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Abstract

Several equivalent approaches 1o power domains are presented: the naturality of
this coneept for denotational semantics is stressed and its modal interpretation
ix explained. We show how to solve equations involving powerdomains and apply
the theory to an equation that leads to a characterization of bisimulations. Power
locales are introduced. as the analogue of both power domains and power spaces.
We study the monads defined by the power locales. their algebras and the points

of the powerlocales.



Résumé

On presente plusteurs approches equivalents a la notion de domain des par-
ties. On essaye de montrer quiil s'agit d'un concept naturel pour fa sémantique
dénotationnelle et on en donne une interprétation modale.  On montre com-
ment résoudre des équations contenant le domain dex parties ot on applique cetie
théorie 2 une équation qui conduit & une charactérization des bisimulations, Les
locaux des parties sont introduits, en tant que structure équivalente anx domains
des parties et aux ¢spaces des partics. On étudie les monades définies par les

au ; parties. algebres et les points des locaux des parties.
locaux des parties. leur algebres et les points des locaux des parties
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Introduction

Power domains and power locales are used in Computer Science to give a seman-
tics to non-determinism ([SLG. Vic39]) and to model data-bases ([Vic92]). There
are three well-established versions of power domains. named after Smyth. Hoare
and Plotkin: they correspond. respectively. to the Smyth. Hoare and Vietoris
power locales.

Power locales also have a mathematical interest of their own. since the Vietoris
power locale stems from the theory of hyperspaces. More recently. M. Bunge
([Bun93]) showed that the symmetric topos (the topos-theoretic analogue of the
Hoare power locale, see [BF96. BC94]) classifies distributions on a topos (a gen-
eralization of the classical notion of distribution for a topological space. see
[Law92]).

This thesis intends to show how naturally the concepts of power domains and
power locales arise when trying to give a semantics to non-determinism. We are
reassured in this conviction also by the fact that there is no theoretical overhead
when solving equations involving the power domains. As example, we present
an equation in which the Plotkin power domain appears and which leads to a
characterization of bisimulations. We also study the monads that derive from the
power locales. This serves a double purpose. On one hand the monad defined by
the Vietoris locale is the localic version of the classical Vietoris monad and hence

it is of interest for the study of uniform locales. On the other hand the Smyth



and Hoare monads display o remarkable symnretry: a good nnderstanding of this

fact should lead to an axiomatic theory of power locales.

The first power domain to appear 1a Computer Science was Plotkin’s (iPloT,
Plodl]) and was an elaboration of an clder construction due to Egli and Miluer
(IMilT3a. Mil73bi). It was rather involved and worked only for flat posets, This
was clearly an unsatisfactory result, since the simplest structure of interest for
semansics is the one of complete partial order (cpo. i.e. a puset where any directed
subset has a join). Plotkin's idea was streamilined by Smyth ([Smy 78]} who also
introduced another power domain. His construction works for w-domains (..
algebraic cpo’s: algebraic means that every element is the directed join of the
clements that arc below it; w means that the set of compact elements ol the
cpo is countable). In §1.1 both power domains are presented. together with the
Hoare's. following the approach of {SLG]. They are constructed out of rooted
trees, whose nodes correspond to the non-deterministic features of the program.
Then it is shown how they can be obtained simply by taking the completion by
ideals of the collection of finite non-empty sets of compact elements (of a given
domain), endowed with a suitable order. The last characterization allows to
treat equations involving the power domain constructions with the same method
for solving equations based on D. Scott’s “Limit-Colirnit Coincidence Theorem”
([Sco72]). The general theory ([SPS2, SLG]) is presented in §1.2.1. However the
category w-Dom of w-domains, in which we have been working up to now, is not
the most suitable from the point of view of denotational semantics, since it is not
cartesian closed. We can restrict our attention to the largest cartesian closed full
subcategory of w-Dom, known as SFP ({Smy83]). Its objects, the SFP-domains,
are exactly the colimits of w-chains of the kind {D, == Dns1}neN where the
D,’s are finite posets and the maps e, are embeddings. SFP appears to be the

right ambient for denotational semantics, since this category is closed under all
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the nsual operations and under the power domain constructions. In §1.2.2 [ spell
out the details for equations in w-Dom and SFP involving the power domains
([SPS20 SmyTs]) and apply this in §1.2.3 to the study of a particular equation.
that can be used to give a characterization of bisimulations ([Abr9l]). Let us
remark at this pomnt that several axiomatic approaches to domain theory have
been developed by now ([Hyl91. Ros86. Fio9d}). They provide the right setting for
discussing partial maps and the notion of passage to the limit. However, none of
them captures modality. This should perhaps be a subject of future investigation.
The connection of power domains with Computer Science was made more explicit
by Winskel ([Win33]): using the operators of possibility and inevitability he gave
a modal interpretation of power domains (§1.3).

One year later Robinson ([Rob86]) gave the localic analogue of Winskel’s modal
constructions. He showed how the power locales so obtained can be considered as
a generalization of power domains (§2.1). They are also the localic counterpart of
power spaces, introduced by Smyth ([Smy83]) in his approach to non-determinism
via multivalued functions (also in §2.1). Smyth’s work relies on the theory of
hyperspaces, i.e. spaces made up from subsets (see [Nad78, McA78]). which
goes back to Vietoris ([Vie22], itself based on the Hausdorff metric, see [Hauld}).
This theory has been used by Isbell when studying uniform spaces ([Isb64]) and
later on uniform locales ([Isb72]). Indeed, the quest for a hyperlocale was one
of the reasons that led Johnstone to the definition of the Vietoris monad on the
category of compact regular locales {[Joh82, pp 111-118]) and then in [Joh85] to
its generalization to Loc. I present it in §2.2 together with the monads generated
by the other power locales. In the same article he also pointed out constructive
difficulties in the characterization of the points of the Hoare and Vietoris power
locales. Later, in [Joh89], he introduced the notion of weakly clgsed sublocale
(the natural generalization of closed sublocale, from a constructive ﬁew-point).

Using this notion, Bunge and Funk were able to identified the global points of

3



the Hoare power loeale of o locale 7 with the weakly closed sublocades of 1Y with
open domarn (BFWL Afterwards Vickers CVIe83hT gave o unitied version of
the existing constructive proofs and phrased them tn the setting of ceneraliced
rather then just globald points (§2.30, Vickers has been pushing forwards this
argument. lle showed that sublocales with open domains and sublocales with
compact domain (necessary in the characterization of the points of the Smyvih
power locale) are two instances of the same concept ({Viedad), Phis is the tirst
step towards an axiomatic approach to power locale theory, that still has to be

developed.



Chapter 1

Power Domains

1.1 Towards the definition of power domain

In this scction we show how the power domain construction arises naturally when

trying to give a semantics to non-deterministic programs ([SLG, ch. 11]).

Before starting, let us quickly review some basic notions for doing program se-

mantics ([SLG, ch. 1-2]).

Definition 1 Let D be a poset with a bottom element. We say that D is a
complete partial order (cpo) if any directed subset A of D has a supremum VA.

Computationally, we should think of z < y (z,y € D) as “y has more information

of 7, or “z is an approximation of y”.

Definition 2 An element = of a cpo D is said to be compact (or finite) if when-
ever A is a directed subset of D and VA < x then there is a in A such thet z < a.
The set of compact elements of D will be denoted by Kpt(D).

The compact elements are considered as the concrete elements on which we com-

pute. A result of a computation, however, can also be denoted by an arbitrary



element, provided that this can be scen as a join of {finite elements: henee, com-
putationally. the situation is satisfactory. when every element can be seen in this

way.

Definition 3 A domain D is an algebraic cpo. i.e. a epo D in which. for ce-
ery element x, the set approx{z} = {a € Apt(D) : a < r} is dirceted and ils

supremum is T.

Remark. Some authors prefer to use the term domain referring to cpo with a
richer structure. I chose to use it to denote the minimal structure useful for doing
denotational semantics. When we do use a richer structure this is said explicitly.
For example in this section, unless otherwise stated, we will always work with an

w-domain, i.e. a domain whose set Apt(D) of compact clements is countable.

Let us denote by P a non-deterministic program. Assume that cvery single partial
outcome of P can be represented by an element of D. When we run P, at any
time that the program has a choice we have a set of possible outcomes: this gives

rise to a rooted tree, labeled by the elements of D.
Definition 4 Atree T s a pos;et (T, <) such that :
o it has a least element L; and
o for any z in T the set of predecessors of T is finite.
The height of z, i.e. the number of predecessors of z, will be denoted by ox.

Definition 5 Let T be a tree, { : T — D a monotone map. We say that (T,()

is a generating tree over D).

The nodes of the tree thus correspond to non-delerministic features of P. It

seems reasonable to assume that at any stage there are only finitely many choices;
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therefore in the following our trees are always supposed to be finitary branching.
The total outcomes that we get running P can be represented by the limits of
the elements of D labeling cach branch of the trees. With no loss of generality
we may assume that the branches all have length « (for. if there are branches
of finite length. we can “prunc” them). Hence the power domain ought to be

defined out of the set
F(DP) = {T% :(T.({) is a generating tree over D}

where TS = {Vre/((z) : 7 is a branch of T} is the element generated by the tree
(T.¢).

Remark that F(D) contains any non-empty finite subset of D and that it is closed
under unions. Moreover, if f : D —+ D' is a continuous map (i.e. a map that
preserves directed joins). then f[A] = {f(a)|la € A} is in F(D') for any A in
F(D). Indeed, f[TS] = T4* for any generating tree (T, () over D.

Since the compact elements in a domain D are considered to be the concrete
clements on which we can compute, we would Iike to label our trees using just
the compact elements of D. The following proposition shows that we can indeed

do so, without any loss of generality.

Proposition 1 For any generating tree T = (T, () over D there is a generating
tree T' = (T, ('} such that:

e ('[T) C Kpt(D); and
™ T£ = T‘S'_

Proof. Let a1.a.,... be an enumeration of the compact elements of D. For any

node t of T, let A! be the set

At = {a; € Ept(D) : ¢; L {(T),i < o{2)}.

T



Define a monotone map ¢’ : I — Apt{D) such that for any ¢ in T, one has
¢'(t) £ ¢(¢). Use inductiui on the height o(t) of ¢

- for o{t) =0 put {'(t) =1p:

- {or &(t) > 0. the induction hypothesis says that for any < in 7' such that a{s) <
o(t). '(s) s in Apt(D) and (s} < ((s). Then, if ¥ is the immediate predecessor
of t, AYU {{'(1)} is a finite subset of appror(((t)) = {a € Apt(D) : a < ()} and
therefore there is in epprez({(t)) an upper bound a of A* U {{'(#)}: choose such
an a and put ¢'(t) = a.

Then (" : T — Apt(D) is a monotone map. hence (7.¢') is a generating tree over
D. Moreover TS = T¢, since for any branch 4 of T we have V{((T): t € 4} =
V{C'(T) : t €}

One inequality, namely

V{(T): teq} < V{(T):teq}
is immediate from the definition of (.
To prove the converse inequality, consider an a, in Api(D) such that a, <
Ve C(t). By compactness of an, there is ¢ in ¥ such that @, < {(¢) and since ¢ is
monotone we can pick ¢ so that we also have n < ¢(t), i.e. such that a, is in A,.
By definition of {’, we get an < ('(t) < Vieq {'(2).

Since D is algebraic we can conclude that

V@) :teqy} < V{C(T):teq).

Consider the elements of the kind

T¢={((z):z €T, olz)=n]



(eatled in the following the n®-lcvel of the tree T') for (T'.{) gencrating tree over

_step of a non-deterministic

1) and n any natural number. They denote the n
computation: hence we would like them to be the compact elements of the power
domain and to form ascending chains {T$},en with join given by 7. This will

turn out to be true (except for 2 minor adjustment).

