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Résumé xiv

Acknowledgments xvii

Statement of Originality xviii

1 Introduction 1
1.1 Hot QCD Matter in Heavy Ion Collisions . . . . . . . . . . . . . . . . 1
1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Evolution of Parton Distribution Functions and the Saturation Scale . 13
1.4 Many-body QCD Near Thermal Equilibrium . . . . . . . . . . . . . . 19

2 Bulk Dynamics of QCD Medium 21
2.1 IP-Glasma Pre-thermalization Dynamics . . . . . . . . . . . . . . . . 22

2.1.1 The Impact Parameter Dependent Saturation (IP-Sat) Model 22
2.1.2 Classical Yang-Mills (CYM) Dynamics . . . . . . . . . . . . . 25
2.1.3 Initial Energy Density and Flow Velocity Profiles . . . . . . . 30

2.2 Second-Order Viscous Hydrodynamics . . . . . . . . . . . . . . . . . 33
2.2.1 Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Equations of Motion for Viscous Corrections . . . . . . . . . . 35
2.2.3 14-Moment Approximation . . . . . . . . . . . . . . . . . . . . 37
2.2.4 Temperature-dependent Bulk Viscosity . . . . . . . . . . . . . 39
2.2.5 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Post-particlization Dynamics 47
3.1 Transition from Hydrodynamics to Particle Dynamics . . . . . . . . . 48

3.1.1 Cooper-Frye Formalism . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Sampling Procedure . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.3 Verification of Sampling . . . . . . . . . . . . . . . . . . . . . 56
3.1.4 Necessity of Microscopic Transport . . . . . . . . . . . . . . . 58

3.2 Hadronic Cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Jet Energy Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 AMY Formalism for Radiative Energy Loss . . . . . . . . . . 74
3.3.2 Collisional Energy Loss . . . . . . . . . . . . . . . . . . . . . . 75
3.3.3 Monte-Carlo Implementation of Energy Loss . . . . . . . . . . 75

4 Observables and Results 77
4.1 Definitions of Observables . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Global Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 pT -differential Observables . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4 Extension to Higher pT with Jets . . . . . . . . . . . . . . . . . . . . 110

v



vi Contents

5 Conclusion 117

6 Appendices 120
6.1 Coordinate Systems and Kinematic Variables . . . . . . . . . . . . . . 120
6.2 Derivation of CYM for the IP-Glasma . . . . . . . . . . . . . . . . . . 122
6.3 Necessity of Second-Order Viscous Hydrodynamics . . . . . . . . . . 125
6.4 Derivation of Viscous Hydrodynamics . . . . . . . . . . . . . . . . . . 128
6.5 Linearized Boltzmann Transport Equation . . . . . . . . . . . . . . . 134

6.5.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . 134
6.5.2 Two-component System of Meson and Baryon . . . . . . . . . 135

6.6 String Excitation and Fragmentation in UrQMD . . . . . . . . . . . . . 138

References 142



List of Figures

1.1 This figure shows colliding nuclei, pre-equilibrium dynamics, thermal-
ization, sQGP evolution, phase transition from QGP to hadrons and
hadronic re-scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Flow chart of the event generator for heavy ion collisions. Figure from
[23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 QCD Feynman rules. Conventions and notations of [42] are followed. 12

1.4 Deep inelastic scattering in the parton model. An electron exchanges
momentum with a parton inside proton (top). The leading order con-
tributions in the case of quark or antiquark (bottom left) and gluon
(bottom right) are shown. . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Squared matrix elemets, averaged over initial states and summed over
final states, of collinear emission of quarks and gluons. . . . . . . . . 15

1.6 Partons inside a nucleon with different momentum scale Q and light-
cone momentum fraction x. Figure taken from [45]. . . . . . . . . . 17

2.1 Leading-order diagrams that contribute to the dipole cross section. . 23

2.2 Color rotation of qq dipole scattered off a hadron target. If the size
of dipole y⊥ is smaller than the saturation length scale rS (left), the
colors of quark and antiquark rotate in the same way. However, if the
dipole is larger than rS, quark and antiquark rotate differently in the
color space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 (left) Due to the uncertainty principle, a parton carrying the light-
cone momentum fraction x and transverse momentum pT has the finite
extend Δx±. P+ = (E + pz)/

√
2 is the light-cone momentum of a

hadron. (right) The wee partons see the hard partons fluctuating slowly
and bumpy in the x+ and x−-directions, respectively. . . . . . . . . . 26

2.4 The lightcone configuration of the ultrarelativistic heavy ion collisions.
The worldlines of the colliding nuclei moving in ±z directions are x∓ =
0, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 The temperature dependence of the bulk viscosity over entropy density
used in this study (left) and bulk relaxation time τΠ as a function of
temperature (right). The QGP side of the ζ/s is taken from Ref.[71]
and the hadronic side is taken from Ref.[73]. The peak temperature
is set to be Tpeak = 180MeV in this work. This parametrization was
used in [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 The energy density (left) and entropy density (right) as functions of
temperature. The equation of state is obtained from hadronic reso-
nance gas and lattice QCD calculation with vanishing baryonic chem-
ical potential [76, 81]. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



viii List of Figures

2.7 The trace anomaly (left) and speed of sound (right) as functions of tem-
perature. The equation of state is obtained from hadronic resonance
gas and lattice QCD calculation with vanishing baryonic chemical po-
tential [76, 81]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Temperature is decreasing at x1 where uμΔΣμ > 0 while it remains
unchanged at x2 where uμΔΣμ = 0 (left). In the case of uμΔΣμ < 0
at x3, temperature is increasing and there is no particlization (right). 53

3.2 pT spectra and pT -differential v2{2} of pions, Kaons, and protons from
sampling and integration of Cooper-Frye formula. This calculation is
performed for a single hydro event for 10-20% centrality of Pb+Pb col-
lision with 2.76TeV. “Int. w/o Neg.” and “Int. w/ Neg.” correspond
to equations (3.52) and (3.1), respectively. 20000 events are sampled
to obtain the results shown as “sampling”. . . . . . . . . . . . . . . 60

3.3 pT -differential v3{2} and v4{2} of pions, Kaons, and protons from sam-
pling and integration of Cooper-Frye formula. This calculation is per-
formed for a single hydro event for 10-20% centrality of Pb+Pb collision
with 2.76TeV. “Int. w/o Neg.” and “Int. w/ Neg.” correspond to
equations (3.52) and (3.1), respectively. 20000 events are sampled to
obtain the results shown as “sampling”. . . . . . . . . . . . . . . . . 61

3.4 pT spectra and pT -differential v2{2} of pions, Kaons, and protons from
different cases of δf in the Cooper-Frye formula. This calculation is
performed for a single hydro event for 10-20% centrality of Pb+Pb
collision with 2.76TeV. . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 pT -differential v3{2} and v4{2} of pions, Kaons, and protons from dif-
ferent cases of δf in the Cooper-Frye formula. This calculation is
performed for a single hydro event for 10-20% centrality of Pb+Pb
collision with 2.76TeV. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Total volume (sum of uμΔΣμ) of surface elements with specific trans-
verse distance and proper time τ (left top), transverse flow speed uT

(right top), shear viscosity (left bottom), and bulk viscosity (right bot-
tom). These are obtained from single event of IP-Glasma and hy-
drodynamics for 10-20% centrality of Pb+Pb collision with 2.76TeV.
The shear viscosity to entropy density ratio η/s is set to be 0.095 and
temperature-dependent bulk viscosity is taken from 2.5. Temperature
of the isothermal hypersurface is Tsw = 145MeV. . . . . . . . . . . . 64

3.7 Total volume (sum of uμΔΣμ) of surface elements with specific trans-
verse distance and proper time τ (left top), transverse flow speed uT

(right top), shear viscosity (left bottom), and bulk viscosity (right bot-
tom). These are obtained from single event of IP-Glasma and hy-
drodynamics for 10-20% centrality of Au+Au collision with 200GeV.
The shear viscosity to entropy density ratio η/s is set to be 0.06 and
temperature-dependent bulk viscosity is taken from 2.5. Temperature
of the isothermal hypersurface is Tsw = 165MeV. . . . . . . . . . . . 65

3.8 Two particles in the center-of-mass frame approaching each other with
impact parameter d⊥. . . . . . . . . . . . . . . . . . . . . . . . . . . 67



List of Figures ix

4.1 The anisotropic energy density profiles with ellipticity (left) and tri-
angularity (right) lead to the elliptic flow v2 and triangular flow v3,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Integrated v2{2}, v2{4}, v3{2} and v4{2} as functions of centrality.
The shear viscosity is set to η/s = 0.16 with vanishing bulk viscosity
to fit the ALICE data [1]. The bands show the range of vn with varying
switching temperature between 135MeV and 165MeV. The upper and
lower limits of bands correspond to 135MeV and 165MeV, respectively.
The statistical error of the model calculation is approximately 5%. . 84

4.3 Integrated v2{2}, v2{4}, v3{2} and v4{2} as functions of centrality. The
shear viscosity is set to be η/s = 0.095 with the finite bulk viscosity
and the switching temperature is set to be Tsw = 145MeV which is
favoured by the proton multiplicity and mean pT . The solid line and
the dashed line correspond to the full UrQMD and the UrQMD without
collisions, respectively. The statistical error of the model calculation is
approximately 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Switching temperature scan of mid-rapidity multiplicity of identified
particles for centrality classes 0−5%, 10−20%, 20−30% and 30−40%.
The shear viscosity is set to be η/s = 0.16 with vanishing bulk viscosity.
The dashed lines and bands are the ALICE data [111] and statistical
errors. The statistical error of the model calculation is approximately
1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Switching temperature scan of mean pT of identified particles for cen-
trality classes 0 − 5%, 10 − 20%, 20 − 30% and 30 − 40%. The shear
viscosity is set to be η/s = 0.16 with vanishing bulk viscosity. The
dashed lines and bands are the ALICE data [111] and statistical er-
rors. The statistical error of the model calculation is less than 1%.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Switching temperature scan of mid-rapidity multiplicity of identified
particles for centrality classes 0−5%, 10−20%, 20−30% and 30−40%.
The shear viscosity is set to be η/s = 0.095 with finite bulk viscosity.
The dashed lines and bands are the ALICE data [111] and statistical
errors. The statistical error of the model calculation is approximately
1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7 Switching temperature scan of mean pT of identified particles for cen-
trality classes 0 − 5%, 10 − 20%, 20 − 30% and 30 − 40%. The shear
viscosity is set to be η/s = 0.095 with finite bulk viscosity. The dashed
lines and bands are the ALICE data [111] and statistical errors. The
statistical error of the model calculation is less than 1%. . . . . . . . 92

4.8 Total volume (sum of uμΔΣμ) of surface elements which yield specific
transverse speed. Pions move outward faster than heavier particles due
to their lower mass. The radial velocity is dimensionless given that the
natural unit c = 1 is chosen. . . . . . . . . . . . . . . . . . . . . . . 93



x List of Figures

4.9 Pions have more radial speed than kaons and protons although they
originate with the same flow velocity (left). Resonance scattering push
protons outward while pions are decelerated. It also makes the spectra
isotropic (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.10 Mid-rapidity multiplicity (left panels) and mean pT (right panels) of
identified particles as functions of centrality. . . . . . . . . . . . . . . 94

4.11 Switching temperature scan of mid-rapidity multiplicity of multi-strange
baryons for centrality classes 0−5%, 10−20%, 20−30% and 30−40%.
The shear viscosity is set to be η/s = 0.095 with finite bulk viscosity.
The statistical error of the model calculation is approximately 2%. . 95

4.12 Switching temperature scan of mean pT of multi-strange baryons for
centrality classes 0 − 5%, 10 − 20%, 20 − 30% and 30 − 40%. The
shear viscosity is set to be η/s = 0.095 with finite bulk viscosity. The
statistical error of the model calculation is approximately 1%. . . . . 96

4.13 pT spectra of identified hadrons for centrality classes 0−5%, 10−20%,
20− 30%, and 30− 40% of Pb + Pb collisions with

√
sNN = 2.76TeV.

The solid curves and the dashed curves correspond to the full UrQMD
and the UrQMD without collisions, respectively. The ALICE data are
from [111]. The statistical errors in the calculation are shown as the
bands around the curves. . . . . . . . . . . . . . . . . . . . . . . . . 100

4.14 pT differential vn{2} (n = 2, 3 and 4) of charged hadrons for centrality
classes 0− 5%, 10− 20%, 20− 30% and 30− 40% of Pb+Pb collisions
with

√
sNN = 2.76TeV. The statistical errors in the calculation are

shown as the bands around the curves. The ALICE data [1] and CMS
[2, 3] data were also shown for comparison. . . . . . . . . . . . . . . 101

4.15 pT -differential v2{2} of identified hadrons for centrality classes 0− 5%,
10− 20%, 20− 30%, and 30− 40% of Pb+Pb collisions with

√
sNN =

2.76TeV. The solid curves and the dashed curves correspond to the
full UrQMD and the UrQMD without collisions, respectively. The ALICE
data are from [4]. The statistical errors in the calculation are shown
as the bands around the curves. . . . . . . . . . . . . . . . . . . . . 102

4.16 v3{2} of identified hadrons for centrality classes 0 − 5%, 10 − 20%,
20− 30%, and 30− 40% of Pb + Pb collisions with

√
sNN = 2.76TeV.

The solid curves and the dashed curves correspond to the full UrQMD
and the UrQMD without collisions, respectively. The statistical errors in
the calculation are shown as the bands around the curves. . . . . . . 103

4.17 v4{2} of identified hadrons for centrality classes 0 − 5%, 10 − 20%,
20− 30%, and 30− 40% of Pb + Pb collisions with

√
sNN = 2.76TeV.

The solid curves and the dashed curves correspond to the full UrQMD
and the UrQMD without collisions, respectively. The statistical errors in
the calculation are shown as the bands around the curves. . . . . . . 104



List of Figures xi

4.18 pT spectra (upper) and differential v2{2} (lower) of strange baryons
of Pb + Pb collisions with

√
sNN = 2.76TeV. The solid curves and

the dashed curves correspond to the full UrQMD and the UrQMD without
collisions, respectively. The ALICE data [116, 117] are also shown.
The statistical errors in the calculation are shown as the bands around
the curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.19 pT spectra of identified hadrons for centrality classes 0−5%, 10−20%,
20− 30%, and 30− 40% of Au + Au collisions with

√
sNN = 200GeV.

The solid curves and the dashed curves correspond to the full UrQMD
and the UrQMD without collisions, respectively. The PHENIX data are
from [121]. The statistical errors in the calculation are shown as the
bands around the curves. . . . . . . . . . . . . . . . . . . . . . . . . 106

4.20 pT -differential v2{2} of identified hadrons for centrality classes 0− 5%,
10− 20%, 20− 30%, and 30− 40% of Au+Au collisions with

√
sNN =

200GeV. The solid curves and the dashed curves correspond to the
full UrQMD and the UrQMD without collisions, respectively. The STAR
data are from [122]. The statistical errors in the calculation are shown
as the bands around the curves. . . . . . . . . . . . . . . . . . . . . 107

4.21 pT -differential v2{4}, v3{2}, and v4{2} of charged hadrons for centrality
classes 0−5%, 10−20%, 20−30%, and 30−40% of Au+Au collisions
with

√
sNN = 200GeV. The PHENIX [5] and STAR [122] data are

also shown. The statistical errors in the calculation are shown as the
bands around the curves. . . . . . . . . . . . . . . . . . . . . . . . . 108

4.22 Eccentricity ε2(Σ) of isothermal hypersurface with switching temper-
ature Tsw of Pb + Pb collisions at the LHC and Au + Au collisions
at RHIC. “FD” indcates feeddown where one has the resonance de-
cays only while “w/ Coll.” stands for the full UrQMD calculations with
scatterings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.23 pT spectra of identified hadrons and RAA of charged hadrons of Pb+Pb
collisions with

√
sNN = 2.76TeV. The calculations do not include the

MARTINI jets. The ALICE data of pT spectra and RAA are from [124]
and [7], respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.24 pT spectra of identified hadrons and RAA of charged hadrons of Pb+Pb
collisions with

√
sNN = 2.76TeV. The calculations include the MARTINI

jets. The ALICE data of pT spectra and RAA are from [124] and [7],
respectively. Figures shown in [23]. . . . . . . . . . . . . . . . . . . . 113

4.25 pT -differential v2{2} of identified hadrons for centrality class 20− 30%
of Pb + Pb collisions with

√
sNN = 2.76TeV. The ALICE data are

from [4]. Figures shown in [23]. . . . . . . . . . . . . . . . . . . . . . 114
4.26 Higher harmonics v3(pT ) (upper) and v4(pT ) (lower) of charged hadrons

for centrality class 20−30% of Pb+Pb collisions with
√
sNN = 2.76TeV.

The CMS data are from [3]. Figures shown in [23]. . . . . . . . . . . 115

6.1 Production of hadrons in string fragmentation of UrQMD shown in con-
figuration space. The “yo-yo” formation time [130] is used. . . . . . 141



List of Tables

1.1 Quark flavors and their electric charges . . . . . . . . . . . . . . . . 10

3.1 The r-ur correlation C(r, ur; Σ) on the hypersurfaces. . . . . . . . . . 58
3.2 Baryon species included in UrQMD . . . . . . . . . . . . . . . . . . . 66
3.3 Meson species included in UrQMD. The notation JPC for the particle

state is explained in [91]. . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4 The matrix elements of resonance excitation processes of nucleon-nucleon

collisions. The parameters are determined to fit the pp scattering data
[96]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Parameters for the the total and elastic pp cross sections with plab >
5GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xii



Abstract

In this dissertation, the IP-Glasma pre-thermalization dynamics, viscous hydrody-

namics, high-energy jets, and hadronic re-scattering are consistently combined to

build a hybrid model for heavy ion collisions. The pre-thermalization dynamics of

mid-rapidity gluons is described by the classical Yang-Mills equation with the color

charges obtained from the saturation scale. The viscous hydrodynamics, which gov-

erns evolution of the QGP medium, is derived from the kinetic theory. The shear and

bulk viscosities and second-order transport coefficients are considered in this work. To

take the intermediate and high-energy particles into account, production of jets and

their energy loss must be properly included. Given that the mean-free-path becomes

comparable to macroscopic length scales, the microscopic transport for hadronic re-

scattering becomes necessary. Au-Au collisions at RHIC and Pb-Pb collisions at the

LHC are considered as the applications of this hybrid model. The model calculations

are compared with the experimental data putting emphasis on the effects of the bulk

viscosity and hadronic re-scattering. The bulk viscosity, which has the negative con-

tribution to the pressure, turns out to be essential for simultaneous description of the

multiplicity, radial flow, and anisotropic flow. The hadronic re-scattering is shown to

be important to reproduce the baryon distribution. Its effects on pions becomes also

significant if one has lower collision energy. In addition, the hadronic re-scattering

enables one to describe the energy loss of jets in the hadronic stage. It is shown that

the hadronic processes, as well as the partonic ones, have significant effects on jets

and must be included to study the jet-medium interactions.

xiii



Résumé

Dans cette thèse, un modèle hydride des collisions d’ions lourds est construit. Ce

dernier contient une étape précédent l’équilibre thermique (l’étape de pré-équilibre)

dont la dynamique est décrite par le model IP-Glasma. L’étape suivante de l’évolution

est dirigée par l’hydrodynamique visqueuse, ainsi que par l’interaction de jets de

grande impulsion transverse avec ce milieu hydrodynamique. En fin, toutes les par-

ticules, autant du jet que celles du milieu hydrodynamique, sont hadronisées et leur

interaction antérieure est gouvernée par un modèle de transport hadronique. La dy-

namique pré-équilibre (IP-Glasma) est formulée via l’équation Yang-Mills classique

décrivant l’évolution de la distribution des gluons, qui sont produits par la charge des

couleurs obtenue via l’échelle de saturation. L’hydrodynamique visqueuse, régissant

l’évolution du plasma quark-gluon, est retrouvée à partir de la théorie cinétique.

La viscosité de cisaillement, la viscosité de volume ainsi que les autres coefficients

de transport de second ordre sont considérés dans la présente étude. De plus, afin

d’inclure les particules dont l’impulsion transverse peut atteindre des valeurs sig-

nificatives, la perte d’énergie des jets, due à leur interaction avec le milieu, est

également considérée. Lorsque le libre parcourt moyen atteint l’échelle macroscopique,

un modèle de transport hadronique est utilisé. Ce modèle hybride est appliqué tant

aux collisions Au-Au produites au RHIC, qu’aux collisions Pb-Pb générées au sein

du LHC. Les calculs de ce modèle hybride sont comparés aux données expérimentales

accumulées par ces deux accélérateurs, déterminant ainsi les effets que la viscosité

de volume ainsi que la diffusion des particules, décrites par le transport hadronique,

ont sur les observables examinées. Cet étude montre que la viscosité de volume, con-

tribuant négativement à la pression hydrodynamique, est indispensable afin de décrire

à la fois la multiplicité de particules, leur flux radial ainsi que leur flux anisotrope.

Le transport hadronique, quant à lui, est nécessaire pour obtenir une juste reproduc-

tion de la distribution des baryons. Son rôle dans la description des pions augmente

au fur et à mesure que l’énergie de collision diminue. Finalement, pour bien repro-

duire l’influence des jets sur les hadrons observés, il est crucial d’avoir une bonne

modélisation de l’interaction de ces derniers autant avec le milieu hydrodynamique,

que le milieu décrit par le transport hadronique. En effet, l’interaction entre le jet

et le milieu hydrodynamique est une source de perte d’énergie au niveau partonique

pour le jet, alors que la perte d’énergie hadronique est régie par l’interactions des

xiv



List of Tables xv

hadrons provenant du jet avec ceux présents suite à l’hadronisation du milieu hydro-

dynamique. Donc, cette thèse constitue l’une des premières études compréhensives

de l’interaction entre le jet et le milieu.
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Introduction

1.1 Hot QCD Matter in Heavy Ion Collisions

For a few decades, the QCD (Quantum Chromodynamics) matter in high temper-

ature has drawn much attention from the nuclear physics community. It is also of

interest in cosmology as the temperature of the early universe was high enough to

have deconfined matter of quarks and gluons, or quark-gluon plasma (QGP). Several

experiments have been carried out to probe the properties of QGP. The most impor-

tant ones are collisions of heavy nuclei with a variety of energies at Relativistic Heavy

Ion Collider (RHIC) and the Large Hadron Collider (LHC). As anticipated from the

composite nature of the nucleus, those experiments show many phenomena which

are not observed in collisions of elementary particles and have clear characteristics

originating from strongly interacting plasma of quarks and gluons. The QGP matter

is strongly interacting in the sense that the mean-free-path of the constituent quarks

and gluons is very small and the system behaves like a fluid. This is partially due to

the large occupation number of the low momentum gluons in the initial state whose

coupling is not so small or perturbative. Observation of the anisotropic flow coeffi-

cients [1, 2, 3, 4, 5, 6] in the momentum distribution strongly support the collectivity

of the QGP matter. While bulk dynamics of the QGP and hadronic medium domi-

nates the non-perturbative low-pT regime, it also has relevant effects on the high-pT

regime through the jet-medium interactions. The measurements of the nuclear mod-

ification factor RAA [7, 8, 9, 10, 11] in heavy ion collisions indicate that there is large

suppression of jets due to energy loss in the medium.

1
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For a theoretical study of QGP and hadronic matter created in heavy ion col-

lisions, it is necessary to develop a realistic event generator with different physics

involved. One needs to take relevant physical processes at each stage into account.

Heavy ion collisions begin with the fluctuating initial conditions. Then the system

thermalizes to form QGP which is well described by viscous hydrodynamics. As the

system expands due to the pressure gradient, it becomes dilute and the mean free

path becomes comparable to the system size. At this time the system can no longer

maintain local equilibrium The non-equilibrium dynamics, described with the trans-

port theory, dominates until we have the final state particles. Figure 1.1 shows a

Figure 1.1: This figure shows colliding nuclei, pre-equilibrium dynamics, thermalization, sQGP
evolution, phase transition from QGP to hadrons and hadronic re-scattering.

picture of heavy ion collisions described above. There have been many studies on

each stage of collisions and integrated description. To incorporate physical aspects

governing different stages of heavy ion collisions, hybrid approaches were adopted by

many works [12, 13, 14, 15, 16, 17, 18, 19, 20]. The previous hybrid models combined

the hydrodynamics, which evolution of strongly interacting fireball, and the hadronic

re-scattering after particlization. The significance and uniqueness of this work are

that it demonstrates the necessity of the bulk viscosity and extends the applicability
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of hybrid approach to the higher pT range by including jets.

Even though there has been much progress on the physics of each stage of heavy

ion collisions, it is also necessary to have an integrated model which combines all of

those stages for a better understanding of QCD matter. This work focuses on building

an event generator combining the IP-Glasma [21] intial conditions, second-order vis-

cous hydrodynamics, quenching of the high-pT jets, Cooper-Frye particlization [22]

and hadronic re-scattering to describe heavy ion collisions at RHIC and the LHC.

The structure of the event generator is shown in Figure 1.2. The pre-thermalization

Figure 1.2: Flow chart of the event generator for heavy ion collisions. Figure from [23].

dynamics and viscous hydrodynamics, which govern the low-momentum partons and

hadrons, are reviewed in Chapter 2. Transition from the hydrodynamics to micro-

scopic transport and post-particlization dynamics are described in Chapter 3. Chap-

ter 4 is mainly about the observables measured in heavy ion collisions and the cal-
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culation will be compared with the experimental data. It will be demonstrated that

the bulk viscosity is crucial in describing particle spectra [24]. Effects of the hadronic

re-scattering and high-pT jets also will be shown [23]. In Chapter 5, this work and

its implication in heavy ion phenomenology will be summarized. In addition, future

works and improvements will be discussed.

We wrap up this section by briefly summarizing the models often used in each

stage of heavy ion collisions.

• Pre-thermalization Dynamics

One of the simplest approaches for the pre-equilibrium dynamics is the MC-

Glauber model [25], which describes the position of nucleons in each nucleus

based on Wood-Saxon distribution. Participant is defined as a nucleon that

experiences at least one NN binary collision. Each participant is assumed to

contribute a Gaussian energy or entropy distribution. The energy density at

τ = τ0 is given by the sum of Gaussians

εMC-Glb.(xT , ηs) =

(
1

τ0

dE

dηs

)Npart∑
i=1

1

2πσ2
0

exp

[
− 1

2σ2
0

(xT − xT,i)
2

]
(1.1)

where dE/dηs is energy per unit space-time rapidity per participant and xT,i is

position of the i-th participant in the transverse plane. The coordinate system

and kinematic variables for heavy ion collisions, including the proper time τ

and the space-time rapidity ηs, are defined in Section 6.1.

