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Abstract 

 

 Satellite formation flying is a very promising field for future space 

missions as it holds many advantages over the common monolithic satellite. 

However, in order for the formations to be effective, a formation maintenance 

scheme is required to overcome perturbations arising from different sources. In 

this thesis the effect of atmospheric drag on a formation is examined. To do so 

the Schweighart and Sedwick equations, which describe the motion of a 

spacecraft, called deputy spacecraft, relative to another spacecraft, referred to 

as the chief spacecraft, placed in a circular orbit, are modified to account for 

atmospheric drag. The modified equations keep the effects arising from the 

oblateness of the Earth, known as the J2 effects, which were included in the 

model proposed by Schweighart and Sedwick. A similar set of equation is then 

developed for satellite formations placed in orbits of small eccentricity. A 

formation maintenance scheme which uses differential atmospheric as a means 

of control is then introduced. Numerical simulation results showing the evolution 

of formations through time with and without active control are also provided. 
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Résumé 

 

 Le vol de satellite en formation est un domaine très prometteur pour de 

futures missions spatial étant donnés les nombreux avantages que cette 

technologie détient le satellite monolitique commun. Toutefois, pour que ces 

formations soient efficaces, un système de maintenance de formation est 

nécessaire pour surmonter les perturbations provenant de multiples sources. 

Dans cette these, l’effet du freinage atmosphérique sur une formation est 

examiné. Pour ce faire, les equations de Schweighart et Sedwick, qui décrivent le 

mouvement d’un engin spatial, appelé meneur, relative à un autre engine, 

nommé suiveur, place sur une orbite circulaire, sont modifiées pour tenir compte 

du freinage atmosphérique. Les equations modifiées conservent les effets 

découlant du fait que la Terre n’est pas parfaitement sphérique, connus comme 

les effets J2, qui sont inclus dans le modèle proposé par Schweighart et Sedwick. 

Un ensemble d’équations similaire est ensuite développé pour des formations de 

satellites placées sur des orbites de petites eccentricités. Un système de 

maintenance de formation qui utilise le freinage atmosphérique comme moyen 

de contrôle est introduit. Des resultats de simulations numériques montrant 

l’évolution dans le temps de formations avec et sans contrôle sont également 

fournis. 
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Chapter 1 - Introduction 

 

1.1 Formation Flying 

 

There is a recent tendency in the space industry to replace large satellites 

with multiple smaller satellites working in unison to achieve specific mission 

objectives. These satellites formations offer various advantages over their 

traditional alternative. The smaller satellites constituting the formation will likely 

be cheaper and quicker to build. Since the formation can be altered, they offer 

greater versatility. Having multiple satellites and redundancy also allows for a 

malfunctioning satellite to be replaced, avoiding having to abort the mission. 

Even if the malfunctioning satellite was impossible to replace, the formation 

could be altered to perform, at least partially, the mission with the remaining 

satellites. While, the resolution of a single satellite’s onboard radar dish is limited 

by size and cost constraints at launch, satellite formations can be configured to 

create a much larger dish and, therefore, can offer greater resolution. These 

multiple advantages make satellite formation flying an ideal technology for 

astronomical observations, communications, meteorology and environmental 

applications. 

The use of a formation brings some complications though. For the 

formation to be effective, the satellites must maintain a certain configuration 

and relative positions become of the utmost importance. Examples of such 

configurations are formations operating on projected circular orbits (PCO) or 

along track orbits (ATO). In the case of a projected circular formation, the motion 

of the deputy spacecraft relative to the chief spacecraft forms an ellipse whose 

projection in the  -  plane of the Hill frame described in Section 2.1 forms a 

circle. As for the along track formation, both spacecraft’s share the same ground 
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track, meaning they pass over the Earth in the exact same locations one after the 

other. Since these relative positions and motions are subject to drift caused by 

perturbation forces such as the ones due to the oblateness of the Earth (often 

referred to as the J2 perturbations) and solar radiation pressure, active formation 

control becomes imperative. Another perturbation force that will affect relative 

motion between two spacecraft is atmospheric drag. This last perturbation force 

increases in magnitude as the altitude of the formation decreases. It is therefore 

usually seen as an obstacle to formation flight at low altitudes.  

 

1.2 Differential Atmospheric Drag Control 

 

Although atmospheric drag is typically seen as a nuisance when planning 

a mission involving formation flying at low altitudes, it can be used as a means of 

formation keeping.  Through the implementation of drag panels that can be 

rotated, one can control the projected area of each spacecraft and, as a 

consequence, the differential drag between them. In fact, the solar panels 

mounted on the satellites can be used as drag panels if they, or the spacecraft, 

can be rotated. Using differential drag would decrease the use of impulsive 

thrusters and the products of the combustion associated with such thrusters can 

contaminate sensitive sensors and optical equipment. It would also reduce the 

cost associated with fuel and increase the life of the spacecraft, as they would 

not be as dependent on onboard fuel. Since, the accelerations arising from 

differential are much smaller in magnitude to the ones coming from 

conventional thrusters, it might be preferable if the spacecraft carries something 

fragile or is fragile in fabrication. 
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1.3 Objectives of the Thesis 

 

The objectives of this thesis are to evaluate the effect of atmospheric 

drag on a formation of satellites orbiting the Earth at low altitudes and to assess 

the feasibility of using differential drag as a means of maintaining such 

formation. Simplified linearized models taking into account J2 perturbations and 

atmospheric drag will be developed for both circular and elliptical reference 

orbits. The effect of eccentricity on a formation will then be investigated. Finally, 

control schemes for both the circular and elliptic cases will be developed and 

tested through numerical simulations. 

 

1.4 Literature Review 

 

The literature reviewed in this section will be divided into two 

subsections. The first subsection will deal with the work that has been done in 

the field of dynamics of spacecraft formations and relative position. The 

following subsection will go over some of the work done in the field of formation 

control and formation maintenance. The last subsection will be related to the 

control of linear, periodically time-varying systems. This subsection is essential 

because we seek to control a spacecraft formation flying in circular orbits as well 

as elliptic orbits and, once we increase the eccentricity, the system remains 

linear, but becomes periodically time-varying. 

 

 



4 
 

1.4.1 Dynamics of Spacecraft Formation Flying and Relative 

Positions 

 

There are two main ways of describing the motion of deputy spacecraft 

relative to a chief spacecraft. The first way is to express the state of the deputy in 

the Hill frame ( ,  ,  ,   ,   ,   ) which is explained in details Section 2.1. This 

frame is an orthogonal coordinate frame centered on the chief placed on the 

reference orbit. This method will be the one used in this thesis and the Hill frame 

will be described in more details in section 2.1. There have been several works 

done in the field of dynamics of formation flying using this method to 

characterize the relative motion. 

The most well known equations in the field of spacecraft relative motion 

are the Clohessy-Wiltshire equations (Clohessy and Wiltshire, 1960). They are a 

set of constant coefficient linear ordinary differential equations describing the 

motion of a deputy spacecraft relative to a chief spacecraft. The chief spacecraft 

is assumed to be traveling in an unperturbed circular orbit. Since perturbations 

are not considered, errors tend to grow large over time. Despite this limitation, 

these equations can be used quite effectively in the context of rendezvous 

missions, since the time frame for such missions is small enough for the 

equations to still be accurate. In the context of formation flying, however, the 

time frame is significantly larger and the errors can grow too large for this set of 

equations to be of much use. 

Tschauner and Hempel (1965) provided a solution for the problem of 

relative motion between two spacecraft placed in an elliptic orbit. Similarly to 

the Clohessy-Wiltshire, these equations do not account for any perturbations. 

They, therefore, have limited applications for formation flying, but can be useful 

for rendezvous missions.  
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Kechichian (1998) developed a set of second-order nonlinear differential 

equations describing the motion of a deputy spacecraft relative to a chief 

spacecraft placed in an elliptic orbit. These equations factor in the effects of both 

atmospheric drag and J2 perturbations. This system of equations cannot be 

solved in closed form. 

Carter and Humi worked on modifying the Clohessy-Wiltshire to include 

the effect of atmospheric drag on the relative motion of spacecraft. In their first 

work (Carter and Humi, 2002a), they presented equations and solutions 

representing the terminal phase of a rendezvous in the presence of atmospheric 

drag. The drag was assumed to be linear in the velocity of the spacecraft. In their 

second work (Carter and Humi, 2002b), the atmospheric drag model was 

changed to be proportional to the square of the velocity of each spacecraft in 

order to be more realistic. The model is given in the forms of a set of ordinary 

differential equations and of a state transition matrix. When the drag constants 

of each spacecraft are identical, the solution simplifies to that obtained by 

Tschauner and Hempel. The equations also simplify to Clohessy-Wiltshire 

equations if the eccentricity is then set to zero. Since they worked with 

rendezvous missions in mind, they did not include the effect of J2 perturbations. 

The solution, therefore, loses in accuracy over long periods of time. 

Schweighart and Sedwick (2002) modified the Clohessy-Wiltshire 

equations to increase their precision. To do so, they addressed the assumption 

made by Clohessy and Wiltshire that the Earth was perfectly spherical which 

leads to large errors with time. The result is a set of constant coefficient, 

linearized, differential equations similar in form to the equations they modified, 

but that now captures the effect of J2 perturbations. These equations can be 

solved analytically and the solution is provided by Shweighart and Sedwick. This 

solution has periodic errors of no more than 0.4% when compared numerically 

to a high precision orbit propagator including the effects of the J2 potential. Like 

the Clohessy-Wiltshire equations, they are only valid for circular orbits. 
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Yamanaka and Ankersen (2002) developed a state transition matrix to 

obtain the position and velocity of the deputy spacecraft relative to the chief 

spacecraft at any given time. The state transition matrix is valid for any elliptical 

orbit and does not have a singularity at    . Like the Clohessy-Wiltshire 

equations, the state transition matrix given here does not account for 

perturbations. In fact, for circular reference orbits, the state transition matrix 

and the Clohessy-Wiltshire equations give the same results. 

The second way of describing relative motion is more recent and uses 

orbit element differences. That is to take the vector of the difference in orbital 

elements between the two satellites to express the state of the deputy relative 

to the chief (  ,   ,   ,   ,   ,   ). There is a substantial amount of work that 

has been done in the field of dynamics of formation flying using this method to 

characterize the relative motion as well.  

While it might not be as easy to visualize the instantaneous relative 

position using the state vector given by this method, it has other advantages. 

One of those is given by Schaub and Junkins (2003), when going over relative 

orbit description: “Simply starting out with the Hill frame initial conditions *...], 

the relative geometry is determined only after solving the differential equations. 

However, by describing the relative orbit in terms of orbit element differences, it 

is possible to make certain statements regarding the relative orbit geometry”.  

More details regarding relative orbit description and formation flying can also be 

found in that book.  

Schaub (2004) used mean orbital element differences to express the 

relative motion between two spacecraft placed on an elliptical orbit. The 

spacecraft are assumed to be under the effect of J2 perturbations. The mapping 

between the orbital element differences and the Hill-frame coordinates is also 

provided. 
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Sengupta and Vadali (2007), studied the effects of eccentricity on the 

relative motion of spacecraft flying in Keplerian orbits. They also derive a new 

linear condition for bounded relative motion. This condition is valid for any 

eccentricity or perigee altitude. Using the effects of eccentricity, they also 

determine the desired geometry of the relative motion. 

Hamel and de Lafontaine (2007) built upon the work of Schaub to obtain 

an analytical state transition matrix that models the relative motion between 

two spacecraft placed in a J2-perturbed elliptical orbit. The advantage of the 

state matrix lies in the fact that the reference orbit doesn`t need to be 

propagated. In order to obtain the state transition matrix, Hamel and de 

Lafontaine provide the mapping between the mean orbital elements and the 

osculating orbital elements. 

 

1.4.2 Formation Control 

 

The most common way of controlling a satellite formation is through the 

use of thrusters to provide the instantaneous acceleration needed. Although this 

method will not be used in this thesis, the control laws developed for systems 

controlled by thrusters are still of interest and will thus be presented in the first 

part of this section. 

Ulybyshev (1998) developed a discrete-time linear quadratic regulator 

(LQR) to perform formation keeping for satellite constellations placed in circular 

orbits. The control law minimizes relative displacements in the along-track 

direction. It also minimizes the orbital period displacements relative to the 

reference orbit period.  

Vadali et al. (2002) modified the Clohessy-Wiltshire equations to include 

the time-averaged effects of the J2 perturbations. They then provided a method 
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to obtain initial conditions that result in quasi-periodic relative motion. Finally, 

they presented a linear-quadratic regulator that minimizes fuel consumption and 

maintains equal average fuel consumption for each spacecraft. 

Schaub and Alfriend (2002) developed a hybrid continuous feedback 

control law using both orbit element differences and Hill frame coordinates. The 

controller is given the desired relative orbit geometry in terms of orbit element 

differences and the actual orbit in terms of Hill-frame coordinates. In order for 

this controller to work properly the mapping between both state vectors must 

be done accurately. The method used for mapping is therefore presented and 

numerical results demonstrate its accuracy. 

Tillerson et al. (2002) used linear program optimization in order to 

perform trajectory planning. A bounding box is defined around the spacecraft’s 

desired position. Once the spacecraft reaches the edge of this box, a return 

trajectory is planned. This control algorithm can be used both for formation 

maintenance and reconfiguration. The controller accounts for actuator 

saturation while remaining valid despite disturbances and model uncertainties. 

Blake (2008) used quasi-rigid body formulation in order to describe a 

satellite formation as one entity. Once this is done, it is showed that formation 

control can be separated in a torque to control the orientation and forces to 

maintain its rigidity. From there, two controllers acting on the formation as a 

whole are presented. The first is based on Lyapunov theory while the second 

prescribes a series of linear feedback matrices. Simulations are provided to show 

the controllers ability to perform formation maintenance and constrained 

reorientations. 

