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ABSTRACT 

Soil pollution due to anthropogenic petroleum hydrocarbon (PHC) spills has become a 

major environmental hazard. The eco-toxicological indicators used to evaluate soil quality 

complement physico-chemical criteria employed in contaminated site remediation. But their cost, 

time consumption, sophisticated analytical methods and in-situ inapplicability pose a major 

challenge to the rapid detection and mapping of the extent of the soil contamination. This 

research describes a sensor based approach for measuring potential (substrate-induced) microbial 

respiration in PHC-contaminated and non-contaminated soil and hence, indirectly evaluates their 

microbial activity. A simple CO2 sensing system was developed using an inexpensive non-

dispersive infrared (NDIR) CO2 sensor and was successfully deployed to differentiate between 

the control and diesel-contaminated soils in terms of CO2 emission after glucose addition. 

Glucose was used as a substrate at an optimal concentration of 25 mg g-1, dissolved in deionized 

water to adjust the soil moisture to 80% of water holding capacity (WHC) and sprayed over 20 g 

soil samples to trigger microbial respiration and hence, CO2 emission. The sensor was able to 

distinguish glucose-induced CO2 emission from sterile and control soil samples (p ≤ 0.0001). 

Acetone was used as an organic solvent to spike soil samples with phenanthrene and was found 

to suppress CO2 emission from phenanthrene-contaminated soil samples after incubation. 

Significant effects of diesel contamination (p ≤ 0.0001) and soil type (p ≤ 0.0001) on glucose-

induced CO2 emission were found. The sensing system can provide in-situ evaluation of soil 

microbial activity, an indicator of soil quality and is a promising tool for the initial screening of 

contaminated environmental sites and for creating high spatial density maps at a relatively low 

cost.  
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RÉSUMÉ 

La pollution du sol causée par des déversements d’hydrocarbures pétroliers (PHC) 

anthropiques est devenue une menace environnementale majeure. Les indicateurs éco-

toxicologiques, utilisés pour évaluer la qualité des sols, complémentent les critères physico-

chimiques utilisés lors de l’assainissement de sites contaminés. Par contre, les coûts, les délais, 

les méthodes analytiques sophistiquées et l’inapplicabilité in-situ présentent des défis majeurs 

pour la détection rapide et la cartographie de l’étendue de la contamination du sol. Cette 

recherche présente une approche basée sur des capteurs servant à mesurer le potentiel de 

respiration microbienne (induite par un substrat) pour des sols contaminés et non contaminées 

aux HCP, et par conséquent à évaluer indirectement leur activité microbienne. Un système 

simple de détection du CO2 a été développé en utilisant un capteur de CO2 infrarouge non 

dispersif (NDIR) peu coûteux et est parvenu à différencier les sols contaminés au diesel de ceux 

de références en matière d’émissions de CO2 après l’ajout de glucose. Ce dernier a été utilisé 

comme substrat à une concentration optimale de 25 mg g-1, dissous dans l’eau déminéralisée, 

pour ajuster l’humidité du sol à 80% de sa capacité de rétention de l’eau (WHC), et pulvérisé sur 

des échantillons de 20 g de sol pour déclencher la respiration bactérienne et donc les émissions 

de CO2. Le capteur a pu distinguer les émissions de CO2 induites par le glucose de celles des 

échantillons de sol stérile et de référence (p ≤ 0.0001). De l’acétone a été utilisée comme solvant 

organique pour charger de phénanthrène les échantillons de sol et s’est avérée éliminer les 

émissions de CO2 de ces échantillons de sol contaminés aux phénanthrènes après l’incubation. 

La contamination au diesel (p ≤ 0.0001) et le type de sol (p ≤ 0.0001) ont démontré avoir des 

effets significatifs sur les émissions de CO2 induites par le glucose. Le système de détection peut 

fournir une évaluation in-situ de l’activité microbienne du sol, un indicateur de sa qualité, et est 
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un outil prometteur pour effectuer l’examen préliminaire de sites environnementaux contaminés 

et pour créer des cartes à haute densité spatiale à des coûts relativement bas. 
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1. INTRODUCTION 

Soil is a complex and dynamic biological system that directly and indirectly influences 

the quality of human life. It is essential for plant growth, nutrient cycling and maintaining the 

O2/CO2 balance of the atmosphere. It acts as the ultimate sink for most waste products. A 

number of chemicals have been introduced claiming to increase agricultural yield and to improve 

human life e.g., pesticides, metals and petroleum products. Increased use of these xenobiotic 

compounds has resulted in their release into soil and other environmental resources, as well as 

water and the atmosphere.  

Research on the distribution and fate of various pollutants in the ecosystems emphasized 

their harmful impacts on both ecosystems and living organisms. Consequently, soil pollution is 

viewed with apprehension and has become a major environmental concern. Petroleum 

hydrocarbons (PHCs) are common environmental contaminants. They are  complex mixtures of 

aliphatic, alicyclic and aromatic compounds and enter terrestrial ecosystems due to surface spills 

or leaks from pipelines or storage tanks (Potter and Simmons, 1998).  

Since the recent research has been focusing the remediation and reclamation of PHC-

contaminated sites, rapid, low cost and effective in-situ technologies are required to assess the 

scope and level of PHC contamination at a remediation site. Laboratory-based techniques are 

sensitive and accurate, but are costly and time-consuming. Moreover, they do not take into 

account the bioavailability (Peijnenburg et al., 2004) of the pollutant. PHCs get entrapped within 

a soil or sediment matrix and become increasingly resistant to desorption and less bioavailable to 

soil biota. Various bioindicator-based assays have also been introduced, but their synthesis is 

challenging. Eco-toxicological tests directly determine the possible hazards of pollutants on soil 

ecology. In general, acute and chronic soil toxicity tests are conducted by collecting soil samples 
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from the polluted site and sending them to the laboratory for testing; they offer the advantage of 

assessment of bioavailability of the pollutants. Alternatively, several toxicity test kits have been 

developed in which test organisms are exposed to the soil sample on site. Such tests actually are 

performed in a mobile laboratory system which has been brought to the site. This system has 

reagents for extracting the PHCs and the test organism vials for their detection using a battery-

powered instrument. These tests are performed under standard laboratory conditions, not site 

conditions and, hence, should not be confused with in-situ tests because in-situ tests expose a 

given organism at the site under actual environmental conditions, such as temperature, pH, and 

light. Hence, a promising in-situ soil PHC toxicity evaluation technology is required for the 

initial biological risk assessment of a contaminated site. Site toxicity data from such an in-situ 

test would prove to be a more realistic assessment of toxicity than data from any analytical or 

biological laboratory tests. Ultimately, it would help to characterize the actual ecological risk of 

a polluted site.  

An important element in the characterization of petroleum-contaminated sites is the rate 

of microbial activity. Soil respiration rates have been used to measure microbial activity since 

the latter part of the 1800s and have also been used effectively to measure soil contamination. 

While basal respiration only measures the “potential” soil microbial community, substrate-

induced respiration (SIR) adds a labile substrate (e.g., glucose) to maximize the respiration rate 

and can be used to determine the total microbial activity present in the soil.  

