50], where the same datasets were used to study the effect of temporal
unwrapping. However, other sources have deemed LBV as the superior technique when compared
with PDF [58], [103]. In the current work, PDF was selected due to the better performance in

numerical models and the reduced amount of errors in the LFS map at the edge of the brain.
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6.2.3 Evaluation of susceptibility maps using in vivo datasets

In terms of phase postprocessing, the optimal options (among the methods studied in this project)
in conventional QSM are also the optimal algorithms for direct inversion methods. As discussed
in subsection 6.2.1, the approach that generates fewer artifacts in both the LFS and TFS maps is
to perform the phase offset correction before unwrapping. Since this approach produces a better
description of the local and background fields, it is the better option (compared to removing the
phase offset during the weighted least square fit) for conventional QSM and direct inversion
methods. In determining the best unwrapping method for QSM, it was found that QG was the best
option for conventional QSM and direct inversion methods. This result is consistent with the
results obtained from the numerical simulations. Similar to numerical simulations, the
discontinuities created by SEGUE considerably reduced the quality of the estimated susceptibility
maps. Finally, similar to numerical simulations, dLu also altered the phase in the experimental

data.

When comparing the susceptibility maps obtained in pTFI and pLN-QSM with conventional QSM,
there was a visually perceptible difference in the values of susceptibility estimated in each case.
This effect was observed for all datasets and it changed depending on the unwrapping technique
and dataset. One possible explanation for the noticeable difference could be a suboptimal selection
of regularization constants. This might bring into question either the robustness of pTFI and pLN-
QSM or the practicality of these methods. In all cases, for the susceptibility reconstruction using
direct inversion methods, the regularization parameters suggested in the original papers for each
method were used [6]-[8] for QSM in a healthy brain. The degree to which the susceptibility values
changed depending on the datasets or unwrapping technique indicates that, even after selecting the
ideal parameters for one dataset, those parameters may not work for other datasets. Moreover, the
“right” approach to selecting these parameters remains an open question. In only three different
papers, there are four different ways to search for reconstruction parameters: minimizing the
RMSE value when compared with a numerical model [6], L-curve criterion [7], minimizing the
RMSE value when compared with the results of a conventional QSM technique (COSMOS) [8],
and selecting the parameters empirically. Even if the right approach for direct inversion methods

is to calculate a particular set of reconstruction parameters for every dataset, the methods listed
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before require sweeping through many different values. Given the amount of computation time
required for a single susceptibility map (which was between 1 to 5 hours using a workstation

equipped with an 17-4770 CPU and 32 GB of RAM), pTFI and pLN-QSM would be impractical.

The use of a preconditioner in pLN-QSM considerably improved the quality of the calculated
susceptibility maps. The use of a preconditioner is justified in this case since in [71], it is shown
how the considered preconditioner in pTFI [6] is also compatible with Tikhonov regularization.
Also, considering how the preconditioner is built (equation 3.18) and derivation 6.1, the
preconditioner, in reality, does not affect the Tikhonov regularization term and only aids the
separation of background and local fields. Thus, in this project, it was verified that Tikhonov
regularization by itself is not enough to separate the background field from the local field. It was

not possible to reproduce the results reported in [7] without the use of a preconditioner.

pTFI and pLN-QSM estimated lower susceptibility values when compared with MEDI+0 in deep
gray matter anatomical structure ROIs, consistent with numerical simulations. Systematic
estimation of lower susceptibility values (compared to conventional QSM) in some regions when
using direct inversion methods has been previously reported, but there is conflicting information
in the few publications available for this category of methods. In the original publications for pTFI
[6] and LN-QSM [7], the tendency of the methods to produce lower susceptibility was not
described. However, there is a clear consensus about the tendency of pTFI and LN-QSM to
underestimate susceptibility (when compared to conventional QSM) [9] [8]. In [9], pTFI produced
lower susceptibility values for the CN, GN, and PU when compared with COSMOS and MEDI,
which coincides with the observed results in this project. In [§8], LN-QSM (without
preconditioning) was observed to estimate lower susceptibilities for CN, GN, PU, and TH
compared with COSMOS. In [8], it was also demonstrated that pTFI presents higher or similar
values for the mentioned structures but underestimated the values for other high susceptibility

structures not considered in this thesis (substantia nigra and red nucleus).
When comparing the values of the estimated susceptibility in the cortical region of the brain, it
was observed that the standard deviation is large compared to the mean value in MEDI+0, iSWIM,

and TFIR. In conventional QSM, the large standard deviation is due to the increase number of
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artifacts/errors at the boundary of the brain when compared to pTFI and pLN-QSM. On the other
hand, the large standard deviation in TFIR is a consequence of the inability of SMV filtration to
work properly close to the boundary of the brain. The standard deviation values in TH, CN, PU,

and GP are coherent with the values expected for in vivo measurements [95].

6.3 Limitations

The first limitation of this work was that the reconstructions parameters were not specifically
recalculated for the QSM algorithms. All the parameters were used according to the values
suggested in the literature or proposed in the original publication (of the algorithm) for QSM of a
healthy brain. The best way to determine these parameters is still an open question. There are
several alternatives as mentioned in subsection 6.2.3. Establishing the appropriate way to
determine the set of reconstruction parameters for each case requires a systematic analysis of each
option and the results that can be obtained. Also, a study of this magnitude will require
considerable computational resources and/or time since many iterations with varying parameters

must be performed.