 In the second part of this section, the work done in the literature using 

differential atmospheric drag to control satellite formations will be provided. 
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Leonard et al. (1986, 1989) first examined the feasibility of using 

differential drag to control the relative positions between spacecraft. To do so, 

the Clohessy-Wiltshire equations were modified to include the effect of 

atmospheric drag, which was modeled as a constant force acting in the direction 

opposite to the velocity. This force could be positive, negative or equal to zero 

depending on the control applied, since both chief and deputy spacecraft were 

assumed to have drag panels that could be rotated to have an angle of attack of 

either 0 or 90 degrees. After a coordinate transformation, the problem was 

reduced to the simultaneous solutions of the double integrator and harmonic 

oscillator. A control law was then developed and was successful in performing 

formation manoeuvring and maintenance. 

Franconeri (2003) examined how differential atmospheric drag could be 

used to perform station keeping for satellite constellations. He shows how 

differential atmospheric drag can be obtained by changing the projected area of 

each spacecraft through the rotation of solar panels or through attitude 

adjustments. The example chosen in the paper is an in-plane constellation where 

the distances between each spacecraft are very large. However, detailed 

calculations are not provided. 

Mishne (2004) worked on formation maintenance in low-Earth orbits. He 

developed a method to compensate for the effects of atmospheric drag and J2 

perturbation on the formation using impulsive velocity corrections. An optimality 

condition is also developed in order to make these impulses as small as possible.  

Fourcade (2004) presented the results of the mission analysis the 

interferometric wheel patented by the French space agency, CNES (Centre 

National d’Études Spatiales), operating at low-Earth orbit. This formation is 

comprised of three small satellites flying in a circular wheel relative to a larger 

satellite. The mission analysis goes over how the initial orbital elements were 

chosen in order to satisfy all the constraints provided by the mission. It also 
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provides orbit positioning strategies such as reconfiguration of the wheel in 

order to modify its size. Finally the mission analysis provides the station keeping 

strategies used. One of those strategies uses differential atmospheric drag to 

control the mean nodal elongation between the satellites of the wheel. 

Sabatini and Palmerini (2006) presented a linear quadratic regulator for 

low-Earth orbit formations. Their control law is based on the equations 

developed by Carter and Humi (2002) which include the effects of aerodynamic 

drag. They assumed that thrust could be applied continuously for control 

purposes. Numerical simulations taking into account the effects of atmospheric 

drag and J2 perturbations show that the LQR based on the Carter-Humi equations 

is significantly more efficient than an LQR based on the Clohessy-Wiltshire. 

Jigang and Yulin (2006) worked on using differential drag to control co-

planar formations. To do so they used phase plane methods and assumed the 

rate of change of the difference between the semi-major axes of the two 

satellites to be constant. Simulation results show that the control scheme 

developed is able to reduce the drift in the formation and keep it bounded. 

Kumar, Bang and Tahk (2007) studied the feasibility of using differential 

atmospheric drag to maintain a formation of nano-satellites. Using a commercial 

simulator (the Precision Orbit Propagator within the program Satellite Tool Kit 

[STK]), they were able to determine the range for which differential atmospheric 

drag could be used to perform formation maintenance. A simple proportional-

integral-derivative (PID) controller is then developed to control the spacecraft’s 

cross sectional area and thus control the drag forces. The PID uses the orbit’s 

energy as input. It is shown that the controller can maintain the formation within 

reasonable boundaries. 

Kumar, Ng, Yoshihara and De Ruiter (2007) examined the feasibility of 

using atmospheric drag as a means of relative position control in the context of a 

proposed formation flight mission of the Canadian Space Agency. A PID 
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controller for formation keeping was designed. The controller compares the 

difference in energies between the orbits of both spacecraft to assign a change 

in projected area to either spacecraft. The controller is successful for small 

difference in energies, but is designed for circular orbits. 

Bevilacqua and Romano (2008) presented a method tha uses atmospheric 

drag in order to perform rendezvous manoeuvres in low-Earth orbits. The 

Schweighart and Sedwick equations (2002) are used to model the relative 

motion and the control methods developed are an improvment on those first 

developed by Leonard et al. (1986, 1989). The dynamics are decoupled in a 

periodic oscillation and a secular motion. First, the secular motion is controlled 

using differential atmospheric drag and then a oscillation reduction scheme is 

used. Unlike the method developed by Leonard and al., this new control scheme 

is not left with a residual distance at the end of the manoeuvre. Also, since the 

manoeuvres are based on analytical expressions, there is no longer a need for a 

numerical optimization routine. Numerical simulations are provided which 

validate the effectiveness of the control method. 

 

1.4.3 Linear Periodically Time-Varying Systems 

 

Calico and Wiesel (1984) worked on developing the complete algorithm 

capable of solving Floquet Systems. They then examine the case of scalar control 

and explain how this approach has limited effectiveness as it is unable to move 

pairs of conjugate roots. For a more rigorous method they analyse the case of 

vector control and come up with a new algorithm for pole placement. 

An expression for the feedback gain giving pole placement was 

introduced by Kabamba (1986). He also demonstrated that if a periodic system is 

controllable over one period, then the monodromy matrix was assignable in its 
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entirety. He therefore concluded that periodic controllers would likely be better 

than time invariant ones for feedback control of time-invariant systems. 

Sinha and Joseph (1994) were the first to propose a method for 

computing the Lyapunov-Floquet transformation matrix for linear, periodically 

varying systems. To do so the state transition matrix is expressed as a function of 

time in terms of Chebyshev polynomials, which allows for the Lyapunov-Floquet 

transformation matrix to be expressed as a function of time in a closed form as 

well. This transformation matrix can then be used to transform the system to a 

form that is suitable for time-invariant control methods. 

After noting that the method developed by Sinha and Joseph could not 

always ensure the stability of the system, Lee and Balas (1999) introduce a new 

control technique based on the output feedback algorithm with time-varying 

control gains. A full state-feedback controller is designed first followed by a 

controller with state estimator. 

  

1.5 Outline of the Thesis 

 

In Chapter 2, the objective is to obtain as set of linearized equations of 

motion for a formation placed in a circular orbit around the Earth under the 

effect of atmospheric drag and J2 perturbations. To do so the linearized ordinary 

differential equations developed by Schweighart and Sedwick will serve as 

starting point. They will then be modified to include the effect of aerodynamic 

drag. A stability analysis will then be performed on the system to find a gain 

matrix that can be used to perform formation maintenance using atmospheric 

drag.   

Simulation results building on the model developed in Chapter 2 will be 

presented in the next chapter. From these simulations, the effects of drag will be 
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defined. Finally the controller developed in the Chapter 2 will be tested in order 

to see if it can be used to perform formation maintenance. 

A major goal of this thesis being to develop a differential drag controller 

able of performing formation maintenance in elliptical orbits, a set of equations 

similar to the ones developed in Chapter 2 are needed. In Chapter 4, the small 

eccentricity assumption is made to find such a formulation. Two formation 

maintenance schemes using drag as means of control will then presented. 

In chapter 5, the models developed in Chapters 4 and 5 will be compared 

for circular orbits. Then simulation results will be presented to see what the 

effects of eccentricity on a formation are. Finally the control schemes will be 

tested on formations placed in elliptical orbits.  
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Chapter 2 – Relative Motion Equations for Circular 

Orbits 

 

 In this chapter, we will analyse the relative motion between two 

spacecraft flying in formation. These spacecraft will be assumed to be placed in a 

circular orbit around the Earth and under the effect of J2 and drag perturbations. 

The first step will be to establish the coordinate frames that will be used during 

the analysis. Then, the Schweighart and Sedwick equations (2002) of motion 

describing the relative motion of spacecraft placed in a circular orbit under the 

effect of the J2 potential will be introduced. Since the equations do not account 

for atmospheric drag, the equations will have to be modified. They will also be 

non-dimensionalized to facilitate their understanding and for future 

computational efficiency. A stability analysis will be performed based on the 

equations of motion obtained. Finally, numerical simulation results will be shown 

to demonstrate the effect of both J2 and atmospheric drag perturbations on 

formations orbiting the Earth at low altitudes, where atmospheric drag is more 

active, and to assess the effectiveness of differential drag as a means of control 

for formation maintenance. 

 

2.1 Coordinate Frames 

 

 To describe the motion and position of the spacecraft over time, we need 

to establish the reference frames that will be used. In this thesis, two reference 

frames will be used: the Earth-Centered Inertial (ECI) and Hill frames. The two 

frames are shown in Fig. 2.1. 
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Figure 2.1: ECI and Hill Coordinate Frames 

 The origin of the ECI is attached the center of the Earth and is composed 

of the X, Y and Z axes. The Z-axis is along the Earth’s axis of rotation, the X-axis 

points towards the vernal equinox and the Y-axis completes the right-hand rules, 

such that the X-Y plane intersects the Earth along its equator. This reference 

frame is mainly used to define the spacecraft’ position over time relative to the 

Earth, allowing us to evaluate the local atmospheric density. For relative motion, 

the Hill frame is better suited. This frame is a moving one and has its origin on an 

imaginary spacecraft called the Chief. The  -axis points in the same direction as 

       , which is the vector from the center of the Earth to the chief’s position. 

The  -axis is perpendicular to the chief’s orbit plane and the  -axis completes the 

right hand orthogonal system. In the case where the chief is in a circular orbit,  -
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axis is along the chief’s velocity vector. The  ,   and   directions are commonly 

referred to as the radial, in-track and cross-track directions respectively.   

 To describe a spacecraft’s state, one needs 6 independent quantities. 

These quantities can differ in their form though. For example, in the ECI a 

spacecraft’s state   can be described as: 

                   
 

 (2.1) 

A more common way of expressing the state of a spacecraft in orbit is through 

the classical orbital elements: 

                  (2.2) 

 

 Figure 2.2: Classical Orbital Elements 

In this case,   is the orbit’s semi-major axis and   its eccentricity. If the orbit is 

circular, then   is simply the orbit’s radius and   is equal to zero. The inclination   

refers to then angle between the orbit plane and the Earth’s equatorial plane 

while  ,   and   are the right ascension of the ascending node, the argument of 

perigee and the mean anomaly respectively. The mean anomaly is a function of 
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both the eccentricity and the true anomaly  . The right ascension of ascending 

node is the angle between the  -axis of the ECI frame and the intersection of the 

orbital and equatorial plane (ascending node). The argument of the perigee is 

the angle between the ascending node and the perigee. Finally, the true anomaly 

is the angle between the perigee and the current position of the satellite. 

Another angle worth mentioning is the true latitude  , which is defined as the 

sum of the argument of perigee and true anomaly: 

       (2.3) 

 

2.2 Relative Motion Equations 

 

 The equations developed by Schweighart and Sedwick (2002) were 

selected as a starting point due to their simple form. They are a set of linearized, 

constant coefficient ordinary differential equations. They are similar in form to 

the Clohessy-Wiltshire equations and, like them, are only valid in the case of a 

circular reference orbit. The Schweighart and Sedwick equations allow to model 

the motion of a spacecraft relative to a J2 perturbed reference orbit though. To 

obtain the relative motion between two satellites, one therefore needs to obtain 

the relative motion of both satellites with respect to the same reference orbit 

and then take the difference between the two. The equations that will be used in 

this chapter are: 

 

                                    
        

       
 

 
                                                  

(2.4) 

 
                         

                              

                                         
(2.5) 

                                  (2.6) 
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where the  ,   and   terms refer to the Hill frame coordinates,    is the Earth’s 

mean equatorial radius,      is the initial radius of the circular reference orbit, 

     is the reference orbit’s initial inclination, and    is a dimensionless quantity 

representing the second spherical harmonic of the Earth’s gravitational 

potential.    has a constant value of             . Time is denoted by  , while 

the orbital rate   is defined as: 

          
  (2.7) 

where   is Earth’s gravitational constant and has a constant value of          

          . The other constants are specific to the Schweighart and Sedwick 

equations and are given in Appendix B along with other details about the 

equations. 

 The        ,         and         terms represent the acceleration due to 

drag in  ,   and   respectively. This acceleration is given by (Vallado, 2007): 

        
 

 

   

 
            (2.8) 

where    is the spacecraft’s drag coefficient,   its cross sectional area,   its 

mass,   the local atmospheric density and      the spacecraft velocity relative to 

the rotating atmosphere. The atmosphere is assumed to rotate at the same 

angular velocity as the Earth. The velocity of the spacecraft with respect to the 

rotating atmosphere is then given as (Vallado, 2007): 

              (2.9) 

where   is the spacecraft’s absolute velocity,    its position vector relative to the 

Earth’s center and    is the angular velocity vector of the Earth. We wish to 

express the atmospheric drag effects in the Hill frame. To do so, we first need to 

express      in terms of Hill coordinates. A detailed explanation of the coordinate 

transformations leading to the expression of       in the Hill frame is provided in 
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Appendix A. The expression for the spacecraft’s velocity relative to the rotating 

atmosphere is given by: 

       

                                 

                                  

                                 

  (2.10) 

If we assume the reference orbit to be circular and if we use the formulation 

provided by Schweighart and Sedwick (2002), this expression can be simplified 

to: 

       

                           

                                  

                                 

  (2.11) 

since       vanishes when dealing with a circular orbit and    can be expressed as 

  , the constant orbital rate of the circular reference orbit used by Schweighart 

and Sedwick. 

 

2.3 Non-Dimensionalization of the Equations of Motion 

 

 In this section, the equations of motion introduced in the previous 

section will be non-dimensionalized. Doing this will reduce the computing time 

needed later for simulations and increase the robustness of the program needed 

for the numerical simulations. The non-dimensionalized equations will also be 

simpler to handle since it will be easier to get a sense of relative importance 

between each term especially that of the perturbation forces. 

 

  



20 
 

2.3.1 Definition of Dimensionless Terms 

 

 Before we can perform the non-dimensionalization of the equations, we 

need to introduce the definition of the dimensionless quantities which will be 

used. The first step is to define a dimensionless time parameter: 

       (2.12) 

where    is the initial mean orbital rate of the reference circular orbit. The 

reason the initial orbital rate has to be used instead of the instantaneous orbital 

rate is to make sure the scaling between   and   remains constant. Using   

would not accomplish that since, due to the drag forces,   changes with time. 

