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ABSTRACT 

This thesis considenr the convergence properties of adaptive equalizers used 

for data transmission. In. the conventional form of a tapped delay line equalizer, 

the tap spacing is equal to the symbol interval T. Two other cases are discu8Bed. 

The fractional-spaced equalizer has tap spacing less than T ( T /2 is considered in · 

detail). A hybrid configuration uses both T spaced and fractional T spaced tap is also 

considered. From the mathematical derivations and the computer simulations the 

properties, the relative advantages and drawbacks of the three cases are analysed. 
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RESUME 

Cette the traite des proprietes de convergence des egaliseurs conventionnels 

dans le domaine des transmissions de donnees. Dans un egaliseur conventionnella 

distance entre perforations correspond a l'intervalle entre symboles T. Deux autres 

configurations sont ici eonsideres: l'egaliseur a espace fraetionnel dont la distance 

entre perforations est inferieure a T, et l'egaliseur hybtide, utilisant des distances 

de perforation egales aT et inferieures aT. Les differentes proprietes, avantages et 

inconvenients des trois types d'egaliseurs sont compares sur une base mathematique 

et de simulation par ordinateur. 
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1.1 Adaptive Equalization 

CHAPTER I 

INTRODUCTION· 

Digital data transmission systems are: often bandwidth limited~ Moreover, the 

channel characteristics may change for each transaction or even during transactions. 

The recent applications of computer communication on the. voice-bandwidth chan­

nels, and satellite channels has raised a· new interest in the optimization of data 

transmission systems • 

. The transmission channel tends to degrade the transmitted signal, causing 

difficulties in recovering the original data. One of the sources of degradation is the 

additive noise due to background thermal noise or impulsive noise. This noise can 

be reduced to some extent by using bandpass filters to exclude out-of-band noise. 

Another form of degradation is the time dispersion, which extends the duration of 

the input signal, causing the adjacent data symbols to interfere with each other. 

This efFect of overlapping of received symbols is called Intersymbol Interference (ISI) 

[R.W. Lucky, J. Salz and E.J. Weldon, 1968]. 

- 1-



c Bandwidth efficient data transmission over the real analog channels requires 

equalization to reduce intersymbol interference. The idea behind equalization is to 

reduce the cross effects between the individual symbols using the past and the future 

samples. In practice, the equalizer is implemented in the form of a transversal filter 

or a tapped delay line. The weighted outputs of the delay taps are summed to form 

the output of the filter. An automatic or adaptive equalizer varies these tap weights 

by using one of the methods described in [Gersho, 1969], [Hirsch, 1970], [Lucky, 

1965, 1967], [Chang, 1971]. 

There are two basic kinds of adjusment procedures. The first one, often called 

automatic equalization, is done by sending a string of isolated test pulses before 

the actual data is transmitted. The equalizer tap coefficients are kept constant after 

this 'training' period. In the other method, 'adaptive equalization', the equalizer 

settings are updated directly from the received data. Adaptive equalizers minimize 

the degradation of the signal using, first the 11 priori known training sequence, and 

then an estimate of the data during transmission. When actual data transmission 

starts, the distortion is already reduced to a small value. At this moment, the 

equalizer can use the reconstructed output signal of the receiver as a reference 

signal. This kind of operation is usually referred to as decision-directed mode. The 

effect of wrong decisions is usually negligible after a successful training period. 

Early equalizers used a tap spacing of T, the symbol spacing period. Recent 

studies on equalizers showed that further improvement in performance can be ob­

tained using a tap time spacing of less than T. These equalizers that have tap spacing 

less than Tare called Fractional-Tap-Spaced-Equalizers. This type of equalizer has 

been analysed by [Ungerboeck, 1976], [Gitlin and Weinstein, 1981], [Qureshi and 

Forney, 1977]. 

In digital data communication systems, not only are different channels used 
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each time a transmission is requested, but the channel itself may have time varying 

characteristics. A data transmission is made up of a training period which is followed 

by the transmission of the actual data. The start-up time is defined as the time 

during which the receiver locks on to the carrier, establishes bit synchronization 

and performs automatic equalization. This overhead takes a considerable portion of 

the total busy period. For the early automatic equalizers, settling times in the order 

of seconds have been reported. Since then great improvements have been achieved. 

1.2 Thesis Overview 

In this work, we study the adaptation behaviour of conventional, fractional­

spaced, and hybrid equalizers. The idea of a hybrid equalizer was first proposed by 

P. Kabal and studied by [Nattiv, 1980]. 

The second chapter describes a baseband digital data communication system 

using passband equivalent model for the system to be studied. The problem of in­

tersymbol interference is also discussed. The following chapter consists of an over­

view of optimal minimum mean-square error equalization. Chapter 3 also includes a 

study of an equalizer analysis with general tap spacing. In Chapter 4, the properties 

of the conventional, fractional-tap spaced, and hybrid equalizers are discussed in 

terms of their frequency characteristics, eigenvalues and minimum mean-square er­

ror. Chapter 5 starts by introducting algorithms used for the adaptive equalizers. 

This is followed by a summary of the steepest descent algorithm for tap adjust­

ments. The chapter concludes with the discussion on the convergence properties of 

the equalizers. The description of the simulation and the results are presented in 

Chapter 6. 

- 8-
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CHAPTERTI 

BASEBAND DATA COMMUNICATION SYSTEM 

11.1 Model of Digital Communication System 

The structure of a digital communication system can be modelled as in Figure 

· 2.1. The three main blocks are the transmitter, the channel and the receiver. 

The source symbols at every T second intervals are passed through a ba.ndlimited 

filter whose impulse response is h.(t), and fT(t) is generated at the output of the 

transmitter, 

(2.1) .. 
This signal is fed to the channel which is viewed as a filter of impulse response 

hm(t). Random noise nr(t) is added by the channel and the final form of the signal 

is, 

gn(t) = gT(t)*hm(t) + flr(t). 

4-

(2.2) 



IJ1 

e 

YT(t) g'r(t) 

---· Source -Eh8(t) L __ l Mod. H hm(t) 

(a~:) I --

TRANSMITrER CHANNEL 
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() 

r(t) r(kT+r) 

~-----~ Decision 

Unit 
'------'SAMPLER 1--------' 

REC/EVER 

Figure S.1 Structure of a Communication System. 

... 
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This received signal passes through the receiver block which consists of three parts 

a filter, a sampler and a decision unit. The same model serves to study modulated 

passba.nd systems. In this ease the parameters take on complex values, representing 

the quadra.ture and in phase components or the ba.seband equivalent parameters •. 

Before the sampler, the signal is of the form, 

r(t) = L a,.h(t- nT) + n(t), (2.3) 

(2.4) 

and 

(2.5) 

The sampled signal is given by, 

r(kT) = L a,.h(kT- nT + r) + n(kT + r). (2.6) 

The sampler is assumed to be in· synchrony with the symbol interval but with a. 

time offset r • Define 

Then 

l:J. 
hk-n = h(kT- nT + r), 

l:J. 
nk = n(kT + r). 

Tk = L a,.hn-k + t'&k 1 

n 

- 6-
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0 are the samples input at. the decision unit. The sampling time is oft'set by r with 

respect to source clock. The final block outputs a, symbol a~ which is an estimate 

of the input at the source. 

When one starts to look at optimizing the above system, the approach might be 

either to optimize the transmitter or the receiver, or both, if enough knowledge is 

available about the system. In general, the. receiver is optimized in order to improve 

the mean-square error, output Signal-to-Noise Ratio (SNR), probability of error etc. 

This can be achieved with some improved designs of receiver filter and decision unit. 

In this work, we study the receiver when the channel characteristics are unknown 

at the receiver end. Our· approach is to minimize: the mean-square error, thus to 

reduce the effect of both intersymbol interference and noise. 

II.2 Intersymbol Interference and White Noise 

The additive noise encountered by the system causes errors in the detection. The 

other concern for the designer of. the optimal receiver is intersymbol interference. 

Using, 

then (2.8) can be written; as, 

r~: = L a,.h1-n + n~:, 
" 

'• = a~:ho + L a,.h._,. + n.. 
n.,&.A: 

(2.9) 

(2.10) 

The desired output is the a~cho term in the above equation,. this corresponds to the 

'" received sample. However, the rest of the terms are undesired components. These 

represent the noise and interference due to.the tails of the system impulse response. 

