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Abstract

S"\"l'r,,1 "'1ui\.ti"lIt "ppro"ch", to pow('r domain, are pre,ented: the natl:rality of

lhi, cUllcept for denotation,,1 semant il" is ,I.rcssed and its modal intel'pr.etation

i, ,·xplained. We ,ho\\, how to sol\'e (''1uations in\'oh'ing po\\'erdomains and apply

II .., I.h<'Ory 1.0 an equation that leads to a characterization of bisimulations, Power

lorales are introduced. as the analogue of both power domains and power spaces.

\'ù study t.he mOllads defincd by the power locales. tlleir aIgebr<U' and the points

of t.he po\\'erlocalcs.
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Résumé

On pr('seutC' plusieurs approche:-; t··<jui\·alt·nts Ù la noti\Hl c1t' dlHllain {l,·s P;ll"­

tiC:". On essaye de tllt")lltfl'r quïl s'agit <full couet'pt natllt",,1 pOllf I~l :"t"UlaTltiqw'

dénotationnelle ct on ell donne ltUt' interpn;t.ation modalt'. Ou tllont,f(' nHIl­

nlent résoudre des équat.ions contenant If' d.,)Inain des partil'1" t't. oll appliqtlt' c(,n,'

théoril" à une équation qui conduit. ;l une charact(;rizatioll dl~ hisililulat.iolls. Les

locaux d~ parties sont introduits~ cn tant qUè ~trtlcturl' ('ql1ivalt·ut.(' aux dOll1aills

des parties ct aux éspaccs des parties. On étudie les llIonad..s d'·fini,.,; par l..s

locaux des parties. leur algèbres ct les points de.,; locaux des partit.,;.
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Introduction

Power dOtllains and power locale::; arc tlscd in Cotnputcr Science 1.0 gh'c a senlan­

tics to non-dcterminisll1 ([SLG. VicS9]) and to modcl data-bases ([\ïc92]). There

are three well-established "ersions of power domains. named after Smyth. Hoare

and Plotkin: they correspond. respecti\"(~ly. to the Smyth. Hoare and Vietoris

power locales.

Power locales also have a mathematical interest of their own. since the Vietoris

power locale stems from the theory of hyperspaces. More reccntly. ?..1. Bunge

([Bun95]) showed that the symmetric topos (the topos-theoretic analogue of the

Hoare power locale. sec [BF96. BC94]) classifies distributions on a topos (a gen­

eralization of the classical notion of distribution for a topological space. sec

[Law92]).

This thesis intends to show how naturally the concepts of power domains and

power locales arise when trying to give a semantics to non-determinism. 'vVe are

reassured in this conviction also by the fact that there is no theoretical overhead

when solving equations involving the power domains. As example. we present

an cquation in which the Plotkin power domain appears and which leads to a

characterization of bisimulations. We also study the monads that derive from the

power locales. This serves a double purpose. On one hand the monad defined by

the Vietoris locale is the localic version of the classical Vietoris monad and henee

it is of interest for the study of uniform locales. On the other hand the Smyth

l
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and lIù<u'{' llll)llttd~ di~pl<lY a n'nl~lrk;lhlt' :-:YlllIlll't l'y: ;\ ,~lllld Illldt'r~t ;llldi!l,~ ll( 1 hi:-:

faet ~hOllld !t'ad to ail <.lXilll1l<lt il' t!lt'l)ry (lI' Ihl\\"('r l11c;I1t':-'.

The lir~t power dOlllain to appl'ar ill l\ll11putl'r ~ci('lIù' wa=-- Pllltkill'~ \[P1\17ti.

Plo:Sl]) and wa..... an l'lahoratioll of an ddt'r (un:->trllctitHI dut..' hl 1':~li alld :\Iilllt'r

([~Iilï:;a. ~Iilï:lbl). lt W<l.s rather ill\-oh-ed and wo,kl'd "llly f,)r liaI l'0,l't,_ l'hi,

\Vas clearly an unsatisfactory rl'sult. SiIH..'(' the ;-;illlph·:-;t structure 1,)[ illh'n'st ft)!"

setllantics is the one of conlpIctt..· partiall)rdcl" (l'po. i.l', ~l IhJsl't, Wlll'ft· any din'ctt'.J

subset h", a join). Plotkin's idea W<l.S ,treall1lillt'd by SillYth ([Slllyï~j) who ab"

inlroduccd another power domain. His construction works for ...:-doll1ains li.,'.

algebraic cpo's: a!gebraic means that. ,'\'ery d"nlent is the dirt'ct.,'d join of t.h,'

dements that are bdow it: ~. means t.hat the set of compact dell1l'n!.s of t.1t"

l'pO is countable). In §l.! both power domains are pr('Sent.e<1. t.ogetl1l'r with th,·

Hoare·s. following the approach of [5LG]. They are constructl'cl out of rooted

trees. whose nodes correspond to the non-deterministic featllres of t.h,' program.

Then it is shown how they l'an be obtaine<! simply by t.aking the completion by

ideals of the c<)l1ection of finite non-empty sets of compact dements (of a givl'n

domain), endowed with a suitable order. The l"'t characterization allows to

treat equations involving the power domain constructions with the same method

for sol\'ing equations bascd on D. 5cott's ~Limit-Coli,n;~J:;oincidenccThL'Orem~

([5co;2]). The general theory ([5P82, 5LG]) is pres~nted in §1.2.1. However the

category w-Dom of w-domains, in which we have bcen working up to now, is not

the most suitable from the point of view of denotational semantics, since it is not

cartesian closed. We l'an restrict our attention to the largest cartesian closed full

subcategory of w-Dom, known as SFP ([5my83]). Its objects, the 5FP-domains,

are exactly the colimits of w·chains of the kind {Dn ~ Dn+dneN where the

Dn's are finite posets and the maps en are embeddings. SFP appears to be the

right ambient for denotational semantics, since this category is close<! under ail

2
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dll' lI:"ll.:d lJ!>,'r;\l io!J:-; itIld lllldt'f t Jl(' jJO\\'('r c!oIlIain roll~t l'urt ion:". III ~~ 1.:2.:! 1spdl

ollt IIll' dt,tails for t'qllations in _'·Dom alld SFP iI:\'oiviIlg the po\\"t~r domains

([SP;-'::!. SlIlyïKj) étrld apply thi:-; iIl ~il.:!.:~ to ~he ~tl1dy uf a particu!<tr l'qllatioll.

,,!I;1f C;tll 1", Il:-:('<1 to gin' ft r1taractC'rization of bisiIl1ulatioIlS ([:\br91]). Let Ils

n'lllark al t.his puint that sen.-'ral a.xiornatic approaches to dOIllaiii t.heory ha\"e

1"'('11 d<'v,",oped by 11011' ([lIyI91, RosS6. Fi09.1]). They pro\'ide the right scuing for

discIIssillg partial IIlaps alld the notion of passage to the limit. However. none of

them captllres lllodality. This should perhaps be a subjeet of future in\·estigation.

The connection of power domains with Computer Science was made more explicit

by \Vinskcl ([WinS5]): using the operators of possibility and ine\'itability he gave

a modal interpretation of power domains (§1.:3).

One year later Robinson ([RobS6]) gave the localic analogue of Winskel's modal

cOllstructions. He showed how the power locales so obtained l'an be considered as

a generalization of power domains (§2.1). They are also the localic counterpart of

power spaces. introduced by 5myth ([5myS3]) in his approach to non·determinism

via multi\'alued functions (also in §2.1). 5myth's work relies on the theory of

hyperspitces. i.e. spaces made up from subsets (see [NadiS, !vIcAiS]). which

goes back to Vietoris ([\'ie22J, itself based on the Hausdorff metric, see [Hau14]).

This theory has been used by lsbell when studying uniform spaces Wsb64]) and

later on uniform locales ([lsbi2]). lnc!eed, the quest for a hyperlocale was one

of the reasons that led Johnstone to the definition of the Vietoris monad on the

category of compact regular locales ([JohS2, pp Ill-lIS]) and then in [JohS5] to

its generalization to Loc. l present it in §2.2 together with the monads generated

by the other power locales. In the same article he also pointed out constructive

difficulties in the charaeterization of the points of the Hoare and Vietoris power

locales. Later, in [JohS9], he introduced the notion of weakly cl~sed sublocale
~

(the natural generalization of closed sublocale, from a constructive view-point).

Using this notion, Bunge and Funk were able to identified the global points of

3
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; lit' Ihl,Ht' PU\\'t'f ]uc;dt' tIf ;1 It1(';dt' 1) Wil il 1hl' \\"('akl.'" t"111;-.,'d sllh!p,';I1(':-' tif 1) \\"11 li

O/Jtfl dornalll \;BF~\l;;I. .-\f1t·r\\";lrd~ \ï,'kt'r:-; 1,:\ï,·~l.-111:' ~;I\'l' d ;:llilit·d \(':'",ilill llf

tilt' t'xi:-;till~ cOIl~trllrti\'t' pl\\llr~ ;md phl';l.:";t·d lhl'Ill il! Ill!' ,t'llill~ Pl' ~t'lIt'r;di:\'d

tratller theu jt1~t ~,dohall pllinb ts:2.:;). \ï,'kt'r:-- ha:' hl,t'Il pll:,hill~ fllrw;lrt!:-; Ihis

arguIllL'Ilt. lIt.' :--ltowl'd lhat :,uhh.H:all':' with \)!ll'II d\)fll~lills alld :'ldIIIIC;tlt'S wilh

compact domaiT1 (nl'Cl'~~ary in tbl' char'H:tt'rizatillll 'Jf tht' P"ill!:-- llf 111,' :-\111."111

power locale) are 1\\"0 it1:-:taIlCt'~ of tht' Stlltlt' Ùllh.'tï1! d\ïc~l;}<t]). l'lIis is tilt' lir:,!

stl'p towards an a...,iolnatk apl_,roarh tu Po\\'('r local,' thl"\lry. that :-otil1 ha~ t\) Iw

c!e\"(·\opec!.

4
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Chapter 1

Power Domains

1.1 Towards the definition of power domain

In this section we show how the power domain construction arises naturally when

trying to give a semantics to non-deterministic programs ([SLG, ch. 11]).

Before starting, let us quickly re~;ew sorne basic notions for doing program se­

mantics ([SLG, ch. 1-2]).

Definition 1 Let D be a poset with a bottom element. We say that Disa

complete partial order (cpo) if allY direeted subset A of D has a supremum VA.

Computationally, we should think of x S Y (x, Y E D) as ~y has more information

of x", or ~x is an approximation of y".

Definition 2 An element x of a cpo D is said to he compact (or finite) if when­

ever A is a direeted suhset ofD and VA S x then there is a in A such that x S a.

The set of compact elements of D will he denoted by Kpt(D).

The compact clements are considered as the concrete clements on which we corn·

pute. A result of a computation, however, can also be denoted by an arbitrary

5
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clement. prO\'ided that t his l'an bt' St't'n as a join of finitc dt'm"nt" h,'n("('. t","n­

putationally. the situation is satisfactory. wlwn en'ry e!l'ment l'an b,· "','n in thi"

way.

Definition 3 A domain D is ail algcbraic ~po. i.e a l'pO f) il1 ll'hich. for .'1'­
eM) demel1t x. thc set approx(x) = {a E I\jlt(D) : 11 ::; x} is dil'retrd Ill1d its

supremum L-: x.

Remark. Some authors prefer to use the term domain referring to l'pO with a

richer structure. 1chose to use it to denote the minimal structure useful for doing

denotational semanties. \Vhen we do use a richer structure this is said explieitly.

For e-,ample in this section, unless otherwise stated, we will always work with an

""-domain, i.e. a domain whose set I\pt( D) of compact clements is countable.

Let us denote by P a non-deterministic program. Assume that l'very single partial

outcome of P l'an be represented by an element of D. When we run P, at any

time that the program has a choice we have a set of possible outcomcs: this givcs

rise to a rooted tree, labeled by the elements of D.

Definition 4 A tree Tisa poset (T,::;) such that :

• it has a least e/ement .L; and

• for any X in T the set of predecessors of x is finite.

The height of x, i.e. the number of predecessors of x, will be denoted by ux.

Definition 5 Let T be a tree, ( : T ..... D a monotone mtip. We say that (T, ()

is a generating tree over D.

The nodes of the tree thus correspond to non-de~erministicfeatures of P. It

seems reasonable to assume that at any stage there are only finitely many choices;

6
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tlwrefor<' in the folJowing our trces arc always supposed to be finitary branching.

The total olltcornes that we get running P can be represented by the limits of

t.he .,Jernents of D labeling each brandI of the trccs. With no loss of generality

we may "ssllme t.hat the branches ail h""e length .... (for. if there are branches

of finite length. we can "prune" them). Hence the power domain ought to be

defined out of the set

:F(D) = {T5 : (T, Cl is a generating trcc over D}

where TS = {Vre~((x) : Î' is a branch of T} is the element generated by the trce

(T,().

Remark that :F(D) contains any non-empty finite subset of D and that it is closed

under unions. Moreover, if 1 : D --+ D' is a continuous map (i.e. a map that

preserves directed joins). then I[A] = {f(a)la E A} is in :F(D') for any A in

:F(D). Indced, J[TS] = T!:' for any generating tree (T, () over D.

Since the compact elements in a domain D are considered to be the concrete

clements on which we can compute, we would like to label our trees using just

the compact elements of D. The following proposition shows that we can indced

do so, without any loss of generaIity.

Proposition 1 For any generating tree T = (T, () over D tllere is a generating

tree T' = (T, (') sucll tllat:

• ('[T] ç; [(pt(D); and

Proof Let a),a2.... be an enumeratioD of the compact elements of D. For any

Dode t of T, let At be the set

A.' ={ai E [(pt(D) : ai:S; ((T),i:S; u(t)} .

i
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('(1) :::; ((1). Use inductiu~on the height o"{I) of 1:

- for 0"(1) = a put ('(1) =.10:

- for 0"(1) > O. the induction hypothesis says that for any.- ill T sneh that (1"(._) <

0"(1). ('(s) is in J\pl(D) and ('(s):::; ((s). Theil. ifl' is the illlllll'diatepred"""ssor

ofl. A'U{('(I)} is afinites!lbset ofal'proJ'(({I)) = {a E l,j'I(D): a:5 ((1)) and

thercfore there is in approx(((I)) an upper bound a of .-l' U {('{I)}: dwose snch

an a and put ('(t) = a.

Then (' : T -> J\pt(D) is a monotonc map. hencc (T. (') is a gel:cratillg t.r~'t' ovcr

D. Moreovcr T~ = T~'. sincc for any branch , of T wc ha,'c V{((T) : t E i) =
V{('(T) : tE,}.

One inequality. namely

V{('(T): tE,}:::; V{((T): tE,}

is immediate from the definition of ('.

To prove the converse inequaIity, consider an an in J\pt(D) such that an :::;

V'e., ((t). By compactness of an, therc is t in, such that an :::; ((t) and sincc (is

monotone we l'an pick t so that we aIso have n :::; o"(t), i.c. such that an is in A"

By definition of Ç', we get an :::; ('(t) :::; V'e.,Ç'(t).

Since D is aIgebraic we l'an conclude that

V{((T): tE,} :::; V{('(T): t E """(}.

o

Consider the elements of the kind

T~ = {((x): x E T, o"(x) = n}

8
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(r,db! in th.. fuliowing the "tI'_lad of lhe Ircc 1') for (T.C) generating tree O\'er

{) and" any natural number. They denote the "tI'-step of a non-deterministic

cumputation: hence we would like them to be the compact clements of the power

dOlIlain and ta forrIl ascending dJains {T';}"eN with joiu gi\'en by 1';. This will

turt! out to be trlle (except for a minor adjustment).

Remark that the clements of the kiml T,; form the set

JIII(D) = {A ç l\pt(D) : :1 is finite and non-cmpty}

and that this set is colintable.

Several orders have bccn proposed for .:F(D). They lead to the thrce different

versions of power domains. Wc start by defining relations on JIII(D)x.:F(D) that

will be extended to orderings on .:F(D).

Definition 6 Define the relations ~i (i = 0,1,2) on J\4(D) x.:F(D) as follows:

for A in M(D) and S in .:F(D):

• A~oS if VxES.3aEA.a~x(Smythordering);

• A ~t S if Va E A. 3x EX. a:S; x (Hoare ordering);

• A ~2 S if .1 ~o S and A ~t S (PlotI..-in ordering).

Definition 7 For S, S'in .:F(D) let S ~i S' iff for any A in M(D), one has

A ~i S' whenever A ~i S.

The meaning of these ordering is clear. In the Smyth case A ~o S holds if

any possible total outcome represented by an clement of S cornes from a partial

outcome represented by an clement of A. In the Hoare case, A ~l S holds if

any partial outcome represented by an clement of A evolves into a total outcome

represented by an element of S. The Plotkin ordering is the intersection of the

previous two: therefore it is generally more interesting since it identifies fe\Ver

9
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progranls (sel' t.he dbcussiotl about "denlonic- and "angt'iic" l1llll-dt,tt'nnilli:--111 in

[\ïc89. ch. ll]l.

It is cl"ar from the definition that Çi arc rdkxi\'c and transit;\"(, r"iati,",,: sine..

in generally they arc not antisymnwtric. wc will consider II", o\)\"ions '1not i..nt.

Definition 8 FOI" S. S' ill F(D) Ici S =i S' iff S Çi S' alld S' ç, S.

The quoliCIII Fi(D) = F(D)/=i i", ealled Ihe i'" powcr domain of D(/ol" i = n. 1.:!

I"e$peclivc!y Ihe Smylh, }[om-e alld PlolkiT/ pOll'l'r domaiT/).

Remark that for (T. () generating trœ o\'er D wc ha\'e

• ifm < n then T' Co T"_ m _t n'

• for ail n in llJ one has T~ ç, T5

for i =0, 1, 2.

Actually we l'an show that T5 is the supremum of the chain {Tn..eN in (F( D). Çi

).

Lemma 2 Let (T,() be a generating tree over D. For any A in M(D), if A ç,

T5 then .4 ç, T~ for sorne m in llJ (i =0, 1,2).

Proof. Let us start with the Smyth case, i.e. for i =O. Let us verify the contra­

positive of the statement: if "lm E llJ one has A 160 T~ then A 16 T5. Wc will

show this directly by defining a branch 'Y = {tn : n E N} of T such that for ail a

in A one has a ~ V{«(tn)ltn E 'Y}.

For ail sET, define the property

Pts) iff "lm EN. 3t ~ s. (o"(t) ~ m and Va E A. a :z; «(t)).

Then, by induction, we can define 'Y to be a branch

10
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10 < Il < ... < '" < .,.

in T slIcb tltat for ail TI in IIJ tlte property P( 1,,) Itolds:

IcI. 10 =.LD be the rool of T. Then P(lo) Itolds and 0"(10) = 0:

- assumc as induction hypothcsis that \l"C ba,'c dcfined

10 < II < ... < 1."

such that P( l;} is truc and 0"(1;) = i for al! i = 0, .... Il. Let SI- •••• Sk be the

immcdiatc succcssors of ln.

If P(sil docs not bold, then there is an mi in IIJ such that

"Il ~ si. (Va E A. a ~ ((1)) ==} urt) < mi.

If Pts;) did not hold for i = l, ... , k, then for m = ma.'i:{mb"" md we would

bave

Vt > tn.(Va E A.a ~ (t)) ==} urt) < m.

Comparing this rcsuit \Vith P(tn) we get that n = u(tn) > m \Vhich is in contra­

diction \Vith the falsencss of P(SI)"",P(Sk)' Hence there is an Si such that P(Si)

holds: let tn+! be such one.

So, we have defined"(. Now suppose there is an a E A such that a ::; V{(t n ) :

tnE"(}.

Then by compactness of a, there is t n in "( such that a ::; (tn ): this is not the

case, since P(tn ) true implies that for all a in A one has a ::; (tn ). Therefore the

branch "( has the desired property.