This initial mean orbital rate is defined as: 

             
  (2.13) 

 In order to transform  ,   and   into dimensionless distances, they will be 

normalized with respect to a reference length parameter,     : 

           (2.14) 

           (2.15) 

           (2.16) 

From these definitions, we can obtain the velocities: 

    
  

  
 

         

       
       

   

  
           (2.17) 

              (2.18) 

             (2.19) 

and the accelerations: 
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(2.20) 

      
          (2.21) 

      
          (2.22) 

It is convenient to set       , where   is a value associated with the geometry 

of the desired formation motion geometry such as the desired radius of a 

projected circular formation or the desired distance between the spacecraft in 

an in-track (also known as along track), leader-follower formation. By doing so, 

we will ensure that   ,    and    remain of the order of 1. 

 

2.3.2 Non-Dimensionalized Equations of Motion 

 

 With the dimensionless terms defined in the previous section, we can 

now present the non-dimensionalized equations of motion. To do so, the 

equations of motion, Eqs. (2.4), (2.5) and (2.6), are modified to become functions 

of the dimensionless parameters   ,    and   : 

 
       

                                         
        

   
 

 
 

 

 
                    

 

 
                       

(2.23) 

        
                    

         
                                            

(2.24) 

 
       

                                     
(2.25) 

Dividing these equations by   
  , we obtain: 

                                          
         (2.26) 
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(2.27) 

                  
 

   
                      (2.28) 

where 

         (2.29) 

         (2.30) 

         (2.31) 

                 
    (2.32) 

Here, it can be noted that        is the dimensionless drag acceleration. 

 

2.4 Dimensionless Drag Terms 

 

2.4.1 Basic Expression for the Dimensionless Drag 

 

 In this section, the dimensionless drag expression will be derived. The 

starting point of our analysis is to substitute Eq. (2.8) into Eq. (2.32) to obtain an 

expression for the dimensionless drag: 

        
     

  
  

  
 

 

 

  
  

 
   

 
            

 

 
 

   

 
              

 

(2.33) 

where       is the spacecraft’s dimensionless velocity relative to the rotating 

atmosphere and is obtained by dividing Eq. (2.11) by    : 
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(2.34) 

This dimensionless velocity for a circular orbit for can be rewritten as a function 

of   ,    and   : 

       

 
 
 
 
 

                                 

     
    

 
                              

     
    

 
                              

 
 
 
 

 

 

(2.35) 

where 

           (2.36) 

 

2.4.2 Linearization of the Dimensionless Drag Expression 

 

 Now that the dimensionless drag term has been defined, we can begin 

simplifying and linearizing the expression. Let us first define a new quantity, the 

dimensionless ballistic drag coefficient: 

      
   

 
     

  

 (2.37) 

such that Eq. (2.33) can now be rewritten as: 

         
 

 

 

 

 

    

             

 

(2.38) 

Note that the ballistic coefficient is usually defined as: 
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 (2.39) 

To simplify the linearization process, the dimensionless relative velocity vector 

      will be split into two vectors: one of which will hold the zeroeth terms while 

the other will contain the first order terms in   ,   ,   ,    ,     and   ’. Thus, the 

spacecraft’s dimensionless velocity relative to the rotating atmosphere is 

expressed as: 

             (2.40) 

where  

    

 
 
 
 
 

 
    

 
             

    

 
            

 
 
 
 

 

 

(2.41) 

     

                                 

                                 

                               

  

 

(2.42) 

It is important to note that the magnitude of    is of the order of 1 while the 

magnitude of    is of the order of 104 and, thus, significantly larger. To linearize 

the dimensionless drag expression, the              must be linearized.  With the 

definition given previously, this term can be written as: 

                              (2.43) 

Note that, using the vector norm definition, the         term can be seen as: 

 
                             

                          
      

(2.44) 

Thus: 
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             (2.45) 

The square root term can be linearized if a binomial series expansion is used. To 

do so, a slight modification must be brought to Eq. (2.43): 

                        
      

    
 

 
     

     
 

   

        (2.46) 

Now, taking the binomial series expansion of the square root and neglecting 

terms of second or higher orders, we obtain: 

 

                      
     

    
 
         

                              
     

    
    

 

(2.47) 

The reason higher order terms can be neglected comes from the difference in 

magnitude between    and   . While    represents the absolute velocity of the 

imaginary chief placed on the reference orbit,    represents the relative velocity 

of the deputy spacecraft relative to that imaginary chief. Since the orbit of the 

deputy follows that of the imaginary chief, the relative velocity between the two 

is significantly smaller in magnitude than the absolute velocity   .  

 Let us now evaluate each term of Eq. (2.47) individually: 

 

     
    

 
                               

     
    

 
                   

 

(2.48) 

The reason, the second term is neglected is because while the first term will be 

of order one, the second one will be at least of 2 orders less. Therefore, higher 

order terms in     can always be neglected when compared with terms of the 

order of one. Then we can obtain the three terms as: 
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  (2.49) 
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  (2.51) 

Summing all three terms we get the linearized expression for             : 

              

 
 
 
 
 

        

    
                    

                           
    

 

    
    

 
 
 
 
 

 (2.52) 

Neglecting the higher order terms and factoring out     , we obtain: 

                   

    

          

         

  

 

(2.53) 

The linearized drag expression can then be written as: 

         
 

 

 

 

 

    
     

    

          

         

  

 

(2.54) 

The following dimensionless parameters will be introduced to further simplify 

the notation: 

                (2.55) 

            (2.56) 

The final linearized drag expression is therefore: 
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 (2.57) 

 

 

2.5 Final Equations of Motion 

 

 In this section, the final equations of motion describing the relative 

motion between the deputy and chief spacecraft will be presented. To get those 

equations, the linearized drag expression obtained in the previous section will be 

introduced in the Sedwick and Schwieghart equations.  

As it stands, the linearized drag expression, Eq. (2.57), and Eqs (2.26), 

(2.27) and (2.28) are for a spacecraft with respect to an unperturbed reference 

orbit. To obtain the relative motion between both spacecraft the equations must 

evaluated for both spacecraft and then subtracted from one another. Doing so, 

we obtain: 

 

                                            
         

                     
 

 
 

 

 
                  

 

 
               

          

(2.58) 

 
                              

                                 

                               
(2.59) 

                    
 

   
                       (2.60) 

where            ,             and             give the position of the 

deputy relative to the chief. The relative drag term is then: 
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(2.61) 

where the subscripts C and D denote the chief and deputy respectively. 

To simplify our analysis, we will assume both spacecraft have the same 

projected area and local atmospheric density. This second assumption is made 

because although they differ, they only do so very slightly when both spacecraft 

are relatively close such as is the case here.  We can now state both spacecraft’s 

dimensionless ballistic coefficients to be identical. The relative drag can then be 

simplified to: 

          
 

 

 

 

 

    
     

     

      

     

  (2.62) 

where 

                                             (2.63) 

                                           (2.64) 

                                          (2.65) 

 Note, that this second assumption will not be made when performing the 

simulations. It only serves to simplify the stability analysis that will follow.  

Writing Eqs. (2.58), 2.59 and (2.60) with the relative drag defined in Eq. (2.62) in 

matrix form, we obtain: 

                     (2.66) 

where the relative position vector    , the generalized inertia matrix  , the 

damping matrix  , the stiffness matrix   and the forcing function vector   are: 

      
   
   
   

  (2.67) 
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(2.69) 

 

  

 
 
 
 
 
 
             

 

 

 

 
    

 

 

 

 
        

 

 
    

 

 
        

 

 

 

 
         

 

 

 

 
           

 
 
 
 
 
 
 

 

 

 

 

(2.70) 

 

   

 
 

 
 

   
            

  

 

 

(2.71) 

The system can also be written in state-space form as: 

           (2.72) 

where 

     
   
    

  (2.73) 

    
     
    

  (2.74) 

    
    

 
  (2.75) 
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2.6 Stability Analysis 

 

 To assess the feasibility of using atmospheric as a means of formation 

maintenance, a stability analysis needs to be undertaken. To do so, the liner 

model developed in the previous sections will be used. In this analysis, it will be 

assumed that both spacecraft can increase their projected area to increase the 

drag they experience.  

 

2.6.1 Differential Drag Analysis 

 

 In this analysis, both spacecraft are assumed to have the same physical 

parameters. That is to say that both spacecraft have identical mass  , drag 

coefficient    and baseline area   . It will also be assumed that both spacecraft 

are close enough such that their local atmospheric density   can, in turn, be 

assumed to be the same. 

 While both the chief and deputy have the same baseline area   , their 

total projected area can be increased by an amount    by rotating some 

differential drag panels attached to each spacecraft. Their drag area can 

therefore be defined as: 

           (2.76) 

           (2.77) 

Based on this, Eq. (2.61) can be modified to: 
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(2.78) 

For control purposes, we want    to be related to the dimensionless state 

vector. The change in area will therefore be defined as the product of a gain 

matrix with the state vector: 

      
  
   

  (2.79) 

where   is a row vector defined as: 

                  (2.80) 

 Now that    has been defined, it can be introduced into equation 2.78 

and the resulting expression can be linearized. The resulting expression is: 

 

         
 

 

 

    
      

  

 
     

     

     

      

     

      
   

    
     

   

    
   

 
    

    

   

 

(2.81) 

The differential drag expression can be further simplified if the gain matrix is 

assumed to be the same for both spacecraft. In fact, the expression can then be 

written in terms of the relative position vector: 

           
 

 

 

    
    

 

  
  

     

      

     

  
 

  
   

   
    

   

 
    

    

   

 

(2.82) 

where    is the dimensionless ballistic coefficient taken with an the baseline area 

  . 
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2.6.2 Eigenvalue Analysis 

 

 In this section an eigenvalue analysis for the case of marginal stability will 

be performed on the controlled system defined in the previous section. Using 

this analysis, the elements of the gain matrix needed to stabilize the system will 

be determined. 

 Once the control gains are included in the equations of motion, new 

terms, related to those gains, will be included in the matrices   and  . The new 

matrices are: 

 
  

 
 
 
 
 
 
 

 

 

 

  
        

         

 

  
           

        

 

 

 

  
        

 
 
 
 
 
 

 
(2.83) 

 
  

 
 
 
 
 
 
             

 

 

 

 
    

 

 

 

  
        

 

  
            

 

  
             

 

 

 

  
              

 

 

 

  
                      

 
 
 
 
 
 

 
(2.84) 

where 

    
 

 

 

  

 

  

    

 
    

 

(2.85) 

 
   

 

 

 

  

 

  

    

 
         

 

(2.86) 

 For this analysis, we will only consider the in-plane ( - ) portion of the 

system. That is because the terms coupling the out-of-plane ( ) equation with 

the in-plane equations are significantly smaller than the other terms of the 

matrices and can thus be neglected. This means that we will not be able to have 
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control over the relative motion in the z-direction. The components    and    

can therefore be set to zero as they are related to the out-of-plane motion. For 

the in-plane case, the matrices    and    are reduced to the  2 2 matrices: 

   

 
 
 
 

 

 

 

  
       

         

 

  
        

 
 
 

 

 

(2.87) 

 

  

 
 
 
             

 

 

 

  
   

 

  
             

 
 
 

 

 

 

(2.88) 

and   becomes the 2 2 Identity matrix. 

 To determine the stability of the in-plane system, we can analyse its 

eigenvalues. Those eigenvalues can be obtained as the roots of the characteristic 

equation: 

   
  
  

     
  
  

    
  
  

     (2.89) 

   
          
           

    (2.90) 

 
                                                  

                                           
 (2.91) 

where  ,  ,  ,  ,  ,  ,   and   are used to replace the components of the   

and   matrices for simplicity. 

 To obtain asymptotic stability, the roots of the characteristic equation 

must all have negative real parts. Finding such roots analytically is very 

complicated in this case. However, marginal stability can be obtained if the first 

and third order terms of the characteristic polynomial are set to zero. This will 

transform the equation into a quadratic equation in   .  
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 Setting the third order term to zero yields: 

       (2.92) 
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(2.94) 

 Now, setting the first order term to zero yields: 
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(2.96) 

which simplifies to: 

                                                 (2.97) 

 Since the first and third order terms have been set to zero, the 

characteristic equation now is: 

                            (2.98) 

and the following roots: 

       
 

 
                                    (2.99) 

       
 

 
                                    (2.100) 

where      . To obtain marginal stability, the roots must be purely imaginary. 

For that to be the case, the following conditions must be met: 
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i)              

ii)                          

 It is difficult to deal with such inequalities. Thus, we will rewrite those 

condition as equalities. Condition i can written as: 

             (2.101) 

with    . Condition ii can be rewritten as well: 

       
 

  
             (2.102) 

with    . Note, that Eq. (2.10)2 will satisfy both sides of condition (ii) since its 

right hand side will always be positive and larger than zero. The remaining three 

components of the gain matrix,   ,    and   , can be obtained from Eqs. (2.97), 

(2.101) and (2.102). The expression for each of those gains is not provided here 

due to their high complexity. 
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Chapter 3 – Numerical Simulation for Circular 

Reference Orbits 

 

In this section, numerical simulations will be provided based on the 

equations developed in chapter 2. The non-dimensionalized equations of motion 

were used for robustness and computational efficiency. The numerical 

simulations shown in this chapter were done using MATLAB and the differential 

equations were solved using its ode45 numerical integration function. The ode45 

function is based on the Dormand-Price method, which is a mixed 4th and 5th 

order Runge-Kutta adaptive step method. To obtain the local atmospheric 

densities at each spacecraft, the method outlined in Appendix C was used. 

 

3.1 Spacecraft Physical Parameters 
 

 In order to perform the simulations, the spacecraft physical parameters 

must be specified. These parameters will be crucial in modeling the impact of 

atmospheric drag on the formation. Two sets of physical parameters will be used 

in this section, both based on planned formation flying and rendezvous missions. 