Remark that the clements of the kind 7% form the set
M(D) = {AC Apt(D) : Ais finite and non-empty}

and that this set is countable.
Several orders have been proposed for F(D). They lead to the three different
versions of power domains. We start by defining relations on M{D)xF(D) that

will be extended to orderings on F(D).

Definition 6 Define the relations E; (i = 0,1,2) on M(D)xF(D) as follows;
Jor A in M(D) and S in F(D):

e AG, S i Vzre€S.3a€ A.a <z (Smyth ordering);
e AC;S i Va€ A.Jx € X.a <z (Hoare ordering);

e AC.S if AL S and AC, S (Plotkin ordering).

Definition T For §,5" in F(D) let S C; §' iff for any A in M(D), one has
AC; S whenever AC; S.

The meaning of these ordering is clear. In the Smyth case A 5y S holds if
any possible total outcome represented by an element of S comes from a partial
outcome represented by an element of A. In the Hoare case, A C; S holds if
any partial outcome represented by an element of A evolves into a total outcome
represented by an element of S. The Plotkin ordering is the intersection of the

previous two: therefore it is generally more interesting since it identifies fewer

9



programs (sce the discussion about “demonic™ and ~angelic™ non-determinism in
[Viedy. ch. 11])
It is clear from the definition that C; are reflexive and transttive relations: sinee

in generally they are not antisvmmetric. we will consider the obvious quotient,

Definition 8 For 8.5 in F(D) let S =, 8" If SE; S and 8" C, 5.
The quoticnt F{D)Y = F(D)/=; is called the it power domain of Dffori =0.1.2
respectively the Smyth. Hoare and Plotkin power domain).

Remark that for (T.¢) gencrating tree over D we have
o ifm<nthen TS C; TS;
e for all n in N one has TS E; TS

for: =0,1,2.

Actually we can show that T is the supremum of the chain {T¢},.en in (F(D).C;

)-

Lemma 2 Let (T,¢) be a generating iree over D. For any A in M(D), if AC,
TS then AC; TS, for somem in N (i =10,1,2).

Proof. Let us start with the Smyth case, i.e. for ¢ = 0. Let us verify the contra-
positive of the statement: if Ym € N one has A Zo TS then A Z TS, We will
show this directly by defining a branch v = {{, :n € N} of T such that for all a

in A one has @ £ V{((ta)ltx € 7}
For all s € T, define the property

P(s) ff YmeN.3t>2s.(c(t)>2mandVac A.a £ ((L)).

Then, by induction, we can define « to be a branch

10



o<ty < ... <, < ...

in 7' such that for all n in N the property P(f,) holds:
~let tg =1p be the root of T. Then P(lp) holds and o(tp} = 0:

- assume as induction hypothesis that we have defined

o< i <o < iy

such that P(¢;} is true and o(¢;) = 7 for all ¢ = 0,....n. Let s;,....5; be the
immediate successors of ¢,.

If P(s;) does not hold, then there is an m; in N such that

VE>si.(Va€ A.a L ((t)) = ot) <m

If P(s;) did not hold for i = 1,...,%, then for m = max{m,,..., m} we would

have

Vi>t,.(Vae A.aL((t)) = oco(t)<m.

Comparing this result with P(t,) we get that n = o(t,) > m which is in contra-
diction with the falseness of P(s)),...,P(sk). Hence there is an s; such that P(s;)
holds: let t,41 be such one.

So, we have defined 9. Now suppose there is an @ € A such that a < V{((t,) :
tn € 7}.

Then by compactness of a, there is ¢ty in 4 such that @ < {(¢,): this is not the
case, since P(t,) true implies that for all a in A one has a £ ¢(¢,). Therefore the
branch v bas the desired property.

The other two cases are simpler. Let us start with the Hoare ordering (i.e.

= 71). Suppose A C, TS: for any a in A, there is a branch <, in T such that

11



a SV{C(#) : t €+, }. By compactness of ¢ we know there is £ in 4, sav of heiglu
my,. such that @ € {(¢,). Then A C T3 where m = max{m, :a € A}

Finally to prove the statement for the Plotkin case we only need to use the
previous steps of the proof. If A Ca 7S then. by definition. we have A S, T aud
A Gy T¢: hence there are m. n in N such that A Gy TS and A T, TS, Then

A G TS for p = max{m.n}. 0

Proposition 3 Let (T,() be a gencrating tree over DD, Then TS is the supremum
in (F(D).C;) of {T¢ :n € N} fori =0.1.2.

Proof. It has been already remarked that T¢ C; TS for all n. Suppose now that
an clement ¥ of F(D) is an upper bound of {T¢ : n € N} with respect to ;1 we
want to show that 7§ C; Y (and hence T¢ is the supremum). If A C 7% then, by
the previous lemma, A € T for some n in N and hence A C; Y therclore. by

definition of C; as preorder on F(D). TS G, Y. O

Before proving that the power domains are indeed domains, we need a couple of

technical results.

Lemma 4 If C is a countable preordered set and B is a dirccted subsel of C,
then there is an w-chain A C B such that: Yb€ B.3a € A.b < «a.
Therefore \l A exists iff \{ B exists; if that is the case then VA =V B.

Proof. Let by, by, ... be an enumeration of the elements of B. Put B, = {;: 1 <
n} and define A = {a, : » € N} by induction: for n = 0 put ag = bo; now assume
that we have defined ag < a; € ... € a, with a; € Bfori = 0....,n. Since
B, U {a,} is a finite subset of the directed set B, there is an element 1_n B, call
it @n41, which is an upper bound of B, U {a,}. .

Then it is clear that the chain A we have defined has the desired property. 0O

12



Definition 8 Lot ([2<) b a preorder. Consider the equivalene: = defined by
r=uiffr < yandy < o:odenote by Pi= the poset obtained by taking the

quotient of P by =. We say that I is a predomain if P/= is « domain.
Definition 10 Let D be a preordercd set. A set O C Kpt(D) is a set of compact

clements of D up to equivalence (f

Yae hpt{D).3ce Ca=c

where = is the equivalence relation induced by the preorder.

Lemma 5 Let D be a preordered set and let C be a countable subset of D. Then
D is a predomain with C as scl of compact clements up to cquivalence iff the

following hold:

1. D has a least clement; and

i3

if A C C is a chain, then A has a supremum in D; aend
3. ifx is in D lthere is a non-empty chain A C C such thet z = \VA; end

4. ifa is in C and A is an w-chain in C such that a < VA then a < b for
some b € A.

Proof. If D is a predomain with C as its set of compact elements up to equivalence,
then the four properties clearly hold (in particular 3. is obtained using Lemma 4
appliedto B={y € C:y £ z}).

Let us prove the converse implication. Assume all four properties hold. Let us
start with a remark: f B C C isra. directed set then there is by Lemma 4 an
w-chain A € B such that VB exists if and only if VA exists and if this is the
case then VA = VYV B. But for 2. VA exists and therefore any directed subset of

C has a supremum in D. For z in D put C; = {a € C : a £ z}. Let us verify

13



that C; ix directed and r = V.. For 3. there s a non-empty chain A, Z ¢,
such that » = V.. for the remark we just did we can suppose without loss of
generality that A, is an wo-chain, f v and «” are in C., then by 4L there are b and
b in A. such that ¢« < b and o' < ¥, Since A, is a chain, then b < W jor i < B
and hence a £ ¥ and o' < . 1.e. ;i directed and therefore by the remark it
has a supremum. namely r = ;. Let us verify now that [ is directed complete,
Let B be a directed subset of D: consider B’ = ;e Crt it is directed and it is
contained in €. Hence B’ has a supremum and VB = V5.

Finally let us verify that C is a set of compact elements of D, up to equivalence.
First of all. the elements of C are compact: let @ be an element of . B a
directed subset of D such that ¢ < VB. Since. as we have seen. VB = VB’ where
B’ = Uep C: is directed and contained in C. there is an w-chain A € B’ such
that VA = VB’. Then using 4. from a € V4 it follows that there is &' € A such
that a < ¥': since ¥ is in C; for some r of B. then lor such an r we have a < v

and therefore a is compact. We are only left to verify that
Ya € Apt{D).dc € C.a=c.

Since a = VC, , a is compact and C, is directed there is ¢ in C, such that ¢ < ¢

hencea=cand ce C. 0

Remark that if D is a preordered set and C is a countable subset of D, then D
with C satisfies the properties listed in Lemma 5 if and only if /= together with

C/= does. Hence, from the following Lemma 7, we get immediately the main

result.

Theorem 6 F;(D) = F(D)/=; is an w-domain with M(D)/=: as ils set of

compact elements fori=0,1,2.

Lemma 7 Let D be a domain. Then F(D) is a predomain with M(D) as ils set
of compact elements up to equivalence with respect to C; for:1=10,1,2.

14



Proof. We only need 1o prove that e four properties stated in Lemma 3 hold.
Let us seer L {L} s a least element in F(D):

2oaet {4 e © MUD) be a chain: we will define by induction a tree {T7. () such
that 75 = sup,en A, We already remarked that without loss of generality we
can assume that {4, }.en is an w-chain. Let Lp be the root of the tree T. Let
us suppose that we have defined the n* level of the tree T and that it is labeled
by the elements of A,_;. Now let us consider the Plotkin case: for any a,-,; in
An_y and a, in A, add to the tree an arc: then the (n + 1) =level is labeled by
An. So the tree T is defined and clearly V,en A = TS.

For the Smyth power domain we can apply the same procedure, with the proviso
that an arc will be added only in the case that it gives rise to a branch of infinite
length. Then T,S_H C A, and hence 4, G, T,f_,_, CoTS forany n. f Y € F(D) is
an upper bound of {4, : n € N}.then TS Co Y and hence TS = sup{A. 1 n € N}.
Indeed, for any A € M(D) such that A Ty T%. one has 4 5o T¢ for somen in N
because of Lemma 2. But because of the way we constructed T there is m in N
such that T Co Ay Hence AGp Y and TS S Y.

Also for the Hoare power domain we can apply the same strategy as for the
Plotkin one, but this time we will also add at any step Lp: so, if there is an a in
Apqa such that for all b in A, one has b £ a, one can add the arc L— a.

Hence TS = V,en(An U {Lp}) since A, = 4, U {Lp}.

3. follows from Proposition 1 and 4. from Lemma 2. a

Recall now that a domain D is isomorphic to the set Idi(Kpt(D)) of ideals of
Kpt(D) ordered by subset inclusion ({SLG]). Then from Theorem 6 we have

immediately the following result.

Theorem 8 Let D be an w-domain. Then, fori = 0,1,2 we have the isomor-
phisms:
Fi(D) = Id(M(D), &)

15



Since the definition of ((M{(2).Z,) makes sense also for domains, whose set
Kpt( D) of finite clements is not countable, we can drop this hypothesis and get
a more general definition of power domain (observe that the hypothesis on the

countability of Apt(D) has been used in Proposition 1).

Definition 11 Lef D be a domain (not necessaridy an w-domain).  Then the
power domain of D is the completion by ideals of the poset (M(D).C,) fori =
0,1.2.

We can also give the so-called strict version of the power domains by allowing the

empty set to be an element of M(D) (it will be used in §1.2 and in §1.3).
Definition 12 Let D be a domain. Put
MH(D) = {AC Apt(D) : A is finite}.

Then the strict power domain is defined by FH (D) = Idl(M*(D).C;).

1.2 Domain equations

In this section we want to show that the standard techniques for solving domain
equations apply naturally also when the power domain constructions arc involved.