The other two cases are simpler. Let us start \Vith the Hoare ordering (i.e.

i = 1). Suppose A Çl T~: for any a in A, there is a branch "(. in T such that

11
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a:5 V{((t): 1 E ';,,}, By compactness of <111",' knl)w Illl·r,· i, 1 in ;". say "f h,'i~ht

m". snch that a :5 ((1,,), Then :\ ç "[~~, wherl' m = max{m" : <1 ê :1},

Finally to pro\'e the statement for the l'Iotkin case w,' on\y n",'d III ns,' th"

pre\'ions steps of the l'roof. If:l Ç2 1~ then. by dl'finition. we have :1 Çll 1~ and

:1 Çl T~: hencc there are Ill. n in llJ snch that :1 Çll "[;~, and :1 Çl "[;~. Tll<'n

:1 Ç2 T; for p = max{lll.n}. 0

Proposition 3 LcI (T. () bc a gClIcralillg tl"CC oecl" D, ThclI T~ i~ thc ""II/'CIIIIIIII

in (:F(D). Çi) of {T~ : n E N} fOI" i = O. I. 2.

Pmof. It. has been already remarked that T~ Çi T~ for ail 11. Snppose now that

an clement Y of :F(D) is an npper bonnd of {T,~ : Il E N} with respect to Çi: Wl'

want to show that T~ Çi Y (and hence T~ is the snpremnl11). If:l ç 1:' then. by

the previons Iemma, Il ç T~ for some n in llJ and hencc Il Çi Y: thcrcfore. by

definition of Çi as prcorder on :F(D). T~ Çi Y. 0

Before proving that the power domains are indeed domains, we need a conl'le of

technicaI resuIts.

Lemma 4 If C is a countable preomered set and B is a tiireeted sllbset of C.

then there is an w-chain A ç B such that: 'lib E B.3a E A.b :5 a.

Therefore VA ezists iff VB e:rists; if that is the ca.<e then VA =VB.

Proof. Let ho, blo ... be an enumeration of the e1ements of B. Put Bn = {bi : i :5

n} and define A = {an: n E N} by induction: for n =0 put aa =ho; now assume

that we have defined aa $ al :5 ... $ an with ai E B for i = O.... , n. Sincc

Bn U {a,,} is a finite subset of the directed set B, there is an e1ement__irJ B, calI

it a,,+t> which is an upper bound of B" U {a,,}.

Theo it is clear that the chain A we have defined has the desired property. 0

12
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Definition 9 /.d (/'.~) /" Il flnord.r. (·oll.'idll· tilt "/lIi"a/IIICt =d.JiIl"/ by

.1' =!I iff .r ~ y I1l1d Y ~ .1': d.llol, by 1'/= 1/" flo.,d obillill"/ by laking 1/"

quolinll of IJ Ù!} =. Ir, .'(J!J th al Pi.... fI predoIllaiIl If P/=. js il dOl11flin.

Definition 10 Ld D b, Il fll'ford,r,,1 .<d. ..1 .<rI C ç l\p/(D) i, a set of compact

(·ielllcllls of D ";, to cqlli\'a!ellcc if

"la E 1\i,/(IJ).3c E C.a =c

wh,r.. =: is Ihe eqllivalence rcfalion induced by Ihe fll'Corder.

Lemma 5 Let IJ be a preordeT'fd sel and Id C be a cOlmlable subset of IJ. Then

D is a preclomaill wilh C a..< sel of compact clemenls nI' la equiva/ellce if! lhe

fol101~';ng holel:

1. IJ has a /ea..<l clemenl: ancl

o if A ç C is a chain, lhen .4 ha..< a supremum in IJ; and

3. if x is in D lhere i..< a non-emply chain A ç C such lhal x =VA: and

4. if a is in C and A is an w-chain in C such lhal a :5 VA lhen a :5 b for

some b E A.

Prao/. Ir D is a predomain with C as its set of compact elements up to equivalence,

then the four properties clearly hold (in particular 3. is obtained using Lemma 4

applied to B = {y E C : y :5 x}).

Let us prove the converse implication. Assume all four properties hold. Let us

start \Vith a remark: if B ç C is a directed set then there is by Lemma 4 an

w-chain A ç B such that VB exists if and only if V.4 exists and if this is the

case then VA =VB. But for 2. VA elcists and therefore any directed subset of

Chas a supremum in D. For x in D put C:z: = {a E C : a :5 x}. Let us verify

13



• thal C:: i:-- dirl'cted and J' = ve'.-. Fl)r:t Ibert' is ~l 11l>ll-t'Inpty t"!\;lÎn .'\.:' ~ {':.

:'lIC'h t hat .r = V.-\,:-: für t Ill' rt'Illark wc jus! dit! Wt' l'ail SllPpllSt' wit i1tHl! I,ls:-- llf

generality lhat .. \.... b an _'·chain. If (1 and a' art' in ('..:-. t hell hy .1. t hen' ~lrt· " ~Uld

!J'in ..1 .... sneb that fI:5 band (1'::; b'. SiuCl' A.r is cl chain. tlit'Il b:::: b' lor b' ~ il)

and henCC' Cl < b' and Cl' < li. i.e. Cr i, direct,'d alld 1herl'fon' Il\" t Il<' rl'll1ark il- - .
has a ,upremum. name\y.r = .·\r. Let II' "erify no\\" that J) i, direcll',i cllll1l'kll'.

Let 13 be a directed snb,et of D: con,id,'r 13' = UrER ('r: it i, dirl'clt'd and it i,

contained in C. Hence 13' has a ,uprelllum and V /J = V13'.

Finally let us "erify that C is a ,et of compact e\elllent' of D. nI' to "'l'li,·alenl"l'.

First of ail. the e1ements of C are compact: let Cl b,' an clelllent of C. 13 a

directed subset of D such that a :::; V13, Since. as wc h,,,"e '~II. V13 = V13' where

13' = UreB Cr is directed and contained in C. there is ail ...··chain :\ ç 13' 'l,ch

that VA. = V13', Then using 4. from a :::; VA it follows that there is b' E :\ sllch

that a :::; b': since b' is in Cr for some x of B. then for such an .r we han- " :::; .r

and therefore a is compact, We are only Idt to verify that

"la E I\pt(D) , 3c E C. a :: c,

Since a = VC. , a is compact and C. is directed there is c in C. such that li :::; c;

hence a :: c and c E C. o

•

Remark that if D is a preordered set and C is a countable subset of D, then D

with C satisfies the properties listed in Lemma 5 if and only if D/:: together with

C/= does. Hence, from the following Lemma ï, wc get immediately the main

result.

Theorem 6 F;(D) = :F(D)/::; IS an w-domain with M(D)/::. a..< its set of

compact elements for i = 0,1,2.

Lemma j Let D be a domain. Then :F(D) is a predomain with M(D) as its set

of compact elements up to equivalence with respect to ç;. for i = 0,1,2.

14
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•

!Jr(}0f. \\"f' ouly tIf·(·rI lo pron' tbat t:w fOUf propt'rtil's statcd itl Lenlnla.) hoid.

1.1'1 '" ".,.: 1. {.i} i, il 1"'L,t ,.Jelllelll ill F( D):

:!. j,·t {:l''}''E S ç .111 (D) 1", il chili li: 11'(' wi Il ddin(' by ilId uctioll a t rel' (T. () such

thill T:, = '111'... ,\' :1 ... We i1lready relllarked thal without Joss of gl'nl'rality Wl'

cali 'L'SlIlIle that {:I"j"ES is all ~·-chain. Let .iD be the root of the trel' T. Let

ilS suppose that We have defined the ,,'" le\'e1 of the tr"" 'l'and that it is Jabded

by the clelllents of :1,,_1, Now let us consider the Plotkin case: for any a"_1 in

11,,_1 alld Cl" in 11" add to the trec an arc: then the (n + 1)'''-Ie\'cl is labcIed by

11". So the tree T is defined and clearly V"ES 11" = '1'5.
For the Smyth power domain we cali apply the same procedure. with the pro\'iso

that an arc wil! be addcd only in the case that it gives rise to a branch of infinite

length. Then T~+I ç :\" and hence A" [;0 T~+t [;0 T5 for any n. If Y E F(D) is

an upper bound of {A" : n EN}, then TS [;0 y and henee TS = sup{.-1n : nE N}.

Indced, for any A E JII1 (D) such that A [;0 'l'S, one has .4 [;0 T~ for sorne 11 in llJ

bccause of Lemma 2. But because of the way wc constructed T there is m in llJ

such that T~ [;0 Am. Henee A [;0 y and TS [;0 Y.

AIso for the Hoare power domain we can apply the same strategy as for the

Plotkin one. but this time we wiII aIso add at any step .Lo: so, if there is an a in

An+1 such that for ail b in An one has b~ a, one can add the are .L..... a.

Henee TS = VneN(An U {.Lo}) sinee An =1 An U {.Lo}.

3. fol!ows from Proposition 1 and 4. from Lemma 2. 0

RccaIl now that a domain D is isomorphie to the set Idl(I\'pt(D)) of ideaIs of

I\pt(D) ordercd by subset inclusion ([SLG]). Then from Theorem 6 we have

immcdiately the following result.

Theorem 8 Let D be an w-domain. Then, for i = 0,1,2 we have the isomor­

phi,..m ..<:

F;(D) ~ Idl(lIlI(D), [;i) .

15
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•

Since the dcfinÎtion of (.V1tD).ÇI) l11akl.'~ ~l'tl~t' abu f\.)r d\lll1aitl:-'. wh~);-;t' :-'t'I

[\pl(D) of finitl' e!"lllents is not coun!ahl". w,' l'an drl)p thi, i,yp"th,·,j, and ~,·t

a I110re general dctinition of power dOlnain (ob:-Ot,.·rn· th". the hYPl)thl'~i:, llll tht'

countability of I\pl( D) has bl'<'n us"d in Propo,;ition 1).

Definition Il Lei D bf a clomaiTl (1101 Tlfc...<scl/·ily aTl ~'-dom"iTl 1. TlIlII tlll

power domain of Dis Ihc compldioTl by iclmls of tin- po.<t"f (.\..1(fJ).ç,) fol' i =

0,1.2.

Wc can also give the so-called strict \'ersion of the powt'r dOlllains by allowin~ the

empty set to be an clement of .'\..1(D) (it will be usl'cl in §1.2 and in §l.:l).

Definition 12 Lei D be a clomain. Pu/

J\..1+(D) = {A ç I\pl(D) : A j,< fini/cl.

Then the strict power clomain i..< defined by :Ft(D) = Idl(M+(D), Ç;).

1.2 Domain equations

In this section we want to show that the standard techniques for solving domain

equations apply naturally also when the power clomain constructions arc involved.

We start by recalling (§1.2.1) the method based on D. Scott's Limit·Colimit

Coincidence Theorem ([SP82]). Then (§1.2.2.) weapply it to the case of equations

in w-Dom and SFP (sec again [SP82]) and show that the last mentioned category

is closed under the power domain constructions ([Smyi8]). Finally (§1.2.3.) we

apply this theory to the equation

D ~ Fi(~'EAclD.)

which will be explained later and cau be used to give a characterization of bisim­

ulations ([Abr91]).

16



• 1.2.1 Solving domain equations

Initial fixed points

Sulvillg dotllflÎn l'qllëltioIl~ play~ il crucial rok' in detlotatioual scn1antÎcs. Hl'I1cC

w" WilIlt tu shuw il lIlethod that cali be applied to aIl equatiolls we might be

cuneerued with. The first step is tu eOllsider aIlY equatioll (for example

(1.1 )

wh"r" ~ is the separated sumo cf. l.i. and Fi the strict Plotkin power domain.

cf. DefiIlitioIl 12) as a partieular instance of the generic equation

D ~ F(D) (1.2)

•

where C is a category of sorne sort of domains and F and endofunctor on C. In

our example C will be SFP (cf. Definition 26) and F the composition of the

fundors:

F : C <;dc~" II C~ C Fi, C.
neN

Next we try to follow the analogy between partial orders and categories, thinking

of F as a kind of order-preserving map.

In the posetal case a solution of the equation 1.2 would be a fixed point for F and

we can look for the minimal one; also, the minimal prefbœd point (if it exists) is

the minimal prefixed point. Let us give the analogue for categories.

Definition 13 .4 fixed point for a functor F : C -- C in a category C is a pair

(..l,a) where.4 i... an object ofC and 0: FA":::' A an isomorphi....m.

AnF-algebra (or prefixed point for F) is a pair (_4, a) where A is again an object

of C. but now 0 is just a morphi:---m 0 : FA --+ A .

.-ln F-algebra homomorphi..om is a homomorphi..om between F-algebras (A, 0) and

(B.~) »'Uch that{3of=ooFf.



•
Proposition 9 .-lu iuitial F·al!lt bnl. if il r.ri...!..... :.... a!...... ) Ilil lTut.alji.rfli i'Pltlt.

Proof. Let (..1.0: FA - .·1) Il<' "" illiti"l F·"I~,'''r''. i.,·. "" illili;1! ,,"j"l't III

the ('éttegory of F~algl'bra....... \\"e waut to pron' til;:lt n i~ ~1I1 i:"t.Hllllrphi:--lIl. ~il1t:t·

(F..I.Fo: F"..I- F:I) is "Iso "" F·"I~d)r". by illili;l!ily ,,1' \:1.,,) ll",n- is ""

F-morphism f snch that the diagram

F:I~..I

Ffi If, ,
F"·!-F·I. f\l .

is commutati\·e. Combining this with the diagram

and using again the initiality of (.-l.o). we get 00 f = id..l • Theil Wl' also ha\'<'

foo = FooFf

= F(o 0 f)

- F(idA )

- idFA •

Hence 0 is an isomorphism. o

•

If C is a poset with a least element .L then the least fixcd point of an order

preserving map F can be constructcd as the join of the sequence

.L~ F(.L) ~ ••• ~ F"(.L) ~ '"

(providcd that this join exists in C and that F preserves it). Let us introduce

the necessary terminology to genera1ize this result.

18
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Definition 14 :In ",-chain in C i~ a fune/or ~ : '" - C. i.e. a diagmm 6f /he

form:

Dual/yan ..:op-chain in C is a func/or ~ : ..:op _ C.

Notation. If.6. = (Dn.Jn)n?o is an ..:-chain and Il = (Iln : Dn - .4)n?o is a cone

over A, let us denote by:

,\ - tl l' D fI D h D ln d• .:.J,. le w-c latn 1 ---+ '2 ---+ ... ---+ n ---+ .. . ; an

Theorem 10 Let C be a category with an initial abject .Le and let F : C _ C be

li functor. Consider the ",-chain .6. =< Fn(.Le), Fn(!FJ.) > (where !FoL :.L- F.L

i..< the unique such homomorphism). Suppose that Il : .6. _ A is a colimiting cone

and that F preserves it. Then the initial F -algebra exists and is (A, 0), where 0

is uniquely determined by the universality of the colimit F A of Il- .

Praof. Since .Le is initial in C and A =colime.6., we also have A =colimc.6.-.

Hence there is a unique morphism 0: FA - A such that Iln+l = 00 Flln for all

n. Thus (.4,0) is an F-algebra. Let (A',o' : FA' - A') be any other F-algebra.

We want to show that there is a unique morphism f of F-algebra sucb that

is a commutative diagram. Assume it does c.'dst: let us verify the uniqueness of

sucb an f. Consider the cone v : .6. - A' defined as follows:

- Vn+I =0' 0 FVn : F(.Lc) - A'.

19
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It is indecd a l'one: we l'an show it by induction on Il:

- Il = 0: 110 = III O!Fl.e is trivially true:

- suppose that Vn = 1'''+1 0 F"(!Fl.e ): using the dclinition of 1',,+,. tll<' induction

hypothesis and the definition of 1',,+1 we gel:

= 0' 0 FV"+1 0 F"+I(!Fl.e)

= Vn+1 0 P"+!(!Fl.e)'

No\\", let us verify that for any n, v" = f 0/ln: then. by the unÏ\"ersai property of

the colimit construction. f is the unique such morphism:

- for n =0 there is nothing to prove;

- suppose that Vn = f 0 /ln; then using the definition of l'n, the induction hypot.h-

esis and the fact that f is an F -algebra morphism we get:

Vn+l - cloFvn

- a' 0 F f 0 F/ln

- fOOtoF/ln

- f 0 /ln+!.

Now we are left to prove the existence of f as a morphism of F-algebras: take f
to he the unique map such that Vn = f 0 /ln for any n. For any n ~ 1 we have:

Vn = fO/ln = foaoF/l n_ t

(hecause of the definition of f and Ot) and

Vn - Ot' 0 FVn_t

_ a' 0 FU 0 /ln-Il

_ a' 0 FI 0 F/ln- t .

20
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Ilell"", ily t.he univers,,1 propert.,. of 1":1 = colimF~. we get f 0 Q = 0' 0 F f i.e.

we have proved that f is a homomorphism of F-algebra. 0

The prcvious propositioll works. in particular, if C is a cpo. thought of as a

cal.egory, and F an ...:-continuous mal'. The generalization of t.his situation to

categories is given in the following.

Definition 15 Il eategory C is an ""-category if it has an initial object and il

lUI., ail eolimits ofw-ehains.

Il funetor F : C _ C' is w-continuous if it preserves ...:-eolimits.

Corollary 11 Let C be an w-ealegoMJ and F : C - C an w-eontinuous funetor.

Then tl1ere is an initial fued point for F, given by (A,u);n the notations of

Theorcm la.

Remark that a denumerable product of w-categories is an w-category; moreover

constant and projection functors are w-continuous and composition and tupling

preserve w-continuity.

Hence to solve an equation as

D=FiC'L D)
neN

in an w-category we only need to check the w-continuity of the separated sum

functor ~ and of the strict Plotkin power domain functor Fi.

Locally determined colimits

It is sometimes diflicult to apply Theorem 10 directly as stated. However, in most

of the domain-like categories, the hom-sets have naturally a posetal structure: this

leads us to the study of O-categories , where a local notion of limit and colimit

can be given (sec [Wanï9]). It also enables us to restate Theorem 10 in a more

ready-to-use form.
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Definition 16 ..t ca/ego,.!! Ci" an O-category If il i... a .!-cll/(!lory. lI'ilo."( 110m.

scls arc dcpo :'. i.e. if

• in fl'CI'-Y hom-sel..:: llUY (l$Cf1u/iu9 c!tain has il [fa.... / lippeT boum!: llmi

• composition of morphism." i.....;,.:-cOlllillll0U.... ll'ith '"f"JWr! /0 /lu' onhr of tht'

hom-sels.

Remark that a product of O-categories is still an O-category. :\Iso. if C is an

O-category, so is COP: the order on hom-sets is gi\'en by f"" 1; gO" if and only if

f1;g.

Since categories are regarded as the analogue of poscts. we want 1.0 introdnn'

sorne sort of ordering.

Definition 17 Let C be an O-category (indeed it is enoltgh that the h01ll-••cI5 of

C arc posel.')' A conpfe of arrows

-L..A_B
9

such that

·fog~idB

is called a projection pair from A to B; f is said to be an embedding , 9 li

projection.

We write A :::! B if there is a projection pair from A to B.

J l'
If A:=B and A:=B are both projection pairs then one obviously has

9 9'

f ~ f' if and only if g' ~ g. Hence one of the morphisms of the projection pair

determines the other. If fis an embedding we will write fR for the corresponding

projection; similarly if 9 is a projection we will write gL for the corresponding

embedding.
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• Definition 18 If Ci.' tITI O-mlegory W: can define Ihe subcalegory CE: il has

Ih,: .'llm/' objccl., of C and r:mbcddings as morphisms. Similarly wc hau Ihe

sllbcalegory cP of pmjeclions.

BeCitllse of the rernark after Definition 16 we haye:

and of course

Notice that :;g is a preorder on the objects of the category C. Let F be an

endofunctor on C. Solutions in C for the equation

FD ~ D (1.3)

•

are fixed points of F. Continuing the analogy between posets and categories, we

would like to define a minimal solution of the equation 1.3 to be a fixed point

A of F such that for any other fixed point B one has A :;g B. However this is

not the right way to go since, in general, we can have objects A and B such that

A :;g B and B :;g A, without A and B being isomorphic: hence we would not

achieve the uniqueness (up to isomorphisms) of minimal solutions. On the other

hand requiring the uniqueness of an embedding es from A to any other fi.''(ed

point B would lead to equations without any minimal solution. We can rescue

the situation by requiring the uniqueness with respect to embeddings es, which

are also F-algebra homomorphisms. If we denote by FE the restriction of F to

the category CE we can restat.e this in the following way.

Definition 19 A minimal solution for the equation 1.3 is an initial FE-algebra.