 

3.1.1 TECSAS Physical Parameters 

 

The TECSAS mission was a technology demonstration mission planned to 

be launched in 2009. Its objective was to demonstrate the technologies needed 

in order to perform on-orbit servicing. The mission was led by the German Space 

Organization (DLR) with cooperation from the Canadian Space Agency (CSA) and 

the Federal Space Agency of Russia (ΦKA). 
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Figure 3.1: TECSAS Spacecraft after Rendezvous (image credit: DLR) 

Unfortunately, the mission was cancelled before it could fly. Nonetheless, 

the physical parameters are still relevant to our interest since the spacecraft 

were intended to perform a rendezvous. 

TECSAS Spacecraft Physical Parameters 

Parameter Value Units 

Mass 175 [kg] 

Area 2.22 [m2] 

   2.3 [-] 

Table 3.1: TECSAS Spacecraft Parameters 

 

3.1.2 JC2Sat Physical Parameters 

 

 The JC2Sat mission is a collaborative formation flying technology 

demonstration mission between the Canadian Space Agency (CSA) and the 

Japanese Aerospace Exploration Agency (JAXA).  Differential drag will be the 

main means of formation maintenance and control during this mission. The 

launch date for this mission is yet to be determined.  
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Figure 3.2: One of Two Identical JC2Sat Spacecraft (image credit: JAXA and CSA) 

Since the mission plans to use atmospheric drag for formation 

maintenance, the JC2Sat spacecraft parameters are ideal for use in our 

simulations. 

JC2Sat Spacecraft Physical Parameters 

Parameter Value Units 

Mass 20 [kg] 

Area 0.09 [m2] 

   2.2 [-] 

Table 3.2: JC2Sat Spacecraft Parameters (Shankar Kumar and Ng, 2009) 

 

3.2 Uncontrolled Projected Circular Formation 

 

 The first set of simulations will be for a projected circular formation. For 

this particular type of formation, the spacecraft are placed in orbit such that 

motion of the deputy relative to the chief forms an ellipse centered on the chief. 

The ellipse’s projection on the  -  plane is a circle. The motion in the  -  plane is 

therefore subject to the constraint: 

          (3.1) 

where   is the radius of the projected circle. For the simulations performed in 

this thesis this radius is set to 100 meters. 
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The initial conditions for the chief and deputy spacecraft required to 

achieve such a formation, taking into account the J2 perturbations, are given as 

(Landry, 2005): 

 

     
 

 
     

           

           

       
 

  
          

               
 

 

  

 
  

  
 

    
        

      
 

 
          

(3.2) 

and 

 

       

       

       

        

      
 

 

  

 
  

  
 

    
        

        

(3.3) 

 If we set the phase angle   to zero and non-dimensionalize the 

conditions, we obtain the following dimensionless initial conditions: 

 

      
 

 
 

        

        

         

          
 

 

 

 
  

  
 

     
        

         

(3.4) 

and 
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(3.5) 

 The term common to both spacecraft’s initial in-track velocity is specific 

to the Schweighart and Sedwick model and is needed to avoid drift between with 

respect to the reference orbit. More details are provided in Appendix B. 

 

3.2.1 Results for TECSAS 

 

 The first set of results will be presented for two TECSAS satellites placed 

in a projected circular formation. The satellites are not given any control input 

and thus keep constant projected area. For all simulations performed the 

reference orbit parameters remain the same apart from the altitude. These 

parameters are provided in Table 3.3 and represent the planned reference orbit 

parameters for the TECSAS mission. 

Circular Reference Orbit Parameters 

Parameter Value Units 

e 0 [-] 

i 78 [deg] 

Ω 320 [deg] 

Table 3.3: Initial Reference Orbit Parameters 

 The first simulation result (Fig. 3.3) shows the formation without any 

perturbations which is the desired motion. This motion will remain unchanged 

for any altitude or spacecraft parameters and is simply the result of the Clohessy-
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Wiltshire equations. This first simulation will serve as a basis for comparison for 

the other simulation results presented. Note that for all simulations shown, 

distances are given in meters. 

 

Figure 3.3: Projected Circular Motion – Unperturbed 

To view the effect of the J2 perturbations on the formation, a simulation 

with only this perturbative force was done. The effect of the J2 perturbations will 

not change with altitude. The results obtained (Fig. 3.4) are consistent with those 

obtained by Landry (2005). It is interesting to note that the in-plane motion does 

not seem to be altered. 
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Figure 3.4: Projected Circular Motion – J2 Perturbations only – 24 hours 

The next step is to include the effect of atmospheric drag on the 

formation. Fig. 3.5 indicates that, at an altitude of 450 km, the effect of 

atmospheric drag on the relative motion is negligible as the motion is nearly 

indistinguishable from that of formation solely J2 perturbed. If the altitude is 

lowered by 100 km however (Fig. 3.6), the effect of drag becomes apparent. At 

250 km of altitude the effect grows significantly larger yet (Fig. 3.7).  The main 

effects of atmospheric drag seem to be in the   and   directions. A small in-track 

drift appears along with a damping of the in-plane motion as the in-plane ellipse 

shrinks with time. The damping can be traced to the diagonal elements of the 

damping matrix  , which represent dissipative damping on the system and 

theses elements are non-zero in the presence of drag.  Fig. 3.8 shows a 

simulation with parameters identical to those of Fig. 3.7, but without J2 

perturbations. The result is very interesting as it seems that while the damping 

remains, the in-track drift has reduced significantly. Hence, it can be concluded 

that the in-track drift is a consequence of the coupling of the two pertubative 

forces. 
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Figure 3.5: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

450 km – TECSAS Physical Parameters – Uncontrolled – 24 hours 

 

Figure 3.6: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

350 km – TECSAS Physical Parameters – Uncontrolled – 24 hours 
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Figure 3.7: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

250 km – TECSAS Physical Parameters – Uncontrolled – 24 hours 

 

Figure 3.8: Projected Circular Motion – Drag Perturbations only – Altitude of 

250 km – TECSAS Physical Parameters – 24 hours 
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3.2.2 Results for JC2Sat 

 

 In this section results for JC2Sat spacecraft parameters will be presented. 

The simulations performed use the same initial orbit parameters as the ones 

used for the TECSAS simulations. The unperturbed motion and motion under the 

effect only of J2 perturbations will therefore be the same for both sets of 

spacecraft. 

 The results are very similar to the ones obtained with the TECSAS physical 

parameters. At an altitude of 450 km the effects of atmospheric drag are 

negligible (Fig. 3.9), but they become apparent at the lower altitudes of 350 and 

250 km(Figs. 3.10 and 3.11) . Furthermore, the effects of atmospheric drag are 

the same: a reduction in size of the in-plane ellipse and a slight in-track drift. 

These effects are slightly smaller in magnitude than those observed with the 

TECSAS parameters as expected since the ballistic coefficient is smaller for 

JC2Sat. 

 

Figure 3.9: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

450 km – JC2Sat Physical Parameters – Uncontrolled – 24 hours 
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Figure 3.10: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

350 km – JC2Sat Physical Parameters – Uncontrolled – 24 hours 

 

Figure 3.11: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

250 km – JC2Sat Physical Parameters – Uncontrolled – 24 hours 



47 
 

3.3 Uncontrolled In-Track Formation 
 

 In this section, simulation results for an in-track formation will be 

presented. For this particular formation, both spacecraft share the same ground 

track, but are separated by a desired distance. Here, ground track refers to the 

path of the satellite projected on the surface of the rotating Earth. In order to 

share this ground track both spacecraft have to on slightly differential orbital 

planes forming an angle    with each other (Fig. 3.12). This slight difference in 

right ascension of ascending node accounts for the rotation of the Earth. 

 

Figure 3.12: Schematic of an In-Track Formation (Sabol et al., 2001) 

The desired motion for this type of formation is given by Sabol et al. 

(2001) as: 

 

      

      

     
  

  
              

(3.6) 
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where   is the desired in-track separation desired. The initial conditions for the 

deputy and chief satellites can then be given as: 

 

       

       

      
  

  
         

        

      
 

 

  

 
  

  
 

    
        

        

(3.7) 

and 

 

       

       

       

        

      
 

 

  

 
  

  
 

    
        

        

(3.8) 

Note that the in-track velocity comes again from the Schweighart and Sedwick 

formulation. 

 

3.3.1 Results for TECSAS 

 

 In this section, simulation results for two TECSAS spacecraft placed in an 

in-track formation will be presented. The first simulation was performed for the 
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case without any perturbations in order to obtain the desired relative motion 

(Fig. 3.13). It will later serve as a benchmark for comparative analysis. As 

expected, the radial distance between both satellites remain equal to zero while 

the in-track distance remains constant at 100 m. The oscillations in the cross-

track direction come from the right ascension of ascending node offset between 

both orbits. The next 3 simulation results are for a formation under the effect of 

atmospheric drag and J2 perturbations at 3 different altitudes (Figs. 3.14, 3.15 

and 3.16). Figs. 3.14 and 3.15 show drifts in both the in-track and radial 

directions, but the magnitude of those drifts are so small that this can be 

neglected and applying control for such small drifts is not needed. However, 

when the formation is at an altitude of 250km (Fig. 3.16), these drifts become 

significant. The cross track motion remains unaffected at all altitudes. 

 

Figure 3.13: In-track Motion - Unperturbed 
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Figure 3.14: In-track Motion – J2 and Drag Perturbations – Altitude of 450 km –                               

TECSAS Physical Parameters – Uncontrolled – 24 hours 

 

Figure 3.15: In-track Motion – J2 and Drag Perturbations – Altitude of 350 km –                               

TECSAS Physical Parameters – Uncontrolled – 24 hours 
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Figure 3.16: In-track Motion – J2 and Drag Perturbations – Altitude of 250 km –                               

TECSAS Physical Parameters – Uncontrolled – 24 hours 

 

3.4 Effectiveness of the Gain Matrix 

 

 In this section the gain matrix developed in Chapter 2 will be tested to 

gage its effectiveness as a formation maintenance scheme. In order to do so, the 

spacecraft will be placed in a projected circular formation orbiting the Earth at 

the same altitudes as the uncontrolled formation of section 3.2.1. 

 

3.4.1 Results for TECSAS 

 

The gain matrix will first be tested using the TECSAS physical properties. 

Figs. 3.17 and 3.19 show the effect of using the gain matrix developed in Chapter 
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2 to control each spacecraft’s projected area in order to maintain the formation 

at 350 and 450 km respectively. While there is a significant improvement in the 

relative motion, the gain matrix does not seem to eliminate the drift entirely. 

This might be due to the lack of a clearly defined method to obtain the values for 

  and   and resorting to trial and error is obviously not ideal as there are 

countless possible pairings. Figs. 3.18 and 3.20 show the additional area needed 

to control each satellite. A positive value indicates area added to the chief while 

a negative value indicates area added to the deputy. The additional area needed 

doesn’t seem too large when compared to the baseline area of the spacecraft 

indicating that it would be feasible. 

 

Figure 3.17: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

350 km – TECSAS Physical Parameters – Gain Matrix (ξ=1, α=1000) – 24 hours  
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Figure 3.18: Additional Area needed for Control – Altitude of 350 km – TECSAS 

Physical Parameters – Gain Matrix (ξ =1, α=1000) – 24 hours 

 

Figure 3.19: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

250 km – TECSAS Physical Parameters – 24 hours – Gain Matrix (ζ=1, α=300) 
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Figure 3.20: Additional Area needed for Control – Altitude of 250 km – TECSAS 

Physical Parameters – Gain Matrix (ξ =1, α=150) – 24 hours 

 

3.4.2 Results for JC2Sat 

 

The gain matrix will also be tested using the JC2Sat physical parameters. 

Again, the implementation of a differential atmospheric drag control via a gain 

matrix improves the quality of the formation and mitigates most of the drift 

(Figs. 3.21 and 3.23). The area needed to perform this control is again very 

reasonable (Figs. 3.22 and 3.24). 
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Figure 3.21: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

350 km – JC2Sat Physical Parameters – Gain Matrix (ξ=1, α=1000) – 24 hours  

 

Figure 3.22: Additional Area needed for Control – Altitude of 350 km – JC2Sat 

Physical Parameters – Gain Matrix (ξ =1, α=1000) – 24 hours 
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Figure 3.23: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

250 km – JC2Sat Physical Parameters – 24 hours – Gain Matrix (ζ=1, α=1000) 

 

Figure 3.24: Additional Area needed for Control – Altitude of 250 km – JC2Sat 

Physical Parameters – Gain Matrix (ξ =1, α=1000) – 24 hours  
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Chapter 4 – Relative Motion Equations for Elliptical 

Orbits 
 

 In this chapter, we will analyse the relative motion between two 

spacecraft flying in formation when they are placed in an elliptical orbit around 

the Earth. Through this analysis, we wish to obtain a set of linear differential 

equations that will account for the J2 perturbations and the atmospheric drag 

similar to the equations obtained in the second chapter. They will, however, 

need to be valid for orbits with a certain eccentricity. 

 

4.1 Relative Motion Equations 
 

 In this section, the relative motion equations for the elliptical case will be 

presented. Since the set of equations developed by Sedwick and Schweighart are 

only valid for circular reference orbits, another set of equations is needed as 

starting point. The set of equations used is the linearized general relative motion 

equations which are valid for any eccentricity. They are given by Schaub and 

Junkins (2003) as: 

 

                  
  

    
                    

                  
 

    
                    

   
 

    
                   

(4.1) 

where    is the instantaneous angular rate of the hill frame and      is the 

instantaneous radial distance taken from the middle of the Earth. The differential 

accelarations due to the J2 perturbations and atmospheric drag are denoted by 



58 
 

    
 and         respectively. These equations will be simplified in the 

following sections of this chapter. 

 

4.1.1 Elliptical Reference Orbit 

 

 The set of equations just presented (4.1) describes the motion of a 

deputy spacecraft relative to a virtual chief spacecraft placed in an elliptical 

reference orbit in presence of J2 perturbations and atmospheric drag. If the 

effects of those same perturbations on the reference orbit are not taken into 

account, a secular drift between the deputy and virtual chief would arise. This 

would, in turn, reduce the time frame for which the equations are valid. 