In this project, susceptibility anisotropy and chemical shift of fat were not considered. For the
direct inversion and dipole inversion algorithms (in the case of conventional QSM) only single-
orientation QSM methods were considered and other methods like STI were not included.
Consequently, the susceptibility was assumed as a scalar and isotropic property. This assumption
breaks down in white matter where the susceptibility is an anisotropic property [5], [104]. The
chemical shift of fat was ignored as healthy brain parenchyma does not contain any significant
proportion of triglyceride signal. Chemical shift would need to be considered if the skull and scalp

were to be included in the field inversion problem.

Only healthy brain QSM was considered for this project. Hemorrhages and calcifications in the
brain can widely change the susceptibility of some structures and the range of susceptibility values
in the brain [7], [89]. From the perspective of direct inversion methods, the reconstruction
parameters between healthy and diseased brains change considerably and even finer spatial

resolution could be required to achieve susceptibility maps with reasonably good quality.
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Finally, the background field in numerical models was created according only to the field produced
by the anatomy modeled outside and inside the brain. This approach was selected based on [89].
However, this approach implies that the background field does not contain non-harmonic
contributions like B, -related field perturbations or that the model does not contain distant
harmonic contributions like the air/tissue interface produced by the lungs [37], [58]. The best
approach to model a realistic background field is still an open question. The code for a numerical
brain model far more sophisticated than the one created for this thesis was recently released [86],

but became available too late in the development of this thesis to be included.
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Chapter 7

Conclusions and future work

7.1 Conclusions

For this work, a QSM pipeline for conventional QSM and direct inversion methods was
implemented and used to study and compare the susceptibility maps obtained with these two
approaches for numerical simulation and in vivo datasets. It was determined that for conventional
QSM the best combination of options for the different steps in the pipeline are phase offset
correction through complex division before phase unwrapping, QG unwrapping, PDF background
field removal, and MEDI+0 dipole inversion. For direct inversion methods, it was verified that the
optimal options for phase data processing in conventional QSM also apply for direct inversion

methods. In particular, QG was the best unwrapping technique for direct inversion methods.

It was shown that the operation of direct inversion methods depends on the assumption of
orthogonality between the subspace spanned by all dipole fields inside the volume-of-interest and
the subspace spanned by all dipole fields outside the volume-of-interest. Thus, direct inversion
methods rely on the same physical/mathematical assumptions used in PDF. However, in contrast
with PDF, the simultaneous estimation of the background field and local susceptibility distribution
allows the introduction of a priori information in the model that aids the separation of background
fields from local fields. This was especially noticeable in regions where PDF fails like the edge of
the brain. The use of direct inversion methods such as pTFI and pLN-QSM resulted in fewer
artifacts at the edge of the brain and overall more accurate techniques (as suggested by the RMSE
metric) when compared with iSWIM or MEDI+0 (paired with PDF).

To measure the susceptibility in deep gray matter structures, conventional QSM is the better
alternative when compared with direct inversion methods. From the methods considered in

numerical simulations, MEDI+0 generated the closest susceptibility values to the ground truth for
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all the structures included in the numerical model compared to direct inversion methods. On the
other hand, pTFI and pLN-QSM systematically measured lower susceptibility values in deep gray
matter structures in the experimental datasets, when compared with conventional QSM. TFIR
solves some of the shortcomings of pTFI and pLN-QSM, but the use of spherical mean value
filtration to introduce R; information biases the solution and generates (relatively) more artifacts.
All these factors together highlight the limitations of direct inversion methods to handle the ill-
posed inversion problem of obtaining the susceptibility distribution from the magnetic field.
Moreover, the lack of robustness and the impracticality of direct inversion methods is a
consideration in choosing conventional QSM versus direct inversion methods for deep gray matter

structures.

To measure the susceptibility in the cortical region of the brain, conventional QSM is not a suitable
option due to the errors introduced close to the edge of the brain during background removal.
Direct inversion methods are a promising set of techniques for this region due to the suppression
of artifacts in this location, but a novel technique that improves over the lack of refinement when

solving the ill-posed inverse is required.

7.2 Future work

One of the conclusions derived from this project is that although direct inversion methods are a
promising approach to solve the QSM problem and measure the susceptibility in the cortical region
of the brain, current methods require further improvement. In direct inversion methods, the “name
of the game” is a priori information. The model requires information to aid the separation of
background and local fields, and information to aid the ill-posed inverse problem. pTFI and pLN-
QSM contemplate adding information to improve the background/local field separation when
compared to conventional QSM. TFIR adds additional information for the ill-posed inverse

problem, but the approach to adding the information in the model is not optimal.

Future work building on this thesis could be focused on studying the a priori information required

to improve direct inversion methods and the optimal way in which to include it in the model
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One place to start this research would be to generalize the proposed dipole inversion technique
named “structurally constrained Susceptibility Weighted Imaging and Mapping” scSWIM [40]. In
direct inversion methods, similar to dipole inversion techniques, the least-squares term can be
interpreted as the data fidelity term to estimate the total magnetic field shift [40]. The L, and L,
regularization terms add structural feature-based constraints and voxel fidelity-based constraints,
respectively [40]. scSWIM uses Tl-weighted and R} information to enforce constraints
accomplishing a reduction of streaking artifacts while preserving structural details. Thus, adapting
some of the ideas presented in scSWIM to direct inversion methods could significantly improve
the accuracy and visual quality of the susceptibility maps calculated with this category of

techniques.
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