Before starting the investigation of the relation between C and CE, let us intro­

duce the local notion of limit and colimit.
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Definition 20 Lci C br' ail O-catrgory. f.d JI : ~ ~ :1 bl' a "olle ill Cl". whl'rl'

~ is the ""-ehaill < A". f" >. !Fr "ay that JI i" ail O-l'olimi! if:

1. < }'" 0 l'~ >" i" ail illcrcu"illg "",[uwcr ill humcl:1. :1): aut!

.) U ( H) - 'd_. u Iln 0/ln - 1 A·

Dually. if v: A -----> ~ is a cane in Cp. whae ~ is thr ~'<'I'-chain (A".f,,), Wl'

say thal 1/ is an O-limit if:

1. < 1/;; 0 V" >" is an inereasing seqnenee in homc(A. A): and

!J. U" (v;; 0 1/,,) = id..,.

Proposition 12 Let. C be an O-ealegory in whieh every hO/1l(A.13) has a lm"t

clement .LA,B; suppose moreover thal for any f in /wm(A, E) wc har" .LH,c

of =.LA.C (thi..< property is referrcd 10 as left-striclness of Ihe eOl1'1IOSiliou). Theil

a terminal objeet .L in C is initial in CE.

ProoJ. For every object A in C there is an embedding .L1..,,:.L-----> A dcfined by

.Lf..'I=.LA.l.; indeed we have:

• .LA.l. 0 .L1.•.4= Il. since .L is terminal in C;

The uniqueness of an embedding with domain .L cornes from the uniqueness of

its projection part as a map with .L as codomain. 0

The ne."<t result (taken from [SP82], whcrc an carlier idea found in [Scoï2] is

generalizcd) explains the relation between (co)Iimits and 0-(co)limits.

Theorem 13 (The limit-eolimit coincidence theorem) Let C be an O-ca­

tegory and 6, = (An,fn) an w-chain in CE. Denote by 6,R the wop·chain in cP

defined as (An, f!(). Then the follo'UJing facts are equivalent:
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1. ~ /Ul~ Il colimil. in C:

C) ~/I /Ifl~ Cl limil in C:

3. ~ hc~ ll1l O-colimil:

4. ~Jl /lllS an O-limil.

Morcovcr lhcsc JClcl_. imply:

fi. ~ has Cl colimil in CE:

6. ~R ha... a limil in Cp.

Proof. The equivalencc of 3. and 4. cornes directly from the definition of O-limit

and O-colimit. Ta prove the rest of the theorem wc will show:

A. 3. ==> 1. and 5.

B. 4. ==> 2. and 6.

C. 2. ==> 4.

D. 3. ==> 1.

A. Suppose p, : ~ -> A is an O-colimit. Let us prove that the cane p, has the

universal property of colimits. Let p,' : .6. -> A' he any other cane. If there is

a () : A -> A' sucb that p,~ = () ° P,n for any n then () is uniquely determined;

indeed we have:

() - () a Un (P,n °p,~) since idA Un(P,n °p,~)

- Un(() a (P,n °p,~)) (composition is continuous)

- Un(((} °P,n) 0 p,~) (associativity of the composition)

U 1 Il- nP,nop,n'
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• Now 1.0 proye the existence of O. let liS ddinl' 0 = Un JI:, 0 Il~,i: this join ,·xists.

sincc (Jl~l 0 Jl~)n i~ incrcasing: inciccci:

=' 'J JR) JiJln+tOlnO JI OJl n+ 1

C ' R_ Jln+1 0 JLn+t.

Clearly wc aiso haye 0 0 ILn = 1<,' since

OOILn = (U IL~. 0 Il~) 0 /ln
'"

= U (JL:n 0 Il~ 0 IL n )
m:::"

= U (IL~. 0 Il~ 0 /l", 0 Jn",)
m>n

= U Il~1 0 fnrn
m>n

- U Jl~
m>n,- /ln

where Inm =Im-1 0 ••• 0 ln for m > n. Now wc can also show that. the universal

property of the colimit holds not only in C, but also in CE. ln other words,

we have 1.0 show that if /l' : ~ --+ A' is a cone in CE, then the morphism

0= Un /l~ 0 /l~ is an embedding. Let us put OR =Un /ln 0 /l'~ (as before, this join

exists since (/ln 0 /l'~) is an w-chain); the next two calculations show that (O,OR)

is a projection pair, i.e. that 0 is an embcdding:

OR 0 0 = (U(/ln 0 Jl.'~)) 0 (U(/l'n 0 /l~))
n n

U ,R, R- /ln 0 /l n 0 /ln 0 /ln
n

- U /ln 0 /l~..
- idA

00 OR - (U(p'.. 0 /l~)) 0 (U(Pn 0 /l'~))

• n n
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•

"

"ç id ..\•.

13. The proof is dual to the one in A.

C. Suppose v : A ----> t!J.R is a limiting cane in C. \!le \\"ant ta show that:

- each V n is a projection;

- (I/~ 0 lIn)" is increasing and Un(v~ 0 vn) = id,\.

In arder ta define v;, let us consider for any Am in t!J. the cone v(m) : Am ----> t!J.R

in C defined as

v(m) ={fmn if m ::; n
n Rf nm ifm > n.

Remark that vim) = f:!r 0 fm. for r ~ ma.,(m, n), since:

- if m ::; n then

f:!r 0 fm r = f:!r 0 fn. 0 fmn

- fmn

_ v(m).
n ,

- ifm > n then

f:!r ofmr = (fm. 0 fnm)R 0 fm.

- f~m 0 f/;,. 0 lm.

- I~m

- v~m).

Now we are ready ta show that vlm) is indeed a cane:

rR 0 vlm) - rR (rR f,) r > ( +1)J" n+1 - Jn 0 Jn+1,.o m,' lor r _ ma., m, n



•
= IR 0 fIl,1'' • 'll,r

Hcnce for any m thcrc is a nlorphisn1 l/~ : Am -+

In particular for n = ni wc gct id 1 = ,,1"') =.' rra r1l

A sneh that ll,l,m) = l' ('1 ,,1.'1 III •

is a projcction wc still nccd 0", 0 /1", ç id".... Let us start by prm'ing that

,,~ = v~+! 0 lm. which is obtaincd by showing that 1/~+1 01", is the mediating

morphism bctwecn v and /I(m):

_ v(m+!) 0 f
n III s'Ince \:In nI.' ll{m) = II 0 li,.. ···n n "1

- I:!,. 0 Im+l.r 0 lm for r ~ 11111..'((111 + 1. n)

- I:!,. 0 I..r
_ v!.m)_

Now wc can sec that (v;; 0 v.. ).. is incrcasing:

= v;;+! 0 lm olt!. 0 Vm+1

ç V;;+I 0 vm+!_

Rence we can define 0 = Um v;; 0 vm. Let us show that 0 = id" (and hence that

v;; 0 Vmç id,,); we can prove tbis by showing that 0 is the mediating morphism

between v : A --+ ~R and itself:

Vn 0 0 - 1111. 0 Um. II~ 0 Vm

- lin 0 Um~n v~ 0 lIm

- Um>n Vn 0 v;; 0 Vm

U (m)- m>nl!n Olim

- Um>nl;;m OVm

- v"•

by definition of 0

by continuity of the composition

since Vm 0 v;; =v!.mhin, m

by definition of v~m)

since vnis a cone _
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o

TIIf' IJ<JtiuII of O-colilllit becullles particularly uscful when Ilot ollly the implication

:1. ~. :;. fur tfll' prcvious theorem holds. but also its converse.

Definition 21 ..lll O-cnlfgoT"!1 C is snid 10 hnT'f locally determined ",'-colimits of

cmbeddings whe1l n C()/lf Il : ~ --+ A Ol'fr n1l ""-ehaill ~ ill CE is colimilillg in

Cl,' if flTul ollly if l' is (lT/ O-colimil (or. fquimlfllt/y, if alld ollly if il i.• a colimil

ill C J.

Corollary 14 Lcl C be ail O-calegory. Supposc Chas ail limits of ""OP-ciTains

ill cP (or. equivalellt/y. ail colimiL< of u;-chains ill CEJ. Then Chas loeally

dclermined u;-colimil,< of cmbeddings.

l'roof. Let ~ = (An, fn) be an ",··chain in CE and suppose that Il : ~ --+ A is a

colimiting cone in CE: we want to prove that it is also a colimiting cone in C. If

wc take in C the colimit of ~, we know by Theorem 13 that it is a1so a colimit

in CE and therefore it is Il : ~ --+ .4. (up to isomorphism). 0

We conclude this section giving a suflicient condition for a functor F : C --+ Cf

to be made into an w-continuous functor FE : CE --+ C'E. Though it is not

necessary for solving the equation we are concerned with, for sake of completeness,

we will include a1so the case of contravariant functors.

Let A, B, C be O-categories. Let F: AOp xB --+ C be a contravariant functor.

The case F covariant (contravariant) is included by putting A (B) equal to the

trivial one-object category.

Definition 22 The Junetor F is said to be locally monotonic if it is monotonie

on the hom-sets: it is called 10ca1ly eontinuous if it preserves suprema ofw-ehains

in every hom-set.
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Lemma 15 Lt! A. B. C b,' (}-ca/,yori,,, a/ld .'11}'}''','' 1-' : A"I'" B ~. C ;,'

locally monotonie. Thol (l't' CllU drjirH' a cOI'ariaH! JUlle/or

by p"ttillg:

Proof. Let us ycrify that FE(f.g) is an cmbcdding with (PE(f.y))H = F(f"'·.yll):

indœd, wc hayc:

(FE(f,g))R 0 FE(f,g) = FU"". gR) 0 1"((fil)"". g)

= F((fll 0 J)0",gll og)

= 1"( id, id)

= id

and

FE(f,g) 0 (FE(f,g))R = F((fll)"",g) 0 F(f°",gR)

= F(fRO",g) 0 F(r",gR)

- 1"( id, id)

= id;

• FE is a functor, sincc:

FE(id, id) = F((id ROP ), id)

- 1"( idop
, id)

- id

30



•

•

alld

FI'(J',y') 0 FI'(J.y) = F((J'/I)"".y,) 0 F((J/I)"",y)

= F(((J' 0 f)fI)op,y' 0 y)

= FE(J'of.g'oy)

o

Theorem 16 lVith the hYl'othesis of the l'l'crions lerr/ma. if moreovcr A and B

luwe [,.ctzlly delcrmincd w-colimits of embcddings and F is locally continnous. then

FE Loi w-coll/.inuous.

Proo! Let us show that FE is "..-continuous. Consider an w-chain

~ = «A". B,,). (f".9.'))

in A E X BE and let JL : ~ ---> (.4. B) be a colimiting cone in A E X BE where

Il = (0'", T"),,. Then _ = (0'"),, : (A".!,,) ---> A and T = (T"),, : (B",g,,) ---> B

are colimiting cones in AE and. respectively, in BE; since A and B have locally

determined w-colimits of embeddings. then they are also O-eolimits. We will use

this to show that

is an O-eolimit and therefore by Theorem 13 it is a eolimit in CE (Le. F is

w-eontinuous). Remark that

FE(JL,,) 0 (FE(JL,,))R _ F«O'~)"", Tn ) 0 F(O'~", T~)

- F«O'n 0 O'~)"". Tn 0 T~)

Henee. since (0'" oo;;)n and (Tn 0 T~)n are increasing, if we suppose that F is

loeally monotonie. also (FE(JLn) 0 (FE(JLn))R)" is increasing. Moreover, by local
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• continuity of F and ::-illCl' l! and Il art" O-cùlilt1it::'. Wt' han':

"
V I:('- ,_1',- ,_1'\

\".; ... ",; 1•• ,; ... ";

"

" "

= F( id.\. id 1<)

= idl-'(.-I.I<)'

o

•

1.2.2 Solving equations in ....·-Dom and in SFP

Let us consider the category Cpo of cpo's and ",,'-continuons functions anJ its

full subcategory ...:·Dom of ",,··algebraic cpo·s. ln both cases the hom-sets ha\'<' a

natural pointwise order: if1. 9 are in home( A. B) we say that 1 ::; fi if f( Il) ::; !I( Il)

for ail a in .4.. Similarly. any ",··chain {fil 'EN of functions in llOmr( ,'\' B) h"$

a least upper bound Vdi defined pointwise as (Vd.)(x) = V.U.(x)). Sinct'

composition is continuous with respect to this orcier Cpo and ",-Dom are 0­

categories.

The next two results. together with Corollary 14, show that these categories have

locally determined ",-colimits of embeddings.

Proposition 17 Let Â = (.4n , ln) be an ",oP·chain zn Cpo: a iimiting cone

P : .4. --+ Â can be defined as fol/ows:

• Pm:.4 --+ .4m defined by Pm((an)n)m for al/ m.

Praof. If we define an ordering on .4 as
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• thcn (A.:5l is clcarly a cpo with least e!eme:lt (V"?",(J,,, 0 ••• 0 f"-I H.L An ))", (if

the fu's are projections. then they are strict maps and hence the least element

is silllp!y (.L,lm)"')' NexL suppose II", : B ----> A", is a cone. Then if there is a

rncdiating morphism 0 : B - A from v 1.0 /l we have

\/m E III .\/bE B./l", oO(b) = v",(b).

Hence Orb) = (v"(b)),,<,,,. On the other hand we can assume this as definition of

0, since il. is a continuous map. o

•

Proposition 18 Let ~ = (A.,f.) be an wOP-chain in w-DomP • The construc­

tion of the limiting cone /l : A - ~ of the previous proposition yields an w­

domain A; its set of compact elements is

[{pt(A) = U/l;(I(pt(A.)) .
•

Proof. Set B =Un Jl~(f(pt(An))' We divide the proof into two steps.

1. If f : D ----> E is an embedding and d is a compact element of D then f( d)

is compact in E.

2. B is a basis for A.

From 1. il. follows that B ç f(pt(A), since the /l~'S are embeddings; but from 2.

we also have [{pt(A) ç B. Hence B = ](pt(A).

Proof of 1. Suppose f( d) :5 VS where 5 is a directed subset of E: then, con­

sidering the projection r associated 1.0 f, we gel. d = fR 0 f(d) :5 V fR[S] and

hence d :5 fR( s) for some s in 5 since d is compact: then f( d) :5 f 0 fR( s) :5 s

for some s of S, i.e. f(d) is compact.

Proof of 2. Consider x in A: because of Theorem 13 we have that x = Vne", /l~ 0

/ln(x) is an increasing sequence. Since we are supposing the An's 1.0 be w-algebraic,
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•

any l'n(X) can be written as a directed join of compact l'll'ments of :1". say

Iln(X) =VCn with Cn ç l"-pi(An) directed. Then Un Il;; [C,,] is a direcll"d set and

its join is x. 0

Another way to interpret the pre\"ious proposition is to say that ",'·Dom has ail

colimits of ,,-,-chains. Sincc any hom(:l. B) has a boltom cll'ment (the constant.

map .la) and composition is left-strict, by Proposition 1:3. {.l} is a terminal

object in ",·-Dom. Renee this category is ali w-category: Corollary 15 gi\'cs a

general method for finding a minimal solution to any equation F(D) ~ D ddined

by an w-continuous functor F. lVlorco\"er if the pre\"ious equation is gÎ\'en by F

endofunctor on w-Dom, in order to apply the mentioned method, we only nLocd

to check that F is I:>cally continuous.

Rowever, w-Dom is not the most suitable category from the point of view of

denotationa! semantics, sinee it is not cartesian closed (sec [SLG, example 3.3.10,

page 68] for a counter-example). Wc could restrict our attention to the full

subcategory of w-Dom, whose objects are consistently complete w-domains.

Definition 23 An w-domain D is consistently complete if whenever two finite

elements a, b of D have a common upper-bound they have a lcast common upper­

bound a V b.

This category is closed under the constructions of separated and smash sum,

lifting and it is cartesian closed (sec [SLG, pages 63.iO]). Unfortunately things

do not go so weil when considering power domains.

Proposition 19 If Disa consistently complete w-domain 50 are Fo(D) and

F1(D).

Proof. Wc ooly need ta show that any two compact elements A, B which have

an upper bound have a least one. Indecd for i = 0 the least upper bound
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•

can be defined as the equivalencc class represented by {a V b : a E A. b E

Band {a,b} has an upper bound in D} and for i = 1 simply the class indi\'idu­

ated by AU B, 0

For the Plotkin case, however, this fails to be true (see [SLG, page 295] for a

counter example). Fortunat.ely the situation can be rescued by considering SFP,

the largest cartcsian closed full subcategory of w-Dom (see [Smy83] for the proof

of cartesian closedness). The category SFpE is an example of an algebroidal

category, a generalization of the concept of algebraic cpo (sec [Smyi8J).

Definition 24 Let C be a category. An object A of C is fini te in C if:

• for any w- chain .6. = (Vn,fn) in C with colimit J1. : .6. ---+ V,

• for any morphism v: A ---+ V, and

• for any sufficiently large n

there is a unique morphism Un : A ---+ Vn such that v = J1.n 0 Un'

We will denote by Co the full subcategory of C with objects the finite objects of

C. Remark that if C is a poset thought of as a ca.tegory, then the finite objects

are e.'l:actly the finite elements.

Definition 25 A category C is algebroidal if the following axioms hold:

1. C has an initial object and at most countably many finite objects;

2. cvery w-chain offinite objects has a colimit in C;

S. every object of C is a colimit of an w-chain of finite objects.

If C is a poset, 1. and 2. say that C is a cpo with al. most countably many finite

elf".ments and 3. asserts that C is algebraic.
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• Theorem 20 El'cry algcbroidal calcgory ha.< ail ...·-colil1lil.<.

ProoJ. Let C be an algebroidal category. Consider an ......-chain ~(.·I",.I'",) in C:

...:-chain in Co. Wc will define an ...·-chain r = (A;I".q;I'+I') in Co so that therc is

an isomorphism between the category of cones from r and the one of cones from

~; since under this isomorphism corresponding cones ha"e the same yertex. the

isomorphism also preserves cones: hencc ~ has a colimit and it can be complcted

by calculating a colimit of r. For r = 0, put $(0) = 0: so A~IO) = Ag. Now

suppose that A~(O)"",.4:(r) have been defined so that .«0) < $( 1) < .. , < $(")'

For each m = 0,., " r let qm : A:Jd ---. A,+ •. be

Since each A:,\r) is finite, for sufficiently large 1 there are unique arrows q;..
A:,\r) ---. A~+1 such that

., ,
qm = zr+l 0 qm'

CalI la the least 1 such that the q;"s exist for all m = O, .. "r. Put $(r+ 1) =

ma.,,<{lo,s(r) + I}. 50 we have defined r = (A:(r),~(r+l»), Observe that from the

two previous equations we have in particular

'.(r) .o(r+l) .(r+l)
Pr 0 Zr =. zr+l 0 lJr • (1.4. )

Now let us set up the correspondence between the cones. If (Pr)r is a cone from

~ = (A.,Pr) to an object X of C, then putting Vr = pr 0 i:(r) we get a cone

(vr): r = (A:(r),q:(r+l») ---. Xj indeed:

•

Vr - pr 0 i~(rl

- pr+l 0 pr 0 i:(rl

" 0 ;o(r+l) 0 qo(r+l)
- rr+l ·"+1 ,.

" 0 qo(r+l l- "'-,"+1 . r •
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• Ctll,,·(·rSldy. Id (II,), : r _ X he a cone. For e\'ery m we can define a cone

11 11 = II 0 o··(r+l) 0 p,,(r)-l 0 01'"
111 r+l 1111 nt •• • m

where ris such that 8(r) > Tl and r ~ m: the choicc of r doesn't matter, because

of the finiteness of the A~, ·s. Morcover if Tl = 8( ni) we can also define

(1.5)

Clearly each (I/~.)" is a cone and therefore by the universal property of the col­

imiting cone (i~.)" : ~m -> Am for cvery ni therc is exactly a Pm : Am -> X

such that

(1.6)

•

for ail Tl. The collection of ail the Pm 's forms a cone from ~ to X, i.e. for ail

ni we have pm = pm+! a pm; indccd, for sorne r such that s(r) > n, applying

equations 1.5 and 1.6 and recalling that U::') :~m -> .10 is a cane, we have:

/1" /1 0 q.(r+l) 0 p.(r)-I 0 0 pn
ru - r+t mm··· na.