Even though the MC-Glauber initial condition has fluctuations in positions of

nucleons inside a nucleus, it does not have sub-nucleonic degrees of freedom.

By considering kinematics of the gluon production, one obtains x1,2

√
s = pT e

±y

and reaches to the point that the low-x contributions dominate evolution of the

system at mid-rapidity i.e., the kinematic region around y = 0. x,
√
s, pT and

y are the energy fraction, collision energy, transverse momentum and rapidity,

respectively. Definitions of the kinematic variables are summarized in Section

6.1. The MC-KLN model [26], named after Kharzeev, Levin, and Nardi, takes

partonic degrees of freedom through unintegrated gluon distribution function
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(uGDF)

φKLN(x,k⊥) ∼ 1

Q2
S,A(x)

Q2
S,A(x)

max
[
Q2

S,A(x), k
2
⊥
] (1.2)

where QS,A is the saturation scale which specifies the spatial extent of gluons

in the transverse plane. Based on the kT -factorization approach [27], the initial

entropy density is proportional to the gluon distribution given by [28]

dNg

d2xTdy
=

4π2Nc

N2
c − 1

∫
d2pT

p2T

∫
d2kT αSφA

(
x1 =

pT e
y

√
sNN

,kT ;xT

)

× φB

(
x2 =

pT e
−y

√
sNN

,pT − kT ;xT

)
(1.3)

where the gluon distribution functions φA and φB implicitly depend on the

position xT in the transverse plane by having the saturation scale QS(x,xT ) as

a function of xT .

In the IP-Glasma model [21], which is used in this work and will be explained in

detail in Section 2.1, the pre-equilibrium dynamics of the gluon fields is governed

by the classical Yang-Mills (CYM) dynamics

∂μF
μν − ig[Aμ, F

μν ] = −gJν (1.4)

with color charge current consisting of the high-x partons in the colliding nuclei.

Due to the sub-nucleonic fluctuations, the IP-Glasma initial conditions have

been quite successful in describing the anisotropic flow coefficients vn’s and

their distributions [29].

• Viscous Hydrodynamics

This governs the QGP phase and there have been many implementations of

ideal [30, 31] and viscous [32] hydrodynamics to describe the evolution of QGP

matter. MUSIC [33] is one of the most sophisticated hydrodynamic models since

it has the shear and bulk viscosities and the second-order transport coefficients

derived from the Boltzmann transport equation in the 14-moments approxima-

tion [34] and it is the one used in this work. The 3 + 1D hydrodynamics of the

QGP is described by the conservation equations of following energy-momentum
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tensor

T μν = ε uμuν − (P +Π)Δμν + πμν (1.5)

where Δμν = gμν − uμuν . The shear viscous tensor πμν and the bulk pressure

Π are governed by the equations

τΠΠ̇ + Π = −ζ θ − δΠΠΠ θ + λΠππ
μνσμν (1.6)

τππ̇
〈μν〉 + πμν = 2η σμν − δπππ

μνθ + ϕ7π
〈μ
α πν〉α

−τπππ
〈μ
α σν〉α + λπΠΠσμν (1.7)

where ζ and η are the shear and bulk viscosities, respectively. Unlike the Navier-

Stokes formalism, causality is guaranteed by the bulk and shear relaxation times

τΠ and τπ. Other coefficients — δΠΠ, λΠπ, δππ, ϕ7, τππ and λπΠ — are called

the second-order transport coefficients since they are coefficients of terms which

are at least second-order in the spatial derivatives. The QGP evolution also has

been found to be sensitive to the equation of state as it determines the pressure

and its gradient as functions of energy density.

• Jet Quenching

The jet quenching is a consequence of energy loss of jets in the thermal plasma.

There are two processes of energy loss considered in this work — radiative and

collisional processes. In the radiative process, jet partons lose energy by emitting

photons or gluons. The photon emission rate, in terms of the current-current

correlator and polarization vectors, is given by

|p|dΓγ

d3p
=

1

2(2π)3

∑
λ

ε∗μ(λ)(p) ε
ν
(λ)(p)Wμν(p) (1.8)

W μν(p) = e2
∫

d4x eip·x Tr [ρ Jμ(x)Jν(0)] (1.9)

ρ =
∑
i

|i〉Pi〈i| (1.10)

where Jμ is the electromagmentic charge current operator. The density op-

erator ρ is sum of all projection operators weighted by the probability Pi

to find the quantum state |i〉. In the case of the thermal medium, one has
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ρeq = 1
Z
exp
[− 1

T
(H −∑C μCNC)

]
where H, NC , and Z are the Hamiltonian,

conserved charge, and partition function, respectively. The AMY formalism

[35, 36] allows one to evaluate W μν by solving an integral equation. The col-

lisional energy loss is due to the 2 → 2 scattering between jet and thermal

partons. The rate of collisional energy loss is given by

dΓcoll

dω
(Ep, ω, T ) =

2πdk
2Ep · 2Ep′

∫
d3k

(2π)32Ek

∫
d3k′

(2π)32Ek′

× δ(Ep − Ep′ − ω) δ(Ek′ − Ek − ω)

× |M(p, k → p′, k′)|2f(k, T ) (1± f(k′, T ))(1.11)

where ω = Ep − Ep′ is the amount of energy loss and f(k, T ) is the distribu-

tion function of thermal partons. The ± signs are for bosons and fermions,

respectively. The matrix element M from the effective thermal propagator was

considered in [37] to obtain Γcoll. The jet quenching can be quantified in terms

of the nuclear modification factor RAA which is defined as

RAA(pT ) =
1

NBC

· dN/d2pTdy|AA

dN/d2pTdy|pp
(1.12)

where NBC is the number of nucleon-nucleon binary collisions. If there is no

jet-medium interaction, the pT spectra of nuclear-nuclear collisions would be

that of proton-proton collisions scaled by NBC. Monte-Carlo implementation of

the energy loss is summarized in Section 3.3 and slightly modified by shadowing

and anti-shadowing in the nuclear parton distribution functions.

• Particlization and Re-scattering

After evolving the QGP and hadronic matter down to some temperature, it is

necessary to transform the hydrodynamics into particles such that energy and

momentum are conserved. The Cooper-Frye formalism [22] provides a relation

between 3-dimensional hypersurface Σ and spectra of particles emerging out of

Σ
dN

d3p
=

d

(2π)3

∫
Σ

f(x,p)
pμd3Σμ

Ep

(1.13)
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where d is the degeneracy factor. The normal vector d3Σμ is an exterior prod-

uct of three displacement vectors tangential to Σ. Since the system hydrody-

namically evolves before this particlization, it is assumed that the distribution

function is still close to that of thermal equilibrium

f(x,p) = f0(x,p) + δfshear(x,p) + δfbulk(x,p) (1.14)

where fshear and fbulk are the corrections to the distribution function from the

shear and bulk viscosity, respectively. Their functional forms and details of the

sampling procedure are the subjects of Section 3.1.

The last stage of heavy ion collisions is the hadronic re-scattering which is

governed by non-equilibrium dynamics. The UrQMD model [38, 39] is one of the

most realistic models to describe a dilute system of hadrons with masses up

to 2.25GeV. In the event average, UrQMD evolves the system according to the

Boltzmann’s transport equation

pμ∂μfn(t,x,p) = Cn[f ] (1.15)

where Cn[f ] is the collision term and the cross sections are based on the exper-

imental data. The hadronic contents and their scattering processes involved in

UrQMD are reviewed in Section 3.2.

• Comparison with Experimental Data

Heavy ion collision programs in the LHC and RHIC have put emphasis on the

particle distribution function in the momentum space. The particle spectra in

the midrapidity are expressed in terms of the pT spectra and anisotropic flow

coefficients, which characterize the radial and angular dependences, respectively

Ep
dN

d3p
=

1

2πpT

dN

dpTdy

[
1 + 2

∞∑
n=1

vn(pT , y) cos (n(φ− Φn))

]
(1.16)

where (2πpT )
−1dN/dpT , vn(pT ) and Φn are the pT spectra, pT -differential flow

coefficient and event plane angle, respectively. Many experiments have been

carried out to measure those observables and their correlations. It is possible to
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compute the observables in accordance with experimental measurements since

an event generator, which realizes a hybrid model for description of heavy ion

collisions, was employed in this work. Their definitions and comparisons are

shown in Chapter 4.



10 1 Introduction

1.2 Quantum Chromodynamics

Since this work is concerning the QGP and hadronic matters created in heavy ion

collisions, a brief description of the quantum chromodynamics which governs quarks

and gluons is in order. Understanding elementary particles and their interactions

is one of the most important objectives of physics. The identification of constituent

fermions of protons and other hadrons was the beginning of our current understanding

of the strong interaction. Quarks and antiquarks were first hypothesized by Gell-

Mann and Zweig to explain quantum numbers of light mesons and baryons. Spin,

parity and electric charge could be reproduced with assumption that mesons are

quark-antiquark bound states and baryons are bound states of three quarks. It was

also proposed that there must be 6 different flavours of quarks to take all discovered

hadrons into account. For example, π+ is a ud bound state with vanishing spin and

flavor electric charge (e)

up (u) + 2/3

down (d) - 1/3

strange (s) - 1/3

charm (c) + 2/3

bottom (b) - 1/3

top (t) + 2/3

Table 1.1: Quark flavors and their electric charges

relative orbital angular momentum. In addition, it can be shown that baryons have

integral electric charge.

However, it turned out to be impossible to construct some of the observed baryons

if spin and electric charge are the only quantum numbers of quarks. For example,

Δ++ baryon, which is interpreted as a uuu bound state with zero orbital angular

momentum, has spin 3/2 and electric charge +2. Since all three spins need to be

aligned parallel, the wavefunction of Δ++ is symmetric in the spin space and spatial

space and it contradicts Fermi-Dirac statistics, which states that exchange of any two
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identical fermions yields an overall minus sign. Greenberg, Han and Nambu resolved

this by introducing another quntum number, which is called color, carried by quarks

[40, 41]. Hence, if a baryon wavefunction is antisymmetric in the color space while it

is symmetric in the spin space and spatial space, it is totally antisymmetric overall

and obeys the spin-statistics theorem.

Quantum Chromodynamics takes quarks in fundamental representation of the non-

Abelian SU(3) gauge group with gauge bosons, known as gluons, mediating interac-

tions among quarks. Dynamics of quarks and gluons in QCD is characterized by the

following Lagrangian

LQCD = −1

2
Tr (F μνFμν) + qi(iγ

μ∂μ −mi) qi + g qiγ
μAμqi (1.17)

F μν = ∂μAν − ∂νAμ − ig[Aμ, Aν ] (1.18)

where Aμ and qi are gluon and quark fields, respectively. The interaction between

quarks and gluons is characterized by the coupling constant g. One important feature

of non-Abelian gauge theory is that gauge bosons interact with themselves and this

can be seen in the equation (1.17) which has terms with more than two gauge fields.

This non-linearity makes systems of QCD matter difficult to understand. Neverthe-

less, one can do perturbative calculation as a series expansion in the coupling constant

g if g � 1. This can be done with diagrammatic method in which set of rules are

assigned to computation of any diagram with particle propagations and interaction

vertices. Feynman rules of QCD are described in Figure 1.3. In addition to physical

observables such as cross sections, dependence of strong coupling on momentum scale

can be obtained. This running coupling is determined from the anomalous dimension

γ and beta function β according to the Callan-Symanzik equation

[
M

∂

∂M
+ β(g)

∂

∂g
+ nγ(g)

]
G(n)(x1, · · · , xn;M, g) = 0 (1.19)

where G(n) is n-point Green function. To determine how β and γ depend on the

renormalization scale M , one has to compute loop corrections to the Green functions.

After some algebra, one obtains the leading order contribution to the β-function of
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p

p

ba

b̄, νā, μ

=
i( 	 p+m) δab

p2 −m2 + iε

=
−igμν δāb̄

p2 + iε

ā, μ

= igγμtā

ā, μ

ā, μ

b̄, ν

b̄, ν

c̄, ρ

c̄, ρ d̄, σ

=

gf āb̄c̄[gμν(k − p)ρ

+ gνρ(p− q)μ

+ gρμ(q − k)ν]

=

−ig2[f āb̄ēf c̄d̄ē(gμρgνσ − gμσgνρ)

+ f āc̄ēf b̄d̄ē(gμνgρσ − gμσgνρ)

+ f ād̄ēf b̄c̄ē(gμνgρσ − gμρgνσ)]

k

p

q

quark

propagator

gluon
propagator

quark-gluon

vertex

3-gluon

vertex

4-gluon
vertex

Figure 1.3: QCD Feynman rules. Conventions and notations of [42] are followed.

QCD with Nf quark flavors

β(g) = M
∂

∂M
g + o(g4) (1.20)

= − g3

(4π)2

[
11

3
C2(G)− 4

3
NfC(Nc)

]
+ o(g4) (1.21)

It must be noted that behavior of the running coupling depends on the nature of

gauge group which is reflected in the constant C(r) and Casimir operator C2(r).

Those quantities for a given representation r of a Lie group are defined as

tr
(
tart

b
r

)
= C(r) δab (1.22)∑

a

tart
a
r = C2(r)1 (1.23)

where tar is a generator matrix satisfying commutation relation [tar , t
b
r] = ifabctcr. There

are N2
c −1 generators of the SU(Nc) group. In addition to the fundamental representa-
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tion r = Nc, another representation of interest is called adjoint representation r = G

where (taG)bc = −ifabc. In the QCD β-function in equation (1.21), C2(r = G) = Nc

and C(r = Nc) = 1/2. Therefore, with three colors Nc = 3, one obtains the negative

delta functions and running coupling which decreases with the renomalization scale

αs(M) =
g2(M)

4π

= αs(M0)

[
1 +

αs(M0)

2π

(
11− 2

3
Nf

)
ln

M

M0

]−1

(1.24)

which connects the couplings at different momentum scales. Since the choice of

renormalization scale is arbitrary, it can be set to be momentum scale Q of the

experiment. Then it is possible to rewrite the running coupling in terms of Q as

αs(Q) =
2π

(11− 2Nf/3) ln (Q/ΛQCD)
(1.25)

where ΛQCD ∼ 200MeV is a scale at which the coupling becomes strong and therefore

the perturbation approach is invalid. The equation (1.25) also implies that the strong

interaction becomes weak as the momentum of the probe increases, a property known

as asymptotic freedom.

1.3 Evolution of Parton Distribution Functions and the

Saturation Scale

The initial state of heavy ion collisions is dominated by low energy gluons abundantly

present in an ultra-relativistic nucleus. Within perturbative QCD, the behavior of the

partons is described by the parton distribution functions. In this section, we briefly

describe how the parton distribution function behaves as the energy scale changes.

In particular the phenomena of gluon saturation which becomes important at high

energies is disucussed. Due to asymptotic freedom, it is not possible to describe the

hadronic structure as a composite system of quarks and gluons based on perturbation

theory. This can be effectively dealt with in the parton model, which was initially

proposed by Bjorken and Feynman to explain large rate of e− + p deep inelastic

scattering. According to the parton model, deep inelastic scattering is a process in
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which large momentum transfer from electron to proton knocks out a parton belonging

to the proton as depicted in Figure 1.4. The parton model describes structure of any

electron

proton

k
k′

γ∗
q

pP

p+ q
parton (q, q, g)

γ∗ γ∗

q, q g

q

q

fq,q fg

Figure 1.4: Deep inelastic scattering in the parton model. An electron exchanges momentum with
a parton inside proton (top). The leading order contributions in the case of quark or antiquark
(bottom left) and gluon (bottom right) are shown.

hadron with ultrarelativistic speed in terms of parton distribution function (PDF)

fi(x,Q
2) which determines probability distribution of finding a parton of species i

with light-cone momentum fraction x

fi(x,Q
2) dx =

⎛
⎝ number of partons of species i

satisfying x < p+/P+ < x+ dx

⎞
⎠ (1.26)

where the light-cone momentum is defined as p± = (pt ± pz)/
√
2 with the z-axis is

direction in which the hadron is moving. Another argument Q is the momentum

scale of probe and can be identified with the momentum transfer in the experiment

as Q2 = −q2. PDF’s must satisfy the following momentum conservation equation

∑
i

∫ 1

0

dx xfi(x,Q
2) = 1 (1.27)
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where i runs over all quark and antiquark flavours and gluon. Equation (1.27) states

that the momenta of all constituent partons must sum to that of the hadron.

There are other constraints regarding the number of valence quarks. A proton, for

example, has two u and one d as its valence quarks. Therefore, the proton PDF must

satisfy the following sum rules

∫ 1

0

dx
[
fu(x,Q

2)− fu(x,Q
2)
]
= 2 (1.28)∫ 1

0

dx
[
fd(x,Q

2)− fd(x,Q
2)
]
= 1 (1.29)∫ 1

0

dx
[
fq(x,Q

2)− fq(x,Q
2)
]
= 0 for s, c, b, and t (1.30)

It is possible to factorize the deep inelastic cross section into perturbative e−+parton

process and non-perturbative PDF

σ(e−(k) + p(P ) → e−(k′) +X)

=
∑
i

∫ 1

0

dx fi(x,Q
2) σ(e−(k) + i(xP ) → e−(k′) + i(xP + q))

(1.31)

It must be also noted that, since the collinear emission of a parton carries a factor of

αs(Q
2) ln (Q2/Λ2

QCD) which is order of 1, contributions of multiple parton splitting

are comparable to the leading order diagram. The DGLAP equations [43], named

∑
fin.

〈|M|2〉init. = 8πC2(Nc)
αsp

2
⊥

z(1− z)

⎡
⎣1 + (1− z)2

z

⎤
⎦

∑
fin.

〈|M|2〉init. = 8πNcC2(Nc)

N2
c − 1

αsp
2
⊥

z(1− z)

[
z2 + (1− z)2

]

∑
fin.

〈|M|2〉init. = 16πC2(G)αsp
2
⊥

⎡
⎣ 1

z(1− z)
− 1

⎤
⎦2

Figure 1.5: Squared matrix elemets, averaged over initial states and summed over final states, of
collinear emission of quarks and gluons.

after Dokshitzer, Gribov, Lipatov, Altarelli, and Parisi, governs dependence of PDF
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on the momentum scale Q2 by taking parton evolution with collinear emissions into

account

Q2 ∂

∂Q2
fq(x,Q

2) =
αs(Q

2)

2π

∫ 1

x

dz

z
{Pq←q(z)fq(x/z,Q

2) + Pq←g(z)fg(x/z,Q
2)}

Q2 ∂

∂Q2
fq(x,Q

2) =
αs(Q

2)

2π

∫ 1

x

dz

z
{Pq←q(z)fq(x/z,Q

2) + Pq←g(z)fg(x/z,Q
2)}

Q2 ∂

∂Q2
fg(x,Q

2) =
αs(Q

2)

2π

∫ 1

x

dz

z
{Pg←q(z)

∑
q

[
fq(x/z,Q

2) + fq(x/z,Q
2)
]

+ Pg←g(z)fg(x/z,Q
2)} (1.32)

where the splitting functions Pj←i, which is obtained from amplitude of collinear

emission of parton j from i as in Figure 1.5, are

Pq←q(z) =
N2

c − 1

2Nc

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]

Pg←q(z) =
N2

c − 1

2Nc

[
1 + (1− z)2

z

]

Pq←g(z) =
1

2

[
z2 + (1− z)2

]
Pg←g(z) = 2Nc

[
1− z

z
+

z

(1− z)+
+ z(1− z) +

(
11

12
− Nq,l

18

)
δ(1− z)

]
(1.33)

where Nq,l = 3 is number of light quark flavors (u, d, and s) and 1/(1−x)+ is defined

as ∫ 1

0

dx
f(x)

(1− x)+
≡
∫ 1

0

dx
f(x)− f(1)

(1− x)
. (1.34)

One can find from the splitting functions that gluons dominate the low-x dynamics

since the splitting functions Pg←q and Pg←g behave as 1/x. In the case of pure glue

without quarks, the only relevant splitting function is Pg←g(x) � 2Nc/x for low x and

DGLAP equation becomes

xfg(x,Q
2)− xfg(x,Q

2
0) =

Ncαs

π

∫ Q2

Q2
0

dQ′2

Q′2

∫ 1

x

dz

z
zfg(z,Q

′2) (1.35)

One can solve this integral equation with an initial condition xfg(x,Q
2
0) = Ng to

obtain the following solution

xfg(x,Q
2) = Ng

∞∑
n=0

(
1

n!

)2(
Ncαs

π

)n(
ln

Q2

Q2
0

)n(
ln

1

x

)n

(1.36)
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∼ Ng exp

[
2

√
Ncαs

π
ln

(
Q2

Q2
0

)
ln

(
1

x

)]
(1.37)

which is known as double leading log (DLL) approximation. (Derivation and con-

ventions are following Ref. [44].) One can find that the gluon distribution rises as

xfg(x) ∼ x−λg as x → 0 leading to violation of unitarity.

To resolve this contradiction, it was proposed that a phenomenon called saturation

occurs below some small x and the non-linear effects somehow compensate the growth

of gluon distribution. Saturation is characterized by a momentum scale Qs(x) which

is called the saturation scale and at Q ≤ Qs(x) for given x, or at x ≤ x0 for given

Q = Qs(x0), distance among emitters is comparable to 1/Q and non-linear effects,

such as gluon fusions, become relevant. This is shown in Figure 1.6. Plenty of studies

Figure 1.6: Partons inside a nucleon with different momentum scale Q and light-cone momentum
fraction x. Figure taken from [45].
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on saturation have been performed based on e−+p deep inelastic scattering data. As

shown in Figure 1.4, the leading contribution from gluons must be scattering of qq

dipole and proton. In general, the scattering cross section of a virtual photon γ∗ and

any hadron h can be written as

σγ∗+h
λ (x,Q2) =

∑
q

∫ 1

0

dz

∫
d2y⊥ |Ψq

λ(eq,mq, z, Q
2,y⊥)|2 σqq+h(y⊥, x) (1.38)

σqq+h(y⊥, x) = 2

∫
d2b⊥ N (x,y⊥,b⊥) (1.39)

where Ψq
λ(eq,mq, z, Q

2,y⊥) is the amplitude that a virtual photon with polarization λ

fluctuates into qq pair with size y⊥ and z the is ratio of light-cone momentum carried

by the quark to that of the virtual photon. The first description of deep inelastic

scattering based on the saturation is GBW model [46], named after Golec-Biernat

and Wüsthoff. In the GBW model, the dipole cross section σqq+p is expressed in

terms of the saturation scale as

σqq+p
GBW(y⊥, x) = σ0

[
1− exp

(
−1

4
y2⊥Q

2
S,p(x)

)]
(1.40)

Q2
S,p(x) = Q2

0

(x0

x

)λ
(1.41)

It can be seen from equation (1.40) that the cross section is increasing with dipole

size for y⊥QS,p < 1 and converges to a constant value as y⊥ becomes larger than

Q−1
S,p. It was possible to reasonably describe e + p deep inelastic scattering carried

in HERA [47, 48] with the GBW model. The saturation length scale RS,p = Q−1
S,p

can be interpreted as the spatial extend of gluons in transverse plane. The GBW

model, however, does not address the spatial distribution of gluons in a proton. An

impact parameter dependent saturation (IP-Sat) model was proposed by Kowalski

and Teaney [49]. In the IP-Sat model, dependence on impact parameter comes into

the dipole scattering through the thickness function T (b⊥)

NIP-Sat(x,y⊥,b⊥) = 1− exp

(
− π2

2Nc

αs(μ
2) y2⊥ xfg(x, μ

2)T (b⊥)
)

(1.42)

Saturation plays important roles in describing the pre-thermalization dynamics of

heavy ion collisions. See Section 2.1. One can see [50] for a detailed review of

saturation.
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1.4 Many-body QCD Near Thermal Equilibrium

If the many-body system of QCD is near thermal equilibrium, one can rely on the

thermodynamics and linear response of the finite-temperature QCD [51]. The ther-

modynamics of the QCD matter begins with computation of the partition function

Z as

Z = Tr exp

[
− 1

T
(H −

∑
C

μCNC)

]
(1.43)

=
∑
n

dn exp

[
− 1

T
(En −

∑
C

μCNC,n)

]
(1.44)

where H and NC are the Hamiltonian and conserved charge operators derived from

the QCD Lagrangian (1.17), respectively. The trace can be written as a sum over all

eigenvalues of energy and conserved charges to get the second equality. Given that

several eigenstates can have the same eigenvalue, one has the degeneracy factor dn.

The transport coefficients describe how the system reacts to the small deviation from

equilibrium. In this work, the shear (η) and bulk (ζ) viscosities are of interest and

they can be computed from the Kubo formulae

η =
1

10
lim
ω→0

1

ω

∫
d4x eiωt 〈[Sμν(x),Sμν(0)]〉 θ(t) (1.45)

ζ =
1

9
lim
ω→0

1

ω

∫
d4x eiωt 〈[Θ(x),Θ(0)]〉 θ(t) (1.46)

Sμν = Δμ
αΔ

ν
βT

αβ − 1

3
Δμν

(
ΔαβT

αβ
)

and Θ = T μ
μ

where Δμν = uμuν − gμν is the projection operator transverse to the flow velocity.

〈· · ·〉 denotes the ensemble average over the thermal distribution.
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2

Bulk Dynamics of QCD Medium

In this chapter, the bulk dynamics of the low-momentum partons and hadrons are

described. Section 2.1 is devoted to the IP-Glasma pre-thermalization dynamics from

the collision to τ0 ∼ 1 fm at which the system is assumed to reach local thermal

equilibrium. Hydrodynamics with shear and bulk viscosities along with equation of

states is described in Section 2.2.

21
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2.1 IP-Glasma Pre-thermalization Dynamics

It is important to have a good model of pre-thermalization dynamics of partons since

the non-trivial initial conditions as characterized by the energy density distribution

and flow velocity affect the determination of properties of the QCD medium. The

initial state fluctuations also must be taken into account properly to describe a variety

of observables which depend on geometry and fluctuation in different ways. In the

IP-Glasma model, the initial states of two approaching nuclei are characterized by

the small x gluons, which will eventually interact and form QGP. As the occupation

number of these small x gluons is large, the dynamics of the colliding system in the

pre-thermalization stage is modelled by classical Yang-Mills dynamics.

2.1.1 The Impact Parameter Dependent Saturation (IP-Sat) Model

To calculate the gluon distributions in the initial state using classical Yang-Mills

theory, one first needs to know the distribution of the color currents which source

the classical gluon field. In this work, the charge currents are obtained in terms of

the gluon distribution function fg and the saturation scale QS. Determination of the

saturation scale is based on the IP-Sat model [49, 52], which emerged as a description

of γ∗ + p scattering within the dipole picture.

