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ABSTRACT

A complex nanofluidic device consisting of a slit embedded with an array

of nanopit cavities is used to study the physics of confined DNA. By measur-

ing the number of cavities occupied by a molecule in varying geometries, the

entropic free energy of confinement and effective molecular width were mea-

sured. By measuring the correlation time of contour fluctuations between two

pits, the dependence of the dominant relaxation modes on the local free energy

landscape was investigated. By measuring the fraction of a molecule occupying

single pits of varying size, the effects of excluded volume interactions in cavi-

ties were studied. The results were considered in light of a model for the free

energy of confinement taking into account semi-flexibility, excluded volume,

and entropic elasticity, components of which were developed to understand

these experiments.
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RÉSUMÉ

Nous utilisons un dispositif nanofluidique complexe avec une fente com-

posé d’un treillis des fosses, et étudions la physique de l’ADN confiné. Nous

mesurons le nombre de fosses qui sont occupées pour une molécule en différentes

géométries. Nos données démontrent l’énergie libre de confinement entropique

et la largeur effectif de l’ADN. Nous mesurons le temps de corrélation des

fluctuations du contour entre deux fosses, et le dépendence des modes de re-

laxation sur le potentiel. Ensuite, nous mesurons la fraction d’une molécule qui

occupe des fosses uniques de taille variable, et nous étudions les effets stérique

dans des cavités. Nous considérons les résultats en tenant compte d’un modèle

pour l’énergie de confinement qui comprend la semi-flexiblité, la volume ex-

clu, et l’élasticité entropique. Ce modèle a été développé afin d’interpréter les

résultats.
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Statement of Originality and Contribution

This thesis represents the work I have done at McGill over the past four

years, which is an extension of the project I began for my master’s project in

2009. It has lead to several new discoveries in the field of DNA nanofluidics,

which have been or will be published in the journal Macromolecules with myself

as the first author. These include a paper on diffusion published in 2012, a

paper on fluctuations that has been published after initial submission, and

a paper on free energy measurements that has been published after initial

submission. A theoretical paper was written by Hendrick de Haan, a co-

author on my 2015 papers, to help understand the underlying physics of my

experiments, and it has been published in MacroLetters. One aspect of the

analysis code was written as a summer project by Hugo Brandao, who is an

author on my 2012 paper. Some experimental work and data analysis was

performed by Mikhail Mamaev and Lyndon Duong, who are co-authors on

my 2015 papers, as well as Laurence Coursol who may appear as a co-author

on a potential fourth paper. Jeff Chen developed a new theoretical model for

my project and is a co-author on one fo the papers, and may write up his

theoretical work separately. The entire project was under the supervision and

guidance of Walter Reisner.

Explicitly, the distinct contributions to scientific knowledge in this thesis

are: demonstration of controllable macromolecular diffusion using nanotopog-

raphy, measurement of the entropic free energy of confinement in slits and

cavities and the verification of the Chen-Sullivan formula, measurement of the

effective width of DNA on a single-molecule basis and its scaling with ionic

5



strength, experimental and theoretical mapping of the stable-unstable pit oc-

cupancy transition, observation of two harmonic modes in nanoconfined DNA,

measurement of the correlation time-scales of these modes, and their scaling,

measuring the speed of tension propagation through confined DNA, measure-

ment of single-molecule partitioning into cavities and its scaling, measurement

of a partitioning peak corresponding to a transition in slit physics, measure-

ment of the fluctuations in the partitioning and its surpression due to finite

size effects.
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CHAPTER 1
Introduction

1.1 Complex Nanofluidic Environments

Over the past decade, a field has emerged dedicated to studying the

behaviour of isolated DNA molecules confined in nanofluidic environments.

Nanofluidic environments, such as channels, slits, and cavities created in glass

with electron-beam lithography, can confine macromolecules in spaces far be-

low their typical size, altering their equilibrium and dynamic properties. In-

terest in this field comes from the fact that DNA is stretched at equilib-

rium by nanoconfinement, allowing genomic information to be read in a spa-

tially organized manner, and from connections to polymer physics for which

DNA is the best model system. From an applications perspective, the DNA-

nanoconfinement field has been driven largely by interest in single-molecule

nanochannel-based mapping technologies. After a decade of intense experi-

mental and theoretical effort, the physics of DNA in nanochannels has become

well understood in recent years, and applications are becoming mainstream.

What is less-understood and under-utilized compared to nanochannels are sys-

tems of complex nanoconfinement.

In contrast to simple nanofluidic systems such as nanochannels or nanoslits

that force the molecule to extend in one or two dimensions, complex nano-

environments offer multiple scales of confinement and regions of varying di-

mensionality and topography (Figure 1–1). For example, a complex nanofluidic
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Figure 1–1: Schematics of polymer chain behaviour under different types of
confinement, compared to fluorescent DNA images. From left to right: bulk,
quasi-2D (nanoslit), quasi-1D (nanochannel), quasi-0D (nanocavity), and com-
plex nanoconfinement.

geometry might contain slit regions of varying height, such that a free-energy

variation induces partitioning of the chain between the different regions. An

early example of a complex nano-environment is an electrophoretic gel, where

DNA is confined in cavities separated by small pores, leading to a length-

dependent mobility that can separate molecules by size. Size-exclusion chro-

matography operates on similar principles, using excluded volume interactions

to segregate different sizes of macromolecules. Entropic sieving devices, con-

sisting of arrays of microcavities connected by nanoslits, operate on a similar

principle, where the probability of a chain escaping each entropic trap de-

pends on its length. Recently, a new genetic sequencing technology has been

developed that confines small sections of a molecule in a micro- or nano-cavity

that acts as a zero-mode waveguide for incident light, allowing individual flu-

orophores to be read. Using “top-down” nanofabrication techniques, precisely

defined nano-environments that enable controlled partitioning, and serve as

model systems to study other complex environments found in biology or in-

dustrial systems. Many applications relate to biopolymer size-separation, a

necessary step in many bio-assays such as genetic sequencing.
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All of these devices rely on the fact that entropy is restricted in narrow

environments, and a polymer chain will partition most of its contour into a

wider nano-environment, while minimizing the contour in a narrower nano-

environment. In this thesis, I study the partitioning of DNA between different

regions of confinement in a complex nano-environment, to study the underlying

physical principles that dictate equilibrium partitioning in complex nanofluidic

systems. The complex nanofluidic system chosen here consists of a nanofluidic

slit, with a height on the order of 100 nanometers, which is embedded with

a lattice of square cavities (or pits) etched into one of the walls of the slit

to twice the depth of the slit. Because the cavities are twice as deep as the

slit, a chain can increase its entropy by partitioning contour into them, but

if the concentration in the cavities becomes sufficiently high, excluded volume

interactions drive contour back into the slit, and the equilibrium configura-

tion is a balance of these considerations. Such devices have previously been

used to study molecular self-organization, where it was shown the non-trivial

equilibrium structures could be dictated using complex nanotopography [1].

These devices have been used to show that mobility can be controlled using

complex nanotopography to halt driven molecules [2], making an analogy to

the “lakes-straits” model of gel electrophoresis. The research in this thesis

takes this type of device beyond the phenomenological level, and uses com-

plex nanotopography to make precision measurements of quantities relevant

to fundamental polymer physics that have not been measured before.

1.2 DNA as a Model Polymer

This thesis studies the behaviour of DNA molecules in confined geome-

tries, to probe the physics of polymers on a single-chain basis. Interest in
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confined DNA is largely shared by two fields of scientific inquiry: biotechnol-

ogy, where confinement is used to better read genomic information from the

molecule, and soft condensed matter physics, where DNA molecules serve as

a model system to study polymer physics. A sub-discipline has emerged in

its own right dedicated to understanding polymer physics of confined DNA as

well as applications of such systems. Most research groups in the field work

on both areas, although this thesis is concerned with the physics aspect.

The development of the field is relatively recent: experimentally, appropri-

ate microscopy and microfabrication techniques have only been available since

the late 90s or early 2000s [3]. Theoretical models did not progress beyond

a heuristic level until the 2010s, when computational algorithms and tech-

nology reached the point of simulating experimental conditions with chains

comparable in length to the DNA used in experiments [4].

The conformation of a polymer depends on the geometry of its environ-

ment [3]. In the bulk, with three free dimensions, polymers will form a random

coil with some characteristic size that maximizes entropy. Here, entropy is

based on conformational degeneracy: the number of different microscopic con-

figurations the chain can adopt consistent with a given coil size. If a molecule

is confined between two parallel plates, in a slit, with a separation less than the

characteristic size of the molecule (the radius of gyration), the conformations

along the confinement direction are restricted and the molecule spreads out

in the two free dimensions, in what is known as quasi-two-dimensional con-

finement. The equilibrium structure is now a random coil in two dimensions.

If the molecule is confined in a narrow tube rather than a slit, in quasi-one-

dimensional confinement, there is only the axial degree of freedom and the
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molecule extends along the tube axis. Conformational degeneracy is so re-

stricted that there are no fluctuations in shape, only in extended length along

the channel. Finally, if a polymer is confined in a cavity smaller than its charac-

teristic size in three dimensions, quasi-zero-dimensional confinement, it simply

occupies the confines of the cavity. In the context of DNA as a model poly-

mer, such confinement begins at the radius of gyration of λ-DNA, roughly 700

nanometers, and the three systems of often called nano-slits, nano-channels,

and nano-cavities (Figure 1–1).

The behaviour of a polymer chain is governed by various length-scales

(Figure 1–2). The total contour length of the chain represents how long it

would be if entirely stretched out. For the DNA used in these experiments,

that is roughly 16 microns [3]. The persistence length, a manifestation of bend-

ing rigidity, represents the scale below which the chain behaves as a rigid rod,

which for DNA is roughly 50 nm (in some conventions the Kuhn length, twice

the persistence length is used). The effective width represents how close two

sections of the chain can be to each other before being mutually repelled. For

DNA under physiological buffer conditions, this is typically below 10 nanome-

ters, larger than the double-helix width of two nanometers because of the

cloud of counter-ions around it [5]. The overall behaviour of the chain de-

pends on a combination of these length scales, and the average “size” of the

polymer’s equilibrium structure is given by its radius of gyration. The rel-

evant length-scales of DNA in polymer physics are typically larger than the

length-scales associated with the double-helix structure. Base-pairs subtend a

contour length of roughly 0.3 nm, the double helix is roughly 2 nm in diameter,

and the major grooves along the backbone are separated by roughly 3 nm.
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Figure 1–2: Schematic of a polymer highlighting the different length scales:
the total contour length L, the persistence length p, the effective width w, and
the radius of gyration Rg which depends on all three.

1.2.1 Physical Motivation

A large part of polymer physics focuses on understanding the bulk prop-

erties of plastics, gels, and other complex fluids by describing their behaviour

on a single-chain level. This can be used, for example, to predict the viscosity

of a polymer melt as a function of chain size [6]. Bulk measurements based on

scattering or rheometry do not directly address the single-chain level. One par-

ticularly powerful concept in bulk polymer physics is the reptation tube model,

which posits that a single chain in a polymer melt behaves as if it is confined in

a virtual tube defined by entanglements with its neighbours. With traditional

synthetic polymers it is difficult to perform experiments on a single-molecule

level, and DNA fills this niche quite well. It is monodisperse, as all genomes

from a given organism are the same size. It can be stained fluorescently and

seen in an optical microscope. It is large enough for its features to be resolved

with optical microscopy, but small enough that thermal fluctuations remain

the dominant driver of physics. Several theoretical models had been developed
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to describe a chain confined in a virtual tube, and by placing a real chain in a

real tube, these predictions could be verified on a single-molecule basis.

When a polymer is confined, conformational states that extend beyond

the dimensions of the confining geometry are restricted. Reducing the num-

ber of accessible states lowers the entropy of the system. Confining a chain

may also increase the probability of pairwise collisions between its segments,

or cause the chain to bend more than it normally would. The energy between

the bulk and the confining geometry due to the change in entropy, excluded

volume interactions, and bending rigidity is known as the free energy of

confinement and is the work required to bring a chain from the bulk into

confinement. At equilibrium, a confined chain will orient and partition itself

in such a way as to minimize the free energy of confinement. It is a quantity

that is sensitive to the underlying polymer physics, and measuring it can help

elucidate the different regimes that govern physics at that scale. Measure-

ments have typically focused on examining conformations of confined chains,

be it the extension along a nanochannel or the span along a slit, but prior

to this work the free energy of confinement has not been directly measured.

Numerous controversies still exist that have not been conclusively answered

by these studies, including the role of excluded volume under confinement,

and the existence of and transitions between various posited scaling regimes.

Measurements of the free energy of confinement can clarify these questions.

DNA nanofluidics experiments have largely focused on nanochannels, where

the extension is an easily measurable quantity. There has been less work on

DNA in slits, with some experiments focusing on diffusion or in-plane size

of the molecule. There have been no systematic studies of the confinement
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physics of DNA in cavities. Typical experiments use simple uniform geome-

tries such as slits and channels, with the size of the confinement being the only

experimental degree of freedom. By combining multiple confinement-scales to-

gether on a single device, there are multiple experimental degrees of freedom

that can be tuned and the partitioning between different confining regions can

be used to measure the free energy of confinement.

Energy is not a quantity that is typically measured directly. In thermal

and statistical physics, energy is related to probability through the Boltzmann

distribution, where the probability of observing a system in a given state is

exponentially disfavoured by the energy of that state. In nanofluidic systems,

probability manifests itself in the partitioning of molecular contour between

different sized geometries.

In this work, I use a device containing a nanofluidic slit with an embed-

ded lattice of cavities. It allows me to simultaneously probe slit- and cavity-

confinement physics, and measure the free energy of confinement by making

observations of the partitioning. Through these measurements, I can exam-

ine how the free energy of confinement scales between different regimes of slit

confinement and measure the strength of excluded volume interactions under

confinement, clarifying standing questions in confined polymer physics. I ap-

ply this knowledge of the free energy to the dynamics of confined DNA, using

it to control the internal fluctuation time-scales and global diffusivity.

1.2.2 Novelty and Importance of this Thesis

This thesis uses a unique experimental technique, in the sense that nobody

else uses it, to make measurements that nobody has made before. I demon-

strate that a complex nanofluidic device can be used to tune the local free
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energy landscape to halt or promote diffusion. I measure for the first time the

confinement free energy of DNA in slits and cavities. I show that DNA can be

either stably trapped or freely diffusing depending on the confining potential.

I demonstrate the reduction of internal molecular fluctuations into controlled

harmonic modes. Methods of controlling DNA stability and dynamics on long

and short timescales factor into the design of lab-on-a-chip bio-devices.

The results resolve several questions in the field of DNA nanofluidics. One

concerns the relevant scaling in the so-called “transition” regime between the

Odijk and deGennes limit, which is the subject of some debate [7]. Another

is the role excluded volume interactions under confinement and their scaling,

which have been of recent theoretical interest [8] but experimental tests have

been nearly absent [9]. I also present the first measurements of the effective

molecular width in nanofluidic systems and their scaling with ionic strength.

Previously, the effective width was only measured in bulk [10], but here it

is measured on a single molecule basis. In addition to the experimental re-

sults presented, two new theoretical models were developed to help understand

them: the full theory of the stretched confined chain [11], and the eigenvalue

problem for the semi-flexible chain in a cylinder.

As of the time of this writing, this work has lead to a paper published on

diffusion [12], a paper on fluctuations that has been accepted for publication,

and a paper on free energy measurements that is currently being peer-reviewed.

I am the first author of all three, and a fourth may be written.
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1.3 Literature Review

1.3.1 Physical Properties of DNA

The experimental picture of the polymer physics of DNA is not complete.

A basic quantity is the Flory exponent, describing the radius of gyration as

a function of length, but spectroscopy experiments that attempt to measure

the Flory exponent of DNA have not yielded consistent results: Nepal et al.

[13], have found consistent ideal scaling (ν=0.52) up to 46 microns, while other

experiments by Robertson et al. [14] and Smith et al. [15] find an exponent

closer to 0.6 with molecules up to about 100 microns. However, an analysis

from Mansfield and Douglas [16] finds that the metric used by those experi-

mentalists does not represent the true size scaling, which upon re-analysis is

closer to the ideal value. Some of these differences may be due to different ionic

conditions between experiments. The persistence length and effective width

of DNA are both dependent on ionic strength. The experimental picture, as

summarized by Savelyev [17] is not clear, and many of the experimental re-

sults may themselves be based on theoretical assumptions, for example, when

fitting to stretching data. It is generally agreed upon to be between 50 and 60

nanometers over several decades of ionic strength, but the behaviour at low

ionic strength is still controversial. The persistence length can be considered as

the sum of two contributions: the inherent structural rigidity of the molecule,

and an electrostatic component that depends on ionic strength. There are two

models in the literature describing the electrostatic contribution but disagree-

ing with each other. The Odijk-Skolnick-Fixman model (OSF) [18] posits that

it is inversely proportional to ionic strength (proportional to the square of the

Debye length), while the Dobrynin model [19] posits that it is proportional to
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the reciprocal square root of ionic strength, or to the Debye length. Interest-

ingly, despite the weaker scaling with ionic strength, the Dobrynin model has

a much larger prefactor and thus depends more strongly on ionic strength.

The dependence of the effective molecular width on the ionic strength is

discussed by Stigter [5], who considers the screened electrostatic interaction

between charged rods (a treatment of non-adjacent anisotropic monomers).

The effective width is the distance at which this interaction potential is of

order kT. The effective width as predicted by Stigter is slightly larger than

the naive prediction of the double helix width (2 nm) plus twice the Debye

length, due to the breakdown of the Debye-Huckel approximation near the

molecule. The principal experimental investigation of DNA effective width

and its scaling with salt was performed by Rybenkov [10], who measured the

probability of DNA knot formation before cyclization, as measured by gel

electrophoresis. He found that salt-dependent scaling consistent with Stigter’s

theory. Less exhaustive measurements have been performed by measuring the

osmotic pressure exerted by DNA [20] and by light scattering [21]. On a single

molecule basis, experiments were lacking before I measured the quantity, as

is described in this thesis. More recently, Lee et al. [22] noticed that DNA

at very low ionic strengths cannot flow into nanofluidic slits below a certain

height, and concluded that the critical height represents the effective width.

Experiments in this field typically use an intercalating dye for fluorescence

measurements, but the effect of the YOYO-1 intercalating dye on the persis-

tence length of DNA is also not clear: stretching experiments suggest a slight

stiffening [23] while AFM measurements [24] suggest a floppening. It is gen-

erally agreed upon that the total contour length increases upon intercalation.
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Several experiments have examined different staining ratios of YOYO-1 on

DNA in nanofluidics. Persson et al. [25] measured the extension-confinement

relationship of DNA in nanochannels at different YOYO-1 concentrations and

found a 27 percent increase in extension between the strongest and weakest

stains, with very minor differences in the confinement scaling. A similar ex-

periment by Strychalski [7] in slits rather than channels found little effect from

different staining ratios, besides increased intensity.

The DNA typically used for polymer physics experiments is the genome

of the λ (Lambda) bacteriophage, a virus that infects E. coli. The genome

is 48,490 base pairs long making it roughly 16 microns when extended. In

the virus, it is coiled inside an icosahedral capsid roughly 60 nanometers in

diameter. When the virus attaches to the membrane of a bacterium, the DNA

is injected through the tail into the cytoplasm. The other genome typically

used in the field is that of the T4 bacteriophage, which is similar but has

a genome roughly four times as long. Recently, it was suggested by Tree et

al. [26] that this is not sufficiently long to obey asymptotic polymer physics

behaviour. Biochemically, λ has sticky ends that allow it to hybridize or

cyclize, and precaution must be taken to prevent this. It also has an AT-rich

region near its midpoint, which makes it susceptible to photonicking in two.

1.3.2 DNA Nanofluidics: State of the Field

Some of the first studies of DNA in nanochannel confinement were per-

formed by my supervisor Walter Reisner, henceforth referred to as Walter, as

a Ph.D. student. An initial paper in PNAS [27] showed that the chain ex-

tension was linear with contour length, consistent with one-dimensional Flory
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statistics. A later paper in Physical Review Letters made the first set of mea-

surements of the confinement-extension relation [28] which generated a great

deal of interest in the field. It was realized that the chain extension was a good

metric of the underlying polymer physics, and various experiments attempted

to measure it as a function of ionic strength [29], macromolecular crowding

[30], and molecular topology [31]. The initial PRL also made measurements

of the end-to-end relaxation time, showing a peak near the transition be-

tween two scaling regimes, and subsequent research also attempted to make

measurements of internal fluctuation time-scales [32], the relaxation time of

wavemodes along the chain [33], and to distinguish between similar confine-

ment regimes using fluctuations [34]. Equilibrium nanochannel confinement

is at this time generally well understood, and now experiments are turning

to non-equilibrium physics: collapsing molecules with AC electric fields [35],

compressing them with optically trapped beads [36], and using them as force

probes of thermophoretic effects [37].

Theoretically, the extension was traditionally understood in terms of chain

deflection in narrow channels and blob-partitioning in large channels, the so-

called Odijk [38] and deGennes [39] regimes discussed in greater detail be-

low. However, most experiments took place in channels whose sizes placed

the physics between these two regimes. In 2011, Wang et al. [4] developed

Monte Carlo simulations to simulate the extension of DNA in nanochannels,

a feat previously not computationally possible. They posited an “extended-

deGennes regime” in the transition region, in which the blobs become elon-

gated, predicted the same scaling in the extension as the deGennes regime

but different scaling in the fluctuations. Other papers attempted to clarify
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the properties of this regime [40], examine the interplay between excluded vol-

ume and semi-flexibility [41], and examine backfolding in the Odijk regime in

greater detail [42]. Although these predictions are often in terms of scaling

laws, recently an exact prediction for the extension and fluctuations of a chain

in the extended-deGennes regime has been derived, down the prefactor level

[43].

