

Coordination in Complex Product Development

Samuel Suss

Submitted to the Faculty of Graduate Studies and Research

McGill University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Engineering

November 2011

©Copyright 2011 Samuel Suss

All rights reserved.

Acknowledgements

I wish to thank Professor Vince Thomson for supervising this research, and for his

encouragement, advice and, support.

I would like to express my sincere gratitude to Professor Michael Paidoussis for

introducing me to the fascinating world of engineering research and for his

encouragement and advice throughout my career.

I am especially grateful to Dr. Khadidja Grebici, Dr. Onur Hisarciklilar, Dr.

David Wynn, and many other research associates, postdoctoral fellows and

graduate students at McGill University and at the Engineering Design Centre in

Cambridge University, U.K., for their ongoing encouragement, advice and the

privilege of participating in the many discussions I greatly enjoyed.

I wish to thank the Consortium for Research and Innovation in Aerospace in

Quebec (CRIAQ) and NSERC for financially supporting this research.

Last but not least, I wish to express my heartfelt gratitude to my family, Chana,

Matthew, Jonathan, and Joel Suss for their love and support during this

endeavour.

Contents

List of Figures .. ix

List of Tables ..xv

Abstract ... xvii

Abrégé .. xix

1 Introduction and Overview ..1

2 Literature Review and Discussion ...7

2.1 Organization theory and the information processing framework..............7

2.1.1 Use of hierarchy, standardization and goal setting9

2.1.2 Coordination mechanisms with greater uncertainty12

2.2 Coordination theory...14

2.3 Engineering design ..19

2.4 Iteration in engineering design ..21

2.5 The effect of uncertainty in engineering design24

2.6 Quality in product development ..27

2.7 Concurrent engineering ...28

2.8 Complexity of engineering design processes ..30

2.8.1 Design structure matrix (DSM) ...31

2.8.2 Simulation ..34

2.8.3 System dynamics models of PD ..35

2.9 Communication and system level integration ...35

2.10 Models of product development ..36

3 Description of the Model ...39

3.1 Definitions ...39

3.1.1 Product development (PD) ...39

3.1.2 Process ...40

3.1.3 Model ...41

3.1.4 System ..41

3.2 The product development process as a system..42

3.2.1 Dynamic systems and simulation...44

3.2.2 Discrete event system models ..46

3.3 The model of the product development system51

3.3.1 Overview of the model...53

3.3.2 The task model ...57

3.3.3 The information exchange matrix ..60

3.3.4 Diagonal elements of the information exchange matrix68

3.3.5 Information flow in the model ...70

3.3.6 Attributes of information entities ...74

3.3.7 The starve condition ...78

3.3.8 System level integration ...81

3.3.9 Information reception in the model..83

3.3.10 Rework due to design iteration ..85

3.3.11 Design version rework ...88

3.3.12 Feedback due to design version rework ...91

3.3.13 The computer program ...94

4 Simulation Experiments with the Model ...99

4.1 Statistical significance of results ...99

4.2 Output quantities and input parameters ...102

4.2.1 Normalization of output quantities and input parameters102

4.3 Verification and validation of the model ...104

4.3.1 Model verification ..104

4.3.2 Validation of the model ...105

4.4 Modelling uncertainty, sensitivity and information evolution106

4.5 Sequential dependency ..115

4.5.1 Effects of task overlapping and uncertainty117

4.5.2 Effects of task overlapping and communication interval126

4.5.3 Modification of dependencies with multiple inputs (set-based

coordination) ..132

4.6 Reciprocal dependency ...138

4.6.1 The effects of communication interval ..141

4.6.2 Effect of delays in information flow on project span time146

4.6.3 The effects of increasing the number of differentiated tasks in the

project decomposition ..150

4.6.4 Adapting Agile PD Methods to Non-Software PD159

4.6.5 Effect of non-equal task sizes ..163

4.6.6 Influence of the relation between total communication work and

total technical work in a phase: the parameter α ..164

4.6.7 Alternative management of the system level integrator resource ..166

5 Current practices in a selection of aerospace companies169

5.1 Interviews ..170

6 Discussion ..177

7 Conclusion ...187

7.1 Review of research contributions ..190

7.2 Benefits of this research ..192

7.2.1 For industry ..192

7.2.2 For academia ..194

7.3 Opportunities for further research ...196

8 References and Bibliography ...197

ix

List of Figures
Figure 2-1 Types of dependency... 9

Figure ‎2-2 Horizontal work flow across a functional division of labour 10

Figure 2-3 Hierarchical organization structure ... 11

Figure 2-4 Profile of coordination mechanisms on classified levels of task

uncertainty (VanDeVen, Delbecq et al. 1976) .. 13

Figure 2-5 Pahl and Beitz‟ (1996) model of the engineering design process 21

Figure 2-6 (a) Incremental and (b) progressive approaches to design (Safoutin

2003) ... 24

Figure 2-7 Upstream information evolution at the fast and slow extremes

(Krishnan 1996). ... 29

Figure 2-8 Downstream sensitivity at the high and low extremes (Krishnan 1996).

... 29

Figure 2-9 An example of an activity based DSM ... 32

Figure 2-10 Flow diagram for the process in Figure 2-9 33

Figure ‎3-1. A single server queuing system.. 47

Figure 3-2. The event scheduling simulation for the single server queuing system

in Figure 3-1 (Vangheluwe 2008) ... 49

Figure 3-3 The process model showing design review decisions at the end of each

phase ... 54

Figure 3-4 The model of a phase of the product development system 55

Figure 3-5 Task model broken up into work and read and prepare communication

subtasks ... 58

Figure 3-6 Links between tasks via information exchange 59

Figure 3-7 Work subtask done in discrete chunks of time or cycles between which

communication is done ... 60

Figure 3-8 Schematic view of the information exchange matrix 69

Figure 3-9 Instantiations of the model of uncertainty as a function of task state

using the Gompertz Function .. 77

x

Figure 3-10 Illustration of the variables used in the calculation of rework in

equations 3-17, 3-18, and 3-19. .. 88

Figure 3-11 Variation of epistemic uncertainty with task state for each subsequent

design version rework ... 94

Figure 4-1 Epistemic uncertainty ε versus task state as modeled for various values

of b and c ... 109

Figure 4-2 Aleatory uncertainty φ versus task state for b=30, c=6, m=0.5 110

Figure 4-3 Aleatory uncertainty φ versus task state for b=5, c=4, m=0.5 110

Figure 4-4 Aleatory uncertainty φ versus task state for b=5, c=6, m=0.5 111

Figure 4-5 Aleatory uncertainty φ versus task state for b=5, c=8, m=0.5 111

Figure 4-6 The uncertainty for a task b=30, c=6, (slow reduction in epistemic

uncertainty) m=0.1 (low magnitude of aleatory uncertainty) 112

Figure 4-7 The uncertainty for a task b=30, c=6, (slow reduction in epistemic

uncertainty) m=1.0 (high magnitude of aleatory uncertainty) 113

Figure 4-8 The uncertainty for a task b=5, c=8, (rapid reduction in epistemic

uncertainty) m=0.1 (low magnitude of aleatory uncertainty) 113

Figure 4-9 The uncertainty for a task b=5, c=8, (rapid reduction in epistemic

uncertainty) m=0.5 (medium magnitude of aleatory uncertainty) 114

Figure 4-10 The uncertainty for a task b=5, c=6, (moderate reduction in epistemic

uncertainty) m=1.0 (high magnitude of aleatory uncertainty) 114

Figure 4-11 Normalized effort versus span time for two profiles of epistemic

uncertainty reduction for overlapping of sequentially dependent tasks 118

Figure 4-12 Normalized churn versus span time for two profiles of epistemic

uncertainty reduction for overlapping of sequentially dependent tasks 120

Figure 4-13 Variation of PD project performance of 5 sequentially dependent

tasks with increasing overlap using the same slow reduction in epistemic

uncertainty with increasing stochastic uncertainty ... 121

Figure 4-14 Normalized churn for the scenarios in Figure 4-13. 122

xi

Figure 4-15 Variation of PD project performance of 5 sequentially dependent

tasks with increasing overlap using the same rapid reduction in epistemic

uncertainty with increasing stochastic uncertainty ... 123

Figure 4-16 Normalized churn and span time for the scenarios shown in Figure

 4-15. .. 124

Figure 4-17 Variation of span time of 5 sequentially dependent tasks with

communication interval for different amounts of task overlap. Cases shown for

slow reduction in epistemic uncertainty and moderate magnitude of aleatory

uncertainty (b=30, c=6, m=0.5). ... 126

Figure 4-18 Variation of effort with communication interval for the cases shown

in Figure 4-17. ... 127

Figure 4-19 Variation of churn with NCI for the scenarios in Figure 4-17. 128

Figure 4-20 Normalized starve time versus NCI for the scenarios in Figure 4-17.

... 129

Figure 4-21 Variation of span time with communication frequency with slow

evolution and high aleatory uncertainty for five tasks that are sequentially

dependent (b=30, c=6, m=1.0). ... 130

Figure 4-22 Variation of span time with communication frequency for rapid

reduction in epistemic uncertainty and moderate aleatory uncertainty for five

sequentially dependent tasks. .. 131

Figure 4-23 Effort and span time results with increasing overlap for a set based

coordination scenario in comparison to ordinary sequential dependency conditions

... 134

Figure 4-24 Churn for set based coordination with overlap in comparison to

sequentially dependent scenario ... 135

Figure 4-25 Comparison of set-based coordination and base case with different

epistemic uncertainty reduction profiles and medium aleatory uncertainty (m=0.5)

... 136

Figure 4-26 Set-based coordination scenario 2 with slow uncertainty reduction

profiles .. 137

xii

Figure 4-27 Set-based coordination scenario 2 with rapid uncertainty reduction

profiles .. 137

Figure 4-28 Normalized span time for PD with 5 reciprocally dependent tasks

with varying communication interval for different cases of epistemic and aleatory

uncertainty... 142

Figure 4-29 Normalized effort for PD with 5 reciprocally dependent tasks with

varying communication interval for different cases of epistemic and aleatory

uncertainty... 143

Figure 4-30 Cumulative normalized churn for PD with 5 reciprocally dependent

tasks with varying communication interval for different cases of epistemic and

aleatory uncertainty ... 144

Figure 4-31 Average design versions per phase for PD with 5 reciprocally

dependent tasks with varying communication interval for different cases of

epistemic and aleatory uncertainty.. 144

Figure 4-32 Cumulative normalized starve time for PD with 5 reciprocally

dependent tasks with varying communication interval for different cases of

epistemic and aleatory uncertainty.. 145

Figure 4-33 Normalized span time versus magnitude of aleatory uncertainty for

cases in which each input variable indicated was changed in turn from the base

case of Table 4-11 (all cases with slowly reducing epistemic uncertainty b=30,

c=6). .. 148

Figure 4-34 Normalized cumulative churn versus magnitude of aleatory

uncertainty for cases in which each input variable indicated was changed in turn

from the base case of Table 4-11 (all cases are with slowly reducing epistemic

uncertainty b=30, c=6). ... 149

Figure 4-35 Normalized span time versus magnitude of aleatory uncertainty for

cases in which each input variable indicated was changed in turn from the base

case of Table 4-11 (all cases with rapidly reducing epistemic uncertainty b=5,

c=8). .. 150

xiii

Figure 4-36 Normalized span time for increasing number of tasks in the work

decomposition. All cases with slowly reducing epistemic uncertainty (b=30, c=6)

and moderate magnitude of aleatory uncertainty (m=0.5). 151

Figure 4-37 Normalized integrator and development team effort versus the

number of tasks in the decomposition of the work for b=30, c=6, m=0.5. Base

case refers to input parameters in Table 4-11. .. 153

Figure 4-38 Average number of design versions per phase versus the number of

tasks in the decomposition of the work for slowly reducing epistemic uncertainty

and moderate aleatory uncertainty (b=30 c=6, m=0.5). Base case refers to input

parameters in Table 4-11 .. 156

Figure 4-39 Normalized cumulative starve time versus the number of tasks in the

decomposition of the work for b=30, c=6, m=0.5. Base case refers to input

parameters in Table 4-11 .. 157

Figure 4-40 Normalized span time versus NPT with constrained integrator

resources ... 158

Figure 4-41 Normalized effort versus NPT with constrained integrator resources

... 159

Figure 4-42 Comparison of span time in scrum and standard PD for several cases

of uncertainty. ... 162

Figure 4-43 Comparison of cumulative churn in scrum and standard PD for slow

reduction of epistemic uncertainty. ... 163

Figure 4-44 Effect on span time when one task is larger than the others 164

Figure 4-45 Effects of changing the value of parameter α on the behaviour of span

time versus NCI... 165

Figure 4-46 Effects of changing the value of parameter α on the behaviour of span

time versus m. ... 166

Figure 4-47 The effect of alternative schemes to manage the integrator resource

capacity versus m for slowly reducing epistemic uncertainty 167

xiv

xv

List of Tables
Table 2-1 Common coordination mechanisms (Martinez and Jarillo 1989) 14

Table 2-2 Examples of common dependencies between activities and alternate

coordination mechanisms for managing them (Malone and Crowston 1994) 16

Table 3-1 A constructed attribute for sensitivity S of task j to changes in

information from task i ... 62

Table 3-2 A constructed attribute for the initial uncertainty U of information

required from task i by task j .. 62

Table 3-3 Input parameters defining scenarios for the PD model 95

Table 3-4 Description of symbols employed in the model 97

Table 3-5 Key assumptions in the model .. 98

Table 4-1 Normalized input and output parameters ... 104

Table 4-2 A dependency matrix case (a) .. 107

Table 4-3 A dependency matrix case (b) .. 108

Table 4-4 matrix D for high sequential dependency ... 115

Table 4-5 The resultant information exchange matrix NC for the sequential

dependency scenarios.. 116

Table 4-6 Values for input parameters for scenarios with sequential dependency

... 116

Table 4-7 Simulation results for the scenario in Figure 4-17 130

Table 4-8 Simulation results for the scenario in Figure 4-21. 131

Table 4-9 The dependency matrix for a set-based coordination scenario 133

Table 4-10 The communication matrix for the set-based coordination scenario 133

Table 4-11 Input parameters for reciprocal dependency scenarios 140

Table 4-12 The dependency matrix for 5 tasks with high reciprocal dependency

... 141

Table 4-13 Values of normalized span time for each permutation of input

parameter for slowly reducing epistemic uncertainty (b=30, c=6) 147

xvi

Table 4-14 Input parameter values for the comparison of scrum PD with the

standard method .. 161

xvii

Abstract

Complex product development is studied and its important characteristics are

incorporated into an original model. The process is treated as a dynamic system in

which information is created in each task as work is accomplished, and the

amount of communicated information between tasks depends upon the magnitude

of the interdependency between tasks. Information flow is modelled explicitly,

and the model captures the dynamic complexity of projects with interdependent

tasks. This is accomplished through the linkage of information exchange to the

work accomplished in each task, the availability of resources, and the techniques

used to manage the product development process. The uncertainty of information

is explicitly modelled and this influences the development and magnitude of

rework according to the way the process dynamically unfolds.

In this way, the influence of impediments to information flow on overall span

time and effort are captured. The model is applied to the investigation of

coordination and its effects on process behaviour under various conditions.

Coordination mechanisms are applied in the model through the choice of input

parameters that influence the degree of overlapping of tasks, the management of

resources that process information, the delay of communication of information,

and the interval of communication between tasks. Findings uncover the

mechanisms driving the pace of progress in engineering design processes and

highlight strategies that reduce span time in complex product development.

Simulations with the model illustrate the limits and benefits of overlapping and of

set-based coordination with sequentially dependent tasks and different profiles of

epistemic uncertainty reduction. Delays to information flow are shown to

combine non-linearly to reach tipping points that greatly impact span time and

effort. Different schemes for the management of critical resources that make use

of data from the process itself are shown to be effective in reducing rework.

Simulation of coordination schemes analogous to agile product development

xviii

methods demonstrate that important reduction in span times can be obtained for

groups of tasks with high interdependence.

xix

Abrégé

Le développement de produits complexes est étudié et ses caractéristiques

importantes sont intégrées dans un modèle original. Le processus est traité comme

un système dynamique dans lequel l'information est créée dans chaque tâche qui

est en train d‟être accomplie. La quantité d'informations échangées entre les

tâches dépend de l'ampleur de l'interdépendance entre les tâches. La circulation de

l'information est modélisée de façon explicite, et le modèle saisit la complexité

dynamique de projets avec des tâches interdépendantes. Cela est accompli par le

lien entre l'échange d'information et le progrès du travail dans chaque tâche, la

disponibilité des ressources, et les techniques utilisées pour gérer le processus de

développement du produit. L'incertitude de l'information est explicitement

modélisée et cela influence le développement et l'ampleur des modifications en

fonction du déroulement dynamique du processus.

De cette façon, l'influence des obstacles à la circulation de l'information sur le

temps et l'effort global sont capturés. Le modèle est appliqué à l'enquête de

coordination et de ses effets sur le comportement des processus sous des

conditions différentes. Les mécanismes de coordination sont appliqués dans le

modèle par le choix des paramètres d'entrée qui influencent le degré de

chevauchement des tâches, la gestion des ressources qui traitent l'information, le

délai de communication de l'information, et l'intervalle de communication entre

tâches. Les résultats découvrent les mécanismes qui influencent le progrès dans le

processus de conception d'ingénierie et qui mettent en évidence les stratégies qui

réduisent le temps de développement des produits complexes.

Des simulations avec le modèle illustrent les limites et les avantages des

différentes façons de coordination pour les processus qui ont des profils diverses

de réduction de l'incertitude épistémique. Les résultats démontrent que les retards

aux flux d'information se combinent de façon non linéaire pour atteindre les

points de basculement qui influence beaucoup la durée et l'effort des projets du

xx

développement. Les façons différentes de gérer les ressources importantes qui

font usage de données du processus lui-même se sont avérées efficaces en évitant

du travail supplémentaire. La simulation des mécanismes de coordination qui sont

analogues aux méthodes agiles pour le développement des produits démontre

qu‟un réduction importante de la durée peut être obtenue pour des tâches

fortement interdépendantes.

1 Introduction and Overview

1 And the whole earth was of one language, and of one speech. 2 And it came to pass, as they journeyed from

the east, that they found a plain in the land of Shinar; and they dwelt there. 3 And they said one to another,

Go to, let us make brick, and burn them thoroughly. And they had brick for stone, and slime had they for

mortar. 4 And they said, Go to, let us build us a city and a tower, whose top may reach unto heaven; and let

us make us a name, lest we be scattered abroad upon the face of the whole earth. 5 And the Lord came down

to see the city and the tower, which the children built. 6 And the Lord said, Behold, the people is one, and

they have all one language; and this they begin to do; and now nothing will be restrained from them, which

they have imagined to do. 7 Go to, let us go down, and there confound their language, that they may not

understand one another's speech. 8 So the Lord scattered them abroad from thence upon the face of all the

earth: and they left off to build the city. 9 Therefore is the name of it called Babel; because the Lord did there

confound the language of all the earth: and from thence did the Lord scatter them abroad upon the face of all

the earth.

(From the King James Version of the Bible, Book of Genesis chapter 11)

Large complex endeavours require the combined efforts of many individuals to be

attainable. We have become accustomed to being surrounded by objects built by

groups of people with specialized knowledge, skills, and equipment working

together in organizations.

There are two major types of methods that are seen as essential for organizations

to go about the process of trying to accomplish objectives. These are “the

differentiation of functions and positions” and “the deliberate conscious,

intendedly rational, planful attempts to coordinate and direct activities” (Porter,

Lawler et al. 1975).

This “differentiation of functions and positions” or division of labour has

facilitated tremendous improvements in productivity and technology in specific

functions by specialization of expertise. Division of labour into individual

subtasks is believed to be more productive because it overcomes physical and

cognitive knowledge limitations in people. Each individual can become more

practised at a smaller task. Each of these subtasks can be further subdivided into

more differentiated sub-subtasks so that each of these in turn can be done more

2

skilfully, more quickly and eventually with less effort. However, division of

labour into differentiated subtasks often creates difficulties because of the

interdependence between the subtasks. The interdependence between different

people working on differentiated subtasks creates problems of coordination and a

need for reliability. The problems that come about are nicely illustrated by

Bavelas (1960).

“When a job is made up of separate parts, and parts fit together, small

errors accumulating in different parts may easily ruin the final product.

Any beginner in woodworking will attest to that. He learns early, and

often sadly, to study plans and consult them frequently, to work slowly,

and to check his measurements.

When the interdependent parts of a job are distributed among many

different persons, all of the usual problems remain and new ones appear.

The new problems stem from the nature of distributed work.

A single workman who finds that the interlocking faces of a joint that he is

building do not quite match will decide which face to modify or will scrap

them both and begin again. When two men are involved, questions may

arise as to which one of them will make the adjustment, and which of the

two of them was in error. When work is distributed such problems are

always latent in the relationship among men and functions. And the more

a job is fragmented, the more numerous and the more difficult these

problems may become!”

This little scenario gives a good sense of the interdependence that arises when

work is divided.

The problems are more difficult when the product is intangible such as a

curriculum, an education policy, or an engineering design. The limit in the ability

of an organization to coordinate differentiated activities is often seen as one of the

limiting factors in the effectiveness of large scale endeavours (Brooks 1975). The

3

effectiveness of the coordination strategies and methods used is often the way in

which a large project can succeed in meeting its goals.

This thesis is about the coordination of activities in a complex product

development process. In this context a complex process means that it involves

many people performing differentiated functions. Complex product development

takes place in the aerospace, defence, and automobile industries for example,

where there are often hundreds or thousands of engineers collaborating in the

design process. The work involved in product development is carried out in the

minds of the participants with the use of tools to perform analyses and to describe

the state of the work. Unlike a manufacturing process where materials move from

activity to activity and undergo operations that change their state in an observable

way, product development is information processing. It is difficult to observe the

change in state of the object being worked on, the design of the product. The

differentiated subtasks in product development are not only the design tasks for

different parts of the product, but are also the different tasks of design, analysis

and testing of each of these parts. The artefacts in the process are reports, models,

drawings, simulations, and prototypes of parts of the object being designed.

Product development (PD) is a critically important part of the product lifecycle,

consuming a large proportion of the overall time period of bringing the product to

market, and setting about 70% of the product cost (Wheelwright and Clark 1992).

It has been estimated that each day‟s delay in introducing a new model of an

automobile into the market represents a one million dollar loss in profit (Clark,

Chew et al. 1987). In the electronics sector, the rule of thumb is that the first two

manufacturers that get a new generation product to market lock up 80% of the

business (Port 1989).

The implementation of engineering design tools, concurrent engineering practices

and product data management systems has contributed to reduced PD cycle times

in recent years. However, in large PD projects where hundreds of engineers work

to develop complex products, there remain significant inefficiencies. The amount

4

of waste in aerospace and defence PD programs is estimated at 60–90% of the

charged time with about 60% of all tasks being idle at any given time (Oppenheim

2004). The actual time engineers working on PD spend on value-added activities

is much less than half of their total working time. There is much efficiency lost in

wasted communication, waiting for information and lack of coordination.

Moreover, the increased use of inter-organizational collaboration in PD has

highlighted the need for better coordination mechanisms.

With a focus on the aerospace industry, the goal of this dissertation is to find

methods for achieving significantly faster new product development, i.e., the

reduction of span time, the calendar time taken to create a product. The thesis is

that this can be done with better coordination of the complex engineering design

process and that this in turn can be achieved through a better understanding of

how coordination strategies and tactics impact the process, and under what

conditions they will be effective. It is believed that by treating the product

development process as a complex system of elements: resources, tasks, and

developing information, that interact to change the state of the system, new

product development can be studied with computer modelling and simulation that

are often used to analyze complex systems.

To this end, this thesis has the following objectives:

1. Identify or define a typology of coordination mechanisms that can be

applied to PD;

2. Develop a model of PD that can be used to capture the impact of various

coordination mechanisms on reduction of span time under many potential

scenarios;

3. Use the model to determine the general principles governing the reduction

of span time and the level of effort for various types of coordination

mechanisms under various types of PD programs.

The complexity of the products in the aerospace industry makes prevalent the

decomposition of the overall product into subsystems, and often into smaller

5

components in order to effectively organize development work. In recent years,

there has been a strong tendency to outsource the development of some of these

subsystems and components to external partners or suppliers. The focus of the

research in this thesis is the mechanisms used to coordinate PD, where there is an

overall system level of integration that takes place across design teams (internally

or externally to the lead organization).

This thesis studies how to improve present coordination mechanisms:

 task decomposition and sequencing;

 systems to support information processing and decision making;

 the number and timing of approval cycles employed at various stages;

 the type, frequency, and efficiency of information exchange; and

 the manner in which shared resources are allocated.

In the following thesis, a model of the product development process is proposed

based on observation of aerospace processes. The model is based on the flow of

information that takes place in PD, incorporating the important mechanisms and

impediments to the flow of this information, and how it relates to the

interdependencies between tasks in the process and the evolving levels of

uncertainty in the various tasks. Due to the dynamic nature of the interactions

within the process, simulation is needed to execute the model. The model is then

used to predict the performance of various product development processes and

how they are affected by different coordination strategies that affect information

flow. It is through the use of this model that better understanding of the

importance of different approaches to the division of labour, timing of design

decisions, and policies for allocation of resources and communication on the

information flow in PD can be achieved.

This research is expected to contribute to knowledge at three levels:

 the development of a method to quantify the effects of coordination

mechanisms under different conditions of uncertainty and task

decomposition (division of labour);

6

 the study of the effects of various coordination mechanisms on PD;

 the development and validation of mechanisms that can greatly improve

coordination among partners doing PD and reduce development times.

The dissertation is organized as follows: chapter 2 reviews the relevant research

work in the fields of organization theory, coordination, complex systems theory,

uncertainty, and engineering design methodology; chapter 3 is a detailed

description of the model of the engineering design process; chapter 4 is a

description of results of simulation experiments with the model under various

conditions and scenarios; chapter 5 discusses the simulation experiments,

verification and validation; and chapter 6 examines the achievement of objectives.

2 Literature Review and Discussion

The literature on the product development process and related fields is very broad.

There has been relevant research in the fields of organization design, coordination

theory, concurrent engineering, engineering design methodology, systems

engineering, complexity, uncertainty, and iteration. In the following sections a

review and discussion of concepts relevant to this thesis is presented and

summarized.

2.1 Organization theory and the information processing

framework

Research on organization theory has explored the ways in which large and

complex tasks can most efficiently be performed and has led to the use of an

information processing model (Galbraith 1977). This model shows how the

efficient breakdown of a task into differentiated subtasks creates

interdependencies that necessitate greater coordination of activities. Uncertainty is

the core concept upon which this model is based and is defined as the difference

between the information required to accomplish a task and the information

currently residing with the actor charged with performing it. The basic proposition

is that as the amount of uncertainty increases, there is an increasing frequency of

non-routine, unique, consequential events which cannot be foreseen, and which

require decisions to be made. Making decisions requires information gathering

and communication about the state of affairs that led to the events (as well as

authority granted by the owners or the stakeholders of the process). This is

referred to as information processing; it takes time and requires resources.

Therefore, increasing uncertainty increases workloads and time delays in the

decision making mechanism.

As an example of an event that requires a decision to be made in a product

development process, consider an aircraft design scenario in which a subsystem

such as a landing gear assembly turns out to require more space in the wing than

8

was anticipated in an earlier design phase. A decision here is required by the

organization as to how to accommodate this. Does the landing gear need to be

redesigned, the wing redesigned, or both? To make the correct decision requires

information such as what are the other systems that may be affected by the

redesign of either the wing or landing gear? What is the effect on aircraft

performance of each possible choice? What is the impact on the development

schedule and cost budget? An organization that comes across these issues during

the course of product development must have mechanisms in place to allow these

decisions to be made optimally and in a timely manner. Organizations that have to

deal with high levels of uncertainty must organize themselves to deal with high

demands for information processing or must find more distributed forms of

decision making in order to continue to effectively coordinate the actions of

individuals.

Organizations have invented coordination mechanisms for collecting information,

deciding, and disseminating information to resolve conflicts and guide

interdependent actions. The collection of mechanisms used constitutes the

organizing mode of the organization. Thompson (1967) proposed that there are

three different types of dependence for which a different type of coordination

mechanism is appropriate. Figure 2-1 illustrates these three types of dependency:

pooled dependence (also known as fit dependence where several tasks work

independently to produce part of the required result) is often coordinated by rules

and standards; sequential dependence by planning; and reciprocal dependence by

mutual adjustment. Other authors have identified programming (specifying

predetermined behaviour), planning, and feedback as the basic coordination

mechanisms and one chooses the appropriate mechanisms based on task situations

(Hage, Aiken et al. 1971). The less routine and more diverse the situation, the

more one chooses feedback as opposed to programming and planning.

9

Figure ‎2-1 Types of dependency

Galbraith (1977) relates the use of coordination mechanisms in organizations to

the level of uncertainty with which an organization must deal. The types of

coordination mechanisms he describes are hierarchy, standardization, and goal

setting. Then, as uncertainty continues to increase (with growth, product

diversification, increasing competition) more exceptions to normal operating

procedures necessitate further coordination mechanisms that would either require

an increase in the capacity of the organization to process information to continue

to make use of the hierarchy, or reduce the need for information processing by

finding other ways to deal with exceptions, or both.

2.1.1 Use of hierarchy, standardization and goal setting

To illustrate these ideas further consider Figure 2-2. In order to complete the task

shown at a high level of performance, the activities that take place in these

various groups must be coordinated. The work of product design engineers must

10

be coordinated with process design engineers, etc. In development of complex

products where the behaviour of thousands of people must be coordinated, it is

impossible for them all to communicate with each other. The organization is

simply too large to permit face-to-face communication to be a mechanism of

coordination.

Figure ‎2-2 Horizontal work flow across a functional division of labour

In order to manage the division of labour, coordination is initially done in

organizations by selecting some members to play a coordinating or managing

role. These are invariably organized in a hierarchical form. In this way, referring

to Figure 2-3, manager 1 can act to resolve an issue between product and process

design while the general manager is required to resolve a problem between

fabrication and product design. A hierarchy thus clearly establishes the lines of

authority for everyone in the organization. It is also an efficient information

processing mechanism in that far fewer communication channels are required than

if direct communication was permitted between each subunit. If communication

to coordinate interdependence takes place directly, there are n(n-1)/2

communication channels needed, where n is the number of subunits. If the

hierarchical structure has a uniform span of control equal to s, then there are (n-1)

s/(s-1) communication channels only. Thus, as n increases the hierarchical

structure grows according to n and not n
2

(Hage, Aiken et al. 1971). However, the

cost for this economy in information processing capacity is the limited capacity of

each channel and the restriction that each position can communicate directly only

with those above and below it. Other contacts must take place through one or

more intervening nodes. An increase in uncertainty creates more situations where

people performing work need issues resolved, leading to greater requirements for

information processing. This eventually overloads the hierarchical communication

11

channels and introduces delays and distortions that come about from the resultant

loss of synchronicity of the information.

Figure ‎2-3 Hierarchical organization structure

To the extent that coordination decisions can be anticipated in advance, they can

be codified as rules or procedures. Then, as situations arise on a day-to-day basis,

the employees act out the behaviours appropriate to the situation and the resultant

aggregate response is a coordinated pattern of behaviour. In this way decisions for

those situations that can be anticipated in advance are in effect decentralized to

the lowest levels and the vulnerable hierarchical channels are reserved only for

those situations that are unforeseen. An example of the application of this

coordination mechanism in a manufacturing process that is taken from the

development of mass production in the Ford Motor Company in the early part of

the 20
th

 century (Hounshell 1984). Here, Ford created a structure based on the

division of labour between those that manufactured different parts of the

automobile and those that assembled it, where previously craftsmen would

12

painstakingly make and assemble each part specifically for one automobile. In

order to eliminate the issues arising from different parts not fitting together it was

necessary to find a way to manufacture the parts to standards so that the parts

became interchangeable. Parts that were made according to the standards were

sure to fit correctly. Thus, coordination between the different tasks in the process

was achieved by the standardization of the parts and by the manufacturing

processes that were able to produce them with tolerances acceptable for assembly.

At a level of task uncertainty where the number of exceptions increases until the

hierarchy is overloaded, it becomes more efficient to bring the points of decision

down to the points of action where the information exists. However, as the

discretion exercised at lower levels of the organization is increased, the

organization faces the question of how to ensure that employees consistently

choose the appropriate response from the organization‟s point of view for job

related situations with which they are faced. This is accomplished by the use of

goal setting or delegating local discretion by planned targets and goals.