It was shown in [53] that, by summing all diagrams in Figure 2.1, the cross section

σqq of small size qq dipole scattered off a hadronic target is related to the gluon

distribution as

σqq(x,y⊥) =
π2

Nc

αs(μ
2) y2⊥ xfg(x, μ

2) (2.1)

where y⊥ is the size of qq dipole. The momentum scale is given as μ2 = μ2
0 + C/y2⊥

with C set to be 4. If a qq dipole goes through gluon cloud whose spatial distribution

is characterized by ρ(b⊥, z) with normalization
∫
dz
∫
d2b⊥ ρ(b⊥, z) = 1, probability

that the dipole does not experience any scattering is given as [49, 52]

|S(x,y⊥,b⊥)|2 = exp

(
−σqq(x,y⊥)

∫ ∞

−∞
dz ρ(b⊥, z)

)
(2.2)

= exp

(
− π2

Nc

αs(μ
2) y2⊥ xfg(x, μ

2)T (b⊥)
)

(2.3)
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+ + +

γ∗

fg(x,Q
2)

Figure 2.1: Leading-order diagrams that contribute to the dipole cross section.

where the thickness function T (b⊥) is defined as

T (b⊥) =
∫ ∞

−∞
dz ρ(b⊥, z) . (2.4)

This probability is connected to the saturation scale QS,p as

|S(x,y⊥,b⊥)|2 = exp

(
−1

2
y2⊥ Q2

S,p(x,b⊥)
)
. (2.5)

It can be also identified with the square of the S-matrix element and the differential

cross section can be obtained as

dσqq+h

d2b⊥
= 2 [1− ReS(b⊥)] (2.6)

= 2

[
1− exp

(
− π2

2Nc

αs(μ
2) y2⊥ xfg(x, μ

2)T (b⊥)
)]

. (2.7)

This result can be used to compute σγ∗+h
λ according to the equation (1.39) with NIP-Sat

given by

NIP-Sat(x,y⊥,b⊥) = 1− exp

(
− π2

2Nc

αs(μ
2) y2⊥ xfg(x, μ

2)T (b⊥)
)

(2.8)

In the case that proton is the target, the thickness function is assumed to be Gaussian

T (b⊥) =
1

2πBG

exp

(
− b2⊥
2BG

)
(2.9)

The gluon distribution function at a reference scale μ0 is given as [52]

xfg(x, μ
2
0) = Agx

−λg(1− x)5.6 (2.10)

where measurements of the proton structure function F2 [54, 55] yield Ag = 2.55,

λg = 0.02, and μ2
0 = 1.17GeV2 for mu,d,s = 0.14GeV and mc = 1.4GeV. The large-

x behavior of the gluon distribution function fg in equation (2.10) is based on the
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Martin-Roberts-Stirling-Thorne (MRST) parametrization [56]. Note that the quark

masses come in evaluation of the amplitude that a virtual photon fluctuates into a

qq pair in equation (1.38). Then the distribution function at an arbitrary momentum

scale is given by evolving with leading-order DGLAP equation without quarks

μ2 ∂

∂μ2
fg(x, μ

2) =
αs(μ

2)

2π

∫ 1

x

dz

z
Pg←g(z)fg(x/z, μ

2) (2.11)

The model calculations were compared with the HERA data to obtain values of the

parameters in [57, 58]. The equation (2.3) implies that there is a length scale rS at

q

q

q

q

y⊥ < rS y⊥ > rS

γ∗ γ∗

Figure 2.2: Color rotation of qq dipole scattered off a hadron target. If the size of dipole y⊥ is
smaller than the saturation length scale rS (left), the colors of quark and antiquark rotate in the
same way. However, if the dipole is larger than rS , quark and antiquark rotate differently in the
color space.

which |S(y⊥)|2 significantly deviates from 1. A possible interpretation is shown in

Figure 2.2. If the qq dipole is smaller than rS, color rotations of quark and antiquark

occur in the same way and one has |S(y⊥)|2 ∼ 1. In the case of y⊥ > rS, quark

and antiquark are scattered off by gluons with different colors and color rotations

are different resulting in |S(y⊥)|2 < 1. The saturation momentum scale of a proton

QS,p(x,b⊥) is defined as

Q2
S,p(x,b⊥) =

2

r2S,p
(2.12)

=
2π2

Nc

αs(μ
2(r2S,p)) xfg(x, μ

2(r2S,p))T (b⊥) (2.13)

μ2 = μ2
0 +

C

r2S,p
(2.14)

from which one finds that |S(|y⊥| = rS,p)|2 = e−1. In the case of heavy ion collisions

where the target is a nucleus with A nucleons, the thickness function and saturation
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scale can be generalized as

T (b⊥) →
A∑
i=1

T (b⊥ − b⊥,i) (2.15)

Q2
S,A(x,b⊥) =

2π2

Nc

αs(μ
2(r2S,A)) xfg(x, μ

2(r2S,A))
A∑
i=1

T (b⊥ − b⊥,i) (2.16)

where b⊥,i is position of i-th nucleon in the transverse plane. The spatial distribution

of nucleons is determined by a Woods-Saxon probability distribution function ρA(x)

ρA(|x| = r) =
ρ0

1 + exp [(r −RA)/δ]
(2.17)∫

d3x ρA(x) = A (2.18)

where RA and δ characterize the size of the nucleus and how slowly the number density

of nucleons decreases from the center to edge, respectively. Once the positions of

nucleons in three-dimesional space are determined based on equation (2.17), they are

projected onto the transverse plane to obtain b⊥,i. Since the coupling term becomes

comparable to the kinetic term at the saturation scale i.e. Qs ∼ gA, one can obtain

a relation between color charge squared per unit area in transverse plane g2Λ2
S and

saturation scale as

g2Λ2
S ∼ Q2

s (2.19)

based on the fact that the occupation number N ∼ ∫ dk+

k+

∫
d2k⊥a

†
kak is proportional

to A2.

2.1.2 Classical Yang-Mills (CYM) Dynamics

With the color currents determined as above, one can now calculate the initial glu-

ons fields of the projectile and the target nuclei before the collision based on the

McLerran-Venugopalan (MV) model [59, 60, 61]. Figure 2.3 shows the extend of

partonic fluctuation in the x± directions. The small-x parton sees the hard parton

almost frozen i.e. changing very slowly in the x+ direction due to time dilation. In

addition, the hard parton is localized in a small region around the x+ axis. Therefore,
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Figure 2.3: (left) Due to the uncertainty principle, a parton carrying the light-cone momentum

fraction x and transverse momentum pT has the finite extend Δx±. P+ = (E + pz)/
√
2 is the

light-cone momentum of a hadron. (right) The wee partons see the hard partons fluctuating slowly
and bumpy in the x+ and x−-directions, respectively.

the color charge current Jμ carried by the hard partons moving in the +z direction

has the following form

Jμ = δ+μδ(x−) Σ(xT ) (2.20)

= δ+μδ(x−) Σa(xT ) t
a (2.21)

where Σ(xT ) is the color charge per unit transverse area and ta are the generator

matrices of SU(Nc) gauge group. The ± indices of the light-cone coordinates are

defined as

K± ≡ 1√
2
(K0 ±K3) and K± ≡ 1√

2
(K0 ∓K3) . (2.22)

Fluctuation of the color charge density is assumed to be Gasssian with the following

weighting functional

WMV[Σ] =
1

ZMV

exp

[
−
∫

d2xT
Σa(xT ) Σ

a(xT )

2 g2Λ2
S

]
(2.23)

ZMV =

∫
DΣ exp

[
−
∫

d2xT
Σa(xT ) Σ

a(xT )

2 g2Λ2
S

]
(2.24)

where
∫ DΣ denotes the integration over all possible configurations of Σ. The corre-

lation function is given by

〈
Σa(x′

T ) Σ
b(x′′

T )
〉
=

∫
DΣWMV[Σ] Σ

a(x′
T ) Σ

b(x′′
T ) (2.25)
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= g2Λ2
S δ

abδ2(x′
T − x′′

T ) . (2.26)

Given that the large-x hard partons serve as the color sources, the gauge field dom-

inated by the small-x gluons is governed by the classical Yang-Mills (CYM) equations

∂μF
μν − ig[Aμ, F

μν ] = −gJν where (2.27)

F μν = ∂μAν − ∂νAμ − ig[Aμ, Aν ] . (2.28)

Determination of the initial conditions for the gluon field is based on the formulation

in [62, 63]. Let us consider a highly energetic nucleus moving in the +z direction.

Figure 2.4: The lightcone configuration of the ultrarelativistic heavy ion collisions. The worldlines
of the colliding nuclei moving in ±z directions are x∓ = 0, respectively.

Then speed of the nucleus is very close to that of light and we can approximate the

color charge as

gJμ = δ+μρ(2)(x
−,xT ) (2.29)
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In this case, one has the non-trivial gluon field in the spacetime region 2 of the figure

2.4. It can be also seen that, since there is no overlap between the past light-cone of

the region 2 and the worldline x+ = 0, the gluon field in the region 2 is not affected by

the nucleus moving in the −z direction. First, one can find the gluon field of region 2

in the covariant gauge ∂μA
μ
C = 0 with Ai

C and A−
C = 0 and gauge transform into the

light-cone gauge where A+ = 0. The only non-zero component of the field strength is

F i+ = ∂iA+
C − ∂+Ai

C − ig[Ai
C , A

+
C ] = ∂iA+

C (2.30)

and the CYM becomes

∂iF
i+ − ig[AC,i, F

i+] = ∂i∂
iA+

C (2.31)

= −gJ+ = −ρ(2)(x
−,xT ) . (2.32)

Therefore, A+
C is

A+
C =

1

∇2
T

ρ(2)(x
−,xT ) . (2.33)

The gluon field in the light-cone gauge can be found by identifying the gauge trans-

formation which satisfies the equation

A+ = UA+
CU

† +
i

g
U∂+U †

= UA+
CU

† +
i

g
U∂−U † (2.34)

= 0 . (2.35)

Therefore, the gauge transformation matrix U satisfies

∂−U † = igA+
CU

† (2.36)

and it can be written in terms of the color source

U † = P exp

[
ig

∫ x−

−∞
dz−

1

∇2
T

ρ(2)(z
−,xT )

]
(2.37)

The other components of the gluon field are

A− = UA−
CU

† +
i

g
U∂−U †

=
i

g
U∂+U

† = 0 (2.38)
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and

Ai = UAi
CU

† +
i

g
U∂iU †

= − i

g
U∂iU

† (2.39)

where one has an extra minus sign by lowering the index i. For a nucleus moving in

the −z direction, the color charge current is

gJμ = δ−μρ(1)(x
+,xT ) (2.40)

As shown in Figure 2.4, the region 1 is causally affected by the nucleus moving

backward and the light-cone gauge is A− = 0. One can compute the gluon field Aμ
C in

the covariant gauge with Ai
C = 0 and A+

C = 0 and gauge transform into the light-cone

gauge as in the case of nucleus moving forward. The only non-zero component of F μν

is

F i− = ∂iA−
C . (2.41)

The CYM becomes

∂iF
i− − ig[AC,i, F

i−] = ∂i∂
iA−

C (2.42)

= −gJ− = −ρ(1)(x
+,xT ) . (2.43)

Therefore, A−
C is

A−
C =

1

∇2
T

ρ(1)(x
+,xT ) . (2.44)

The gauge transform into the light-cone gauge and the gluon field can be found in

the similar manner

U † = P exp

[
ig

∫ x+

−∞
dz+

1

∇2
T

ρ(1)(z
+,xT )

]
(2.45)

In the region 1, one has A+ = 0. As a result, the gluon fields in the region 1 and 2

are written as

Ai
(1,2) = − i

g
U(1,2)∂iU

†
(1,2) (2.46)

U †
(1,2)(x

±,xT ) = P exp

[
ig

∫ x±

−∞
dz±

1

∇2
T

ρ(1,2)(z
±,xT )

]
(2.47)
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Once the gluon field before the collision is found, The gluon field after the collision

can be obtained by making the following ansatz for the gluon field in region 3

A± = ±x±α(τ,xT ) θ(x
+)θ(x−) (2.48)

Ai = αi
3(τ,xT ) θ(x

+)θ(x−)

+αi
1(x

+,xT ) θ(x
+)θ(−x−) + αi

2(x
−,xT ) θ(−x+)θ(x−) (2.49)

where the gauge is chosen to be the Fock-Schwinger gauge Aτ = x+A++x−A− = 0 in

region 3 and θ(x) is the step function. The proper time τ is defined as τ =
√
t2 − z2 =

√
2x+x−. One deduces the following initial conditions for the gauge field

Σ(1,2) = ∂iα
i
1,2(x

± = 0) (2.50)

αi
3(τ = +0) = αi

1(x
+ = 0) + αi

2(x
− = 0) (2.51)

α(τ = +0) = − ig

2

[
α1i(x

+ = 0), αi
2(x

− = 0)
]

(2.52)

where the surface color charge density Σ(1,2) is defined as

Σ(1,2)(xT ) ≡
∫ +ε

−ε

dx± ρ(1,2)(x
±,xT ) (2.53)

Derivation of equations (2.51) and (2.52) is shown in Section 6.2. The classical gluon

field evolves until τ = τ0 and the thermalization is presumed to occur during that

time. The thermalization time τ0 is bounded by a lower limit since there must be

enough collisions to make the gluon distribution isotropic. In addition, there is also

an upper limit to guarantee that the system is dense enough to be described in terms

of the classical fields. In this work τ0 is considered to be a model parameter and set

to be 0.4 fm. This part of the model is usually referred to as the Glasma model [64].

The name IP-Glasma thus is a combination of the IP-Sat and the Glasma.

2.1.3 Initial Energy Density and Flow Velocity Profiles

It is assumed that, after a certain period of evolution with classical Yang-Mills dy-

namics, the system reaches local thermal equlilibrium and hydrodynamics becomes

applicable. To set up the initial condition of hydrodynamic evolution, one has to find
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the energy-momentum tensor T μν and solve the equation

T μ
νu

ν = ε uμ (2.54)

for the energy density ε and flow velocity uμ. The Noether’s theorem allows one

to compute the energy momentum tensor in terms of the classical fields based on

translation symmetry. Since the low-x gluons dominate the midrapidity dynamics, it

is reasonable to assume that the energy-momentum tensor is that of the gluon fields.

Hence, for a translation xμ → xμ + δxμ, one has

Lg = −1

2
Tr (F μνFμν) (2.55)

δxλ∂λLg = Lg(A+ δA)− Lg(A) (2.56)

= ∂μ

[
∂Lg

∂(∂μAa,ν)
· δAa,ν

]
(2.57)

= −2 ∂μTr
(
F μ

νδA
ν
)

(2.58)

where the infinitesimal change in the gauge field must be specified in terms of δx.

The gauge symmetry of the Lagrangian must be properly taken into account. For any

quantityQ which transforms asQ → VQV † under gauge transformation V ∈ SU(Nc),

it is possible to show [Dμ,Q] → V [Dμ,Q]V †. Therefore, one has δFμν = δxλ[Dλ, Fμν ]

to ensure that δLg = Lg(A + δA) − Lg(A) is gauge-invariant. The relation between

the field strength and gauge field [Dμ, Dν ] = −igFμν , in conjunction with the Bianchi

identity, leads to the expression for δA

δFμν = δxλ[Dλ, Fμν ] (2.59)

= −δxλ[Dμ, Fνλ]− δxλ[Dν , Fλμ]

= δxλ[Dμ, Fλν ]− δxλ[Dν , Fλμ] (2.60)

= [Dμ, δAν ]− [Dν , δAμ] (2.61)

where one finds δAμ = δxλFλμ. Substitution into equation (2.58) yields

0 = −2 δxλ∂μTr
(
F μ

νF
ν

λ

)− δxλ∂λLg (2.62)

= δxν∂μ

[
−2Tr

(
F μλFνλ

)
+

1

2
gμν Tr

(
F αβFαβ

)]
(2.63)
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= δxν∂μT
μν (2.64)

T μν = −2Tr
(
F μλF ν

λ

)
+

1

2
gμν Tr

(
F αβFαβ

)
. (2.65)

Hydrodynamics begins to apply with ε and uμ obtained from equation (2.54).



2.2 Second-Order Viscous Hydrodynamics 33

2.2 Second-Order Viscous Hydrodynamics

Once the system reaches local thermal equilibrium, its time evolution can be described

by viscous hydrodynamics. Properties of the hot QCD medium such as transport

coefficients characterize how it responds to the initial anisotropy or inhomogeneity

and have significant effects on the final state observables. This section is concerned

with the second-order viscous hydrodynamics. The causality issue in the first-order

Navier-Stokes hydrodynamics is discussed in Section 6.3.

2.2.1 Kinetic Theory

In this section, we briefly discuss the kinetic theory derivation of the hydrodynamic

equations that are solved in MUSIC [33]. The transport theory describes time evolution

of a system out of equilibrium. The Boltzmann distribution function f(t,x,p) is the

number density in the phase space and the Boltzmann transport equation governs

the time evolution of f(t,x,p)

pμ∂μfn = Cn[f ] (2.66)

where Cn[f ] is the collision kernel which is a functional of f . The subscript n denotes

the particle species involved in the system. In the case of 2 → 2 scattering process,

whose matrix element is M, one has

Cn[f ] = 1

2

∑
n′,l,l′

dn′dldl′
1

16

∫
p′

∫
k

∫
k′(2π)

4δ(4)(p+ p′ − k − k′)

× |M ((l,k), (l′,k′) → (n,p), (n′,p′))|2

×
[
fl(k)fl′(k

′)f̃n(p)f̃n′(p′)− fn(p)fn′(p′)f̃l(k)f̃l′(k
′)
]

(2.67)

f̃n(p) = 1 + anfn(p) where an =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 for Bose-Einstein

−1 for Fermi-Dirac

0 for Boltzmann

(2.68)

where
∫
k = d3k

(2π)3Ek
and dn is the degeneracy factor of particle species n. The sum-

mation goes over all relevant species involved in the system. One gets the following
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relation between the Boltzmann distribution function and the energy-momentum ten-

sor

T μν(t,x,p) =
∑
n

dn

∫
d3p

(2π)3Ep

pμpνfn(t,x,p) (2.69)

Let us consider a small deviation from local thermal equlilibrium where the distribu-

tion function can be written as f = f0 + δf

f0 =
1

exp [(p · u− μ)/T ]∓ 1
(2.70)

If there is no particle diffusion, the energy momentum tensor can be decomposed as

a sum of ideal part and viscous correction

T μν = ε0u
μuν − (P0 +Π)Δμν + πμν (2.71)

where ε0, P0 are the energy density and pressure in the thermal equilibrum, respec-

tively and they are related by the equation of state. Time evolutions of the shear

(πμν) and bulk (Π) viscous corrections are derived by the shear effect and expansion

of the system as shown below. Then one obtains the following equation for δf

Duδf = −Duf0 − 1

p · up
μ∇μf +

1

p · uC[f ] (2.72)

where the following notations are used

DuQ ≡ uν∂νQ

Δμν = gμν − uμuν

∇μQ = Δμν∂
νQ

Integation of the previous transport equation (2.72) over momentum space and sum-

mation over species lead to

Du (π
μν − ΠΔμν) = −Du (ε0u

μuν − P0Δ
μν)

−
∑
n

dn

∫
p

pμpν

p · up
α∇αfn +

∑
n

dn

∫
p

pμpν

p · uCn[f ] . (2.73)

The left hand side and right hand side become

LHS = Duπ
μν − (DuΠ)Δ

μν +Π(uνDuu
μ + uμDuu

ν) and (2.74)
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RHS = −(Duε0)u
μuν + (DuP0)Δ

μν − (ε0 + P0) (u
νDuu

μ + uμDuu
ν)

−∇α

[∑
n

dn

∫
p

pμpν

p · up
αfn

]
− (∇αuβ)

[∑
n

dn

∫
p

pμpν

(p · u)2p
αpβfn

]

+
∑
n

dn

∫
p

pμpν

p · uCn[f ] , (2.75)

respectively. Therefore, one writes the equations of motion for Π and πμν as

Duπ
μν − (DuΠ)Δ

μν = −(Duε0)
(
uμuν − c2sΔ

μν
)− (ε0 + P0 +Π) (uνDuu

μ + uμDuu
ν)

−(H3)
μν − (H4)

μν +
∑
n

dn

∫
p

pμpν

p · uCn[f ] (2.76)

where

c2s ≡
∂P0

∂ε0
(speed of sound)2 (2.77)

(H3)
μν ≡ ∇α

[∑
n

dn

∫
p

pμpν

p · up
αfn

]
and (2.78)

(H4)
μν ≡ (∇αuβ)

[∑
n

dn

∫
p

pμpν

(p · u)2p
αpβfn

]
. (2.79)

2.2.2 Equations of Motion for Viscous Corrections

The energy-momentum conservation equation is

∂μT
μν = 0 (2.80)

The conservation equation can be expressed in terms of ε0, P0, Π and πμν

∂μT
μν = uμDuT

μν +∇μT
μν (2.81)

= uνDuε0 + (ε0 + P0 +Π)Duu
ν + (ε0 + P0 +Π) θ uν

+uμDuπ
μν −∇ν(P0 +Π) +∇μπ

μν (2.82)

= 0

where θ ≡ ∇αu
α quantifies the expansion rate of the system. Contraction of the

previous equation with uν yields

Duε0 = −(ε0 + P0 +Π) θ − uμuνDuπ
μν − uν∇μπ

μν (2.83)

= −(ε0 + P0 +Π) θ + πμνDu(uμuν) + πμν∇μuν (2.84)

= −(ε0 + P0 +Π) θ + πμνσμν (2.85)
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where the shear tensor σμν is defined as

σμν ≡ 1

2

(
∇μuν +∇νuμ − 2

3
θΔμν

)
. (2.86)

By substituting equation (2.85) into (2.82), one can rewrite the conservation equation

as

∇μ(P0 +Π) = (ε0 + P0 +Π)Duu
μ − πμνDuuν +∇νπ

μν + (παβσαβ)u
μ . (2.87)

Equation (2.76), in conjuction with the conservation equation (2.87), leads to the

following equations of motion for the shear viscous tensor πμν and bulk pressure Π

[34]

DuΠ+ C = −
[(

1

3
− c2s

)
(ε0 + P0)− 2

9
(ε0 − 3P0)− 1

9

∑
n

dnm
4
nIn|−2,0

]
θ

−(1− c2s)Π θ +
1

9

(∑
n

dnm
4
nρn|−2

)
θ

+

(
1

3
− c2s

)
παβσαβ +

1

3

∑
n

dnm
2
n(ρn|−2)

αβσαβ (2.88)

Duπ
〈μν〉 + Cμν = 2

[
4

5
P0 +

1

15
(ε0 − 3P0)− 1

15

∑
n

dnm
4
nIn|−2,0

]
σμν

−
(
4

3
πμν +

1

3

∑
n

dnm
2
n(ρn|−2)

μν

)
θ

+

(
6

5
Π− 2

15

∑
n

dnm
4
nρn|−2

)
σμν

−10

7
πα〈μσν〉

α − 4

7

∑
n

dnm
2
n(ρn|−2)

α〈μσν〉
α + 2πα〈μων〉

α

−(X4,0)
μναβσαβ (2.89)

where the following definitions were used

ωμν ≡ 1

2
(∇μuν −∇νuμ) (vorticity) (2.90)

In|l,q ≡ 1

(2q + 1)!!

∫
p

(p · u)l−2q(−Δμνp
μpν)qfn,0 (2.91)

ρn|l ≡
∫
p

(p · u)lδfn (2.92)
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(ρn|l)μν ≡
∫
p

(p · u)lp〈μpν〉δfn (2.93)

C =
1

3

∑
n

dn

∫
p

m2
n

p · uCn[f ] (2.94)

Cμν = −
∑
n

dn

∫
p

p〈μpν〉

p · u Cn[f ] (2.95)

in which A〈μν〉 is defined as

A〈μν〉 ≡ 1

2

[
Δμ

αΔ
ν
βA

αβ − 2

3
Δμν(AαβΔαβ)

]
(2.96)

A more detailed derivation of the previous equations is available in Section 6.4. In

principle, the collision kernal Cn is a complicated functional of distribution function

and transition amplitude. Hence, computations in the equations (2.94) and (2.95)

from first principles are challenging. In this work, the 14-moment approximation,

which postulates the functional form of δf , is adopted to obtain the equations of

motion for Π and πμν in a closed form.

2.2.3 14-Moment Approximation

To get equations (2.88) and (2.89) in closed forms, one has to obtain the moments

ρn|l and (ρn|l)μν in terms of Π and πμν . The 14-moment approximation, which was

first introduced in [65], is employed in this work to have the functional form of δfn.

