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ABSTRACT

Linear Temporal Logic (LTL) is a logic for reasoning about time. It has been

used effectively to formally verify systems since it can prove the absence of certain

bugs. Under the Curry-Howard correspondence, LTL corresponds to functional re-

active programming, a paradigm that handles dataflow propogation. Indexed types,

whose Curry-Howard analog is first-order logic, allow types to depend on terms from

some index language, and can also ensure program behaviour by virtue of compi-

lation. This thesis introduces Jackrabbit, a reactive programming language with

indexed types. We explain the syntax and type system, present a few motivating

examples, and prove type safety.

iii



RÉSUMÉ

La logique temporelle linéaire (LTL) est une logique pour raisonné à propos

du temps. Elle est utile pour vérifier les systèmes parce qu’elle est capabale de

prouver l’absence de certaines bugs. Sous la correspondence Curry-Howard, l’LTL

correspond à la programmation réactive fonctionnelle, une paradigme qui traite la

propagation des stream de données. Sous cette même correspondence, les types

indexes correpondent à la logique de première ordre, qui permet les types de dépendre

sur des termes d’une langage indexe. Les indexes permettent aussi de garantir des

propriétés dès compilation. Cette thèse introduit Jackrabbit, une langage réactive

avec des types indexes. On explique le syntax et la système de typage, on présente

quelques exemples motivants, et on donne une preuve de la sûreté du typage.
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CHAPTER 1
Introduction

1.1 Constraint

A scientific theory is a model. When modeling the world, it can err in two ways.

The first is that it can be too strict, not being able to make claims that accurately

model the world and that therefore falsify the theory. For example, the theory that

planets travel in circular orbits is refuted after observing any planet whose orbit is

not circular. In logic, such a theory is called incomplete. Conversely, a theory can

be too permissive, allowing behaviour that does not appear in the system it is trying

to model. The theory of circular orbits can be amended as follows: an orbit is still

considered to be circular, but rather than directly orbiting a star, a planet orbits a

point. This point may be the center of a star, or it may be another point defined

in this manner, so that a planet orbits a series of points whose base point is a star.

This theory can explain any orbit, and for any given planet, there is list of diameters

and frequencies that describe its orbit. The problem is that any shape can be drawn

with this method, even a square. In logic, a theory with this over-fitting kind of

error is called unsound.

A good theory has predictive power. The theory that a planet orbits a star with

an elliptical trajectory can also accurately model an orbit, but with this theory, it is

possible to ascertain an orbit from only a few points. The theory of orbiting orbits

still provides some guarantees about the behaviour of an orbit, such as periodicity,

1
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but much is lost. Knowing the exact trajectory of even three quarters of an orbit

would give no indication about the last quarter.

Programs can also be viewed through this lens, where the shape of an orbit

corresponds to a particular program, and the theory to a language. When a program

does not behave as intended, it’s often because of a mistake in the implementation –

the orbit is simply described with the wrong parameters. Other times, the language

itself is too restrictive, like using a theory that can only describe circular orbits. A

language with a more powerful set of features may therefore be needed to solve a

problem. Because any Turing-complete language is reducible to another, it is often

possible to solve a problem using the wrong language for the task, however inelegant

the solution.

Sometimes the wrong language is not just inelegant, it’s too powerful, when not

enough structure is enforced. This is not to say that a well-constrained language will

be free of mistakes. Even with an elliptic theory of orbits, it’s possible to describe

an orbit with the wrong ellipse. But with a good theory, the number of and kind

of incorrect orbits is greatly reduced. An untyped language can be best-suited to

a problem, and a goto can make a program faster. That many languages have

static type systems and lack gotos is precisely because it is worth-while to properly

constrain a language. Tailoring a program to a problem can make it easier to reason

about about both the program and the problem. Constraint is powerful in and of

itself.
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1.2 Relating Proofs and Programs

Linear Temporal Logic (LTL) is a logic with a first-class notion of time, often

in the form of the next-step (©), always (�), eventually (♦), and until (U) modal-

ities. Beginning with Pnueli [1977], LTL has been used to formally verify systems.

It is particularly helpful for concurrent systems, where processes run simultaneously

and there is no predetermined total order of program execution. LTL can concisely

express temporal properties such as safety - that bad things won’t happen, liveness

- that good things will, and fairness - that all processes will eventually be served.

Other temporal logics can express variations of these guarantees. For example, Com-

putation Tree Logic (CTL) allows quantification over paths and can express certain

properties that LTL cannot, although it is unable to express fairness properties.

CTL* can express properties of both LTL and CTL. Although CTL* and LTL are

both PSPACE-complete [Goranko and Galton, 2015], LTL’s formulation is simpler.

The Curry-Howard correspondence relates proof theory and type theory, where

logical propositions correspond to types and formal proofs correspond to total func-

tional programs. From a logic, this correspondence can induce a programming lan-

guage. Linear Temporal Logic corresponds to reactive programming [Jeltsch, 2012]

[Jeffrey, 2012]. Reactive programming is used to program graphical user interfaces,

games, spreadsheets, and other systems where behaviour of one part of the system

is heavily dependent on other parts. When a change is introduced to one part of the

system, it causes a reaction that propagates throughout the system.

The relationship between first-order logic and Linear Temporal Logic has been

addressed by Kamp [1968], who showed that LTL with the Until and Since operators
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is as powerful as first order logic with quantification over the integers. Under the

Curry-Howard correspondence, predicate logic corresponds to indexed types, a simple

kind of dependent type where terms can depend on objects from some index language

[Xi and Pfenning, 1999].

1.3 Motivation

Multi-core processors are now the norm and distributed systems are common-

place. These systems provide a means to scale computing power, as traditional

methods increasingly push up against physical limitations. These systems are also

highly concurrent, however, and being able to reason about them rigorously warrants

the use of tools like linear temporal logic.

Different logics also provide new directions to expand type-systems via the

Curry-Howard correspondence. Rather than reasoning about specific programs, we

can enforce a logical property within the type-system of a programming language.

This property will therefore hold for all well-typed programs.

This thesis provides an overview of various logical and programming constructs

and defines Jackrabbit, a programming language tailored to reactive systems. We

also explore the interaction of these constructs within Jackrabbit, which include LTL

and first-order logic. Instead of simply modelling LTL, first-order logic can be used

to extend LTL so as to specify properties that cannot be expressed in propositional

LTL. Jackrabbit’s type-system is able to enforce these properties.

1.4 Contributions

We introduce Jackrabbit, a reactive programming language with indexed types.

The core language [Cave et al., 2014] is based on the modal-µ calculus and can
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express interleavable recursive and corecursive types. The indices provide a stronger

type system and can express safety guarantees during compilation. Our work uses a

next-step modality as a basic construct which helps to provide temporal guarantees,

but indices exist irrespective of time. This gives us a simple form of memory and

makes it possible to constrain what we are allowed to see depending on what we have

seen before.

Rather than iterators and coiterators which are used by Cave et al. [2014], we use

Mendler-style recursion [Mendler, 1988], a recursion scheme that ensures terminating

functions. This allows the programmer to write recursive functions in a similar way

to that of general recursion and uses a simple operational semantics.

The index language is abstract over a domain with decidable equality. In our

examples, the index domain consists of natural numbers (N). This extension with

indices makes it possible to express tighter constraints. For example, when serving

two processes, we can write the safety property that one process is always served

more often than another.

These examples, along with the description of Jackrabbit, are presented in chap-

ter 3. A proof of type preservation is given in chapter 4.

1.5 Related Work

Esterel [Berry and Cosserat, 1984] and Lustre [Caspi et al., 1987] are both for-

mally specified synchronous programming languages created in France in the 1980’s.

Our language shares their synchronous notion of time and emphasis on enforcing

properties. Neither Esterel nor Lustre are functional, however.
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Elliott and Hudak [1997] introduced the functional paradigm to reactive pro-

gramming and treat time as continuous. Although functional reactive programming

lends itself neatly to highly concurrent systems, this occasionally comes with a cost

in inefficiency. In particular, space leaks can occur. Krishnaswami et al. [2012] and

Krishnaswami [2013] consider the similarity of streams ultrametric spaces to address

these space-leaks. They generalize guardedness and are able to place constraints on

recursive streams, allowing temporal streams to be defined in terms of themselves

while avoiding leaks. Our approach is simpler, but still powerful enough to express

interesting properties.

Our treatment of time as a discrete entity is motivated by the next-step modal-

ity, © [Cave et al., 2014]. This is the base temporal operator in Jackrabbit and

tells us that we have access to the type under it at the next time step. Temporal

computations are done in lock-step using a synchronous clock, so any two objects

under the same number of ©-modalities (say, ©©A and ©©B) are accessible at

the same moment.

To define LTL’s temporal types, the next-step modality is used in tandem with

recursive and corecursive types. Recursive types, which correspond to least fixed-

points, are common in programming languages and allow us to encode finite inductive

structures such as lists and trees. Corecursive types, corresponding to greatest fixed-

points, are defined via coinduction, which is the dual to induction in category theory.

Corecursive types are used to encode infinite data structures, originally by Hagino

[1987]. By interleaving least and greatest fixed points, it’s possible to express fairness

properties at compile time, ensuring that when serving two processes, each will always
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eventually be served [Cave et al., 2014]. Unlike Cave et al. [2014], who use iterators

and co-iterators, we use Mendler-style (co)recursion Mendler [1988]. This has also

been done by Jacob-Rao et al. [2018], without the temporal modality.



CHAPTER 2
Predicate Linear Temporal Logic

2.1 Linear Temporal Logic

Logic is a tool for reasoning about ideas as abstract as mathematics and as

practical as language. Defining different logics allows us to more accurately model

specific domains and better reason about particular problems. Linear temporal logic

(LTL) is a logic with constructs for making claims about time.

A logic makes a judgment about a proposition. Many logics use the judgment

“A” to mean “A is true”. Linear temporal logic considers A in the context of time, so

in LTL, “A” means “A is true right now” or “A is true today”. This might look like

a weaker claim, since the claim “1 + 1 = 2 is true today” seems to draw attention

to the fact that it says nothing about “1 + 1 = 2” on any other day. But consider a

claim such as “it is sunny”, which is true at the time of writing. Through this lens,

LTL removes an ambiguity. To do this, LTL provides constructs such as �, ♦, and

U that can express temporal claims with finer granularity.

The first “L” in “LTL” is for “linear”, meaning that time is treated like a line.

It is not possible to reason about different futures. This is in contrast to branching

Propositions A,B ::= > | ⊥ | A×B | A+B | A→ B

| ©A | ♦A | �A | A U B | A Û B

Figure 2–1: LTL propositions

8
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temporal logics such as Computation Tree logic (CTL) which can quantify over paths

into the future. Tomorrow it may or may not rain. If it rains, the grass will grow.

LTL can reason about both of those claims, but it cannot make a claim such as

“there is a future where the grass will grow”. It’s still possible to reason about the

future before it happens, but there is only one future.

Propositions in linear temporal logic are shown in Figure 2–1. These include the

common logical operators of truth, falsehood, conjuction, disjunction, and implica-

tion, as well as the temporal operators: the next-step, eventually, always, until, and

strong until modalities. We give an overview of these modalities are explained in this

chapter and provide more rigorous definitions for their type-theoretic equivalents in

the following chapter.

In our presentation of LTL, time is discrete and every moment in time has a

successor. Examples have mentioned today and tomorrow, but a moment can be

a year, a second, or any other unit of time as long as it is atomic with respect to

the logic. This is not always the case in LTL, and will allow us to use tools that

deal with discrete entities such as automata. Discrete versions of LTL often have a

temporal operator, ©A, which relates a type at the present moment to it’s type one

step into the future. It can be thought of as a temporal successor operator. If ©A

is true today, then A will be true tomorrow. Unlike natural numbers however, there

is no t = 0. The notion of time is relative.

�A means “always A” and is true whenever A is true at every point in time.

The claim “1 + 1 = 2” is true in both classical and linear temporal logics. We can
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strengthen this sentence in LTL to “1 + 1 is always equal to 2”. This is modelled

with the � modality as “� 1 + 1 = 2”.

It’s also possible to express claims like “some day it will be sunny”, with ♦A.

This is true when there are a finite number of days until A is true. If it is sunny

today, we can always deduce that some day it will be sunny. In general, from �A

we can derive ♦A. This gives us �A→ ♦A, and in fact there are an infinite number

of proofs of this.

The binary operator A U B (“A until B”) is similar to ♦B, with the additional

requirement that A must be true at every point before that B. This is similar to a

temporal list whose last element has type A. This doesn’t mean that A will ever be

true since B might already be true today. That A is true can be enforced with the

variant A Û B. This ensures that A is true today, and that tomorrow, A U B.

The modalities �A and ♦A from linear temporal logic are reminiscent of the

modalities “necessarily” and “possibly” from modal logic. We can translate these

concepts by relating each possible world in modal logic to a moment in time in

temporal logic. The notion “necessarily true” from modal logic, that something is

“true in every world”, becomes “true at every point in time” in LTL – always true.

Similarly, “possibly true” or “true in some world” becomes “true at some point in

time”, or eventually true.

As an example, consider Figure 2–2. At the first time step, we’re in the first

state, in which A is true. At every step after that, we’ll be in the second state in

which B is true. In the first state, in addition to A being true, we also have ♦B,
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{A} {B}

Figure 2–2: A×©(�B)

♦�B, A U B, and A Û B. In the second state, �B, ©B, and ��B hold, among

others.

The more structure we enforce in a given set of objects, the easier they are to

reason about. This can come at a cost however, since it’s usually necessary to over-

compensate and prohibit some objects that do not possess the defective behaviour.

Intuitively, it seems that objects at the current time should not be allowed to de-

pend on objects from the future. For arbitrary A, it is therefore not possible to write

programs of type ©A → A. This would violate causality, as terms at time t could

depend on terms from time t′ > t [Jeffrey, 2013]. This is not to say that we cannot

write, for example, a term of type ©bool → bool, just that the boolean produced

cannot depend on the input. This still allows constant functions, for example the

function that takes a boolean from the future and always returns true today.

We also place restrictions on being able to save values for later. Just because it is

sunny today does not mean it will be tomorrow. This prohibits proofs of A→©A for

arbitrary A, although this can be proven for certain instances of A. One approach is

to treat the past the same as the future, rejecting temporal dependencies altogether.

This seems much too restrictive though. The only way to prove that some man

will eventually die would be if he were to die that very day. On the other extreme,

we could remember everything that has come before just in case past information is



12

save : bool→©bool
save ≡ λx.if x then • true else • false

Figure 2–3: Legal Save

save : bool→©bool
save ≡ λx. • x
save ≡ λx.if x then • x else • x

Figure 2–4: Illegal Saves

again relevant. This approach has been problematic in implementations of functional

reactive programming, even when some things can be forgotten, since space-leaks still

arise. In life as well, there are things in the past that have been lost to memory.

By trying to remember too much, it’s possible to forget to forget. This introduces

space-leaks. Each new time step is therefore a kind of “Groundhog Day”, where we

forget everything from previous days and the new day seems like the one before.