DNA nanoconfinement in slits has not been studied to the extent that

channel confinement has been. Measurements of the in-plane radius of gyration

with respect to height have been made in terms of static properties [7] [44],

with limited agreement to the theoretical predictions. Measurements of the

diffusion coefficient [45] and relaxation time [46] as a function of slit height

have been made to attempt to clarify the role of hydrodynamic interactions

under confinement. The most detailed study of hydrodynamic interactions

is by Jones et al. [47] who measured intra-chain intensity correlations as a

function of spatial separation and found that the correlations decay when the

spatial separation exceeds the height of the slit. Lee et al. examined the size-

scaling at very low ionic strength to clarify the competing role of electrostatic

and confinement effects [22]. One of the most systematic studies of size-scaling

in slits as a function of height and ionic strength [48], showing an electrostatic

depletion length between the molecule and the wall, was retracted due to

improper data analysis and left a bit of a vacuum in the field. In particular,

it is still controversial as to whether the molecular span reaches a constant

size in sufficiently small slits. Non-equilibrium measurements have also been

performed: a group in Taiwan measured the retraction rate of DNA from a

slit into a reservoir [49] and a group in Denmark attempted to measure the
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filtering of Fourier fluctuation modes due to confinement when the chain is

pulled by a optical tweezers [50].

The theoretical developments for slit confinement have been similar, with

various simulations [51] and scaling analyses [52] attempting to fill in the gaps

between the Odijk and deGennes limits (where the slit height is much smaller

than or much larger than the persistence length, respectively), although it is

thought that in wide slits the behaviour is dominated by semi-flexibility rather

than excluded volume. Recent work by Muralidhar et al. [53] looked at the

Odijk regime in slits in greater detail and showed that excluded volume effects

in slits are negligible.

Prior to this thesis there have been no systematic explorations of the

physics of DNA in nanofluidic cavities. Experiments in similar systems by

Walter [1] [2] and myself [12] have examined applications of cavity physics

but not the physics themselves. Nykypanchuk and coworkers examined DNA

diffusing through spherical cavities connected by pores [54] [55] and saw some

of the same quantitative behaviour I observed in my master’s thesis. In one

experiment [9], he examined the partitioning of DNA between two differently

sized spheres, comparing the probability of the molecule occupying the smaller

sphere to theoretical predictions with and without excluding volume, and found

that excluded volume was relevant.

1.3.3 Applications of Nanofluidics

DNA is more than just a useful model for polymer physics: it also con-

tains our genetic sequence. There is significant technological interest in using

nanoconfinement to read the genetic information contained in DNA. In a cell

or in the bulk, the genetic sequence is spatially disorganized, and a small step
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in space can lead to a totally different part of the genome [56]. Current genetic

sequencing technology is limited in its ability to see large-scale structure by

the fact that they require many copies of very small segments of DNA to be

individually read and stitched together.

When a molecule is stretched out along the axis of a nanochannel, there

is a strong correlation between the genetic position along the molecule, and

the spatial position along the channel, and several technologies have been de-

veloped to use this for large-scale genomic mapping. A simple technique is to

attach a sequence specific fluorophore to the DNA, and looking at the spatial

distribution of those fluorophores [25] [57]. This technique is now in commer-

cial use, by a company called BioNanoGenomics. A technique developed by

Walter involves partially melting stretched DNA [58], allowing the AT bonds

to denature while keeping the CG bonds closed. The intercalating dye from

the AT regions leaves the molecule, leaving a “barcode” of the AT- and CG-

rich regions of the genome. This was used by Rob Welch in his master’s thesis

to make a large-scale map of the yeast genome [59]. While this technique has

a higher information density than site-fluorophore mapping, its resolution is

still diffraction limited to hundreds or thousands of base-pairs. Nanochannel

mapping techniques are useful for large-scale structural information, for exam-

ple determining if one chromosomal segment has been transplanted to another

site, as occurs in certain cancers, and also for rapid identification of strains,

for example to distinguish between regular and antibiotic-resistant bacteria

in a hospital setting [3]. These techniques cannot read the genetic sequence.

Similar techniques takes advantage of slit rather than channel confinement [60]

[61] but operate on generally the same principles.
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Recently, technologies have been developed based on DNA confined in

small cavities that act as zero-mode waveguides [62]. The cavities are not

meant to specifically confine the DNA, but they provide an evanescent optical

field that can excite single fluorphores on the molecule as it binds to sites in

the cavity, allowing the fluorophores to be read one at a time. Such devices,

developed by Pacific Biosciences, are now in commercial use [63].

An area that has received a large amount of interest is nanopore sequenc-

ing [64]. A nanopore is a very small hole with a diameter typically of ten

nanometers. As an ionic fluid flows through the pore under a voltage bias,

the electric current can be measured, and if a DNA molecule goes through the

pore, it blocks the flow of ions, causing a small dip in the measured current. If

this can be measured precisely enough, the blockage caused by each individual

base pair may be detected, allowing the sequence to be reconstructed. The

basic nanopore setup is fundamentally limited in sensitivity because both the

signal and the noise are fundamentally linked to the rate at which the volt-

age bias drives fluid and DNA through the pore. There are other proposed

methods to overcome this, including measuring a transverse tunnelling current

across the pore (rather than through it) [65], or controlling the flow of DNA

through other nanofluidic mechanisms [66]. One company (Oxford Nanopore)

claims to have developed a working nanopore sequencer, but results are limited

[67]. Independently of their use in biotechnology, a large body of theoretical

and computational work has been developed to describe the polymer physics

of these systems [68]. This thesis concerns the equilibrium properties of DNA,

and nanopores are a decidedly non-equilibrium system.
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A biological connection to this field is the packaging of genetic material

in cells and capsids. A human cell contains several meters of DNA compressed

into a few microns. The DNA of 100 people would stretch to a length of a

light-year. The study of how this much DNA is packaged into such a small

volume is of interest to cell biology. In viral capsids, DNA is arranged more

like a liquid crystal than a polymer solution [69] and it has been proposed

that the process of viral DNA ejection is determined entirely by its free en-

ergy of confinement [70]. In mammalian cells, the complex network of proteins

that compactify DNA contribute to the organization of the nucleus. In bac-

teria, however, the confinement of the chromosome is most similar to DNA

in nanofluidic systems. There has been research studying compactification by

cellular proteins, both experimental [71] and theoretical [72], the segregation

of bacterial chromosomes during cell division has been discussed in the con-

text of polymer mixing in nanochannel confinement [73]. This may suggest a

very fundamental statement: the first cells divided simply in order to increase

entropy.

1.4 Theory of Polymer Physics

This section covers the basic models of polymer physics and the analytical

tools that are used to develop to them. Theory as it directly pertains to my

experimental system, as well as new theoretical models developed for this

thesis, will be discussed elsewhere.

1.4.1 Polymer Models

The simplest model of a polymer is the ideal chain (Figure 1–3). A poly-

mer of total contour length L can follow a random walk through space with

steps of length b, called the Kuhn length, representing an intrinsic monomer
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size. There is no correlation in orientational order along the chain, and the

ideal chain can cross itself such that two segments occupy the same point in

space. There are many different conformations a chain of a given length can

occupy, but the conformations that leave the chain in an extended state are

relatively rare, as well as are extremely compact conformations. The entropy

of the chain arises from the degeneracy of conformational states for a given

macroscopic size. If the two ends of the chain are held fixed, the entropy

of the chain arises from the degeneracy of conformations that yield the same

end-to-end distance. When the chain is maximally stretched there is only one

microscopic state and entropy is minimal, while when the ends are closer to-

gether it can be re-oriented many ways maintaining that distance, thus the

higher entropy state is one where the ends are closer together. In contact with

a thermal reservoir, the chain will sample many possible configurations and is

likely to be found in one with high conformational degeneracy

Considering the distance between the two ends, because both ends fluc-

tuate and sample many configurations, the average separation will be zero,

much like how the average distance covered by an ensemble of random walks

is zero. However, the mean-squared end-to-end distance, much like the mean-

squared displacement of a random walk, is nonzero. The mean vector dis-

placement from a segment of the chain to the centre of mass is zero, but the

root-mean-square distance from the centre of mass, called the radius of gy-

ration, is nonzero, and represents the characteristic size of the molecule. For

the ideal chain in three dimensions, the radius of gyration scales as the square

root of the contour length, because the mean-square displacement scales as

the contour length.
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Figure 1–3: Table of different classes of polymers, depending on whether ex-
cluded volume and semi-flexibility are taken into account.

Rideal
g = b

√
L

6b
≈ L

1
2 (1.1)

Realistically, no two segments of a chain can occupy the same point in

space at the same time. This is known as self-exclusion or the excluded vol-

ume interaction. The simplest proscription of this interaction is that of hard-

spheres, while Lennard-Jones repulsion or screened electrostatic interactions

may be more realistic [74]. A random walk that is forbidden from re-visiting

an already accessed location is called a self-avoiding walk, and is mathemati-

cally equivalent to an Ising model with zero spin degrees of freedom. Because a

self-avoiding walk is less compact than a true random walk, a polymer that ex-

periences self-exclusion is called a swollen chain. Making an analogy between

an ideal chain and an ideal gas, the swollen chain is to the ideal chain as the

van der Waals gas is to the ideal gas. The fact that a self-avoiding walk cannot
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visit the same site twice means that a swollen chain has a radius of gyration

larger than that of an ideal chain with the same contour length: its gyration

radius has a characteristic growth exponent closer to 3/5 than to 1/2. (more

detailed calculations put it closer to 0.588 [26]). This is often called the Flory

exponent after Paul Flory and is important for dictating polymer behaviour.

Rswole
g = b

(
L

b

) 3
5

≈ L0.6 (1.2)

The classical Flory exponent in D dimensions is 3
D+2

: 0.6 in 3D, 0.75 in

2D, and 1 in 1D.

While polymer chains lack long-range orientational order along the chain,

there is a length-scale over which the chain orientation is correlated. Semi-

flexibility describes behaviour where the polymer behaves as a rigid rod over

short length scales and performs a random-walk over long length scales. The

persistence length is defined as the exponential decay length of tangent-tangent

correlations along the chain in the bulk, and is equal to the bending rigidity

of the chain.

〈cos θ (s) · cos θ (s+ ∆s)〉 = e−
∆s
p (1.3)

The theoretical model of the semi-flexible polymer is called the worm-like

chain (WLC) or Krotky-Porod model [75]. It describes the end-to-end distance

and radius of gyration of the chain that interpolates between two limits.

R2
WLC = 2pL

(
1− p

L

(
1− e−L/p

))
(1.4)
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When the contour length is much shorter than the persistence length, it

is essentially a rod and the radius of gyration grows with length. When it is

much longer than the persistence length, the chain behaves like a random coil,

with b = 2p. The Kuhn length is thus physically the step-size of the random

walk that describes the semi-flexible polymer conformation in the limit where

L�p. DNA behaves as a semi-flexible chain with excluded volume interactions.

It has an effective width between 5 and 20 nanometers, a persistence length

between 50 and 80 nanometers (both depend on buffer conditions), and a

contour length (for the λ-DNA used in experiments) of roughly 300 times

its persistence length. There is no simple analytic theory for a semi-flexible,

excluded volume chain, and the different interactions can interfere with each

other (for example, two segments on a rigid chain would not interact with

each other through excluded volume as they otherwise would, if the chain

cannot bend enough to get them close to each other). Several textbooks exist

providing more thorough summaries of polymer physics, including Rubinstein

and Colby [76].

1.4.2 Scaling Laws, Blob Models and Flory Theory

Many predictions in polymer physics are not in terms of exact equations

but rather through scaling laws describing how one quantity changes with vari-

ations in another. These are often expressed in terms of power laws, where an

exponent dictates the relationship. For example, in the previous subsection it

was shown that the relationship between radius of gyration and contour length

is Rg ≈ L0.5 for an ideal chain and Rg ≈ L0.6 for a swollen chain. Working in

terms of scaling laws and exponents is useful for working out complex theoret-

ical predictions without worrying about individual constants or small effects
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Figure 1–4: Schematic of a chain partitioned into blobs. Within the blob
length-scale, individual monomer interactions are considered, but at larger
length-scales interactions between the blobs are considered.

that would not change the scaling. Experiments often plot data on log-log

axes to compare the measurements to a known power scaling prediction.

A powerful concept used to derive scaling relations in polymer physics is

that of the blob (Figure 1–4). A blob is a small region of space containing part

of the polymer, over which the polymer experiences equilibrium bulk physics,

and the physics over larger length scales can be treated as interactions between

these blobs. In the bulk, the blob length scale is typically the length scale below

which the chain does not interact with itself, thus within the blob the chain

obeys ideal statistics while over larger length scales the polymer can be treated

as a swollen chain of these blobs, and the average number of collisions per blob

is one. A subtlety in blob theory is that because the blobs are in thermal and

mechanical equilibrium with each other, each must have an energy of order

kT.

Under confinement, the blob length scale is typically the dimension of

confinement, the length-scale below which the chain will not interact with

the confining walls. The chain statistics within the blob are those of the
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bulk geometry, be it ideal or swollen, while the chain statistics between the

blobs are those of the reduced dimensionality. This can be used to derive

some fundamental scaling relations, for example the confinement-extension

relation of a chain in a nanochannel. If the chain is partitioned into spherical

blobs with the same diameter as the channel, within the blob the chain obeys

statistics such that the contour length per blob scales according to the 3D Flory

exponent. Between the blobs, the chain can be treated as a string of excluded-

volume spheres obeying 1D Flory statistics. The total extension of the chain is

simply the diameter of the blobs (same as the channel, D) times the number of

blobs, which is the total contour length (L) divided by the contour per blob g,

known from the in-blob statistics that D ≈ g0.6 implying g ≈ D1/0.6. Because

L is independent of D, the scaling of the chain extension with respect to D is

just D over g, scaling as D1−1/0.6 = D−2/3. This is an experimental prediction

that was derived without knowing anything about the properties of the chain

or its interaction with the walls, only using blob analysis.

An alternative derivation of the extension of DNA in a nanochannel comes

from what is known as Flory theory, where the total free energy is written

as the sum of entropic and excluded volume considerations. The entropic

component is a harmonic and the excluded volume component is proportional

to the ratio of the square of contour length to the volume of the channel

segment that contains the confined chain. The equilibrium extension scaling

(ignoring order-unity prefactors) can be found by minimizing the energy:

FFlory
kT

=
R2

bL
+

bL2

D2R
→ dF

dR
= 0 =

2R

bL
− bL2

D2R
→ Req ≈ LD−2/3 (1.5)
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This gives the same scaling for the chain extension as blob theory. How-

ever, expanding the free energy about equilibrium gives a D−4/3 scaling, while

the blob argument gives D−5/3. This contradiction, two derivations predicting

the same size scaling but different energy scalings, can be resolved by rewrit-

ing a blob model that allows anisotropic blobs with ideal in-blob statistics,

with an additional constraint that the extension within the blob is such that it

would have the same length assuming both ideal and swollen statistics. This

gives us two regimes: the deGennes regime described by spherical blobs with

self-avoiding statistics, and the so-called Extended deGennes regime described

by ellipsoidal blobs with ideal statistics [3]. Both of these regimes are invoked

to describe nanoconfined DNA: the Extended deGennes regime describes semi-

flexible chains confined in geometries too narrow for spherical blobs to form

(roughly 100 nm to 500 nm wide channels), while the deGennes regime de-

scribes wider channels.

Blob and Flory arguments are useful for deriving scaling relations from

a small number of assumptions with fairly simple algebra. They are limited

in their precision: the prefactors of the scaling arguments cannot be derived

with blob logic, which require either a more rigorous field theory or detailed

numerical simulations. Another limitation of blob and scaling arguments in

general is that they apply in the limit of infinitely long chains, but the DNA

molecules used in a typical experiment may be too short to obey this universal

behaviour. For example, even though a DNA molecule has excluded volume

interactions between different segments of the chain, if the chain is not long

enough, it is unlikely for different segments to interact with each other and it

will behave like an ideal chain.
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1.4.3 Field Theory

More precise models describing confined chains can be developed from

polymer field theory. The distribution of the contour concentration of an en-

semble of chains is equivalent to the probability of a brownian particle visiting

a specific location, which is governed by the diffusion equation. The ground

state solution of the diffusion equation for a given set of boundary conditions is

a monomer concentration profile [77]. The differential equation can be made

more complex to incorporate semi-flexibility through the wormlike diffusion

equation [8] or excluded volume by adding nonlinearity to the PDE [78]. Be-

cause these equations do not often have closed-form solutions, self-consistent

field theory (SCFT) is often used, where a solution is guessed and iterated

towards. Polymer field theory is more precise in its predictions than blob scal-

ing, and recently has been used to derive prefactors as well as scalings for the

nanochannel problem [43].

The simplest differential equation for the polymer concentration field is

the diffusion equation, which is equivalent to the time-independent Schroedinger

equation with a real solution Ψ representing the probability of finding a monomer

at a given location:

[
−b

2

6
∇2 + V

]
Ψ = EΨ (1.6)

Here, E is the energy eigenvalue of the problem and V is some external

potential. Solving this equation with an appropriate potential and boundary

conditions can yield the density profile Ψ2 and the free energy of confinement.
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1.4.4 Numerical Simulations

The macroscopic behaviour of polymers can be studied by simulating

their microscopic behaviour, through numerical simulations. If blob argu-

ments and field theory represent a “top-down” approach to understanding

polymers, numerical simulations represent the “bottom-up.” By simulating

large ensembles of chains, the expected behaviour can be determined. Chains

are often represented as spherical beads connected by springs. In addition to

the nearest-neighbour spring interactions, the beads can interact through ex-

cluded volume (for example a Lennard-Jones repulsion between non-adjacent

beads) and semi-flexibility can be imposed with a bending potential, allowing

simulations of a semi-flexbile excluded volume chain where theory is lacking.

The chains can be simulated through Monte Carlo sampling, where the sys-

tem evolves through perturbations with a Boltzmann-weighted probability, or

through molecular dynamics, where the chain evolves over time through New-

ton’s laws of motion, with stochastic thermal noise and an effective viscosity.

To calculate the extension of a chain in a tube, similar to the previous

blob section, an ensemble of chains would have to be simulated inside tubes

of different sizes and their mean extensions recorded and averaged. A long-

standing challenge is the simulation of long polymer chains, long enough to

be experimentally relevant and to display universality. Simulations of longer

chains are more computationally intensive and risk having much lower sam-

pling compared to short chains. In recent years, computer technology and the

development of algorithms have allowed simulations with chains long enough

to be experimentally and theoretically relevant. The “modern era” of numer-

ical simulation in this field can be traced to the paper of Wang, Tree, and
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Dorfman in 2011 who simulated the extension of DNA in nanochannels and

obtained good agreement to experiment [4].

1.4.5 The Free Energy of Confinement of an Ideal Chain in a Slit:
A comparison of three methods.

As discussed previously, the free energy of confinement is the work that

is required to bring a polymer chain from the bulk into a confining geometry.

It arises due to the loss of entropy under confinement, and contributions of

excluded volume and bending energy as segments of the chain are brought into

closer proximity. Here, the free energy of confinement of an ideal chain in a

slit is derived according to the three discussed methods, as an example of how

they can be used to generate experimental predictions.

Blob argument. Consider an ideal chain in a slit of height h, dividing

the chain into a series of connected blobs with length-scale h (Figure 1–5).

Within each blob, a given monomer does not feel the effects of confinement,

and obeys bulk statistics, which we declare to be ideal. Thus, the contour

length is related to the blob length scale through the relation bgν = h, where

we take the Flory exponent ν to be 1/2, b is the monomer size and g is the

number of monomers per blob. Because the blobs are in thermal equilibrium

with each other and do not interpenetrate, each one contributes a free energy

kT , and the total energy is F = GkT where G is the total number of blobs.

The number of blobs is the total number of monomers L/b divided by the

number of monomers per blob, G = L/(bg). From the ideal scaling we have

g = (h/b)1/ν and G = (L/b)bh−1/ν . With ideal statistics, the free energy of

confinement is F = kTLbh−2, which is equivalent to the exact expression to

within a prefactor.
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Figure 1–5: A blob picture of a confined chain.

Numerical simulation. I generated random walks on a square grid

with 2000 steps (Figure 1–6). A “slit height” was chosen, and it was observed

whether a given walk exceeded the bounds of the slit or not. The proportion

of walks that satisfied the confinement conditions was measured as a function

of height. The probability of finding a chain in a confined region is equivalent

to its Boltzmann-weighted free energy of confinement, thus the free energy of

confinement can be calculated from the logarithm of the proportion of chains

satisfying the confinement conditions. By performing a power law fit to this

data, the scaling of the free energy of confinement can be measured. From

these rudimentary simulations, we find a power-law scaling of −2.2 ± 0.3,

consistent with the ideal blob argument. The prefactor for an inverse-square

scaling describing this data is approximately 2000, the length of the chain,

matching the blob model for b=1. With greater time devoted to computation,

the precision can be improved.