For a single-component gas with Boltzmann statistics, the viscous correction δf is

assumed to be

δf(p)

f0(p)
=
[
E0 +B0m

2 +D0(p · u)− 4B0(p · u)2
]
Π+ λnp · δn+B2πμνp

μpν (2.97)

where δnμ is diffusion in the number current nμ. In this work, vanishing diffusion is

assumed and λn = 0. One can solve for the remaining coefficients B0, D0, E0 and B2

from the following conditions

0 =

∫
d3p

(2π)3Ep

(p · u) δf(p) (2.98)

0 =

∫
d3p

(2π)3Ep

(p · u)2 δf(p) (2.99)

Π =

∫
d3p

(2π)3Ep

1

3
(−Δμνp

μpν) δf(p) (2.100)
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The equations of motion for Π and πμν become

DuΠ+ C = −
[(

1

3
− c2s

)
(ε0 + P0)− 2

9
(ε0 − 3P0)− 1

9
m4I−2,0

]
θ

−
[
1− c2s −

m4

9
γ
(0)
2

]
Π θ +

[
1

3
− c2s +

m2

3
γ
(2)
2

]
πμνσμν (2.101)

Duπ
〈μν〉 + Cμν = 2

[
4

5
P0 +

1

15
(ε0 − 3P0)− 1

15
m4I−2,0

]
σμν

−
[
10

7
+

4

7
m2γ

(2)
2

]
πα〈μσν〉

α −
[
4

3
+

1

3
m2γ

(2)
2

]
πμνθ

+

[
6

5
− 2

15
m4γ

(0)
2

]
Πσμν (2.102)

where γ
(0)
l and γ

(2)
l are defined as

γ
(0)
l Π =

∫
d3p

(2π)3Ep

1

(p · u)l δf(p) (2.103)

γ
(0)
l = (E0 +B0m

2)I−l,0 +D0I1−l,0 − 4B0I2−l,0 (2.104)

γ
(2)
l πμν =

∫
d3p

(2π)3Ep

p〈μpν〉

(p · u)l δf(p) (2.105)

γ
(2)
l =

I4−l,2

I4,2
. (2.106)

It is also necessary to specify the functional forms of C and Cμν to have the equations

of motion for Π and πμν in a closed form. The collision term of the linearized Boltz-

mann transport equation in Section 6.5 implies that the leading-order contributions

to C and Cμν is linear in Π and πμν . By considering the tensor structures, one has

C =
Π

τΠ
+ (higher orders in Π and πμν) (2.107)

Cμν =
πμν

τπ
+ (higher orders in Π and πμν) (2.108)

where τΠ and τπ are the bulk and shear relaxation times, respectively. If one considers

the non-linear terms of Π and πμν in the collision terms C and Cμν , the equations of

motion can be written as [66, 67]

τΠDuΠ+ Π = −ζ θ − δΠΠΠ θ + λΠππ
μνσμν (2.109)

τπDuπ
〈μν〉 + πμν = 2η σμν − δπππ

μνθ +
9

70P0

π〈μ
α πν〉α

−τπππ
〈μ
α σν〉α + λπΠΠσμν (2.110)
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In the limit of small mass [34], the shear and bulk viscosities are given as

ζ

τΠ(ε0 + P0)
=

(
1

3
− c2s

)
− 2

9

(
ε0 − 3P0

ε0 + P0

)
− 1

9

m4I−2,0

ε0 + P0

(2.111)

= 15

(
1

3
− c2s

)2

+ o(m5/T 5) (2.112)

η

τπ(ε0 + P0)
=

4

5

(
P0

ε0 + P0

)
+

1

15

(
ε0 − 3P0

ε0 + P0

)
− 1

15

m4I−2,0

ε0 + P0

(2.113)

=
1

5
+ o(m2/T 2) (2.114)

and the second-order transport coefficients are

δππ
τπ

=
4

3
+ o(m2/T 2) (2.115)

τππ
τπ

=
10

7
+ o(m2/T 2) (2.116)

λπΠ

τπ
=

6

5
+ o(m2/T 2) (2.117)

δΠΠ

τΠ
= 1− c2s + o(m4/T 4) (2.118)

λΠπ

τΠ
=

8

5

(
1

3
− c2s

)
+ o(m4/T 4) (2.119)

where cs is the speed of sound. In this work, ζ/s as a function of temperature is

specified and η/s is assumed to be constant. The bulk and shear relaxation times τΠ

and τπ are computed from equations (2.112) and (2.114), respectively

τΠ =
s

15 (1/3− c2s)
2(ε0 + P0)

ζ

s
(2.120)

τπ =
5 s

ε0 + P0

η

s
(2.121)

Other second-order transport coefficients are computed from equations (2.115)-(2.119).

Therefore, once the equation of state, the shear viscosity and the bulk viscosity are

known, all other transport coefficients can be determined. In MUSIC which performs

the hydrodynamic evolution in this study, all the transport coefficients (2.115)-(2.121)

are included.

2.2.4 Temperature-dependent Bulk Viscosity

Transport coefficients, such as shear and bulk viscosities, of hot QCD matter are

required to quantify how the medium responds to the initial inhomogeneity and
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anisotropy. In this study, the shear viscosity of QGP is taken as a constant multiple

of the entropy density. The temperature dependence of the bulk viscosity, however,

turned out to be not as simple.

The bulk viscosity can be computed with the Kubo-type linear response theory at

finite-temperature QCD. The Kubo formula for bulk viscosity is

ζ =
1

9
lim
ω→0

1

ω

∫
d4x eiωt 〈[Θ(x),Θ(0)]〉 θ(t) (2.122)

where Θ is the trace T μ
μ. It was shown in [68] that, for a pure gluon system, the

Green function of trace anomaly in finite temperature satifies(
T

∂

∂T
− 4

)
〈Θ〉 =

∫ 1/T

0

dτ

∫
d3x 〈Θ(τ,x)Θ(0,0)〉 (2.123)

where the angled bracket denotes thermal average. This was done, based on dimen-

sional analysis, by writing the free energy in terms of temperature and momentum

scale Λ which is independent of renormalization scale. The bulk viscosity of SU(3)

gluon system was computed [69], from equation (2.123) in conjunction with the lat-

tice calculation [70]. This was extended to incorporate the light quarks [71]. Even

though the bulk viscosity is small for high temperature [72], it becomes comparable

to the shear viscosity at the cross-over region.

The bulk viscosity of the hadronic matter was computed in [73] from the mass

spectrum ρ(m) = ρHG(m) + ρHS(m) of hadronic system

ρHG(m) = θ(M0 −m)
∑
i

diδ(m−mi) (2.124)

ρHS(m) = θ(m−M0)
A

(m2 +m2
0)

5/4
exp (m/TH) (2.125)

where m0 = 0.5GeV and A = 0.5GeV3/2. The summation for ρHG is over all known

hadrons [74] lighter than M0 = 2GeV. It is assumed that the mass spectrum above

M0 follows the Hagedorn state [75]. Figure 2.5 shows the parameterization of the

ratio of the bulk viscosity to entropy density.

2.2.5 Equation of State

So far, there are 11 unknowns (ε0, P0, u
μ, Π and πμν) while there are 10 equations

(conservation equation and equation of motion for Π and πμν). The equation of
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Figure 2.5: The temperature dependence of the bulk viscosity over entropy density used in this
study (left) and bulk relaxation time τΠ as a function of temperature (right). The QGP side of the
ζ/s is taken from Ref.[71] and the hadronic side is taken from Ref.[73]. The peak temperature is set
to be Tpeak = 180MeV in this work. This parametrization was used in [24].

state (EoS) provides pressure as a function of energy density. Therefore there are as

many equation as unknowns. EoS is sensitive to the particle contents, such as mass

spectrum and interaction, of the system. In this work, s95p parametrization [76],

constructed from non-interacting hadronic resonance gas and quark-gluon plasma

with vanishing chemical potentials, was used. For the high-temperature QGP sector,

the trace Θ ≡ ε− 3P is assumed to have a form

ΘQGP(T )

T 4
=

d2
T 2

+
d4
T 4

+
c1
T n1

+
c2
T n2

for T > T0 . (2.126)

Then the QGP equation of state is matched with that of hadronic resonance gas such

that the trace and its first and second derivative are continuous at T = T0. Once the

pressure for T > T0 is specified, other thermodynamic quatities can be obtained from

the trace using the following identity

∂

∂T

(
P

T 4

)
=

1

T 5

[
T

(
∂P

∂T

)
{μC}

− 4P

]
(2.127)

=
1

T 5
(Ts− 4P ) (2.128)
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=
1

T 5

(
Θ−

∑
C

μCnC

)
(2.129)

where Ts = ε+P −∑C μCnC is the thermodynamic relation. For non-zero chemical

potentials and charge densities, the expression for the entropy density s becomes

s

T 3
=

1

T 4

(
ε+ P −

∑
C

μCnC

)
(2.130)

=
Θ

T 4
+ 4

P

T 4
− 1

T 4

∑
C

μCnC (2.131)

=
Θ(T, μ)

T 4
+ 4

P (T0, μ)

T 4
0

− 1

T 4

∑
C

μC

(
∂P

∂μC

)
T

(T, μ)

+4

∫ T

T0

dT ′

T ′5

[
Θ(T ′, μ)−

∑
C

μC

(
∂P

∂μC

)
T

(T ′, μ)

]
(2.132)

While the equation of state used in this work assumes zero chemical potentials, this is

a good approximation in the mid-rapidity region of heavy ion collisions where low-x

gluons dominate the dynamics. Even though the approximation of the zero chemical

potential does not hold in the intermediate and high-x region, production of the mid-

rapidity hadrons is dominated by the low-x gluons mentioned above. Continuity of

derivatives of ΘQGP and ΘHRG at T = T0 provides expressions for c1 and c2 as

c1 =
n2 + 1

n1(n1 − n2)
T n1+1
0 Θ′

HRG(T0) +
1

n1(n1 − n2)
T n1+2
0 Θ′′

HRG(T0)

+
2(n2 − 2)

n1(n1 − n2)
d2T

n1−2
0 +

4(n2 − 4)

n1(n1 − n2)
d4T

n1−4
0 (2.133)

c2 =
n1 + 1

n2(n2 − n1)
T n2+1
0 Θ′

HRG(T0) +
1

n2(n2 − n1)
T n2+2
0 Θ′′

HRG(T0)

+
2(n1 − 2)

n2(n2 − n1)
d2T

n2−2
0 +

4(n1 − 4)

n2(n2 − n1)
d4T

n2−4
0 (2.134)

The entropy density sQGP obtained from ΘQGP becomes

sQGP

T 3
= 4

P (T0)

T 4
0

+ d2

(
2

T 2
0

− 1

T 2

)
+

d4
T 4
0

+
c1
n1

(
4

T n1
0

− n1 − 4

T n1

)
+

c2
n2

(
4

T n2
0

− n2 − 4

T n2

)
(2.135)

It was shown in [77] that the energy density obtained from lattice calculation reaches

90% of the ideal gas value εSB at T � 500MeV. Based on this, an additional condition,
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requiring that the entropy density at T = 800MeV must be 95% of the ideal gas value

sSB, was imposed to determine the equation of state. A different value of the entropy

density s = 0.9 sSB at T = 800MeV was also considered in [76] and it was shown that

the difference in the observables is negligible. The parameters — d2, d4, c1, c2, n1,

n2, and T0 — are determined such that ΘQGP fits the lattice calculation shown in [78]

for T > 250MeV. The entropy density in the ideal gas limit is given as

sSB
T 3

=
[
8(N2

c − 1) + 14Nf,lNc

] ζ(4)
π2

(2.136)

where Nf,l is the number of light quark flavors in consideration and ζ(s) =
∑∞

n=1 1/n
s

is the Riemann-zeta function. Since u, d, and s quarks (and antiquarks) were con-

sidered and there are three colors, Nf,l = 3 and Nc = 3. To complete the equation of

state, one has to have the equation of state for the hadronic sector.

For construction of the hadronic EoS, interactions among hadrons must be taken

into account. However, for the interacting gas of π, K and N , it was demonstrated

in [79] that those interactions can be handled by including resonances. Therefore,

treating the hadronic system as a non-interacting resonance gas can be a good ap-

proximation. Then, the pressure is given as

PHRG =
∑

i∈mesons

di

∫
d3k

(2π)3
|k|2
3Ek,i

1

z−1
i exp (Ek,i/T )− 1

+
∑

i∈baryons
di

∫
d3k

(2π)3
|k|2
3Ek,i

1

z−1
i exp (Ek,i/T ) + 1

(2.137)

zi = exp

(
1

T

∑
C

μCCi

)
(2.138)

where Ek,i = (m2
i + |k|2)1/2 and Ci is a conserved charge C carried by i-th species.

It is possible to obtain the trace anomaly ΘHRG from the pressure and its derivative

according to equation (2.129)

Θ = T 5 ∂

∂T

(
P

T 4

)
+
∑
C

μC

(
∂P

∂μC

)
T

(2.139)

Then, for temperatures between 70 MeV and 190 MeV and a vanishing chemical

potential, ΘHRG is fitted with the following function

ΘHRG

T 4
= a1T

l1 + a2T
l2 + a3T

l3 + a4T
l4 (2.140)
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where the exponents are integers satisfying 0 ≤ l1 < l2 < l3 < l4 ≤ 10. In addition to

the continuity conditions and sQGP(T = 800MeV) = 0.95 × sSB, lattice calculations

for trace anomaly were used to determine the parameters. The energy density and

0

2

4

6

8

10

12

14

16

0.1 0.15 0.2 0.25 0.3

ε
 / 

T
4

T (GeV)

energy density

s95p-v1.2
0

2

4

6

8

10

12

14

16

18

0.1 0.15 0.2 0.25 0.3

s 
/ T

3

T (GeV)

entropy density

s95p-v1.2

Figure 2.6: The energy density (left) and entropy density (right) as functions of temperature.
The equation of state is obtained from hadronic resonance gas and lattice QCD calculation with
vanishing baryonic chemical potential [76, 81].

entropy density as functions of temperature are shown in Figure 2.6 and the trace

anomaly and speed of sound are shown in Figure 2.7. It must be also noted that

a variant (s95p-v1.2 in Figures 2.6 and 2.7) of the s95p-v1 parametrization was

used in this work. While the original s95p-v1 involves hadronic resonances up to

2GeV mass available in the Review of Particle Physics 2004 [80], the s95p-v1.2

parametrization was constructed based on the hadronic contents in UrQMD [81] to

couple hydrodynamic inputs to the UrQMD hadronic cascade without loss of the energy-

momentum conservation.

While it was assumed in this work that the system is in chemical equilibrium, it

is also possible to deal with a system getting out of the chemical equilibrium during

hydrodynamic evolution. This can be done with partial chemical equilibrium (PCE)

[82]. The idea of PCE states that inelastic scattering processes, which change the
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Figure 2.7: The trace anomaly (left) and speed of sound (right) as functions of temperature. The
equation of state is obtained from hadronic resonance gas and lattice QCD calculation with vanishing
baryonic chemical potential [76, 81].

number of hadrons, are suppressed once the system is cooled down below a temper-

ature Tch. Therefore, effective numbers of stable particles, taking decay processes of

unstable resonances into account, are conserved for T < Tch. The effective number

N j can be written as

N j = Nj +
∑

r∈unst.
dr→jNr (2.141)

where the summation is over unstable resonances and dr→j is the average number of

species j resulting from decay of resonance r. The thermodynamic relations become

TdS = dU + PdV −
∑
C

μCdNC −
∑
j∈st.

μjdN j (2.142)

Ts = ε+ P −
∑
C

μCnC −
∑
j∈st.

μjnj (2.143)

where μj is the chemical potential associated with the conserved effective number N j.

The condition for determination of {μ(T )} is a constant ratio of nj to the entropy

density for T < Tch

nj(T, {μ(T )})
s(T, {μ(T )}) =

nj(Tch, {μ = 0})
s(Tch, {μ = 0}) (2.144)
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The entropy density s can be computed from the thermodynamic relation s = (∂P/∂T ){μC},{μ}

where the pressure P is given as

PHRG(PCE) =
∑

i∈mesons

di

∫
d3k

(2π)3
|k|2
3Ek,i

1

z−1
i exp [(Ek,i − μi(T ))/T ]− 1

+
∑

i∈baryons
di

∫
d3k

(2π)3
|k|2
3Ek,i

1

z−1
i exp [(Ek,i − μi(T ))/T ] + 1

(2.145)

The summation is over both stable and unstable hadrons and the effective chemical

potential μr of unstable hadron is given as

μr =
∑
j∈st.

dr→jμj . (2.146)

This procedure enables one to put non-equilibrium dynamics in hydrodynamic de-

scription of the late stage of heavy ion collisions. The chemical freezeout temperature

Tch in Au+Au collisions at RHIC was estimated based on PCE in [83]. The equations

of state from the more recent lattice QCD calculations with PCE were constructed

in [84]. However, in this work and other hybrid models, microscopic transport in

the hadronic stage handles the evolution of the system after it gets out of chemical

equlibrium. The chemical freeze-out generally occurs in the hadronic re-scattering.

It is worth mentioning the difference between the PCE and the hybrid approach

used in this work. In PCE, the chemical freeze-out is characterized by a single freeze-

out temperature Tch below which all inelastic processes cease. In the hybrid model

used in this work, however, the inelastic collisions are still allowed in the micro-

scopic transport and the chemical freeze-out occurs later than the switching into

re-scattering. Hence, if one switches into the microscopic transport at the isothermal

hypersurface with temperature Tsw, then Tch,i < Tsw for the hadronic species i. In

principle, one can find Tch,i by considering time evolution of the particle distribution

in the re-scattering phase. However, determination of Tch,i in the hybrid model is

computationally demanding and left as a future study.



3

Post-particlization Dynamics

In this chapter, the transition or particlization from hydrodynamics into microscopic

transport and the post-particlization dynamics are described. In Section 3.1, the tran-

sition from hydrodynamics to particles, based on the Cooper-Frye formalism with de-

tails of sampling procedure, is explained. The UrQMD model, which is the microscopic

transport for hadronic re-scattering, is reviewed in Section 3.2. Lastly, the formalism

of the radiative and collisional jet energy losses and its Monte-Carlo implementation

is explained in Section 3.3.

47
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3.1 Transition from Hydrodynamics to Particle Dynamics

As the QGP evolves hydrodynamically, it expands and cools. At some point, the

temperature of the system will become low enough that the dominant degrees of

freedom become hadronic. As long as the mean free path of the hadronic system

is still smaller than the system size, viscous hydrodynamics still applies. However,

as the system continues to expand and cools, the mean free path will eventually

become comparable to macroscopic scales of the system and a microscopic transport

model is necessary to properly describe the time evolution. Since the microscropic

transport UrQMD describes hadronic re-scattering by means of N -body simulation, it is

necessary to statistically transform the macroscopic information from hydrodynamics

into particles.

3.1.1 Cooper-Frye Formalism

The Cooper-Frye formalism [22] provides a relation between the particle spectrum

with degeneracy factor d in momentum space and distribution function

dN

d3p
=

d

(2π)3

∫
Σ

[f0(x,p) + δfshear(x,p) + δfbulk(x,p)]
pμd3Σμ

Ep

. (3.1)

where d3Σμ is a normal vector and given as an exterior product of three displacement

vectors tangential to the hypersurface Σ. The distribution function f = f0+ δfshear+

δfbulk depends on the macroscropic information obtained from hydrodynamics. It can

be shown that the Cooper-Frye formalism transforms hydrodynamics into particles

such that energy and momentum are conserved. For a single-component gas, one

obtains the total four-momentum

Pμ =

∫
pμ

dN

d3p
d3p (3.2)

=

∫
Σ

T μν(x) d3Σν (3.3)

where

T μν(x) =
d

(2π)3

∫
pμpν

Ep

f(x,p) d3p (3.4)

is the kinetic theory stress-energy tensor. Momentum flowing out of a given hy-

persurface element is given as contraction of the energy-momentum tensor and the
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3D hypersurface element. In addition, one can compute the number of particles N
flowing out of the hypersurface as

N =

∫
dN

d3p
d3p (3.5)

=

∫
Σ

nμ(x) d3Σμ (3.6)

where

nμ(x) =
d

(2π)3

∫
pμ

Ep

f(x,p) d3p (3.7)

is the number current. The current vector can be decomposed as nμ = nuμ + δnμ

where n and δnμ are number density and diffusion current, respectively.

Since the system deviates from local thermal equilibrium, there are viscous correc-

tion δf to the distribution function. There are two formalisms commonly used to find

the derivation of the viscous corrections. In Chapman-Enskog approximation, given

that the local thermal equilibrium holds in the case of vanishing mean-free-path, the

viscous correction can be expanded in powers of Knudsen number Kn. Kn is defined

as ratio of mean-free-path to a macroscopic scale given by the system size or the

expansion rate

f = f0 +
∑
k=1

δf(k)(Kn)k (3.8)

Alternatively, one can expand the viscous correction in momentum with corresponding

moments and this is Grad’s moment method. In particular, the 14-moment approxi-

mation yields

δf = f0(1± f0) (Ξμp
μ + Ξμνp

μpν) (3.9)

where Ξμ and Ξμν are a four-vector and a symmetric tensor, respectively, and there

are 4 + 10 unknowns. For a single-component gas, it is possible to add a scalar term

Ξ and the constraint that Ξμν is traceless. However, for a multi-component gas, this

equivalence does not hold since each species has different mass and one has

Ξμνp
μpν =

Ξμ
μ

4
m2 + Ξ̃μνp

μpν with Ξ̃μ
μ = 0 (3.10)

and the first term in the RHS cannot be replaced with a species-independent scalar

term [85]. The tensor structure of the viscous correction to energy-momentum tensor
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implies that the scalar part of the moment expansion is associated with the bulk vis-

cosity. The shear stress tensor πμν , on the other hand, can be related to the traceless

part of Ξμν regardless of whether the system is single or multi-component. To avoid

the ambiguity described above, the bulk viscous correction δfbulk, obtained from the

leading-order Chapman-Enskog approximation with relaxation time approximation

[86], was adopted in this work. The Boltzmann equation with the relaxation time

approximation reads

pμ∂μfn = −p · u
τHG

(fn − f0,n) (3.11)

where τHG is the relaxation time of hadronic gas. The leading-order viscous correction

δf(1) is given by the LHS of equation (3.11) with equilibrium distribution function

f(0). It can be seen that τHG is on the order of the mean-free-path and the spatial

gradient introduces a factor of 1/Lmacro so one has

τHG
pμ

p · u∂μf(0) = −δf(1) ∼ lmfp

Lmacro

f(0) (3.12)

and, in the case of vanishing chemical potentials,

δf(1) =
τHG

p · uf0(1± f0) p
μ∂μ

(p · u
T

)
(3.13)

=
τHG

T p · uf0(1± f0) p
μpν
(
∂μuν − uν∂μT

T

)

=
τHG

T p · uf0(1± f0) p
μpν
(
∂μuν − uν∂μP0

Ts

)
(3.14)

=
τHG

T p · uf0(1± f0) p
μpν

×
[
uμDuuν +∇μuν − uμuν

DuP0

ε0 + P0

− uν
∇μP0

ε0 + P0

]
(3.15)

=
τHG

T p · uf0(1± f0) p
μpν
[
σμν +

1

3
Δμνθ +

(
∂P0

∂ε0

)
uμuνθ

]
(3.16)

where σμν and θ are the shear tensor and expansion rate, respectively. To obtain the

last two equalities, the thermodynamic relation Ts = ε0 + P0 and energy-momentum

conservation are used

Duε0 = −(ε0 + P0) θ − uμ∂ν (π
μν −ΔμνΠ) (3.17)

∇μP0 = (ε0 + P0)Duu
μ +Δμα∂ν (πνα −ΔναΠ) (3.18)
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where the terms from derivatives of viscous corrections are neglected since they are

second order in the Knudsen number. Since the equation of motion for Π implies that

Π � −ζθ and the leading-order δfbulk must be linear in Π, the bulk viscous correction

in this work is assumed to be in the following form

δfbulk = −f0(1± f0)
CbulkΠ

T p · u pμpν
(
1

3
Δμν + c2suμuν

)
(3.19)

where cs is the speed of sound which is determined from equation (2.77). The nor-

malization constant Cbulk is determined such that the contribution of δfbulk to the

energy-momentum tensor is the same as −ΔμνΠ

−ΔμνΠ =
∑
n

dn

∫
d3p

(2π)3Ep

pμpν δfbulk,n (3.20)

By contracting with −gμν , one obtains

3Π = −
∑
n

dnm
2
n

∫
d3p

(2π)3Ep

δfbulk,n (3.21)

=
CbulkΠ

T

∑
n

dnm
2
n

∫
d3p

(2π)3Ep

f0,n(1± f0,n)
pμpν

p · u
(
1

3
Δμν + c2suμuν

)

=
CbulkΠ

T

∑
n

dnm
2
n

∫
d3k

(2π)3Ek

f0,n(1± f0,n)

[
m2

n

3Ek

−
(
1

3
− c2s

)
Ek

]
(3.22)

and

T

Cbulk

=
1

3

∑
n

dnm
2
n

∫
d3k

(2π)3Ek

fn,0 (1± fn,0)

[
m2

n

3Ek

−
(
1

3
− c2s

)
Ek

]
. (3.23)

The general form of δfshear can be written as

δfshear = f0f̃0 χshear(p) (3.24)

f̃0 = 1 + af0

where a is defined in equation (2.68) and χshear characterizes the dependences on

momentum and other thermodynamic quantities. To obtain the leading-order contri-

bution to χshear, one has to find a scalar quantity which is linear in πμν . Since πμν is

orthogonal to the flow velocity uμ, the only possibility is πμνp
μpνIshear(p) where Ishear

is a scalar function of p. In general, Ishear contains several powers in p. However, in
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this work, Ishear is assumed to be independent of p and therefore χshear has quadratic

dependence on |p|. It was shown in [87] that this quadratic ansatz or one-function

ansatz, together with the Boltzmann statistics, yields the QGP shear viscosity rea-

sonably close to that from the variation approach. For a massless Boltzmann gas,

one has

χshear(p) =
πμνp

μpν

2 (ε0 + P0)T 2
(3.25)

and it was demonstrated in [88, 89] that χshear of the pion gas with Bose-Einstein

statistics only differs from (3.25) by a few percent. In this work, it is assumed that

equation (3.25) holds for all hadronic species.

3.1.2 Sampling Procedure

The particlization procedure begins with determination of multiplicity. For each

discretized hypersurface element, the average number of particles is computed as

〈N〉1-cell =
⎧⎨
⎩

[n0(x) + δnbulk(x)] u
μΔΣμ if uμΔΣμ ≥ 0

0 otherwise
(3.26)

where the number density in equilibrium n0 and bulk viscous correction δnbulk are

n0(x) = d

∫
d3k

(2π)3
f0(k) (3.27)

=
dm2T

2π2

∞∑
l=1

al−1

l
elμ/TK2

(
lm

T

)
(3.28)

δnbulk(x) = d

∫
d3k

(2π)3
δfbulk(k) (3.29)

=
dm2T

2π2

∞∑
l=1

al−1elμ/TCbulkΠ

×
[(

1− 3 c2s
l

)
K2

(
lm

T

)
− c2s

m

T
K1

(
lm

T

)]
(3.30)

and a depends on the spin-statistics and its value is defined in equation (2.68). It

must be noted that ΔΣμ is determined such that it is oriented toward the region

with T < Tsw. Given that the particlization occurs as the temperature and the

number density decreases, particles are sampled only if uμΔΣμ is positive since neg-

ative uμΔΣμ corresponds to increasing temperature at given hypersurface element
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as shown in Figure 3.1. Then, the number of particles are sampled according to a

t

x

T > Tsw

T < Tsw

ΔΣμ

ΔΣμ

x1

x2

t

x

T > Tsw

T < Tsw

x3

ΔΣμ

uμ

uμ

uμ

Figure 3.1: Temperature is decreasing at x1 where uμΔΣμ > 0 while it remains unchanged at x2

where uμΔΣμ = 0 (left). In the case of uμΔΣμ < 0 at x3, temperature is increasing and there is no
particlization (right).

Poisson distribution whose average is 〈N〉1-cell

P1-cell(N) =
1

N !
〈N〉Ne−〈N〉 (3.31)

It must be noted that variance 〈N2〉 − 〈N〉2 is not same as the average 〈N〉 in the

case of Bose-Einstein or Fermi-Dirac distribution

〈N2〉 − 〈N〉2 = d V

∫
d3k

(2π)3
f0(k) (1± f0(k)) (3.32)

	= 〈N〉 (3.33)

while 〈N2〉 − 〈N〉2 = 〈N〉 for the Poisson distribution. Nevertheless, in the tem-

perature range between 135MeV and 165MeV, the difference is less than 10% for

pions and smaller for heavier hadrons. Therefore, one can still rely on the Poisson

distribution as a good approximation.