However, in the same way that the protagonist of the film can still apply information

he learned before, any object that could be created before can be recreated, as long

as it does not contain any variables from a previous day. Anything that cannot

be created from scratch, for example, a function provided as an argument, cannot

be saved for later. Unlike our restriction for ©A → A, some information can be

transferred to the future. The proposition A→©A need not be constant as we can

see in the example for “save” in Figure 2–3. This function returns false at the next

step if the input is false, and true at the next step if the input is true. The booleans

generated are newly created booleans, however, not copies of the input booleans.

The typing rule for © moves variables x, a, and b out of scope when under the •, so

it is not possible to write “save” as in Figure 2–4.
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Classical logic has an axiom called the law of the excluded middle, which pre-

sumes that every proposition is either true or false. A proof can categorize a propo-

sition as true or false. However, not every proposition can be put into one of these

categories! In 1931, Gödel’s incompleteness theorem showed that in any consistent

logic, there are statements that are true but are not provable. The version of LTL

that we explore is based on intuitionistic logic rather than classical logic. In intu-

itionistic logic, a true statement is, by definition, a provable statement. Since an

inconsistent logic is not of much use, intuitionistic logic does not have the law of

the excluded middle. Consider the statement P + ¬P . In classical logic, this means

“either P is true or P is not true”, and this is axiomatically true. In intuitionis-

tic logic, however, this sentence does not mean “either P is provable or P is not

provable”, but rather “either P is provable or the negation of P is provable”. The

truth of this statement is incompatible with the incompleteness theorem. For certain

statements, however, it is the case that either a sentence or its complement will hold

in intuitionistic logic. For example, we can prove that every integer is either even or

not even (odd).

The intuitionistic nature of our logic also places a restriction on distributing

© over sums (’or’s). We cannot produce a proof of the proposition ©(A + B) →

©A + ©B. If we could, we would implicitly gain information about the future

since which of the two possibilities hold could be known before either of them are

to happen. In other words, given a proof that tomorrow with either be sunny or

rainy, it’s not possible to prove that tomorrow will be sunny, nor is it possible to
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prove that tomorrow will be rainy. This only applies in one direction though, so

©A+©B →©(A+B) is provable. Information is simply lost.

Propositions are needed to state theorems, but the work is still left to prove

them. We do not formally provide proof terms for linear temporal logic, nor do we

provide the rules for their reduction, although we mention them briefly. We later

go into depth defining the terms and operational semantics of Jackrabbit. A proof

of a conjunctions is often expressed a pair (a, b), which contains a proof of both the

first and the second conjuncts. These proofs can be extracted with fst and snd.

Disjunctions are often introduced with injections, which we introduce in the next

section, and eliminated via case analysis. This allows us to prove anything that

would follow from either disjunct. An implication f : A → B can be introduced

with abstraction and eliminated (applying the modus ponens rule) as fa, given an

antecedent a : A. We are interested in defining temporal propositions in terms of

least and greatest fixed points. As such, we use induction and coinduction to prove

temporal propositions. We define fixed points in the following section.

2.2 Fixed Points

Given that it will stop raining tomorrow, it’s possible to deduce that it will

eventually stop raining. The converse does not hold – if we know that eventually the

rain will stop, it could be tomorrow or five years from now. But if the rain eventually

stops, then there is some day in the future that will not be rainy. Our version of

LTL is based on the propositional µ-calculus [Kozen, 1983], which uses fixed points

to relate this set of future days under © to the temporal modality “eventually” (♦).

♦ is in fact defined in terms of ©.
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A point x that is invariant under a function f is called a fixed point of f . It’s

often possible to find a fixed point for a function f with type T → T by successively

applying f to its output. For example, the function fx = x/3 where x ∈ N has

a fixed point at 0. If we start with any other number and keep on applying f , we

reach 0. Not all functions have fixed points, though, and even for those that do,

this technique does not always work. The boolean “not” function has no fixed point

because it alternates between two values. For the function fx = −1 × x for x ∈ Z,

repeatedly applying f to any input value but 0 will never produce the fixed point

x = 0. For other functions, such as fx = x+ 1 where x ∈ Z, there is no fixed point

because there is no integer such that fx = x+ 1.

To ensure that types defined with fixed points are meaningful, we enforce some

structural requirements. We take the fixed points of monotone functions in a com-

plete partial order (CPO). A monotone function f is a function that preserves order:

x ≤ y ⇒ fx ≤ fy. This rules out functions that oscillate, such as “not” and

fx = −1× x.

A partial order is a set along with “≤”, a reflexive, anti-symmetric, and transitive

ordering. That is, for all elements x, y, and z, the following properties hold:

• x ≤ x

• if x ≤ y and y ≤ x then x = y

• if x ≤ y and y ≤ z, then x ≤ z

Not all pairs of elements need be comparable under this ordering though, it’s possible

that neither x ≤ y nor y ≤ x.
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In a complete partial order, every subset must have a least upper bound and a

greatest lower bound. A point u is an upper bound of S whenever s ≤ u for every

point s ∈ S. Let U be the set of upper bounds of S. A point j is a least upper

bound of S when j ∈ U and for every upper bound u ∈ U , j ≤ u. A greatest lower

bound is defined similarly. N and Z with the ≤ ordering on integers are not CPOs

because there is no least upper bound.

2.2.1 Least Fixed Points

Least fixed points, written µ, are used to define inductive structures. These are

unbounded but finite, and include lists, trees, ♦, and natural numbers. A point x is

a least fixed point of f when it is a fixed point, and for every other fixed point y of

f , x ≤ y. For consistency with types, we will use capital letters for functions and

points after this point.

Theorem 1. Kleene Fixed Point Theorem Let (L,≤) be a complete partial order

and F : L → L be a monotone function. Then F has a least-fixed point, given by the

supremum of the ascending Kleene chain of F .

To define natural numbers, we take the partial order (L,⊆), where L is a set of

terms and ⊆ is the subset ordering. The function F is defined as F X = 1 +X. 1 is

the set containing () (unit) and + corresponds to tagged set union (∪), tagging the

left and right elements with inl and inr respectively.

Now, we want to find the least fixed point of this equation. Since F is monotone

(X ⊆ 1+X), we apply the Kleene fixed point theorem. To find the ascending Kleene

chain of F , we start with X = Ø and build up:
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F Ø = {inl ()}

F (F Ø) = {inl ()} ∪ {inr (inl ())

F (F (F Ø)) = {inl ()} ∪ {inr (inl ())} ∪ {inr (inr (inl ()))}

· · ·

The least fixed point of F , written µX.1 +X, is the least upper bound of this chain,

the smallest set such that F X = X. This set is isomorphic to the set of natural

numbers, where inl () ∼= 1, inr (inl ()) ∼= 2, inr (inr (inl ())) ∼= 3, etc.

It’s also possible to define natural numbers purely in terms of sets. Set union

doesn’t distinguish left from right, however, so sets representing natural numbers

must be distinguished by what they contain which can be harder to read. The

number 4, for example, is represented as the set containing 0, 1, 2, and 3:

{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

2.2.2 Greatest Fixed Points

Dually, we can define co-natural numbers co-inductively. Rather than taking

the ascending Kleene chain of F , starting with Ø, we take the descending Kleene

chain of F , starting with Ω, the set of all terms. Instead of adding to this, we refine:

Ω = {x | x ∈ Ω}

F Ω = {inl ()} ∪ {inr x | x ∈ Ω}

F (F Ω) = {inl ()} ∪ {inr (inl ())} ∪ {inr (inr x) | x ∈ Ω}

· · ·

The greatest fixed point, νX.1 + X, is the greatest lower bound of this chain,

the biggest set such that F X = X. This set includes the “point at infinity”,
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inr (inr (inr · · · )), since at no point is it removed. In the least fixed point exam-

ple, this term is never added. We still use ∪ because it corresponds to the the +

operation of F . The intersection happens between iterations: F Ω = Ω ∩ (1 + Ω).

This is in contrast to union for the least fixed point, where F Ø = Ø ∪ (1 + Ø).

2.2.3 Defining Types

The power of linear temporal logic comes from the temporal operators always

(�A), eventually (♦A), until (A U B), and strong until (A Û B). They are defined

in terms of fixed points and the ©-modality as follows:

�A ≡ νZ.A×©Z (Always)

♦A ≡ µZ.A+©Z (Eventually)

A U B ≡ µZ.B + A×©Z (Until)

A Û B ≡ A×©(A Û B) (Strong Until)

The temporal proposition ♦A is defined as the least fixed point of the function

FX = A + ©X. With natural numbers, although the set is infinite, any given

number has a finite distance from 0. The same is true of ♦, which makes it possible

to ensure that if ♦A, then A will happen some day.

Always A can be interpreted as a stream of a’s. It is defined with the greatest

fixed point ν because cofinite nature of the claim that A is true at every point in

time. The type �A → A is therefore inhabited by the head function on streams.

Because these streams are temporal, however, it is not in general possible to write a

function of type A→ �A. This is for the same reason that A→©A isn’t possible,
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as they both attempt save an A for later. The converse holds for ♦A. A → ♦A is

inhabited but ♦A→ A is not. ♦A→ A entails potentially importing an A from the

future and therefore isn’t allowed for the same reason as ©A → A. Unfortunately,

♦ does not form a monad in Jackrabbit. A → ♦A can be seen as lifting A, and it’s

possible to derive ♦♦A → ♦A, but it’s not always possible to map over ♦. Given a

function f : A → B and a value v : ♦A, the function may be forgotten by the time

it can be applied.

2.3 Predicates

Abstraction is the power to see the similarities among different things. It ignores

information that is irrelevant for a given use so that different objects can be seen

in the same light. We treated fixed points as a means of abstraction relative to

simple types. Instead of considering ©A and ©©A as different propositions, fixed

points allow them to be seen as different instances of the same proposition, ♦A (or

µZ.A+©Z).

Sometimes, however, the differentiating information is useful. Rather than eras-

ing information altogether, predicates allow us to decouple this information from a

proposition. We can index ♦A by a natural number representing its size. ♦1A means

that A will be true at the next step, ♦2A that A will be true in two steps. This

indexed ♦ is called a predicate. Indexing a proposition with a concrete object does

not add anything itself, but it lays the groundwork for abstract indices. This will

allow us to place tighter constraints on types.

A classic example of predicate logic is a syllogism about Socrates’ mortality. The

third sentence follows from the first two: “All men are mortal. Socrates is a man.



20

Πx.Mx→ ♦Dx, Ms ` ♦Ds

Figure 2–5: A Derivation of Socrates’s Death

Therefore Socrates is mortal.” In propositional logic, each of these sentences can be

represented, but they have no bearing on one another. They are atomic sentences

– they cannot be further divided. One attempt to derive Socrates’ mortality is to

change the sentences to the following: “If Socrates is a man, then Socrates is mortal.

Socrates is a man. Therefore Socrates is mortal.” But if we learn that Plato is also a

man, we cannot derive Plato’s mortality. We would also have to know that “If Plato

is a man, then Plato is mortal”.

In predicate logic, we are able to split each of these sentences up so that we

can model their internal structure. This uncoupling allows us to make universal and

existential claims, not about a particular person, but rather truths about classes of

objects. “Socrates is a man.” is broken into two parts: M , the property of being

a man, and Socrates, the object s. We write this Ms. The sentence “All men are

mortal” is a statement about men in the abstract. We write this as Πx.Mx→ Dx:

“for all objects x, if x has the property of being a man then x has the property of

being a thing that will die. To derive the conclusion “Therefore Socrates is mortal”,

we use a rule that allows us to instantiate universal claims. If some thing is true of all

objects, then it is true of a particular object. This gives us the sentence Ms→ Ds:

“If Socrates is a man, then Socrates is mortal.”, where s = Socrates, at which point

we can derive the conclusion. This is a temporal claim, however! We can express

even more structure using indexed-LTL in Figure 2–5, where Da means “a is dead”

rather than “a will die”.
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Quantifiers can be used to model the temporal modalities � and ♦. The index

domain consists of present and future moments in time, which can be represented

by natural numbers. We can then define �A as Πx.Ax. ♦A is defined with the

existential quantifier, Σ. Whereas Π is used to make claims about entire classes of

objects, Σ is used to specify that there is at least one thing that has some property.

Since “things” here are moments in time, Σx.Ax, means that “there is a moment in

time where A is true”. That is, ♦A. Jackrabbit uses indexed types and temporal

modalities differently and therefore does not blend them together.

It’s often useful to reason about the relationship between two objects. We use

equality (=) to express that two objects are equal. Along with quantifiers, this

makes it possible to express that there’s at most one thing with some property P :

Πx.Πy.Px×Py → x = y or that there are at least two things: Σx.Σy.Px×Py×x 6= y.



CHAPTER 3
The Jackrabbit Language

The Curry-Howard correspondence relates logical propositions to program types.

In the previous chapter, we focused on logic. Here, we focus on programs. Jackrabbit

is defined in this chapter, although we also introduce a few programming concepts

absent from Jackrabbit so as to better explain design choices. Most of the exam-

ples are towards the end of the chapter, after having provided an explanation of

Jackrabbit’s constructs. To give a taste of Jackrabbit now, we provide a few exam-

ples using the modalities introduced in the previous chapter. We also use booleans in

these examples. Since a boolean can be true or false, it can be defined in Jackrabbit

with a sum type as in Figure 3–1.

Example 1 (Two-steps). Recall that the eventually modality ♦A is defined as

µZ.A+©Z. We define true two steps from now in Figure 3–2, which has type ♦bool.

Seeing as ♦bool is syntactic sugar, we expand the full type to µZ.(1 + 1) +©Z

in this example for clarity. The inj is used to create a recursive type, and re-

places the type variable Z by µZ.A +©Z. Without the inj terms, we would have

inr • (inr • (inl true)) of type bool +©(bool +©(bool +©(µZ.bool +©Z))).

bool ≡ 1 + 1
false ≡ inl ()
true ≡ inr ()

Figure 3–1: Booleans

22
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TwoSteps : µZ.(1 + 1) +©Z
TwoSteps ≡ inj (inr (•inj (inr (•inj (inl (inr ()))))))

Figure 3–2: Two-steps

Example 2 (Stream application). Corecursion allows us to handle streams, which

correspond to the � modality. Here, we create a stream with the Sisyphean task of

continually applying a function to a value, each of which is passed in via an input

stream. This example, shown in Figure 3–3, is modified from Cave et al. [2014].

Apply is a curried function that takes two parameters. We uncurry these parameters

and pass them as a single tuple (fs, as) to the corec term, whose signature is

(�(A → B), �A) → �B. The variable r gives us access to the object we pass in

as (fs, as) and f , unrelated to fs, is a function used to make the corecursive call.

hd and tl are simply syntactic sugar for fst and snd, used here to clarify that we’re

acting on a stream. The let’s take a next step term of type©A and give us access to

the term of type A, binding it here to the variables fs′ and as′. We then reconstruct

a new stream whose head is the head of fs applied to the head of as. In the tail

of the stream, we apply f to fs′ and as′. This f and its recursive equivalent live in

the eternal context, so unlike most variables, they can be used under a • term. We

explain this in more depth later.