2.1.2 Coordination mechanisms with greater uncertainty

The ability of an organization to successfully utilize coordination by goal setting,

hierarchy and standardization depends on the combination of the frequency of

exceptions and the capacity of the hierarchy to handle them. Since greater

uncertainty leads to more exceptions in normal operating procedures, continuing

to use a hierarchy to coordinate successfully necessitates more information

processing capacity. An alternative strategy would be to use other mechanisms to

provide coordination without requiring further information processing capacity.

The former alternative leads to investments in information systems and/or the

creation of lateral relations. The latter alternative leads to methods to reduce input

uncertainty by managing the environment in which the organization operates, the

creation of self-contained tasks which can deal entirely with all exceptions, or the

default which can be the creation or tolerance of slack (extra) resources or

capacities. For example, in wing design, the scheduled time, weight allowance, or

man-hours can be increased. In each case more resources are consumed, but the

13

number of exceptions requiring decision making is reduced, thus lessening the

load on hierarchical channels.

The information processing model is borne out by empirical evidence shown in

Figure 2-4. Here, it can be seen that as uncertainty increases the coordination

mechanisms of rules and plans are used less often, whereas horizontal channels,

the use of scheduled and unscheduled meetings are used more often, and the use

of vertical channels of a hierarchy remains about the same.

Figure ‎2-4 Profile of coordination mechanisms on classified levels of task uncertainty

(VanDeVen, Delbecq et al. 1976)

In Table 2-1 a list of common mechanisms of coordination taken from a study in

the management literature is shown (Martinez and Jarillo 1989). This survey of

the types of actions taken by multinational corporations to make the most of

diverse activities concludes that “there has been an evolution from unidimensional

to multidimensional perspectives on coordination.” Thus, the making of

organizational structures that facilitate coordination in an organization is only one

step towards better coordination. The implementation of the more informal, subtle

14

mechanisms shown in the lower part of Table 2-1 are a key part of making the

formal structures actually facilitate coordination.

Table ‎2-1 Common coordination mechanisms (Martinez and Jarillo 1989)

Structural and formal mechanisms

1. Departmentalization or grouping of organizational units, thus shaping the

formal structure

2. Centralization or decentralization of decision making through the

hierarchy of formal authority

3. Formalization and standardization: written policies, rules, job

descriptions, and standard procedures through instruments such as

manuals, charts, etc.

4. Planning: strategic planning, budgeting, functional plans, scheduling, etc.

5. Output and behaviour control: financial performance, technical reports,

sales and marketing data, direct supervision, etc.

Other mechanisms, more informal and subtle
6. Lateral or cross-functional relations: direct managerial contact, temporary

or permanent teams, task forces, committees, integrators, and integrative

departments

7. Informal communication: personal contacts among managers,

management trips, meetings, conferences, transfer of managers, etc.

8. Socialization: building an organizational culture of known and shared

strategic objectives and values by training, transfer of managers, career

path management, measurement and reward systems, etc.

2.2 Coordination theory

We understand what coordination means intuitively when we attend a well-run

event, observe a smoothly running manufacturing process, or watch a successful

sports team, and notice how well coordinated the actions of the people involved

are. Coordination is defined as “the management of dependencies between

activities” (Malone, Crowston et al. 1999). This definition is consistent with

common intuition and with the concepts about dependencies due to the division of

labour into differentiated subtasks put forth in organization theory and described

in section 2.1.

Coordination theory suggests that dependencies among activities and resources

create coordination problems that constrain how the activities can be performed.

15

To avoid or overcome these constraints, additional work must be performed in the

form of coordination mechanisms that manage the dependencies (Crowston

2003). Coordination theory catalogues possible dependencies, identifies

alternative coordination mechanisms that can be used to manage each

dependency, and describes the tradeoffs among these mechanisms. The typology

developed from the work done in this area can help in identifying alternate

coordination mechanisms by drawing on the similarities between a type of

dependency in the typology, coordination mechanisms used to manage that

dependency type, and examining whether a mechanism of that type can be

implemented in a particular situation under examination.

In Table 2-2 some fundamental dependencies and examples of coordination

mechanisms that can be used to manage them are shown. One ubiquitous type of

dependency among different activities is the requirement to share the same

limited resources. Solutions to the resource allocation problem are widely studied

finding application in economics, organization theory, computer science, and

industrial engineering. The table shows that shared-resource constraints can be

managed by a variety of mechanisms such as “first come/first served,” priority

order, budgets, managerial decision, and markets.

The indentation in the dependency column of Table 2-2 indicates more

specialized versions of general dependency types, and shows that coordination

mechanisms for the general case can also be considered for the specialized case.

One important special case of resource allocation is task assignment. This is

allocating the scarce time of actors to the tasks they perform. The classification

approach of coordination theory is that all the resource allocation methods listed

in Table 2-2 are potentially applicable for task assignment as well. In recent years,

the market mechanism indicated in the table as a form of coordination of shared

resources (whereby potential actors bid for assignment to subtasks) is increasingly

being used by original equipment manufacturers to find partners to which to

outsource development tasks (Twigg 1998).

16

Table ‎2-2 Examples of common dependencies between activities and alternate coordination

mechanisms for managing them (Malone and Crowston 1994)

Dependency Coordination Mechanisms

Shared resources First come/first served, priority order,

managerial decision, market bidding

Task assignment Same as for shared resources

Producer/consumer

Prerequisite constraints Notification, sequencing, tracking

Transfer Inventory management (just in time,

economic order quantity)

Usability Standardization, ask users,

participatory design

Design for

manufacturability

Concurrent engineering

Simultaneity constraints Scheduling, synchronization

Task/ subtask Goal selection, task decomposition

Also of interest in product development processes is the producer/consumer type

of dependency. In these processes there is information produced by one activity

that is required by others and in particular cases there are prerequisite constraints,

where the downstream/receiving activity cannot begin without the information

from upstream/sending activities. Mechanisms used to manage this type of

dependency range from simple notification given when the producer activity has

completed its work and the consumer activity can begin, to explicit sequencing

and tracking mechanisms to ensure that producer activities in a process complete

their activities according to a schedule. Techniques using schedules such as

PERT, GANTT charts and critical path methods are often used in organizations to

help synchronize multiple activities and complex prerequisite structures (PMI

2001). The actions of scheduling and monitoring the status of „deliverables‟, and

taking appropriate measures to ensure that the scheduled inter-activity delivery

dates are met is a common coordination method.

17

The coordination of the transfer dependency (where the actual transportation of

the deliverable to the consumer activity takes place) has been greatly enhanced in

recent years for PD with the widespread use of electronic documents that can be

transferred almost instantaneously (Sweat 2001). In addition to simply

transporting things or information, managing the transfer dependency also

involves storing things being transferred from one activity to another. For

instance, information is typically „stored‟ as it develops prior to undergoing the

process of communication. Much like the transfer of goods, there is the equivalent

of an „economic quantity‟ below which the cost of preparation of information for

communication is too high relative to the amount of information being

transferred. Similarly for the receiver, there is an economy in receiving the right

information at the right time. Receiving information before it is required requires

the user to invest time in examining it before it can be used, and receiving

information too late often leads to a slowdown or outright stoppage of work

requiring it. These factors need to be managed in the sense that decisions must be

made as to how often to transfer developing information from the point of view of

both the sender and the receiver.

Other dependencies that occur in a producer/consumer relationship between

activities remain largely unaffected by enhancements in the ability to transfer

information, namely the usability of the information provided. Here, common

coordination mechanisms are: (i) standardization or creation of uniformly

interchangeable outputs in a form that users already expect; (ii) users of the

supplied items are asked what characteristics they want; (iii) participatory design

or having the users of a product actively participate in its design. The concept of

concurrent engineering is a special case of managing the usability dependence,

applied in Table 2-2 to dependency between design and manufacturing.

Coordination to ensure and facilitate usability in engineering design must be

related to the output delivered from one activity to another, which is information.

Standardization can refer to having reports and drawings in a standard format and

using well defined nomenclature so that the information is easily found and

18

understood. With the advent of electronic formatting of reports and drawings, this

standardization can take on easily searchable forms that can be retrieved by

computers. Information in the form of numeric or graphical data can be issued in

a format that is directly usable by the downstream activity or at least in an agreed

upon format that can then be manipulated electronically by the downstream

activity. For instance, in the case of the design of an object that has forces

imposed on it by its motion through the air, often the external shape is analyzed to

determine the aerodynamic loads. The data describing the external surface of the

object is typically generated using 3D modelling software. This data can be more

readily used in computational fluid dynamics analysis software, if the format is

translated appropriately.

Another basic dependency is that of simultaneity constraints. This can be regarded

as a special case of the producer/consumer dependency if we consider that a

producer/consumer relationship can be mirrored to one of reciprocal dependency,

where the producer is also a consumer and vice versa. In this case there needs to

be some kind of synchronicity between the activities in order to insure that the

final result is satisfactory. This type of dependency is commonly encountered in

design problems.

Task/subtask dependencies occur when a task is broken down into a group of

activities that are subtasks for achieving the overall goal. There are, in general,

many ways a given goal can be broken into work tasks, and a long-standing topic

in organization theory involves analyzing different possible decompositions such

as by function, by product, by customer, and by geographical region (Mintzberg

1979). In product development processes there is often a breakdown of the design

task into subtasks based on engineering discipline (such as aerodynamics, stress

analysis, etc.) as well as into different subassemblies or subsystems of the product

(Pahl and Beitz 1996).

Coordination theory builds upon the fundamental types of dependency and

mechanisms of coordination, and catalogues the specialization of processes that

19

are examples of these fundamental mechanisms in various scenarios. Here, we

speak not only about the tactical coordination or action taken during the execution

of a process to ensure that each subtask reliably has what it needs, when it needs

it. Coordination is also strategic, where the structure of a process, the information

processing and decision-making mechanisms are designed so that the execution of

each subtask can take place in concert with the others with minimum effort and

minimum delay.

2.3 Engineering design

In this thesis we are concerned with a particular activity, the development of a

complex product and more specifically the engineering tasks associated with such

a product. In a classical work on the methodology of engineering design (Pahl and

Beitz 1996), the authors laid out what are, in essence, strategic guidelines and

split the design process into four main phases:

 Product planning and clarifying the task (collecting information about the

requirements that have to be fulfilled by the product and also about the

existing constraints and their importance)

 Conceptual design (determination of the specification of principle by

abstracting the essential problems, establishing function structures,

searching for suitable working principles, and then combining these

principles into a working structure)

 Embodiment design (often called layout or draft design. Here, variants that

meet the specification of principle defined in the conceptual design phase

are evaluated against technical and economic criteria. By appropriate

combination of ideas and solutions the best layout is obtained)

 Detail design (in this phase the arrangements, forms, dimensions, surface

properties of all of the parts are determined, materials are specified,

production possibilities assessed, costs estimated, and all drawings and

production documents produced).

20

The process is shown graphically in Figure 2-5. Note that iteration between the

phases is described in recognition of the evaluation and feedback that takes place

at each stage. This however does not portray what occurs within a phase, where

much of the work of design consists of proposing solutions for specific design

problems, and evaluating whether or not the solutions meet the criteria developed

for the design problem. This aspect of the design process is discussed in the next

section.

The complete product and each subsystem or component that is being developed

has its own design process that generally follows the four mentioned phases. At

the end of each phase, a design review is typically conducted to decide if the

development has met the solution criteria. This design review is an opportunity to

provide feedback and to synchronize the work of all those participating in the

design. A result of the design review is a decision to continue to the next phase or

to return to a previous phase with revised or clarified input information.

In the following sections several important aspects of engineering design are

discussed.

21

Figure ‎2-5 Pahl and Beitz‟ (1996) model of the engineering design process

2.4 Iteration in engineering design

It has been observed by many researchers that complex engineering design

processes are often iterative, e.g., (Kline 1985; Peters 1986; Whitney 1990;

Susman 1992; Fredriksson 1994; Safoutin and Smith 1996). Design iteration

implies rework or refinement of activities to account for changes in their inputs

22

(Browning 1998). These changes can come from additional or changed

information or failure to meet design objectives (Smith and Eppinger 1997). New

information comes as an input to an activity from:

a) previously worked (upstream) activities changing their outputs, often as a

result of a change in externally supplied requirements or assumptions

b) concurrent, coupled activities changing shared assumptions

c) subsequent (downstream) activities feeding back changes as errors or

incompatibilities are discovered (Eppinger, Whitney et al. 1994).

Note that these three cases are all in fact consequences of the dependency of

information between activities, where an „activity‟ in a design process may also

be a decision about whether or not a design solution meets set out criteria. The

difference between the cases is the sequence in which the activities are executed

relative to each other.

In particular, coupled activities must iterate as indicated in b) as the only means

by which to arrive at a solution that will satisfy the requirements of each activity.

An example of this is in the design of an aircraft where the aircraft‟s external

shape determines the aerodynamic loads at each part of its mission profile, which

determines the loads on the structure which in turn determine the structural design

of the aircraft and ultimately influences its external geometry.

The design cycle for an aircraft typically begins with a proposal for an external

shape that is expected to meet the aerodynamic, stability, and structural

requirements. Upon verification of the stability and aerodynamic analyses, it may

turn out that some change must be made to the proposed shape in order to meet all

of the requirements or to optimize the aerodynamic or flight performance of the

proposed configuration. A detailed calculation of the loads may then lead to

another modification to the shape in order to provide sufficient structural strength

to withstand the loads under certain flight conditions.

Thus, an iteration loop takes place which may converge rapidly or not, and this

depends on the knowledge possessed by the organizational elements working on

23

the design and analysis activities about the type of aircraft configuration being

developed. Note that here the discussion is not how long or how much effort is

required to perform the design and analysis activities, which is dependent on other

issues such as the innate difficulty of the design and analysis tasks, but rather the

number of times that the reciprocally dependent activities need to iterate with

interim information before a satisfactory solution is achieved. A design team that

is experienced with a particular type of aircraft is able to make its initial design of

the external shape so that it requires very little modification after analysis of

aerodynamics, loads, and stress, because the team understands well how to

balance the requirements of each of these disciplines and the requirements for the

new design. If either the design group is less experienced or the new product

design is of a different type with which the design group has no experience, it is

more likely that the results of the analyses will lead to more redesign of the initial

external shape. This „newness‟ of a design problem relative to the design

organization‟s capabilities is another characteristic of product development

processes called uncertainty and is discussed further below.

Processes can be characterized as possessing a goal and a set of constituent

actions which act to complete an outcome that instantiates the goal. Process

incrementation is the sequential performance of constituent actions that results in

the incremental completion of an outcome. Repetition is a specific pattern by

which a process may incrementally move toward an outcome. However, most

definitions of iteration in engineering design suggest that it consists of more than

repetition, but rather it is associated with the improvement, evolution, or

refinement of a design (Eppinger, Nukala et al. 1997). This characterization

suggests a process that achieves a succession of intermediate improvements on

the way towards a final outcome rather than a strictly incremental process that

arrives at a single final outcome. Safoutin (2003) refers to this latter type of

iteration as progression. Progression is a pattern of successive completion of

intermediate outcomes. Feedback is an evaluation of an intermediate outcome

generated in a progressive process relative to the goal. When progression iteration

24

is guided by feedback regarding the fitness of intermediate outcomes, it is referred

to as feedback iteration. These latter three concepts are commonly associated with

iteration in engineering design, leading to the recognition of three varieties of

iteration: repetition, progression, and feedback (Safoutin 2003).

The partitioning of engineering design into phases as indicated in Figure 2-6 is an

illustration of a progressive process that generates intermediate outcomes.

Contrast this with an incremental approach in which each required function of a

product is successively conceived, laid out, and finalized (Figure 2-6(a)). The

progressive approach allows for intermediate design reviews during which a

decision can be made with the entire product system in mind as to whether or not

the intermediate versions of the design are suited to the requirements and whether

or not to continue forward or to perform rework of an earlier phase (Figure

 2-6(b)). Clearly there are advantages to considering the impact of a design

solution of a component on the overall product as early as possible before

continuing to flesh out the design in greater detail.

Figure ‎2-6 (a) Incremental and (b) progressive approaches to design (Safoutin 2003)

2.5 The effect of uncertainty in engineering design

There are several definitions of the term uncertainty mainly due to the fact that

different types, causes and sources of uncertainty co-exist (Thunnissen 2004).

25

Perhaps one of the main distinctions regarding uncertainty in engineering design

is between the lack of knowledge (epistemic) and stochastic (aleatory) uncertainty

(Oberkampf, Helton et al. 2004). Epistemic uncertainty is derived from ignorance

or incomplete information. Some epistemic uncertainty is reducible, for instance,

via further studies, measurements or expert consultation. Stochastic uncertainty

describes the inherent variation associated with a system or environment such as

dimensional variation in a production system, the variation in design task

duration, or an unexpected change in product requirements originating from the

customer. This aleatory uncertainty cannot be reduced through more information

or knowledge acquisition during the design process. Although gaining knowledge

about variability may allow its influence to be mitigated through the design of

systems that are adaptable, robust, flexible, etc. (Chalupnik, Wynn et al. 2009). In

the engineering design process, it seems intuitive that the influence of variability

may be managed through frequent information exchange between dependent

activities, and one of the purposes of the analysis in this thesis is to determine the

conditions under which this is most effective.

Drawing on the literature (Browning 1999; Grebici, Wynn et al. 2008), many

components of uncertainty applicable to engineering design processes have been

identified. However, many of these are related to the interdependence of design

activities and to the lack of synchronicity of developing information, and as such

we can classify them as „derived uncertainty‟.

Fundamentally, if we view PD as a process of generating information that reduces

uncertainty (Browning and Ramesh 2007), the rate of progress of the information

developed by a task in PD is affected by how it reduces epistemic uncertainty.

Furthermore, since by definition epistemic uncertainty in a task is reduced by

increasing knowledge, it is argued here that progress in a task is a function of the

amount of work done in the task and the input information it has received. This is

evident since the means by which knowledge to complete a task is increased is

through the information received and the work done to develop this information

through analysis, testing, and research.

26

The aleatory uncertainty of information developed in a task and in the input

information is always present and its influence must be taken into consideration.

The other components of uncertainty occur as the design process unfolds based on

the interactions of the elements participating in the process. In the product

development model proposed in this thesis, these „derived‟ aspects of uncertainty

should be emergent in a process model that incorporates the dynamics of the

interactions.

Two components of uncertainty within the design process were identified for

inclusion in a model of the engineering design process (Suss, Grebici et al. 2010).

Each of these aspects has influence on the iterative behaviour of design tasks.

 Imprecision: Aughenbaugh, Matthew et al. (2006) define precision as the gap

between certainty and a decision maker‟s present state of information, i.e., the

information currently available for decision-making. As design decisions are

made, imprecision tends to be progressively reduced until a final, precise

value is determined (Antonsson and Otto 1995). The need for greater

precision justifies application of more sophisticated design tools and methods,

and this may require progressively greater effort.

 Instability: More unstable descriptions are more likely to change and

instability may be increased by events which increase the likelihood that

rework is required. This component of uncertainty accounts for the gap

between certainty and a state of precise information.

The term „process progress‟ is similar to the term „work state‟ (Carrascosa,

Eppinger et al. 1998); these terms refer to the proportion of task completion.

Wood, Antonsson et al. (1990) propose that as a design progresses, the level of

design imprecision is reduced, although a degree of stochastic uncertainty usually

remains. Having a high level of confidence in design information means that the

information is detailed, accurate, robust, well-understood, and physically realistic

(O‟Donovan, Clarkson et al. 2003). Also, progress in a design process refers to a

27

process that achieves a succession of improvements or refinements on the way

toward the final outcome (Safoutin 2003).

Hykin and Laming (1975) refer to work progress as a process in which the level

of uncertainty in the artefact is reduced as the design progresses. We incorporated

this reasoning in our model in the way in which we calculate the variation in

uncertainty with the state of progress in a task. Since the reduction in epistemic

uncertainty in a task is due to the learning or discovery of information required to

complete the task, we would expect to find it to exhibit a slower rate of change at

the beginning and end of the task (Ritter and Schooler 2002) as in a sigmoid or S-

shape function. According to Carrascosa, Eppinger et al. (1998) the S-shape is the

best shape function to represent task completion as it embodies a growth

phenomenon similar to learning.

Here, a type of sigmoid curve called the Gompertz function is used to model the

reduction in epistemic uncertainty as a function of work progress because of its

flexibility in allowing for different rates of approach to the lower and upper

asymptotes at activity start and end. The work progress curve can be transformed

into an uncertainty reduction curve by subtracting the Gompertz function from its

upper asymptote (discussed further in Chapter 3).

2.6 Quality in product development

ISO 9000 defines quality as “the degree to which a set of inherent characteristics

fulfills requirements.” The American Society for Quality defines quality in

technical usage as “the characteristic of a product or service that bear on its ability

to satisfy stated or implied needs.”

Under the conventional paradigm, higher quality in PD can be achieved only at

the expense of increased development expenditures and longer cycle times

(Harter, Krishnan et al. 2000). However, an alternate view is that quality, cost,

and cycle time in PD are complementary, i.e., improvements in quality directly

relate to improved cycle time and productivity (Nandakumar, Datar et al. 1993).

These improvements in quality are thought to arise from reduced defects and

28

rework in a mature
1
 product development process (Harter, Krishnan et al. 2000)

and better knowledge sharing, acquisition, integration, and application in new PD

processes (Jing and Yang 2009).

2.7 Concurrent engineering

Concurrent engineering is one of the most influential, recent methods used in PD

for reducing the span time of the process (Krishnan 1996). Concurrent

engineering actually refers to several concepts: the idea of increased functional

interaction in early activities; the overlapping of activities that normally are

sequential; and the parallel execution of interdependent activities that require

deliverables from each other. In the context of coordination theory, concurrent

engineering is a coordination mechanism that can help to manage the

producer/consumer dependency.

Research work on simple generic PD processes has studied various aspects of

concurrent engineering in the effort to determine the parameters that lead to

successful PD with reduced span time. This research has led to insights about the

relation of the rate of upstream evolution of information and the degree of

downstream sensitivity to change for the overlapping of activities (Figure 2-7 and

Figure 2-8) and the importance of timely information exchange (Ha and Porteus

1995; Krishnan, Eppinger et al. 1997). This model states that “if the evolution of

the upstream information is such that large changes were to happen near the

completion of the upstream activity, then it would be difficult to reduce the lead

time by overlapping, . . . , low sensitivity describes the case when substantial

changes in the exchanged information value used by the downstream activity can

be accommodated quickly by the downstream activity.” The concept of evolution

of information used in Krishnan‟s model is roughly equivalent to the rate of

reduction of uncertainty discussed in the previous section. If uncertainty is

1
 Process maturity is defined by CMMI (Capability Maturity Model Integration) by the Software

Engineering Institute of Carnegie Mellon University, http://www.sei.cmu.edu/cmmi/research/.

29

reduced quickly, the information generated by the task evolves quickly towards its

final value.

Figure 2-7 Upstream information evolution at the fast and slow extremes (Krishnan 1996).

Figure 2-8 Downstream sensitivity at the high and low extremes (Krishnan 1996).

Other work has analyzed the relationship of functional interaction and

overlapping of activities on effort and total span time (Bhuiyan, Gerwin et al.

2004). Studies have focused on the mechanisms of iteration and rework that occur

30

in PD as a result of the interdependencies of design activities (Smith and Eppinger

1997).

2.8 Complexity of engineering design processes

In the context of product development and engineering design processes,

complexity is best defined in terms of systems theory. A system is defined as a

collection of elements that act and interact together toward the accomplishment of

some logical end (Schmidt and Taylor 1970). By this definition a product

development process is one type of system where the elements are the tasks,

subtasks, resources, and developing information.

A complex system is a system composed of “a large number of parts that interact

in non-simple ways, …[such that] given the properties of the parts and the laws of

their interactions, it is not a trivial matter to infer the properties of the whole”

(Simon 1969). A product is complex when it has many interconnected parts, there

are many dependencies between the parts, and these dependencies interact in

numerous forms of relationships. The design process of a complex product is

itself complex in that there are many activities to be performed that are

interconnected through many and various dependencies of information.

The management of a complex process is challenging because of the difficulty of

being able to predict what levers available to managers can produce the desired

effects in the overall process. For example, if a project is behind schedule the act

of adding resources to the activities that are late is often the response of a project

manager. However, studies have shown that the addition of more people may add

to the workload of the people already working on an activity since they have to

instruct the newer people on what needs to be done while at the same time the

new people are not yet effective (Black and Repenning 2001; Ford and Sterman

2003). Thus, adding more resources can initially cause a delay and if the activity

is a provider of information to other activities this delay is likely to lead to ripples

of delay throughout the project which may lead to eventual project failure. Thus,

without a view of the interaction between elements of the system or a „system

31

view‟ management actions may inadvertently exacerbate the problem or push a

schedule problem into another category, such as cost or performance.

2.8.1 Design structure matrix (DSM)

PD processes can be more easily understood by applying some of the methods

used in analyzing other complex systems. A useful system modeling tool that has

been applied to PD is the design structure matrix (DSM) (also known as decision

structure matrix, dependency structure matrix, dependency source matrix, and

dependency structure method). It is similar to other tools such as dependency

map, precedence matrix, reachability matrix, N2 diagram, and others.

The DSM is a visual representation that simply and concisely highlights

interactions and facilitates predicting their implications in complex systems. With

the use of matrix manipulation techniques DSM can also be used to perform

several types of analyses of a system. Whereas these matrix tools have been used

for many types of systems and analyses (Danilovic and Browning 2007; Collins,

Yassine et al. 2009; Karniel and Y.Reich 2009), here, we are concerned with

using an activity based DSM for a complex PD process.

Figure 2-9 shows an example of an activity based DSM for a process made up of

7 tasks or activities arranged in order of execution. The marks in the cells indicate

the dependencies between each pair of tasks. Reading along the row for task 1 for

example, the DSM shows that task 1 provides output to task 2, task 3, task 5, and

task 6. Reading down column 3, the DSM shows that task 3 receives input from

task 1, task 2 and task 5. Similarly, task 6 receives input from task 1, task 4 and

task 5.

Therefore, one can see that marks above the diagonal represent feed forward

relationships and marks below the diagonal represent feedback. If the tasks in the

figure represent those in an engineering design process, then the matrix shows the

flow of information from one task to another. Some of the tasks can be those of

analysis, some can be testing, and some can be decisions. Iteration loops can be

observed where there are tasks that are reciprocally dependent such as tasks 2 and

32

task 3, task 5 and task 3, and task 7 and task 2. There are loops of dependency

such as 2-3-4-5-2 by virtue of the interdependence between tasks 2 and 3 and 2

and 5 and the sequential dependency of task 4 on task 2 and task 5 on task 3.

For a PD process, DSM is useful in visualizing the process and the information

flow. Contrast this view with the typical flow diagram for the same process shown

in Figure 2-10. It is much more difficult to visualize the dependency relationships

between the tasks. The process DSM is useful for this reason in managing

interfaces, analyzing and improving processes, highlighting iteration and rework,

and as an aid in knowledge management.

Figure ‎2-9 An example of an activity based DSM

The marks in the cells of the DSM only indicate that there is a dependency

between a pair of tasks. However, numerical DSMs have been used for various

purposes such as analyzing cost, schedule, and risk, where numbers have been put

in each cell representing relative strength of the dependency.

The dependency types illustrated in Figure 2-1 are easily identified in a task-task

DSM. The pooled tasks, also called independent in that they do not need any input

from other tasks, are easily identifiable as those with no marks in the column of

the matrix corresponding to the task (task 1 in Figure 2-9). If a group of tasks in

33

the project are sequentially dependent, the order for most efficient execution of

these tasks is easily determined by sorting the rows and columns in the matrix so

that all the non-zero elements are in the upper triangle. This indicates the

sequence in which tasks should be executed so that the information required by

each task is available for it before starting.

Figure ‎2-10 Flow diagram for the process in Figure ‎2-9

If some tasks in a project are reciprocally dependent, matrix manipulation can

group the tasks involved in the same reciprocally dependent cycle into a cluster or

block around the diagonal of the matrix. The task ordering, thus determined,

indicates the most efficient sequence of tasks to minimize the process length, i.e.,

reduce the number of tasks not reciprocally dependent in between the sequence of

tasks that are reciprocally dependent. In this way, tasks that are sequentially

dependent or independent can be performed either before or after the block of

reciprocally dependent tasks (Steward 1991).

In practice, the DSM of a PD process is quite sparse since generally there are

many tasks that have no direct links to many other tasks. An analysis of

dependencies between tasks can highlight the critical loops of reciprocally

34

dependent tasks and focus process improvement for greater coordination of the

work of these tasks.

2.8.2 Simulation

A model or abstraction of a system we wish to study can be created in which

aspects of the system are represented by simplified elements. If the system‟s state

is time varying, a model can be built that incorporates the dynamic behaviour of

the system with the use of simulation. The technique of simulation can be used to

allow the various elements in a system to be represented within their bounds

while preserving the interconnections between the elements.

If there is more than one behaviour possible for some elements in the system, and

we can infer the likely behaviour, we can use a non-deterministic or stochastic

model to provide the relationship of the behaviour of these elements with time.

Simulation of a particular scenario using a stochastic model can be performed

using computers to generate performance characteristics of the system under

various conditions. Statistical data can then be gathered to predict how, on

average, a particular system behaves under the particular tested conditions.

It is the complex combination of events that occur, brought about by the response

of the various elements of the system and their interconnections, that make the

understanding of product development difficult. In the next chapter the model

built to achieve this understanding is described.

Simulation models of the information processing in PD have been developed

(Levitt, Thomsen et al. 1999; Bhuiyan 2001). This work highlights the power of

simulation in studying overall project performance as a function of various input

parameters. In these simulations, the specific behaviour of actors was

stochastically modeled with probabilities at decision points based on expected

behaviour. The probability distributions of the likely behaviour of actors in the

modeled process were hypothesized based on observations of behaviour in

existing organizations engaged in developing products. These choices determine

the behaviour of actors as the simulation unfolds for variations in events such as

35

in quality, decisions, coordination time, communication patterns, delegation of

authority, as well as the frequency of occurrence of exceptions. The simulation

generates emergent, aggregate project behaviour as actors carry out direct work,

coordination work, and rework.

2.8.3 System dynamics models of PD

Analysis of PD using system dynamic principles to model the stocks (backlog)

and flows of workload is a subject of research predicting the potential instability

of PD where the process does not converge and where the workload can actually

increase as time goes on (Ford and Sterman 1998; Mihm, Loch et al. 2003). The

delays in information transmission and the rework caused by changes in

interdependent processes are among the causes of oscillations in workload. A

mathematical analysis of workload in PD using the DSM and system dynamics

applied to a case study in the automotive industry showed the value of this

approach in providing operational insights that explicitly captured the

fundamental characteristics of a development process (Yassine, Joglekar et al.

2003). This analysis showed that accelerating the synchronization frequency for

the specific tasks that contribute the most to slow convergence of the development

process was more effective than accelerating the frequency of synchronization for

all the tasks. The use of system dynamic methods to analyze collaborative PD

systems points out the effects of problematic areas and possible coordination

mechanisms that can be used to mitigate them.

2.9 Communication and system level integration

One type of collaborative PD is a series of multi-phase design processes linked

via the original equipment manufacturer (OEM) which is acting as the system-

level integrator of the various sub-systems. The role of a system level integrator

is to ensure that the design work being done by development teams on the various

subsystems functions together correctly as a product. The system level integrator

transmits requirements to and receives information and requests for information

from local level development teams (Yassine and Braha 2003). Communication

36

directly between local level development teams can also occur and is often

informal and unscheduled. The rate at which this information is received,

processed and transmitted between the system level and the local teams is an

important element in the rate of progress of the overall design process (Mihm,

Loch et al. 2003; Yassine, Joglekar et al. 2003). Drawbacks of this scheme are the

tendency for communication channels to become overloaded and thereby cause

delays in the progress of the project and decisions being taken by default by actors

who lack requisite information usually obtained through hierarchical channels.

Information management in large scale engineering design is difficult and

challenging for a variety of reasons as described by Eckert, Clarkson et al. (2001):

diversity of channels, scale, variety of perspectives, and uncertainty. Evidence of

a multitude of influences on the lack of coordination that are manifested in an

apparent communication problem is discussed in a study by Maier, Kreimeyer et

al. (2008). There, we see that the interaction of communication with planning and

product complexity leads to wasted effort and rework in the case of automotive

product development. Apparently, there is more to communication than

information flow.

2.10 Models of product development

Wynn (2007) has developed a useful framework to organize the wide range of

published models of the design and development process. The models are

classified as using abstract approaches, procedural approaches, or analytical

approaches to modeling and/or improving the design process.

Abstract approaches describe the design process at a high level of abstraction.

This research is relevant to a broad range of situations, but does not offer specific

guidance useful for process improvement. The abstract models can provide useful

insight however, since they are concerned with the iteration which is ubiquitous in

design.