Currently, commercially available chamber systems (e.g., Li-Cor Li-8100) integrated 

with portable infrared gas analyzers (IRGAs) are used to measure soil CO2 efflux in-situ. To 

improve the efficiency and lower the cost of these chamber systems, a number of simplified non-

dispersive infrared-based (NDIR-based) sensors are available now (Yasuda et al., 2012). Such 
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systems can be modified to measure SIR responses and hence, act as a rapid tool for quantifying 

the eco-toxicological impact of contaminants. They provide promising tools for the initial risk 

assessment of contaminated environmental sites by creating high spatial density maps at a 

relatively low cost. Potential applications range from former industrial sites to oil and gas 

industry locations which need to be remediated to convert these land resources into alternative 

uses. Moreover, they can be applied to measure the soil “quality” of agriculture soils, in general, 

as they determine the “potential” microbial community present in the soil (Doran and Zeiss, 

2000).  

1.1. Objectives 

The objectives of this study were to develop and evaluate an NDIR-based CO2 sensor 

system suitable for in-situ deployment to measure soil CO2 emissions in response to added 

glucose, based on the SIR method and to investigate its suitability for toxicity assessment of 

PHC-contaminated soils. In particular, the following tasks were to be achieved: 1) to design and 

test a CO2 sensor installed in a closed chamber to measure potential (or induced) soil CO2 

emission, 2) to optimize the substrate concentration to be used for SIR experiments, 3) to 

investigate the applicability of the newly designed NDIR-based CO2 sensor system to distinguish 

between soil samples contaminated with different levels of PHCs in terms of SIR rates.  
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2. REVIEW OF LITERATURE 

PHCs may be introduced into the soil as a result of their accidental discharge during 

transportation, leakage from storage tanks or due to pipeline ruptures (Nicolotti and Egli, 1998).  

Crude oil spillage has a significant effect on soil properties (e.g., soil pH, hydraulic conductivity, 

total nitrogen (N), available phosphorus (P)) that reduces the fertility of agricultural soils (Essien 

and John, 2010). In addition, crude oil contaminated soils have been proven to be toxic to both 

flora and fauna (Dorn et al., 1998; van Gestel et al., 2001; Wong et al., 1999) and dangerous to 

human health (Ordinioha and Brisibe, 2013). 

Diesel oil is a complex PHC derived from crude oil distillation (Air Force, 1989). It is 

composed of low molecular weight alkanes and polycyclic aromatic hydrocarbons (PAHs; Adam 

and Duncan, 1999). PAHs constitute 5-30% of diesel oil (Air Force, 1989). PAHs also exist in 

soil due to the incomplete combustion of coal, oil, petroleum, and wood (Saim et al., 1997), or 

due to petrochemical industrial activities (Jaouen-Madoulet et al., 2000). The fate of PAHs is a 

huge concern as they are toxic, carcinogenic and/or mutagenic priority micro-pollutants listed by 

the United States Environmental Protection Agency (U.S. EPA; Keith and Telliard, 1979). Thus, 

recent research has been focusing on the development and investigation of various chemical and 

biological methods for hydrocarbon remediation of contaminated sites. Development of 

technologies to rapidly assess the scope and level of PAH pollution at a relatively low cost and 

within a short time (Wang et al., 1990) provides a means of improving management decisions for 

site remediation and assists the hydrocarbon remediation research initiatives. 
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2.1. Laboratory-scale methods 

Common approaches to determine the total concentration of hydrocarbon pollutants in 

soil focus on sophisticated, time consuming, laboratory based analytical techniques. PHCs are 

lipophilic in nature and show affinity towards the soil organic matter (SOM; Kleineidam et al., 

2002) due to sorption (Golding et al., 2005). Sorption is a phase distribution process due to 

solutes which accumulate at surfaces and interphases (i.e., adsorption) of solids or are 

transported from one phase to another (i.e., partitioning). So, the quantification of PHCs in soil 

requires powerful extraction techniques to release the strongly sorbed contaminants from the soil 

material. The steps followed for the analytical determination of PAH pollutants in soil are as 

follows:  

2.1.1. Pretreatment, which increases both the homogeneity of the soil and the 

extractability of the analytes in the soil. The sample pretreatment includes sieving, air-drying, 

grinding (Wischmann et al., 1996) and/or acidification (Bergknut et al., 2004) of soil samples. 

2.1.2. Extraction, which releases the contaminants from the soil matrix and 

quantitatively transfers them to an organic solvent. The extraction solvent has a major effect on 

the extraction process. Dichloromethane and toluene are preferred due to their medium polarity 

or mixtures of polar and non-polar solvents are also used. Hexane, acetone/hexane (1:1 v/v), 

dichloromethane-acetone (1:1 v/v), dichloromethane-ethanol (1:1 v/v), n-butanol (Hatzinger and 

Alexander, 1995), methanol (Codina et al., 1994), are also used. Extraction techniques include 

ultrasonic extraction (Eiceman et al., 1980), soxhlet extraction (Arment, 1999), pressurized fluid 

extraction (Saim and Dean, 1998), pressurized hot water extraction, microwave assisted 

extraction (Lopez-Avila et al., 1994) and supercritical fluid extraction (Hartonen et al., 2000). 
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2.1.3. Clean up, to remove the co-extracted compounds that could interfere with 

subsequent analysis. The fractionation of PHCs can be performed by adsorption 

chromatography, open column chromatography (Saponaro et al., 2002), solid phase extraction 

(SPE; Meyer et al., 1999) or high performance liquid chromatography (HPLC)(Brooks et al., 

1998). 

2.1.4. Instrumental analysis, which separates, identifies and quantifies the individual 

analytes in the sample. Both the HPLC (Berset et al., 1999) and gas chromatography techniques 

such as GC/FID (U.S. EPA, 1996a), GC/MS (U.S. EPA, 1996b) and GC/FTIR (U.S. EPA, 

1994a) are considered to be equally valid approaches to analyze PAHs, though GC/MS is 

preferred over the others (Disdier et al., 1999). 

The advantages of these methods include their high accuracy and sensitivity towards the 

PHCs. However, these methods involve lengthy extraction processes for target contaminants, 

large volumes of extraction solvents and require instruments with high infrastructure and 

operating costs (Sporring et al., 2005). Moreover, the toxic effects of a pollutant in the soil 

depend, not only on its chemical properties and the quantity present, but also upon the amount 

that is bioavailable, to be absorbed or up taken by the biota (Peijnenburg et al., 2004).  

2.2. Bioavailability 

Bioavailability plays an important role in the fate of organic pollutants and  their effects 

on individual species and populations (Debus and Hund, 1997; Wahle and Kördel, 1997). It 

implies that within a given timeframe, only a fraction of the total amount of a chemical substance 

present in an environmental sample, e.g., soil, is available for uptake by living organisms, and 

subsequently may induce adverse effects (Peijnenburg et al., 2004). Bioavailability of PHCs is 

markedly affected by soil properties, e.g., SOM content and the clay content (Chung and 
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Alexander, 2002; Nam et al., 1998). However, laboratory-based methods are not suitable for 

biological assessments of polluted soil as they do not evaluate the toxicity, synergistic or 

antagonistic effects of given pollutants (Juvonen et al., 2000) on soil organisms. Consequently, a 

battery of bioindicator-based and toxicity-based assays (Bispo et al., 1999; Greene et al., 1988) 

on soil biota is used to determine the possible hazards of pollutants on soil ecology (Tang et al., 

2011).   