-7-
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This interference due to past and, future samples of h(t) at the sampler output are 

referred to as the Intersymbol Interference (ISI). 

To eliminate. the ISI, the Nyquist criterion can be applied, the derivation of 

which follows. For a desired response of an impulse, i.e. no ISI at the sampling 

instants, 

··=C n=O; 
, 

otherwiae. 
{2.11) 

an equivalent condition is that 

h(t) l: 6(t- nT) = ho6(t), (2.12) 

where 6(t) is the delta function. Since E,. 6(t- nT) is a periodic function, it has a 

Fourier series representation as, 

" 1" .2rln 4..16(t-nT) = T4..1exp(JT). (2.13) 
rl R 

Applying this to (2.12), 

h(t) l: exp(i2~") = Tho6(t), (2.14) .. 
and taking the Fourier transform· of both sides 

LH(f- ~) = Tho. (2.15) .. 
The lefthand side of the above equation is a periodic function off with period 1/T. 

The first period is called the Nyquist equivalent of H(f) which is designated as, 

H.,(/)= LH(f- ~) 
,.· T 

-8-
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It can easily be observed that for the elimination of intersymbol interferance H 119(1) 

should be flat. This amounts to the requirement that at each sampling instant all 

h,/s be zero except ho. 

-9-



CHAPTER ill 

OPTIMAL MINIMUM MEAN SQUARE ERROR EQUALIZATION 

IU.l Structure of· Optimum Receiving Filter: 

In this chapter, the structure' of the receiver is discussed and an optimization 

analysis is carried out. The pollible criteria to optimize the·receiver are introduced, 

and one selected, namely minimization of the mean-square error. 

For a receiver structure as in Figure 2.1, which has a receiving filter, a detector 

and a decision unit, Ericson proposed a model which performs at least as well 

as any other filter. He shows that the optimum linear filter can be decomposed 

into two parts, a matched filter and a periodic filter. The former is a filter of the 

same bandwidth as that of the channel, while the· latter can be implemented as a 

transversal filter. Then 

for 

H*(/) 
Hr(/) = <Pnn(/) P(/) 

H(J) = H.(f)H,.(I) 

- 10-
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and P(/) is periodic with period 1/T. H,.(n, the receiver input filter performs at least 

as well as any other linear filter for the minimization of intersymbol interference, 

signal-to-noise ratio, and~error probabilty criterion. 

The periodic frequency response of P(/) can be represented by an infinite analog 

transversal filter. Such a.filter is shown in Fig. 3.1. Based on the above result, the 

receiver of a basic communication system .can be shown as in Figure 3.2. 

The term H, *(/)/~,.,(/)is the: frequency response of the filter which is matched 

to the signal waveform. This structure can be summarized as follows: the matched 

filter maximizes the signal-to-noise ratio at the decision instant, while the transversal 

filter P{l), reduces the intersymbol interference that still corrupts the signal in its 

input. 

Hovever, the above receiver model is impractical due to the following reasons; 

(i) An infinite length transversal filter cannot be realized. (ii) Since the channel 

characteristics are assumed to be\ unknown, each time a connection is made, it is 

impractical to realize a matched filter (or even when the same channel is used and 

the channel itself slowly changes in time). 

In practice, only a cascade of a lowpass filter and a transversal filter is used. 

Another simplification in: the implementation is to place the sampler in Figure 3.3 

before the transversal filter (to keep the. samples in digital form. for use in the 

calculation of the optimum tap coefficients). This reduces the transversal filter to 

a shift register. The adaptation procedure can then be performed digitally. One 

more point is that the transversal filter can be used to minimize the intersymbol 

interference by forcing the overall response H(/) to obey (2.14). This causes the 

Nyquist equivalent channel to be flat. The name equalizer is given for that reason. 

The final form of the suboptimal: digital receiving end is summarized as in Figure 

3.3. 

-11-
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111.2 Criteria for Optimal Receiver Design 

To design the receiver, one must first come up with a. receiver structure. Then, 

given this structure, the. filter H(f) can be optimized. But, due to intersymbol 

interference, there a.re several different optimization criteria.. One of them is to try to 

• minimize the error proba.bilty resulting from the noise and intersymbol interference, .. 
but this approach leads to quite intractable calculations. To obtain the solution, 

one has to solve a set of complicated nonlinea.r simultaneous equations. A much 

simpler approach, is to eliminate the intersymbol interference, and then minimize 

the error probability subject to some constraint. Maximizing the signal-to-noise 

ratio at the sampling instants can also be used as another optimization criterion. 

The equalization is achieved by finding a set of gains for the equalizer taps. These 

tap coefficients can be put in a vector form, (*) 

- T (} = (C-Nu• •• 1 eo, •.• 1 CN1 ) 1 (3.3) 

where there are N1 taps to the left, N2 taps to the right of the reference tap (see 

Figure 3.4). The values of these taps are chosen so as to minimize the mean-square 

error between the output: of the data source and output of the decision unit in the 

receiver. In the next section, the optimization problem is solved for a generalized 

equalizer in which the spacing between the taps is arbitrary. The special cases to 

be studied a.re derived from this model. 

- 16 -
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111.3 Generalized Optimal Mean Square Error Equalizer 

The generalized equalizer with arbitrary tap spacing is shown. in Figure 3.4. 

Using an analog version of the equalizer (a tapped delay line) with a continuous 

signal at its output, 

.. 

z(t) = E 4n h(t- nT) + n(t). (3.4) 

For arbitrary spacing, D1T of tap spacings then, the output of the equalizer can 

be written as: 

fl(t) = E CJ z(t- DJT). 
i 

(3.6) 

The :iflt. tap has a delay of D1T associated with itself. The above output is then 

sampled at symbol intervals. The output of the sampler feeds the following signal 

to the decision unit 

y(kT + r) = E ci z(kT- D1T + r), 
i 

(3.6) 

where r is the sampling time offset with respect to source clock. Using the vector 

notation: 

where: 0 is the vector of the tap coefficients; 

if .0. [ .•• ,z(kT- »-tT),z(kT- DoT), z(kT- D1T), ... ] 

- 18 -
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f/Ao A fl(kT + r) (3.9) 

Let the desired response of the overall system be /(t). For a desired output, d(t), 

d(t) = /(t) • :E a,.6(t- nT) 
,. 

= :Ea,. j(t- nT). 
(3.10) 

.. ,. 
Clearly, a special case occurs when /(t} is equal to 8(t). The main reason for the 

presence of a general J(t) ·term is to include partial response signalling. For partial 

response a correlation is introduced between the past and the present symbols. In 

this work we keep this term to be~ 6(t) and try to eliminate intersymbol interference 

due to the channel characteristics. 

The samples of the desired signal at the output are, 

where 

A 
d,. = d(kT) 

=:Ea,. J(ft:T-nT), 
,. 

- A T /~; = [ .. ,/[(A:- 1)T],/[ft:T], /[(A:+ l)T], .. ] . 

By definition the error is: 

Then the mean-square error is 

le,.l2 = (fll- d,.) (Jil*- d,.*). 

- 19 -
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The above expectation is over the sample space a •• The block diagram for the 

generation of the error signal is shown in Figure 3.5. 

The minimum mean-square error can be achieved for the particular setting of 

tap weights. The calculation for: finding the optimal settings which lead to the 

following equation can be found in Appendix A.l. 

.. 

(3.16} 

where A is an N by N channel autoeovariance matrix whose elements are given by: 

Ai,J = .z*(kT- D,T + r)z(kT- D;T + r), (3.17) 

ari.d a is the vector having the elements: 

a; = d~c * z(kT- D;T + r). (3.18) 

Inserting the expression for z( kT- D;T + r) as given by, 

z(kT- D,T + r) = La; h.( leT- D;T + r) + n(kT- D,T + r), {3.19) 
i 

into the equations (3.17) and (3.18), we get an equation of the following form (see 

Appendix A.2) 

"""- T T Ac,t = .£..., .£..., a1*a; h*[(k- Da:- i + -T)TJ h*[(k- D,- i +-)TJ, 
. . T 
' I 

(3.20) 

(3.21) 

where: 

- 20 -
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; .. (.)is the autocovariance function of the data source, 

;""(.)is the autocovariance function of the noise, 

/(.)is the desired overall response. 