After the number of particles is determined, the momentum of each particle is
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sampled according to the following distribution function

dN

d3p

∣∣∣∣
1-cell

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

(2π)3
[f0(x,p) + δfshear(x,p) + δfbulk(x,p)]

pμΔΣμ

Ep

if f0 + δfshear + δfbulk > 0 and pμΔΣμ > 0

0 otherwise

(3.34)

The sampled momentum is accepted only if pμΔΣμ is positive and this condition is

based on the fact that pμ giving negative pμΔΣμ represents a particle going back into

the fluid. The equilibrium distribution function f0 and viscous correction δf are

f0 =
1

exp (p · u/T )∓ 1
(3.35)

δfshear = f0(1 + af0)
πμνp

μpν

2 (ε0 + P0)T 2
(3.36)

δfbulk = −f0(1 + af0)
Cbulk

T

[
m2

3 (p · u) −
(
1

3
− c2s

)
(p · u)

]
Π (3.37)

where a and Cbulk are defined in equations (2.68) and (3.23), respectively. Since

only the leading-order correction of δf is considered, f0 + δf can be negative for

high pT . Sampling momenta of particles according to the equation (3.34) is not

straightforward since its dependence on the momentum is complicated. Therefore,

in the actual sampling, a rejection method with an isotropic envelop function (also

known as the hat function) was used. Since d3p/Ep is Lorentz-invariant, it is possible

to sample a momentum in the rest frame of fluid and then boost it into the lab frame

N(R) = d

∫
Σ

∫
R(p)

d3p

(2π)3Ep

f(x,p) pμdΣμ (3.38)

= d

∫
Σ

∫
R(q)

d3q

(2π)3Eq

f(x,q) qμdΣμ (3.39)

where dΣμ is the normal vector in the rest frame of the fluid. The momenta pμ and

qμ, in the lab and fluid rest frames, are related by a Lorentz transformation Λ(u)

pμ = Λμ
νq

ν where Λ(u) =

⎛
⎜⎝ u0 uj

ui δij +
uiuj

u0 + 1

⎞
⎟⎠ (3.40)

All tensors such as flow velocity and shear stress tensor are boosted into the rest

frame of fluid and momentum qμ sampled in that frame is boosted back into the lab
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frame. The rejection method of sampling requires an envelop function which is always

larger than the probability distribution function

Fenv(q) =

{
f0(q) +

1

2
f0(q) (1± f0(q))Wshear

q2

T 2

+ f0(q) (1± f0(q))Wbulk

[
m2

3EqT
+

(
1

3
− c2s

)
Eq

T

]}
V (3.41)

Wshear =
1

(ε0 + P0)

3∑
i,j=1

|πij| (3.42)

Wbulk = |CbulkΠ| (3.43)

V =
d

(2π)3

(
|uμΔΣμ|+

3∑
i=1

|ΔΣi|
)

(3.44)

where πμν is the shear stress tensor in the rest frame of the fluid. To construct a

stepwise envelop function, lattice points in 0 ≤ q ≤ Qmax with even spacing were set

up. The probability that momentum of sampled particle is between qi and qi+1 is

given as

Penv(qi < |q| < qi+1) = 4πNenv

(
q3i+1 − q3i

)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fenv|i if dqFenv|i < 0 and dqFenv|i+1 < 0

Fenv|i+1 if dqFenv|i > 0 and dqFenv|i+1 > 0

max (Fenv|i,Fenv|i+1) if dqFenv|i < 0 and dqFenv|i+1 > 0

Fenv|i + [Fenv|i+1 −Fenv|i − dqFenv|i+1(qi+1 − qi)]

(
dqFenv|i

dqFenv|i − dqFenv|i+1

)
if dqFenv|i > 0 and dqFenv|i+1 < 0

(3.45)

where dqF is dF/dq and |i means evaluated at qi. The normalization constant Nenv

was determined from the condition that
∑

i Penv(qi < |q| < qi+1) = 1. The max-

imum magnitude of momentum Qmax was set to be 40 × T and number of lattice

points was 300 for calculations shown in this thesis. It must be noted that, since the

envelop function Penv is stepwise and constant in each momentum bin, the probabil-

ity distribution dP[qi,qi+1]/dq of the magnitude q = |q| of momentum inside each bin

becomes
d

dq
P[qi,qi+1] =

3 q2

q3i+1 − q3i
and

∫ qi+1

qi

dq · d

dq
P[qi,qi+1] = 1 . (3.46)
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Hence, provided that the momentum bin is determined based on Penv, the magnitude

can be sampled according to

|q| = [q3i + (q3i+1 − q3i )Xq

]1/3
(3.47)

where Xq is a random variable with uniform distribution between 0 and 1. Orientation

of the momentum is determined as

θq = arccos (1− 2Xθ) (3.48)

φq = 2πXφ (3.49)

where Xθ and Xφ are random variables with uniform distribution between 0 and 1.

Therefore, the three-momentum q sampled according to the stepwise envelop function

(3.45) is

q = |q| (sin θq cosφq, sin θq sinφq, cos θq) (3.50)

Then one has to decide if q is accepted or not based on the real distribution function

(3.34). This can be done by accepting the momentum if the following condition is

satisfied
XrejPenv(qi < |q| < qi+1)

4πNenv

(
q3i+1 − q3i

) <
dN

d3q

∣∣∣∣
1-cell

(3.51)

where Xrej is sampled between 0 and 1 according to the uniform distribution function.

3.1.3 Verification of Sampling

By comparing the momentum spectra obtained from the sampling routine with that

from the Riemann integration of Cooper-Frye formula, one can demonstrate the va-

lidity of the sampling procedure. It must be noted that particles and their momenta

are sampled according to

dN

d3p

∣∣∣∣
sample

=
d

(2π)3

∫
Σ

P(+)

(
pμd3Σμ

Ep

)

× P(+) [f0(x,p) + δfshear(x,p) + δfbulk(x,p)] (3.52)

which is different from equation (3.1) due to the presence of

P(+)(x) =

⎧⎨
⎩ x if x > 0

0 if x < 0
. (3.53)
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Figure 3.2 and 3.3 show the pT spectra and pT -differential vn{2} of pions, Kaons,

and protons at the point of particlization. The original momentum distribution

functions of identified hadrons are well reproduced by the sampling process. It is also

shown that the negative contribution to the distribution function is not relevant for

pT < 2.5GeV. The effects of the negative contributions were also discussed in Ref.

[90].

It is also notable to address the effect of viscous corrections δfshear and δfbulk to the

distribution function. Figures 3.4 and 3.5 show the uncertainties in momentum space

distributions of identified hadrons associated with δf . One can see that the effect of

δf is less that 10% in pT range around 〈pT 〉 where the particles are most abundant. In

addition, the effect of δfshear is negligible while δfbulk makes significant distortions of

the pT spectra and v2(pT ). The higher harmonics v3 and v4 are significantly affected

by both of δfshear and δfbulk. Therefore, in addition to the viscous corrections to

the energy-momentum tensor, the viscous corrections to the Boltzmann distribution

function must be taken into account for the particle spectra at the intermediate and

higher pT .

In the sampling procedure described above, there is no guarantee that a particlized

hadron does not re-enter a region with temperature higher than Tsw. However, it is

possible to estimate how likely this is by looking at the correlation between the radial

distance r and velocity ur. The correlation between r and ur can be defined as

C(r, ur; Σ) =
1

σrσur

(〈r ur〉Σ − 〈r〉Σ 〈ur〉Σ) (3.54)

〈Q〉Σ ≡ 1

VΣ

∫
Σ

Q uμdΣμ where VΣ =

∫
Σ

uμdΣμ (3.55)

σQ ≡ (〈Q2
〉
Σ
− 〈Q〉2Σ

)1/2
(3.56)

where uμ is flow velocity and 〈Q〉Σ is volume-weighted average of a quantity Q over

hypersurface Σ. Note that, since the number of particles emerging from a hypersurface

element is proportional to uμdΣμ, 〈· · ·〉Σ is also the multiplicity-weighted average.

Table 3.1 shows the correlation C(r, ur; Σ) for different collision energies and switching

temperatures. The radial distance and velocity are strongly correlated. Therefore, a
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Pb + Pb, 2.76TeV Pb + Pb, 2.76TeV Au + Au, 200GeV

η/s = 0.095 η/s = 0.095 η/s = 0.06

Tsw = 145MeV Tsw = 165MeV Tsw = 165MeV

0− 5% 0.903 0.929 0.868

10− 20% 0.874 0.87 0.774

20− 30% 0.855 0.827 0.69

30− 40% 0.809 0.743 0.604

Table 3.1: The r-ur correlation C(r, ur; Σ) on the hypersurfaces.

particle sampled far from the center of collision moves faster away from the fireball and

it is unlikely to go to a region with higher temperature, since temperature decreases

as distance from the center of fireball increases. This also can be seen at Figures

3.6 and 3.7 which show distributions of volume uμdΣμ over proper time τ , radial flow

velocity ur, and viscosities. The distributions over r and ur indicate that the radial

flow velocity is correlated with radial distance in the transverse plane. Comparison

between Figures 3.6 and 3.7 also reveals that the fireball lives longer for the higher

collision energy. This is due to the higher temperature is reached in more energetic

collisions and it takes longer to cool down.

3.1.4 Necessity of Microscopic Transport

The validity of hydrodynamics depends on the microscopic and macroscopic length

scales. Provided that the cross sections and number density are known, one can

estimate the mean-free-path lmfp which is microscopic

lmfp,i �
[∑

j

σ(i,j)nj

]−1

(3.57)

where σ(i,j) is the cross section of incoming particles i and j. For a multi-component

system, collisions with different species and corresponding number densities must be

taken into account. Therefore, one has the summation over all particle species. In the

case of heavy ion collisions, the expansion rate θ = ∇μu
μ can be a macroscopic scale.
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From the Navier-Stokes relation, it is possible to estimate the Knudsen number as

Kni �
[∑

j

σ(i,j)nj

]−1 |Π|
ζ

(3.58)

=

[∑
j

σ(i,j)nj

]−1(
T

ζ/s

) |Π|
ε+ P

. (3.59)

One can obtain Π/(ε + P ) � 0.015 based on Figures 3.6 and 3.7. Using the cross

section σπ+π− � 40mb employed in UrQMD [38], along with the assumption that the

number density ni is given by the thermal distribution, one has lmfp,π− � 4 fm for

pions at Tsw = 145MeV. This mean-free-path is comparable to the inverse of the

expansion rate θ−1 � 3 fm and the system size Lsize � 8 fm. Therefore one obtains

lmfp,π− ∼ θ−1 ∼ Lsize (3.60)

which leads to the conclusion that hydrodynamics becomes no longer adequate and

it is necessary to switch to the microscopic transport.
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Pb + Pb with
√
sNN = 2.76TeV (10− 20%)

shear+bulk, η/s = 0.095, and Tsw = 145MeV
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Figure 3.2: pT spectra and pT -differential v2{2} of pions, Kaons, and protons from sampling and
integration of Cooper-Frye formula. This calculation is performed for a single hydro event for 10-
20% centrality of Pb+Pb collision with 2.76TeV. “Int. w/o Neg.” and “Int. w/ Neg.” correspond
to equations (3.52) and (3.1), respectively. 20000 events are sampled to obtain the results shown as
“sampling”.
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Pb + Pb with
√
sNN = 2.76TeV (10− 20%)

shear+bulk, η/s = 0.095, and Tsw = 145MeV
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Figure 3.3: pT -differential v3{2} and v4{2} of pions, Kaons, and protons from sampling and inte-
gration of Cooper-Frye formula. This calculation is performed for a single hydro event for 10-20%
centrality of Pb+Pb collision with 2.76TeV. “Int. w/o Neg.” and “Int. w/ Neg.” correspond to
equations (3.52) and (3.1), respectively. 20000 events are sampled to obtain the results shown as
“sampling”.
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Pb + Pb with
√
sNN = 2.76TeV (10− 20%)

shear+bulk, η/s = 0.095, and Tsw = 145MeV
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Figure 3.4: pT spectra and pT -differential v2{2} of pions, Kaons, and protons from different cases
of δf in the Cooper-Frye formula. This calculation is performed for a single hydro event for 10-20%
centrality of Pb+Pb collision with 2.76TeV.
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Pb + Pb with
√
sNN = 2.76TeV (10− 20%)

shear+bulk, η/s = 0.095, and Tsw = 145MeV
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Figure 3.5: pT -differential v3{2} and v4{2} of pions, Kaons, and protons from different cases of
δf in the Cooper-Frye formula. This calculation is performed for a single hydro event for 10-20%
centrality of Pb+Pb collision with 2.76TeV.
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Pb + Pb with
√
sNN = 2.76TeV (10− 20%)

shear+bulk, η/s = 0.095, and Tsw = 145MeV
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Figure 3.6: Total volume (sum of uμΔΣμ) of surface elements with specific transverse distance and
proper time τ (left top), transverse flow speed uT (right top), shear viscosity (left bottom), and bulk
viscosity (right bottom). These are obtained from single event of IP-Glasma and hydrodynamics for
10-20% centrality of Pb+Pb collision with 2.76TeV. The shear viscosity to entropy density ratio
η/s is set to be 0.095 and temperature-dependent bulk viscosity is taken from 2.5. Temperature of
the isothermal hypersurface is Tsw = 145MeV.
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Au + Au with
√
sNN = 200GeV (10− 20%)

shear+bulk, η/s = 0.06, and Tsw = 165MeV
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Figure 3.7: Total volume (sum of uμΔΣμ) of surface elements with specific transverse distance and
proper time τ (left top), transverse flow speed uT (right top), shear viscosity (left bottom), and bulk
viscosity (right bottom). These are obtained from single event of IP-Glasma and hydrodynamics for
10-20% centrality of Au+Au collision with 200GeV. The shear viscosity to entropy density ratio
η/s is set to be 0.06 and temperature-dependent bulk viscosity is taken from 2.5. Temperature of
the isothermal hypersurface is Tsw = 165MeV.
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3.2 Hadronic Cascade

After particlization, the hadrons now enter the hadronic re-scattering stage. In this

study, this part of the heavy ion collisions is described by UrQMD [38, 39] which is

microscopic transport for hadrons. This section contains a brief review of Ref. [38].

Baryons and mesons included in UrQMD model are listed in Tables 3.2 and 3.3, re-

spectively. Since the collision term of Boltzmann transport equation involves two-

Nucleon Delta Lambda Sigma Xi Omega

N938 Δ1232 Λ1116 Σ1192 Ξ1317 Ω1672

N1440 Δ1600 Λ1405 Σ1385 Ξ1530

N1520 Δ1620 Λ1520 Σ1660 Ξ1690

N1535 Δ1700 Λ1600 Σ1670 Ξ1820

N1650 Δ1900 Λ1670 Σ1775 Ξ1950

N1675 Δ1905 Λ1690 Σ1790 Ξ2025

N1680 Δ1910 Λ1800 Σ1915

N1700 Δ1920 Λ1810 Σ1940

N1710 Δ1930 Λ1820 Σ2030

N1720 Δ1950 Λ1830

N1900 Λ1890

N1990 Λ2100

N2080 Λ2110

N2190

N2200

N2250

Table 3.2: Baryon species included in UrQMD

particle distribution function, which is not necessarily the same as the product of

single-particle distribution functions, obtaining the evolution of multi-particle corre-

lations is complicated with the transport equation. Even though the only source of

correlation is hydrodynamic flow at the point of particlization, the system develops
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JPC 0−+ 1−− 0++ 1++ 1+− 2++ (1−−)∗ (1−−)∗∗

π ρ a0 a1 b1 a2 ρ1450 ρ1700

K K∗ K∗
0 K∗

1 K1 K∗
2 K∗

1410 K∗
1680

η ω f0 f1 h1 f2 ω1420 ω1662

η′ φ f ∗
0 f ′

1 h′
1 f ′

2 φ1680 φ1900

Table 3.3: Meson species included in UrQMD. The notation JPC for the particle state is explained
in [91].

additional non-flow correlations during hadronic re-scattering. Therefore, the UrQMD

model keeps track of all particles to maintain information on multi-particle correla-

tions. Determination of when and which particles collide is based on the collision

criterion with cross sections of several processes. Given that two particles with mo-

d⊥

x′
1

x′
2

p′
1

p′
2

Figure 3.8: Two particles in the center-of-mass frame approaching each other with impact parameter
d⊥.

menta p1 and p2 are on the spatial positions x1 and x2, respectively at initial time t0

in the lab frame, the impact parameter d⊥ between two particles in the center-of-mass

frame is described in Figure 3.8 and given as

d2⊥ = d2 − d2‖ (3.61)

= |x′
1 − x′

2|2 −
[(x′

1 − x′
2) · (p′

1 − p′
2)]

2

|p′
1 − p′

2|2
(3.62)

Prime denotes that it is evaluated in the center-of-mass frame and x′ and p′ are

connected with x and p via Lorentz transformation Λ(UCM). The four-velocity Uμ
CM

of the center of mass in lab frame is given as

Uμ
CM =

pμ1 + pμ2√
(p1 + p2)2

(3.63)
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and the Lorentz transformation is given in (3.40). A geometrical interpretation of

scattering cross section is used to set a collision criterion

d2⊥ ≤
√

σtot

π
(3.64)

where σtot is the total cross section of incoming particles and depends on the collision

energy and types of particles. It is also necessary to determine when the collision

occurs which is done by obtaining the time tcoll of closest approach in the lab frame

according to

[x1 − x2 + (v1 − v2) (tcoll − t0)] · (v1 − v2) = 0 (3.65)

where v is the velocity. In terms of the lab frame energy and momentum, tcoll can be

written as

tcoll − t0 = −(x1 − x2) · (p1/E1 − p2/E2)

|p1/E1 − p2/E2|2 . (3.66)

Description of the collision processes also requires information on the cross sections.

In the UrQMD model, the total cross sections of different processes are assumed to have

the following forms [38].

• Nucleon-Nucleon Scatterings

There are three types of nucleon-nucleon scattering processes — elastic, res-

onance excitation and string excitation. The total and elastic cross sections

are based on the CERN/HERA parametrization of proton-proton and proton-

neutron scatterings [92]. The cross sections of resonance excitation processes

have the following form

σ(1,2→3,4),res(
√
s) ∼ (2S3 + 1)(2S4 + 1) · 1

s

〈p3,4〉
〈p1,2〉 |Mres(

√
s,m3,m4)|2 (3.67)

where the momentum in the center-of-mass frame 〈pi,j〉 is expressed as

〈pi,j(
√
s)〉 =

∫
dm′
∫

dm′′ pCM(
√
s,m′,m′′)Ai(m

′)Aj(m
′′) (3.68)

pCM(
√
s,mi,mj) =

1

2
√
s

[
(s− (mi +mj)

2)(s− (mi −mj)
2)
]1/2

(3.69)
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and Ai and Si are the mass distribution and spin of the particle i, respectively.

Unstable resonances are taken into account by having Breit-Wigner mass dis-

trbution with pole mass mi and finite width

Ai(m) = NA
Γ(m)

(m−mi)2 + Γ2(m)/4
(3.70)

where NA is the normalization constant. In the case of a stable particle with

vanishing width, one has Ai(m) = δ(m−mi). The matrix elements of different

resonance excitation processes are listed in Table 3.4. The string excitation

process matrix element parameter

N,N → N,Δ1232 |Mres|2 = A
m2

ΔΓ
2
Δ

(s−m2
Δ)

2 +m2
ΔΓ

2
Δ

mΔ = 1.232GeV

ΓΔ = 0.115GeV

A = 40000

N,N → N,N∗

N,N → N,Δ∗

N,N → N∗,Δ1232

N,N → Δ1232,Δ
∗

|Mres|2 = A
1

(m3 −m4)2(m3 +m4)2
A =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6.3

12

3.5

3.5

N,N → Δ1232,Δ1232 |Mres|2 = A A = 2.8

Table 3.4: The matrix elements of resonance excitation processes of nucleon-nucleon collisions. The
parameters are determined to fit the pp scattering data [96].

process (N,N) → (N, string) is also taken into account and its cross section is

given as

σstring = σtot − σel −
∑

σres (3.71)

where the summation is over all relevant final states. The string excitation and

fragmentation processes in UrQMD are described in Appendix 6.6.

• Resonance Decays

The decay process of a resonance is implemented via the mass-dependent decay

width. The total decay width Γtot(m) of a resonance with mass m is the sum
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of the partial decay widths with relevant exit channels

Γtot(m) =
∑
(i,j)

Γ(i,j)(m) (3.72)

The partial decay width ΓR→(i,j) for the decay of a resonance with mass m into

particles i and j with orbital angular momentum l is

Γ(i,j)(m) = ΓR,(i,j)
mR

m

( 〈pi,j(m)〉
〈pi,j(mR)〉

)2l+1
[
5

6
+

1

6

( 〈pi,j(m)〉
〈pi,j(mR)〉

)2l
]−1

(3.73)

where mR and ΓR,(i,j) are the pole mass and decay width at the pole, respec-

tively. How long a resonance lasts is determined by a Monte-Carlo sampling of

the exponential decay law with the lifetime τR = 1/ΓR and the final state is

detemined based on the branching ratio.

• Baryon-Antibaryon Processes

The total and elastic proton-antiproton scattering cross sections for the lab

frame momentum plab, which is in the fixed-target experiment, less than 5GeV

are parametrized as

σ(p,p),tot(mb) =

⎧⎨
⎩ 75 + 43.1 p−1 + 2.6 p−2 − 3.9 p : 0.3 < p < 5

271.6 exp (−1.1 p2) : p < 0.3
(3.74)

σ(p,p),el(mb) =

⎧⎨
⎩ 31.6 + 18.3 p−1 + 1.1 p−2 − 3.8 p : 0.3 < p < 5

78.6 : p < 0.3
(3.75)

where p is plab in GeV. In the case of pp collisions with plab > 5GeV, the cross

sections have the following form

σ(p,p),tot/el(plab > 5GeV) = A+B pn + C ln2 p+D ln p (3.76)

The values of parameters are shown in Table 3.5. The pp annihilation cross

section is parameterized as

σ(p,p),ann(
√
s) = σann,0

s0
s

[
A2s0

(s− s0)2 + A2s0
+B

]
(3.77)

where σann,0 = 120mb, s0 = 4m2
N, A = 0.05GeV and B = 0.6 [93]. The neutron-

antiproton cross section is assumed to be identical to the proton-antiproton
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A (mb) B (mb) n C (mb) D (mb)

σtot 38.4 77.6 -0.64 0.26 -1.2

σel 10.2 52.7 -1.16 0.125 -1.28

Table 3.5: Parameters for the the total and elastic pp cross sections with plab > 5GeV.

cross section based on the observation that they are very similar [94]. The

cross sections of other baryon-antibaryon scatterings are evaluated by scaling

σ(p,p) with the ratio of corresponding cross sections in the additive quark model

(AQM)

σ(B,B) =
σBB(AQM)

σNN(AQM)

· σ(p,p) (3.78)

In UrQMD, the baryon-antibaryon annihilation is implemented by annihilating a

single quark-antiquark pair and rearranging the remaining constituents to form

two mesonic strings. Therefore, one has (B,B) → (string, string). All other

processes are called diffractive and the cross section is

σdiff = σtot − σel − σann . (3.79)

The diffractive scattering leads to excitation of resonances or strings.

• Additive Quark Model

Due to the fact that experimental data are not available for some processes

involved in UrQMD, one has to extrapolate from the processes with data. In the

UrQMD model, this is done with the additive quark model (AQM) [95]. In the

AQM, cross section of any hadronic collision is given as

σhh(AQM),tot = σNN,tot

(n1

3

)(n2

3

)(
1− 0.4

ns,1

n1

)(
1− 0.4

ns,2

n2

)
(3.80)

σhh(AQM),el = σNN,el

(
σhh(AQM),tot

σNN,tot

)2/3

(3.81)

where ni is the number of quark and antiquark constituents and ns,i is the

number of strange quarks and antiquarks.
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• Detailed Balance

The detailed balance, which is based on the time-reversal symmetry, is employed

in UrQMD to simulate processes where experimental data are not available. It

states that the matrix element of certain process is the same as the reverse

process

|M(3,4)→(1,2)|2 = |M(1,2)→(3,4)|2 (3.82)

In UrQMD, the detailed balance is applied for the resonant meson-meson, meson-

baryon scatterings and resonance-nucleon/resonance-resonance scatterings such

as (Δ1232,Δ1232) → (N,N) process. When one computes the cross section of

the reverse process, the kinematics and degeneracies must be taken into account

dσ

dΩ

∣∣∣∣
(3,4)→(1,2)

=
〈p21,2〉
〈p23,4〉

(2S1 + 1)(2S2 + 1)

(2S3 + 1)(2S4 + 1)

×
J+∑

J=J−

〈j1,m1, j2,m2||J,M〉 dσ

dΩ

∣∣∣∣
(1,2)→(3,4)

(3.83)

〈p2i,j(
√
s)〉 =

∫
dm′
∫

dm′′ p2CM(
√
s,m′,m′′)Ai(m

′)Aj(m
′′) (3.84)

where pCM and Ai are defined in the equations (3.69) and (3.70), respectively. In

addition, |j,m〉 denotes the eigenstate of isospin and its third component with

the eigenvalues j and m, respectively. The summation limits of the Clebsch-

Gordan coefficients are

J− = max(|j1 − j2|, |j3 − j4|) (3.85)

J+ = min(j1 + j2, j3 + j4) . (3.86)

• Meson-Baryon and Meson-Meson Scatterings

The low-energy meson-baryon and meson-meson interactions are dominated by

the resonance scatterings, where incoming particles excite a resonance as an

intermediate state. The cross section of resonance scattering is

σ(1,2),res =
∑
R

〈j1,m1, j2,m2||JR,MR〉

× 2SR + 1

(2S1 + 1)(2S2 + 1)

π

p2CM

ΓR→(1,2)ΓR,tot

(
√
s−MR)2 + Γ2

R,tot/4
(3.87)
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where the summation goes over all resonances that can decay into the incoming

particles 1 and 2. The cross section with particular exit channel with particles

3 and 4, σ(1,2→3,4),res can be obtained by replacing ΓR,tot with ΓR→(3,4) and the

summation is over all resonances that can decay into 3 and 4 as well. In addition,

for the meson-meson scattering, a constant elastic cross section σ(M,M),el = 5mb

is added to fit the data [96].

