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Abstract 
 

Quantitative susceptibility mapping (QSM) is an MRI modality that can estimate the magnetic 

susceptibility distribution of tissue. QSM uses the assumption that phase shifts in the complex MR 

measured data are primarily produced by susceptibility-induced field perturbations within the 

volume-of-interest. Thus, QSM calculates the susceptibility distribution by solving the inverse 

problem of deriving the susceptibility distribution from the field perturbation in the phase data, 

which is an ill-posed inverse problem. To solve the inverse problem, the measured phase data 

requires first post-processing (phase offset correction, phase unwrapping, and weighted least 

square fit to combine multi-echo phase information) and the removal of background magnetic field 

perturbations (field perturbations produced outside the volume-of-interest). The separation of 

QSM in three steps corresponds to conventional QSM. The approach adopted in conventional 

QSM tends to break down in regions surrounded by steep changes of susceptibility, like the cortical 

region of the brain. 

 

Direct inversion methods combine the background removal and dipole inversion steps in a single 

algorithm and are proposed as a solution for the shortcomings of conventional QSM. The 

hypothesis of this project is thus that direct inversion methods are a better option to measure the 

susceptibility in the cortex when compared to conventional QSM. 

 

The results of this project indicate that among the studied methods, conventional QSM is a better 

option for measuring the susceptibility in deep grey matter structures, while direct inversion 

techniques are a promising approach to measure the susceptibility in the cortex of the brain. But 

the lack of refinement of these methods when solving the ill-posed inverse problem highlights the 

need to improve current methods or to develop novel techniques based on this approach. Also, it 

is proposed in this thesis that direct inversion methods rely on the orthogonality between the 

subspaces spanned by dipolar fields inside and outside the volume-of-interest. This theoretical 

framework explains why direct inversion methods are a promising technique to measure 

susceptibility in the cortex. Moreover, the proposed explanation outlines the path to improve direct 

inversion techniques.   
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Résumé 

La cartographie quantitative de la susceptibilité magnétique (QSM, Quantitative Susceptibility 

Mapping) est une modalité d’IRM qui permet d’estimer la distribution de susceptibilité du tissu. 

La QSM part du principe que les variations dans les données complexes mesurées par la résonance 

magnétique perturbations du champ induites par la susceptibilité dans la région d’intérêt (ROI). 

Ainsi, la QSM calcule la distribution de susceptibilité en résolvant le problème inverse de la 

dérivation de la distribution de susceptibilité à partir de la perturbation du champ magnétique dans 

les données brutes, qui est un problème inverse mal-posé. Pour résoudre ce problème inverse, les 

données brutes mesurées doivent d’abord être traitées (correction du déphasage initial, 

déroulement de phase et combinaison des informations de la séquence d’écho de gradient par la 

méthode des moindres carrés pondérés) et les champs d’arrière-plan doivent être éliminés 

(perturbations du champ produites à l’extérieur de la région d’intérêt). La séparation de la QSM 

en trois étapes est typique de la QSM conventionnel. L’approche adoptée dans la QSM 

conventionnelle tend à échouer dans les régions qui présentent de fortes variations de susceptibilité 

telle que la région corticale du cerveau. 

 

Les méthodes d’inversion directe combinent les étapes de suppression des champs d’arrière-plan 

et d’inversion du dipôle en un seul algorithme et sont proposées comme solution aux défauts de la 

QSM conventionnel. L’hypothèse de ce projet est donc que les méthodes d’inversion directe sont 

une meilleure option pour mesurer la susceptibilité dans le cortex par rapport à la QSM 

conventionnel. 

 

Les résultats de ce projet indiquent que parmi les méthodes étudiées, la QSM conventionnel 

demeure la meilleure option pour mesurer la susceptibilité dans les structures profondes de la 

matière grise alors que les techniques d’inversion directe sont une approche prometteuse pour 

mesurer la susceptibilité dans le cortex du cerveau. Cependant, le manque de raffinement de ces 

méthodes lors de la résolution du problème inverse mal-posé souligne la nécessité d’améliorer les 

méthodes actuelles ou de développer de nouvelles techniques basées sur cette approche. Aussi, 

dans cette thèse, nous proposons que les méthodes d’inversion directe reposent sur l’orthogonalité 
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entre les sous-espaces couverts par les champs dipolaires à l’intérieur et à l’extérieur de la région 

d’intérêt. Ce cadre théorique explique pourquoi les méthodes d’inversion directe sont une 

technique prometteuse pour mesurer la susceptibilité dans le cortex. En outre, l’explication 

proposée esquisse la voie à suivre pour améliorer les techniques par inversion directe. 
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Chapter 1 

 

1 Introduction 

 

1.1 Motivation 

 

Quantitative susceptibility mapping (QSM) is an MRI modality that can estimate the underlying 

magnetic susceptibility distribution using MRI phase measurements generally obtained from a 3D 

GRE sequence [1], [2]. In the brain, the magnetic susceptibility of tissue can be used as a biomarker 

to detect several neurodegenerative diseases and a variety of brain lesions since it is mainly 

affected by the tissue water content, myelin, iron, and calcium [2]–[5]. A conventional QSM 

pipeline has three main steps: phase unwrapping, background field removal, and dipole inversion. 

Each step on its own is a challenging problem to solve and the separation into three steps just 

makes the outcome less accurate due to error propagation [6], [7]. Moreover, conventional QSM 

pipelines tend to perform poorly in the cortical region of the brain due to the nearby presence of 

the meninges, cerebrospinal fluid, blood flow, skull cortical bone, subcutaneous fat, and 

inaccuracies due to faulty brain extraction and edge erosion  [6]–[8].  

 

To overcome the shortcomings of conventional QSM, algorithms that combine the background 

removal and the dipole inversion in a single step have been proposed [6]–[10]. These methods will 

be referred to in this work as “direct inversion methods”. However, some questions about direct 

inversion methods have been not fully addressed in the literature. Notable open questions 

regarding direct inversion methods are a comprehensive study of the effect of phase unwrapping 

in these methods, a clear delineation of the advantages and/or disadvantages of direct inversion 

methods when compared with conventional QSM, a description of the physical or mathematical 

assumptions that allow the separation of background and local fields, and a comparison of the 

performance of these methods in the cortex of the brain. Addressing these questions would 
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represent an advancement in the understanding of this particular set of techniques and on QSM in 

general. Moreover, addressing these questions could be valuable to refine the existing methods or 

to design novel QSM techniques capable of measuring susceptibility in critical regions like the 

cortex in the brain. 

 

1.2 Objectives 

 

The overall objective of this work was to determine whether or not direct inversion methods 

represent an improvement over conventional QSM when measuring the susceptibility in the 

cortical region of the brain. In this thesis, the term “conventional QSM” refers to QSM processing 

schemes that have independent steps for phase unwrapping, background field removal, and dipole 

inversion. On the other hand, “direct inversion QSM” corresponds to methods that combine the 

background removal and dipole inversion steps in a single algorithm while still requiring a separate 

step for phase unwrapping. The main objective of this thesis was achieved by building over three 

specific objectives designed to provide a compelling answer to the main research question. 

 

The first objective of this work was to create a pipeline capable of producing susceptibility maps 

for conventional QSM and direct inversion methods and then compare the susceptibility maps 

obtained with both approaches. Also, the results of this work were used to establish the optimal 

methods for each step of the pipeline, especially for the direct inversion pipeline. 

 

The second objective was to investigate the physical and mathematical principles behind the 

separation of local and background fields in direct inversion methods.  

 

The third and final objective was to assess the performance of conventional QSM and direct 

inversion methods in deep gray matter structures and the cortical region of the brain. To 

accomplish this goal, the susceptibility was measured in these regions of the brain using numerical 

simulations and in vivo datasets. 
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1.3 Thesis outline and scientific contributions 

 

Chapter 2 is a background chapter containing a brief review of basic MRI theory. Different topics 

are covered in this chapter including the interaction of magnetic fields with nuclear spins, the use 

of radiofrequency fields and linear gradients fields in MRI, relaxation, and signal detection. To 

close this chapter, multi-echo gradient echo sequences are explained since this sequence is the 

basis for collecting experimental information for QSM. 

 

Chapter 3 is a literature review of QSM theory. The chapter starts with the theory of the ill-posed 

inverse problem for calculating the susceptibility distribution that produces a specific magnetic 

field and the relation between MR phase data and susceptibility-induced magnetic field 

perturbations. Subsequently, the chapter covers the data acquisition, phase data processing, 

background removal, and dipole inversion methods used in conventional QSM. Finally, the chapter 

presents a review of direct inversion methods. This review is focused on the methods analyzed in 

this thesis Preconditioned Total Field Inversion (pTFI), Least-Norm QSM (LN-QSM), and 

Regularized Total Field Inversion (TFIR). 

 

Chapters 4, 5, and 6 are the methods, results, and discussion sections of this thesis. The methods 

section describes the design of the QSM pipeline, the design of the numerical models, the 

recollection of experimental data, and all the experiments performed with numerical simulations 

and in vivo datasets. Results and discussion chapters present the work done to compare the 

performance of conventional QSM and direct inversion methods in deep grey matter and the 

cortical region of the brain. Also, a theoretical framework for the operation of direct inversion 

methods is proposed. 

 

Chapter 7 presents the conclusions for this project and the future work planned to create a novel 

direct inversion method.  
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Chapter 2 

 

2 Magnetic Resonance Imaging 

 

2.1 Introduction 

 

MRI is a non-invasive imaging modality with a wide range of applications. In addition to anatomic 

imaging, MRI can be used for in vivo physiological studies and for mapping a plethora of chemical 

and physical parameters. Moreover, when compared with other imaging modalities that use X-rays 

for diagnostic purposes, like CT or traditional radiography, MRI offers comparable spatial 

resolution, better soft-tissue contrast, and no known health risks for the patient under normal 

operating conditions [11].  

 

The name of this modality refers to the assortment of magnetic fields that are used to interact with 

the spin of nuclei in the molecules of the imaged object. The purposes of these fields are to set a 

net magnetization in the object, to excite the nucleus at frequencies that match the precessional 

frequency of the spins, and to encode spatial information regarding the location of the nucleus. 

The “nuclear” nature of this modality was omitted from the name to avoid the general public 

associating MRI with the use of ionizing radiation [12]. 

 

The beginning of MRI as a discipline dates back to two key years, 1946 and 1973. In 1946, Nuclear 

Magnetic Resonance (NMR) in condensed matter was discovered independently by Felix Bloch 

[13] and Edward Purcell [14] (work for which they shared the Nobel Prize in physics in 1952). In 

1973, Paul Lauterbur [15] showed that it was possible to encode spatial information using spatially 

varying magnetic fields that change the Larmor frequency across the studied object. Afterward, 

during the 1980s, MRI went from being a research topic only limited to academia, to a thriving 

developing field in industry and medicine [11], [12]. 
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2.2 Interactions of the main magnetic field with the nuclear spin 

 

MRI is possible thanks to the interaction between nuclear spin and magnetic field, but not all nuclei 

are useful in this context. Nuclei used for imaging must have a nonzero intrinsic angular 

momentum. For the nuclei of atoms, the magnetic moment (𝛍) and the total angular momentum (𝐈, 

also called nuclear spin) are related by 𝛍 = γ𝐈, where γ is the gyromagnetic ratio. The total angular 

momentum arises from the intrinsic angular momentum (spin) and orbital angular momentum of 

the protons and neutrons in the nucleus [16]. But, since the nucleons tend to group in a way in 

which the angular momentum vanishes, this property can be described exclusively in terms of the 

unpaired nucleons in the outer shell [12]. Thus, only the nuclei with an odd number of neutrons, 

protons, or both (since in this case, the unpaired proton and neutron do not interact to create zero 

momentum) will have a nuclear spin and magnetic moment different from zero. This dependence 

of the angular momentum on the number of nucleons explains why elements like 16O or 12C cannot 

be used in MRI [12]. However, the nuclear configuration of an element is not the only criterion 

that needs to be considered for imaging purposes. The concentration of the element needs to be 

high enough to generate a measurable signal. 1H (which can be described as a single proton of spin 

1/2) is the main element used in MRI since it is the most abundant (non-zero spin) nucleus in the 

body. Apart from 1H, 23Na and 31P have found some applicability in MRI [12].  

 

When nuclear spins are placed in an external static magnetic field (denoted by 𝐁𝟎), magnetization 

and precession take place. For spin 1/2 particles placed in a magnetic field, there are two possible 

energy states in which the spin is parallel or anti-parallel to the 𝐁𝟎 orientation. The parallel spin 

state corresponds to the lowest energy level. Although the spins tend to occupy the lowest energy 

state, the magnitude of thermal excitations is big enough to exceed the energy gap between the 

two states. The ratio of spin populations is described by Boltzmann statistics as [11]: 

 
n−

n+
= e−ΔE/kT = e−γℏB0/kT 2.1 

Where n− and n+ are the number of spins in the anti-parallel and parallel states, respectively, ΔE 

is the energy gap, k is the Boltzmann constant, and T is the temperature. This expression can be 

used to calculate the small excess of n+, when compared to n−, which explains the macroscopic 
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magnetization of an object placed in the magnetic field. The equilibrium nuclear magnetization 

M0 can be calculated as [11]: 

 M0 =
Nγ2ℏ2Iz(Iz + 1)B0

3kT
 2.2 

Where N is the number of nuclear spins and Iz is their spin (for protons, Iz = 1/2). 

On the other hand, precession can be explained using a classical approach. When a magnetic dipole 

𝛍 is placed in a static magnetic field 𝐁𝟎, the equation of motion is described by the Bloch equation 

[12]: 

 
d𝛍

dt
= γ𝛍 × 𝐁𝟎 2.3 

The solution to this equation represents a precessional movement of the magnetic dipole around 

the field direction, with an angular frequency given by the Larmor relation [12]: 

 𝛚 = γ𝐁𝟎 2.4 

Where the angular velocity vector is 𝛚 = −ω𝐳̂ since it represents a left-handed rotation. The value 

of γ  depends on the nucleus placed in the magnetic field. In the case of 1H, γ =

267.522 × 106[rad ∙ s−1 ∙ T−1] (or γ/2π = 42.577[MHz ∙ T−1] [12]).  

 

2.3 Radiofrequency field and linear gradient fields 

 

In addition to the main magnetic field, other magnetic fields are used in MRI to generate an image. 

These two fields are the radiofrequency (RF) field 𝐁𝟏 and linear gradient field 𝐆. 
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Figure 2.1: Illustration of a 𝑩𝟏 RF field circularly polarized and tuned to the Larmor frequency. 

The RF field produces the precession of the magnetization towards the x-y plane. Figure 

reproduced from [17] with permission. 

Due to the application of the main field 𝐁𝟎, the spins are in equilibrium along the 𝐳̂ direction. To 

measure an MR signal, it is required to move the spin out of the equilibrium position, for which 

an oscillating magnetic field 𝐁𝟏 with a frequency that matches the precession frequency of the 

spins is applied. For the nuclei and magnitude of the main fields used in MRI, the frequency of 𝐁𝟏 

is within the RF spectrum. The field 𝐁𝟏 is oriented in the x-y plane and it is circularly polarized. 

The torque that 𝐁𝟏 applies over the spins rotates the magnetization vector towards the x-y plane 

as illustrated in Figure 2.1. The angle of rotation of the magnetization depends on the magnitude 

of the field and the time of duration of the RF pulse. After shifting the magnetization from the 

equilibrium position, the rotating component of the magnetization along the x-y plane induces, 

according to Faraday’s law, an electromotive force into a receiver coil oriented to detect the 

component of the magnetization along the x-y plane [11]. 

 

The other magnetic fields used in MRI correspond to linear gradients. These fields are used to 

encode spatial information in the signal detected by the receiver coils or to allow the selective 

excitation of only certain regions of interest of the element inside the scanner. Three different 

gradients are applied to linearly change the magnitude of the main magnetic field in the three 

orthogonal directions 𝐱̂, 𝐲̂, and 𝐳̂ (while the orientation of the field remains along the 𝐳̂ direction). 

Thus, with the combination of the three gradients, the magnitude of the main magnetic field can 

be altered such that it represents a spatial position. Consequently, the frequency of the spins also 

changes with the position (as described by equation 2.4). By analyzing the frequency content of 
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the obtained signal, the magnetization can be mapped to a specific spatial position [11]. The change 

in frequency due to the linear gradients can be expressed as: 

 ω(𝐫) = γ(B0 + 𝐆 ⋅ 𝐫) 2.5 

Where 𝐆 is the linear gradient vector field and 𝐫 is the position vector. The magnitude of the 

gradient field along each orthogonal orientation is usually less than 10 [mT/m] [11]. 

  

2.4 Relaxation times 

 

Once the magnetization is moved out of the equilibrium position, it does not stay permanently in 

this excited state. The analysis of the magnetization state of the system can be performed by 

decomposing the magnetization into parallel or longitudinal ( Mz ) and transverse ( Mxy ) 

components (to the orientation of 𝐁𝟎). The return to the equilibrium position is called relaxation 

and it takes place in both magnetization components. The dominant mechanism that mediates 

relaxation in biological tissues is magnetic dipole-dipole interaction [11]. 

 

Longitudinal relaxation refers to the recovery of the longitudinal magnetization (Mz) after the RF 

excitation. This phenomenon is quantified by the relaxation time T1, which represents the time 

required to recover about 63% of the maximum magnetization at thermal equilibrium (M0) along 

the longitudinal direction (when assuming Mz(t = 0) = 0). This process is mainly caused by the 

exchange of energy between the nuclei and the surrounding medium. The exchange of energy is 

caused by random fluctuations in the magnetic fields due to the motion of the surrounding 

magnetic dipoles [11]. Since T1 relaxation implies the system returning to thermal equilibrium, the 

exchange of energy involves transitions of the spins to the n+ population. These transitions involve 

the transverse component of the magnetization becoming zero at the same time the longitudinal 

component recovers [12]. The magnetic field fluctuations that produce these transitions need to 

have an x − y component at a frequency close to the spins’ resonant frequency, which depends on 

the main magnetic field. Thus, the value of T1 depends on the magnitude of 𝐁𝟎. The value of T1 

increases with increasing B0 because higher frequencies are linked to higher energy exchanges 
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required for relaxation [11]. The relaxation of the magnetization along the longitudinal orientation 

can be expressed as [11]:  

 Mz(t) = M0 + (Mz(0) − M0)e
−

t
T1 2.6 

On the other hand, the transverse relaxation represents the decay of the transverse magnetization 

(Mxy) towards zero. It is quantified using the parameter T2, which represents when the transverse 

magnetization has fallen to about 37% of its initial value. As mentioned previously, longitudinal 

relaxation is accompanied by transverse relaxation. However, there are additional mechanisms that 

cause T2 relaxation, without altering the longitudinal component. Thus, T2 ≤ T1 [12]. Transverse 

relaxation, in addition to the field fluctuations in the x − y component, is caused by fluctuations 

on the 𝐳̂ component due to neighbor dipoles interacting between each other. These fluctuations 

dominate this relaxation process and manifest themselves as a dephasing of the transverse 

components of the spin system. Consequently, the magnetization in this orientation becomes zero. 

Since these field fluctuations do not depend on the main field strength, T2 does not depend on B0 

[11]. The relaxation of the magnetization along the longitudinal orientation can be expressed as 

[11]: 

 Mxy(t) = Mxy(t)e
−

t
T2 2.7 

Figure 2.2 illustrates T1 and T2 behaviors as a function of time. On the other hand, Table 2.1 shows 

T1 and T2 values for representative tissues at B0=3 T and 37 °C [18]. 



 

 10 

 
Figure 2.2: 𝑇1, 𝑇2, and 𝑇2

∗ relaxations illustrated in an MR signal over time. (a) 𝑇1 relaxation 

appears as a longitudinal magnetization recovery over time (it is assumed that it occurs after an 

RF pulse not showed in the image). (b) 𝑇2 relaxation takes place as a decay of the transverse 

magnetization over time. (c) 𝑇2
∗ is also a decay of the transverse magnetization. The difference 

between these two phenomena is that 𝑇2
∗ relaxation will naturally take place as observed in c). 𝑇2 

decay is observed only when additional RF refocusing pulses are used. In the case of the image, 

180° RF pulses are used to temporally cause a signal gain due to the rephase of the spins (spin 

echo). The maximum gain after each refocusing pulse will not be the same in each case and it will 

be affected by 𝑇2 relaxation. Figure reproduced from [19] with permission. 

Table 2.1: Approximate 𝑇1 and 𝑇2 relaxation values of different human body tissues at 𝐵0=3 T 

and 37 °𝐶. Values obtained from [18]. 

Tissue 𝐓𝟏 [ms] 𝐓𝟐 [ms] 

Gray matter (GM) 1820 ± 114 99 ± 7 

White matter (WM) 1084 ± 45 69 ± 3 

Skeletal muscle 1412 ± 13 50 ± 4 

Spinal cord 993 ± 47 78 ± 2 

Blood 1932 ± 85 275 ± 50 

 

In reality, the decay of the transverse component is faster than the one predicted by T2 . This 

additional dephasing is caused by external field inhomogeneities. This effect is described by the 
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parameter T2
′ . The total transverse relaxation can be expressed through the value T2

∗ as T2
∗−1 =

T2
−1 + T2

′−1
. The effect of  T2

′ can be reversed by the design of the pulse sequence used during 

imaging [12]. T2
∗ relaxation and an example of how the pulse sequence can make the signal decay 

according to T2 instead of T2
∗ are illustrated in Figure 2.2.  

 

Relaxation can be included in the Bloch equation as: 

 
d𝐌

dt
= γ𝐌 × 𝐁 −

1

T1

(Mz − M0)𝐳̂ −
1

T2
∗ (Mx𝐱̂ + My𝐲̂) 2.8 

 

2.5 Signal detection 

 

To produce a measurable signal, a combination of RF pulses is used to produce a non-zero value 

for the magnetization in the x − y plane. A model for the complex-valued received signal (sr(t)) 

generated by a volume of precessing transverse magnetization can be stated as (neglecting gain 

factors and constant phase factors) [11]: 

 sr(t) = ∭ M0(𝐫)e
−

t
T2(𝐫)e−iω0t exp (−iγ ∫ 𝐆(t) ⋅ 𝐫

t

0

dτ) d𝐕 2.9 

In the model presented in equation 2.9, the magnetization M0(𝐫) depends on MR paramaters like 

the proton density, while the three exponential terms account for relaxation, precession, and the 

effect of gradient fields. From a practical perspective, the measured signal is demodulated and 

collected using quadrature detection [11]. The physical signal (sp(t)) is demodulated by scaling it 

by a reference (sinusoidal or cosinusoidal) signal. The frequency of this reference signal is Ω =

ω0 + δω and it may include an offset δω from the Larmor frequency [12]. Demodulation of the 

signal is equivalent to analyzing the recorded signal from the perspective of the rotating frame of 

reference [12]. After demodulation of the signal, it is collected as two outputs corresponding to 

the real and imaginary components of the baseband signal. Quadrature detection is illustrated in 

Figure 2.3. In the figure, the frequency offset was selected as zero. The low-pass filtering step is 

required for eliminating high-frequency components that are produced after the introduction of the 
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reference signal for demodulation [11]. After demodulation and filtering, real (in-phase) and 

imaginary (quadrature) components for the signal are obtained.  

 
Figure 2.3: Schematic representation of quadrature detection. Quadrature detection produces two 

outputs, real (in-phase) and imaginary (quadrature) components, for the measured physical 

signal. The outputs are obtained after demodulation (using sinusoidal/cosinusoidal reference 

signals) and low-pass filtering. Figure adapted from [11]. 

The signal equation (equation 2.9) can be interpreted as a Fourier transform of the magnetization, 

where the coordinates in Fourier space (or k-space) are given by [11]: 

 k(t) =
γ

2π
∫ 𝐆(τ)dτ

t

0

 2.10 

Identifying that the signal equation represents the Fourier transform of the magnetization sheds 

some light on how MRI encodes spatial information. By sampling the signal at a specific time, it 

is possible to collect information in k-space, which later can be subjected to an inverse Fourier 

transform to reconstruct the image. Relation 2.10 shows that the gradient fields establish how the 

information for the image reconstruction is collected in k-space. The pulse sequence determines 

how the magnetization is excited and the information in k-space is collected.   

 

2.6 Multi-echo gradient echo sequence (mGRE) 

 

An MR pulse sequence is a particular combination of RF pulses and gradients with different 

parameters and timing. Depending on the pulse sequence, it is possible to generate MR images 

with different appearances or to measure different information [20]. In general, there are two 

fundamental types of imaging pulse sequences: spin-echo and gradient-echo. Even though it was 

not discussed thoroughly, a spin-echo sequence was shown in Figure 2.2 to illustrate T1, T2, and 
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T2
∗ relaxation. Conversely, gradient echo sequences will be explored in detail since this sequence 

is of great relevance in the following chapters.  