/I.(r+l) 0 q.(r+!l 0 p.(r)-I 0 0 pn
- r+l mm·'· m

" 0 i·(r+!) 0 q.(r+I)Op:\rl-1 0 0 pn
- rr+l r+l m . • . na.

·.(r) .(r)-I n
- Pr+1 0 Pr 0 ••• 0 Pm 0 lm 0 Pm 0 ••• 0 Pm

'n
- Pr+l 0 pr 0 ••• 0 Pm 0 lm'

Then by equation 1.6 we get Pm =Pr+! 0 pr O ••• 0 pm. The latter arguments works

also for Pm+h yielding Pm+1 =Pr+l oprO" .opm+!' Hence we get Pm =pm+IOPm'

Now the only thing that is left to show is that this correspondence is a bijection:

if we start with (/lr)r : r -> X, then we get (Jtm) : ~ --+ X and then the cone

3;



•
l, 0 ;,.(m) = 11'.(1/1) h.\" I.G

111 fil Hl

on the other hand if we start with (Pm)m : ~ ~ X and consi<!,'r ll',), : r ~ X

where II = l' 0 j .•(r) thcn wc can dcfinc II" = II 0 '1,(r+l) 0 1,*)-1 0 0 l'"r rr' JI! r+ 1 tri TIl • • • 1/1

(with r::: m.$(r) > Il): remarking that

' •• (r) lI(r)-1 JI- Jlr+ 1 0 p,. 0 ••• 0 IJ"I OInt 0 Pm 0 ••• 0 1'",

l' 0 i·(r) 0 p.(r)-t 0 0 l'"
- nt fn fil • • • "l

and confronting it with 1.6 we sec that the conc from ~ to X associatcd to (llr),

is (l'm)m, i.e. the one we started with.

Let FPO be the full subcategory of w-Dom, whose objects are nnite poseLs.

o

•

Definition 26 An SFP-domain j$ a colimil in w-Dom of an w-chain in FPOC .

Let us denote by SFP the full subcategory of w-Dom, whose objccts are SFP­

domains. From Proposition li we know, in particular, that every wOP-chain in

CpoP has a limit: hence any w-chain in CpoE (and therefore in FpoE) has a

colimit.

We want to show now that SFpE is an algebroidal category and its subcategory

of fini te objects is FpoE. Indeed the only piece of information we still need is

given by the following proposition.

Proposition 21 The finite objects of SFpE are the finile posets.

Proo! Let us show that:

1. any finite poset is a finite object;
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• ~" "ny finite object is il finite J'oset.

1. Let Jj be " finite J'oset; consider in SFpE il colimiting cone (""),, : (.·1". p,,) --+

/1 "nd "n embedding J : B - A: if there is an ell1bedding u" : B --+ A" snch

th"t Il,, 0 Il,, = J, then I\"e hm"e that li" = /l~ 0 J. Hence nniqneness is proved.

'1'0 shol\" the existence. remark that there is a 1 in 1\1 snch that the ,"estriction of

/l,o/'i l 1.0 J[BJ is the identity (since every clement of Bis compact and embeddings

presen·e cOll1pactness). NOl\" for any n ~ 1I\"e can define Il,, = Il~ 0 J; il is an

ell1bedding I\"ilh projection li~ = JR 0 l',,, since:

R JR 0 Il,, 0 "~ 0 J'Urt 0 Un =

- JRoJ

- id

and

R Jl~ 0 J 0 JR 0 JI"Un OUn -
R- Il n 0 Iln

- id.

Since Iln 0 Un = J, existence is proved as well. Hence B is a finite object.

2. Suppose now that B is a finite object: in particular B is an object of SFpE

a.nd therefore is a. colimit of an w-chain (Bn,Pn) in FPOE. Hence there is an

embedding Un : B --+ Bn (for n sufliciently large) such that Iln 0 Un = id: this

means that Un = Il~; since Il~ 0 Iln = idB we also have Unlln = idBn and therefore

B ~ Bn, i.e. B is a linite poset. Cl

•
Therefore SFpE is an algebroidal category: by Theorem 20 it has ail w-colimits

and, by Corollary 14, they are locally detennined. Morcover {l.} is initial in

SFpE. Then, by Theorem 10, wc are able to solve any equation involving w­

continuous functors.
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• Let ns show now t hat the ratl'gory SFP is rlosl'd nnd,'r Il,,, ('(lnst rllel ion ,.1' 1hl'

power domains ([Smyj::'j). Ll'I ns start by ddining pOl""r domain fnnetors:

as follows:

Fi :Dom~ Dom (i=O.I.:!)

•

1. if Dis a domain. pnt FiD = (ldl(.vt(D). Ç;). Ç) (rf. Dl'Iinition Il):

2. if J : D~ E is a continnons map Id Fil Ill' thl' "l'tl'nsion by rontinnity

of the follo\\'ing map defined on J\p/(FiD) = {lit: Il E .vt(DJ} iLS

F;J(! It) = {(' E Jvt(E) : (' Çi f[1t]}.

Proposition 22 The Jlmclot"$ F,E : DomE --> Dom/-: arr ""-COl/lil/lWII" /rI/'

l =0, 1, 2.

Proof By Thcorem 16 it is enough to check that the fnnctors Fi : Dom --> Dom

arc locally continuous. Consider an incrcasing sequence (J")..eN : f) --> f:: of

continuous functions with least upper bound the map J. We want ta show that

the least upper bound of (F;/")..eN is F;/; indecd for any u E J\It( D) one has:

(V F;/.. )(! u) - U(F;/..U u)).. ..
- U{v E M(E) : v Çi J..[u]}..
- {v E M(E): v Çi J[u]}

- (F;/)(! u)

and hence VnF;!n = F;f. 0

The w-continuity of Fi on DomE implies in particular that F; preserves the

colimits of w·chains in FpoE and heuce we get that SFP is closed under the

power domain constructions.
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• III t1 ... Salll<' way w" cali ""l'ify that SFP is a category c10sed under the usual

''l'''ratiulls alld that th"y illduce ",-colltilluous fUlIctors ail SFpE
: thl'refore the

Il,,,thuds fur sol\'illg equatiolls explailled beforl' can be usl'd.

Lt"l us see for exalllple that the separated sum gi\'e rise to an w-continuous functor.

referrillg the reader to [SLG. cc. ·1. II] for the other cases.

Delille the fUlletor

2: : II Dom --+ Dom
nEN

( l.i)

•

in the following way:

- if (D")"eN arc domains let L"eN D" be the domain obtained by taking the

disjoint union of the D,,'s and adjoining a bottom clement, i.e.

2: Dn = (U{< n,d>: dE D,,})U{.L}
'leN n

and ordering it as follo\\"s:

• .L is the bottom clement;

• < n,d >$< m,d' > ilf n = m and d $ d'.

- if (fn : Dn --+ En)neN are continuous maps, let

(2: In) : 2: Dn --+ 2: En
n n n

be the map defined by:

• Œn In)(.L) =.L:

• Œnln)« n,d » =< n,fn(d) >.

L:n(fn) is clearly a continuous map and L: a weIl defined functor: it is also im­

mediate to see that it is 10caIly continuous and therefore its restriction

is w-continuous. Therefore SFP is closed under tbis construction and the functor

L: is w-continuous on SFpE.
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• 1.2.3 An application to the study of bisimulations

In this section. after recallin!!; the notion of hisimulation (sec [l'ar~l. ~lil~:l.

Hl\I85]) wc define a domain J) of synchronizat ion trees ("f. Ddinit ion :!9 in th,'

following) by means of a domain equation. Hl'Ill"e Wl' ddinl' a transitiou sysll'm

Ti (cf. Definition 2ï), whose set of procl'Sses is D. Wl' show that t.he maximal

partial bisimulation Ça coincides with the order Ç on D. This l'an he nsed to

define a logic that characterizes bisimulaLions (sel' [Abr!Jl]).

Let us start by recalling the main concepts.

Definition 27 A transition system Î.' a 4-luplc

(Pral', flet, -, il

where

• Proc Î$ a set of processes:

• ..let is a set of actions;

" _ç Pral' x Act xProc (notation p ~ q);

• jç Proc (notation p j).

Moreover we write p! meaning -.(p il.

We think of p ~ q as "p has the capability to do a and become q~ , p j as "p may

diverge" and p ! as "p definitely converges~.

Definition 28 A relation R ç Pral'x Proc is a partial bisimulation if for aIl p,

q E Pral': if pRq then 'ria E Act one has:

• p~ p' => 3q'.q ~ q' and p'Rq';

• • p! => q! and (3q' . q~ q' => 3p' . p ~ p' and p'Rq') .
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• If W(' (onsider the nnion of ail the partial bisimulations. wc obtain a relation Ça

which is a partial bisilllniation ,~, weil: so we haye

P Ça '1 iff 3R. R partial bisimulation. pRq.

There is another possibility to define Ça. using ordinal recursion:

• ço= Proc X Proc:

• P Ç"+I '1 iff for ail action A one has

- p"::' l" ==> (3'1'. '1 ..::. 'l'and l" ç" 'l');

- l' l==> '1 land ('1"::' 'l' ==> 31".1'''::' l" and l" ç" 'l');

• for limit ordinal '\: ç,\= n,,<.\ ç".

The sequence just defined is decreasing and bounded below by any partial bisim­

ulation. Then it is eventually stationary, i.e. for sorne ,\ and for ail Cl< <:: ,\ one

has ç,,=ç.\: for the least such ordinal, ç.\ is a partial bisimulation; since it is

the biggest one, it is e:l(actly Ça.

Definition 29 Let Act be a countable set of actions. We call domain of synchro­

nizatiou trce over Act the initial solution in SFP of the domain equation

D ~ Fi( L: D.)
aEAd

where D. = D for all a E Act (Fi being the strict Plotl.:in power domain, cf.

Definition 8. and ~ the sepamted sum functor, defined by 1.7).

Now for snch a dornain D, consider the transition system 1) = (D,Act, ...., T)

where

•
if!' de d',- ,
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• • dT itf .LE d.

•

Proposition 23 Lri D b" I!I" dOlllllill of "!!lIr!lrolli:lllioll Ir..., or,.,. .-kl. T/"'II

for llll!! dl, dz ill D wc !Ill/'C:

Before going into the l'roof of the proposition, let us r<'mark that if w,' want. t.o

apply the general theory for sol\"ing equat.ions as pre"iously cxpos,',1. w,' should

pro,'e that Fi is an ,,-'·continuous functor. But notice that Fz+(D) ~ (1 h lé\' F,[IJ]

where 1 is a one-element domain. (-h the lifting and tP the amalgamatcd sum.

Since the amalganlated sum is a locally contihuouS functor on tlll' category of

domains and continuous strict maps. so is F2+: then F2+ is w-continuous on SFpE •

In the l'roof we will need a characterization of the Plotkin power domain of an

SFP·domain (see [Smyi8]), Instead of working with equi\"alencc classes of

we can choose canonicaIly a representative element for each class. Let D be an

SFP-domain and let L). =< D... p" > be an ,,-'·chain in FpoE such that therc is a

colimiting cone (l'.. ).. : L). --+ D, For any X ç D define

x+ = {x E D : l'~(x) E l'~[X]}.

Clearly (-)+ is a closure operator on the power set of D (actually, it is the

closure operator relative to the Lawson topology of D, sec [Smyi8, Appendix] for

details). Moreover X+ E F(D), even if X is not since X+ =V.. l'.. 0 l'~[X] (for

ail n, l'.. 0 l'~[X] is a finite set of compact elements, because eac1l D.. is a finite

poset).

Lemma 24 If X and Y are in F(D) then
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Pmof. 2. follows immediatcly from l. Let us "erify l. Remark that if .r : E -.

E' is an emuedding. then for X ç E and X' ç E' one has .f[X] 1;1 X' if[

X 1;1 J/l[X']. Let A E .\.1(D): we want to proye that A 1;1 X if[ A 1;1 X+. Take

11 in III large enough 50 that Il .. 0 Il~I[A] = A. Then WC have:

Il .. 0 Jl~[.-11 =A 1;1 X <==> Jl~[.4l 1;1 Jl.. [X]

<==> Jl~[.4] 1;1 Jln[X+]

<==> A 1;2 X+.

o

Consider now the convex closure of X+, denoted by X' (recall that the convex

closure of a subsct Y ç D is defined as Con(Y) = {d E D : 3yt. Y2 E Y . YI ::;

d::; Y2})' Again, X' is in :F(D) since X' = V.. Jln[Con(Jl~(X))l.

Theorem 25 Let D he an SFP-domain. Then there is an isomorphism:

Proof. Since X ~2 Con(X) and X ~2 Y iff Con(X) = ContY) we have that

X ~2 X' and X ~2 Y iff X' =Y': then for any class [X]:, in :F(D)/=2 we can

choose as representant X'. But from X ~2 X' we also get X 1;2 y iff X' 1;2 y­

and therefore the ordering is respected. 0

Now wc cau give the proof of Proposition 23.

ProoJ. Let F : SFpE -. SFpE be the functor defined by

F(D) = Fi( 2: Da)
aEAet
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with Da = D for ail a E ..lei: il is an _'·conlinuous fuu,'tor, llcllù' hy th,' th,'ory

prc\'iously cxposed the initial s,)lutioll in SFpé' of Ih,' ,'qualioll n ~ Fln) <'ail

be cakulatcd as the colimit

{.L} --!:?. F( {.L})~'" - F"( {.L}) ë:-, ..

~
/

//
~j",/

"0 ~tl /

/
D

where

for ail k E Ill. Recall that the colimit is in SFpE: the l'k 's arc embedding and

therefore there are eorresponding projections Jlf :D - Fn( {.L}). Then wc can

definc the eontinuous maps "k = Jlk Ol'f. Sinec the eolimit is an O-eolimi! then

we also have that:

(a) {"kh is an inereasing sequence with join idD;

Now wc shall prove:

In the fol1owing we will use the faet that D ~ F(D); aetually, for notational

eonvenienee, we will treat the isomorphism as an equality.

Because of the charaeterization of ÇB via ordinals and o[ 1. we will have:

ÇB ç ç ... ç Çk [or any k.
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• IIcnee, IIsing (b), we gel. Ça ç::;. Therefore. once pro\'ed 1. and 2. we will have

shown that ça=::;.

J. Let Ils show il. by induction on k. For k = 0 there is nothing 1.0 prove since

"0 is the constant map .L. Suppose (induction hypothesis) that if d Çk c then

"kri ::; "kC for any d and c. Assume d Çk+1 c, i.e. assume that for any action a:

• < a,d' >E d ==> 3 < a,c' >E c and d' Çk c';

• .Lit d ==> .Lit e and « a, c' >E c => 3d'. < a, d' >E d and d' Çk c').

If d = 0 then also c = 0 and henee "kd = "kC. If d =.LFD then d ::; e and henee

"kd = "kC. Suppose now d =f: 0 =f: c and d =f:.LFD. Then

- "k+ld = (F"k)(d) = X· where

X ={< a'''kd' >:< a,d' >E d}(U{.L})

(take the union with {.L} only if .LE d);

- "k+IC = (F"k)(C) =y' where

y = {< a, "kC' >:< a, c' >E c}(U{.L}).

We want 1.0 show that "k-+l d ::; "k+J C, i.e. that X' Ç2 y": then il. is enough 1.0

show that X Ç2 Y. One has X Çl Y sinee

< a, "kd' >E X I.e.

==> 3c' . < a, e' >E C and

==> 3 < a, "kC' >E Y and

<a,d'>Ed

d' Çk c'

•

using in the last step the induction hypothesis and the definition of Y. To show

that X Ço Y is easier; indeed if .LE X there is nothing 1.0 prove; if .Lit X then

.L~ d implies that .Lit C and

2. Il. is enough 1.0 show thal. ::; is a partial bisimulation. The defining a.'Ciom

hoIds: if d ::; C then
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• • d ç! c. in particular V < a. d' >E d. 3 < a. c' >E ,'. d' :5 ,";

• d Ço c. in particular .L~ d =- .L~ c and (V < (/.,,1 >E t, 3 < (/. d' >E

d. d' :5 c')

and hence for ail actions a wc have

• d.2., d' ==} 3c' . c .2., c' . d' :5 Cl;

• d l --.; e land (e .2., e' ==} 3d' . d .2., d' . d' :5 c'). o

The domain of synchronization trecs 'D that wc have prcsented gives rise 1.0 il

logic that is equivalent 1.0 the Henncssy-Milner logic in the infinitary case; hencc

il. characterizes bisimulations (sce [Abr91, sections 4,5]).

1.3 A modal interpretation of power domains

In this section we introduce small modal languages Li (for i = 0,1,2) whose

basic propositions are the compact e1ements of an w-domain D. From their

interpretation via Kripke forcing we can define relations on the collection T of

generating trees over D and derive an alternative definition of power domains

([WinS5)).

1.3.1 The Smyth power domain and the modal operator

of inevitability

Let us think of the generic element of the Smyth power domain Fo(D) as the

equivalence class determined by TS, where (T, Ç) is a generating trce over D. If

A is as finite set of compact elements of D, by definition we have that A Ço TS

holds if

• \Ix E TS.3a E A.a:5 x.
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• Silice the clements of T; correspolld to limits of the clements of l\pi(D) labcling

the branches of the trcc T, 1.8 can be rephrased as:

"h branch of T, 3a E A. a ~ VIE' ((i).

Given the compactness of the clements of A, 1.9 can be expressed as:

"f-{ branch of T.3t E {.3a E A.a ~ ((t).

(1.9)

(1.10)

•

This leads us to consider a language La built out of I\pt(D) using finite disjunc­

tions (to cope \Vith the existentiai quantification of the clements of A) and a

modal operator of inevitability (to cope with the universai quantifier). Remark

that the expressions s Vs'and Os in the following definition are just formai com­

binationsj in particular if s, s' E I\pt(D) then s Vs' is not the supremum of s and

s' as clements of D.

Definition 30 Let La be the least set such that:

• I\pt(D) ç La; and

• if s,s' ELa, then s V s' E La: and

• if sELo, then Os ELa.

Next we interpret this language via Kripke forcing.

Let (T, () be a generating tree over D (in the following we will write just T for

short). Because of Proposition 1 we can suppose with no loss of generality that

((t) is a compact element of D for any t in T.

We will write t -> t' meaning that there is an arc in T connecting the node t to

t'.

Definition 31 Let FT be the least relation on T x La such that:
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1. ifa EI\),/(D) and a:5 ((1) Ihcn 1 FT a: and

2. if 1 FT ~ or 1 FT ~' IhCl1 1 FT ~ V.,': and

3. if for aIl brunch Î' oui of 1 IhcI"c i~ l' E Î '<lIch Ihal l' F'/" " Ihfll 1 F'/" 0".

Given the minimality of FT, the previous conditions arc indeed if-and-onh'-if

conditions. A neater definition of FT can be obtained equivalently by replacing

:3 \Vith 3'

3'. if t FT ~ or ("It'. 1 -> l' => l' FT~) then 1 FT O,,(to be rcad as t cnt.ails

inevitably s).

Wc can now consider the statements of a non-dc:;crminisl,ic computation (:1', ()

that are inevitably truc and use this to order the c(.l1ection T of gencrating trccs

over D.

Definition 32 For T, T'in T definc

• VQ(T) ={Os E Lo : rool(T) FT Os};

• T:::o T' iff lfa(T) ~ Vo(T');

• T ~o T' iff T:::o T'and T' :::0 T.

Hence wc can think of T I~o as a poset: wc will show that it is isomorphic to the

Smyth power domain.

We necd to define on Lo an equivalence; for s, s'in Lo say that s == s'if

"IT ET. (root(T) FT s iff root(T) FT s').

Theo it is easy to sec that this equivaience turns the formai operator V of Lo into

a join in Lof=, which is indeed a semilattice. Morcover in Loi == we have:
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• 0(08) == O., and

• 0(" V O.,') == 0(" V -<').

Because of the definition of Lo• for any clement s in Lo there is an A in }v1(D)

sllch that 0" == 0 V:1. Hence we have immediatcly the following resu!t.

Lemma 26 For any generaling lree (T.() in T and any il in /vl(D) lhefollowing

faels arc e'luivalenl:

• rool(T) FT 0VA.

Now wc arc ready for the main result.

Theoo:-em 27 The posel T /~o is i..<omorphic lo lhe Smylh power domain Fo(D).

Proof. Let us define a map <p : Fo(D) --> T /~o.