Exact solution. The exact solution is ultimately arrived at by finding

the probability of a monomer being found at a specific location, which is a

form of the diffusion equation in an external potential. In the case of an ideal

chain in a slit, the potential is zero within the slit, infinite elsewhere, and

has boundary conditions such that the probability of finding a monomer on a

wall is zero. This leads to an ordinary differential equation that is the same
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Figure 1–6: A simple numerical model I developed to compute the free energy
of confined chains. Random walks are generated, and the fraction satisfying
the confinement conditions is measured. The free energy of confinement is the
logarithm of the probability of finding a confined chain.

as the quantum particle in an infinite square well. The ground state energy

eigenvalue of this system is

F = kT
π2

6

Lb

h2
(1.7)

This again matches the predicted scaling of the blob model as well as the

numerical simulations, but solving the problem exactly allows a measurement

of the prefactor, approximately 1.64.

1.4.6 More Complete Models of Slit-Confined Polymers

The above derivations apply to a freely jointed ideal chain, which may

approximate DNA in a slit much larger than its persistence length. When the

confinement is much smaller than the persistence length, the conformational

states leading to the classic spherical blobs are surpressed by bending rigidity.

A more realistic description of the chain involves deflection back and forth

between the walls, and this is known as the Odijk regime after Theo Odijk

(Figure 1–7). Rather than being re-normalized into blobs, the chain can be

divided into these deflection segments, and in nanochannels the extension in
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Figure 1–7: Schematic of the Odijk (left) and deGennes (right) regimes. In
the Odijk regime, the chain deflects between the walls, in the deGennes regime
the molecule is partitioned into blobs inside which the monomers do not feel
confined.

this regime can be calculated just by considering the length of each segment,

(ph2)1/3 and the number of segments per chain. The free energy of confine-

ment is characterized with a similar kT-per-partition argument, with a known

numeric prefactor:

∆F

kT
=

1.104

(ph2)
1
3

L (1.8)

The blob picture for an ideal chain in a slit was described previously,

and the exact value of its free energy of confinement in equation 1.7 and is

proportional to the inverse square of height. I refer to this as the Ideal regime;

it can also be referred to as the Gauss-deGennes regime. There is also a regime

characterized by blobs obeying swollen statistics, known as the deGennes or

Flory-deGennes regime, which is characterized by a h−5/3 scaling in the free

energy. However, this is thought to apply more to nanochannels than to slits

[53].

The Odijk and Ideal regimes apply when the slit height is much less than

or much greater than the persistence length. Most experiments in this field,

however, take place in systems whose confining length-scale is on the order

of a few persistence lengths, where neither limiting case applies. Although

an exact expression cannot be derived, the free energy of confinement for a
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semi-flexible chain in a slit can be found using polymer field theory. Jeff Chen

(JC), at the University of Waterloo, along with co-worker Sullivan, solved a

modified diffusion equation representing the probability distribution of a worm-

like chain, with the boundary conditions of slit-like confinement [79]. The

energy eigenvalue of those numerical solutions is the free energy of confinement

per Kuhn length at that height. By solving the equation at heights in between

the Odijk and Ideal limits, they were able to find a smooth function that

describes the free energy of confinement at all heights. Similar interpolations

were found by Smyda and Harvey [80] and the Dorfman group [53]. The

interpolating expression is:

∆F

kT
=
π2

6

2p
h2(

1.2865
(

2p
h

)2
+ 0.992

(
2p
h

)
+ 1

) 2
3

L (1.9)

As can be seen in Figure 1–8, in the region of parameter space where

experiments typically take place, neither limiting regime’s prediction as ac-

curate, differing by as much as 1 kT per Kuhn segment. This demonstrates

the necessity of having a more complex theoretical model than a simple power

scaling argument. DNA may never be able to enter the “true” Odijk regime if

it requires slits to be smaller than its effective width, and the DNA typically

used in experiments, λ, is too small to be confined in the “true” Ideal regime.

1.4.7 Confinement in Cavities

Confinement in cavities is different from slits and channels because there

is only one possible macroscopic state: the chain filling the cavity. For a chain

in a channel, as more contour is added, the chain can just move farther down

the channel to avoid excess energy from excluded volume and bending. When
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Figure 1–8: The free energy of confinement per unit length for a semi-flexible
polymer confined in a slit, as a function of the slit height, using the persistence
length of DNA (p=52 nm). The Chen-Sullivan curve [79] describes the entire
range of heights, while the Odijk and Ideal regimes describe very narrow and
very wide slits, respectively. Experiments in this thesis cover an intermediate
range where neither fully applies.
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a chain is in a cavity, and more contour is added, the chain cannot reconfigure

itself in the same way, and the concentration and bending angles increase.

Thus, the free energy of confinement in cavities is not purely entropic but

has contributions from excluded volume and bending rigidity, which do not

necessarily scale linearly with contour length.

The simplest extension of the slit and cavity analysis is to consider the

ideal chain in a box, where the only contributor to the free energy is the

loss of entropy. This has the same inverse-square scaling in the free energy

with the length-scale of the box, but a higher prefactor than for the slit or

channel. Recently, Chen has solved the wormlike diffusion equation in spherical

geometries to incorporate semi-flexibility and study an analogue of the Odijk

regime where the chain develops nematic order, and bending rigidity rather

than entropy is the main contributor to the free energy. Interestingly, the free

energy follows the same scaling laws in both regimes with different prefactors

[8].

The most complete description of cavity-confined polymer physics is by

Takahiro Sakaue [78]. He describes the free energy of confinement of an ex-

cluded volume semi-flexible chain in a spherical cavity, as a function of the

length of the chain and volume of the cavity V . The calculations are based on

a combination of self-consistent field theory and blob arguments. He describes

five different regimes depending on the ratio of the different length-scales.

There are regimes characterized by strong bending and liquid crystalline order

which are not very relevant to nanofluidics and were discussed by Chen.

For the largest spheres in the phase diagram, there is a regime char-

acterized by a bulk-like packing of blobs obeying swollen statistics, and if
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the monomer concentration is increased by decreasing the cavity volume (or

adding contour), the mean field regime is entered. In the mean field regime,

the concentration is roughly uniform through the cavities and the free energy

is dominated by pairwise segment interactions. This justifies truncating the

virial expansion of the energy at the second coefficient, giving a free energy

that scales quadratically with contour length. The entropic loss due to con-

finement in this regime may be treated as a surface term, contributing to the

linear coefficient. Within this regime, the free energy of confinement due to

excluded volume is:

∆Fcavity
kT

=
π

4

w

V
L2 (1.10)

An analogy can be made to a quantum particle in a box, which is math-

ematically equivalent to an ideal chain in a box. If there is a single electron

in an infinite square well, in its ground state its probability amplitude is sinu-

soidal and the expectation value of the electron’s position is in the centre of the

box. For an ideal chain in a box, the analogy to the wavefunction is a density

field that when squared gives the local concentration. The interpretation of

the sinusoidal ground state is that the monomer concentration is highest in

the centre of the box, and it falls off towards the edges. If multiple repelling

electrons are in a box together (ignoring Fermi statistics), it is less likely to

find an overdensity of electrons in the centre, and the wavefunction will be

flatter as the electrons minimize their repulsion energy. There will still be

a fall-off in the wavefunction towards the walls, which is no longer sinusoidal

[81] and becomes tanh-like. With an excluded volume chain, the concentration
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will redistribute from the ideal case to minimize the excess energy, which will

result in a more uniform density profile: the mean field.

1.4.8 Entropic Elasticity

If the end-to-end separation, Ree, is treated as the macroscopic state of

a chain, and the highest-degeneracy state is one with the ends close together,

when the ends of a chain are stretched and released the system will evolve into a

higher entropy state with the ends closer together. This is known as entropic

elasticity, and the force that resists pulling the ends of a chain apart is an

entropic force. The simplest model of a polymer, the freely jointed ideal chain,

has a harmonic elasticity. This can be seen by considering that the probability

of a certain end-to-end separation is Gaussian with that separation, and the

probability is also related to the energy through the Boltzmann distribution,

implying that the energy is quadratic with separation.

The entropic force f is often written in terms of the dimensionless relative

extension x ≡ Ree/L. For an ideal chain the force is:

f = kT
3

2p
x (1.11)

A similar argument can be made for an excluded volume chain, but typi-

cally is not. In the high-tension limit, the force response is characterized by a

reduction in transverse fluctuation modes rather than a loss of conformational

states. The force-extension relationship for a semi-flexible chain interpolates

between the low-tension and high-tension limit, and is given by the so-called

Marko-Siggia force law:
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f =
kT

p

(
x+

1

4 (1− x)2 −
1

4

)
(1.12)

This was tested experimentally by attaching DNA to optically stretched

beads and stretching the molecules, using the beads as force probes [82]. The

equation describes the force-extension relationship well, before the overstretch-

ing transition occurs and the same physics no longer applies.

Typically, confinement and elasticity are not discussed together. When a

chain is confined, the correlation-decay length is effectively increased above the

bulk persistence length by the correlations imposed by the walls. In addition,

transverse oscillation modes that contribute to the elasticity are restricted.

Chen et al. [83] (not Jeff Chen) performed numerical simulations of a stretched

chain in a slit and developed a modified Marko-Siggia relation based on an

effective persistence and a nonzero equilibrium extension, but this model broke

down at low tension. I spoke with Hendrick de Haan (HdH), formerly a post-

doc at the University of Ottawa and now a professor at the University of

Ontario, who over the years developed a full parameterization of the stretched

confined chain.
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CHAPTER 2
Experiments and Model

2.1 Experimental System

In contrast to the featureless slits and channels found in most nanofluidics

experiments, the system used in this work is a hybrid device consisting of

a quasi-two-dimensional nanofluidic slit embedded with a lattice of cavities

(Figure 2–1). The slits are between 50 and 200 nanometers in height. The

cavities, square pits etched in the floor of the slit, are twice as deep as the

slit, several hundred nanometers wide, and separated by about a micron. The

pits offer greater conformational degeneracy than the confining slit and act

as entropic traps. A molecule can partition some of its contour in the slit to

increase entropy, but increasing the local concentration in the cavity gives rise

to excluded volume interactions, eventually driving contour back into the slit.

To balance entropy disfavouring the slit and the excluded volume disfavouring

the cavities, the molecule will occupy a discrete number of these pits, typically

between one and four for λ-DNA (Figure 2–2). A molecule will diffuse through

its environment by undergoing transitions between these different occupancy

states. The number of pits a molecule occupies is based on a balance of three

factors: entropy, excluded volume, and the entropic elasticity in the strand

linking each adjacent pair of occupied pits. By examining how a molecule

partitions itself into different geometries, the energetic factors leading to that

partitioning can be measured.
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Figure 2–1: Schematic of the chip devices used in these experiments. (a)
Overall organization of the chip showing the microfluidic reservoirs, nanofluidic
slits, and nanopit arrays. (b) A top-view of a molecule occupying two pits.
(c) An oblique view of molecules in various configurations. (d) A side-view of
a molecule occupying two pits. (e)-(h) Fluorescence micrographs of molecules
in 1, 2, 3, and 4 pits. Scale bar is two microns.

Figure 2–2: A typical fluorescence micrograph of an ensemble of λ-DNA
molecules occupying beteen 3 and 5 pits.
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Figure 2–3: Left. Photograph of one of the devices. Middle. An optical
micrograph of the chip centre; the three nanoslits are seen in between the
microfluidic reservoirs. Right. An electron micrograph of two of the nanopit
geometries in one of the slits.

2.1.1 Layout and Parameters

The lab-on-a-chip devices (Figure 2–3) consist of three to five nanofluidic

slits, which are 50-80 microns wide and 500 microns long, each etched to the

same height. Each slit is partitioned into different regions containing a unique

nanopit lattice, with some combination of pit width and spacing. In some

devices, each slit contains a common lattice spacing which is then divided

into several different pit sizes. In other devices, the pit sizes in each slit are

fixed while the spacing between them varies. Older devices typically have

five to eight geometries per slit (up to 24 per chip), while newer designs have

30 geometries per slit (up to 90 per chip). Each combination of geometric

parameters represents unique experimental conditions. At either ends of the

slits, there are microfluidic reservoirs (roughly a micron deep and 50 microns

wide) connecting the nanofluidic slit to macroscopic entry holes.

The slit heights (h) used are between 50 and 200 nanometers, meaning

the cavity depths (d) are roughly between 100 and 400 nm. By design the

depth is twice the height, but difficulties in maintaining a consistent etch rate

in fabrication lead to variations in this ratio, in the worst-case of 10 %. The
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smallest pit widths (a) are 200 nanometers wide and the largest are 1000

nanometers. The lattice spacings (`) are at least 500 nanometers and the

widest are spaced by five microns, although 2 microns is rarely exceeded.

With very few exceptions, λ-DNA was used for our experiments, stained

with YOYO-1 in a 10:1 base-pair:dye ratio, which is known to extend the

contour length by roughly 15 %. A Tris buffer was used, with 50 mM concen-

tration at pH 8, although the concentration was varied in a few experiments

from 3 to 100 mM. The ionic strength of the buffer is the concentration of dis-

sociated ions in solution, calculated through chemical equilibrium conditions.

At the pKa of Tris (8), half the ions dissociate and the ionic strength of the Tris

buffer is half the nominal concentration. Beta-mercaptoethanol (BME) was

used as an anti-bleaching agent. Experiments were not temperature controlled

but “room temperature” was roughly 25 Celsius.

Table 2–1: Table of experimental physical parameters

Symbol Meaning Typical Value
N Number of occupied pits 2
L Total contour length 19 microns
p Persistence length 52 nm
w Effective width 9 nm
a Cavity width 500 nm
` Lattice spacing 1000 nm
h Slit height 100 nm
d Cavity depth 200 nm

kT Thermal energy 25 meV
I Ionic strength 50 mM
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2.1.2 Relevant Literature

The nanopit-nanoslit system was developed by Walter and originally used

to demonstrate directed assembly of molecules using entropic forces [1]. Sub-

sequently, the mobility of DNA driven through such a system was analyzed

[2].

There have been some similar experiments that have not captured the

same physics. Jongyoon Han’s group uses an array of grooves in a nanofluidic

slit to separate molecules by size, but typically each groove is larger than the

DNA radius of gyration and contains many molecules [84]. Yeh et al. [49]

observed large DNA molecules extended over a slit between two reservoirs,

as the entropic forces in the reservoir play a “tug of war” with the molecule

until it falls into a single reservoir. Kounovsky-Schafer et al. [60] extended

this analysis to examine hydrodynamic interactions in long DNA molecules ex-

tended across a slit between two reservoirs, measuring the global translocation

time. In the experiments of Yeh and Kounovsky-Schafer, the molecule is in

the equilibrium state in a single reservoir, and there are no relevant excluded

volume interactions that drive the molecule into higher-order states. Nyky-

panchuk used an array of nanofluidic cavities, an inverse opal crystal of spheres

connected by pores, to show the molecule undergoing transitions between dif-

ferent pores [54]. In these experiments, higher occupancy states were studied

and there are hints of some of similar phenomena, such as stability-damped

diffusion, that I later observed.
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2.2 Experimental Setup and Procedures

2.2.1 Device Design and Fabrication

The devices were made in four-inch fused silica wafers. The pit features

were patterned with electron beam lithography in ZEP resist and etched using

reactive ion etching (RIE). Slit and microchannel features were patterned using

UV photolithography and etched using RIE. Wafers were diced into nine chips

using a diamond saw, and were bonded to cover slips using an RCA cleaning

process. The fabricated devices were compared to the design specifications

using scanning electron microscopy.

The RIE protocol was designed with a specific etch rate of approximately

40-50 nanometers per minute. However, the outcome of etching was often

different than expected from this nominal rate. To attempt to stabilize this,

the RIE was run with a wafer covered only in photoresist, after which a dummy

wafer was etched so that the etch rate could be calibrated. Despite this, there

was difficulty getting the depth of the pits and of the slit to be the same,

in chips fabricated at McGill. This was not as much of an issue for chips

fabricated in Denmark. The etch depths of the microchannel reservoirs, the

nanoslits, and the pits were measured using a scanning profilometer. A large

alignment marker used to measure the depth of the e-beam stage etch.

Two small changes were made to the post-lithography processes over the

past few years. One involves the sandplasting process, which entails affixing

each chip to a metal mask using melted wax, and driving sand through the

mask to make reservoir holes in the chip. Previously, the side of the chip

with the features (“top”) was positioned facing away from the mask and the

bottom was affixed to the max with melted wax. A layer of photoresist was
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applied to the top to protect the features from sand, and it was covered in

plastic tape. Holes were poked in the tape to allow the sand through. A

common pitfall was that the sand would collect between the tape and the

chip, scratching the surface and making it very difficult to bond. To prevent

this, we started waxing the top of the chip to the mask, using the wax and

the metal to protect it from the sand. The other change involved removing

superfluous steps from the bonding process. Initially, a piranha solution was

used to clean the chips for ten minutes, before performing an RCA2 and RCA1

process (the numbers are in reverse order). Each involves heating a litre of

fluid to 70 degrees with a hotplate and keeping it at that temperature for 20

minutes. The RCA processes add about 90 minutes to the bonding process. It

was realized that these processes were superfluous, and that merely cleaning

the chips in piranha for 20 minutes is sufficient to attain the van der Waals

bonding between the two chips with similar success.

2.2.2 DNA and Buffer Chemistry

DNA molecules were stained with YOYO-1 fluorescent dye (a dimer of

Yellow Oxazole) with a staining ratio of one dye molecule per ten base-pairs

of DNA. Stained DNA was stored in 1xTE Buffer. The buffer typically

used for experiments was a solution of Tris salt, brought to near pH 8, the

pKa of Tris, by titration with hydrochloric acid. For experiments, 2% beta-

mercaptoethanol (BME) was added to the buffer to prevent photobleaching.

Because Tris is a weak base, acid-base equilibrium calculations must be

used to calculate the ionic strength from the concentration. At a pH of 8, the

pKa of Tris, the ionic strength is half the nominal Tris concentration [29]. A 2

percent BME solution (pKa=9.6) dissociates partially and contributes 7 mM
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to the ionic strength. Thus, a 50 mM Tris solution has an ionic strength of 32

mM. At very low Tris concentrations (below 10 mM), it is difficult to stabilize

the pH without overwhelming the Tris with the titrating HCl or the BME.

In addition, the buffer becomes unstable to acidification by atmospheric CO2,

and can vary over the course of an experiment.

Buffers were degassed for at least an hour before experiments, and replen-

ished with degassed deionized water to maintain concentration. The degassing

was useful for eliminated dissolved oxygen, which promotes photobleaching,

and bubbles, which make it difficult to control the hydrostatic pressure inside

the chip. The Tris-BME solution was mixed with the stored DNA solution in

a ratio ranging from 19:1 to 9:1, in order to ensure an ideal concentration of

molecules inside the device (concentrated enough for good statistics, not so

concentrated that they overlap).

2.2.3 Pressure Control and Macro-Micro-Nano Interfaces

The nanofluidc slits are too small for a human to directly inject a DNA

buffer into them. In order for fluid loading, they are connected to microfluidic

reservoirs, which are still too small for humans to access. Consequently, the

microchannels are connected to millimeter-diameter holes blasted through the

chip, which are large enough for humans to inject buffer with a micropipette

tip.

The interface between the micro- and nanofluidic components of the chip

and the rest of the world was through a plastic chuck (Figures 2–4 and 2–5).

The original chuck was designed by Walter in Denmark (the DanChuck), and

a more recent version was designed by Rob Welch in Canada (the CanChuck)

and made in the McGill Physics machine shop. The basic principle involves
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Figure 2–4: A diagram of the chuck in cross-section. The glass chip is affixed
to the plastic chuck with a metal retaining ring, and vertical reservoir tubes
allow pipette access. Transverse to the reservoir tubes are lines connected to
an external gas source, to apply pressure to the reservoirs. A central borehole
allows overhead white illumination.

lining up millimeter-diameter vertical reservoir tubes with the reservoir holes

of the chip and sealing them with O-rings, tightening the chip onto the O-rings

by screwing it on with a metal plate.

Each of the four reservoir tubes was connected transversely to a Luer

connector through which air or nitrogen gas flowed. By increasing the pressure

to each of the reservoirs, typically on the order of 0.1 bar, the fluid and DNA

could be made to flow in the desired direction, either along the reservoirs

by applying pressure to one, or from the reservoirs and into the nanoslit by

applying pressure to two adjacent reservoirs simultaneously. The pressure

required to drive DNA into the slit depended on the height of slit, with a

full atmosphere of pressure insufficient for injecting DNA into a 30 nanometer

slit, while tens of millibar were required to inject it into a 200 nanometer slit.

There is a large body of work dedicated to understanding driven motion of

fluid and polymers through microfluidic geometries [85], but in this thesis I

am concerned with equilibrium behaviour.
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2.2.4 Optics

An inverted fluorescence microscope was used for imaging with a high

numerical aperture (NA) objective lens, typically a 100x oil immersion lens

(NA 1.4), but occasionally a 60x oil or water lens, was used. Our imaging

setup is a standard configuration used in single-molecule nanofluidics work.

The chip, at the bottom of the chuck, sat atop the lens. The layer of oil

separated the glass of the chip from the glass of the lens. The chuck, with the

device fastened to its bottom side, is positioned so that the chip can be accessed

by raising the objective. The chip is actually oriented such that the pits are on

the top wall rather than the bottom, although I represent it the other way in

schematics. Gravity is not relevant here as it is negligible compared to thermal

motion at these scales. Illumination was provided by an X-Cite mercury lamp

that was filtered by a dichroic filter to illuminate the YOYO-1 stain at a peak

frequency of 491 nm and the emissions at 509 nm were detected by an Andor

iXon EM-CCD, useful for faint sources.