 To avoid this problem and to account for these perturbations, one can 

use Gauss’ Planetary Equations. This set of equations allows us to model the 

effects of both conservative perturbations forces, such as the ones arising from 

the oblateness of the Earth, and non-conservative forces, such as atmospheric 

drag. The set is comprised of six differential equations that can propagate the 

orbital elements of the reference orbit (Battin, 1987): 

 

  

  
 

   

 
         

 

    
    

  

  
 

        

 
   

  

  
 

        

     
   

  

  
 

 

 
                                 

  

  
 

 

  
                          

            

     
   

  

  
   

     

  
                                  

(4.2) 
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where   is the magnitude of the specific angular moment vector of the reference 

orbit and   is the semi-latus rectum. These two parameters, along with     , can 

be defined with the orbital elements as: 

           (4.3) 

             (4.4) 

      
       

       
 (4.5) 

The   ,    and    terms represent the accelerations due to the perturbations in 

the radial, in-track and cross-track directions respectively.  

 To solve the equations above, the true anomaly   is required. It can be 

obtained as long as we know the eccentric anomaly   and the eccentricity from 

the identity: 

    
 

 
  

   

   
   

 

 
 (4.6) 

To obtain the eccentric anomaly, one can use the following identity: 

           (4.7) 

which can be solved numerically through iterative methods such as the one 

proposed by Vallado (2007) in Algorithms 2 and 6. 

 

4.1.2 Small Eccentricity Assumption 

 

 In order to simplify the analysis, we will assume the reference orbit to 

have a small eccentricity. In other words, we will assume higher than first order 

eccentricity terms to be negligible when compared to numbers of the order of 1. 

Using this assumption, some of the previously defined parameters can be 

simplified. The semi-latus rectum defined in Eq. (4.3) becomes: 
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             (4.8) 

Similarly, the specific angular moment becomes:  

                              (4.9) 

 During the upcoming analysis powers of      are common. Fortunately, 

they can be simplified using the small eccentricity assumption in conjunction 

with a binomial expansion: 

     
   

       

       
 

 

                            (4.10) 

The same assumption will be made for    , since it is also of a very small 

magnitude. 

 

4.1.3 J2 Perturbation Forces 

 

 In this section the acceleration due to the J2 perturbations needed to 

propagate the reference orbit will be presented. This acceleration is given by 

Schweighart and Sedwick (2002) and is expressed in the Hill frame as: 

    
  

     

     

     

   
 

 

     
 

    
  

             
              
             

  (4.11) 

 This expression can be simplified using the small eccentricity assumption 

and Eq. (4.10). The resulting simplified expression is: 

    
  

 

 

     
 

  
           

             
              
             

  (4.12) 

Finally, we can get its dimensionless counterpart: 
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  (4.13) 

 

4.1.4 Atmospheric Drag Perturbation Forces 

 

 As stated previously in Eq. (2.8), the acceleration arising from the 

perturbations in the presence of atmospheric drag is given by: 

         
 

 
 

   

 
              (4.14) 

where       is the dimensionless velocity vector of the spacecraft relative to the 

Earth’s rotating atmosphere and is expressed in the Hill frame as (refer to 

Appendix A): 

       
 

   
 

                                 

                                  

                                 

  (4.15) 

Since we are considering the perturbations on a spacecraft placed at the origin of 

the Hill frame,  ,  ,   and their derivatives are all set to zero to simplify the 

above expression and obtain:  

       

 
 
 
 
 
 

    
 

 
    

 
            

    

 
            

 
 
 
 
 

 (4.16) 

The term    can be related to the orbital elements through the following 

relation (Vallado, 2007): 

    
  

  
 

 

      
  (4.17) 
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Then,     
  can be obtained using the chain rule: 

     
  

     

  
 

 

  

     

  

  

  
 

 

  

     

  

 

    
  (4.18) 

After using the small eccentricity assumption, the two terms can be simplified to: 
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 Now,       can be written as: 

       
 

 
 

       
                  

           
  

 

 
 

  

  

  

  (4.21) 

and         as: 

         
 

 
   

    
    

  (4.22) 

Note that   
  and   

  are negligible in front of   
  since   

  is of the order of 1 

while   
  and   

  are higher order terms in   and    . Thus, we can state that: 

         
 

 
   

 

 
                     (4.23) 

 We can now examine each component of the perturbative acceleration 

due to drag. Let us start with the radial component: 

 

          
 

 
 

   

 
           

          
 

 

 

 

 

 
         

(4.24) 
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where   is the dimensionless ballistic coefficient and is similar to the one defined 

for the circular case: 

     
   

 
  

  

 (4.25) 

Similarly, for the in-track component: 

 

          
 

 
 

   

 
           

          
 

 

 

 

 

 
                         

(4.26) 

Finally, for the cross track component: 

 

          
 

 
 

   

 
           

          
 

 

 

 

 

 
              

(4.27) 

 Combining all the components, we obtain the final expression for the 

dimensionless perturbative acceleration due to atmospheric drag: 

         
 

 

 

 

 

 
   

       
                    

           
  (4.28) 

 

4.1.5 Reference Orbit Propagation 

 

 In this section, the final differential equations allowing for the 

propagation of the orbital elements describing the reference orbit will be 

presented. To do so, Gauss’ planetary equations, Eq. (4.2), will modified to be 

derivatives with respect to   and then used in conjunction with the perturbative 

accelerations previously calculated (Eqs. (4.13) and (4.28)). Modifying Gauss’ 
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planetary equation so that they are comprised of derivatives with respect to  , 

we obtain: 

 

  

  
      

   

 
          

 

    
     

  

  
      

        

 
    

  

  
      

        

     
    

  

  
      

 

 
                                   

  

  
       

 

  
                           

 
            

     
     

  

  
          

     

  
                  

                   

(4.29) 

They can be simplified by using the small eccentricity assumption: 

 

  

  
 

  

  
                        

  

  
 

              

   
    

  

  
 

              

       
    

  

  
 

 

   
                               

  

  
 

 

   
 
 

 
                           

 
                 

    
     

  

  
     

 

    
                                 

(4.30) 
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 To further simplify our analysis, we orbit-average these equations. The 

ensuing equations will ignore the small periodic perturbations, but will capture 

the larger, more significant, secular drifts. To orbit-average the equations, the 

method described by Schaub and Junkins (2003) will be used: 

 

   

  
 

      
 

  

  
            

  

  
  

  

 

 

   

  
 

 

  
           

  

  
  

  

 

 

(4.31) 

where   represents any orbital element and the overbar signifies the term has 

been orbit-averaged. The orbit-averaged expressions for the J2 perturbations do 

not need to be calculated as they can be found in the literature (Schaub and 

Junkins, 2003). Using the small eccentricity assumption on them and making the 

transition from time to dimensionless time, we obtain: 

 

   

  
   

   

  
   

   

  
  

 

 
     

  

 
 

 

      

   

  
   

   

  
 

 

 
     

  

 
 

 

            

   

  
    

 

 
     

  

 
 

 

            

(4.32) 

 We now need to get similar expressions for the effects of atmospheric 

drag.  Substituting Eq. (4.28) into Eq. (4.30), we obtain the following expressions: 

 

  

  
  

 

 
                        

  

  
  

 

 

 

 
             

(4.33) 
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which can be orbit-averaged using the expression previously introduced in Eq. 

(4.31): 

 

   

  
  

 

 
                 

   

  
  

 

 

 

 
         

   

  
   

   

  
  

 

 

 

 
     

   

  
   

  

  
    

(4.34) 

 To obtain the final orbit-averaged expressions describing the motion of a 

satellite placed in an elliptical orbit perturbed by both the J2 effects and 

atmospheric drag, we can combine both set of expressions (4.32 and 4.34): 

 

   

  
  

 

 
                 

   

  
  

 

 

 

 
         

   

  
  

 

 
     

  

 
 

 

      

   

  
  

 

 

 

 
     

(4.35) 
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This set of equations will be used later in simulations to describe the motion of 

the chief spacecraft. 

 

4.2 Relative Perturbations 

 

 We have obtained the equations describing the motion of the chief under 

the effect of aerodynamic drag and J2 perturbations in the previous section. In 

this section, we will investigate the effect of those perturbations on the motion 

of the deputy relative to the chief. 

 

4.2.1 Relative J2 Perturbations 

 

 To obtain the relative acceleration arising in the presence of the J2 

effects, the method proposed by Schweighart and Sedwick (2002) is used. This 

relative acceleration vector is obtained by multiplying the relative position vector 

taken in the Hill frame by the gradient of the J2 potential field: 

     
            (4.36) 

where the J2 gradient is given by: 

     
      

 

    
 

 
 
 
 
 
                                

           
 

 
       

 

 
 

 

 
       

 

 
           

          
 

 
            

 

 
       

 

 
 

 

 
       

 
 
 
 

 (4.37) 
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Similarly to the perturbations analyzed in the previous section, the 

gradient can be simplified by orbit-averaging it to capture only the secular effects 

and eliminate the periodic effects. To obtain that simplified version, the 

following integral is used: 

         
 

  
      

  

 

 (4.38) 

To properly obit-average the gradient, we have to keep in mind that      is a 

function of   through the previously defined relation: 

 
 

    
  

 

  
           

 

  
               (4.39) 

Keeping this in mind, we can rewrite the integral as: 

                   (4.40) 

where the gradient has been split into two matrices to simplify the analysis. We 

can now get the value for each component of those matrices. It can be noticed 

that the   matrix will be a diagonal matrix as all the off-diagonal terms will be 

zero. Therefore, only the diagonal terms need to be calculated: 
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            (4.43) 

With the terms calculated we can now define our first matrix to be: 

    
    
    
     

  (4.44) 
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where   is a dimensionless parameter similar to the one defined for the circular 

case by Schweighart and Sedwick (2002): 

   
 

 
   

  

 
 

 

           (4.45) 

As for the terms of our second matrix, we have: 
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           (4.51) 

With these terms, we can now define our second matrix to be: 

    
         
         

               
  (4.52) 

where    is a new dimensionless parameter defined as: 

    
  

 
   

  

 
 

 

      (4.53) 

 We now have all the elements to obtain the orbit-averaged J2 gradient: 

            
           
           

                   
  (4.54) 

The dimensionless relative acceleration due to the J2 perturbations will then be: 

      
 

 

  
  

    
     

           
           

                   
  

  
  
  
  (4.55) 
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4.2.2 Relative Drag Perturbations 

 

 In this section, we will evaluate the effects of atmospheric drag on the 

motion of the deputy spacecraft relative to the chief spacecraft. Recall that the 

acceleration due to atmospheric drag is given by: 

        
 

 
 

   

 
           

 

(4.56) 

where is the velocity of the deputy spacecraft relative to the rotating 

atmosphere as expressed in the Hill frame. Non-dimensionalizing this 

acceleration term, we obtain: 

        
 

  
  

       
 

 
 

   

 
              (4.55) 

where the dimensionless velocity       is: 

       
 

   
     

 
 
 
 
 
     

    
 

 
                             

     
    

 
                              

     
    

 
                              

 
 
 
 
 

 (4.56) 

Similarly to what was done for the circular case, the dimensionless 

velocity term       will be split into two parts. The first part containing the 

zeroeth order terms in   ,   ,   ,    ,     and     while the second part holds the first 

order terms: 

             (4.57) 

where 
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  (4.58) 

 

    

                                

                                

                               

  

    

                                         

                                         

                               

  

(4.59) 

Note that the magnitude of    is significantly larger than that of   . We now 

need to linearize and simplify the following expression: 

                             (4.60) 

Doing so yield the same results as for the circular case (Eq. (2.47)): 

                               
     

    
    (4.61) 

Let us now look at the value of each term as those will differ from the circular 

case. We first need to obtain an expression for     : 

      
 

 
                     (4.62) 

With that done, we can obtain the first term in the sum: 

         
 

 
 

 

 

        

                        

             

  (4.63) 

Similarly to what was done for the relative J2 perturbations, we will orbit average 

the terms in the sum to keep only the secular components: 

 
 

  
         

  

 

  
 

 
 

 

 
 

              
 

  (4.64) 
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As for the second term, we obtain: 

 

       
 

 
                     

   
   

   

                                                  

    
 

 
 

                                             

                                          
                               

  

(4.65) 

Orbit-averaging this term results in the following: 

 
 

  
         

  

 

 
 

 
             

   
   

   

  
 

 
 
                   

                  
 

  (4.66) 

 The third term in the sum is more complicated than the first two and will 

thus be broken up into different segments to simplify its analysis. We will start 

by each component of the dot product in the numerator. For the  -component, 

we have: 

          
 

 
                  (4.67) 

For the  -component: 

 

         
 

 
                        

                             

                  

(4.68) 

For the  -component: 

          
 

 
               (4.69) 

We also need to get the inverse of     : 

        
 

    
                     (4.70) 
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We now have all the components to obtain the bracketed part of the third 

component in Eq. (4.61): 

 

 
     

    
  

 

   
                          

                             

                                    

(4.71) 

Multiplying this term by the zeroeth order vector to obtain the last part of the 

sum and orbit-averaging it, we get the following: 

 
 

  
  

     

    
     

  

 

 
 

 
 

 
                                 

 
  (4.72) 

Combining all three terms in the sum, we obtain the orbit-averaged 

dimensionless acceleration due to drag: 

                      (4.73) 

where   ,    and    are given by: 
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  (4.76) 

 To obtain the acceleration of the deputy relative to the chief we simply 

need to subtract the acceleration of the chief to that of the deputy. Keeping in 

mind that the chief remains at the center of the Hill frame, we obtain: 
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(4.77) 

where 

       
   

  
     (4.78) 

        
   

  
     (4.79) 

 

4.3 Final Equations of Motion 

 

 In this section, the final equations describing the motion of a deputy 

spacecraft relative to a chief spacecraft placed on an elliptical orbit will be 

presented. Those equations account for J2 perturbations and the effect of 

atmospheric drag. Although these effects have been orbit-averaged, they 

capture the secular effects. Similarly, the reference orbit’s orbital elements 

propagation is orbit-averaged to obtain the motion of the chief. 