 

Due to relaxation, it is impossible to excite the system with a single RF pulse and collect 

information for an infinite amount of time since the measurable signal decays exponentially. 

Although, depending on the selected pulse sequence, it is possible to introduce a combination of 

excitations and linear gradients (appropriately timed) to collect enough information in k-space to 

overcome this limitation and create images (or maps in the case of quantitative MRI) with different 

contrasts and spatial resolutions depending on the desired application for the MR image (map). 

One specific sequence relevant for this work is called 3D multi-echo gradient echo (mGRE) 

sequence. 

 

 
Figure 2.4: Spoiled GRE sequence. The diagram at the left shows how a gradient echo is formed 

once the area of the lobes of the gradients in 𝐺𝐹𝐸  is equal to zero. The diagram at the right shows 

the entire pulse sequence, including the possibility to add variable gradient spoiling to eliminate 

the remaining transverse magnetization. Figure reproduced from [21] with permission. 

Before diving into 3D mGRE sequences, it is necessary to first explore 2D GRE sequences. In 

Figure 2.4, a typical 2D gradient echo sequence is illustrated. First, the volume of interest is divided 

into slices through a process called selective excitation. In this case, a linear gradient is set in a 

particular direction causing the Larmor frequency to be modulated across this direction. Thus, an 
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RF pulse will be capable of exciting only a portion (perpendicular to the orientation of the gradient) 

of the volume. The magnitude of the gradient and the position of the slice along the axis set the 

central frequency required to excite a slice of infinitesimal width. The shape of the RF pulse 

determines the profile and width of the slice generated in the volume of interest.  For this work, 

the slice selection gradient will be considered as Gz and is illustrated in Figure 2.4 in the SS (slice 

selection) axis. The first (positive) lobe corresponds to the gradient used to select the slice, while 

the second (negative) lobe is used to refocus the spins across the selected slice. Since the slice has 

a finite thickness, there would be some linear dephasing proportional to z that can be reversed with 

the negative lobe in the slice selection orientation [11]. The additional gradient in SS (spoiler) will 

be discussed later. 

 

Once the slice is selected, the data acquisition in k-space turns into a 2D problem. To collect 

information, different patterns can be used to sample k-space but in this case, only a 2D grid will 

be considered. The position in kx and ky is given by equation 2.10. Thus, the position is defined 

by two gradients Gx and Gy, which are also called frequency/readout (GFE) and phase encode (GPE) 

gradients, respectively. These two gradients are illustrated in Figure 2.4. The difference between 

the two gradients is that the phase encode gradient is used exclusively to alter the position in k-

space for acquiring data, meaning changing the row in the 2D grid in which information will be 

acquired. On the other hand, the frequency encode gradient is used to sample k-space while the 

data acquisition is turned on [11]. 

 

The use of linear gradients (according to equation 2.9) adds extra dephasing that causes a faster 

signal decay than the decay predicted by T2 relaxation. However, this dephasing can be reverted. 

Since the added phase in the frequency encode direction depends on the integral in equation 2.10, 

for Gx the value of the integral can be made zero by considering a negative lobe followed by a 

positive lobe as illustrated in Figure 2.4, such that the area under the negative and positive gradients 

is zero (in other words when the readout direction coincides with the point kx = 0). The lost phase 

due to the negative gradient is recovered as soon as the positive gradient is applied, reaching a 

maximum possible recovery once the areas counteract each other. This increase in signal amplitude 

is called a gradient echo. The instant in time in which the echo occurs is denominated as TE. 

However, regardless of the signal amplitude increased, the magnitude at time TE decays 
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exponentially (with time) according to T2
∗ relaxation. The effect of relaxation cannot be avoided 

and in contrast to other sequences, like a spin echo sequence, no 180°  is used to cause T2 

relaxation instead of T2
∗ [11].       

 

The scan time in a 2D GRE sequence is given by [22]: 

 Scan time (2D GRE) = TR × Ny × NEX × number of slices 2.11 

Where TR is the repetition time (meaning the time between the RF pulses at the beginning of each 

GRE sequence), Ny is the number of phase encode steps, and NEX is the number of excitations 

(the number of times that a given line in k-space is repeatedly taken to improve SNR). 

 

A notable property of the GRE sequence is that its relatively short scan time enables 3D GRE 

volume imaging in a reasonable amount of time. Under these circumstances, a volume is selected 

instead of a slice and within this volume, the acquisition is done with an extra (secondary) phase 

encode gradient in the orientation of the Gz gradient. This extra gradient allows the sampling of k-

space equivalently to the phase encode gradient. 3D GRE sequences result in advantages like 

thinner “slices” (often referred to as “partitions”) when compared to regular slice selection and 

increased SNR (since SNR ∝ √Nz , where Nz  is the number of phase encode steps in the Gz 

gradient direction). The disadvantage is longer scan times depending on the number of extra phase 

encode steps Nz added, although scan times can be kept reasonably low by considering short TR 

and small flip angles [22]: 

 Scan time (3D GRE) = TR × Ny × Nz × NEX 2.12 

The parameters that affect the contrast in a 3D GRE sequence are the flip angle, TR, TE, and 

spoiling. The general effect of flip angle, TR, and TE in the contrast in a 3D GRE sequence is 

presented in Table 2.2. The combination of these parameters also changes the amount of residual 

transverse magnetization remaining before the RF excitation. This residual magnetization appears 

when the TR is too short for a given flip angle, such that there is not enough time to allow for 

complete T2
∗  relaxation. The amount of residual transverse magnetization before the RF pulse 

changes from cycle to cycle, but after the first few cycles, this value reaches a steady state. The 

steady-state component of the transverse magnetization affects the contrast such that its growth 

also increases the amount of  T2
∗ weighting [22]. Nevertheless, keeping or removing this residual 

transverse magnetization requires extra considerations. To keep the residual transversal 
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magnetization a combination of alternating RF pulses, spoiling gradients in the SS and readout 

directions, and rewinder gradients along the phase-encoding are required as implemented in 

GRASS/FISP/FFE sequences. On the other hand, eliminating the transverse  magnetization 

requires spoiling using RF and variable gradient spoiling as done in SPGR/FLASH/T1-FFE 

sequence (the addition of variable gradient spoiling is illustrated in Figure 2.4).  

 

Table 2.2: Contrast in a 3D GRE (non-balanced) sequence as function of flip angle, TE, and TR. 

An estimation for “small”, “large”, “short”, and “long” flip angle, TE, and TR values are 

included in the table. The combinations of the parameters not presented in the table mostly 

corresponds to mixed contrast cases. The information presented in the table was collected from 

[22]. PDw =proton density-weighted, T1w = T1-weighted, T2*w = T2
*-weighted 

Parameter Enhanced PDw Enhanced T1w Enhanced T2*w 

Flip angle Small (5° to 30°) Large (60° to 90°) Small (5° to 30°) 

TE Short (2-5 ms) Short (2-5 ms) Long (10-100 ms) 

TR Short/Long Long (~100 ms) Short (𝑇𝑅 < 3𝑇2
∗) 

 

The GRE sequence presented in Figure 2.4 can be modified with additional frequency encode 

gradients to include not only one echo but multiple echoes for a single RF excitation, as illustrated 

in Figure 2.5. In order to fit more than a single echo acquisition inside an excitation in a GRE 

sequence, the readout can be performed either in a single k-space direction or in both. In the first 

case, an opposite signed gradient must be applied after each acquisition while the signal is not 

sampled to enable the acquisition from the same orientation in k-space as the previous one. This 

type of readout with a gradient to reposition the signal sampling is called unipolar readout, 

monopolar readout, or flyback readout. In Figure 2.5, the use of a unipolar readout corresponds to 

only collecting the blue signal. On the other hand, instead of using a gradient just to change the 

position in k-space without sampling the signal, it is possible to acquire information in both 

orientations, during the positive and negative lobes of the gradient used to move the acquisition 

through k-space in the readout orientation. This type of acquisition is called bipolar readout. In 

Figure 2.5, the use of a bipolar readout corresponds to collecting the blue and purple signals. 

Generally, in the case of a flyback readout the unused readout pulse lobes (purple lobes) are re-

designed to be as short in duration as possible when used as flyback gradient pulses. 
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Figure 2.5: Multi-echo gradient echo sequence (mGRE). Compared to the sequence in Figure 2.4, 

more than one echo can be collected by introducing additional frequency encode gradients. Figure 

adapted from [21]. 

Each echo will occur at different times TE1, TE2, TE3, etc. The measurements at the different 

echoes will have different T2
∗-weighting. Additionally, a 3D extension to this sequence is also 

possible in a similar fashion as discussed for a GRE sequence. The addition of a “phase encode” 

gradients in the Gz direction would produce a 3D mGRE sequence. This sequence will be the focus 

when discussing the acquisition of MR complex data for QSM. 
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Chapter 3  

 

3 Quantitative susceptibility mapping 

 

3.1 Introduction 

 

QSM is an MRI technique that estimates the susceptibility distribution of the underlying tissue [2]. 

Its development started in the mid-1990s. QSM emerged as further advancement of susceptibility 

weighted imaging (SWI). In SWI, phase information is (generally) obtained using a spoiled 

gradient echo (GRE) sequence, with long echo times, short flip angles, and high field strengths. 

This results in altered T2
∗ contrast that depends on the change of susceptibility throughout tissue. 

SWI highlights regions of short  T2
∗. Thus, small changes in susceptibility are manifested as signal 

intensity loss, while steep changes (that lead to short relaxation values) are represented as signal 

hyperintensity [23].  In comparison with SWI, which creates magnetic susceptibility weighted 

images and depicts its perturbing effect in the main magnetic field; QSM creates quantitative maps 

of the susceptibility.  

 

In QSM, phase (and in some cases magnitude) information is combined with post-processing 

techniques for the estimation of the susceptibility distribution. In biological tissue, the theoretical 

determination of the susceptibility distribution is an extremely complex task due to a myriad of 

factors like the variety of molecules and ions forming the tissue, the cellular arrangement of each 

tissue, and the complex cellular environment surrounding each tissue. QSM measures the relative 

susceptibility variation of the tissue inside a voxel, meaning that the measured values are not 

absolute susceptibilities. Generally, CSF is selected as the zero reference [5]. The susceptibility 

variation across tissue is what drives the contrast in susceptibility maps. The structures that cause 

the biggest contrast are those with strong susceptibilities. Therefore, the source of contrast changes 

depending on the tissue. In WM, lipids correspond to the main source of contrast due to the 

myelination of axons. In deep brain tissue, such as putamen, globus pallidus, thalamus, and caudate 
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nuclei, the contrast is driven by iron-rich molecules which are highly paramagnetic [5]. There are 

other structures outside the central nervous system that possess a strong susceptibility including 

them the kidneys, heart, and liver. In each case, different structures are the main source of 

susceptibility: the membranes of the nephrons in the kidneys, the α-helixes of myofilaments in the 

myocardium, and iron concentration in the liver [5]. Although, QSM has found extensive 

application for imaging the brain, its use in other regions of the body is an active field of research 

[24]–[26]. 

 

3.2 Theoretical development 

 

3.2.1 Basic physical definitions and the estimation of the magnetic susceptibility from the 

phase of complex MRI data 

 

When a material is placed in an external magnetic field, it may become magnetized. From a 

macroscopic point of view, the material can be pictured as an assembly of tiny magnetic dipoles. 

When these dipoles interact with a magnetic field, they align parallel (paramagnetism) or 

antiparallel (diamagnetism) to the magnetic field. When the material is removed from the magnetic 

field, the alignment of the dipoles is lost, except in ferromagnetic material [27]. The magnetization 

𝐌 is a vector field that represents the magnetic moment per unit of volume and it relates the fields 

𝐁 and 𝐇 [27], [28] inside a material (there is no magnetization in vacuum): 

 𝐁 = μ0(𝐇 + 𝐌) 3.1 

In the special case of linear media, 𝐌 = χ𝐇  (or equivalently 𝐁 = μ0 (
𝟏

χ
+ 𝟏) 𝐌 ), the 

magnetization and the magnetic field are proportional, where the constant of proportionality is the 

magnetic susceptibility. The magnetic susceptibility is a macroscopic physical parameter that 

describes the response of a material to an applied magnetic field, meaning the magnetic moment 

induced by the magnetic field 𝐇 . The sign of the susceptibility indicates if the material is 

diamagnetic or paramagnetic. For χ < 0 the material is diamagnetic, while for χ > 0 the material 

is paramagnetic [28]. The behavior of paramagnetic and diamagnetic materials depending on the 

applied field is illustrated in Figure 3.1.   
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Figure 3.1: Schematic representation of diamagnetic and paramagnetic materials after the 

application of a magnetic field 𝑯. Figure reproduced from [29] with permission. 

Regardless of the apparent simplicity of relation 3.1, defining magnetic fields in magnetizable 

media requires extreme caution. When a magnetizable material is placed inside a magnetic field, 

that will be noted as 𝐁𝐞𝐱𝐭 , the magnetic field that is established inside the material can be 

considerably different from the external field. The reason for this difference is that the external 

magnetic field induces a magnetization inside the material. This magnetization produces its own 

magnetic field named demagnetization field 𝐁𝐝𝐞𝐦𝐚𝐠(𝐫) , which physically arises from the 

magnetization at the surface of the material or any region in which ∇ ⋅ 𝐌 ≠ 0  [30], [31]. Thus, the 

magnetic field inside the material would be the sum of the external field and the demagnetization 

field [28] 

 𝐁(𝐫) = 𝐁𝐞𝐱𝐭(𝐫) + 𝐁𝐝𝐞𝐦𝐚𝐠(𝐫) 3.2 

The demagnetizing corrections can be neglected only if the magnetization of the material is 

considerably low when compared with the external magnetic field 𝐇 [28]. However, in the case of 

MRI, the demagnetization field can be used to quantify susceptibility-induced perturbations and 

consequently, the susceptibility distribution producing these perturbations (as done in QSM) [5]. 
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Figure 3.2: Illustration of the Lorentz sphere approach to determine the demagnetization magnetic 

field in a point of observation. The image illustrates how the volume is divided into two regions by 

a virtual surface defined as the Lorentz sphere. The volume outside the sphere generates the distant 

magnetic field, while the volume inside generates the near field. The demagnetization field at the 

point of observation is the sum of the distant and near fields. Figure reproduced from [2] with 

permission.    

To calculate the value of 𝐁𝐝𝐞𝐦𝐚𝐠, it is possible to use the Lorentz sphere formalism. This formalism 

is illustrated in Figure 3.2. The main idea behind this approach is to divide the field into two 

different contributions that originate in the “distant” region Vd and “near” region Vn, such that 

𝐁𝐝𝐞𝐦𝐚𝐠(𝐫) = 𝐁𝐝𝐢𝐬𝐭𝐚𝐧𝐭(𝐫) + 𝐁𝐧𝐞𝐚𝐫(𝐫) . In Vd , the dipoles are treated as a continuous magnetic 

moment density. In Vn the dipoles are considered discrete elements. The surface (called Lorentz 

surface) separating these two regions is arbitrary in shape and size. However, the estimation is 

more accurate for a large Vn, although the term linked to this region becomes more complex to 

solve. On the other hand, the Lorentz surface cannot be too small since the magnetic field in the 

distant region must be modeled as a continuous medium (which would not be possible if Vn is 

small). The minimum size of the Lorentz field should be equivalent to the distance between 

adjacent dipoles [2]. How to calculate these terms is outside the scope of this thesis (a full 

derivation of the terms 𝐁𝐝𝐢𝐬𝐭𝐚𝐧𝐭(𝐫) and 𝐁𝐧𝐞𝐚𝐫(𝐫) is presented in [2]). But what is relevant in this 

case is that the knowledge of these terms enables the calculation of the demagnetization field in 

terms of the susceptibility distribution (producing the field perturbations corresponding to the 

demagnetization field) and external applied field 𝐁𝐞𝐱𝐭 = B0𝐳̂: 
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 𝐁𝐝𝐞𝐦𝐚𝐠(𝐫) = 𝐁𝐞𝐱𝐭(χapp ∗ bχ)(𝐫) 3.3 

The term χapp(𝐫) is the susceptibility value evaluated at the point 𝐫 and the symbol ∗ denotes the 

convolution. The “app” subscript stands for “apparent” and it was selected to illustrate the fact that 

the expression considers the effective susceptibility along the direction of the main external field. 

More generally, χapp = 𝐳𝐓̂ ⋅ χ ⋅ 𝐳̂ where χ is the susceptibility tensor. The term bχ(𝐫) corresponds 

to the dipole kernel, which is the magnitude of the dipolar field (without including the constant μ0) 

when the magnetization and field are oriented parallel to 𝐳̂: 

 bχ(𝐫) = {

3𝐫̂(𝐳̂ ⋅ 𝐫̂) − 𝐳̂

4π‖𝐫‖2
3 ⋅ 𝐳̂, 𝐫 ≠ 𝟎

0, 𝐫 = 𝟎

 3.4 

The demagnetization field (in terms of the susceptibility distribution inducing this field) can be 

used to derive the backbone equation of QSM. By replacing equation 3.3 in 3.2 and taking the 

Fourier transform of the resulting expression the following equation can be obtained: 

 FT {
B(𝐫) − B0

B0
} = FT{χapp(𝐫)}⨀FT{bχ(𝐫)} 3.5 

The expression inside the Fourier transform on the left-hand side of the previous expression is 

called Relative Difference Field (RDF) in QSM literature [2]. However, in this work, the term 

Local Field Shift (LFS) was preferred over RDF to make a clear distinction between the relative 

field before and after background field removal (which will be discussed later in this chapter). The 

symbol ⨀ is the Hadamard product. Lastly, labeling the Fourier transform of the dipole kernel as 

bχ(k) = FT{bχ(𝐫)}, the kernel expressed in Fourier space is ([1], eq. 5): 

 bχ(𝐤) = {
1

3
−

kz
2

k
, for k ≠ 0 

0, for k = 0

 3.6 

The definition of this function at 𝐤 = 𝟎 requires some discussion. As reported by Marques and 

Bowtell ([32], [33]), this value corresponds to the average field offset of the magnetic field and it 

can be used to adjust the magnetic field to fulfill specific boundary conditions. Setting the value 
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of 3.6 as 0 in 𝐤 = 𝟎 is equivalent to include the Lorentz sphere correction (equivalent to a phase 

offset of −
2

3
μ0M) in equation 3.3 within the volume corresponding to the Lorentz sphere. This 

assumption is also equivalent to setting the value over the sphere as zero.  

 

The idea behind QSM is to use equation 3.5 to estimate the value of χapp(𝐫) by measuring data 

that can be used to infer the susceptibility-induced magnetic field perturbations, which corresponds 

to the numerator on the left-hand side of equation 3.5. This information is contained in the phase 

of the complex signal obtained using a 3D multi-echo gradient echo (mGRE) sequence. The phase 

image can be obtained by taking the arctangent of the ratio the imaginary and real parts of the 

complex data, 𝑆Im and 𝑆Re, as in Θ = tan−1(𝑆Im 𝑆Re⁄ ). 

 

In a 3D mGRE sequence, the FID decays with T2
∗  relaxation and the signal is affected by 

susceptibility effects [22]. The magnetic field inside the object placed in the scanner changes in 

relation to the main field value B0, consequently the frequency ω0 = γB0  also presents shifts 

across the object. These shifts (in the magnetic field or frequency) are caused due to intrinsic 

inhomogeneities in the main field, chemical shifts, and susceptibility-induced effects. In many 

scenarios, from these three sources of field (frequency) inducing inhomogeneities in the main field, 

only susceptibility effects are of relevance. In modern scanners, the use of passive shimming 

allows for inhomogeneities intrinsic to the particular scanner to be of the order of 1-2 ppm, while 

active shimming reduces these inhomogeneities even further [33]. Chemical shift effects can be 

neglected in some regions like brain tissue [2]. Consequently, the only effects remaining in the 

brain are the ones caused by the bulk susceptibility distribution [33]. Retaining the effects of 

susceptibility-induced fields in the signal can be undesirable in some circumstances since it can 

lead to various artifacts (especially close to air/tissue interfaces) and fast signal decay due to 

transverse dephasing. However, this information can be exploited to quantify the susceptibility 

distribution of the underlying tissue in QSM. 

 

Variations in magnetic susceptibility cause long-ranging field distortions that affect the GRE 

complex data to produce signal voids and/or geometrical image distortions [34]. Geometric 

distortions are a factor that should be accounted for since distortion-free images are desirable when 

studying the anatomy in QSM images. However, it has been reported that at 3 T, no noticeable 
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geometric distortions have been observed in QSM brain images in deep brain nuclei, peripheral 

cortex, and ventricular system [35]. In fact, susceptibility maps can be used to predict and/or 

remove air/tissue and bone/tissue interface effects in the complex GRE data [1]. In this thesis, all 

the data was acquired at 3 T, and consequently it will be assumed that geometric distortions are 

not a factor that will affect the depiction of the anatomy in the brain. This assumption would not 

hold for higher field strengths or when considering different acquisitions modes such as echo-

planar imaging (EPI) [36].  

 

In principle, the phase evolves linearly with time. That said, there are second-order effects that 

introduce non-linearities in the phase evolution. It is still an open question how these effects can 

be accounted for in the QSM problem and how they affect the estimation of the susceptibility in 

the resulting map [2], [37]. The linear phase accumulation can be modeled as [1]: 

 Θ(𝐫, TEi) = ϕ0(𝐫) + ϕ(𝐫, TEi) = ϕ0(𝐫) + γΔBz(𝐫)TEi 3.7 

This expression contains two terms, one that is time-independent corresponding to ϕ0(r) and a 

second term ϕ(𝐫, TEi) = γΔBz(𝐫)TEi that depends on the echo time TE and ΔBz(𝐫) = B(𝐫) − B0 

(which represents the field perturbations). The term ϕ0 is called the transceiver phase offset [2] 

and it depends on factors like the phase distribution after RF excitation and receiver coil sensitivity 

[37], [38]. This factor needs to be removed before using the phase of the complex signal to 

determine the field perturbations. The phase data that includes the phase offset is denoted in this 

work by Θ(𝐫, TEi). 

 

In the case of a single RF coil, equation 3.7 represents the accrued phase measured by it. In the 

case of using a phased array, each coil element will collect phase information described by 

equation 3.7. Then, the information from each coil must be combined to generate a composite 

signal. Generally, during the unification of the phase from different coils, the phase offset of each 

coil is eliminated (phase matching), which is not a trivial task since the way in which this parameter 

is handled will affect the final susceptibility map. Different methods for phase matching and 

combining the phase information of the coils in the assembly are described in [37]. However, even 

after phase matching, the composite signal often contains a phase offset due to time-independent 

contributions that cannot be removed through phase matching. One particular example is the use 
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of parallel imaging in the form of SENSE since this technique keeps transmit phase contributions 

[2]. 

 

After removal of the transceiver offset, equation 3.7 can be replaced into equation 3.5 to obtain 

the following expression: 

 FT {
1

γTE
ϕ(r)} = B0FT{χapp(r)}⨀FT{bχ(r)} 3.8 

 

 

Figure 3.3: Representation of the unit dipole response function in image and Fourier space. b) 

and d) are surface plots of the unit dipole in image space and Fourier space, respectively. a) and 

d) correspond to sagittal slices of b) and d). The red arrows in c) indicate the “problematic” 

conic region in Fourier space where the function is zero and close to zero. Figure reproduced 

from [2] with permission. 

In principle, equation 3.8 is easy to solve for χapp(r). It is simply required to divide each element 

at both sides of the equality by the corresponding element of B0FT{bχ(r)} and subsequently 

perform an inverse FFT. Sadly, the problem is far more complex. Looking at the unit dipole 

response function in k-space (illustrated in Figure 3.3), the function is zero in a well-defined region. 

Equation 3.6 can be alternatively stated as [2]: 

 bχ(𝐤) = {
1

3
− cos2β, for k ≠ 0 

0, for k = 0
 3.9 

Where β is the angle between the vectors 𝐤 and 𝐤𝐳. Then, it is easy to see that dividing an element 

by the value of the function bχ(𝐤) is not possible when cos2(β) =
1

3
, which happens for β =
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54.74°. The set of points corresponding to zero in the k-space forms a conical surface. It is 

impossible to estimate the information corresponding to FT{χapp(r)} at the points coinciding with 

the conical surface from the information of the accumulated phase alone. Moreover, for the points 

close to the conical surface, the value of the dipole response is extremely small, making the point-

wise product in equation 3.8 small compared with the noise in the measured data [2]. Due to these 

constraints, the inverse problem linked to equation 3.8 becomes ill-posed.  

 

Alternatives to solve the ill-posed inverse problem will be explored in the following subsections 

when addressing either dipole inversion process or direct field inversion methods. However, even 

reaching the point in which is it necessary to solve the inverse problem first requires to overcome 

other obstacles. Therefore, an entire pipeline to process the information from the complex signal 

is required. 