Procedural approaches are more concrete in nature and focus on a specific aspect

of the design process. They are less general than abstract approaches and can be

37

more relevant to practical situations. These are further classified by Wynn (2007)

into design-focused approaches in support of the generation of better products by

the application of prescriptive models and methods to the design process (Pahl

and Beitz 1996), and project-focused approaches which advocate methods to

support or improve management of the design project, project portfolio or

company (Pugh 1995; Hales and Gooch 2004).

Analytical approaches are used to describe particular instances of design

processes. They consist of two parts: a modeling framework used to describe

aspects of a process; and techniques, procedures or computer tools which make

use of the representation of the process to support investigation or improvements

to that process. These approaches aim to provide insights and advice that may be

used to plan a design process and to guide daily decisions made by design

managers. Wynn (2007) goes further to classify models as task-network, queuing,

multi-agent, and systems dynamics. He also describes the models as being

activity, information, or actor focused.

The model used in this dissertation falls under the analytical approach in this

classification of product development models in that it attempts to provide

insights that may be used to plan, analyze and thereby improve a product

development process with a particular level of uncertainty and task

decomposition. As described in chapter 3, the model represents a task network

with queuing, and is information focused with activity and actor focused

components.

38

3 Description of the Model

In this chapter the creation of a product development model is described in detail.

To begin with, precise definitions of the terms product development, process,

model, system and simulation are given.

3.1 Definitions

3.1.1 Product development (PD)

Product development is an undertaking comprised of the various multi-

functional activities done between defining a technology or market opportunity

and starting production. The goal of PD is to create the „recipe‟ for producing a

product (Reinertsen 1999). Thus, the output of product development is not

products, which are physical objects, but rather information. The distinction

between information and objects is important. Information is the product of PD

and it is what is being „manufactured‟ in the sense that it is partially developed

information that flows from task to task as the information „product‟ is being

made in the PD process. Thus, in an analogy to the analysis of material flows in a

manufacturing processes, we analyze the information flow in the PD process with

the caveat that a PD process has some important differences. In manufacturing,

flawlessly doing the same thing twice in a row is a success; on the other hand,

flawlessly doing the same thing twice in a row in PD is a failure since duplicating

a recipe adds no value. Whereas many business processes seek an identical result

repeatedly, PD seeks to do something new, once; PD involves creativity and

innovation and is nonlinear and iterative (Kline 1985).

The information required by and exchanged between design tasks in PD can take

different forms. However, here information flow is considered to consist of the

following types of information:

 design information which can be specified directly, e.g., materials and

geometry,

40

 performance information which is a consequence of design information,

e.g., fatigue life and weight, and

 requirements which may constrain design or performance information,

such as the requirements that the geometry of a component has to fulfil to

meet the overall performance of the whole product.

This follows the approach of others that have worked on analysis of information

exchange in design processes (Krishnan, Eppinger et al. 1997; O‟Donovan,

Clarkson et al. 2003; Bhuiyan, Gerwin et al. 2004).

3.1.2 Process

A process is “an organized group of related activities that work together to create

a result of value” (Hammer 2001). It is a sequence of interdependent and linked

procedures which at every stage consume one or more resources to convert inputs

into outputs
2
. The work on any project follows a process.

Product development (PD) is a complex process that is inherently iterative and

has significant uncertainty (Browning, Fricke et al. 2006). In PD there is

uncertainty about what the initial requirements leads to in terms of technical

requirements, about whether or not a proposed design solution performs as

required under all conditions, about which activities should be done in order to

validate the design solution, how much time and effort performing these activities

are required, etc.

Unlike typical business or manufacturing processes, PD involves iterations of

invention or innovation and validation, and as such it is not a linear series of

prescribed steps that if followed infallibly lead to the required result. However,

there is some repeatable structure or pattern to the process that has been observed,

as described in 2.3 above. Any work done to produce a result has a process (the

way the work gets done), though perhaps not a process model (an abstract

description of the way the work could or should get done).

2
 http://www.businessdictionary.com/definition/process.html

41

Processes could be regarded and treated as systems in order to be able to engineer

them purposefully and intelligently, facilitated by useful models (Pajerek 2000).

3.1.3 Model

A model is an abstract representation of reality that is built, verified, analyzed and

manipulated to increase understanding of that reality. Models can be tacit mental

models or be codified (Ford and Sterman 1998). “All models are wrong, but some

can be useful” (Box 1979). A useful model can provide insights usually only

available through costly experience, and it is helpful in making predictions and

testing hypotheses about the effects of contemplated actions in the real world,

where such actions are too disruptive or costly to try (Browning, Fricke et al.

2006). Here, we are interested in a model that can help represent, understand,

engineer, manage, and improve complex PD processes.

3.1.4 System

A system can be defined as a collection of elements that act and interact together

toward the accomplishment of some logical end (Schmidt and Taylor 1970).

Elements in systems possess certain characteristics or attributes that can take on

logical or numerical values. Typically, the activities of these elements interact in

time and cause changes in the state of the system. The state of a system is in

principle defined by the values of the collection of all of the variables that

describe the system at a particular instance. For example, if the system that we

were observing was a bicycle, we might say that its state could be defined by the

rotational velocity of the wheels or the vector defining the velocity of its center of

mass. We could also add the temperature of the bicycle or its position on a map

into a description of its state. Its state could be further described by adding

variables describing the viscosity of the lubricant in the wheel bearings or the

number and type of each of the microscopic impurities in this lubricant. A

complete description of the state of this system would include many other

variables on the microscopic, and smaller scales.

42

In practice, the state of a system is modeled by defining variables whose values

can approximate the state of the system at any time relative to the objectives of

the study. The collection of elements that comprise a system of one study might

only be a subset of the overall system of another. Examples of systems are

machines, biological organisms, ecosystems, companies, hospital emergency

wards, etc. A basic tenet of systems engineering is the interconnectedness

between the various elements of the system and the necessity to consider these

connections when seeking to make changes to the system‟s operation or design.

Thus, we recognize that there is a process being performed when developing

products and we regard this process as a system of elements that interact together

to create the information needed to produce the product. The elements in this

product development system are the resources, tasks, and created information.

Presented in this thesis is a useful model that describes the behavior of a product

development system in sufficient fidelity to predict the dynamics of the flow of

information and resource use such that the span time and effort of a development

project may be calculated for a given scenario.

3.2 The product development process as a system

A PD system is complex and its state changes with time. The changes of state

variables are often stepwise. For example, the receipt of information in a

particular task can trigger a change in the state of the task from idle to working;

the making of a decision can trigger a beginning of work in a series of tasks; the

completion of one task triggers the event that a resource stops working on one

task and begins another. Since these changes happen in very short time frames,

they can be modeled as if they occurred instantaneously and that the system

changes state in discrete steps triggered by specific events. Some other changes in

state of the system are triggered more gradually; for instance, the completion of a

task occurs when the amount of work done has reached a certain value which is

approached in a piecewise continuous fashion over time. The task completion

event may trigger a stepwise change in another variable.

43

In complex PD systems, it is evident that there is not always the same

consequence or new state evolving from any given state. For example, in one

particular instance a development team may require 1000 man hours to complete

a specific analysis task of the aerodynamic performance of a wing design. Under

the same conditions, but on another occasion, the task completion may not occur

at 1000 man hours since the same team may require a different number of man-

hours to complete the task. This may be due to many factors, such as subpar or

exceptional performance of one of the members of the team for a certain period of

time that affects the performance of the whole team, or some imprecise

information being received about the design parameters of the product, which is

later corrected, but causes some rework of the analysis to be done. The PD system

as we define it does not include what occurs outside the boundaries of the system

(for example, the personal activities of the personnel participating in a PD

process), but may affect their performance within the system, and thereby, the

performance of the system. Since we cannot be sure of the precise consequent

state of the system given its current state, we classify the PD system as stochastic.

We can however make some assumptions about the probability of the consequent

state of the system based on observations of PD processes or other relevant

processes. For example, we may observe that under normal conditions, the time

required to perform the above mentioned analysis requires about 1000 man-hours.

We may also have observed that the analysis never requires less than 750 man-

hours and never more than 1250 man-hours. Without any further information we

can model the effort required to perform this analysis at any instance with the use

of a triangular probability density function (PDF).

In general, a PDF describes the relative likelihood for a given value of a random

variable to occur. In our example, the effort in man-hours to perform the analysis

in question is a random number. We cannot predict precisely at any instance how

long it will take to perform the analysis, but we can say what are the minimum,

maximum, and most likely amounts of time required. With this information and

the use of the triangular PDF we can choose a value from a sample of the

44

triangular PDF for each particular instance the model of the analysis process is

simulated. In effect, we use the inverse PDF to obtain a value for a particular trial

or simulation of the analysis because we have the knowledge that over many

trials, the trials follow the triangular PDF with the particular minimum, median,

and maximum values we had specified initially. The inverse PDF, also known as

the inverse probability integral transform or inverse transformation method, is a

basic method for generating numbers at random from any probability distribution

(Devroye 1986).

Due to observations of a particular behaviour we can create a stochastic model of

how a state variable in a system changes as a result of the passage of time or an

event. Then, by allowing the modeled system to evolve from one state to the next

under these assumptions of probability, and repeating this process many times, we

can observe the statistics of how the modeled system behaves and draw

conclusions about how this behaviour is affected by various conditions.

3.2.1 Dynamic systems and simulation

Systems whose state changes with time are called dynamic systems. If we were to

know the value of all of the variables defining the state of a system at a particular

time, and the evolution rules by which each of the variables changes from one

state to the next, we may be able to predict the state of the system as it evolves

from state to state until some point in the future.

The evolution rules for state variables in a PD system are not linear with time, but

are greatly influenced by the values of other state variables at the current state and

in previous states. This is because of the interdependencies between tasks in a PD

process. So, in order to predict how the state variables of such a system evolve

with time we need to simultaneously solve for the evolution of the state variables

as time progresses. Furthermore, as described in the previous section, since the

consequent state of the PD system given its current state is stochastic, we must

solve this system multiple times in order to get a statistical sample of the results

we wish to examine. This sample must be sufficiently large to give results within

45

the confidence limits we impose (a more detailed description of confidence limits

is given in section ‎4.1).

Simulation is a technique by which a calculation of the state variables can be done

starting with an initial state. From the initial values, the evolution rules of the

system (which must be previously derived as part of the model of the system) are

used to calculate the value of the state variables of interest in the next state. For

anything, but the simplest of systems, this calculation is laborious and is one of

the reasons that non-linear systems are often simplified into linear systems for

which closed form equations can be formulated and solved. With the use of

computers this technique can be automated and the changes in state of non-linear

stochastic systems can be simulated over long periods of virtual time in

reasonable amounts of real time.

Simulation methodology is similar to deductive theory development in that

outcomes follow directly from assumptions made, but without the constraint of

analytic tractability (Harrison, Lin et al. 2007). It also resembles inductive

reasoning or empirical analysis in that relationships among variables may be

inferred from analyzing output data (Carley and Lin 1997), even though this data

is obtained from simulations rather than real world observations. Simulation can

show that the process modeled can produce certain types of behaviour (Lant and

Mezias 1992), can discover unexpected consequences of the interaction of simple

processes (Carroll and Harrison 1994), can explain the mechanisms causing

observed behaviour (Mark 2002), and can be used to suggest a better mode of

operation of a process.

Of course, the question of how the simulation relates to real world behaviour must

be addressed. This is referred to as model grounding, and there are several

possibilities discussed in the literature (Harrison, Lin et al. 2007). The model‟s

processes could be based on empirical observation, either the functional forms or

the parameter settings or both. In many cases empirical estimates are not

available, but empirical work can still provide much information for model

46

construction, and variations and sensitivity analysis can be used to examine the

robustness of the results. Empirical grounding can also be established through the

results of the simulation, either through comparison with observations of the real

systems, or to serve as a basis for subsequent observations of these systems.

Simulation can also be a valuable research tool even if the outcomes cannot be

assessed empirically. This is a form of discovery and is characteristic of much

theoretical work in both the natural and social sciences (for example, the

prediction of the existence of the neutrino by W. Pauli in 1931 using theoretical

methods, although there was no realistic means of observing this particle at the

time).

3.2.2 Discrete event system models

A discrete event model describes a system with a high level of abstraction and

with a continuous time base. In these models, during a bounded time span, only a

finite number of relevant events occur. These events can cause the state of the

model of the system to change, whereas in between events, the state of the

modeled system does not change. Thus, in these models, time „jumps‟ from one

discrete event to the next. This is unlike continuous models where the state of the

system may change continuously over time.

For many systems a discrete event model is appropriate for realistic representation

of the system‟s behaviour. An example of a simple system depicted in Figure 3-1

can be used to illustrate the important concepts. At a physical level the system

consists of a cashier serving arriving customers one at a time. Customers wait in a

line (queue) if the cashier is not available (serving another customer). In the

model, the state of the system is described by the state of the queue and the state

of the cashier. The queuing rule is first-in-first-out (FIFO) and individual

customers are assumed not to have any distinguishing features (such as what or

how many items they actually buy).

The state of the queue is modeled simply by its length, i.e., the number of

customers in the queue, an integer. The cashier can be in a busy or idle state. The

47

dynamics of the system is determined by: the arrival pattern of customers as

described by the PDF of their inter-arrival time; a PDF describing the time

required by the cashier to serve a customer; and the logical sequence of customers

progressing through the system under different conditions. For instance, if a

customer arrives and the cashier is idle, the processing of the customer‟s order

begins immediately; otherwise, the customer waits at the head of the queue until

the cashier is not busy. If there are other customers waiting in the queue, the new

customer gets behind the last person in the queue and advances in the queue until

the customer arrives at the head of the queue. Thus, the evolution rules of the

system from state to state can be described as logical expressions.

Figure ‎3-1. A single server queuing system

A simulation model has a static structure and a dynamic structure. The static

structure specifies the possible states of the model. The dynamic structure

specifies how the state changes over time. The static structure is usually described

as a collection of objects and their attributes. There are different approaches,

known as world views, for representing the dynamic structure of a model. The

following concepts are at the basis of the different world views (Cota and Sargent

1992).

48

 An activity is the state of an object over an interval.

 An event is a change of object state, occurring at an instant, that initiates

an activity not permitted to occur prior to that instant.

 An event is determined if the condition for event occurrence depends

exclusively on system time. Otherwise, the event is contingent (dependent

on system conditions).

 An object activity is the state of an object between two events describing

successive state changes for that object. Other events may occur, related

to state changes of other objects.

 A process is the succession of states of an object over a time span. This is

equivalent to the contiguous succession of one or more object activities.

In the event scheduling world view, a model describes for each of the events the

event‟s effect on the state and on the future behaviour of the system. This is

achieved by scheduling new events into the future.

An event scheduling simulation uses two (global) data structures. One contains

the state variables declared in the model. The other contains scheduled event

notices in an event list, ordered by increasing time and priority. When scheduled,

events are added to the queue at their appropriate time. Priorities are used to

choose between events occurring at the same time (collisions). The state variables

may be augmented by additional performance variables for calculation of minima,

maxima, mean, standard deviation, etc. of state variables and combinations of

them. Event scheduling operates by ordering (according to increasing time)

scheduled events in the event list and iteratively removing and processing the

head of that list until the list becomes empty. The event time of the event notice is

used to advance the simulation time. Depending on the event type of the event

notice, the appropriate event notice is invoked. This routine may modify the

system's state and schedule new events into the future by placing event notices in

the event list. As an example, part of the evolution of the state and event list

during a typical event scheduling simulation of the cashier/queue model is shown

in Figure 3-2.

49

Figure ‎3-2. The event scheduling simulation for the single server queuing system in Figure ‎3-1

(Vangheluwe 2008)

An event is described by the time at which it occurs and by a type, indicating the

logic that is used to simulate that event. In a discrete event model, the event logic

is parameterized, such that the occurrence of one event during the simulation can

create another event of type chosen during the course of the original event itself.

50

Typically, events are scheduled dynamically as the simulation proceeds. This

means that the occurrence of an event can create another event at a later time if,

for example, the value of one of the state variables set by a third event reaches a

certain value.

Single-threaded simulation engines based on instantaneous events have just one

current event. In contrast, multi-threaded simulation engines and simulation

engines supporting an interval-based event model may have multiple current

events. A processing thread in a simulation usually determines the sequence of

events simulating the behaviour of a component or an actor in the model. For this

reason, the processing thread in a simulation is also referred to as an entity. In the

simulation model developed here, there are entities that represent units of

information and entities that represent design tasks. Each of these entities follow a

unique execution thread in the simulation and will be described in detail in the

next sections.

In order to simulate a process that requires a resource, a processing thread must

associate itself with a resource object for the period of time required by the

process. In a multi-thread simulation, since a resource cannot simultaneously

perform two processes, the instance of the resource object must be exclusively

associated with one processing thread for the required period of time. Henceforth,

we refer to this as a processing thread „seizing‟ a resource. Once the process time

has ended, the processing thread „releases‟ the resource, thereby making it

available for other processes. If a processing thread or entity must seize a resource

before any other processing steps and the resource is occupied, it waits. As

illustrated in the single server example, in order to manage multiple entities

waiting for a resource, the concept of a queue is employed. Each entity is given a

priority attribute according to the queue rules and the entity with the top priority is

the one that seizes the resource when it is next available. The priority attribute is

set according to the rules for the queue (such as first-in-first-out, or last-in-first-

out for example) in accordance to the situation being modeled.

51

3.3 The model of the product development system

In the previous sections we have seen that the PD process can be thought of as a

system that is dynamic and stochastic, and that it can change state in a stepwise

fashion with the occurrence of discrete events. As described in 3.1.1 the

fundamental dependency between tasks in PD is the information generated by

some tasks that is required by others.

In PD, the process is completed when all of the tasks in the process have been

completed. For a given level of effort and a given number and choice of

resources, the manner in which the work is organized among the resources is

what determines the amount of time required to complete the process. It is the

“relationships among elements of a system that give systems their added value...

the greatest leverage in system architecting is at the interfaces” (Rechtin 1991). In

a process with dependencies between tasks, for a given level of effort and a given

number and choice of resources, the span time of a total process can be reduced

only if the dependencies between the tasks are better managed. Since the

dependencies between tasks in PD are information, improvements in the span

time of the process can be achieved by improving the information flow between

tasks.

In order to meet the objective stated in chapter 1 “develop a model of PD that can

be used to capture the impact of various coordination mechanisms on reduction of

span time under all potential scenarios,” we want to capture the details of the

information flow in a PD project that are affected by various coordination

mechanisms. The model we build should consider the fundamental dependencies

between tasks and capture the impact of the coordination mechanisms used to

manage these dependencies on PD process span time. These coordination

mechanisms, outlined in Table 2-2, deal with shared resources, various

consumer/producer dependencies (prerequisite, transfer, usability), simultaneity,

and task/subtask. Efforts to coordinate the PD process can be judged according to

how they facilitate the information flow between tasks that must be accomplished

to complete the process. It follows then that we must model the details of the

52

information flow between individual tasks and capture how the coordination

mechanisms employed affect this flow in order to meet the modeling objective

mentioned above.

Information develops during the work carried out in each task, and the attributes

of this information with regard to quality, precision, and stability evolve as the

task progresses
3
. Interim information that is communicated carries with it these

information attributes that are related to the state of the work in the task that

created it. This information, when used by other tasks has an effect on their

progress. If information is imprecise or unstable and if it is used as a basis for

further work or decisions in the process inappropriately, the arrival of

contradictory information may trigger rework of some or all of the work done

based on this updated information.

Other researchers that have studied concurrent engineering with models have

considered the importance of the attributes of interim information, calling it the

rate of evolution of information (Krishnan 1996; Bhuiyan, Gerwin et al. 2004),

maturity of information (O‟Donovan, Clarkson et al. 2003), ambiguity and

uncertainty of information (Terwiesch, Loch et al. 2002). Here, we wish to

consider more detailed aspects of information exchange in the process in order to

study the characteristics of the PD process that may influence them. As such, a

more detailed model of the information exchange in PD process is required.

A task based approach for process modelling is used in this work. This choice was

made because different tasks may be used to perform the same function and each

task is represented as a logical sequence of events through which cyclic iterations

can be made. Such a model allows multiple tasks to be defined, and offers a

method of representing the appropriate context in which each task may be used by

decomposing the tasks into subtasks. The task based model allows the link

between information flow characteristics, functions, and objectives, e.g., the

fulfilment of product performance parameters.

3
 Quality, precision, and stability are introduced in sections 2.5 and 2.6.

53

An overview of the model is first described in the following section. Further

information in increasing levels of detail can be found in the subsequent sections

of this chapter.

3.3.1 Overview of the model

The PD process is modeled as a series of tasks that are performed by finite

resources representing development teams
4
. Each of these tasks is executed in a

discrete event simulation to generate information that is required to complete the

„recipe‟ for producing the product
5
. The performance of a task requires effort by

the resources assigned to it and this is simulated by the exclusive association of

the processing thread representing the technical work of the task with a specific

resource for the required period of time, i.e. the processing thread or „work entity‟

seizes the resource. Discrete units of information, each of which is a unique

processing thread (called an information entity), are created in the discrete event

simulation as effort is expended in each task. The number of tasks in a project and

a probability distribution defining the amount of effort required by each assigned

development team to perform its task are inputs for the particular scenario being

modeled.

The tasks in the modeled PD process are grouped into phases. Once the tasks

comprising a phase are completed, a design review takes place in which the work

completed until that point is evaluated and a decision is made whether to continue

to the next phase or to redo previous phases (Figure 3-3). This decision is

modeled in the discrete event simulation as a Bernoulli trial
6
. The probability of a

positive decision is based on the simulated performance data generated by the

4
 We use the word „task‟ interchangeably with the word „activity‟ that is used by other authors to

describe the various steps that are taken in a process
5
 See section 3.1.1 for further description of the product development process and section 3.2.2 for

further description of discrete event system models.
6
 A Bernoulli trial is a single experiment whose outcome is random and can have either of two

possible outcomes; one outcome that can be called success and the other outcome failure. The

probability of success can, for example, be ½ in a fair coin toss, or can be set as a given

probability p.

54

execution of the tasks in the previous phases. The number of phases and design

reviews is an input for the particular scenario being modeled.

Figure ‎3-3 The process model showing design review decisions at the end of each phase

Groups of discrete units of information (information entities) representing the

information developing in each task are periodically prepared for communication.

This requires effort on the part of the resource performing the task. The frequency

of preparation and communication of information is an important parameter used

in the model. Once prepared, the information is sent to other tasks.

The time required for information to travel to its destination is composed of

transmission time and latency time. Transmission time is related to the type of

communication method used, and latency is attributable to delays in getting

information through the layers of the organization to the people requiring it. The

actual amount of time required in each instance of communication is determined

randomly based on unique normal distributions for each type of delay and for

each task.

Design
Review

Design
Review

PHASE 1 PHASE 2

55

As will be detailed further in the next sections, the number of information entities

created in one task that are to be sent to another task is related to the dependency

strength between that pair of tasks. The strength of the dependency between each

pair of tasks is an input for a process being modeled. In practice, these

dependency values are based on evaluations of the initial uncertainty of the output

of one task and sensitivity to changes in input of the second task for each pair of

tasks.

System Level
Integration

in
fo

TASK 1

TASK 2

TASK 3

Figure ‎3-4 The model of a phase of the product development system

The system level integrator function
7
 is modeled by first routing the information

being communicated by tasks to a process step that reads and evaluates the

information for its quality (Figure 3-4). This process step is assigned a resource

representing the system integrator. As will be detailed further in the following

sections, insufficient quality of information results in information being rejected.

7
 See section 2.9 for further description of the system integrator function.

56

In the model, input information received from other tasks is read and interpreted.

This requires effort on the part of the resources performing the task and takes

place in the model when individual information entities seize the resource

associated with the task receiving the information.

The information entities sent by a development team each have attributes for

epistemic and aleatory uncertainty. Epistemic uncertainty reduces as the state of

the task sending the information progresses; however, a level of aleatory

uncertainty is always present
8
. Iteration in a task is dynamically generated in the

model based on the uncertainty of successive communications of input

information received from other tasks. Input parameters define the relationship of

epistemic and aleatory uncertainty of information generated by a task as a

function of its state of progress. Thus each information entity has a unique value

of epistemic and aleatory uncertainty based on the state of progress of the task

creating it. Rework in a task is dynamically generated in the model based on the

attributes of uncertainty of successive communications of input information

received from other tasks.

The model is designed to permit study of the effects of various potential

improvements to the information flow of a PD process. These potential

improvements can take the form of a change in the architecture of the process, or

as a change in the way the execution of a specific process architecture is

managed. The process architecture that can be varied is the choice of

decomposition, the number and relative size of the tasks and phases in the

process, the sequencing of tasks, and the choice of resources assigned to each task

of the process. These changes can be reflected in the model by the input values of

the number of tasks and phases, the strength of the dependency relationships

between tasks, the amount of effort required to execute each task, the uncertainty

reduction profiles, the magnitude of stochastic uncertainty in each task, and the

degree of overlapping between each pair of tasks.

8
 See section 2.5 for further description of uncertainty in engineering design processes.

57

The improvements in the way the execution a particular process is managed can

be examined with changes to the frequency of communication between dependent

tasks, changes to the average time required to prepare information for

communication in each task such as the implementation of methods to facilitate

the production of reports and drawings, reduction in the delays due to

communication transmission, reduction in delays due to organizational

impediments such as slow internal mail distribution or unnecessary routing of

documents, the reduction of information volume unnecessarily sent to project

participants, reduction in the time required to read, comprehend, and interpret

information by project participants through the use of richer communication

channels such as closer proximity of development teams working on highly

interdependent tasks, and better management of critical resources such as system

level integrators.

In the sections that follow, the operation of the model is further detailed. Input

parameters for modeling scenarios are summarized in Table 3-3 and symbols used

in the model are summarized in Table 3-4 at the end of this chapter.

3.3.2 The task model

The amount of technical work accomplished and the amount of input information

received in each of the tasks in the process are state variables of interest in our

model. We plan to investigate how the evolution of these variables influences the

aggregate output variables, process span time and effort. We therefore must

define the completion of the process by the achievement of final values of these

state variables; that is, we define the state variable of technical work done relative

to the amount of work required to be done to complete the task, and the input

information received relative to the total amount of input information required to

be received from all the other tasks. If a task is able to bring these two state

variables to unity, the task can be considered complete. If all the tasks in a phase

are complete, then the phase is complete, and if all phases in a project are

complete, the project is complete. The effort of the process can therefore be

calculated as the sum of the effort expended in each of the tasks in all of the

58

phases, and the span time can be calculated from the start time of the initial phase

to the completion time of the final phase.

Effort in the model is accumulated when a resource is occupied for a period of

time either doing technical work or communication. Project participants must

spend time to prepare information for communication to others by writing reports,

preparing presentations, coordinating and attending meetings, etc. Additionally,

when receiving information project participants must spend time to read,

comprehend and interpret it. Since project participants cannot do technical work

while they are occupied with communication work, communication effort has

significant impact on the progress of the technical work and the progress of the

process.

In the model, we therefore split a task into three subtasks: work which is

comprised of the technical work required to complete the task; read which is the

time spent by the resource performing the work required to read, interpret and

comprehend incoming information; and prepare which is the time spent by the

resource in preparing information developed in the task for communication

(Figure 3-5).

Figure ‎3-5 Task model broken up into work and read and prepare communication subtasks

59

We model each of these subtasks as a stochastic process so that the amount of

time a resource needs to perform each of them is chosen from an inverse

triangular PDF
9
. The total effort initially required to complete the technical work

in a task is determined once the task begins, but the effort required to read or

prepare each unit of information is determined randomly at the instant of each

information entity‟s arrival by using an inverse PDF. Information communicated

to a particular project team performing a task must queue if the project team is

performing technical work or occupied with processing other information.

Similarly, technical work to be performed by a project team must queue if the

project team is occupied with processing information. As we shall see later, the

total effort required to complete the technical work in a task can increase during

the performance of the task due to rework that may be generated.

work
subtask

information
Information

store

in
fo

rm
atio

n

read
subtask prep

subtask

work
subtask

information
Information

store

in
fo

rm
atio

n

read
subtask

prep
subtask

information

information

TASK 1 TASK 2

Figure ‎3-6 Links between tasks via information exchange

9
 Inverse PDF is defined in section 3.2

60

When execution of a task begins, the task entity seizes the allocated resource to

perform work. The task entity releases the resource associated with the task

periodically to perform communication work or because it must wait for further

information. We call the period between the time the task entity seizes the

resource and releases it the work cycle. As shown in Figure 3-7, the timeline of

the task is broken into work cycles of period Δt
10

 between which there are

periods of communication.

At the beginning of each new work cycle the uncertainty attributes of the input

information received in the previous communication period are evaluated. From

these attributes the average input uncertainty of information received by each task

from each other task in the project are evaluated. The change in uncertainty levels

of input information drives the logic of design iteration rework in the model

(rework is described in section 3.3.10 and 3.3.11).

WorkWork WorkWork Work
co comm com communic Work

TIME

Δt Δt Δt

Figure ‎3-7 Work subtask done in discrete chunks of time or cycles between which communication

is done

3.3.3 The information exchange matrix

Now recall that in order to complete a task we also required that the input

information received by a task must be complete. In the following paragraphs we

show how can this be determined for any PD process.

10
 Δt is an input value specified for each task in the process being modeled. See Table 3-3 for a

complete list of input variables.

61

3.3.3.1 Dependency strength between tasks in PD

We first characterize the information dependency between each pair of tasks i and

j as made up of the initial uncertainty in information input to task j from task i and

of the sensitivity of task j to changes in this information input (Yassine,

Falkenburg et al. 1999). The sensitivity of a task j to changes in information input

from task i is a measure of how the final results of task j are affected by changes

to information input from task i. The initial uncertainty in information input to

task j from task i is the possible deviation of an initial estimate from the actual

value. Task i‟s information to task j is highly uncertain if the team working on

task j is incapable of guessing a value or range of values for the output of task i.

Yassine, Falkenburg et al. (1999) constructed the discrete subjective measurement

scales for sensitivity and uncertainty in a design context shown in Table 3-1 and

Table 3-2 respectively. A different set of attribute levels and descriptions can be

tailored for a specific design situation; however, those shown here illustrate the

meanings that are attached to each discrete level of each attribute in a structured

interview process with experts in the specific design situation and are used in the

model developed here.

Now, we define a project‟s information dependencies using a dependency

structure matrix (DSM) D whose elements are defined as follows:

 3-1

where is the initial uncertainty of the information input from task i to

development team j, and is the sensitivity of task j to changes in information

input from task i. Using values of 0, 1, 2, and 3 to represent the levels of

uncertainty and sensitivity of none, low, medium and high for and (Tables

3-1 and 3-2), the elements can take on values of 0 through 9.

62

Table ‎3-1 A constructed attribute for sensitivity S of task j to changes in information from task i

Attribute level Description of attribute level

0 Weak. Changes in the information produced by task i are

practically irrelevant.

1 Not vital. A major part of task j can be performed with initial

estimates of information from task i without danger of

significant rework.

2 Vital. Task j can be started with initial estimates of

information from task i, but substantial rework may be

required if final values vary by more than expected.

3 Extremely vital. Any change in estimated information from

task i requires rework for anything done in task j.

Table ‎3-2 A constructed attribute for the initial uncertainty U of information required from task i

by task j

Attribute level Description of attribute level

0 Definite. Information produced by task i is relatively certain.

1 Confident. Information from task i can be identified as

highly probable.

2 Uncertain. An interval of values of information from task i,

can be identified, but there is no way to conclude which

value is more likely.

3 Extremely uncertain. It is not possible to identify any limits

on the uncertainty of the information from task i.

 is referred to as the dependency strength of task i on task j. It is defined as the

product of and because the overall strength of a dependency link depends

directly on the level of uncertainty, where higher uncertainty means higher

dependency, and on the level of sensitivity, where higher sensitivity means higher

dependency.

63

3.3.3.2 Relation of the dependency between tasks to information exchange

Now, we further hypothesize that the total amount of information that must be

communicated between interdependent tasks is directly proportional to the

dependency strength . If the PD project is split into differentiated tasks the

information that must flow between each pair of tasks is related to the way in

which the tasks are split up. If there is no dependency between a pair of tasks,

there is no need for any information to be exchanged between them. If the tasks

are dependent, there needs to be information exchanged.

This can be understood by considering that, if there is greater uncertainty in an

activity‟s output, it is likely that more estimates of the output information need to

be generated and communicated to downstream activities before the design

activity is completed. Similarly, if there is greater sensitivity to another activity‟s

output, it is likely that more information needs to be transferred before the linked

activities arrive at a jointly satisfactory solution. For each increased level of

uncertainty, the effect of sensitivity is magnified and vice versa; so, we assume

that the effects of these characteristics are multiplicative as indicated in Equation

 3-1.