 The equations of relative motion placing no constraint on eccentricity 

have been given earlier in Eq. (4.1). Non-dimensionalizing these equations and 

using the small eccentricity assumption, we obtain the following dimensionless 

equations of relative motion: 

 

                                          

                   

                                         

                   

(4.80) 
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where the first and second derivatives of the true latitude   are the only 

undefined terms. We must therefore define those two parameters. The first 

derivative     is the instantaneous rotation rate of the Hill frame and depends on 

the derivatives of the true anomaly  , the right ascension of ascending node   

and the argument of perigee  . In an unperturbed circular orbit,   and   are 

constant and the true anomaly’s derivative becomes the orbital rate  . However, 

due to the elliptic nature of the reference orbit,   and    are functions of time 

and, as previously shown in Eq. (4.35),    and   vary with time due to J2 effects. 

To combine the three rates, they must be projected along the  -direction. The    

and    vectors are, by definition, aligned with the orbit normal vector. On the 

other hand, the    vector is normal to the equatorial plane and, thus, points 

along the  -direction (refer to Fig. 2.2). Summing the components of all three 

rates along the cross-track direction, we obtain the following: 

                 (4.81) 

 Using the orbit-averaged rates of Eq. (4.35) to approximate    and   , the 

above equations can be rewritten as: 

       
   

  
 

   

  
     (4.82) 

Part of this equation can be further simplified: 

 
   

  
 

   

  
     

 

 
     

  

 
 

 

               (4.83) 

Such that we get the following expression for the instantaneous rotation rate of 

the Hill frame: 

                          (4.84) 
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However, we note that there is an inconsistency here with the Schweighart and 

Sedwick formulation, since in their formulation this rate is given as: 

               (4.85) 

which can be approximated as: 

         
 

 
   (4.86) 

while in our formulation, ignoring eccentricity, we have: 

            (4.87) 

There seems to be a missing  
 

 
  term in the brackets. This could be due 

the effect of J2 perturbations on    which we haven’t analyzed. Assuming that 

this is indeed the case, we will make the change to Eq. (4.84) to obtain a rate 

consistent with the Schweighart and Sedwick formulation: 

                
 

 
   (4.88) 

With    now defined, we can now determine the two remaining 

unknowns in the relative motion equations, namely       and    . The square of 

   can be simplified using the small eccentricity assumption combined with a 

binomial expansion to: 

                       (4.89) 

Obtaining     is slightly more complicated however. It first requires us to use the 

chain rule: 

     
 

  
   

 

  
             

 

 
    (4.90) 
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Substituting the orbit-averaged derivatives and simplifying the resulting terms 

leads to the following expression: 

         
 

 

 

  
   

 

 
       

   

  
     

 

 
           (4.91) 

Looking at the term in the parentheses multiplying the inverse of the ballistic 

coefficient is highly similar to the     previously defined. The difference lies in the 

orbit-averaging operation that was done earlier to define that term. To remain 

consistent and for the added precision, we will redefine the previously defined 

term as: 
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     (4.93) 

 We now have all the terms defined for the dimensionless relative motion 

equations, which are given in matrix form as: 

     
       

          (4.94) 

where the generalized inertia matrix   , positive definite damping matrix    , 

stiffness matrix    and forcing function    are given by: 

     
   
   
   

    (4.95) 
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 (4.96) 
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  (4.98) 

To make sure the resulting matrices are consistent with the ones from the 

Scweighart and Sedwick equations, the matrices    and    will be reformulated 

in terms of  : 

      

 
 
 
 
 
 
 

 

 

 

  
                

           
 

  
    

  
 

 

 

  
    

 
 
 
 
 
 

 (4.99) 

 

  

    

 
 
 
 
 
                  

   

   
 

 

 

 

  
            

 
   

   
 

 

  
                

                             
 
 
 
 
 

 
(4.100) 

As expected, setting the drag and eccentricity terms to zero, we go back to the 

Schweighart and Sedwick equations. Finally, the equations can be written is 

state-space from as: 

           (4.101) 

where  
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  (4.102) 

 
    

      

      
  (4.103) 

     
    

  
  (4.104) 

In the matrices the terms including a    or a   refer to the characterize the 

effects of drag while the ones that include a    or a   refer to J2 effects. When 

calculating the dimensionless ballistic coefficients, it is very important to 

calculate the local atmospheric density for both spacecraft as they will not be the 

same, primarily due to the eccentric nature of the orbit leading to different 

altitudes for both. 

 

4.4 Control Schemes 

 

 In this section, two different methods of performing formation 

maintenance in elliptic orbits will be presented. In both cases differential 

atmospheric drag will be used as means of control. 

 

4.4.1 Energy Controller 

 

 The controller presented in this section is based on the works of Kumar, 

Alfred Ng, Yoshihara and De Ruiter (2007). In their work, they have developed a 

PID controller capable of performing formation maintenance for formation 

placed in circular orbits. This PID controller used the difference between the 

spacecrafts’ energy and their desired energy to determine the area change 

needed to maintain the desired formation. We wish to see if this method can be 

applied to formation placed in orbits of small eccentricity.  
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 The control law given by Kumar, Alfred Ng, Yoshihara and De Ruiter is as 

follows: 

                   

   

  
 (4.105) 

where    is the change in area needed,    is the difference in energy and   ,    

and    are control gains. If we consider the state of the two spacecraft in the Hill 

frame centered on the chief, it becomes apparent that the chief’s energy can be 

seen as always being equal to its desired energy. Therefore, only the deputy 

spacecraft’s energy will be compared to its desired energy. The energy of a 

spacecraft is given by: 

   
 

 
   

 

 
 (4.106) 

where   is its absolute velocity and   its distance from the center of the Earth 

and are given by: 

                     (4.107) 

                                  (4.108) 

The absolute velocity of the Hill frame and the rotation matrix           are 

defined as: 

       
 

    
 

            

            

    

  (4.109) 

            

                           

                            

          

  (4.110) 

where   and   denote the sine and cosine functions of the angle given as 

subscript. The dimensionless time derivative of           can be obtained as we 

know the derivative for all the angles of the matrix. Using these equations, it is 

now possible to obtain the value of    at any time. From there,       and 
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can be obtained numerically and, thus,    can be determined for a specified set 

of control gains. 

 

4.4.2 Floquet-Lyapunov Controller 

 

The control scheme presented in this section is based on Floquet-

Lyapunov theory and a control method proposed by Lee and Balas (1999). 

Similarly to the circular case the elliptical system cannot be controlled in the 

cross-track direction through differential atmospheric drag. For this reason, we 

will limit our analysis to the in-plane case. To control the in plane motion via 

aerodynamic drag, we need to have a system of the form: 

                          (4.111) 

where the control input      is a function of the projected areas of both chief 

and deputy spacecraft. Note that the matrix    in equation differs from the one 

in Eq. (4.103) as it is now 4x4 matrix instead of a 6x6 matrix. Obtaining the 

desired form can be done by rewriting the forcing function    of Eq. (4.98) as: 

           
 
 
  (4.112) 

where 

    
 

 

  

 

  

 
       (4.113) 

                 (4.114) 

Then      and      can be given as: 

              (4.115) 

          (4.116) 
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 A major difference between the equations of motion for the circular case 

and the ones for elliptical case becomes apparent when looking at the damping 

and stiffness matrices. In the circular case these two matrices are constant, but 

in the elliptical case those matrices become periodically time-varying. In fact, 

both matrices       and      are periodically time-varying. Regular time 

invariant methods of control are thus inappropriate in dealing with this system. 

One way of controlling the system is use Floquet-Lyapunov theory in conjunction 

with a controller proposed by Lee and Balas (1992). The first step is to apply the 

Floquet-Lyapunov transformation to our system. This transformation is given as: 

               (4.117) 

This transformation leads to the following system: 

                        (4.118) 

This new system is similar in form to that of Eq. (4.111), but the key difference 

lies in the fact that the    matrix is constant instead of periodically time-varying. 

The       matrix, however, while different from the      matrix, is still 

periodically time-varying. The    and       matrices are defined as: 

                               (4.119) 

                  (4.120) 

The periodically time-varying matrix      can be determined from if we know 

the system’s state transition matrix. Obtaining the state transition matrix is not a 

problem since there exist multiple methods to obtain it numerically such as the 

ones described by Friedmann, Hammond and Woo (1977). From Floquet-

Lyapunov theory, we know that: 

                    (4.121) 
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Since our system is   -periodic, we can say that             , such that   

can be obtained by solving: 

                  (4.122) 

     is then given by: 

                     (4.123) 

 Now, if we consider the ideal system where    is a constant column 

vector: 

                        (4.124) 

We can obtain a constant gain matrix    that will stabilize this ideal system 

through the feedback law: 

                (4.125) 

If we define the error in the signal that will be given to feedback law as: 

                  (4.126) 

then we can obtain the error between the system in Eq. (4.112) and the ideal 

system as: 

 
                                                         

                                           
(4.127) 

In order for the error system to be stable the second term in Eq. (4.127) must be 

equal to zero. This leads to: 

                                               (4.128) 

where        is the Moore-Penrose pseudoinverse satisfying              . It 

can be obtained as: 
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       (4.129) 

 If we use      in the control law given in Eq. (4.128), the deputy will be 

driven towards the chief’s position at the center of the Hill frame. To maintain 

the formation, we need to replace      by      , which is the error in the 

deputy’s relative position with respect to the chief. 

                  (4.130) 

Here,       is the desired position of the deputy and depends on the formation 

that is to be achieved. 
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Chapter 5 – Numerical Simulations for Elliptical  

 Reference Orbits 

 

 In this section, numerical simulations based on the equations of motion 

presented in Chapter 4 will be presented. The first set of simulations will be for 

circular reference orbits, in order to compare them with the ones presented in 

Chapter 3 and thus validate the new set of equations. The second set of 

simulations will demonstrate the effect of eccentricity on a formation. The final 

three sets of simulations will show the effectiveness of the three controllers 

proposed to perform formation maintenance. 

 

5.1 Uncontrolled Projected Circular Formation 
 

 The desired motion of the deputy relative to the chief is given by Vaddi 

and Vadali (2003) as: 

 

   
 

 
           

               

               

    
   

 
           

                   

                  

(5.1) 

where   is the initial phase angle in the  -   plane. Setting this term to zero and 

non-dimensionalizing the set of equations, the following set of equation is 

obtained: 
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(5.2) 

Setting the dimensionless time to zero we obtain the following initial conditions 

for this type of formation: 

 

      

      

      

   
  

 

 
 

   
    

   
    

(5.3) 

 

5.1.1 Comparison of Results for Circular Orbits 

 

A small comparative study between the elliptical model and the circular 

model was undertaken using the TECSAS physical parameters. In theory, the 

results obtained for both models should be the same when simulating for a 

circular orbit and identical initial reference orbit parameters (Table 3.3).  

The first simulation was performed for a reference orbit placed at an 

altitude of 450 km (Fig 5.1). The results obtained are very similar to those of 

Chapter 3. The in-plane motion is still unaffected and therefore identical. 

However, there is a slight difference in the cross-track motion as the drift 

obtained seems to be large than that obtained in Chapter 3. 
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Figure 5.1: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

450 km – TECSAS Physical Parameters – Uncontrolled – 24 hours 

 

Figure 5.2: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

350 km – TECSAS Physical Parameters – Uncontrolled – 24 hours 
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Figure 5.3: Projected Circular Motion – J2 and Drag Perturbations – Altitude of 

250 km – TECSAS Physical Parameters – Uncontrolled – 24 hours 

 

Figure 5.4: Drift of Orbital Elements – J2 and Drag Perturbations – Altitude of 

250 km – TECSAS Physical Parameters – Uncontrolled – 24 hours 
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 The second simulation (Fig 5.2) result also shows an overestimation of 

the cross-track drift. However, at this altitude a difference in the in-plane motion 

become apparent as well. While the damping is still present, the in-track drift 

predicted here is smaller than what had been predicted in Chapter 3. The result 

for an altitude of 250 km (Fig 5.3) confirms that, while the results are similar, 

there is a slight overestimation of the cross-track drift and a small 

underestimation of the in-track drift. Finally, Fig. 5.4 shows the drift of the 

reference orbit’s orbital elements over 24 hours for an initial altitude of 250 km. 

 

5.1.2 Results for Elliptical Orbits 

 

To evaluate the impact that eccentricity has on a formation, a few 

simulations were performed for different altitudes and values of eccentricities. 

The TECSAS physical parameters were again used along with the following initial 

reference orbit parameters: 

Elliptical Reference Orbit Parameters 

Parameter Value Units 

ω 0 [deg] 

i 78 [deg] 

Ω 320 [deg] 

M 0 [deg] 

Table 5.1: Initial Reference Orbit Parameters 

The first set of simulations is for an eccentricity of 10-6. Comparing Figs. 

5.5 and 5.6 with Figs. 5.2 and 5.3, it is clear that such a low eccentricity had no 

significant effect on the relative motion. However, increasing the eccentricity to 

10-5 yields different results. An in-track drift becomes noticeable and this drift is 

of the order of those caused by the J2 perturbations and atmospheric drag.  
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Figure 5.5: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 350 km – e = 10-6 – TECSAS Physical Parameters – Uncontrolled –    

24 hours 

 

Figure 5.6: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 250 km – e = 10-6 – TECSAS Physical Parameters – Uncontrolled – 24 

hours 
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Figure 5.7: Drift of Orbital Elements – J2 and Drag Perturbations –Perigee 

Altitude of 250 km – e = 10-6 – TECSAS Physical Parameters – Uncontrolled –   

24 hours 

 

Figure 5.8: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 350 km – e = 10-5 – TECSAS Physical Parameters – Uncontrolled – 24 

hours 
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Figure 5.9: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 250 km – e = 10-5 – TECSAS Physical Parameters – Uncontrolled – 24 

hours 

 

Figure 5.10: Drift of Orbital Elements – J2 and Drag Perturbations –Perigee 

Altitude of 250 km – e = 10-5 – TECSAS Physical Parameters – Uncontrolled – 24 

hours 



93 
 

 

Figure 5.11: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 350 km – e = 10-4 – TECSAS Physical Parameters – Uncontrolled – 24 

hours 

 

Figure 5.12: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 250 km – e = 10-4 – TECSAS Physical Parameters – Uncontrolled – 24 

hours 
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Figure 5.13: Projected Circular Motion – J2 and Drag Perturbations –Perigee 

Altitude of 250 km – e = 10-4 – TECSAS Physical Parameters – Uncontrolled – 

Drift of Orbital Elements – 24 hours 

The final set of simulation is for eccentricities of 10-4. At this higher 

eccentricity the magnitude of the in-track drift increases to the point where it 

now trumps the effects of the perturbation forces and the difference in the 

motion for different altitudes is barely noticeable (Figs. 5.11 and 5.12). Figs. 5.7, 

5.10 and 5.13 show the drift of the reference orbit’s orbital element over a 

period of 24 hours at an altitude of 250 km for different eccentricities. 