For the angular distribution of outgoing particles, the elasticNN cross section from

the collision term of relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) equation [97]

is used in UrQMD. The angular dependence in the center-of-mass frame comes from

the t and u channels.
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3.3 Jet Energy Loss

For an integrated description of heavy ion collisions, one needs to have the high-pT

particles resulting from jets, as well as the low-pT bulk dynamics of the medium. It

must be also noted that, due to the jet-medium interactions, the high-pT spectra are

not same as the superposition of nucleon-nucleon binary collisions. In this section,

production of the high-pT partons, their energy loss due to the radiative and collisional

processes, and the Monte-Carlo implementation in MARTINI [98] are briefly described.

3.3.1 AMY Formalism for Radiative Energy Loss

If an incident particle emits a photon or gluon as a consequence of scattering with

particles in the medium, the formation time τform is determined by how much the

intermediate state deviates from the on-shell state. In the case of a thermal medium

with strong coupling constant g, one has τform ∼ (g2T )−1 and this is on the order of the

mean-free-time of the incident particle. Therefore, contributions to the transition rate

from multiple scatterings are not independent of each other, a phenomenon known

as the LPM effect [99]. In the AMY formalism [35, 36], infinite number of diagrams

which contribute to the current-current correlator are summed by solving an integral

equation. The rate of radiative energy loss is given as [100, 101]

dΓrad

dk
(p, k) =

Csg
2

16πp7
· ek/T

ek/T ± 1
· e(p−k)/T

e(p−k)/T ± 1

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1+(1−x)2

x3(1−x)2
if q → qg

Nf
x2+(1−x)2

x2(1−x)2
if g → qq

1+x4+(1−x)4

x3(1−x)3
if g → gg

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

·
∫

d2h

(2π)2
2h · ReF(h, p, k) (3.88)

where p is the initial energy of the jet parton and k is amount of the energy loss. The

momentum fraction x of the radiated particle is given as x = k/p. The quadratic

Casimir is Cs = CF = 4/3 for quark/antiquark and Cs = CA = 3 for gluon. F(h, p, k)

in the integrand of equation (3.88) is obtained by solving the following integral equa-

tion

2h = i δE(h, p, k)F(h, p, k) + g2
∫

d2q⊥
(2π)2

m2
D

q2⊥(q
2
⊥ +m2

D)
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× {(Cs − CA/2) [F(h)− F(h− k q⊥)] + (CA/2) [F(h)− F(h+ pq⊥)]

+ (CA/2) [F(h)− F(h− (p− k)q⊥)] } (3.89)

m2
D =

1

6
(2Nc +Nf ) g

2T 2 (3.90)

δE(h, p, k) =
|h|2

2pk(p− k)
+

m2
k

2k
+

m2
p−k

2(p− k)
− m2

p

2p
(3.91)

where mp, mp−k, and mk denote the medium induced thermal masses of the initial

state parton, final state parton, and radiated one, respectively. Explicitly,

m2 =

⎧⎪⎪⎨
⎪⎪⎩

g2T 2

12
(2Nc +Nf ) for gluon

g2T 2

3
for quark/antiquark

(3.92)

3.3.2 Collisional Energy Loss

The jet parton can lose energy by 2 → 2 scattering processes with other partons be-

longing to the medium. The rate of collisional energy loss with amount ω is computed

in [37] from

dΓcoll

dω
(Ep, ω) =

2πdk
2Ep · 2Ep′

∫
d3k

(2π)32Ek

∫
d3k′

(2π)32Ek′

× δ(Ep − Ep′ − ω) δ(Ek′ − Ek − ω)

× |M(p, k → p′, k′)|2f(k, T ) (1± f(k′, T )) (3.93)

where Ep = |p| for a massless parton and dk is the degeneracy factor. The transition

amplitude |M(p, k → p′, k′)|2 is obtained by mean of effective thermal propagator

[102]. In addition, it was also shown in [37] that the separation between hard (|p −
p′| ∼√EpT ) and soft (|p− p′| ∼ gT ) scales does not make relevant difference.

3.3.3 Monte-Carlo Implementation of Energy Loss

The Monte-Carlo simulation of jet energy loss is done with MARTINI [98]. The ini-

tial production of jet partons can be handled with perturbative QCD due to large

momentum transfer. Once the collision geometry, in terms of the locations of binary

collisions, is specified, the probability Pjet of having a hard collision at each binary
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collision is given as

Pjet(p̂T,min) =
σ(N,N),jet(p̂T,min)

σ(N,N),inel

(3.94)

σ(N,N),jet(p̂T,min) =
∑
i,j

∫ 1

0

dx1fi(x1)

∫ 1

0

dx2fj(x2) σ(i,j)(x1, x2; p̂T,min) (3.95)

where σ(N,N),inel is the total inelastic cross section of nucleon-nucleon interaction. The

summations are over partonic species and fi is the parton distribution function of i

in a nucleon. σ(i,j)(x1, x2; p̂T,min) is the cross section of 2 → 2 partonic process of i

and j with the light-cone momentum fractions x1 and x2, respectively. The scattered

partons are considered to acquire the transverse momenta larger than p̂T,min.

If a hard process is determined to happen, the jet partons are generated by PYTHIA

8.1 [103, 104] in conjunction with LHAPDF [105]. In this work, CTEQ5L parton dis-

tribution function [106] were used and the nuclear shadowing effects were taken into

account the EKS98 parametrization [107]. The probability that a jet parton expe-

riences the energy loss in each time step is given as P = ΓΔt. Then the functional

form of dΓ/dω is used to determine the amount of energy lost in the medium. Once

the jet parton gets out of QGP phase, it is assumed to fragment into hadrons. This

is done by making color-neutral strings out of the jet partons and sampled thermal

partons and fragmenting them with PYTHIA.



4

Observables and Results

The hybrid approach shown in the previous chapter allows one to study the hot QCD

matter by comparing with experimental measurements. In this work, the switching

temperature Tsw and the shear viscosity η are considered as the parameters to be de-

termined from the experimental data. The thermalization time τ0, the bulk viscosity

ζ and the strong coupling αS of the energy loss are fixed throughout this work. In

Section 4.1, observables measured in heavy ion collisions are defined in terms of fi-

nal state information. The hybrid model simulations were performed for comparison

with the Au+Au collisions with
√
sNN = 200GeV at RHIC and Pb+Pb collisions

with
√
sNN = 2.76TeV at the LHC. Sections 4.2 and 4.3 show the global and pT -

differential observables, respectively. It is demonstrated that bulk viscosity is crucial

in comprehensively describing both of pT spectra and azimuthal anisotropy. It is also

shown that the hadronic re-scattering, or afterburner, in the late stage of collision is

necessary in getting baryonic observables. The results of high-pT jets are shown in

Section 4.4 focusing on the energy loss due to the hadronic re-scattering.

77
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4.1 Definitions of Observables

One of the most important observables is the momentum-space distribution of iden-

tified or charged hadrons. It can be decomposed as

Ep
dN

d3p
=

1

2πpT

dN

dpTdy

[
1 + 2

∞∑
n=1

vn(pT ) cos [n(φp − Φn)]

]
(4.1)

where y and Φn are the rapidity and reference angle, respectively. This work is focused

on the mid-rapidity observables around y = 0 and hydrodynamic evolution was per-

formed in 2+1D spacetime assuming boost invariance. The coefficients vn’s measure

how efficiently the coordinate space anisotropy is translated into the momentum space

anisotropy by the system evolution. The anisotropic energy density profile results in

the anisotropic pressure gradient as shown in Figure 4.1. The pT spectra of identified
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Figure 4.1: The anisotropic energy density profiles with ellipticity (left) and triangularity (right)
lead to the elliptic flow v2 and triangular flow v3, respectively.

hadrons are determined by counting the number of particles inside corresponding pT

bin

1

2πpT

dN

dpT

∣∣∣∣
|y|<0.5

(pi < pT < pi+1) =
N(|y| < 0.5; pi < pT < pi+1)

π(p2i+1 − p2i )
(4.2)
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There are two global observables, mid-rapidity multiplicity and mean pT , commonly

measured in experiments. They are defined as

∫ 0.5

−0.5

dy
dN

dy
=

∫
dpT

dN

dpTdy

∣∣∣∣
|y|<0.5

= N(|y| < 0.5) (4.3)

〈pT 〉 =
(∫ 0.5

−0.5

dy
dN

dy

)−1 ∫ 0.5

−0.5

dy

∫
dpT pT

dN

dpTdy

=
1

N(|y| < 0.5)

N(|y|<0.5)∑
j=1

pT,j (4.4)

where pT,j is the magnitude of the transverse momentum of the j-th particle. It can be

seen that the mean pT quantifies how fast the particles are moving outward. While

the pT spectra and associated global observables involve information on the radial

expansion, dependence on the azimuthal direction is encoded in Fourier coefficients

vn of the momentum-space distribution. From equation (4.1), one gets for particles

satisfying |y| < 0.5 and pT ∈ [pmin, pmax]

N cos (nΦn) =

∫ pmax

pmin

dpT

∫
dφp

dN

dpTdφp

∣∣∣∣
|y|<0.5

cos (nφp) (4.5)

N vn =

∫ pmax

pmin

dpT

∫
dφp

dN

dpTdφp

∣∣∣∣
|y|<0.5

cos [n(φp − Φn)] (4.6)

Measurement or calculation of vn is more complicated compared to the pT spectra

since there is fluctuation of the multiplicity N , reference angle Φn and flow coefficient

vn. One conventional method is called event plane method which estimates Φn from

the event plane angle Ψn. The reference flow particles (RFP) are defined as a set of

particles used to determine the event plane angle. In many heavy ion experiments,

the reference flow particles are set to be charged hadrons within a specific kinematic

range which incorporates a large number of particles. The event plane angle can be

written in terms of flow vectors Qn

Qn =
N∑
j=1

einφj (4.7)

= |Qn| einΨn (4.8)
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where φj is azimuthal angle of the j-th particle and the summation is over the reference

flow particles. The flow vector has the following limiting cases

Qn →
⎧⎨
⎩ Nvne

inΦn if N → ∞
einΨn if N → 1

(4.9)

It must be also noted that, in general, Ψn deviates from Φn due to statistical fluctu-

ation. For a set of events with the same vn, one has〈
1

NA

Qn,A

Q∗
n,B

|Qn,B|
〉

|vn
=

〈
1

NA

Qn,Ae
−inΦn

〉
|vn

〈
Q∗

n,B

|Qn,B|e
inΦn

〉
|vn

(4.10)

→
⎧⎨
⎩ vn if N → ∞

v2n if N → 1
(4.11)

where A and B stand for rapidity (or pseudo-rapidity) windows separated by a finite

gap. This separation allows one to assume that the statistical fluctuations of Qn,A

and Qn,B are independent. The limiting cases in equation (4.11) can be obtained

using 〈einΨn〉|vn = vne
inΦn . The flow coefficient v′n{EP} of the particles of interest

(POI) from the event-plane method is defined as

v′n{EP} =
1

REP

〈
1

N ′
A

Q′
n,A

Q∗
n,B

|Qn,B|
〉

(4.12)

R2
EP =

〈
Qn,A

|Qn,A| ·
Q∗

n,B

|Qn,B|
〉

(4.13)

where N ′ and Q′
n are multiplicity and flow vector of the particles of interest. One can

set the POI to be identified hadrons in a specific pT bin to have the pT -differential

vn of that species. One has the integrated flow coefficients if the particles of interest

coincide with the reference flow particles. The event average 〈· · ·〉 is taken over a

large number of events with different vn inside a certain centrality bin

〈· · ·〉 =
∫

dvn
dP

dvn
〈· · ·〉|vn (4.14)

It was shown in [108] that this event-plane method introduces an ambiguity since

vn{EP} yields a value between 〈vn〉 and (〈v2n〉)1/2 depending on the resolution

vn{EP} →
⎧⎨
⎩ 〈vn〉 if vn

√
N � 1

(〈v2n〉)1/2 if vn
√
N < 1

(4.15)
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which can be obtained by considering the limiting cases of the resolution factor REP

R2
EP =

∫
dvn

dP

dvn

〈
Qn,A

|Qn,A|e
−inΦn

〉
|vn

〈
Q∗

n,B

|Qn,B|e
inΦn

〉
|vn

(4.16)

→
⎧⎨
⎩ 1 if N → ∞

〈v2n〉 if N → 1
(4.17)

Therefore, the event-plane method is inadequate for measurements independent of

detector acceptance.

One way around this ambiguity is to connect 2-particle correlations and v2n and

obtain the event average of v2n weighted by N(N − 1) [109, 110]. The 2-particle

azimuthal correlation 〈2〉 among the reference flow particles is defined as

〈2〉 ≡ 1

W2

∑̂
i,j

ein(φi−φj)

=
1

W2

(|Qn|2 −N
)

(4.18)

W2 = N(N − 1)

where
∑̂

is summation over i 	= j. The reference flow particles are commonly cho-

sen to be charged hadrons within certain pseudorapidity and transverse momentum

windows. These correlations of many events are averaged with weight W2 as

〈〈2〉〉 =
∑Nev

i=1 W2,i〈2〉i∑Nev
i=1 W2,i

(4.19)

where the subscript i denotes “evaluated for the i-th event”. Then, the second order

cumulant cn{2} and 2-particle cumulant vn{2} are given as

cn{2} = 〈〈2〉〉 (4.20)

vn{2} = (cn{2})1/2 (4.21)

The 2-particle cumulant differential flows v′n{2} can be computed based on correla-

tions between particles of interest and reference flow particles

〈2′〉 = 1

w2

∑̂
i∈POI, j∈RFP

ein(φi−φj) (4.22)

=
1

w2

(pnQ
∗
n − qn) (4.23)

w2 = npN − nq
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where np and pn are the number and flow vector of particles of interest, respectively.

and nq and qn are the number and flow vector of particles of interest which are also

reference flow particles. The particles of interest are identified hadrons within specific

pT bin in the case of pT differential vn of identified hadrons. The event average 〈〈2′〉〉
can be obtained as

〈〈2′〉〉 =
∑Nev

i=1 w2,i〈2′〉i∑Nev
i=1 w2,i

(4.24)

and 2-particle cumulant and differential flow become

dn{2} = 〈〈2′〉〉 (4.25)

v′n{2} =
dn{2}

(cn{2})1/2
(4.26)

It is also possible to obtain anisotropic flow coefficients from 4-particle correlations.

This 4-particle cumulant method begins with computation of azimuthal correlations

〈4〉 of reference flow particles

〈4〉 ≡ 1

W4

∑̂
i,j,k,l

ein(φi+φj−φk−φl)

=
1

W4

[|Qn|4 + |Q2n|2 − 2Re (Q2nQ
∗
nQ

∗
n)− 4(N − 2)|Qn|2 + 2N(N − 3)

]
(4.27)

W4 = N(N − 1)(N − 2)(N − 3)

The event average 〈〈4〉〉 is given as

〈〈4〉〉 =
∑Nev

i=1 W4,i〈4〉i∑Nev
i=1 W4,i

(4.28)

and the 4-particle cumulant cn{4} and integrated flow coefficient vn{4} are

cn{4} = 〈〈4〉〉 − 2〈〈2〉〉2 (4.29)

vn{4} = (−cn{4})1/4 (4.30)

The differential 4-particle cumulant v′n{4} for an arbitrary set of particles is obtained

from the correlations among one particle of interest and three reference flow particles

〈4′〉 = 1

w4

∑̂
i∈POI, j,k,l∈RFP

ein(φi+φj−φk−φl) (4.31)
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=
1

w4

(
pnQ

∗
n|Qn|2 − q2nQ

∗
nQ

∗
n − pnQnQ

∗
2n − 2NpnQ

∗
n − 2nq|Qn|2

)
+

1

w4

(7qnQ
∗
n −Qnq

∗
n + q2nQ

∗
2n + 2pnQ

∗
n + 2nqN − 6nq) (4.32)

w4 = (npN − 3nq)(N − 1)(N − 2)

〈〈4′〉〉 =
∑Nev

i=1 w4,i〈4′〉i∑Nev
i=1 w4,i

(4.33)

The differential 4-particle cumulant dn{4} and flow coefficient v′n{4} are

dn{4} = 〈〈4′〉〉 − 2〈〈2′〉〉〈〈2〉〉 (4.34)

v′n{4} = − dn{4}
(−cn{4})3/4

(4.35)

In this work, vn{2} and vn{4} of charged or identified hadrons were computed and

compared with the experimental data. The event-by-event fluctuation of vn in the

model is crucial for the comprehensive descriptions of vn{2} and vn{4}. Note that,

in the limit of infinite number of particles, one gets

vn{2} → 〈
v2n
〉1/2

=
[〈vn〉2 + (〈v2n〉− 〈vn〉2

)]1/2
(4.36)

vn{4} →
[
2
〈
v2n
〉2 − 〈v4n〉]1/4 = [〈v2n〉2 − (〈v4n〉− 〈v2n〉2)]1/4 (4.37)

if the multiplicity fluctuation is neglected. Therefore, it can be seen that vn{2} and

vn{4} depend on the fluctuations of vn and v2n differently.



84 4 Observables and Results

4.2 Global Observables

The integrated vn{2} and v2{4} of charged hadrons were used for determination of the

shear viscosity to entropy density ratio η/s. Figure 4.2 shows v2{2}, v2{4}, v3{2} and

v4{2} as functions of centrality in the case of vanishing bulk viscosity. η/s is chosen

to be 0.16 to fit the ALICE data [1]. It is also shown that dependence of integrated

flows on the switching temperature is small. The 0 − 5%, 10 − 20%, 20 − 30%, and

IP-Glasma + MUSIC + UrQMD
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Figure 4.2: Integrated v2{2}, v2{4}, v3{2} and v4{2} as functions of centrality. The shear viscosity
is set to η/s = 0.16 with vanishing bulk viscosity to fit the ALICE data [1]. The bands show the
range of vn with varying switching temperature between 135MeV and 165MeV. The upper and
lower limits of bands correspond to 135MeV and 165MeV, respectively. The statistical error of the
model calculation is approximately 5%.

30 − 40% centrality classes are considered in this work and the number of hydro

events in each centrality bin is 100. To enhance the statistics, 200 UrQMD events were

run after each hydro event in the 0 − 5% and 10 − 20% centrality classes. A hydro

event in the 20 − 30%, and 30 − 40% centrality classes was followed by 500 UrQMD
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events. A single hydro event with particlization takes several core-hours. A typical

UrQMD event takes 5-20 core-minutes depending on the centrality class and switching

temperature. Figure 4.3 shows results with non-zero bulk viscosity shown in Figure

2.5. The experimental data favors η/s = 0.095 and implies that the bulk viscosity

changes determination of the shear viscosity. This can be interpreted that both of

shear and bulk viscosity act to reduce the anisotropic flows. While the shear viscosity

makes expansion isotropic, the bulk viscosity slows down expansion. Therefore, the

effect of bulk viscosity on vn must be compensated by the lower estimate of shear

viscosity. The results with UrQMD collisions turned off, in the presence of resonance

decays, are also shown in 4.3 as dashed lines. The resonance decays without scattering

is denoted by feeddown from now on. The hadronic re-scattering affects little on the

integrated vn of charged hadrons.

The importance of bulk viscosity can be seen in the mid-rapidity multiplicity

and mean pT of identified hadrons. Figure 4.4 shows the mid-rapidity dN/dy of

pions, kaons, and protons as functions of the switching temperature Tsw in the case

of zero bulk viscosity with η/s = 0.16. Figure 4.5 shows the switching temperature

scan of the mean pT of identified hadrons. Those figures show that one significantly

overestimates the mean pT given that multiplicity and anisotropic flows are fitted

to the data without the bulk viscosity. This discrepancy for vanishing bulk implies

that expansion of the fireball develops more radial velocity than the observation and

some other transport coefficients must be present to reduce the expansion. It can

be seen from equation (2.71) and (2.109) that the bulk viscosity ζ gives a negative

contribution to the pressure if the system is expanding since Π ∼ −ζ(∂μu
μ). It was

previously shown in [112] that the bulk viscosity results in reduction of the radial flow.

Figures 4.6 and 4.7 show that the bulk viscosity indeed slows down the expansion.

One can reproduce all of anisotropic flows, multiplicity, and mean pT of identified

hadrons only if non-zero bulk viscosity is included.

It is also shown in those figures that protons are particularly sensitive to the

switching temperature and significantly affected by hadronic re-scattering. The large
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Figure 4.3: Integrated v2{2}, v2{4}, v3{2} and v4{2} as functions of centrality. The shear viscosity
is set to be η/s = 0.095 with the finite bulk viscosity and the switching temperature is set to be
Tsw = 145MeV which is favoured by the proton multiplicity and mean pT . The solid line and
the dashed line correspond to the full UrQMD and the UrQMD without collisions, respectively. The
statistical error of the model calculation is approximately 5%.

sensitivity to Tsw is due to the fact that proton mass is much larger than Tsw and the

system is assumed to maintain the chemical equilibrium until particlization. There-

fore, the proton multiplicity is a relevant observable which strongly depends on the

point where the system gets out of chemical equilibrium. The results without hadronic

re-scattering are shown as the dashed lines. A process responsible for the difference

in proton multiplicity is baryon-antibaryon (BB) annihilation in which baryon and

antibaryon annihilate to excite two mesonic strings and fragment into other hadrons.

It must be noted that reverse process of BB annihilation is not implemented in UrQMD

and this corresponds to the assumption that the BB annihilation dominates baryonic

chemistry. It is shown in Section 6.5 that the linearized Boltzmann transport equa-
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tion, in conjunction with the viscous correction δfbulk in equation (3.37), leads to a

descrease of the baryon yield. It implies that the BB annihilation is more likely to

occur than BB creation in expanding system. Therefore, it is reasonable to suppress

the BB creation process.

From the fact that the higher switching temperature is favored with the hadronic

re-scattering, the BB annihilation changes the determination of when the system

is chemically frozen out. In addition, the difference between presence and absence

of the re-scattering becomes larger if one switches to the afterburner at the higher

temperature. Since the number density of proton and antiproton becomes larger

as one switches at the higher temperature, the mean-free-path becomes smaller and

there are more frequent BB annihilations.

The switching temperature scan of mean pT shows that protons experience signif-

icant acceleration in the re-scattering. This phenomenon was described as pion wind

in the earlier works [13, 113, 114]. This acceleration of protons is a consequence of

different radial velocities at the point of particlization. Figure 4.8 shows distribu-

tion of radial velocity ur of pions, Kaons, and protons of a single hydro event for

10−20% centrality of Pb+Pb collisions at the LHC. Pions move outward faster than

protons since they are lighter. Figure 4.9 shows the acceleration and isotropization

by pion-proton resonance scattering. Since the resonance decay is isotropic in the

center-of-mass frame, protons tend to be accelerated while the radial velocity of pi-

ons becomes slower. In addition, anisotropic flow of proton decreases. Those effects

can be seen in pT -differential observables of protons. The pion wind has the similar

effects on kaons due to the resonance scattering of π +K via K∗ resonance.

Figure 4.10 shows the mid-rapidity multiplicity and mean pT of pions, kaons and

protons as functions of centrality. One can find that the mean pT of protons increases

as a result of re-scattering. The hadronic re-scattering affects on the proton multiplic-

ity mainly through BB annihilations. Although the effect is small, BB annihilations

also increase the mean pT of protons and this in interpreted as a consequence of more

annihilations of low-pT protons. One can also see that the kaon yield decreases as a
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consequence of hadronic re-scattering. One possible explanation is that the resonance

scattering K +K → π + π and its reverse occur at different rates. Even if the cross

section of the reverse process follows equation (3.83), deviation of the distribution

function from local thermal equilibrium can result in π+π preferred to K+K before

the detailed balance is established.

The switching temperature scan of mid-rapidity multiplicity and mean pT of multi-

strange baryons were also obtained and shown in Figures 4.11 and 4.12, respectively.

They show similar dependences on the switching temperature as the dN/dy||y|<0.5

and 〈pT 〉 of protons. The multiplicity increases with Tsw since it is assumed that the

system is in local thermal equilibrium until particlization. It can be also seen that re-

scattering decreases multiplicity of baryons. The mean pT of multi-strange baryons

are raised by hadronic re-scattering. This can be interpreted as a consequence of

acceleration by lighter mesons and annihilation of low-pT baryons.
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Figure 4.4: Switching temperature scan of mid-rapidity multiplicity of identified particles for cen-
trality classes 0− 5%, 10− 20%, 20− 30% and 30− 40%. The shear viscosity is set to be η/s = 0.16
with vanishing bulk viscosity. The dashed lines and bands are the ALICE data [111] and statistical
errors. The statistical error of the model calculation is approximately 1%.
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trality classes 0−5%, 10−20%, 20−30% and 30−40%. The shear viscosity is set to be η/s = 0.095
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4.3 pT -differential Observables

The momentum space distributions of identified hadrons in mid-rapidity can be rep-

resented by the pT spectra and pT -differential anisotropic flow coefficients. Figure

4.13 shows the pT spectra of pions, Kaons, and protons of different centrality classes

of Pb + Pb collisions with
√
sNN = 2.76TeV. As seen in the mid-rapidity multiplic-

ity and mean pT , one can describe the measured proton spectrum [111] by adding

hadronic cascade. It also can be found that the pion spectrum deviates from the

data for pT > 2GeV. While the low-pT bulk dynamics of heavy ion collisions can be

described with hydrodynamics, contributions from jets are necessary for the higher

pT .

Since the anisotropic flow coefficients depend on the geometry and fluctuation in

different ways, the initial state fluctuation must be properly taken into account for

comprehensive discription of vn. For instance, the triangular flow v3 is dominated

by the fluctuation, while the collision geometry more significantly contributes to the

elliptic flow v2. Figure 4.14 shows the pT -differential v2{2}, v3{2} and v4{2} of charged
hadrons. The way to determine the initial energy density profile, together with the

sub-nucleonic fluctuation, is important to reproduce the higher harmonics.

Figures 4.15, 4.16, and 4.17 show the pT -differential v2{2}, v3{2} and v4{2} of

identified hadrons, respectively. Comparison with the experimental data [4] implies

that the hadronic re-scattering is important in description of the proton v2. As seen in

v2 of identified hadrons, the hadronic re-scattering has significant effect on the higher

harmonics of protons. This also can be interpreted as a consequence of acceleration

and isotropization due to the pion wind as shown in Figure 4.9. The slope of the pT -

differential v2{2} depends on the centrality class since it is dominated by the collision

geometry. The pT -differential v3{2} and v4{2} have the similar behavior throughout

all centrality classes because, as shown in [115], ε3 and ε4 from the IP-Glasma initial

condition are similar in all centrality classes considered here.