Example 3 (In-Order Buffer). In Jackrabbit, we’ll also use indices in types, which

correspond to logical predicates. We define vectors soon, but to give an idea of

how indices can be used, we show the type of a simple buffer that reads and then

forwards a value. Simply expressing that a value read will be sent immediately
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Apply : �(A→ B)→ �A→ �B
Apply ≡ λfs.λas.
corec(�(A→B), �A) → �B(rpf.

let • fs′ = tl (fst r) in
let • as′ = tl (snd r) in
((hd (fst r))(hd (snd r)), •f(fs′, as′))

)(fs, as)

Figure 3–3: Stream Apply

Kinds K ::= type | Πu:U.K
Index type U ::= N
Index objects C ::= u | zero | suc C
Type families R ::= Z | µZ.Λ−−→u:U.A | νZ.Λ−−→u:U.A
Types A,B, S, T ::= 1 | A→ B | A×B | A+B | ©A

| R ~C | Πu:U.A | Σu:U.A | C1 = C2 | R

Figure 3–4: Types, Kinds, and Indices

might be too strong a constraint. On the other hand, expressing that values received

will eventually be sent still allows for out-of-order transmission. The following type

requires that values read will be sent in the same order as they have been received.

Here, we read and write values from the index language. R and S are the predicates

for receiving and sending, respectively, and Π takes as input two natural number

messages, first m and then n, and eventually sends m followed by n.

Buffer ≡ Πm:N.Πn:N.(Rm× ♦Rn)→ ♦(Sm× ♦Sn)

3.1 Syntax of Types

Semantically, a proof is different than a program. A proof is concerned with

the truth-value of a proposition, whereas a program is used to solve a problem via

computation. Syntactically, proofs are often different as well, which can help to
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illustrate the difference in meaning. For simplicity, the previous section uses the

syntactic constructs of Jackrabbit for proofs rather than a syntax more common to

logic. For example, logical conjunction is often written “&” or “∧”, but conjunction

in the previous section is written “×”, as are products in Jackrabbit.

Jackrabbit includes functions A → B which correspond to logical implication,

products A × B which correspond to logical conjunction, and sum types A + B,

corresponding to logical disjunction. The unit type (1) corresponds to the logical

value “true”. The syntax of each of these is the same as that of its logical counterpart,

along with the next-step modality ©A, Σ types which correspond to existential

quantification Σx.Px, Π types which correspond to universal quantification Πx.Px,

and index equality (C1 = C2). Logically, = often refers to index identity. Two

different things can be equal in some respect without being identical. Since we are

only comparing index objects here, we simply use equality.

The proposition Σx.Px is made up of a few different parts: the quantification, a

variable over which we quantify, the predicate, and the index x. We usually use u as

an index variable rather than x and annotate its type: u:U . In addition to variables,

the index domain consists of natural numbers, defined inductively. This is a simple

index language but is sufficient for our purposes.

In the example Σx.Px, P is a predicate and only becomes a proposition once

it has taken all of its indices. Logical predicates translate to Π-kinded types in

Jackrabbit. We extend (co)recursive types to (co)recursive types with Λu, making it

possible to embed indices into inductive and coinductive objects. With this extension,
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Variable contexts Θ,Γ,Ω ::= · | Γ, x:T
Eternal context ∆ ::= Φ; Ψ | Φ; Ψ; Ω
Type variable context Φ ::= · | Φ, Z:K
Index context Ψ ::= · | Ψ, u:U

Figure 3–5: Contexts

it becomes necessary to ensure not only that terms are well-typed, but that types

are well-kinded.

Kinds create a kind of inductive type for types and type constructors. The

syntax of our types is shown in Figure 3–4. All types in non-indexed (and non-

dependent) languages have kind type, but we also allow for objects that are waiting

to take index objects. To better illustrate this, we call these type families (R). Type

families can have kind Πu:U.K, where u is an index variable from index domain U

and K is an inductively defined kind. They include recursive objects, corecursive

objects, and type variables. Although R without applying any indices is included

as a type here, the requirement that type families must take all of their indices is

enforced by the kinding rules.

Vector arrows (~ ) denote lists of indices. For example, −−→u:U is a list of in-

dex objects ui, each of which has index type Ui. For types that are only de-

fined with a single index, we use vector notation as syntactic sugar to extend the

definition to multiple indices. For example, µΛ−−→u:U.A : Π−−→u:U.K is equivalent to

µΛu1:U1, · · · ,Λun:Un.A : Πu1:U1, · · · ,Πun:Un.K. For recursive types that take no

indices, we leave out the Λ and kind annotation, since K must have kind type.

µZ.A+©Z is therefore equivalent to µZ.Λ.A+©Z.
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3.2 Contexts

We use contexts Γ, Θ, Ω, Φ, and Ψ to store three kinds of variables. Γ, Θ, and

Ω keep track of term variables x. The typing rules make it possible to move variables

between these contexts, enforcing temporal constraints. Γ contains variables at the

current time step and Θ contains variables that may be used in the future, replacing

the variables in Γ. Term variables can also be stored in Ω, which is invariant when

stepping under a •. Φ stores type variables, and Ψ stores index variables which have

type N in our examples.

We join contexts Φ, Ψ, and Ω into the eternal context ∆ = (Φ; Ψ; Ω), and

note that objects in ∆ do not depend on time. Since Ω is only required for the

recursive and corecursive terms, we can also write the extended context leaving out

Ω, as ∆ = (Φ; Ψ). Objects in Γ and Θ depend on both the current time step and,

potentially, objects in ∆. Each variable Z in Φ is annotated with its kind K, which

indicates the number and kind of indices that Z is waiting to take. The kind also

specifies the domain U of each index. In examples where index variables do not

depend on other index variables, we can write U → K for Πu:U.K. We also write

∆, u:U as shorthand for Φ; (Ψ, u:U) and ∆, Z:K for (Φ, Z:K); Ψ.

3.3 Kinding Rules

The kinding rules presented in Figure 3–6 are based on those from Cave and

Pientka [2012], with the addition of the circle modality [Cave et al., 2014] and core-

cursive types. A kind is well-formed according to the judgment ∆ ` T : K. This

states that type T has kind K in context ∆. Similarly, ∆ ` C : U means that index
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∆ ` −−−−−−→U : mtype ∆,−−→u:U,Z:Π−−→u:U.K ` T : K
∆ ` µZ.Λ−−→u:U.T : Π−−→u:U.K

Z:K ∈ ∆
∆ ` Z:K

∆ ` −−−−−−→U : mtype ∆,−−→u:U,Z:Π−−→u:U.K ` T : K
∆ ` νZ.Λ−−→u:U.T : Π−−→u:U.K

∆ ` A : type
∆ ` ©A : type

∆ ` A : type ∆ ` B : type ∗ ∈ {→,×,+}
∆ ` A ∗B : type

∆ ` C0 : U ∆ ` C1 : U
∆ ` C0 = C1 : type

∆ ` −−−−−−→U : mtype ∆,−−→u:U ` T : type

∆ ` Σ−−→u:U.T : type

−−−−−−−−−−→∆ ` U : mtype ∆,−−→u:U ` T : type

∆ ` Π−−→u:U.T : type
∆ ` R : Π−−→u:U.K ∆ ` ~C : ~U

∆ ` R ~C : {~C/~u}K

Figure 3–6: Kinding Rules

C is well-formed and has index type U , and ∆ ` U : mtype means that index type

U is a well-formed meta-type.

Each of ©A, →, ×, and + is well-kinded if each of its subtypes is too. We note

that with →, there is no restriction on type variables in the function domain, since

our recursion scheme ensures that recursion with these types is well-behaved.

The least and greatest fixed points are well-kinded when given a type variable

and indices that can produce a type T of kind K. This parallels the typing rule

for function abstraction with both a type variable and a vector of index variables.

Applying indices to Π-kinded types can be done as R ~C, which is similar to function

application. {~C/~u}K means that occurrences of the variable u in K are replaced by
~C. This is further explained in the section on substitution.
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Kinding for Π and Σ-types is also similar to function abstraction with a vector of

index variables. Given a context containing a vector of well-kinded index variables,

we can create a type that does not depend on these. It’s also important to note that

the Π-kind on the right of a “:” and the Π-type on the left of a “:” are unrelated.

Although they both take indices, they exist on different levels.

3.4 (Co)Recursion

A type A has introduction rules which are used to create terms of type A, and

elimination rules, used to produce a term of type B from a term of type A. For some

types, there is not a lot of choice to be made about the introduction and elimination

forms. For example, the product type A×B is usually introduced with a pair, (a, b).

A term M : A×B can be eliminated with the projections fst M and snd M , or else

with a let term that binds both elements to variables, but there are only so many

ways to put two objects into a pair and to take them out.

When it comes to recursive types, there’s much more variety. Full recursion,

although simple and powerful, can produce programs that never end. We introduce

a few alternatives and examine their strengths and weaknesses before presenting a

simplified version of the recursion scheme used in Jackrabbit.

3.4.1 General Recursion

Recall that a fixed point X of a function F is a point such that FX = X.

Fixed points can be used to define the operational semantics of terms with recursive

types. The following presentation of general recursion, from Pierce [2002], provides

an operator fix which takes a function λf.M : T → T and naively unrolls the

function definition during evaluation, replacing f by itself. This provides for a simple
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Γ `M : T → T
Γ ` fix M : T

Figure 3–7: Typing Rule for General Recursion

Γ `M : JµX.S/XKS
µIΓ ` inj M : µX.S

Figure 3–8: µ Introduction

and intuitive stepping rule:

fix(λf.M) −→ [fix(λf.M)/f ]M

Since no base case is mandated, it is left up to the programmer to ensure that

the recursion is well-founded. Consider the not function over booleans. This can be

written in pseudocode as λx.if x then false else true. The fix operator turns

this bool → bool function into a term of type bool. But this boolean is neither

true nor false, and the program will never end. General recursion therefore fails to

ensure that recursive functions terminate.

3.4.2 (Co)Iterators

Sometimes non-terminating programs are useful. These are possible to write

via corecursion and with fix, but no guarantees are made about normalization and

totality of functions. This makes it harder to reason about the system. One way to

restore normalization is with iterators (Figure 3–10) and coiterators (Figure 3–12).

Γ `M : νX.S
νEΓ ` out M : JνX.S/XKS

Figure 3–9: ν Elimination
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x : JT/XKS `M : T Γ ` N : µX.S
Γ ` iterX.S(x.M)N : T

Figure 3–10: Typing Rule for Iterators

length ≡ λl.iterX.1+A×X

(x.case x of
| inl a 7→ inj (inl ()) - - Empty list
| inr b 7→ inj (inr (snd b)) - - snd b : nat

) l

Figure 3–11: Length with Iterators

Iterators can only recurse over inductive objects, which are well-founded and will

therefore terminate. Unfolding of cofinite objects is done with out and coiterators

only compute to as many positions as are requested; it is not possible to retrieve

an infinite object before doing anything. For example, the corecursive analog of

fix(λx. x) is inhabited: coitX.X(x.x)() : νX.X, which is a stream with no data.

Unlike fix(λx. x), the program coitX.X(x.x)() will not step until a request is made

to do so with out.

The body of an iterator only has access to the variable x, the recursive object.

At each step as the iterator traverses the inductive object, the size of the body

decrements. Restricting the context to only contain x ensures that variables aren’t

carried forward unnecessarily. The object over which we are inducting does not have

to be a closed type, and so the Γ from the right axiom can be carried over. This is

useful for functions like λx.iter(M) x.

In Figure 3–11 the length of a list l is computed. A list can either be empty

(the inl case), or have a head and a tail (the inr case). Intuitively then, b looks
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x : S `M : JS/XKT Γ ` N : S
Γ ` coitX.T (x.M)N : νX.T

Figure 3–12: Typing Rule for Coiterators

conat ≡ λn.coitX.1+X

(x.case x of
| inl a 7→ inl () - - no inj or out
| inr b 7→ inr b

) n

Figure 3–13: Converting a Nat to a Conat

like a pair of a list head and tail. However, the typing rule (Figure 3–10) replaces

the input type variable with the output type, so the tail of b actually has type nat.

“- -” begins a line comment and is purely for the reader.

The operational semantics of iterators are not as elegant as those of general

recursion. Cave et al. [2014] address the semantics by introducing a new term,

called map, whose stepping rule introduces and eliminates every type while expanding

recursive types before the iterator is applied. This introduces an extra layer, since map

is a term that is never directly used by the programmer. This can also be inefficient

in programs that don’t need to traverse the entire inductive object, such as taking

the tail of a list. The inductive object must be reconstructed, which necessitates a

non-trivial program for a trivial task and takes linear time in the size of the inductive

object.
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x : JT × µX.S/XKS `M : T Γ ` N : µX.S
Γ ` primX.S(x.M)N : T

Figure 3–14: Typing Rule for Primitive Recursion

pred ≡ λn.primX.1+X

(x.case x of
| inl a 7→ inj (inl ())
| inr b 7→ snd b - - snd b : µX.1 +X

) n

Figure 3–15: Primitive Recursive Predecessor

3.4.3 Primitive Recursion

To address the issue of recreating the inductive object, we turn to primitive

recursion, whose typing rule is shown in Figure 3–14. Primitive recursion gives us

access to two objects, the object being recursed over and the object being created.

The former is immediately accessible, which lets us simplify functions like the tail

function and only takes constant time. However, this makes the typing even less

intuitive, since our recursive object is now a pair. Even though we now need to use

the first and second projections, no pairs show up anywhere in the input.

In Figures 3–15 and 3–16, fst b and snd b have the same type, since the input

type is the same as the output type. Importantly, the operational semantics differ. If

we were to replace snd with fst in Figure 3–15, our function would be the constant

copy ≡ λn.primX.1+X

(x.case x of
| inl a 7→ inj (inl ())
| inr b 7→ inj (inr (fst b)) - - fst b : µX.1 +X

) n

Figure 3–16: Primitive Recursive Copy
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·;x : JT/XKS `M : T Θ; Γ ` N : µX.S
Θ; Γ ` iterX.S(x.M)N : T

Figure 3–17: Temporal Iterator

function 0, since each recursive call would peel off a successor. In Figure 3–16,

replacing fst by snd would still yield the copy function, but would only take constant

time.

3.4.4 Mendler-style Recursion

Although it improves the performance of certain functions, primitive recursion

does not resolve any issues pertaining to the operational semantics and uses a less

intuitive typing rule. Mendler-style recursion [Mendler, 1988] in Figure 3–19, allows

the programmer to write functions the same way as with general recursion, by giving

the programmer access to a function named f . Because f can only be applied to

well-founded inductive objects, termination is restored since the recursive call can

only be made on a smaller object. The operational semantics are also similar to

general recursion.