 

5.2 Uncontrolled In-track Formation 
 

 In this section, the effect of eccentricity on an in-track formation will be 

analyzed. The same parameters as for the projected circular analysis will be 

used. The desired relative motion is given by Sabol et al. (2001). Non-

dimensionalizing, these equations become: 
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(5.4) 

Setting the dimensionless to zero, we obtain the following initial conditions: 

 

     

     

    
   

   
     

      

      

      

(5.5) 

 

5.2.1 Comparison for Circular Orbits 

 

 In this section, a small comparative analysis between the results obtained 

in Chapter 3 and the results given by the elliptical model will be undertaken. The 

first two simulations were performed for formation orbiting the Earth at altitude 

of 450 km and 350km (Fig. 5.14 – 5.15). The results are similar to those obtained 

in Chapter 3 as the drifts in the in-track and radial directions are so small that 

they can be neglected. However, for the next altitude (Fig. 5.16), significant 

differences between the results obtained with the elliptical model and the 

circular model become apparent. The in-track and radial drifts predicted with the 

elliptical model are much smaller in magnitude. 
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Figure 5.14: In-track Motion – J2 and Drag Perturbations – Altitude of 450 km –                               

TECSAS Physical Parameters – Uncontrolled – 24 hours 

 

 

Figure 5.15: In-track Motion – J2 and Drag Perturbations – Altitude of 350 km –                               

TECSAS Physical Parameters – Uncontrolled – 24 hours 
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Figure 5.16: In-track Motion – J2 and Drag Perturbations – Altitude of 250 km –                               

TECSAS Physical Parameters – Uncontrolled – 24 hours 

 

5.2.2 Results for Elliptical Orbits 

 

 Although the results obtained for the in-track formation using the 

elliptical model do not match those using the circular model, a preliminary 

analysis of the effects of eccentricity on an in-track formation will be conducted. 

This analysis will use the same parameters as for the one for the projected 

circular formation (Section 5.2.1). For the first three simulations (Figs. 5.17, 5.18 

and 5.19), the eccentricity seems to low to have an effect on the formation. 

However, as the eccentricity is increased (Fig. 5.20) a small drift in the radial 

direction appears along with a significant drift in the direction.  
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Figure 5.17: In-track Motion – J2 and Drag Perturbations – Perigee Altitude of 

450 km – e = 10-6 – TECSAS Physical Parameters – Uncontrolled – 24 hours 

 

Figure 5.18: In-track Motion – J2 and Drag Perturbations – Perigee Altitude of 

450 km – e = 10-5 – TECSAS Physical Parameters – Uncontrolled – 24 hours 
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Figure 5.19: In-track Motion – J2 and Drag Perturbations – Perigee Altitude of 

450 km – e = 10-4 – TECSAS Physical Parameters – Uncontrolled – 24 hours 

 

Figure 5.20: In-track Motion – J2 and Drag Perturbations – Perigee Altitude of 

250 km – e = 10-3 – TECSAS Physical Parameters – Uncontrolled – 24 hours 
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 Something interesting to note is that the drift caused by eccentricity acts 

in the direction opposite to the one cause by atmospheric drag. It could 

therefore be possible to find, for a given orbit perigee altitude, an eccentricity 

that would negate the drift cause by atmospheric drag.  

 

5.3 Effectiveness of Formation Maintenance Schemes 

 

In this section the formation maintenance schemes proposed in this 

thesis will be put to the test. Throughout this thesis, three different schemes 

have been proposed: the gain matrix developed in Chapter 2, the controller 

based on energy presented in Chapter 4 and the Floquet-Lyapunov controller 

also presented in Chapter 4. To gage their effectiveness, they will be tested on 

projected circular formations of different eccentricities and altitudes. These 

eccentricities and altitudes are the same as the ones tested in section 5.2.2 for 

the uncontrolled case. 

 

5.3.1 Results for the Gain Matrix 

 

 In this section, the effectiveness of the gain matrix developed in Chapter 

2 will be put to the test in the context of elliptical orbits. The first set of result is 

for an eccentricity of 10-5. It seems that the eccentricity is low enough for the 

gain matrix to manage to control the relative motion fairly well (Fig. 5.21). 

However, the control input need to perform the formation is clearly unbounded 

and will, with time, grow too large in magnitude to be admissible (Fig. 5.22). 
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Figure 5.21: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 250 km – e = 10-5 – TECSAS Physical Parameters – Gain Matrix      

(ξ=1, α=150) – 24 hours  

 

Figure 5.22: Additional Area needed for Control – Perigee Altitude of 250 km – 

e=10-5 – TECSAS Physical Parameters – Gain Matrix (ξ =1, α=150) – 24 hours 



102 
 

 

Figure 5.23: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 250 km – e = 10-4 – TECSAS Physical Parameters – Gain Matrix      

(ξ=1, α=150) – 24 hours  

 

Figure 5.24: Additional Area needed for Control – Perigee Altitude of 250 km – 

e=10-4 – TECSAS Physical Parameters – Gain Matrix (ξ =1, α=1000) – 24 hours 
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The second set of result is for an eccentricity of 10-4. Now that the 

eccentricity has been increased, the shortcomings of the gain matrix developed 

in Chapter 2 become more apparent. The control input required to perform 

formation maintenance is still unbounded (Fig. 5.24) and, furthermore, the 

control scheme is not very effective at performing said formation maintenance 

as there is still quite a lot of visible drift (Fig 5.23). This was to be expected as a 

time invariant method cannot effectively perform control on a time-varying 

system. Note that in Figs 5.22 and 5.24, a positive value indicates area added to 

the chief while a negative value indicates area added to the deputy. 

 

5.3.2 Results for the Energy Controller 

 

The next control scheme to be tested is the control scheme based on the 

energy of the spacecraft proposed by Kumar, Ng, Yoshihara and De Ruiter and 

presented in Section 4.4.1. The first set of results is for a perigee altitude of 350 

km and an eccentricity of 10-5. The first thing to notice is that in-plane motion is 

identical to the desired relative motion (Fig. 5.25) and in that aspect the 

formation maintenance scheme is acting exactly as desired. Furthermore, the 

control input (Fig. 5.26) is bounded and the maximum area required for control is 

very small in comparison to the satellite’s baseline area. The control scheme is 

therefore performing well in that regard as well.The second set of results is for 

the same eccentricity, but the perigee atltitude has been lowered to 250 km. 

Again, the in-plane relative motion is the desired one (Fig. 5.27). The additional 

area needed for formation maintenance is much lower than for the formation at 

350 km of altitude at perigee (Fig. 5.28). This was to be expected since the 

atmospheric density is lower at higher altitudes. As such, the additional area 

required is well within acceptable bounds.  
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Figure 5.25: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 350 km – e = 10-5 – TECSAS Physical Parameters – Energy PID 

(          ,     ,           ) –c24 hours  

 

Figure 5.26: Additional Area needed for Control – Perigee Altitude of 350 km – 

e=10-5 –  TECSAS Physical Parameters – Energy PID (          ,     , 

          ) – 24 hours 
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Figure 5.27: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 250 km – e = 10-5 – TECSAS Physical Parameters – Energy PID 

(          ,     ,           ) – 24 hours  

 

Figure 5.28: Additional Area needed for Control – Perigee Altitude of 250 km – 

e=10-5 – TECSAS Physical Parameters – Energy PID (          ,     , 

          ) – 24 hours 
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Figure 5.29: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 350 km – e = 10-4 – TECSAS Physical Parameters – Energy PID 

(          ,     ,           ) – 24 hours  

 

Figure 5.30: Additional Area needed for Control – Perigee Altitude of 350 km – 

e=10-4 – TECSAS Physical Parameters – Energy PID (          ,     , 

          ) – 24 hours 
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Figure 5.31: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 250 km – e = 10-4 – TECSAS Physical Parameters – Energy PID 

(          ,     ,           ) – 24 hours  

 

Figure 5.32: Additional Area needed for Control – Perigee Altitude of 250 km – 

e=10-4 – TECSAS Physical Parameters – Energy PID (          ,     , 

          ) – 24 hours 
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The third set of results was for an altitude at perigee of 350 km and an 

eccentricity of 10-4. Similarly to the previous 2 simulations, the in-track motion is 

exactly as desired (Fig. 5.29). Additionally, the control input is still bounded and 

much smaller than the baseline area (Fig 5.30). The final set of results is again 

proving the effectiveness of this controller as the in-plane formation is 

maintained for the same eccentricity but lower altitude (Fig. 5.31) and the 

control input is bounded (Fig. 5.32). Although the control gains are very small, it 

is important to note that they must be this small in order to keep the formation. 

 

5.3.3 Results for the Floquet-Lyapunov Controller 

 

The final formation maintenance scheme to be tested is the one based on 

Floquet-Lyapunov theory which was presented in Section 4.4.2. The parameters 

used in these simulations were the same as the ones in Section 5.1.3. For the 

first set of simulations, the control input (Fig. 5.34) differs greatly from the one 

from the energy controller, both in magnitude and overall shape. Nonetheless 

the desired in-plane relative motion is achieved (Fig. 5.33) and the control input 

is bounded. The same can be said for the second set of simulation (Figs. 5.35 and 

5.36). As expected the additional area needed to perform formation 

maintenance is lower in this case since the altitude has been lowered. 



109 
 

 

Figure 5.33: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 350 km – e = 10-5 – TECSAS Physical Parameters – Floquet-Lyapunov 

Controller – 24 hours  

 

Figure 5.34: Additional Area needed for Control – Perigee Altitude of 350 km – 

e=10-5 –  TECSAS Physical Parameters – Floquet-Lyapunov Controller – 24 hours 
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Figure 5.35: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 250 km – e = 10-5 – TECSAS Physical Parameters – Floquet-Lyapunov 

Controller – 24 hours  

 

Figure 5.36: Additional Area needed for Control – Perigee Altitude of 250 km – 

e=10-5 – TECSAS Physical Parameters – Floquet-Lyapunov Controller – 24 hours 
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In the third and fourth set of simulations, the additional area required for 

formation maintenance is till bounded and within acceptable values (Figs. 5.38 

and 5.40). However, while the in-plane motion is very close to the one desired, 

there seems to be some reduction of the in-plane ellipse (Figs. 5.37 and 5.39). 

This effect seems to be magnified at the lower altitude of 250 km. This could be 

due to the gain matrix    chosen not being the ideal one. It is possible that with a 

different matrix   , the desired in-plane motion could be achieved, but that might 

require a vigorous method for finding. Unfortunately we do not have one at the 

moment. 

 

Figure 5.37: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 350 km – e = 10-4 – TECSAS Physical Parameters – Floquet-Lyapunov 

Controller – 24 hours  
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Figure 5.38: Additional Area needed for Control – Perigee Altitude of 350 km – 

e=10-4 – TECSAS Physical Parameters – Floquet-Lyapunov Controller – 24 hours 

 

Figure 5.39: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 250 km – e = 10-4 – TECSAS Physical Parameters – Floquet-Lyapunov 

Controller – 24 hours  



113 
 

 

Figure 5.40: Additional Area needed for Control – Perigee Altitude of 250 km – 

e=10-4 – TECSAS Physical Parameters – Floquet-Lyapunov Controller – 24 hours 

 It should be noted that, since differential drag does not allow for control 

in the cross-track directions, an additional controller would be required to have 

control over the relative motion in all directions. Since, the cross-track motion is 

uncoupled for the motion in the  -   plane, it is possible to add this additional 

controller without interfering with the in-plane motion already controlled. To 

demonstrate this a simple bang bang controller using thrusters was added to the 

Floquet-Lyapunov controller for the case shown in Fig. 5.37. This controller 

makes sure that the radius of the projected circle is always within a set tolerance 

and applies a thrust accordingly either in the positive or negative cross-track 

direction (Fig. 5.42). The resulting motion can be seen in Fig. 5.41. Note that the 

in-plane motion remains unchanged while the cross-track motion has been 

corrected. 
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Figure 5.41: Projected Circular Motion – J2 and Drag Perturbations – Perigee 

Altitude of 350 km – e = 10-4 – TECSAS Physical Parameters – Floquet-Lyapunov 

Controller and Cross-track Thrust – 24 hours  

 

Figure 5.42: Cross-track Thrust input – Perigee Altitude of 350 km – e=10-4 –                                                                                           

TECSAS Physical Parameters – 24 hours 
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Chapter 6 – Conclusions 

 

6.1 Summary of the Thesis 

 

 In this thesis the effectiveness of using differential atmospheric drag as a 

means of formation maintenance was investigated. In the first chapter, a 

literature review was presented. This literature review focused on satellite 

formation flying in the presence of atmospheric drag, on use of differential drag 

as means of control and on control of periodically time-varying systems. 