We start by recalling (§1.2.1) the method based on D. Scott’s Limit-Colimit

in w-Dom and SFP (see again [SP$2]) and show that the last mentioned category
is closed under the power domain constructions ([Smy78}). Finally (§1.2.3.) we

apply this theory to the equation
D = Ff(ZacacDa)

which will be explained later and can be used to give a characterization of bisim-

ulations ([Abr91]).

16



1.2.1 Solving domain equations
Initial fixed points

Solving domain equations plays a crucial role in denotational semantics. Hence
we want to show a method that can be applied to all equations we might be

concerned with., The first step is Lo consider any equation (for example

D

n

F;(S“enD“) {1.1)

where ¥ s the separated sum. of. 1.7, and F3 the strict Plotkin power domain.

cf. Definition 12) as a particular instance of the generic equation
D = F(D) {1.2)

where C is a category of some sort of domains and F and endofunctor on C. In
our cxample C will be SFP (cf. Definition 26) and F the composition of the
functors:

F.c¥cEcic
neN
Next we try to follow the analogy between partial orders and categories, thinking

of F as a kind of order-preserving map.
In the posetal case a solution of the equation 1.2 would be a fixed point for £ and
we can look for the minimal one; also, the minimal prefixed point (if it exists) is

the minimal prefixed point. Let us give the analogue for categories.

Definition 13 A4 fixed point for a functor F : C — C in a category C is a pair
(A, a) where A is an object of C and « : FA S A an isomorphism.

An F-algebra (or prefized point for F) is a pair (A, a) where 4 is again an object
of C. but now « is just @ morphisma : FA — A.

An F-glgebra homomorphism is a homomorphism between F-algebras (A, «) and

(B.B) such that 8o f =ao Ff.

17



F-algebras and F-algebra homomorphisis form o catesory.

As for posets. we have the following result (L8360,

Proposition 9 An initial F-algchra., if it erists, s also an initeal firad pomt.
Proof. Let (A.a 1 FA — ) be an initial Fealgebra, feo aun inittal object in
the category of F-algebras. We want to prove that o ix an somorphism. Sinee
(FA.Fa: F*d — FA)is also an F-algebra, by initiality of (. a) there is an

F-morphism f such that the diagram
Fl— 1
F!| ‘.f
v ¥
Frd=g~Fd

s commutative. Combining this with the diagram

Frateepy

FA—

and using again the initiality of (A.a). we get a o f = id 4. Then we also have

foa = FaokFf
= Flaof)
= Flidy)

= dp,.
Hence « is an isomorphism. Q

If C is a poset with a least element ., then the least fixed point of an order

preserving map F can be constructed as the join of the sequence
LSF(L) ... SFL)S ...

(provided that this join exists in C and that F preserves it). Let us introduce

the necessary terminology to generalize this result.

18



Definition 14 An w-chain in C is a functor A : o — C, l.c. a diagram of the
form:

Do LoDy A — D,

Dually an «w’-chain in C is a funclor A 1w — C,

Notation. If A = (D, fa)uso is an w-chain and p = (gn : Dy = A)no is a cone

over A, let us denote by:

o A~ the w-chain D N Da L= n i and

e u~ the cone (stn : Dy = Alunt.

Theorem 10 Let C be a category with an initial object L and let F : C — C be
a funclor. Consider the w-chain A =< F*(L¢), F*('ry) > (where 'py :L— FL
is the unique such homomorphism}. Suppose that p: A — A is a colimiting cone
and that F preserves it. Then the initial F-algebra exists and is (A, ), where o

is uniquely delermined by the universality of the colimit FA of u~.

Proof. Since L¢ is initial in C and A = colimcA, we also have A = colimcA~.
Hence there is 2 unique morphism « : FA — A such that pp4 = @0 Fpu, for all
n. Thus (A, @) is an F-algebra. Let (A',a’ : FA’ = A’) be any other F-algebra.
We want to show that there is a unique morphism f of F-algebra such that

FA-=—4

o |

FA - A

is a commutative diagram. Assume it does exist: let us verify the uniqueness of

such an f. Consider the cone v : A — A’ defined as follows:
- =!_.p :.Lc——b A’;
- Upgr=a' o Fy, : F*(Lg) — A'.

19



It is indeed a cone: we can show it by induction on n:
_ = 0. - H . b4 ” . .
n : v = 1ol o is trivially true:
- suppose that v, = vp4y 0 F"(IF_LC): using the detinition of 1,4, the induction

hypothesis and the definition of 42 we get:

Veg1 = o' o Fu,
- ‘o F albd
= 0FV,,+| o [ (!F‘LC)
n+l(

= vag2 0 ' (Yes )

Now, let us verify that for any n, v, = f o p,: then. by the universal property of
the colimit construction. f is the unique such morphism:

- for n = 0 there is nothing to prove;

- suppose that v, = fou,; then using the definition of ,, the induction hypoth-

esis and the fact that f is an F-algebra morphism we get:

Vet = doFu,
= doFfoFu,
= foao Fp,
= fopnur.

Now we are left to prove the existence of f as a morphism of F-algebras: take f

to be the unique map such that v, = f o g, for any n. For any n > 1 we have:
vn=fopu,=foaoFu,;
(because of the definition of f and @) and

”n - C!’OFV,,__]
= o' oF(fous1)
adoFfoFu, ;.

20



Henee, by the universal property of FA = colimFA . weget foa=a"0oFf ie.

we have proved that f is a homomorphism of F-algebra. o

The previous proposition works, in particular, if C is a cpo. thought of as a
category, and £’ an w-continuous map. The generalization of this situation to

categories is given in the following.

Definition 15 A category C is an w-category if il has an initial object and it
has all colimils of w-chains.

A functor FF: C — C’' is w-continuous if il preserves w-colimits.

Corollary 11 Let C be an w-category and F : C — C an w-continuous functor.
Then there is an inilial fized point for F, given by (A,«) in the nolations of

Theorem 10.

Remark that a denumerable product of w-categones is an w-category; moreover
constant and projection functors are w-continuous and composition and tupling
preserve w-continuity.
Hence to solve an equation as
D=F} Y D)
nel
in an w-category we only need to check the w-continuity of the separated sum

functor £ and of the strict Plotkin power domain functor Fs .

Locally determined colimits

It is sometimes difficult to apply Theorem 10 directly as stated. However, in most
of the domain-like categories, the hom-sets have naturally a posetal structure: this
leads us to the study of O-categories , where a local notion of limit and colimit
can be given (see [WanT79]). It also enables us to restate Theorem 10 in a more

ready-to-use form.



Definition 16 A cafegory C is an C-category if it is a 2-category, whose hom-

sels are depo s, e, if
o in cvery hom-scts any ascending chain has a least upper bound: and

o composilion of morphisms is w-continuous with respect to the order of the

hom-scts.

Remark that a product of O-categorics is still an O-category. Also. il C is an
O-category, so is C°: the order on hom-scts is given by f* T ¢°F if and only if
fEg

Since categories arc regarded as the analoguc of posets. we want to introduce

some sort of ordering.

Definition 17 Let C be an O-category (indced il is cnough that the hom-scls of
C are posets). A couple of arrows

£

A___B

7
such that

e gof=1id,; and
® fog<idp

is called @ projection pair from A to B; [ is said lo be an cmbedding , ¢ «
projection.
We write A Q B if there is a projection pair from A lo B.

'

J

If 4 _ ~B and A ' B are both projection pairs then one obviously has
g

f < f'if and only if ¢’ < g. Hence one of the morphisms of the projection pair

determines the other. If f is an embedding we will write f® for the corresponding
projection; similarly if ¢ is a projection we will write g* for the corresponding
embedding.



Definition 18 [f C is an O-calegory wr can define the subcategory CE: it has
the same objects of C and cmbeddings as morphisms.  Similarly we have the

subcategory C¥ of projections.
Because of the remark after Definition 16 we have:
CE = (CP)»

and of course

C” = (CF).

Notice that 9 is a preorder on the objects of the category C. Let I’ be an

endofunctor on C. Solutions in C for the equation
FD = D (1.3)

are fixed points of F'. Continuing the analogy between posets and categories, we
would like to define a2 minimal solution of the equation 1.3 to be a fixed point
A of F such that for any other fixed point B one has A < B. However this is
not the right way to go since, in general, we can have objects A and B such that
A< B and B 9 A, without A and B being isomorphic: hence we would not
achieve the uniqueness (up to isomorphisms) of minimal solutions. On the other
hand requiring the uniqueness of an embedding eg from A to any other fixed
point B would lead to equations without any minimal solution. We can rescue
the situation by requiring the uniqueness with respect to embeddings eg, which
are also F-algebra homomorphisms. If we denote by F£ the restriction of F to

the category CF we can restate this in the following way.
Definition 19 A minimal solution for the equation 1.8 is an initial FE-algebra.

Before starting the investigation of the relation between C and CEZ, let us intro-

duce the local notion of limit and colimit.
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Definition 20 Le! C be an O-category. Let p: X — A be a cone in CF, where

A is the w-chain < A,. [, >. We say that g is an O-colimit if:
1. < pn o >, is an inercasing sequence in home( A A): and
i Ry _ ;
2. Uﬂ(p’ﬂ o pn) = ’d.‘\'

Dually, if v : A — A is a conc in CF, where A is the w*P~chain (<Ane o) we

say that v is an O-limit f:
1. < zzf; o Uy, >, is an increasing scquence in home( A, A): and
2 Ua(vEow,)=idy.

Proposition 12 Let C be an O-category in which cvery hom{A. B) has a least
clement L4 g; supposc moreover that for any [ in hom(A, B) we have Lge
of =Lac (this property is referred to as left-siriciness of the composition). Then

a termival object L in C is initial in CE,

Proof. For every object A in C there is an embedding L 4:L—— A dcfined by

.Lf__,1=J. A..; indeed we have:
e Lysi0ol; 4=1, since L is terminal in C;
o L a0LlalELaaC idy.

The uniqueness of an embedding with domain L comes from the uniqueness of

its projection part as a map with L as codomain. o

The next result (taken from [SP$2], where an ecarlier idea found in {Sco72] is

generalized) explains the relation between (co)limits and O-(co)limits.

Theorem 13 (The limit-colimit coincidence theorem) Let C be an O-ca-
tegory and A = (Ap, fo) an w-chain in CE. Denote by AR the wP-chain in CP
defined as (An, f2). Then the following facts are equivalent:
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1. A has a colimit in C:

=
~

2. A" has a limit in C;
3. A hes an O-colimil;
4. AR has an O-limit.
Morcover these facts imply:
5. A has a colimit in CE;
6. AR has a limit in CP.

Proof. The equivalence of 3. and 4. comes directly from the definition of O-limit

and O-colimit. To prove the rest of the theorem we will show:
A. 3. = 1. and 5.
B. 4. = 2. and 6.

C.

(S

=4,
D. 3 = 1.

A. Suppose u : A — A is an O-colimit. Let us prove that the cone u has the
universal property of colimits. Let ' : A — A’ be any other cone. If there is

af:A— A such that u, = 8 o, for any n then § is uniquely determined;
indeed we have:

6 = 0oUn(unopR) since ids|l,(pn o u®)
= Un(00 (n o)) (composition is continuous)
= U ({60 pa) o ult) (assodativity of the composition)

= Ln#no Pf'



Now to prove the existence of 8. let us define § = |, ¢, o ,uf,": this join exists,

since (!, o uff), is increasing: indeed:

popul

iﬁ }1
(lu:!-f-l o f!l) ° ( n.‘ ° ﬂﬂ"}‘l)

! : R Hy
Jun+l ° lfl'l 0 n‘) o |"n+1

I

’ R
Hogr © Hygq-

Clearly we also have 8 o g, = pt!,. since

Oopn = (e onl)opu,

"

= L (st 0 1tk 0 pta)

ma>n

= U (o pf 0w fim)

n>n

= U F-:n o fmn

m>n

= | w

m>n
=
where fum = fm-10...0 f, for m > n. Now we can also show that the universal
property of the colimit holds not only in C, but also in CE. In other words,
we have to show that if ' : A — A’ is a cone in CE, then the morphism
8 =, #' o u® is an embedding. Let us put 6% =, pn 0 p’f (as before, this join
exists since (i, 0 #'7) is an w-chain); the next two calculations show that (6, 0R7)

is a projection pair, i.e. that 8 is an embedding:
(Lm0 ') 0 (UK 0 15D

R
= Upnornonrony
"

0Rod

= I_I.uuoﬂf
n

= dy
806% = (L](e'n0rR))o (| f(raon'™)
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— ' R Ht
- I_]ﬂn o l"’n ° fin o ¢ fn
n
' 17
= Yunoy

C idy.