In the conventional case, where the tap spa.cings are all T, i.e., D, == i, and the 

data source is uncorrela.ted, with power u! and the noise is white with power· u~, we 

have: 

a,== o!, L: f*(nT)h[(n- i + -flT]. (3.23) 

The elements of the A matrix can also be written as follows 

Ai,r = u! L: h*[(n- -f)TJh[(n- ~)T + (i -11TJ ] + 0'~.6i,J, (3.24) 

" 
With this final form of the matrix elements, it can easly be seen that the (id)t~ 

position in the matrix depends on (i -11· A matrix which has this property is called 

Toeplitz and is a. special case for the conventional equalizer. In general for Di other 

than i, A is not Toeplitz. 

A more general case is the one in which Di = ifn, in this case there are n taps 

for each T second interval. The most important case for our purposes is when the 

taps are spaced by half the signalling interval. Using the transform relation, 

i
+oo 

h(t) = -oo H(l) exp(j211'/t) df, 

to express the samples of h(t) in the above equations for the A matrix elements, it 

can be shown that (3.20) and (3.21) can be written as (see Appendix A.3): 

(3.25) 
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0 where 

and 

H!
9
(J) a ~H(/ + ~)exp{(-jb(/ + ~)]. . .. 

For, the conventional· case discussed earlier 

A.\,t = f T c~t_(l) IH.9(1)12 exp(-i27r/(l- i}T) df + a!6A\,h (3.27) 

-if 

where H.,(!) is the Nyquist equivalent channel defined earlier (for r = o) as: 

H.,(/)= ~H(J + .j.)exp(i
2
;r i) . 

• 
By using Eq. (3.23) and the Fourier transform relations of h(t) and d(t) one can show 

that for the conventional· case 

+ifr 
a~;= f J H.,*(!) F.9(!) +-(l)exp(-j21r/r)exp(j27rfkT) d/, (3.28) 

--;, 
where F,9 (/) is the Nyquist equivalent of the desired overall response. For the uniform 

case in which D, = i/2 the elements of the autocovariance matrix can be written as 

+if 
A.\,r = f j 4>,..(1) IH.,9(1)12 exp(-j27rf(l- k)i) d.f + a~61:,1 (3.29) 

-if. 

where A: and l are even, 

(3.30) 
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where le and l are odd, 

+t¥ 
1 J .... T Au = T + .. (!) He1(/) He1(f)exp(-jbf(l-/c)2) df 

-t¥ 

where is le odd and l is even, and 

+t¥ 
Ak,l = ¥ J + .. (/) H.,/(1) H~r9(/)exp(-jb/(l- /c)i' df 

-t¥ 

where is le even and l is odd, and 

(3.31) 

(3.32) 

It is now apparent that A is no longer a Toeplitz matrix. By using Eq. {3.23) with 

Di = i/2 and the transform relations for J(t) and h(t) it can be shown that the 

elements of the a vector are given by 

a• = f 1 H'.,(J) F.,(n +-(J)exp(;b/r)exp(j2•k/f) df (3.33) 
-if 

for even le, and 

+IT 
ak = ~ j .H:,(f) Fe9(/) +"(J)exp(j2lrfr)exp(j2d/i) d./ (3.34) 

-f.t 

for odd /c. 

This generalized equalizer analysis will serve as the basis for the analysis carried 

out in the rest of the thesis work. The studies on conventional equalizer, fractionally­

spaced equalizer· and hybrid equalizer will refer to this chapter, as special cases of 

the generalized equalizer. In the next chapter, we will introduce and discuss the 

properties of these equalizers. 
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CHAPTER IV 

PROPERriES of T, T/2-SPACED and HYBRID TRANSVERSAL EQUALIZERS 

IV.l Implementation of Equalizers 

In the previous sections we have mentioned that equalizers are placed at the 

receiver end as decision-directed adaptive receivers. This chapter discusses the 

theory and the implementation techniques as well as the . properties of adaptive 

equalizers. 

For optimum equalization, one has to find the set of tap coefficients to reduce 

intersymbol interference and noise. The solution (3.16) involves the inversion of the 

N X N A matrix, where N, the total number of taps may be quite large. Iterative 

methods for solving Eqn. (3.16) will be discussed in the next chapter. 

The hardware implementation of the adaptive equalizers can be classified into 

the following categories: analog, hardwired . digital and programmable digital. 

Early implementations used analog tapped delay lines, made up of inductor­

capa.eitor (LC) and switched ladder attenuators as tap gains. Field-effect transistors 

later replaced the switched attenuators. As the technology became available, digi­
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tal implementations were introduced, oft'ering reduced size and increased accuracy. 

More recently, large-scaled integrated (LSI) analog implementations . based on the 

charge~coupled device (CCD) technology renewed the interests in analog techniques. 

In this technique the sampled input waveform is stored and transferred as con­

tinuous-valued charge packets. The variable tap gains are stored in digital form, 

and the multiplication of the tap gains and the samples are done using a multiply­

ing digital-to-analog converter. This method is still to be implemented, but it has 

significant potential in applications where the symbol rates are high enough to make 

the digital versions impractical or very costly. 

The other class, namely the hardwired digital technology which was the most 

commonly used during the past detade. The input signal is used in sampled and 

digitized form, suitable for storing in the registers. The tap gains were stored in the 

digital shift registers as well. The formation and accuin~lation of products takes 

place in logic circuits connected to perform digital arithmetic. 

The most recent advance in the field is the application of programmable digi­

tal signal processors. In this type of implementation the equalization function is 

performed in a series of steps or instructions in a microprocessor or a digital com­

putation structure specially built to efficiently perform the type of digital arithmetic 

required. The same hardw.ve can then be time-shared to perform functions such :iB 

filtering, modulation and demodulation in a modem. The greatest advantage of this 

. technology iS that it is flexible, and permits sophisticated equalizer structures and 

training procedures to be implemented with ease. 
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0 IV .2 Properties of T-spaced Equalizer 

IV .2.1 The Autoeov...Sanee Matrix and Its Elpnvalues 

In this section we will first find the expressions for the eigenvalues and eigen-

vectors for the autocova.riance matrix of an infinite T-spaced equalizer. As discussed 

earlier (from Eqn. (3.27)): 

+-/¥ 

~.1 = ~ I + .. (/) IHc9(!)12 exp(-ib/(1- A:)T) df + u!6~:,1, (U) 
--lt 

where He9(/) is the Nyquist equivalent channel. For a general row, s, of the Toeplitz 

A matrix, we have (for u! = o}: 

+fl. 

2:A.,zexp(j2K>.Tl) = 2: ~ j IHe9(/)l2+ .. (/)exp(j2K/BT)exp(-j2ft'{/- >.)IT) df 
l I _...L 

IT 

+iT 
( 1.2) 

= ~ J IHe9(/)l2 <1>""(/)exp(j2K/eT) 2:exp(-j2ft'{/- >.)IT) df. 

-~ I 

Now, we have vectors of which having components exp(jbfsT). Thus, these are the 

eigenvectors of the A matrix. Moreover the corresponding eigenvalues are: 

(4.3) 

In this section we will state a theorem which will be relevant in the latter 

sections. 
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c Theorem 1: 

The eigenvalues of the system .. autoeova.rianee matrix are bounded by maximum 

nlue M and the minimum value m of IH eq(l)f1 ; (u! == 0). 

(4.4) 

See Appendix (A.4) for the proof of this theorem. Therefore, the larger the spread 

of the eigennlues, the farther the Nyquist equivalent response of the channel is 

from being flat. This fact: is very much related to the convergence time of the taps, 

as will discussed in the following chapter. 