 In Chapter 2, the dimensionless equations of motion for the circular case 

in presence of atmospheric drag and J2 perturbations were developed. To do so, 

first, the different coordinate frames needed for orbit and relative motion 

description were presented. Next, the expression describing the effects of 

atmospheric drag in the Hill frame was introduced. This expression was 

linearized using binomial series expansion. The effects of drag were then 

included in the Schweighart and Sedwick model, which was then non-

dimensionalized using newly defined dimensionless terms for position, velocity, 

time and other dimensionless parameters. This allowed for the presentation of a 

set of linearized equations describing the relative motion of a spacecraft relative 

to a reference orbit under the effects of both atmospheric drag and J2 

perturbations. Finally, a stability analysis where the control input was related to 

the satellite’s projected was performed on the system. 

 In Chapter 3, numerous simulation results based on the equations 

developed in Chapter 2 were presented. Two different sets of spacecraft physical 

parameters were used for this study: TECSAS and JC2Sat. The first series of 

simulations were done for a projected circular formation orbiting the Earth at 

altitudes ranging from 250 to 500 km. It was concluded that the main effects of 
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drag on this type of formation was to induce a drift in the in-track direction and 

to cause shrinkage of the in-plane ellipse. The J2 perturbations seemed to mainly 

cause a drift in the cross-track direction. Next, a series of simulation were 

performed for an in-track formation. The main effects of atmospheric drag on 

this type of formation seemed to be a drift in the in-track and radial directions. 

Finally, the effectiveness of the gain matrix developed in Chapter 2 at performing 

formation maintenance was put to the test. Although, it significantly improved 

the relative motion, it did not entirely eliminate the drifts. It was suggested that 

this might be due to the optimal gain matrix being hard to obtain. 

 The equations of motion valid for the elliptical case were presented in 

Chapter 4. In order to simplify the formulation, the orbit’s eccentricity was 

assumed to be small. For this model the chief spacecraft was placed on the 

reference orbit. Therefore, the reference orbit had to be propagated through 

time. To do so Gauss’ planetary equations, which allow the propagation of the 

orbital elements through time while accounting for the perturbative forces, were 

used. The resulting six equations were then simplified using the small 

eccentricity assumption and by orbit-averaging them to capture solely the 

secular drifts. Next, the effects of the perturbative forces on the deputy relative 

to the chief are presented. They two are then linearized and orbit-averaged and 

included in the equations of relative motion to obtain the model used for the 

elliptical case. Next, two formation maintenance scheme are presented. The first 

one, is a PID controller which bases its control law on the energy of the deputy 

satellite, while the second one is based on Floquet Lyapunov theory and uses 

relative position and velocity as feedback. 

 Finally, Chapter 5 present simulation results for the elliptical case. Unlike 

Chapter 3, only one set of physical parameters were used, namely TECSAS’. The 

analysis starts by comparing the results obtained for a projected circular 

formation placed on a circular orbit using the model developed in Chapter 3 with 

the circular model of Chapter 2. From the simulation results, there seems to be 
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slight overestimation of the cross-track drift and a small under-estimation of the 

in-track drift. Still, the results are very close to those obtained in Chapter 3. 

Following this comparative study, simulation results demonstrating the effects of 

eccentricity on this type of formation are presented. The main effect is a 

significant in-track drift which increases rapidly as eccentric increases. Next, 

simulation results for an in-track formation place on a circular orbit are provided. 

The conclusion of this study is that the elliptical model predicts much smaller in-

track and radial drifts. Finally the effectiveness of the gain matrix developed in 

Chapter 2, of the Energy PID controller and of the Floquet-Lyapunov controller at 

performing formation maintenance on an elliptical orbit is tested. As expected 

the gain matrix developed for the circular case in unable to perform formation 

maintenance. The relative motion when controlled is significantly better, but not 

always satisfactory. Furthermore, the area needed to perform this control is 

unbounded and increases rapidly with time. The energy controller, on the other 

hand, performs very well as the relative motion is almost indistinguishable from 

the desired relative motion and the additional area needed to perform formation 

maintenance is bounded and small enough to be implemented. The Floquet-

Lyapunov controller also performs very well as it significantly improves the 

relative motion and the additional area needed to perform control is bounded 

and small in comparison with the baseline projected area. In some cases the gain 

matrix    needed for this controller is hard to find and might explain some slight 

deviation from the desired motion. This is the big advantage that the energy 

controller holds on the Floquet-Lyapunov controller as only three gains need to 

be specified.  
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6.2 Recommendations for Future Work 

 

 The next step would have to be the validation of the model developed in 

Chapter 4. The discrepancies between the results obtained for circular orbits 

using this model and the circular model of Chapter 2 need to be investigated 

further, especially for the in-track formation. It would also be interesting to see 

up to what eccentricities this model can be deemed acceptable. 

 More work is needed for the Floquet-Lyapunov controller to be 

perfected. The main problem with this controller now lies in the matrix   . This 

matrix has a large impact on the behaviour of the system after the feedback 

control is implemented, yet, right now, we have to resort to trial and error to 

find this matrix. The method used in this thesis was to provide different matrices 

Q and R to the LQR solver implemented in MATLAB© until the results were 

deemed acceptable. A more robust way of finding this matrix should be 

developed.  

 As mentioned in Chapter 5, the drift caused by eccentricity acts and the 

drift cause by atmospheric drag (if no control is applied) work in opposite 

directions. This suggests that for a given perigee altitude, it might be possible to 

find an eccentricity that would negate the drift cause by atmospheric drag. It 

might be interesting to further investigate this.  
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Appendix A – Velocity Relative to Rotating 

Atmosphere 

 

 In this appendix, the expression in the Hill frame for the velocity of a 

spacecraft relative to the rotating atmosphere will be determined. This velocity 

    , crucial to obtaining the drag force acting on a spacecraft, is given in the ECI 

frame by (Vallado, 2007): 

             (A.1) 

where   and   are the absolute position and velocity of the spacecraft expressed 

in the ECI frame while   is the angular velocity vector of the Earth. This vector is 

purely in the  -direction of the ECI frame and has a magnitude of           

     rad/s. 

 To obtain      in the Hill frame, all the elements of Eq. (A.1) need to be 

expressed in the Hill-frame. The absolute position vector is obtained in the Hill 

frame as: 

                      
 

 (A.2) 

where      is the instantaneous distance of the Hill frame from the center of the 

Earth. The absolute velocity vector is expresses in the Hill frame as: 

                (A.3) 

where      is the velocity vector of the Hill frame with respect to the center of 

the Earth expressed in the Hill frame and    is the orbital rate vector of the 

reference orbit expressed in the Hill frame as well. These vectors are defined as: 

                    
 

 (A.4) 
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(A.5) 

This leads to the following expression for the absolute velocity vector: 

    

            

             

  

  (A.6) 

 The last term from Eq. (A.1) that needs to be expressed in the Hill frame 

is the angular velocity vector of the Earth   . To do so, a transformation matrix 

is needed. There is a known transformation to go from the ECI frame to the 

Perifocal coordinate system (   ). This transformation is given by the 3-1-3 

Euler sequence (Chobotov, 2002): 

                          (A.7) 

The origin of the Perifocal frame is the center of the Earth and thus one of the 

focal points of the orbit. The  -axis points toward the perigee, the  -axis is 

normal the orbital plane and the  -axis completes the right-hand system.  

 

Figure A.1: Orbital Plane View of the PQW Coordinate Frame 

To go from the PQW to the Hill frame we, therefore, need to apply a 

rotation around the orbit-normal of an angle equal to the true anomaly  . The 

complete sequence to go from the ECI frame to the Hill frame is thus: 

  

  

Spacecraft 

Earth 
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(A.8) 

where    and    are canonical rotation matrices defined as: 

        
   
         
          

  (A.9) 

 
       

         
          

   
  

(A.10) 

for an arbitrary angle  . Performing the multiplication of the three rotation 

matrix, the following transformation matrix is obtained: 

            

                          

                            

           

  (A.11) 

where   and   denote the sine and cosine functions of the angle given as 

subscript. 

 The vector    can now be expressed in the Hill frame by using the 

transformation matrix defined in Eq. (A.11). This results in the following vector: 

       
        
        

    
  (A.12) 

Performing the cross-product of the vectors    and   then results in: 

         

               

                      

                          

  (A.13) 

 The final expression in the Hill frame for the velocity of a spacecraft 

relative to the rotating atmosphere is thus given as: 
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  (A.14) 

If the reference orbit is circular and the Schweighart and Sedwick formulation is 

used, this expression can be simplified to: 

       

                           

                                  

                                 

  (A.15) 

since the radius of the orbit will remain constant and the rate of change of the 

true anomaly will be simplified to   . 
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Appendix B – Schweighart and Sedwick Equations 

 

 In this appendix, the formulation developed by Schweighart and Sedwick 

(2002) will be presented along with the parameters included in their equations. 

These equations valid for J2 perturbed circular orbits are given by: 

 

                                    
        

       
 

 
                                          

(B.1) 

 
                         

                              
(B.2) 

 
                         

(B.3) 

These equations are expressed in the Hill frame. The    term is the Earth’s 

second spherical harmonic and has a value of             ,    is the Earth’s 

mean equatorial radius,      is the radius of the circular reference orbit,      is 

the reference orbit’s inclination, t is the time,   is the initial phasing angle for 

the cross-track motion and   is the mean orbital rate which is defined as: 

    
 

    
 

 (B.4) 

where   is the gravitational parameter of the Earth. The other terms are specific 

to the Schweighart and Sedwick formulation. 

 The   term in the formulation is introduced to account for the effect of 

the J2 perturbation on the mean orbital rate and can thus be seen as a corrective 

term which reduces to one when    is set to zero. It is given as: 

        (B.5) 

where 
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              (B.6) 

The   term is there in order to correct the nodal drift caused by the J2 

perturbations and is defined as: 

      
 

 
    

  

    
 

 

         (B.7) 

The last two terms,   and  , are there to properly model to cross-track motion 

under J2 perturbations. They are defined as:  

 
                                         

       
     

   
             

(B.8) 

 
       

                      

     
   

       
      

(B.9) 

where 

             
    

     
 (B.10) 

 
  

      
 

 
    

  

    
 

 

          
(B.11) 

 
  

      
 

 
    

  

    
 

 

          
(B.12) 

     
   

           
 (B.13) 

 
         

                               

      
  

(B.14) 

 
                                                  

(B.15) 
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The       and       terms correspond to the inclinations of the deputy and chief 

spacecrafts respectively. Since we are placing the chief spacecraft on the 

reference orbit, we can state that: 

            (B.16) 

Schweighart and Sedwick also present the initial condition needed to 

remove secular motion or constant offset terms. They are given as: 

     
 

 
    

   

    
  (B.17) 

 
              

 

 
    

  
 

    
         

(B.18) 

 Due to the J2 perturbation, the orbital elements will change with time. 

Schweighart and Sedwick therefore had to provide the expression for those 

changing orbital elements with respect to time: 

           
 

 
 
 

 
    

  

    
 

 

                     (B.19) 

 
           

 

 
    

  

    
 

 

        
(B.20) 

 
        

(B.21) 

Finally, the instantaneous position vector of the reference orbit expressed in the 

ECI frame can be determined using the above expressions for the orbital 

elements as: 

           
                     
                     

        
  (B.22) 
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Appendix C – Atmospheric Density Model 

 

 In this appendix, the model used to obtain the instantaneous local 

density in the vicinity of each spacecraft will be presented. This model is very 

important to obtain accurate values for the local density as it will impact the 

atmospheric drag forces acting on each spacecraft. The model used in this thesis 

is the CIRA-72 semi-theoretical model (Vallado, 2007) and assumes that the 

atmospheric density decays exponentially with increasing altitude: 

           
        

 
  (A.1) 

where    is the nominal atmospheric density at a base altitude    of a given 

altitude range and   is called scaled height for this given altitude range. These 

values can be found in table C.1 for any value of altitude of the spacecraft above 

the ellipsoid Earth,       and a representation of this value is given in Fig. C.1. 
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Table C.1: Exponential Atmospheric Model (Vallado, 2007) 

 

Figure C.1: Model of Ellipsoid Earth 

Surface of the 
Earth 

(Ellipsoid model) 
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To obtain the height of a spacecraft above the ellipsoid model of the 

Earth, algorithm 12 of Vallado (2007) is used. The algorithm requires the 

knowledge of the position vector in the ECI frame, though. The position vector of 

a spacecraft in the ECI frame is obtained from its position vector in the Hill frame 

as follows: 

                                (A.2) 

where      is the position vector of the spacecraft expressed in the ECI frame, 

     is the position vector of the reference orbit expressed in the ECI frame,   is 

the position vector of the spacecraft expressed in the Hill frame and           is 

the transformation matrix that changes Hill coordinates into ECI coordinates. The 

          matrix has already been defined in appendix A. To obtain the           

matrix, the inverse of the           must be calculated. Since we know that this 

matrix is a rotation matrix, which is an orthogonal matrix, its inverse will be its 

transpose. Therefore,           can be obtained as: 

 

                   
  

           

                           

                            

          

  
(A.3) 

where   and   denote the sine and cosine functions of the angle given as 

subscript. 

 Having the position vector expressed in the ECI frame, algorithm 12 of 

Vallado (2007) can be now be presented. The first step is to get the projection of 

the spacecraft’s position vector onto the equatorial plane: 

              (A.4) 

Using this value, we can obtain the angle   shown in Fig. C.1 as: 

         
  

     
  (A.5) 
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To obtain the radius of curvature in the meridian   and the geodetic latitude 

   , an iterative scheme is required: 

 
   

  

     
        

 
(A.6) 

        
       

       

     
 (A.7) 

where    is the mean equatorial radius of the Earth and    is the eccentricity of 

the Earth which has a value of approximately         . To perform this iterative 

scheme, an initial guess is required. A good initial guess is to have      be equal 

to the angle  . The iterative scheme can then be performed until a desired 

tolerance is reached: 

                             (A.8) 

Finally, the height above the ellipsoidal Earth can be obtained as: 

       
     

      
    (A.9) 

 Although this algorithm does not take into consideration the curvilinear 

nature of the Hill frame coordinates, it is still a valid method if the distances 

calculated in the Hill frame are small when compared to the distance of the Hill 

frame from the center of the Earth. It is therefore reasonable to use this method 

for the purposes of this thesis. 
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