B. The proof is dual to the one in A.

C. Suppose v : A — A# is a limiting cone in C. We want to show that:

- cach », is a projection;
- (vE o 1) is increasing and |, (v5 o v,) = id 4.

In order to define %, let us consider for any A, in A the cone v{™)

in C defined as
foun ifm<n

R
nm

V,(""} =
if m>n.

Remark that v{™ = f& o f,,, for r > max(m, n), since:

- if m < n then

rﬁofmr = ,ﬁofnrofmn

= fmn

™

I

- if m > n then

fav 0 fur

(Fnr © fam)B 0 fine

R R
= fam © far © four

R

nm

Il

u,(‘”") .

Now we are ready to show that #(™} is indeed a cone:

: Ay — AR

Rl = fRo(fR,,0fms) forr>max(m,n+1)
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. A
= (fn+1.ro_n)‘o m,r

R

n,r © Jm,r
_ {rm)
Un

Hence for any m there is a morphism 1/,‘;“ ¢ m = A such that pl™ = 1 o p,’;l,

In particular for n = m we get id4, = v = v, o vk 'To show that v,

m m*

is a projection we still need 0,, 0 v,y T #d4,. Let us start by proving that
u,{; = u,";l,,{.l © fm, which is obtained by showing that z/,""+l 0 [ is the mediating

morphism between v and (™);

v, 0 (:/,I;‘_*_l 0 fm) = ”Slm-{—l] 0 fin since Vn,m : u,(l"') = 1, 0 vk

= fRo frs1r0 fin forr > max(m+1.n)

= ,ﬁ-ofmr

= ylm
24 ).
Now we can see that (vZ o vy, ). is increasing:

L R /
VpOVp = Vpiiy 0 frnOup

”:’:;+1 0 fmo frﬁ O Upipl

L
_E. Vo1 © Vma-

Hence we can define § = |}, ¥% 0 . Let us show that § = id, (and hence that
vL o vy C id4); we can prove this by showing that 6 is the mediating morphism

between v : A — AR and itself:

Va0l = vyoll.vEkov, by definition of §

= Vn 0 Unon V5 0 Um

]

Umsn ¥ © VL 0 v by continuity of the composition

= Um}n v,({"} O U since vy, O V,ﬁ = y,,(:")Vn, m
Umon SR, 0vm by definition of »{™
= vy since v,ls a cone .
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O

The notion of O-colimit becomes particularly useful when not only the implication

3. = 5. for the previous theorem holds, but also its converse.

Definition 21 An O-category C is said to have locally determined w-colimits of
embeddings when a cone p: A — A over an w-chain A in C¥ is colimiting in
CE if and only if p is an O-colimit (or, cquivalently, if and only if it is a colimil
in C).

Corollary 14 Le! C be an O-category. Supposc C has all limits of w°P-chains
in CF (or. cquivalently, all colimils of w-chains in CE). Then C has locally

determined w-colimits of embeddings,

Proof. Let A = (A,, f) be an w-chain in CF and suppose that p: A — Aisa
colimiting cone in CZ: we want to prove that it is also a colimiting cone in C. If
we take in C the colimit of A, we know by Theorem 13 that it is also a colimit

in CE and thereflorc it is 4 : A — A (up to isomorphism). m

We conclude this section giving a sufficient condition for a functor £ : C — C’
to be made into an w-continuous functor FE : CE ~— C'E. Though it is not
necessary for solving the equation we are concerned with, for sake of completeness,
we will include also the case of contravariant functors.

Let A, B, C be O-categories. Let F : A xB — C be a contravariant functor.
The case F covariant (contravariant) is included by putting A (B) equal to the

trivial onc-object category.

Definition 22 The functor F' is said to be locally monotonic if it is monotonic
on the hom-sets; it is called locally continuous if it preserves suprema of w-chains

in every hom-set.



Lemma 15 Let A, B, C be Q-categories and suppose I 2 A" B — C i

locally monotonic. Then we can define a covariant funetor
FE.AY W BY — CF
by puiting:
o FE(A, B) = F(A.B) for objects (. B) in A¥ xBE:
o FE(f.g) = F((fT)*.g) for morphisms (f.g) in AE xBE,

Proof. Let us verify that FE(f.g) is an embedding with (FE(f.¢))F = F(f*". ¢"):
indeed, we have:
(FE(f.aN o FE(f.g) = F(/*.g") o F((U)".9)
= F((fRo f)*.g"09)
= [(id,id)
= id
and
FE(f.g)o (FE(£.aN)} = F((FR)".9) 0 F(S7,¢")
= F(/*",9)0 F(f,g")

= F(id,id)

= id;
- F% is a functor, since:

FE(id,id) = F((id®"),id)

F(id®?, id)
= ud
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annd

FEf g o FE(fg) = FUUMPg) 0 FULFR™.g)
= F(((/"e )74 0 4)
= FE(f'of.doy)

Theorem 16 With the hypothesis of the previous lemma. if moreover A and B
have locally determined w-colimits of embeddings and F is locally continuous. then

FE is w-continuous.

Proof. Let us show that FZ is w-continuous. Consider an w-chain

A = ((-‘ln- Bn)- (fnv 9!‘))

in AFxB¥ and let g : A — (4, B) be 2 colimiting cone in AF x B€ where
# = (Fn:Tu)a- Then . = (on)n : (An. fu) — A and 7 = (Tu)n : (Bn.gn) — B
are colimiting cones in A® and, respectively, in B; since A and B have locally
determined w-colimits of embeddings, then they are also O-colimits. We will use
this to show that

FE(u) : FE(A) — FE(A, B)

is an O-colimit and therefore by Theorem 13 it is a colimit in C® (i.e. F is
w-continuous). Remark that
FE(pa) o (FE(ua))® = F((o5),m) 0 Foy, 70

= F((ono af)"’, Th © rf)

Hence. since (o, 0 off), and {7, o 7f%), are increasing, if we suppose that F is

locally monotonic, also (FE(u,) 0 (FZ(11a))®), is increasing. Moreover, by local

31



continuity of # and since ¢ and g are O-colimits, we have:

\/( FELY o (FE 0™

L

V Fe. e A TE N

"

= F(V(‘Tn Q ‘7111"\"\/"7" o T'.:“n
= f"( f!f_.\. fl!H)

= dpiam.

1.2.2 Solving equations in »-Dom and in SFP

Let us consider the category Cpo of cpo’s and w-continuous functions and its
full subcategory w-Dom of w-algebraic cpo’s. In both cases the hom-sets have a
natural pointwise order: if f, g are in home{A. B) wesay that f < gil f(a) < g(a)
for all @ in A. Similarly, any w-chain {fi};en of functions in home(AA, ) has
a least upper bound V/; f; defined pointwise as (V; fi)(x) = Vi(fi(z)). Since
composition is continuous with respect to this order Cpo and w-Dom are O-
categories.

The next two results, together with Corollary 14, show that these categorics have

locally determined w-colimits of embeddings.

Proposition 17 Let A = (A,, fu.) be an w®-chain in Cpo: a limiling cone

u: A— A can be defined as follows:
s A= {(an)neu - fu(an-l-l) =@an.Qn € Anvn};
® tn:A— A, defined by p({an)n)m for all m.

Proof. If we define an ordering on A as

. (@n)n < (bu)n iff an Sbpforallnel
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then (A, <) is clearly a cpo with least element (Vosm(fmo.. 0 fusy)(La,))m (if
the f,.’s are projections, then they are strict maps and hence the least element
is simply (LA, )m). Next, suppose vy, : B — A,, is a cone. Then if there is a

mediating morphism 6 : B — A from v to x we have
Yme N.Yoe B. pum 00(8) = v, (b).

Hence 0{(6) = (va(b))ncw- On the other hand we can assume this as definition of

0, since it is a continuous map. B

Proposition 18 Let A = (A, f) be an wP-chain in w-Dom’”. The construc-
tion of the limiting cone p : A — A of the previous proposition yields an w-

domain A; ils set of compact elements is

Ept(A) = ) pn(Ept(An))-
Proof. Set B =\, pL(Kpt(A,)). We divide the proof into two steps.

1. ‘If f: D — E is an embedding and d is a compact element of D then f(d)

is compact in £,

9. B is a basis for A.

From 1. it follows that B C Kpt(A), since the u4%’s are embeddings; but from 2.
we also have Kpt(A) C B. Hence B = Kpt(A).

Proof of 1. Suppose f(d) £ VS where S is a directed subset of E: then, con-
sidering the projection f® associated to f, we get d = fRo f(d) <V fR[S] and
hence d < fR(s) for some s in S since d is compact: then f(d) < fo fR(s) <s
for some s of S, 1.e. f(d) is compact.

Proof of 2. Consider z in A: because of Theorem 13 we have that z = V¢, pLo

pn(z) is an increasing sequence. Since we are supposing the A,’s to be w-algebraic,
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any pn(xr) can be written as a directed join of compact clements of A,. say
in(z) = VCp with €, € Rpt(A,) directed. Then U, #£[C,] is a directed set and

its join is . o

Another way to interpret the previous proposition is to say that w-Dom has all
colimits of w-chains. Since any hom(-. B) has a bottom clement (the constant
map Lg) and composition is left-strict, by Proposition 13. {1} is a terminal
object in w-Dom. Hence this category is an w-category: Corollary 15 gives a
general method for finding a minimal solution to any equation F(D) = D defined
by an w-continuous functor . Moreover if the previous equation is given by F
endofunctor on w-Dom, in order to apply the mentioned method, we only need
to check that F is 'acally continuous.

However, w-Dom is not the most suitable category from the point of view of
denotational semantics, since it is not cartesian closed (sce [SLG, example 3.3.10,
page 68] for a counter-example). We could restrict our attention to the full

subcategory of w-Dom, whose objects are consistently complete w-domains.

Definition 23 An w-domain D is consistently complete if whenever lwo finite

elements a, b of D have a common upper-bound they have a least common upper-

bound a Vv b.

This category is closed under the constructions of separated and smash sum,
lifting and it is cartesian closed (see [SLG, pages 63-70]). Unfortunately things

do not go so well when considering power domains.

Proposition 19 If D is a consistently complete w-domain so are Fo(D) and
F(D).

Proof. We only need to show that any two compact elements A, B which have

an upper bound have a least one. Indeed for i = 0 the least upper bound
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can be defined as the equivalence class represented by {a Vb : a € Ab €
B and {a,b} has an upper bound in D} and for i = 1 simply the class individu-

ated by AU B. W]

For the Plotkin case, however, this fails to be true (see [SLG, page 295] for a
counter example). Fortunately the situation can be rescued by considering SFP,
the largest cartesian closed full subcategory of w-Dom (see [Smy83] for the proof
of cartesian closedness). The category SFPZ is an example of an algebroidal

category, a generalization of the concept of algebraic cpo (see [Smy78]).
Definition 24 Let C bc a category. An object A of C is finite in C if:
o for any w- chain A =(V,,, f,) in C with colimit p: A — V,
e for any morphismv: A — V, and
o for any sufficiently large n
there is a unique morphism u, : A — V}, such that v = p, o u,.