Another benefit of Mendler-style recursion is that it doesn’t require that type

variables only occur in positive positions, that is, on the left side of an even number

of →’s. With this restriction, types such as µZ.(Z → A) → Z are allowed but

νZ.Z → Z and µZ.Z → A are not. Proving normalization in languages with iteration

can be done using a monotonicity witness, that ∀X.∀Y.(X → Y )→ JY/XKA, where

∀X means for all objects X. This ensures that type variable renaming is a finite

process. Mendler-style recursion does not require a monotonicity witness because its

interpretation is the least fixed point of a monotone operator [Matthes, 1999] .
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·;x : JT × µX.S/XKS `M : T Θ; Γ ` N : µX.S
Θ; Γ ` primX.S(x.M)N : T

Figure 3–18: Temporal Typing Rule for Primitive Recursion

f : Y → T, r : JY/XKS `M : T Γ ` N : µX.S
µE

Γ ` recX.S(rf.M) N : T

Figure 3–19: Typing for Mendler-style Recursion

The typing rule presented loses the benefit of quick access to the inductive

object offered by primitive recursion. This can be restored by adding the function

p as in Figure 3–21, which corresponds to the second element of the pair in the

primitive recursive approach. Mendler-style corecursion, shown in Figure 3–22, is

done similarly. We explain these rules further in the typing section, as well as the

full rules which contain indices. The rules presented here also replace X by the type

variable Y . This makes explicit the fact that applying f or p are the only things that

can be done. However, p is replaced by the identity function under type substitution

during evaluation. We can refrain from substituting Y and using p as a function,

and simply use r when we wish to return the inductive object.

length ≡ λl.recX.1+A×X

(rf.case r of
| inl a 7→ inj (inl ()) - - nil
| inr b 7→ inj (inr (f b))

) l

Figure 3–20: Length with Mendler-style recursion
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P ≡ Y → µX.S

F ≡ Y → T
f : F , p : P , r : JY/XKS `M : T Γ ` N : µX.S

µE
Γ ` recX.S(rpf.M) N : T

Figure 3–21: Mendler-style Recursion with p (and without indices)

f : T → Y, r : S `M : JY/XKT Γ ` N : S
νIΓ ` corecX.T (rf.M) N : νX.T

Figure 3–22: Typing for Mendler-style Corecursion

3.5 Syntax of Terms

Jackrabbit consists of a base language with conventional types, extended with

the circle modality to express temporal properties, index operators that allow us to

constrain types, and (co)recursive types for finite and infinite data structures.

Lower case letters such as x are used for term variables. The unit type 1

has introduction form () and no elimination form. Function abstraction (λx.M)

is the introduction form and function application (MN) the elimination form for

Terms M,N ::= x | () | λx.M |MN | fst M | snd M | (M,N)
| inl M | inr M | (case M of inl a 7→ N0 | inr b 7→ N1)
| inj M | recΠ−−→u:U.(µZ.Λ−−→u:U.F )~u→T (~u; rf.M) ~C N

| out M | corecΠ−−→u:U.T→(νZ.Λ−−→u:U.F )~u(~u; rf.M) ~C N
| Λu.M |M C | pack(C,M) | let pack(u, x) = M in N
| refl | eq MC1=C2 with (∆′; ρ′ 7→ N) | eqabortAC1 6=C2

M
| •M | let • x = M in N

Figure 3–23: Terms
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function types →. Products (×) can package up two terms. They are intro-

duced with (M,N) and eliminated with the projections fst M and snd M . Sums

(+) are dual to products: whereas a pair gives us a single term (M,N), com-

posed of two terms M and N , and eliminating can give us either component, a

sum is created from either one of two terms M or N and eliminated by handling

both cases. Sums are introduced with inl M and inr M and eliminated with

case M of inl a 7→ N0 | inr b 7→ N1. Recursive types are created with inj M

and eliminated with recΠu:U.(µZ.Λ~u.F )~u→T (~u; rf.M) ~C N . out M is the elimination

form for corecursive types and corecΠu:U.T→(νZ.Λ~u.F )~u(~u; rf.M) ~C N is the introduc-

tion form. For readability, we occasionally simplify the typing annotations for µ

elimination and ν introduction, writing A rather than Π−−→u:U.(µZ.Λ−−→u:U.F )~u→ T or

Π−−→u:U.T → (νZ.Λ−−→u:U.F )~u.

Λu.M and M ~C are similar to λx.M and MN , but for indices rather than terms,

so u is an index variable and ~C an index term. pack(C,M) is similar to (M,N), but

again with an index term C instead of a term, and the second element can depend

on the first. let pack(u, x) = M in N is slightly different from the projections

fst M and snd M , as it uses both an index variable u and a term variable x that

can appear in N . refl witnesses index equality, eq MC1=C2 with (∆′; ρ′ 7→ N)

eliminates equal indices, and eqabortAC1 6=C2
M eliminates unequal indices. Finally,

•M and let • x = M in N are the introduction and elimination forms for ©. We

explain these rules in more depth in the section on typing.



38

vec(C) ≡ (µZ.Λu:N. u = zero
+ (Σv.u = suc v × (bool× Z v))) C

nil ≡ inj (inl refl)
cons(C, hd, tl) ≡ inj (inr (pack(C, (refl, (hd, tl)))))

Figure 3–24: Boolean Vector

3.5.1 Vectors

To give a taste of the syntax of the language and especially indices, we provide

a few examples of vectors. A vector, defined in Figure 3–24, is a list that piggy-backs

its length. Vectors can be used to enforce compile-time guarantees associated with

length, which, avoiding runtime bounds checks or errors. We provide a few examples

with boolean vectors in Jackrabbit.

Example 4 (Vector Copy). The copy function in Figure 3–25 takes an index u and a

vector of length u and produces another vector with length u. The index and vector

are passed to rec at the end, and these are substituted the body of the rec term,

with u for u1 and v for r. Because rec goes inside of the inductive object, inj has

already been handled and we can case analyze the body of the inductive object. The

inl case returns the empty vector and the inr case breaks the vector down into its

constituents and builds it back up, passing the smaller u2 to f along with the tail of

the vector.

Example 5 (Vector Tail). The function in Figure 3–26 takes a vector of length u

and a proof that u is the successor of some number u′, and returns the vector’s tail

which has length u. On the type level, we make explicit the constraint u = suc u′

on the indices to produce a vec(u′) . The annotation for rec, however, uses a Π
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V ecCpy : Πu:N.vec(u)→ vec(u)
V ecCpy ≡ Λu.λv.recΠu:N.vec(u)→vec(u)

(u1; rf. case r of
inl a 7→ nil

| inr b 7→ let pack(u2, x) = b in cons(u2, fst (snd x), f u2 (snd (snd x)))
) u v

Figure 3–25: Vector Copy

V ecTail : Πu:N.Πu′:N.u = suc u′ → vec(u)→ vec(u′)
V ecTail ≡ Λu.Λu′.λe.
eq e with (u′ : N; suc u′/u 7→
λv.recΠu:N.vec(suc u)→vec(u)

(u′; rf. case r of
inl a 7→ eqabortvec(u′)

C1 6=C2 a
| inr b 7→ let pack(u2, w) = b in snd (snd w))
u′ v)

Figure 3–26: Vector Tail

to place constraints on the input index. Since we cannot pattern match on indices

in Jackrabbit, we rely on equality elimination to make the constraint implicit. This

way, it can be used within the body of the recursor rec. For the inl case, we are

given a proof that u1 = zero. However, we already have a proof that u = u1 = suc u′

so this is not unifiable. We therefore apply the eqabortC1 6=C2
rule to get a term with

the type we want, a vector whose length is the predecessor of zero. For the inr case,

we simply return the tail without applying f . This is the same as applying the p

function from the section on recursion.
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Regular substitution application : [N/x]M
Future substitution application : [N/x]•M

Figure 3–27: Term Substitution

Type substitution τ : A/Z
Type substitution application : JτKA | JτKΓ

Figure 3–28: Type Substitution

3.6 Substitution

The expression “let x = 1 in 1 + x = 3 - x” steps to “1 + 1 = 3 - 1”. Both

of these expressions are closed, meaning that there are no free variables. When

evaluating the first expression, we reach the open subexpression “1 + x = 3 - x”,

and need a mapping of variables to expressions so as to replace x by 1. This is called

a substitution.

In Jackrabbit, there are 6 kinds of substitutions. There are two kinds of substitu-

tions at the type level: type substitutions for type variables in Figure 3–36, and index

substitutions in Figure 3–37, which also appear in terms. In addition to index substi-

tutions, which are shown in Figure 3–38, there are three other kinds of substitutions

on terms. Regular substitutions are shown in Figure 3–33, future substitutions in

Figure 3–34, for terms under a •, and omega substitution for (co)recursive variables,

since we make the recursive call with a function that should be agnostic to time.

Omega substitution is defined almost exactly the same as regular substitution, and

Eternal substitution : τ ; θ
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∆ ` zero : N
∆ ` n : N

∆ ` suc n : N
u : N ∈ ∆
∆ ` u : N

Figure 3–29: Peano Natural Numbers

we therefore do not show all of the cases. The exception is the case of the next-step

substitution, shown in Figure 3–35.

3.6.1 Regular Substitution

Regular substitution, written [N/x]M is displayed in Figure 3–27. It consists

of replacing free instances of the term variable x in term M by term N . A free

variable is a variable that is not bound. For example, y is free in term λx.(x, y). A

term with free variables is called an open term. We include side conditions to avoid

variable capture. For example, [N/x] λx.x should produce the identity function, and

[x/y] λx.y should not. Term variables are stored in the regular context Γ along with

their type.

An interesting case in Figure 3–33 is that of recursion. Although the substitution

is applied to the inductive object N , it is not applied to the body M , since the only

variables that appear free in M are f , r, and ~u. This also applies to corecursion, as

well future and index substitutions.

3.6.2 Future Substitution

Future substitution, written [N/x]•M , is defined in Figure 3–34. Future sub-

stitutions replace term variables under a •, which are kept with their type in the

context Θ. [M ′/x]•(•M) is the most interesting case, and is defined as •([M ′/x]M).

Here, a future substitution becomes a regular substitution when stepping under a •.

This motivates the use of two contexts, since the objects in Γ are replaced by those

in Θ after stepping under the •. For current variable substitutions, we have that
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Index substitution θ : · | θ, C/u
Index substitution application : {θ}M | {θ}A

| {θ}C | {θ}Γ | {θ}θ′

Figure 3–30: Index Substitution

[N/x](•M) ≡ •M since the typing rules for ©I ensure that x cannot occur free in

M .

Future substitutions don’t require the same side conditions as those for regular

substitutions. Variables are separated by ticks of the clock, so we can also separate

variable namespaces. We define the operational semantics later, but as an example,

the term let • x = •3 in (x, •x) steps to (x, •3). The substitution is not applied to

the first element of the pair.

3.6.3 Type Substitution

In a (co)recursive type, a type variable stands in for the (co)recursive type

within its body. Type substitution retains type information when (co)iterating over

a (co)inductive object. In a type substitution, we replace the type variable Z by a

type A. A is a meta-variable that stands in for a type, whereas Z is a type variable

in Jackrabbit. Since type variables are also types, a type variable substitution can

have the form Z/Z.

3.6.4 Index Substitution

Index substitution is shown in Figure 3–30. Indices can be substituted in terms,

types, and other indices. Like the other substitutions, an index substitution is a

mapping from variables to terms, in this case index terms. There are also some key

differences. In Jackrabbit, index substitution uses simultaneous substitution rather
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than single substitution. Single substitutions are simpler, but simultaneous substitu-

tions allow for a more general equality elimination rule. A single substitution maps a

variable to a term, such as 2/x which maps x to 2. A simultaneous substitution maps

all variables to terms, and {·, 2/x, 2/y}(x+ y) steps to 2 + 2. We occasionally leave

out ·, the empty substitution. Simultaneous substitutions can also be composed, but

this is not necessary to substitute multiple variables. The substitution u/u must

also be added to σ when substituting under a variable binding u, as simultaneous

substitution is a total mapping.

Index substitution has a different motivation than that of the other substitutions.

Regular and future substitutions make β-reduction possible for terms with variables

such as case analysis and functions, and type substitution allows for well-behaved

(co)recursion. Indices exist to place constraints on types, and so the key concept is

that of unifiability. If two terms are unifiable, then there exists an instantiation of

free variables such that the terms are equal. For example, consider the term “1 +

u = 3 - u”. This comparison is true when we substitute 1 for u, and we say that

the substitution 1/u unifies the terms “1 + u” and “3 - u”. There can also be many

unifiers for a particular term, as is the case for u = v, or none, as with u 6= u+ 1.

For the term u + 1 = v, the substitution 2/u, 3/v acts as a unifier, along with

4/u, 5/v and an infinite number of other substitutions. We can unify these objects

more generally with the substitution u + 1/v, producing u + 1 = u + 1. u + 1/v is

called a most general unifier of u and v (mgu(u, v)). Formally, the substitution θ is a

most general unifier of u and v whenever, for any other unifier θ′ of u and v, there is

a substitution θ′′ such that the substitution {θ′′}θ is the same as θ′. u+ 1 = u+ 1 is
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{θ} zero ≡ zero
{θ} suc M ≡ suc {θ}M
{θ} u ≡ C, where C/u ∈ θ

Figure 3–31: Natural Number Substitution

still an open term. We can change this by applying a grounding substitution, which

is substitution that produces a term with no free variables.

Although the domain for the index language is kept abstract, the examples given

use an index language consisting of Peano natural numbers with variables. These

are defined in Figure 3–29, and substitution on natural number indices is defined in

Figure 3–31.

An index is well-formed according to the judgment ∆ ` C : U . This means

that index C from the index domain U is well-formed in the context ∆. We also

make a few stipulations about the index language. Type-checking and unification

must be decidable. That is, the unification algorithm will produce a unification

if and only if two index objects are equal. We write ∆ ` C1 6= C2 if C1 is not

equal to C2. Index objects cannot depend on other index objects. We also place a

few constraints on how substitution behaves [Jacob-Rao et al., 2018], which will be

helpful in our substitution lemmas. ∆ ` θ : ∆′ means that for every ui in θ and ∆′,

∆ ` {θ}ui : ∆′(ui).

1. If ∆′ ` θ : ∆ and ∆ ` C : U then ∆′ ` C : {θ}U

2. If ∆1 ` C : U , ∆2 ` θ1 : ∆1, and ∆3 ` θ2 : ∆2 then ∆3 ` {θ2}{θ1}C =

{{θ2}θ1}C

3. If ∆′ ` θ : ∆ and ∆ ` C1 = C2 then ∆′ ` {θ}C1 = {θ}C2
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∆ ` · : ·
∆ ` (τ ; θ) : ∆′ ∆ ` C : U

∆ ` (τ ; θ, C/u) : ∆′, u : U

Figure 3–32: Well-typed Substitutions

The most interesting case for index substitution in Figure 3–38 is substitution

in equality elimination: eq MC1=C2 with (∆′; ρ 7→ N). If the elimination is a closed

term, M must be refl, and so any substitution must be unifying. However, this

term is not necessarily closed and we have no guarantee that index variables will

still unify under θ. For this reason, applying a non-unifying substitution produces

eqabortAC1 6=C2
N . If {θ}C1 and {θ}C2 do unify, then let ρ′ be the most general unifier,

which exists in context ∆′′. Because ρ is an mgu of C1 and C2, we know that any

other unifier of C1 and C2 (in particular, {ρ′}θ) can be written as the composition

of some substitution θ′ and of ρ. This substitution θ′ can be applied to N , giving us

the desired term.