The generie clement of Fo(D) ean be thought of as the ideal, whose clements are

the approximations of TS E :F(D) for sorne (T, () generating tree over D, i.e. as

the set l = {A E J\4(D) : ...1 Ça TS}.

Beeause of the previous lemma, wc have immediately:

l = {A E M(D) : root(T) FT 0 VA}.

Hence wc ean define <p as the map that sends the equivalenee class in :Fo(D)

determined by TS to the equivalenee class in T /~o determined by T. Then <p

is a bijection and both <p and <p-I preserve the order: henee <p is the desired

isomorphism. 0
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1.3.2 The Hoare power domain and the modal operator

of possibility

Let us proceed as we did in the pre\'ious scction. The gcneril" <'1CIl1<'IIt. of th,' lloan'

power domain .r1(D) can be t.hought. of as the equi\',I1t'nc,' e1a..'s dt'tct"lllined hy '1',5.

where (T. () is a generating trcc o\'er D. For ..\ in .VI( Dl wc ha\"<' t.ha!. .-1 t;;;l '1',5

holdc if

"la E A. 3x E T~. a::; .r

which we can rephrase as:

"la E fi. 3, brandI of T. 3t E ,. CI ::; ((1).

Hence we need a language LI build out of I\pt(D) and wit.h a modal operator <>
of possibility (to cope with the existential quantification of the brandI ,l

Definition 33 Let LI be the Ieast sel such lhal:

• I\pt(D) ç LI; and

• if s is in LI then so is <>s

(where <>s is just a formaI expression).

This language can be interpreted as follows.

Definition 34 For T in T define FT to b~ the Ieast relation on T x LI ,mch

that:

1. if a is in Kpt(D) and a::; ((t) then t FT a; and

2. if there is a branch , out of t and a t'in Î such that t' FT s tllen t FT <>s.

Here 1.00 we cau substitute 2. equivalently with the axiom 2':
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'2'. if 1 F"I' "' or 31'.1 ~ l' .1' F"I' 0.< thell 1 F"I' 0.<.

Let liS ddille 011 T " preorder. collsidering the propositions of the language LI

that are po"ibly trlle for a gelleratillg trec (1'. Cl o\'('r D.

Definition 35 F",' ('f', Cl rw<i (T'. C) gCllc,."lillg Irccs ill T pul:

• \l1(T) = {Os: 1'001(1') F'r Os}:

• l' ~1 T' if\-~(T) ç '-j(T'):

• l' ~1 T' if l' ~ T'and T' ~ T,

Now we can define an equivalence on LI: for s. s'in L say that s =s'if

"11' ET. (root(T) FT s if!' root(T) FT s').

Then for any s in LI we have:

• O(Os) =Os;

• there is a in l\pt(D) such that Os =Oa.

Bence we have the following technical result.

Lemma 28 For any l' in T and A in J\Il(D) the fo/lowing facls are equivalent:

• A bl 1'5:

• 'Va E.4. root(T) FT Oa.

Before going into the main result let us give a characterization of the Hoare power

domain.
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Proposition 29 /.d q/\pl(D)) = {X ç /,'pf(D): X d. Ou"d lX = X}lI'/"'"

lX = {y E /,'l'I(D): y::; .,. for.«",,,.r E Xl. 'l'''''" q/'»f(f))) purtiul/y ordanl

by illcl",:ioll i,: i,:omorpitic 1o f"" /loar,- pou',,,, domai" FI (/)).

Pro"f· The l'roof is very simple if one thinks of P, (D) a,: / dl(. III (Il). r;,). Ind" ..d

we l'an define t.wo order preserving maps 'i : FI (D) --> .c(/,»I( Il)) and ~'. :

.c(l,·pt(D)) --+ PdD). which are c1early mut.ually itl\'t'rse..Just. l'nt.:

'P(I) = U{X 1X E 1} for / III P1(D),

and

4vn = {A E JIIl(D) : A ç X}.

o

Theorem 30 The pose/. T/=1 is isomorphic /.0 Ih<' f1oUl'e pOlOer dOlllaiu F,(/J).

Proof. We shaH prove that the mal' 'P : T /=1 --> .c(l\pt(D)) definc<l by

cp([T]:,) = {a E I\pt(D) : root(T) I=T Oa}

is an isomorphism. The theorem then follows from the previons proposition.

Remark that T :::::1 Tf if and only if

{a : root(T) I=T Oa} ç {a : root(Tf
) I=T' Oa}

and therefore cp is weH·defined, injective and order·prcserving. Moreover il. is onto

becausethegenericelementof.c(I{pt(D)) isoftheformU{A E M(D): A Ç 1 1;}

for some tree (T, () and il. reBects the order. Hence il. is an isomorphism. 0
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1.3.3 The Plotkin power domain and the modal opera­

tors

J'lIttill~ tu~etlH'r what \\'(.' have..' dOIl(' in the t\\'o prc\"ious sections one Céln obtain

11", IIlOd,,1 illlerpret"liull uf lhe l'iulkill powpr dUlll"ill.

Definition 36 Lei L" oe l''e 1«l~1 ~eI "Ile" l''al:

• if $_ Si E Lz. /hcll S V s' EL'!: and

Definition 37 For T generaling lree in T define FT 10 oc Ihe leasl roelalion on

T x L2 sllch Ihal:

1. if a E /\pl(D) and a :5 ((1) Ihen 1 FT a;

" if 1 FT S or' l' FT s illen 1 FT s V s';

3. if for l'very branch i oui ofl Ihere is l'in i such Ihal l' FT s Ihen 1 FT Os;

.(. if Ihere i.. a branc/I i oui of 1 and Ihere is l'in i such Ihal l' F s Ihen

1 FT Os.

Equivalently we can replace 3. and 4. with:

3'. if 1 FT a or ("II' .1 -> l' '* l' FT Os) then 1 FT Os;

·1'. if 1 FT s or 31' . 1 -> l' . l' FT Os) then 1 FT Os.

Now, just as we did for the Smyth power domain. assume we are only interested

in the statements that are inevitably true.
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Definition 38 ForT aad 1" 11'.-.-,' i/l T d.-ji/l.-:

• \ 2(T) = {o" E L~ : 1'001(T) 1=1' D,,}:

• l' ~~ T'if a/ld O/l/Y if \2(T) ç \2(1"):

l' - 1" f / / f l' ~ '[' /1" ~ 'J'• =2 1 aIl( ou y ! ~~ (HU ~2.

Let us introducc an equivalenct' on L~ as follo\l's: say tlta\. " :; ,,' if

'fT, (root(T) 1=1',' ilf root(T) I='r ,,'),

Clcarly :; is an cquivalencc and L2 / :; is a join semilattice \l'here mÛrt'O\'l'r \l','

have:

• Os:; o(os):

• Ols V s') =Os V Os';

• Ols V Os') :; Ols V s');

• Ols V Os') =Os VOs',

Then it is clear that any s in L2 has a normal form where the modality operators

are ncsted only one deep, namely s is equivalent to

aoV ... Va" VObo V ... VObm V o(eoo v ... Veoio ) V ... V o(CIOV ... VCti,)

and therefore Os is equivalent to

o(do v ... vd.)VOco V ... V OCt

for suitable ai, bj, C;j, dl, Ck in I\pt(D).

From this we obtain immediately the following rcsult.
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• Lemma 31 L,I'j' ,,"d T' h, 11',,8 i1l 7. 'l'hw Il,, foll0ll'i1l!J f"c/.' "l''' ('1lli""I,,"I:

• T~" T':

• l' ~u T' (ltId T ~I T'.

Ilellce '''e cali finally prove the main result of this section.

Theorem 32 Th( pose! (7/";5.,. ~,) is isamarphic la Ihe Platkill pawe/' damain

< F,( D).

1'1'00[. The isolllorphism is gil'cn by the map cp : F2(D) __ 7/";5.2 defincd as

cp([T~]2) = [T],.,.

Since T ~2 T' is equivalcnt by the prcvious lcmma to T ::::;0 T'and T ::::;1 T'and

this in turn is equivalcr.t to T; Ço T': and T; Ç1 T':, i.e. to T; ç, T':, 'P is an

•

isomorphism.
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Chapter 2

Power locales

2.1 Power locales as generalized power domains

In this section we define power locales as the localic analogue of the construcl.ion

of power spaces ([Smy83]l and show how t1lt'Y can be sc'en as a gelll'ralizatioll of

power domains ([Rob86]).

The concept of power domain has bccn introduced in section 1.1 in or<ler to

give a semantics to non-determinism. Anotlter possibility wonld have bœn to

use many-vaIued functions between topological "paces (thinking of their opens

as computable propertics and of continuous l11aps as computable functions). Wc

wonld nced then a notion of continuity for a many-valucd functioll. There arc

indeed several possibilities ([Ber59]).

Definition 39 Let X and Y be top%gica/ spaces. Il mu/tiftt.nr.tion l' : X -. }'

is said to be:

• upper semicontinuous iff+(O} = {x: fx ç O} is open in X whenever 0

is open in y;
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• lowcr scmicontÎnUOllS if 1'-(0) = {x: l'x n 0 ~ 0} /,< open ","e/laC/' 0 is

• COtltillUOUS if il. is both upper flud lOIL'Cl' scmiconlilllLOuS.

In ordcr to gh'c a charactcrization of (scmi- )continuous multifunctions l' llsing

thc corresponding simplc-valued function Î' : X --+ \1Y dcfined by rx = l'x, wc

int.roduce thc following topo!ogit'S,

Definition 40 Let X be a topologieal space. S a subscl of \1X. For 0 open of

X put:

DO = {T ES: T ç O},

<>0 = {T ES: T n 0 ~ 0},

The upper topology on S Î..< generated by the base {DO: 0 E O(X)}. the lower

topology on S by the subba..<e {<"O : 0 E O(X)} and the Vietoris topology on S

by the subba..<e {DO, <>0: 0 E O(X)}.

Now it is easy to show ((SS3.bJ) that a multifunct.ion l' : X --+ Y with multivalues

in S is upper semicontinuous (Iower semicontinuous, continuous) if and only if

Î' : X --+ S is continuous with respect to the lower (upper, Vietoris) topology

on S.

Characterizations of power domains, as in Theorem 25, lead us to consider par­

ticular choices for S, when trying to model non-determinism.

Notation. Let X be a topological space. We will use the following notations:

1. CL(X) for the set of dosed subsets of X;

2. UC(X) for the set of upper-dosed subsets of X;

3. CONV(X) for the set of convex subsets of X (a subset S is convex if it

is equal to the intersection of its topological dosure cl(S) and of its upper

dosure i S);
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.1. cO.\/ P( X) for the >ct of compact >U[,"'I> of .\.

Of cour>e. in~. and 3.. the uppcr·cio>ure i> rdcrred 10 1Ill' >p<,cial izal i<>l1 pr,'ord,'r

on X. defined for .r. il in X as:

x ~ il iff ;;0 E O(X) . .r E 0 ---: il E O.

Definition 41 LcI X be a lapa/agica/ space.

• The upper power >pacc PSo(X) of X is CaM P(X)i1FC(X) cl/do/l'rd /l'ilh

the appel' lopa/ogy.

• The 10wer power space PSI (X) of X i..< CL(X) takel/ wilh the /Oll'fl' 101'0/­

ogy.

• The Vietoris power space PS2(X) of X is CaMP(X) il CONF(X) /t'ilh

the Vieto,'Îs top%gy.

Now let us try to express the power spaces using on1y open subsets, in order to

find a;"ioms for defining the power locales.

The easiest is the lower power space: it can be defined cquivalently (up to iso­

morphism) as

PSt(X) =(O(X),topology \Vith subbase {OO: °E O})

where now 00 = {U E O(X) : °If; U}.

Remark that the following properties are verified:

• for any collection {U; her of opens of X:

oUa; - {U:UO;If;U}

- {U:O;If;Uforsomei}

- UOO;;
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• 00 = 0.

For the upper power space we nccd sorne conditions. Assume that X is compact

Hausdorff. Then the compact subsets correspond to the c10sed and ail the sets

arc upper cIoscU ([or the last condition. ,'<, ouly u~.cJ to assume X to be TIl.

Hence wc can dcfinc

PSo(X) = (O(X), topology with base {DO: 0 E O(X)}),

where 00 = (U E O(X) : U U0 = X}.

Rcmark that the following properties hold:

• for any directOO family {Oi}iEr of opens of X:

DUOi - {UEO(X):UUUOi=X}

- {U E O(X) : U U Oi = X for sorne i}

- UDOi
i

• for any O. 0' opens of X:

0(0 n0') - {UEO(X):UU(OnO')=X}

= DOn 00'

• DX ='O(X).

Similarly for the Vietoris power space if we assume tbat X is Tl and compact {so

that CONV(X) = CL(X) ç COMP(X)) then we have:

PS2(X) = (O(X), topology witb subbase {OO, 00: 0 E O(X)})

where 00 and 00 are definOO as in the previous two cases.

Besides the properties already !istOO, for any 0 and 0' open in X we also have:
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• • 00 u 00' ;:: o(0 U 0'):

• 00 n 00' :5 O(0 nO').

Assuming thcse properties as a'doms wc get the definition of power locale of a

iocale.4 ([Rob86]). We wiii use the notation Fr < G 1R > to mean the llnÏ\-ersa\

solution to the problem of finding a frame containing the set G of generators and

satisfying the presenting relations in R ([Vic89j): remark that this makes sense

in any topos ([JT84]).

Definition 42 The Smyth (0r upper) power locale \'O(A) of A Ï,.< givcn by l''e

frame:

Fr < oa(a E A) ovs = V{os: sES} for S(Ç; A) dirccted,

o!l S =!I{os : sES} for S(Ç; A) finite >.

•

If we add the presenting relation 0.L=.L, t"ell wc ob/ain the strict Smyth ]lOWCr

locale Vo+(A).

Equivalently we could say that O(Vo(A)) is the frame frcely generatcd by O(A)

qua preframe (a preframe is a poset with directed joins and finite mcets, such

that binary meets distribute over directed joins).

Note that if X is a compact Hausdorff space, then Vo(O(X» ~ OPSo(X).

Definition 43 The Hoare (or lower) power locale Vi(A) of A is given by the

frame:

Fr < Oa(a E A)IO VS =V{Os : sES} for S ç; A > .

If weadd the .presenting relation 0 T =T, then we have the strict Hoare power

locale Vi.+(A).

Equivalently we could say that O(Vi(A)) is the frame freely generated by O(A)

qua suplattice (we calI suplattice a lattice with ail suprema. ([JT84])).

Note that for any topological space X, one has Vi(O(X)) ~ OPSt(X)•
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Definition 44 The Vicloris power locale \12(.1) of.4 is giren by tlze frame

Prm < Oa.Oa(a E A) 1 OVS = V{Os: sES} for S(Ç A) directed,

o fi S = fI{O., : sES} for S(Ç A) finite .

o VS = V{Os: sES} for S ç .4,

Da V Ob ~ O(a V b).

Da fi Ob ~ O(a fi b). >

'l'Ize strict version of tlze Vietoris power locale is obtained by adding tlze presenting

"c/ation 0 1.=1..

Remark. The presenting relations of the Vietoris locale will be referred to in

the following as the a:doms V1,V2,.. .;V5.

If X is Tl and compact (in particular, compact Hausdorff) then _O(PS2(X)) ~

V2(O(X)).

As the name suggests, there is a correspondence between power domains and

power locales (though for historical reasons v2(.1) is not referred to as the Plotkin

power locale).

Let us denotc by ~(D) the locale of Scott-opens of a domain D (recall that U ç D

is Scott-open if it is upper-closed and inaccessible by directed joins).

Theorem 33 If Disa domain then we Izave t.he following isomorphisms of lo­

cales (for i = 0, 1,2): Vi(ED) =EF,+(D).

Prao/. We will show (see following lernmas) that we can define frame homomor­

phisms

tPi : EF't(D) -+ Vi(ED)

and
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such that yi 0 Il'; = id~F;(D) and d'; 0 'Pi = idl',(~Dl: thcrcfore thé' isomorphisms

will have been cstablished.

Sincc the proofs of the cases i = 0.1 arc simplified versions of the proof of li\('

case i = 2. they will be omittec!.

Recall that the Scott topology on a domain (in our case J.;+( Dl) can he iden­

tified with the upward closed topology on its set of compact. demt'nts. in onr

case (Jvt+(D), Ç;}. Hence wc can define ~'; jllst on the upward c1osul'c Ti Ji in

(M(D), Çi) of a fini te set A of compact clements of D and verify t.hat 1/'; is indecd

weil defined (sec Lemma 34 in the following); for i =0.1,2 put rcspectivdy:

,pci(T0 {a\, ,an}) = o ((TaI ) V V (Tan l);

!pi(TI {at, ,an}) = O(Tatl i\ i\ O(Tan);

!pi(Tdal'''' ,an}) =o((Tad V V (Tan)) i\ O(Tatl i\ ... i\ O(Tan)

where Tai = {y E D : y ~ ai}.

Next let us remark that a basis of V;(:8D) is constituted by the clements:

i =0 : {o(Tal) V .. , V (Tan)) : ai E [(pi(D)};

i =1: {O(Tb): b E /(pt(D)};

i= 2: {o«(Tatl v ... V (Tan)) i\O(Tbl ) i\ ... i\O(Tbml: ai,bj E J\pt(D)}.

Indeed if U is a Scott-open subset of D, then wc have

ou - OV{Ta: a E U,a E /(pt(D)}

- oV{(Tal) V V (Tan): ai E U,ai E /(pt(D),n E N}

- V{o(Tatl V V (Tun ): {a}, ... ,an } E M(D)}

(since 0 preserves directed joins) and aIso

ou - OV{Tb:bEU,bEJ(pt(D)}

- V{O Tb: b E U,b E J(pt(D)}

(because 0 preserves arbitrary joins).

Now we are Icady to define the maps cpi:
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i=l: <pj(Ona)) =T, {.La};

i=2: <p;(D(TaIl V ... V Ta,,)) = U{hX: X ç {aJ, ...• an }} and

<p;(O(Ta)) =h{J.,a}.

Once again. we will prove that <pi is a frame homomorphism only in the case

i = 2 (s~-'C Lem ma 3.) in the following). So, after reading the next threc lemmas,

the proof is complete. D

Lemma 34 The llIap -.p:; : EFz+(D) --> \';(ED) is well-defined.

Proof. Wc only need to prove that if

t.hen we have

2. D((Tatl V V (Ta,,)) t\ 0(Ta1) t\ t\ O(Tan)

~ D((jl>tl V V (Tl>kl) t\ 0(T1>1) t\ t\ O(jl>k)

Remark that 1. is cquivalent to

Le. to the two conditions

But 3. in turn is cquivalent to

65



• and hcnce wc gct

5. O((iatl V ... V (ia,,)) :5 O((Tbtl V ... V (ibkl).

Similarly -1. is cqui\'alcnt to

-/'. Vj = 1. ...• k.3ij E {l. .... n}. Tai, Ç;Tbj

[rom which wc gct

Putting togcthcr 5. and 6. wc gct 2.

Lemma 35 The map ",:; : \'2(~D) -- ~F2+(D) i" lOell-dcfincd.

Proof. Let us start by showing that i[ oc :5 {3 in ~(D) tlH'n

L ",:;(Ooc) :5 ",:;(0{3); and

o

•

Because of the remark in Theorcm 33 when proving 1. wc can assumc without

loss of generality that oc = (ial) V ... V (Tan) and t3 = (Tbtl V ... V (ibd. Hcncc

{b}, . .. , bk } Ça {ab' .. , an} (we have already observed in the prcviotls Icmma the

equivalence ofthese two statements). If X ç; {ab"" an} thcn {ab"" a,,} Ça X

and, by transitivity, {bb'" , bk} Ça X: hence by refining {bb' .. , bk} wc can find

y ç; {b}, ... , bk } Ça X sncb that Y ~2 X. Then wc have:

","(O((Tal) V ... V (Tan))) = U{T2X: X ç; {ah'" ,an}}

:5 U{hy:yÇ;{bl, ... ,bk }}

- ","(O((TbtJ V ... V (Tbk»).
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'1'0 Vl'rify~. we may ,L,"urne that Cl =ju alld d =jb (always because of the remark

ill Theorelll :1:3). Theil Cl S (J if[ b S u iff {.L. b} 1;2 {.1. u} if[ Î2 {1.. a} Sj2{1.. b}

i.e. ",;(On) S ",;(Of1). Helice <f; is weil defined on the clement of the form

O(ju, V .•• V jan) Il O(jb,) Il ... Il O(jbkl.