Stange and multi-strange baryons and their distributions must be considered to

understand dynamics of heavy ion collisions. The pT spectra and pT -differential v2{2}



98 4 Observables and Results

of Λ, Ξ, and Ω are shown in Figure 4.18. The pT spectra clearly shows that the

model underestimates the yields of those baryons. The switching temperature scan

of the multiplicity (Figure 4.11) implies that the higher switching temperature is

favored by the strange baryons and their chemical freeze-out occur earlier than the

model estimate. The baryon number and strangeness are chemically frozen out at

different instances since the cross sections are different. The earlier freeze-out of

strange particles was argued in the previous studies [118, 119, 120].

This hybrid model can be applied for Au + Au collisions with
√
sNN = 200GeV

at RHIC. pT spectra and pT -differential v2 of identified hadrons are shown in Figure

4.19 and 4.20, respectively. One remarkable point is that the favored values of η/s

and Tsw are different from Pb + Pb collisions with
√
sNN = 2.76TeV at the LHC.

The momentum dependence of strong coupling αS implies that the partonic cross sec-

tion becomes smaller at higher temperature. Provided that the highest temperature

reached by the system depends on the collision energy, this result is also consistent

with the calculation of η/s for high-temperature QCD [87]

η ∼ T 3

α2
S ln (α

−1
S )

(4.38)

The similar effects of hadronic re-scattering on the proton distribution can be seen.

The pT spectrum of proton becomes harder with larger 〈pT 〉 due to the pion wind.

The pT -differential v2 of protons is altered in the same way as in the case of Pb +

Pb collisions. As presented in Figure 4.21, the model calculations show reasonable

agreement with the experimental data of the higher harmonics v3(pT ) and v4(pT ), as

well as the elliptic flow v2(pT ).

In contrast to the case of Pb + Pb collisions, hadronic re-scattering has relevant

effects on the pion spectrum and v2. Pions are accelerated outward and their v2

is increased as well. It implies that the hadronic re-scattering phase also develops

additional anisotropic flows and this can be supported by the eccentricity evaluated

at the hypersurface. The eccentricity ε2 on hypersurface Σ can be defined as

ε2(Σ) =
〈x2 − y2〉Σ
〈x2 + y2〉Σ . (4.39)
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where 〈· · ·〉Σ is defined in equation (3.55). Figure 4.22 shows ε2(Σ) evaluated on

the hypersurface for different cases. A negative value of eccentricity indicates that

spatial distribution of particles emerging from Σ has almond shape. The middle

panel of Figure 4.22 is the difference between v2 in the presence and absence of the

hadronic re-scattering. It can be seen that the additional elliptic flow, developed by

the re-scattering, is correlated with the eccentricity −ε2(Σ). Therefore, interparticle

distance along x-axis is different from that along y-axis and the system is likely to

develop additional flows. Dependence of ε2(Σ) on the collision energy is in line with

what is shown in [123] from the MC-Glauber and MC-KLN initial conditions. For the

higher collision energy, the strongly-coupled QGP can last until the system becomes

spatially isotropic.
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Figure 4.13: pT spectra of identified hadrons for centrality classes 0 − 5%, 10 − 20%, 20 − 30%,
and 30− 40% of Pb+Pb collisions with

√
sNN = 2.76TeV. The solid curves and the dashed curves

correspond to the full UrQMD and the UrQMD without collisions, respectively. The ALICE data are
from [111]. The statistical errors in the calculation are shown as the bands around the curves.
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Figure 4.15: pT -differential v2{2} of identified hadrons for centrality classes 0 − 5%, 10 − 20%,
20 − 30%, and 30 − 40% of Pb + Pb collisions with

√
sNN = 2.76TeV. The solid curves and the

dashed curves correspond to the full UrQMD and the UrQMD without collisions, respectively. The
ALICE data are from [4]. The statistical errors in the calculation are shown as the bands around
the curves.
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Figure 4.16: v3{2} of identified hadrons for centrality classes 0 − 5%, 10 − 20%, 20 − 30%, and
30 − 40% of Pb + Pb collisions with

√
sNN = 2.76TeV. The solid curves and the dashed curves

correspond to the full UrQMD and the UrQMD without collisions, respectively. The statistical errors in
the calculation are shown as the bands around the curves.
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Figure 4.17: v4{2} of identified hadrons for centrality classes 0 − 5%, 10 − 20%, 20 − 30%, and
30 − 40% of Pb + Pb collisions with

√
sNN = 2.76TeV. The solid curves and the dashed curves

correspond to the full UrQMD and the UrQMD without collisions, respectively. The statistical errors in
the calculation are shown as the bands around the curves.
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Figure 4.18: pT spectra (upper) and differential v2{2} (lower) of strange baryons of Pb + Pb
collisions with

√
sNN = 2.76TeV. The solid curves and the dashed curves correspond to the full

UrQMD and the UrQMD without collisions, respectively. The ALICE data [116, 117] are also shown.
The statistical errors in the calculation are shown as the bands around the curves.
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Figure 4.19: pT spectra of identified hadrons for centrality classes 0 − 5%, 10 − 20%, 20 − 30%,
and 30− 40% of Au+Au collisions with

√
sNN = 200GeV. The solid curves and the dashed curves

correspond to the full UrQMD and the UrQMD without collisions, respectively. The PHENIX data are
from [121]. The statistical errors in the calculation are shown as the bands around the curves.
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Figure 4.20: pT -differential v2{2} of identified hadrons for centrality classes 0 − 5%, 10 − 20%,
20 − 30%, and 30 − 40% of Au + Au collisions with

√
sNN = 200GeV. The solid curves and the

dashed curves correspond to the full UrQMD and the UrQMD without collisions, respectively. The
STAR data are from [122]. The statistical errors in the calculation are shown as the bands around
the curves.
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Figure 4.21: pT -differential v2{4}, v3{2}, and v4{2} of charged hadrons for centrality classes 0−5%,
10 − 20%, 20 − 30%, and 30 − 40% of Au + Au collisions with

√
sNN = 200GeV. The PHENIX

[5] and STAR [122] data are also shown. The statistical errors in the calculation are shown as the
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collisions at the LHC and Au + Au collisions at RHIC. “FD” indcates feeddown where one has the
resonance decays only while “w/ Coll.” stands for the full UrQMD calculations with scatterings.



110 4 Observables and Results

4.4 Extension to Higher pT with Jets

The jet-medium interaction in heavy ion collisions can be studied with hybrid model

in this work by extention to the higher-pT regime. The energy loss in hadronic medium

can be taken into account by having the hadronic re-scattering in UrQMD. Since it is

necessary to have a reasonable hydrodynamic background, which reproduces hadronic

spectra of pT < 2GeV, the non-zero bulk viscosity (Figure 2.5) with η/s = 0.095 and

Tsw = 145MeV was adopted for the results shown in this section. First of all, it can

be seen from Figure 4.23 that the high-pT jets are essential to reproduce the particle

yields at the intermediate and higher-pT . The pT spectra without MARTINI decrease

exponentially since they stem from the thermal distribution.
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Figure 4.23: pT spectra of identified hadrons and RAA of charged hadrons of Pb + Pb collisions
with

√
sNN = 2.76TeV. The calculations do not include the MARTINI jets. The ALICE data of pT

spectra and RAA are from [124] and [7], respectively.

Figure 4.24 shows the pT spectra of identified hadrons and nuclear modification

factor RAA of charged hadrons. One can see that the interaction between jets and

hadronic medium has a relevant contribution to the energy loss. The momentum scale

p̂T,min of jets is set to be 10GeV and the strong coupling of the jet-medium interactions
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is set to be αS = 0.23 for the results shown in this section. The fragmentation into

hadrons occurs at T � 190MeV by making strings from the jet partons and thermal

ones.

Figure 4.25 shows the pT -differental v2 of pions, Kaons, and protons. The effects

of hadronic re-scattering can be seen in the anisotropic flow coefficients as well. The

hadronic re-scattering develops additional v2 and it implies that the energy loss in

hadronic medium is not isotropic. Figure 4.26 demonstrates that the hadronic re-

scattering has the similar effects on the higher harmonics. Therefore, the hadronic

processes must be properly involved to study the hot QCD matter.

It was previously mentioned in Section 3.3 that the radiative and collisional pro-

cesses were considered to describe the energy loss of partons in this work. Time

evolution of the probability distribution P of the parton energy was computed in

[125] according to the rate equation of Fokker-Planck type

dP
dt

(E) =

∫ ∞

−∞
dω

[
P(E + ω)

dΓ

dω
(E + ω, ω)− P(E)

dΓ

dω
(E, ω)

]
(4.40)

〈E〉(t) ≡
∫ ∞

0

dE E P(E) (4.41)

where the rates of radiative and collisional energy loss are given by equations (3.88)

and (3.93), respectively. It was also shown in [125] that the radiative processes dom-

inate the energy loss as the energy of incident jet parton increases. The amount of

radiative energy loss ω is order of energy Einit of the initial jet parton, while one has

ω ∼ T for collisional processes since the typical momentum scale of thermal partons

is T . Even if one considers the running coupling, the average amount of energy loss

〈ω〉 would decrease but the dependence of 〈ω〉 on Einit would be similar to the case

of the constant αS.

By coupling the MARTINI jets with the hadronic cascade, one can simulate the

collisional energy loss in the hadronic sector. One has to note that it is also possible

that a hadron loses energy by emitting a photon. One can estimate the relative

importance of the radiative and collisional energy losses of hadrons based on the

argument same as the partonic ones. The energy loss due to the elastic collisions
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between jet hadrons and medium ones is on the order of the temperature of the

medium. Provided that hadrons with higher energy can emit more energetic photons,

it is expected that the radiative processes become more important as one considers

the higher pT range. Formulation and implementation of the radiative processes in

the hadronic sector will be the subject of future study.
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Figure 4.24: pT spectra of identified hadrons and RAA of charged hadrons of Pb + Pb collisions
with

√
sNN = 2.76TeV. The calculations include the MARTINI jets. The ALICE data of pT spectra

and RAA are from [124] and [7], respectively. Figures shown in [23].
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Figure 4.25: pT -differential v2{2} of identified hadrons for centrality class 20 − 30% of Pb + Pb
collisions with

√
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5

Conclusion

Determination of properties of hot QCD matter is one of the goals of modern nuclear

physics. In this work, as part of this effort, a hybrid model for integrated description

of heavy ion collisions was constructed and applied for Pb+Pb collisions at the LHC

and Au + Au collisions at RHIC. The model combines IP-Glasma [21] as the pre-

thermalization dynamics, second-order viscous hydrodynamics MUSIC [33] with both of

shear and bulk viscosity, energy loss of high-pT jets simulated with MARTINI [98], and

microscopic transport UrQMD [38, 39] for the hadronic re-scattering after particlization.

In Chapter 2 and Chapter 3, the ingredients and how they are consistently connected

to make a hybrid model are described. Comparisons with the data for Pb + Pb

collisions at the LHC and Au + Au collisions at RHIC are shown in Chapter 4. The

observables measured in heavy ion collisions are also defined in more detail. This

study leads to some notable conclusions on the properties of hot QCD matters and

description of heavy ion collisions.

• The bulk viscosity reduces the effective pressure and its gradient and it is es-

sential to simultaneously describe the mean pT and anisotropic flow coefficients.

In addition, the estimate of shear viscosity is altered by the bulk viscosity given

that the shear viscosity is determined by vn.

• The pion wind, which is a result of non-equilibrium dynamics, leads to the

accerelation and isotropization of protons. Due to the fact that the nucleon

mass mN is much larger than the switching temperature Tsw, the proton yield is

particularly sensitive to when the system gets out of the chemical equilibrium.

117
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The baryon-antibaryon (BB) annihilation involved in UrQMD significantly affects

the estimate of Tsw. Therefore, it is critical that both π and p are simultaneously

described in any realistic model.

• Contributions from the jet becomes dominant for pT > 2GeV. Inclusion of

the high-pT jets through MARTINI leads to reasonable descriptions of the pT

spectra and differential v2 of identified hadrons. It was also found that the

hadronic interactions, as well as partonic processes, have relevant effects on the

jet quenching. Therefore, the energy loss in hadronic medium must be properly

considered to study the jet-medium interaction.

In addition to the conclusions shown above, there are also open questions to ex-

plore. First of all, it is necessary to take a closer look at the discrepancy between

calculations and experimental measurements of hadrons with strangeness. It was

shown in the previous chapter that the model overestimates the kaon yield while

it underestimates the Λ, Ξ and Ω yields. Secondly, the pT -differential flow coeffi-

cients deviate from experimental data especially for the higher pT , even though the

integrated flow coefficients are well reproduced. The species-dependent viscous cor-

rections δfn to the distribution function at particlization would be an important step

to address those issues. Determination of δfn can be done based on the kinetic theory

in conjunction with the matrix elements of hadronic interactions and this is under

investigation [126]. One can also note that δfn alters the hadronic chemistry since

the particle distribution deviates from the thermal equilibrium.

It was also shown in [127] that the non-flow contributions in the re-scattering, as

well as hydrodynamic evolution, significantly enhance the pseudo-rapidity correlation.

Hence, the microscopic transport for the hadronic re-scattering must be taken into

account in a phenomenological study based on the pseudo-rapidity correlations. As

shown in Chapter 4, different collision energies favor different values of the shear

viscosity. Correlations among the event plane angles are shown to be sensitive to

how η/s depends on the temperature [128]. Systematic study of the temperature-

dependent η/s is desirable.
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While the hadronic re-scattering does not affect the pion vn for Pb+Pb collisions

at the LHC, relevant effects were seen for Au+Au collisions at RHIC. Hence, one can

expect more effects for the smaller system or lower collision energy. This is consistent

with the idea that non-equilibrium dynamics becomes more important as the Knudsen

number is larger for small systems. Therefore, it would be worth applying this hybrid

approach for proton-nucleus collisions or nucleus-nucleus collisions with lower energy.
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Appendices

6.1 Coordinate Systems and Kinematic Variables

In this work, the z-axis is set to be the beam axis of colliding nuclei. The x1-x2

plane is called transverse plane and the two-dimensional vector xT = (x1, x2) denotes

position on the transverse plane. Since the speed of nuclei is very close to the speed of

light, it is convenient to use the Milne Coordinates (τ,xT , ηs) in description of heavy

ion collisions. The cartesian coordinates (t,xT , z) are expressed as in terms of the

Milne Coordinates as

t = τ cosh ηs (6.1)

z = τ sinh ηs (6.2)

where τ and ηs are called proper time and space-time rapidity, respectively. Inversely,

τ and ηs can be written as

τ =
(
t2 − z2

)1/2
(6.3)

ηs =
1

2
ln

(
t+ z

t− z

)
. (6.4)

Non-vanishing components of the metric in the Milne coordinates are gττ = 1, g11 =

g22 = −1, and gηη = −τ 2.

In the momentum space, the transverse momentum pT , transverse mass mT , and

momentum rapidity y are defined as

pT =
(
(p1)2 + (p2)2

)1/2
(6.5)

mT =
(
m2 + p2T

)1/2
(6.6)
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Ep =
(
m2 + |p|2)1/2 = (m2 + p2T + (pz)2

)1/2
= mT cosh y (6.7)

pz = mT sinh y (6.8)

y =
1

2
ln

(
Ep + pz

Ep − pz

)
(6.9)

wherem is the mass of the particle. The momentum of the particle is also measured in

terms of the pseudo-rapidity which does not depend on the mass. The pseudo-rapidity

ηp is specified once |p| and pz are determined

|p| = pT cosh ηp (6.10)

pz = pT sinh ηp (6.11)

ηp =
1

2
ln

( |p|+ pz

|p| − pz

)
(6.12)

One has the following relations regarding the momentum space distribution

1

pT

dN

dpTdφ dy
= Ep

dN

d3p
(6.13)

1

pT

dN

dpTdφ dηp
= |p| dN

d3p
(6.14)

where φ is the azimuthal angle in the transverse plane.
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6.2 Derivation of CYM for the IP-Glasma

The field strength F μν , given by the gauge field as in equations (2.48) and (2.49),

becomes

F−+ = ∂−A+ − ∂+A− − ig[A−, A+] (6.15)

= ∂+A
+ − ∂−A−

= ∂+
[
x+α θ(x+)θ(x−)

]
+ ∂−

[
x−α θ(x+)θ(x−)

]
=
[
∂+(x

+α) + ∂−(x−α)
]
θ(x+)θ(x−) + x+α δ(x+)θ(x−) + x−α θ(x+)δ(x−)

= 2

(
α +

x+x−

τ
∂τα

)
θ(x+)θ(x−)

= (τ∂τα + 2α) θ(x+)θ(x−) (6.16)

F i+ = ∂iA+ − ∂+Ai − ig[Ai, A+] (6.17)

= ∂iA+ − ∂−Ai − ig[Ai, A+]

= x+∂iα θ(x+)θ(x−)− x+

τ
∂τα

i
3 θ(x

+)θ(x−)− ∂−αi
2 θ(−x+)θ(x−)

−αi
3 θ(x

+)δ(x−) + αi
1 θ(x

+)δ(x−)− αi
2 θ(−x+)δ(x−)

−igx+[αi
3, α] θ(x

+)θ(x−) (6.18)

F−i = ∂−Ai − ∂iA− − ig[A−, Ai] (6.19)

= ∂+A
i − ∂iA− − ig[A−, Ai]

= x−∂iα θ(x+)θ(x−) +
x−

τ
∂τα

i
3 θ(x

+)θ(x−) + ∂+α
i
1 θ(x

+)θ(−x−)

+αi
3 δ(x

+)θ(x−) + αi
1 δ(x

+)θ(−x−)− αi
2 δ(x

+)θ(x−)

−igx−[αi
3, α] θ(x

+)θ(x−) (6.20)

F ij = ∂iAj − ∂jAi − ig[Ai, Aj] (6.21)

=
(
∂iαj

3 − ∂jαi
3 − ig[αi

3, α
j
3]
)
θ(x+)θ(x−)

+
(
∂iαj

1 − ∂jαi
1 − ig[αi

1, α
j
1]
)
θ(x+)θ(−x−)

+
(
∂iαj

2 − ∂jαi
2 − ig[αi

2, α
j
2]
)
θ(−x+)θ(x−) (6.22)

Provided that Σ(1,2) is defined as equation (2.53), one can integrate the ± component

of the CYM equation over x±

−Σ(2) =

∫ +ε

−ε

dx− ∂−F−+ + ∂i

∫ +ε

−ε

dx− F i+
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−ig

∫ +ε

−ε

dx−[A−, F−+]− ig

∫ +ε

−ε

dx−[Ai, F
i+] (6.23)

= F−+(x− = +ε)− F−+(x− = −ε)− ∂i(α
i
3 − αi

1) θ(x
+)− ∂iα

i
2 θ(−x+)

− ig

2

∫ +ε

−ε

dx− ([α3i, α
i
1 − αi

3] + [α1i, α
i
1 − αi

3]
)
θ(x+)δ(x−) (6.24)

=
{
τ∂τα + 2α + ig[α1i, α

i
3]− ∂i(α

i
3 − αi

1 − αi
2)
}
x−=0

θ(x+)

−∂iα
i
2|x−=0 (6.25)

−Σ(1) =

∫ +ε

−ε

dx+ ∂+F
+− + ∂i

∫ +ε

−ε

dx+ F i−

−ig

∫ +ε

−ε

dx+[A+, F
+−]− ig

∫ +ε

−ε

dx+[Ai, F
i−] (6.26)

= F+−(x+ = +ε)− F+−(x+ = −ε)− ∂i(α
i
3 − αi

2) θ(x
−)− ∂iα

i
1 θ(−x−)

− ig

2

∫ +ε

−ε

dx+
(
[α3i, α

i
2 − αi

3] + [α2i, α
i
2 − αi

3]
)
θ(x−)δ(x+) (6.27)

= −{τ∂τα + 2α− ig[α2i, α
i
3] + ∂i(α

i
3 − αi

1 − αi
2)
}
x+=0

θ(x−)

−∂iα
i
1|x+=0 (6.28)

Also, by integrating the i component over x+ and x−, one obtains

0 =

∫ +ε

−ε

dx+

∫ +ε

−ε

dx− (∂−F−i + ∂+F
+i + ∂jF

ji

−ig[A−, F−i]− ig[A+, F
+i]− ig[Aj, F

ji]
)

(6.29)

=

∫ +ε

−ε

dx+
[
F−i(x− = +ε)− F−i(x− = −ε)

]
+

∫ +ε

−ε

dx− [F+i(x+ = +ε)− F+i(x+ = −ε)
]

(6.30)

= −2
(
αi
3 − αi

1 − αi
2

) |x+=x−=0 (6.31)

and deduces

αi
3(τ = +0) = αi

1(x
+ = 0) + αi

2(x
− = 0) . (6.32)

Since the LHS of equations (6.25) and (6.28) do not depend on x±, while one has the

step function θ(x±) in the RHS, it can be seen

Σ(1,2)(xT ) = ∂iα
i
1,2(x

± = 0) (6.33)

τ∂τα + 2α = −ig[α1i, α
i
3] + ∂i(α

i
3 − αi

1 − αi
2) for τ → +0 . (6.34)
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By multiplying equation (6.34) by τ and integrating over τ , one gets the initial con-

dition for α as follows

ε2α(τ = +0) =

∫ ε

0

dτ
(
τ 2∂τα + 2τα

)
(6.35)

= −ig

∫ ε

0

dτ τ [α1i, α
i
3] +

∫ ε

0

dτ τ∂i(α
i
3 − αi

1 − αi
2) (6.36)

= − ig

2
ε2
[
α1i(x

+ = 0), αi
3(τ = +0)

]
+
ε2

2
∂i
[
αi
3(τ = +0)− αi

1(x
+ = 0)− αi

2(x
− = 0)

]
+ o(ε3) (6.37)

= − ig

2
ε2
[
α1i(x

+ = 0), αi
2(x

− = +0)
]
+ o(ε3) (6.38)

Therefore, one finds

α(τ = +0) = − ig

2

[
α1i(x

+ = 0), αi
2(x

− = 0)
]
. (6.39)
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6.3 Necessity of Second-Order Viscous Hydrodynamics

This section is dedicated to demonstrate that the first-order Navier-Stokes hydro-

dynamics violates the causality. This can be done by showing that it allows a per-

turbation to propagate with the group velocity larger than the speed of light. The

Navier-Stokes relations for the shear viscous tensor πμν and the bulk pressure Π read

πμν = 2η σμν (6.40)

Π = −ζ θ (6.41)

where ζ and η are the bulk and shear viscosities, respectively. σμν is defined in

equation (2.86) and θ = ∇αu
α. One can intuitively expect that the Navier-Stokes

viscous hydrodynamics is not causal. While the spatial gradients are determined from

the flow velocities in the neighborhood of given position, it is assumed that the system

responds immediately to alter the energy-momentum tensor T μν .

It is also possible to consider a perturbation propagating with the wavevector

kμ = (ω,k) to obtain the dispersion relation and group velocity. In the presence of

the perturbation, the thermodynamic quantities are given as

ε(t,x) = ε0 + δε e−i(ωt+k·x) (6.42)

P (t,x) = P0 + δP e−i(ωt+k·x) (6.43)

uμ(t,x) =
(
1, δu e−i(ωt+k·x)) (6.44)

where the second and higher-order terms in δu are neglected. Given that dependence

on the spacetime position has the form of the plane wave, one can make the following

replacements

Du = uμ∂μ → −iω (6.45)

∇μ = Δμα∂α → (0,−ik) (6.46)

Substitution into equations (2.85) and (2.87) respectively yield

ω δε = (ε0 + P0)k · δu (6.47)

k δP = (ε0 + P0)ω δu+ i

(
ζ +

1

3
η

)
(k · δu)k+ iη|k|2δu . (6.48)
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If the perturbation is propagating in a direction perpendicular to the flow velocity

i.e., k · δu = 0, the dispersion relation becomes

ω = −i

(
η

ε0 + P0

)
k2
⊥ (6.49)

k⊥ = k− k · δu
|δu|2 δu . (6.50)

Then one can consider time evolution of a Gaussian wave packet φ(t,x) to see how

this leads to the causality violation. The thermodynamic quantities are now as follow

ε(t,x) = ε0 + δε φ(t,x) (6.51)

P (t,x) = P0 + δP φ(t,x) (6.52)

uμ(t,x) = (1, δuφ(t,x)) (6.53)

where the initial condition of φ(t,x) is

φ(t = 0,x) = exp

(
− x2

⊥
2R2

0

)
(6.54)

=
R2

0

2π

∫
d2k⊥ exp

(
−R2

0k
2
⊥

2

)
eik⊥·x (6.55)

x⊥ = x− x · δu
|δu|2 δu . (6.56)

From the dispersion relation in equation (6.49), one can evaluate φ(t,x) as a function

of time

φ(t,x) =
R2

0

2π

∫
d2k⊥ exp

(
−R2

0k
2
⊥

2

)
e−iωteik⊥·x (6.57)

=
R2

0

2π

∫
d2k⊥ exp

[
−1

2

(
R2

0 +
ηt

ε0 + P0

)
k2
⊥

]
eik⊥·x (6.58)

=
R2

0

R2(t)
exp

(
− x2

⊥
2R2(t)

)
(6.59)

R2(t) = R2
0 +

ηt

ε0 + P0

(6.60)

One can define a radius r1/2 at which magnitude of the perturbation is half of that

at the origin x⊥ = 0

φ(t, x⊥ = r1/2(t)) =
1

2
φ(t, x⊥ = 0) (6.61)
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The time derivative of r1/2 quantifies how fast the perturbation spreads out. If v1/2 ≡
dr1/2/dt is larger than the speed of light, it can be interpreted that the causality is

violated. From equation (6.59), r1/2 and its time derivative at t = +0 can be deduced

as

r1/2(t) =
√
2 ln 2

(
R2

0 +
ηt

ε0 + P0

)1/2

(6.62)

v1/2
∣∣
t=+0

=

√
ln 2

2

η

(ε0 + P0)R0

(6.63)

It can be seen that v1/2 can be larger than 1 for small R0. Therefore, the speed of

diffusion can exceed the speed of light given that the perturbation is localized. One

can read [129] for more detailed discussion.
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6.4 Derivation of Viscous Hydrodynamics

This section is devoted to derivation of the equations of motion of viscous hydrody-

namics in Ref. [34]. It is required to get the equations of motion for the viscous

corrections Π and πμν to have viscous hydrodynamics in a closed form. Although the

equation (2.73) involves time derivatives of viscous corrections, one has to specify the

last three terms of the equation (2.75). Let us consider the integration of pμpνpαfn.