Imagine that for a given product development project there is a certain total

amount of information that must be generated. Now, consider that this project is

decomposed so that the work required is split among NPT development teams,

each of which performs a differentiated task. We consider that in order to perform

the work, there are dependencies between the tasks that must be managed and that

the dependencies are due to the information generated by some tasks that is

required by others.

The information generated by each task that is required by dependent tasks is in

the form of values of design parameters, performance requirements, or design

performance. If we consider that these values are each contained in „pieces of

information‟ or discrete information units, then we can estimate the number of

these discrete units that must be communicated by each task to every other task in

64

the task decomposition. Consider that task j is dependent on task i for information

and that task i is likewise dependent of task j for information. The number of

discrete units of information required to be communicated from i to j is

proportional to the number of dependent items assuming that each unit contains

information at least about one dependent item such as a single design parameter

or requirement.

Now, recall that uncertainty is the difference between the information required to

accomplish a task and the information currently residing with the actor charged

with performing it (Galbraith 1977). That uncertainty of a task affects the

communication requirements in performing the task can be understood from the

following example. Consider as a task, the development of an aircraft subsystem,

e.g., a previous example, a landing gear assembly. The shape, weight, and power

requirements of the subsystem may have an effect on other components of the

aircraft. For example, the geometric shape of the landing gear housing has an

effect on the exterior contour of the aircraft, which has an effect on the

aerodynamic loads on the aircraft. These loads have an influence on the structural

design of the aircraft which has an effect on its weight. The weight of the aircraft

in turn has an effect on the landing gear design and in particular the structural

design and size. Thus, the design of the landing gear is reciprocally dependent or

interdependent with the design of the exterior contour of the aircraft.

This interdependence is managed in aircraft design by a progressive process that

generates intermediate outcomes
11

. The process begins in a preliminary phase

where the overall size and exterior shape of the aircraft is designed based on the

major requirements of the aircraft mission profile (payload, range, cruising

speed). Using estimates for the designs of the subsystems of the aircraft that have

to be contained within this exterior shape, aerodynamic design, stability, and other

flight science considerations enable an exterior model of the aircraft to be created

and optimized. In the subsequent phase, a more detailed design of the major

11
 See section 2.4 for a discussion of progressive processes and iteration in engineering design.

65

subsystems and components can proceed based on the requirements imposed by

the external shape acting now as an envelope for the geometry of these

subsystems, and imposing a requirement on weight.

The estimates of the designs of aircraft subsystems and components that are used

in the first phase of the aircraft design are based on the knowledge that the

organization designing the aircraft has of these subsystems. This is generally

based on previous designs of similar systems, either from experience or trade

studies. Uncertainty is present if the organization is unable to find the relevant

information on particular subsystems or if the technology the designers wish to

employ in one or several subsystems is new and there is little or no experience

with it.

If the design of some components have uncertainty, it is likely that the initial

parameter estimates require modifications and a rebalancing is required as the

development of each component progresses. This requires more communication

between the development teams. Alternatively, if all the subsystems and

components have been successfully developed before and there are only minor

changes to their design, it is likely that the initial estimates of their characteristics

do not require much change and the communication load is lower. Therefore, the

number of communications that is required is also a function of the initial

uncertainty.

Finally, there is the issue of sensitivity. How sensitive is the work of task j to

changes in the information provided by task i? If a parameter value generated by

task i is subject to change, but task j is able to complete its work with the earlier

estimates of this parameter and its output is affected only slightly by changes in

the value of this parameter, the dependency of task j on this „piece of information‟

from task i is low. Thus, for each level of uncertainty of a parameter from task i

the number of communications required to be received by task j is modified by

the sensitivity of task j.

66

Thus, we reason that for each „piece of information‟ or value of a design

parameter, n, the number of communications from task i to task j is proportional

to the product of the initial uncertainty in this information and the sensitivity

of task j to changes in the value of this parameter . Therefore, the total

number of information units that must be communicated from task i to task j

can be expressed as:

 3-2

 is the operator that finds the nearest integer of the quantity in the

brackets. is a scaling factor which relates the number of information units that

must be communicated to the numerical scale chosen to quantify the levels of

uncertainty and sensitivity. is the number of parameters for which task j

requires values from task i and is the number of tasks.

If we equate:

 3-3

then

 3-4

Using a similar approach the levels of initial uncertainty and sensitivity for each

dependent parameter value between a pair of tasks can be established and a

square NPT x NPT matrix NC with elements describing the number of units

of information that must be communicated from task i to task j can be formed.

It has been observed in research conducted in organizations that conduct product

development that the number of communications between participants in product

67

development projects are greater between people performing activities with

greater dependency (Allen 2007). This was the case reported regardless of other

factors such as physical distance between the participants or departmental

membership. The results were obtained by measuring the number of

communications or messages that were exchanged between people. This result

supports the basis for the development of the equations to populate matrix NC.

The scaling factor in equations 3-2 and 3-4 can be calculated by relating the

total average effort in technical work to the total average effort in communication

work per phase in the PD project being studied. The total effort in communication

work Cw for a phase of a project with NPT tasks is given by the sum of the effort

in preparing each unit of information in the prepare subtask multiplied by the

number of units of information to be sent by each task plus the sum of the effort

in reading each unit of information in the read subtask multiplied by the number

of units to be received by each task. This turns out to be expressed as:

 3-5

where the average effort in preparing each outgoing unit of information by task k,

 , is calculated from the minimum, median, and maximum parameters of the

triangular PDF of the k
th

 prepare subtask (stored in matrix PR) as follows:

 3-6

and the average effort in reading each unit of incoming information by task k, ,

is calculated from the minimum, median, and maximum parameters of the

triangular PDF of the k
th

 read subtask (stored in matrix RD) as follows:

‎3-7

68

and where NPT is the number of tasks in each phase of the PD project.

Now, equating the average communication effort divided by the average technical

effort to an input parameter α and using equation 3-4, we obtain the following

value for :

‎3-8

where the average technical work of task k,
 , is calculated using the

minimum, median, and maximum parameters of the triangular PDF of the k
th

work subtask (stored in matrix WK) as follows:

‎3-9

It has been observed by practitioners in aerospace companies whom we have

interviewed that the effort expended in communication is typically equal to the

effort in the technical aspects of the work in the project
12

. Therefore we carried

out simulation experiments with α = 1, and then examined the sensitivity of the

results when α was varied about this value
13

.

3.3.4 Diagonal elements of the information exchange matrix

Equation ‎3-4 describes the off-diagonal elements of matrix NC in terms of the

dependency of information of one task on another, but does not provide any

measure of the amount of communication between people working on the same

task. In the model we consider that a task converts input information into output

information with the performance of value-added work, and that no matter how

many tasks there are in the decomposition, the information processing

requirements are constant for a given value of initial uncertainty. The

12
 See Chapter 5.

13
 See chapter 4.

69

decomposition of the task simply serves to allocate the total information

processing work among the tasks according to their dependency relationships as

indicated in the previous section. Therefore, whatever information processing

requirements that are not taken up by those between different tasks must remain

within each task itself (Figure 3-8).

Further details on how the total information requirements in a PD project are

related to the model variables are given in section 4.2.

Figure ‎3-8 Schematic view of the information exchange matrix

If there are fewer tasks in the decomposition, a larger proportion of the

information exchange is carried out internally in a task within the development

team performing the work. The value of a diagonal element in the information

exchange matrix is a measure of the information that the development team

performing the task must gain from its own internal interaction in order to

produce its output. In other words, it is the uncertainty gap that is not filled by

input information from the other tasks in the project.

70

In practice, the values of each of the diagonal elements of NC can be estimated

with equation 3-2, so that:

‎3-10

3.3.5 Information flow in the model

As described earlier, each task in the process decomposition is composed of three

subtasks: work, read, and prepare and the state variables of the model change

with the occurrence of events. In the model, the simulation begins with a

processing thread for each task. Each thread, simulating the sequence of events of

a task „entity‟ performs its series of steps according to the logic of the

programmed algorithms. Each step is added to the pending event set (see section

 3.2.2) and is processed according to its position on this list.

At the beginning of the processing of a task, the entity for each task i (henceforth

called the task entity) triggers:

1. the calculation of the initial value of total technical work required in this

task, WDi , from the inverse triangular PDF for the task
14

;

2. the creation of additional entities equal in number to the sum of the values

of elements in row i of matrix NC. These entities or processing threads

(henceforth called information entities) each represent a piece of

information in the model. Each of these new entities is assigned an

attribute called PID with the identity of the task from which it came and

an attribute called TO specifying the identity of the task to which it will be

sent, e.g., an entity sent from task 2 and addressed to task 4 has value of

PID=2 and TO=4. This latter attribute is assigned according to the values

of NC so that the correct number of entities are addressed to each

14
 See Table 3-4 for a description of all variables employed in the model. As described in section

3.3.10, WDi can vary from this initial value due to the generation of rework.

71

task j from task i. The TO attributes are assigned in random order since in

the general case we do not know in which order the information is

developed by a task. These information entities each then follow the logic

explained below.

Each task entity waits in a queue until the state of the resource representing the

associated development team is „available‟. (At the onset of the simulation, the

state of the resource of each task is „available‟). Once „available‟ and the task

entity is at the head of the queue, the state of this resource is set to „unavailable‟,

i.e., the task entity „seizes‟ the resource. The state variable for the work

accomplished in task i, called , increases at the rate of one unit per hour until

the task entity releases the resource. An interim state variable DTi , which keeps

track of the number of hours of effort expended in the current work cycle in task i,

also increases at this rate. The next event in this processing thread occurs as a

result of the logic in the algorithm. For example, whichever of the following

events occurs first triggers the subsequent events in this processing thread.

1. The span time of task i exceeds the time allotted, SCHi. Work in task i

stops, i.e., the task entity „releases‟ the resource. This processing thread

continues to a series of task end events described in subsequent sections.

2. The amount of work done in a task exceeds the starve condition where

insufficient input information has been received to continue the technical

work in the task. This triggers the suspend work event. The task entity

waits for subsequent events before continuing to process anything further.

Further details of the starve condition and logic applied for subsequent

events are given below.

3. The interim state variable DTi in the task exceeds the value of model input

variable Δti and one of the queue sizes for this resource, which holds

72

waiting information entities, exceeds a minimum number
15

. This triggers

the event that the work in this task is suspended and DTi is set to zero. The

task entity waits in a queue until the state of the resource representing the

associated development team is „available.‟

Each information entity associated with task i follows a unique processing thread

under conditions imposed on it during the simulation that is summarized as

follows:

1. creation initiated by the task entity,

2. assignment of attributes TO and PID,

3. pause until the event triggered by achieving a state of progress in the work

subtask,

4. assignment of attributes for quality (qlty), epistemic uncertainty (eps), and

aleatory uncertainty (phi) based on the state of the task at that instant,

5. queue and seize the resource associated with task i for the prepare

subtask,

6. pause for the time representing the prepare subtask operation,

7. release the resource associated with task i,

8. pause for the time representing the random transmission delay,

9. queue and seize the integrator resource,

10. pause for the time representing the integrator operation,

11. release the integrator resource,

12. return to the originating task prepare queue if quality rejected, or

13. pause for the time representing the random transmission delay,

14. wait for the time representing the latency delay,

15. queue and seize the resource assigned to the task associated with the TO

attribute,

15
 An input variable setting the minimum number of information entities in the queue for the

resource of each task to perform the read subtask (QMRi) or the prepare subtask (QMPi) is used

for this (see Table 3-3)

73

16. pause for the time representing the read subtask operation in the addressee

task,

17. release the resource,

18. trigger the update of state variables for uncertainty, input information,

19. end the processing thread.

Information entities with address attributes TO of value j where j ≠ i are intended

to model information communicated to other tasks in the project. Here, although

we assume that information develops uniformly with progress made in the

technical work of the task, information is not communicated as soon as it

develops, but rather is prepared for communication and transmitted periodically

as one would expect in practice. In the model, therefore, the information entities

created wait until an event triggers their release to the prepare queue (step 3

above). This event occurs each time the ratio reaches an integer

multiple of the modeling input which defines the communication interval as a

fraction of the nominal span time of task i
16

. Thus, when the following condition

is true, the nth batch of information entities is released to the prepare queue of task

i:

 3-11

Information communicated internally within the team performing task i (an

information entity from task i with an address attribute TO of value i) is

communicated without delay, uniformly in relation to the progress made in the

technical work of this task. This assumption is made because members of the

same development team are generally located close to each other and engage in

almost continuous informal communication about their common work. Thus, the

16
 Recall that the value of WDi can increase during the simulation as a result of rework generated

(see section 3.3.10).

74

release of each information entity destined for internal communication to the

prepare queue takes place with equal intervals of .

„Releasing‟ an information entity for communication means that it enters the

queue for the resource associated with task i for the prepare subtask. Prior to

entering the queue the attributes (described in further detail in the next section)

for quality, epistemic uncertainty and aleatory uncertainty are assigned to the

information entity based on the state of its originating task at that moment. When

an information entity reaches the head of the prepare queue, it seizes the resource

for the time period chosen randomly from the specified inverse triangular PDF.

3.3.6 Attributes of information entities

Each information entity has attributes carrying its quality, epistemic and aleatory

uncertainty (refer to section 2.5). These are set when the information entity is

released for communication based on the state of the sending task at that instant.

3.3.6.1 Uncertainty attributes

As discussed in section ‎2.5 the epistemic uncertainty of information generated by

a task is related to the state of the task at the time it is generated. We assume that

this epistemic uncertainty reduces as the state of the task progresses. This occurs

because of the work accomplished on the task and because of the input

information received by the development team performing the task. Since the

scale for uncertainty is arbitrary we can only determine its value at any time

relative to the initial estimate done in the manner described in Table 3-2. For

different tasks, the reduction in epistemic uncertainty as progress is made depends

on the nature of the task itself, whether it is a task that rapidly reaches lower

uncertainty as work is done or not. The reduction in uncertainty can be thought of

in terms of lack of precision in the value of a design parameter. Precision may

reach a high value, i.e., be more precise, early and then improve more slowly to

its final value, or in another task, the precision of a design parameter may improve

only slowly until the task is completed.

75

In order to take the nature of the task‟s evolution into consideration in our model,

we postulate a functional relationship that is sufficiently flexible to account for

the type of variation encountered in practice. To this end we use a Gompertz

function which yields an S-shaped curve that allows for different rates of

approach to the lower and upper asymptotes at the start and end of a task.

Thus, the epistemic uncertainty of a task is related to the task state with the

following equation:

 3-12

where is the epistemic part of uncertainty at time t divided by the initial value

of epistemic uncertainty for task i, and is the state of progress of task i at time

t. Equation ‎3-12 is the Gompertz function subtracted from its upper asymptote

(here equal to 1) and where are input coefficients that define the shape of

the curve. This function has some of the characteristics of an S-shape with the

steepness of reduction of uncertainty controlled by the choice of the coefficients

 for each task i (Figure 3-9). This calculation of the ratio of epistemic

uncertainty reduction to its initial value is sufficient for our purposes since we are

concerned in our model only with the changes to uncertainty during the progress

of the tasks in the process.

The state of progress of a task at any time t is assumed to be a linear combination

of the achieved technical work fraction and the received input information

fraction at that time.

 3-13

where is the amount of technical work done until time t by task i; is the

total amount of technical work required to be done by this task (initially

determined from the triangular PDF at the onset of the task, but as described in

section 3.3.9, can increase when there is design iteration rework generated during

76

the simulation); is the amount of input information received from all other

tasks until time t; and is the total amount of input information required to be

received by task i from all other tasks (derived from matrix NC). The state of

progress in equation 3-13 is calculated for each information release .

Note that the two terms within the brackets in equation ‎3-13 are the fractions of

completion of technical work and input information respectively and are both less

than or equal to one at all times during the simulation of the process.

This relationship for the state of progress of the task is used because it

incorporates the two aspects of a task‟s progress which describes its „nearness‟ to

completion. Simply relating the state of a task to the amount of technical work

that has been accomplished is insufficient because there may be required rework

of some of the work already done. However, the combination of the proportions

of work done and received input information is a better measure of the state of

progress of a task. The reasoning for this is that we expect that there will be less

or smaller amounts of design iteration required if a greater proportion of the input

information has been received
17

. While technical work alone is insufficient to

measure the progress of a task, using the linear combination of the technical work

fraction and the input information fraction is the simplest relation that

incorporates the effects of both with equal weight.

The aleatory or stochastic part of uncertainty of information generated by a task is

modeled as follows:

 3-14

where is the ratio of the aleatory part of uncertainty at time t to the initial

uncertainty of task i; is a scaling factor; and is a sample chosen

from the uniform probability distribution between 0 and 1. Since the total

17
 Recall from section 2.4 that design iteration implies rework or refinement of activities to

account for changes in their inputs.

77

uncertainty U is the sum of and , represents the initial magnitude of the

aleatory part of uncertainty of task i (Figure 3-9).

Figure ‎3-9 Instantiations of the model of uncertainty as a function of task state using the

Gompertz Function

3.3.6.2 Quality attribute

The quality of a unit of information produced by each task is modeled to represent

the conformance of the work to the system level requirements. The quality

attribute of a unit of information created at time t in task i is also modeled

with a Gompertz function, but with different coefficients than those used for the

reduction in epistemic uncertainty as follows:

 3-15

where the task state of progress is defined in equation ‎3-13, and where

are input coefficients that define the shape of the curve (different from the

coefficients used in equation ‎3-12 for the epistemic uncertainty). The quality

78

attribute is the fraction of achievement of the actual quality of the unit of

information to the quality required, and it is related to as defined in equation

‎3-13 because is a measure of completeness of the incoming information and

 is a measure of the completeness of outgoing information. When each

information entity is evaluated by the system level task (integrator resource), and

its quality is insufficient, it is rejected, where the information entity is not passed

to other tasks, but is returned to its originating task. As the state of this task

progresses, the quality of this information entity improves according to equation

‎3-15 evaluated at the new state of progress of the task.

3.3.7 The starve condition

The performance of tasks in PD requires information from other tasks according

to the dependency relationships described in section 3.3.3. Although there are

initial estimated values of input information that are used to begin the work,

without updated, more precise information, a task is „starved‟ and the work cannot

usefully continue until more input information is received.

In order to incorporate this idea into the model, we calculate a stochastically

determined starve condition as follows:

 3-16

where is the maximum value of the expressions separated by the comma in

the square brackets, NORM is the inverse normal PDF with mean value

 3-17

and standard deviation . The mean value goes from 0 and 1 during the

course of the execution of the task and the value of the standard deviation is an

input parameter to the simulation chosen for each task at a value between 0 and 1.

 is an input parameter to the simulation representing the fraction of work

79

that can be expected to be done before there is any input information to the tasks

other than the preliminary information available before tasks begin.

The logic used to determine the starve condition states that it is most likely that a

task is starved for input information when the proportion of technical work done

exceeds the proportion of required input information received. For the general

case this seems to be a reasonable assumption and the stochastic nature of the

relation allows for the potential effects of variations from the mean in each

specific instance.

When the value of exceeds , work in task i stops with the release of the

resource by the task entity. The task entity then waits until an information entity

from another task is read by task i. This sequence simulates the starve condition

and stoppage of work. The waiting time is accumulated and recorded as an output

statistic called starve time. Once new information from another task is received,

the task entity enters the queue for the resource associated with task i to continue

to work, and a new starve condition is chosen according to equation ‎3-16.

In the case of reciprocal dependency, such a starve condition can lead to stoppage

of all work in the process or deadlock, since if one task cannot proceed without

information, it cannot develop information required by other tasks, which in turn

can reach their own starve condition (recall that information develops according

to progress in the work subtask, as described in section 3.3.5). Then, these tasks

cannot develop the information required by the first task, leading to a situation

where all tasks are stopped.

In practice, if such a deadlock condition occurs, the manager of the PD project

must intervene to enable the restarting of work on tasks that have reached a starve

condition and whose information is required to enable other tasks to progress.

This is done, once a deadlock is discovered, by restarting work on one of the

deadlocked tasks with an estimate or assumption about the missing information,

sufficient to enable the generation of information required by other tasks and

restart their work.

80

In the model, to simulate this managerial intervention, the algorithms described in

the following sections were implemented. They differ in the way in which the

deadlock is discovered.

3.3.7.1 Managerial intervention type A in a deadlocked condition

In this scheme, a deadlock is discovered between one pair of tasks that have

stopped. In practice, this requires a close monitoring of the status of each task in a

process and an understanding of the interdependencies between tasks. The

manager, realizing that a pair of tasks are stopped and that they are blocked

because they are waiting for information from each other, takes the step of

restarting one of the tasks with an assumption about missing information

sufficient to allow work to continue for a period of time. The algorithm in the

simulation follows the logic:

1) If task entity i is in the starve condition, i.e., , check if another

task k is starved in the project;

2) If statement 1) is true, check if task i requires information from another

task k;

3) If statement 1) is true, check if task k requires information from task i;

4) If statements 2) and 3) are true, continue work in task i for another work

cycle and choose another starve condition according to equation 3-16;

5) If any statement 1), 2), or 3) is false, for all k =1,2,..NPT, k ≠ i, task i

continues waiting for more information.

This logic unblocks the deadlock by allowing task i to do more work, enabling it

to generate more information and thus allow other dependent tasks to become

unblocked. This simulates one kind of managerial intervention, called type A, that

occurs in a PD project when a pair of tasks are stopped due to a deadlock.

3.3.7.2 Managerial intervention type B in a deadlocked condition

Another type of managerial intervention is one which requires less knowledge of

the process. Rather than intervene when one pair of tasks in the process is

blocked, this intervention only takes place when the entire process is blocked.

81

Here, it may only become apparent that there is a problem in information

exchange if all of the tasks in a project are deadlocked, and only then does

management intervene to push one of the tasks forward. This scheme was also set

up as an optional algorithm when condition 1) above is the only one checked, but

in this case work does not continue in task i unless all of the tasks in the project

are in the starve condition. This managerial intervention is called type B.

The consequences of the managerial decision to proceed regardless of the state of

the input information are manifested as follows: work proceeds which allows

further information to be generated by the task; this information is of higher

uncertainty because the state of the task is lower (as described in section 3.3.6.1)

since the amount of input information received is lower; this results in higher

values of uncertainty in dependent tasks receiving the information which

increases the likelihood of rework due to design iteration or failure in the design

review. The likelihood of rework depends on the rate of reduction of uncertainty

in the task.

3.3.8 System level integration

After each information entity completes the time period where it is „served‟ by the

resource from its associated task (representing the prepare subtask), the

information entity releases the resource. Then, if the information entity is

addressed to another task in the process, it pauses for a period representing a

transmission delay; this delay is a random number chosen from an inverse normal

PDF with modeling input values for its mean value and standard deviation PRDi,1

and PRDi,2 for each task i (see Table 3-3). The entity then waits to seize a system

level integrator (refer to section 2.9). Here again, there is a queue for this

resource.

Once the particular information entity has reached the head of the integrator

queue, and the resource becomes available, this entity seizes one unit of the

integrator resource for a random period of simulated time selected from an inverse

normal PDF with (modeling input) mean value MINT and standard deviation

82

SINT. This simulates the time required for an integrator to evaluate a unit of

information. Recall that each information entity carries with it an attribute

representing the quality of this unit of information from the point of view of its

suitability in meeting the requirements of the product (see previous section). Once

the information entity has completed the simulated integrator process, a Bernoulli

trial is made with probability of success equal to the value of the entity‟s quality

attribute. If this trial fails, the information entity is sent back to the originating

task. Otherwise, it continues to the task indicated in its address attribute after

waiting for a stochastic period of time representing another transmission delay.

This time period is chosen in the simulation for each information entity from an

inverse normal PDF with modeling inputs for the mean (ATD) and standard

deviation (STD).

The capacity of the integrator resource is flexible and can be increased based on

the amount of work in its queue. This feature was included in the model because it

was of interest to examine the effects of this resource constraint. Insufficient

integrator resource capacity acts as an impediment to all tasks in the process

because of the centrality of the integrator in the process network. An example of

this feature in the model is given in section 4.6.7.

As each additional information entity „enters‟ the queue for the integrator, its

expected waiting time for an integrator resource is calculated as follows:

where is the length of the integrator queue at that

moment. If the average waiting time is longer than a modeling input IQ,

additional integrator resource capacity is added. Alternatively, if the average

waiting time is less than 80% of the value of IQ, resource capacity is reduced.

These actions replicate managerial actions typically taken to eliminate bottlenecks

in critical activities in a project.

83

Other schemes to manage this resource, such as triggering the addition of

integrator resources when multiplied by the number of

entities remaining to process is greater than the remaining time to complete the

phase. This more adaptive scheme is typical of project management monitoring

the process and making adjustments to resource capacity, but requires a

knowledge of the integrator workload. The value of IQDecide (a modeling input)

signals the choice of which of these schemes to employ in a simulation.

Information entities waiting for the integrator resource may leave the queue and

proceed directly to the final addressee when an entity‟s waiting time exceeds a

value determined by a random number selected from an inverse normal PDF with

(modeling input) mean value MW and standard deviation SW. Thus, each time an

information entity enters the queue the maximum time it waits is individually

determined. When information bypasses the integrator quality check, there is an

increased chance of design version rework as is described in section 3.3.11.

3.3.9 Information reception in the model

Each information entity that is created follows a unique series of steps that are

determined by the values of variables that change during the simulation. Some of

these changes occur as the result of events initiated by other information entities.

Each information entity is assigned address attributes (i.e., one attribute with the

identity of the task from which it originated and one attribute with the identity of

the task to which it will be sent) as well as attributes for quality, epistemic, and

aleatory uncertainty which are determined by values of task state variables as

described above.

Once an information entity completes the simulated integrator process and

transmission delay, it processes another time delay representing the latency time

within the receiving organization for the information to reach the addressee

development team. This time period is chosen in the simulation for each

information entity from an inverse normal PDF with modeling inputs for the mean

(LATMi) and standard deviation (LATSi) for each task i.

84

The information entity then waits to seize the resource associated with the

addressee task. Once it has seized the resource for the stochastically determined

period of time for the read subtask, the resource is released. Subsequently, one of

the following processing paths is followed:

1. If the entity has been returned to its originating task because it had been

rejected by the integrator process, it is sent to the prepare queue for the

resource once again. This simulates the rejection of information by the

system level integrator, its return to the originating task, and its reissuance

after the task has achieved a more advanced state. Once the information

entity re-enters the prepare queue, its quality attribute is reset according to

the new task state. This simulates the re-release of this unit of information

when the task has achieved a more advanced state of progress. After

performing the prepare process the entity once again goes to the integrator

process.

2. If the entity has not been rejected in the integrator process, the processing

thread associated with this entity ends, i.e., the entity is disposed of from

the simulation, after the following state variables are assigned:

i. - the number of units of input information read by task i from all

other tasks (used in equation 3-13 to calculate the task state) since the

start of the phase (the subscript t denotes that this value is

accumulated until time t in the simulation)

ii.
 – accumulates the sum of the epistemic uncertainty attribute of

each unit of information read by task i from task k between work

cycle m-1 and work cycle m of task i

iii.
 – accumulates the sum of the epistemic uncertainty attribute plus

the aleatory uncertainty of each unit of information read by task i

from task k between work cycle m-1 and work cycle m of task i

iv.
 – accumulates the number of units of information read by task i

from task k between work cycle m-1 and work cycle m of task i.

85

3.3.10 Rework due to design iteration

Design iteration implies rework or refinement of activities to account for changes

in their inputs as discussed in section 2.4. Interim information provided to a task

is subject to change. The change is a result of ongoing work done in the task

where the information originated and changes to the work of other dependent

tasks that propagate through the system via the information flow between tasks. In

the model these changes are reflected in the uncertainty attributes of information

entities.

If input uncertainty is continuously decreasing, it is likely that none of the work

done by the task requires rework since each updated piece of information is

within the range of the precision of the previous piece. However, if there is an

increase in input uncertainty, it is likely that rework will be required. This has to

do with the perception of the precision in the received information. In practice,

the development team performing a task takes the imprecision of input

information into consideration when performing subsequent technical work, and

does not make efforts further than the level of precision warranted. Only if the

precision of subsequently received input information is below the precision of

information received earlier is there rework required.

Now, the amount of required rework can be derived from the amount of work

done between the current time and the time when the uncertainty of the input

information was as high as in the latest received information. Essentially, we say

that the portion of the work done with the wrong understanding of the precision of

input information is what has to be redone. To enable this calculation, we record

the epistemic and total uncertainty of information received by task i from each

other task between each work cycle and associate it with the cumulative amount

of work done by task i at that point.

We denote and as the aleatory and epistemic attributes of information

entity originating from task k. When information is read by the receiving task i,

86

these attributes are used to calculate the average total input uncertainty
 and

the average input value of
 from task k between work cycle m-1 and m in task i:

 3-18

 3-19

where
 is the number of information entities arriving at task i from task k

between work cycles m-1 and m.

Prior to commencing work cycle m, the uncertainty
 is compared to

 . If it

is higher, the amount of incremental rework that is required in task i due to the

increase in uncertainty of information received from task k is calculated as

follows:

 3-20

where
 is the amount of work done in task i until the beginning of a previous

work cycle p such that the value of

 was greater than
 . This is further

illustrated in Figure 3-10.

If there is an increase in uncertainty in information received from other tasks, the

total amount of rework needed to be done at the start of work cycle m is the sum

of the incremental rework from equation ‎3-20 for each k. Thus, a new value of

 is calculated at the beginning of each work cycle as:

87

 3-21

The total amount of rework generated corresponds to the weighted contribution of

each task whose output information has increased in uncertainty.

The changes to all of the during a simulation are accumulated and recorded

as an output statistic called churn. The term churn has been defined in the context

of engineering design as rework due to redoing a task when making an informal

incremental change (Bhuiyan, Gerwin et al. 2004) or as a scenario where the total

number of problems being solved (or progress being made) does not reduce

(increase) monotonically as the project evolves over time (Yassine, Joglekar et al.

2003). Here, churn is generated in a task when the uncertainty of interim input

information is not monotonically decreasing and this occurs because of the

sequence of events affecting information received by dependent tasks. Churn is

generated because a decrease in the precision of input information implies that

some of what was already done in the task must be redone.

Note that churn is quite different from design version rework, which is generated

when there is an unsuccessful evaluation of intermediate outcomes of a

progressive process. This type of rework is discussed in the next section.

88

Figure 3-10 Illustration of the variables used in the calculation of rework in equations 3-18, 3-19,

and 3-20.

3.3.11 Design version rework

In previous sections the concept of a progressive process that generates

intermediate outcomes was introduced as an explanation for the partitioning of

engineering design into phases. This process approach allows for a design review

in which the intermediate outcome of a phase is evaluated and a decision can be

made as to whether or not the intermediate versions of the design are suited to the

requirements. This results in a decision on whether or not to continue forward or

to perform rework of an earlier phase or design version rework. This type of

rework, classified as a feedback iteration, results in one or several entire phases

being redone, but with the benefit of the knowledge and uncertainty reduction

obtained by the experience of the intermediate outcomes.

89

In the model we simulate this type of rework and feedback using the intermediate

results of the simulation of previous phases. Once tasks in a phase are completed

the probability of design version rework is governed by:

i. the certainty of information of each task at the end of the phase

ii. the percentage of completion of information exchange of each task,

iii. the percentage of completion of work of each task, and

iv. the percentage of completion of system level oversight.

A task may be complete when its allocated or scheduled span time is over, or

because the work subtask is completed and all of the input information it required

was read. The fraction of certainty in the last input information received by task i,

called is a measure of how likely it is that the task has completed its work

with finalized information. This is calculated as:

 3-22

The numerator in this equation is one minus the weighted epistemic uncertainty of

information received at task i between its second to last and its last work cycle f

from task k. The denominator is one minus the epistemic uncertainty of

information of task k at a state of one.

Several ways for calculating the probability governing the success in a design

review were considered. One scheme was to calculate the following value when

task i ends in each phase of a simulated project as follows:

 3-23

where returns the minimum of the two quantities separated by a comma

within the square brackets, and

90

 3-24

 is the number of information entities read at task i originating from task i (i.e.,

internal information) and is the final number of information entities from other

tasks read by task i. The fraction in equation ‎3-24 thus represents the amount of

input information read by task i divided by the amount of input information it

should have read (according to the interdependencies between tasks in the project

as described in sections 3.3.3 and 3.3.4).

The term in equation ‎3-23 is the number of information entities sent by task i

that went through the system level integrator process divided by the number of

information entities that were sent by this task to the integrator. This fraction is a

measure of how much of the information generated by the task was successfully

verified by the system level integrator during the phase (Sections 3.3.8 and 2.9

gave details about the system level integrator in PD projects).