The fluorescent stain in known to photobleach, and if the light is too

intense it can cause the molecule to fragment (this is called photonicking). If

possible, the full lamp power is not used, and it is controlled either with the

power setting on the lamp or through neutral density filters. If the lamp is

properly functioning, imaging is performed at 50 % illumination.

2.2.5 A Day in the Lab

An overview of the experimental procedures can be found in my master’s

thesis [86]. After degassing the buffer solution and mixing it with BME and

DNA, it can be injected into the reservoirs of the chip. If the chip has never

been used before, time is required for initial wetting by capillary action, as the
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Figure 2–5: A photograph of the chuck on top of the microscope. Inset: a
view from the bottom, showing the objective lens abutting the chip within the
metal retaining ring. This image used with permission from Rob Welch.

fluid displaces the air. This can be seen by holding the chip up to a window and

watching the reservoirs disappear as the air is displaced by water, whose index

of refraction is closer to glass. Roughly two microliters of buffer solution are

used in each reservoir for wetting, and only one reservoir on each side should

be initially loaded so that bubbles do not get trapped in the middle. The chip

is loaded onto the chuck by lining up its reservoir holes with the O-rings and

screwing it in, then roughly 15-20 microliters of DNA-buffer are loaded into

each reservoir tube, and the sealing screws are screwed onto the tops. The gas

lines are connected to the Luer connections on the chuck, and it is loaded on

top of the objective lens.

The fluidic network makes up a small fraction of the area of the chip, and

can be hard to find, especially if out of focus. I typically find them by scanning

around the chip with the positioning stage joystick, illuminating it with white

light, and looking through the eyepiece until shadows are noticed. Then, I try

focusing on the shadows, and if the microchannels appear then I follow them

until I find the nanoslits. When I have found the slits, I switch to fluorescent
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imaging and look for the DNA, making sure I can control its motion transverse

and into the slits with the different pressure knobs. If there is good fluorescent

signal, and the molecules can be controlled and equilibrated, the experiment

can begin.

I focus the microscope on a specific geometry, and apply a burst of pressure

to drive the DNA into the slit to that geometry. When the molecules are in

equilibrium, I record a movie with the CCD, which is saved to the computer’s

hard drive. I typically film for 60 to 90 seconds at 10 continuous frames per

second. I repeat this several times for each geometry, until I have filmed a large

ensemble of molecules (typically five movies per geometry) before translating to

another geometry on the chip. I repeat this for each geometry, approximately

one every half-hour, moving throughout the entire chip over the course of a day.

The experiment ends when all geometries have been filmed, when the signal

becomes too weak, or when the experimenter becomes too fatigued. More

recently, using chips with a greater number of geometries, I focus the camera

on the interface of several of them, taking a bright-field image to locate the

interfaces, and filmed two to four geometries at a time. Movies with a larger

field of view and a long filming time are unfeasible and the size of the files

must also be considered.

It is crucial to understand which geometry is being observed. In his initial

experiments, Walter calibrated the positioning stage to the positions of the

alignment marks on the chips, then recorded the position at which each movie

was taken, allowing the geometry to be ascertained from the CAD designs

afterwards. I opt for a different approach, using the filenames of the movies

to store information about the geometries. Typically, the filenames of movies

58



Figure 2–6: A diagram of a chain partitioning contour length Lp into N = 2
cavities, with a linker of length Ls between them.

would contain either the geometry (for example 500nmPits001.nd2) or about

the position of the geometry on the chip (LeftSlitSecondFromTop001.nd2),

ensuring that the overall orientation of the chip is recorded.

At the end of the day, all the movies were saved to a portable hard drive

and taken to my office. There, they were converted from the microscope’s file

format to either AVI or TIF, so that they could be analyzed by one of the

procedures described in the following chapters. The chuck was dismantled and

cleaned, and the chip was stored in a low-salt buffer in the fridge.

2.3 The Free Energy of Confinement in the Nanopit-Nanoslit Sys-
tem

The measurements that are taken are used to probe the underlying poly-

mer physics governing the confined DNA. The measurements and the physics

are related through a free energy model that links the two.

Consider a chain of total length L that partitions an equal amount of

contour into a number of pits, N (Figure 2–6). The length of contour per

pit is Lp. When contour is removed from the tightly confining slit into the

pit, it gains entropy as more conformational states become available. There
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is a free energy benefit, linear with the contour removed from the slit, to this

process. However, as the density of monomers inside the pit increases, excluded

volume interactions arising from pairwise collisions along the chain contribute

an energy that disfavours the pit [78]. The excluded volume free energy is

thus quadratic with the contour length per pit, with a prefactor equal to the

ratio of the effective width of the molecule and the volume of the pit. Each

adjacent pair of occupied pits is connected by a linking strand with contour

length Ls, and a certain amount of energy is required to stretch an entropic

spring between the two pits.

Thus, the total free energy of confinement as a function of Lp is:

∆F

kT
= N

(
−ALp +BL2

p

)
+ (N − 1)Fspring (Ls) (2.1)

The value of Ls is constrained to the value of Lp through the conservation

of the total contour length of the molecule, L, such that NLp+(N−1)Ls = L.

Here, we have assumed that the contour in each cavity is equal, as is the

contour in each linker. This condition is on average satisfied at equilibrium,

but can be relaxed. The parameters A, B, and Fspr represent the strengths of

the entropic, excluded volume, and elastic energy factors respectively.

2.3.1 The “A” Parameter: Entropy

The A parameter represents the entropy gained from moving contour from

the highly confining slit into the deeper cavity. Because free energy is mini-

mized when entropy is maximized, this parameter is negative, implying energy

decreases when Lp increases.
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In reality, there is an additional entropic cost of confining contour in the

cavities. This means that A is divided into two contributions:

A = Aslit − Acavity (2.2)

This energy difference is used to determine if a given configuration is

stable. If a measurement of only Aslit is desired, Acavity is something that

must be taken into account in order to isolate the slit component. The simplest

parameterization for A is that of the ideal chain, discussed in Chapter 1:

AIdealslit = α
p

h2
(2.3)

AIdealcavity = α
(
p

d2
+ 2

p

a2

)
(2.4)

The symbol α is often used in this thesis to denote dimensionless prefactors

of order unity, whose importance is lessened when we are primarily concerned

with scaling. In this case, the traditional value of α is π2/3. In typical cases,

d = 2h and a is typically several times larger than h so it is tempting in the

ideal case to neglect the transverse cavity component and have A = 3/4Aslit.

Similar arguments can be presented for the Odijk regime, but in reality h

is such that neither limiting regime applies, and the Chen-Sullivan equation is

the best theoretical point of comparison. Similarly, although a is larger than

both h and p, it is not asymptotically larger than either, and a semi-flexible

model for cavity confinement is required. Unfortunately, none existed prior to

this thesis, but I spoke with Jeff Chen, a moiety of the Chen-Sullivan equation
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and a world expert in polymer SCFT calculations, who developed a series of

numerical solutions for the free energy of the wormlike chain in a cylinder.

The solutions are based on the energy eigenvalue problem for the worm-

like diffusion equation in a cylindrical geometry, yielding the energy per Kuhn

segment as a function of height and radius. Either geometric variable can

range from much than to much larger than the Kuhn length, and the isotropy

of the cylinder can vary from very tall and channel-like, to compact and

isotropic, to very flat and slit-like. There are multiple limiting scalings based

on both the isotropy and the dimensions: channel-Odijk, slit-Odijk, slit-Ideal,

channel-Ideal, cavity-Ideal, and liquid crystalline (when everything is small

and isotropic).

To map the round cylinders onto our square cavities, we make the ansatz

that in the ideal cavity limit, a cylinder of effective radius reff should have the

same energy eigenvalue as a box with width a. Both limiting cases are known

(this is the particle in a box problem for a square and for a circle), and the

two are equated with reff = a/1.85.

Although it has no theoretical basis, for use in closed-form expressions

the semi-flexible cavity energy from SCFT can be well-fit by the following

function:

Acavity =
1

2p

0.651

(
d

2p

)−1.37

+ 1.92e−
0.34a

p

 (2.5)

2.3.2 The “B” Parameter: Excluded Volume

The B parameter, the second virial coefficient, is the energy cost due

to excluded volume interactions in the cavities, which is quadratic with Lp
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as discussed in Chapter 1. This component is positive, meaning it favours

partitioning contour in the slit rather than the cavities. According to the

mean-field scaling for excluded volume, this term is proportional to the ratio

of effective molecular width to the volume of the cavity, which is a square

prism of width a and depth d:

B =
π

4

w

a2d
(2.6)

Because in our experiments d is fixed while a varies, we often normalize by the

cross-sectional area a2 and discuss the scaling of an “areal excluded volume”

term B′ that has units of energy.

The theory for a spherical cavity as presented by Sakaue has essentially

been re-mapped onto a square cavity by equating the volume in both geome-

tries. It is possible that additional small geometric prefactors may have been

lost in translation. Additional “surface terms” or terms arising from entropy

loss in the cavity are included within Acavity, which favours the slit, rather than

B which is only the component of the energy that is quadratic with contour.

2.3.3 The Elastic Term

The elastic component, Fspring is parameterized by integrating an elastic

force over the distance separating adjacent pits, `. The tension in the linking

strand is minimized when its contour length Ls is large compared to the pit

separation `, and maximized when it equals ` and the chain is totally stretched.

Thus, minimizing the elastic energy favours contour in the slit rather than the

cavities. In its simplest form, the harmonic energy from the ideal chain is

simply:
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F Ideal
spr

kT
=
∫ `

0

3`

2pLs
d` =

3`2

4pLs
(2.7)

With the semi-flexible Marko-Siggia force [82], the energy of the spring is:

FMS
spr

kT
=
∫ `

0

d`

p

 `

Ls
+

1

4
(
1− `

Ls

)2 −
1

4

 =
`2 (3 Ls − 2 `)

4p (Ls − `) Ls

(2.8)

The Marko-Siggia energy applies to a stretched chain in the bulk. To find

the force-extension relationship of a stretched chain in a slit, Hendrick de Haan

and Tyler Shendruk performed molecular dynamics simulations and mapped

them to a version of the Marko-Siggia equation that maps between the 2D

and 3D limits [11]. They use an “effective dimensionality” that is based on

the in-plane persistence correlation length, which increases towards twice the

bulk value in the 2D limit. According to their parameterization of the effective

dimensionality, my experiments take place between effective dimensions 2.24

and 2.78.

The parameterization of their model is:

Fspr

kT
=

`2

4pLs

(Deff − 1)

4 (Ls − `)
[2LsDeff − ` (Deff + 1)] . (2.9)

The effective dimensionality, based on measuring in-plane correlations, is

Deff(h) = 1 +
2

2− e−0.882(p/h)1.441 (2.10)

2.4 The Free Energy Landscape

All the terms in equation 2.1 have now been defined in terms of geometric

parameters. With the simplest choices of parameterization, the free energy is:
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Figure 2–7: Free energy landscape for a molecule able to access the N = 1
N = 2 and N = 3 states. Within each state, there is a potential that depends
on the partitioning of contour between the pits and slits. The N = 2 state has
the deepest minimum and is thus most likely to be occupied.

∆F

kT
= N

(
−π

2

4

p

h2
Lp +

πw

8a2h
L2
p

)
+ (N − 1)

3`2

4p (L−NLp)
(2.11)

For a common geometry, each different occupancy state defines a different

free energy potential as a function of Lp (Figure 2–7). These different poten-

tials represent a free energy landscape, where the molecule can move up and

the potential of a given state by repartitioning contour around the equilibrium

level, or undergo a transition to a new state and occupy a new potential.

2.4.1 Case Study: Single Molecule Diffusion

A demonstration of this free energy landscape, as well as the utility of

this complex nano-device, can be seen by examining the hopping-mediated

diffusion of DNA molecules through the nanopit lattice. The free energy model

predicts a different potential for each occupancy state. The molecule will tend

to occupy the state with the lowest free energy minimum, the ground state.
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Figure 2–8: a) The mechanism of diffusion, involving discrete hops between
energy states that displace the centre of mass. b) Two model free energy
landscapes demonstrating that diffusion can be fast or slow depending on the
stability of each state. c) Time series of a DNA molecule demonstrating slow
and fast diffusion.

It will remain there until the molecule undergoes a thermal fluctuation into

a higher energy state, either one of higher or lower occupancy. Then, it will

relax back to the ground state, returning to its preferred occupancy. Through

this process of excitation and relaxation between states, the molecule diffuses

throughout the array (Figure 2–8).

The probability that a transition occurs is based on the energy difference

between states. In some geometries, these energies are far apart, and excita-

tions from the ground state are rare, and diffusion is strongly damped. In other

geometries, the energies are close to one another and transitions are common,

and diffusion is not expected to be significantly lower than its free-slit value.

The diffusion of DNA molecules hopping through the nanopit arrays was

recorded, measuring an ensemble of molecules in different geometries. The

positions of the molecules over time were measured by superimposing a digital

grid of boxes over the pit matrix in each frame and registering the boxes

in which the integrated intensity exceeded a threshold. The centre of mass
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of each molecule was calculated over time, and the diffusion coefficient was

calculated using an over-sampling technique (based on position correlations

between frames) discussed by Wang et al. [87].

When a molecule is in the largest pits, the molecule occupies a single

pit and there is essentially no diffusion as the monomer ground state is much

lower in energy than the dimer state. However, as the pits become smaller,

excluded volume interactions in the monomer state bring it closer in energy to

the dimer state, and 1-2 hopping is seen, and the diffusion generally increases

with decreasing pit size, as transitions between 1-2, 2-3 and eventually 3-4

become more common. Interestingly, there are certain regions of parameter

space with local minima in the diffusion (Figure 2–9). As the pits get smaller,

the ground state gradually increases, from N = 1 to N = 2 to N = 3 etc,

and at a certain point in parameter space each occupancy ground state will be

much lower than the first excited state, leading to these diffusion minima. The

diffusion maxima correspond roughly to the transition between ground states:

if both the N = 1 and N = 2 state are near the global minimum of the free

energy landscape, there will be frequent hops between them.

This non-monotonic dependence of the centre-of-mass diffusion highlights

the utility of a free energy landscape to describe this system, in that the dif-

ference in energies between states allows a knowledge of the conditions that

will enhance or damp diffusion. Being able to fine-tune the diffusion to a local

maximum or minimum also highlights the power of complex nanofluidic sys-

tems: being able to vary the partitioning of a molecule using multiple degrees

of freedom can allow very precise control over dynamic as well as equilibrium
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Figure 2–9: Measurements of molecule centre-of-mass diffusion with respect
to pit width for two systems, alongside occupancy measurements. a. Diffusion
and occupancy as a function of pit width in a nanoslit with h=100 nm. A
local minimum in diffusion corresponds to a stable dimer state. b. Diffusion
and occupancy as a function of pit width in a nanoslit with h=70 nm . Two
local minima in diffusion correspond to stable dimer and trimer states.

properties. Similarly to how λ-DNA is either trapped or freely hopping de-

pending on the choice of geometry, within a single geometry a size-distribution

of DNA molecules will lead to certain sizes being trapped while others may

diffuse freely, and such a device can be used to isolate certain sizes of molecules

at equilibrium. Although we only looked at diffusion, the same considerations

apply to mobility, and size-dependent damping of macromolecular mobility

based on the free energy landscape can allow an effective “band-pass” filter for

certain sizes of DNA.

More complex lattices can display even more interesting effects: if the

sizes of adjacent pits increase in a gradient, for example, the system serves as

an effective brownian ratchet where molecules will preferentially diffuse in the

direction of larger pits. Brownian ratcheting was observed in a lattice with a

pit size gradient, where molecules were observed to collect at the maxima of

the gradients (Figure 2–10)
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Figure 2–10: (a) DNA molecules of varying size in a lattice with a pit size
gradient. (b) Bright field image of the gradient. (c) Intensity profile of DNA
concentration, superimposed with the image of the lattice. Intensity peaks
correspond to the largest pits.

2.5 Conclusion of Introduction

An overview of the experimental system and free energy model has been

presented, and a case study of its application to single-molecule diffusion has

been discussed. The remaining chapters will discuss how measurements of

DNA in this system can be compared with the free energy model to make

precise measurements of the underlying polymer physics.
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CHAPTER 3
Single Molecule Tetris: Measuring the Free Energy of Confinement

3.1 Introduction

This chapter discusses measurements of the free energy of confinement

and self-exclusion that can be made simply by imaging the molecules in their

equilibrium nanopit configurations. In particular, I look at how observations of

the average occupancy in different geometries can serve as a way to measure the

entropic and excluded volume contributions to the free energy of confinement.

In addition to their sensitivity to the underlying polymer physics, these energy

measurements are crucial for understanding molecular behaviour in complex

systems, for example, the conditions under which molecules can be stably

trapped.

We use the canonical ensemble to relate the probability of a chain occupy-

ing a given state to the free energy that depends on the A and B parameters,

and use measurements of the average occupancy to find experimental values

for the energy contributions. We call this Single Molecule Tetris because when

a molecule occupies four cavities, it looks like a shape from the classic video

game Tetris.

3.2 Theory of Multiple-Pit Occupancy

We return to the free energy of confinement for a molecule occupying an

arbitrary number N pits, with an equal amount of contour Lp per pit:
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∆F

kT
= N

(
−ALp +BL2

p

)
+ (N − 1)Fspring (3.1)

Each occupancy state has an equilibrium value of Lp which minimizes the free

energy, termed Lo. There is a simple expression for Lo at N = 1: Lo = A/2B,

and there is an unreasonably complex expression for higher N states assuming

an ideal spring, but generally for higher states, a closed-form solution for Lo

does not exist and it must be found numerically.

A partition function can be defined based on the minimal free energy for

each occupancy state (∆Fmin (N)) and the degeneracy of each state, which is

equivalent to the number of self avoiding walks with N − 1 steps [88]:

Z =
∞∑
N=1

ΩNe
−∆Fmin(N)

kT (3.2)

Within the framework of the canonical ensemble, the probability of a molecule

being found in a given state is:

P (N) =
e−

∆Fmin(N)

kT

Z
(3.3)

The average occupancy can then be calculated with a weighted sum of the

probabilities:

〈N〉 =
∞∑
N=1

P (N)N (3.4)

This is the parameter that is measured experimentally.

3.3 Experimental Procedures and Considerations

Our experimental procedure is quite simple: it involves filming molecules

at equilibrium in the nanopit lattice (Figure 3–1). The average number of
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Figure 3–1: Fluorescence micrographs of molecules in several different lattices
with decreasing pit width and increasing occupancy. The molecules undergo
thermal transitions between states.

pits that they occupied in a given lattice is determined, and measuring this

quantity in all geometries of a given chip, at different pit sizes and spacings.

An experiment would involve flowing DNA into a given geometry, filming it

for over a minute, and repeating with fresh molecules until sufficient statistics

are acquired. This procedure is iterated over all lattice geometries present on

a given device.

In order to ensure that the best approximation to the true ensemble aver-

age is obtained, it is essential that molecules undergo several conformational

transitions between different nanopit states over the course of a given movie.

The typical recording time was 90 seconds, at 10 frames per second (100 ms col-

lection time) such that each movie was 900 frames. Movies over longer periods

of time would have been desirable for aforementioned reasons, but would result

in fewer total molecules imaged over the course of an experiment. A 900-frame

512 by 512 pixel image is roughly 600 megabytes, and files over 1 gigabyte are
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very difficult to work with using the available software. If possible, the num-

ber of pixels in the image was reduced in order to use less memory, without

sacrificing molecule count. The movies could be made longer by filming with

a duty cycle, as was done in my work on long-time diffusion [12], but doing so

discards information about short-time intramolecular fluctuations. Theoreti-

cally, the ergodic principle allows mere snapshots of molecules to serve as a

measure of their statistical average, but the possibility of metastable states due

to initial conditions necessitate filming a longer movie. The 900 frames 100

ms movies were found to be a happy medium of all these considerations. We

chose illumination settings to achieve a balance between high signal and min-

imal photobleaching. Because in the occupancy measurements the molecules

tended to occupy the same state for tens of seconds, we could frame-average

after the experiments without losing information about the average occupancy.

These experiments required mechanical equilibrium, and a pressure im-

balance across the slit negates this. A large pressure imbalance is obvious to

detect because the molecules do not stay still. A small pressure imbalance is

subtler, and only evident when watching the movie after it is recorded, to see

that each molecule has made several transitions in one direction. If molecules

are seen making transitions in both directions along the slit’s flow axis, they

are considered to be in thermal equilibrium, although a very slight imbalance,

not enough to dislodge the molecules from their occupied state, may still bias

their transitions in one direction. If the time-scale of flow-induced transitions

is not much shorter than the time-scale of state occupation, then the insta-

bility will not significantly affect the occupancy, although it may shorten the

time spent in the excited states.
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A CEGEP student, Philippe Fortin Simard, measured the occupancy of a

single geometry at different flow speeds to determine if there was an effect on

the occupancy, and there was not, over the range of speeds he tested. A small

flow can be used to sample a greater number of states in a given recording time

and reduce sensitivity to metastability, but this method should be examined

more systematically, before relying upon it for equilibrium measurements.