2.3. Bioindicator-based assays 

Enzymes are directly involved in the degradation of hydrocarbons to simple molecules 

such as water and carbon dioxide and hence, may be used as potential bioindicators.  Enzymes 

that have been used for this purpose include soil lipases (Margesin et al., 2000), dehydrogenases 

(Casida, 1977), catalases and ureases (Margesin and Schinner, 1997). Biolog plates have been 

widely used to characterize stressed soils (Bossio and Scow, 1995; Bundy et al., 2002) that 

measure the specific dehydrogenase activity of environmental samples upon exposure to water-

soluble carbon substrates. The main advantage of enzymatic tests is that they offer an easy 

method of measurement, but a disadvantage is their indirect approach. Not all enzymes are 

synthesized by the bacterial cells at the same amount and  both enzyme production and enzyme 

activity are highly regulated biomechanisms (Brock and Madigan, 1991). These methods have 

limited in-situ applicability as they also require pollutant extraction from the soils (Preston-

Mafham et al., 2002). 

Antibodies have an ability to bind selectively to the specific physical structure of the 

target analyte present in a sample matrix, such as soil. The availability of antibodies against 

small molecules, such as PAHs, accompanied by detection systems such as amperometric, 

capacitative, conductometric, potentiometric, fluorimetric, radioactive and UV detection 
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(González-Martı́nez et al., 1999) allowed the use of immunochemical procedures for 

environmental monitoring (Van Emon and Gerlach, 1998). The most commonly used 

immunoassay for this purpose is the enzyme linked immunosorbent assay (ELISA) (Fillmann et 

al., 2007). Immunoassays are sensitive, selective, reliable, easy to use and can be operated at low 

cost, but the development of bioassays especially for small molecules, such as PAHs, is time 

consuming, costly and intensive (Fähnrich et al., 2002). 

2.4. Toxicity assays 

Toxicity tests measure lethal and/or sublethal effects that are known as measurement or 

response endpoints i.e., they are easily measurable ecological attributes that may be adversely 

affected by exposure to organic contaminants and are related to an assessment endpoint. Hence, a 

measured endpoint can be used to approximate the assessment endpoint if the assessment 

endpoint itself cannot be measured directly (U.S. EPA, 1992). 

2.4.1. Acute toxicity tests 

Acute toxicity tests are short-term survival assays that measure the effects of exposure to 

relatively high concentrations of contaminants. Percent mortality of organisms exposed to a 

polluted sample is compared to percent mortality of organisms exposed to an unpolluted sample. 

Alternatively, dilution of the pollutant at which 50 percent of the organisms died, called the 

LC50, is the median lethal concentration (U.S. EPA, 1989). Aquatic bioassays are used for the 

assessment of the ecotoxic potential of soils towards aquatic and soil-dwelling organisms. The 

two most frequently used bioassays in aquatic ecotoxicity testing are the luminescence-based 

Vibrio fischeri test and the immobilization-based Daphnia magna test (Bispo et al., 1999). In a 

luminescence-based assay, bacterial luminescence is linked to electron transport (Ismailov et al., 
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1981) and is negatively correlated with an increase in the toxicity of a pollutant after bacterial 

luminescence. Vibrio fischeri are used as test organisms in commercial luminescence inhibition 

assays (Microtox Assay; ISO, 1998a) as well as in the Solid-Phase Flash-Assay (Lappalainen et 

al., 2000). In the immobilization-based assay, the water flea Daphnia magna is immobilized 

during an exposure period of 48 hours. Immobilisation and abnormal behaviour is recorded at 24 

and 48 hours and compared with control values (DaphtoxkitTM Assay; OECD, 2012). These tests 

are performed on soil leachates that contain a pollutant (Tiensing et al., 2001) 

2.4.2. Chronic toxicity tests 

Chronic toxicity tests measure the sub-lethal effects of contaminants on test organisms 

during long term exposure. Sublethal effects include growth reduction, reproductive impairment, 

nerve function damage, lack of motility, behavioural changes, and the development of structural 

abnormalities (U.S. EPA, 1994b). Seed germination and earthworm survival assays are widely 

used for measuring chronic soil toxicity (Greene et al., 1988).  These tests are sensitive to 

changes in soil toxicity during remediation of PHC contaminated soil (Dorn et al., 1998). Other 

standard methods include eco-toxicology tests for plants (ISO, 1995) and earthworms (ISO, 

1993, 1998b) to measure acute and chronic soil toxicity. Also, reproduction of Ceriodaphnia 

magna over 7 days (AFNOR, 2004) is used as a chronic toxicity indicator. Chronic toxicity tests 

are less frequently performed than acute tests (Francois-Férard and Ferrari, 2005). Toxicity tests 

are useful to identify the bioavailability of pollutants  and they have a simple methodology and 

moderate sensitivity (Maila and Cloete, 2002); nevertheless, they involve considerable time, cost 

and expertise and have limited in-situ applicability as they also involve an organic solvent and a 

vacuum/ speed extractor (Grossmann and Udluft, 1991) for pollutant extraction from soil solid.  

Moreover, tests with soil-dependent organisms are more important with respect to soil 
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ecotoxicity testing (Keddy et al., 1995), but few ecotoxicity studies have used soil organisms 

(Sverdrup et al., 2002). Hence, the focus has shifted to finding a way to overcome the limitations 

of soil toxicity assessments. 

2.5. Soil toxicity and soil microbial ecology 

The notion of soil “quality” refers to soil functionality (Doran and Zeiss, 2000) whereas 

soil “health” is defined by the ability of the soil to promote plant, animal and human health and 

sustainability (Gil-Sotres et al., 2005). However, due to the environmental impact of 

contaminants and treatments (Cébron et al., 2011), the quality and health of polluted and 

remediated soils may not be the same as native soils. In soils, carbon (C) and nutrient cycles 

(e.g., C mineralization, nitrification etc.) are driven by microorganisms (Nannipieri et al., 1990) 

and play an important role in both soil quality and soil heath. Hence, it becomes crucial to assess 

the microbial ecology of contaminated and treated soils.  

Recent research has shown that PHCs have a significant impact on microbial community 

abundance (Chen et al., 2014), composition and diversity in soil depending upon the degree of 

hydrocarbon contamination (Hawrot-Paw, 2012; Sutton et al., 2013). Bacteria and fungi present 

in soil are susceptible to the toxic effects of such contaminants (Dawson et al., 2007) and once 

affected, they disturb the proper functioning of the soil (Cébron et al., 2011). Thus, the soil 

microbial activity in a hydrocarbon-contaminated soil can be used as an indicator of the level of 

hydrocarbon contamination present in the soil.  

2.6. Soil respiration 

One of the simplest methods to measure soil microbial activity is based on soil 

respiration. Assessment of soil respiration by measuring the soil CO2 production or O2 
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consumption allows the metabolic activity of soil micro-organisms to be quantified (Nannipieri 

et al., 1990). The basal respiration (BR) is defined as respiration without adding any organic 

substrate to the soil. The SIR involves the measurement of microbial respiration of soil after 

adding an excess of a readily available nutrient source, usually glucose, to trigger microbial 

activity (Anderson and Domsch, 1978).   