Thus, equation ‎3-23 relates the probability of success of a task in the design

review to the minimum of:

i. the linear combination of the fraction of input information read by the task

weighted by its certainty and the fraction of work completed

ii. the fraction of information generated by the task that is successfully

verified by the system integrator.

A Bernoulli trial with probability simulates the design review of the

work completed in the design phase for each task i in the phase. Successfully

passing all of these trials allows the task entities to continue to the next phase in

the project. Since each task that must be reworked generates new information that

is required by other dependent tasks, a failure in one trial triggers design version

rework in all the tasks. If there were earlier phases, the Bernoulli trials are redone

for each of the earlier phases with their associated probabilities. Thus, a failure in

91

a design review may cause the project to return to earlier phases to begin again

from that point.

This scheme, while intuitively attractive, creates a bias towards more design

version rework when there are more tasks. This comes about because the

probability of success in the design review using this scheme is the product of the

probabilities of success of each of the tasks, and since these probabilities are each

less than one, the probability of continuing to the next phase without design

version rework decreases with an increase in the number of tasks. In effect,

successfully completing a design review using this scheme amounts to NPT

successes in NPT independent Bernoulli trials with probability . If each

of the are equal to a fraction p, this design review process is a binomial

distribution giving the probability of success in a design review as .

In order to avoid this bias, an alternate scheme for calculating the probability of

completing the design review successfully was considered. Here, rather than

performing a Bernoulli trial for for each task, the minimum value for

each of , , , and the final value of are calculated and one

Bernoulli trial for the minimum of each is performed. A failure in one trial

triggers design version rework in all the tasks. As in the first scheme, if there were

earlier phases and design version rework is triggered, these Bernoulli trials are

redone for each of the earlier phases with their associated probabilities. Thus, a

failure in a design review may cause the project to return to earlier phases to

begin again from that point. In this way, failure in a design review is not biased

towards a larger number of tasks in a phase, but the essential feature of failure in

one task (in this case the one with the lowest performance) causing design version

rework of all tasks in a phase is retained.

3.3.12 Feedback due to design version rework

Design version rework is the feedback type of iteration discussed in section 2.4.

Each time an earlier phase is reworked, the benefit of feedback and learning is

92

incorporated into the model with the reduction of the technical work and of

uncertainty in each task.

In practice, rework of a task in its entirety requires less effort than the original

time because of several factors. First, there is a reduction of the effort required to

perform the technical work processes, also known as first order learning or

learning-by-doing. This is the well known learning curve effect that has been

widely studied (Adler and Clark 1991; Von-Hippel and Tyre 1995). For this part

of the reduction in effort we use the classic learning curve expression to calculate

the average technical work requirement for each rework cycle
 , in terms of

the original requirement for each task
 , as follows:

 3-25

where DV denotes the design version rework number (subscript 0 denoting the

original) and LF is the learning factor or percentage reduction in effort each time

the task is repeated. Thus, we calculate , the initial work requirement for

rework cycle DV of task i by multiplying the minimum, median, and maximum

values of the original triangular PDF in equation by , where

 3-26

thus ensuring that equation ‎3-25 is obeyed.

The second factor we consider in reduction of effort due to design version rework

is the reduction in epistemic uncertainty. Having already performed the task along

some solution path, it is likely that the epistemic uncertainty profile would reduce

more rapidly each time a task is reworked. Here, we propose to model this by

changing the parameters of the Gompertz function for epistemic uncertainty, bi

and ci , for each rework cycle.

93

Let S0 and S1 be two values of the state of a task in the process and let the

epistemic uncertainty of a task in the first design version be and epistemic

uncertainty of this task the DVth design version (the DVth rework cycle) be :

 and

Then, we propose that

 and

 3-27

After some manipulation, we arrive at the following result for and :

 3-28

 3-29

Results for Gompertz coefficients b=30 and c=6 in Figure 3-11 show how the

epistemic uncertainty profile reduces more rapidly for each subsequent bout of

design version rework with a learning factor of 0.2 in equation 3-25. In these

cases the match points chosen were =0.4 and =0.9 because they were found

to best preserve the S shape of the curve at the start and end of a phase.

94

Figure 3-11 Variation of epistemic uncertainty with task state for each subsequent design version

rework

3.3.13 The computer program

Arena© by Rockwell Automation Technologies Inc. was chosen as the software

to construct the simulation model because of its facility of ready-made modules or

software constructs that create, hold in queue, route entities, and seize release and

schedule resources. Together with this facility, the software also has the flexibility

of allowing programming with lower level commands and development of custom

made modules for specific routines that recur in a simulation model. This was of

particular use in this application where it was required to scale up the model with

multiple tasks and phases.

The simulation is based on task modules of identical logical structure that are re-

instantiated in a model according to the number of tasks in the project being

studied. The tasks are combined into phases that are executed recursively as

required for either rework or subsequent phases.

95

Table ‎3-3 Input parameters defining scenarios for the PD model
18

Input
Variable

Description

α The ratio of total effort in communication to total technical effort in

the modeled scenario (introduced in section 3.3.3.2)

ATD,STD Mean value and standard deviation of the normal PDF for the

transmission time of an information entity from the system level

integrator to the final addressee

b, c Vector defining Gompertz function values for the epistemic

uncertainty for each task

B, C Vector defining Gompertz function values for the quality for each

task

BR Vector containing the flag value for each task whether to broadcast

information to all other tasks

CI Vector defining the nominal communication interval (hours) for each

task (section 3.3.5)

DeltaT Vector defining Δt (hours) maximum work cycle time between which

communications are attended to by each development team

D Matrix defining dependency strength between each pair of tasks with

element values of 0 to 9

INTMAX System level integrator capacity

IQ Integrator queue time threshold in hours where additional integrator

resource is added

IQDecide Flag for the type of integrator resource management scheme to use

LF Learning factor for design version rework (equation 3-25)

LAT Matrix defining the mean value LATMi and standard deviation LATSi

of the PDF for communication latency for each task

MINT,

SINT

Mean value and standard deviation of the normal PDF for the

integrator process

MW,

SW

Mean value and standard deviation of the normal PDF for the waiting

time in the integrator queue after which information entities renege

the queue

MANI Flag value for the type of managerial intervention in a starve

condition (0 for type A and 1 for type B as described in section 3.3.7)

M Vector defining the scaling factor for aleatory uncertainty for each

task

NPT Number of tasks in each phase

OVF Matrix defining the degree of overlap between each pair of tasks in a

project

18
 Latin symbols for input variables in bold are matrices with elements in each row corresponding

to the respective task

96

Input
Variable

Description

PRD Matrix defining the mean value and standard deviation of the normal

PDF for the transmission time of an information entity from each task

to the system level integrator

PR Matrix defining the parameters of the triangular PDF for the prep

subtask for each task

QMP Vector defining minimum number of entities in the prep queue before

attending to this queue

QMR Vector defining minimum number of entities in the read queue before

attending to this queue

RD Matrix defining the parameters of the triangular PDF for the read

subtask for each task

SCH Vector defining the ratio of scheduled span time for each task to the

maximum value of the work subtask PDF for that task.

STSD Vector defining the standard deviation for the calculation of the

starve condition for each task (equation ‎3-16)

TRHD Vector defining the lower cutoff for the calculation of the starve

condition for each task (equation ‎3-16)

TP Number of phases in the project

WK Matrix defining the parameters of the triangular PDF for the work

subtask for each task

97

Table ‎3-4 Description of symbols employed in the model

Symbol Description

 The expected waiting time in the integrator queue at any time

 The dependency of task j on information output of task i

 The initial uncertainty of the information input from task i to

development team j

 The sensitivity of task j to changes in information input from task i

 A scaling factor which relates the number of information units that

must be communicated to the numerical scale chosen to quantify

the levels of uncertainty and sensitivity

 The number of units of information that must be communicated

from task i to task j

WDi The value of total technical work required in task i, initially

calculated from the inverse triangular PDF for the task

PID The attribute assigned to an information entity identifying the task

from which it came

TO The attribute assigned to an information entity identifying the task

to which it is to be sent

 The state variable for the work accomplished in the task i

DTi An interim state variable which keeps track of the number of hours

of effort expended in the current work cycle in task i

qlty The attribute assigned to an information entity representing the

quality of the information it carries

eps The attribute assigned to an information entity representing the

epistemic uncertainty of the information it carries

phi The attribute assigned to an information entity representing the

aleatory uncertainty of the information it carries

 The amount of input information received in task i from all other

tasks until time t

 The state of a task i at any time t

 The total amount of input information required to be received by

task i from all other tasks (derived from matrix NC)

 A stochastically determined starve condition for task i

Accumulates the sum of the epistemic uncertainty attribute of each

unit of information read by task i from task k between work cycle

m-1 and work cycle m

Accumulates the sum of the epistemic uncertainty attribute plus the

aleatory uncertainty of each unit of information read by task i from

task k between work cycle m-1 and work cycle m

Accumulates the number of units of information read by task i

from task k between work cycle m-1 and work cycle m

98

Table 3-5 Key assumptions in the model

 Key assumptions in the model Rationale

1 Amount of information exchange between tasks

is proportional to their dependency strength

See section 3.3.2

2 Technical work fraction and input information

fraction have equal weight in determining the

state of progress of a task

See section 3.3.6

3 The functional relation of uncertainty with the

state of progress of a task

See section 3.3.6

4 Starve condition is normally distributed and the

mean value occurs when the technical work

fraction exceeds the input information fraction

See section 3.3.7

5 The criteria for churn type of rework See section 3.3.10

6 The criteria for design version rework See section 3.3.11

7 Model for feedback and learning with design

version rework

See section 3.3.12

4 Simulation Experiments with the Model

4.1 Statistical significance of results

Recall that the PD system model is stochastic and as such its outputs are

stochastic variables. The simulation of a PD process using the model described in

chapter 3 ends when the tasks in the last phase of the project are all complete.

This kind of simulation is classified as a terminating simulation
19

. Now, in order

to obtain results of simulation experiments that have statistical significance

different runs or replications of the simulation must be made with the same input

parameters. In this way each replication is therefore a trial and the span time and

effort (as well as other outputs) of each replication constitute a random variable.

Each replication is carried out with different random numbers generated for the

probability distributions used in the simulation, thus ensuring that the replications

produce output results that are independent. By making sufficient replications of

the simulation for each scenario, meaningful statistics of mean values and

variances of output quantities can be obtained. In the remainder of this section a

discussion of what confidence intervals for the results of simulations mean and

how they have been determined is presented.

Suppose that X1, X2,X3,…Xn are independent and identically distributed random

instances of a measured variable with mean μ and variance σ
2
; for example, X1

can be the resultant span time of the PD project for replication 1, X2 can be the

resultant span time of the same PD project for replication 2, and so on. Our

objective is to estimate the values of μ and σ
2
 (to continue with the example, we

wish to estimate the mean value and variance of the span time for a modeled

scenario based on n replications of the simulation run of the scenario). The sample

mean after n replications is

19
 A terminating simulation is defined as a simulation in which the model dictates specific

stopping conditions as a natural reflection of how the real system actually operates.

100

‎4-1

and the sample variance is

 4-2

We want to estimate how close the value of is to μ and how close is to

σ
2
. To this end, we make use of the confidence interval which can provide a

measure of the error in the estimation of μ when we use from equation 4-1

to calculate the mean value of the sample data. The half-width of a 95%

confidence interval, also calculated from the sample data, can be used to calculate

the approximate lower and upper bounds about the sample mean between which

95% of the simulation results will lie for a given number of replications, n.

It turns out that if the X‟s are independent and normally distributed random

variables, a 100(1 – α) confidence interval for μ (for 95% confidence interval

α=0.05) is given by

 4-3

where is the upper 1 – α/2 critical point for the t distribution with n - 1

degrees of freedom (Law and Kelton 2000)
20

.

In practice, we want to know how large n must be in order to have the 95%

confidence interval be „small enough‟. Small enough for our purposes is deemed

to be when the respective confidence interval is less than 5% of the calculated

20
 The t distribution is a continuous probability distribution that arises when estimating the mean

of a normally distributed population in situations where the sample size is small and a

population standard deviation is unknown. For a 95% confidence interval α = 0.05.

101

average of the both the span time and effort. That is, we want n to be large enough

so that 95% of the time, the average value of the effort for a simulated scenario

will fall within 5% of the value of the average effort calculated from the n

previous replications of the scenario. Similarly, we also want n to be large enough

so that 95% of the time, the average value of the span time for a simulated

scenario will fall within 5% of the value of the average span time calculated from

the n previous replications of the scenario.

The scheme used to find the required value of n was to calculate the 95%

confidence interval during the simulation using equation 4-3 after each replication

once n reached 49, and to compare it to the calculated average value of each of

the two key output variables, span time and effort. If 5% of the average span time

or effort calculated at that point in the simulation is greater than the respective

confidence intervals for span time and effort calculated at that point, the

simulation continues to the next replication. If the respective confidence intervals

are both less than 5% of the calculated mean value of these output variables, the

simulation is terminated after the next replication. The number of replications n,

for each different scenario, sufficient to achieve this confidence interval was

usually about 100.

The confidence interval so calculated is approximate only in that it is not

absolutely true that the sample data is normally distributed. However, use of the

standard normal theory statistical inference methods applied here is justified since

in probability theory, the central limit theorem states that the mean of a

sufficiently large number of independent, identically distributed random variables,

each with finite mean and variance, is approximately normally distributed.

Intuitively, since each replication of the simulation is essentially the sum of many

individual random processes, it seems reasonable to assume that these are

symmetrically distributed around a finite mean value.

102

4.2 Output quantities and input parameters

The output quantities of interest are the total effort and span time of the simulated

PD project. Other quantities of interest are the total churn, starve time, design

version rework cycles, integrator effort, average resource utilization, and average

queue lengths and waiting times. For each of these output variables the simulation

provides data averaged across replications, half width of a 95% confidence

interval, minimum average, maximum average, minimum value, and maximum

value. As explained in the previous section, the number of replications carried out

for a particular scenario were sufficient to ensure that the 95% confidence interval

was smaller than 5% of the average of the output variables in each case.

4.2.1 Normalization of output quantities and input parameters

Comparisons of different scenarios using the model are most usefully made when

inputs and outputs are normalized. This can be understood if we want to study the

effect of variation of the number of tasks or phases in a project decomposition.

Since the work per task is determined for each replication by the input parameters

of a triangular PDF, we can hold the average sum of work of all tasks in all phases

as constant across the scenarios we want to compare. In this way, we can judge

the effects of each input parameter on the performance of a simulated system that

must execute a group of tasks with the same total technical effort.

The total average technical effort in a project of TP phases and NPT tasks

per phase is:

 4-4

103

where
 is the average technical work of task k, calculated using the

minimum, median, and maximum parameters of the triangular PDF of the k
th

work subtask (stored in matrix WK) as follows:

 4-5

The communication effort in the project can be calculated as α multiplied by the

technical effort (from the discussion in section 3.3). Thus, the total average effort

TE in a project is given by:

 4-6

In a project scenario where all the work is performed by one resource, the average

project span time is the same as the total average effort TE. Therefore, both the

output quantities span time and effort of each simulated project are normalized by

dividing them by TE. Other output quantities such as total churn, integrator effort,

and others are also normalized using TE.

Input parameters were normalized to facilitate comparison across scenarios as

well. For example, the work cycle , usually expressed in hours, is normalized

with the nominal span time of a task. Thus, the normalized work cycle time

is expressed as:

 4-7

A summary of normalized input parameters and output quantities is given in

Table 4-1 (refer to Table 3-3 and Table 3-4 for a description of the symbols used

here).

104

Table ‎4-1 Normalized input and output parameters

Parameter Definition

Normalized Effort NEFFORT=Effort/TE

Normalized Span Time NSPAN=Span Time/TE

Normalized Churn NCHURN=Churn/TE

Normalized Integrator Effort NINTEFF=IntEffort/TE

Normalized Starve Time NSTARVE=Starve time/TE

Normalized Communication Interval

Normalized nominal work cycle Δt

Normalized IQ

PDF parameters for normalized latency time

4.3 Verification and validation of the model

Verification means ensuring that the model behaves as it was intended, which

means to ensure that the computerized model and its implementation are correct

versus the specifications described in chapter 3. Validation means ensuring that

the model‟s predictions reflect reality within the intended domain (Law and

Kelton 2000). In this section the steps taken to accomplish verification and

validation are described.

4.3.1 Model verification

The computer program was written as a series of modules or sub-programs, each

of which began as a simple algorithm. More complexity was added to each

module after ensuring that the module operated as intended. Visualization of the

behaviour of entities and values of variables in the simulation was done by

proceeding at slow motion or discrete steps and enabled verification that these

developed correctly. Tests were run with simple cases to verify that the computer

program produced expected results. The behaviour of the mean value, confidence

intervals, minimum and maximum values of variables such as queue sizes,

waiting times, effort, span time, over differing numbers of replications were

observed to ensure that these were within reasonable ranges over a wide range of

scenarios. Additionally, test cases were run at the boundary values of input

parameters to confirm results as would be expected. For example, the scheduled

105

span time (defined in input vector SCH in Table 3-3) of individual tasks was

varied from very short times to very long times to observe how the behaviour of

the project span time and effort changed. It was expected that as scheduled time

was increased the behaviour of the overall span time and effort would

asymptotically reach a final value that did not change when SCH was further

increased.

4.3.2 Validation of the model

Ideally the best way to validate a model of a PD process would be to compare

data from an actual process with data of a simulation of the same process. The

required data would be span time and effort for cases when the real project was

carried out with variation of the variables being studied in the simulation such as

the interval between information exchanges, scheduled span times of tasks, etc.

The variation of the real process output data with changes in the key variables

would be compared to those predicted by the simulation.

In practice, this is not feasible. Historical data of span time and effort of PD

projects, if available, would not have more than one instance of conditions for the

same set of tasks. This is the case for PD since no project is the same as another.

Furthermore, while the data for effort may be available for each project, it is not

likely that span time data would reflect comparable conditions from one project to

another nor those assumed in the model. This is because PD projects are often

subject to delays due to conditions external to the project and to the system

modeled. Often a project may be delayed because of a business situation such as

market conditions or financial constraints, or delays may be imposed due to

prioritization of other projects at certain times during the product development

cycle.

Therefore, validation is based on comparison of the results predicted by the model

with a combination of those predicted by other models with data from real

processes that are available for specific conditions, i.e., relevant results from

similar studies, and with the comparison of the specific behaviors incorporated in

106

the model‟s logic with those that have been reported to take place in PD, i.e.,

validation based on expert knowledge (Kleijen 1999)). These results were

described to practitioners of PD in the aerospace industry in a series of interviews

that were conducted to analyze the coordination mechanisms in use and to place

them into the context of the framework presented here (further details of these

interviews are given in chapter 5). Finally, experience and intuition based on the

author‟s years of practice in industry were used to hypothesize how certain

components of the system operate.

In the remainder of this chapter results of simulation experiments are shown and

compared to results of models and data collected in previous studies. The results

shown here also serve to illustrate the operation of the model and how it can

explain the mechanisms that drive the PD process.

4.4 Modelling uncertainty, sensitivity and information evolution

As discussed in section 3.3.3 we model the dependency of information between

each pair of tasks as the product of the initial uncertainty and the sensitivity of the

„downstream‟ task to the information provided by the „upstream‟ task. The

quotation marks are used here because in the general case of reciprocal

dependence and sequencing of tasks such that they begin simultaneously, these

terms mean only that we refer to the information providing task and the

information receiving task. The information dependency between tasks is

described in matrix form, where each element Dij of the matrix represents the

dependency of task j on information provided by task i. Therefore, for a given

value of initial uncertainty, the more sensitive the downstream task is to changes

in the information provided by the upstream task, the higher the value of the

corresponding element in matrix D.

Examples of this matrix for a process with 5 tasks is shown in Table 4-2 and

Table 4-3 for different dependency relationships between the tasks. The first row

in Table 4-2 shows that task 1 provides information to tasks 2, 3, 4, and 5 where

for each of these tasks, the product of the initial uncertainty (valued on an integer

107

scale of 0 to 3) and the sensitivity (valued on an integer scale of 0 to 3) of the

input information from task 1 are high. Similarly, the third row shows that tasks 1

and 2 are not dependent on task 3 for any information and that task 4 and task 5

are dependent upon task 3, but that the dependency is low. The sensitivity of task

4, for example, to changes in information from task 3 is either very low and the

uncertainty is high, or vice-versa. In either case, the dependency is low and

according to our model, there are fewer information updates required from task 3

by task 4 and 5. The lower triangle of the matrix is populated with only zeros and

this indicates that the dependency between the tasks is sequential. Task 2 depends

only on task 1, task 3 only on task 1 and 2, etc. There is no dependency from a

higher numbered task to a lower numbered task so that if the tasks were executed

in sequential order there would be no downstream information required by an

upstream task.

Table 4-2 A dependency matrix case (a)

TASK 1 2 3 4 5

1 9 9 9 9 9

2 0 9 9 9 9

3 0 0 9 3 3

4 0 0 0 9 9

5 0 0 0 0 9

In Table 4-3, the lower triangle of the dependency matrix is not zero indicating

the presence of reciprocal dependencies. Task 1, for example, is dependent on

task 3, task 4, and task 5. The dependency relations lead to the information

exchange requirements for each task as indicated in equation ‎3-4, and as such they

determine how quickly a task can be completed. This develops in the simulation

according to how quickly information can be gotten to each task requiring it. If

there are organizational impediments to information transfer or delays in the tasks

providing the information, the task in question is delayed.

The two dependency matrices shown also have values along the diagonal. As

discussed in section 3.3.4 these elements represent the uncertainty that must be

resolved within the development team performing the task itself and set the

108

amount of information sent and received internally. In the simulation, these

communications do not contribute to the uncertainty of input and rework

calculations, but they occupy the resource assigned to each task in the model and

they are part of the calculation that is used to form the probability of success in

the simulated design review at the end of each phase.

Table 4-3 A dependency matrix case (b)

 TASK 1 2 3 4 5

1 9 9 9 9 9

2 0 9 3 6 9

3 3 0 3 6 9

4 9 6 0 9 9

5 6 0 6 3 9

The reduction in uncertainty that takes place during the execution of a task

(referred to as upstream information evolution in other studies of PD processes

(Krishnan, Eppinger et al. 1997) or information stability and precision

(Terwiesch, Loch et al. 2002)) is modeled here using a Gompertz curve as a

function of the task state. Recall from section 3.3.6.1 that we defined the task state

as the linear combination of the technical work fraction done and the input

information fraction received. In the following, we show several models of

uncertainty reduction profiles that we used in simulations to predict span time and

effort. The vertical axis in these figures is the uncertainty at task state S during the

execution of a task divided by the uncertainty at S=0. The total uncertainty is

made up of the sum of the epistemic uncertainty ε and the aleatory uncertainty φ

which are attributes of units of information created in each task in the simulation

according to the equations 3-12, 3-13, and 3-14.

Figure 4-1 shows how the parameters b and c of the Gompertz function can be

used to model the rate of the reduction of ε at the beginning of the task with value

of b, and the approach to the lower asymptote with the value of c.

109

Figure ‎4-1 Epistemic uncertainty ε versus task state as modeled for various values of b and c

Each time that a value is set for the uncertainty attribute of an information unit,

the inverse uniform PDF is used to determine the value of φ for the aleatory

portion. Figures 4-2, 4-3, 4-4, and 4-5 each show a sample of these values for

various values of ε. Notice how, for more rapidly reducing epistemic uncertainty,

the aleatory uncertainty reduces in magnitude. However, the precise way the

values fluctuate introduces the randomness in the uncertainty of information

received by each task in the process modeled. Each of the cases shown in the

following figures has a constant value of the magnitude of aleatory uncertainty m

defined in equation 3-14.

110

Figure ‎4-2 Aleatory uncertainty φ versus task state for b=30, c=6, m=0.5

Figure ‎4-3 Aleatory uncertainty φ versus task state for b=5, c=4, m=0.5

111

Figure ‎4-4 Aleatory uncertainty φ versus task state for b=5, c=6, m=0.5

Figure ‎4-5 Aleatory uncertainty φ versus task state for b=5, c=8, m=0.5

112

The combined values of ε and φ give uncertainty reduction profiles as shown in

the examples below. Here, we see how the combination of the values of b, c, and

m lead to very different profiles of uncertainty reduction. In the results of

simulations shown in the following sections we refer to these uncertainty

reduction profiles and their influences on PD project performance. An example of

a task with slow reduction in epistemic uncertainty and low magnitude of aleatory

uncertainty could be the design of a cockpit windshield. The design must

incorporate the requirements for visibility of landmarks by the pilot on landing

and takeoff, the seat design, typical pilot heights, aerodynamic considerations,

potential cockpit layouts of instrumentation, controls, and equipment, etc. These

studies require time and effort, and so the design evolves slowly in precision until

all of the information can be synthesized into a shape that meets the requirements.

The information needed to complete the design, however, is stable in terms of the

requirements and standards that must be considered, such that there is little

potential for unexpected changes.

Figure ‎4-6 The uncertainty for a task b=30, c=6, (slow reduction in epistemic uncertainty) m=0.1

(low magnitude of aleatory uncertainty)

113

Figure ‎4-7 The uncertainty for a task b=30, c=6, (slow reduction in epistemic uncertainty) m=1.0

(high magnitude of aleatory uncertainty)

Figure ‎4-8 The uncertainty for a task b=5, c=8, (rapid reduction in epistemic uncertainty) m=0.1

(low magnitude of aleatory uncertainty)

114

Figure ‎4-9 The uncertainty for a task b=5, c=8, (rapid reduction in epistemic uncertainty) m=0.5

(medium magnitude of aleatory uncertainty)

Figure ‎4-10 The uncertainty for a task b=5, c=6, (moderate reduction in epistemic uncertainty)

m=1.0 (high magnitude of aleatory uncertainty)

115

4.5 Sequential dependency

In this section we examine simulation results for the case of sequential

dependency. For example, with three sequentially dependent tasks, task 3 requires

information from tasks 1 and 2; task 2 requires information only from task 1; and

task 1 does not require any information from any other tasks.

Simulations were run with 5 sequentially dependent tasks in a PD project. The

dependency matrix for the case of 5 tasks (NPT=5) with high sequential

dependence is shown in Table 4-4.

Table ‎4-4 matrix D for high sequential dependency

TASK 1 2 3 4 5
1 9 9 9 9 9

2 0 9 9 9 9
3 0 0 9 9 9

4 0 0 0 9 9
5 0 0 0 0 9

The scenarios with sequential dependency were run for cases with α=1, two

phases (TP=2) and TWK= 15,000 hours. The following were the input parameters

for the prepare (PR), read (RD), and work (WK) subtasks (the 3 columns in each

matrix here are the minimum, median, and maximum values in hours of the

respective triangular PDFs):

‎4-8

The value for is calculated from equation ‎3-5 which results in an information

exchange matrix NC, calculated with equation ‎3-4 and shown in Table 4-5. As

explained in section ‎3.3.3, the element i and column j of this matrix are the

number of information entities that should be communicated from the task i to the

task j during the execution of the project.

116

Table ‎4-5 The resultant information exchange matrix NC for the sequential dependency scenarios

TASK 1 2 3 4 5

1 56 56 56 56 56

2 0 56 56 56 56

3 0 0 56 56 56

4 0 0 0 56 56

5 0 0 0 0 56

Other input parameters were set at the values shown in Table 4-6.

Table ‎4-6 Values for input parameters for scenarios with sequential dependency

Input parameter Value

BR (0, 0, 0, 0, 0)

B (0, 0, 0, 0, 0)

C (1, 1, 1, 1, 1)

INTMAX 20

LF 0.2

MINT 15

MANI 0 (signifies type A intervention in a starve condition)

MW 1200

NDT (0.02, 0.02, 0.02, 0.02, 0.02)

NIQ 0.002

NLAT Each row identical (0.005, 0.001)

PRD Each row identical (0.5, 0.1)

QMP (1, 1, 1, 1, 1)

QMR (1, 1, 1, 1, 1)

ATD, STD 0.5, 0.1

STSD 0.4

SCH (11, 11, 11, 11, 11)

TRHD (0.1, 0.1, 0.1, 0.1, 0.1)

These values were chosen so that we could isolate the effects of input parameters

we wished to study. Thus, for example, the value of parameters governing quality

of information B and C were set as shown, effectively making the quality value

unity at all times. The parameter governing the integrator resource capacity

INTMAX was set to 20 to ensure that there would be no constraint imposed in this

part of the process. The allowed span time for each task, set by SCH, was

117

sufficiently high to ensure that this would also impose no constraint in the

following scenarios.

4.5.1 Effects of task overlapping and uncertainty

In this section, we examine the behaviour of the sequentially dependent PD

process described above with overlapping of tasks in the process under different

conditions of uncertainty. Overlapping of tasks in an engineering process can

work well under conditions of sufficient communication of intermediate

information between interdependent tasks and under suitable conditions of

reduction of uncertainty in tasks (Bhuiyan, Thomson et al. 2006). In this section,

we examine under what conditions overlapping achieves the best results in terms

of span time and effort.

4.5.1.1 The effect of the profile of epistemic uncertainty reduction

In Figure 4-11 the performance of effort and span time of the PD project is shown

for profiles of slow and rapid reduction in epistemic uncertainty (the upper and

lower curves respectively in Figure 4-1) for sequentially dependent tasks. The

data points on each individual curve show simulation results for zero, 50% and

full overlap conditions. The data points are joined by a smooth curve for clarity in

describing results of scenarios with the same parameters. These cases depict high

values of stochastic uncertainty and frequent communication interval for all tasks

(NCI =10%, where NCI is defined in Table 4-1, is the normalized interval of work

progress in a task between communications of interim information).

For both cases shown, zero overlap yields the identical result with the longest

span time and the least effort. Note that the span time of this point is less than

unity. This is because communication work takes place in the read subtask

whenever input information is received. Thus, even before the technical work

begins in a downstream task with no overlap, some communication work is done.

This effectively reduces the normalized span time to less than one. (Recall that the

span time is normalized with the total average effort and that this includes the

effort required for information exchange. Since some of the total effort in reading

118

input information begins prior to the start of the technical work in the downstream

tasks, the normalized span time is less than unity even when there is no

overlapping of work).

Following the lower curve for the case of rapid reduction in epistemic uncertainty,

we see a small increase (3%) in effort and a 26% reduction in span time at the

50% overlap data point. Fully overlapping this configuration of tasks results in an

additional 37% decrease in span time and another 12% increase in effort.

The upper curve for the case of slowly reducing epistemic uncertainty shows an

increase in effort of 7% and a reduction in span time of 25% at the 50% overlap

data point. Fully overlapping this configuration incurs a further 33% increase in

effort and an additional 8% decrease in span time.

Figure ‎4-11 Normalized effort versus span time for two profiles of epistemic uncertainty reduction

for overlapping of sequentially dependent tasks

119

Thus, we see that for tasks with fast reduction of epistemic uncertainty there is a

substantial reduction in span time with fully overlapping tasks. This is evident

even when there is a large magnitude of aleatory uncertainty and strong

dependence between tasks, but as we shall see later, this does require frequent

communication of interim information. This is not the case for tasks with slow

reduction in epistemic uncertainty, where overlapping tasks by more than 50%

has little additional benefit in span time and incurs a significant increase in effort.

Examination of Figure 4-12 shows that the reason for the span time and effort

performance in these scenarios is the increasing amount of rework from

progressive iteration that is generated during the simulations with higher overlap

(for a more detailed discussion of rework see section 3.3.10). The sum of this

rework over all tasks and phases of the simulated PD project is called churn.

When uncertainty reduces more slowly, there is more churn generated with

increasing overlap. Thus, the model predicts that when there is greater uncertainty

tasks do not make progress, but spend more time reworking what was done with

imprecise information. The additional effort in rework in the tasks results in

increased effort to complete the project, and in a lack of progress because the

additional time spent in rework increases span time.

120

Figure ‎4-12 Normalized churn versus span time for two profiles of epistemic uncertainty reduction

for overlapping of sequentially dependent tasks

4.5.1.2 The effect of the magnitude of stochastic uncertainty

The results in Figure 4-13 are for tasks with slow reduction in epistemic

uncertainty (the highest curve in Figure 4-1 corresponding to b=30 and c=6) and

several values of the magnitude of stochastic uncertainty m. At zero overlap, the

span time and effort is the same regardless of the level of stochastic uncertainty.

Overlapping at 50% results in similar reduction of span time and increase in effort

for each value of m. This corresponds to a 25% reduction in span time and a 9%

increase in effort.

121

Figure ‎4-13 Variation of PD project performance of 5 sequentially dependent tasks with increasing

overlap using the same slow reduction in epistemic uncertainty with increasing

stochastic uncertainty

For fully overlapped tasks, there is a wide divergence with m, indicating an

increasingly larger amount of effort and increasingly smaller reduction in span

time when stochastic uncertainty is higher. This result is primarily due to the

increasing amount of rework from progressive iteration that is generated during

the simulations (for a more detailed discussion of rework see section 3.3.10). The

variation of the sum of this rework over all tasks and phases of the simulated PD

project (churn) is shown in Figure 4-14. Here, the substantial increase in churn

occurring at full overlap is evident.