 

3.2.2 Data acquisition and phase processing  

 

The most widely used pulse sequence to obtain MR complex data for QSM is 3D mGRE sequence. 

As described in the previous subsection, the signal obtained from this sequence contains 

information on the magnetic susceptibility-induced effects. The phase information at multiple echo 

times can be used to determine the phase offset ϕ0(𝐫) and magnetic field shift ΔBz(𝐫) in equation 

3.7. Other acquisition techniques can be used instead of GRE. This work is exclusively based on 

3D mGRE data acquisition, but there is research for QSM involving other acquisition techniques 

like balanced Steady-State Free Precession (bSSFP) [37], Magnetization-Prepared two Rapid 

Acquisition Gradient Echoes MP2RAGE [39], multi-echo, and multi-flip angle data collected 

using Strategically Acquired Gradient Echo (STAGE) [40]. 

 

From this point, it will be assumed that the information from multiple coil elements has been 

combined and multiple echoes were acquired at different echo times. To combine the data from all 

the echoes, it is required to first eliminate the remaining phase offset ϕ0(𝐫). However, analyzing 

the phase and removing the phase offset first requires further consideration about whether the 

readout gradients were unipolar or bipolar. Each readout type has its advantages and disadvantages, 

and the selection will affect how phase offset corrections and echo combination are performed. 
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Unipolar gradients provide consistency to the measured phase at different echo times since the use 

of bipolar gradients introduces discrepancy between odd and even (or positive and negative 

gradient lobes) echoes due to non-ideal effects like waveform delays and eddy currents caused by 

the rapid sign switching of the gradients. In contrast, bipolar readout allows for better acquisition 

efficiency and reduced echo spacing. Since QSM relies on small field perturbations to estimate the 

susceptibility distribution, unipolar readouts are better for achieving higher accuracy. Although, if 

better acquisition efficiency is required, bipolar readouts can be used in QSM after considering 

corrections to mitigate non-ideal behaviors. Gradient waveform polarity and its effect in QSM 

have been studied in detail in [41].  For this research project, unipolar readout gradients were used 

to collect data, thus every technique discussed will be centered around this case. 

 

For a unipolar acquisition, one way to calculate the phase offset for all echoes consists in using the 

phase measured during the first two echoes. Denoting the phase unwrapping operation as U[ ], 

the unwrapped phase with symbols ϕu  and Θu , and the wrapped phase with ϕw and Θw ,  the 

unwrapped phase for the first echo can be determined as: 

 ϕ1u = (
U [∠[exp(𝑖Θw(𝐫, TE2))exp(−Θw(𝐫, TE1))]]

TE2 − TE1
) TE1 3.10 

This phase can then be used to estimate the correction factor: 

 exp(iϕ0) = exp(iΘw(𝐫, TE1)) exp(−iϕu(𝐫, TE1)) 3.11 

The correction factor can be used through complex division to eliminate the phase offset from each 

measurement. The advantage of this approach is that it enables an optimal SNR in the phase images 

since it includes smoothing of the ϕ0 correction before it is applied [37]. Moreover, imposing 

smoothness in ϕ0 is consistent with the assumption that this distribution is dominated by the phase 

of the B1  transmit and receive fields [3]. The drawback is that the method is relatively 

computationally demanding (compared with other methods) since it requires unwrapping of the 

phase difference in equation 3.10. Another advantage of this method is that it can be easily adapted 
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to bipolar readouts, in which case a correction for odd and even echoes can be created using the 

first two odd and first two even echoes separately [42].   

 

Once the phase offset has been removed using complex division, it is necessary to unwrap the 

phase data ϕ(𝐫, TEi) at each echo time. Unwrapping was already introduced in equation 3.10 but 

it has not been explained yet. When measuring phase as part of a complex signal, the values of the 

phase can be retrieved only in an interval of 2π. In this case, the interval will be defined as (−π, π], 

but in reality, any interval of the form (ϕL, ϕL + 2π] for a lower limit ϕL can be used. Choosing 

a particular value for ϕL can be convenient to avoid phase wrapping as discussed in [37]. Any 

value of phase measured outside the range (−π, π] would be “wrapped” inside the range by the 

addition or subtraction of a multiple integer of 2π. These wraps are discontinuities following phase 

isocontours that manifest themselves as 2D closed isolines or 3D closed isosurfaces [37]. The 

problem in principle can be solved simply by adding or subtracting the opposite phase shift that 

caused the wrapping, but this is an ill-posed problem since there is an infinite number of solutions 

but only a single correct physical solution [43]. To solve this problem, additional assumptions are 

generally required. Most often, spatial and temporal smoothness of the unwrapped phase is 

assumed [1]. Moreover, the phase unwrapping problem becomes even more challenging due to 

unreliable phase values produced by noise and phase aliasing that produce abnormal fringe lines 

[44]. One example of these abnormalities is open-ended fringe lines, meaning non-closed 

isocontours that are interrupted by residues (a 2-by-2 voxel loop) that cannot be unwrapped by 

adding a multiple of 2π [37]. 

 

The most basic algorithm to unwrap phase in a 1D case is Itoh’s method, but this method can be 

severely affected by sampling and noise [45]. Additionally, it cannot be efficiently generalized to 

higher dimensions. For phase unwrapping in the context of MRI, there are different types of 

algorithms to handle this problem. In this work, three of the main categories will be considered: 

Laplacian unwrapping, path-following methods, and temporal unwrapping. Other categories 

include region-growing unwrapping like PRELUDE [46] and its successor SEGUE [47]), and 

graph-cut unwrapping like SPURS [48]. The theory presented below about phase unwrapping 

technique is mostly (except where it is explicitly cited) supported by [37]. 
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Laplacian unwrapping exploits the fact that even though the phase is limited to the interval (−π, π] 

and it is discontinuous due to phase wraps, the exponential function is continuous in the complex 

plane and eiϕw(r) = eiϕu(r) [43]. Then, the unwrapped phase can be determined as [43]: 

 ∇2ϕu = Im(e−iϕw ∗ ∇2eiϕw) = cos(ϕw) ∇2 sin(ϕw) − sin(ϕw) ∇2 cos(ϕw) 3.12 

This relation corresponds to a discrete Poisson equation, which can be solved to find the 

unwrapped phase. The solution can only be obtained up to harmonic terms (terms whose Laplacian 

vanishes). These terms cannot be accurately retrieved unless boundary conditions for the problem 

are considered. In the case of QSM, getting the solution without the contribution of these terms 

can actually be desirable since these phase contributions would correspond to harmonic fields and 

consequently backgrounds fields that would be eliminated by some of the background field 

removal algorithms. Background fields, and the methods to remove them, will be explained in 

subsection 3.2.3 On the other hand, the inclusion of a second-order operator suppresses large phase 

changes in the unwrapped phase modifying large field shifts [4], [49], [50]. 

 

There are several ways to solve equation 3.12 and a detailed study of each possible solution is 

outside the scope of this thesis, but a brief overview of how these methods work will be provided 

here. The basic idea consists in solving the right-hand term in equation 3.12 using the collected 

experimental information, which will be equivalent to find the (discrete) Laplacian of the 

unwrapped phase. Then, the unwrapped phase can be obtained through a deconvolution with the 

Laplacian kernel. Then, this approach requires a definition of the forward and inverse discrete 

Laplacian kernels (meaning the kernel used for the deconvolution) to be used. The most common 

discrete operators used to build Laplacian kernels correspond to the finite difference operator, fast 

Fourier transform (FFT), and the discrete cosine transform (DCT). A deeper overview of many 

variations to implement these operators and some of their characteristics in the context of QSM 

are provided in [1], [37]. However, it is important to highlight that when defining the forward and 

inverse Laplacian kernels, it is better to use the same discrete operators for both kernels  [43]. Also, 

the boundary conditions are often implicitly or explicitly defined when setting the kernels [37]. 

 

Path-following methods unwrap the phase of adjacent voxels by comparing their phase and 

determining whether their phase difference is greater than π. Generally, the phase comparison is 
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performed along regions that are guided based on the reliability/quality of the phase, for example 

labeling noisy voxels as less reliable. One of the key elements of these methods is the unwrapping 

of phase starting from the most reliable phase value towards the least reliable phase. This type of 

method has been widely adopted in QSM. Some examples of these methods are Quality Guided 

unwrapping (QG) [49], best path unwrapping [51], and ROMEO [51]. 

 

The last category of methods considered for this work corresponds to temporal unwrapping. This 

type of unwrapping resolves wraps caused due to temporal effects, throughout the phase evolution 

with time. In principle, these techniques can only be applied on phase images at more than one 

echo time and they only offer voxel-wise unwrapping across time (generally relying on the 

assumed linear phase evolution and short echo spacing), but they are incapable of resolving phase 

wraps between neighbor voxels at a fixed time, requiring additional spatial unwrapping or uneven 

echo spacing [2], [37]. One recent temporal unwrapping method knowns as UMPIRE [52] has 

overcome some of the limitations of these methods, but it still requires non-uniform echo spacing. 

 

When comparing the three types of algorithms, Laplacian unwrapping corresponds to a relatively 

easy method to implement and it has the advantage to be robust to noise and phase errors like open 

fringe lines. But, the downside is that the unwrapped phase retrieved using these methods is 

generally not quantitatively accurate [4], [49], [50], although a better approximation for the 

unwrapped phase can be achieved by employing heuristics or adding other sophisticated 

algorithms to the unwrapping. On the other hand, spatial unwrapping using path-following 

techniques generally offers greater accuracy than other methods, but they are computationally 

more demanding and more prone to errors due to noise when compared to Laplacian methods. 

Additionally, path-following algorithms tend to introduce post hoc 2π temporal wraps in all the 

voxels at an echo time. As a result, these methods also need temporal unwrapping or methods 

specifically design to correct these wraps like THUMPR [50] or the use of phase difference images 

[2]. Temporal unwrapping is better at unwrapping complex topographies, but it is more vulnerable 

to noise and generally considerably dependent on the assumption of linear phase evolution with 

time. 
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Finally, after all the echoes have been unwrapped, the data can be used to create a frequency shift 

map, meaning a quantitative map of γΔBz(r). Equation 3.7 reflects the linear relation connecting 

the phase at each echo time and the frequency shift, which in this case would correspond to the 

slope of the equation. To find the slope of the equation given the heteroskedasticity in the problem 

(meaning the variability of the phase noise or standard deviation with echo time), a weighted least 

square fit is optimal [53]. The weights commonly used for the fit are the inverse of the variance 

1
σ2⁄  of the phase measured at each echo, which for each echo corresponds to the squared SNR of 

the magnitude image [54]. Thus, the weights used in the solution for the slope can be the inverse 

square of the magnitude image. Other authors have used different weights like the magnitude 

image (not squared) [7] or the factor proposed by Wu et al. [55].  

 

Since the weighted least square fit can estimate the slope and intercept of equation 3.7, the phase 

offset correction can also be calculated during this step. This is an alternative approach to the use 

of phase difference maps and complex division to eliminate the phase offset (equations 3.10 and 

3.11). 

 

3.2.3 Background removal 

 

After obtaining the unwrapped phase for each echo and combining all echoes into a single map 

containing information about the magnetic field shift, it is time to find the magnetic susceptibility 

distribution that produces these magnetic field perturbations. However, there is a caveat. The 

magnetic field information is not limited to the field produced by sources exclusively inside the 

volume-of-interest. Due to the non-local (long-range) nature of magnetic field interactions, 

demagnetization fields originated outside the volume-of-interest or scanner-related field 

inhomogeneities seep into the volume-of-interest. These contributions are defined as background 

magnetic fields and they need to be removed to determine the local field (magnetic field due to 

sources exclusively inside the volume-of-interest). For this work, the magnetic susceptibility 

distribution generating the local field will be denoted as χL
∗ . The distribution producing the 

background field will be χB
∗ . Additionally, in this thesis, the quantitative maps containing 

information about the total field (local field + background field) and local field will be denoted as 

“Total Field Shift” (TFS) and “Local Field Shift” (LFS), respectively. This notation was chosen 
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to make a clear distinction between the magnetic fields before and after the background removal 

step. 

 

Most of the background removal algorithms rely on physically and/or mathematically motivated 

properties of the background field that enable the separation of background fields from local 

contributions. The principles behind three different algorithms will be presented: Projection onto 

Dipole Fields (PDF) [56], Sophisticated Harmonic Artifact Reduction for Phase (SHARP) [57], 

and Laplacian Boundary Value (LBV).  

 

PDF separates magnetic field contributions based on the projection theorem in Hilbert space. 

According to this theorem, the background susceptibility distribution can be obtained as: 

 χB
∗ = argminχB

‖w(δB − bχ ∗ χB)‖
2

2
 3.13 

where w is a weight derived from the magnitude images and δB =△ Bz/B0 is the measured data. 

Then, it is possible to estimate the “true” local field as BL
∗ = δB − bχ ∗ χB

∗ , where BL
∗  is an element 

of the space spanned by all the background unit dipole fields (B). B is a space orthogonal to the 

space spanned by all the local unit dipole fields (L). Thus, PDF relies on B ⊥ L and it basically 

projects the experimental data into the space B [2]. 

 

SHARP separates the magnetic fields by imposing the background fields as harmonic fields. A 

function f is harmonic when it satisfies the Laplace equation, meaning ∇2f = 0. It also implies that 

the spherical mean value (SMV) of these functions is the same as the value of the function at the 

center of the sphere. Denoting the SMV of a function f  as ⟨f⟩S = S ∗ f  (where S is a kernel 

representing a normalized solid sphere) and the value of the function at the center of the sphere as 

f0, then, ⟨f⟩S = f0. It is possible to use this idea to create an expression only dependent on the non-

harmonic contributions of the fields. By subtracting the SMV of the measured field shift from the 

field shift itself, it is possible to calculate the map δB′: 

 δB′ = δB − S ∗ δB = δBnh − S ∗ δBnh 3.14 
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where δBnh is the non-harmonic contributions in δB. Then, the local field perturbations can be 

calculated using the kernel (δ − S) for δ the Dirac delta function: 

 δBnh = (δ − S) ∗−1 δB′ 3.15 

SHARP has some limitations that have been addressed by variations of this algorithm. The 

spherical kernel S cannot be used at the boundary of the ROI because the sphere cannot cover 

regions outside the ROI, leading to the necessity of edge erosion and artifacts at the boundary [58]. 

To mitigate this effect, V-SHARP uses varying radius kernels, decreasing the radius for regions 

close to the boundary [59]. Other variations of SHARP use different strategies to improve the 

calculated LFS. For example, RESHARP adds Tikhonov regularization to enhance small norm 

features in the calculated local field [60], while E-SHARP extrapolates the calculated field to 

estimate the values omitted in SHARP close to the boundary [58]. 

 

LBV removes the background field by explicitly solving the Laplacian boundary value problem. 

To define the boundary conditions, the value of the local field at the boundary is assumed to be 

zero, while the value of the background field is the same as the value of the total field [61]. This 

approximation is feasible because the background field is generally one or two orders of magnitude 

greater than the local field [2].  

 

Other algorithms for background removal are discussed and compared in [58]. From the algorithms 

presented in that paper, one notable algorithm is HARPERELLA, since it performs unwrapping 

and background removal simultaneously [62].  

 

All the algorithms mentioned above separate the local and background fields by exploiting some 

mathematical and/or physical properties of these fields. The properties used in each case are rather 

different, which raises an important question regarding the uniqueness of the separability of the 

fields and the accuracy of the calculated local field. As discussed in [58], it is impossible to 

uniquely separate the two categories of magnetic fields without prior assumptions. Without these 

assumptions, it cannot be guaranteed that a background field would not be produced by an internal 

susceptibility distribution or inversely, an internal field produced by susceptibility placed outside 

the volume-of-interest. The use of additional assumptions allows a unique separation of the fields. 
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However, a unique separation does not ensure the estimation of the “correct” local field. For 

example, orthogonality breaks at regions close to the boundary of the volume-of-interest. Thus, 

the field obtained in these regions would have some degree of contamination from background 

fields erroneously considered as local fields. Although the consequences of these spurious fields 

on the final susceptibility map are not entirely clear, since it is possible that the dipole inversion 

technique corrects (to some degree) the erroneously interpreted information during background 

field removal [58]. On the other hand, assuming the harmonic nature of background fields and the 

use of an SMV operation to eliminate the harmonic contributions make it impossible to retrieve 

information close to the boundary of the ROI. In conclusion, even though a unique separation 

between background and internal fields is possible thanks to a priori assumptions, the uniqueness 

of the solution is not a guarantee of the accuracy of the estimation of the internal field, especially 

at regions where the considered physical/mathematical assumptions break.  

    

3.2.4 Dipole inversion 

 

After calculating the LFS (i.e., after the phase processing and background removal steps), it is 

possible to solve the ill-posed inverse problem linked to equation 3.5. There are several ways to 

handle the inverse problem and to cover every algorithm in the literature is outside the scope of 

this work. But a general overview of the basic ideas common to many methods will be provided. 

 

Dipole inversion methods can be classified depending on whether the problem is solved in the 

Fourier space or the image space [2]. 

 

Fourier-based solutions (as the name suggests) solve the problem by first subjecting all the LFS 

information to a Fourier transform like equation 3.5. In Fourier space, a simple inverse filtering 

solution is not possible since FT{bχ(r)} is equal to zero in a well-defined region of Fourier space 

as illustrated in Figure 3.3. One way to get around this obstacle is to regularize the Fourier 

transform of the dipole kernel [32], [63]. The regularization will have consequences in the amount 

and type of artifacts present in the final susceptibility map [2]. This approach is called truncated 

k-space division (TKD).  
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Regularizing the dipole kernel as done in TKD-type solutions is not the only way to solve the 

inverse problem in Fourier space. There are other methods that tackle the inverse problem in 

Fourier space, for example in [64], the dipole inversion is performed by calculating the gradient 

of the LFS in Fourier space. In another example [65], some regions of Fourier space in the dipole 

kernel that correspond to vanishingly small regions in Fourier space are excluded from the dipole 

inversion and then recovered using compressed sensing. 

 

Solutions in the image domain generally consist of iteratively determining a susceptibility 

distribution that after being forward modeled generates a magnetic field shift close to the one 

obtained from the experimentally collected data. Moreover, treating the inverse problem as an 

optimization problem enables the implementation of regularization techniques in the optimization 

algorithm. Thanks to the regularization, it is possible to explicitly or implicitly add a priori 

information to determine the susceptibility distribution [2]. Among all the methods in this category, 

the most popular is called Morphology Enabled Dipole Inversion (MEDI). This method exploits 

the similarity between magnitude images and the spatial distribution of the susceptibility by 

imposing the same edges from the magnitude image in the susceptibility map while sparsifying 

the edges that do not coincide between both representations [66]. 

 

Other methods do not strictly fit in these two categories. These methods are called hybrid methods 

[2]. They combine the information in Fourier space and image space. One example of this approach 

is iterative Susceptibility Weighted Imaging and Mapping (iSWIM). In this case, the regularization 

of the problematic regions in k-space is iteratively improved using information from a binary mask 

of predefined high susceptibility regions extracted from the susceptibility map generated in the 

previous iteration. The binary mask is created by thresholding the susceptibility map available at 

the beginning of the iterative step. The information extracted from the binary mask is Fourier 

transformed and used to supply information to the ill-defined conical region in k-space. This 

approach reduces streaking artifacts since the artifacts are mostly located outside the structures 

defining the binary mask, thus the values in the conic region in k-space contain no artifact either  

[67].  
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There are dipole inversion methods that handle the ill-posed inversion problem by collecting 

experimental information with the volume-of-interest at different orientations. These methods do 

not exactly fit in the previously stated categories. Notable examples of these types of methods are 

Calculation of Susceptibility through Multiple Orientations Sampling (COSMOS) and 

Susceptibility Tensor Imaging (STI). In COSMOS, by acquiring phase data for at least three 

different orientations of the volume-of-interest, it is possible to remove the ill-conditioning of the 

inverse problem. Since the problematic conical surface in k-space will be oriented in different 

directions for each measurement, it is possible to avoid this problematic region. The regions that 

are problematic in one measurement become well behave in another measurement due to the 

change of orientation [2]. On the other hand, STI accounts for anisotropy in the tissue and it enables 

the measurement of the susceptibility tensor. For this method, the measurements must be 

performed through (at least) six orientations [2]. Although these techniques solve the theoretical 

obstacles of solving the inverse problem, they are impractical to implement, especially in a clinical 

setting. 

 

3.2.5 Direct field inversion methods 

 

Traditional QSM estimates the susceptibility distribution by dividing the inverse problem (after 

phase unwrapping) into two different steps: background removal and dipole inversion. However, 

this approach still has some shortcomings that could be improved. First, many of the inaccuracies 

in the susceptibility map originate in the background removal step. The source of these 

inaccuracies is the breakdown of most of the mathematical and/or physical assumptions at the 

boundary of the brain. These limitations hinder the quantification of susceptibility in structures 

like the cortical region of the brain or the superior sagittal sinus [6].  Second, the separation of the 

process into two steps results in error propagation from the background removal to the dipole 

inversion. Error propagation can have a significant effect on the final susceptibility map depending 

on the selected dipole inversion technique, since these present various degrees of sensitivity to 

errors in the input field [2]. Finally, due to large susceptibility variations in the brain, susceptibility 

maps often present streaking artifacts. Alternatives to mitigate these artifacts have been proposed 

in traditional QSM, such as regularization [66] and non-linear susceptibility-to-field relationships 

[68]. 
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To address the challenges of conventional QSM, methods that jointly perform the background field 

removal and dipole inversion have been developed. These techniques perform the dipole inversion 

directly from the TFS map. Chronologically, the first methods created in this category were single-

step QSM methods that used TV (Total Variation) and TGV (Total Generalized Variation) 

regularization [69], [70]. These methods still required explicit removal of the background field by 

removal of the harmonic contributions in the magnetic field, either by implementation of 

constraints over the Laplacian of the measured shift phase [69] or SMV filtration (similar to 

SHARP) [70]. 

 

Although TV/TGV methods enable single-step QSM (even obviating the phase unwrapping step), 

these methods still preserve some of the fundamental problems of conventional QSM [6], [7] like 

requiring edge erosion or inaccurate susceptibility quantification of the cortical region. Thus, to 

further improve the susceptibility maps, new methods appeared combining the background 

removal and the dipole inversion. Three methods will be considered in this thesis and they will be 

presented in subsections 3.2.5.1–3.2.5.3: Preconditioned Total Field Inversion (pTFI), Least-Norm 

Quantitative Susceptibility Mapping (LN-QSM), and Regularized Total Field Inversion (TFIR) 

 

The three direct inversion algorithms considered for this project are not the only methods that exist 

in this category. TV and TGV methods are not included in the “direct inversion methods” category 

since they also eliminate the phase unwrapping step. Other methods are fast Total Field Inversion 

(fast TFI) [9] and automated Total Field Inversion (automated TFI) [10]. Fast TFI uses L0 

regularization that relies on the assumption of sparsity of the susceptibility distribution to reduce 

the number of artifacts and enabling the solution of the inverse problem without requiring 

background removal. According to the authors of this method, the use of the L0 norm outperforms 

pTFI or MEDI [9]. On the other hand, automated TFI is a refinement of pTFI that calculates the 

preconditioner automatically. These two methods will not be explored any further since they would 

require to explore two topics that are outside the scope of this thesis: the use of L0-norm instead 

of L1-norm and the automation of the calculation of the preconditioner. 
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3.2.5.1 Preconditioned Total Field Inversion (pTFI) 

 

This method uses a preconditioner (or rather a priorconditioner according to [71]) P that assumes 

that the final susceptibility distribution follows a Gaussian distribution with mean 0 and covariance 

matrix Γ such that PPH ≈ Γ. the preconditioner increases the convergence speed of the solution 

when used in conjunction with a conjugate gradient (CG) optimization algorithm [6]. 

 

In pTFI, the optimization problem is designed to find the susceptibility distribution χ∗ = χ𝐿
∗ + χ𝐵

∗ . 

For a binary mask M representing the volume-of-interest, χ𝐿
∗ = Mχ∗ and  χ𝐵

∗ = (1 − M)χ∗. Then, 

the susceptibility distribution can be calculated as (the symbol ∗ denotes the convolution): 

 χ∗ = argminχ

1

2
‖w(δB − bχ ∗ χ)‖

2

2
+ λ‖M∇χ‖1 3.16 

In this method, total variation (TV) regularization is added using the term λ‖M∇χ‖1 . TV 

regularization promotes smoothness and sparsity in the final susceptibility map [72], [73]. TV 

regularization also penalizes variations in the gradient of the susceptibility, and it is suitable to 

deal with piecewise continuous functions, unlike other types of regularization [74]. The variable λ 

is the regularization parameter for the TV regularization term. In pTFI, this parameter should be 

chosen such that it minimizes the root-mean-square error (RMSE) in a numerical phantom [6]. 