Many studies have reported soil respiration measurements as a means of determining soil 

toxicity (Martí et al., 2007; Montserrat et al., 2006). Anderson and Domsch (1978) suggested 

that the respiration rate induced by glucose is proportional to the size of the original soil 

microbial biomass and hence, can be used as an indicator to determine the microbial biomass in 

the sample. The quotient of the actual (basal) and potential (substrate-induced) respiration rates 

was correlated with PAH concentration at a contaminated site (Hund and Schenk, 1994).  

Margesin et al. (2000) also used SIR as one of the monitoring parameters during the 

decontamination of a mineral-oil-contaminated soil. Currently, CO2 evolved by microbial 

respiration from soil samples is determined by a simple colorimetric reaction in gas absorbent 

alkali (Campbell et al., 2003), but this is cost ineffective when a large number of samples are 

involved as the method involves replacing the CO2 probe with each sample (Brinton and Haney, 

2013).  

2.7. Substrate-induced respiration 

The reason that SIR could be adapted to a rapid sensor-based detection method is due to 

the short time-frame of microbial response. Upon the addition of the substrate, respiration 

rapidly increases to a maximum and remains at a constant rate for more than 4 h (Drobník, 

1960). The strong differences, in terms of time of incubation, between the reported studies arise 

from the different objectives of the various studies. Anderson and Domsch (1978) made CO2 
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emission measurements after 1 h incubation with glucose and correlated them with absolute soil 

microbial biomass. Lin and Brookes (1999) chose 0.5-2.5 h after glucose addition as the best 

estimator of the SIR rate. Ananyeva et al (2011) recorded CO2 emission within 2-5 h after the 

application of glucose to evaluate respiration differences between unamended and amended soil 

samples with added solid and aqueous glucose. Dilly (2001) measured CO2 emission within 4-24 

h after the addition of glucose and targeted the calculation of microbial respiration quotients. The 

recent studies support a time span of 8 - 24 hours (Brinton and Haney, 2013; Haney et al., 2008) 

to estimate soil C, N and P mineralization and to correlate soil biological activity with potentially 

mineralizable N.  

The SIR rate is strongly affected by soil water content (SWC; Wardle and Parkinson, 

1990). For reliable SIR measurements, the substrate should be distributed evenly throughout the 

soil sample. Adding a substrate solution instead of a powder gives the best distribution of 

substrate in soil and is analytically convenient (Lin and Brookes, 1999). However, using a 

substrate solution might cause an underestimation of CO2 due to its retention in solution (West 

and Sparling, 1986). The quantity of substrate needed to achieve a saturated respiration response 

also needs to be determined for each soil and depends upon the physical and chemical properties 

of the soil (Anderson and Domsch, 1978). 

2.8. CO2 sensors 

To improve the efficiency of soil microbial respiration based methods, a number of 

simplified CO2 sensors are available now (Yasuda et al., 2012). A sensor is a device or a system 

which has the function of converting a physical variable input into a signal variable output. 

Voltage (electrical circuits), displacement or forces (mechanical systems) are commonly used as 
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signal variables (Holman, 2011). A number of simplified sensors have been developed for 

monitoring CO2 concentrations. 

Based on the sensing mechanism, these CO2 sensors can be broadly classified as 

electrochemical (or solid state) and optical sensors (Neethirajan et al., 2009). Electrochemical 

CO2 sensors are based on a variety of principles (ampere-, conducto-, and potentiometry) and 

materials (metal oxides, polymers, ceramics, or sol-gel) (Capone et al., 2004; Moseley, 1997). 

They can be further divided into metal oxide (Barsan and Weimar, 2001), NASICON (Zhu et al., 

2005) and polymer-based CO2 sensors (Tongol et al., 2003). They make use of micro-electro-

mechanical systems (MEMS) and nanotechnologies and are highly sensitive, but have problems 

with limited measurement accuracy and short-time stability (Neethirajan et al., 2009). The most 

common commercially available CO2 sensors are non-dispersive infrared detectors (NDIR) 

because of their low cost, compact size, easy process control, mass production, and continuous 

measurement (Lee and Lee, 2001). 

The basic principle of NDIR CO2 sensors is the energy absorption characteristics of CO2 

in the infrared region (Adachi et al., 1992). CO2 is known to absorb infrared radiation at 

wavelengths of 2.7, 4.3 and 15 µm (Skoog et al., 2006). Generally, the wavelength of the near 

4.3 µm (Oberly et al., 1968) region is preferred because of maximum absorption and 

insignificant interference at this band. The radiation emitted at this wavelength is associated with 

CO2 by the Lambert-Beer law (Kwon et al., 2009; Wagner et al., 1991) given by: 

                                               
𝐼𝑑

𝐼0
 = 𝑒−𝛼.𝑐.𝑙                                                    (1) 
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where, 𝐼𝑑 is the intensity of the radiation detected at a wavelength of 4.28 µm, 𝐼0 is the intensity 

if the incident radiation, 𝛼 is the absorption coefficient of the CO2, 𝑐 is the CO2 concentration 

and 𝑙 is the optical path length from the source to the detector. 

NDIR CO2 sensors (Figure 2.1) consist of a pulse-driven IR lamp (i.e., light source), a 

perforated sampling tube (or chamber), two optical filters, and two IR detectors (thermopiles) 

(Pandey and Kim, 2007). A reflection mirror is attached behind the IR lamp, and an inner wall of 

the pipe is plated to make emitted IR reach the thermopiles. One thermopile monitors the 

intensity of light through an optical bandpass filter with 4.0 µm center wavelength, and the other 

measures the IR absorption due to CO2 concentration through an optical bandpass filter with a 

4.26 µm center wavelength. The difference of these two raw signals provides the signal output 

(Wang et al., 2005). 

 
Fig. 2.1. Internal structure of an NDIR CO2 sensor (adapted from Wang et al., 2005)  

2.9. In-situ measurement of soil respiration 

Different chamber techniques have been developed to measure soil CO2 efflux in-situ. 

These chambers can be divided into three categories: closed static, closed and open dynamic 

chambers (Livingston and Hutchinson, 1995). In closed chambers (e.g., static and dynamic), 
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there is no exchange with the surrounding air and CO2 efflux is calculated from the slope of the 

CO2 concentration increase within the chamber over time (Hutchinson and Mosier, 1981; Jensen 

et al., 1996). Currently, portable infrared gas analyzers (IRGAs; Koepf, 1954) have been 

integrated in both open (Fang and Moncrieff, 1996) and closed (Rochette et al., 1992) chambers 

to develop commercially open (e.g., PP-Systems CFX-1) and closed chambers (e.g., Li-Cor Li-

8100). Eddy covariance systems (Norman et al., 1992) measure CO2 efflux at a height of 1-2 m 

above the ground and are mounted on towers above the vegetation (Law et al., 1999) to measure 

their net ecosystem exchange. The cost of these systems is a major hindrance.  