3.7 Typing Rules

We describe the typing rules in five sections. Conventional operators have types

→,×,+, and 1. Temporal operators give us the “reactive” part of Jackrabbit and act

as a building block for the other temporal types presented earlier. Equality allows

us to compare indices, and Π and Σ types let us quantify over index objects. Finally,

the fixed point operators give us recursion and corecursion. This allows us to write

programs that use finite data structures such as lists and trees and infinite data

structures such as streams. The judgment ∆; Θ; Γ ` M : A characterizes well-typed

terms. Term M has type A under contexts ∆, Θ, and Γ, which are the contexts

described in the previous section.
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[M ′/x] x ≡ M ′

[M ′/x] y ≡ y, where x 6= y
[M ′/x] λy.M ≡ λy.[M ′/x]M

where x 6= y and y /∈ FV(M ′)
[M ′/x] MN ≡ ([M ′/x]M)([M ′/x]N)
[M ′/x] fst M ≡ fst [M ′/x]M
[M ′/x] snd M ≡ snd [M ′/x]M
[M ′/x] (M,N) ≡ ([M ′/x]M, [M ′/x]N)
[M ′/x] inl M ≡ inl [M ′/x]M
[M ′/x] inr M ≡ inr [M ′/x]M
[M ′/x] (case M of case ([M ′/x]M) of

| inl a 7→ N0 ≡ | inl a 7→ ([M ′/x]N0)
| inr b 7→ N1) | inr b 7→ ([M ′/x]N1)

where a, b /∈ FV(M ′)
[M ′/x] inj M ≡ inj [M ′/x]M
[M ′/x] out M ≡ out [M ′/x]M
[M ′/x] recA(~u; rf.M) ~C N ≡ recA(~u; rf.M) ~C ([M ′/x]N)
[M ′/x] corecA(~u; rf.M) ~C N ≡ corecA(~u; rf.M) ~C ([M ′/x]N)
[M ′/x] Λu.M ≡ Λu.[M ′/x]M where u /∈ FV(M ′)
[M ′/x] M C ≡ ([M ′/x]M) C
[M ′/x] pack(C,M) ≡ pack(C, [M ′/x]M)
[M ′/x] let pack(u, y) = M ≡ let pack(u, y) = [M ′/x]M

in N in [M ′/x]N where y, u /∈ FV(M ′)
[M ′/x] refl ≡ refl
[M ′/x] eq MC1=C2 with (∆; θ 7→ N) ≡ eq [M ′/x]MC1=C2

with (∆; θ 7→
[{θ}M ′/x]N) where ∀ui ∈ θ, ui /∈ FV(M ′)

[M ′/x] eqabortAC1 6=C2
M ≡ eqabortAC1 6=C2

[M ′/x]M
[M ′/x] •M ≡ •M
[M ′/x] let • y = M in N ≡ let • y = [M ′/x]M in [M ′/x]N where y /∈ FV(M ′)

Figure 3–33: Substitutions on Terms
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[M ′/x]• y ≡ y, typing rules ensure that x 6= y
[M ′/x]• •M ≡ • [M ′/x]M
[M ′/x]• let • y = M in N ≡ let • y = [M ′/x]•M in [M ′/x]•N
[M ′/x]• λy.M ≡ λy.[M ′/x]•M
[M ′/x]• MN ≡ ([M ′/x]•M)([M ′/x]•N)
[M ′/x]• fst M ≡ fst [M ′/x]•M
[M ′/x]• snd M ≡ snd [M ′/x]•M
[M ′/x]• (M,N) ≡ ([M ′/x]•M, [M ′/x]•N)
[M ′/x]• inl M ≡ inl [M ′/x]•M
[M ′/x]• inr M ≡ inr [M ′/x]•M
[M ′/x]• (case M of case ([M ′/x]•M) of

| inl a 7→ N0 ≡ | inl a 7→ ([M ′/x]•N0)
| inr b 7→ N1) | inr b 7→ ([M ′/x]•N1)

[M ′/x]• inj M ≡ inj [M ′/x]•M
[M ′/x]• out M ≡ out [M ′/x]•M
[M ′/x]• recA(~u; rf.M) ~C N ≡ recA(~u; rf.M) ~C ([M ′/x]•N)
[M ′/x]• corecA(~u; rf.M) ~C N ≡ corecA(~u; rf.M) ~C ([M ′/x]•N)
[M ′/x]• Λu.M ≡ Λu.[M ′/x]•M
[M ′/x]• M C ≡ ([M ′/x]•M) C
[M ′/x]• pack(C,M) ≡ pack(C, [M ′/x]•M)
[M ′/x]• let pack(u, y) = M ≡ let pack(u, y) = [M ′/x]•M

in N in [M ′/x]•N
[M ′/x]• refl ≡ refl
[M ′/x]• eq MC1=C2 with (∆; θ 7→ N) ≡ eq [M ′/x]•MC1=C2

with (∆; θ 7→
[{θ}M ′/x]•N) where ∀ui ∈ θ, ui /∈ FV(M ′)

[M ′/x]• eqabortAC1 6=C2
M ≡ eqabortAC1 6=C2

[M ′/x]•M

Figure 3–34: Future Substitutions

[M ′/x]ω •M ≡ • [M ′/x]ωM

Figure 3–35: Omega Substitution
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JτK Z ≡ A, where A/Z ∈ τ
JτK µZ.Λ−−→u:U.A ≡ µZ.Λ−−→u:U.Jτ, Z/ZKA, where Z /∈ FV(τ)
JτK νZ.Λ−−→u:U.A ≡ νZ.Λ−−→u:U.Jτ, Z/ZKA, where Z /∈ FV(τ)
JτK 1 ≡ 1
JτK A→ B ≡ JτKA→ JτKB
JτK A×B ≡ JτKA× JτKB
JτK A+B ≡ JτKA+ JτKB
JτK © A ≡ ©(JτKA)
JτK R ~C ≡ (JτKR) ~C
JτK Πu:U.A ≡ Πu:U.JτKA
JτK Σu:U.A ≡ Σu:U.JτKA
JτK C1 = C2 ≡ C1 = C2

Figure 3–36: Type Substitutions

{θ} Z ≡ Z

{θ} µZ.Λ−−→u:U.R ≡ µZ.Λ−−→u:U.A
{θ} νZ.Λ−−→u:U.R ≡ νZ.Λ−−→u:U.A
{θ} 1 ≡ 1
{θ} A→ B ≡ {θ}A→ {θ}B
{θ} A×B ≡ {θ}A× {θ}B
{θ} A+B ≡ {θ}A+ {θ}B
{θ} © A ≡ ©({θ}A)
{θ} R ~C ≡ ({θ}R) ({θ}~C)
{θ} Πu:U.A ≡ Πu:({θ}U).{θ, u/u}A, where u /∈ FV(θ)
{θ} Σu:U.A ≡ Σu:({θ}U).{θ, u/u}A, where u /∈ FV(θ)
{θ} C1 = C2 ≡ {θ}C1 = {θ}C2

Figure 3–37: Index Substitutions on Types
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{θ} x ≡ x
{θ} λx.M ≡ λx.{θ}M
{θ} MN ≡ ({θ}M)({θ}N)
{θ} fst M ≡ fst {θ}M
{θ} snd M ≡ snd {θ}M
{θ} (M,N) ≡ ({θ}M, {θ}N)
{θ} inl M ≡ inl {θ}M
{θ} inr M ≡ inr {θ}M
{θ} (case M of case ({θ}M) of

| inl a 7→ N0 ≡ | inl a 7→ ({θ}N0)
| inr b 7→ N1) | inr b 7→ ({θ}N1)

{θ} inj M ≡ inj {θ}M
{θ} out M ≡ out {θ}M
{θ} recA(~u; rf.M) ~C N ≡ recA(~u; rf.M) ({θ}~C) ({θ}N)
{θ} corecA(~u; rf.M) ~C N ≡ corecA(~u; rf.M) ({θ}~C) ({θ}N)
{θ} Λu.M ≡ Λu.{θ, u/u}M , where u /∈ FV(θ)
{θ} M C ≡ ({θ}M) ({θ}C)
{θ} pack(C,M) ≡ pack({θ}C, {θ}M)
{θ} let pack(u, x) = M ≡ let pack(u, x) = {θ}M

in N in {θ, u/u}N , where u /∈ FV(θ)
{θ} refl ≡ refl
{θ} eq MC1=C2 with (∆′; ρ 7→ N) ≡ eq {θ}MC1=C2

with (∆′′; ρ′ 7→ {θ′}N),
for θ′ s.t. ∆′′ ` θ′ : ∆′ and {ρ′}θ = {θ′}ρ,
where ∆ ` unify({θ}C1, {θ}C2)⇒ (ρ′; ∆′′)

{θ} eq MC1=C2 with (∆′; ρ 7→ N) ≡ eqabortAC1 6=C2
{θ} M,

where ∆ ` unify({θ}C1, {θ}C2)⇒ ⊥
and N : A

{θ} eqabortAC1 6=C2
M ≡ eqabortAC1 6=C2

{θ}M
{θ} •M ≡ •{θ}M
{θ} let • x = M in N ≡ let • x = {θ}M in {θ}N

Figure 3–38: Index Substitutions on Terms
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x:A ∈ Γ
xI∆; Θ; Γ ` x : A

1I∆; Θ; Γ ` () : 1
∆; Θ; Γ, x : A `M : B

→ I∆; Θ; Γ ` λx.M : A→ B

∆; Θ; Γ `M : A×B ×E1∆; Θ; Γ ` fst M : A
∆; Θ; Γ `M : A→ B ∆; Θ; Γ ` N : A

→ E∆; Θ; Γ `MN : B

∆; Θ; Γ `M : A×B ×E2∆; Θ; Γ ` snd M : B
∆; Θ; Γ `M : A ∆; Θ; Γ ` N : B ×I∆; Θ; Γ ` (M,N) : A×B

∆; Θ; Γ `M : A +I1∆; Θ; Γ ` inl M : A+B

∆; Θ; Γ `M : B +I2∆; Θ; Γ ` inr M : A+B

∆; Θ; Γ `M : A+B ∆; Θ; Γ, x : A ` N1 : T ∆; Θ; Γ, y : B ` N2 : T +E∆; Θ; Γ ` case M of inl x 7→ N1 | inr y 7→ N2 : T

Figure 3–39: Conventional Types

∆; Θ; Γ `M : C1 = C2

∆ ` unify(C1, C2)⇒ (θ; ∆′)
∆′; {θ}Θ; {θ}Γ ` N : {θ}A

=E1∆; Θ; Γ ` eq MC1=C2 with (∆′; θ 7→ N) : A

∆; Θ; Γ `M : C1 = C2 ∆ ` unify(C1, C2)⇒ ⊥
=E2∆; Θ; Γ ` eqabortAC1 6=C2

M : A

∆ ` C : U =I∆; Θ; Γ ` refl : C = C

Figure 3–40: Equality Types

3.7.1 Conventional Operators

Functions (→) have a single introduction and elimination form, products (×)

have two elimination forms (taking either element of the pair), and sums (+), being

dual to products, have two introduction forms (wrapping an element of either type).

3.7.2 Equality

The equality introduction rule refl witnesses the equality of an index object

with itself. There are two ways to use an equality type. Using =E2, we can derive
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any type we want from the contradiction that two index objects are equal but not

unifiable.

The other rule, =E1, is a bit more involved. If two indices are equal and we can

derive a type A which relies on a most general unifier θ, then because θ is a most

general unifier, A is derivable under any substitution. The =E1 rule makes it possible

to derive A without θ [Schroeder-Heister, 1993]. This rule is a variation of the rule

in Figure 3–41, written without proof terms for simplicity. In the latter, index terms

can be substituted in either direction, whereas =E1 forces unification. For example,

if ∆ ` u = suc v, then P (suc v) can be derived from P u and vice-versa. With =E1,

there is only one mgu, suc v/u. P (suc v) is therefore not derivable from P u.

We also note that the premise M is not necessary, since we also have the premise

unify(C1, C2) ⇒ (θ; ∆′). However, the type C1 = C2 does need to be added to a

context in the conclusion of the rule. Placing M in the premise abstracts the details

of which context to add it to. This also simplifies the proof of type preservation,

since an equality term only steps when M = refl.

To prove type preservation, we use an index substitution lemma. Proving substi-

tution lemmas with equality elimination presents a problem, since we lose information

about whether a given substitution is a unifier. In an open context, {θ}C1 = {θ}C2 is

not derivable from C1 = C2. There are a few approaches to handle this. Schürmann

and Pfenning [1998] resolve this using environments, since an environment provides

the entire history of a unification. Baelde and Nadathur [2012] introduce a rule which

incorporates any substitutions that are applied, so that the history of the unification

is provided as part of the term. Our approach is to step to eqabortAC1 6=C2
M under



52

∆; Θ; Γ ` C1 = C2 ∆; Θ; Γ ` A C1
∆; Θ; Γ ` A C2

Figure 3–41: Simple Equality Elimination

∆; Θ; Γ `M : {C/u}A ∆ ` C : U
ΣI∆; Θ; Γ ` pack(C,M) : Σu:U.A

∆; Θ; Γ `M : Σu:U.A ∆, u:U ; Θ; Γ, x:A ` N : B
ΣE∆; Θ; Γ ` let pack(u, x) = M in N : B

∆, u:U ; Θ; Γ `M : A
ΠI∆; Θ; Γ ` Λu.M : Πu:U.A

∆; Θ; Γ `M : Πu:U.A ∆ ` C : U
ΠE∆; {C/u}Θ; {C/u}Γ `M C : {C/u}A

Figure 3–42: Quantification Types

a non-unifying substitution. This is a term with an arbitrary type, but a program’s

type is still preserved under evaluation. Consider the vector tail function, where the

inl case has type u = zero. It is not possible to step to this, since any time that

M = refl will be an inr case. However, for the program to typecheck, we have to

address the inl case. Once we step into the body of = E1, we find that u has been

substituted with suc u′. M gives us the guarantee that C1 = C2 and so, given the

case that suc u′ = z, we are justified in deriving whatever type we wish.

3.7.3 Quantification

Recall that Π-kinded types correspond to predicates in first-order logic, and that

indices correspond to objects. A pack is also known as a dependent pair, since it

consists of two objects, where the second can depend on the first. This corresponds

to a proof of an existential claim. To prove a universal claim, the burden is to show

that a property holds for any object in some domain. This is done with Λu.M since
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∆; Θ; Γ `M : JµZ:K.Λ−−→u:U.S/ZK{~C/~u}S
µI

∆; Θ; Γ ` inj M : (µZ:K.Λ−−→u:U.S)~C

F ≡ Π~w:U.Z ~w → {~w/~u}T
(Φ, Z:K;−−→u:U ; f :F); ·; r:S `M :T (Φ; Ψ); Θ; Γ ` N :(µZ:K.Λ−−→u:U.S)~C

µE
(Φ; Ψ); Θ; Γ ` recΠ−−→u:U.(µZ:K.Λ~u.S)~u→T (~u; rf.M) ~C N : {~C/~u}T

∆; Θ; Γ `M : (νZ:K.Λ−−→u:U.S)~C
νE

∆; Θ; Γ ` out M : JνZ:K.Λ−−→u:U.S/ZK{~C/~u}S

F ≡ Π~w:U.{~w/~u}T → Z ~w

(Φ, Z:K;−−→u:U ; f :F); ·; r:T `M :S (Φ; Ψ); Θ; Γ ` N :{~C/~u}T
νI

(Φ; Ψ); Θ; Γ ` corecΠ−−→u:U.T→(νZ:K.Λ~u.S)~u(~u; rf.M) ~C N : (νZ:K.Λ−−→u:U.S)~C

Figure 3–43: (Co)Recursive Types

the proof M must hold for any object substituted for u. This is also known as a

dependent function, since it can be thought of as a function of type U → A.