3.3.1 Occupancy Analysis

Molecules spanning multiple pits were analysed using a MATLAB pro-

gram developed by Hugo Brandao as part of a summer research project, and

was discussed extensively in my master’s thesis [86] and Hugo’s undergradu-

ate report [89]. It involves aligning a digital grid over the movie such that the

squares of the grid are aligned with the pits. An intensity threshold is set such

that any grid square with an intensity above this is registered as occupied.

Over the course of the movie, the occupancy of each molecule at each point in

time is recorded, generating an average occupancy for each molecule and an

ensemble average for each geometry. In simplified cases where the molecule

does not move very much, it can sometimes be faster simply to write down the

number of frames spent in each state and calculate the average occupancy by

hand.

3.4 Analysis and Results

3.4.1 Occupancy Trends

Several occupancy plots are seen in Figure 3–2. For the largest pits with

sufficient separation, a molecules occupies only a single pit. As the pits be-

come smaller or closer, a molecule will occupy a greater number of them, and

occupancy generally decreased with slit height. For sufficiently small pits, the
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Figure 3–2: (a) Measured occupancy as a function of pit width at several slit
heights. (b) Measured occupancy as a function of pit spacing at several ionic
strengths.

effective free energy potential of the pits becomes relatively weak compared

to the thermal energy scale, and the molecules can be seen disengaging from

their lattice configurations. As the geometry is varied, there are regions of

parameter-space termed plateaus where a single state dominates, and the av-

erage occupancy is close to an integer. Between these plateaus are transition

regions where the two lowest states are close to each other in energy and ther-

mal transitions are frequent.

Experiments were performed at several ionic strengths in a chip with a

170 nm slit height and 310 nm cavity depth. Overall, occupancy was ob-

served to increase with decreasing ionic strength (Figure 3–3). This is non-

trivial result sheds light on two competing effects: at lower ionic strength, the

molecule stiffens as the electrostatic contribution to the persistence length in-

creases, increasing the penalty for confinement in the slit and making the pits

more favourable, decreasing the overall occupancy. However, the electrostatic

screening length also increases at low salt, and the greater effective molecular

width leads to more excluded-volume interactions, pushing the molecule out of

the pits and increasing the overall occupancy. That occupancy increases with
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Figure 3–3: Average occupancy as a function of reciprocal ionic strength, at
three lattice spacings in a given chip. As the ionic strength is decreased, the
occupancy increases.

decreasing ionic strength suggests that the excluded volume effect dominates

over the stiffening effect.

3.4.2 Fitting

The free energy parameters A and B have theoretical geometric definitions

outlined in Chapter 1, but I am interested in quantifying them experimentally.

To measure these parameters, the free energy model is fit to occupancy data,

to measure A and B at each slit height.

The outcome of a single experiment is a series of data points for the

average occupancy as a function of either pit width or pit spacing (Figure 3–

2), typically around eight data points per experiment, but between five and

fifteen. Fitting was performed by calculating the average occupancy for a given

set of geometric constants, and two free parameters A and B. The occupancy

was found by generating an array of free energies for each state (up to a cutoff

of N = 10) for the entire range of Lp with nanometer resolution, and finding

the minimum of this energy array. The minimal energy was used to generate
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the partition function and calculate 〈N〉. This could be calculated for each

experimental value of a or ` for a given data set.

The fitting was performed using the MATLAB nonlinear least-squares

minimization algorithm lsqcurvefit (based on a Levenson-Marquardt algorithm

with a trust region), which yielded measurements of A and B.

With the simplest analysis, there is no height-dependence in the energy

measurements: a height scaling in A and B emerges naturally from the raw fits.

However, as our analysis became more complex, we required two additional

steps in the parameterization. The elastic component is parameterized accord-

ing to the height-dependent effective-dimensionality in the de Haan-Shendruk

force law. If we wish to measure Aslit instead of just A, it is necessary to add

a parameterization of Acavity to the fitting algorithm. In the simplest case this

is done by adding an ideal component proportional to 1/a2. However, using

Chen’s full semi-flexible cylinder solutions for which there is no closed form

expression, we add a cavity component based on interpolating between the

four numerical points closest to the experimental a and d.

Once A and B are measured from the fitting, we can examine how they

scale with slit height or cavity depth.

3.4.3 Measuring A: The entropic cost of confinement

The fitting algorithm without modifications makes a measurement of the

absolute A parameter representing the difference in the entropic coefficients

between the slits and the cavities. To verify whether the parameterization was

appropriate, we examined measurements taken as a function of pit spacing,
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such that the cavity contribution was the same for each data point, with simi-

lar pit widths (roughly 500 nanometers) at four heights (Figure 3–4). The en-

tropic free energy difference in this case is not expected to follow any particular

power law, because the cavity isotropy changes as well as the slit height. These

measurements were compared to the difference between the Chen-Sullivan slit

energy as a function of height and the cylindrical energy for that width as

a function of twice the height. Taking into account a physical variation in

the etch depths between slit and the pit, the measured energy difference is

well-described by the semi-flexible prediction. This suggests that our cylin-

drical parameterization is justified and can be used to account for the cavity

contribution.

To measure the slit component of the free energy, we add a term to the

fitting algorithm corresponding to Chen’s cylindrical energy at that specific

width and depth. The remaining fit parameter is a measurement of Aslit,

which is the primary quantity to be measured. These results (Figure 3–5)

show that the free energy of confinement of slit-confined DNA is that of a

semi-flexible chain, in the intermediate range between the Odijk and Ideal

limits, governed by the Chen-Sullivan equation and not obeying any power

scaling law. These are significant not only for being the first measurements

of this quantity, but also because it clarifies the physics of the “transition”

between strong and weak confinement (Figure 3–6). In their validation of the

Chen-Sullivan formula, these measurements confirm the dominance of semi-

flexibility over excluded volume in slit confinement.

The A parameter was measured as a function of ionic strength, using

the OSF parameterization of the persistence length (Figure 3–7). At higher
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Figure 3–4: Slit-cavity entropic free energy difference for roughly 500 nanome-
ter pits, as a function of the cavity depth. Units are in terms of Kuhn segments.
Overlaid is the prediction of the confined semi-flexible chain. The gray region
represents the variation in the theoretical prediction due to asymmetry in the
slit and pit etch depths.
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Figure 3–5: Slit free energy of confinement as a function of height, based
on the full semi-flexible interpolation. The black points are from data taken
with varying pit size and constant spacing, while the gray points are from data
taken with varying spacing and constant pit size. Overlaid is the Chen-Sullivan
prediction.
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Figure 3–6: The same slit free energy data, with a larger range of heights,
showing the approach to the established regimes in both limits.

ionic strengths, there was a relatively weak dependence, consistent with the

ideal or semi-flexible chain, where the only change in confinement free energy

due to ionic strength is due to the weakly varying persistence length. At

lower ionic strengths there is a clear deviation seen from theory, although

agreement improves when wall-depletion is taken into account. In addition,

there may be a transition towards a stronger confinement regime occurring

as the ionic strength is decreased: Stein in a retracted paper [48] found a

transition occurring roughly when the persistence length exceeded 58 percent

of the slit height. This is not exceeded in my experiments even at the lowest

ionic strengths, and Lee et al. [22] did not notice any sharp differences as the

ionic strength was decreased.
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Figure 3–7: Slit free energy of confinement as a function of ionic strength, based
on the full semi-flexible interpolation. Overlaid is the Chen-Sullivan prediction
taking into account a varying persistence length with ionic strength.

There are generally some experimental issues with low ionic strength. It is

difficult to maintain a pH of 8 while keeping Tris is as the primary contributor

of ions below about 10 mM, because the BME and HCl will dominate. For the

lowest ionic strength data point, only Tris was used and the pH was not con-

trolled and was measured to be above 9. This may change the effective linear

charge density of DNA, making it difficult to compare to experiments directly.

The lack of BME also makes the molecules more sensitive to photonicking,

and generally harder to visualize. In another experiment, 0.1x TBE was used

instead of Tris, using 0.5 percent BME as both an anti-bleaching agent and a

titrant, bringing the pH to 7.9, allowing an experiment with closer chemical

conditions to the rest of the experiments.
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3.4.4 Measuring B and w: The second virial coefficient and effective
width

To compare between measurements taken with varying spacing and vary-

ing pit width, we examine the areal excluded volume coefficient rather than

the absolute B parameter (Figure 3–8). According to the prediction of the

mean field regime, this parameter should be proportional to the reciprocal

cavity depth. Plotting the measured B′ against the reciprocal depth yields a

straight line, which upon a linear fit is consistent with an effective molecular

width of 10.1± 1.3 nm, compared to the theoretical prediction of 9 nm. This

measurement is particularly significant for two reasons. It represents the first

systematic experimental probe of cavity confinement and the role of excluded

volume therein. It also represents the first measurement of effective chain

width on a single molecule basis, in comparison to all previous measurements

that had been performed in bulk. The linear fit that yields the effective width

also has non-zero x-intercept, corresponding to the reciprocal of 655±370 nm.

This is consistent with the bulk radius of gyration of λ-DNA. We interpret this

intercept as a confinement length-scale above which there is no excess energy

due to excluded volume.

Measurements of the excluded volume parameter can be converted to

measurements of the effective molecular width as a function of ionic strength,

using the finite-size offset as a calibration (Figure 3–9). The effective width

was found to scale according to Stigter’s charged rod theory, with deviations

consistent with those in bulk measurements. This is the first set of measure-

ments of this scaling on a single molecule level. There are deviations from
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Figure 3–8: Areal excluded volume parameter as a function of reciprocal cavity
depth. Black points are from measurements taken with varying width, and
gray points are from measurements taken with varying spacing. A linear fit is
overlaid.
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Figure 3–9: Effective molecular width as a function of ionic strength. Overlaid
is the prediction of Stigter’s charged rod theory. The dashed line corresponds
to an imposed wall-offset, and the smaller points are from bulk measurements
[10, 21]

theory at the lowest ionic strengths, which may be due to molecule-wall deple-

tion interactions, yielding a smaller effective depth, that have not been taken

into account. By attempting to account for these (by subtracting a parame-

terized effective width), we start to see better agreement at low ionic strength

(Figure 3–9). There are also issues with the parameterization of the persis-

tence length, which affects the final measurement from the fitting algorithm,

which is not precisely known at low ionic strengths.

3.4.5 Stability Analysis

The molecules are bound to their nanopit states because the free energy

potential minimum is below -kT, meaning thermal excitations are unlikely to

drive the chain out of the pits into the slit. In certain cases, as the pits become
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Figure 3–10: (a, b) Schematic showing the stability transition when the pit
width becomes sufficiently small for a given height. Fluorescence micrographs
show stable (c) and unstable (d) configurations. (e) A time series of a molecule
in an unstable configuration starting in a single pit, diffusing out of the pit
into the slit, and eventually back into the pit.

sufficiently narrow, this is no longer the case and molecules are seen jumping

between the pits and the slit, or simply diffusing around the slit above the

pits (Figure 3–10). This is significant from a device perspective, as it allows a

knowledge the geometric parameters required to successfully trap DNA.

Normally, the pits act as entropic traps because they are twice as deep

as the slit, but if they are narrow enough in the transverse direction then

this acts as an additional restriction of degeneracy for contour in the pit, and

below a certain threshold, the slit rather than the pit becomes the reservoir of

degeneracy. Quantitatively, this occurs when Acavity becomes comparable to

Aslit
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These cases set a limit on the sizes of pits that could be used to make

observations, but the decoupling phenomenon itself serves as another method

of studying the physics at hand. A molecule will occupy a stable state (here,

stable referring to its occupancy in the pits, not the lifetime of one pit-state

compared to another) if the minimum of its free energy landscape is below -kT,

being unlikely to diffuse out. Considering the free energy for a molecule in a

single pit, the conditions by which its minimum is -kT imposes a condition on

the relation between A and B. Combining these conditions with our theoretical

expressions, a relation is found for the minimum pit width yielding a stable

state as a function of slit height. This represents the boundary line on a phase

diagram in height-width space of stable and unstable states. Finding these

unstable states in recorded videos and placing them on the phase diagram

shows that the theoretical line describes the transition well (Figure 3–11).

From the single-pit case, the stability threshold can be found by equating

the minimal energy to -kT, by substituting the minimal filling length Lo =

A/2B into the expression for the energy. This imposes a constraint on the

relationship between the A and B parameters.

∆F

kT
= −A

(
A

2B

)
+B

(
A

2B

)2

= −A
2

4B
= −1 (3.5)

In the simplest case, we can use known geometric definitions of A and B

from the ideal chain and mean-field models, the critical pit width at a given

height is constrained:

4
πw

4da2
=
(
αp
(

1

h2
− 1

d2
− 2

a2

))2

(3.6)
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In the case where d = 2h, the critical pit width as a function of height

has the closed form solution:

acrit =
2

3

h

αp

√
π wh+ 6 p2α2 +

√
π2w2h2 + 12 π whp2α2 (3.7)

This can be solved for other scenarios: the Odijk regime, using the full

semi-flexible parameterization of A, or taking into account the bulk offset for

the excluded volume parameter. For more complex models, this boundary

must be found numerically. For multiple pit occupancies, the stability thresh-

old can be determined numerically, although the position of the threshold is

largely independent of occupancy until the widest slits, when it is likely to be

found in a single pit regardless. The stability threshold allows us to verify the

results of our free energy measurements in a model-independent manner. The

measurements are simply a qualitative check of whether the molecule leaves

the pits, and the stable-unstable phase diagram can be populated from the re-

sults of each experiment. The prediction of the free energy model roughly runs

through the stability threshold, lying at most only one data point away from

the experimental stability boundary. Figure 3–11 is an additional experimental

validation of this model that does not rely on fitting parameterizations.

3.5 Additional Analysis and Considerations

3.5.1 Sensitivity

Two parameters are input into the fitting algorithm as constants: the

total contour length of the molecule, and its persistence length. The persis-

tence length depends on the ionic strength of the buffer, but depending on

which description of its ionic dependence is used, it is between 52 and 56 nm
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Figure 3–11: Stability phase diagram for DNA in a nanopit-nanoslit lattice.
Filled points correspond to geometries where stable tetris states were observed,
unfilled points where the molecules were observed diffusing from the pits to
the slits, or not occupying the pits at all. The solid line corresponds to the
prediction for the the potential minimum equaling -kT, with the dashed lines
taking into account 10 percent variation in the slit-pit etch depths.
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for 50 mM Tris. Both the persistence length and the total length depend on

the intercalation ratio of YOYO-1 dye. A low 10:1 base-pair to dye ratio was

used, but the exact lengthening and stiffening due to this is not fully known.

In particular, different experimental papers show opposite dependence for the

persistence length, whether stiffening or floppening. The contour length depen-

dence is better understood, and is a stronger effect than the weak persistence

variation. With 10:1 YOYO-1 intercalation, the lengthening is thought to be

roughly 15 % and the change in persistence is thought to be negligible [23].

To test the dependency of the fitting outputs on these input parameters,

the fitting algorithm was run with a varied range of inputs (Figure 3–12). Data

sets from narrow (50 nm) and wide (170 nm) slits were fit, and the bare-bones

parameterization was used (Marko-Siggia force with no cavity component).

With respect to persistence length, the measured parameters decrease as its

input value is increased, roughly the same for narrow and wide slits and for A

and B. With respect to the contour length, again a larger input value leads to

smaller parameters, but the dependence of the B parameter was significantly

stronger than A. The ambiguity over the lengthening role of YOYO-1 may

indicate that our uncertainties are underestimated. The fact that the depen-

dence on the input parameters is roughly the same for narrow and wide slits

indicates that the overall observed scaling trends are robust under changes in

these parameters, even if their values may not be.

There is also a sensitivity to our choice of parameterization of the ionic

dependence of persistence length. At the higher ionic strengths used for most

experiments, this is a relatively minor difference. At the lowest salt concen-

trations used, this varies between 60 and 80 nm, a significant difference. We
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Figure 3–12: Left: Sensitivity of fitting parameters to the input persistence
length, for two sets of data. The range of ambiguity is outlined with dashed
lines. Right: Sensitivity of fitting parameters to the input persistence length,
for two sets of data. The range of ambiguity is outlined with dashed lines.

can parameterize the fits at different ionic strength using both the OSF and

Dobrynin models to see what effect this has on the measured fit parameters

(Figure 3–13). Ultimately the difference in the fit parameters is negligible, but

the observed behaviour in the scaling of A is closer to that predicted by OSF.

The results for excluded volume have very little dependence on this.

3.6 Conclusion for Chapter 3

In this section I have used measurements of the average occupancy to

study the first two virial contributions to free energy of confinement. Mea-

surements of the entropic cost of confinement, are consistent with the ex-

pected energies of a confined semi-flexible chain. The slit component of this

free energy falls with height consistently with the Chen-Sullivan interpolation

formula, which is not described by a power law. I have made the first set of

systematic measurements of cavity-confinement physics with DNA, measuring
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Figure 3–13: Measured Aslit and theoretical predictions for the two models of
the ionic dependence of persistence length.

the effective width and its scaling with ionic strength on a single-molecule ba-

sis. I have solved two long-standing mysteries: the role of excluded volume

under confinement, and the transition between strong and weak confinement.

Beyond the measurements themselves, this analysis further demonstrates

the power of using complex nanofluidic devices. The measurements take advan-

tage of the multple confinement scales within a given lattice, without which

partitioning would be impossible, and the multiple experimental regions on

each device, which allows the parameters to be fit to the occupancy scaling.

These measurements are also significant in that they begin to look at the actual

values of quantities predicted by polymer theory, rather than just their scal-

ings. This will become an important tool as the field moves towards complex

phenomena that cannot be simply described by a power law.

From an applications perspective, the single molecule tetris assay can

serve as a general laboratory for examining more complex biochemical phe-

nomena, such as the physical effects of DNA-binding proteins like RecA. The
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full validation of the free energy model can allow an accurate prediction of the

average occupancy, useful for designing devices to trap DNA with certain con-

figurations, like zero-mode waveguides. This will allow a more efficient design

of complex nanodevices for trapping DNA, both by allowing a specific state

to be tailored by the choice of geometry, and by characterizing the conditions

required for DNA to be trapped at all.
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CHAPTER 4
Single Molecule Pong: Fluctuations Between Two Pits

4.1 Introduction

When a DNA molecule spans multiple pits, the intensity in all the pits

is seen by eye to fluctuate. More quantitatively, in a molecule occupying

two pits, the intensity can be measured over time and is seen to fluctuate

out of phase between the two pits (Figure 4–1). This is intuitive, because

there is a fixed number of fluorophores (fluorescence is proportional to local

monomer concentration) and when DNA leaves one pit it will enter another.

In this section, we focus on the time-scale associated with contour transfer. We

are interested in measuring this time-scale and understanding it theoretically.

This section is not a “big picture” exploration of the underlying physics, but

rather an investigation into how to control these time-scales. From a device

perspective, one may wish to minimize the fluctuation time-scale, so that a

higher framerate can be used to image genetically independent samples of

DNA, or to maximize it, to allow the greatest possible imaging time of a given

sample.

First I will discuss some observations that were made about these fluctu-

ations, before outlining the physics required to understand them.

4.1.1 Experimental Considerations

The experiments here are effectively a subset of the previous section, where

molecules were observed to occupy two pits for long periods of time. Each
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Figure 4–1: (a) A time series of a molecule in two pits showing variations in
intensity in both pits. (b) Three plots are shown of the intensity in each of
two occupied pits over time. In all cases, the intensities in each of the pits
fluctuate out-of-phase with each other.

movie of a molecule in two pits was isolated and oriented vertically. The two

intensity peaks were found and a 3x3 or 5x5 pixel box around each peak was

summed for each frame, leading to a time-series for each pit intensity, I1 and I2.

The cross-correlation function of the two time-series was calculated, as were

the autocorrelation functions of the sum and difference of the two intensities.

Exponential fits were performed.

It was desirable to image at faster framerate, so that short-time correla-

tions could be measured. To this end, in some experiments the molecules were

imaged at 30 ms rather then 100 ms exposure.

4.1.2 Observations

Typical time-series of the fluctuating cavity intensities, shown in Figure

4–1, suggest that the cavity intensities are strongly anti-correlated. The large

anti-correlation between I1 and I2 implies that the difference in cavity in-

tensities Idiff ≡ I1 − I2 fluctuates with large amplitude (Figure 4–2(b)), while
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Figure 4–2: (a) Time series of the integrated intensities in two occupied cavi-
ties. (b) Time series plot of the summed two-cavity intensity Isum (black) and
two-cavity intensity difference Idiff (red), corresponding to the two intensities
in (a). (c) The cross-correlation of the two data sets in (a), the fluctuating in-
tegrated intensity between the two cavities. (d) The autocorrelation of the two
data sets in (b), the two-cavity intensity sum autocorrelation 〈Isum(0) ·Isum(t)〉
(black) and two-cavity intensity difference autocorrelation 〈Idiff(0) · Idiff(t)〉
(red) with overlaid exponential fits.
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correlations in the sum Isum ≡ I1+I2 are not expected. However, at sufficiently

short time-scales, there is evidence of time-correlation in Isum (Figure 4–2(d)),

suggesting a faster dynamic mode. Additional evidence for the existence of

two relaxation time-scales arises from examination of the cross-correlation of

the two fluctuating cavity intensities (〈I1(0)·I2(t)〉), shown in Figure 4–2(c) for

an example molecule (note that the raw cross-correlation function is negative;

it has been multiplied by -1). Remarkably, we see that the cross-correlation

does not follow a single exponential decay, but instead exhibits two distinct

time-scales: a short time-scale ∼ 0.1 s and a longer time-scale ∼ 0.5 s.