In the previous chapter we have shown that, the optimal tap gains can be 

determined from 

A 0 = Ci. (4.6) 

We can write the same equation also in the following form 

(4.6) 

Substituting equations (3.27) and (3.28) in .the above equation, assuming white noise 

present one can show that the first period:. of the periodic frequency response of an 

infinite T-spaeed. equalizer is given by 

a(l) == •-U> Ftl,(l)' H.,(f)exp(ibfr) 
•-(/) IHtl,(/)12 + 0'~ 

In the noiseless ease, the above equation simplifies to 

- !9-

1 
Ill< 2T' (4.7a) 



c 
C(J) = ;::~~) exp{ib/r) 

1 
l/1 < 2T' (4.7&) 

It is apparent that any zero of H.,(/) within the Nyquist range will be a pole of 0(/). 

One very important phenomenon occurs when dips in amplitude occur in Heq{/). 

Note that although H(/) may have no zeroes (or near zeroes) in l/1 < l/2T, H.,(!) 

may have zeroes because of the superposition of terms such asH(/ +i/T) exp{i21rri/T) 

in Heq(/). Note that sampling phase affects H.,(/): certain .. choices of r can cause 

dips in Heq(/), resulting in a 0(/) which has large peaks. This in turn can give 

rise to very large values of tap coefficients which may cause problems in practical 

realizations. These large values of. tap gains may cause severe noise enhancement at 

certain frequencies, increasing the; probability of error. Thus, there should be a good 

means of sampling phase controLin the system in. order to overcome the problem 

of sampling phase dependence on.·the performance· of aT-spaced equalizer. 

IY.I.S The Mlnlmutn Mean Squ8t'8 Error of an lnftnlte T-Spaced Equalizer 

From the previous chapter, we have the following equation for the minimum 

mean square error, 

the first term can be expressed as 

and the second term, as 

+i¥ 

1dJ2 = ~ J IF.,(/)12~ .. (/) df, 
-r, 

-BO-
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+n. 
aOopt = j. I H""(f)F*.,,(I)exp(2j1t/r)+-(f)C(I) df. 

-n. 
Taking the difference of equations (4.7) and (4.8} we arrive at, 

+tt 
-2 _ er; J IF.,9(/)12+u(/) 
lel,.,in- T IH.,.,(!)I2+ .. (1) +er~ df 

-tt 

(-1.9) 

{4.10) 

For the noiseless ease, the above equation shows that an infinite length optimum 

equalizer gives zero mean-square error. It can be easily observed that once th~re 

is noise introduced by the system, its significance is highly dependent on r, the 

sampling phase which is in the IH,,(!)p~ term. For some values of r, a null or ne&· null 

may be introduced in He9(/) within the Nyquist range at some frequencies and by 

Eq.(4.10) this may cause a large value for the integrand and thus a large minimum 

mean-square error. 

IV.3 Properties of T /2-spaced Equalizer. 

IV .3.1 The frequeneJ Response of the T /2 Equaftzer 

· We will start from the same expression for the optimal coefficients, namely, 

where the elements of A matrix, and ti vector are given by Eq.(3.29) to (3.34). ·we 

will make the following definitions in order to derive an expr~sion for the infinite 

T/2 equalizer: Let {et} , k = -oo to +oo represent the gains of an infinite T-spaced 

equalizer, and let dt for all k but k = 0 , be the gains of additional taps insert~d 

between the c& 's. Then the frequency response of the T /2-spaced equalizer is: 

- 81 -



0(1) = c(/) + d(l), (4.11) 

where: 

c(/) A Ecleexp{ib/2A:~), (4.11a) 
le 

and: 

d(l) A E dle exp(ib/(2A: + 1)~). 
le 

(4.116) 

By using the same steps as in the· previous analysis for the ·T-spaced case, we come 

up with (for H~ = H~ ) : 

O(f) = 2F.9(/) ~-(/) H*(/)exp(ib'/r) 
•-U> [ IH.,(/)12 + IH.,(/)12 1 + (J~ 

(4.12) 

The bracketed term in the denominator is equal to the folded power spectrum of 

the overall response only when H(/) is bandlimited to l/1 < 1/2T, then we may write, 

0(/)- H*(/) {i2 1 ) •-(!) F.,(l) 
- exp ,.. r •-<n UH(/ + 1/T)I2 + IH(/)12 + IH(/- 1/T)I2 + (J~. (4.13) 

The above equation can be viewed as in two parts, the first being the matched 

filter, and the other which combats the intersymbol interference. The matched filter 

is matched to the overall; frequency response of the system up to the equalizer, for 

the maxim.ization of signal-to-noise ratio at the sampling instants. 

A comparison of the O(l)'s f01r the T /2 case and the conventional case indicates 

that, there can be no poles caused by the· denominator of 0(1) within the Nyquist 

range by the sampler timing offset r. In. fact, the denominator of 0(1) does not 

depend on r and can be· expressed in terms of the folded power spectrum of the 

unequalized channel for systems bandlimited to 1/T. 
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IV .s.z The Autoeoverlenee Matrix end Its Elptmtlues 

Just as in the conventional ease one can show that the eigenvectors and the 

eigenvalues of an infinite T /2-spaeed equalizer are given by [Qureshi and Forney, 

1977]: 

"'• . T • U(J) = [ ... ± H.,9(/)exp(-.1b/2),H119(/), 

(4.14) 

and the corresponding eigenvalues, when ( +} holds; 

(4.15) 

and when (·) holds; 

>.(!) = 0 .. (4.16) 

For H{l) bandlimited to l/1 < 1/2T, >-{n can be expressed as the folded power 

spectrum, i.e. 

X{!)= ~IH(f- ~)12 , (4.17) 

' 
and for l/1 < 1/T , 

x<n = IHU- ~)12 + IHUW~ + IH<t+ ~)12 • (4.18) 

We see that a constant folded power spectrum in the T/2 ease has the same eft'eet as 

a constant folded spectrum in the conventional case: in both cases it is possible, by 

a judicious choice of the step size to have the taps gains reach their optimal values 

in one iteration. 
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Here, once again we observe that the eigenvalues are not dependent on the 

sampling timing offset, r, whereas in the T-spaced equalizer the eigenvalue spread is 

subject to change with r. Therefore we should expect the convergence of the infinite 

length fractionally-spaced equalizer to be independent of sampler offset. 

IV .S.3 The Minimum Mean Square Error of an Infinite T /2-Spaced EquaUzer 

In this section we will derive an expression for the minimum mean-square error 

for a. T/2 equalizer. By applying the similar procedure for the T equalizer case, the 

mean-square error is given by: 

can be expressed as: 

(4.20) 

It is seen here that mean-square error is not influenced by the sampling offset, 

r. A comparison of the mean-square error expressions of the equalizers shows that, 

i.e. the T /2 equalizer performs better than the conventional case. It is also indepen­

dent of r. The simulation results in this thesis, as well as in [Qureshi and Forncy, 

1977], [Ungerboeck, 1972] and [Ungerboeck, 1976] show these results clearly. 
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IV.4 Properties of HTE. 

A hybrid type of equalizer was first introduced in [Nattiv and Kabal, 1980]. 

In their work they have defined the Hybrid Type Equalizer (HTE) as a T·spaced 

equalizer with some additional intermediate taps inserted around the reference tap. 

As these inserted taps had T /2 spacing with the adjacent taps, it is expected to have 

many of the benefits of a T /2 equalizer, and have a wider time span compared to a 

conventional equalizer with the same number of taps. This will enable the equalizer 

to eliminate the intersymbol interference dp.e to the channels with long impulse 

responses. As additional taps are introduced to the T-spaced equalizer, the hybrid 

equalizer will resemble that of a pure T /2-equalizer. With the proper placement of 

taps it is also expected that the hybrid type equalizer will avoid nulla, or near nulls 

in the Nyquist range. 

It will be shown in a later chapter that, the number of taps are related to the 

final mean-square error. In other words, minimum achievable mean-square error 

in steady-state is dependent on the number of taps, i.e. for larger N, beyond a 

certain value, the mean-square error will be slightly larger due to the adaptation 

fluctuations introduced by each tap. A hybrid equalizer reduces the complexity, as 

well as using less number of taps the excess mean-square error term is minimized. It 

is expected that the hybrid equalizer will be advantageous for both of these reasons. 

In the following sections a. summary of the work carried out by Na.ttiv [Na.ttiv, 

and Kabal, 1980] will be presented. 