122

Figure ‎4-14 Normalized churn for the scenarios in Figure ‎4-13.

The criterion for starting the downstream task in the simulation is based upon the

percentage of information received by this task from the upstream task. At 50%

overlap the downstream task begins work when 50% of the information

requirement from upstream tasks has been met. Thus, the uncertainty of the

information received before the downstream task begins is relatively low, even in

the case of high values of m, and so there is much less rework generated. Further

reductions in span time are predicted with full overlap, but only in cases with

relatively low values of stochastic uncertainty. If stochastic uncertainty is too

high, there is much wasted effort in rework, and little benefit in span time

reduction for full overlap.

These results with increased overlap are a direct outcome of the rework generated

in the tasks. This is evident in Figure 4-14 which shows the value of churn or total

rework generated by progressive iteration in tasks during each phase in the

simulations. The increase in effort corresponds to the increase in churn when

123

overlap increases beyond 50%, and this results in increased span time as more

time in each task is spent redoing work rather than making any progress towards

completion of the project.

With zero overlap all cases of stochastic uncertainty show the same normalized

span time and effort values at approximately 0.8 and 1.55 respectively.

Figure 4-15 shows the behaviour with overlap and magnitude of stochastic

uncertainty when the epistemic uncertainty in the tasks reduces more quickly (the

lowest curve in Figure 4-1). Here, we see than the span time reduction is higher

and the increase in effort is lower at each instance of overlapping and magnitude

of stochastic uncertainty.

Figure ‎4-15 Variation of PD project performance of 5 sequentially dependent tasks with increasing

overlap using the same rapid reduction in epistemic uncertainty with increasing

stochastic uncertainty

Once again, this is due to the substantially lower amounts of churn generated in

the simulation as can be seen by comparing the variation in churn shown in Figure

124

 4-16 with those in Figure 4-14. Here, we see that the magnitude of churn is less

than one-half of those at corresponding levels of overlap.

The behaviour of span time and effort of the simulated PD projects shows how

overlapping tasks, where there is high sequential dependency between them, can

be of benefit in reducing span time. The extent to which this is advantageous

depends on the level of stochastic uncertainty in the tasks and on the rate of

reduction of epistemic uncertainty. These simulations were performed with a

communication interval of 10% of the nominal task time (NCI=0.10). In the next

section, we look at the effect on PD project performance when this

communication interval is varied.

Figure ‎4-16 Normalized churn and span time for the scenarios shown in Figure ‎4-15.

The results shown here are qualitatively similar to those predicted in other

research in concurrent engineering (Krishnan, Eppinger et al. 1997; Bhuiyan,

Gerwin et al. 2004) using different kinds of process models. In a field study of

concurrent engineering practices, Swink et al. (1996) found that companies tended

125

not to overlap manufacturing process planning tasks with design tasks for the

development of products with a high degree of innovation or new technology in

design. A high degree of innovation or new technology in design implies high

uncertainty in design tasks, and therefore, this observation supports the findings

here that overlapping downstream tasks is counterproductive when there is high

upstream uncertainty.

Care must be taken in comparisons, however, since in the model presented here

we differentiate between an initial level of uncertainty between tasks, which is

used to construct a measure of the dependency strength between tasks and the

information exchange requirements, and the rate at which this uncertainty reduces

during the execution of the tasks. We show here, that even for high initial

uncertainty between tasks, if the uncertainty reduces rapidly during task

execution, overlapping with suitable frequency of communication of interim

information can be an effective technique for reducing span time. We examine

this relationship in the next section.

126

4.5.2 Effects of task overlapping and communication interval

The variation of span time with overlapping and communication interval is shown

in Figure 4-17. These results are for slowly reducing epistemic uncertainty and an

intermediate value of stochastic uncertainty. Here, we see the effects as we vary

the value of NCI about the value of 0.1 used in the previous section. As can be

seen in the figure, with zero overlap, the span time remains nearly constant with

change in NCI. At 50 per cent overlap, span time rises as NCI is increased. With

full overlap there is a minimum span time achieved with NCI at about 10 per cent

and further increases in communication interval result in increases in span time.

Figure ‎4-17 Variation of span time of 5 sequentially dependent tasks with communication interval

for different amounts of task overlap. Cases shown for slow reduction in epistemic

uncertainty and moderate magnitude of aleatory uncertainty (b=30, c=6, m=0.5).

Figure 4-18 shows how effort varies with communication interval. Effort is

highest when NCI is small in the fully overlapped case, reaching a minimum at a

value of NCI of approximately 10 per cent and then rising more gradually with

increasing values of communication interval. Effort increases with more overlap.

127

Figure ‎4-18 Variation of effort with communication interval for the cases shown in Figure ‎4-17.

The simulation results show that the higher effort and lower span time resulting

with full overlap and very short NCI is caused by higher values of churn. When

there is too frequent communication of uncertain information, tasks perform more

rework. This is evident in Figure 4-19 where churn reaches a minimum at NCI of

approximately 10 per cent and levels off substantially. When the communication

is too infrequent, tasks are starved for information and span time extends largely

due to tasks waiting for information. The downstream tasks wait, but there is less

rework; so, the effort does not increase substantially.

128

Figure ‎4-19 Variation of churn with NCI for the scenarios in Figure ‎4-17.

The simulation results for starve time shown in Figure 4-20 bear this out. Here,

the tasks in an overlapped scenario are „starved‟ for information as

communication intervals increase and cannot progress for increasingly longer

periods of time.

In a sequentially dependent scenario, downstream tasks must wait for information

in order to perform their work. If the tasks are overlapped, there can be a

reduction in span time even if dependency is high, provided that the rate of

uncertainty reduction in the upstream tasks is sufficiently rapid, and that interim

information is communicated with suitable frequency. Too frequent updates of

information about design parameters results in the likelihood of excessive rework,

whereas too infrequent updating of this information can starve the downstream

tasks so that even if they begin work they are unable to continue, having gone as

far as they can with the received precision of information.

129

Figure ‎4-20 Normalized starve time versus NCI for the scenarios in Figure ‎4-17.

The simulation results shown in this section predict the optimal communication

interval and the conditions under which overlapping of tasks is advantageous. The

sensitivity of these results to the various parameters in the model are investigated

next.

4.5.2.1 Sensitivity of results

Figure 4-21 shows the influence of increasing the magnitude of stochastic

uncertainty m on the span time. The behaviour is similar to that shown for m = 0.5

in Figure 4-17, but in Figure 4-21 the value of NCI at which the minimum span

time is reached is „flatter‟, showing a range between 0.1 and approximately 0.25

with full overlap. However, in comparison to the results in Figure 4-17, the

reduction of span time is smaller in Figure 4-21, reaching a minimum of 0.55 with

m = 1 in comparison to the value of 0.44 when m = 0.5. The span time at very low

NCI is also significantly higher with full overlap, reflecting the detrimental effect

of too frequent communication of interim information with high stochastic

130

uncertainty. Similar effects are apparent with 50% overlap albeit with smaller

magnitudes.

Figure ‎4-21 Variation of span time with communication frequency with slow evolution and high

aleatory uncertainty for five tasks that are sequentially dependent (b=30, c=6, m=1.0).

In Tables 4-7 and 4-8, the actual values of normalized effort, span time, churn and

starve time are shown for the m=0.5 and m=1.0 respectively with full overlap.

Here, it can be seen that while the minimum span time is lower for lower

stochastic uncertainty, the value of span time is approximately equal for higher

NCI.

Table ‎4-7 Simulation results for the scenario in Figure ‎4-17

b c m neffort nspan nchurn nstarve nci Overlap

30 6 .5 2.50 0.58 0.85 0.28 0.03 Full

30 6 .5 2.22 0.47 0.50 0.32 0.06 Full

30 6 .5 1.98 0.44 0.35 0.41 0.11 Full

30 6 .5 1.95 0.51 0.32 0.67 0.23 Full

30 6 .5 2.07 0.69 0.41 1.17 0.45 Full

131

Table ‎4-8 Simulation results for the scenario in Figure ‎4-21.

b c m neffort nspan nchurn nstarve nci Overlap

30 6 1 3.59 1.07 1.88 0.53 0.03 Full

30 6 1 2.59 0.65 0.92 0.52 0.06 Full

30 6 1 2.22 0.55 0.56 0.56 0.11 Full

30 6 1 1.98 0.54 0.38 0.72 0.23 Full

30 6 1 2.10 0.71 0.44 1.17 0.45 Full

The values for effort are much higher at low values of NCI reflecting the effect of

higher churn at this range, but also reach approximately the same values for

higher values of communication interval.

Figure ‎4-22 Variation of span time with communication frequency for rapid reduction in epistemic

uncertainty and moderate aleatory uncertainty for five sequentially dependent tasks.

Variation of span time with communication interval for scenarios with rapid

reduction in epistemic uncertainty is shown in Figure 4-22. In comparison with

slow reduction of epistemic uncertainty (Figure 4-17) the following results are

observed:

132

i. With zero overlap, the results are identical, showing constant span time of

approximately 0.8.

ii. At 50% overlap, the span time is approximately 10 percent lower at small

NCI, but rises with longer communication intervals to the same values

achieved with slow reduction of epistemic uncertainty.

iii. With full overlap, the behaviour is quite different at low NCI; span time is

not higher at low NCI, but rather increases gradually as communication

interval is increased. The minimum span time is 30% lower with rapidly

reducing epistemic uncertainty than in the scenario in Figure 4-17, and is

achieved at the lowest values of NCI. This is consistent with the rapid

reduction in epistemic uncertainty, where the final values of parameters

communicated are reached very rapidly.

4.5.3 Modification of dependencies with multiple inputs (set-based

coordination)

Set-based coordination was put forward as a hedging tactic that can be employed

to reduce span time in situations where the cost of addressing multiple upstream

task outcomes is not prohibitive (Loch and Terwiesch 2005). In essence, set-based

coordination is an approach in design where engineers develop several concepts

to greater resolution before choosing one to finalize (Sobek 1996). As an

illustration consider the situation where a task cannot proceed without vital

information from an upstream task, and it is decided to develop several

alternatives, one for each set of possible results from the upstream task. This, in

effect, eliminates the dependency with the upstream task, but comes at a cost of

having to develop several solutions.

We looked at simulating this scenario using the model. In our 5 task sequentially

dependent project, we consider the effects of developing two solutions for task 4;

one we call task 4a and one task 4b. These each carry out the work of the previous

task 4, but for one of two possible outcomes we conjecture that could be provided

by task 3 (outcomes of task 3 are the inputs to task 4). Table 4-9 shows the

resultant dependency matrix considered.

133

Table ‎4-9 The dependency matrix for a set-based coordination scenario

TASK 1 2 3 4a 4b 5

1 9 9 9 9 9 9

2 0 9 9 9 9 9

3 0 0 9 0 0 9

4a 0 0 0 9 0 9

4b 0 0 0 0 9 9

5 0 0 0 0 0 9

Thus, there is no dependency between task 3 and task 4a or task 4b and no

dependency between task 4a and 4b. The WK matrix with the parameters for the

work subtask PDF is the same as in equation 4-8, but with an additional row for

the additional task added to the project. In this scenario, therefore, the total work

is greater due to the additional task, and is 18,000 hours. However, we want to

keep the total amount of communication work the same as previously at 15,000

hours; so, α is set accordingly using equation 3-8. The resultant communication

matrix NC is shown in Table 4-10.

Table ‎4-10 The communication matrix for the set-based coordination scenario

TASK 1 2 3 4a 4b 5

1 46 46 46 46 46 46

2 0 46 46 46 46 46

3 0 0 46 0 0 46

4a 0 0 0 46 0 46

4b 0 0 0 0 46 46

5 0 0 0 0 0 46

The effort versus span time for this scenario for various amounts of task overlap is

shown in Figure 4-23 in comparison to the earlier dependency conditions with

high uncertainty. Here, rather than compare normalized effort and span time we

show non-normalized results in hours so that we can more readily compare the

results for these two situations. This is because the amount of work in the project

has increased in the set-based scenario and so the number with which we would

134

have normalized the results is not the same for both cases. These cases were run at

NCI=10%.

Here, we can see that in the zero overlap condition the set-based scenario has a

20% lower span time than in the base case scenario and 6% additional effort.

With 50% overlap, there is 17% lower span time and about 6% more effort for the

set based scenario. At full overlap, the span time is about the same for each

scenario, but there is 17 percent higher effort in the set based condition. At zero

overlap, the span time is lower since tasks 3, 4a, and 4b begin once the

information from tasks 1 and 2 has been received without any dependency

between them. This, in effect, allows tasks 3, 4a, and 4b to work in parallel even

in the „zero overlap‟ condition. It is actually the other tasks in the project that are

affected by the imposed overlapping, since they are the only tasks with

dependencies. The results here show that the overlapping of tasks has more

rapidly diminishing benefits with increasing overlap compared to the base case.

Figure ‎4-23 Effort and span time results with increasing overlap for a set based coordination

scenario in comparison to ordinary sequential dependency conditions

135

This is supported by the results shown in Figure 4-24, which shows a more rapid

rise in churn with overlap than the base case.

Figure ‎4-24 Churn for set based coordination with overlap in comparison to sequentially

dependent scenario

The set-based coordination scheme can work effectively with overlapping to

reduce span time in PD projects where uncertainty conditions are suitable.

However, even with more rapid rates of uncertainty reduction there is more

benefit to fully overlapping than to fully overlapping with set based coordination.

This is evident in Figure 4-25 where the reduction in span time with full

overlapping is the same in both the base case and the set-based coordination case,

but there is greater effort required in the latter.

136

Figure ‎4-25 Comparison of set-based coordination and base case with different epistemic

uncertainty reduction profiles and medium aleatory uncertainty (m=0.5)

Of course using the set-based coordination scheme is only possible when the sets

of inputs can be defined for any eventuality of results of the upstream task whose

dependency links are severed, and when the number of alternative solutions that

must be generated is small. In Figure 4-26 and Figure 4-27 set-based coordination

scenario 2 is shown where task 4 in the original base case would have had to be

split into 3 alternate cases in order to eliminate the dependency with task 3. The

results show that for both rapid and slow epistemic uncertainty reduction, it is not

worthwhile to use this coordination scheme since it is possible to obtain an equal

span time reduction with less effort simply by overlapping the original tasks by

50%.

137

Figure ‎4-26 Set-based coordination scenario 2 with slow uncertainty reduction profiles

Figure ‎4-27 Set-based coordination scenario 2 with rapid uncertainty reduction profiles

138

4.6 Reciprocal dependency

Often in PD processes there are several groups or blocks of tasks that are

reciprocally dependent (see section 2.8.1). Efforts to coordinate the work of these

blocks of tasks most effectively have the most leverage in improving the overall

performance of the PD project since it is from these blocks of tasks that much of

the rework originates. In this section we look at various means of improving the

coordination of groups of tasks with reciprocal dependencies.

In PD processes, reciprocal dependency often exists between tasks, although it is

sometimes underestimated or ignored and results in unplanned rework cycles and

longer span times. As an example consider the scenario where a product is

designed and production documents are handed over to manufacturing. The

process planning for manufacturing may uncover problems with the design where,

for example, some parts are not able to be manufactured as designed due to

limitations in manufacturing processes. These limitations might not be known to

designers whose expertise is limited in manufacturing technologies or if the

product or the manufacturing processes are new to their experience. Additionally,

manufacturing process planning tasks may uncover substantial savings that can be

gained by changes to the design that are of no significance to the customer

requirements, but can have significant cost impact in manufacturing.

If these issues are important enough, manufacturing does not proceed until design

changes are made. In effect, rework of design tasks is performed due to

information received from downstream tasks in the PD process, and this happens

because the dependency between manufacturing process planning tasks and

design tasks was underestimated. This is an example of reciprocal dependency

because the manufacturing process planning tasks require information from

engineering design tasks, and engineering design tasks require information from

manufacturing process planning.

This is also an example of the role of uncertainty in the dependency strength

between tasks. If uncertainty, that is, the difference between the designers‟

139

knowledge of the manufacturing processes and those required for this product, is

high, there is a higher dependency between the tasks involved in manufacturing

process planning and the tasks involved in product design.

In situations of reciprocal dependency, if uncertainty is low in some tasks,

estimates of information required from them can be used to make progress in

other tasks first. These tasks with greater uncertainty become the „upstream‟ tasks

in the process. They would be developed to the level of detail where their

uncertainty becomes low enough to be comparable to that of the downstream

tasks. This may be thought of in terms of the precision of the information that can

be generated from them without further developing the downstream tasks.

An example of this sequencing of tasks according to the degree of dependency

can be taken from aircraft design, where the information required from the design

of interior systems is less uncertain at the outset than that of the overall aircraft

configuration or external contours. In aircraft design, initial estimates are made of

the weights and topology of interior structures and systems, such as air

distribution, cockpit instrumentation, landing gear, electrical systems, etc., based

on previous experience and trade data. Using these data, the exterior shape of the

aircraft is designed according to the mission requirements, loads generated by the

motion of the aircraft in the air, and the weights of the payload and equipment the

aircraft is carrying. Once the exterior contours are largely fixed, design of the

interior systems can proceed in greater detail within the external envelope and

allowable weights. It is in the detailed design phase of these internal systems that

the required level of precision increases and the level of uncertainty of

information to this precision becomes significant for many of the components and

systems. Once this stage of the design process is reached, there is more reciprocal

dependency when, for example, precise dimensions of structures and systems

require more precise details of adjacent structures and systems to complete the

final design of parts and components.

140

One way to manage reciprocal dependency in order to minimize rework and

thereby reduce span time in a PD project is to perform the tasks that are

reciprocally dependent in parallel and exchange interim information developed in

each task. In this way each task can proceed with some initial estimates of the

input information that it requires, develop some output information required by

other tasks, communicate it, receive input from other tasks that is more precise,

use this to produce output of greater precision, and so on. Thus, each task can

make progress in refining its results. This iterative process continues until the

information being exchanged is sufficiently precise for the purposes of the PD

project.

In this section we use the model to explore several aspects of reciprocal

dependency in PD. We consider the base case defined by the input parameters in

Table 4-11 along with the dependency matrix in Table 4-12 for reciprocally

dependent tasks:

Table 4-11 Input parameters for reciprocal dependency scenarios

Input parameter Value

α 1.0

BR Each element 0

B Each element 0

C Each element 1

INTMAX 20

LF 0.2

MINT 15

MW 1200

NIQ 0.0002

NDT Each element 0.01

NLAT Each row identical (0.0005, 0.0001)

PRD Each row identical (0.5, 0.1)

PR Each row identical (1, 4, 9)

QMP Each element 1

QMR Each element 1

RD Each row identical (1, 4, 8)

ATD, STD 0.5, 0.1

STSD 0.4

SCH Each element 11

141

Input parameter Value

TRHD Each element 0.10

WK Each row identical (WKmax/4,WKmax/2, WKmax)
*

*
Note that WKmax is derived from the input value of TWK using equation 4-4.

Table ‎4-12 The dependency matrix for 5 tasks with high reciprocal dependency

TASK 1 2 3 4 5

1 9 9 9 9 9

2 9 9 9 9 9

3 9 9 9 9 9

4 9 9 9 9 9

5 9 9 9 9 9

4.6.1 The effects of communication interval

With high reciprocal dependency, parallel execution with interim information

exchange is an important method of enabling dependent tasks to effectively

continue with their work. The timeliness with which interim information is

exchanged allows each task to make progress towards a successful design review

at the end of each phase. However, exchanging uncertain interim information too

often can lead to unnecessary rework which impedes the progress of tasks.

In this section we examine the effect of the communication interval with which a

task sends out interim information to other tasks. For these simulations we

considered PD projects with 5 highly reciprocally dependent tasks and average

total effort requirement TWK=16,000 hours. The resultant information exchange

matrix NC had all elements of value 36. Other input parameters were as indicated

in Table 4-11.

Figure 4-28 shows the variation of normalized span time with normalized

communication interval for several cases of uncertainty. The results show that

with slowly reducing epistemic uncertainty (b=30, c=6) span time reduces with

smaller communication intervals until a minimum is reached at NCI

approximately equal to 0.1 (the critical point). The reduction in span time with

142

more interim communication is nearly 75% to the critical point. The steepness

and magnitude of the rise of span time as NCI reduces below the critical point is

strongly affected by the value of aleatory uncertainty m, indicating how the

magnitude of the variation of stochastic uncertainty affects the span time when

information is communicated with high frequency. When NCI is above the critical

value, a tenfold increase in the value of m has little effect on the slope of increase

in span time or its magnitude .

With more rapid reduction in epistemic uncertainty (b=5, c=8), there is a 35%

increase in the span time over the range of NCI. The minimum span time with

more rapid reduction in uncertainty is 36% lower than that with more slowly

reducing uncertainty.

Figure ‎4-28 Normalized span time for PD with 5 reciprocally dependent tasks with varying

communication interval for different cases of epistemic and aleatory uncertainty

The variation in effort shown in Figure 4-29 is similar to that in span time.

Examination of the results shown for churn, starve time and design version

rework in Figures 4-30 to 4-32 shows that the behaviour of the PD project is

143

largely affected by the increase in starve time when NCI is higher than the critical

point. This results in an increase in design version rework.

The starve time increase is a result of tasks not getting enough information to

allow them to progress in their work when the communication interval is too high.

This causes an insufficient reduction in uncertainty when the design review takes

place and triggers design version rework cycles.

This can be seen in Figure 4-31, where the number of design versions increase

with increasing NCI past the critical point, but remain low below it. Increasing

amounts of design version rework is the mechanism for increases in the effort and

span time of the project when NCI is above the critical point.

Figure 4-29 Normalized effort for PD with 5 reciprocally dependent tasks with varying

communication interval for different cases of epistemic and aleatory uncertainty

144

Figure 4-30 Cumulative normalized churn for PD with 5 reciprocally dependent tasks with varying

communication interval for different cases of epistemic and aleatory uncertainty

Figure 4-31 Average design versions per phase for PD with 5 reciprocally dependent tasks with

varying communication interval for different cases of epistemic and aleatory

uncertainty

145

Figure 4-32 Cumulative normalized starve time for PD with 5 reciprocally dependent tasks with

varying communication interval for different cases of epistemic and aleatory

uncertainty

When NCI is below the critical point, it is the increase in churn that drives the

span time and effort performance. As can be seen in Figure 4-30, there is a

marked increase in churn below the critical point whereas churn remains flat with

increasing NCI above it. This supports the explanation for increased span time

caused by the rework from too frequent communication of interim information

that is subject to stochastic uncertainty.

146

4.6.2 Effect of delays in information flow on project span time

In projects performed by many people in various locations, delays in simply

getting information to the attention of those that can make use of it in their work

can be a significant portion of the time required to do the work itself in each task.

These delays, where information must travel through several layers of an

organization, accumulate and can cause unnecessary rework with significant

knock-on effects on many tasks. Moreover, since engineers and designers are

often occupied with several projects at the same time, there is a delay before they

turn their attention to following up on missing information required to make

progress in one of their tasks. These delays to information flow are referred to as

communication latency.

Various schemes to reduce communication latency are implemented in

organizations ranging from project management personnel manually monitoring

the status of deliverables of each task, the use of product data management

systems, to the use of virtual models of the parts and assemblies of the new

product being developed. These systems, if well designed, can reduce

communication latency as well as facilitate the work in communication of interim

information. However, a system to reduce latency, if not tailored to deliver

interim information only to the people requiring it and if not able to indicate the

precision of the interim information can be counterproductive. Too much

information, too often, can result in wasted effort in communication and

propagate imprecise and unstable data causing unnecessary rework.

The behaviour of the PD system as modeled here was used to study the impact of

communication latency of various types on system performance. Simulations

evaluate the impact of methods to reduce these delays for various product

development system structures and levels of uncertainty. In order to examine the

sensitivity of the span time of a project to these delays, permutations of the base

case of Table 4-11 were simulated varying each input parameter affecting

communication latency in turn.

147

The values for normalized span time in Table ‎4-13 are listed for each value of

magnitude of aleatory uncertainty m shown in the top row, and for scenarios

where the input parameter indicated in the left column was changed in turn from

the base case of Table 4-11. These results are also illustrated in Figure 4-33. The

combination scenario combined the indicated input values for each parameter

together into one scenario.

Table 4-13 Values of normalized span time for each permutation of input parameter for slowly

reducing epistemic uncertainty (b=30, c=6)

m
NSPAN

@m=1.0
NSPAN

@m=0.5
NSPAN

@m=0.1
Δ

@m=1.0
Δ

@m=0.5
Δ

@m=0.1

Base case (Table 4-11) 0.37 0.35 0.34 0 0 0

INTMAX=4 0.39 0.35 0.33 2% 1% 0%

NDT=0.1 0.39 0.40 0.37 2% 5% 4%

NLATM=0.1 0.44 0.41 0.37 6% 7% 3%

NIQ=0.1 0.42 0.37 0.35 4% 2% 2%

Combination scenario 0.70 0.69 0.65 32% 34% 32%

The span time generally increases with increasing magnitude of aleatory

uncertainty in each scenario. The differences between the normalized span time

for each scenario and those of the base case are shown in the three right columns

of the table. What is apparent from this and from Figure 4-33 is that the increase

in span time for the combination scenario is approximately 2-1/2 times larger than

that of the simple addition of each of the effects alone. For example, when m=1.0,

reducing the integrator resource capacity to INTMAX=4 alone results in a 2%

increase in span time; increasing the average latency delay NLATM to 0.1 results

in a 6% increase in span time; increasing the time period between which the

development team deals with communication work NDT to 0.1 results in an

increase in span time of 2%; and adding additional integrator resources only when

NIQ=0.1 increases the span time by 4% (NIQ, defined in Table 4-1, is the

normalized integrator queue time threshold where additional integrator resource

capacity is added). The sum of these individual increases in span time is 14%;

however, when all of these are combined, the span time increases by 32%. The

148

combination of all of these delays are such that tasks cannot complete their work

in time, and design version rework ensues.

Figure 4-33 Normalized span time versus magnitude of aleatory uncertainty for cases in which

each input variable indicated was changed in turn from the base case of Table 4-11

(all cases with slowly reducing epistemic uncertainty b=30, c=6).

Delays in getting information to dependent tasks increase the likelihood of rework

due to design iteration. This is evident in Figure 4-34 where it can be seen that

each source of delay to information flow increases churn. Here, the churn in the

combination scenario is approximately equal to the sum of the churn in each

individual case. Each type of delay increases the likelihood that information

getting to a dependent task is not continuously reducing in uncertainty. This

generates design iteration rework as tasks operate with less than up to date

information. This phenomenon has been widely observed in several industries by

other researchers (Mihm, Loch et al. 2003; Yassine, Joglekar et al. 2003), but has

not been demonstrated to be made up of the combination from individual sources

in this way.

149

Figure 4-34 Normalized cumulative churn versus magnitude of aleatory uncertainty for cases in

which each input variable indicated was changed in turn from the base case of Table

 4-11 (all cases are with slowly reducing epistemic uncertainty b=30, c=6).

Thus, sources of delay in information flow combine in a non-linear way to

increase span time significantly. This insight has important managerial

implications in that reducing delays from various sources to information flow

between interdependent tasks can have large leverage in reducing project span

time. Making an effort to reduce one or more sources of delay to information flow

would have a larger than proportional effect on project performance. For example,

Figure ‎4-33 (curve labeled combo – latm) shows that the reduction in the delay

due to latency, NLATM, from the combination case by itself reduces span time

by 20%.

Similar results for cases with more rapidly reducing epistemic uncertainty are

evident in Figure ‎4-35. Here, the span time increases are lower, but the

combination scenario results in increased span time of 17%, whereas the effects

from individual delays add up to 5-6% when increased individually.

150

Figure 4-35 Normalized span time versus magnitude of aleatory uncertainty for cases in which

each input variable indicated was changed in turn from the base case of Table 4-11

(all cases with rapidly reducing epistemic uncertainty b=5, c=8).

4.6.3 The effects of increasing the number of differentiated tasks in the

project decomposition

Simulation results for the normalized span time of a process with 2 phases that

has been split into NPT development tasks are shown in Figure 4-36. All the

scenarios depict processes that require the same amount of average total work,

i.e., TWK has the same value for each scenario. When splitting the work into NPT

development tasks there are also NPT resources to execute these differentiated

tasks. Ideally if there is perfect and effortless coordination, the span time would

reduce in inverse proportion to NPT since there are more resources available to do

the same amount of work. Recall from sections 3.3.3 and 3.3.4 that in our model,

the total communication work is considered to be proportional to the total

technical work, and so the difference between scenarios in this section is in the

proportion of communication that is between tasks to that which is internal within

one development team. Thus, this section examines the scenario where it is

151

possible to decompose a task into several differentiated, reciprocally dependent

subtasks which are nominally equal in required effort, and assign a resource to

each one.

The dashed line in Figure 4-36 shows the idealized case where the decrease in

span time incurred by decomposing the work into more tasks is a function of the

increased number of resources to do the work required, i.e., each normalized span

time point is 1/NPT. The average total amount of work TWK, performed in each

scenario in the figure, was 16,000 hours. The base case was run with the input

parameters shown in Table 4-11.

Figure 4-36 Normalized span time for increasing number of tasks in the work decomposition. All

cases with slowly reducing epistemic uncertainty (b=30, c=6) and moderate

magnitude of aleatory uncertainty (m=0.5).

The span time reduces with increasing number of tasks because of the increased

number of resources available to execute the same nominal amount of work, but

not as much as in the ideal case. As shown in the figure, there is a significant

increase in span time when input parameters governing communication latency

152

and frequency of attention to communication work by development teams are

increased from the base case values. The impact of these delays is not linear with

the number of tasks in the decomposition.

In the cases shown, there are sufficient integrator resources at all times, although

as shown in Figure 4-37, as the number of tasks increases, integrator effort

increases. This is because, as there are more tasks in the process, an increasing

amount of the information exchange is done with other tasks, and in our model all

of this information must go through the system level integrator. The cumulative

effort of the development teams, also shown in Figure 4-37, decreases initially as

the number of tasks increases, but starts to grow gradually in the base case after

the number of tasks is greater than 8. When there are more delays in information

flow caused by NLATM and NDT=0.1, the effort of the development teams

increases much more rapidly with more tasks in the decomposition, starting when

NPT is 4. The cumulative effort of the development teams at NPT =10 is over

30% higher than in the base case and is over 30% higher than its minimum when

NPT=4. Integrator effort also increases for higher NPT reaching 30% greater than

the base case when NPT=10.

153

Figure 4-37 Normalized integrator and development team effort versus the number of tasks in the

decomposition of the work for b=30, c=6, m=0.5. Base case refers to input parameters

in Table 4-11.

Recall (sections 3.3.3 and 3.3.4) that in our model we hypothesized that the

amount of information that must be processed in a PD project is a parameter

related to the uncertainty in the work for the organization performing it. If there

are fewer tasks in the decomposition, more information processing work is done

within the development team, i.e., there is a larger proportion of internal

communication. We modeled internal communication as being done without

delays due to latency (controlled by the input parameter NLATM) and without

the need for integrator scrutiny. Additionally in the model, the uncertainty of

information exchanged internally within the development team does not

contribute to the design iteration rework calculation. These model constructs were

imposed because in practice the information exchange between members of the

same development team is carried out in an informal, almost continuous manner,

and with the high bandwidth typical of face to face communication. As such, the

precise nature of the information being exchanged within a development team is

154

known to each member and would not lead to unnecessary rework as a result of

misinterpretation of the precision of the information by the participants.

That PD projects with more tasks are prone to longer span times and excessive

effort is largely borne out by empirical evidence (Mihm and Loch 2006). Mihm

and Loch state that “large engineering projects, in particular, seem to be prone to

failure.” They also go on to state that according to random matrix theory, a

complex PD project featuring many components or many interactions (or both)

“inherently has a high probability of problem-solving oscillations, of instability,

and of a long design conversion (span) time.”

The results in this section point to the reason for longer span times when there are

more interdependent tasks. The hierarchical manner in which the system level

integration is carried out leads to delays that become more important when there

are more tasks. This is not because there is a lack of resources to do this work

(although this exacerbates the delays), but is due to the delay imposed by the

system level task itself. This delay becomes increasingly onerous when the work

is broken up into a greater number of tasks because a greater proportion of the

information being exchanged must be processed by the system level task.

Additionally, the delays in transmission of information and in getting it to other

development teams participating in the project are more significant when there are

more tasks in the project since a greater proportion of the required information

exchange takes place between development teams performing different tasks.