We will denote by Cyp the full subcategory of C with objects the finite objects of
C. Remark that if C is a poset thought of as a category, then the finite objects

are exactly the finite elements.

Definition 25 A category C is algebroidal if the following azioms hold:

1. C has an initial object and at most countadbly many finite objects;

ts

every w-chain of finite objects has a colimit in C;

®

every object of C is a colimit of an w-chain of finite objects.

If C is a poset, 1. and 2. say that C is a cpo with at most countably many finite
elements and 3. asserts that C is algebraic.
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Theorem 20 Every algebroidal category has all w-colimits.

Proof. Let C be an algebroidal category. Consider an w-chain A(A,. pw) in C:
any A, arises as a colimit {7 ), : A — A, in C. where A, = (AZ.p1) is an
w-chain in Cp. We will define an w-chain I' = (A, g2+ in Cp so that there is
an isomorphism between the category of cones from [ and the one of cones from
A; since under this isomorphism corresponding cones have the same vertex. the
isomorphism also preserves cones: hence A has a colimit and it can be completed
by calculating a colimit of I'. For r = 0, put s(0) = 0: so AS(D) = AS. Now
suppose that AJ®, ..., A2 have been defined so that s(0) < s(1) < ... < s(r).

Foreachm =0,...,  let gm 1 A2 — Aoy be

I =p,.o_._opmoi:,£").
Since each A" is finite, for sufficiently large ¢ there are unique arrows ¢f, :
A — AL, such that
Gm = 1341 O G-
Call iy the least t such that the ¢} ’s exist for allm = 0,...,r. Put s(r +1) =

max{to, 5{(r) + 1}. So we have defined ' = (A7), g2(+1)). Observe that from the

two previous equations we have in particular
pro i:(r) = _i:g:-l) o q:(r-i-l). (1.4)

Now let us set up the correspondence between the cones. If (i,), is a cone [rom
A = (A,,p) to an object X of C, then putting v, = g, 02"} we get a cone
(v} : T = (A, @2l*+1)) — X; indeed:

v, = ppoitt?
= fr4y 0 pp 02307 since (g, )r is a cone
= fr410 z:fﬁ" Vo ¢+ because of equation 1.4

= Ury1 © q:('"”).

36



Conversely, let (v,), : ' — X be a cone. For every m we can define a cone

(”" )u : Am = (-‘1" P;:,) — X. Put

™ m?

_ a(r+t a(rj—1 n
V= Vpyy O q"f Vo pﬂf ol op

m

where 7 is such that s(r) > n and r 2 m: the choice of » doesn’t matter, because

of the finiteness of the AR’s. Morcover if n = s(m) we can also define

» s{m+1
G = i 0 g

= V. (1.0)

Clearly cach (#2), is a cone and therefore by the universal property of the col-
imiting cone (%), : A — A, lor every m there is exactly a pm t A, — X

such that

vho= gm0 (1.6)

m

for all n. The collection of all the um’s forms a cone from A to X, i.e. {or all
m we have ftm = fim41 © pm; indeed, for some r such that s(r) > n, applying

equations 1.3 and 1.6 and recalling that (i3,) : A,,, — Ao is a cone, we have:

n __ s{r+1 a{r)=-1 n
b = ”r+1°‘1ns )oprrE) 0...0pm

s{r41)

—_ a(r+1) s(r)=—1 n
= T o gl o pit-1o o pl

- es{r+1) a(r+1)opi=! n
= prga Odryy o gt o o gl

= P10 0...0pn 0N opNlo oph

= Hep Opro...omei:‘.

Then by equation 1.6 we get ftm = ftr410p,0...0pm. The latter arguments works
also for pimq41, yielding fims1 = fr410Pr0...0Pmeq- Hence we get ptr = fimi10pm-
Now the only thing that is left to show is that this correspondence is a bijection:

if we start with (¢,), : I' — X, then we get (gm) : A — X and then the cone
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(ptm 0 820M)), i T — X s the (1), we started with sinee

Hm o‘;s(m) = “:‘n(m) h.\ 1.6

m

Vi by 1.5:

on the other hand if we start with (g )y 1 A — X and consider (1), 1 1! — X

where ¥, = g, 0237, then we can define ¥ = pyy 0 gt o pidni=lo Lo pt

L] t T m

(with 7 2 m. s(r) > n): remarking that

n ."'(r+l) .!(r-H] £ r)—l 1"
Vin Hrg1 Otpgy "0 qy, ° ?’r:(L 0...0p,,

= 21 0p0..0pn 0N opi=le L op!

m

= ppoiMopdi=lo op

m

and confronting it with 1.6 we see that the cone from A to X associated to (#,),

1S {ftm )m, 1.€. the one we started with. o
Let FPO be the full subcategory of w-Dom, whose objects are finite posets.
Definition 26 An SFP-domain is a colimit in w-Dom of an w-chain in FPO".

Let us denote by SFP the full subcategory of w-Dom, whose objects are SFP-
domains. From Proposition 17 we know, in particular, that every w®P-chain in
Cpo’ has a limit: hence any w-chain in Cpo® (and thercfore in Fpo®) has a
colimit.

We want to show now that SFPZ is an algebroidal category and its subcategory
of finite objects is Fpo®. Indeed the only piece of information we still necd is

given by the following proposition.
Proposition 21 The finite objects of SFPE are the finile posets.
Proof. Let us show that:

1. any finite poset is a finite object;
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2. any finite object is a finite poset.

1. Let B be a finite poset; consider in SFP¥a colimiting cone (g, ) ¢ (A, pn) —
A and an embedding f 1 8 — A: if there is an embedding u, 1 8 — A, such
that p, o u,, = [, then we have that u, = ,uf o [. Hence uniqueness is proved.
To show the existence, remark that there is a £ in N such that the restriction of
ot to fB] is the identity (since every clement of B is compact and embeddings
preserve compactness). Now for any n > t we can define u,, = pf o f1 it is an

embedding with projection vf! = f# 0 u,,, since:

ufou,, = fRo,u,,o;tfof
= fRof
= d

and

upoul = plofofRop,
R
= #nOﬂn

= id,

Since u, o u, = f, existence is proved as well. Hence B is a finite object.

2. Suppose now that B is a finite object: in particular B is an object of SFP®
and therefore is a colimit of an w-chain (B,,p,) in FPOZ. Hence there is an
embedding u, : B — B, (for n sufficiently large) such that g, o u, = id: this
means that u, = uf; since uf o u,, = idg we also have u,p, = idp, and therefore

B = B,, i.e. Bis a finite poset. ]

Therefore SFPZ is an algebroidal category: by Theorem 20 it has all w-colimits
and, by Corollary 14, they are locally determined. Moreover {L} is initial in
SFPE. Then, by Theorem 10, we are able to solve any equation involving w-

continuous functors.
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Let us show now that the category SFP is closed under the construction of the
power domains ([SmyTY]). Let us start by defining power domain functors:
F; : Dom — Dom (i =0,1.2)

as follows:

1. if D is a domain. put £;0 = (Id{ M(D).E;).C) (cf. Delinition 11):

2,4l [ : D — E is a continuous map let £ f be the extension by continuity

of the following map defined on Apt(F; D)y ={] u:u € M(D} as
Ff(Lu) = {v € M(E): v C; ful).

Proposition 22 The functors FE : Dom% —s Domf are w-continuons for
p

:=0,1,2.

Proof. By Theorem 16 it is enough to check that the functors £; : Domi — Dom
arc locally continuous. Consider an increasing sequence (fu)uen : D — & of
continuous functions with least upper bound the map f. We want to show that

the least upper bound of (Fifa),en is Fif; indeed for any u € M(D) one has:

(VEf)lu) = [JFSull w)
= U{v € M(E):vC; fulu]}

n

= {veM(E): v flu]}
= (Ff)lw)

and hence V, F;f, = Fif. o

The w-continuity of F; on Dom? implies in particular that F; preserves the
colimits of w-chains in Fpof and hence we get that SFP is closed under the

power domain constructions.

40



In the same way we can verify that SFP is a category closed under the usual
operations and that they induce w-continuous functors on SFP#: therefore the
methods for solving equations explained before can be used.

Let us see for example that the separated sum give rise to an w-continuous functor,
referring the reader to [SLG. cc. |, 11] for the other cases.

Deline the functor

3" : [] Dom — Dom (1.7)
ﬂEN
in the following way:

- if (Dn)uen are domains let 2, e Do be the domain obtained by taking the

disjoint union of the D, s and adjoining a bottom element, i.e.

> Do=(J{<nd>de D} J{L}

neN n
and ordering it as follows:
e | is the bottom element;
o <nd><<md' > if n=mandd<d.
=il (fa : Dy — En),en are continuous maps, let
(/)X Dn— 3 En
be the map defined by:

. (Zn fn)(-L) =1;

* (Zn fﬂ)(< n,d >) =< nafn(d) >.

You(fn) is clearly a continuous map and ¥ a well defined functor; it is also im-

mediate to see that it is locally continuous and therefore its restriction
> : ][] Dom®f — Dom®
n

is w-continuous. Therefore SFP is closed under this construction and the functor

¥ is w-continuous on SFPZ,
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1.2.3 An application to the study of bisimulations

In this section. after recalling the notion of bisimulation (see {Pardl, MilS3,
HM85]) we define a domain D of synchronization trees (cf. Definition 29 in the
following) by means of a domain equation. Henee we define a transition system
D (cf. Definition 27). whose sct of processes is D, We show that the maximal
partial bisimulation Cg coincides with the order € on D, This can be used to
define a logic that characterizes bisimulations (sce [Abrdl]).

Let us start by recalling the main concepts.

Definition 27 A transition system is a f-tuple
(Proc, Act,—.7T)
where
e Proc is a set of processes;
o Act is a sel of actions;
e —C Procx Act x Proc (notation p = ¢);
e TC Proc (notation p 7).

Moreover we write p | meaning —(p T).

We think of p = ¢ as “p has the capability to do a and become q”, p T as “p may

diverge” and p | as “p definitely converges”.

Definition 28 A relation R C Procx Proc is a partial bisimulation if for all p,
q € Proc: if pRq then Ya € Act one has:

epSp = 3¢.¢q>¢ andp'Re;
epl = gql ad (3¢.q>¢ = 3p'.p=>p andp'Ry).
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If we consider the union of all the partial bisimulations. we obtain a relation Cg

which is a4 partial bisimulation as well: so we have
pCrq il 3JR.R partial bisimulation. pfig.
There is another possibility to define Cg. using ordinal recursion:
o Cy= Procx Proc;
o p C.4 ¢ iff for all action A one has
- pop = (3¢.¢> ¢ and p' Ca ¢);
-pl=gql and (¢ = ¢ = Fp'.p>p and p’ C. ¢');
o for limit ordinal A: Ex= Nhen Ca-

The sequence just defined is decreasing and bounded below by any partial bisim-
ulation. Then it is eventually stationary, i.e. for some A and for all @ > A one
has C,=C,: for the least such ordinal, Cy is a partial bisimulation; since it is

the biggest one, 1t is exactly Cp.

Definition 29 Let Act be a countable set of actions. We call domain of synchro-

nization tree over Act the initial solution in SFP of the domain equation

D=FH( Y. Da)

a€Act

where D, = D for all a € Act (F3 being the strict Plotkin power domain, cf.
Definition 8, and T the separated sum functor, defined by 1.7).

Now for such a domain D, consider the transition system D = (D, Act,—,T)

where

ed3d f dCd,
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o dT iff L& d.

Proposition 23 Let D be the domain of synchronization trees over Act, Then

forany dy.ds in D we have:
d! gg ([-_1 {ﬂ dl g (!,-_v..