IV .4.1 The Optimal HTE 

In the approach used to study the hybrid type equalizer, N attiv considered the 

overall system to be made up of a T-spa~ed, and a T /2-spaced part. In other words 
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the equalizer has been split into three sections, ones having T and the other having 

T /2 spacing. An example with the partitioning of three is shown in the following 

figure (Figure 4.1). From this approach we have, 

where: 

1/J: = 1/A:l + 1IJ:2 + 1/J:3, 

-N1 

1/J:l = L: CiZJ:-i 
i--Ne 

A -:T­= C Zfc 

Na 

flU L tiZir.-i 
i-Na+l 

A -::r-
= e ZJc-d1-ce1 

For this configuration the desired output can again be defined as, 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

where /a: are the samples of the overall impulse response. The mean-square error is, 

(4.25) 

Inserting the equations (4.31) to (4.33) into the mean-square error expression (i.e. 

Eq.(4.34)), and differentiating the final form with respect to the tap coefficients, 

ea:, drc, and ea: one obtains the following set of equations for the optimum hybrid 

equalizer, 
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) 

[;: : ~][~ = [~:] 
w" v" ~ ;J a3 

The elements of the above matrix can be identified simply from the square error 

term, which are the auto- or the cross-correlation terms of the subsections. 

The most important result is that the autocovariance matrix of the hybrid 

transversal equalizer can be derived from the matrix of T /2 case by deleting those 

rowa and columns which are not used in the hybrid model. The similar manupulation 

also holds for the a vector of the above equation. 

For the frequency response of the hybrid transversal equalizer the equations 

are very complicated, and no compact form can be reached for practical purposes. 

However, the resulting equations show that as the number of additional taps are 

increased, the properties of the hybrid equalizer gets Cl<?Ser and closer to that of 

T /2-spaced equalizer. 

In. the next chapter we will introduce the convergence phenomenon, as well as 

some algorithms used for the adaptive equalizers. Then, we focus on the mean-

square-algorithm, and discuss the convergence properties of the equalizer types 

discussed above. 
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CHAPTER V 

CONVERGENCE PROPERriES of the TRANSVERSAL EQUALIZERS 

V.l The Recursive Algorithms for Computing the Tap Gains 

In this chapter we will introduce some of the techniques by which the tap 

coefficients are adjusted, and then analyse the steepest descent algorithm. In the 

rest of the chapter we will analyse the rate of convergence of the conventional 

equalizer and discuss for the fractionally spaeed and hybrid equalizer cases. 

The adaptation of the transversal filter to the channel response and the souree 

signal is realized at the receiver by an iterative procedure to adjust the tap weights. 

The general adaptation method can be modelled by: 

(5.1) 

where the S~c is a ve~tor of tap gain increments. There are vario~s· algorith~ that 

achieve adaptation. Many transversal filter equalizer update algorithms are based 
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0 on the steepest descent, or gradient technique, which minimizes the mean-square 

error between the equalizer output and the transmitted data symbols, given by 

(3.16}; 

(5.2) 

One algorithm invokes the minimization of least square the objective of which is 

to determine the coefficient vector which minimizes the weighted sum of the squared 

errors of past received signal vectors [Mueller, 1981], in other words it minimizes 

(5.3) 

Setting the derivative of the above equation to equal to zero yields the discrete time 

Wiener-Hopf equation, 

(5.4) 

in the iterative form, 

(5.5) 

and 

(5.6) 

A positive definite identity matrix AI is included to ensure positive definiteness of 

A = n for all n. 

Since the above two equations can be written recursively, the updated coefficient 

can be found iteratively as follows, 
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0 - - -C,. = Cn-1 + g,. e,. (5.7) 

where g,. iS the Kalman gain defined as 

. -1 -
g,. =A; z,. (5.8) 

This form leads to the Kalman, the fast Kalman, and the adaptive lattice algorithms 

where in all cases the same cost· function is minimized. The difference is in the 

ma.nner and the complexity with which it is achieved. [Mueller, 1981] 

In their work O.S. Kosovych and R.L. Pickholtz [9] proposed .a new algor~thm 

to improve the convergence rate, namely overrelaxation iterative technique. Where 

their method determines the coefficient value for all i, at the (k + t)•t iteration 

acording to 

i-1 N 

c, (1+1) = c, (A:)- ~. [ 2: a.;i Cj (A:+t) + 2: aijCj (1)- gi] 
an i--N i-i 

(5.9) 

where 'ID is the relaxation factor. In matrix form we have, 

(5.10) 

where E and D are the diagonal and strictly lower triangular matrices. Here the 

inverse of the A matrix is never computed if the above equation is used (5.9). All of 

the coefficients are updated prior to the reception of the next training pulse. This 

is a departure from gradient techniques since they use only the previous values. 

As another example, the works carried out by T.J. Schonfeld and M. Sehwartz, 

minimized the mean-square error by using variable step sizes after a specified 

number of iterations. The so called First-Order and Second-Order algorithms use a 

optimally determined step size in order to achieve minimum mean-square error. 
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These and other papers on the various algorithm on the convergence of adaptive 

equalizers can be found in the references [16] to [22]. In the following section the 

steepest descent algorithm will be studied using a constant step size parameter. 

V.2 The Steepest Descent Algorithm 

This section concentrate on the steepest descent technique to solve Equation 

(3.15) iteratively to find the optimal tap values. The convergence and the stability 

of the method will be discussed. 

V .2.1 Performance Surfeee 

The adjustment algorithm attempts to find the minimum of the mean-square 

error as a function of the tap weights. First, one begins by choosing an initial 

set of values for the set {en} of tap gains. The gradient vector is measured, and 

the next guess is obtained from the present state of weights by making a change 

in the tap vector in the direction of the negative of the gradient vector (in the 

opposite direction of the gradient vector). If the mean error square is reduced with 

each change in the weight vector, the process will·· converge to a stationary point 

regardless of the initial choice. 

In Figure 5.1a view of a. two-dimensional (two ta.p} quadratic performance 

surface is shown. The mean-square error is shown as along the z-a.xis and the 

other coordinates are the two tap coefficients. The·ellipses in the figures correspond 

contours of constant mean-square error, spaced at equal increments. The gradient 

must be orthogona.l to these contours everywhere on the surface. In the following 

figure ( Figure 5.1a ) the series of small steps of the tap ~oefficients incremented 
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Figure 5.1 Steepest Descent Method. 
a- Ouerdamped case 
b- Underdamped case 
c- Unstable case 
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by the discussed algorithm is shown, where the initial point is picked up for zero 

tap weights, and the small increments form a smooth curve. Figure 5.1b is a similar 

plot for a larger step size where convergence is more oscillatory, where as in Figure 

S.lc a much larger step size is used, the stability of the equalizer is lost (stability 

criteria will be discussed later in the chapter). From the starting point, each step is 

taken normal to the error contour. It will be shown later that the weights undergo 

goemetric transients in converging towards the surface· minimum. 

From the above discussion we can set the following equation as a ditierent form 

of equation ( 5.1 ), 

(5.11) 

where 3A: is a parameter controlling the step size and i'1 .. is the gradient vector, 

(5.12} 

where 

(5.13) 

Now the tap coefficient adjusment algorithm is of the form, 

(5.14) 

Which can also be written as 

{5.15) 



where .6~: is the step size parameter (equal to 2sA:), A is the correlation matrix of 

the input sequence (on the assumption of ra: and d~: are stationary sequences). The 

solution is 

- -1-C,t =A a. (5.16) 

The conditions for convergence of the taps can be derived easily after the following 

coordinate transformation. 

V .2.2 Coordinate Transtormat1on 

In order to decouple the tap coefficient adjusments we will define the transfor-

ma.tion, 

(j-A p (j (5.17) 

where P is an orthonormal matrix which diagonalizes A. This transformation is 

equivalent to a rotation of the coordinate system, 

(5.18) 

and A is the diagonal matrix of the eigenvalues of >.1 of A .:Then, 

(5.19) 

In Figure 5.2 a feedback model for this adjusment algorithm is shown. The optimum 

decoupled weight vector can be written as, 

-, -1 -
Co,t =A Pa (5.20) 
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Coefficient AdjuBment. 
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0 We will also define the tap coefficient error as, 

(5.21) 

Y .1.1 Converpnee end Stebmt, of la •d C 

From equation (A.I.3) which is repeated here, 

(5.22) 

we get 

re1'f = leoptl2 + hf A ~. (5.23) 

In the iterative form suitable for adaptive equalizer, 

- -
h~s:+t = h~s:- ~~s:Ae~~:r~~:. 