 

The variable w inside the least squares term corresponds to a weighting matrix that accounts for 

the nonuniform phase noise and is derived from the magnitude images [6], [72]. The entries of the 

matrix are the inverse of the standard deviation for the values in each voxel of the TFS map [75]. 

The elements of the matrix w are calculated as [7]: 

 wi,j = (∑ Magi,j,k
2

k

)

1/2

(
∑ Mi,ji,j

∑ (∑ Magi,j,k
2

k )
1/2

i,j

) 3.17 

The matrix w is the normalized values of the square root of the added (over all echoes) squared 

values of the voxels in the magnitude image. In equation 3.17, Magi,j are the elements in the matrix 
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representing the magnitude image in the k-th echo and the sum over k is a sum across echoes. Mi,j 

are the elements in the matrix representing the binary mask. 

  

By adding a preconditioner to equation 3.16, the argument that minimizes the expression becomes 

χ = Py. Here, P is a matrix that represents the preconditioner and it has entries Pi,j: 

 Pi,j = {
1, i, j ∈ M

PB, i, j ∉ M
 3.18 

The value PB (for PB > 1) is an integer value selected ad hoc to reproduce the susceptibility gap 

between the susceptibility sources in the background and inside the volume-of-interest. The 

preconditioner assigns high values to the sources in the background [6], and PB = 30  was 

determined as the optimal value for QSM in the brain. 

 

3.2.5.2 Least-Norm Quantitative Susceptibility Mapping (LN-QSM) 

 

LN-QSM uses Tikhonov regularization to avoid the use of a preconditioner. Tikhonov 

regularization separates the background field from the local field by exploiting the fact that the 

background field is approximately two orders of magnitude greater than the local field [7]. In 

principle, Tikhonov regularization enforces distributions with small values for the susceptibility 

inside the volume-of-interest enabling the separation of local and background fields. The 

optimization problem for this method corresponds to the following equation:  

 χ∗ = argminχ‖w(δB − bχ ∗ χ)‖
2

2
+ λ1‖M∇χ‖1 + λ2‖Mχ‖2

2 3.19 

In this case, regularization is added by the two last terms on the right-hand side of equation 3.19. 

The 𝐿1-norm term adds TV regularization (similarly to 3.16) to ensure a smooth solution. The 𝐿2-

norm term adds Tikhonov regularization. The accompanying constants 𝜆1  and 𝜆2  are 

regularization constants. In [7] the value of 𝜆2 was calculated for brain imaging using the L-curve 

criterion [75]. On the other hand, the value of 𝜆1 for brain imaging (in the same paper mentioned 
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before) was selected empirically and in agreement with the literature [76]–[78] about 𝐿1-norm 

regularization in QSM. 

In the optimization problem established in equation 3.19, the matrixes w and M are the same as in 

pTFI. The matrix w is a weighting matrix that accounts for the noise in the phase measurements 

and it is calculated according to 3.17.   

3.2.5.3 Regularized Total Field Inversion (TFIR) 

 

TFIR uses spatially varying regularization and it is presented by the authors as an improvement 

over other methods like pTFI and LN-QSM. This method regularizes the problem by adding a 

weighting matrix built by low-pass filtering a map of R2
∗  estimates obtained from the magnitude 

data of the mGRE sequence [8]. The susceptibility maps from TFIR reportedly provide a better 

depiction of regions of high susceptibility, while reducing streaking artifacts.  

 

In TFIR, the optimization problem for calculation of the susceptibility distribution is: 

 χ∗ = argminχ

1

2
‖w(δB − bχ ∗ χ)‖

2

2
+ λ1‖M∇χ‖1 + λ2‖e−|τLR2

∗ |Lχ‖
2

2
 3.20 

R2
∗  information is added in the model within the L2-norm regularization (the third term in equation 

3.20). The use of e−|τLR2
∗ | as a weight in the regularization term is justified by the resemblance 

between the susceptibility values and the point-wise inverse of this weighting matrix [8]. In this 

case, L is the SMV operator with radius k. τ is a constant parameter that modifies the penalty 

imposed by the L2-norm regularization. For brain imaging, k and τ were optimized by minimizing 

the difference between susceptibility maps obtained from COSMOS and TFIR, in a single subject. 

 

The values λ1 and λ2 are regularization parameters. In the original publication of TFIR, λ2 was 

selected to minimize the difference between susceptibility maps from COSMOS and TFIR results, 

with the same selection method as for the parameters k and τ. The value of λ1  was selected 

empirically. 
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Finally, similar to pTFI and LN-QSM, the L1 -norm regularization corresponds to TV 

regularization and the matrices M  and w  are a brain binary mask and a weighting matrix, 

respectively. The entries of w are calculated as established in 3.17. 
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Chapter 4  

 

4 Methods and materials 

 

4.1 QSM pipeline for conventional QSM and direct inversion methods 

 

For this project, a QSM pipeline capable of producing susceptibility maps using conventional 

QSM and direct inversion methods was created. A schematical representation of the established 

QSM pipeline is presented in Figure 4.1. This pipeline corresponds to a modified version of the 

pipeline proposed in [7].  

 

Since this work was focused exclusively on brain QSM, the first step in the pipeline was to produce 

a binary brain mask from the magnitude images. The binary mask to define the volume-of-interest 

for determining the susceptibility distribution was obtained using the Brain Extraction Tool (BET) 

[79]. This software tool separates whole-head magnitude images into brain and non-brain tissue 

by first creating a rough mask using histogram-based thresholding. Then, the rough brain/non-

brain separation is improved by creating a triangular tessellated sphere centered at the centre of 

gravity estimated from the initial brain/non-brain thresholding. Finally, each vertex of the sphere 

is moved toward the brain edge and the new tessellated surface is iteratively modified until 

achieving a smooth and optimal solution [79]. The BET function is part of the Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) Software Library (FSL) developped by the FMRIB 

Analysis group at the University of Oxford. FSL is a set of analysis tools for brain imaging data 

focused on functional, structural, and diffusion MRI [80], [81].  

 

For the QSM pipeline used in this project, phase offset correction was performed using the first 

two echoes and implemented before phase unwrapping (as illustrated in Figure 4.1). The phase 

offset correction was applied to all echo at each echo time and it was calculated as described in 

section 3.2.2 and based on the methods presented in [42], [58], [82]. After obtaining the phase 
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offset correction and the binary brain mask, the next step in the pipeline was unwrapping. Phase 

unwrapping is this work was understood as a two-stage process consisting of spatial phase 

unwrapping followed by temporal unwrapping (used to correct 2𝜋 jumps introduced during spatial 

unwrapping). The implemented spatial unwrapping algorithms were: a local implementation of 

Laplacian unwrapping denominated as “discrete Laplacian unwrapping” (dLu) in [1], SEGUE [47], 

and Quality Guided unwrapping QG [49]. THUMPR was used for temporal unwrapping [50]. 

THUMPR is capable of correcting phase jumps of magnitude 2𝑛𝜋, where 𝑛 is an integer. 

 

After phase unwrapping, all echoes were combined into a single (Total Field Shift) TFS map, 

shown in Figure 4.1. The echo combination was performed using a weighted least-squares fit with 

weights corresponding to the inverse of the variance of the phase measured at each echo, which is 

proportional to the SNR of the magnitude image for each echo [54]. Using the fitting residuals, a 

reliability mask was created to exclude voxels with a non-linear temporal evolution, which may 

be induced by flow artifacts (turbulent flow), partial volume effects, and/or excessive noise levels 

[3]. To create the reliability map, the map of fitting residuals was first smoothed (Gaussian 

smoothing). Then, every voxel corresponding to a value greater than an ad hoc threshold (selected 

according to the pipeline used in [7]) was excluded from subsequent steps in the pipeline.      

  

From the magnitude images, two additional pieces of information were derived to use in 

conventional QSM and direct inversion. First, a weighting matrix w was calculated from the 

magnitude information to account for the nonuniform phase noise. The entries of this matrix were 

calculated according to relation 3.17. Second, a mask of cerebrospinal fluid (CSF) voxels was also 

derived from the magnitude information. The CSF mask was used to set the zero reference of the 

susceptibility distribution calculated by the QSM pipeline. The CSF mask was calculated by first 

determining the R2
∗  map from the magnitude images obtained from the mGRE sequence. The R2

∗  

map was calculated using an algorithm for fast mono-exponential fitting based on Auto-Regression 

on Linear Operations of data (ARLO) [83]. Subsequently, the R2
∗  map was used to estimate the 

CSF mask using the CSF extraction tool provided in the MEDI toolbox [72]. CSF is not the only 

option for the reference tissue in QSM [84], but it was selected in this case as the most practical 

approach as a suitable reference tissue for QSM [85], [86].  
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The final steps in the pipeline consisted in estimation of the susceptibility distribution of the 

volume-of-interest (brain) either by background removal and dipole inversion (conventional QSM) 

or by direct field inversion. For this work, the background removal techniques considered were 

RESHARP [60], PDF [56], and LBV [61]. All of these background removal techniques were 

paired with two different dipole inversion algorithms, iSWIM [67] and MEDI+0 [85]. These dipole 

inversion techniques were selected to represent methods that operate in the Fourier and image 

domain, respectively. Moreover, MEDI+0 was selected since it uses L1 regularization in the same 

fashion as the MEDI version presented in [66], but it also automatically zero-referenced the 

obtained susceptibility map using CSF as a reference, which is coherent with the selected reference 

for this work. On the other hand, the direct inversion methods selected here were pTFI [6], 

preconditioned LN-QSM (pLN-QSM) [7], and TFIR [8]. LN-QSM was implemented using the 

code made freely available by the authors of the method1. A preconditioner (as specified in 

equation 3.18) was added to the method for pLN-QSM. The addition of a preconditioner to LN-

QSM is suggested in the original pipeline made available by the authors of the method, but it is 

not discussed in the original publication [7]. pTFI and TFIR were included in the pipeline via local 

implementations according to the theory detailed in the original publications for each method. 

 

1 Repository for the original implementation of LN-QSM: https://github.com/sunhongfu/QSM 
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Figure 4.1: Schematic representation of the QSM pipeline created for this work. The pipeline is a 

modified version of the pipeline used in [7]. The phase unwrapping was performed by using 

discrete Laplacian unwrapping, SEGUE, or QG for spatial unwrapping, and THUMPR for 
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temporal unwrapping (temporal phase correction). The background field removal techniques 

were: SHARP, PDF, and LBV. These techniques were paired with two different dipole inversion 

algorithms: iSWIM and MEDI+0. The direct field inversion techniques implemented were pLN-

QSM, pTFI, and TFIR.   

4.2 Evaluation of susceptibility maps using numerical simulations 

 

4.2.1 Designing a brain numerical model for QSM  

 

To study direct inversion methods, two numerical models of the head were created. These 

numerical models were used as input for the pipeline described in section 4.1. Both numerical 

models were composed of two different parts, a numerical model of the head and a numerical 

model of the brain, as illustrated in Figure 4.2. The numerical model of the head (Figure 4.2 b)) 

contained regions representing scalp (soft tissue), skull, and air. The numerical model of the brain 

(Figure 4.2 c) and d)) was placed inside the head model. The difference between the two numerical 

models, denoted as “model A” and “model B”, resided in the structures added inside the brain. 

Model A only contained regions corresponding to gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF). The susceptibility of each region was assigned according to Table 4.1 

[87]. In comparison with Model A, model B added deep gray matter structures inside the brain. 

The structures added to model B were the thalamus (TH), caudate nucleus (CN), putamen (PU), 

and globus pallidus (GP). In these regions of the brain (TH, CN, PU, and GP), the susceptibility 

values in model A were replaced by the values in Table 4.2 [88]. 

 

The structures in the head model were used to generate a realistic background field model for the 

brain, as done in [89]. To create the background field, air pockets were considered in the model to 

reproduce high susceptibility changes produced by the presence of structures like frontal sinus, 

sphenoid sinus, nasal cavity, and ear canal. 

 

To create the head and brain numerical models a T1-weighted (T1w) dataset (Figure 4.2 a)) was 

used as a template. This dataset was acquired from a healthy male volunteer (43 years old) who 

gave written informed consent (Resarch Ethics Board of the RI-MUHC). To perform the 
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measurements, a Siemens Prisma 3T MRI scanner with a 20 channel head/neck coil was used. To 

obtain the T1w dataset, a magnetization-prepared rapid gradient echo (MP-RAGE) sequence was 

used with a voxel size of 0.879 × 0.879 × 0.9 mm3 (repetition time TR = 2300 ms, echo time 

TE = 2.33 ms, inversion time TI = 900 ms, flip angle FA = 8°, bandwidth BW = 200 Hz/pixel, 

matrix size 256 × 256 × 192). This dataset was used for automatic tissue segmentation.  

 

An mGRE sequence was used to obtain magnitude and phase data for QSM. The sequence 

parameters for this acquisition were TR = 50 ms, time for the first echo TE0 = 4.9 ms, echo 

spacing ∆TE = 5.4 ms, number of echoes = 5, flip angle FA = 15°, readout bandwidth BW = 470 

Hz/pixel, voxel size 0.8 × 0.8 × 1.5 mm3, and matrix size 288 × 288 × 104. Further detail about 

the experimental data collection for this project are presented in section 4.3.1.  

 

Before image registration, the voxel size of the magnitude and phase images of the mGRE 

sequence was transformed from 0.8 × 0.8 × 1.5 mm3 to 0.78 × 0.78 × 0.78 mm3 isotropic voxel 

size by zero padding the complex data in Fourier space. The size of the padding was established 

by modifying the matrix size and voxel size while keeping the size of the field of view (FOV) 

constant. The size of the padding along the three dimensions was given by integer numbers that 

are calculated after rounding the results from the operation 𝑉𝑆⨀MS/min(VS) − MS, where 𝑉𝑆 

and 𝑀𝑆 are three-dimensional vector containing the voxel size and matrix size and ⨀ represents 

the point-wise product between the elements of the matrices. In a similar way, the voxel size of 

the T1w dataset was modified to match the voxel size 0.78 × 0.78 × 0.78 mm3. 
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Figure 4.2: Axial, sagittal, and coronal views of the T1-weighted dataset used to create numerical 

models, head numerical model, and brain numerical models A and B. a) T1w brain image used as 

a template to create the numerical brain models. b) Head numerical model without brain 

parenchyma, including air pockets for the frontal sinus, sphenoid sinus, nasal cavity, and ear 

canal. c) Numerical model A of the brain containing grey matter (GM), white matter (WM), and 

CSF. d) Numerical model B, containing the structures in model A plus deep gray matter structures 

for the thalamus (TH), caudate nucleus (CN), putamen (PU), and globus pallidus (GP). Numerical 

brain models A and B are placed in the skull model to create a realistic background in simulations. 

Image registration between the magnitude image of the mGRE sequence and the T1w dataset was 

performed using 3D 12 degrees of freedom affine registration in MATLAB with the function 
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imregister (which uses to intensity-based image registration), setting the initial step size (initial 

radius) of the optimizer to 1.78 × 10−3 and the number of iterations to 400. These two parameters 

were selected by gradually modifying them until good visual alignment was observed between the 

two datasets in bony structures and gyri of the brain . The result of image registration is illustrated 

in Figure 4.3, showing a slice of both datasets in three planes after image registration. The function 

imregister performs image registration using an algorithm based on Pyramiding affine 

registration [90] and a bilinear optimization. 

 

Following image registration, the T1w dataset was used for automatic tissue classification. 

BrainSuite software was used for this purpose [91], [92]. BrainSuite was selected because it is 

extremely user friendly, it has a very intuitive GUI, its applications are well documented, it allows 

for manual corrections of many of the results obtained with the software and there are several 

video tutorials explaining different aspects of the software (from basic to advanced applications).  

 

 
Figure 4.3: Image registration for T1w dataset and m GRE magnitude image using MATLAB. a) 

and b) are axial, sagittal, and coronal slices of the T1w image and magnitude image of the mGRE 

sequence, respectively, after registration. c) presents the slices overlapped.  

To create the head model, the skull stripping tool of BrainSuite was used to delimit the boundary 

between the brain and the skull (7 diffusion iterations, diffusion constant 26.042, edge constant 

0.64, and erosion size 2). Subsequently, the mask generated in this step was manually corrected in 

regions where the brain and skull were incorrectly separated. The next step to create the model 
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was to use the skull and scalp tool to automatically classify the structures in the T1w image as 

scalp/soft tissue, skull/bone, air, CSF, and brain tissue. Some regions that were incorrectly flagged 

when compared with the magnitude image or altered due to artifacts were manually corrected. 

After these processing steps, BrainSuite generated a NIfTI2 file with tags representing each of the 

structures previously mentioned. These files were imported into MATLAB and the tag values 

generated by BrainSuite were replaced by the corresponding susceptibility values. The tags used 

by BrainSuite and the susceptibility values assigned in the model are presented in Table 4.1. The 

susceptibility values were retrieved from literature [87]. An illustration of the tissue classification 

for the head model is presented in Figure 4.4. 

 

Table 4.1: BrainSuite tags and susceptibility values used to identify regions in the head and brain 

tissue. The susceptibility values were retrieved from [87]. The susceptibility values for regions 

containing a mixture of components were determined as the average values of the susceptibility of 

the individual components.   

Structure BrainSuite tag Susceptibility [ppm] 

Air 0 9.4 

Scalp/soft tissue 16 0.6 

Skull/bone 17 -2.5 

CSF 18 0 

GM 2 0.02 

WM 3 -0.033 

GM/CSF 4 0.01 

GM/WM 5 -0.006 

 

 

 

 

2 NIfTI data format details, source code, and documentation: https://nifti.nimh.nih.gov/  

https://nifti.nimh.nih.gov/
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Table 4.2: BrainSuite tags and susceptibility values for deep grey matter structures included in 

model B. The values presented in the table were collected from [84] and correspond to the average 

values for each structure using CSF as the zero reference. 

Structure BrainSuite tag Susceptibility [ppm] 

Right thalamus 640 
-0.007 

Left thalamus 641 

Right caudate nucleus 612 
0.029 

Left caudate nucleus 613 

Right putamen 614 
0.026 

Left putamen 615 

Right globus pallidus 616 
0.104 

Left globus pallidus 617 

 

 

 
Figure 4.4: Illustration of tissue classification for the numerical head model using BrainSuite. 

To create numerical brain model A, the T1w dataset was processed using BrainSuite. After using 

the skull stripping and skull/scalp tools, the tissue inside the brain was classified first by applying 

a non-uniformity correction using Bias Field Corrector (BFC) followed by the tissue classification 

tool using the Partial Volume Classifier. Non-uniformity correction was used to mitigate intensity 

variations caused in the image due to transmit/receive fields imperfections and artifacts due to 



 

 52 

magnetic susceptibility. The BFC parameters were selected automatically using the iterative mode. 

The Partial Volume Classifier was used to classify the brain tissue into GM, WM, CSF, and regions 

containing a mixture of these three regions. The mixtures considered in the model were GM/CSF 

and GM/WM. In a similar fashion to the head model, the output of BrainSuite was imported to 

MATLAB and the tags for each region were replaced by the susceptibility values. These values 

are presented in Table 4.1. The value of the susceptibility in the regions where there is a mix of 

components was established as the average value of the susceptibility of each component since the 

magnetic susceptibility is an additive property.      

 

To create numerical brain model B, model A was used in conjunction with the cortical surface 

extraction and surface/volume pipelines in Brainsuite. The cortical surface extraction pipeline was 

used to define the cortical region of the brain and to create a cortical mask for models A and B. 

The surface/volume pipeline registered the input MRI dataset to a brain atlas where the structures 

were already classified and labeled. The output of this tool was a NIfTI file containing the input 

dataset segmented into different cortical and subcortical regions. The surface/volume pipeline was 

used to include deep gray matter structures in model B in the form of TH, CN, PU, and GP and to 

create masks for measuring the susceptibility in anatomical ROIs for these regions. The structures 

included in model B and their susceptibility values are presented in Table 4.2. Deep grey matter 

structures that are also high susceptibility sources such as the substantia nigra and red nucleus were 

not included in the model since BrainSuite cannot automatically segment them.  

 

All steps in the cortical surface extraction pipeline were executed either using an iterative solver 

(when available) or using the defaults values for each step. Subsequently, the results for the 

cerebral mask and the inner and pial surfaces were inspected for major errors. When inspecting 

the inner and pial surfaces, two aspects were considered to identify errors in the definition of these 

surfaces. 1) Appropriate delineation between grey and white matter. 2) Discontinuities or gaps in 

gyri that are challenging to depict accurately due to their thickness or to their location near regions 

of possible signal dropout. The first aspect was assessed by inspecting coronal slices and verifying 

that the gray/white junction determined by BrainSuite coincided with the observable separation in 

each slice of the T1w image. The second aspect was evaluated by looking at obvious missing gaps 

or discontinuities in the parahippocampal gyrus, gyrus rectus, and superior temporal gyrus, which 
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is where the most common errors occur due to their shape and size [91], [92]. Good agreement 

between the observable and calculated junctions was observed and no major discontinuities in the 

gyri were found.  

 

After importing the .nii files to MATLAB and replacing the susceptibility values, the brain models 

A and B were placed inside the head model. Then, the susceptibility values were used to forward 

model the corresponding magnetic field shift according to equation 3.5. Since the numerical 

simulation was used for QSM considering the brain as the volume-of-interest, the field produced 

by the susceptibility distribution in the head model was assumed to be the background field. 

Meanwhile, the field that was produced by the susceptibility distribution of the brain model was 

assumed as the local field. 

 

After forward modeling the magnetic field shift produced by the susceptibility distribution, this 

value was used in each voxel as the slope in equation 3.7 to generate the phase evolution as a 

function of echo time (assuming a linear relationship). The time-independent phase contribution 

in equation 3.7 was assumed to be zero, and no phase offset was added to the model. 5 echoes 

were generated using the same echo times as the magnitude image in the mGRE sequence describe 

before (time for the first echo TE0 = 4.9 ms, echo spacing ∆TE = 5.4 ms). The complex signal 

for each echo time and each voxel was composed of the magnitude information from the mGRE 

sequence (for a specific echo time and voxel) combined with the simulated phase (at the same echo 

time and voxel considered for the magnitude data). The wrapped phase was finally obtained as the 

phase of the complex signal. 

 

Noise was added to the model to enable the study of QSM with varying levels of SNR. The noise 

was included in the model by adding white gaussian noise to the real and imaginary parts of the 

complex signal. The noise at each echo was included by creating a matrix (of the same size as the 

matrix containing the complex signal) of normally distributed random values using the randn 

function in Matlab. The standard deviation of the noise distribution was set by multiplying the 

noise matric by the mean value of the magnitude image in the first echo divided by a fixed SNR 

value. The values considered for SNR were 10, 20, 40, and 60. The minimum value of 10 was 
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selected since the BET function failed to create a binary brain mask for the numerical model with 

lower SNR.   

 

All the experiments described below were performed using model A and model B. The goal behind 

model A was to determine if the presence of high susceptibility sources affected the measurement 

of the susceptibility at the cortical region of the brain, by removing them. Thus, the results from 

both models will be presented when showing the measured susceptibility in anatomically relevant 

ROIs. For all other cases, only the results for the more realistic model B  will be shown since only 

negligible variations between the results for both models were observed for unwrapping, 

background removal, and the appearance of the susceptibility maps (except for the presence of 

deep gray matter structures). 

 

4.2.2 Comparison of phase unwrapping algorithms 

 

In the numerical models, the unwrapped phase was studied after spatial and temporal unwrapping, 

i.e. after applying THUMPR. Two criteria were contemplated to select the spatial unwrapping 

algorithms. 1) The inclusion of path-following unwrapping techniques, considered as the most 

accurate, and of Laplacian unwrapping, considered as the most robust approach to noise and a 

large number of wraps [93]. 2) The selected methods were based on previous work done in our 

research group for conventional QSM [50]. The objective of the unwrapping comparison was to 

determine if the techniques that performed well in conventional QSM also performed well with 

direct inversion methods. 

 

To assess the performance of the three unwrapping algorithms considered for this project, the 

unwrapped phase was studied and compared with the ground truth. The comparison was done in 

axial slices, one-dimensional profiles across axial slices, and using maximum intensity projection 

(MIP) difference maps. Additionally, the RMSE metric was used as a global quantitative metric 

to represent the agreement between the calculated unwrapped phase and the true phase. For each 

unwrapping technique, the accuracy of the technique and the source of errors for the unwrapped 

phase was determined. The performance of the algorithms was studied in the noiseless model and 

for varying levels of SNR. 
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The MIP difference maps were calculated by taking the absolute value of the voxel-wise difference 

between the ground truth and the calculated unwrapped phase. Then, the maximum values were 

projected onto a plane parallel to an axial slice (superior/inferior view) or parallel to a sagittal slice 

(lateral view). On the other hand, the RMSE value was calculated as: 

 RMSE =
‖xc − xg‖

2

√n
 4.1 

xc represents the 3D matrix containing the calculated unwrapped phase, while xg is the ground 

truth phase. The L2-norm in the formula is the Frobenius norm. n is the number of voxels in the 

matrices.     