Unlike pairs in Jackrabbit, which can be eliminated in two ways, there is only

one elimination rule for Σ. The ΣE matches the first element of a dependent pair

M with the variable u, and the second with x. These variables can then appear in

any body N . M has Σ type and will evaluate to some pack(C,M ′).

3.7.4 (Co)Recursion

In the recursive and corecursive rules, variables f , r, and ~u are accessible in the

body. The object over which the recursion is done is r, f is a function, and ~u are

the indices.

Mendler-style recursion [Mendler, 1988] guarantees termination by constraining

recursive calls. The only calls that can be done to an object of type Z ~C is to
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either leave the variable as is or to apply the provided functions f (after applying

it to an index). What’s more, we don’t have access to the entire inductive object:

we only have r, in which the outer layer is peeled off, giving it type S rather than

µZ:K.Λ−−→u:U.S.

In the original presentation, Mendler recursion uses combinators. At each re-

cursive step, new types for are passed as arguments to a polymorphic combinator to

replace type variables in the inductive and output types. In Jackrabbit, Π types only

work with indices, so the type mapping is taken directly from the eternal context.

This is similar to Abel [2004], which also uses a subtyping relation X ≤ µX.F .

Every time we step into the body of a (co)recursive object, we clear the index

contexts and the term contexts Γ and Θ, and introduce index variables −−→u:U and the

term variables f and r. Although it is called the eternal context, index variables not

persist through (co)recursion. The eternal aspect refers to the behaviour under the

next step modality, where normal variables are cleared at each step. It is simple to

pass indices forward though. The type variable context is not cleared, however, which

makes it possible to create a fair interleaving of two types. An interleaving type has

the form µX.µY.A, where both X and Y are free in A. For example, the fairness

property A infinitely often (�♦A) can be expressed as µX.µY.(A×©X) +©Y .

The corecursive rules allow for programs that deal with infinite data structures.

Corecursion is dual to recursion, so whereas the recursive rule is the µ elimination

rule, the corecursive rule is the ν introduction rule. In the rec rule, f : Π~w:U.Z ~w →

{~w/~u}T . For corec, f : Π~w:U.{~w/~u}T → Z ~w. This duality can also be seen in

the inj and out rules: the inj rule folds up an inductive type and the out
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∆; ·; Θ `M : A ©I∆; Θ; Γ ` •M :©A
∆; Θ; Γ `M :©A ∆; Θ, x : A; Γ ` N : C ©E∆; Θ; Γ ` let • x = M in N : C

Figure 3–44: Temporal Types

rule unfolds a coinductive type. For example, if inl a : A + ©(µZ.A + ©Z),

then inj inl a : µZ.A +©Z. In the corecursive case, if as : νZ.A × ©Z then

out as : A×©(νZ.A×©Z).

The recursive and corecursive rules require their arguments to be applied. To

write a function that takes an arbitrary (co)inductive object, we therefore write

Λ~w.λy.recΠ~u.(µZ:K.Λ~u.S)~u→T (~u; rf.M) ~w y, rather than recΠ~u.(µZ:K.Λ~u.S)~u→T (~u; rf.M) .

3.7.5 Temporal Typing Rules

The next-step modality gives us the reactive part of Jackrabbit and is the basis

for the other temporal types ♦, �, and U . When we step under a circle-modality, Γ

is flushed and objects from Θ are transferred to the Γ context. For an object to exist

in the future, it cannot contain any variables from the current time. This prevents

space leaks [Krishnaswami, 2013]. To use a variable under a •, it has to be in Θ

before going under the •, and for this to happen it must be introduced with the©E

rule. So to use a variable in the future, it must be from the future.

3.7.6 Values

A value is a term that has been fully evaluated. In our setting, whether a term

can be fully evaluated is a function of time. We define α-values constructively, in

contrast to Cave et al. [2014], who define values as complementary to unevaluated

terms. Figure 3–45 shows 0-values, also written val v. These are terms that are

fully evaluated at the first time-step. α-values are defined with val v in conjunction
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v ::= () | λx.M | (v1, v2) | inl v | inr v | inj v | Λu.M | pack(C, v)
| refl | eqabortAC1 6=C2

M | corecT (~u; rf.M) ~C N

Figure 3–45: 0-values

valn v
valn+1 •v

Figure 3–46: α-values

with the rule in Figure 3–46. A term that is fully evaluated at some time α ≤ ω is

called an ω-value.

Since corecT (~u; rf.M) ~C N is an infinite structure, it cannot be evaluated

in its entirety. We consider corecT (~u; rf.M) ~C N to be a value for the proof of

progress, but we note that it behaves differently from other values, since it can

generate values. Just as functions are treated as first class and can be passed around,

so can corecursive objects. A corecursive object is an α-value, meaning that given

enough clock ticks (in particular, α), it will be considered a value. A function can only

receive its argument once, however. For some corecursive objects, it is always possible

to produce a value with out. Infinite evaluation is prevented by the operational

semantics, however. Similar to a thunk, evaluation of corecT (~u; rf.M) ~C N is

prevented until called upon with out.

3.8 Operational Semantics

The operational semantics of a language is how a term steps to a value. In

Jackrabbit, there are two kinds of stepping rules. The first, −→, is small-step β-

reduction. The other stepping rule,  α, is indexed by a number α, which represents

the number of clock ticks into the future that a term can step.
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3.8.1 Reduction Rules

The use of a small-step operational semantics in Jackrabbit follows Cave et al.

[2014]. This is in contrast to a big-step semantics, whose rules incorporate reduction

to values. The congruence rules in Jackrabbit in the next section also incorporate

values, but these are to ensure that reduction is deterministic. Reduction rules for

pairs, functions, and sums, shown in Figure 3–47, are straightforward. Dependent

function application for Π and let-elimination for© are similar, but the former steps

to an index substitution and the latter a • substitution. Elimination for Σ uses two

substitutions – one index and one regular, and we recall that the type of M can

depend on C as this is important in the order of our substitutions. For the equality

elimination rule =E1, we can step to N whenever we know that the two indices are

equal (M = refl), and that θ is a most general unifier of the indices in the context

∆.

Lastly are the recursive and corecursive rules. Each of them steps to three sub-

stitutions in the body of the (co)recursive object. The function f is the recursive

call. Since it’s a recursive call, we replace f applied to its arguments (the indices

followed by the inductive object) with another µ elimination term (or ν introduction

in the corecursive case). Since f lives in the eternal context, we use omega substi-

tution. This allows us to make the recursive call under a •. We cannot use f to

save objects for later, however, since the function only serves to apply indices and to

indicate where to apply type substitution. We also annotate the term M with a type

substitution JA/ZK. The type variable is safely be replaced by the recursive type

here. If this were done earlier, it would be possible to make the recursive call on an
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(λx.M)N −→ [N/x]M
fst (M,N) −→ M
snd (M,N) −→ N
case (inl M) of inl x 7→ N1 | inr y 7→ N2 −→ [M/x]N1
case (inr M) of inl x 7→ N1 | inr y 7→ N2 −→ [M/y]N2
let • x = •M in N −→ [M/x]•N
(Λu.M)C −→ {C/u}M
let pack(u, x) = pack(C,M) in N −→ [M/x]{C/u}N
eq reflC1=C2 with (∆′; θ 7→ N) −→ N , where

∆ ` unify(C1, C2)⇒ (θ; ∆′)
recA(~u; rf.M) ~C (inj N) −→
[N/r][Λ~w.λy.(recA(~u; rf.M) ~w y)/f ]ω{~C/~u}M JA/ZK

out (corecA(~u; rf.M) ~C N) −→
[N/r][Λ~w.λy.(corecA(~u; rf.M) ~w y)/f ]ω{~C/~u}M JA/ZK

Figure 3–47: Reduction Rules

object that is not strictly smaller. We also replace the variable r with the inductive

object, as well as the index variables ~u with indices ~C. Since ~C can already occur in

N , we apply the index substitution first.

The main difference between the recursive and corecursive reduction rules are

the placement of inj and out. The input of rec is an inductive object, and we peel

off the layers as we recurse. corec, on the other hand, returns a corecursive object

which can be eliminated with out .

3.8.2 Evaluation Contexts

Evaluation contexts are often used as syntactic sugar for congruence rules to

simplify the presentation of simpler stepping rules. An evaluation context hole spec-

ifies where reduction can occur. For example, EN corresponds to the congruence
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M −→M ′

M N −→M ′ N

Figure 3–48: MN Stepping Rule

E ::= [·] | •E | E N | v E | fst E | snd E | (E , N) | (v, E)
| (case E of inl a 7→ N1 | inr b 7→ N2)
| inl E | inr E | let • x = E in N | inj E
| recT (~u; rf.M) ~C E | out E | corecT (~u; rf.M) ~C E
| E ~C | pack(C, E) | let pack(u, x) = E in N
| eq EC1=C2 with (∆; θ 7→ N)

Figure 3–49: Congruence Rules

rule in Figure 3–48. The congruence rules for Jackrabbit are given by the evaluation

contexts in Figure 3–49.

In our setting, we are interested in reduction under •. Similarly to α-values, we

index terms by a time step k, written Mk and defined in Figure 3–50. Cave et al.

[2014] use evaluation contexts indexed by a temporal depth, k. In our presentation,

we separate the temporal index from the evaluation context. This separation allows

• in the body of functions without also allowing evaluation under binders. We also

note that the next-step modality is not allowed in the body of (co)recursive functions,

since it is possible to recurse over a temporal object and the body is required at each

step. We use the rule in Figure 3–51 to create evaluation stepping from our small-

step semantics. At term can step as long as it has permission to move α steps forward

and neither term has a depth greater than α.

3.9 Formal Languages

In addition to the correspondence between types and proofs, we exploit the cor-

respondence between LTL propositions and formal languages. An ω-regular language
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Mk+1 ::= •Mk

Mmax(j,k) ::= M jNk | let pack(u, x) = M j in Nk

| (M j, Nk) | eq M j
C1=C2 with (∆′; ρ′ 7→ Nk)

| let • x = M j in Nk

Mmax(j,k,l) ::= (case M j of inl a 7→ Nk
0 | inr b 7→ N l

1)
Mk ::= λx.Mk | fst Mk | snd Mk | inl Mk | inr Mk

| recA(~u; rf.M0) ~C Nk | inj Mk

| corecA(~u; rf.M0) ~C Nk | out Mk

| Λu.Mk | eqabortAC1 6=C2
Mk |Mk C | pack(C,Mk)

M0 ::= x | () | refl

Figure 3–50: α-Terms

M −→ N where m ≤ αE [M ]m  α E [N ]m

Figure 3–51: Temporal stepping

Regular Expressions r1, r2 ::= ø | ε | a ∈ Σ | r1 · r2 | r1 + r2 | r1∗
ω-regular Expressions s1, s2 ::= rω | r1 · s1 | s1 + s2, where r is a

regular expression without ø or ε

Figure 3–52: Regular and ω-regular Expressions
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�A ≡ νZ.A×©Z
♦A ≡ µZ.A+©Z

A U B ≡ µZ.B + A×©Z
A Û B ≡ A×©(A Û B)

Figure 3–53: Defining Temporal Types

is a language for infinite words, characterized by a Büchi automaton. Rather than

accepting a string after reaching an accept state as is the case for DFAs and NFAs,

an infinite string must hit an accept state infinitely often in a Büchi automaton to

be accepted. Cave et al. [2014] point out the correspondence between types in their

language and Büchi automata.

As with formal languages, we note that the power of our system comes not from

writing programs that could not be written before, but rather by using types that

constrain programs in ways that were not possible before. The ω-regular expression

(a+ b)ω allows any possible combination of a’s and b’s. The power of the system in

Cave et al. [2014] is derived from the fact that it’s possible to reject every program

with a finite number of a’s or a finite number of b’s.

Recall the temporal types defined in 3–53. The ω-regular expression (defined

in Figure 3–52) for fair interleavings is (a ∗ bb ∗ a)ω, and corresponds to the type

νZ.(A U (B Û (A ×©Z))). There are many properties that ω-regular expression

cannot encode, however. In particular, it cannot encode those that use past values

as a means to restrict current and future values.

Example 6 (Bounded Streams). Although the previous type is called a fair stream,

it allows for one process to be served much more often than the other. The only

constraint is that we eventually see each of them again. The proportion of a’s to b’s
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BoundStream A B ≡ νZ.Λu. (B ×©Z(suc u)) + (Σv.u = suc v × (A×©Zv))

Figure 3–54: BoundStream Type

all B : �A→ �B → BoundStreamA B zero
all B ≡ λas.λbs.
corec�A×�B→BoundStream A B zero(u; rpf.

let bs = snd r in
let • bs′ = snd (out bs) in
inl (fst (out bs), •f (suc u) bs′)
)

zero (as, bs)

Figure 3–55: A Stream of ‘b’s

could tend towards infinity since the proportion of one type of object to the other

is unbounded. We start by considering the restriction that at every point in time,

there are no more as than bs. We take as input a stream of values a : A and b : B,

and produce an interleaving of these values with the invariant that |a| ≤ |b|. This

is a non-regular safety property – non-regular because it cannot be expressed with

a Büchi automaton, and a safety property because for every string that should not

be accepted, there is some finite prefix that acts as a witness as to why we should

reject that string. In particular, that prefix will contain more a’s than b’s. The type

of this interleaver is shown in Figure 3–54.

We treat the indices as a simple kind of memory and use them to count the

difference between the number of b’s and the number of a’s we’ve seen. In the

following term, we use the let construct rather than writing the term inlined to make

this example more readable, where let x = N in M is equivalent to [N/x]M . On

one end of the spectrum, we can make a stream with only b’s in figure 3–55.
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alt AB : �A→ �B → BoundStreamA B zero
alt AB ≡ λas.λbs.
corec(�A×�B)×bool→BoundStream A B zero(u; rpf.

let a = fst (out (fst (fst r))) in
let b = fst (out (snd (fst r))) in
let • as′ = snd (out (fst (fst r))) in
let • bs′ = snd (out (snd (fst r))) in
case (snd r) of

inl fls 7→ inl (b, •f (suc u) ((as′, bs′), true))
| inr tru 7→ inr (pack(zero, (refl, (a, •f zero ((as′, bs′), false))))))

zero ((as, bs), false)

Figure 3–56: An Alternating Stream

On the other extreme is the stream with an a whenever possible - the alter-

nating stream “bababab...” in figure 3–56. We provide a boolean as a means of

switching between an a and a b, where the boolean is either inl fls or inr tru

(where tru = fls = ()).