Defining 

(5.45) 

we have, 

(5.26) 

Note that, 

e~~:r~s: = 0, (5.27) 
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c which leads to 

(5.28) 

We will also restrict ourselves to a constant step size i.e. 4~~ = 4. This gives us for 

each ; , ; = 1, •..• ,M, the z-transform of the ;'th tap weighting error as 

(6.29) 

Th·e limit as 11: """'oo of IH;(A:)I is zero if and only if all of the poles of H;(z) are within 

the unit circle in the complex z·plane. 

If 

lim lh;(l:) I = 0 
l:~oo 

(5.30) 

then, 

(5.31) 

The criteria for the convergence and the stability can be derived as follows. For 

the positive· definite autocovariance matrix A, we have uT Au > o, for all u. Then 

from Eq.(5.15) by subtracting Copt from both sides 

. 401:+1 = 40~:- 4A40l 
=(1-4A)40~: 

Making use of the coordinate transformation and the definition in Eq.(5.21), 

For each of the decoupled components 
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i = l, ... ,N (5.34) 

where >.i is the ith eigenvalue of A. For convergence, 

(6.35) 

for all le and i, which leads us to choose the step size acording to 

lt- ~>.;I < t. (5.36) 

Considering the maximum and the minimum values of the eigenvalues, and choosing 

a step size of, 

(5.37) 

we get, 

(5.38) 

Therefore a step size in the proper range will lead to convergence of the mean tap 

values in the limit. Convergence in the mean does not depend on the number of 

taps. If the mean square convergence is considered, stability does depend on the 

number of taps[Mazo]. The convergence rate and stabilty is directly related to the 

choice of A.. Relating this to the channel response, if the channel response is fiat 

(the spread of the eigenvalues of the A matrix is small) the convergence will be fast. 
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V.S Excess Mean-Square Error (e~) 

The measurement of noise in the recursive algorithm discussed above has a 

mean-square error value that is proportional to the step size parameter (t.). The 

noise in the tap updating procedure due to the use of estimates rather than the 

true value of the gradient components causes random ftuctuations in the tap gains 

about their optimal values. This leads to an increase in the mean-square error at 

the output of the receiver. Thus the steepest descent algorithm will converge to· 

e2min + e~, in the mean-square sense, where e~ is the variance of the measurement 

noise. 

The increase of MSE above the minimum achievable mean-square error due to 

the estimation noise has been named "excess mean-square error", [Widrow 1966]. 

Since the amplitude of the random ftuctuations of the ,-tap gains increase with an 

increase in the value of the step size, one has to be careful in choosing this parameter. 

A large step size will give a rapid adaptation, yet result in a higher excess MSE. 

At any instant, using the set of { cn}'s we can write, 

2 2 --H --
e = emin + (C- Copt) A (C- Copt)· (5.39) 

Using the coordinate transformations introduced earlier we have, 

e
2 = e;.in + E An IC~- c~ optl

2
• (5.40) 

n 

Where >.n are the eigenvalues of A. The average of the increase in the MSE due to 

random ftuctuations of the tap gains about their optimum values is given by; 

e~ ~ L >-n!C~- c~ optl2 (5.41) 
n 

- 50 -



0 Complete derivation of the computation of excess MSE using the signal and 

system parameters can be found in [Proakis and Miller, 1969]. The excess mean-

square error is 

{5.42) 

Note that .excess MSE is directly proportional to the nun ' ~r of taps and the step 

size. This result is collaborated in our simulation results presented in the next 

chapter. 

-51-



CHAPTER VI 

RESULTS 

This chapter is devoted to simulation results. The compuison of the equalizers 

on the basis of their convergence properties follows the description of the methodoJ.... 

ogy used. A study of the dependence of the step size and the number of equalizer 

taps is included. 

VI.l Description of the Simulation 

The digital adaptive fractional-tap equalizer was simulated using a computer 

program. The program takes in the fraction of the symbol spacing, T f N, the overall 

system response (including the reference point), then the desired channel response 

(expressed in terms of the impulse response) is entered. The following transmissi.on 

and equalizer characteristics are also entered: signal-to-noise ratio, size of input al-

. phabet (only a binary alphabet is used for this particular study), number of taps, the 

subscript of reference tap (the program. enables the user to change the particular 

hybrid tap configuration), and the proportionality constant used in incrementing 

the tap coefficients. Note that in order to keep the excess mean-square error ap­

proximately constant for configurations with different numbers of taps the step size 

is made to vary with number of taps. Also, the number of training and transmitting 
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symbo1s are specified. 

With the above input. values, the program computes the· channel autocovariance 

matrix A and finds its eigenvalues. The optimum tap coefficients are calculated by 

solving the simultaneous equations of (3.16). The optimum MSE is found using the 

calculated optimum tap values. The tap coefficients are initialized (normally all 

zero or to the optimal values for checking purposes), the symbo1s and the noise 

components are generated using random number generating routines using the 

system time base to randomize the starting point. Every sample value is convolved 

with the overall system response, summed up with the noise component and passed 

through the equalizer. The output of the equalizer is decoded and the taps are 

updated using the steepest descent method. All the relevant data, such as the 

particular hybrid tap settings, eigenvalues, optimal tap values, and the errors at 

the output are stored for further analysis. Also, the output MSE after every ten 

iterations, the calculated MSE using the optimal tap coefficients, the convergence 

of the reference tap values, were utilized for plotting the necessary graphs. 

Another program was a1so set up in order to find the optimal tap placings for the 

hybrid configuration, where all the possible hybrid configurations were generated, 

the optimum MSE was calculated, and for each additional tap, the minimum and 

maximum MSE's along with the particular tap configuration used were recorded. 

The results were used in choosing the placement of the additional taps. 

The results displayed in this thesis are the outputs of the simulations using the 

two different channe1s which are selected from the papers [Ungerboeck],[Proakis]. 

In the rest of the chapter the channel responses will be referred as one (I) shown in 

Figure 6.1a, and the other (11) in Figure 6.lb. These channel responses have been 

interpolated in order to obtain the intermediate samples. 
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VI.2 Comparison of the Equalizers 

In Figure 6.2, the relation between the minimum achievable MSE obtained by 

directly solving (3.16} and the time span of the transversal,equalizer is displayed for 

a T /2-spaced equalizer. One should notice that the practical adaptive equalizers have 

a higher MSE because of the excess mean-square error due to the noisy estimates in 

the tap updating algorithm. This excess men-square error is a function of the step 

size parameter and the number of taps. We shall discuss these two points later in 

this chapter. A similar plot was obtained for channel (11). These results show that 

an equalizer time span of lOT ( 20 taps ) gives good results for both channels (I) and 

(11) • 

When different number of additional taps are inserted between the taps of the 

T-spaced equalizer, it has been observed that the p~ticular placement and the 

number of additional taps play a considerable role in the minimum MSE. The best 

and the worst MSE limits for every combination of the same number of additional 

taps were calculated, and a plot is obtained for an equalizer spanning lOT with 

zero to ten additional taps. Although it seems that every additional tap reduces 

the MSE, it should be apparent that the best placement of the additional taps is a 

major concern. Since in most practical applications this information is not available, 

a reasonable conjecture is that additional taps should be placed around the reference 

tap. To test this, we have calculated the mean-square error when the additional taps 

were clustered around the reference tap. In Figure 6.3, these results are plotted for 

channels (I) and (ll) respectively. The optimum and worst ease tap placements are 

given in Tables 1 and 2. It can easily be observed that the mid-tap~ are very good 

approximations for the optimal hybrid equalizer configurations for both channels. 