 

4.2.3 Interaction between the unwrapping and the background removal techniques in 

conventional QSM 

 

Local field shift (LFS) maps were created for the numerical simulations to study the performance 

for every possible combination of the selected unwrapping (dLu, QG, and SEGUE) and 

background removal (PDF, RESHARP, and LBV) techniques. The three background removal 

techniques were selected to cover as many as possible of the physical/mathematical principles 

behind the operation of background removal algorithms [2], [58]. The LFS maps were compared 

to the ground truth using difference maps and the RMSE metric (equation 4.1). The difference 

maps were used to qualitatively identify spurious local fields and errors at the edge of the brain. 

The RMSE was calculated using three different masks to evaluate the performance of the 

techniques in an eroded brain mask (which roughly represents the performance of the techniques 

for subcortical structures), at the edges of the brain (defined by the volume that was excluded from 

the eroded mask), and in the whole brain (using the original binary brain mask). These masks were 

designed to quantitatively determine the accuracy of background removal at the edge of the brain, 

where the assumptions in PDF and LVB break down. Also, the three masks was were used to 

compare PDF and LBV with RESHARP, since this last technique requires edge erosion. The 

eroded mask for comparison was selected according to the erosion required in RESHARP (6 
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voxels for numerical model B). The RMSE values for the edge of the brain and the whole brain 

were not calculated for RESHARP. 

 

MIP difference maps were created comparing the calculated LFS maps and the ground truth from 

the numerical model. These maps were also used to show error propagation between the 

unwrapping to the background removal step  

 

4.2.4 Evaluation of susceptibility maps using numerical simulations 

 

4.2.4.1 Unwrapping and background removal in QSM 

 

After finding the best background removal technique for conventional QSM, susceptibility maps 

were created for numerical model B using MEDI+0, iSWIM, pTFI, pLN-QSM, and TFIR, and all 

unwrapping techniques. The reasons behind using all unwrapping techniques were two-fold. First, 

when studying the best background removal technique for the numerical model, similar 

performance was observed for the methods paired with SEGUE and QG, thus it was not possible 

at that stage to establish the best unwrapping technique for comparison. Second, it was to verify 

that the unwrapping technique that performs better in conventional QSM [49], [50] was also the 

best option for direct inversion methods. 

 

From the three direct inversion techniques considered for this project, pTFI and TFIR were local 

implementations created for this project, while LN-QSM was implemented using the code 

provided by the authors of the method. However, it was not possible to reproduce the results in [7] 

using the freely available code. The addition of a preconditioner (as suggested in pTFI and showed 

in equation 3.18) significantly improved the quality of the susceptibility maps obtained with LN-

QSM. This method with a preconditioner was named preconditioned LN-QSM (pLN-QSM) and 

was used in all cases instead of LN-QSM. The use of a preconditioner is justified in the discussion 

section.  

 

To solve the inverse problem in the three direct inversion methods, a non-linear conjugate gradient 

method was used. The initial distribution for the solver was a zero matrix. The iteration in the case 
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of pLN-QSM was stopped when one of two conditions was met: either the norm of the change in 

the solution was less than 0.01% of the norm of the current solution (the default value in the 

original LN-QSM code [7]) or the number of iterations exceeded 200. The default value for the 

maximum number of iterations in the original code was set to 500, even though the paper 

describing the method [7] established a limit of 200. The value of 200 in this work was selected 

first to emulate the value established in the cited paper, and because the results obtained with 

numerical simulations showed minimal improvement in RMSE beyond 150-200 iterations, when 

comparing the ground truth with the estimated susceptibility distribution.  The same conditions to 

stop the conjugate gradient solver were used for the other two methods since comparable quality 

susceptibility maps and reconstruction times to pLN-QSM were achieved in both cases with this 

threshold. 

 

The reconstruction parameters selected for direct inversion methods were as suggested by the 

authors for healthy brain QSM. For pTFI, parameters were PB = 30 and λ = 8 × 10−4 [6]. For 

pLN-QSM, parametres were λ1 = 1 × 10−4 and λ2 = 1 × 10−3 as in LN-QSM [7], with an extra 

preconditioner with PB = 30. For TFIR, parameters were λ1 = 1 × 10−3, λ2 = 1 × 10−1, k = 2, 

τ = 0.05 [8]. 

 

The comparison of the impact of unwrapping on susceptibility maps was performed using the 

RMSE metric, a visual assessment of artifacts in the maps, and MIP difference maps. With this 

information, it was possible to establish the best unwrapping technique for direct inversion 

methods. 

 

4.2.4.2 Comparison of conventional QSM and direct field inversion methods 

 

To understand the advantages or disadvantages of direct inversion methods over conventional 

QSM, a qualitative assessment of the artifacts in the susceptibility maps of direct inversion 

methods was done (using only the best unwrapping technique) by comparison with conventional 

QSM. The comparison of the results was performed in representative axial and sagittal slices and 

one-dimensional profiles through the selected axial slice.  
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MIP difference maps comparing the LFS maps obtained from conventional QSM after background 

removal and the LFS map produced after forward modeling the susceptibility distribution obtained 

from the direct inversion method (pTFI, pLN-QSM, and TFIR) were created. These maps were 

used to show the reduced error in the local field estimated by direct inversion methods when 

compared with conventional QSM. 

  

4.2.4.3 Decoding the operation of direct inversion methods  

 

To provide insight into the mechanisms behind the operation of direct inversion methods, the 

estimated susceptibility distributions calculated by direct inversion methods inside and outside the 

volume-of-interest (in this case the brain, defined by the binary mask) in the numerical models 

were used to calculate the local (LFS) and background fields. The local field was derived from the 

susceptibility distribution estimated inside the brain. The background field was considered as the 

field produced by the susceptibility distribution estimated outside the brain and multiplied by a 

preconditioner (for the methods which consider the use of a preconditioner). The calculated local 

and background fields were compared to the ground truth obtained from the numerical model. The 

comparison of these two fields was done to establish how the estimated susceptibility distribution 

in direct inversion methods contains information about the background field, while also generating 

a local field coherent with the modeled susceptibility distribution (in other words, a magnetic field 

that would allow accurate estimation of the susceptibility distribution inside the volume-of-

interest). The metric for comparing the local and background magnetic field contributions with 

their respective ground truths was the RMSE.    

 

4.2.4.4 Measurement of the susceptibility in anatomical ROIs 

 

To understand how QSM depicts the susceptibility in specific anatomical ROIs, the true discrete 

susceptibility distribution in numerical model B was compared with the estimated susceptibility 

distribution from conventional QSM and direct inversion methods, using histograms. Numerical 

model B is a set of discrete regions that represent structures inside the brain, and the histogram of 

its susceptibility distribution is a set of discrete bars representing the number of voxels and 

susceptibility of each structure. A good agreement between the ground truth and the estimated 
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susceptibility distribution from the selected QSM method should feature a multimodal distribution 

with peaks in the same positions as the discrete values in the ground truth.This was investigated 

for MEDI+0, iSWIM, pTFI, pLN-QSM, and TFIR. 

 

A quantitative analysis of the susceptibility values in deep gray matter structures (TH, CN, PU, 

and, GP) and the cortical region of the brain was performed by measuring the mean and standard 

deviation of the susceptibility in ROIs representing these structures, in the numerical models. The 

values in the cortex were measured in models A and B. The susceptibility in deep gray matter 

structures was measured in model B. The measurement in each region was performed using the 

mask generated during the creation of the numerical models (subsection 4.2.1). The mean values 

measured in ROIs for the susceptibility distributions calculated by MEDI+0, iSWIM, pTFI, pLN-

QSM, and TFIR were compared with the ground truth using the percentage error as a measurement 

of accuracy.  

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 [%] =
|𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 −  𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|

 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
× 100 4.2 

 

4.2.4.5 Susceptibility estimation for varying SNR 

 

The performance of direct inversion methods and conventional QSM with varying levels of SNR 

was evaluated in numerical model B by analyzing the artifacts in the susceptibility maps. For each 

value of SNR (10, 20, 40, 60) susceptibility maps were created for MEDI+0, iSWIM, pTFI, pLN-

QSM, and TFIR. Reconstruction parameters listed in subsection 4.2.4.1 were used. The 

susceptibility distributions in each map inside the cortex and GP were also studied using box charts 

to analyze the change due to SNR in the distributions in the cortical brain and the deep gray matter 

structure with the highest susceptibility value included in the numerical model. 
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4.3 Evaluation of susceptibility maps using in vivo datasets 

 

4.3.1 In vivo data acquisition 

 

In vivo datasets were collected from five healthy volunteers (three males aged 26, 27, and 43, and 

two females aged 25 and 27). Informed consent under the approval from the Research Ethics Board 

of the McGill University Health Center (MUHC) was obtained for all the volunteers. Two different 

MRI scanners were used to collect information: a MAGNETOM Prisma 3T manufactured by 

Siemens Healthineers (Scanner I) and an Ingenia 3T manufactured by Philips Healthcare (Scanner 

II). For head imaging, the scanners were paired with a 20-channel head coil in the case of Scanner 

I, while for Scanner II a 15-channel was used. Scanners I and II had slightly different centre 

frequencies 𝑓0, which were 123.258 MHz and 127.765 MHz, respectively. 

 

The difference in centre frequency between Scanners I and II, due to a difference in main magnetic 

field, was accounted for in the QSM pipeline. The magnitude of the magnetic field is calculated as 

𝐵0 = 2𝜋𝑓0/𝛾, where 𝑓0 is the centre frequency in Hz. The use of two different scanners implies 

possible differences in shimming for the data collected in each scanner. Differences in B0 field 

homogeneity and shimming alter the effect that air/tissue interfaces have over the QSM results 

[94], [95]. The differences in QSM arise due to the variability in the separation between 

background and local fields due to the shimming near air cavities [95]. The variability introduced 

due to the use of different scanners when studying anatomical ROIs is not significantly larger to 

the variability introduced when using the same scanner for different measurements (with the same 

acquisition parameters) [95]. To avoid the introduction of bias due to the variability between 

datasets when assessing the performance of the considered techniques, the datasets were not 

directly compared. Results for different datasets were only contrasted when there were 

qualitatively noticeable differences in the appearance of the susceptibility maps or when a 

technique failed in a particular dataset.  

 

For all acquisitions, a 3D mGRE sequence was used to collect magnitude and phase information. 

Additionally, for three volunteers imaged in Scanner I, T1w datasets were collected using the MP-

RAGE sequence (described in section 4.2.1). For all acquisitions, flow compensation and unipolar 
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readout gradients were employed. In the datasets acquired with Scanner II, parallel imaging 

(SENSE) was used (acceleration factor 2.4 and 1.5 in the phase encode directions). The sequence 

parameters are summarized in Table 4.3 and  

Table 4.4 for mGRE and MP-RAGE protocols, respectively. The collected datasets were labeled 

by combining a letter, representing the volunteer, with a number representing the dataset from the 

specified volunteer. 

 

Table 4.3: 3D mGRE sequence parameters for collecting complex data for QSM experiments. The 

letter in the name of the dataset denotes the volunteer. Datasets B1, C3, and E1 were obtained 

using Scanner I. All other datasets were collected using Scanner II. All acquisitions were designed 

to have five echoes, except B3 which had seven echoes. 

Dataset 𝑻𝑹 𝑻𝑬𝟎 ∆𝑻𝑬 𝑭𝑨 𝑩𝑾 Voxel size Matrix size 

 [ms] [ms] [ms] [°] [
𝑯𝒛

𝒑𝒊𝒙𝒆𝒍
] [mm3] [voxel] 

A1 51 4.9 5.4 20 483 0.60 × 0.60 × 1.00 336 × 336 × 155 

A2 51 5.0 5.4 20 322 0.70 × 0.70 × 1.00 288 × 288 × 155 

A3 51 5.6 6.1 20 241 0.70 × 0.70 × 1.00 288 × 288 × 155 

B1 50 4.9 5.4 15 470 0.80 × 0.80 × 1.50 288 × 288 × 104 

B2 56 4.5 5.4 20 477 0.54 × 0.54 × 1.00 400 × 400 × 168 

B3 56 4.5 5.4 20 482 0.60 × 0.60 × 1.00 336 × 336 × 162 

C1 51 4.9 5.4 20 483 0.60 × 0.60 × 1.00 336 × 336 × 162 

C2 51 5.0 5.4 20 322 0.70 × 0.70 × 1.00 288 × 288 × 162 

C3 60 8.0 8.0 20 465 1.00 × 1.00 × 1.00 224 × 186 × 176 

D1 51 5.4 5.5 20 280 0.53 × 0.53 × 1.00 400 × 400 × 168 

D2 51 5.4 5.5 20 481 0.55 × 0.55 × 1.00 384 × 384 × 168 

D3 51 5.4 5.5 20 653 0.55 × 0.55 × 1.00 384 × 384 × 168 

E1 50 5.0 5.0 20 465 1.00 × 1.00 × 1.00 224 × 186 × 176 
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Table 4.4: MP-RAGE sequence parameters for T1w images. These datasets were collected with 

the corresponding 3D mGRE sequences using Scanner I. 

Dataset 𝑻𝑹 𝑻𝑬 𝑻𝑰 𝑭𝑨 𝑩𝑾 Voxel size Matrix size 

 [ms] [ms] [ms] [°] [
𝑯𝒛

𝒑𝒊𝒙𝒆𝒍
] [mm3] [voxel] 

B1 2300 2.33 900 8 200 0.879 × 0.879 × 0.9 256 × 256 × 192 

C3 2300 2.26 900 8 200 1.0 × 1.0 × 1.0 192 × 256 × 256 

E1 2300 2.26 900 8 200 1.0 × 1.0 × 1.0 192 × 256 × 256 

 

All datasets excluding C3 and E1 were originally collected for previous work in the MRI Methods 

Group in the McGill Medical Physics Unit [50].  

  

4.3.2 Unwrapping algorithms comparison 

 

Similar to the analysis done with numerical simulations, the performance of the unwrapping 

technique in the measured datasets was done studying the unwrapped phase in an axial slice and 

one-dimensional profiles. However, in contrast with the numerical models, no ground truth was 

available for comparison. The closest data to the true phase, in this case, was the phase measured 

in regions where there were no phase wraps. These regions were used as a point of reference to 

identify alterations in the unwrapped phase due to the unwrapping process. A qualitative 

comparison between the wrapped phase and unwrapped phase between all three techniques (dLu, 

QG, and SEGUE) was performed for all collected datasets.  

 

For the QSM pipeline of this project, the phase offset correction was performed before 

unwrapping, rather than during the weighted least-squares fit during echo combination to generate 

the total field shift (TFS) map. For the measured experimental data, the effect of phase offset 

correction before unwrapping and after unwrapping was studied to establish the optimal approach 

to process the phase information. The phase offset correction before unwrapping corresponded to 

the calculation of the phase offset through a phase difference map and then the elimination of the 

offset in the data through complex division as outlined in section 3.2.2 (equations 3.10 and 3.11). 
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On the other hand, phase offset correction after unwrapping assumed that the phase changes 

linearly with time. Then, the phase offset was removed during the weighted least square fit by 

using the intercept of the linear fit as the correction. This aspect was not studied in numerical 

simulations since they were designed with zero phase offset. 

  

To determine the optimal phase offset correction approach, the wrapped and unwrapped phase data 

were compared using one-dimensional profiles and violin plots for the correction performed before 

and after unwrapping. Moreover, the artifacts caused by the phase offset correction were analyzed 

in the total field shift (TFS) and local field shift (LFS) maps. However, the results for the study of 

the TFS and LFS maps are presented in the section corresponding to the study of background 

removal in the collected data because background removal is required to produce LFS maps. 

 

4.3.3 Unwrapping and background removal techniques in conventional QSM 

 

The different combinations of unwrapping and background removal techniques were tested for in 

vivo datasets by comparing the LFS maps obtained for each combination with the best combination 

determined according to numerical simulations. The unwrapping algorithms considered were dLu, 

QG, and SEGUE. The background removal techniques used were PDF, RESHARP, and LBV. The 

comparison was done using difference maps and the RMSE metric to quantify the difference 

between the selected reference technique (according to the best performing combination in 

numerical simulation) and the results obtained for every other combination. The presence of 

incorrectly identified local fields and errors close to the edge of the brain were also identified 

qualitatively by visually analyzing the LFS maps and difference maps. Qualitatively, in numerical 

simulation, it was observed that erroneously identified local fields (meaning background fields 

that were incorrectly considered as local fields) can be identified as abnormally bright or dark 

regions in the LFS maps.  

 

As explained in section 4.3.2, the presence of artifacts in the TFS and LFS maps due to the phase 

offset correction performed before and after phase unwrapping was studied by comparing (through 

difference maps) the TFS and LFS maps calculated for each case. The background removal 
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algorithm used to generate the LFS map (and to compare the two scenarios) was the technique 

deemed the best option according to the results in numerical simulations and in vivo datasets. 

 

4.3.4 Evaluation of susceptibility maps using in vivo datasets 

 

Analogous to what was done in numerical simulations, the quality of the susceptibility maps 

depending on unwrapping technique and dipole inversion/direct inversion method was assessed 

by comparing the appearance of the susceptibility maps created for each case. All susceptibility 

maps were calculated using the reconstruction parameters listed in subsection 4.2.4.1.  

 

In vivo datasets were used to illustrate the effect of the preconditioner in LN-QSM and the 

improved quality of the susceptibility maps in pLN-QSM. Five different susceptibility maps were 

created for LN-QSM (𝑃𝐵 = 0) and pLN-QSM (𝑃𝐵 = 30) for different numbers of iterations of the 

non-linear conjugate gradient solver. The iterations considered for each case were 100, 200, 300, 

400, and 500. Representative axial slices for the estimated susceptibility maps were presented for 

each result. 

 

When processing the datasets, the performance of pTFI and pLN-QSM changed depending on the 

dataset, even when the same regularization parameters were used. To illustrate the variations in 

the susceptibility maps for these two techniques between datasets, the results were calculated 

(using MEDI+0, iSWIM, pTFI, pLN-QSM, and TFIR) for datasets D1, D2, D3, and B2 and 

compared considering representative axial slices for each dataset. Datasets D1, D2, and D3 were 

selected since these datasets correspond to the same volunteer scanned three times in a single day 

with slightly different sequence parameters. On the other hand, dataset B2 was selected among all 

datasets as it presented the most noticeable changes in the appearance of the susceptibility maps 

calculated with pTFI or pLN-QSM. 

 

Finally, as done with numerical simulation, anatomical ROIs were used to measure the mean and 

standard deviation of the susceptibility in deep gray matter structures and the cortical region of the 

brain. The measurements were performed for dataset B1 using the automatic segmented ROIs 

produced during the creation of the numerical models. Unbalanced two-way analysis of variance 
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(ANOVA) with repeated measurements was performed to determine if susceptibility values from 

different methods were statistically different (significance level 𝑝 < 0.05). The test was set up 

with two factors: methods and ROIs. Within the factor “methods”, five levels corresponding to 

MEDI+0, iSWIM, pTFI, pLN-QSM, and TFIR were considered. Within the factor “ROIs”, five 

levels corresponding to the cortex, thalamus, caudate nucleus, putamen, and globus pallidus were 

considered. The ANOVA test also included a heteroskedasticity-consistent (HC) correction [96]. 

After finding significant differences with the ANOVA test, post-hoc multiple pairwise 

comparisons with Bonferroni adjustments to the p-values was performed. The ANOVA test and 

post-hoc testing were performed in RStudio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 66 

Chapter 5  

 

5 Results  

 

5.1 Evaluation of susceptibility maps using numerical simulations 

 

5.1.1 Comparison of phase unwrapping algorithms  

 

In the numerical simulation (model B), QG and SEGUE phase unwrapping results (after correction 

using THUMPR) were equivalent and coincided with the ground truth of the unwrapped phase, 

while dLu modified the phase when compared with the ground truth. Figure 5.1 shows a visual 

comparison between the wrapped and unwrapped phases in numerical model B. The top row of 

the figure contains an axial slice showing the phase wraps (in all five echoes) produced due to the 

steep change in susceptibility caused by the presence of the air pocket simulating the frontal sinus. 

In the bottom row, the profiles of the phase values (taken across the red line in the selected axial 

slice) are shown. This trend was observed consistently across most of the volume-of-interest 

(brain) when comparing the unwrapped phase for all techniques and the ground truth.  
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Figure 5.1: Unwrapped phase in a one-dimensional profile across an axial slice of the numerical 

model B. The three unwrapping techniques were dLu: discrete Laplacian, QG: quality guided, and 

SEGUE. The curve corresponding to QG is not observable in the diagram since the results from 

SEGUE and QG coincide. 

In general, the biggest differences when comparing the performance of all unwrapping techniques 

in the numerical simulation were observed in regions close to the sinuses and the ear canal, as 

expected due to the steep change in susceptibility. Additionally, differences between the 

performance of SEGUE and QG (which appear equivalent in Figure 5.1) were observed in some 

voxels at the edges of the brain. These differences were caused by phase wraps at the edge of the 

brain. The source of these wraps was the susceptibility change in the regions representing CSF and 

bone near the edge of the brain. To demonstrate the errors caused by air pockets and at the edges 

of the brain (which are not observable in Figure 5.1), Figure 5.2 presents maximum intensity 

projection (MIP) difference maps for each method using as a reference of comparison the true 

phase from the numerical model. 
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Figure 5.2: Maximum intensity projection (MIP) difference maps comparing the ground truth for 

the unwrapped phase in numerical model B with the results calculated with different unwrapping 

techniques (dLu: discrete Laplacian, QG: quality guided, and SEGUE). Superior/inferior and 

lateral views are presented for each case. The range to display the images was selected as 25 

radians, which is the same range selected in Figure 5.1. The red arrows point to the highest 

magnitude deviations from the ground truth due to the air pockets representing sinuses and the 

ear canal. Black arrows point to high magnitude errors caused by wraps due to bone and CSF at 

the edge of the brain. 

Table 5.1: RMSE values calculated in radians for each echo time and each unwrapping technique 

(dLu: discrete Laplacian, QG: quality guided, and SEGUE.). For each value at a determined echo 

time, the corresponding unwrapped phase extracted from numerical model B was used as ground 

truth. 

 𝐓𝐄𝟏 𝐓𝐄𝟐 𝐓𝐄𝟑 𝐓𝐄𝟒 𝐓𝐄𝟓 

 [rad] [rad] [rad] [rad] [rad] 

dLu 0.74 1.53 2.41 3.35 4.19 

QG 0.11 0.20 0.31 0.47 0.68 

SEGUE 0.12 0.23 0.35 0.46 0.58 

To establish a quantitative comparison and to put all the errors in a global context, the RMSE 

values comparing the unwrapped phase and the true phase for each echo are presented in Table 5.1 

for the noiseless numerical model and in Table 5.2 for varying levels of SNR in the simulated 

complex data. 
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In the noiseless case (Table 5.1), the RMSE increased with echo time for all unwrapping 

techniques, which is congruent with Figure 5.2. For TE1, TE2, and TE3 QG presented the smallest 

RMSE. For TE4 and TE5 SEGUE presented the smallest RMSE. Once again, these results agree 

with Figure 5.2, which indicates that for the last two echoes, the errors in QG were more spread 

out inside the brain. 

 

The RMSE increased with decreasing SNR for all three unwrapping techniques, meaning that the 

accuracy of the methods decreased with noise. When adding noise to the numerical model, QG 

was the best performing method (lowest RMSE values across all echoes) for SNR 10 and 20. For 

SNR 40 and 60, the trend observed in the noiseless case was repeated, in other words, QG had 

smaller RMSE for the three first echoes, while SEGUE performed better for the last two. This 

result would suggest that QG is less affected by noise when compared to SEGUE. Finally, the 

results in the table suggest that the precision of dLu does not decrease compared to the other 

methods, although the accuracy of dLu was still the lowest. This can be confirmed by looking at 

the RMSE values for the last echo for SNR 10 and SNR 60. In the case of QG and dLu, the value 

doubled from SNR 60 to SNR 10, while in dLu, it just increased by approximately 2%. 

 

Table 5.2: RMSE values (in rad) for SNR 10, 20, 40, and 60 comparing the unwrapped phase for 

all techniques (dLu: discrete Laplacian, QG: quality guided, and SEGUE.) with the ground truth 

in model B. 