A delay in getting updated information to each task in a project with high

interdependency propagates through the project and effectively is amplified to add

up to significant increases in span time. The amplification comes about because of

the rework generated when information is delayed. In this sense, this is

complementary to the result referenced earlier from random matrix theory, which

states that perturbations in larger coupled systems take longer to converge and can

actually diverge when there is a large number of elements and continual

155

perturbations. In the case of random matrix theory applied to PD, the

perturbations are changes that take place in some tasks that affect other tasks.

In our model, we can see that the simulation of changes that occur in tasks due to

aleatory uncertainty and slow reduction in epistemic uncertainty propagate with

delays to other tasks, and this results in more rework cycles as the number of tasks

increase. In effect, the delays caused by the integrator process result in dependent

tasks being starved for information and being unable to reduce the uncertainty in

their work sufficiently to successfully pass the design review. Thus, increasing the

number of tasks tends to result in increasing amounts of design version rework.

This is evident from the results shown in Figure ‎4-38 and Figure ‎4-39 which show

that even in the base case of effectively no latency delays, there is a tendency for

increased starve time and design version rework as the number of tasks climbs

towards NPT=10.

The results with the model indicate that longer span times are not necessarily an

inherent property of PD projects when there are more tasks in the decomposition.

Rather, it is the latency in communication that becomes more important and the

manner in which a PD project is managed to ensure that the work of individual

development tasks is properly integrated. If these aspects of a PD project can be

mitigated through managerial or technological systems to expedite information

exchange between tasks and a more distributed way of managing the integration

of the work of development teams is adopted, it is feasible that large PD projects

can operate as efficiently as smaller ones.

156

Figure 4-38 Average number of design versions per phase versus the number of tasks in the

decomposition of the work for slowly reducing epistemic uncertainty and moderate

aleatory uncertainty (b=30 c=6, m=0.5). Base case refers to input parameters in Table

 4-11

This insight has implications in planning PD processes. In order to get a new

product to market earlier, it would be advantageous to involve as many people as

possible in the product development process. Yet, we find that increasing the

number of differentiated subtasks in processes is counterproductive to reducing

span time. Is there a way to ensure product integrity without using the vertical

channels of the integration process as it is modeled here? In section ‎4.6.4 we

examine a PD project structure that may be effective.

157

Figure 4-39 Normalized cumulative starve time versus the number of tasks in the decomposition

of the work for b=30, c=6, m=0.5. Base case refers to input parameters in Table 4-11

The scenarios considered in the previous figures had ample integrator resources to

perform the work required without impeding the project. In the scenarios shown

in Figure 4-40 we use the model to predict the performance of these projects when

integrator resources are more constrained. Here, when integrator resources are

limited to 4 units, span time performance is identical to the less constrained case

when the decomposition has less than 7 tasks, i.e., the span time reduces because

there are more resources available to perform the same nominal amount of work

and the impediments to information exchange are low. However, for projects with

more tasks, a sharp increase in span time is predicted as the waiting time of

information for the integrator process impedes the flow of information, effectively

acting as a bottleneck to the process. In these two scenarios, additional resources

are added to the project when the average waiting time in the queue for the

integrator resource exceeds 0.2% of the nominal span time. In a third scenario,

with sufficient resource capacity available, but with additional resources only

158

occurring when the average waiting time in the integrator queue reaches 20% of

the nominal span time, results show an important influence on the span time even

at lower NPT.

Figure ‎4-40 Normalized span time versus NPT with constrained integrator resources

Results for the effort required to complete the project are shown in Figure 4-41

below. Here, effort increases when the integrator resource capacity restriction

causes a bottleneck in the process. Similarly, when the integrator resource

capacity is insufficiently sensitive to the queue state, effort is higher even at low

NPT. The mechanism that causes these aggregate performance effects in the

simulation is an increase in the occurrence of design version rework. This is

caused by the combination of two effects: one is the high uncertainty of

information that still remains when the tasks are finished; and the second is due to

incomplete scrutiny by the integrator of the information generated by the tasks.

Recall from the description of the model in section 3.3.7 that information waiting

longer than a determined by a normal PDF reneges the integrator queue and

proceeds directly to the addressee task. This lack of system level scrutiny

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 3 5 7 9 11

N
o

rm
al

iz
e

d
 s

p
an

 t
im

e

Number of tasks NPT

Integrator resource capacity
increases when wait time in queue
exceeds 20% of nominal span

Integrator resource
capacity is limited to four
units only

Integrator resource
capacity is limited to 10
units

159

increases the chance that a task will fail at the design review at the end of the

phase.

Figure ‎4-41 Normalized effort versus NPT with constrained integrator resources

4.6.4 Adapting Agile PD Methods to Non-Software PD

In this section we model a coordination scheme called „scrum‟ that is part of

Agile Product Development Methods (Cockburn 2006). In the scrum scheme, the

development team is a cross-functional group that does the analysis, design,

implementation, testing, etc., that is required to create an incremental deliverable

for a product design in a short period of time (typically one month). During this

period of time, called a „sprint‟, the team is required to produce an entire, tested

version of the software that completely answers a planned set of requirements.

Each successive sprint goes on to add additional requirements so that at the end of

the project the software meets the complete list of requirements for the final

product. The sprints are characterized by intense communication within the self-

managing development team (typically co-located), and ironclad commitment to

achieving the agreed to requirements (which cannot be changed during a sprint)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 3 5 7 9 11

N
o

rm
al

iz
e

d
 E

ff
o

rt

Number of tasks NPT

Integrator resource capacity
increases when wait time in
queue exceeds 20% of
nominal span

Integrator resource
capacity is limited to four
units only

Integrator resource capacity
is limited to 10 units

160

within the allotted time frame. This product development method has been found

to be effective in significantly reducing software development time.

Although this scheme is feasible in software development, it cannot be replicated

literally in mechanical design where physical parts must be designed, materials

procured, and then undergo a manufacturing process in order to produce a

complete version of the product that can be tested. However, in an analogy to the

scrum concept, we could consider the goal of a sprint in mechanical design as the

solution to a series of well defined design problems, providing the information

required to make a key decision in a PD project. Each successive sprint would

then provide further information to an additional series of design problems until

the final product design is achieved.

A key element here is that the tasks involved in each phase collectively and

completely solve a specific set of design problems that can be evaluated during

the design review. Since PD of a complex product is essentially a series of

activities providing information that allow key design decisions to be made, the

design review at the end of each of these short phases or „sprints‟ formalizes the

point at which these decisions are made. The tasks in each phase leading up to a

design review are those that generate the information required to make these key

decisions. As in the sprint method for software PD, the work in each phase must

be done with intense interaction between all participants so that the design review

is successful and rework of a phase with the same design requirements is not

necessary. In practice, this is facilitated by smaller sized phases.

Thus, in our model, a simulated project is divided into a series of short phases,

analogous to sprints with a design review at the end of each phase. To model the

co-location and intense communication between the various tasks, we eliminated

the system level integrator function from its role as the scrutinizer of each

information item, but rather included the integrator as a participant in the co-

located group of development teams. All delays due to latency of information

exchange were removed. For comparison, we performed simulations of a project

161

with the same technical work content with two phases and five tasks with an

integrator function acting as oversight of all information communicated between

the tasks in the project, and communication latency to get information from one

development team to the other. The input parameters are listed in Table 4-14.

Table 4-14 Input parameter values for the comparison of scrum PD with the standard method

Input parameter Standard PD Scrum method

TWK 20,000 hours 20,000 hours

TP 2 6

NPT 5 5

NLATM 0.05 0.0005

NIQ 0.05 0.0002

INTMAX 5 20

NCI 0.15 0.15

NDT 0.02 0.01

ATD 1.5 hours 0.1 hours

MINT 15 hours 0.01 hours

PRD 1.5 hours 0.1 hours

b 30 30

c 6 6

B 0 0

C 1 1

α 1 1

Dij for all i, j 9 9

Figure 4-42 shows that with slow reduction in epistemic uncertainty span time is

significantly lower with the scrum method. When the magnitude of stochastic

uncertainty increases from 0 to 0.9 the span time remains approximately constant

in the scrum scenarios, but increases by approximately 25% in the standard

scenarios. This result, as illustrated in Figure 4-43, is primarily due to lower churn

with the scrum method and the mitigation of the effects of increases in stochastic

uncertainty on churn. When epistemic uncertainty reduces more rapidly, both the

standard and scrum methods are insensitive to increases in magnitude of aleatory

uncertainty as can also be seen in Figure 4-42.

162

Figure ‎4-42 Comparison of span time in scrum and standard PD for several cases of uncertainty.

In scrum, short sprints with more design reviews provide opportunities to

efficiently judge the completed portion of work accomplished in each sprint and

to provide feedback, keeping the work from straying too far off track. In

interviews with senior PD project managers
21

 we found that frequent design

reviews are sometimes used in PD in the aerospace industry at the discretion of

the project director rather than as standard operating procedure. In the words of a

veteran PD project director we interviewed, “with frequent interim design reviews

we were able to keep the work on track … stay „out of the ditch‟ and keep the

work as close as possible to the „white line‟ in the middle of the road.” Thus, the

scrum method works by allowing for intense coordination among the people

doing the work who can most effectively do this coordination, while providing

opportunity for managers to keep the work on track and to refine and clarify

requirements as the project progresses.

21
 See Chapter 5.

slow reduction in epistemic uncertainty

fast reduction in

epistemic uncertainty

163

Figure 4-43 Comparison of cumulative churn in scrum and standard PD for slow reduction of

epistemic uncertainty.

4.6.5 Effect of non-equal task sizes

Figure 4-44 shows how span time is affected if one of the tasks in the task

decomposition of a project requires a greater proportion of effort than all the rest.

The figure shows how span time for a project divided into 4 interdependent tasks

and 2 phases changes with the effort multiple (NW) of the one unequal task. Thus,

when NW = 2, one of the tasks requires twice the average total effort of each of

the other 3 tasks. In each case the average total project effort is identical. This

significant increase in span time can be understood when studying the simulation.

The longer time taken by the larger task to generate information sufficient to keep

the other tasks from reaching a starve condition makes the pace of the project as a

whole follow that of the larger task. Even though the total work required is equal

for all values of NW, the smaller tasks cannot make progress and are often idle

waiting for input information. This result agrees with the recent work of

164

Beauregard, Bhuiyan et al. (2011) who studied the effect of job size and other

parameters on engineering performance.

Figure ‎4-44 Effect on span time when one task is larger than the others

4.6.6 Influence of the relation between total communication work and total

technical work in a phase: the parameter α

Recall that in the development of the model we reasoned that the number of

communications between participants in product development projects is

proportional to the dependency strength between them (refer to section 3.3.3.2).

In order to calculate the proportionality constant , we equated the average effort

in communication work to α times the average effort in technical work for the PD

project being studied (equation 3-8). For most of the simulations presented here,

the value of α was taken to be unity based on discussions with participants in PD

projects in industry that we interviewed. In this section we examine the

implications on the results presented by varying the value of α from unity.

165

As illustrated in Figure 4-45, the effects of increasing and reducing α by 20% are

shown in comparison to the base case where α=1. These results indicate that the

behaviour of the process is identical in cases of slowly and rapidly reducing

epistemic uncertainty versus communication interval except for a change in

magnitude of the normalized value of span time.

Figure 4-45 Effects of changing the value of parameter α on the behaviour of span time versus

NCI.

Similarly in Figure 4-46, where the effects of varying α versus the magnitude of

aleatory uncertainty for two profiles of epistemic uncertainty reduction are shown.

These results illustrate that changing the value of α, while changing the absolute

magnitude of the span time, does not change the character of the relationships

between project performance and input parameters.

In using the model to study a particular situation, simulations must be calibrated

in order to obtain meaningful magnitude predictions. The choice of the parameter

α does not alter the relative performance characteristics of a particular scenario.

Slow reduction in

epistemic

uncertainty

fast reduction in

epistemic uncertainty

166

Figure 4-46 Effects of changing the value of parameter α on the behaviour of span time versus m.

4.6.7 Alternative management of the system level integrator resource

The system level integrator is effectively a shared resource among all

development tasks in the process. Information communicated from a development

team is evaluated in this process before being sent to the other development teams

requiring it. If there are many tasks in the process, the resource capacity available

to perform the system level integrator task can be a bottleneck. This was observed

in simulations and led to the inclusion in the model of flexible resource capacity

for this operation. The schemes to manage this resource, described in section

 3.3.8, were modeled to simulate the managerial actions that would be used in

practice.

Results are presented in Figure 4-47 for three cases chosen to highlight the effects

of choosing one of these schemes. All three cases are with tasks with slowly

reducing epistemic uncertainty and input parameters shown in Table 4-11, but

with SCH = 1.5. The value of NIQ for the base case was 0.0002, which means

167

that effectively when the waiting time in the integrator queue is greater than zero,

an additional resource is added. The top curve in the figure had a value of NIQ of

0.1, whereas the third case used the alternate scheme to manage the integrator

resource, described in section 3.3.8. This alternate scheme, effectively performs

an ongoing calculation of the expected time required to do the remaining

integrator work and adds additional resources if this exceeds the remaining time

available. The value of SCH=1.5 specifies that the allowed span time of each task

cannot exceed 1.5 times the maximum effort specified to perform that task.

Figure 4-47 The effect of alternative schemes to manage the integrator resource capacity versus m

for slowly reducing epistemic uncertainty

As seen in Figure 4-47, the base case yields a span time of 10% lower than the

case with NIQ=0.1. When the alternate scheme is used, span time performance is

much improved, being almost equal to that of the base case. Clearly, the timely

availability of sufficient integrator capacity reduces the delays that cause rework

as we have seen.

168

5 Current practices in a selection of aerospace companies

In order to construct the model described here, background information on

complex PD was required. Several companies (Bombardier Aerospace, Pratt and

Whitney Aircraft Canada, Esterline CMC Electronics, CAE, and Rolls Royce

Canada) in the aerospace industry agreed to participate in research into process

models of PD and provided the opportunity to study current practices and find

insights into the key drivers of performance.

 The investigation into current engineering design processes and process models

in several participating companies was carried out by reviewing process model

documentation and interviewing engineering personnel. The research indicated

that, although formal prescriptive process models were in use to allow

management of the complexity of designing aerospace systems and to satisfy

quality, safety, and regulatory concerns, these process models were insufficiently

detailed and incomplete for the purposes of process analysis and improvement.

Information flow was insufficiently detailed to allow analysis of the dependencies

between activities on the specific information output from one activity that is

required by others.

Existing process definitions can refer to obsolete practices, can contain detail that

is irrelevant to most jobs, can leave out key practices, or can capture activities that

were once critically important, but have become irrelevant over time. Partly as a

result, the details of these process definitions are followed only loosely. Quality

work is nevertheless accomplished thanks to the professionalism of the engineers

and managers involved and the conservative review and verification practices, but

this situation has a high potential for process inefficiency. This inefficiency has

been observed in aerospace companies industry-wide.

The product development process at the typical company is run as a series of

phases in a stage-gate process that is formalized in the company‟s PD process

documentation. The process is described in a hierarchical structure of tiers of

170

increasing granularity. In studying these processes we found that the descriptions

of the tasks, while increasing in granularity in each tier, were not decomposed

hierarchically into more detailed tasks in the lowest tier. There were different

degrees of detail that were only loosely connected so that there was no

straightforward way to integrate the existing process maps in the lowest tiers with

those above it. As a result the usefulness of the process description is limited to a

high level process description that allows tracking of the various formal

deliverables. This, although being important in maintaining the integrity and

quality of the product development process and for the monitoring of deliverables,

can only serve as a useful starting point for process analysis and improvement.

5.1 Interviews

From interviews we carried out with functional managers, we found that many

participants in product development projects belong to engineering departments

that represent technical disciplines, such as flight sciences, aerodynamics,

structures and loads, propulsion systems, etc. while also assigned to a

development team in an aircraft program. The organization of development

engineers is a matrix with engineers assigned to development tasks for a new

aircraft program. This practice is optimal in terms of preserving and maintaining

the discipline knowledge of personnel involved in development programs while

promoting the collaboration and coordination needed for interdisciplinary product

development teams. It has been found through empirical research that the

departmental structure, although assuring that technical staff can keep in close

contact with new developments within their specialties, is weak on combining and

integrating knowledge from different specialties to develop a new product (Allen

and Henn 2007). This requires coordination between specialists, each of whose

work or approach can have a serious effect on the work of other specialists.

Information must be exchanged among the specialists in order for them to

understand what everyone is doing, often on a regular and quite frequent basis.

171

During interviews with participants in several areas of the product development

process, we were able to gain a more detailed understanding of the process. We

found out how the aircraft design begins with the requirements of the mission

(payload, number of passengers, range, cruise speed and altitude, operating costs).

These are translated into more specific requirements such as cabin layouts,

fuselage length and diameter, wing area, engine specifications, and tail

configuration by an advanced design group. Using this data, a 3D model of the

exterior of the aircraft is created by a design team, often with only simple shapes

representing the wing and other major elements. A parametric model of the

aircraft is made such that as the wing sections and wing twist are refined after

aerodynamic analysis, the overall area of the wing is still preserved, and fairings

are regenerated to join the fuselage and wing. This process of wing design

proceeds with a successive series of wing sections and twist distribution,

computation fluid dynamics analysis of the aerodynamic loads, calculation of

dynamics of the aircraft and its stability, design of the tail plane, and calculation

of stress distributions and structural design, until the exterior of the aircraft is

refined to an optimum configuration.

This process is carried out by a relatively small group of engineers from the

engineering departments in consultation with customer representatives to ensure

that the requirements for the characteristics of the aircraft are met both from the

point of view of performance and accommodation of payload and passengers. At

this point wind tunnel testing of the configuration may be undertaken to validate

the performance of the aircraft design.

The geometric constraints, performance and mass of systems that must be

incorporated into the aircraft are only estimated at this stage and are taken into

consideration in the design of the aircraft exterior. These are based on the

knowledge and experience of designers and information available from previous

designs. Once sufficient confidence in the configuration of the new aircraft design

is established, potential partners or external companies that are considered for the

development of major aircraft systems are invited to participate in the further

172

development of the design. Further aspects of the design and costs of engines,

landing gear, wing structure, and mechanical systems for flight controls such as

actuators for flaps, slats, etc. are clarified during this collaboration. These pre-

launch consultations serve to clarify features of these systems, allow for the

consideration of newer technologies, and diminish uncertainty with regard to

earlier estimates of performance, mass, geometrical and other constraints. Once

these consultations are complete, the external shape of the aircraft is mainly

frozen for the duration of the product development process with the intention that

only minor changes localized to fairings would take place downstream in the

process.

Several milestones are indicated in the process documentation representing

reviews and decisions made as to the feasibility of the new aircraft to be

developed from the point of view of technology, cost, schedule and markets. If

these decisions are made in the positive, the aircraft development program is

formally launched and the company makes commitments to its potential clients,

the market, and its shareholders as to the performance characteristics, costs, and

delivery date of the aircraft for service. It is at this point that the uncertainty of

aircraft attributes must be sufficiently low that the decision can be made with

confidence based on the work that has been performed.

Once the decision to launch has been made the company prepares itself to develop

the preliminary definition of the aircraft by planning the balance of the

development process in further detail. This starts with assigning key individuals to

lead the project and is based on a breakdown of the project into work packages

and detailed schedules, the calculation of manpower requirements and milestone

dates of key deliverables and reviews that must be met so that the project can

deliver on time. After a further review of these preparations the project team

begins the preliminary definition of the aircraft starting from the exterior contour

surfaces that have been established. It is during this phase that potential partners

of key systems co-locate their personnel with members of the project team at the

lead company‟s engineering facility.

173

The governance of the new aircraft development program is composed of a

program manager that oversees the engineering design process, manufacturing,

sourcing, and support functions required to bring the new aircraft to service. The

governance is done by monitoring the delivery dates of deliverables of the work

packages which for the work breakdown structure of the project and identifying

risks along the way. Identifying risks is the means with which foresight can be

used to mitigate potential risks before they become larger issues. However, to

control the process only formal deliverables are reviewed, where deliverables are

managed sequentially. This means that the completion of a scheduled deliverable

is seen as the beginning of the subsequent activity which requires it as input.

Given the complexity of the design process, in this thesis, the focus was on the

aspects of engineering design and the ways to coordinate the process better. Often

deliverables are comprised of many pieces of information that are required by

several different activities or sub-activities. Thus, there are many opportunities to

sequence sub-activities to begin earlier by identifying the information content of

deliverables in a more detailed manner. Moreover, different levels of precision of

the information may be required by different sub-activities, allowing an earlier

start for sub-activities requiring the same pieces of information. This level of

analysis of the information content and flow highlights opportunities to

synchronize the work of activities and provides guidance and feedback with

intermediate design reviews.

At the moment, from our interviews with program managers and project directors,

it seems that the process planning and governance structure at these companies

does not allow for this kind of initiative in process management. The people

performing the activities are doing their work according to the defined deliverable

schedules. The people managing the project monitor and manage the project

according to the granularity of the details in the schedule. In our interviews with

product development project directors, it was conveyed to us that the initiative to

go beyond the coordination practice set out in the project plan is only available to

the highest level of project leadership. Here, at the discretion of the project

174

director, more frequent reviews of work progress or changes to the sequencing of

individual activities can be carried out if required. The diagnosis and choices for

action are initiated based on the experience and knowledge of the project director,

but best practices and the criteria for making these decisions are not systematized

in the company and are very much based on the intuition of key personnel.

In order to make further process improvements we believe that it is necessary to

capture further details of the activities and information content of deliverables.

However, the effort to do this is significant and does not need to be done at all

parts of the process. Rather, effort should be focused on critical areas of the

process, where there is higher uncertainty, more interdependence, and greatest

complexity. This can begin with an analysis of the information content of the

deliverables from the current documentation and continue with an analysis of the

information requirements of activities and sub-activities in work packages. Where

design activities are performed externally, the analysis can focus on the

information content of the deliverables required to launch the external design

work.

We were unable to obtain relevant data of a specific instance of a PD project since

the data required was simply not collected in the necessary detail. However, from

interviews we conducted with project directors, project managers, integrators,

engineering department heads, and individual engineers, we were able to validate

many of the assumptions made in the construction of the model, such as the

following.

1. The overall structure of the process as described in Figures 3-3, 3-4, 3-5,

and 3-6 is typical of PD processes in these companies.

2. Within the engineering departments the work associated with

communication of information is roughly equal to the technical work in a

PD project.

3. The technical work fraction and the input information fraction are

qualitatively equal in importance in judging the status of a task‟s progress

towards completion.

4. The precision of information developed by some tasks does indeed evolve

more slowly towards final results whereas the precision of other tasks

175

evolves more quickly; this is very much determined by the nature of the

task, and not necessarily by the level of initial uncertainty of the task.

5. Work on tasks does stop due to the lack of timely input information,

although many engineering managers wait until receiving all of the needed

information before starting a task. This is due to the perceived likelihood

of having to stop a task and the wasted time that this creates. Often

planned releases of interim information trigger a formal planned iteration

that allows reciprocally dependent tasks to make progress towards a

solution.

6. When new information contradicts earlier information, rework is done,

whereas, if new information is within the range of previous inputs,

progress can be made towards refinement.

7. Unexpected changes in requirements or other input information

(performance or physical specifications) lead to rework if the changes are

outside the range of the previous inputs.

8. Design reviews mandate rework if completed work has not sufficiently

reduced uncertainty.

176

6 Discussion

The explicit modeling of information flow taking place in a PD process enables

the model developed in this thesis (hereinafter referred to as the discrete event

product development simulation model or DPDS for brevity) to capture the

dynamic complexity of projects with interdependent tasks. This is accomplished

through the explicit and detailed modeling of information exchange, the linkage

of information exchange to the work accomplished in each task, the deployment

of resources, and the techniques used to manage the PD process.

The model differentiates between unnecessary rework and the iterative refinement

of tasks that occurs as information is communicated from task to dependent task.

This iterative refinement is incorporated in the information exchange between

each pair of tasks where each group of interdependent tasks must exchange

information to carry out the refinement of their mutual work and information is

increasingly updated as the process is carried out. It is the way in which

information exchange takes place in combination with changing uncertainty that

has an important effect on the overall progress of the process. In simulating

information exchange as it encounters impediments from its preparation for

communication to its utilization by development teams performing dependent

tasks, the model is able to tie together aspects of the structure and management of

the process to its overall span time and effort.

The behaviour predicted by DPDS about span time and effort is supported by the

behaviour predicted in other models, but the work here goes further to determine

the underlying mechanisms for the observed performance and expands the range

of configurations and conditions that are studied. For example, Krishnan and

Eppinger (1997) introduce the notion of evolution of upstream information to

describe the continual improvement in the precision of information generated by

an upstream task. The authors work through the implications of slow and fast

evolution of information concerning the consequences of task overlap in

178

situations of sequentially dependent tasks with different sensitivities to change.

Similar conclusions are supported by the quantitative results from using the

DPDS, where the additional effects of coordination mechanisms and of aleatory

uncertainty influencing process behaviour are simulated.

In a field study of concurrent engineering practices, Swink et al. (1996) found that

companies tended not to overlap manufacturing process planning tasks with

design tasks for the development of products when there was a high degree of

innovation or new technology in the design. A high degree of innovation or new

technology implies a high magnitude of aleatory uncertainty, and therefore, this

observation of what works in industry practice supports the findings here that

overlapping downstream tasks is counterproductive when there is high aleatory

uncertainty (Figure 4-13 Figure 4-15).

In a model by Bhuiyan, Gerwin et al. (2004), the authors studied the effects of

overlap and functional interaction on the span time and effort of PD with

sequential dependency. Using input probability distribution functions based on

empirical observations, the authors related churn and design version rework to

functional interaction and the rate of upstream evolution. Their results, for the

configurations studied, indicated that it is not recommended to overlap tasks when

there is slow reduction in upstream uncertainty. However, their study did not have

the flexibility of examining the effects of better coordination. Recall from Chapter

3, that in DPDS relationships between aggregate process characteristics are not

assumed, but rather are a result of the simulations. DPDS predicts that even for

slow reduction in epistemic uncertainty, a reduction in span time can be achieved

with overlapping if there is sufficiently frequent communication of interim

information and if this information flow is not weighed down by delays due to

latency or insufficient resource capacity. Furthermore, as indicated in section 4.5,

with sufficiently low magnitudes of aleatory uncertainty, reductions in span time

with some overlapping are predicted to be obtainable with relatively little increase

in effort. The degree to which rework occurs in DPDS, for given profiles of

reduction in epistemic uncertainty, depends upon the coordination mechanisms

179

that are in use and their effectiveness in facilitating information flow. Here, we

see that the amount of overlapping can be usefully increased to further reduce

span time without large increases in effort if better coordination reduces latency

and other impediments to information flow. Furthermore, the effects of aleatory

uncertainty can be studied with DPDS, showing that for a given profile of

epistemic uncertainty reduction, larger magnitudes of aleatory uncertainty reduce

the effective extent of task overlap.

Using a dynamic model of work transformation in PD based on a process

structure of development teams and a system level integration task, Yassine,

Joglekar et al. (2003) analyzed the effects of delays in communication of

information. Their analysis treated the PD system as a linear periodic system, and

they were able to determine under what conditions this system exhibited

instabilities. The instabilities for this model represented cases in PD where the

number of open design problems to be solved did not diminish, but actually

increased due to the generation of rework. The authors state that “delays in

information flows… have a destabilizing effect on system behaviour,” and that

the main sources of churn are interdependency, mismanaged concurrency where

flows of information are too frequent and generate more rework than the

development teams can handle, and delays in information flow. These findings,

developed with the use of a dynamics of systems approach, support those

generated with DPDS. Once again, however, DPDS can examine in more detail

each of these factors and the way in which they affect the magnitude of churn.

In a model developed by Mihm, Loch et al. (2003) where updates of design

information are made to occur at exponentially distributed time intervals, the

authors state that “design oscillations are …dampened if component engineers

communicate not only final solutions, but also intermediate results…, at least for

the key dependencies.” This result tends to support the work in this thesis, but in

the mathematical model by Mihm, Loch et al., the authors did not consider the

aspects of uncertainty that would increase rework when communication of interim

information is too frequent. In a later paper, Loch and Terwiesch (2005) consider

180

a model of preliminary information and state that participants in PD should not

“treat preliminary information as final, but communicate it at an appropriate level

of precision and stability.” Their descriptive model of the exchange of preliminary

information in that paper points to the duality of preliminary information, that it

could be considered stable but imprecise, or precise but unstable. Imprecise

preliminary information may be useful for dependent design tasks to carry on with

their work and thus allow for more efficient overlapping of tasks. This aspect of

uncertainty is incorporated in the model developed here to enable the calculation

of unnecessary design rework.

In analyzing PD projects with DPDS, it was found that an appropriate interval of

communication of interim information optimizes task progress and minimizes

project span time and effort. This interval must be sufficiently small so that

dependent tasks are not starved for information and remain idle for too long, but

not so small as to cause excessive rework during iteration. Using simulation it was

found that the optimal or critical point of communication interval is quite defined

when the uncertainty of tasks reduces slowly and there is significant magnitude of

stochastic uncertainty. If uncertainty reduces quickly or there is little stochastic

uncertainty, the more frequent the communication the better. The mechanisms

that cause an increase in span time and effort at either side of the critical point are

design iteration rework (churn) due to the too frequent communication of

uncertain information, and design version rework where there is insufficient

frequency of communication to avoid a deadlocked condition in interdependent

tasks.

Analysis of the process structure in a given PD project to determine the relative

magnitudes of the dependencies between tasks, as described in sections 2.8.1 and

 3.3.3, can point out to PD project planners where information exchange is

important. Tasks which are highly dependent benefit from the receipt of interim

information, and tasks upon which other tasks are highly dependent should

provide interim information frequently. The interval between communications

from each of these tasks can be determined by estimating the rate of reduction of

181

epistemic uncertainty. DPDS results show that those tasks with slow reduction of

epistemic uncertainty should not communicate interim information more often

than each time an additional ten percent of work progress is achieved.

In examining scenarios where information flow is restricted between

interdependent tasks, it was found that the effects due to delays and resource

bottlenecks combine in a non-linear way and lead to tipping points. Each delay

has a small effect in itself, but also serves to exacerbate the effects caused by

other delays in the process leading to increasing levels of churn and design

version rework. Conversely, the reduction of some delays and bottlenecks with

the implementation of managerial and technological solutions can have a highly

leveraged effect on reducing span time. These solutions to reducing delays and

bottlenecks can take the form of sufficient scrutiny by managers to address the

source of the delay or bottleneck by adding additional resources or expediting

information transfers. For example, if it is expected that system level integrators

have a backlog of work in evaluating information received from development

teams at a particular milestone, managers should ensure that there are additional

people available and prepared to participate in addressing this volume of work, to

ensure the release of information to dependent development teams on a timely

basis. An example of a technological solution to reducing delays in information

flow would be the implementation of an „intelligent‟ product data management

system that notifies only those people whose work is affected that design changes

have been made to parts of a product in addition to highlighting them in the

system. An „intelligent‟ product data management system was not simulated as a

separate scenario since its ability to reduce span time and rework is based on

reducing delays in information flow, which was simulated extensively.

It was also found that, when employing a greater number of differentiated

subtasks, project span times are not reduced in proportion to the number of

additional resources employed. This is due to the non-linear combination of

delays imposed on information that must travel between the different tasks and

the need, in complex projects, for a system level integration task that scrutinizes

182

the work of development teams and ensures that their work meets the

requirements of the product. When information flow is restricted between

interdependent tasks, the consequences for projects with a larger number of tasks

are more severe because a larger proportion of the required information exchange

must take place between different development teams. The degree to which an

ideal span time is approached can be improved if interim information is

exchanged at an optimal frequency as described above, and if there are minimal

impediments to delay information flow. Recently, more and more companies are

expanding the number of partners, especially global partners, to reduce cost risk

in product development projects. This increases the number of tasks, restricts

information flow, and increases project oversight, thus increasing the risk of

greater span times. Changing coordination mechanisms to take the change of

information flow into account is very important.

When there is a high degree of reciprocal dependency between tasks in a PD

process, we found that span time can be reduced significantly by adopting the

„scrum‟ method as described in section 4.6.4. Here, the work that needs to be

performed must be structured to allow for „sprints‟ with intensive coordination

between self-managing teams executing tasks that together solve well-defined

design problems. After each sprint, an interim design review is performed to

evaluate the intermediate outcomes, provide feedback, and set the detailed

requirements for the next sprint. In this way, the impediments to information

exchange are minimized and the need for system level oversight is effectively

met. It is these interim design reviews that ensure that the work remains on track.

In tasks with higher magnitudes of stochastic uncertainty, this methodology has

the greatest impact in reducing span times. The sprint technique has good

potential for productivity improvement in design disciplines other than software.