We interpet these two modes as corresponding to two modes of a coupled

harmonic oscillator system (Figure 4–3). There is an anti-symmetric mode,

where contour fluctuates back and forth between cavities while keeping the

tension in the linker constant. This corresponds to the coupled harmonic

oscillator mode where the two masses move from side to side, compressing and

expanding the springs connected to the wall, while the spring connecting the

two remains at its equilibrium extesion. There is also a symmetric mode, where

the ratio in the two cavities stays fixed but DNA fluctuates in and out of the

slit in tandem, changing the tension in the linking strand. This corresponds

to the mode where the two masses move in and out in tandem, stretching

and compressing the central spring but keeping the centre of mass fixed. In

this analogy, the springs connecting to the walls are the free energy potentials

binding the DNA to the cavities, while the central spring is the tension in the

chain.
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Figure 4–3: Cartoons of the symmetric (a) and anti-symmetric (b) modes,
making comparisons between trapped DNA and coupled harmonic oscillators.

4.2 The Physics of Fluctuations

4.2.1 Literature Overview

Initial measurements by Reisner et al. of DNA relaxation times in nanochan-

nels showed a relaxation time-scale on the order of a second, with a local

maximum at a transition between two regimes near the Kuhn length [28]. In

slits, measurements of diffusion and relaxation time by Hsieh et al. show dy-

namics in between those described by Rouse and Zimm physics [46]. In a

more detailed study, structural time-correlations in slit-confined DNA were

examined by Jones et al. who found that the hydrodynamic exponent of in-

ternal correlations grew with spatial separation towards a plateau governed

by Zimm physics, before decaying as the separation exceeded the size of the

channel, providing experimental evidence that hydrodynamic interactions are

screened beyond length-scales equivalent to the height of the slit. The inter-

nal fluctuation modes of nanoconfined DNA were examined by Karpusenko et

al. [33] in the context of density variations along stretched molecules, making

analogy to standing wave modes on a string. In bulk, a polymer would un-

dergo fluctuations through a large number of Rouse-type modes, each with its

own effective spring constant and relaxation time. In a confining system, the
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free energy potential effectively imposes a global spring constant that dictates

the molecule’s fluctuations. This was realized by Karpusenko et al. [33] who

showed that nanochannel confinement lead to several apparent standing wave

modes. Confining the molecule in a potential landscape is a way of controlling

the dominating mode.

The time-scales associated with molecular partitioning in cavities have

largely not been explored. Our earlier work on nanocavity physics focused

on static equilibrium physics [1] and diffusion [12]. Nykypanchuk et al. [9]

examined DNA fluctuating between two adjacent spherical cavities of different

size, focusing on cases where the molecule occupied a single cavity and Cifra

[90] modelled the statics of a similar system experimentally in the context of

nanopore translocation. Yeh et al. [49] examined a DNA molecule confined

over a slit between two reservoirs, to study the forces acting on the molecule as

equilibrium is broken. Kounovsky-Schafer et al. [60] examined the time taken

for a large molecule spanning two reservoirs across the slit to translocate. Here,

we are concerned with the fluctuations of contour between adjacent cavities, for

which there has been no quantitative investigation. Beyond merely observing

the equilibrium fluctuations of a molecule, we desire to control the fluctuation

time-scales via sculpting of the equilibrium ground state.

The time scale of intramolecular fluctuations are governed by two param-

eters: the effective spring constant κ and the friction factor ξ. The effective

spring constant is the curvature of the local confining potential, and the friction

factor is the hydrodynamic drag on the chain. The friction factor is sensitive

to hydrodynamic interactions, the phenomenon where a perturbation of one
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part of a chain in solution affects another through coupled motion through the

fluid.

4.2.2 Hydrodynamic Interactions

There are two principal models of hydrodynamic interactions within poly-

mers, that predict different behaviours for their relaxation and diffusion at

different time-scales. The Rouse model of hydrodynamics treats the chain as

a bead-spring system that is subject to Brownian noise and hydrostatic drag.

The Zimm model extends this to include hydrodynamic interactions between

the beads. The universality of hydrodynamic interactions in the bulk was con-

sidered by Tree et al. They found that the dynamics of a chain approach those

of Zimm physics as the chain becomes asymptotically long, but that λ-DNA

is not in this limit [26].

The prevailing wisdom about hydrodynamic interactions under confine-

ment is that they are screened beyond the length-scale of confinement. Re-

turning to a blob picture, this means that monomers within a blob interact

hydrodynamically with each other, but there is no hydrodynamic interaction

between blobs. With a blob picture of hydrodynamics, the Rouse model im-

plies that there are no hydrodynamic interactions at all, while the Zimm model

assumes that they are relevant within the blob and screened at length-scales

beyond the blob length scale, which under confinement is the height of the

system. The relaxation time of a free chain in a slit scales as h−1/2 for Rouse

and h−7/6 for Zimm, and experiments [45] showed an intermediate height de-

pendence of h−0.92, roughly in between the two limits. A more detailed exper-

iment by the same group [47] fit a stretched exponential to the time-scale of

correlation at different separations throughout the molecules, and examined

100



-21

-14

-7

0
-20 -10 0 10 20

0 25 50 75 100

-21

-14

-7

0

(c)

(b)

 

 

 Contour Difference (%)

F
re

e 
E

n
er

g
y 

(k
T

)

Fraction in Bottom Pit (%)

Fr
ac

tio
n 

 in
 T

op
 P

it 
(%

)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

 

 

F
re

e 
E

n
er

g
y 

(k
T

)

Contour Sum (%)

(a)

Figure 4–4: (a) A contour contour plot of the free energy landscape of a chain
straddling two cavities as a function of the fraction of contour L1/L and L2/L
stored in each cavity. (b) The energy as a function of Ldiff = L1 − L2 and (c)
the energy as a function of Lsum = L1 +L2. The forbidden region corresponds
to configurations where L1 + L2 + Ls > L.

how the exponent of this fit grew with separation. They found that it grew

from the Rouse limit towards the Zimm limit as the distance increased, be-

fore reaching a maximum and falling off when the separation exceeded the slit

height. Interestingly, they showed that for the heights relevant in this thesis,

the hydrodynamics are effectively Rouse-like.

4.2.3 Theory of Two Pit Fluctuations

We return again to the free energy model for the case of N = 2, relaxing

the restriction that the contour in both pits is equal. Instead of both con-

taining Lp, one contains L1 and the other L2, the index of the labels being

arbitrary. The ideal chain entropic elasticity is used for simplicity, although a

more complex spring model such as Marko-Sigga or de Haan-Shendruk can be

used.
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∆F

kT
= −AL1 − AL2 +BL2

1 +BL2
2 +

3l2

4pLs
(4.1)

The contour in the slit Ls is such that the total length is conserved:

L = L1 + L2 + Ls. The above expression can be rewritten with a change of

basis to the variables Lsum and Ldiff , the total contour in the cavities and the

difference between them:

Lsum = L1 + L2 Ldiff = L1 − L2 (4.2)

Rewriting the free energy, we have:

∆F

kT
= −ALsum +

1

2
BL2

sum +
1

2
BL2

diff +
3l2

4p (L− Lsum)
(4.3)

It can be seen that the only term that depends on the difference is

quadratic with respect to Ldiff with an effective spring constant equal to the

excluded volume parameter.

The relaxation time is the ratio of the chain friction to the effective spring

constant.

τ =
ξ

κ
(4.4)

From blob theory, the hydrodynamic friction on the chain is the friction

per blob, taken from the Stokes-Einstein relation, times the number of blobs,

whose size is constrained by the height. DeGennes showed that the friction

of a chain confined in a nanochannel depends only on the extension along the

channel, not directly dependent on the chain length or channel size.
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ξ = αη` (4.5)

Where η is the buffer viscosity (typically 0.001 Pascal-second) and α is

some dimensionless prefactor, typically of order 1 although deGennes uses 6π.

This ansatz lends itself well to this experimental system: the extension of

the molecule is simply the distance between adjacent pits, independent of the

tension in the chain. Combining this with our free energy model that tells us

that the spring constant κ is equivalent to the excluded volume parameter, we

have a simple expression for the relaxation time of the two-pit system.

τa =
ξ

κa
= α

η

kT

d

w
a2` (4.6)

The symmetric fluctuation mode does not obey as simple a prediction.

The free energy depends on a balancing of all three contributions including

the elasticity, rather than just the excluded volume, and the potential is asym-

metric about equilibrium. Typically, the second derivative of the potential will

be evaluated numerically to find the spring constant. Within the ansatz we are

using to describe hydrodynamic friction, the friction factors of the two modes

should be the same. Thus, the ratio of relaxation times of the two modes is the

ratio of their potential curvatures. From this, a very approximate expression

can be written for the symmetric relaxation time:

τs =
ξ

κs
= α

η

kT

d

w
a2`

1− 81w2a2hp5L2

(3wLp2 − 2π2h2a2)3

(
`

L

)2

+O

(
`

L

)4
 (4.7)
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Figure 4–5: (a) Sample image from a simulation. (b) Time series of the number
of beads in each cavity (blue, green), as well as their sum (black) and difference
(red). (c) The autocorrelation function of the summed bead occupancies for
each cavity (black) and the autocorrelation of the difference in bead number
for each cavity (red).

4.3 Simulations

To confirm that the two time-scales represent a universal feature of the

confined polymer dynamics, and not specific to our specific experimental model,

we perform Langevin dynamics simulations of a coarse-grained polymer in a

two-cavity system (Figure 4–5(a)). As shown in Figure 4–5(c), both the sym-

metric and asymmetric modes were reproduced by the simulations. This veri-

fies that it is possible to observe both modes of oscillations in a simple system

consisting of a standard bead spring polymer model between two entropic traps

subject to thermal noise.

The Langevin dynamics simulations use a coarse-grained method to model

the molecule as a chain of connected monomers [91]. Excluded volume inter-

actions are implemented by a Lennard-Jones repulsion (known as the Weeks-

Chandler-Anderson or WCA potential in this context [74]) between monomers,

which gives them an effective diameter δ which is analogous to w and sets the
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Figure 4–6: (a) Measurements of anti-symmetric correlation time as a function
of cavity width compared to a quadratic dependence. (b) Measurements of the
anti-symmetric correlation time as a function of cavity-to-cavity spacing, for
500 nm (red) and 600 nm (black) wide cavities. Theoretical prediction of free
energy model is overlaid. (c) Ratio of the correlation times of the symmetric
mode to the anti-symmetric mode τs/τa, compared to the free energy model
prediction (dashed curve) and the Langevin dynamics simulations (connected
circles). Error bars represent standard error between multiple molecules.

length-scale of the system. A polymer chain consists of 100 to 300 monomers,

connected via a finitely-extensible spring potential. Semi-flexiblity is imposed

by a harmonic bending potential with a spring constant chosen to give an

effective persistence length of 5δ, giving the chain similar monomer isotropy

to DNA. The chain was simulated in a slit with walls separated by 2δ with

square pits of depth 5δ and varying width and spacing. Pits of width 5-16 δ

and spacings of 6-16 δ were simulated for 10,000 time points. Geometric pa-

rameters were not necessarily chosen to match experimental parameters, but

to ensure stable two-pit occupation. The relaxation times were calculated by

fitting the exponential decay over the first 10 time-lag steps of the correlation

functions of the simulation time-series (Figure 4–5).
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4.4 Experiments and Analysis

Our free energy analysis suggests that the fast and slow time-scales ob-

served in experiments and simulations arise from the symmetric and asymmet-

ric transfer modes. We see only one relaxation time-scale in the autocorrelation

functions 〈Isum(0) ·Isum(t)〉 and 〈Idiff(0) ·Idiff(t)〉 because Isum and Idiff represent

independent modes. The cavity pair-correlation function 〈I1(0) ·I2(t)〉, accord-

ing to our model, is the sum of the correlation functions for the independent

sum and difference modes, explaining why we observe two distinct-time scales

in Figure 4–2(c).

Moreover, if our model is correct, we would expect to see the dependence of

τa and τs on device parameters predicted by Eq. 4.6 and Eq. 4.7. Measurements

of τa as a function of cavity width (Figure 4–6 (a)) suggests that τa has a

dependence on cavity width consistent with the quadratic scaling predicted

by Eq. 4.6. Using known geometric values and an effective width w = 9 nm

from theory, Eq. 4.6 predicts an α = 0.48 ± 0.02. Measurements of τa as a

function of cavity-to-cavity spacing (Figure 4–6 (b)) are consistent with the

linear dependence predicted by Eq. 4.5. The friction prefactor of roughly 1/2

that we observe is significantly smaller than the 6π deGennes predicted based

on the Stokes-Einstein coefficient of a spherical blob. More detailed simulations

[92] and measurements [28] of relaxation in nanochannels suggest a friction

prefactor on order unity. The deviation from the deGennes prefactor is likely

due to the asphericity and deformability of the blobs, leading to deviations

from the hard-sphere coefficient, as well as latent hydrodynamic interactions

that are not fully screened.
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As seen in Figure 4–2 (d), the symmetric mode typically relaxes faster

than the anti-symmetric mode. The ratio of the two relaxation times is, how-

ever, highly sensitive to the cavity width (Figure 4–6(c)). The spring constant

associated with the symmetric mode arises from the curvature of the free en-

ergy potential landscape at equilibrium (see Figure 4–4). This curvature is

strongly related to the tension in the linker. High tension leads to a high κs.

However, as the tension at equilibrium decreases, the curvature of the poten-

tial softens, and the spring constant decreases. Moreover, increasing the cavity

width pulls contour out of the slit and increases the tension. A small cavity

width leads to low tension. Consequently, the behaviour of τs as a function

of cavity width is opposite that of τa. As the width of the cavities becomes

smaller (lower tension), we expect the ratio τs/τa to increase. Experimental

measurements of τs/τa are shown in Figure 4–6(c) and compared to the predic-

tions of our free energy model. We find decent qualitative agreement, although

the theory overestimates τs/τa for small cavity width. Our theoretical model

assumes that only the curvature of the two modes differs (i.e. it uses the same

friction for both), meaning that the ratio of time-scales is given by the func-

tion G in Equation 4.7. It is possible that tension reduces the blob length-scale

to below that of the confinement scale h, giving rise to a tension dependent

friction factor. However, the tension blob length-scale is typically larger than

h, thus we expect these differences to be insignificant.

Due to a wide gap between the experimental and simulation contour

length- and time-scales, it is difficult to precisely map the simulation results to

experiment. Instead, the dimensionless mode ratio as a function of cavity size

is compared between the simulations and experiments as shown in Figure 4–6
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(c). We have rescaled the bead diameter by a factor of 52 nm/σ to match

experiments. This rescaling includes a factor of 9 nm/σ to match the bead di-

ameter to the effective width and a factor of 5.8 from a simple scaling argument

that would ensure two-pit occupancy if the chain were lengthened to match

λ-DNA. We find comparable agreement to the data that is seen using the free

energy model (equation 4.7). In both cases, there is deviation from theory for

small cavity sizes, where the symmetric mode is faster than expected. Never-

theless, the trends found in the experimental data, the simulation results, and

the thermodynamic model are consistent.

From an engineering point of view, these considerations suggest a series of

design guidelines for controlling the fluctuation modes. The time-scale of the

dominant asymmetric mode can be increased by increasing the size and spacing

of the traps, and conversely this time-scale can be minimized by shrinking the

size and spacing. For fast relaxation and no symmetric mode, large cavities

can be placed close together. For fast relaxation with a strong symmetric

mode, small cavities can be placed close together. For slow relaxation with a

symmetric mode, large cavities can be placed far apart, and for slow relaxation

with a strong symmetric mode, small cavities can be placed far apart.

4.5 Further work

4.5.1 Noise Budget

The intensity fluctuations measured for any individual pit are a sum of

true molecular fluctuations, local noise (for example shot noise reaching each

individual pixel), and global noise (for example due to fluctuations in lamp

intensity). For a molecule straddling two pits, we can examine the autocorre-

lation of each pit individually, of the sum and difference of the two intensities,
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and the cross-correlation between the two pits to examine how each noise

source affects the correlation. In particular, the extrapolated zero-time-lag

auto-correlation represents the fraction of the total signal variance that is cor-

related, and its counterpart is the noise magnitude.

Because the global noise affects both pits simultaneously, the difference

between them is unaffected by it. The only noise contribution to the difference

autocorrelation is local shot noise. Each individual pit autocorrelation noise

will simply be the sum of local and global noise. The cross-correlation will

only be sensitive to global noise because the shot noise affecting each pit is

uncorrelated, however it emergences from a combination of pro- and anti-

correlated fluctuations meaning its zero-time-lag value is not a good measure

of noise.

Formally, we can write out the noise contributions to the zero-time corre-

lations and expand them in terms of the different sources (global noise σg and

local noise σl), removing terms uncorrelated with each other. For the individ-

ual autocorrelation, two-pit cross-correlation, difference autocorrelation, and

sum autocorrelation, we have:

〈I1 · I1〉 = σ2
g + σ2

l (4.8)

〈I1 · I2〉 = 2σ2
g (4.9)

〈Idiff · Idiff〉 = 2σ2
l (4.10)

〈Isum · Isum〉 = 2σ2
l + 4σ2

g (4.11)
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This gives us an approximate hierarchy of the different zero-time-lag val-

ues, based on the relative strength of local and global noise, and a way to

estimate them from autocorrelation functions. For example, looking at the

correlation functions seen in Figure 4–7 it is seen that the autocorrelation of

the sum has an extrapolated zero-value of 0.93, giving a value of 0.035 for

the local noise, and the cross-correlation has a zero-value of 0.76, giving 0.12

for the global noise. From these values, the expected value for the single-pit

zero-value is 0.85, which is in between the two measured extrapolated single

pit zero-values (0.83 and 0.86). The expected sum autocorrelation zero-value

is 0.45, which is close to its extrapolated value of 0.41. A question arises as to

why the global noise is so much stronger than the local noise, which may be

resolved by measuring lamp intensity over time under controlled conditions.

4.5.2 Higher Order States

In addition the dynamics of two-pit systems, the dynamics of molecules in

three or more pits were investigated. The number of pairwise pit-pit correlation

functions that can be considered is N (N − 1) /2. To simplify the analysis,

we can consider correlations between nearest-neighbour pits, and correlations

between pits at opposite ends of the molecule.

In three pits, there are correlations between the middle pit and its two

neighbours, and between the pits at opposite ends (Figure 4–8). It was ob-

served that the correlation between opposite ends was stronger than the nearest

neighbour correlations, and over varying pit width showed a much stronger in-

crease. The times associated with the opposite-end mode were comparable to

dimers with large extensions. We interpret this as an extension of the pit-to-

pit anti-symmetric mode that was discussed in the context of two pits. The
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Figure 4–7: Correlation functions for a molecule in two pits: the autocor-
relation functions of each individual pit intensity, the sum and difference of
intensities, and half the cross-correlation function between the pits. Expo-
nential fits are used to extrapolate to find the zero-time-lag value for each
auto-correlation function, which is the fraction of variance due to correlated
fluctuations.
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Figure 4–8: Left: Cross-correlation functions for a typical molecule in the
three pit state. The pits at opposite ends of the molecule had much stronger
anticorrelation compared to nearest neighbours. Right: The relaxation time
for nearest-neighbour (averaged) and opposite-end correlations in molecules
spanning three pits.

nearest-neighbour correlations are a more complex combination of modes: if

contour leaves pit one for pit two, they two would be anti-correlated, but as

contour goes from pit three to pits one and two, they both see an increase and

would be correlated with each other.

Experiments were performed with T4 DNA to allow molecules to occupy

many pits (Figure 4–9). In systems with a large number of pits, it is diffi-

cult to make out trends in the correlation functions, although at short times

there appears to be a growth across the chain to opposite-end anti-correlation.

However, correlated noise, due to the fact that the longest-time fluctuations

can only occur a few times in a short movie, makes it difficult to examine

longer-time interactions between pits.

112



Figure 4–9: Cross-correlation functions between a molecule at one end and the
other five of six occupied pits. These have not been multiplied by -1.

There is also suggestive evidence that the peak of the cross-correlation

between the opposite ends is not at zero frames, indicating a finite time mea-

surement for tension to propagate from one pit to the other, effectively a

“speed of sound” through DNA (Figure 4–10). This can be measured by

considering the time at which the cross-correlation function is minimal. For

essentially every dimer molecule, there is no evidence of a finite-time offset.

For trimer molecules, we begin to see evidence of this offset in the opposite-end

correlation. However, it is difficult to get good measurements of this because

opposite-end correlations are subject to finite-time fluctuation noise.

By examining kymographs (time-projected averages of movies), fluctua-

tions in intensity can be seen propagating from one side of the molecule to

the other, manifesting as local increases in intensity that are staggered in time

between pits (Figure 4–11). Based on the time lag in the wave between one

side and the other, the speed of tension propagation can be estimated to be

roughly 1.6 microns per second.
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Figure 4–10: Cross-correlation functions for a molecule in the three pit state.
The opposite-end correlation has a minimal value at nonzero time.

Figure 4–11: (a) Kymograph of a molecule spanning seven pits. An intensity
wave can be seen propagating from the fifth to the first pit. (b) Kymograph
of a molecule spanning six pits. An intensity wave can be seen propagating
back and forth across the molecule. (c) The same images with black lines to
highlight the waves.
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4.5.3 Tension Blob Scale

The assumptions that lead to the expression for the friction factor rely on

the fact that the statistical blob size is the same as the slit height. A stretched

chain in bulk has its own tension-blob length-scale, which is the ratio of the

thermal energy to the applied force. When considering a stretched chain under

confinement, it is not obvious which length-scale dominates, although it is

presumed that the smaller length-scale will be more relevant. We can consider

both to determine whether tension would affect the confinement blob scale.