Based on its tensor structure, it is possible to write

∑
n

dn

∫
p

pμpν

p · up
αfn = W3,3u

μuνuα + (W3,2)
μuνuα + (W3,2)

νuαuμ + (W3,2)
αuμuν

+(W3,1)
μνuα + (W3,1)

ναuμ + (W3,1)
αμuν + (W3,0)

μνα (6.64)

where (W3,2)
μuμ = 0, (W3,1)

μνuν = 0 and (W3,0)
μναuα = 0. Contraction of the previ-

ous equation with uμuνuα yields W3,3 = ε0 and contraction with uα yields (W3,2)
μ = 0

and (W3,1)
μν = −(P0 +Π)Δμν + πμν . Lastly, (W3,0)

μνα becomes

(W3,0)
μνα =

∑
n

dn

∫
p

1

p · u(p⊥)
μ(p⊥)ν(p⊥)αδfn (6.65)

where (p⊥)μ ≡ pμ − uμ(p · u). It is possible to have nonzero W3,0 if there is particle

diffusions. Due to the assumption of a non-diffusive system, (W3,0)
μνα = 0. Therefore,

one has

∑
n

dn

∫
p

pμpν

p · up
αfn = ε0u

μuνuα − (P0 +Π)(Δμνuα +Δναuμ +Δαμuν)

+πμνuα + πναuμ + παμuν . (6.66)

and the spatial divergence becomes

(H3)
μν = ∇α

[∑
n

dn

∫
p

pμpν

p · up
αfn

]

= ∇α [ε0u
μuνuα − (P0 +Π)(Δμνuα +Δναuμ +Δαμuν)]

+∇α (π
μνuα + πναuμ + παμuν) (6.67)

= ε0 θ u
μuν − [uμ∇ν(P0 +Π) + uν∇μ(P0 +Π)]

−(P0 +Π) [θΔμν +∇μuν +∇νuμ − 2 θ uμuν ]
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+θ πμν + πμα∇αu
ν + πνα∇αu

μ + uμ∇απ
να + uν∇απ

μα (6.68)

= T μνθ − [uμ∇ν(P0 +Π) + uν∇μ(P0 +Π)]

−2 (P0 +Π)

(
σμν +

1

3
θΔμν − θ uμuν

)
+πμα∇αu

ν + πνα∇αu
μ + uμ∇απ

να + uν∇απ
μα (6.69)

= T μνθ − uμ [∇ν(P0 +Π)−∇απ
να]− uν [∇μ(P0 +Π)−∇απ

μα]

−2 (P0 +Π)

(
σμν +

1

3
θΔμν − θ uμuν

)

+πμα

(
σ ν
α + ω ν

α +
1

3
θΔν

α

)
+ πνα

(
σ μ
α + ω μ

α +
1

3
θΔμ

α

)
(6.70)

= T μνθ − uμ [∇ν(P0 +Π)−∇απ
να]− uν [∇μ(P0 +Π)−∇απ

μα]

−2 (P0 +Π)

(
σμν +

1

3
θΔμν − θ uμuν

)

+
2

3
θ πμν +

2

3
(παβσαβ)Δ

μν + 2πα〈μσν〉
α − 2πα〈μων〉

α (6.71)

The integration of pμpνpαpβfn can be performed in the similar way

∑
n

dn

∫
p

pμpνpαpβ

(p · u)2 fn = W4,4u
μuνuαuβ

+(W4,3)
μuνuαuβ + (W4,3)

νuαuβuμ

+(W4,3)
αuβuμuν + (W4,3)

βuμuνuα

+(W4,2)
μνuαuβ + (W4,2)

μαuβuν + (W4,2)
μβuνuα

+(W4,2)
ναuβuμ + (W4,2)

νβuμuα + (W4,2)
αβuμuν

+(W4,1)
μναuβ + (W4,1)

ναβuμ + (W4,1)
αβμuν + (W4,1)

βμνuα

+X4,4

(
ΔμνΔαβ +ΔμαΔβν +ΔμβΔνα

)
+(X4,2)

μνΔαβ + (X4,2)
μαΔβν + (X4,2)

μβΔνα

+(X4,2)
ναΔβμ + (X4,2)

νβΔμα + (X4,2)
αβΔμν

+(X4,0)
μναβ (6.72)

where (W4,3)
μuμ = 0, (W4,2)

μνuν = 0, (W4,1)
μναuα = 0 and X tensors are transverse

to uμ and also traceless i.e., contraction of any two indices with Δμν gives zero.

Contraction of the previous equation with uβ provides

W4,4 = W3,3 = ε0 (6.73)
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(W4,3)
μ = (W3,2)

μ = 0 (6.74)

(W4,2)
μν = (W3,1)

μν = −(P0 +Π)Δμν + πμν (6.75)

(W4,1)
μνα = (W3,0)

μνα = 0 (non-diffusive case) (6.76)

Contraction with Δαβ yields

∑
n

dn

∫
p

pμpν

(p · u)2 (Δαβp
αpβ)fn = (W4,2)

αβΔαβu
μuν + 5X4,4Δ

μν + 7(X4,2)
μν (6.77)

and therefore one has

X4,4 =
1

15

∑
n

dn

∫
p

(−Δμνp
μpν)2

(p · u)2 fn

=
1

15

∑
n

dn

∫
p

[
(p · u)2 − 2m2

n +
m4

n

(p · u)2
]
fn

=
1

15

[
T μνuμuν − 2T μ

μ +
∑
n

dnm
4
n

∫
p

1

(p · u)2fn
]

=
1

15

[
ε0 − 2 (ε0 − 3P0 − 3Π) +

∑
n

dnm
4
n(In|−2,0 + ρn|−2)

]
(6.78)

(X4,2)
μν = −1

7

∑
n

dn

∫
p

p〈μpν〉

(p · u)2 (−Δαβp
αpβ)fn

= −1

7

∑
n

dn

∫
p

p〈μpν〉
[
1− m2

n

(p · u)2
]
fn

= −1

7

(
πμν −

∑
n

dnm
2
n(ρn|−2)

μν

)
(6.79)

and (H4)
μν can be written as

(H4)
μν =

(
σαβ +

1

3
θΔαβ

)[∑
n

dn

∫
p

pμpν

(p · u)2p
αpβfn

]

= (W4,2)
αβ

(
σαβ +

1

3
θΔαβ

)
uμuν +X4,4

(
2σμν +

5

3
θΔμν

)

+2(X4,2)
μασ ν

α + 2(X4,2)
νασ μ

α + (X4,2)
αβσαβΔ

μν +
7

3
θ (X4,2)

μν

+(X4,0)
μναβσαβ (6.80)

=
[−(P0 +Π) θ + παβσαβ

]
uμuν

+
1

15

[
−ε0 + 6 (P0 +Π) +

∑
n

dnm
4
n(In|−2,0 + ρn|−2)

](
2σμν +

5

3
θΔμν

)
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−1

7

(
παβ −

∑
n

dnm
2
n(ρn|−2)

αβ

)
σαβΔ

μν − 1

3
θ

(
πμν −

∑
n

dnm
2
n(ρn|−2)

μν

)

−2

7
(πμασ ν

α + πνασ μ
α ) +

2

7

∑
n

dnm
2
n

[
(ρn|−2)

μασ ν
α + (ρn|−2)

νασ μ
α

]
+(X4,0)

μναβσαβ (6.81)

=
[−(P0 +Π) θ + παβσαβ

]
uμuν

+
1

15

[
−ε0 + 6 (P0 +Π) +

∑
n

dnm
4
n(In|−2,0 + ρn|−2)

](
2σμν +

5

3
θΔμν

)

−1

7

(
παβ −

∑
n

dnm
2
n(ρn|−2)

αβ

)
σαβΔ

μν

−1

3
θ

(
πμν −

∑
n

dnm
2
n(ρn|−2)

μν

)
− 4

7
πα〈μσν〉

α − 4

21
(παβσαβ)Δ

μν

+
4

7

∑
n

dnm
2
n

[
(ρn|−2)

α〈μσν〉
α +

1

3
(ρn|−2)

αβσαβΔ
μν

]
+ (X4,0)

μναβσαβ (6.82)

=
[−(P0 +Π) θ + παβσαβ

]
uμuν

+
1

15

[
−ε0 + 6 (P0 +Π) +

∑
n

dnm
4
n(In|−2,0 + ρn|−2)

](
2σμν +

5

3
θΔμν

)

−1

3

(
παβ −

∑
n

dnm
2
n(ρn|−2)

αβ

)
σαβΔ

μν − 1

3
θ

(
πμν −

∑
n

dnm
2
n(ρn|−2)

μν

)

−4

7
πα〈μσν〉

α +
4

7

∑
n

dnm
2
n(ρn|−2)

α〈μσν〉
α + (X4,0)

μναβσαβ . (6.83)

The equation of motion (2.76) for the viscous corrections becomes

Duπ
μν − (DuΠ)Δ

μν

= −(Duε0)
(
uμuν − c2sΔ

μν
)− (ε0 + P0 +Π) (uνDuu

μ + uμDuu
ν)

− T μνθ + uμ [∇ν(P0 +Π)−∇απ
να] + uν [∇μ(P0 +Π)−∇απ

μα]

+ 2 (P0 +Π)

(
σμν +

1

3
θΔμν − θ uμuν

)

− 2

3
θ πμν − 2

3
(παβσαβ)Δ

μν − 2πα〈μσν〉
α + 2πα〈μων〉

α

+
[
(P0 +Π) θ − παβσαβ

]
uμuν

+
1

15

[
ε0 − 6 (P0 +Π)−

∑
n

dnm
4
n(In|−2,0 + ρn|−2)

](
2σμν +

5

3
θΔμν

)
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+
1

3

(
παβ −

∑
n

dnm
2
n(ρn|−2)

αβ

)
σαβΔ

μν +
1

3
θ

(
πμν −

∑
n

dnm
2
n(ρn|−2)

μν

)

+
4

7
πα〈μσν〉

α − 4

7

∑
n

dnm
2
n(ρn|−2)

α〈μσν〉
α − (X4,0)

μναβσαβ

+
∑
n

dn

∫
p

pμpν

p · uCn[f ] (6.84)

= − [Duε0 + (P0 +Π) θ + παβσαβ

]
uμuν − T μνθ

+ uμ [∇ν(P0 +Π)− (ε0 + P0 +Π)Duu
ν −∇απ

να]

+ uν [∇μ(P0 +Π)− (ε0 + P0 +Π)Duu
μ −∇απ

μα]

+ c2s(Duε0)Δ
μν + 2 (P0 +Π)

(
σμν +

1

3
θΔμν

)

+
1

15

[
ε0 − 6 (P0 +Π)−

∑
n

dnm
4
n(In|−2,0 + ρn|−2)

](
2σμν +

5

3
θΔμν

)

− 1

3

(
παβ +

∑
n

dnm
2
n(ρn|−2)

αβ

)
σαβΔ

μν − 1

3
θ

(
πμν +

∑
n

dnm
2
n(ρn|−2)

μν

)

− 10

7
πα〈μσν〉

α − 4

7

∑
n

dnm
2
n(ρn|−2)

α〈μσν〉
α + 2πα〈μων〉

α

− (X4,0)
μναβσαβ +

∑
n

dn

∫
p

pμpν

p · uCn[f ] (6.85)

By applying the energy-momentum conservation equations, one can rewrite it as

Duπ
〈μν〉 − (DuΠ)Δ

μν = Δμ
αΔ

ν
βDuπ

αβ − (DuΠ)Δ
μν (6.86)

= (P0 +Π) θΔμν − θ πμν + c2s(Duε0)Δ
μν + 2 (P0 +Π)

(
σμν +

1

3
θΔμν

)

+
1

15

[
ε0 − 6 (P0 +Π)−

∑
n

dnm
4
n(In|−2,0 + ρn|−2)

](
2σμν +

5

3
θΔμν

)

− 1

3

(
παβ +

∑
n

dnm
2
n(ρn|−2)

αβ

)
σαβΔ

μν − 1

3
θ

(
πμν +

∑
n

dnm
2
n(ρn|−2)

μν

)

− 10

7
πα〈μσν〉

α − 4

7

∑
n

dnm
2
n(ρn|−2)

α〈μσν〉
α + 2πα〈μων〉

α

− (X4,0)
μναβσαβ +

∑
n

dn

∫
p

pμpν

p · uCn[f ] (6.87)

The equations of motions for πμν and Π are [34]

DuΠ+ C = −
[(

1

3
− c2s

)
(ε0 + P0)− 2

9
(ε0 − 3P0)− 1

9

∑
n

dnm
4
nIn|−2,0

]
θ
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−(1− c2s)Π θ +
1

9

(∑
n

dnm
4
nρn|−2

)
θ

+

(
1

3
− c2s

)
παβσαβ +

1

3

∑
n

dnm
2
n(ρn|−2)

αβσαβ (6.88)

Duπ
〈μν〉 + Cμν = 2

[
4

5
P0 +

1

15
(ε0 − 3P0)− 1

15

∑
n

dnm
4
nIn|−2,0

]
σμν

−
(
4

3
πμν +

1

3

∑
n

dnm
2
n(ρn|−2)

μν

)
θ

+

(
6

5
Π− 2

15

∑
n

dnm
4
nρn|−2

)
σμν

−10

7
πα〈μσν〉

α − 4

7

∑
n

dnm
2
n(ρn|−2)

α〈μσν〉
α + 2πα〈μων〉

α

−(X4,0)
μναβσαβ (6.89)

where C and Cμν are defined as

C =
1

3

∑
n

dn

∫
p

m2
n

p · uCn[f ] (6.90)

Cμν = −
∑
n

dn

∫
p

p〈μpν〉

p · u Cn[f ] . (6.91)
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6.5 Linearized Boltzmann Transport Equation

6.5.1 General Formulation

Although the collision term (2.67) of the Boltzmann equation is a complicated func-

tional of the distribution function, one can simplify the problem if the deviation of

the distribution function fn from the thermal equilibrium fn,0 is small. In this case,

fn can be written as

fn = fn,0(p) + fn,0f̃n,0χn(p) (6.92)

where χn(p) can also depend on the thermodynamic quantities and intrinsic proper-

ties of particle species n. f̃n are defined in equation (2.68). By substituting equation

(6.92) into equation (2.67) and keeping terms first-order in χ, one has the linearized

Boltzmann equation. Given that energy, momentum and charges are conserved, it

can be shown that the zeroth-order contribution vanishes. For the Bose-Einstein or

Fermi-Dirac distributions, one finds

f̃n,0(p) = fn,0(p) exp

(
p · u− μn

T

)
(6.93)

μn =
∑
C

μCCn (6.94)

where the summation is over all conserved charges and Cn is the charge C carried by

the particle species n. For the (l, l′) → (n, n′) process with monenta k, k′, p and p′,

respectively, one has

fl,0(k)fl′,0(k
′)f̃n,0(p)f̃n′,0(p

′)

= fl,0(k)fl′,0(k
′)fn,0(p)fn′,0(p

′) exp
[
(p+ p′) · u− (μn + μn′)

T

]
(6.95)

= fl,0(k)fl′,0(k
′)fn,0(p)fn′,0(p

′) exp
[
(p+ p′) · u

T

]∏
C

exp
[
−μC

T
(Cn + Cn′)

]
(6.96)

= fl,0(k)fl′,0(k
′)fn,0(p)fn′,0(p

′) exp
[
(k + k′) · u

T

]∏
C

exp
[
−μC

T
(Cl + Cl′)

]
(6.97)

= fn,0(p)fn′,0(p
′)f̃l,0(k)f̃l′,0(k

′) (6.98)

where the energy-momentum conservation and charge conservation lead to the third

equality. Similarly, it can be shown that fl,0(k)fl′,0(k
′) = fn,0(p)fn′,0(p

′) for the
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Boltzmann statistics. Then, the collision term can be written as

Cn[f ] =
∑
i

C(i)
n [f ] (6.99)

C(i)
n [f ] =

1

2

∑
n′,l,l′

dn′dldl′
1

16

∫
p′

∫
k

∫
k′(2π)

4δ(4)(p+ p′ − k − k′)

× |M ((l,k), (l′,k′) → (n,p), (n′,p′))|2 K(i)
l,l′|n,n′ (k,k

′|p,p′)

× fl,0(k)fl′,0(k
′)f̃n,0(p)f̃n′,0(p

′) (6.100)

where C(i)
n [f ] is the contribution which involves the i-th order terms in χ. The previous

argument leading to equation (6.98) implies K(0)
l,l′|n,n′ = 0. The first and second order

contributions are given by

K(1)
l,l′|n,n′ (k,k

′|p,p′) = χl(k) + χl′(k
′)− χn(p)− χn′(p′) (6.101)

K(2)
l,l′|n,n′ (k,k

′|p,p′) = (1 + alfl,0(k) + al′fl′,0(k
′))χl(k)χl′(k

′)

+ (anfn,0(p)− alfl,0(k))χl(k)χn(p)

+ (anfn,0(p)− al′fl′,0(k
′))χl′(k

′)χn(p)

+ (an′fn′,0(p
′)− alfl,0(k))χl(k)χn′(p′)

+ (an′fn′,0(p
′)− al′fl′,0(k

′))χl′(k
′)χn′(p′)

− (1 + anfn,0(p) + an′fn′,0(p
′))χn(p)χn′(p′) (6.102)

where an is defined in equation (2.68).

6.5.2 Two-component System of Meson and Baryon

It can be demonstrated that, for a two-component system of meson and baryon, the

bulk viscous correction employed in this work is consistent with the consequences of

hadronic re-scattering. Equation (3.37) for the viscous correction due to the bulk

viscosity implies that

χn(p) = −CbulkΠ

3T

[
m2

n

(p · u) − 3

(
1

3
− c2s

)
(p · u)

]
. (6.103)
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Substitution into equation (6.101) yields

C(1)
n [f ] = −CbulkΠ

3T
· 1

32

∑
n′,l,l′

dn′dldl′

∫
p′

∫
k

∫
k′(2π)

4δ(4)(p+ p′ − k − k′)

× |M ((l,k), (l′,k′) → (n,p), (n′,p′))|2 fl,0(k)fl′,0(k′)f̃n,0(p)f̃n′,0(p
′)

×
[

m2
l

(k · u) +
m2

l′

(k′ · u) −
m2

n

(p · u) −
m2

n′

(p′ · u)
]

(6.104)

It is shown in Chapter 4 that the hadronic re-scattering reduces baryon yields by

BB annihilations. In addition, baryons are also accelerated outward as a result of

pion wind. One can consider a two-component system of meson and baryon with

BB annihilation (B,B → M,M), creation (M,M → B,B), and M,B → M,B

scattering processes. Since meson and baryon are considered to have spins 0 and 1/2,

respectively, the degeneracy factors are set as dM = 1 and dB = 2. The Boltzmann

transport equation for the baryon B reads

pμ∂μfB � C(1)
B [f ] (6.105)

= −CbulkΠ

3T
· 1

16

∫
p′

∫
k

∫
k′(2π)

4δ(4)(p+ p′ − k − k′)

× ∣∣M (
M,M → B,B

)∣∣2 fM,0(k)fM,0(k
′)f̃B,0(p)f̃B,0(p

′)

×
[

m2
M

(k · u) +
m2

M

(k′ · u) −
m2

B

(p · u) −
m2

B

(p′ · u)
]

−CbulkΠ

3T
· 1
8

∫
p′

∫
k

∫
k′(2π)

4δ(4)(p+ k − p′ − k′)

× |M (M,B → M,B)|2 fB,0(p
′)fM,0(k

′)f̃B,0(p)f̃M,0(k)

×
[

m2
B

(p′ · u) +
m2

M

(k′ · u) −
m2

B

(p · u) −
m2

M

(k · u)
]

(6.106)

where
∣∣M (

M,M → B,B
)∣∣2 = ∣∣M (

B,B → M,M
)∣∣2 is assumed due to the detailed

balance. The time evolution of particle yield can be expressed in terms of the diver-

gence of the number flux

nμ
B ≡ dB

∫
p
pμfB(x,p) (6.107)
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∂μn
μ
B = dB

∫
p
CB[f ] (6.108)

� −CbulkΠ

3T
· 1
8

∫
p

∫
p′

∫
k

∫
k′(2π)

4δ(4)(p+ p′ − k − k′)

× ∣∣M (
M,M → B,B

)∣∣2 fM,0(k)fM,0(k
′)f̃B,0(p)f̃B,0(p

′)

×
[

m2
M

(k · u) +
m2

M

(k′ · u) −
m2

B

(p · u) −
m2

B

(p′ · u)
]

(6.109)

where the contribution from M,B → M,B scattering vanishes since it does not

change the baryon yield. It can be easily seen that, if mM < mB, quantity in the

bracket [· · ·] is negative in the center-of-mass frame of the collision. Since [· · ·] is
Lorentz-invariant, it is negative in any frame and one has ∂μn

μ
B < 0 in the case of

expansion (Π < 0). The third term in the brackets [· · ·] of equation (6.106) implies

that fB(x,p) increases faster (or decreses slower) for the larger p and the pT spectrum

of baryon becomes harder.
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6.6 String Excitation and Fragmentation in UrQMD

The string excitation and fragmentation are dominant processes in the high-energy

hadronic collisions. This section is based on Refs. [38, 130]. If a collision happens to

result in the string excitation, two colliding hadrons exchange momentum p⊥ which

is perpendicular to the collision axis in the center-of-mass frame. The probability

distribution of p⊥ is assumed to be Gaussian

dP

d2p⊥
=

1√
πσ2

exp

(
−p2⊥
σ2

)
(6.110)

with σ = 1.6GeV. Then, mass Mi, energy Ei and longitudinal momentum p‖ of the

i-th string are determined such that

√
s = E1 + E2 (6.111)

E2
i = p2‖ + p2⊥ +M2

i (6.112)

in conjunction with the probability distribution of string mass dP/dM ∝ 1/M2. The

longitudinal momenta of two outcoming strings have opposite direction with same

magnitude p‖. One can rewrite the equation (6.112) in terms of the transverse mass

MT and light-cone momenta P± of the string

P± =
1√
2
(E ± p‖) (6.113)

M2
T = 2(p+q + p+q/qq)(p

−
q + p−q/qq) (6.114)

=

⎧⎨
⎩ 2 p+q p

−
q/qq if q is moving forward

2 p+q/qqp
−
q if q/qq is moving forward

(6.115)

where the parton momenta are lightlike i.e., p+q p
−
q = p+q/qqp

−
q/qq = 0. The momentum

fraction x = p±q /P
± of the quark is determined according to the parton distribution

function defined in equation (1.26). The light-cone momentum of antiquark/diquark,

in the case of forward-moving quark, becomes

p−q/qq =
M2

T

2xP+
. (6.116)

Once the string is excited with specific mass and momentum, it is followed by frag-

mentation into hadrons where a qq pair creation results in production of a hadron

and new string. This is implemented according to the following procedure.
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1. Creation of qq Pair and Identification of Hadronic Species

In UrQMD, uu, dd, and ss pairs can be created and put between two ends of the

string. The probability to create qq with certain flavor is given as

Puu : Pdd : Pss = 1 : 1 : 0.35 . (6.117)

If the string is baryonic, the qq is placed between the quark and diquark con-

stituents and the consequence of fragmentation can be either a baryon with

mesonic string or a meson with baryonic string. The qq creation is followed by

the determination of hadron species from the flavors of the constituents and

created quark/antiquark. The probability of having a specific spin and isospin

state is given as

P (JPC) ∝ 2S + 1

〈m〉JPC

. (6.118)

where 〈m〉JPC is the average mass of JPC state.

2. Determination of The Momentum of Produced Hadron

After identifying the hadron species, the momentum must be assigned to the

produced hadron. This is done by determining the light-cone momentum frac-

tion and transverse momentum of the hadron. If q and q/qq in a string are

moving forward and backward, respectively, the meson produced at the forward

end is assumed to carry a lightcone momentum p+h = x+
h p

+
q . The remaining

quark of the qq pair carries (1− x+
h ) p

+
q

p+q = (1− x+
h ) p

+
q + x+

h p
+
q

string new string meson

(q/qq · · · qq q) (q/qq · · · q) (qq)

(6.119)

The same procedure for p−h = x−
h p

−
q/qq is implemented at the backward end of

the string

p−q/qq = x−
h p−q/qq + (1− x−

h ) p
−
q/qq

string meson/baryon new string

(q/qq qq · · · q) (qq/qqq) (q · · · q)
(6.120)
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Fragmentation function D(xh) is defined as the probability distribution of xh

carried by the produced hadron. In UrQMD, two fragmentation functions are

used depending on which hadron is produced

Dnucl(xh) = exp

[
−(xh − B)2

2A2

]
for leading nucleons (6.121)

Dprod(xh) = (1− xh)
2 for other produced hadrons (6.122)

where A = 0.275 and B = 0.42. The Field-Feynman fragmentation function

[131, 132] is used for produced hadrons other than the leading nucleons. Given

that p+h (p−h ) is determined, the transverse mass mT,h and p−h (p+h ) are obtained

according to

mT,h =
(
m2

h + p2T,h
)1/2

(6.123)

p∓h =
m2

T,h

2 p±h
(6.124)

where the transverse momentum pT,h is determined according to the Gaussian

distribution function (6.110). This fragmentation process is iterated until the

energy of string is depleted and the remaining energy is not sufficient to produce

a hadron.

3. Determination of The Formation Time

To obtain the formation time of the hadron, “yo-yo” formation time is used in

UrQMD. It is described by the Hamiltonian of massless two-body system [130]

H = |p‖,1|+ |p‖,2|+ κ|x‖,1 − x‖,2| (6.125)

where κ � 1GeV/fm is the string constant which is energy contained in unit

length of the tube. Provided that qnqn and qn−1qn−1 pairs are created at the

vertices Vn and Vn−1 (Figure 6.1), respectively, the qn−1qn pair forms a new

hadron whose energy and momentum are

En = κ
(
x‖,n−1 − x‖,n

)
(6.126)

p‖,n = κ (tn−1 − tn) . (6.127)
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In terms of light-cone coordinates, one has p±n = ±κ
(
x±
n−1 − x±

n

)
. The forma-

tion time tf,n becomes

tf,n =
1

2
(tn−1 + tn) +

1

2
(x‖,n−1 − x‖,n) (6.128)

=
1√
2
(x+

n−1 + x−
n ) . (6.129)

The possibility that the produced hadron interacts during the formation time

is also taken into account. If the hadron contains leading quark constituents q

or q/qq at the end of the string, its cross section is suppressed according to the

number of leading constituents

σ(q,h) =
1

3
σ(B,h) for baryons (6.130)

σ(qq,h) =
2

3
σ(B,h) for baryons (6.131)

σ(q/q,h) =
1

2
σ(M,h) for mesons (6.132)

The cross section vanishes during the formation time if a newly produced hadron

does not contain any leading constituent.

x‖x‖,n−1x‖,n

tn−1

tn

tf,n

t

Vn

Vn−1

Figure 6.1: Production of hadrons in string fragmentation of UrQMD shown in configuration space.
The “yo-yo” formation time [130] is used.
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