Silice this is a basis of \lABD) wc can extend "'z "by linearity" to a map delinecl

011 V::(BD). Let us verify that the prescnting rclations of the Vietoris power locale

holcl:

(VI) and (V3) hold because of the delinition of "'~;

(V2): wc nccd to show that:

",;(0(0' 1113)) 2: ",;(00') Il ",;(0,8)

where wc can suppose 0' = (Ta,) V ... V (jan) and fi = (jb,) V ... V (jbk ). Thcn

wc have

",;(0(0' 1113))

- ",;(OV{TXl V .•• V x,: {ah ... ,an},{bh ... ,bk } Go {Xl, ••• ,x,}})

- V{",;(O(jXl V .•• V Txtl): {ah .. ·,a,.},{bl, ... ,bd 1;0 {Xl""'X,}}

= V{hY: y ~ Xj{ah.··,an},{bl, ... ,bd 1;0 X}

2 V{F : {ah"" an}, {bb"" bk} 1;0 Y}

- ",;(00') Il ",;(0,8)

where the last step holds since

X 1;2 }' and X' 1;2 Y for sorne X ~ A and X' ~ A

is equivalent to

(V4): we nced to show that:

",;(0(0' V p)) :s ",;(00') V",;(Ob)
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and again wC' can a~Sllllle without. loss of gClll'ralit.y thoitt Cl =Tat V ... V jllu ~llld

.<3 =T bt V ", V Tb;,. Then if Z E .;;(0(0 V 3)) i,e, if.Y li \' Ço /. l'lll' ,Ollt"

X ç {at ..... an} and }' ç {bl ..... bd w,' ean di,t.inglli,h Iwo l',,;;ihilitie,:

- if Y = 0 thcn Z E ",;(00) ,illre.Y Ç~ Z wher,''y ç {li, ..... lI n ):

- if Y f il then Z E ",;(0) ,inre 3b E }' ,neh that {l.. b) Ço Z,

(V5): wc nccd 1.0 pro"e:

wherc as usually 0 = (iatJ V... V(Tan) and ,::1 = (Tb,) V... V(Tbkl. Then if Z i, in

",;(00)/\",;(0;3) thcrcare bath an X ç {at- .... a,,} and abi E {b-I. ... ,bd

such that X ç~ Z and {..L, bi } Çz Z i.e. there is z E Z sueh that aj ::; z and bi ::; z

for sorne aj E {alo"" an} and bi E {bt- ... , bd: but thcu Z is in .,,;(<>( 0 /\ /'1)).

o

Lemma 36 The maps.,,; and.p; are mutually inverse.

Proof. Ta l'rave that .,,; o.p; = idl':Fi(D) we only need 1..0 check that

where alo"" an are compact clements of D. Indeed, we have

.,,; o.p;(h{alo ,an})

- .,,;(0 ((Ta 10 ) V V(Tan)) /\ O(TatJ /\ ... /\ O(Ta,,))

- 'r';(O((Tat,) V ••• V (Tan))) /\ 'r';(O(Tat1) /\ ... /\ 'r';(O(Tan))

- U{T2X:XÇ{alo ... ,n}}/\ /\ T2{..L,ai}
i=l •... ,n

where in the lirst three steps we are just applying the delinition of 'r'2 and 'p;,
whereas the last step is motivated by the following:
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- if {(J', .... a,,) I;2}' then for aIl i = 1. .•.• 71 one hru; {.La;} I;2 }':and

. if X I;2 Y for sOflle X ç {a" ... ,a,} (and thercforc {a' ..... a,,} I;2 }") and

SiflliJarly to l'rave that~·; 0"; = id\',P':D) wc only nccd to show:

1. ri'; 0 ,,;(O(Ta)) = O(Ta); and

2. '1'; 0 ,,;(O(Ta, V... Ta,,)) = 0(Ta1 V... Ta,,).

Let ns scc 1.:

4'; o,,;(O(1a)) = J,!·;(T2{.La})

= O«tL) V (Ta)) /\ O(tL) /\ O(1a)

- DT /\ OT /\ O(1a)

= 0 Ta

whcrc the last step comes from the fact that DT = T.

We will prove 2. by induction on n; for n = 1 we have:

r/J; 0,,;(0 Ta) =r/J;(U{T20\': X ç; {a}})

- 4>;((T20)U j2 a))

- 4>;«120) V1/>;(j2a))

- 0.1 V(O(ja) /\ O(Ta))

Let us assume, as induction hypothesis, that 2. holds for k ~ n - 1; then

4>; 0 ,,;(O((Tatl V'" V(ja,,)))

- 4>;(U{12 X :XÇ;{ab".,a,,}})

- V (O«ja,,) V... V (jai.)) /\ O(Tal;) /\ ... /\ O(ja,.))
{i, .....in}!;{I n}

- (O«jal) V (jan)) /\ O(jal) /\ ... /\ O(jan)) V

V V (O«jal) V... V (jar)) /\ O(jal;) /\ ... /\ O(ja,.))
{', .....'.}C{I,...,n}

69



• 1\ow applying the induction hypothl'~i~ to th,' ~l'c,)l1d l'art. of th" di~.illllcti,'no w,'

get:

do; 0 <,:;(O((Tatl V o •• V (Tan)))

= (O((Tatl V ... (Tan)) i\ O(Tatl i\ .. 0 i\ O( Tan))

V v O((Tatl V .00 V (Tu,))
{II.· .. ,Ir la t1•. "fll\ IJ}

for JEtl •....,,'

> O((TatlV ... V(îa,,))i\ /\ (O(Taj)VO( V HT";)))
J=l .....n "':1, ......")

<:: O((Tatl V ... V (Ta,,)) i\ /\ O((Tatl V ... V (Ta,,))
j=I •....n

On the other hand one obviously has

and thercfore the equality holds. o

•

If we consider the strict version of the power domains and we want 4'i to he

still an isomorphism, we are forced to replace the power locales with their strict

versions.

Theorem 37 If Disa domain we have the following isomorphism of locales:

Now recall that a domain is sober in its Scott topology, i.e. it is isomorphic to

the space of points of its Scott topology. Then we l'an finally show in which sense

power locales are a generalization of power domains.

Theorem 38 Let D be a domain. Then for i = 0, 1,2 we have the isomorphisms:

Fo(D) ~ pt(V;+(~D)) .
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• 2.2 Monads from power locales

•

ln this section \\'e sho\\' th<Lt the po\\'er locales gi\"(' rise t.o lllonads O\'er Loc.

.Johnstone proved th<Lt the <Llgebras for the Vietoris monad can be seen <CS a

part.ienlar c1ass of localic semilattices ([JohS5]). \lie extend t.his result. to the

other two power iocales: when the l'roofs go <Llong the same lines. the)' will be

olllitted.

Notation. For sake of readability. in the l'roofs of this section the index i = :2

will be dropped.

Proposition 39 The assigll7llenLs .4 ..... 1';(..1) (fol' i = 0,1,:2) give rise to fUlle­

101'5 Vi : Loc ---+ Loc: moreover there are nutural transformations 71. : 1dLoc ---+

1:' ant/ILi: I.,? ---+ Vi 11laking (Vi. 7/i, ILi) into a 11l0llad on Loc.

Si11lilcLrly, the St7-iet /Jower locales 1.~+(.4) give rise to mOllads (v;+, 71t. /ln 011

Loc.

Proof Wc start by defining VU) for f : .4 ---+ B morphism of locales: it is

enough to specify the effect of VU)" on the generators ob and Ob of V(B): put

• V(J)"(Db) = DU·(b));

• VU)·(Ob) =0U"(b)).

Sillce r is a frame homomorphis.n, VU)" preserves the presenting relations (VI)­

(V5) and therefore it is a well-defined morpbism on V(B); moreover V is dearly

functorial.

Tbe unit 1/ of the monad is defined by:

1/A(Da) =a and 1/:î(Oa) =a

and tbe multiplication /l by:

/l~I(Da) =D(Da) and /l:i(Oa) =O(Oa) .
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• Il is straightfor,,"ard to sel' that. bcllh lIlaps prl'sl'rn'lh,' 1'l'\ali"IlS (\"1 \-t\',,) ;\IId

arc therdore wc!l·ddilled. :\lso lhl' axiollls of Illollad follow illllll"diate!y fr"lll

the definitions. [J

For i = 0.1 one has \';". = '/i,',: hC'lll'c- the SlIlylh alld Hoarl' Illollalb ha,"" a

particular structure, kllowll as KZ'lllollad, \Ve ret'all t.hl' ddillit.ioll of t.his n)lIcl'pt

just for a 2-catl'gory C l'nrich,'d O\'l'r pOSl'ts. rdc-rrillg thc' rC'adl'r Lü [h:od);,j for

the general theory,

Definition 45 Let '1' : C - C be a :J-fllllclor (i.e a fandol' 11111/ IJ1'C,<fI""l'.<

Ihe on/cr of Ihe hom-sels). A KZ-monad on C i..< Il 1I1OIHld ('1'.11-1') ,<acll 1/",/

TI)C :5 I)TC for ail obJect C of c.

Proposition 40 Lei ('1',1).1') bc a l\Z-docirillc on C. Thcn a T-all/cbm slrlld Il''t'

a on an object .4, of C, if il exisls. i..< alliqlteiy delcl"lllillccl (llp la isollll1lïJhis/ll).

Proof From the a.-dom TI"loa = id.,1 olle has, by naturality of 1). t.hat T<lol/"I'..t = id.

Since l' defines a KZ-doctrine then one gets

TI ..! °a = Ta °1)'/'..1

~ Ta °1'1)..1

= T(a ° 71..il

= id.

Hence the structure a is a rellection left adjoint to 7),( and thercforc is ulIiquc1y

dete:mined. o

•

In particular, the Smyth and Hoare algebra structure of a locale, if it exists, is

uniquely determined.

The Vietoris power locale, however, does not give rise to a KZ-monad for other­

wise we should have V2TI2 :5 TI2V, (and hence Ca =Oa for all a) and this is c1carly

not the case.



•

•

III order to show that l,II(' algebra...-; of the Illonads li hiJ\"t" nalurally a scnlilatt.ices

sl.r,:ellll'" (ill Loc). wc Ill'ed the fo\lowing two iemlllas abont products of locale,;

(fur il chilrilcterization of prodllcts of loe,dt,s sel.'. for exalllpie, [Bor~l,l]),

'Ii: V;(.'1) ® \'i(E) -=-. \;(.·1 x 1.1)

",here ® 1l1lt/ X dt'Ilole tlu: prot/acl alldlhe coprot/acl ill Loc.

Proo/. Let us dclille '1' : 11(.'1 x B) ---- V(.'1) ® \/(1.1) setting:

• «(o(a, bl) = Oa 0 Ob:

• '1'(O(a,b)) = (Oa (1) V (100b).

Wl.' ha\'c to \'crify thilt q" preser\'es the presenting relations:

(VI): if {(ai, bi)}'ET is a directed subset of .4 x B, then:

'1"( o(V(ili. bol)) = (oVa;)0(oVbj)
j

- (V Dai) 0 (V obj)
j

= V(oai 0 Obi)

= Vq"(o(ai, bi )):

(V2): if (ai,bi) E A x B for i =1,2. then:

q"(0((at,btlA(a2,b:!))) - o(at Aa2)0o(bl Ab:!)

- (oat A oa2) 0 (ObI A Ob:!)

= (oat 0 obt ) A (oa2 0 Ob:!)

- q'(o(a1o bt)) A q"(0(a2, b:!));
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(\ ':3): if {(ai. bol LEI is ail:- subsel of .-1 X 13. 1h'-II:

-'

= V((v,,; 8 1) V (1 è: x"b;))
'.;

= V((vai~~I)V(1;:~0bi))

= V«((O(a,.bi )):

(V·l): if (ai.bi) is ill .-IxB for i = 1.2 tl1<'lI:

q-(o(("I.btl V (ao.b:!)))

= o(al V ao) 0 o(bl V b:!)

::; (Dai 0 o(bl V bol) V (Oao 0 o(bl V b:!))

::; (Dai 0 obtl V (Dai 0 Obo) V (Oao 0 0(b1 V IJ.!))

::; (DaI 0 obd V (1 0 Ob:!) V (Oao 0 1)

= q"(o(It, bd) V q"(0(a2, 1>::))

(V5): if (ai,b,) is in .4xB for i = 1,2 then:

q"(O((al, bd A (a2, b:!)))

= (O(al Aa2) al) V (1 181 O(bl A b:!))

> ((DaI a 1) A (Oa2 a 1)) V ((la obtlA (10 Ob2 ))

> ((DaI 181 Obd A (Oa2 al)) V ((Dai a obd A (1 a Ob:!))

- (0:11 a obtl A ((Oa2 01) V (1 a Ob2 ))

= q"(o(at, bd) A q"(0(a2, b:t))

In the other direction we can define two maps:

ri: VA -- V(AxB)

and

r;: VB -- V(AxB)
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l,y pllaing r;(oa) = o(a.I). r;(Oa) = O(a.O) and s!milarly for ri: thc relations

(VI )-(V5) are pr<'5er\"cd (easy c1l'xking) and thcrcfore we have il frame homo­

lTIorphism (r,. r2r :VA l8i liB ----. F(a x BI defined by:

~'lorco\"er

(rh r2)" 0 q"(o(a. b)) = (rI, r2)"(oa 181 Cb)

= rj(oa) Il r:;(ob)

= Ota, 1) Il o(U)

- o(a,b)

and

h, r2)" 0 q"(O(a, b)) - (rio r2)"(Oa 1811) V (1 181 Ob))

= rj(Oa) V r:;(Ob)

= O(a,O)VO(O,b)

= O(a.b)

and therefore (r}, r2)" 0 q" = id.

Similarly we have q" 0 (rhr2)" = id, since the maps qi 0 ri are the projections

Pi'S of the product VAI8i VB; for example for i =1 one has:

q" 0 rj(oa) - q"(o(a, l))

- Oal8i1

= pj(oa)

and

- q"(O(a,O))

- (Oal8i1)V(1I8iO)

- p~\~.;a) .
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• Thu5 q is an i50morphism: its naturality follow5 from th.. ddinit;,>tl. o

•

Lemma 42 ThC1'c is a liai lirai map d : \;(..t) ® \;( 13) ~ \;( ..Ix IJ) d.jillnl by:

1. d"(oc)=V{oa0ob:aGb~c}

and

2. d"(Oc)=V{Oa00b:a0b~c}

for any c in A ® B.

Proof. Remark that if c is an open rectangle, say a0b. then d"(0(a0b)) = Oa<:,)Ob

but d"(o(a 181 b)) # Da 181 Ob since we always havc 0 (:, 1 = 0 ~ a (:) b. bul.

00 181 1 ~ Da 0 ob unless b = 1 bccausc 00 # 0: I.his also shows thal., whcn

we work with the strict Vietoris power locale, we havc 00 = 0 and I.hercfore

d"(o(a 181 b) = Da 181 Ob. Now let us vcrify that d" preserves the:. prcscnl.ing

relations (VI )-(V5):

(VI) and (V3) ar~ similar: let us sce for example (Va): note that every clement

of A ® B is the join of the open rectangles it containes. So 1.0 verify that d"

preserves relation (V3) it is enough to prove it for joins of the kind (Vi a ô) 0 b

(and similarly a 181 (Vi bi ):

d"(O((Va;) 181 b») - (0 Va;) 181 (Ob)
;

- (V Oai) 181 (Ob)
;

= V((Oa;) 181 (Ob»
;

- Vd"(O(a; 0 bol)·

(V2) and (V5) are similar: let us verify for exarnple (V2): let Ch C2 be in A ® B;

clearly we have

ï6



•

•

'1'0 pro"c the rc"':rse incquality .emark that if a, Gê b, ::; c, and a" C' b2 ::; c". then:

(Da, .;:) Ob,) l, (0"2 C Ob2) = O(a, /, "") () Orb, Il bJ

::; d"(O(c, Il C2))

and benec by the distributi"ity of the mect o"er arbitrary joins wc get

d"(Oc,) Il d"(Oc2) ::; d"(O(Cl Il C2))

and therefore the equality boids.

(V4) follows from the calculation:

Da 0 Orb, V bz) ::; (Da 0 obI! V (Da 0 Obz)

::; (Da 0 obI! V (00 0 Obz) V (Oa 0 Obz)

::; (Da 0 ObI! V (00 (1) V (Oa 0 Obz)

::; à(o(a 0 bt)) V à(O(a 0 bz)).

o

Remark that the previous lemma holds also for the Smyth powerlocale (where à

is defined just by 1.), the Hoare power locale (where d" is defined just by 2.) and

for ail strict power locales.

Let us denote by SLat(Loc) the category of localic semilattices.

Proposition 43 For any locale A, V;(.4) can be given a structure of semilattice

in Loc. i. e. wc can think of the V; 's as functors

V; : Loc -> SLat(Loc)

for i = 0, 1,2.

Proof. Let us denote by 1 the termil'al locale in the topos Set, i.e. the two

clements locale. We can consider the point Po: 1 -> VA defined by Pe(oa) = 1

;;



•

•

and Po( Oa) = O. As binary scmilattire operation take:

n: \'A®FA -:!.... F(AxA)~ FA

wher" q :s defined as in ·11 and v : A x A -> A is the rodiagonal map. Sinn'

(Fv)"(Da) = D(a.a) and (l"v)"(Oa) = O(a.a)

wC have n-(Da) = Da 0 Da and n-(Oa) = (Oa l~ 1) V (11èJ Oa).

Commutativity and assoeiativity of n follow direetely from the definition. Idem­

poteney, i.e. the faet that no~ = id t ·..!. cornes from the following two ralculations:

~- 0 n'(Da) = ~ '(Da \9 Da)

= Da /\ Da

- Da

and

~. 0 n'(Oa) - ~"((Oa 0 1) V (10 Oa))

= OaVOa

= Oa.

Wc are only left to prove that Po is a unit for n, Le. that

no (id 0 Po) : V A ~ V A ® 1 -> V A ® V A -> V A

is the identity. This is true, sinee:

(id0po)"on'(Da) - (id0p.)"(Da0Da)

- Da01

whieh corresponds to Da under the isomorphism V A ~ V A ® 1, and similarly:

(id0Po)"on"(Oa) - (idOPo)"((Oa01) V (100))

- (id0Po)"(Oa01)

- Oa01
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• which corresponds in VA to Oa.

\V,· C;U1 generaJize this result to ail l';-algebras.

o

•

Proposition 44 AlliJ vi-algebra has a lIalural semilaltiee slructure. i.e. lhe for­

ge/flll fllllclor from l!;-algebras 10 locales factors lftrollgh lhe ealegor!} of loealie

:iclnilatliccs.

Proof. Civcn a V-a1gcbra (A,a: VA ..... A) wc ean eonsider the following maps:

Xo: 1~ VA~ A

and

s : A ® A "~A V A ®V A~ V A~ .4.

Let us start \Vith two rcmarks:

1. any V-algebra homomorphism f : (A,a) -; (B,{3) is a homomorphism for

the operations Xo and s (since Po, 7],\, n are natural and because f 0 0= {3o VJ);

2. the operations induced on a free l'-algebra (VA,p,1l as above arc exactly the

operations defined in the previous proposition, since

- p. = p,l 0 Po : 1 ..... V2A ..... VA;

- n =a 0 n 0 (7]V,I 0 7]V,I) : VA ® VA ..... V2A ® \12A -+ \12A -+ \104.

The first equality holds trivially. The second follows from:

(7]\',,0 7]Y'A)" 0 n· 0 p·(oa) - (7]V,I 07]\1A)" 0 n·(o(oa))

- (7]VA 0 7]VA)"(o(oa) 0 o(oa))

= oa0Da

_ n·(Da)

and similar calculation for Oa.

Remark that a : (VA,p,l) -; (A,a) is a homomorphism of F-algebras and
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• thercfore by the two rell1arks il. is a hOll1oll1orphism from \ \ ':1. '/'/''') t II \:1. ._ ..r,,).