Before going into the proof of the proposition. let us remark that il we want to
apply the general theory for solving cquations as previously exposed. we should
prove that £ is an w-continuous functor. But notice that Fif (D) = (1) & Fu[D)]
where 1 is a one-element domain, (=), the lifting and § the amalgamated sum.
Since the amalgamated sum is a locally continuous functor on the category of
domains and continuous strict maps, so is Fi¥: then Fit is w-continuous on SFPE,
In the proof we will need a characterization of the Plotkin power domain of an

SFP-domain (see [Smy78]). Instead of working with equivalence classes of

2D = (F(D)/=2,E2 [=2)

. we can choose canonically a representative element for each class. Let D be an
SFP-domain and let A =< D,,p, > be an w-chain in Fpo® such that there is a

colimiting cone (pn)n : & — D. For any X C D define
Xt ={zeD:plx) e pf[X]}.

Clearly (=)* is a closure operator on the power set of D (actually, it is the
closure operator relative to the Lawson topology of D, see [SmyT8, Appendix] for
details). Moreover Xt & F(D), even if X is not since X+ =V, p, 0 pR[X] (for
all n, p, o uR[X] is a finite set of compact elements, because each D, is a finite

poset).

Lemma 24 If X and Y are in F(D) then
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P,
».\ .

1. X

2 XCoY iff X+tCvy-.

Proof. 2. follows immediately from 1. Let us verify 1. Remark that if f: E —
E' is an embedding, then for X € E and X' € E' one has f[X] T X7 iff
X Ca fHX). Let A € M(D): we want to prove that A Ca X iff A E2 X+, Take

n in N large enough so that i, o pf[4] = 4. Then we have:
RiAl — - R -
Hn O M, {‘.1] =4 ;2 X = Hy [‘4] g’-’ ﬂn[.X]

= pn[A] Co pa[X7]

= ALC.X*.
O

Consider now the convex closure of X*, denoted by X™ (recall that the convex
closure of a subset ¥ C D is defined as Con(Y) = {d € D : 3. € Y.y <
d < y2}). Again, X" is in F(D) since X~ =V, pn[Con(uR(X))].

Theorem 25 Let D be an SFP-domain. Then there is an isomorphism:
FDE({XCD:0#X=X}C).

Proof. Since X =, Con(X) and X =, Y iff Con(X) = Con(Y’) we have that
X = X" and X =, Y iff X* =Y": then for any class [X]=, in F(D)/=; we can
choose as representant X*. But from X =, X" wealsoget X, YV if X~ C, YV

and therefore the ordering is respected. mi

Now we can give the proof of Proposition 23.

Proof. Let F : SFPZ — SFP® be the functor defined by

F(D)=F#( X Da)

a€dct
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with D, = D for all a € Aet: 1t is an w-continuous functor. Henee by the theory
previously exposed the initial solution in SFP of the equation 12 = F( D) can

be calculated as the colimit

{_1_}._i"..F({_L})"‘_....._.__..1;"1‘/({_1_})“_....

4

.
[y
1o Hi //

/

y
where

® po =lr({Lh: Prt1 = F(pr):

o 1o =!p, prrer = Fy,

for all £ € N. Recall that the colimit is in SFPZ: the ui's are embedding and
therefore there are corresponding projections pff : D — F™({L1}). Then we can
define the continuous maps = = sk 0 ff. Since the colimit is an O-colimit then

we also have that:
(a) {7k}« is an increasing sequence with join idp;
(b) Vdj,do€ D:dy £dy iff Vk.mdy < 7idy
Now we shall prove:
1. Ve dCre = md < mre;
2. £CCs.

In the following we will use the fact that D = F(D); actua.lly, for notational
convenience, we will treat the isomorphism as an equality.

Because of the characterization of Cp via ordinals and of 1. we will have:

EpCCLCC: for any .
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Hence, using (b), we get Ty C <. Therefore, once proved 1. and 2. we will have
shown that Eg=<.

l. Let us show it by induction on k. For k = 0 there is nothing to prove since
7o 1s the constant map 1. Suppose (induction hypothesis) that if d Ty ¢ then

mrd < wre for any d and e. Assume d g4, e, i.e. assume that for any action a:

e <ad>d = d<acd>€candd C;¢;

o l¢d = L&eand(<a,e>Ce=>3d. <a,d>€Edand d'C;¢").

If d = 0 then also ¢ = 0 and hence 7xd = mre. If d =Lpp then d € € and hence
7rd = mre. Suppose now d # 0 5 ¢ and d #Lrp. Then
- mrp1d = (Fr)(d) = X* where

X ={<a,md >:< a,d >€ d}(U{L})

(take the union with {L} enly if L€ d);

- mrp1€ = (Fmp)(e) = ¥~ where

Y = {<a,me >:<a,¢ >€ e {U{L}).
We want to show that wp.d £ miqae, Le. that X™ C, Y™ then it is enough to
show that X C. Y. One has X C; Y since

<a,md >EX ile. <a,d>€d
= 3Je¢’. <a,¢>€Ee and dLC.¢
= 3I<a,7e' >EY and md < mpe'
using in the last step the induction hypothesis and the definition of Y. To show
that X G, Y is easier; indeed if L€ X there is nothing to prove; if L& X then
14 d implies that L& e and

V<a,me >€Y.3<a,md >EX. <a,md ><< a, e’ >

2. It is enough to show that < is a partial bisimulation. The defining axiom
holds: if d < ¢ then
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e dC; c.in particular V< a.d' > d.3 < a. ¢! >€ . d' < o

o dCoe. inparticular Le€d = L€cand (V< a. ' >€c. I < ad >€
d.d" <¢)

and hence for all actions a we have

sd=ad = I.ceDe.d<Lc

ed!] = el and(eSd=3d.d>d.d <) O
The domain of synchronization trees D that we have presented gives rise to a

logic that is equivalent to the Hennessy-Milner logic in the infinitary case: hence

it characterizes bisimulations (see [Abr91, sections 4,3]).

1.3 A modal interpretation of power domains

In this section we introduce small modal languages L; (for 1 = 0,1,2) whose
basic propositions are the compact elements of an w-domain . [rom their
interpretation via Kripke forcing we can define relations on the collection T of

generating trees over D) and derive an alternative definition of power domains

([Win85]).

1.3.1 The Smyth power domain and the modal operator
of inevitability

Let us think of the generic element of the Smyth power domain Fo(D) as the
equivalence class determined by TS, where (T, () is a generating trec over D. [
A is as finite set of compact elements of D, by definition we have that A 5o T3
holds if

Vz€TS.Ja€ A.e <z (1.8)
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Since the clements of TS correspond to limits of the clements of Apt(D) labeling

the branches of the tree T, 1.8 can be rephrased as:
Vo branch of T.3a € A.a £ Ve, ((£). (1.9)
Given the compactness of the elements of A, 1.9 can be expressed as:
Vo branchof T.3t € v.Ja € A.a < {{t). (1.10)

This leads us to consider a language Lo built out of Apt(D) using finite disjunc-
tions {to cope with the existential quantification of the clements of A) and a
modal operator of inevitability (to cope with the universal quantifier). Remark
that the expressions sV s’ and Os in the following definition are just formal com-
binations; in particular if s,s’ € Kp{(D) then sV s’ is not the supremum of s and

s as elements of D.

Definition 30 Let Ly be the least set such thai:
o Api(D) C Ly; and
o if 5,5 € Lo, then sV ' € Lg; and

o if s € Lo, then Os € Lo.

Next we interpret this language via Kripke forcing.

Let (T,() be a generating tree over D (in the following we will write just T for
short). Because of Proposition 1 we can suppose with no loss of generality that
(%) is a compact element of D for any ¢ in T.

We will write ¢ — ' meaning that there is an arc in T connecting the node £ to

.

Definition 31 Let |=r be the least relation on T X Lo such that:
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L

. ifa e Kpt(D) and a < (1) then t =p a; and

o

ftlersortErs thentlrsva's and

Lo

if for all branch v out of t therc ist' € v such thal ¥ =y s then ! =g Os.

Given the minimality of =7, the previous conditions arc indeed if-and-only-if
conditions. A neater definition of =1 can be obtained cquivalently by replacing

3 with 3’

J. it Ersor (V'.t =t = ' &7 s) then ¢ Er Os{to be read as ¢ entails

inevitably s).

We can now consider the statements of a non-de:ierministic computation (7°,¢)
that are inevitably true and use this to order the cellection T of generating trees

over D.

Definition 32 For T, T' in T define
o Vo(T) = {Os € Lo : rooT) k7 Ds};
o T I iff W(T)SWT);
o T2 T" iff TZT andT' % 7T.

Hence we can think of 7 /=, as a poset: we will show that it is isomorphic to the
Smyth power domain.

We need to define on Ly an equivalence; for s, s’ in Lg say that s = s if

YT € T .(root(T) = s iff root(T) r §')-

Then it is easy to see that this equivalence turns the formal operator V of Lg into

a join in Lg/=, which is indeed a semilattice. Morcover in Lg/ = we have:
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e O(0Os) = Os and
o O(svO¥)=0O(s V).

Because of the definition of Lo, for any clement s in Ly there is an A in M(D)

such that Os = OV A, Hence we have immediately the following result.

Lemma 26 For any gencraling tree (1.¢) in T and any A in M(D) the following

Juels are cquivaleni:
o AC,TS:
e rool(T) l=r OVA.
Now we are ready for the main result.
Theorem 27 The poset T /=, is isomorphic to the Smyth power domain Fy( D).

Proof. Let us define a map ¢ : Fo(D) — T /2.

The generic clement of Fy(D) can be thought of as the ideal, whose elements are
the approximations of TS € F(D)} for some (T,¢) generating tree over D, i.e. as
theset T= {A€ M(D): A G, TS}

Because of the previous lemma, we have immediately:

I ={AeM(D):root(T) |=r OVA}.

Hence we can define ¢ as the map that sends the equivalence class in Fo(D)
determined by TS to the equivalence class in 7/=; determined by T". Then ¢
is a bijection and both ¢ and ¢~ preserve the order: hence ¢ is the desired

isomorphism. ]
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1.3.2 The Hoare power domain and the modal operator
of possibility

Let us proceed as we did in the previous section. The generie element of the Hoare
power domain F;(D) can be thought of as the equivalence class determined by TS,
where (7.¢) is a generating tree over D. For A in M(D) we have that AT, 7%
holdr if

Vec A.dzreT¢.a<r

which we can rephrase as:
Ya€ A.3y branchof T'.3t € y.a < ().

Hence we need a language Lq build out of Apt(D) and with a modal operator &

of possibility (to cope with the existential quantification of the branch =).
Definition 33 Let L, be the lcast sel such thal:
e Kpt(D)C L,; and
o if s isin Ly then so is Os
(where Os is just a formal expression).
This language can be interpreted as follows.

Definition 34 For T in T define =1 to be the least relation on T x L, such
that:

1. if a is in Kpt(D) and @ < {(t) then i |=r a; and
2. if there is a branch v out of t and a t’ in = such that t' |=r s then I =1 Os.

Here too we can substitute 2. equivalently with the axiom 2":
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2ol =y sor L=Vt By Os then t =g Os.

Let us define on T a preorder, considering the propositions of the language £y

that are possibly true for a generating tree (7.¢) over D.
Definition 35 For (7.¢) and (1".(') generating trees in T pul:
o Vi(T) = {Cs: rool(T) |Er s}
o T X, T if Vi(T) € Wi(T):
o =T TXT andT' X T.

Now we can define an equivalence on Ly; for s. ¢ in L say that s =" if

VT €T (root(T) k=r s It root(T) k=r &').