Therefore placing the additional taps around the reference tap seems to be. a good 

choice. 
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Channel (I) 
Number of MSE 
Additional Taps (in dB) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Best MSE= -47.4 
Mid Tap MSE= -47.4 
Worst MSE= -35.3 

Best MSE= -60.4 
Mid TapMSE= -55.0 
Worst MSE= -35.5 

Best MSE= -65.3 
Mid Tap MSE= -59.2 
Worst MSE= -37.8 

Best MSE= -69.0 
Mid Tap MSE= -60.1 
Worst MSE= -39.7 

Best MSE= -71.2 
Mid Tap MSE= -66. 6 
Worst MSE= -41.3 

Best MSE= -71.4 
Mid Tap MSE= -66. 9 
Worst MSE& -42.1 

Best MSE= -71 ;4 
Mid Tap z.!SE= -71.3 
Worst MSE= -43.3 

Best MSE= -71.4 
Mid Tap MSE= -71 • 3 
Worst MSE= -51.2 

Best MSE= -71.4 
Mid Tap MSE= -71 .4 
Worst MSE= -63.8 

Best MSE= -71.5 
Mid Tap MSE= -71.5 
Worst MSE= -71.5 

Tap Placements (*) 
(Hybrid T/2 taps) 

0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 

0 0 1 1 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 1 

0 1 1 0 0 0 1 0 0 0 
0 0 0 1 1 1 0 0 0 0 
1100000001 

0 1 1 1 0 0 1 0 0 0 
0 0 0 1 1 1 1 0 0 0 
1101000001 

0111101000 
0 0 1 1 , 1 i 0 0 0 

01000011 

1 1 1 1 0 1 b 0 0 
0011111100 

0 1 0 0 0 1 1 1 

1 111 1000 
0111111100 
1101010 11 

1111 11100 
0111111 10 
1101011 11 

, , , 1 
, 1 1 1 

, 0 1 

1 0 1 
, 1 0 

1 
1 

1 1 1 1 1 
1111111 
1 1 1 1 1 1 1 

Table Minimum MSE Limits and Optimum Tap Placements (I) 

(*) The notation indicates the placement of 
additional taps betweent the T spaced ones. 
A '1' indicates the presence of an additional tap. 
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0 

$ 

Channel ( II) 
Number of 
Additional Taps 

2 

3 

4 

5 

6 

7 

8 

9 

10 

MSE 
(in dB) 

Best MSE= -64.4 
Mid Tap MSE= -64.4 
Worst MSE= -50.5 

Best MSE= -75.9 
Mid Tap MSE= -70.1 
Worst MSE= -59.3 

Best MSE= -80.8 
Mid Tap MSE= -76.3 
Worst MSE= -64.9 

Best MSE= -82.0 
Mid Tap MSE:o:: -80.8 
Worst MSE= -67.4 

Best MSE= -82.7 
Mid Tap MSE= -81.5 
Worst MSE= -70.2 

Best MSE= -83.4 
Mid Tap MSE= -82.7 
Worst MSE= -73.4 

Best MSE= -83.9 
Mid Tap MSE= -83.0 
Worst MSE= -75.2 

Best MSE= -84.2 
Mid Tap MSE= -83.6 
Worst MSE= -77.5 

Best MSE= -84.4 
Mid Tap MSE= -84.4 
Worst MSE= -80.6 

Best MSE= -84.4 
Mid Tap MSE= -84.4 
Worst MSE= -84.4 

Tap Placements (*) 
(Hybrid T/2 taps) 

0 0 0 0 1 0 0 0 0 0 
0 0 0 0 , 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 , 

0 0 1 1 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 1 

0 1 , 0 0 0 1 0 0 0 
0 0 0 1 1 1 0 0 0 0 
1 1 0 0 0 0 0 0 0 

0111001000 
0 0 0 1 1 , 1 0 0 0 
1 1 0 1 0 0 0 0 0 1 

011 101000 
001'1111000 
1101000011 

11~1101000 

0011111100 
1 0 0 0 0 1 ~ 1 

1 111 1000 
0 111 1100 
1 0 0 1 0 1 

1111 11 
0111111 

1 0 0 1 1 

0 0 
1 0 
1 1 

, 1 1 , 0 , 

~ 111110 
0 1 1 1 1 1 

1 1 1 1 
1 1 1 
1 , 1 

Table 2 Minimum MSE Limits and Optimum Tap Placements(II) 

(*) The notation indicates the placement of 
additional taps betweent the T spaced ones. 
A '1' indicates the presence of an additional tap. 

-57-



0 

CD 
0 

0~----~----~----------~----~-----. 

-~0~----~----~10------~----~20----~----~~ 

NUMBER OF TAPS 

Figure 6.2 Minimum achievable MSE ver8u8 time 
span of the filter. 



0 

ID 
0 

-60 

w -70 
l/) 
L 

a- Channel I 

optimum placement 

ADDITIONAL TAPS 

~0~~--~--~--~--~--~------~~~~ 
b- Channel 11 

m 
D 

-60 

-70 

W -eo 
V1 
1: 

2 

centered taps 

optimum. placement 

6 8 10 

ADDITIONAL TAPS 

Figure 6.9 MSE limits tJB Additional Tap Placement. 



c Yl.2.1 On the Convergence of the T-Spaced, T /2-Spaced and HTEs 

The correctness and the accuracy of the simulation methodology was checked by 

comparison with the theoretical expectations and with the results of similar simula­

tion carried out by [Ungerboeck] and [Proakis]. The convergence of the adaptive 

transversal equalizer was: studied using a signal·to-noise ratio of 30 dB which is a 

realistic value for the existing telephone channels [Lucky, Salz, Weldon]. A step size 

of 0.05 was used for a 20 tap equalizer, and the step size· parameter is increased 

as the number of taps is reduced. Later in the chapter we will justify the inverse 

proportionality of the step size to the total number of taps. 

In this section, the time span of the equalizer is kept. at lOT, and additional 

taps are inserted in the conventional T-spaced transversal equalizer. AB can be seen 

the hybrid and the full T /2 equalizer have a tendency to reduce the MSE even 

after 2000 iterations. An important factor to be noticed is that after the first 20 

iterations the equalizer is ready for decision feedback equalization, as the error 

rate reduces drastically at this point. In the T-spaced case, the optimum MSE is 

reached in about 400 iterations for both channels. The fractional T /2 case has a 

· much smaller minimum achievable MSE. In order to see the hybrid effect, only one 

tap was inserted in the T-spaced equalizer (Figure 6.4). But when three or four 

taps are inserted (the placement of which are explained above) the hybrid equalizer 

performs essentially aa well as the T/2 equalizer, except with a slight offset MSE (see 

Figure 6.5). The results indicate that the convergence rate of the hybrid equalizer 

is similar to that of the T /2-spaced equalizer, particularly with respect to the initial 

decrease of the mean-square error. The performance of the hybrid equalizer falls 

in between the conventional and T/2 equalizer. For the channels simulated in our 

experiments it is seen that three-additional-tap hybrid equalizer performs nearly as 

well as the T/2 case, which has seven more taps than the latter. 
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Vl.3 The Exc:ess-MSE(el, ) and the Stability Limits 

VI.S.l Minimum MSE versus Number of taps 

In this section, we show that-, as the number of taps are increased, the noise 

due to fluctuation of the additional taps increases the MSE. One of the reasons 

for this phenomenon is the tap coefficient updating algorithm. The tap fluctuations 

about their optimal values in the tap updating procedure are due to the use of 

noisy estimates rather than the true gradient components. This leads to an increase 

in the mean-square error at the output of the receiver. As the optimum MSE is 

approached, the amplitude of the fluctuations increases. The above mentioned effect 

is shown in Figure 6.6(a,b,c) where 20, 40 and 50 tap equalizers were simulated, and 

5000 training iterations were carried out to determine the. steady state excess MSE 

for a constant step size. The fluctuations are most noticable in steady-state when 

these plots are studied. From the simulations it is apparent that the excess MSE is 

nearly proportional to the total number of taps. 
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YI.S.2 Etreets of Step Size on Excess-MSE and Stebii'II:J 

The step size is a major concern for the optimization of the system. Although, a 

fast convergence is realized with a larger step size, the fluctuations (excess MSE) are 

considerably more at the later portion of the operation. If the step size is large (the 

absolute size is determined by the number of taps and the channel noise level) it has 

been observed that the equalizer is unstable, and that it diverges from the optimal 

values after a few iterations (Figure 6.7). This represents a serious breakdown for 

a det~ision-directed operation where the equalizer is in the receiving stage. In the 

following figures only the step size of the equalizer has been changed. In the first part 

of Figure 6. 7 a step size of 0.05 has been used and resulted in a smooth convergence 

and a steady minimum MSE. In the other two cases step sizes of 0.10 and 0.16 were 

used. Although this results in a faster rolloff in the beginning, larger step size gi.,res 

rise to a higher steady-state mean-square error as well a8 the fluctuations about the 

optimal tap values have large peaks compared to the step size of 0.05 case. 