The blob scale in the linker between two pits can be derived by considering

the ideal chain entropic force as a function of Ls and `. It is found that the

tension length-scale is:

`blob =
2

3
p
Ls
`

(4.12)

Without knowing the ration of the Ls to `, it can be ascertained that for

the heights used in these experiments, typically on the order of 2p, the tension

length-scale may dominate in the wide-slit high-tension limit. Whether the

tension blob scale is smaller or larger than the slit, we can further suppose

that the tension blob length-scale manifests itself transverse to the slit in

the unconfined directions. An argument for the chain friction based on blob

partitioning shows that the friction factor is the same as the extension if the

chain obeys ideal statistics within the blob, meaning the transverse tension

blob argument gives the same results as the confinement blob argument. If

the in-blob statistics are self-avoiding, then a different dependence emerges.

However, based on the semi-flexible chain model that we verify in Chapter 3,
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it is thought that ideal statistics are appropriate. In particular, this suggests

that if the drag acting on the chain is independent of the tension, then the

friction factor for the two modes is the same, and the only difference is their

spring constant.

4.6 Fluctuation Conclusions

In this chapter, I have made measurements of the correlation-relaxation

time of DNA straddling two pits. I developed a model based on the free energy

of confinement and blob-style friction to predict this time, and found good

agreement between measurements, the model, and numerical simulations. I

also showed how imposing the free energy potential landscape with the entropic

trapping system can be used to enforce harmonic modes that dominate over

the chain’s intrinsic Rouse-modes.

There is a rich experimental playground to be found when examining the

correlations between molecules occupying a very large number of pits, that I

did not have time to explore fully. A systematic study of contour propagation

and correlation through these arrays would be a natural next step.
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CHAPTER 5
Single Molecule Whac-a-Mole: Filling of a Single Pit

5.1 Introduction

This chapter is about a series of experiments examining molecules occu-

pying a single pit, measuring what fraction of the molecule lies within the pit

as a function of the size of the pit (Figure 5–1). The primary motivation is to

independently verify the mean-field excluded volume interactions in cavities,

which have been taken as an assumption in Chapter 3, and in doing so we

explore an under-utilized technique based on measurements of single-molecule

partitioning.

In Chapter 3, a model of the free energy of confinement was fit to oc-

cupancy data to make measurements of the free energy parameters and their

scalings. The model assumed a linear and a quadratic contribution to the free

energy with respect to contour, as well as a parameterized elastic contribution.

Figure 5–1: Left: A cartoon of a molecule occupying a single pit seen from
the side, with some contour inside the pit and some in the slit. Middle: A top
view cartoon. Right: A micrograph of a single molecule in one pit, in a similar
configuration to the middle cartoon. The bulk of the intensity is localized near
the pit, while some originates from the part of the chain in the slit. Scale bar
is two microns.
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In this section, we attempt to make similar measurements with fewer assump-

tions, removing sensitivity to the spring parameterization and allowing us to

verify the quadratic scaling of the self-exclusion free energy.

When a molecule occupies a single pit, it is partitioned with some contour

in the cavity and some in the slit (Figure 5–2). When the pits are very small,

the molecule is mostly in the slit with only a toehold in the cavity. When

the pits are large, the molecule can fall completely into a single cavity, making

occasional excursions into the slit. The fraction of the molecule that fill the pit,

which we have termed the “filling factor”, depends on a balance of excluded

volume pushing it out of the cavities and entropic forces pulling it in, and

measuring this filling fraction as a function of the size of the pits provides an

independent method of measuring these different free energy parameters.

Compared to slits and channels, studies of polymer physics in confining

cavities is sparse. In one study [9], Nykypanchuk measured the probability

of DNA occupying one of two adjacent pores of different sizes, and use the

probability and size difference to compare to various theoretical predictions.

It was concluded that in this case, the theory matched the data better when

excluded volume was taken into account. Other studies on cavity-confined

DNA have looked at the dynamics of bacteriophage genomes confined within

a capsid, concluding that excluded volume is indeed relevant [70].

Much of this research was made possible by the painstaking efforts of two

McGill undergrads, Lyndon Duong and Laurence Coursol, who spent many

hours in the lab taking data and even more hours in front of the computer

implementing the early stages my analysis algorithm, before I was able to

automate it. Early work was also done by a CEGEP student, Simon Papillon.
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5.1.1 Experimental Considerations

These experiments require molecules to occupy a single pit at equilibrium.

Data can be taken from a subset of multi-pit data where N = 1, which is com-

mon for larger pit sizes, but difficult to get for smaller pits unless they are

comparatively far apart. A better method was to use geometries specifically

for single λ-DNA molecules, which were five microns apart. These devices con-

tained pits separated by five microns with sizes from 200 to 1000 nanometers,

with two rows of each size (Figure 5–2). Rather than focusing on a single ge-

ometry, a frame consisting of many geometries was recorded, with a bright-field

image used to ascertain which molecules were in which sized pits. Molecules

were typically filmed for 300 to 1000 frames.

While the experiments are similar to those in the multi-pit project, the

analysis is more complex. Rather than simply counting the number of pits,

the intensity coming from within the pit must be measured. Because the

pits are only a few pixels wide and comparable to the diffraction limit of the

microscope, and it is a challenge to measure this fraction in a way that does

not impose a trend.

5.2 Theory of Single Pit Filling

5.2.1 Scaling Model

We return to our initial free energy in the case of N = 1, expressing it as

a function of the contour in the pit, Lp:

∆F

kT
= −ALp +BL2

p (5.1)

This is easily minimized to find the equilibrium value Lo:
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Figure 5–2: A typical single-pit experiment, with a screen capture on the left, a
time-projection on the right, and a bright field image in the middle. Molecules
occupy a single pit, partitioning some of their contour within. At the top of
the image, the pits are small and the molecule is mostly in the slit. At the
bottom, the pits are larger, and the less of the molecule is found in the slit.

Lo =
A

2B
≈ A

d

w
a2 (5.2)

With the geometric definition of B and neglecting transverse contributions

to A, we find that this scales quadratically with the width of the pit.

In addition to examining the equilibrium filling, we can also examine the

fluctuations about equilibrium by applying the Boltzmann distribution to the

free energy:

P (Lp) ≈ e−
∆F(Lp)

kT (5.3)

Given our free energy, we have:

P (Lp) ≈ e−(−ALp+BL2
p) = e−B(Lp−Lo)2

(5.4)
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Thus, assuming the mean field model, the distribution of observed fillings

should be Gaussian, with a variance that is related to the reciprocal of the

excluded volume parameter. By mapping this expression onto the form of a

Gaussian probability distribution we can find the variance:

σ2 =
1

2B
=

2

π

V

w
=

2

π
da2w (5.5)

Again, we see that the variance is expected to scale quadratically with

pit width, and the standard deviation should be linear in a. It also implies

that a measurement of the filling variance of a single molecule would allow a

measurement of the effective molecule width.

5.2.2 The Full-Filling Transition

If the cavity is large enough, it can contain the entire molecule at equi-

librium, and the potential is minimized at a value of Lp greater than the total

contour length. The minimum energy state that can actually occur in this sce-

nario is Lp = L, which has some free energy that is greater than the potential

minimum, a zero-point energy so-to-speak. This is a finite size effect, that can

only occur if the molecule is small enough to fully or almost-fully occupy the

pit. This has been explicitly accounted for in the multi-pit analysis: there is

an if-statement in the code bringing the minimal energy of the N = 1 state to

that of full-filling if the true minimum is inaccessible. When this is not taken

into account, the monomer state is overfavoured.

The equilibrium filling factor can be found while taking this into account

by generating a partition function by integrating the Boltzmann factor by dLp
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from 0 to L. This effectively excludes the inaccessible states from contributing

to the ensemble average. Ignoring degeneracy, the partition function is:

Z =
∫ L

0
e−ALp+BL2

pdLp (5.6)

This has a closed form expression in terms of error functions which is not

particularly useful compared to its integral form. The equilibrium filling can

then be calculated:

〈Lp〉 =
∫ L

0

Lp
Z
e−ALp+BL2

pdLp (5.7)

Again, this has a closed form expression that is not worth writing. Sub-

stituting geometric values for A and B yields a scaling with respect to a that

is quadratic when a is small and plateaus towards full-filling when a becomes

large. The variance and standard deviation can also be calculated, from the

second moment of the partition function:

σ2 =
〈
L2
p

〉
− 〈Lp〉2 =

∫ L

0

L2
p

Z
e−ALp+BL2

pdLp −
(∫ L

0

Lp
Z
e−ALp+BL2

pdLp

)2

(5.8)

Rather than only increasing linearly with pit width, the standard devia-

tion grows, reaches a maximum, then decreases as excursions from full-filling

become less likely.

The predictions from minimizing the free energy and the predictions from

the partition function are different in the large-pit limit because there are

inaccessible states contributing to the free energy. Including the full semi-

flexible free energy in the predictions of the partition function model yield a
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closed-form but cumbersome expression. To compare to experiments, we can

examine both the scalings as predicted by the much simpler model, as well as

the predictions of the full model.

5.3 Filling Factor Analysis

5.3.1 The Procedure

The filling factor was measured by calculating the intensity fraction within

odd-by-odd boxes around the brightest point in each image, and interpolating

to find the contribution from the pit itself (Figure 5–3). These steps were

applied to each movie of a molecule occupying a single pit. To distinguish

it from other possible analysis procedures, the Procedure will marked with a

capital P. The analysis Procedure to calculate the filling factor is as follows.

1. The background, defined as the average intensity on the edge of the

projection of the movie, is subtracted from every pixel of every frame.

2. The brightest pixel in the projection is identified.

3. The intensity in odd-by-odd boxes corresponding to 1x1, 3x3, 5x5, and

7x7 stencils around the brightest pixel (Figure 5–3) in each frame is

summed, giving four time-series for each movie (Figure 5–4).

4. An odd-by-odd box that is larger than the pit is zeroed, and the pitless

movie is convolved by a point-spread function, and the total intensity

diffracted into the empty pit (known as the leakage) is summed for each

frame, and subtracted from the intensity time-series.

5. A new time-series is found by linearly interpolating between the two

(leakage-subtracted) time-series corresponding to the stencil sizes on ei-

ther side of the true pit size (for example, if the pit is 600 nm wide, and

each pixel is 160 nm, the true pit size is between a 3x3 480 nm stencil
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Figure 5–3: (a) For this image of a molecule in a 500 nanometer pit, the
boundaries of the pit are within 3x3 and 5x5 pixels of the intensity peak. The
filling is calculated by interpolating between the intensity fractions in each
odd-by-odd stencil. (b) The 3D surface plot shows the dominance of the pit
intensity.

and a 5x5 800 nm stencil). The interpolated time-series is divided by

the total background-subtracted intensity of each frame, to measure the

filling.

6. The interpolated time-series is divided by an optical fudge factor cal-

culated as the fraction of intensity from a diffracted square source that

comes from within the square.

7. The mean and standard deviation of this time series are taken as the

measured values.

5.3.2 The Optical Fudge Factor

Even if the dimension of the pit perfectly line up with the pixel grid of

the camera, a measurement of the intensity fraction within these pixels will

underestimate the filling because of diffraction. The Rayleigh criterion for the

optical set-up was roughly 180 nanometers, smaller than the smallest pits but

large enough that the intensity coming from within the pit was significantly

smeared. Diffraction was taken into account by calculating a “fudge factor.”

This was the theoretical intensity fraction that is found inside a given square
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Figure 5–4: The fraction of total intensity within 1x1, 3x3, 5x5, and 7x7 boxes.
The black time series is an interpolation between 3x3 and 5x5 to estimate the
contribution from the pit.

source that is subject to diffraction (Figure 5–5). It is calculated by convolving

an image of a square with a point-spread function and measuring what fraction

of the total intensity lies within the original dimension of the box. The fraction

of total intensity coming from the box intuitively increases with box size,

roughly quadratically for small boxes and square-radically for larger boxes.

5.3.3 Analysis Calibration

To test whether the Procedure can actually measure the filling, I tested

it on a series of molecular dynamics simulations from Hendrick de Haan of a

molecule confined in a single pit (Figure 5–6), with the same physics described

in Chapter 4. Each movie consisted of 200 frames and had a well-defined pit

with a known width. To compare the simulations to the data, they were con-

volved with a point-spread function, coarse-grained into pixels, and speckled

with Gaussian noise. The same analysis Procedure used to measure the filling

from the data was used to measure the filling from the modified simulation

movies, by linearly interpolating between odd-by-odd squares surrounding the
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Figure 5–5: (a, b) A square intensity source is convolved with a point-spread
function, and the fraction of total intensity originating within the square is
the optical fudge factor for that size pit. (c) The calculated fudge factor as a
function of pit size based on our microscope optics, and a linear coarse-grained
interpolation between odd-by-odd stencils.

brightest point and dividing by an optical factor. Good agreement was found,

although increasing the width of the point-spread function or the amplitude of

the noise worsens the agreement. In particular, the measured standard devia-

tion increases with increasing noise amplitude. This calibration can be used to

refine the analysis Procedure. For example, although intuition suggests that

quadratic interpolation between stencil sizes may be more appropriate, the

calibration suggests linear interpolation is better.

5.4 Results and Discussion

5.4.1 Time-Series and Histograms

Because the free energy of confinement is roughly quadratic, the prob-

ability distribution of the filling is expected to be Gaussian. By examining

histograms of an individual molecule’s filling time series, it is seen that this

is indeed the case. Histograms were created with a method known as super-

binning, where the time-series was histogrammed into a too-large number of

bins which were then averaged into larger bins to obtain error estimates on the
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Figure 5–6: (a) A simulation of a chain in a pit is convolved by a point-spread
function, coarse-grained by a factor of 4, and speckled with Gaussian noise. (b)
The measured filling over time according to the analysis procedure, compared
to the true value. (c) Measured and true fillings and standard deviations as a
function of nominal pit width.

frequency of each bin. The histograms (Figure 5–7) appeared to be Gaussian

as expected from theory. The histograms show that the mean and variance

both increase with increasing pit size.

5.4.2 Filling

From the scaling prediction, it is expected that filling increases with pit

width quadratically. However, with more detailed theory this is expected to

break down in both the large- and small-width limit. For large pits it is

expected to plateau as the entire molecule fills the pit, and for small pits,

the filling falls below the quadratic level as the transverse entropy becomes

significant. It is observed that the filling generally increases with pit width and

reaches a plateau for the largest pits (Figure 5–8). Agreement is seen with the

theoretical prediction for smaller pits, but for larger pits the measured value

lies below the prediction. Evidence for plateaus are seen, but they occur at
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Figure 5–7: Three filling histograms for a molecule in pits width widths of 300
nm (red), 400 nm (blue) and 500 nm (black). They appear Gaussian and the
mean and variance of the filling histograms both increase with pit size.

filling levels smaller than predicted. This may be due to an underestimation

of the filling at larger pits.

Examining data from pits of the same widths at varying slit height re-

vealed an unexpected trend: the filling reached a peak at around 100 nm slit

height, decreasing on both sides (Figure 5–9). This is curious; it implies that

a 100 nanometer deep pit can hold more DNA than a 200 nm deep pit. Why

does this peak occur? We can write out the single-pit free energy with explicit

height dependence, assuming an arbitrary power-law scaling A = αhγ for the

entropic component, and minimize it:

∆F

kT
= −αhγLp +

w

2ha2
L2
p → Lo = hγ+1αa

2

w
(5.9)

Thus, given constant pit width, the filling will increase with height if

γ > −1 and decrease with height if γ < −1. From our understanding of slit
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Figure 5–8: Filling as a function of pit width for three data sets, with average
heights of 70 nm, 96 nm, and 155 nm (from left to right). In each figure the
solid line is the simple scaling prediction and the dashed line is the complete
theory.

Figure 5–9: Filling for 500 nm pits as a function of slit height, with the pre-
diction of the full theory as well as two scaling predictions.
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Figure 5–10: (a) Measured filling as a function of pit width in the same device
at two ionic strengths. The lower ionic strength has lower filling. On the
right, two molecules in the same geometry at two ionic strengths are shown:
(b) the 100 mM example is much more localized in the pit than (c) the 10 mM
example.

confinement, we expect a transition between the Odijk regime (γ = −2/3)

to the ideal regime (γ = −2) at around the Kuhn length ( 100 nm), which

is roughly where the filling maximum is located. However, this argument is

overly simplistic: using the Chen-Sullivan free energy for the slit, the semi-

flexible cylinder model for the cavity, and taking into account finite-size effects,

there is a smooth maximum that is expected at a slightly narrower height. The

data is not of high enough quality to fully map out this curve.

Experiments were also performed at different ionic strengths (Figure 5–

10). It is observed that the filling is smaller at lower ionic strength. As the ionic

strength decreases at higher ionic strength, a greater amount of contour can

fill the pit without excluded volume interactions driving it into the slit. The

salt measurements also provide an additional sanity check on the Procedure:

the same geometries yield different results when the experimental conditions

are different.
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Figure 5–11: Standard deviation of filling as a function of pit width for two
data sets, with average heights of 70 nm and 110 nm (from left to right). In
each figure the solid line is the simple scaling prediction and the dashed line
is the complete theory.

5.4.3 Variance and Standard Deviation

Again, the scaling prediction for the standard deviation of the filling dis-

tribution is simpler than the reality. We expect from scaling arguments the

standard deviation to have a linear dependence on pit width, and with a more

detailed analysis this should fall sharply beyond a certain point, when excur-

sions from full-filling become less common.

Measurements of the standard deviation of the filling distribution as a

function of pit width show that it increases towards a maximum and then

falls off (Figure 5–11). The data is inherently noisy, as we are measuring

fluctuations of fluctuations. The full free energy partition model, taking into

account all discussed effects, described the general form of the data well with

no free parameters. The partition model is not perfect, as it diverges for

sufficiently large pit size (truncated in the figure). It does not exactly predict

the experimental values, although it is able to approximately predict the cutoff

before the variance falls.
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5.4.4 Single-pit Discussion and Conclusions

We have presented partitioning measurements of DNA into cavities of

increasing size, and measured that the fraction of the molecule occupying the

pit increases with the pit size, but the fluctuations about this fraction reach

local maximum before being surpressed. Based on the data that is presented

in this chapter, the single-pit investigation failed to achieve most of its goals.

The filling data do not convincingly show the quadratic dependence on pit

size, nor do they conform to the more detailed theoretical predictions. The

standard deviation data are noisy and do not give reliable estimates of the

effective molecular width. This is not entirely due to the data quality, as the

theoretical aspects of the system turned out to be more complex than initially

realized. Despite this, there are still a few useful features that have come out

of this analysis. It is undeniable that the filling increases with pit width, and

a clear dependence on ionic strength is seen. This provides validity to the

concept of single-molecule intensity partition measurements, imperfect though

they may be. It also provides evidence of interesting non-monotonic effects

in the filling measured with respect to height, and in the standard deviation

measured as a function of pit width. Both have implications for polymer

physics and device design.

The filling peak serves as a sharp probe of the transition between strong

and weak slit confinement, which as shown in Chapter 3 is a subtle feature.

There is still controversy in the literature about this transition, and mapping

out this peak will provide useful insight that is not available through other

means. From a device perspective, it informs us that there is a specific size slit

that DNA does not want to partition into, which is useful knowledge when
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choosing device parameters, for example, designing a section of a device that

stores DNA in cavities for future analysis. The location of this peak depends on

the pit-slit depth ratio, and tuning it can give a designer a powerful knob with

which to control DNA at equilibrium. The non-monotonicity in the standard

deviation is not the signature of a confinement regime change, but rather

a change in behaviour due to finite size effects, a subject of recent interest

[26]. The sharp drop-off in fluctuations after the full-filling transition may

guide the design of zero-mode waveguide devices, which may seek to minimize

fluctuations.

One of the most challenging aspects of this analysis was the fact that the

pits were only a few pixels wide and of comparable to the diffraction limit.

In addition to adding ambiguity to the validity of each analysis choice, it also

introduced additional sensitivity to optical signal quality, which is not neces-

sarily the same between different experiments. To avoid this issue, the cavities

can be coupled to nanochannels rather than slits, and the total extension of

the molecule can be used as a metric. This is typically many microns long

and is not as close to the diffraction limit, and is easier to measure at low

signal strength compared to just the pit intensity. I believe that the results

in this section show promise but are limited by issues with diffraction, signal

quality, and varying conditions between experiments, and a future recreation

in nanochannels would be quite interesting.
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CHAPTER 6
Extensions and Conclusions

6.1 Introduction

In this final chapter, I will describe a few projects I investigated that were

not developed to completion, but still may be of interest for future readers or

attempted replicators. I will also compare the three preceding analyses and

suggest future experimental work, before concluding.

6.2 Incomplete Investigations of Interest

6.2.1 Comparison of Intensity Fractions

Rather than examining the equilibrium occupancy, the energetics of con-

fined DNA can be examined by the distribution of intensity in different states.