Then for any s in L; we have:
o O(Os) = Osy
e there is a in Apt(D) such that s = Ca.
Hence we have the following technical result.
Lemma 28 ForanyT in T and A in M(D) the following facts are equivalent:
o AC, TS:
e VYa € A. rool(T) =1 Ca.

Before going into the main result let us give a characterization of the Hoare power

domain.



Proposition 28 Let L(Apt(D)) = {N C Apt(I) : XN £ 0and [ N = N} where
X ={y e Apt(D) :y L& for some v € XY, Then C(Kpt(I)) partially ordered

by inclusion is isomorphic o the Hoare power domain Fy{( D).

Proof. The proof is very simple if one thinks of £(D) as IdI(M(D).T)). Indeed
we can define two order preserving maps ¢ @ Fy(D) — L{(AptH{ ) and ¢ :

L(Apt(D)) — Fi(D). which are clearly mutually inverse. Just put:

o= J{X|X eI} for [ in F(D),
and

HX)={AeM(D): AC X}

Theorem 30 The posel T /=, is isomorphic to the Hoarc power domain (D).

Proof. We shall prove that the map ¢ : T/=; — L(Apt(D)) defined by

#([Tl=,) = {a € Kpi(D) : root(T) o7 O}
is an isomorphism. The theorem then follows from the previous proposition.
Remark that T <; T' il and only if

{a : root(T) |7 Ca} C {a: root(T") kg Oa}

and therefore ¢ is well-defined, injective and order-preserving. Moreover it is onto
because the generic element of L(Kpt(D)) is of the form [J{A € M(D}: A C, TS}

for some tree (T, () and it reflects the order. Hence it is an isomorphism. 0



1.3.3 The Plotkin power domain and the modal opera-

tors

Putting together what we have done in the two previous sections one can obtain

the modal interpretation of the Plotkin power domain.
Definition 36 Lef Lo be the least set such that:

o pt{(D) C Lay: and

o ifs.s" € Ly then sV s € Ly and

c if s € Lo then Os € La: and

o ifs € Ly then Os € La.

Definition 37 For T generating trec in T define =1 to be the least relation on

T x Ly such thal:

1. ifa € Apt(D) and a < (1) then t =7 a;

s

fitersort' l=rsthent=rsVvs;
3. if for every branch v out of t there is ¥’ in ~ such that t' |=7 s then t =7 Ds;

{. if there is a branch v out of t and there is t' in v such that t' = s then
tEr Os.

Equivalently we can replace 3. and 4. with:
3. iftl=raor (Vi'.t = ¢' = t' = Os) then ¢ |=7 Os;
Lo iftlrsor 3.t = .t =r Os) then t =7 Os.

Now, just as we did for the Smyth power domain. assume we are only interested

in the statements that are inevitably true.
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Definition 38 For T and T" trees in T define:
o 15(TY={0s¢& Ly: rool{T) =y Os}:
o =T if and only f V3(T) C V(1)
o T= T fandonly if T X2 T and 1" <. T

Let us introduce an equivalence on Ly as follows: say that s = & if

YT . (root(T) Er s il root(T) r &)

Clearly = is an equivalence and L./ = is a join semilattice where moreover we

have:
o Os = O(Cs) = O(0s) = O(Os):
e Os = 0D(0Os);
e Osvs)=Ts VO

O(s v Os') = 0(s vV &');
e O(sVOs)=Ds v O,

Then it is clear that any s in L, has a normal form where the modality operators

are nested only one deep, namely s is equivalent to

aoV...Var VO V...VOb VO{caV...Veoig) V... VO(co V... Ves,)

and therefore Os is equivalent to

D(do\l...Vd,)VOeoV...VOc,

for suitable ai, b;, ¢;;, d1, ex in Kpt(D).

From this we obtain immediately the following result. IS
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Lemma 31 Lt T and 17 be trees in T. Then the following facts are cquivalent:
o "=, 1";
o I'=XyT and T <, T,

Hence ve can finally prove the main result of this section.

Theorem 32 The poset (T /22, 22) is isomorphic lo the Plothin power domain

< (D).

Proof. The isomorphism is given by the map ¢ : Fa(D) — T /=, defined as

TSJ2) = (Tles.

Since T <y T' is equivalent by the previous lemmato T <o T' and T <; T” and
this in turn is equivalent to TS So 7% and TS T, T, i.e. to TS Ea T, o is an

[ —

isomorphism. o
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Chapter 2

Power locales

2.1 Power locales as generalized power domains

In this section we define power locales as the localic analogue of the construction
of power spaces {[Smy83]) and show how ihey can be scen as @ generalization of

power domains ([Rob86]).

The concept of power domain has been introduced in section 1.1 in order to
give a semantics to non-determinism. Another possibility woulld have been to
use many-valued functions between topological spaces (thinking of their opens
as computable properties and of continuous maps as compulable functions). We
would need then a notion of continuity for a many-valued [unction. There are

indeed several possibilities ([Ber59]).

Definition 39 Let X and Y be topological spaces. A multifunction ' : X — ¥

ts said lo be:

e upper semicontinuous if I'(Q) = {x : [z € O} is open in X whenever O

is open in Y;



o lower semicontinuous i I'"(0) = {z: Fe N O # B} s open whenever O s

apen i Y;
e coutinuous i it s both wpper and lower semicontinuous.

In order to give a characterization of (semi-)continuous multifunctions I using
the corresponding simple-valued function I' : X — pY defined by I'e = I'r, we

introduce the following topologics.

Definition 40 Let X be a lopological space. S a subset of pX. For O open of
X put:
Q0={TesS:TCO},

CO={TeS:TNO D).

The upper topology on S is generated by the base {00 : O € O(X)}. the lower
topology on & by the subbasc {<CC : 0 € O(X)} and the Vietoris topology on S
by the subbase {DO, 00 : O € O(X)}.

Now it is casy to show ({S$83.b]) that a multifunction I' : X — ¥ with multivalues
in S is upper semicontinuous (lower semicontinuous, continuous) if and only if

-

[': X — § is continuous with respect to the lower (upper, Vietoris) topology
on S.

Characterizations of power domains, as in Theorem 25, lead us to consider par-
ticular choices for &, when trying to model non-determinism.

Notation. Let X be a topological space. We will use the following notations:

1. CL(X) for the set of closed subsets of X;

(&4
d

UC(X) for the set of upper-closed subsets of X;

3. CONV(X) for the set of convex subsets of X (a subset S is convex if it

is equal to the intersection of its topological closure ¢/(S) and of its upper
closure T S);



4o COMP(N) for the set of compact subsets of \.

Of course. in 2. and 3.. the upper-closure is referred 1o the specialization preovder

on X. defined for x. y in X as:
r<y iff YOeQOXN).re Q= ycO.
Definition 41 Let X be a topological space.

o The upper power space PSp(X) of X is COMP(X)NUC(X) endowed with
the upper iopology.

o The lower power space PS|(X) of X is CL(X) taken with the lower topol-
0gy.
e The Vietoris power space PS:(X) of X is COMP(X)NCONV(X) with

the Vietoris topology.

Now let us try to express the power spaces using only open subsets, in order to
find axioms for defining the power locales.
The easiest is the lower power space: it can be defined equivalently (up to iso-

morphism) as
PS5 (X) = (O(X), topology with subbase {CO: 0 € O})

where now OO0 = {U € O(X): 0 € U}.

Remark that the following properties are verified:
o for any collection {U;}:es of opens of X:
QYo = {U:|Jo: e U}
= {U:0; € U for some i}

= |Jo0;
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o OB =0

For the upper power spacc we need some conditions. Assume that X is compact
Hausdorfl. Then the compact subsets correspond to the closed and all the sets
are upper closed (for the last condition, we only need Lo assume X to be T).

Hence we can define
PSo(X) = (O(X), topology with base {80 : 0 € O(X)}).

where 00 ={l! € O(X): UUO = X}.
Remark that the following properties hold:

¢ for any directed family {O;}:cr of opens of X:
alJo: = {UeoX):UulJO:=X}
= {UeQX):UUQ; =X for some i}
= {Joo;
e for any O. O opens of X:

oono) = {eo(X):Uu(On0) =X}
oo noo’

o OX = O(X).

Similarly for the Vietoris power space if we assume that X is T} and compact {so
that CONV(X) = CL{X) € COMP(X)) then we have:

PS:(X) = (O(X), topology with subbase {C0,00: 0 € O(X)})

where OC and OO are defined as in the previous two cases.
Besides the properties already listed, for any O and O open in X we also have:
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e DOUCO >D(OLOY):
e DONCO' < O(ONO).

Assumning these properties as axioms we get the definition of power locale of a
iocale A {{[Rob86]). We wiil use the notation Fr < (7| R > 1o mean the universal
solution to the problem of finding a frame containing the set G of generators and
satisfying the presenting relations in R ([Vic89]): remark that this makes sense

in any topos ([JT84]).

Definition 42 The Smyth (or upper) power locale 15(A) of A is given by the

frame:
Fr<Oala€ A) | B\/S=\/{Bs:s€ 8} for S(C A) dirccted,
DAS=A{Os:s € S} for S(C A) finile >.

If we add the presenting relation O L=1, then we obiain the sirict Smyth power

locale V5F(A).

Equivalently we could say that Q(V5(A)) is the frame freely generated by O(A)
qua preframe (2 preframe is a poset with directed joins and finite meets, such
that binary meets distribute over directed joins).

Note that if X is a compact Hausdorff space, then VO(O(}{)) = OPS(X).

Definition 43 The Hoare (or lower) power locale Vi(A) of A is given by the
frame:
Fr<Ca(a e A)IOVS=V{OCs:s€8} for SCTA>.

If we add the presenting relation OT = T, then we have ihe strict Hoare power
locale ViF(A).

Equivalently we could say that O(V;(A)) is the frame freely gcnerated'by O(A)
qua suplattice (we call suplattice a lattice with all suprema ([JT84])). .
Note that for any topological space X, one has V;(O(X)) & OPS,(X).
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Definition 44 The Victoris power locale Va(A) of A is given by the frame

Frm < Qa.Cala € A) | OVS = V{Os:s € S} for S(C A) directed,
OAS=A{Os:s €5} for S(C A) finitc,
OV/S =\/{Os:s€ 8} for S C A,
QaV 06> OfaV b).

BaAOLL OlaAb). >

The strict version of the Vieloris power locale is oblained by adding the presenting

relalion O L=1,

Remark. The presenting relations of the Vietoris locale will be referred to in

the following as the axtoms V1,V2,.. . V5.

If X is T} and compact (in particular, compact Hausdorff) then Q(PS.(X)) =
V(O(X)).

As the name suggests, there is a correspondence between power domains and
power locales (though for historical reasons V5{ A) is not referred to as the Plotkin
power locale).

Let us denote by (D) the locale of Scott-opens of a d0t_na.in D (recall that U C D

is Scott-open if it is upper-closed and inaccessible by directed joins).

Theorem 33 If D is a domein then we have the following isomorphisms of lo-

cales (fori=0,1,2): Vi(SD) = SF*(D).

Proof. We will show (see following lemmas) that we can define frame homomor-
phisms ‘
Y7 : TFH(D) — Vi(ED)

and
¢; : Vi(SD) — IFf(D)
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such that 7 o¢™f = idSF;*{D) and ¢'7 o ¢} = idy,(xp): therefore the isomorphisms
will have been established.

Since the proofs of the cases i = 0.1 are simplified versions of the proof of the
case 7 = 2, they will be omitted.