Hence, the availability of these low cost NDIR CO2 sensors can be harnessed to measure 

soil respiration by integrating these sensors into small systems developed to measure soil CO2 

efflux suitable for in-situ deployment and can easily be modified to determine SIR responses and 

hence, assess the “potential” microbial community present in the soil. 
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3. MATERIAL AND METHODS 

3.1. Sensor system development  

The CO2 Engine® K30 CO2 Sensor (SenseAir, Delsbo, Gävleborg, Sweden)1 (Fig. 3.1.) 

was used for this study. It is inexpensive (under $100 USD) and has a measurement range 

between 0 - 5000 ppm with an accuracy of ± 30 ppm and ± 3% of measured value. Its small size 

(51 × 57 × 14 mm) enabled its integration into a small, closed CO2 system to be used for the 

study. Its sampling chamber is a gold-plated labyrinth.  

 
Fig. 3.1. Front and back view of CO2 Engine® K30 

No calibration is required during testing because of the built-in self-correcting ABC 

(Automatic Baseline Correction) algorithm. Infrared CO2 sensors are prone to drift of the zero 

baseline of the calibration curve, which is set by default at the fresh air value of 400 ppm CO2. 

The ABC algorithm is a “low pass filter” that takes advantage of the fact that the CO2 level 

                                                           
1 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not 

imply endorsement by the authors, the McGill University, nor does it imply exclusion of other products that may 

also be suitable. 



17 

 

nearly falls to outside fresh air in buildings when unoccupied. It constantly keeps track of the 

sensor’s lowest reading over a 7.5 day interval (by default) and slowly rescales the sensor probe 

for any long-term drift detected as compared to the expected 400 ppm CO2, hence, updating the 

sensor calibration regularly.  

A small closed static system (non-steady-state non-thorough-flow system) for CO2 gas 

collection and quantification from soil samples was constructed (Fig. 3.2.). The K30 CO2 sensor 

was placed on top of the system. To spray glucose solution over the soil sample uniformly, two 

nozzles attached to two clear PVC (polyvinyl chloride) tubes were integrated into the system. 

These pipes were attached to a syringe that aided the introduction of glucose solution into the 

pipes that fed glucose to the nozzles.  

 
Fig. 3.2. Glucose-induced CO2 emission sensing system for soils integrated with NDIR-based K30 CO2 

sensor 

Data acquisition software for the K30 sensor was developed using LabView (National 

Instruments Corporation, Austin, TX) software. An Arduino UNO (Smart Projects, Strambino, 

Turin, Italy) was used as a microcontroller to power the sensor and to receive analog output; it 
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was connected to a laptop computer via a USB serial port. Analog voltage data output received 

from the sensor at 1 Hz was logged in a tab delimited text file. The collected data were analyzed 

using the Statistical Analysis System (SAS) 9.4 (SAS Institute Inc., NC, USA) software suite. 

An illustration of the sensor response for sterile and control samples of organic soil over 

an extended period of 15 minutes is shown in Fig. 3.3. For data acquisition, the system was 

placed over the petriplate containing 20 g of the sample, the glucose solution was sprayed 6 

minutes after the start of the experiment and the CO2 emission data were collected for another 9 

minutes. The data collected between 8 and 11 minutes (3 minutes in total), after glucose addition, 

were used for the calculation of CO2 emission min-1. For regular experiments, glucose was added 

1 minute after the start of the experiment. The experiment spanned 6 minutes. The difference in 

CO2 concentration between sterile and control soil samples at t = 0 is due to different experiment 

execution time and CO2 concentration varies indoors throughout the day. 

3.2. Sensor system evaluation 

3.2.1. Soil Sampling 

Three soil samples (1: organic, classified as histosol, 2: sandy loam, classified as gleysol 

and 3: sandy clay loam, classified as gleysol (WRB, 2006)) were collected from Field 26  of the 

Macdonald Campus Farm, McGill University, Quebec, Canada  (45° 30’N, 73° 35’W); they 

were selected on the basis of the variability of their key physical and chemical properties (Table 

3.1) and total count derived from gamma-ray spectrometry using SoilOpticsTM (Practical 

Precision Inc., Tavistock, Ontario, Canada) (Fig. 3.4.). The soil samples were air dried for 7 days 

prior to analysis to reduce the contribution of roots to the total SIR response (West and Sparling, 

1986), but the moisture content was maintained between 10-12% (gravimetric moisture content) 
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to sustain the activity of the soil microbial community. No grinding or sieving of the soils was 

done, so that the soil aggregate structure was maintained to simulate in-situ conditions.  

 
Fig. 3.3. Illustration of the response of NDIR-based CO2 sensor system for sterile and control samples of 

organic soil. The glucose solution was added 6 minutes after placing the system over a petriplate 

containing the soil sample and the CO2 emission data collected between 8 and 11 minutes were used for 

the calculation of CO2 emission min-1. 

3.2.2. Substrate optimization 

Glucose was chosen as a substrate for the study because it can be utilized as a carbon 

source by most soil microorganisms (Stotzky and Norman, 1961). It was purchased from Sigma-

Aldrich Canada Co. (Oakville, Ontario, Canada). For each soil, five replicates of 20 g air-dry (a. 

d.) soil, were amended with a series of glucose concentrations (0, 5, 10, 15, 20 and 25 mg g-1 of 

soil) in solution (to adjust soil moisture to 80% of water holding capacity (WHC) of each soil) 

and CO2 concentration was recorded for 5 minutes with the sensor described in Fig. 3.2., to 

determine the optimal glucose concentration. 
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Fig. 3.4. Three sampling locations on the gamma ray count map of Field 26 of Macdonald Campus Farm, 

McGill University.  

Table 3.1. Physical and chemical properties of collected soil samples 

Sample 

No. 

Sand, 

% 

Silt, 

% 

Clay, 

% 

OM, 

% 

WHC, 

% pH 

P  K  Ca  Mg  Al  

mg kg-1 

1 36.5 40.2 23.3 63.3 50 6.9 78 108 10700 1700 206 

2 62.4 24.6 13.0 7.8 16 5.9 104 56 1460 190 1082 

3 46.5 27.9 25.6 7.5 20 7.4 100 124 3600 622 461 

3.2.3. Preliminary evaluation  

Next, an initial experiment was performed to check the applicability of the designed 

system for soils with, and without, microbial activity. All three soils were divided into four sub-

samples, consisting of untreated soil for optimal glucose solution addition (control-glucose, CG), 

untreated soil for deionized water addition (control- deionized water, CD), autoclaved soil for 

glucose solution addition (sterile-glucose, SG) and autoclaved soil for deionized water addition 
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(sterile-deionized water, SD). Sterilization of soil samples was done by autoclaving the samples 

3 times at 121°C and 15 psi for 1 h on alternate days (Greene et al., 2000). 

3.2.4. PAH treated soils experiment 

Phenanthrene (C4H10, Fig. 3.5), a neutral, 3-ring organic compound, was selected as a 

representative PAH. Its environmental properties, such as aqueous solubility, octanol–water 

partition coefficient (Kow), and vapor pressure are similar to other PAHs, such as acenaphthene, 

fluoranthene, and fluorine (Schwarzenbach, 2002). It is predominant in coal-derived oils and 

automobile exhaust (Shabad, 1980) along with pyrene. Similarity of its parent molecular 

structure to the structure of higher molecular weight and more carcinogenic PAHs, such as 

benzo(a)pyrene, makes it an adequate representative compound that can give a general indication 

of PAH behaviour (Khodadoust et al., 2004). It has an aqueous solubility of 1.1 mg/L at 25°C 

(Schwarzenbach, 2002). 