The same simulation is also carried out when the number of taps were changed . 

from 20 to 30 to 40 in order to see the constraint on the step size for stability. AP. 

seen in Figures 6.8 and 6.9, it can be observed that for different number of taps the 

equalizers show the following results; (i) For a larger number· of taps the step size has 

to be smaller for a. smooth performance, (ii) The equalizers with fewer number of 

taps can use a much larger step size giving a more rapid adaptation. The maximum 

step size is determined by the total number of taps which is determined by the 

stability limit. 

The simulations carried out in this chapter have been done using the two 

channels. The results for channel ll have not been included as they show similar 

trends. In the next chapter, we present a general summary of the thesis as well as 

the conclusion derived from the theory, expectations and results. 
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SUMMARY and CONCLUSION 

In this thesis we introduced a; generalized digital transmission system and then 

studied the optimization of such a. system. A receiver optimization strategy is chosen 

because the channel characteristics and the behaviour of noise is in general unknown. 

Thus we started analysing the receiver and came up with a suboptimal realizable 

receiver. This involves a low-pass filter, a transversal filter and a. decision unit. 

Once the form of the system is known, the low-pass filter and the decision unit 

are placed in the receiver. We have concentrated on the transversal filter section 

of the receiver. The weighted sums of the past and future samples (relative to the 

reference tap) of the signal are available at the output of the transversal filter. 

The elimination of intersymbol interference can be handled once the tap weights 

of the transversal filter are derived. Inorder to find these tap coefficients we have 

selected to minimize the mean-square error. This led to a derivation of a generalized 

equalizer model which has arbitrary tap positions. This analysis was used when the 

particular equalizers were studied, the T-spaced, T /2-spaced and the hybrid cases. 

We have tried to extract the properties of the above mentioned equalizers considering 

their frequency responses, the autocovariance matrix and their eigenvalues, and the 

mean-square error. For each case the equalizer is assumed to be infinite. 

The algorithms that can be applied to find the tap coefficients iteratively were 

introduced. The steepest descent method was discussed and used in the simulations. 

The convergence, the stability constraints were also discussed. The dependence of 
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the number of taps as well as the step size to the convergence behaviour of the 

equalizer was shown. One of the variables namely the excess mean-square error was 

derived to prove some results. 

The simulation results showed the benefits and the limitations of the three 

equalizers studied. It has been observed that the step size is an important factor in 

stability and the convergence of the equalizers. When a small step size is used, the 

convergence to the optimum ta.p settings is reached very slowly, and the fluctuations 

around the minimum mean-square error is small. A larger step size gives rise to a 

faster adaptation yet it has a considerable excess mean-square error at the steady 

state. It is also apparent from the simulation& that the number of taps has an 

important role in the performance of the. adaptation behaviour of the equalizers. 

The step size and the number of taps are directly :related in the performance. 

When the number of taps is large, the excess mean-square error increases, and for 

particular conbination of step size and number of taps, it is shown that the equalizer 

is unstable. Which in turn shows the inverse proportionality between the step size 

and the number of taps. The superiority of the hybrid type equalizer comes into 

effect at this moment. Since the convergence rate depends on the step size, one can 

obtain larger step sizes than T /2 case since in has less number of taps for the same 

times pan. 

Therefore the final word we will state is that the hybrid equalizer has most of 

the properties of the T /2 spaced equalizer in terms of convergence, and superior in 

terms of stablity. Also having less number of taps reduces the excess mean-square 

error as well as the complexity of the system. Although we have not studied the 

effects of the sampling phase when a hybrid equalizer is used, the study by Nattiv 

shows that it is much less dependent compared to the conventional equalizer. 
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APPENDIX 

A.l The Derivation of Equation (3.16) 

We start from the mean of the square error, as in equation {3.15) 

(A.l.l) 

Making use of the vector notations defined in the related sections, one obtains 

(*) 

By defining the following matrix and vector 

-A--­
n -:- z~~: d~c *, 

the result of the above mean-square error term is of the following form 

(A.1.2) 

(A.1.3) 

All of the vectors in the above equation are complex, i.e. a= Re{O} + ;Im{O}. To 

minimize the mean-square error fef term with respect to a ' we have to differentiate 

it with respect to Re[c~c] and jlm[c~c] for every k. We define complex functions that, 
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(A.1.4) 

= 2Re(AO)- 2Re(a) + i(-2/m(a) + 2/m(OA)) 

=2A0-2a. (A.1.5) 

Setting the derivative to zero, 

Then, Oopt = A-1ti and the minimum mean-square error can be written as 

(A.1.6) 

0 
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A.2 The derivation of Equation(3.20) 

The input signal to the receiver is 

z(t) = L a,.h(t- nT) + n(t). 

Inserting the above equation. in {3.17) we get 

AA.,r = E:Eal"ai h*[(k- D,. -i + j;lTJ h*[(c-Dr- i + j;lTJ 
i i 

Using the definitions 

..,. (' ')A-.-
'~"a.a. '- 3 = a i a;, 

A T T 
+nn[(D,.- Dr)T] = ','*[(k- Dre- T)T]n[(k- Dr- T)T]. 

and letting m = i- i and n = k- i, we get the following. 

AA.,t = L cf>aa(m) L h*[(n- m- D,. + f)T] 
m " 

T 
h[(n- D1e + T)T] + cf>,.,.[(D~e- Dt)T]. 

(A.2.1) 

(A.2.2) 

(A.2 3) 

The derivation of equation (3.20} is shown above. Equation (3.21) can also be derived 

using the same steps starting from Eq. (3.18). 
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A.3 The derivation of Equation (3.26) 

Starting with the transform definition 

l
+oo 

h(t) = -oo H(/) exp(jb:ft) df, (A.3.1) 

we substitute it in equation (A.ll-3). By using this substitution and by carrying out 

the integrations first and then summing over m and n, we come up with 

r+oc r+oo 
A= }_

00 
)_

010 
H(/)H(>->:~:::: +..,.(m)exp(j2"'/mT) 

m 

Eexp(jbn(>. -I)T)exp(-jb:(/- >.)r)exp(jb/Da:T)exp(-jb>.DrT)] d>. df +o!6t,t 
n 

(A.3.2) 

Define the data source power spectrum as 

(A.:t3) 
m 

also 

E exp( -j27r(/- X)Tn) = -j ~ 6(>. -I- ~). (A.3.4) 
n • 

Using the above equations, if the integration is carried out on successive interva.ls 

of length 1/T, we come up with 

.L 

A~o,t = ~ t: H!,(l)• H~,(l) +..,.(!) d/, 
T 

which is equation (3.25), where 

H~, tl. ~H(I + ~)exp(-jb:(/ + ~)D,T)exp(jb:~), . . 
is the Nyquist .equivalent for H(/) exp(jh'ft). 
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A.4 Proof of Theorem 1 

Proof: 

Assume that >..A is an eigenvalue of A matrix, and that u is its corresponding 

eigenvector. By definition 

(A.4.1) 

Note that 

(A.4.2) 

Inserting the definition for A, we have 

(A.4.3) 

which can be put in the following form, 

(A.4.4) 

Now, defining 

(A.4Ji) 

which gives, 

(A.4.6) 

When the .-transform of qa, , Q(/) is computed around the unit circle in the z-plane 

then 

Q(l) = U(J) x.,(l) (A.4.7) 

For X"(/) defined as before 
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0 

x.,(l) = Exu +ifT). 
i 

By using Parseval's theorem and Eqn. (2.9), 

Since we were given that . 

We get 

+ifr 

lq~: 12 = o-! J U(l) H119(/) d.f 

-if. 
+iT 

= AA f U(/)12 tlf. 

-if. 
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(A.4.9) 

(A.4.10) 