SNR: 10 20 

 TE1 TE2 TE3 TE4 TE5 TE1 TE2 TE3 TE4 TE5 

dLu 0.72 1.57 2.46 3.38 4.29 0.72 1.55 2.44 3.37 4.24 

QG 0.25 0.47 0.72 1.00 1.30 0.14 0.26 0.40 0.58 0.83 

SEGUE 0.28 0.55 0.83 1.11 1.45 0.19 0.36 0.55 0.73 0.92 

SNR: 40 60 

 TE1 TE2 TE3 TE4 TE5 TE1 TE2 TE3 TE4 TE5 

dLu 0.73 1.54 2.42 3.36 4.22 0.73 1.53 2.42 3.36 4.21 

QG 0.12 0.23 0.36 0.54 0.76 0.12 0.22 0.34 0.52 0.75 

SEGUE 0.14 0.27 0.40 0.54 0.68 0.13 0.24 0.37 0.49 0.62 
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5.1.2 Unwrapping and background removal techniques in conventional QSM 

 

PDF was the background removal algorithm that produced the local field shift (LFS) maps with 

the least amount of erroneously identified local fields. Moreover, PDF did not require edge erosion. 

It was possible to compare the performance of PDF, RESHARP, and LBV through a visual 

inspection of the results for each technique. In Figure 5.3, PDF produced the most visually 

appealing results when paired with QG or SEGUE. That said, PDF presented errors at the edge of 

the brain, marked by orange arrows in Figure 5.3. Contrarily, this figure illustrates that RESHARP 

and LBV have the biggest amount of background fields (in the displayed slice) incorrectly 

identified as local fields (inaccurate background removal). These errors can be observed close to 

the anterior region of the brain, especially when these methods were paired with dLu (as indicated 

by the green arrows in Figure 5.3). Moreover, the difference maps also make apparent how 

RESHARP requires erosion of the LFS map since it is easier to compare the size of the result and 

the true local field map in the selected slice. LBV also presented errors at the edges of the brain 

but their appearance was different when compared to PDF, and they are marked in Figure 5.3 with 

red arrows. The errors at the edge of the brain in PDF were constrained to the very edge of the 

brain. These artifacts produced a characteristic “texture” at the edge of the LFS maps absent in 

RESHARP or LBV. In LBV the errors at the edge looked like spurious fields that propagate 

towards the interior of the brain.  
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Figure 5.3: Comparison of background removal algorithms and the effect of unwrapping 

techniques on numerical model B. The left image shows LFS maps. The right image shows 

difference maps for each LFS map using as ground truth the local magnetic field derived from the 

numerical model.  The background removal techniques were PDF, RESHARP (6 voxels radius), 

and LBV. The green arrows indicate examples of incorrectly identified local fields in the anterior 

region of the brain. The orange and red arrows indicate errors at the edges of the brain in PDF 

and LBV, respectively. 

Using the RMSE as a metric to assess the performance of the background removal techniques, 

PDF was the most accurate algorithm. The RMSE values are presented in Table 5.3. When 

comparing the performance of PDF and LBV depending on unwrapping technique, QG+PDF or 

LBV performed better in the eroded mask, while dLu+PDF or LBV performed better at the edge 

of the brain. dLu+PDF or LBV also performed better overall in the entire brain (due to the 

relatively small error at the edge). PDF performed better than LBV and RESHARP in the entire 

brain and eroded mask, respectively, when paired with any of the three unwrapping techniques. 

PDF outperformed all methods in the eroded brain mask when paired with QG or SEGUE. PDF 

does not require explicit edge erosion (in contrast with RESHARP). Consequently, PDF was 

selected as the best background removal technique. However, the best unwrapping technique to 
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combine with PDF (for QSM) remains an open question, since the RMSE suggests that SEGUE 

and QG provided comparable performance, while dLu generated better results at the edge of the 

brain and in all the volume-of-interest. The question of the best unwrapping technique will be 

addressed in subsection 5.1.3.1. 

Table 5.3: RMSE calculated for the combination of unwrapping and background removal 

techniques for numerical model B. Three different volumes were considered for calculating the 

RMSE. 1) A mask eroded by 6 voxels. 2) A mask representing the edge of the brain, this mask was 

created by subtracting the mask for the entire brain and the eroded mask. 3) The mask covering 

the entire brain. In the case of RESHARP, the RMSE values were only calculated for the eroded 

mask since the method cannot recover information outside the eroded mask. 

Phase 

unwrapping 
dLu QG SEGUE 

Mask erosion 
Eroded 

mask 

Brain 

edge 

Entire 

brain 

Eroded 

mask 

Brain 

edge 

Entire 

brain 

Eroded 

mask 

Brain 

edge 

Entire 

brain 

RMSE for PDF 

[ppb] 
5.0 13.0 12.3 2.6 18.4 16.4 2.6 19.1 17.0 

RMSE for 

RESHARP [ppb] 
4.0 - - 3.1 - - 3.1 - - 

RMSE for LBV 

[ppb] 
17.2 11.6 18.3 14.5 20.8 22.4 14.9 22.3 23.7 

 

The degree of error in PDF at the edge of the brain was considerably higher when compared to the 

error at the eroded mask. According to the RMSE in Table 5.3, this result held for the three 

unwrapping techniques. Additionally, LBV presented the same trend. This trend in LBV and PDF 

was coherent with the images displayed in Figure 5.3. With PDF, the errors in the anterior part of 

the brain were mostly gone while the errors in the edge of the brain were less spread out across the 

edges when compared with LBV. dLu+LBV produced the lowest RMSE at the edge of the brain 

but, due to the poor performance of LBV in the eroded mask and full brain, this technique was 

discarded for the following subsection. 
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In PDF, the largest inaccuracies were constrained at the edges of the brain. MIP difference maps 

were created in an eroded mask (Figure 5.4) and in the full brain mask (Figure 5.5) to illustrate 

how the biggest errors in the LFS map were constrained at the edges. When comparing the maps 

for PDF in Figure 5.4 and Figure 5.5, the amount of high magnitude errors increased in the second 

case. The errors in PDF in Figure 5.5 could be traced back to the inaccuracies in the unwrapping 

technique caused by air pockets (sinuses and the ear canal) and wraps due to CSF and bone 

interfaces. However, compared to the result from unwrapping, the errors in PDF were much more 

spread across the edges of the brain. A similar observation can be done for LBV, although the 

errors in the eroded mask in LBV were higher than for PDF and RESHARP (which is consistent 

with Table 5.3).  

 

 
Figure 5.4: Maximum intensity projection (MIP) difference maps in an eroded mask (6 voxels) 

comparing the ground truth for the local field shift (LFS) in numerical model B with the results 

calculated with different unwrapping techniques (dLu: discrete Laplacian, QG: quality guided, 

and SEGUE) and background removal algorithm (PDF, RESHARP, and LBV). Superior/inferior 

and lateral views are presented for each case. 
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Figure 5.5: Maximum intensity projection (MIP) difference maps in a mask covering the entirety 

of the brain comparing the ground truth for the local field shift (LFS) in numerical model B with 

the results calculated with different unwrapping techniques (dLu: discrete Laplacian, QG: quality 

guided, and SEGUE) and background removal algorithm (PDF, RESHARP, and LBV). 

Superior/inferior and lateral views are presented for each case. The MIP maps for RESHARP 

were not calculated since this method cannot retrieve information outside the eroded mask. 

5.1.3 Evaluation of susceptibility maps using numerical simulations 

 

5.1.3.1 Unwrapping and background removal in QSM 

 

According to the results from subsection 5.1.2, it was established that PDF was the best option for 

the background removal step. Thus, the susceptibility maps for comparison between conventional 

QSM and direct inversion methods were generated using PDF. However, in subsection 5.1.2, it 

was not possible to define the best unwrapping technique to pair with PDF. Consequently, different 

unwrapping techniques are used in this subsection. Moreover, consideration of different 

unwrapping techniques (despite findings in subsection 5.1.1) was also done to establish how 

unwrapping affects direct inversion methods.  
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Considering the RMSE values presented in Table 5.4 comparing the ground truth of the 

susceptibility map and the susceptibility distributions estimated using different techniques, the best 

unwrapping technique for QSM was QG. Almost all the techniques performed better when paired 

with QG. TFIR was an exception since it performed better when paired with dLu. However, the 

RMSE of dLu+TFIR was around 1.5 to 2.6 times bigger than QG paired with dipole inversion 

algorithms, pTFI, or pLN-QSM. Therefore, QG produced the most accurate susceptibility maps. 

 

Table 5.4: RMSE in ppb for numerical model B for different combinations of unwrapping 

techniques and conventional and direct inversion QSM techniques. All conventional QSM 

susceptibility maps were created using PDF as the background removal algorithm. 

 MEDI+0 iSWIM pTFI pLN-QSM TFIR 

 [ppb] [ppb] [ppb] [ppb] [ppb] 

dLu 60.2 42.7 32.7 35.1 49.9 

QG 32.3 33.3 19.0 19.6 72.4 

SEGUE 101.0 91.4 64.4 69.5 88.6 

 

Using the RMSE as a metric of accuracy, the three most accurate methods were pTFI, pLN-QSM, 

and MEDI+0 paired with QG (and PDF in the case of conventional QSM). The most accurate 

method was pTFI. This result suggests that direct inversion methods are more accurate than 

conventional QSM.  

 

When qualitatively comparing the visual appearance of the susceptibility maps depending on the 

unwrapping technique, the techniques paired with QG presented fewer artifacts. Figure 5.6 shows 

axial and sagittal views for numerical model B and different combinations of QSM and 

unwrapping techniques. In the numerical model, when using SEGUE or dLu, there were several 

“bright and dark” artifacts (red arrows), ringing artifacts (blue arrows), and streaking artifacts 

(green arrows) close to the anterior part of the brain. Most of those artifacts were much less 

prominent when using QG. Most of the artifacts remaining in direct inversion methods when paired 

with QG corresponded to regularization artifacts that manifest themselves as shadows or “non-

uniform” intensity across the image.  
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Figure 5.6: Axial and sagittal views of susceptibility maps for numerical model B for different 

unwrapping techniques using conventional QSM and direct field inversion techniques. For all 

conventional QSM results, the background removal was performed with PDF. The susceptibility 

mapping algorithms considered were MEDI+0, iSWIM, pTFI, pLN-QSM, and TFIR. The rows 

represent the unwrapping method, while the columns are the dipole inversion or direct inversion 

technique. The arrows point to “bright and dark” artifacts (red arrows), ringing artifacts (blue 

arrows), and streaking artifacts (green arrows). 

MIP difference maps (Figure 5.7) depict pTFI and pLN-QSM paired with QG as the methods with 

the smallest errors when comparing the estimated susceptibility distributions and the ground truth 

for numerical model B, which is coherent with the RMSE metric and the visual assessment of the 

susceptibility maps. The location of the errors in pTFI and pLN-QSM (black arrows) coincided 

with errors that can be traced back to deviations from the true phase during unwrapping, meaning 

errors due to air pockets simulating sinuses and ear canals. Additional high magnitude errors (red 

arrows) presented in the space corresponding to deep gray matter structures (thalamus, caudate 

nucleus, putamen, and globus pallidus). In conventional QSM, the maps showed high magnitude 

errors that were much more spread throughout the volume-of-interest (compared to direct 

inversion methods). 
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Figure 5.7: Maximum intensity projection (MIP) difference maps comparing the ground truth in 

numerical model B and the susceptibility maps for different unwrapping techniques using 

conventional QSM and direct field inversion techniques. Superior/inferior and lateral views are 

presented for each case. The display range was selected as the same in Figure 5.6. The black 

arrows point to regions of high magnitude errors due to air pockets (sinuses and ear canal). Red 

arrows point to errors in deep gray matter structures. 

In subsequent subsections, QG was used in all results for the numerical simulations. 

5.1.3.2 Comparison of conventional QSM and direct field inversion methods 

 

In pTFI and pLN-QSM, the combination of background removal and dipole inversion in a single 

step reduced the number of errors in the final susceptibility map. This result is observable in Figure 

5.7 by comparing the susceptibility maps for QG. In this figure, the maps from pTFI and pLN-

QSM presented fewer errors than MEDI+0 and iSWIM. To show that the elimination of an explicit 

background removal step was the element that lead to fewer errors in QSM, Figure 5.8 showed a 

comparison of the LFS maps produce by QG+PDF and by forward modeling the susceptibility 

distribution in pTFI, pLN-QSM, and TFIR. In pTFI and pLN-QSM, the errors were considerably 

less spread across the edge of the brain in comparison to PDF. TFIR, which according to the RMSE 

in Table 5.4 produced the worst susceptibility maps among all direct inversion methods, also 

generated a susceptibility map that corresponded to an LFS map with fewer errors than the 

conventional pipeline. 
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Figure 5.8: Maximum intensity projection (MIP) difference maps comparing the ground truth of 

the local field shift (LFS) maps obtained using PDF and forward modeling the susceptibility 

distribution estimated by direct inversion methods. Superior/inferior and lateral views are 

presented for each case. 

pTFI and pLN-QSM retained less structural information when compared to MEDI+0, but these 

two direct inversion methods also produced fewer artifacts close to the edges (in comparison to 

conventional QSM). In Figure 5.9 a) and b), the distribution of errors depicted in the difference 

maps show how pTFI and pLN-QSM struggled to reproduce susceptibility changes, which is more 

apparent in the axial view of the susceptibility maps. The profiles (for the susceptibility values) in 

Figure 5.9 c) support this statement by showing that pTFI and pLN-QSM produced smooth 

susceptibility profiles (due to the added regularization in these methods) that cannot accurately 

reproduce the discontinuities in the initial numerical model. On the other hand, when compared to 

the other techniques, MEDI+0 retained more structural information causing “flat” looking 

difference maps.  
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Figure 5.9: Comparison of conventional QSM and direct inversion methods in axial and sagittal 

slices, and one-dimensional profiles. a) Susceptibility maps (superior row) and difference maps 

(inferior row) for an axial slice in numerical model B. b) Susceptibility maps (superior row) and 

difference maps (inferior row) for a sagittal slice in numerical model B. c) One-dimensional profile 

representing the susceptibility across the red line illustrated in a). The red arrows indicate 

artifacts in conventional QSM that are not present in direct inversion methods. 

pTFI and pLN-QSM showed fewer artifacts close to the anterior regions of the brain in axial and 

sagittal views. Moreover, these techniques did not present the abnormal “textured” edge that 

appears in conventional QSM due to PDF, which makes these methods overall more accurate. 
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These artifacts are indicated in Figure 5.9 a) and b) by red arrows. Finally, iSWIM and TFIR 

produced the susceptibility with the most amount of artifacts for conventional QSM and direct 

inversion methods. iSWIM produced susceptibility maps with a “salt and pepper” texture that 

translates into an irregular profile in Figure 5.9 c). TFIR presented ringing artifacts due to the 

inclusion of spherical mean value (SMV) filtration.  

 

5.1.3.3 Decoding the operation of direct inversion methods  

 

Direct inversion methods work by creating a susceptibility distribution outside the brain to model 

the background field. The background field corresponds to dipolar fields produced by sources 

outside the volume-of-interest. By studying the susceptibility distributions produced by direct 

inversion methods inside and outside the volume-of-interest (in this case, defined by the brain 

binary mask), it was verified that the estimated susceptibility distribution outside the brain was 

different from zero. Figure 5.10 presents a comparison between the ground truths and estimated 

maps for the background field, local field shift (LFS), and susceptibility distribution. A good 

agreement was observed between the estimated background field (produced by the susceptibility 

outside the brain) and the true background field included in the model, according to the RMSE 

metric. The same was observed when comparing the estimated LFS with the true local field 

included in the model. The RMSE when comparing the background field and LFS maps were 

0.0899 ppm and 0.0050 ppm, respectively. The values make sense when considering the order of 

magnitude in each case. Background field are expected to be around unity of ppm, while in the 

case of local fields the order of magnitude is tenths of ppm. In both cases, the RMSE was two 

orders of magnitude smaller than the corresponding range of values. This small error signals 

agreement between the forward models from the ground truth and the estimated solution. It 

confirms that the susceptibility distribution established outside the brain is how pLN-QSM 

determines the background field. Figure 5.10 was created from the results obtained for numerical 

simulation in model B and pLN-QSM. Similar agreement and consequently the same mechanism 

to model the background field was observed for pTFI and TFIR (images not presented). 
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Figure 5.10: Representation of the operation of direct inversion methods. pLN-QSM was selected 

to illustrate how these methods work. a) The figure shows an axial slice of the estimated 

susceptibility for model B. The histograms show the susceptibility distribution inside and outside 

the brain (in the entire brain). b) The susceptibility distributions inside and outside the brain were 

forward modeled to generate the corresponding background field and local field (LFS), which 

were compared with the ground truth from numerical model B. The estimated and true 

susceptibility maps are also compared. The RMSE was used as a metric for comparison.  
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5.1.3.4 Measurement of the susceptibility in anatomical ROIs 

 

One small detail in Figure 5.10 that should catch the attention of the attentive reader is that the 

estimated susceptibility distribution inside the brain is gaussian, even though the input model 

(model B) was composed of a discrete set of susceptibility values. To estimate the susceptibility, 

iSWIM, pTFI, pLN-QSM, and TFIR produced gaussian susceptibility distributions. These 

behaviors are presented in Figure 5.11. The initial numerical model is a set of discrete 

susceptibility values, but the LFS calculated from these values (as showed in the figure) is normally 

distributed. Thus, the QSM inverse problem, in the context of these numerical simulations, can be 

considered as seeking a discrete solution (susceptibility distribution) from the normally distributed 

LFS. MEDI+0 was the only method that produced a multimodal distribution. When comparing 

this distribution to the ground truth in Figure 5.11 b), it is possible to see how the peaks in MEDI+0 

are reminiscent of the position of the peaks at -0.033, -0.006, and 0.02 ppm in the ground truth. 

However, the multimodal distribution does not exactly coincide with the distribution of the 

numerical model. All other methods generate gaussian susceptibility distributions (Figure 5.11 b) 

and c)). Finally, it is important to highlight that all the histograms are normalized to the number of 

voxels, consequently, the height of the bars in the histogram also has valuable information. In all 

cases, the height of the bars in the ground truth is around one order of magnitude greater than in 

the estimated susceptibility distributions. 
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Figure 5.11: Histograms comparing the susceptibility distribution estimated by conventional QSM 

and direct inversion methods with the ground truth in numerical model B. a) Ground truth 

susceptibility distribution for numerical model B. b) Histogram of the LFS forward-modeled from 

the susceptibility by c). Histogram of estimated susceptibility distribution for conventional QSM 

on the left axis and ground truth susceptibility distribution on the right axis. d) Histogram of 

estimated susceptibility distribution for direct inversion QSM on the left axis and ground truth 

susceptibility distribution on the right. 

pTFI and pLN-QSM more accurately described the susceptibility in the cortical region of the brain, 

as supported by the RMSE presented in Table 5.5. However, pTFI and pLN-QSM tended to 

underestimate the susceptibility in the considered ROIs when compared to the ground truth or 

conventional QSM. The mean and standard deviation of the measurements in anatomical ROIs are 

presented in Figure 5.12. pTFI and pLN-QSM returned lower mean values compared to MEDI+0 

and ground truth. This is especially noticeable in deep gray matter structures, such as the globus 

pallidus (the highest susceptibility source included in the model), where pTFI and pLN-QSM 

estimated the lowest susceptibility values from all the QSM techniques considered. In the 

thalamus, Figure 5.12 also shows that pTFI and pLN-QSM failed to estimate a negative average 

value for the susceptibility of the structure. TFIR, when compared to the other two direct inversion 

methods, was more accurate in the globus pallidus. Moreover, TFIR generated a negative mean 
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value in the thalamus, where pTFI and pLN-QSM estimated positive mean values. But TFIR was 

the least accurate method in all other structures (except the globus pallidus). The 95% confidence 

intervals for the data Figure 5.12, not shown in the plot due to their small scale, suggested that 

almost all measurements were significantly different since the confidence intervals did not overlap 

for the measurements in the ROIs (the only exception was pTFI and pLN-QSM in the putamen). 

In no case did the confidence intervals contain the true value. 

 

 
Figure 5.12: Bar plot of the mean and standard deviation in anatomical ROIs in the numerical 

models of the brain. The susceptibility of the cortical region of the brain was measured in model 

A (Cortex A) and model B (Cortex B). The susceptibility of the thalamus (TH), caudate nucleus 

(CN), putamen (PU), and globus pallidus (GP) are reported only for model B.  The image on the 

left shows an axial slice of numerical model B with the position of the ROIs highlighted in different 

colors for each structure. 
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Table 5.5: RMSE (in ppb) for anatomical ROIs and the true values for the cortical region of the 

brain (Cortex A and Cortex B for numerical models A and B, respectively), thalamus (TH), caudate 

nucleus (CN), putamen (PU), and globus pallidus (GP).   

 Cortex A Cortex B TH CN PU GP 

 [ppb] [ppb] [ppb] [ppb] [ppb] [ppb] 

MEDI+0 33.1 34.1 10.6 18.6 18.4 15.8 

iSWIM 31.2 31.1 15.1 16.7 20.1 35.1 

pTFI 14.8 16.2 9.9 11.9 11.4 13.6 

pLN-QSM 14.9 16.5 11.0 12.5 12.4 17.5 

TFIR 52.3 53.7 21.1 25.2 14.9 13.7 

 

5.1.3.5 Susceptibility estimation for varying SNR 

 

When including noise in numerical model B, the appearance of the susceptibility maps changed 

depending on the amount of noise and dipole inversion or direct inversion technique. Axial slices 

for the results obtained at different SNRs in model B are showed in Figure 5.13. In the case of 

conventional QSM, the susceptibility maps presented speckle due to the increase in noise. This 

effect was much more prominent in iSWIM, in which case the “salt and pepper” appearance of the 

susceptibly maps was very noticeable at an SNR of 10 and still present at an SNR of 60. In 

MEDI+0, this effect was observed at an SNR of 10, although less noticeable when compared with 

iSWIM, and at an SNR of 40 the speckle was barely noticeable. With direct inversion methods 

pTFI and pLN-QSM, some speckle was observed in the susceptibility map especially at SNRs of 

10 and 20. The speckle was more noticeable in the pLN-QSM output when compared with pTFI. 

Finally, in TFIR, ringing artifacts were more noticeable at smaller SNRs. These artifacts in TFIR 

appeared at all noise levels. Also, a very faint salt and pepper pattern appeared in the TFIR output 

for the lowest SNR.  
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Figure 5.13: Axial slice of numerical model B for different SNR values and QSM techniques.  

In MEDI+0, the precision of the susceptibility measured in ROIs corresponding to the TH, CN, 

PU, and GP increased with decreasing noise. A similar effect was noticed in the cortex of the 

numerical brain. However, the effect was much less pronounced compared to the deep gray matter 

structures. To illustrate this observation for varying levels of SNR in model B, box charts are 

presented in Figure 5.14 for the susceptibility measured in the cortical region of the brain and the 

GP. In these two structures, the measured susceptibility was found to be normally distributed. With 

iSWIM, little change in the precision of the measurement was observed, in contrast with MEDI+0. 
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In pTFI and pLN-QSM, in contrast with MEDI+0, the most noticeable consequence of a change 

in the SNR was a shift of the values measured in anatomical ROIs. This behavior can be observed 

in Figure 5.14. In the susceptibility maps, this is observable as subtle changes in susceptibility 

values. The shift of values was also accompanied by a small change in precision in the 

measurement. Once again, this behavior was much more noticeable in deep gray matter structures 

than in the cortical region of the brain. Finally, TFIR presented a behavior closer to MEDI+0, 

especially for deep grey matter structures.     

 

 
Figure 5.14: Box charts for the susceptibility measured at different SNRs (10, 20, 40, and 60) in 

model B for the cortical region of the brain (left) and the globus pallidus (right). The ground truth 

for the susceptibility values of the cortical region and globus pallidus are 0.020 and 0.104 ppm, 

respectively. These values are represented by black dashed lines. The diagram on the left does not 

show outlier values since their quantity prevents a good visualization of the boxes. 
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5.2 Evaluation of direct field inversion methods using in vivo datasets 

 

To illustrate the results in each section related to in vivo datesets, a single representative dataset 

(unless otherwise stated) exemplifying the general behaviors observed across all datasets was used. 

 

5.2.1 Unwrapping algorithm comparison 

 

When comparing the performance of unwrapping techniques, the unwrapped phase produced by 

dLu considerably differed from the phase estimated by QG and SEGUE. One example of the phase 

modification due to dLu unwrapping can be seen in the first echo in Figure 5.15. In the first echo, 

for the selected slice and profile orientation, a single wrap appears in the profile. Consequently, 

the wrapped phase (after phase offset correction), in this case, would be the closest data to the 

ground truth for the unwrapped phase. When comparing the true phase with the unwrapped phase 

obtained with dLu, the two phases are considerably different.  