 
Fig. 3.5. Molecular structure of phenanthrene 

To treat the soil samples with different concentrations of phenanthrene, stock solution of 

phenanthrene (1 g/L) was prepared in acetone. Each of the three soils were moistened to 10-12% 

(gravimetric moisture content) and homogenized with a stainless steel spatula. 0 µL,10 µL, 50 

µL, 100 µL, 0.5 mL, 1 mL, 2.5 mL and 6.4 mL of the stock solution was taken and the final 

volume of 8 mL was made adding acetone to obtain a final concentration of 0, 0.1, 0.5, 1, 5, 10, 

25 and 64 mg of phenanthrene kg-1 of soil, respectively. Approximately 10 g of the wet soil was 
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spiked with the above solutions at first. The soil was placed in a 1 L glass jar and mixed 

manually with a stainless steel spatula. The rest of the soil was gradually added to the glass jars 

in 5 g aliquots and extensively mixed with the spiked soil. This procedure was repeated until the 

entire amount of soil (100 g) was added and mixed (Brinch et al., 2002). The jars were closed 

hermetically for 5 minutes and left overnight under a flow hood. 5% (v/w) extra distilled water 

was added to cover water evaporation losses overnight (Scelza et al., 2007) and the samples were 

incubated for 20 days at 22°C. The moisture content was maintained at 10-12% over the period 

of incubation by periodically adding appropriate amounts of deionized water to the samples. 

After incubation, triplicate subsamples (20 g of moist soil) were taken from each control 

and phenanthrene-contaminated soil and transferred onto petriplates, for a total of 72 petriplates 

(3 replicate subsamples × 8 phenanthrene treatments × 3 soil types). For each soil type, an 

optimal concentration of glucose (described above) was added into the volume of water required 

to reach 80% of WHC of each soil and was sprayed uniformly over the soil sample in the 

petriplate. The CO2 concentration was determined for five minutes with the sensor system shown 

in Fig. 3.2., to determine toxicity response.  

3.2.5. Diesel treated soils experiment 

Each of the three soils were moistened to a moisture content of 10-12% (gravimetric 

moisture content), and homogenized with a stainless steel spatula. Five diesel treatments (0, 5, 

20, 60 and 150 mg g-1 of soil) were applied to each soil. For diesel incorporation, soil samples 

(500 g each) were spread on aluminum trays to a depth of 1 cm. Diesel fuel (density 836 g L-1 at 

15 °C) was applied over the surface of 1 cm deep soil by spraying uniformly from a spray bottle, 

so that it completely covered the surface of the soil with a thin layer of diesel. It was then 

allowed to penetrate the soil for 5 to 10 minutes, after that it was mixed thoroughly by hand 



23 

 

several times (Siddiqui and Adams, 2002). Then the control and diesel-contaminated soils were 

transferred to 1 kg plastic containers. The pots were covered with loosely fitted perforated lids 

and were incubated at 22 °C for 7 days. After incubation, triplicate subsamples (20 g of moist 

soil) were taken from each control and diesel-contaminated soil and transferred onto petriplates, 

for a total of 45 petriplates (3 replicate subsamples × 5 phenanthrene treatments × 3 soil types). 

An optimal concentration of glucose (described above) was added to the volume of water 

required to reach 80% of WHC of each soil; this was sprayed uniformly over the soil sample in 

the petriplate and the CO2 concentration was determined. 
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4. RESULTS AND DISCUSSION 

4.1. Glucose optimization 

The data (Fig. 4.1) represented for optimization of glucose concentration for SIR is a 

result of five replicates. Analysis of variance (ANOVA) was conducted to determine the effect of 

various glucose concentrations using PROC GLM (the General Linear Model procedure). There 

was a significant effect of the addition of glucose on CO2 evolution min-1 at the p < 0.05. Post 

hoc comparisons using the Tukey’s HSD (Honest Significant Difference) test indicated that the 

mean score for the 10 mg g−1 glucose addition was significantly greater than the no sugar 

control, but no other glucose addition rates were different from the control among soil types. 

Hence, CO2 emission following the addition of glucose solution increased rapidly to a maximum 

rate at 10 mg glucose g-1 soil for all three soil types. Variability of CO2 emission among soil 

replicates can be explained by micro-habitats and micro-environments found in soil subsamples 

that leads to micro-scale heterogeneity in composition of the soil microbial community (De 

Bellis et al., 2007; Carson et al., 2009; Haack et al., 1995) The CO2 emission rates increased by 

2.5-fold, 4.6-fold and 2.8-fold for soil 1, 2 and 3, respectively when the glucose concentration in 

the solution was increased from 0 mg g-1 soil to 10 mg g-1 soil and decreased with higher glucose 

concentrations. Hence, a glucose concentration of 10 mg g−1 soil was used to induce SIR for all 

soils in the subsequent tests. 

Anderson and Domsch (1978) found a range of 5 to 50 µM glucose (g soil solution−1) soil 

to be optimal for 12 soils and Ananyeva et al. (2011) reported the range of 2-15 mg g-1 to result 

in a similar optimal respiration response. West and Sparling (1986) found optimal respiration 

rates at 10 mg glucose g−1 soil (60 mg mL-1 soil water) for three soils. They also reported a 
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significant decrease in CO2 emission after the glucose addition exceeded 10 mg mL−1 soil water 

due to increased water osmotic potential to levels which inhibit respiration in this soil. These 

findings support the selection of glucose concentration of 10 mg glucose g-1 soil for the SIR test.  

 
Fig. 4.1. Emission of CO2 measured with the NDIR-CO2 sensor from three soils amended with aq. 

glucose at concentrations from 0 to 25 mg g-1 soil. Error bars represent standard deviation of five 

replicates. 

4.2. Preliminary evaluation: untreated and sterile soils 

ANOVA was carried out using PROC GLM to determine the effect of four treatments for 

testing the applicability of the sensor to differentiate between control and sterile soils. The 

treatment means were compared by Tukey’s HSD test at α = 0.05. The results showed that there 

was a significant effect of different treated soils (p ≤ 0.0001) and soil type (p ≤ 0.01) on CO2 

emission min-1 (Fig. 4.2; Table 4.1). The interaction term between soil and treatment type was 

significant at p ≤ 0.05, but non-significant at p ≤ 0.01. Post hoc comparisons of treatment means 

showed that CO2 emission from control soil samples with added aq. glucose (CG) was 

significantly greater than the sterile soil samples with added aq. glucose (SG) for all three soil 

types (p ≤ 0.0001). CO2 emission from sterile soil samples was found to be negligible in the 
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closed chamber over a period of 5 minutes, which led to the estimated slope of CO2 

concentration over time being close to 0 µL L-1 min-1(±5 µL L-1 min-1). The results supported the 

assumptions that the sensor is able to differentiate between CO2 emission from soils with 

variable amounts of microbial activity and the glucose solution incorporation significantly 

increases the microbial respiration in soils under toxicity stress. The latter proves that the 

respiration rate of microorganisms increases within a few minutes after adding glucose.  