Now. by axiom of I"-algebra. Q is split "pi in Loc sinn' Q 0'/.-\ = id .\. "l'heref"\"l'

~ and Xo satisfy ail the eqllations of the theory of semilanices. Let ns ch,'ck f"t"

example that ~ is idempotent. i.e. that ~ 0 V.-I = id ..\. \Ve can consider llll'

following diagram:

Remark that

- the square commutes becau~e of the naturality of 7/.-1;

- the triangle commutes since n is idempotent;

- the composite cr 0 idv,1 07/.-1 is the identity;

- the composite mal' cr 0 n 0 7/.-1 ® 7/.-1 commutes by definition of ~.

Hence we get that S 0 \7,1 = id,l. o

•

Given the uniqueness of the algebra structure in the Smyth and Hoare case, we

cao conclude that th" the algebras for these two monads are particular classes of

localic sernilattices, rather then sernilattices with a richer structure. The same

rcsult holds for the Vietoris rnonad. We can sirnplify the problem remarking that,

for any locale A, we have the following isomorphism:

defined by
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•

• ",-(Da) = (1. Da). ilnd

• ",-(Oa)= (O.Oa)

This map is weil defincd since n can be obtained from O(VA) imposing the

fllrthcr relations 00 ~ 1 and 01 ~ O. Morcover it is an isomorphism. since we

can define ils inverse ",,-1 by putting:

• (",,-1 )"(1, Oa) = Oa V 00.

Then, if (A,O' : \/04 ---+ A) is a V-algebra structure inducing the semilatticc

structure (A,-<,x), wc have the diagram

where the upper triangle commutes by the definition of x. Hence a is uniquely

dctermined if and only if a+ is.

Now let us cail (C+(.-1),c) the equaiizer of the maps

where 7rt is the projection of the product on the first component.

Lemma 45 The map < a+, 1 >: \/+(04) ---+ A 181 \/+(A) factors through c.
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• l'roof. Since C+(,'l) h,,~ been ddint'd a~ an l''1nalizl'r it i, l'n')lI~h to ,how that

the following diagranl is conlnlutat.in.~:

wherc ;3 =< 1';\ 00+, l >, But wc only nccd 10 1'1'0\'(' thl' rOllllllutati\"ity or this

diagram for frcc \/+ -algcbras since thc abo\'c one tht'n will bt' obtaint'd l"in~

nalurality of 0+ and the fact that 1'"+(0) is split. Hence Wt' wanl 1.0 show thl'

commutati\"ity of

V+A

where f3 =< 7Jt+ ,\ 0 pt l >.

The proof is just a matter of (long!) calculations: the rcader is rclcrred 10 [.loh85,

Lemma2.3]

Lemma 46 The composite of the maps:

C+(A)~A®V+(A) 10 "; A®A~A
\. )

~I

are equal.

o

•

Proo/. Though no conceptual difficulty arises, the proof is a ralher invol\'ed matter

of diagrarn chasing: again the reader is referred 1.0 [Vie22, Lemma 2.GJ. 0

We are finally ready for the main result.

Theorem 47 Let (A,s,x) be a localic semilaltice. Then tltere is at most orlC

"2-algebra structure on A inducing sand x .
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I)roof. ,\s ohs('r\,('d pre,"iollsl:- \\'(' olll:- lI('('d to sho\\' tha! if (A. Q;) and (:l. ni)

are \1;+ -algebra structures. thell nt and 0; are cqual. Considcr the diagraln:

~l

Silice the t\\'o smaller tri'tngles arc commutativc bccausc of thc two prcvlOus

Icrnnlas. wc have

7.10 (0;.1) =" 0 (10 ot) 0 (0;.1)

and thcrcforc

Intcrchanging oi and Qt. and rccalling that " is commutativc. wc gct:

o

2.3 Points of the power locales

In this section we present a constructively sound characterization of the general·

ized point~ of power locales ([Vic95b]). The points of V,(D) at stage E (Le. the

locale homomorphisms from E to V,(D)) are identified with particular sublocales

of the product E~D.

The proofs rely onto two ·coverage theorems", that enable uS to convert frame

presentations into equivalent suplattke and preframe presentations.
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• Theorem 48 (The Suplattice Coverage Theorem) l.t'! .-- bc /1 ,\-.-l'Illilal­

lice. LcI C be a l'dalioll fl'o/71 \,8 la ,,,. .-lIch Ih/ll if (.Y, 11) i" ill (' (1'1'<1.1 /1._

X C01'Cl'S Il) Ihol:

• if.r E X Ihea .r :5 Il: (1IIt!

• if a E S l!Iea {.r /\ a: .r E X} COl'el',- Il /\ a.

Thca:

Fr < S (qua semi-lallice}l" :5 VX for (X. Il) E C >

~ si < S (qlla posclJlu :5 VX for (X.u) E C >

(tohere Fr stands for fmme ant! si for complete suplalticc).

Proof. Sec [AV9:3], o

•

Theorem 49 (The Preframe Coverage Theorem) Let S bc a V-sc1Ililalticc

and let C be a relation from ç'Fin(S) ta Fin(S) sllch that if (X, C) i" ilt C (l'l'ltll

as X covers C) then:

- if F is in X Ihen F:5s C;

- X i.,. ilthabited:

- ifFt and F2 are in X then there is sorne F in X toitlt FI :5s F altt! lS :5s F:

- (f a is in S tlten {{xV a : x E F} : F E X} Lovers {y Va: y E C},

(Fin(S) stand... fOl' tlte finite powersel of S;:5s sta1ttl... for tlte lite Smytlt orticri1t9

on Fin(S), i.e. F:5s C ifVy E C. 3x E F.x :5 y).

Tlten:

Fr < S (qua V -sernilattice)I/\C:5 V /\F for (X,C) E C >
FeX
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• ~ l'Fr < S ('1 Il Il po.,tI}l/\ G:$ V /\ F for (X. G) E C >
l'EX

(mhe/'(; l'Fr sImilis for prcfmlllc).

PraoJ. Sec [JV91].

2.3.1 Points of the Smyth power locale

o

Classically there is an order reversing bijection betwecn the global points of the

Smyth power locale Vo(D) and the compact fitted sublocales of D (a locale is

lit.lcd if it can be expressed as an intersection of open locales).

Indced, a global point of Vo(D) (i.e. a homomorphism of locales 1 ---> l/o(D))

corresponds to a preframe map X: O(D) ---. n, since OVo(D) is the frame freely

generated by O(D) qua preframe.

To the map X then wc can associate the (compact fitted) sublocale D' presented

by the rclations 1 :$ b for any b in O(D) such that X(b) = 1. Vice versa, givcn

a compact fitted sublocale D' with presenting relations 1 :$ hi for i E J, we can

define a preframe map X : O(D) ---> n by putting X(a) =1 Hf a =bi for sorne

i in J.

Clcarly, thc bigger is X, the more relations have to be considcred and therefore

the smaller is D': hence the bijection is order reversing.

This bijection can be set up also by constructively sound methods (see [Joh85,

Lemma 3"1]). We present a generalized version of this result, as in [Vic95b].

Definition 46 Let f : D ---> E be a map of locales. We say that D is compact

over E iff f 1..< a proper map.

This means ([Ver94]) that the right adjoint "1J of j" is a preframe homomorphism

that satisfies the Frobenius identity

• "IJ(a V j"(b)) - "IJ(a) V b

85

(2.1)



• for a E O( D). b E OtE).

Definition 47 I.e! D' -..:..... Db,' a subloca!r alld Id f : lJ ~ 1:' b,. " ma!, of

locales. IFe sa!! Ihal tilt' local,. D'of D ha.' compact dom"in 0\"\'1' E if f c' i /s

proper: ill the case E = 1. wc simpl!! sa!! Ihal D' ha.' l"Omp"d domain.

Classically a locale is compact o"er 1 exactly when it is a "ompact IO"ak; m

l'articulaI'. a subloca!e has compact domain exactly when it is compact.

Definition 48 .-l sublocale D'of D is weak!y fitted O\'er E iff il cali b,. p""-'CIllt'd

over O(D) b!! l-clalio1ls of the kirlll 1"(b) :::; a fOI' Cl i1l O( D) alld b il/ O( E): whcl/

E = 1 we simpl!! say that D' is weakly fittcd.

When E = 1 the relations 1"(b) :::; a arc c1assically eqni"a!ent to either 0 :::; Cl

(which can be omitted) or 1 :::; Cl; hencc, wc recover the definition of fitted

sub!ocale.

Definition 49 We will call the weakly fitted hull of D'in D over E thc ICI/$t

sublocale of D, fitted over E, that c01ltai1l$ D'.

The fitted hull of D'in D over E is presented over O(D) by all the relations of

the kind f"(b) :::; a for a in O(D) and b in OtE).

Let E and D he locales. Wc will write e§b for e01 V10 b (e E OtE), b E O(D)):

these elements generate E ® D by finite unions and directed joins. Let us cali

l' : E ® D -> E and q : E ® D -> D the projections of the product.

Lemma 50 Let i : D' -> E ® D be a sublocale that is comp,,;;t OVCI' E. DCTlotc

by"'pi: O(D') -> OtE) the preframe homomorphism that emls by compClciTlcss

of D'. Let X : O(D) -> OtE) be the preframe mal' X = "'pi 0 i" 0 ,,", 1'hen the

weakly fitied hull of D'in E ® D over E is presentcd by the relations
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• l'roof. TI", w..akly fitt ..d hull of 1)' ill E@ /J O\'<'r E is presellled by !he rela! iOlls

a ::: J ::; Il

lhat holu modulo /J', i.e. such thal

101'"(0) ::; I(U).

The generic clement II of E@ /J cali be wrilten as a directed join

(2.:3 )

(2..1)

(where the intersection are finite). 'l'hen we can equivalently rewrite the equation

2." as

(2.5)

•

Indccd. sincc "Iip is right adjoint to i" 0 l'" and it satisfies the Frobenius identity

2.1. one has:

a ::; "IipOI(U)

::; "I;p 0 I(V{Aj(cj§bj ) : Aj(cj§bj ) ::; u} )

- V{Aj"lip 0 i"(cj§bj ): Aj(cj§bj ) ::; u}

- V{Aj"lip(i"(cj 01) V1(10 bj)) : fI;(cj§bj ) ::; u}

= V {Aj"l,p(i" 0 1'"(Cj) V i" 0 q"(bj )) : Aj(cj§bj ) ::; u}

- V{Aj(cj V"Iipoi" oq"(bj )): Aj(cj§bj )::; u}

- V{Aj(cj V X(bj)) : Aj(cj§bj) ::; u}.

Hence the relations X (b) 0 1 ::; 1 0 b are a particular case of 2.3, \Vith a =X (b)

and U =10 band they 110ld modulo D' since in the inequality 2.5 we can consider

the meet l'.j(Cj V X(bj )) where j ranges over the singleton. Cj = 0 and bj = b.
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•

\ïc(' versa. if (l ~:: 1 :S Il hv!ds Ilh,H.illlo /)' ~i.t'. if thl' equ'ltill1l :.! ..:-) hulds' wc \';11l

deduce it from thl' rdations of the killli .\(b) "! 1 :,; 1 .': b;

a(: 1 < lV{,\}(c} V .\(b})): !\lc,Sb}):'; a}) .. : 1

= V{I\}h V .\"(b})) ,,! 1 : J\}(c}SbJ )::; Il}

= V{l\j((c} CS: 1) V (.\(b}),,: 1)): i\(c}Sb}) S a}

< V{l\j(cJ§bj : I\j(cj§bJ):'; Il)}

< 11.

Thercforc. the equations :2.2 prl'SCIlt tlll' wl'akly Iittl'd hnll of IY. SillCl' the hllll

is the smallcst wcakly fiUed sllblocale of D contaillil;; 1)'. it coincid<'s with f)'

when D' is weakly fitted. 0

Lemma 51 Lct Y : O(D) - OtE) be a preJmme homomo,:"hism. COII.,irl,'I'

the sublocale D' prcsclltcd OVCI' O(D) by the rdatiolls )'(b) l0 1 ::; l '" b Jo/' b ill

O(D). ThcII thc prcJl'CllllC lIlap X. dcfillcd as ill LClllma 50 .coillcid,·s ",ilh )' fI,,,1

D' is a locale that. ovc,· E. is fit/cd with compact domaill.

Pl'Oof. vVe will show that:

1. there is a preframe homomorphism TI : O( D') - O( E) sllch that for allY

a in OtE) and b in O(D) one has TI 0 i"(a§b) = a V )'(b):

2. D' has compact domain over E since TI is a right adjoint to i" 0 l'" and il

satisfies the Frobenius identity 2.1 (with TI = TI! and J = l' 0 il.

Hence, choosing a = 0 in TI 0 i"(a§b) = a V Y(b) we sec that TI 0 i" 0 ,," = Y.

Then the map Y coincides with X, in the notation of the previous lemma (since

TI =TIpi) and D' is weakly fitted.
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•

The i~oInorphi~nl is just ifkd by Theon'nl ·I~}. wht.'rc t ht' Cl)\"t'rill~ n'iat.il..)11 ("t)lIt~lill:'

the dl'Illents of the kind:

- ({(Viai./I)}.{{(ai.h)}li E I)) for {aiLEI din'("t,'d family:

- (((a.b).(a'.h)).{{(ai\a'.b)))):

- d(aVY(b').b)).{{(a.b))}) whcrel/:5 h.

Hence we can define '1 to he the only hOIllomorphism of prtofranll's making t.h,'

follo\\'ing diagram commutatÏ\'e

OlE) x O(D) -OlE) ® O(D) -O( D')

~/
OE

where e is defined by e(a,b) = a V F(b) (remark that c preserves t.he order and

the presenting relations). Hence 1. is proved.

2. To prove that '1 is right adjoint to i" 0 p" it is enough to show that itiO(B) :5

'10 j" 0 p" and j" 0 p" 0'1 :5 ido(D'l' The first incquality follows From:

e :5 cV Y(O)

= 'v' 0 j"(e§O)

= 'v' 0 j"(c§l)

- 'v' 0 j" 0 pOte).

• 89



•

•

Tl, prq\'" 11If' :'-f'("(md iIll"qlli:lily. ()l)~('n'l' t hat tilt' ,!!;l'IH'ric 1']('Illl'Ill of ()\ /)') j~ ur

1!lC' f"nn ,.( (l~i"). l "'!ln' \VI' !J;ln':

= 1((avl"(iI)) , 1)

= I((a". 1) V ()(b)., 1)

- 1((u§O) V ()(b)§O))

= ;-(uVY(b)§O)

< ;-(a§b).

The Frobenius idcntity 2.1 wc ha,'c to pro,'c is:

'V(a Vi" 0 p"(b)) = 'Va V b

whcrc a is in O( Df
) and b in O( E). Since a is of the form ilc§d) for suitable c

in O( E) and d in O( D). Wc ha\"e

'V(a V ;- 0 Plb)) = 'V(i"(c§d) V 1 0 Plb))

- 'Vo/((c§d) V (b01)

= 'V 0 I((C V b)§d)

= cvbvY(d)

- 'V 0 i"(c§d) V b

= 'Va V b.

o

Theorem 52 There is an order reversing bijection, natuml in E, between the

poinl.~ of VoiD) at stage E and the sublocales of E ® D that, over E, are weakly

fit/ed with compact domain.
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j)ro0f. Tt> prl)\"(' t hl' i ht'llrt'tll WC caIl t'qlli\O;i\clll!y ~1Jll\\' 1li;l! lill'l't, i~ ;\11 Pl'dc'J'

n~\"l'r~iIlg i:-oonlOrpili:-'tll. Ilatllr.ll in r:. hel\\"t't'Il thc' Jltl:'t't (lI pn-fralllt' IIPllIt11l1llr

phi'iIlS l'rom O( IJ) 10 (1( 1:') and 11", 1'0"'\ or sllhl" ... tI..s ,.1' F CS! IJ 11"'1, ,,",'1' F,

art' wC'akly Iith'd with compact t~oIll:litl. rht' hijt'ctillll ha:' ht'('11 ~t·t IIp in the'

pfl'\"ioll~ 1\\"0 Il'nlnla~:

- 10 any snbloeak i : D' - I:'CS! IJ whieh, on'r 1:'. is w""kh' litl ..d ",ilh

('0111pa("1 domain. we can <L,:--ociatl' t Ill' prefralllt' tHap .Y dt·!iIH'd in 1.,'111111;\

50:

- to any prdrallle homomorphism X we ean a."oeiat<' thl' ",bloe,tll' f)' ­

E ® D defined "" in Lemma ,51.

The bijection re\'ersC<' the order sinee the bigger is .Y. t.he Il''' n"'traininp; the

presenting relations of D'arc, Bence wc arc only Idt to \'l'riry thl' natllrality ''l'

the isomorphism. Consider a hotllomorphism of locales. say f : 1:" ---+ I~'. 'l~)"

sublocale i : D' ---+ E ® D the mal' f ""sociates the sllbloeale D" ---+ E' ® J)

obtained by pulling back i along f 0 idv : then D" is prcsented by the relations

10 b:S f" 0 X(b) 01. This proves the naturality of the bijection. since f aets on

preframe homomorphisms by associating to X the mal' f" 0 x. 0

Corollary 53 Therc is an order rcversing bijection bctween the global IJoints of

Va(D) and the weakly fitted compact s!tblocales of D.

Proo/. This is an immediate consequence of the previous theorem: wc only nccd

to put E =1. 0

2.3.2 Points of the Hoare power locale

Classically there is an order-preserving bijection between the global points or the

Hoare power locale Vj(D) and the close<! sublocales of D. Indeed, sincc OVj(D)
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";111111" ..... ,·'·11 ;,:-- tlw fr;lllll' frl'I·]Y!..!,l'tW!'ilil'd l,y (11 f)l qllil :'llp!<lltÎn', ,~Ioh.d puint:" ur

\ 'Ii /), ,·qIT,·.... plJlld 10 .... lIp!;ltti .. ,· lTl;ql .... X : C')I' fJ) - ~2: th(';o.t' in tl1rll ('PlTl':-'PUlld

1" "1)1'11:'- .,f (1i IJJ. ill'l'ordi:l!..!. lu llll' j'"lluwÎlI.!.!, urdcr n'\'('r:-oill,!!; hij(·ctioll:

1o i111." (/ ill 0(/)) i1"ocial" Ih.. III il l' X ddilll'd a, X(I,) = [J ilf h:5 li.

1'0 Olll.ilitl ill) orcit'r prl'~('r\"iIlg i:,oTllorpiJi:--lll wC' can idenlify il global point of \'1 (D)

(corr",polldill!; 10 a "'platticl' Illap X) with the cio,e,1 ",hlocale f) -li".

:"ow.lhi, l'Kale i, pn"<'lIt('d hy the relatioll> li :S!j) 0 .\(~) (for li in c:J(D)). where

!I) i, 1.1 ... IIl1iqll<' Illap of locale", from f) to 1. Cla.'Sical1y this ineqllality is either

h :5 1. which can he disre!;arcll'd. or li :5 O. In a g<'neral topos. howl'\·er. the

Illap li) can a.'S1II1ll' valucs othl'r then 0 and 1: hence the nœd of generalizing the

notion of c\osed ,uhloca!e ([.10h89]).

Definition 50 Lei f: D - E be a locale homomorphisTI/. D' a slIblocale of D.

IY i" w,'akly c\osed over E if its frame caTI be pre"enled Ol'cr c:JD by relations of

tlte form (l :S 1"(1)). for a il, c:J(D) and b in OE: in tltc casc E = 1 Il'C simply

"ay thal D' is weakly dosed.

Classical1y. the notion of weakly dosed locale is cqllivalent to the notion of closed

locale.

Definition 51 IVc will call weak closllre of D' over D the smallest sllbloeale of

D which is lceakly closcd over E and eontains D'.

The weak closllre of D' O\'er D is presented by all the relations a :S 1" (b)(a E

O(D).b E OtE)) that hold modulo D' (i.e. such that iota) :S i" 0 f"(b)).

Howc\·er. this is not .l'et enough to charaeterize the points of Vj(D). Bunge and

Funk ([BF96]) proved that the poset W(D) of weakly c10sed subloca1es (which
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•
a :-'\lh!ucalt':' 1 : H - n as

for "IIY Opt'II {' of (1( j)). \\" Ill'rt' []lIl' l 'II is llll' iIII"~., •• f III<' Il '" l' li 1Î l'

13 ~ f) 2 1. l'Ill' tuaI> \H ~i\"t.·~ ri:,t' 10 a :'lIpl<lltiCt' It\~tp \UH : (1~ f») ~~ !~

when B ha....-- -open dOlllain-.