Both of these programs decide beforehand when to switch, but the decision can

also be made elsewhere. Instead of taking a single boolean, it’s possible to take a

stream of booleans that tells the program when to serve an a. An a can then be

served when it’s possible, and a B when it’s not. This can get complicated since we

cannot pattern match on index objects, although it is possible to propagate and case

analyze a vector.

As with regular languages, any program that we write here can also be written

without an indexed language. The strength of our type system is that it can draw a

line between accepted and unaccepted programs in a way that an indexed language
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Number of a’s
(m,n) 1 2 3 4 5 6 7 · · ·

1 (1,0) (0,1) ø ø ø ø ø · · ·

Number
of b’s

2 ø (2,0) (1,1) (0,2) ø ø ø · · ·
3 ø ø (3,0) (2,1) (1,2) (0,3) ø · · ·
4 ø ø ø (4,0) (3,1) (2,2) (1,3) · · ·
5 ø ø ø ø (5,0) (4,1) (3,2) · · ·
6 ø ø ø ø ø (6,0) (5,1) · · ·
7 ø ø ø ø ø ø (7,0) · · ·
...

...
...

...
...

...
...

...
. . .

Figure 3–57: Index Pairs (m,n) Relative to a’s and b’s Seen

cannot replicate. Any attempt would either accept programs that it should reject or

reject programs that it should accept.

Example 7 (Bounding at both ends). In the example |a| ≤ |b|, we know that there

will never be fewer b’s than a’s, but there is no guarantee that A will eventually be

served. We can restore fairness by adding a lower bound on the number of a’s, for

example in a stream where |b| ≤ |a| ≤ 2|b|.

(νZ.Λm:N, n:N.(Σu.n = suc (suc u)× (B ×©Z (suc (suc m))) u)

+(Σu.m = suc u× (A×©Z u (suc (suc n))))

(suc zero) (suc zero)

We can think of the first index, m, as the number of a permissions, and the

second index, n, as the number of b permissions. The b permissions work as in the

previous example, incrementing every time we see an a and decrementing every time

we see a b. The a permissions work similarly, but now, every time we see a b, we get

two a permissions. Since our index language consists of natural numbers, m and n

cannot be negative.
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In figure 3–57, we write permissions as pairs, where m is the first element and n

is the second. For pairs where either index is less than 0, that is, unreachable states,

we write ø. Seeing an a is a step to the right and seeing a b is a step down. We

start with one a permission and assuming we’ve seen one a and one b because the

invariant cannot hold otherwise.

Example 8 (Using BoundStreams). In the previous example, we created an object

with a nice type. Creating a stream with an embedded constraint gives an idea of the

nature of a BoundStream, but to use it to its full potential, we create a function that

takes a BoundStream as a parameter. We can then make greater assumptions about

this input. As a simple example, we can create a consumer that acts like a bank

account. For every unitary withdrawal (W ), there must be a corresponding deposit

(D). We don’t need any mechanism to handle more withdrawals than deposits

because the type of a BoundStream ensures that this will never happen. As an

output, we assume the existence of a function apply that takes a withdrawal or

deposit and produces a balance of type B, which we record as a stream. Although

we drop the index u, it could be passed forward so as to index the balance stream,

or to the apply function acting as a certificate. In the case of withdrawal, fst w

provides the proof that u is not zero. We recall the type of a boundstream here.

BoundStream A B ≡ νZ.Λu. (B ×©Z(suc u)) + (Σv.u = suc v × (A×©Zv))

Example 9 (Echo). Recall that with fair interleavings, we know that each process

will be served at some point, but we know nothing about when that might be. Indices

can place tighter constraints here. Without an indexed type system, we can write a
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consumer ≡ BoundStream W D zero→ �B
corecBoundStream W D zero→�B(u; rpf.

case (out r) of
inl d 7→ let • bs′ = snd d in

(apply fst d, •f bs′)
| inr w 7→ let • bs′ = snd (snd w) in

(apply (fst (snd w)), •f bs′))
zero bs

Figure 3–58: Using a BoundStream

type that ensures that an A is available in C steps, for any constant C. With the

indexed type system, however, C need not be constant. In the following example,

the type ensures that A be served in no longer than the amount of time it took to

serve B. We therefore wait t steps for B to be served, and then start counting down

from t until an A must be served. To make this type more readable, we first define

the type “A in at most t steps”:

♦A≤t ≡ (µZ.Λn. A+ (Σm.n = suc m×©Zm)) t

Now that we have a type corresponding to a countdown indexed by t, we can count

up t before starting the countdown. This is similar to a vector where the nil case is

replaced by a ♦A≤t:

Echo ≡ (µY.Λu. (©Y (suc u)) + (B × ♦A≤u) zero)



CHAPTER 4
Metatheory

Strong foundations make it easier to reason about a language. If a language is

properly constrained, the same techniques that the language uses to tackle problems

can be applied to the language itself. In particular, fixed points allow Jackrabbit

to write programs with inductive structures, but since our language is itself defined

inductively, we can also use induction to reason about Jackrabbit.

We consider subject reduction and progress. Subject reduction means that a

program’s type is preserved under evaluation. If the program fst (a, b) has type

A, and fst (a, b) −→ a then a must also have type A. The shape of the output is

therefore known at compile time. Progress ensures that a program won’t get stuck.

Every valid program must either be fully evaluated, or there must be a stepping rule

that takes it to another valid program. To prove subject reduction of Jackrabbit, we

require additional lemmas.

4.1 Substitution Lemmas

Substitution lemmas state that a program’s type is preserved under a well-typed

substitution. That is, if N and M are well-typed, then so is [N/x]M , and it will have

the same type as M . We use substitution lemmas for each of the term substitutions:

regular variable substitutions, future substitutions, index substitutions, and omega

substitutions. We present the more interesting cases here.

67
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Lemma 1 (Index substitution lemma). If ∆; Θ; Γ ` M : A and ∆′′ ` σ : ∆ then

∆′′; {σ}Θ; {σ}Γ ` {σ}M : {σ}A

As a corollary, we have that if ∆, u:U ; Θ; Γ ` M : A and ∆ ` C : U then

∆; {C/u}Θ; {C/u}Γ ` {C/u}M : {C/u}A

The most interesting case is that of equality elimination. This rule makes it

possible to substitute index objects in types, yet substitution lemmas are about

proving the type is invariant. We can do this because index objects in types are only

allowed to “change” when they are equal. We know that C1 and C2 unify, but we

don’t have this guarantee for {σ}C1 and {σ}C2. We therefore consider both cases. If

they do unify, then we can use their most general unifier and the inductive hypothesis

to construct the required type. If they do not unify, we get eqabort{σ}AC1 6=C2 M which

provides the necessary type. This happens in uninhabited branches, such as in the

nil case of the tail of a non-empty vector.

Proof. By induction on the typing derivation D = ∆; Θ; Γ `M : T .

Case: D =

∆; Θ; Γ `M : C1 = C2

∆ ` unify(C1, C2)⇒ (θ; ∆′)
∆′; {θ}Θ; {θ}Γ ` N : {θ}A

=E1∆; Θ; Γ ` eq MC1=C2 with (∆′; θ 7→ N) : A

∆; Θ; Γ `M : C1 = C2 By inversion

∆′′; {σ}Θ; {σ}Γ ` {σ}M : {σ}C1 = {σ}C2 By I.H.

∆ ` unify(C1, C2)⇒ (θ; ∆′) By inversion

∆′′ ` σ : ∆ By assumption
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∆′′ ` unify({σ}C1, {σ}C2)⇒ (θ1; ∆1) Subcase 1

∃ θ2 s.t. ∆1 ` {θ2}θ : ∆ & ∆1 ` θ2 : ∆′ Since mgu θ

∆′; {θ}Θ; {θ}Γ ` N : {θ}A By inversion

∆1; {θ2}{θ}Θ; {θ2}{θ}Γ ` {θ2}N : {θ2}{θ}A By I.H. with θ2

∆1; {θ1}{σ}Θ; {θ1}{σ}Γ ` {θ2}N : {θ1}{σ}A Since {θ2}θ = {θ1}σ

∆′′; {σ}Θ; {σ}Γ ` eq {σ}MC1=C2
with (∆1; θ1 7→ {θ2}N) : {σ}A By =E1

∆′′; {σ}Θ; {σ}Γ ` {σ}eq MC1=C2 with (∆′; θ 7→ N) : {σ}A By definition of

substitution

∆′′ ` unify({σ}C1, {σ}C2)⇒ ⊥ Subcase 2

∆′′; {σ}Θ; {σ}Γ ` {σ}eqabort{σ}AC1 6=C2 M : {σ}A By definition of substitution

Lemma 2 (Regular Substitution Lemma). If ∆; Θ; Γ, x:S ` M : T and ∆; Θ; Γ `

M ′ : S then ∆; Θ; Γ ` [M ′/x]M : T .

Due to the inductive hypothesis, we can assume that the substitution lemma

holds for the premises to show that it holds for the conclusion. For equality elimina-

tion, we also use the index substitution lemma. When substituting under a bullet, Γ

is dropped. We therefore don’t use the inductive hypothesis in the © introduction

case.

Proof. We prove this by induction on the typing derivation D = ∆; Θ; Γ, x:S ` M :

T .
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Case: D = ∆; Θ; Γ, x:S `M : A ∆; Θ; Γ, x:S ` N : B ×I∆; Θ; Γ, x:S ` (M,N) : A×B
∆; Θ; Γ `M ′ : S By assumption

∆; Θ; Γ ` [M ′/x]M : A By I.H.

∆; Θ; Γ ` [M ′/x]N : B By I.H.

[M ′/x](M,N) = ([M ′/x]M, [M ′/x]N) By definition of substitution

∆; Θ; Γ ` [M ′/x](M,N) : A×B By definition of ×

Case: D = ∆; Θ; Γ, x:S, y:A `M : B
→ I∆; Θ; Γ, x:S ` λy.M : A→ B

∆; Θ; Γ `M ′ : S By assumption

∆; Θ; Γ, y:A ` [M ′/x]M : B By I.H. (exchange and assuming y 6= x & y /∈ FV(M ′))

∆; Θ; Γ ` λy.[M ′/x]M : A→ B By → I

∆; Θ; Γ ` [M ′/x]λy.M : A→ B By definition of substitution

Case: D =

∆; Θ; Γ, x:S `M : C1 = C2

∆ ` unify(C1, C2)⇒ (θ; ∆′)
∆′; {θ}Θ; {θ}Γ, x:S ` N : {θ}A

=E1∆; Θ; Γ, x:S ` eq MC1=C2 with (∆′; θ 7→ N) : A
∆; Θ; Γ `M ′ : S By assumption

∆′; {θ}Θ; {θ}Γ ` {θ}M ′ : {θ}S By index substitution lemma

∆; Θ; Γ ` [M ′/x]M : C1 = C2 By I.H.

∆′; {θ}Θ; {θ}Γ ` [{θ}M ′/x]N : {θ}A By I.H.

∆; Θ; Γ ` eq [M ′/x]MC1=C2
with (∆′; θ 7→ [{θ}M ′/x]N) : A By = E1

∆; Θ; Γ ` [M ′/x] eq MC1=C2 with (∆′; θ 7→ N) : A By definition of substitution
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Case: D = ∆; ·; Θ `M : A ©I∆; Θ; Γ, x:S ` •M :©A
∆; Θ; Γ `M ′ : S By assumption

∆; Θ; Γ ` [M ′/x] •M :©A By inversion, ©I, definition of substitution

Case: D = ∆; Θ; Γ, x:S `M :©A ∆; Θ, y:A; Γ, x:S ` N : B ©E∆; Θ; Γ, x:S ` let • y = M in N : B
∆; Θ; Γ `M ′ : S By assumption

∆; Θ; Γ ` [M ′/x]M :©A By I.H.

∆; Θ, y:A; Γ ` [M ′/x]N : B By I.H.

∆; Θ; Γ ` let • y = [M ′/x]M in [M ′/x]N : B By ©I

∆; Θ; Γ ` [M ′/x] let • y = M in N : B By definition of substitution

Lemma 3 (Future Substitution Lemma). If ∆; Θ, x:S; Γ ` M : T and ∆; Θ; Γ `

•N :©S then ∆; Θ; Γ ` [N/x]•M : T .

This is similar to the substitution lemma. In the© introduction case, we appeal

to the substitution lemma rather than the inductive hypothesis.

Proof. By induction on the typing derivation D = ∆; Θ, x:S; Γ `M : T .

Case: D = ∆; Θ, x:S; Γ `M : A→ B ∆; Θ, x:S; Γ ` N : A
→ E∆; Θ, x:S; Γ `MN : B

∆; Θ; Γ ` •M ′ :©S By assumption

∆; Θ; Γ ` [M ′/x]•M : A→ B By I.H.

∆; Θ; Γ ` [M ′/x]•N : A By I.H.

∆; Θ; Γ ` ([M ′/x]•M)([M ′/x]•N) : B By → E
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∆; Θ; Γ ` [M ′/x]• MN : B By definition of future substitution

Case: D = ∆; ·; Θ, x:S `M : A ©I∆; Θ, x:S; Γ ` •M :©A
∆; Θ; Γ ` •M ′ :©S By assumption

∆; ·; Θ ` [M ′/x]M : A By inversion, substitution lemma

∆; Θ; Γ ` •[M ′/x]M :©A By ©I

∆; Θ; Γ ` [M ′/x]• •M :©A By definition of future substitution

Case: D = ∆; Θ, x:S; Γ `M :©A ∆; Θ, x:S, y:A; Γ ` N : B ©E∆; Θ, x:S; Γ ` let • y = M in N : B
∆; Θ; Γ ` •M ′ :©S By assumption

∆; Θ; Γ ` [M ′/x]•M :©A By I.H.

∆; Θ, y:A; Γ ` •M ′ :©S By weakening

∆; Θ, y:A; Γ ` [M ′/x]•N : B By I.H. (assuming y 6= x & y /∈ FV(M ′))

∆; Θ; Γ ` let • y = [M ′/x]•M in [M ′/x]•N : B By ©I

∆; Θ; Γ ` [M ′/x]• let • y = M in N : B By definition of future substitution

Lemma 4 (Omega Substitution Lemma). If ∆, x:S; Θ; Γ ` M : T and ∆; Θ; Γ `

M ′ : S then ∆; Θ; Γ ` [M ′/x]ωM : T .

Proof. For every case except for the © modality, this is similar to the substitution

lemma, with omega substitution rather than regular substitution.

Case: D = (Φ; Ψ; Ω, x:S); ·; Θ `M : A
©I(Φ; Ψ; Ω, x:S); Θ; Γ ` •M :©A

(Φ; Ψ; Ω); Θ; Γ `M ′ : S By assumption
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(Φ; Ψ; Ω); ·; Θ ` [M ′/x]ωM : A By inversion, I.H.

(Φ; Ψ; Ω); Θ; Γ ` •[M ′/x]ωM :©A By ©I

(Φ; Ψ; Ω); Θ; Γ ` [M ′/x]ω •M :©A By definition of omega substitution

4.2 Subject Reduction

We prove that the stepping relation  α preserves type by induction on M  α

M ′. For example, (λx.M)N steps to [N/x]M . We need to show that the term

(λx.M)N has the same type as the term it steps to [N/x]M . To do this, we use

small-step type preservation as a lemma, which is in turn shown by induction on the

stepping derivation D = M −→M ′. Recall that α is a stepping relation that takes

into account timesteps, and is defined using the small-step relation −→.