 
Fig. 4.2. Emission of CO2 measured with the NDIR-CO2 sensor from three soils for the treatments: CG: 

control soil sample added with aq. glucose, CD: control soil sample added with deionized water, SG: 

sterile soil sample added with aq. glucose and SD: sterile soil sample added with deionized water. Error 

bars represent standard deviation of three replicates.  

0-6 hours following the addition of substrate is usually considered as representative of the 

initial microbial response before biomass growth (Degens and Harris, 1997). Our purpose is to 

investigate the in-situ applicability of an NDIR CO2 sensor-based system for evaluation of soil 

toxicity in terms of diesel amendment. We assumed that the microbes in the toxic soil do not 

need a long time to metabolize the glucose and their respiration will be triggered quickly. Hence, 
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the CO2 emission data between 2-5 min after aq. glucose addition were used for the measurement 

of CO2 emission min-1 from the soil samples. 

Table 4.1. Analysis of variance of the CO2 concentration from sterile and control soil samples 

Source Degree of 

Freedom 

Sum of 

Squares 

Mean 

Squares 

F value Pr > F 

CO2 min-1 (between group) 11 1.13 0.11 15.16 < 0.0001 

 Error (within group) 24 0.16 0.01   

Total 35 1.29    

4.3. Soil toxicity evaluation: phenanthrene treated soils experiment 

The phenanthrene treatment at different rates showed a significant (p ≤ 0.0001) impact on 

soil CO2 emission (Fig. 4.3.). The post hoc comparison of treatment means using Tukey’s HSD 

test at α = 0.05 showed that a significant difference existed only between control and 

phenanthrene-contaminated soils (p = 0.05) irrespective of the level of contamination or soil 

type. Significantly decreased CO2 emission from control soil samples treated with acetone was 

observed.  

Acetone is routinely used as an organic solvent to spike soil with PAHs in the laboratory 

(Brinch et al., 2002), but has been reported to kill soil microorganisms (Klimkowicz-Pawlas and 

Maliszewska-Kordybach, 2008) and to decrease soil CO2 emission more than 10 times (Núñez et 

al., 2009). This explains the decreased CO2 emission from control soil samples treated with 

acetone in the present study. Acetone was also found to suppress CO2 emission from 

phenanthrene-contaminated soil samples. Thus, avoiding the use of organic solvents for spiking 

the soils with PHCs was considered crucial for the experiment and was achieved by choosing 

diesel as a PHC contaminant for the three soil samples. 
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Fig. 4.3. Emission of CO2 measured with the NDIR-CO2 sensor from three control or phenanthrene-

contaminated soils incubated for 20 days, prior to the glucose addition. Error bars represent standard 

deviation of three replicates. 

4.4. Soil toxicity evaluation: diesel treated soils experiment 

The diesel treatment at different rates indicated different CO2 emission patterns in terms 

of the level of SOM. There was a significant effect of both degree of diesel contamination (p ≤ 

0.0001) and soil type (p ≤ 0.0001) on CO2 emission min-1 (Fig. 4.4.; Table 4.2.) after an 

incubation period of 7 days. The interaction term between soil type and rate of diesel 

contamination was significant at p = 0.005. Post hoc comparison of treatment means, using 

Tukey’s HSD test, showed that it was possible to differentiate between the control and 

contaminated soil (p ≤ 0.0001) and that all three soils were distinguishable from one another at p 

≤ 0.05. 
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Fig. 4.4. Emission of CO2 measured with the NDIR-CO2 sensor from three control or diesel-contaminated 

soils incubated for 7 days, prior to the glucose addition. Error bars represent standard deviation of three 

replicates. 

Table 4.2. Analysis of variance of the CO2 concentration from diesel-treated and control soils 

Source Degree of 

Freedom 

Sum of 

Squares 

Mean 

Squares 

F value Pr > F 

CO2 min-1 (between group) 14 1.03 0.07 19.13 < 0.0001 

 Error (within group) 30 0.11 0.01   

Total 44 1.13    

The presence of high rates of SOM may decrease the accessibility of pollutant to micro-

organisms. In such a case, the hydrophobic compounds get partitioned into the organic fraction 

of soil and their bioavailability is reduced due to their entrapment in the solid phase of the 

organic matter (Nam et al., 1998) resulting in a  decrease in their toxicity towards microbial 

populations (Liu et al., 2012). 
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Soil 1, organic soil containing 63.3% SOM, showed the microbial SIR rate similar to that 

of the control when diesel contamination was used, showing a slight decrease in respiration with 

increasing diesel concentrations. It confirms the lesser bioavailability of diesel hydrocarbons to 

soil microorganisms as a consequence of higher SOM. Similar results have also been observed 

by several other authors (Bauer et al., 1991; Labud et al., 2007). The soils 2 and 3 (mineral soils) 

contained 7.8 and 7.5% of organic matter, which implied the soil has a major amount of mineral 

matter, acts as an adsorbent (Bosma et al., 1997; Chiou, 2002). Thus, most of the diesel 

hydrocarbon was adsorbed on the soil solid; it was bioavailable to micro-organisms and proved 

detrimental to their survival and activity. Significantly low SIR rates in diesel-contaminated 

samples of soils 2 and 3 as compared to the control samples indicated the inability of the 

microorganisms to metabolize added PHC as a substrate during the first week after the addition. 

An initial lag phase, during which microbial respiration was inhibited, has also been reported in 

polluted soil samples with low SOM in previous studies (Labud et al., 2007; Siddiqui and 

Adams, 2002). This lag phase suggests that microorganisms need an initial period of time to 

adapt to the presence of hydrocarbons in the medium before using them as substrates (Löser et 

al., 1999). Hence, microbial respiration hit a lag phase immediately after the diesel addition, 

before its expected increase (Hawrot-Paw, 2012).  

The results reported above and the previous literature favour the usage of the SIR and the 

proposed NDIR CO2 sensor-based system for toxicity evaluation of hydrocarbon contaminated 

soils. Bauer et al. (1991) found SIR to be inappropriate for the determination of microbial 

activity of contaminated and non-contaminated soils, but cited low sensitivity of the method used 

as one of the probable reasons. Many remediation studies have been reported that correlated SIR 

to the level of organic toxicity present in soil, in addition to other biological indicators. Shi et al. 
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(2005) found that there were characteristic differences of glucose-induced microbial respirations 

in the response of contaminated and non-contaminated soils. Pietravalle and Aspray (2013) 

found distinct catabolic diversity between hydrocarbon contaminated soils using multiple SIR 

assays. Degens and Harris (1997) also utilized differences between the SIR responses of 

microbial communities to simple organic compounds to quantify catabolic diversity of soil 

microbial communities. However, the integration of the SIR approach with a NDIR CO2 sensor-

based system for soil respiration measurements has not been reported yet.  