Definition 52 LII f : f) ~ E b, li local, IIolll"IIIOI7Jlli~lII. j) 1.< 01"'11 0\',.1' f

ifJ f i~ lIll Opfl1 map.

This means (set' [.!TS,I]) that the frame mal' r ha.' a Idt adjoilll 3J ",hi..h is a

homomorphism of O( E)·modllies. i.e. that. hesidl'" pn"'('n'ill~ snprt'ma. salisli,'s

the Frobenius identity

(:!.li)

•

for a in O(D) and b in O(E).

Definition 53 Let f : D - E be a locale IlOmoTllorphisTII. D' el .<"bloCell, of

D. D' has open domain over E if Ihe map D' _ D -!..... E i~ opell; ill tll, ClISr:

E = 1. we siTII?ly say Ihal D' has open domain.

Classically. any locale has open domain.

The restriction of the mal' XO yields an isomorphism bet\Vccn the poset of \Veakly

closed locales \Vith open domain and the poset of suplattice maps from O( D) to n
(see [BF96, Thcorem 2.1]). Since suplattice maps from O(D) to n correspond to

frame maps from O(\Il(D)) 1.0 n (i.e. points of \Il (D)), the restriction of the mal'
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uf n witll ufwlt dUlIlitin ;IIF!l!1t' pU:-Ol'1 oftlll" puint:-; of \"1(/)).

Lernma 54/',1 i : /J' - 10' 0 f) b, Il .,,,b/()(.,"r 0/" Il 01" l' 1,:. /',1 31" : O( D') ­

O( 10') lit 1/" O( 10')-hoTTlolllol'phi"TT1 Ihnl cri.,t.' bv 0/"111" ." of D'. DUIOIt bV .\'

1/", "lIp/,,/lil'" /roTTloTTlol'phi"TT1 .\' = 3;" 0 i' 0 q' : O(D) - OtE). Tlnll Ii,c Il'mk

r/O'II1'1 of 1)' in 10' 0 D or,.,. E 1'111/ br pre'flltrd bV Ihc l't/nlioll.'

12 b 5, .\'(b)8 1 ( ') -)_..
for' b E O( D). If D' i, u'mkiv clo,,.d. lhe" Ihe reinlioll' :J. Î pre""1 D' il,df.

l'roof. The weak c10sure of D'in E 0 D O\'cr E is presented by the relations

.1' 5, p"(a) = n 01 (.1' in etE) 0 O(D), a in OtE)) that hold modulo D'. Since

the elements of the kind e0b (e in OtE). b in O(D)) form a base of OtE) 0 O( D).

we ean simply consider the relations of the form

•

e0b5,n@1

that hold modulo D'. i.e. the ones such that

l(cesb) 5, j'(a@l),

which can be rewritten as

i" 0 pOrc) A i" 0 q"(b) ~ i" op·(a).

This is equivalent to

3",(i" 0 p"(c) A j" 0 q"(b)) ~ a
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•

:'\ow. 1h,' in"'1nalilY ~.!l a!way, h"ld, f"r " = 1 anol <l = S lb\. Il,'n,',· ,.JI 1h,·

iI1l''1na\ity of 1hl' kinol l ,,' b S S lb), 1 h"lol I1l"oInl" n' "nol ar,' a '1""'i,,1 ,',.". ,,1'

lh,' rdation> ,,1' the kinol ~.~. On II", "lh,'r hanol. if .. " b:cO li' 1 h"I,\> In"oI"l"

D'. i.l'. if e/\ .\(b):5 li. we l'an reCO\"l'r il froIll 1 :-' b:5 Sl!» ,,' 1. ,ilh·'· hy laI..in~

the mect wil he:'," W,' "'el
'"

o

Lemma 55 LcI },- : O(D) - O(E) b,· a .'up/allil'f !""''''''"ll·l'hi''IIl. Df'lIOI,'

by i : D' - E®D Ihe sub/oea/e drfined ol'a O(D)~O(E) by Il,,, n'/alio".'

10b::; Y(b)0 1 forb ill O(D). Theil the Slip/ailier lIlap X, d'Jillrd a.' in 1."lIIlIIa

54. eoilleides /Vith }" alld D' i." a sub/oeale that. over E, i." open mul wmkly eit)",,/,

Proo! We will show that:

1. there is a suplattice homomorphism 3 : O(D') - O( E) s\lch that for any

a in OlE) and b in O(D) one has 30 i-(a 0 b) = a Il l'(b):

2. D' is open over E since the map 3 is lcft adjoint to i- 0 p' and it satisfies

the Frobenius identity 2.6 (with r = i' 0 p- and 3/ = 3).

Then, from 30 i-(a!Sl b) = a Il },'(b) we sec that Y =30 i- 0 q' (just set a = 1).

Since 3 =3,,; (in the notation of the previous lemma), the map Y coincides \Vith

the map X and the weak closure of D' with D' itself: hence D' is weakly closcd.

1. We can think of O( D') in the following ways:
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•

~ -'/ < 01 F) •.• 01 n) !'I"a 1'0"'1 Ji

i, hilill<'ar w.r.t. v:" ":5 1"'\ )'(//)) ." l'or" < {,' >
wll('n- tlll' I;I:--t i:-:olllorphislt\ 110ids ht'C(\u:-,l' of Tht'Oft'Ill ·I~. the dt,tllt'uts I,)f tlll'

cO\"t·ritl,t.!; rd.,1 iun ht'iIlg uf the kind:

( {(",. 1) : i El}. (V'E l ",. 1)):

( {(a Il )'(b'). ")}. (a. " )) w Ilt're b :5 b'.

Theil we ""Il deline 3 to be t.he unique supl"ttice homomorphism complet.ing the

c1iagralll
OtE) x O(D) -OtE) ® O(D) -0(0')

~/
OE

\\'here t.he map c is dclined by c(a.b) = a Il l'(b) (remark that it prcsen'cs the

order and the prcsenting rclations). Hence 1. has bcen pro\'ed.

2. 1'0 pro\'e that 3 is Idt adjoint to i" 0 p' it is enough to sho\\' that ido(D') :5

i' 0 l" 0 3 and :l 0 i' 0 l'" :5 ido(l;:) . Since the generic clement of O(D') is a join

of eletnents of the kind i'(a 0 b) (for a in OtE). b in O(D)). the first inequality

follo\\'s l'rom:

l(a 0 b) :5 I(a Il Y(b) 0 b)

:5 i'(allY(b)01)

- i' 0 p'(a Il Y(b))

- lop·030i·(a0 b).
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•

., ,': \ ,1 i \

,1 \ )' \ 1 \

:\n\\" tn Yl'rify that tilt, Fruht'llil1:-; idl'Iltity hold:-;. w,' llilly IIt'\'d 1,~ dit'ck ~J\l""'"'

l'"lll \ :\ i"(e ,': b) 1 = Il :\ Ci ù i-lC ,': bl (Il, Cë O( /,'\- b ë (l( 1))), ,iIlC" ;dl 1h.· Il "'1 "

ill\'oh'ed are ,uplalticl" hOIllOllll)rphi'lll' alld th,' i'(c ,': br, .''.'·l'''I"al<· 0(/)'1 ""

111l1on~:

3(10 l'"(a) Il I(e ;" 1>)) = O3(i"(;'"(ll) Il (c';" b))

= 3 0 i"((a;\ c) ,'c b)

= (Il Il cl Il )'(b)

= aIl30i"(c,l)b).

o

The following is a a generalized \'ersion. duc to Vickers ([VidJ;'hj). of th,' BUII~e­

Funk throrem ([BF96j) constructÏ\'c1y charactcrizing the points of th,· Huar,·

power locale ~'i (D).

Theorem 56 There is ail ordCI' isomo!'phism. lIalum/ ill E. bclwecII li,,: poilll.,

of vi (D) al slage E and lhe sub/oca/es of E ® 0 lhal. ovc!' E. (l/'C lOf'llk/y do.",,/

u-ilh opcn domain.

Proof. To prove the throrem we can equivalently show that thcrc is an ordcr

isomorphism. natural in E. bctween the poset of suplattice homomorphisms from

0(0) to OlE) and the poset of sublocales of E® 0 that, over E. arc wcakly

closed \Vith open domain.

The bijection has been set. up in the previous two lemmas:
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• lu ,IllY ~1I1)lo(·;t1t· { : j)' - 1:' ® f) which. l)\"t'r , .... i~ Ujl('tl alld \\"('akly c!u:-;t·d

\\,,' C;1l1 ;1:-S()("i'lll· tlt" ~lIplattict' III;tJ) <\t'iillt'd in '-"!lllll;! ;)·i:

II) ;IIIY slIpl'ttlin· Illap S. \r(' caIl <I:-lSI>ciatl' the sllblocall' 1)' - 1:'® f)

dl'!illt'd ill Ll'IllltIét ;;,1.

It Îs df'ar that till' hijl'ctioll pn'St'n',,'s the ordt'r. Heuet' wc art' ollly !t"ft tu \"crify

tllf.' T1aturalit.y of t.1H' isomorphistn. ('oIlsider a honlomOrphis1tl of IOfélles. say

.r : 1:" - H. To a ,ublocal" i : [J' - F: ® [J t Ill' Illap .r 'I-',ociale, the

'I,bloc,de D" - e® [) obtaill"d by pullillg back i alollg .r ,:: id D : thell D" i,

pn""lIted by the relatioll' l~: b :s r 0 X(b) G l. 'l'hi, prO\'e, the lIaturality of

the bij,·ctioll. ,illce .r act, 011 suplallice homomorp!Jislll' by associalillg 1.0 X the

Illap f" 0 X. o

•

Corollary Si Therc ù; ail ordcr isomorphism be/weCll the global poillts of li (D)

ami/he weakiy closed 'I/blocales of D lci/h opell domaill.

Proof. The rl'sult follows imme<!iately from the pre\'ious thcorem. considering

E=1. 0

2.3.3 Points of the Vietoris power locale

Global points of the Vietoris power locale ha\'e been studied classically by John­

stone ([Joh85. Theorem 3.i]): he identifie<! them with the set of compact semi­

fitte<! sublocales of D (a sublocale is semifitte<! if it is the intersection of a fitted

sublocale and of a close<! sublocale).

The result, however. b \'a1id also constructivel)', provide<! that we introduce the

necessary generalizations. as in the previous two sections ([Vic95b]) .
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"'u,Id!/ s, II/ijitt«!.

l'da! ion, of 1hl' !"ol'ln

F( a') < b'

for a. a' in O( E) and b. b' in O( D).

Remark that. c!a,:,ically. \\'.'akly ,emifitted coincide" \\'ith ",'milittl'd.

(~.Il )

•

If [ : E ---+ D i, an open map. \\'e l'an con"ider th., "up-pr''$''f\'in['; mal' 3f

\\'hich is lcft adjoiut ta F. Recalling that Oli (D) is t.he frame fredy g.'nerate.l

by O( D) qua suplanice. wc l'an define uniquc!y a mal' of fran,..s [- such t.h"t

/"(<>a) = 3f( a). i.e. such that the follo\\'ing diagram commute"

O(D) 0("';(/)))

~/
OIE)

Similarly, if [ : E ---+ D is a proper map, we l'an consider the I>rdrame ho·

momorphism "If which is right adjoint to f". Then there is exactly one map of

frames r- such that rO(Oa) = Vfa, since O(Vo(D)) is the frame fr..-ely gelleral..-d

by O(D) qua preframe and r- makes the following diagram commute:

O(D) O(Vo(D))

~/
OIE)

Lemma 58 Let [ : D ---+ E be an open and proper map. Then < /, r >: E ---+

Vi(D) ® Vo(D) factors through a point ~ of~(D) Q.t stage E .
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•
<lIlY ('1('111<'111 uf \ ~(f).\ j:-- fi juill of (·lt·I1ll·t1t~ of thl' kind OUI 1\ •.. J\ 0<1 11 1\ oh for

,,,il ahl<' Il, alld " ill l'J( /JI, 1'1"'11 tlll're j, exaetly Olll' mal' of local," ~ : Ic' ~

i,,, cOlllmutati\'<' diagram, lndet'd. putting C(Oa) = lij(a) and C(Ob) = 3j (b)

\\'l' dd!l\<' the l'<''1uirl'd mal'. Ikcau,,, of the prorerti", of 3 j and li j we only Ilero

to l'ht'ck th... mixed rdation,:

nOa) Il nOb) = lij(a) 113j (b)

= 3j (/" 0 lij(a) Il 1.)

::; 3j(a Il 1.)

= nOta Il 1.))

,inCl' 3j ,ati,fies the Frobenius identity 2.6 and r 0 li j ::; id:

~'(O(a V 1.)) = lij(a V 1.)

::; lij(a Vr 0 3j (b}}

= lij(a) V 3j (b)

= nOa)VnOb)

,inee id ::; r 0 3j and lij satisfies the Frobenius identity 2.1. o

•
Lemma 59 Let i : D' ~ E ® D I.e a sublocale with compact. open domain.

COII..<ide,· the map of locales ~ : E - \1;( D') defined as in the pret';ous lemma.
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• \ , \ .

th f 1'f la t1011,":

1 ~.l·~'

Jorb ill O(/J).

III padjeu/ar. if /}' l." ICraki!/ ..·.r mi.fif/ul. Ihl tt/lw/io11 ... l.l.! and ..!.l.I'pn ... t fIl l,l'

iI~t1f.

}Jroof. 'l'Ill' smallest wl'akly sl'milittl'd sublocall' of 1:' ® n nmt"iuiu)', n' is c1.'arly

the iutersl'ction of the w.'ak c\osurl' C/( D') of 1)' "ud thl' wl'akly lil1,'d hull

l/(D') of /J', Sincl' /J' h,,~ compact "nd op.'n domain, w,' han' Ih., ,,,ljun<'litlns

3p , -II'" 0 i" -1 V", and. app!ying !l'mm.l.' 5·' 'lIId :,0, w,' ran pr''''l'nt ('/( [J') hy 1h..

relations

1 i:i b < 3,,, 0 i" 0 '1"(b»: 1

and H(D') by the relations

Tlp ; 0 i" 0 ,((b);,) 1 < 1::) b

('2. II )

•

for b in O(D). Hence D' is presented by the l'quation '2.1·1 and :U5 togdh,'r ;lIId

they are equi\'alent to the equations 2.12 and 2.13. Indt'("!. sinet' ~"(Db) =TI,,,(/,)

and ~"(Ob) = 3p,(b) (b in O(D)). one has:

X'(Ob) = Co 1.-2j" 0 \2q"(Ob)

= Ç" 0 \'21(0(1 ::l b))

= nOI(1 0 b))

= 3p; 0 i"(10 b)

= 3p; 0 i" 0 q( b)
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•
XïOb) = ~o 0 I:,J 0 I~q( Db)

= C 0 1~i"(O(1 :,: bl)

= C(OiO(1 :,c b))

= \lp;oiO(1 ':;) b)

= \lp ; 0 ," 0 q"(b)

o

Lemma 60 Lcl Y : E - I/;(D) be a map of locales. The sublocale D' ~

E ® D presented by the equations

10 b ~ Y"(Ob) 0 1

Y"(Ob) 01 ~ 10 b

(2.16)

(2.1 i)

•

(fOl' b in O(D)) Ï-.< weakly semifilled over E and has compact and open domain.

Moreover, thc map X. defined as in Lemma 58 with f = pi, coincides with the

map Y.

Proof. Consider the weakly semifitted sublocale i : D' _ E ® D defined by the

relations

10b~Y"(Ob)01

and

Y"(Ob) 01 ~ 10 b

for b in O(D). We wiII show that

1. there is a suplattice homomorphism 3pi : O(D') _ O(E) left adjoint to

p" 0 i" sucb that 3pi 0 i"(a 0 b) = a AY"(Ob) and the Frobenius identity 2.6

hoIds;
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•

:2. there is a prcfranw hornornorphisrn \;'r; : O( D') - O( [,') ri~ht adj<>int 1"

p·o i· and snch that \;"'; 0 i·(a§b) = a V )'·(0/1) and the Fr"b.'nin, id"ntity

:2.1 holds.

Hence the domain of D' is open (becanse of 1.) and compact (h,'callse <)f:!.). :\ Is".

we can consider the points / : E - \ i (D) and r : E - \ ;,( [)) (natal ions as

in the pre\'ious lemma) and the point ~ : E - \;( D) sllch that < /. r >=<~llJ'

•ftD'> 0(. We want to show that the point X = \;q 0 \';i 0 ~ coincides with

Y. This happens iff <.lJ.D. ftD> oX =<.lJ.D, ftD> oY (recall that <~lD.1tlJ> is a

monomorphism). i.e. iff .lJ.D oX =.lJ.D oY and ftD oX =ftD oY. This is the ca.~e.

since we have:

X·o.IJ.D (Ob) - X·(Ob)

- f," 0 V21 0 1I2q"(Ob)

- <"(01(10 bl)

- 3p; 0 1(10 b)

- Y·(Ob)

= Y·o.IJ.D (Ob)

and similarl~' for the other equality (just replace.IJ. by ft and 0 by 0).

50, we are only left to prove statements 1. and 2.

1. The l'roof goes a10ng the lines of Lemma 55. Applying Thcorcm 48, wc can
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•

t.hink of O( D') in t.he followmg ways:

Fr < O(E)xO(D) (qua mcct-scmilatticc) 1

o is bilincar w.r.t. V:

1 Ob ~ Y·(Ob) 01:

Y"(Ob) 0 1 ~ 10 b >

~ Fr < OlE) 0 O(D) (qua meet-scmilattice) 1

o is bilinear w.r.t. V;

aOb ~ (a/l Y·(Ob')) Ob for b ~ b';

(a /1 Y"(Ob')) 0 b ~ (a /1 Y"(Ob')) 0 (b /1 b') >

~ si < OlE) OO(D) (qua poset)1 sarne relations> .

Then wc can define the poset map e : O(E)xO(D) -> OIE) by putting e(a, b) =
a /1 Y·(Ob). This map respects the relations; the first two are just straightforward

calculation; the third involves the presenting relation Da /1 Ob ~ Ota /1 b) of

OV2(D):

e(a /1 Y"(Ob'),b) - a /1 Y"(Ob') /1 Y"(Ob)

- a /1 Y"(Ob' /1 Ob)

~ a Il Y"(O(b Il b') Il Ob')

- a Il Y"(OY) /1 Y"(O(b/l Y))

- e(a /1 Y"(Ob').b Il b')

Hence by the universai property of O(D') qua suplattice, there is exactly one

suplattice'map 3", such that 3piOi"(a0 b) =ail Y"COb). Then, just as in Lemma

55, we have that 3", is lert adjoint to i" 0 p" and it satisfies the Frobenius identity

2.6.

2. The proof goes aIong the lines of Lemma 49. We cau think of 0CD') in the
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• following ways:

Fr < OiE) X O(D) (qua join-scmilatticc) 1

§ is bilinear w.r.t. finitl' m<'<'ts and din'clt'd joins

a V }'-(Ob')§b ::; a§b for b' ::; b

a V Y"(Ob')§(bv 1/)::; (a V }'O(Ob'))§b >

"" pFr < OiE) X O(D) (qua posct) 1 sauw relations> .

Then we can consider the order prcsen'jng map e : O(E)xO( D) - O( E) defined

by e(a, b) = a V Y"(ob). It is straightforward to \"erify that e prcsen'cs the first

two presenting relations. The [ast one follows from the a.."iom O(a V b) ::; Da V Ob

of V2(D), since we have:

e(a V Y"(Ob').bV b'J - a V Y"(Ob') V Y"(O(bV b'»

- a V Y"(Ob' V O(b V b'»

::; a V Y" (Ob' V Ob' V Db)

- a V Y"(Ob') V Y"(Ob)

- e(a V Y"(Ob'), b)

o

Theorem 61 Let D and E be locales. Then there is a bijective correspondence,

natural in E, between the points of lf:!(D) at stage E and the sublocale.. of E ® D

that, over E, are weakly semifitted with compact, open domain.

Praof. The bijection has been set up in the previous two lemmas. o

Corollary 62 The global points of lf:!(D) can be identified with the weakly semi­

fitted sublocales of D with compact, open domain.

•
PraoJ. It follows directly from the previous theorem, putting E = 1.
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