 

On the other hand, SEGUE and QG performed very similarly in the volume-of-interest (brain). 

However, the results of these two techniques differed in regions close to the sinuses and air canals 

and regions corresponding to vasculature. In regions corresponding to vasculature inside the brain, 

the algorithms handle the phase unwrapping differently due to flow artifacts. Examples of errors 

in the unwrapped phase for these two algorithms due to flow artifacts are present in the fifth echo 

in Figure 5.15. QG presents a very high maximum (orange arrow) in the location corresponding to 

the great vein of Galen (this maximum is not present either in the wrapped phase or in SEGUE), 

while SEGUE presents a minimum at approximately the same location (this minimum is not 

present either in the wrapped phase or in QG). Also, both QG and SEGUE failed to estimate the 

correct phase in the internal cerebral veins (green arrow) when compared to the true phase (since 

no wraps are presented in that region). 
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Figure 5.15: Unwrapped phase in a one-dimensional profile across an axial slice in a in vivo 

dataset. The three unwrapping techniques considered were dLu: discrete Laplacian, QG: quality 

guided, and SEGUE. The data for this figure was obtained from dataset D1 and the unwrapping 

was performed after phase offset correction. The green and orange arrows correspond to errors 

in the unwrapped phase in the internal cerebral veins and great vein of Galen. 

 

One noticeable difference between the QG and SEGUE is that in all datasets studied, SEGUE 

tended to fill some regions of rapidly changing phase with zeros, while QG filled the same spaces 

with non-zero values. This behavior is illustrated in Figure 5.16 in axial slice where the anterior 

portion of the slice is close to the sinuses or close to ear canals. SEGUE places zeros in the 

unwrapped phase map in regions where the wrapped phase is not well-behaved, where isocontours 

do not form closed loops or where they terminate at the brain edge. 
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Figure 5.16: SEGUE and QG unwrapping difference in regions where the phase wraps are not 

well-behaved. Both images were obtained from the fifth echo in datasets B3 and D1 and represent 

the regions where SEGUE was observed to fail in all datasets. The images at the left corresponds 

to the result from SEGUE, while the image at the right is the result from QG. SEGUE tend to 

assign zero value to voxels inside regions of high value and rapid changing phase values close to 

air pockets (sinuses and ear canals).  

The unwrapped phase predicted by QG and SEGUE, in some cases, differed from the wrapped 

phase, even where there were no phase wraps (meaning where the wrapped phase coincided with 

the true phase). This behavior is observable in Figure 5.15 (and it also was observed in all datasets), 

particularly at the beginning and at the end of the curves representing the phase across a one-
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dimensional profile. As shown below, this difference was not an unwrapping error, but rather 

evidence of the phase offset correction performed before phase unwrapping.  

 

 
Figure 5.17: Violin plots representing the phase distribution after spatial unwrapping (using QG) 

at each echo before (left column) and after (right column) temporal phase unwrapping using 

THUMPR. The two images at each row (a and b) represent different methods to handle the phase 

offset correction. a) The phase offset correction was done before temporal unwrapping using a 

phase difference map and complex division. B) The distributions are presented without phase offset 

correction, which would take place during the weighted linear fit to combine the phase data. In 

the first case, the temporal wrap appears between the second and third echoes, while in the second 

case the wrap appears between the first and second echoes. The phase information used 

corresponds to dataset C2. 

The discrepancies between the true phase and the unwrapped phase at the edges of the profiles in 

Figure 5.15 were due to the phase offset correction. The phase offset correction causes the wrapped 
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and (consequently) the unwrapped phase to change. In Figure 5.18 the wrapped phase without 

phase offset correction (as in Figure 5.15) is compared with the wrapped phase with phase offset 

correction. The figure also compares the unwrapped phase (using QG) with and without phase 

offset correction. As can be seen in Figure 5.18 (and in contrast with Figure 5.15), the unwrapped 

phase indeed coincides with the wrapped phase when considering phase offset correction. Figure 

5.18 basically presents the unwrapped phase across a single one-dimensional profile for the 

unwrapped phase (after THUMPR) presented in Figure 5.17 a) and b). The difference in the 

profiles for the unwrapped phase with and without phase correction manifest as differences in the 

phase distribution in Figure 5.17 or the profiles in Figure 5.18.  

 

The position of the introduced temporal wraps by spatial unwrapping changes depending on the 

postprocessing of the data after acquisition. Figure 5.17 illustrates the effect caused by handling 

the phase offset correction differently. In a) the phase offset correction was done before phase 

unwrapping and using a phase difference map and complex division (meaning the approach used 

in this project and described in the Methods section 4.1). In contrast, b) presents the phase when 

not corrected by phase offsets before unwrapping. In this case, the correction is performed during 

the linear fitting to combine the phase data (to generate the TFS map). In both cases, the temporal 

wrap produced by QG unwrapping occurs at different positions. The location of the wrap does not 

affect the performance of the unwrapping technique used to correct the evolution of phase with 

time (THUMPR). However, the phase distribution for each echo changes across all echoes, which 

is expected since in a) the phase distribution corresponding to the phase offset was removed (in 

contrast with b)).  

 

The phase offset correction before unwrapping also caused fewer artifacts in the LFS map. This 

effect is shown in section 5.2.2 in Figure 5.20. 
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Figure 5.18: Wrapped phase in an axial slice and one-dimensional profiles to study the changes 

in wrapped and unwrapped phase (using QG) due to phase offset correction. The unwrapped phase 

including phase offset correction before unwrapping is labeled as “unwrapped phase a)”, while 

without this correction it is labeled as “unwrapped phase b)”. The data for this figure was 

obtained from dataset C2. 

5.2.2 Unwrapping and background removal techniques in conventional QSM 

 

Visually, the best results for the calculated LFS maps were obtained with the methods paired with 

QG unwrapping, which lead to the maps with the least amount of background fields erroneously 

identified as local fields. Also, among the background removal techniques (paired with QG), PDF 

presented the least amount of background fields erroneously identified as local fields. These 

spurious local fields can be identified in Figure 5.19 as abnormally bright or dark regions in the 

LFS maps. Moreover, the errors at the edge of the brain when comparing PDF with LBV were 

gathered and highly constrained at the edges of the brain in PDF (orange arrows), while in LBV 

the artifacts that originated at the edges penetrated further inside the ROI (red arrows).  The same 

trend was observed for all datasets collected in this study and these results are consistent with those 

from numerical simulations in Figure 5.3. For dataset D2, when comparing PDF and LBV (paired 

with QG) RMSE was 53.0 ppb. On the other hand, when comparing PDF and RESHARP and PDF 
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and LBV in an eroded mask (8 voxels) RMSE was 10.2 ppb and 23.9 ppb, respectively. 

Consequently, for calculating the susceptibility in deep gray matter structures, PDF and 

RESHARP would likely produce results more consistent with each other than LBV. On the other 

hand, the different interpretation of the local field close to the edges of the brain in LBV and PDF 

considerably increased (the RMSE doubles) the disagreement between these two methods.  

 

 
Figure 5.19: Comparison of background removal algorithms and the effect of unwrapping 

techniques on an in vivo dataset. The left image shows LFS maps. The right image shows difference 

maps for each LFS map using as ground truth the local magnetic field derived from the numerical 

model. The background removal techniques used were PDF, RESHARP (8 voxels radius), and 

LBV. The green arrows indicate examples of incorrectly identified local fields in the anterior 

region of the brain. The orange and red arrows indicate errors at the edges of the brain in PDF 

and LBV, respectively. The images showed correspond to dataset D2. 

The quality of the LFS maps calculated after background removal was impacted by the approach 

considered for phase offset removal. By performing the phase offset removal before phase 

unwrapping, the presence of artifacts decreased in the calculated TFS and LFS maps as shown in 
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Figure 5.20. This figure shows the TFS (before background removal with PDF) and LFS (after 

background removal) maps (axial and sagittal) for dataset C2. When the phase offset correction 

was done during the weighted least square fit, after phase unwrapping, artifacts appeared in the 

inferior part of the brain. These artifacts appeared in both the TFS and LFS maps, and are indicated 

by arrows in Figure 5.20. 

 

 
Figure 5.20: Effect of phase offset correction in TFS and LFS maps. a), b), c), and d) present the 

maps generated with different methods to calculate the phase offset correction and the 

corresponding difference maps. a) and c) are coronal and sagittal views of the TFS maps. b) and 

d) are LFS maps calculated using PDF. The arrows indicate artifacts that were present in the TFS 

and LFS maps when performing the phase offset correction during weighted least squares fit. The 

images showed correspond to dataset C2.  
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5.2.3 Evaluation of susceptibility maps using in vivo datasets 

 

 
Figure 5.21: Susceptibility maps (superior image) and difference maps (inferior image) for all 

dipole inversion and direct inversion methods paired with different unwrapping techniques. All 

susceptibility maps were obtained from dataset C1. The difference maps were created using 

GQRG+PDF+MEDI+0. Red, green, and blue arrows indicate “bright and dark” artifacts, 

ringing artifacts, and streaking artifacts, respectively. 

When comparing the performance of conventional QSM and direct inversion methods, the use of 

QG generated the susceptibility maps with the least amount of artifacts. Susceptibility maps 

obtained for each case in dataset C1 are displayed in Figure 5.21. The dynamic range was selected 

to highlight the artifacts present in the susceptibility maps. The susceptibility maps showed an 

increased number of “bright and dark” artifacts close to the anterior and lateral regions of the brain 

for SEGUE and dLu when paired with MEDI+0, pTFI, and pLN (red arrows). TFIR and iSWIM 

presented ringing artifacts that are more noticeable when pairing the techniques with SEGUE 
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(green arrows). MEDI+0 and iSWIM presented streaking artifacts that, similar to ringing artifacts, 

were more prominent when using SEGUE (blue arrows). The same trend was observed in all 

datasets. 

 

In LN-QSM, the use of a preconditioner was indispensable to obtain acceptable quality 

susceptibility maps. The same preconditioner that was used in pTFI was also used in LN-QSM in 

all susceptibility maps shown in this project, using the method described as pLN-QSM. The effect 

of the preconditioner in LN-QSM is illustrated in Figure 5.22. Without a preconditioner and for a 

given number of iterations in the conjugate gradient algorithm, the quality of the susceptibility 

maps was noticeably worse when compared to the susceptibility maps that included the 

preconditioner. 

 

 
Figure 5.22: Effect of adding a preconditioner in LN-QSM. In the superior row, the image shows 

susceptibility maps obtained for LN-QSM without including a preconditioner (𝑃𝐵 = 0). In the 

inferior row, the image shows susceptibility maps obtained for pLN-QSM, including the same 

preconditioner as in pTFI (𝑃𝐵 = 30). In both cases, susceptibility maps for a different number of 

iterations in the conjugate gradient algorithm are shown. The iterations considered in the images 

are 100, 200, 300, 400, and 500. The susceptibility maps correspond to dataset C2. 
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Figure 5.23: Axial and sagittal views for conventional QSM and direct inversion methods. All 

results were obtained with QG and PDF in the case of MEDI+0 and iSWIM. The susceptibility 

maps were obtained from dataset D1. 

When comparing the susceptibility maps obtained for conventional QSM and direct inversion 

methods, fewer artifacts were observed in the susceptibility maps for pTFI and pLN-QSM. Figure 

5.23 presents axial and sagittal views for the susceptibility maps obtained with all the techniques 

(paired with QG and PDF). Figure 5.23 is presented to allow a better visualization of the 

susceptibility maps presented in Figure 5.21. pTFI and pLN-QSM presented fewer streaking 

artifacts due to sinuses (blue arrows) and artifacts at the edges of the brain (orange arrows), as 

indicated in Figure 5.23 in conventional QSM. TFIR presents ringing artifacts in the anterior 

region of the brain (green arrows) and fewer artifacts at the edges when compared to MEDI+0 or 

iSWIM. pTFI and pLN-QSM produced susceptibility maps with a “softer” texture when compared 

with the other methods, which is observable in the sagittal view (white arrows) and the (relatively) 

less sharp depiction of vasculature in these two techniques. 
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Figure 5.24: Systematic underestimation of susceptibility values in pTFI and pLN-QSM. These 

two techniques generate susceptibility maps with susceptibility values smaller than conventional 

QSM or TFIR. The figure also illustrates how this effect changes across datasets. 

Direct inversion methods (pTFI and pLN-QSM) tended to estimate lower susceptibility values, 

especially for high susceptibility regions when compared to conventional QSM. This behavior was 

first noticed in numerical simulations (in the globus pallidus). The difference maps in Figure 5.21 

show how pTFI and pLN-QSM differ from MEDI+0 in structures of high susceptibility like the 

putamen, globus pallidus, and caudate nucleus. However, in contrast to numerical simulations, for 

in vivo datasets, the tendency of estimating lower susceptibility values when compared to 

conventional QSM was more prominent all across the brain. The difference in susceptibility (lower 

values compared to conventional QSM) was visually perceptible in the susceptibility maps shown 
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in Figure 5.23. Moreover, the effect was variable depending on the dataset. This variability is 

illustrated in Figure 5.24, where datasets D1, D2, and D3 were selected to show the variability 

across the same volunteer, scanned the same day, with the bandwidth being the only parameter 

that changed across datasets. Dataset B1 was also included in this figure since this dataset 

presented the most extreme difference between pTFI and pLN-QSM and the other methods. 

 

 
Figure 5.25: Bar plot of the mean and standard deviation in anatomical ROIs in dataset B1. The 

structures where the susceptibility was measured were the cortical region of the brain, thalamus 

(TH), caudate nucleus (CN), putamen (PU), and globus pallidus (GP). 

When analyzing the values of the susceptibility in anatomical ROIs, the values measured for TH, 

CN, PU, and GP by pTFI and pLN-QSM were smaller than the values measured for MEDI+0. 

When comparing the values of these two techniques with iSWIM, the values were considerably 

smaller only in the GP. On the other hand, TFIR tended to produce higher susceptibility values 

than all other techniques in TH, CN, PU, and GP. In the case of the cortical region of the brain, 

TFIR was the only technique measuring positive susceptibility values, while all other techniques 

measured negative values. In the cortical region of the brain, pTFI and pLN-QSM measured 

comparable values for the susceptibility. The ANOVA performed to compare the effects of 

methods and ROI on the measured susceptibility values revealed that there was a statistically 
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significant difference between at least two methods. The 𝑝 values for the two effects (methods and 

ROIs) and their interactions were well below 0.05. Post-hoc pairwise testing notably showed a 

significant difference between MEDI+0 and direct inversion methods (adjusted p-values values 

below 0.05). Since the numerical simulations indicated MEDI+0 as the most accurate conventional 

QSM method, the disagreement of MEDI+0 and direct inversion methods questions the reliability 

of pTFI, pLN-QSM, and TFIR in deep gray matter structures.  
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Chapter 6  

 

6 Discussion 

 

6.1 Evaluation of susceptibility maps using numerical simulations 

 

6.1.1 Comparison of phase unwrapping algorithms  

 

In numerical simulations, QG and SEGUE performed similarly according to the RMSE metric. 

QG was able to recover the true phase more accurately for early echoes and was more robust to 

noise when compared to SEGUE. On the other hand, SEGUE was more accurate for late echo 

times. This subtle difference between the accuracy of the methods depending on echo time 

contributes to QG being a better option for QSM. To combine the phase data, a weighted least 

square fit is used and the weights are proportional to the square of the magnitude signal [55]. Since 

the value of the magnitude decays with echo time, the data at earlier echoes is given higher weights. 

Higher accuracy in the unwrapped phase at early echoes could contribute to a better estimation of 

the total field shift (TFS) map.  

 

In simulations, QG and SEGUE were more accurate than dLu, which significantly modified the 

retrieved phase. Despite modifying the phase, dLu led to more accurate susceptibility maps than 

SEGUE, based on smaller RMSE values and fewer artifacts for all cases. It was found that SEGUE 

tends to create regions of zero-valued voxels inside the brain (which was also observed for in vivo 

datasets and illustrated in Figure 5.16). This observation is consistent with the reported errors 

produced by SEGUE close to the sinuses [50]. However, the assigned zero value to these patches 

inside the volume-of-interest suggests that SEGUE is deliberately excluding these voxels from the 

calculation and labeling them as unreliable (instead of producing an incorrect unwrapped phase in 

these regions). These regions may be created during the “partitioning” step in the algorithm [47]. 

These regions propagate to the TFS after weighted least squares fit and they are interpreted during 
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the dipole inversion step as a steep change in the field, which produces artifacts. The failure of 

SEGUE in QSM shows that in addition to quantitative accuracy, smoothness and continuity are 

also desirable properties in the estimated phase. 

 

The results show that dLu is the least accurate method. Although, the precision of dLu (compared 

to the other techniques) is unaffected by the increase of noise level. The lower accuracy of 

Laplacian unwrapping techniques is generally rooted in their inability to retrieve the exact phase 

and, depending on the implementation of boundary conditions, the introduction or removal of 

harmonic components when compared to the true phase. That said, the use of the Laplacian 

operators enforces smoothness in the calculated unwrapped phase and it makes these techniques 

more robust against noise [37]. Although not all Laplacian unwrapping techniques are created 

equal, the properties listed above are technically intrinsic to Laplacian unwrapping. Prioritizing 

Laplacian unwrapping over path-following techniques can be justified in scenarios where 

quantitative accuracy is not the main goal, as in SWI [97]. Laplacian unwrapping can be a good 

option in cases when sacrificing accuracy is justifiable in exchange for robustness to noise and a 

large amount of phase wraps or when the priority is to retrieve a smooth and continuous phase that 

still maintains enough structural information [50], [93]. 

 

6.1.2 Unwrapping and background removal techniques in conventional QSM 

 

According to the results for the numerical simulations, the best performing method that does not 

require edge erosion was PDF. The different physical and mathematical assumptions driving the 

background removal algorithms explain the differences in the performance observed between the 

methods [2]. However, it is worthwhile to note that the background field in the numerical models 

was produced by susceptibility sources corresponding to anatomy simulated outside the brain. 

Thus, the background field in the numerical model is harmonic and produced by dipolar sources 

that are near the brain. This approach to simulate the background field is favorable for PDF. PDF 

models the background field by placing dipole sources outside the volume-of-interest but within 

the field of view (FOV) of the image, which corresponds to a model of the background field as a 

subspace of harmonic functions [58]. However, it has been reported in the literature that PDF 

cannot model background fields that are non-harmonic or that are harmonic but generated by 
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sources far from the brain. For example, this includes the background fields that are produced by 

the susceptibility change caused by the lungs/surrounding tissue interfaces [2].  

 

The background field fitting approach in PDF outperformed spherical mean value filtration in 

RESHARP when comparing both methods in an eroded brain mask. Moreover, RESHARP (and 

for that matter, any variation of SHARP) requires edge erosion to remove the background field. 

The edge erosion is caused by the use of the spherical mean value (SMV) theorem to remove the 

harmonic contributions in the field caused by background fields [58]–[60]. Edge erosion renders 

this method inappropriate to measure susceptibility in cortical regions of the brain. Although, in 

this case, the method was included to evaluate how SMV filtration works when compared with the 

background field fitting that PDF performs. The worse performance of RESHARP when compared 

to PDF (in an eroded mask) can be explained due to averaging effect of SMV filtration that tends 

to suppress spatial information from the anatomy in the brain, producing flat LFS maps [98]. An 

aspect where RESHARP is better than PDF is to remove background fields due to non-harmonic 

contributions, which is possible due to the inclusion of Tikhonov regularization in the method [58], 

[60]. This aspect could not be evaluated since the background field was modeled only using 

harmonic contributions. 

 

The goal of Tikhonov regularization in RESHARP is to suppress noise and error amplification 

when removing the background field [60]. Tikhonov regularization can also bring undesirable 

consequences like oversmoothing of the local field when a large regularization parameter is used 

[99], suppression of large and rapidly changing susceptibility (~0.3 ppm) regions [49], and an 

increase in artifacts (regularization artifacts) in the estimated local field [58]. In the numerical 

simulations presented in subsection 5.1.2, accuracy was greater with RESHARP than with SHARP 

(results not shown) in the description of deep gray matter structures, which is coherent with an 

other report [60]. Since this study was limited to brain parenchyma, no phase suppression as 

reported in [49] was observed. Finally, the numerical simulation considered in this work is 

basically a piecewise continuous model. Thus, it was not possible to evaluate if oversmoothing 

would affect the natural susceptibility variation within each of the structures added to the 

numerical model (since no natural variation or “texture” was added to the model). On the other 
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hand, oversmoothing did not appear to affect the resolution of the boundaries between the 

structures in the numerical model. 

 

The errors at the edge of the brain in PDF and LBV are caused by violations of the physical 

assumptions close to the edges. In PDF, the assumption of orthogonality between the spaces 

spanned by background dipolar fields and local dipolar fields holds relatively well in the interior 

of the brain, but close to the edges the inner product between background and local fields is no 

longer close to zero—due to the spatial proximity between dipoles in the background and inside 

the brain—breaking the algorithm [56]. In LBV, the errors are not only constrained at the edges of 

the brain as showed in Figure 5.4, but high magnitude errors also appeared inside the eroded mask. 

In the case of SEGUE+LBV or QG+LBV, the errors at the edge of the brain are greater than in the 

eroded mask. The errors in LBV are caused due to erroneous boundary conditions introduced by 

an inaccurate brain mask. An inaccurate brain mask that extends beyond brain tissue introduces 

noisy voxels that produce incorrect boundary conditions. On the other hand, a brain mask that 

underestimated the extension of brain tissue introduces voxels where the value of the local field 

does not match the assumption of LBV [6], [58], [61].  

 

6.1.3 Evaluation of susceptibility maps using numerical simulations 

 

To evaluate the susceptibility maps obtained from conventional QSM (MEDI+0 and iSWIM) and 

direct inversion (pTFI, pLN-QSM, and TFIR) methods, four approaches were considered. 1) In 

numerical models, the comparison of the estimated solution with the ground truth (when available) 

using difference maps and the RMSE as a quantitative metric was used to determine the accuracy 

of the methods. 2) For in vivo datasets, the evaluation of direct inversion methods was done through 

comparison with conventional QSM. 3) In numerical models and in vivo datasets, the performance 

of the methods was assessed by evaluating the susceptibility in anatomically relevant ROIs. 4) In 

numerical models and in vivo datasets, the evaluation of the visual appearance and artifacts spread 

across the brain was considered to determine the best method.  

 

The use of the RMSE as the main quantitative metric was motivated by prior verification of its 

high correlation with other global metrics like Structural Similarity Index Measure (SSIM) and 
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High Frequency Error Norm (HFEN) [100]. In [100], it was also shown that the visual quality of 

the maps, qualitatively evaluated using a scale from 0 (best) to 3 (worst), correlated fairly well 

with the value of RMSE metrics. However, global metrics alone do not tell the full story since 

these metrics tend to favor reconstructed susceptibility maps that are over-smoothed or/and over-

regularized [101]. Consequently, the analysis required additional qualitative visual inspection, 

evaluation of artifacts, and evaluation of accuracy in anatomically relevant ROIs. In the case of in 

vivo datasets, a quantitative comparison is more challenging since there is no ground truth or even 

a “gold standard” for comparison. Conventional QSM was chosen as a reference since the 

performance of these methods (MEDI+0 and iSWIM) is well documented in the literature.  The 

best approach to evaluate QSM results is still an open question in simulation and in vivo datasets.  

 

6.1.3.1 Unwrapping and background removal in QSM 

 

In numerical model B, the best performing methods according to the RMSE metric were those 

paired with QG. This result was also consistent with improved visual quality and reduced artifacts 

compared to the methods paired with SEGUE or dLu. Considerable variations of the QSM result 

were observed depending on the combination of unwrapping technique and dipole inversion or 

direct inversion method.  

 

Among conventional QSM methods, MEDI+0 produced better results than iSWIM, especially in 

model B. iSWIM iteratively adds information to k-space, while MEDI+0 includes L1 

regularization in the spatial domain. Although iSWIM reduces streaking artifacts, it has been 

shown in other works that MEDI-type solutions lead to better results [4], which is consistent with 

the results obtained in this work. However, one outcome of this project is that iSWIM failed to 

produce a satisfactory result when paired with SEGUE (in both numerical models). The zero-

valued patches created by SEGUE when finding unreliable voxels considerably affect iSWIM 

performance. MEDI+0 was more robust against this type of effect produced during the unwrapping 

step in the numerical model B. This information can be interpreted as a cautionary tale for 

designing QSM techniques or for using existing methods in regions outside the brain. QSM 

methods that use information from the Fourier domain tend to require information throughout all 

space and they are generally unable to exclude information from specific spatial regions [2]. 
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Moreover, the methods that operate over the Fourier space do not allow the addition of the same 

regularization added in the methods that work with spatial information. 