For example, if a molecule is seen transitioning between the N = 1, 2, and

3 states, and it is observed that the intensity per pit in the dimer pit is 40

percent as strong as a single pit, and 30 percent as strong in the trimer state,

information about the equilibrium contour length can be learned. This is best

examined on a per-molecule basis in chains that are observed to transit be-

tween multiple states, such that differences in molecule staining ratios no not

skew the data. In order to analyze this, the occupancy analysis program can

be used to record the integrated intensity within each pit over time, ignoring

the optical considerations discussed in the single-pit analysis. If there exists

a range of parameter space over which the same two states are common, the

intensity ratios can be examined as they scale with pit size or spacing. In more
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Figure 6–1: Left: Time series of the intensity coming from four pits, two to
three of which are occupied at any given time. The intensity per pit in the
dimer state is greater than in the trimer state. Middle: Relative pit intensities
for a single molecule seen to occupy five different states (.5 represents states
with diagonal linkers). Overlaid is a prediction from theory. Right: Averege
dimer:trimer intensity fractions measured as a function of pit width, compared
to a theoretical prediction.

loosely-bound systems, molecules may occupy many states in a given movie,

including diagonal states, so that a single molecules can provide multiple data

points. The ratio of the different states can be measured with varying geom-

etry, in addition to the average occupancy, to compare with the theoretical

prediction of the free energy model.

Presented in Figure 6–1 is some preliminary data of these intensity ratios,

showing the relative intensities between states of a single molecule observed to

occupy five different states, as well as the dimer:trimer intensity ratios for an

ensemble molecule as a function of pit size. Qualitative agreement with theory

is seen.

6.2.2 Two Incorrect Blob Proposals

I explored two models extending the blob argument in regimes where blob

scaling does not apply, which ultimately failed to explain the data.
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Blob models are typically derived by enforcing that the confinement scale

is the size of the blob, and ascribing chain statistics to the physics within the

blob and between blobs. As discussed in the introduction, the confinement

free energy is the thermal energy times the number of blobs, which is the

total contour length divided by the contour length per blob, while the effective

radius of gyration is the blob length-scale times the number of blobs. For some

confined intra-blob Flory exponent νc and an inter-blob exponent νb, the free

energies and in plane sizes scale as:

∆F

kT
≈ h−1/νc R|| ≈ h1−νb/νc (6.1)

For example, if a chain in a slit is described as a 2D self-avoiding walk

(νb = 0.75) of blobs containing contour obeying 3D random walk statistics

(νc = 0.6) then the expected size-scaling is h1−.75/.6 = h−.25 and the expected

free energy scaling is h−1/.6 = h−1.66. I thought to use the relationship between

the free energy scaling and the size scaling to find new theoretical predictions.

My first such idea was inspired by the paper by the Dorfman group [26]

showing that the effective Flory exponent of DNA depended strongly on its

length, falling from 1.0 to a minimum of about 0.52 and rising up to .588.

They calculated an exponent specifically for λ-DNA of approximately 0.56,

in between the ideal and self-avoiding limits. I thought that our data for

the A parameter, with respect to both height and ionic strength, could be

explained using this exponent in a blob model, and I asked Douglas Tree from

that group to calculate the exponents for the different ionic conditions in my

experiments, which he kindly did. Using the connection between size-scaling

and free energy scaling, and the salt-dependent λ-specific Flory exponents I
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received, I was able to derive a generalized result to explain both the height and

the salt data, although neither set was explained particularly well. Repeating

the experiments under more controlled conditions eliminated the need for this

investigation. It is conceptually incorrect because these bulk Flory exponents

do not necessarily apply under confinement.

My second such idea was an attempt to explain the measured scaling of

the in-plane radius of gyration of slit-confined DNA, which does not agree

too well with the classic blob scaling [7]. I sought to use the Chen-Sullivan

interpolation formula for the free energy of confinement to calculate the “local

scaling exponent” for slit confinement, which is found by taking the logarithmic

derivative, d log F/d log h of the Chen-Sullivan equation (Figure 6–2). The

local effective exponent does indeed interpolate between −2/3 and −2 with

height, but when used to calculate the size-scaling, does not agree at all with

experimental conditions. This investigation did reveal an illuminating fact:

the experiments in this thesis occur in the regime where power-law scaling is

least applicable.

6.2.3 Circular DNA

A few experiments were attempted with circular DNA (Figure 6–3). How-

ever, the largest circular DNA that is commercially available is 42 kilobase-

pairs long, slightly shorter than λ-DNA. To first order, if the molecule remains

circular then it will extend roughly half as far along a slit as λ, and will occupy

roughly half as many pits. There is not as large a parameter space available

over which the molecule can occupy many states, and will often collapse into a

single pit. In systems where the pits are close together, such that the molecule

occupies more, it is difficult to measure intensity correlations. The ensemble
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Figure 6–2: Local scaling exponent as a function of height as calculated from
the logarithmic derivative of the Chen-Sullivan equation. The experiments in
this thesis are in the regime where power laws are least applicable.

of available states is larger for circular compared to linear DNA. A molecule

occupying three pits in a right triangle shape can either form a complete tri-

angle with a single linker between each pit, have two double linker connections

between nearest neighbours and none along the hypotenuse, or form a double

linkage along the hypotenuse and one of the short sides. Initial interest in this

was motivated when I was studying diffusion; I was interested in the difference

between end-hops and herniations. Nykypanchuk also examined this, with

circular DNA in his array of spheres, and he found that circular diffusion was

typically slower [55] than its linear counterpart.

6.2.4 Plastic Chips

For our typical fabrication procedure, each glass wafer yields a maximum

of nine experimental devices, at a cost typically of over a thousand dollars.

Not all nine wafers are typically used in experiments: some are used for SEM
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Figure 6–3: A circular DNA molecule occupying a ring of eight pits.

imaging, some do not bond well to cover slips, some crack when being loaded

onto the chuck. An alternative to glass fabrication is mass production of plastic

chips, which were developed by Peter Friis Ostergaard at the Dansh Technical

University as part of the PolyNano collaboration. Peter and Walter published

a paper demonstrating that these mass produced and disposable devices could

be used for nanochannel genomic mapping [93].

Experimental plastic devices were made using injection moulding. A sil-

icon master wafer was fabricated using standard cleanroom methods and a

nickel shim was grown by electroplating it over the master. This was used as

a mould for the plastic chips, which were created en masse by flowing molten

plastic over the mould. There were several potential advantages of the plastic

chips, chiefly their indestructability and the fact that they could be produced

by the dozen. The chips I designed contained a number of nanopit geometries

for single- and multiple-pit experiments, a series of nanochannels for genomic
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Figure 6–4: Photograph of a plastic chip set up for an experiment, illuminated
by the filtererd lamp. Four Luer lines connect directly to the chip reservoirs.

mapping, and a series of funnel-shaped nanochannels for confinement spec-

troscopy experiments. The chips had Luer connectors built in, and could be

operated directly on the microscope positioning stage without a chuck (Figure

6–4). Lyndon and Laurence devised several clever schemes for performing the

experiments.

We performed several experiments with DNA in these devices but a num-

ber of experimental issues made the plastic chips unsuitable for the type of

quantitative measurements required for these experiments. There was a greater

propensity for wall-molecule sticking, which was partially mollified by wetting

the chips first with ethanol and then with Triton-X surfactant, but was never

fully eliminated. It was also very difficult to bring the fluid to mechanical equi-

librium, due to the much larger reservoirs that couldn’t be fully sealed and the

formation of bubbles due to uneven wetting. It was nearly impossible to pre-

vent constant flow, even compensating with back-pressure of several hundred

millibar. In addition, the structure of the pits was uneven, as evidenced by
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fluorescene images of them, which may be due to the process of molten plastic

drying over these nanostructures. Ultimately we chose to return to the glass

chips.

6.2.5 COMSOL Solutions for Boundary Conditions

We have assumed that the difference in free energy of confinement for

a chain partitioned between a slit and a cavity is simply the difference be-

tween the contributions of both the slit and the cavity. However, this assumes

boundary conditions where the concentration vanishes at the walls of the cav-

ity, which may not be the case at the virtual interface above the etched pit,

where the boundary conditions are not known.

To test this, a McGill undergraduate, Mikhail Mamaev, used COMSOL to

solve the modified diffusion equation in a geometry similar to the one used in

experiments (Figure 6–5). He calculated the energy eigenvalue for the diffusion

equation in a three dimensional square anisotropic slit with a pit at the centre.

This was iterated for a range of slit heights and pit widths. The energies for the

pure-slit case were used as a calibration, and the difference between the pure-

slit energies and the slit-pit energies were compared to the scaling predictions

of the ideal chain, assuming typical Dirichlet and Neumann conditions.

Generally, the ideal model underpredicted the energy difference, and fell

off more quickly than the calculated eigenvalue. However, it remains to be seen

how the semi-flexible eigenvalue solutions would behave in such a geometry. A

general investigation of boundary conditions at confinement interfaces would

be an interesting theoretical project.
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Figure 6–5: Top: Cross sections of the concentration distribution inside the
slit-pit systems solved by Mikhail in COMSOL, for a narrow and wide pit.
Bottom left: Energy eigenvalues as a function of slit height at fixed pit width,
interpolating between the cavity prediction when the height is small, to the
size prediction when the height is large. Bottom right: Difference between slit
and pit energy, compared to the prediction of the ideal chain with reflecting
boundary conditions.

6.2.6 Freezing and Melting

Ilja Czolkos, a former postdoc in our lab, was experimenting with lowering

the temperature of the buffer during nanochannel experiments in order to

reduce fluctuations and noise. His experimental setup involve dropping small

pieces of dry ice into the borehole of the chuck, while using a pump to blow

away condensation from the bottom of the chip, using an air-objective. Out

of curiosity, I attempted this in a nanopit device, and managed to freeze the

entire contents of the chip. The most noticeable effect of the freezing is that

the expansion of water into ice, increasing the volume by roughly 10 %, leads

to a propagating front of ice that either pushes DNA out of the way or traps

it between different ice domains or between the ice and the walls. In a bright-

field observation, dendritic ice crystals were seen to form in the microfluidic

reservoirs.
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Figure 6–6: (a) Finger-like ice crystals propagate from left to right, pushing
DNA-containing liquid out of the way. (b) The remaining liquid and DNA
collects in between the domains. (c) Highly concentrated lines of DNA remain.

This lead to a series of curiosity driven experiments exploring freezing and

melting as a means of controlling DNA. In one experiment, I watched DNA on

a cover-slip and placed dry ice on one side of the microscope slide. This lead to

a propagating freeze-front of finger-like ice crystals, that trapped DNA at the

grain boundaries, as salt and DNA were excluded from the crystal structure

leaving a higher-salt region between the domains (Figure 6–6). I experimented

with the idea of using crystal propagation to stretch out DNA, and I had some

success trapping stretched DNA underneath or in between growing ice crystals.

Another idea we discussed was using micro- or nano-wires to dynamically

write and erase microfluidic channels in frozen slabs of ice, and to use the

freeze-melt transition as a nanofluidic valve. I experiment with an old nanowire

chip designed by Walter, and found that small amounts of current driven

through the wire would cause the entire region around the wires to melt. We
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designed a device to precisely control the temperature on a chip device, a

variant of the standard chuck design with a copper plate that abuts the chip.

The temperature in the plate is controlled through dry ice and an electric

heating element. I began to design a chip consisting of four nanowire circuits

that would melt different types of microfluidic channels and valves depending

on which voltages were applied to which circuits, but never made the chip.

I also did some experiments with Ahmed Khorshid using the optical trap

infrared laser to write liquid features in ice. I showed that applying the laser

while freezing the system with dry ice would allow a create growing or decaying

liquid region around the beam. By scanning the laser up and down, we could

begin to create transient microchannels. The liquid-solid phase boundary os-

cillated in phase with the position of the laser.

6.3 Comparison of Analyses

Three separate analyses have been presented: free energy measurements

from fitting to occupancy data, filling and variance measurements in single

pits, and relaxation time measurements of correlated fluctuations. All of these

are considered in light of the free energy model, assuming a full semi-flexible

parameterization of the entropic coefficient, a mean field description of the

second virial coefficient, and a height-dependent entropic elasticity. Do the

different investigations agree with each other, and the theory? The single-

molecule Tetris experiments generally validate the model, and its predictions

describe the observed behaviour in the correlation relaxation time. The mean

field excluded volume model is used to predict the dependence of the anti-

symmetric fluctuation mode on pit width, and agrees with the single-molecule

tetris analysis if the numeric prefactor is not rigidly set at 6π. The theoretical
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prediction for the mode ratio as a function of pit width is that taken from the

full semi-flexible parameterization and the confined elasticity, thus agreement

between the data and theory also indicates agreement between the tetris and

pong analyses. The single-pit measurements sought to verify the quadratic de-

pendence on contour length in the excluded volume, but two factors conspired

against this: finite size effects and contributions from the transverse entropy

meant that the theory didn’t actually predict scaling laws, and ambiguities in

the data analysis generally cast doubt over the results. However, good agree-

ment is found between the prediction of the semi-flexible model for the filling

of small pits, and of the location of the peak in the variance. Overall, the

measurements presented in this thesis are consistent with each other and the

free energy model.

6.4 Proposals for Future Experiments

I have proposed two investigations in the body of this thesis: a systematic

study of correlations in large-N states to study tension propagation, and using

nanochannels coupled to cavities to repeat the single-pit experiments with less

noise sensitivity. A general extension to this work would be to replicate the

same analysis in nanochannels rather than slits. The pits in these experiments

would extend out the sides of nanochannel arrays but would be etched to the

same depth, to avoid issues with alignment. A single device could vary the

cavity size, spacing, and feature multiple channel widths for a given depth.

Many geometries could be sampled within a single image, thus there is the

potential for very high scientific throughput within a single device. It is advis-

able that future devices be designed with circular rather than square cavities,

to better match Chen’s cylindrical theory.
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With the same experimental setup, it would be interesting to probe the

breakdown of equilibrium physics as a pressure or voltage imbalance is applied

to the system. The effect of larger imbalances has been studied [2] and theo-

retical papers have examined highly non-equilibrium cases [94]. Measurements

of the occupancy and fluctuation behaviour as a function of pressure or flow

speed would effectively probe polymer physics in a tilted periodic potential and

it would be interesting for example to look at the frequency of transitions with,

against, and transverse to the flow. It would also be interesting to examine

the transition between molecular motion characterized by hopping, towards

a reptation-like process that would occur when large molecules occupy many

pits, where the initial injection conditions would define a virtual reptation tube

around the molecule. Observing end-pit hops along this tube, and middle-pit

herniations transverse to it, could be used to monitor this transition.

The free energy of confined DNA was measured statistically in this work,

by comparing observed probabilities to the Boltzmann distribution. Future

experiments can attempt to measure these quantities directly. The free en-

ergy of confinement is related to the force between the confining walls and the

molecule, which is the derivative of the free energy with respect to the confining

dimension. Optical tweezers are a proven tool for precision force measurements

experiments of DNA, and experiments by Ahmed Khorshid have shown early

success at using optically trapped beads as force probes in nanofluidic confine-

ment. A molecule tethered to a bead under confinement can serve as a direct

probe of the confinement force, for example, by measuring the force pulling

on the bead as a molecule partially occupies a pit, or is attempts to escape

into the microfluidic reservoir. The confinement force can also be measured by
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coupling the molecule to a force-sensitive system, such as an optomechanical

silicon nitride membrane. Incorporating a membrane in a nanofluidic device,

as Yuning Zhang has done, may cause the membrane to deform in such a way

that it can be detected optically. The confinement force on a fully confined T4

molecule is of order 10 piconewtons, which may be at the limit of detection by

this method. Alternatively, the molecule can be confined within a soft surface

such as a droplet or a membrane [95], such that the deformation of the confin-

ing system can provide information on the force exerted by DNA. A potential

system for this involves droplet microfluidics, where droplets of varying sizes

containing DNA molecules can be studied.

6.4.1 Future Biotechnology Connections

A large part of the motivation for DNA nanofluidics research is biotech-

nology that uses nanofluidics to map or sequence DNA. Many of the technolo-

gies rely on single-stranded DNA rather than double-stranded, which is much

more flexible. Attempting to replicate this research for single-stranded DNA

would be worthwhile for the optimisation of zero-mode waveguide sequencing.

Potential applications of this research to zero mode waveguide sequencing in-

clude a better understanding of how much DNA is in each waveguide and how

to deterministically get DNA in its desired location. Another application is

nanochannel single-cell genomic mapping, which is being developed at McGill

[96]. Parts of the single-cell DNA extraction process require that the DNA

remain stationary as the chemical conditions are modified (for example, cell

lysis, buffer exchange, dying, and protein removal). Incorporating nanopits as

entropic traps to contain and immobilize the DNA during these processes can

improve the operation of the device overall. In addition, knowledge of the free
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energy of confinement and fluctuation timescale can be useful for knowing, for

example, what voltage is required to get DNA into the nanochannel region

in an automated process. Another potential technology is nanopore sequenc-

ing, which is limited by the large electric fields required to get DNA into the

pore. A student at McGill, Yuning Zhang, has successfully incorporated a

nanoslit-nanopit-nanopore geometry to exploit entropic trapping to enhance

the translocation probability.

6.5 Unrelated Work

If this thesis represents my development into an independent research

physicist, two other projects I have worked on deserve mention.

Prior to coming to McGill, I worked in the Focused Ultrasound Lab at

the Sunnybrook Research Institute in Toronto, where I developed theory and

ran simulations to describe the oscillation of bubbles inside blood vessels and

heat transfer to surrounding tissue. The major findings of this research were

published in Physics in Medicine and Biology [97]. Throughout this research

I became familiar with the Rayleigh-Plesset differential equation, describing

the radial evolution of a bubble in a fluid, which does not have a closed form

solution. I attempted to generalize the equation to arbitrary spatial dimensions

with the intension of being able to solve it in some higher dimension. This was

not successful, but during the investigation I developed enough new results to

publish a paper in Physics of Fluids [98]. To summarize the paper, I derived the

collapse time, resonant frequency, and Rayleigh-Plesset equation for a bubble

in arbitrary spatial dimensions, validated an approximation for the collapse

of the bubble whose correctness was debated, and showed that the nonlinear
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response of a bubble’s resonance frequency to initial conditions has a unique

form in three dimensions.

In 2013 I began thinking about the problem of falling through the Earth in

a tunnel under the influence of gravity. This is a classic undergraduate physics

problem, and it can be shown by treating the Earth as a uniformly dense

sphere that a falling object can be treated like a simple harmonic oscillator

with a period of 42 minutes, the same amount of time it takes to orbit from

one side of the Earth to the other. I was interested in how the realistic density

profile of the Earth would affect this time, because the fact that the Earth

is denser towards the centre means that the gravity would be comparatively

stronger than under the assumption of uniform density. I developed a method

finding the falling time under an arbitrary gravitational field and used a model

of the Earth’s interior field based on seismic data to find that it would be 38

rather 42 minutes. I also showed that the time it takes to fall along a cord is

not independent of surface distance, as is the case for a uniform sphere, but

varies between 42 and 38 minutes. In all cases, the falling time is similar to the

time predicted by a constant radial field. Despite being unrealistic, a uniform

is applicable to Earth’s interior because Earth’s mass increases with radius

at roughly the second power, almost cancelling Newtonian gravity. This was

published in the American Journal of Physics [99]. After its publication, I was

interviewed by Science about it, and subsequently “went viral,” with stories

about me and my paper appearing in news outlets worldwide. I made a brief

appearance on the Discovery Channel and was invited to give a guest lecture

at the American Association of Physics Teachers conference. I wrote another

149



small paper on the topic, investigating similar phenomena in other planetary

bodies [100].

These two projects were totally unrelated to each other and to my thesis,

however they do share one coincidental feature. In the bubble paper, it was

shown that in the high-dimensional limit, two formulations of an exponent

describing the bubble collapse time vary by a factor of π2

8
. In the gravity

paper, the times taken to fall through a uniformly dense planet and through

a planet with a constant interior field differ by a factor of
√

π2

8
.

6.6 Conclusion

By observing DNA at equilibrium in a complex nanofluidic device, several

novel measurements have been made. Using single-molecule tetris partitioning

measurements, we have mapped out the free energy of slit confinement over the

transition between the Odijk and ideal regimes and, performed the first sys-

tematic analysis of cavity confinement, and made measurements of the effective

width as a function of ionic strength on a single molecule basis. By measuring

the time-scale of correlated fluctuations between two cavities, we have shown

how a free energy landscape can control the dominant fluctuation modes of a

dynamic polymer. Developing a method of analyzing single-cavity partition-

ing has allowed us to observe the restriction of fluctuations due to finite-length

effects. The free energy landscape has been used to control macromolecular

diffusion, enhancing or damping it by tailoring the energies of the accessible

states.

These measurements would not have been possible in a simple nanoflu-

idic device, because partitioning the chain into different regions of confinement
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allows this analysis. More importantly, being able to probe multiple environ-

ments on a single device, with multiple degrees of freedom to be tuned, allows

a multi-faceted investigation.

The typical data analysis method in this field involves applying power-law

fits to data, and comparing those to some sort of blob model. Indeed, that

is what we initially sought to do with these analyses: measuring the power-

scaling of the free energy fit parameters and compare them to the Odijk or ideal

regimes, measure the quadratic scaling of the filling measurements as a function

of pit width, etc. However, the reality of the situation is more complicated,

and taking into account the full host of relevant physical effects means that

both the theoretical and experimental results are not necessarily power laws.

Rather than just looking at scaling, we can now look at the measured values

and the exact predictions of theory, comparing values to values rather than

best-fit exponents to power-law predictions.

Beyond just serving as a neat tool for separating DNA by size or forcing

molecules into interesting shapes, we have shown that complex nanofluidics can

be used to probe polymer physics more precisely than was previously possible.
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