To put this in perspective, a longitudinal study on a contaminated site can be performed 

using the sensor system and the correlation of CO2 emission data collected with physicochemical 

parameters can be evaluated over time. 
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5. SUMMARY AND CONCLUSION 

Increased use and production of petroleum-based products has led to an increase in the 

PHC concentrations in soils. The application of eco-toxicological indicators to evaluate soil 

quality of contaminated sites is preferable to arbitrary chemical criteria for contaminated soil 

remediation initiatives. But the high cost, sophistication and in-situ inapplicability of such 

biological indicators are major hindrances. This research presented a sensor based approach that 

indirectly measures potential (induced) biological activity in the soil and hence, could be used to 

support physiochemical criteria for site assessment and remediation. The performance of a 

simple CO2 sensing system integrated with an inexpensive NDIR CO2 sensor was successfully 

evaluated for its ability to differentiate between three different diesel-contaminated and non-

contaminated soils. The current design can be modified easily for in-situ applicability.  The 

sensor’s ability to differentiate between glucose-induced CO2 emission from sterile and control 

soil samples (p ≤ 0.0001) and diesel-contaminated and non-contaminated soil samples (p ≤ 

0.0001) supported its applicability to determine soil toxicity, specifically, and soil quality, in 

general.  

As the design and development of sensor integrated CO2 sensing systems to evaluate both 

active (BR) and potential (SIR) soil biological activity and hence, soil quality, has not yet been 

explored, the outlook for such research is promising.   It eliminates the barriers for in-situ 

applications of the evaluation of biological activity of environmental sites. Such methods may 

prove to be promising tools for the initial assessment of the level of contamination and for the 

determination of highly contaminated areas to become the focus of the final physiochemical 

evaluation. Moreover, they can be used as an indicator of soil quality of agriculture soils as they 

determine the potential microbial community present in the soil. 
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APPENDICES 

A. Block diagram of data acquisition system 

 
Fig. A-1. Main VI to receive CO2 sensor analog output from Arduino UNO and log into a text file 

 
Fig. A-2. Sub-VI to read and average CO2 sensor analog output collected via Arduino UNO 
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B. SAS models and codes for different experiments 

B-1. Glucose optimization experiment 

B-1a. SAS model 

Yijk= µ + ai + Bj + (aB)ij + ɛijk 

Assumptions: 1. µ is the unknown overall mean response. 

2. ai is a fixed treatment effect corresponding to the ith level of factor a with ∑ a𝑖
6
𝑖=1 = 0. 

Treatments are six glucose concentrations (0, 5, 10, 15, 20 and 25 mg of glucose g-1soil). 

3. Bj is a random column effect due to jth level of factor B. The Bjs have independent 

normal distributions, with mean 0 and variance 𝜎𝐵
2. Column effects are three soil types selected 

from the soil classification.  

4. (aB)ij is a random effect due to the interaction of the ith level of factor a with the jth 

level of factor B. The (aB)ijs have independent normal distributions with mean 0 and variance 

𝜎𝑎𝐵
2 . 

5. The ais, Bjs and (aB)ijs are mutually independent. 

B-1b. SAS code 

DATA CO2; 

INPUT SOIL TRT SLOPE; 

DATALINES; 

1 1 0.16 

*** 

; 

PROC GLM; 
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CLASS TRT SOIL; 

MODEL SLOPE= TRT SOIL; 

MEANS TRT/TUKEY CLDIFF; 

MEANS SOIL/ TUKEY CLDIFF; 

RUN;  

B-2. 2 by 2 factorial design for preliminary sensor evaluation 

B-2a. SAS model 

Yijk= µ + Ai + Bj + (AB)ij + ɛijk 

Assumptions: 1. µ is the unknown overall mean response. 

2. Ai is a random effect due to jth level of factor A. The Bjs have independent normal 

distributions, with mean 0 and variance 𝜎𝐴
2. Factor A is microbial activity and has two levels: 

control and sterile.  

3. Bj is a random effect due to jth level of factor B. The Bjs have independent normal 

distributions, with mean 0 and variance 𝜎𝐵
2. Factor B is glucose addition and has two levels: 10 

mg of glucose g-1soil and none. 

4. (AB)ij is a random effect due to the interaction of the ith level of factor a with the jth 

level of factor B. The (AB)ijs have independent normal distributions with mean 0 and variance 

𝜎𝑎𝐵
2 . 

5. ɛijk is a random effect due to all the other factors with ɛijks independently, normally 

distributed with mean 0 and variance 𝜎𝜀
2 

5. The Ais, Bjs, (AB)ijs are mutually independent.  
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B-2b. SAS code 

DATA CO2; 

INPUT SOIL TRT SLOPE; 

DATALINES; 

1 1 -0.04 

*** 

; 

PROC GLM; 

CLASS TRT SOIL; 

MODEL SLOPE= TRT SOIL TRT*SOIL; 

MEANS TRT/TUKEY CLDIFF; 

MEANS SOIL/ TUKEY CLDIFF; 

RUN; 

B-3. PAH treated soils experiment 

B-3a. SAS model 

Yijk= µ + ai + Bj + (aB)ij + ɛijk 

Assumptions: 1. µ is the unknown overall mean response. 

2. ai is a fixed treatment effect corresponding to the ith level of factor a with ∑ a𝑖
8
𝑖=1 = 0. 

Treatments are eight phenanthrene concentrations (0, 0.1, 0.5, 1, 5, 10, 25 and 64 mg of 

phenanthrene per kg of soil). 

3. Bj is a random column effect due to jth level of factor B. The Bjs have independent 

normal distributions, with mean 0 and variance𝜎𝐵
2. Column effects are three soil types selected 

from the soil classification.  
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4. (aB)ij is a random effect due to the interaction of the ith level of factor a with the jth 

level of factor B. The (aB)ijs have independent normal distributions with mean 0 and variance 

𝜎𝑎𝐵
2 . 

5. The ais, Bjs and (aB)ijs are mutually independent. 

B-3b. SAS code 

DATA CO2; 

INPUT SOIL TRT SLOPE; 

DATALINES; 

1 1 0.53 

*** 

; 

PROC GLM; 

CLASS TRT SOIL; 

MODEL SLOPE= TRT SOIL; 

MEANS TRT/TUKEY CLDIFF; 

MEANS SOIL/ TUKEY CLDIFF; 

RUN; 

B-4. Diesel treated soils experiment 

B-4a. SAS model 

 

Yijk= µ + ai + Bj + (aB)ij + ɛijk 

Assumptions: 1. µ is the unknown overall mean response. 
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2. ai is a fixed treatment effect corresponding to the ith level of factor a with ∑ a𝑖
8
𝑖=1 = 0. 

Treatments are five diesel concentrations (0, 5, 20, 60 and 150 mg of diesel g-1 of soil) 

3. Bj is a random column effect due to jth level of factor B. The Bjs have independent 

normal distributions, with mean 0 and variance𝜎𝐵
2. Column effects are three soil types selected 

from the soil classification.  

4. (aB)ij is a random effect due to the interaction of the ith level of factor a with the jth 

level of factor B. The (aB)ijs have independent normal distributions with mean 0 and variance 

𝜎𝑎𝐵
2 . 

5. The ais, Bjs and (aB)ijs are mutually independent. 

B-4b. SAS code 

DATA CO2; 

INPUT SOIL TRT SLOPE; 

DATALINES; 

1 1 0.36 

*** 

; 

PROC GLM; 

CLASS TRT SOIL; 

MODEL SLOPE= TRT SOIL TRT*SOIL; 

MEANS TRT/TUKEY CLDIFF; 

MEANS SOIL/ TUKEY CLDIFF; 

RUN; 

 