 

Direct inversion methods presented similar artifacts to MEDI+0, which was expected since these 

methods also solve the problem in image space and use similar regularization. It was also observed 

that the range of susceptibility values estimated by TFIR differed from the range obtained from 

pTFI and pLN-QSM. The range of values in TFIR was biased towards the value of -0.033 ppm 

(WM), which corresponded to the largest number of voxels in the numerical model (this is 

illustrated in Figure 5.11). The modification in the dynamic range is a consequence of the spherical 

mean value (SMV) filtration included in TFIR, since SMV filtration causes bias towards high-

frequency fitting [8]. By applying SMV filtration to the ground truth in the numerical model, it 

was observed that this low-frequency filter tends to favor keeping the information in some regions 

more than in others. This was especially true in WM in both numerical models, and it resulted in 

the observed susceptibility range modification.  

 

6.1.3.2 Comparison of conventional QSM and direct inversion methods 

 

When comparing the appearance of the susceptibility maps obtained with conventional QSM and 

direct inversion methods, pTFI and pLN-QSM presented fewer streaking artifacts and artifacts at 

the edges of the brain. TFIR also showed fewer streaking artifacts than conventional QSM, but 

ringing artifacts (in axial slces) appeared in the anterior region of the brain. However, it was 

observed that the susceptibility maps produced by direct inversion methods struggled to reproduce 

the structural features included in the numerical model, giving these susceptibility maps a 

“smoother” look when compared with conventional QSM (which was also observable in one-

dimensional profiles). The simultaneous artifact suppression and “smoother” appearance of 

susceptibility maps in direct inversion methods are due to the regularization included in these 

methods akin to other QSM techniques that use regularization to solve the ill-posed inverse 

problem [36], [64], [73], [75].  

 

The type and amount of regularization in QSM should be chosen according to the intended use of 

the susceptibility maps: namely, voxel-based study of the map, measurement of the susceptibility 
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in anatomical ROIs, or visual inspection by radiologists [101]. The fact that pTFI and pLN-QSM 

produced the smallest RMSE values and the lack of artifact in numerical simulations and in vivo 

datasets suggests that these methods are well suited for voxel-based studies and even visual 

inspection by radiologists in regions close to the brain edge (due to the relatively small amount of 

artifacts in this region). On the other hand, the results in this thesis suggest that to quantitatively 

determine the susceptibility in anatomical regions, conventional QSM with MEDI+0 is a better 

alternative than direct inversion methods. Direct inversion methods are promising techniques 

thanks to reduced artifacts and reduced errors at the edge of the brain (when compared with 

conventional QSM). However, these methods’ lack of refinement when solving the ill-posed 

inverse problem (as discussed further in subsection 6.1.3.4) or their questionable 

robustness/practicality (as discussed in subsection 6.2.3) are a signal that further development is 

required for this category of methods. 

 

6.1.3.3 Decoding the operation of direct inversion problems 

 

Direct inversion methods eliminate the explicit background removal step by estimating a 

susceptibility distribution outside the volume-of-interest (brain) that accurately reproduces the 

background field when compared to the ground truth. In simulations, there was a good agreement 

between the field derived from the susceptibility distribution outside the brain and the ground truth 

for the background field. This mechanism of action was already hinted at in the publications for 

each direct inversion method [6]–[10] when it was established that the susceptibility distribution 

χ = χL + χB is estimated (for the susceptibility distribution χLthat produces the local field and the 

distribution χB that produces the background field). Direct inversion methods are generally stated 

as unaffected by the imprecise separation between background and local fields when the physical 

and mathematical assumptions used in conventional background removal are broken (especially 

close to the edges of the volume-of-interest) [6], [7]. That said, there has yet to be an explanation 

of the principles that allow the separation between local and background fields in the case of direct 

inversion methods. Consequently, an explanation of how direct inversion methods operate is 

included below, along with an explanation of why these methods appear “immune” to the 

shortcomings of conventional background removal algorithms. 
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The direct inversion methods considered in this project rely on the same physical assumption as 

PDF, meaning that the background field is estimated by projecting the total field onto the space 

spanned by dipolar fields produced due to susceptibility variation outside the volume-of-interest 

(brain). To support this claim and to simplify the explanation (without losing generality), it is 

possible to consider the least-squares norm term in TFI with no preconditioning (meaning that the 

starting point from the derivation presented below corresponds to the least-squares term in 

equation 3.16, subsection 3.2.5.1) and state the problem in an equivalent form: 

‖w[δB − bχ ∗ (χB + χL)]‖
2

2
= ‖w[δB − (bχ ∗ χB) − (bχ ∗ χL)]‖

2

2

= ‖w[δB − BB − BL]‖2
2

= ‖w[δB − BB]‖2
2 + ‖wBL‖2

2 − 2⟨w[δB − BB], wBL⟩F

 6.1 

Here, BB = (bχ ∗ χB), BL = (bχ ∗ χL) and ⟨ , ⟩F  is the Frobenius inner product. For a detailed 

description of the notation used in this derivation, refer back to Chapter 3. Derivation 6.1  

illustrates how direct inversion methods work. First, consider the minimum solution: 

 min‖w[δB − bχ ∗ (χB + χL)]‖
2

2
= 0 6.2 

When minimizing the new expression in 6.1, the zero value is obtained only when: 

 ‖w[δB − BB]‖2
2 + ‖wBL‖2

2 = 2⟨w[δB − BB], wBL⟩F 6.3 

This solution is possible according to the projection theorem [56] only when argminBB
‖w[δB −

BB]‖2
2 = BB

∗  has a unique solution such that δB − BB
∗ = BL

∗  for BB
∗  and BL

∗ , the true background and 

local magnetic fields, respectively. Then, both sides of 6.3 are equal to two times the squared value 

of the Frobenius norm of the local magnetic field (times the weighting matrix w). Consequently, 

direct inversion methods also depend on the assumption of orthogonality between the spaces 

spanned by the background and local dipole fields. From a minimization problem standpoint, the 

terms in 6.1 can be interpreted as:  

 

- The first term ‖w[δB − BB]‖2
2 calculates the background field and is equivalent to PDF. 

- The second and third terms ‖wBL‖2
2 and 2⟨w[δB − BB], wBL⟩F calculate the local field.  
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Although direct inversion methods use the same physical principles as PDF, the resulting 

susceptibility maps present fewer artifacts close to the edges of the brain and provide a more 

accurate description of the local/background field separation due to a priori information added to 

the model. Establishing a preconditioner in the susceptibility distribution as proposed in [6] is 

equivalent to a priori defining the background field as one or two orders of magnitude larger than 

the local field. Due to how the preconditioner is built, the established constraint (difference 

between local and background fields) “softens” towards the interior of the brain, which explains 

the better performance reported for pTFI close to the boundary of the brain [6]. On the other hand, 

PDF assumptions break down close to the boundary. But, by adding the preconditioner, the direct 

susceptibility reconstruction is aided in the regions where PDF breaks down. In the case of LN-

QSM [7], the a priori information and the difference in magnitude between the local and 

background magnetic fields is supposedly introduced thanks to Tikhonov regularization. In this 

work it was found that Tikhonov regularization was not sufficient to create plausible susceptibility 

maps. This effect was illustrated in Figure 5.22 and will be discussed in subsection 6.2.3. TFIR [8] 

adds a priori information by including filtered R2
∗  information (equation 3.20).  

 

6.1.3.4 Measurement of the susceptibility in anatomical ROIs 

 

When studying the susceptibility in the deep gray matter structures included in numerical model 

B, MEDI+0 was the most accurate technique to estimate the susceptibility in the four structures 

included in the model. pTFI and pLN-QSM failed to estimate the susceptibility in the thalamus. 

TFIR also failed to estimate susceptibility accurately, especially in the thalamus and caudate, 

although it was the most accurate method in the globus pallidus and the only direct inversion 

method that estimated a negative mean susceptibility value for the thalamus. Relation 6.1 sheds 

some light on the explanation behind direct inversion methods failing to estimate susceptibility 

values in ROIs. pTFI includes a priori information added to the model to aid the separation 

between background and local magnetic fields [6] since the preconditioning will exclusively affect 

the terms in 6.1 containing the background field. On the other hand, the ill-posed inverse problem 

of estimating the susceptibility distribution from the local magnetic field is not aided with any 

additional information. In the case of pLN-QSM, extra regularization is added in the form of 

Tikhonov regularization. But this regularization is stated to aid the background/local field 
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separation [7]. Once again, no a priori information is added to the model to solve the ill-posed 

inverse problem. Moreover, even if Tikhonov regularization affects the estimation of the local 

susceptibility, the rather similar performance of this method compared to pTFI and the necessity 

of extra preconditioning (Figure 5.22) suggests that this is not the most appropriate way to aid the 

ill-posed inverse problem. Finally, TFIR performs a bit better in some structures thanks to the 

addition of R2
∗  information (equation 3.20). The filtration required to include this information in 

the model brings new problems and the best way to include R2
∗  information in direct inversion 

methods is still an open question [8]. 

 

For susceptibility measurements in the cortical region of the numerical brain, the only noticeable 

difference between models A and B was that the values measured in model A for pTFI and TFIR 

were slightly smaller when compared with model B. First, the intention behind having two 

different models was to determine if the presence of high susceptibility sources in the brain and 

consequently the increase of susceptibility dynamic range affects the measurement of the 

susceptibility in the cortical region of the brain. This approach was adopted since large 

susceptibility dynamic ranges degrade the quality of QSM, not only causing streaking artifacts but 

also altering the obtainable contrast and susceptibility values as observed in whole head QSM [7], 

one of the most extreme cases. The reasons why the values obtained in model A were slightly 

different from model B are still not entirely clear. One factor that contributed to the change in 

values between models was the “blurring” effect that QSM has over the numerical models 

considered. Discrete values corresponding to different structures were not recovered as sharp 

discrete values, but as highly blurred versions of the discrete distribution as in MEDI+0 or 

normally distributed susceptibility distributions in all other QSM techniques. By adding high 

susceptibility sources, the obtained susceptibility distributions were different when comparing 

models A and B. The “blurring” effect introduced by high susceptibility sources could affect the 

measurement in the cortical region of the brain.   

 

6.1.3.5 Susceptibility estimation for varying SNR 

 

Lower SNR values produced more artifacts in the susceptibility maps, but the types of artifacts for 

each technique were different. The artifacts were more noticeable in iSWIM than in MEDI+0, 
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pTFI, pLN-QSM, and TFIR. This result was coherent with [102], where Bayesian methods that 

use noise weighting matrices dealt better with noise compared to other methods. In MEDI+0, pTFI, 

pLN-QSM, and TFIR the weighting matrix accounting for noise in the measurements contained 

the inverse of the standard deviation for each voxel [75].    

 

In direct inversion methods, when measuring the susceptibility in anatomical ROIs, the change in 

SNR caused changes in the precision of the measurement and ad hoc shifts in the distribution of 

the susceptibility values for each region. The effect was more noticeable for deep grey matter 

structures than the cortical region of the brain. The change in the precision of the measurements 

was directly related to the noise level. With less noise, the precision of the measurements was 

better. On the other hand, the shift of the susceptibility distributions and the accompanying change 

in appearance of the susceptibility maps did not follow a clear trend with SNR. This shift is similar 

to the effect illustrated for in vivo datasets in Figure 5.24 and will be discussed in subsection 6.2.3. 

 

6.2 Evaluation of susceptibility maps using in vivo datasets 

 

6.2.1 Unwrapping algorithms comparison 

 

In the measured datasets, the closest data to the “ground truth” for the unwrapped phase is the 

phase at early echoes when there are few phase wraps. When comparing the phase from the 

selected phase unwrapping algorithms with the “true” phase in axial slices, similar results to the 

numerical models were obtained. SEGUE and QG performed similarly according to the profiles 

studied in several axial slices for all datasets. SEGUE produced zero-valued patches close to 

regions of steep phase change as discussed in subsection 6.1.1. Finally, similar to the numerical 

models, dLu altered the phase when compared with the unwrapped phase of other techniques. The 

modified phase from dLu, similar to numerical simulation, was produced due to the use of the 

Laplacian operator [2], [58] 

 

The phase offset correction step was implemented using a similar approach to the one proposed in 

[37], [82] but applied to the phase information combined over channels. This correction was 

performed since even if matched phase information is used to create the composite phase image 
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combined over channels [37], there might be time-independent contributions in the composite 

phase images that are not removed during phase matching or channel information combination [2]. 

By implementing the phase offset correction in the proposed way, instead of during the weighted 

least square fit to calculate the total field shift, fewer artifacts were observed in the TFS and LFS 

maps. By removing time-independent phase contributions before phase unwrapping, singularities 

(open-ended fringelines) are removed facilitating the operation of path-following phase 

unwrapping techniques [82]. Moreover, there is a possibility that an optimal SNR is achieved by 

removing the phase offset using a smooth version of the ϕ0  map, which would improve the 

performance of unwrapping algorithms over the wrapped phase in each echo. This would be an 

effect similar to the one observed when considering the multi-channel phase difference 

combination method [37]. 

 

6.2.2 Unwrapping and background removal techniques in conventional QSM 

 

For QSM of deep grey matter structures, PDF or RESHARP are suitable options for background 

removal in conventional QSM, while LBV was found as the method that differs the most when 

compared to the other techniques. In the entire brain, the disagreement between PDF and LBV just 

increases due to the different depictions of the local field close to the edges. The agreement 

between PDF and RESHARP can be explained since both techniques work by minimizing the 

norm of the internal field [58]. When comparing the errors at the edges of the brain it was observed 

that for in vivo datasets (and numerical simulations) the errors were more spread towards the 

interior of the brain, in contrast with the highly localized errors in PDF. This observation is 

consistent with a previous report [58], where the spread of the errors was explained due to 

violations of the assumption of zero local field at the boundary of the brain. Moreover, the better 

performance of PDF over LBV in the collected datasets and observed in this thesis is consistent 

with prior findings [50], where the same datasets were used to study the effect of temporal 

unwrapping. However, other sources have deemed LBV as the superior technique when compared 

with PDF [58], [103]. In the current work, PDF was selected due to the better performance in 

numerical models and the reduced amount of errors in the LFS map at the edge of the brain.  
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6.2.3 Evaluation of susceptibility maps using in vivo datasets 

 

In terms of phase postprocessing, the optimal options (among the methods studied in this project) 

in conventional QSM are also the optimal algorithms for direct inversion methods. As discussed 

in subsection 6.2.1, the approach that generates fewer artifacts in both the LFS and TFS maps is 

to perform the phase offset correction before unwrapping. Since this approach produces a better 

description of the local and background fields, it is the better option (compared to removing the 

phase offset during the weighted least square fit) for conventional QSM and direct inversion 

methods. In determining the best unwrapping method for QSM, it was found that QG was the best 

option for conventional QSM and direct inversion methods. This result is consistent with the 

results obtained from the numerical simulations. Similar to numerical simulations, the 

discontinuities created by SEGUE considerably reduced the quality of the estimated susceptibility 

maps. Finally, similar to numerical simulations, dLu also altered the phase in the experimental 

data.  

 

When comparing the susceptibility maps obtained in pTFI and pLN-QSM with conventional QSM, 

there was a visually perceptible difference in the values of susceptibility estimated in each case. 

This effect was observed for all datasets and it changed depending on the unwrapping technique 

and dataset. One possible explanation for the noticeable difference could be a suboptimal selection 

of regularization constants. This might bring into question either the robustness of pTFI and pLN-

QSM or the practicality of these methods. In all cases, for the susceptibility reconstruction using 

direct inversion methods, the regularization parameters suggested in the original papers for each 

method were used [6]–[8] for QSM in a healthy brain. The degree to which the susceptibility values 

changed depending on the datasets or unwrapping technique indicates that, even after selecting the 

ideal parameters for one dataset, those parameters may not work for other datasets. Moreover, the 

“right” approach to selecting these parameters remains an open question. In only three different 

papers, there are four different ways to search for reconstruction parameters: minimizing the 

RMSE value when compared with a numerical model [6], L-curve criterion [7], minimizing the 

RMSE value when compared with the results of a conventional QSM technique (COSMOS) [8], 

and selecting the parameters empirically. Even if the right approach for direct inversion methods 

is to calculate a particular set of reconstruction parameters for every dataset, the methods listed 
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before require sweeping through many different values. Given the amount of computation time 

required for a single susceptibility map (which was between 1 to 5 hours using a workstation 

equipped with an i7-4770 CPU and 32 GB of RAM), pTFI and pLN-QSM would be impractical. 

 

The use of a preconditioner in pLN-QSM considerably improved the quality of the calculated 

susceptibility maps. The use of a preconditioner is justified in this case since in [71], it is shown 

how the considered preconditioner in pTFI [6] is also compatible with Tikhonov regularization. 

Also, considering how the preconditioner is built (equation 3.18) and derivation 6.1, the 

preconditioner, in reality, does not affect the Tikhonov regularization term and only aids the 

separation of background and local fields. Thus, in this project, it was verified that Tikhonov 

regularization by itself is not enough to separate the background field from the local field. It was 

not possible to reproduce the results reported in [7] without the use of a preconditioner. 

 

pTFI and pLN-QSM estimated lower susceptibility values when compared with MEDI+0 in deep 

gray matter anatomical structure ROIs, consistent with numerical simulations. Systematic 

estimation of lower susceptibility values (compared to conventional QSM) in some regions when 

using direct inversion methods has been previously reported, but there is conflicting information 

in the few publications available for this category of methods. In the original publications for pTFI  

[6] and LN-QSM [7], the tendency of the methods to produce lower susceptibility was not 

described. However, there is a clear consensus about the tendency of pTFI and LN-QSM to 

underestimate susceptibility (when compared to conventional QSM) [9] [8]. In [9], pTFI produced 

lower susceptibility values for the CN, GN, and PU when compared with COSMOS and MEDI, 

which coincides with the observed results in this project. In [8], LN-QSM (without 

preconditioning) was observed to estimate lower susceptibilities for CN, GN, PU, and TH 

compared with COSMOS.  In [8], it was also demonstrated that pTFI presents higher or similar 

values for the mentioned structures but underestimated the values for other high susceptibility 

structures not considered in this thesis (substantia nigra and red nucleus).  

 

When comparing the values of the estimated susceptibility in the cortical region of the brain, it 

was observed that the standard deviation is large compared to the mean value in MEDI+0, iSWIM, 

and TFIR. In conventional QSM, the large standard deviation is due to the increase number of 
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artifacts/errors at the boundary of the brain when compared to pTFI and pLN-QSM. On the other 

hand, the large standard deviation in TFIR is a consequence of the inability of SMV filtration to 

work properly close to the boundary of the brain. The standard deviation values in TH, CN, PU, 

and GP are coherent with the values expected for in vivo measurements [95]. 

 

6.3 Limitations 

 

The first limitation of this work was that the reconstructions parameters were not specifically 

recalculated for the QSM algorithms. All the parameters were used according to the values 

suggested in the literature or proposed in the original publication (of the algorithm) for QSM of a 

healthy brain. The best way to determine these parameters is still an open question. There are 

several alternatives as mentioned in subsection 6.2.3. Establishing the appropriate way to 

determine the set of reconstruction parameters for each case requires a systematic analysis of each 

option and the results that can be obtained. Also, a study of this magnitude will require 

considerable computational resources and/or time since many iterations with varying parameters 

must be performed. 

 

In this project, susceptibility anisotropy and chemical shift of fat were not considered. For the 

direct inversion and dipole inversion algorithms (in the case of conventional QSM) only single-

orientation QSM methods were considered and other methods like STI were not included. 

Consequently, the susceptibility was assumed as a scalar and isotropic property. This assumption 

breaks down in white matter where the susceptibility is an anisotropic property [5], [104]. The 

chemical shift of fat was ignored as healthy brain parenchyma does not contain any significant 

proportion of triglyceride signal. Chemical shift would need to be considered if the skull and scalp 

were to be included in the field inversion problem.  

 

Only healthy brain QSM was considered for this project. Hemorrhages and calcifications in the 

brain can widely change the susceptibility of some structures and the range of susceptibility values 

in the brain [7], [89]. From the perspective of direct inversion methods, the reconstruction 

parameters between healthy and diseased brains change considerably and even finer spatial 

resolution could be required to achieve susceptibility maps with reasonably good quality. 
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Finally, the background field in numerical models was created according only to the field produced 

by the anatomy modeled outside and inside the brain. This approach was selected based on [89]. 

However, this approach implies that the background field does not contain non-harmonic 

contributions like B1 -related field perturbations or that the model does not contain distant 

harmonic contributions like the air/tissue interface produced by the lungs [37], [58]. The best 

approach to model a realistic background field is still an open question. The code for a numerical 

brain model far more sophisticated than the one created for this thesis was recently released [86], 

but became available too late in the development of this thesis to be included. 
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Chapter 7 

 

7 Conclusions and future work 

 

7.1 Conclusions 

 

For this work, a QSM pipeline for conventional QSM and direct inversion methods was 

implemented and used to study and compare the susceptibility maps obtained with these two 

approaches for numerical simulation and in vivo datasets. It was determined that for conventional 

QSM the best combination of options for the different steps in the pipeline are phase offset 

correction through complex division before phase unwrapping, QG unwrapping, PDF background 

field removal, and MEDI+0 dipole inversion. For direct inversion methods, it was verified that the 

optimal options for phase data processing in conventional QSM also apply for direct inversion 

methods. In particular, QG was the best unwrapping technique for direct inversion methods. 

 

It was shown that the operation of direct inversion methods depends on the assumption of 

orthogonality between the subspace spanned by all dipole fields inside the volume-of-interest and 

the subspace spanned by all dipole fields outside the volume-of-interest. Thus, direct inversion 

methods rely on the same physical/mathematical assumptions used in PDF. However, in contrast 

with PDF, the simultaneous estimation of the background field and local susceptibility distribution 

allows the introduction of a priori information in the model that aids the separation of background 

fields from local fields. This was especially noticeable in regions where PDF fails like the edge of 

the brain. The use of direct inversion methods such as pTFI and pLN-QSM resulted in fewer 

artifacts at the edge of the brain and overall more accurate techniques (as suggested by the RMSE 

metric) when compared with iSWIM or MEDI+0 (paired with PDF).  

To measure the susceptibility in deep gray matter structures, conventional QSM is the better 

alternative when compared with direct inversion methods. From the methods considered in 

numerical simulations, MEDI+0 generated the closest susceptibility values to the ground truth for 
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all the structures included in the numerical model compared to direct inversion methods. On the 

other hand, pTFI and pLN-QSM systematically measured lower susceptibility values in deep gray 

matter structures in the experimental datasets, when compared with conventional QSM. TFIR 

solves some of the shortcomings of pTFI and pLN-QSM, but the use of spherical mean value 

filtration to introduce 𝑅2
∗ information biases the solution and generates (relatively) more artifacts. 

All these factors together highlight the limitations of direct inversion methods to handle the ill-

posed inversion problem of obtaining the susceptibility distribution from the magnetic field. 

Moreover, the lack of robustness and the impracticality of direct inversion methods is a 

consideration in choosing conventional QSM versus direct inversion methods for deep gray matter 

structures.  

 

To measure the susceptibility in the cortical region of the brain, conventional QSM is not a suitable 

option due to the errors introduced close to the edge of the brain during background removal. 

Direct inversion methods are a promising set of techniques for this region due to the suppression 

of artifacts in this location, but a novel technique that improves over the lack of refinement when 

solving the ill-posed inverse is required.    

 

7.2 Future work 

 

One of the conclusions derived from this project is that although direct inversion methods are a 

promising approach to solve the QSM problem and measure the susceptibility in the cortical region 

of the brain, current methods require further improvement. In direct inversion methods, the “name 

of the game” is a priori information. The model requires information to aid the separation of 

background and local fields, and information to aid the ill-posed inverse problem. pTFI and pLN-

QSM contemplate adding information to improve the background/local field separation when 

compared to conventional QSM. TFIR adds additional information for the ill-posed inverse 

problem, but the approach to adding the information in the model is not optimal. 

 

Future work building on this thesis could be focused on studying the a priori information required 

to improve direct inversion methods and the optimal way in which to include it in the model 
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One place to start this research would be to generalize the proposed dipole inversion technique 

named “structurally constrained Susceptibility Weighted Imaging and Mapping” scSWIM [40]. In 

direct inversion methods, similar to dipole inversion techniques, the least-squares term can be 

interpreted as the data fidelity term to estimate the total magnetic field shift [40]. The L1 and L2 

regularization terms add structural feature-based constraints and voxel fidelity-based constraints, 

respectively [40]. scSWIM uses T1-weighted and R2
∗  information to enforce constraints 

accomplishing a reduction of streaking artifacts while preserving structural details. Thus, adapting 

some of the ideas presented in scSWIM to direct inversion methods could significantly improve 

the accuracy and visual quality of the susceptibility maps calculated with this category of 

techniques. 
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