Therefore, if a PD project can be divided into a greater number of differentiated

tasks such that additional resources can be brought to bear, and the scrum method

can be used to improve coordination between tasks with highly reciprocal

dependencies, PD projects can be efficiently completed in significantly shorter

183

span times. Conversely, reducing span times of PD projects when there are strong

interdependencies between tasks cannot be accomplished by simply adding more

resources unless coordination schemes are implemented to reduce the delays in

information exchange between dependent tasks. Failure to do this leads to greater

amounts of rework and waste of effort which are counterproductive to span time

reductions.

Simulations of PD processes with DPDS allowed detailed examination of the

effects of process structure, critical resource management, communication

policies, and uncertainty on rework, project span time and effort. Results showed

that significant potential for reducing project span time and effort can be achieved

by applying the following methods with a knowledge of the nature of task

interdependencies:

a. Overlap sequentially dependent tasks when there is sufficiently frequent,

interim information exchange to the extent warranted by the rates of

reduction of epistemic and aleatory uncertainty in tasks. Useful work can

be accomplished in downstream tasks even without receiving final

information from upstream tasks if the range of precision of interim

information received is well understood.

b. Use set-based coordination when there are a small number of possible

solutions to upstream tasks. This eliminates the dependency of

downstream tasks using the assumed information and allows these tasks to

be performed concurrently without the need for further information

exchanges with upstream tasks.

c. Structure projects such that the size of interdependent tasks is similar. All

tasks wait for information generated by tasks that take a longer time, and

thus, are held to the rate of progress of the slowest task.

d. Provide sufficient resource capacity early enough in critical support tasks

by anticipating workload requirements. Insufficient resource capacity in

these tasks impedes information flow and causes other tasks to be starved

184

or to receive unsynchronized information and thus perform unnecessary

rework.

e. Implement „scrum‟ methods where high uncertainty occurs to enable

intense coordination and keep PD projects on track. This reduces latency

delays to information exchange most effectively, forces synchronization of

information more frequently, and allows project leaders to review the

work done in each sprint and provide feedback.

f. Adopt policies and implement systems to reduce delays in information

flow between dependent tasks. Simulation shows that delays in

information flow combine in non-linear ways to reach tipping points of

greatly increased rework cycles, leading to greatly increased effort and

span times.

g. Adopt policies and implement systems to reduce effort in communication

of information between dependent tasks. Reducing effort in

communication reduces the burden on tasks that must exchange

information to refine their solutions. The reduction in effort adds up over a

large number of communications and dependent tasks. Care must be taken

to only target the tasks that are in need of the information; otherwise,

information overload ensues.

Overall, the simulation can be used to help in planning and management of actual

PD projects by providing guidelines for improving information flow. Importantly,

the analysis of PD projects using DPDS can provide a deeper understanding of the

mechanisms that drive project performance. Analysis clarifies the functioning of

complex process mechanisms and overall project performance.

A major contribution of the thesis is the explicit modeling of information

exchange in PD and the linkage of the information exchange to tasks, resources

and management techniques which allows the model to mimic the dynamic

complexity of projects with interdependent tasks. It is the combination of many

influences with differing profiles of uncertainty reduction, resource capacity, and

185

task effort that determines the overall performance of a project. No one influence

dominates, but rather the mitigation of complex interactions determines the best

mechanisms to improve a process.

186

7 Conclusion

The typology of coordination introduced in Chapter 2 classified coordination

mechanisms according to the uncertainty in tasks being performed. These ranged

from hierarchical management and standard operating procedures for low

uncertainty to the use of lateral relations, liaisons, and cross-functional teams for

high levels of uncertainty. In this thesis we have been concerned with PD

processes where uncertainty is high. Essentially, the uncertainty or newness of the

PD work makes it unlikely that coordination can be done only via a hierarchy of

managers making decisions to deal with the frequent number of exceptions to

standard operating procedures. For these types of projects, it is clear that more

decisions involving exceptions must be made by suitable personnel that are closer

to the creation of information allowing them to make more rapid decisions. Yet,

the problem of ensuring that these decisions are being made in accordance with

overall goals remains.

In PD of complex products we find that lateral relations and liaison roles in the

form of integrators and managers are used to deal with coordination issues

between tasks developing different subsystems and between the various

disciplines, and to represent the requirements of the end user. This integrator role

is especially important when more tasks are being performed by participants from

other organizations to whom some of the development work has been outsourced.

However, we found that when there are many tasks that are reciprocally

dependent within one block or cluster of tasks, the span time is longer due to the

latency of communication and the integrator process itself.

Rapidly resolving coordination problems reduces the amount of design iteration

and design version rework. Engaging in „sprints‟ of tightly scheduled, intense

coordination within self-managing teams executing a series of interdependent

tasks that provide well-defined intermediate outcomes can achieve this rapid

resolution of coordination issues. Convening design reviews at the end of each

188

„sprint‟ to evaluate task results, to take decisions, to clarify requirements for the

next sprint, and to give feedback, provides the degree of guidance required to

ensure that the work in each sprint remains on track with respect to the overall

project goals. This coordination scheme, analogous to agile methodologies that

have been applied to software PD, is beneficial for all design work and is a key

finding of the work in this dissertation.

The objectives of the thesis stated in chapter 1

1. to identify or define a typology of coordination mechanisms that can be

applied to PD;

2. to develop a model of PD that can be used to capture the impact of various

coordination mechanisms for reduction of span time under all potential

scenarios;

3. to use the model to determine the general principles governing the

reduction of span time and the level of effort for various types of

coordination mechanisms under various types of PD programs;

were achieved and described in chapters 2, 3 and 4 respectively.

In order to meet the objectives, the details of the information flow in a PD project

that are affected by various coordination mechanisms were modeled. The model

considered the fundamental dependencies between tasks, the iterative nature of

engineering design, and the variation of uncertainty of information, and captured

the impact of the coordination mechanisms on PD process cycle time. These

coordination mechanisms, outlined in Table 2-2, deal with shared resources,

various consumer/producer dependencies (prerequisite, transfer, usability),

simultaneity, and task/subtask. Efforts to coordinate the PD process can be judged

according to how a coordination mechanism facilitates information flow between

tasks. To this end we modeled the details of the information flow between

individual tasks in a novel way, and captured how coordination mechanisms

affect this flow in order to meet the modeling objective of this thesis.

189

With respect to the classification of dependencies and coordination mechanisms

shown in Table 2-2, we incorporated the resource dependency in the system level

integrator task with two management schemes, one with additional capacity when

the length of the queue exceeded the value of input parameter IQ and a second

scheme when the waiting time was such that the expected time to complete the

remaining work exceeded the remaining scheduled time to perform it. Resource

dependency of development teams where the subtasks of read, prepare and work

had to be performed in turn by one resource, was managed by resource scheduling

to perform communication work at appropriate intervals. Various scenarios were

tested with different input values to determine the effects of the various schemes

on overall project span time and effort.

Other dependencies indicated in Table 2-2 are the producer/consumer type. In PD

this dependency refers to tasks that produce information that other tasks require.

We considered this for cases of sequential or one way and reciprocal dependency

between tasks. The coordination mechanisms to manage sequential dependency

are the sequencing of tasks with varying degrees of overlap and the influence that

the communication of interim information has on project performance. We also

examined the elimination of the dependency between tasks with the use of set-

based coordination and the conditions under which this would be a preferred

mechanism. For cases of reciprocal dependency, we examined the relationship of

frequency of communication (transfer mechanism) and of the usability of

information to the span time of projects with varying rates of uncertainty

reduction.

We studied the task/subtask dependency and the manner of task decomposition

both with regard to the relative size of tasks and the number of subtasks.

This thesis studied how to improve present coordination mechanisms:

 task decomposition and sequencing;

 systems to support information processing and decision making;

 the number and timing of approval cycles employed at various stages;

190

 the type, frequency, and efficiency of information exchange;

 the manner in which shared resources are allocated.

7.1 Review of research contributions

This research contributes to knowledge at three levels:

1. The development of a method to quantify the effects of coordination

mechanisms under different conditions of uncertainty and task

decomposition (division of labour). The following are the novel features

of the method.

a. A stochastic, discrete event model of the PD process was developed.

b. In the model, information in the PD process was discretized and each

unit of information was treated as an entity that followed its own

processing thread in the simulation.

c. The process path that each information entity takes was influenced in

the model by its originating task‟s work progress and information

received from other tasks. In this way the model could capture the

effects of impediments to information flow in the process and the

extent to which these impediments could be mitigated by improved

coordination.

d. Unlike previous models of engineering design, the amount and type of

iteration was not an input to the model, but rather came about as a

consequence of the dependency relationships between tasks and the

dynamics of the information flow that took place as the simulated

process unfolded.

e. The model related the generation of churn to increases in uncertainty

of input information in dependent tasks.

f. A stochastic starvation condition was incorporated to capture the

effects of lack of information flow on task progress. Managerial

191

intervention was simulated if a deadlock condition occurred when

reciprocally dependent tasks were starved for information from each

other.

g. Rework due to unsuccessful achievement of intermediate outcomes

(design version rework) was generated in the simulation by

insufficient uncertainty reduction in tasks which was in turn a result of

the characteristics of the information exchange and work accomplished

during simulation. Feedback was simulated with the reduction of

uncertainty profiles based on achievements in earlier iterations.

2. The study of the effects of various coordination mechanisms on product

development where the work presented here has been able to look further

into the mechanisms driving performance.

a. The degree of overlapping tasks with sequential dependency under

different conditions of epistemic and aleatory uncertainty.

b. The suitability of set-based coordination to reduce iterations for

various scenarios.

c. The optimal interval of interim information exchange between

dependent tasks under different conditions of epistemic and aleatory

uncertainty.

d. The importance of reduction of delays due to communication latency

and resource constraints.

e. The effectiveness of various schemes to manage critical resource

constraints.

f. The value of changing the number and relative size of differentiated

tasks in the work breakdown structure.

g. The suitability of increasing the number of interim design reviews

where intermediate outcomes are evaluated.

192

h. The value in reducing the effort required in communication with the

use of a virtual product model.

3. The development and validation of the following mechanisms that can

greatly improve coordination among partners doing PD and reduce

development times were made possible through insights gained when

modeling engineering design.

a. Overlap sequentially dependent tasks when there is sufficiently

frequent, interim information exchange to the extent warranted by the

rates of reduction of epistemic uncertainty in tasks.

b. Use set-based coordination when there are a small number of possible

solutions to upstream tasks.

c. Structure projects such that interdependent task sizes are similar.

d. Provide sufficient resource capacity early enough in critical support

tasks by anticipating workload requirements.

e. Implement „scrum‟ methods where high uncertainty occurs to enable

intense coordination and keep PD projects on track.

f. Adopt policies and implement systems to reduce delays in information

flow between dependent tasks.

g. Adopt policies and implement systems to reduce effort in

communication of information between dependent tasks.

7.2 Benefits of this research

7.2.1 For industry

The model of the product development process as a system of tasks dependent on

each other for developing information should lead to greater understanding of the

drivers of PD project performance. The key dimensions defining the product

development system: the dependency strength between tasks; the profile of

reduction of epistemic uncertainty in each task; and the magnitude of aleatory

193

uncertainty in each task; provide the criteria to tailor the appropriate coordination

mechanisms to employ in each part and stage of a PD process. Insights provided

by the simulations illustrate how interactions of the various elements of the

product development system can combine to impact the overall performance

characteristics of a project.

The understanding of the drivers of span time and effort performance of PD

processes can be employed to better plan PD projects and change industry

behaviour in the implementation of coordination mechanisms. The structure of

PD projects can be improved to incorporate more self-management of

development teams when working on highly interdependent groups of tasks,

allowing them to more rapidly respond to developments that occur during the

process. The timing and frequency of interim design reviews should be

reconsidered in light of the role these can play in maintaining the direction of the

design work on the correct path towards the organization‟s goals. The sequencing

of tasks should be reconsidered in view of the dependencies between tasks, the

reduction of uncertainty of information of upstream tasks, and the ability of tasks

to make progress with interim information from upstream. The non-linear effects

on span time of the multiplicity of impediments to information flow should

highlight the need to find ways to reduce each of these to eliminate bottlenecks in

the PD process. Planning for resources should consider the time varying nature of

information flow on the workloads of project participants to better man the tasks

when required.

All of these insights point to the need for greater process knowledge by project

planners, managers, and participants. Knowing who makes use of the information

developed in each task empowers project participants to make proper decisions

about releasing interim information, expediting it to those waiting to receive it,

and the importance of conveying its precision. Process knowledge more readily

allows participants to actively solicit the information they require from those that

are generating it, and makes for a more proactive and responsive project.

194

Insights from the model can also be of benefit in the management of complex PD

processes in industry through the study of specific types of managerial

intervention to various situations that arise during the course of a process. Using

the methods developed here, these interventions can be simulated and their impact

on the process can be foreseen leading to a greater understanding of the potential

knock on effects. Of important benefit as well is the ability to study a particular

PD process using the model to gain insights into the important mechanisms

driving span time performance.

7.2.2 For academia

This research is of benefit to academia in demonstrating the value and feasibility

of a discrete event model as described here to better understand complex product

development processes. This thesis shows that aggregate characteristics of PD

processes can be derived from the analysis of the mechanisms pertaining to the

flow of information. The focus on information exchange enables the investigation

of the effects of various coordination mechanisms and managerial actions on the

characteristics of the process that affect span time and effort.

Iteration in engineering design is an important driver of PD project characteristics.

In this thesis, iteration as the refinement of intermediate outcomes was

incorporated into the requirement for the total amount of information exchange

between dependent tasks. This requirement formed an important part of the

determination of the state of progress in a task during the process, and enabled the

calculation of interim uncertainty of information and ultimately the generation of

rework. This novel method of modeling iteration permitted a more detailed

examination of its mechanisms and the way in which the management of the

process influences overall span time and effort.

Uncertainty is also intrinsic in PD, but a portion of uncertainty in processes is

caused by delays and complexities of the process itself and is not inherent in the

tasks. Here, the uncertainty inherent in tasks was modeled with their

interdependency relationships and with profiles defining the functional relation of

195

epistemic uncertainty and the state of task progress. This approach enabled the

derivation of uncertainty of information generated during the process, and the

assignment of attributes of epistemic and aleatory uncertainty to discrete units of

information in the model. These units of information, by virtue of the individual

paths they followed during the process, thus manifested the effects of the delays

and complexities of the process on the uncertainty of information and its effects

on the process itself. The approach developed here allows further study of the

way in which uncertainty can influence iteration and process progress in PD.

Key elements that were incorporated into the model were:

 the relation of uncertainty of information generated by a task at any time

to the proportion of work done and input information received by the task

at that time;

 the relation between the amount of technical work done in a task and the

proportion of information generated;

 the relationship between the amount of work that can be done in a task

before it is starved for information;

 the criteria for success or failure in a design review when only proportions

of uncertainty, information exchange, and work required are measurable;

 the criteria for design iteration rework when the content of the information

are unknown, but only the changes in its uncertainty are available for

comparison;

 the model for feedback addressing only the relative reduction in

uncertainty of information and not its actual content.

Although it is not possible, in the general case, to state the precise relationships

for each of these items, we were able to infer relationships about their probability

distributions, and with the use of a stochastic model, were able to obtain results

for the average behaviour of PD processes.

The approach presented in this thesis can be of benefit in further research in

engineering design, and points to the possibility of incorporating more complex

196

algorithms to simulate the effects of specific actions by managers. Managerial

intervention that is based on the response to changing project status can be

modeled with the use of the values of state and system variables that are updated

as the simulation unfolds.

7.3 Opportunities for further research

Design of controlled experiments. Data from product development processes are

needed in order to calibrate models and provide further insights about drivers of

behaviour such as iteration, communication practices, communication frequency

versus task dependency, and managerial intervention. There are difficulties in

obtaining data because there are few physical manifestations of PD process state,

and therefore, obtaining data is often limited to cost data of process participants

(effort) or through interviews. Information about the process structure itself is

often incomplete and of insufficient detail. Therefore, research of short (less than

six months) cycle development processes should be carried out in an PD

organization. The PD organization must participate in the capture of detailed

information about the process structure. Characteristics of individual tasks must

be identified, information requirements of each task must be captured, and

estimates of uncertainty, sensitivity, uncertainty reduction profiles, and aleatory

uncertainty must be gathered for each task. Effort spent on individual tasks, the

span time of each phase, and the entire process cycle would be required for each

PD project studied. Data would be required from several PD projects.

Modeling scenarios with multiple concurrent PD projects. The model

developed here should be expanded to simulate several concurrent PD projects

simultaneously. This would allow the study of scheduling problems that often

occur in PD departments. Often resources with requisite expertise are constrained

and the organization must balance throughput and effort. A model of this type

would be helpful to industry by examining the trade-offs among resource

requirements, throughput and maintaining schedules and priorities.

8 References and Bibliography

Adler, P. S. and K. B. Clark (1991). "Behind the Learning Curve: A Sketch of the

Learning Process." Management Science 37(3): 267-281.

Allen, T. J. (2007). "Architecture and Communication among Product

Development Engineers." California Management Review 49(2): 23-41.

Allen, T. J. and G. W. Henn (2007). The Organization and Architecture of

Innovation, Elsevier, Butterworth-Hienemann.

Antonsson, E. K. and K. N. Otto (1995). "Imprecision in engineering design."

Transactions of the American Society of Mechanical Engineers, Journal of

Mechanical Design 117: 25-25.

Aughenbaugh, J. Matthew, Paredis and C. J. J. (2006). "The Value of Using

Imprecise Probabilities in Engineering Design." Journal of Mechanical

Design 128(4): 969-979.

Bavelas, A., Ed. (1960). Communication and Organization. Management

Organization and the Computer. Chicago, Chicago Free Press.

Beauregard, Y., N. Bhuiyan and V. Thomson (2011). "Post-Certification

Engineering Taxonomy and Task Value Optimization in the Aerospace

Industry." Engineering Management Journal 23(1): 86-100.

Bhuiyan, F. (2001). Dynamic Models of Concurrent Engineering Processes and

Performance. PhD thesis. McGill University. Montreal, Canada.

Bhuiyan, N., D. Gerwin and V. Thomson (2004). "Simulation of the New Product

Development Process for Performance Improvement." Management

Science 50(12): 1690-1703.

Bhuiyan, N., V. Thomson and D. Gerwin (2006). "A Systematic Framework for

Implementing Concurrent Engineering." Research and Technology

Management 49(1): 38-43.

Black, L. J. and N. P. Repenning (2001). "Why firefighting is never enough:

preserving high-quality product development." System Dynamics Review

17(1): 33-62.

198

Box, G. E. P. (1979). Robustness in the strategy of scientific model building,

Wisconsin University- Madison Mathematics Research Center.

Brooks, F. P. J. (1975). The Mythical Man-Month, Addison-Wesley Publishing

Company.

Browning, T. R. (1998). Modeling and Analyzing Cost, Schedule, and

Performance in Complex System Product Development. PhD Thesis.

Technology, Management, and Policy Program. Cambridge MA,

Massachusetts Institute of Technology. 299.

Browning, T. R. (1999). "Sources of Schedule Risk in Complex System

Development." Systems Engineering 3: 129-142.

Browning, T. R., E. Fricke and H. Negele (2006). "Key Concepts in Modeling

Product Development Processes." Systems Engineering 9(2): 104-128.

Browning, T. R. and R. V. Ramesh (2007). "A survey of activity network-based

process models for managing product development projects." Production

and Operations Management 16(2): 217-240.

Carley, K. M. and Z. Lin (1997). "A theoretical study of organizational

performance under information distortion." Management Science 43: 976-

997.

Carrascosa, M., S. D. Eppinger and D. E. Whitney (1998). Using the design

structure matrix to estimate product development time. Proceedings of the

ASME Design Engineering Technical Conferences (Design Automation

Conference). Atlanta, Georgia, USA.

Carroll, G. R. and J. R. Harrison (1994). "On the historical efficiency of

competition between organizational populations." American Journal of

Sociology 100: 720-749.

Chalupnik, M. J., D. C. Wynn and P. J. Clarkson (2009). Approaches to mitigate

the impact of uncertainty in development processes. International

Conference on Engineering Design P. n. ICED‟09/464. Stanford, CA.

Clark, K., B. Chew and T. Fujimoto (1987). "Product Development in the World

Auto Industry." Brookings Papers on Economic Activity 3: 729-771.

199

Cockburn, A. (2006). Agile Software Development: The Cooperative Game,

2006, Addison Wesley.

Collins, S. T., A. A. Yassine and S. P. Borgatti (2009). "Evaluating Product

Development systems using network analysis." Systems Engineering

12(1): 55-68.

Cota, B. A. and R. G. Sargent (1992). "A modification of the process interaction

world view." ACM Trans. Model. Comput. Simul. 2(2): 109-129.

Crowston, K. (2003). "The Evolution of High-Reliability Coordination

Mechanisms For Collision Avoidance." Journal of Information

Technology Theory and Application 5(3): 1-29.

Danilovic, M. and T. R. Browning (2007). "Managing complex product

development projects with design structure matrices and domain mapping

matrices." International Journal of Project Management 25(3): 300-314.

Devroye, L. (1986). Non-Uniform Random Variate Generation. New York,

Springer-Verlag.

Eckert, C., J. Clarkson and M. Stacey (2001). Information flow in engineering

companies: Problems and their causes. International Conference on

Engineering Design Glasgow, U.K.: 43-50.

Eppinger, S. D., M. V. Nukala and D. E. Whitney (1997). "Generalised Models of

Design Iteration Using Signal Flow Graphs." Research in Engineering

Design 9: 112-123.

Eppinger, S. D., D. E. Whitney, R. P. Smith and D. A. Gebala (1994). "A model-

based method for organizing tasks in product development." Research in

Engineering Design 6(1): 1-13.

Ford, D. N. and J. D. Sterman (1998). "Dynamic modeling of product

development processes." System Dynamics Review 14(1): 31-68.

Ford, D. N. and J. D. Sterman (1998). "Expert knowledge elicitation to improve

formal and mental models." System Dynamics Review 14(4): 309-340.

Ford, D. N. and J. D. Sterman (2003). "The Liar's Club: Concealing Rework in

Concurrent Development." Concurrent Engineering 11(3): 211-219.

200

Fredriksson, B. (1994). "Systems Engineering–A Holistic Approach to Product

Development." Griffin 94: 95-105.

Galbraith, J. R. (1977). Organization Design. Reading, Mass., Addison-Wesley

Pub. Co.

Grebici, K., D. C. Wynn and P. J. Clarkson (2008). Modelling the relationship

between uncertainty levels in design descriptions and design process

duration. International Conference on Integrated Design and

Manufacturing in Mechanical Engineering. Beijing, China.

Ha, A. Y. and E. L. Porteus (1995). "Optimal Timing of Reviews in Concurrent

Design for Manufacturability." Management Science 41(9): 1431-1447.

Hage, J., M. Aiken and C. B. Marrett (1971). "Organization structure and

communication." American Sociological Review Oct.: 860-871.

Hales, C. and S. Gooch (2004). Managing engineering design, Springer Verlag.

Hammer, M. (2001). "Seven insights about processes." Proc Strategic Power

Process Ensuring Survival Creating Competitive Advantage, Boston.

Harrison, J. R., Z. Lin, G. R. Carroll and K. M. Carley (2007). "Simulation

Modeling in Organizational and Management Research." The Academy of

Management Review (AMR) 32(4): 1229-1245.

Harter, D. E., M. S. Krishnan and S. A. Slaughter (2000). "Effects of Process

Maturity on Quality, Cycle Time, and Effort in Software Product

Development." Management Science 46(4): 451-466.

Hounshell, D. (1984). From the American System to Mass Production, 1800-

1932. Baltimore, Johns Hopkins University Press.

Hykin, D. H. W. and L. C. Laming (1975). "Design case histories: Report of a

field study of design in the United Kingdom engineering industry."

Proceedings of the Institution of Mechanical Engineers 1847-1982

189(1975): 203-211.

Jing, N. N. and C. Yang (2009). The interrelationship among quality planning,

knowledge process and new product development performance.

201

International Conference on Industrial Engineering and Engineering

Management. Beijing, China.: 1051-1055.

Karniel, A. and Y.Reich (2009). "From DSM-based planning to design process

simulation: A review of process scheme logic verification issues." IEEE

Transactions on Engineering Management 56(4): 636-649.

Kleijen, J. P. C. (1999). Validation of models: statistical techniques and data

availability. 1999 Winter Simulation Conference Proceedings, ACM New

York, NY, USA.

Kline, S. J. (1985). "Innovation is not a linear process." Research Management

28(4): 36-45.

Krishnan, V. (1996). "Managing the Simultaneous Execution of Coupled Phases

in Concurrent Product Development." IEEE Transactions on Engineering

Management 43(2): 210-217.

Krishnan, V., S. D. Eppinger and D. E. Whitney (1997). "A model-based

framework to overlap product development activities." Management

Science 43(4): 437-451.

Lant, T. K. and S. J. Mezias (1992). "An organizational learning model of

convergence and reorientation." Organization Science 3: 47-71.

Law, A. M. and W. D. Kelton (2000). Simulation Modeling and Analysis,

McGraw Hill.

Levitt, R. E., J. Thomsen, T. R. Christiansen, J. C. Kunz, Y. Jin and C. Nass

(1999). "Simulating project work processes and organizations: Toward a

micro-contingency Theory of Organizational Design." Management

Science 45(11): 1479-1495.

Loch, C. H. and C. Terwiesch (2005). "Rush and be wrong or wait and be late? A

model of information in collaborative processes." Production and

Operations Management 14(3): 331–343.

Maier, A. M., M. Kreimeyer, C. Hepperle, C. M. Eckert, U. Lindemann and P. J.

Clarkson (2008). "Exploration of correlations between factors influencing

202

communication in complex product development." Concurrent

Engineering-Research and Applications 16(1): 37-59.

Malone, T. W. and K. Crowston (1994). "The interdisciplinary study of

coordination." ACM Computing Surveys (CSUR) 26(1): 87-119.

Malone, T. W., K. Crowston, J. Lee and B. Pentland (1999). "Tools for inventing

organizations: Toward a handbook or organizational processes."

Management Science 45(3): 425-443.

Mark, N. (2002). "Cultural transmission, disporoportionate prior exposure, and

the evolution of cooperation." American Sociological Review 67: 323-

344.

Martinez, J. I. and J. C. Jarillo (1989). "The Evolution of Research on

Coordination Mechanisms in Multinational Corporations." Journal of

International Business Studies 20(3): 489-513.

Mihm, J. and C. H. Loch (2006). Spiraling out of control:Problem-solving

dynamics in complex distributed engineering projects. Complex

Engineering Systems. D. Braha, A. Minai and Y. Bar-Yam. New York,

Perseus Books.

Mihm, J., C. H. Loch and A. Huchzermeier (2003). "Problem-Solving

Oscillations in Complex Engineering Projects." Management Science

46(6): 733-750.

Mintzberg, H. (1979). The Structuring of Organizations. Englewood Cliffs, N.J.,

Prentice-Hall.

Nandakumar, P., S. M. Datar and R. Akella (1993). "Models for measuring and

accounting for cost of conformance quality." Management Science 39(1):

1-16.

O‟Donovan, B. D., P. J. Clarkson and C. M. Eckert (2003). Signposting:

Modelling uncertainty in design processes. International Conference on

Engineering Design. Stockholm: 1-10.

Oberkampf, W. L., J. C. Helton, C. A. Joslyn, S. F. Wojtkiewicz and S. Ferson

(2004). "Challenge problems: uncertainty in system response given

203

uncertain parameters." Reliability Engineering & System Safety 85(1-3):

11-19.

Oppenheim, B. W. (2004). "Lean Product Development Flow." Systems

Engineering 7(4): 352-376.

Pahl, G. and W. Beitz (1996). Engineering design: A Systematic Approach.

London, New York, Springer.

Pajerek, L. (2000). "Processes and organizations as systems: when the processors

are people, not pentiums." Systems Engineering 3(2): 103-111.

Peters, T. (1986). "The Mythology of Innovation, A Skunkworks Tale." Strategic

Planning: Selected Readings. Ed. J. William Pfeiffer. San Diego, CA:

University Associates, Inc: 485-500.

PMI (2001). A Guide to the Project Management Body of Knowledge, Project

Management Institute Publications.

Port, O. (1989). Pssst! Want a Secret for Making Superproducts? Business Week.

October 2, 1989: 106-107.

Porter, L., E. Lawler and R. Hackman (1975). Behaviour in organizations. New

York, McGraw-Hill.

Pugh, S. (1995). Total design: integrated methods for successful product

engineering, Addison-Wesley Wokingham, UK.

Rechtin, E. (1991). Systems Architecting: creating and building complex systems,

Prentice Hall.

Reinertsen, D. (1999). "Lean thinking isn't so simple." Electronic Design 47(10):

48H.

Ritter, F. E. and L. J. Schooler (2002). The Learning Curve. International

encyclopedia of the social and behavioural sciences. Amsterdam,

Pergamon: 8602-8605.

Safoutin, M. J. (2003). A methodology for empirical measurement of iteration in

engineering design processes. PhD thesis. University of Washington.

Seattle, Washington.

204

Safoutin, M. J. and R. P. Smith (1996). The iterative component of design.

International Conference on Engineering and Technology Management

Vancouver, Canada: 564-569.

Schmidt, J. W. and R. E. Taylor (1970). Simulation and Analysis of Industrial

Systems. Homewood Illinois, Richard D. Irwin.

Simon, H. A. (1969). The Science of the Artificial. Boston, MA., MIT Press.

Smith, R. P. and S. D. Eppinger (1997). "A Predictive Model of Sequential

Iteration in Engineering Design." Management Science 43(8): 1104-1120.

Sobek, D. K. I. (1996). "A set-based model of design." Mechanical Engineering

118(7): 4-7.

Steward, D. V. (1991). Planning and managing the design of systems. Conference

on Technology Management: the New International Language. Portland,

Oregon: 189-193.

Susman, G. I. (1992). Integrating design and manufacturing for competitive

advantage, Oxford University Press, USA.

Suss, S., K. Grebici and V. Thomson (2010). The Effect of Uncertainty on Span

Time and Effort within a Complex Design Process. Modelling and

Management of Engineering Processes. P. Heisig, J. Clarkson and S.

Vajna. London Springer: 77-88.

Sweat, J. (2001). "Communication Aids Design." Information Week, from

http://www.informationweek.com/news/6508331.

Swink, M. L., C. J. Sandvig and V. A. Mabert (1996). "Customizing Concurrent

Engineering Processes: Five Case Studies." Journal of Product Innovation

Management 13(3): 229-244.

Terwiesch, C., C. H. Loch and A. D. Meyer (2002). "Exchanging Preliminary

Information in Concurrent Engineering: Alternative Coordination

Strategies." Organization Science 13(4): 402-419.

Thompson, J. D. (1967). Organizations in action. New York, McGraw Hill.

205

Thunnissen, D. P. (2004). Propagating and Mitigating Uncertainty in the Design

of Complex Multidisciplinary Systems. PhD thesis., California Institute of

Technology, Pasadena, California

Twigg, D. (1998). "Managing product development within a design chain."

International Journal of Operations & Production Management 18(5): 508-

524.

VanDeVen, A. H., A. L. Delbecq, Richard and J. Koenig (1976). "Determinants

of Coordination Modes within Organizations." American Sociological

Review 41(2): 322-338.

Vangheluwe, H. (2008). Discrete Event Modelling and Simulation. Modelling and

Simulation Course Notes Computer Science, McGill University, Montreal

Canada

Von-Hippel, E. and M. J. Tyre (1995). "How learning by doing is done: problem

identification in novel process equipment." Research Policy 24(1): 1-12.

Wheelwright, S. and K. Clark (1992). Revolutionizing Product Development.

New York, The Free Press.

Whitney, D. E. (1990). "Designing the design process." Research in Engineering

Design 2(1): 3-13.

Wood, K. L., E. K. Antonsson and J. L. Beck (1990). "Representing imprecision

in engineering design: comparing fuzzy and probability calculus."

Research in Engineering Design 1(3): 187-203.

Wynn, D. C. (2007). Model-based approaches to support process improvement in

complex product development. PhD thesis. Cambridge University.

Cambridge, U.K.

Yassine, A. A. and D. Braha (2003). "Complex Concurrent Engineering and the

Design Structure Matrix Method." Concurrent Engineering: Research and

Applications 11(3): 165-176.

Yassine, A. A., D. Falkenburg and K. Chelst (1999). "Engineering design

management: an information structure approach." International Journal of

Production Research 37(13): 2957-2975.

206

Yassine, A. A., N. Joglekar, D. Braha, S. Eppinger and D. Whitney (2003).

"Information hiding in product development: the design churn effect."

Research in Engineering Design 14(3): 145-161.