Lemma 5 (Small-step subject reduction). If ∆; Θ; Γ ` M : A and M −→ M ′ then

∆; Θ; Γ `M ′ : A.

Proof. Case: D = (λx.M)N −→ [N/x]M

∆; Θ; Γ ` (λx.M)N : B Assumption

∆; Θ; Γ ` N : A By inversion → E

∆; Θ; Γ ` λx.M : A→ B By inversion → E

∆; Θ; Γ, x:A `M : B By inversion → I

∆; Θ; Γ ` [N/x]M : B By regular substitution lemma

Case: D = fst (M,N) −→M

∆; Θ; Γ ` fst (M,N) : A Assumption



74

∆; Θ; Γ ` (M,N) : A×B By inversion ×E (arbitrary B)

∆; Θ; Γ `M : A By inversion ×I

Case: D = snd (M,N) −→ N

Similar to previous case.

Case: D = case (inl M) of inl x 7→ N1 | inr y 7→ N2 −→ [M/x]N1

∆; Θ; Γ ` case (inl M) of inl x 7→ N1 | inr y 7→ N2 : T Assumption

∆; Θ; Γ ` inl M : A+B By inversion +E

∆; Θ; Γ `M : A By inversion +I

∆; Θ; Γ, x : A ` N1 : T By inversion

∆; Θ; Γ ` [M/x]N1 : T By regular substitution lemma

Case: D = case (inr M) of inl x 7→ N1 | inr y 7→ N2 −→ [M/y]N2

Similar to previous case.

Case: D = let • x = •M in N −→ [M/x]•N

∆; Θ; Γ ` let • x = •M in N : T Assumption

∆; Θ, x : A; Γ ` N : T By inversion •E

∆; Θ; Γ ` •M :©A By inversion •E

∆; Θ; Γ ` [M/x]•N : T By future substitution lemma
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Case: D = (Λu.M)C −→ {C/u}M

∆; {C/u}Θ; {C/u}Γ ` (Λu.M)C : {C/u}A By assumption, inversion ΠE

∆; Θ; Γ ` C : U By inversion ΠE

∆; Θ; Γ ` Λu.M : Πu:U.A By inversion ΠE

∆, u:U ; Θ; Γ `M : A By inversion ΠI

∆ ` C/u : ∆, u:U By inspection

∆; {C/u}Θ; {C/u}Γ ` {C/u}M : {C/u}A By index substitution lemma

Case: let pack(u, x) = pack(C,M) in N −→ [M/x]{C/u}N

∆; Θ; Γ ` let pack(u, x) = pack(C,M) in N : B Assumption

∆, u:U ; Θ; Γ, x : A ` N : B By inversion ΣE

∆; Θ; Γ ` pack(C,M) : Σu:U.A By inversion ΣE

∆ ` C : U By inversion ΣI

∆; Θ; Γ `M : {C/u}A By ΣI

∆; {C/u}Θ; {C/u}(Γ, x:A) ` {C/u}N : {C/u}B By index substitution lemma

∆; Θ; Γ, x:{C/u}A ` {C/u}N : B Since u does not appear in Θ, Γ, or B

∆; Θ; Γ ` [M/x]({C/u}N) : B By regular substitution lemma

∆; Θ; Γ ` [M/x]{C/u}N : B By definition of substitution

Case: D =

recB(~u; rf.M) ~C (inj N) −→ [N/r][Λ~u.λy.(recB(~u; rf.M) ~u y)/f ]ω{~C/~u}M JR/ZK,

where B = Π−−→u:U.(µZ:K.Λ~u.S)~u→ T and R = µZ.Λ−−→u:U.S

(Φ; Ψ); Θ; Γ ` recB(~u; rf.M) ~C (inj N) : A Assumption
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A = {~C/~u}T By inversion µE

(Φ, Z:K;−−→u:U ; f :Π~v:U.Z~v → {~v/~u}T ); ·; r:S `M : T By inversion µE

(Φ; Ψ); Θ; Γ ` inj N : (µZ.Λ−−→u:U.S)~C By inversion µE

(Φ; Ψ); Θ; Γ ` N : JR/ZK{~C/~u}S By inversion µI

Ψ ` −−→C:U Since inj N is well-typed

(Φ, Z:K; ·; f :Π~v:U.Z~v → {~v/~u}T ); ·; {~C/~u}(r:S) ` {~C/~u}M : {~C/~u}T By index

substitution lemma

(Φ; ·; f :Π~v:U.(µZ.Λ−−→u:U.S)~v → {~v/~u}T ); ·; r:{~C/~u}S ` {~C/~u}M JR/ZK : {~C/~u}T By

type substitution

Substituting f :

(Φ, Z:K;−−→u:U ; f :Π~v:U.Z~v → {~v/~u}T ); ·; r:S `M : T From previous inversion µE

(Φ; Ψ,−→v:U); Θ; Γ, y:(µZ.Λ~u.S)~v ` y : (µZ.Λ~u.S)~v By xI, weakening

(Φ; Ψ,−→v:U); Θ; Γ, y:(µZ.Λ~u.S)~v ` recB(~v; rf.M) ~v y : {~v/~u}T By µE

(Φ; Ψ,−→v:U); Θ; Γ ` λy.recB(~v; rf.M) ~v y : (µZ.Λ~u.S)~v → {~v/~u}T By → I

(Φ; Ψ); Θ; Γ ` Λ~v.λy.recB(~v; rf.M) ~v y : Π−→v:U.(µZ.Λ~u.S)~v → {~v/~u}T By ΠI

(Φ; Ψ); Θ; Γ, r:{~C/~u}S ` Λ~v.λy.recB(~v; rf.M) ~v y : Π−→v:U.(µZ.Λ~u.S)~v → {~v/~u}T

Weakening

(Φ; ·; f :Π~v:U.(µZ.Λ−−→u:U.S)~v → {~v/~u}T ); ·; r:{~C/~u}S ` {~C/~u}M JR/ZK : {~C/~u}T Re-

call from before substituting f

(Φ; Ψ; f :Π~v:U.(µZ.Λ−−→u:U.S)~v → {~v/~u}T ); Θ; r:{~C/~u}S ` {~C/~u}M JR/ZK : {~C/~u}T

Weakening

let fsbst = Λ~v.λy.(recB(~v; rf.M) ~v y)
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(Φ; Ψ; ·); Θ; Γ, r:{~C/~u}S ` [fsbst/f ]ω{~C/~u}M JR/ZK : {~C/~u}T By omega

substitution lemma

(Φ; Ψ); Θ; Γ ` N : JR/ZK{~C/~u}S Recall from previous inversion µI

(Φ; Ψ); Θ; Γ ` [N/r][fsbst/f ]ω{~C/~u}M JR/ZK : {~C/~u}T By regular substitution

lemma

Case: D = out (corecA(~u; rf.M) ~C N) −→

{~C/~u}[Λ~w.λy.(corecA(~u; rf.M) ~w y)/f ]ω[N/r]M JR/ZK

Similar to previous case.

Case: D = eq reflC1=C2 with (∆′; θ 7→ N) −→ N

∆; Θ; Γ ` eq reflC1=C2 with (∆′; θ 7→ N) : A By assumption

∆′; {θ}Θ; {θ}Γ ` N : {θ}A By inversion =E1

∆ ` unify(C1, C2)⇒ (θ; ∆′) By inversion = E1

∆; Θ; Γ ` refl : C1 = C2 By inversion = E1

∆; Θ; Γ ` refl : C1 = C1 By inversion = I

θ = id By definition of unify(C1, C1)⇒ (θ; ∆′)

∆; Θ; Γ ` N : A By definition of identity substitution
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Theorem 2 (Subject reduction for α). For all α, if ∆; Θ; Γ `M : A and M  α M
′

then ∆; Θ; Γ `M ′ : A.

Proof. This is proven by induction on E [M ]m, using subject reduction for −→ as a

lemma.

Recall the stepping rule for  α.
M −→ N where m ≤ αE [M ]m  α E [N ]m

Case: m = 0

Subcase: E [M ]m = [·]

∆; Θ; Γ ` E [M ]m : A Assumption

∆; Θ; Γ ` E [M ]m  α E [N ]m Assumption

∆; Θ; Γ ` E [N ]m : A By subject reduction for −→

Subcase: (E [M ]m) N

∆; Θ; Γ ` (E [M ]m) N : B Assumption

∆; Θ; Γ ` E [M ]m  α E [M ′]m Assumption

∆; Θ; Γ ` N : A By inversion → E

∆; Θ; Γ ` E [M ]m : A→ B By inversion → E

∆; Θ; Γ ` E [M ′]m : A→ B By I.H.

∆; Θ; Γ ` (E [M ′]m)N : B By → I
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4.3 Progress

We state progress and provide examples for a few simple cases, although we do

not prove progress in general. For some terms to step, the structure of the term

is important, rather than simply the type. For example, equality elimination only

steps when M = refl. A more exhaustive analysis is required.

Theorem 3 (Progress for α). If ∆; Θ; Γ `M : A then either M is a value or there

exists α ∈ N and a term M ′ such that M  α M
′.

Proof. Case: D = ∆; Θ; Γ `M : A ∆; Θ; Γ ` N : B ×I∆; Θ; Γ ` (M,N) : A×B
Subcase 1: M and N are both values

val (M,N) By definition of value

Subcase 2: ¬val M but val N

M  α M
′ for some α By I.H.

(M,N) α (M ′, N) By definition of  α

Subcases 3 and 4 are similar to subcase 2

Case: D = ∆; ·; Θ `M : A ©I∆; Θ; Γ ` •M :©A
Subcase 1: val M

val •M By definition of value

Subcase 2: M is not a value

M  α′ M ′ for some α′ By I.H.

Let α = α′ + 1

•M  α •M ′ By definition of  α
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Case: D = ∆; Θ; Γ `M : (νZ.Λ−−→u:U.S)~C
νE

∆; Θ; Γ ` out M : JνZ.Λ−−→u:U.S/ZK{~C/~u}S
Subcase 1: val M(M = corecA(~u; rf.M ′) ~C N)

out (corecA(~u; rf.M ′) ~C N) −→

{~C/~u}[Λ~w.λy.(corecA(~u; rf.M ′) ~w y)/f ]ω[N/r]M ′

Subcase 2: M is not a value

M  α M
′ By I.H.

out M  α out M ′ By definition of  α



CHAPTER 5
Conclusion

5.1 Summary

We presented Jackrabbit, a reactive programming language with indexed types,

which corresponds to first-order linear temporal logic under the Curry-Howard cor-

respondence. We provide the syntax and semantics of Jackrabbit along with rules

for kinding, typing, and substitution.

Jackrabbit uses Mendler-style recursion. We give an explanation for this, as

well as an overview of general recursion, iterators, and primitive recursion, and their

relation to one another. Since Mendler-style recursion lacks some of the power of

general recursion, Jackrabbit also uses Mendler-style corecursion, allowing it to han-

dle infinite structures. Separating recursion from corecursion also makes is possible

to differentiate between least and greatest fix-points, which we use to define the even-

tually and always modalities and to specify fairness properties. Indexed types, which

correspond to logical predicates, are also supported in Jackrabbit. These allow us to

specify safety properties that require a simple kind of state.

We explained safety and fairness, but only briefly mentioned liveness. Recall

that given an infinite trace of a program, we can tell that a safety property has been

violated given some finite prefix. Common safety properties include mutual exclusion

and deadlock freedom. With a liveness property, such as such as starvation freedom,

any prefix can be extended to an accepted infinite trace. It’s never too late to

81



82

νZ.Λm.Λn.(B ×©Z(suc m)(n+m+ suc m)) + (Σy.n = suc y × (A×©Z m y))
(suc zero)(suc zero)

Figure 5–1: |a| ≤ |b|2

satisfy the condition. Consider the characters ‘(’ and ‘)’. In a valid sequence of

parentheses, every closing parenthesis must match an opening parenthesis. When

a safety property is violated, there is a certificate that indicates that the property

does not hold. Given the trace “()())((...”, the prefix “()())” violates the property,

because at no point can we have more closing parentheses than opening parentheses.

To ensure a valid string, however, we also need to guarantee the liveness property

that the sequence will eventually terminate with as many closing parentheses as

opening parentheses. Every property, including fairness properties, can be written

as the intersection of safety and liveness properties [Alpern and Schneider, 1985].

For example, to prove total correctness, a program must be partially correct and it

must terminate. Partial correctness is a safety property and termination is a liveness

property. We also note the relationship between least fixed points and liveness,

and the relationship between greatest fixed points and safety properties. A liveness

property says that eventually something will happen, and a safety property says that

something bad will not happen, that is, its negation will always be true.

On top of the properties that can be expressed in types, we considered properties

about Jackrabbit, including progress. Finally, with the help of various substitution

lemmas, we showed type preservation.
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5.2 Future Work

The property of normalization, always reducing to a canonical form, is espe-

cially important in a language whose type system is meant to be well-behaved with

respect to time and space. We do not show that Jackrabbit is strongly normalizing.

Addressing and proving normalization in Jackrabbit would be of interest.

The alternating bit protocol and Lamport’s bakery protocol are two protocols

to avoid deadlock. Deadlock is a safety property in which multiple processes are

each waiting for the each other to finish before they continue. These properties are

formally modelled in Groote and Willemse [2005] using a classical dynamic logic

which allows them to quantify over paths. By extending the type system to dynamic

logic, it would be possible to exploit the Curry-Howard correspondence to ensure

these properties at compilation.

Wadge [1981] introduces the cycle sum test to avoid deadlock. Every node of

a dataflow graph is associated with an integer. When a new stream is created, it is

given with an new integer as a function of integers of streams that it depends on,

as well as which operators are used to join these streams. If this new number is

positive, the stream will not be waiting for its own output so will be deadlock-free.

This enforces enough structure that streams can depend on loops while ensuring

well-foundedness. This is a property that could be expressed with indices. However,

the Jackrabbit type system is more strict and already rejects dead-locking programs,

since programs cannot contain variables from the past. For certain problems, it

would be useful to relax the next-step modality condition that a context be dropped

at every time-step, and to instead use indices inspired by the cycle sum test.
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The examples with bound streams expanded the range of the ratio between As

and Bs. This range of allowable positions to see a certain type can also be modified

in more complex ways. Given a polynomial p, it’s possible to limit occurrences of

Bs to steps where the time since the beginning is p(x) for x ∈ N. By extending the

index language to lists of booleans, Bs can be limited to steps where the index list

is true at position |B| − |A|. Boolean lists can be treated as binary numbers, and

modified as numbers in a a sequence when passed to the next step.

Jackrabbit does not allow computation in types. By adding natural number

addition to the index language, we can bound the number of a’s by more complex

functions of b. For example, |a| ≤ |b|2 is shown in Figure 5–1. The number of bs

seen is recorded with m, and the number of permissions n exploits the fact that

m2 − (m− 1)2 = m+ (m− 1).
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