Recall that the Scott topology on a domain (in our case F*(D)) can be iden-
tified with the upward closed topology on its set of compact clements, in our
case (M*(D),C;). Hence we can define ¢ just on the upward closure T; A in
(M(D),E;) of a finite set A of compact clements of D and verify that ¢} is indeed

well defined (see Lemma 34 in the following); for 2 = 0.1, 2 put respectively:

P3(To{ars...,an}} =0((Ta1} V...V (Tan));

Pr(Ti{en, .. aa}) = O(Tar) AL AO(Tan):

P3(Ta{ar,....aa}) = O((Tar) V... V(Tan)) AO(Tar} A ... A O(Tay)
where fa; = {y € D :y 2 a;}.
Next let us remark that a basis of V(D) is constituted by the elements:
t=0: {O({(Ta1)V...V(fa,)):a; € Kpt(D)};
i=1: {O(T0):b€ Kpt(D)};
i=2: {O((a)) V...V (12a)) AO(151) A .. A O{Th) : ainb; € Kpt(D)}.
Indeed if U is a Scott-open subset of D, then we have

ou OV/{Te:ea € U,a € Kpt(D)}

= oV{(ta)V...V(Tan): & € U,a; € Kpt(D),n € N}
= Vi{O(Ta) V...V (Taa) : {a1,-..,a.} € M(D)}
(since O preserves directed joins) and also
QU = OV{Tb:bel,be Kpt(D)}
= V{OTh:beU,be Kot(D)}

(because © preserves arbitrary joins).

Now we are ready to define the maps ¢j:
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i=0: ¢3(0(Ta) V...V a)) = UfToX : X C {ar....an})
i=l: 91(OTa)) =Ty {L.a};

i=2: @3(O0(Tar) V...V Ta,)) =T X : X C {a1,....¢n}} and
@H(O(Ta}) =T {L,a}.

Once again, we will prove that ] is a [rame homomorphism only in the case
¢ =2 (see Lemma 35 in the following). So, after reading the next three lemmas,

the proof is complete. =
Lemma 34 The map 3 : EFF (D) — V%(TD) is well-defined.

Proof. We only need to prove that if

1. T2 {ah“'?an} §T2{b17---7bk}

then we have

2. O((fa)) V... V (Tan)) A O(Far) A ... A O(Tan)
SO((Th) V..oV (The)) AO(Thr) Ao AO(Th)

Remark that 1. is equivalent to

I {b,.... b} B2 {a.,... a4}
l.e. to the two conditions

3. {by,.... 0} Co {a1,...,an}

4. {b,..., b} Ci {a1,... a4}

But 3. in turn is equivalent to
3. (Te) V...V (Tan) S (Th) V...V (Th)
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and hence we get

5. O((Tan) V...V (Ta,)) S B((To) V...V (Th)).
Similarly 4. is equivalent to

YoVi=1...., k.Jiye{l.....n}. Ta;, CTb;
from which we get

6. O(Tar) A  AO(Tan) SO(Th YA L. AS(Thy).

Putting together 5. and 6. we get 2.

Lemma 35 The map @5 : Va(ED) — SFH(D) is well-defined.
Proof. Let us start by showing that if a < 8 in (D) then
1. v3(0a) < p3(0P): and

2. ¢3(Oa) < @3(OB).

Because of the remark in Theorem 33 when proving 1. we can assume without
loss of generality that a = (Ta1) V...V (Tan) and g = (Th) V...V (Tl). Hence

{b1,..., b} Co {ai1,...,an} (we have already observed in the previous lemma the

equivalence of these two statements). If X C {a1,...,a,} then {a1,...,4,} o X

and, by transitivity, {b;,..., b} So X: hence by refining {b;,...,b:} we can find

Y¢ {b1,..., b} Co X such that ¥ &5 X. Then we have:

" (O((Ta1) V ... V (Ten)))

U{T2X : X € {a1,.--,aa}}

< UlRY 1Y € {burennsbil)
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To verify 2. we may assume that @ =Ta and 3 =7b (always because of the remark
in Theorem 33). Theno < FiTb L a il {L.0} Co {Lia}ilf To{L.a} <Ta{Ll.b}
Leo 93(Ca) < i (OF). Henee ¢ is well defined on the clement of the form

O(Tay V..oV Tan ) AS(Th ) A Lo AO(Thi)-
Since this is a basis of V2(XD) we can extend @3 “by linearity”™ to a map defined
on Vo{ED). Let us verify that the presenting relations of the Vietoris power locale
hold:
(V1) and (V3) hold because of the definition of ¢3;
(V2): we need to show that:

@O A B)) 2 p3(0a) A g3(0F)

where we can suppose a = (Te;) V...V (Ta,) and § = (Th) V...V (Tb). Then

we have
@a(0(a A B))
= p;(DV{Twl V...V, {aI,...,an},{bh...,bk} Eo {xl,...,mg}})
= V{SDE(D(T:EI V...V TI'()) : {ala"'1aﬂ}!{b17-"!bk} EU {mh-'-smt}}

V{t2Y : Y C X;{a,...,an}, {b1...., b} Co X}
2 V{Y:{a,.-. an}, {brs....0e} Co Y}

#3(0a) A ¢3(08)

n

where the last step holds since
XCE:Yand X'CaYforsomeXCAand X'C A

is equivalent to
AGCoY and B5 Y.

(V4): we need to show that:
?2(O(a V B)) < ¢2(Ba) V 3(O8)
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and again we can assume without loss of generality that a =Tay V...V {u, and
d=Th V...V T Thenif Z &€ 23(0(aV J)) ie. I NUY T Z for some
X C {ay..... a,} and Y C {b,..... b} we can distinguish two possibilitios:
-ifY =0 then Z € ¢3(0a) since N C2 Z where X C {ay..... TR

-if Y # 0 then Z € p3(O) since 3b € ¥ osuch that {L.6)} Ca 7.

(V5): we need to prove:
¢3(00) A 3(08) < @i(Oa A )

where as usually e = () V...V (Ta,) and 3 = (76 V...V (Tb). Then if Z isin
23(Ba) A 03(OF) there are both an X C {ay,.... a,and a b; € {b—1,.... b}

such that X C» Z and {L,b;} C» Zi.e. thereisz € Zsuchthate; < zand & < =

for some a; € {ar,....a,} and & € {b1,...,0}: but then Z is in @3(Ofa A ).
(|

Lemma 36 The maps 3 and 3 are mutually inverse.
Proof. To prove that ¢} 0 5 = idy (D) Ve only need to check that

@3 0 ¥a(T2{a, .. aa}) =T2{a1, ... au}
where aj,...,a, are compact clements of D. Indeed, we have
¥ 0 ¥3(T2{en,.. ., an})
= A(O((Te1,) V...V (Taa)) AO(Tar) A ... A O(Tan))
= @2(0((Tar,) V...V (Tan)}) A @2(O(Tar)) A ..o A 03(O(Tan))
= Ul X:XC oA A Ta{Lsa}
= T2{a1,...,an} o

where in the first three steps we are just applying the definition of 3 and 33,

whereas the last step is motivated by the following:
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il {ay, .o an} Ea Yothen forall e = 1oL n one has {L.a;} C2 Yiand
il X Ty ¥ for some X C {ay,...,a.} (and therefore {a;..... t,} Ca Y) and
fl.a;} Co Y.

Similarly to prove that ¥ o 3 = idy;xp) we only necd to show:
L. 5 0 ¢3(0(Ta) = O(Ta); and

2. d"; o k::’E(D(T‘:"'l V... Tau)) = D(Tu‘l V... Tan)-

Let us see .:

3 005(O(Te)) = ¢3(T2{Ll.a})
= D((1L) V (1)) A O(1L) A O(Ta)
= OTAOTAO(Ta)
= & Td
where the last step comes [rom the fact that OT7 = T.

We will prove 2. by induction on n; for n = 1 we have:

Yiopx(DTa) = (| H{TaX: X S {a}})
= ¢3((T20)U T20))
= ¢3((T20) v $3(T2a))
= O L v(O(Ta) A &(1a))

Let us assume, as induction hypothesis, that 2. holds for ¥ < n —1; then

P2 0 93(B((Tar) V... V (Tan)))
= $3(U{TX 1 X € {ar...,an}})
V (O((Tai,) V...V (Tai)) A O(Tay) Ao A O(Tai,))

{f1:in }E{2,.cun}
= (O((Tar) V... (Ten)) AO(Tar) A ... A(Tan)) V

vV (O(Fe) V..V (Tar)) AO(Tay) A ... A O(Tai,))
{fteeidr}C{1,...n}

]
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Now applyving the induction hypothests to the second part of the disjunction, we

get:

@30 ¢3O((Tar) V..V (Taa)))
= (O((Te)) V..o (Te AT} A L ATy )
Y, \Y; O((Te) V ...V (Tur))

Ugecr b flon\ (2}

for ;eqt...m
> O((Ta) v vua,. ) A /\ (1) V M)
J=1. =
> O((Tay) Vv V(Ta,.)/\ /\ B((Tar) V...V (Taa))

il

= O((fa) V...V (Tan))-
On the other hand one obviously has
O((Tar) V.- ¥ (Tan)) < ¥5 0 03(O((Tar) V ... V (Tan))
and therefore the equality holds. =

If we consider the strict version of the power domains and we want ¢ to be
still an isomorphism, we are forced to replace the power locales with their strict

versions.
Theorem 37 If D is a domain we have the following isomorphism of localcs:
V*(ED) = SF(D).

Now recall that a domain is sober in its Scott topology, i.e. it is isomorphic Lo
the space of points of its Scott topology. Then we can finally show in which sense

power locales are a generalization of power domains.
Theorem 38 Let D be a domain, Then fori=0,1,2 we have the isomorphisms:
Fi(D) = pt(V;*(ZD)).

70



2.2 Monads from power locales

In this section we show that the power locales give rise to monads over Loc.
Johnstone proved that the algebras for the Vietoris monad can be scen as a
particular class of localic semilattices ([Joh85]). We extend this result to the
other two power jocales: when the proofs go along the same lines, they will be

omitted.
Notation. For sake of readability, in the proofs of this section the index ¢ = 2

will be dropped.

Proposition 39 The assignments A — Vi(A) (for 1 = 0,1,2) give rise to func-
tors V; : Loc — Loc; moreover there are natural transformations n; : Idp,. —
Vi and p; : VP — Vi making (Vi i, ;) into a monad on Loc.

Similarly, the strict power locales V¥ (A) give rise to monads (V;*,qF.uf) on

Loc.

Proof. We start by defining V(f) for f : A — B morphism of locales: it is
enough to specify the effect of V(f)" on the generators b and &b of V(B): put.

o V() (Db) = 1(/7(b));
o V()7(0) = O(f7(8))-

Since f* is a frame homomorphisin, V( f)" preserves the presenting relations (V1)-
(V5) and therefore it is a well-defined morphism on V(8); moreover V is clearly
functorial.

The unit 7 of the monad is defined by:
73(0a) = a and 73(0a) = a
and the multiplication u by:
#4(0e) = O(0a) and p3(Ca) = O(<Ca).
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It is straightforward to see that both maps preserve the relations (V1-VH) and
are therefore well-defined.  Also the axioms of monad follow immediately from

the definitions. Cl

For ¢ = 0.1 one has Vi, = 5 hence the Smvth and Hoare monads have a
particular structure. known as KZ-monad. We recall the definition of this concept
Just for a 2—category C enriched over posets. referring the reader 1o [Koe9s) for

the general theory,

Definition 45 Let T : C — C be a 2-functor (i.c. a functor thut preserves
the order of the hom-sets). A KZ-monad on C is ¢ monad (1.3, 1) such thal

Tne < nre for all object C of C.

Proposition 40 Let (T, n, 1) be @ KZ-doctrine on C. Then a T-algebra structure

a on an object A of C, if it exists, is uniquely determuned (up to isomorphism).

Proof. From the axiom n40a = id 4 ouc has, by naturality of 9, that Taoyry = id.

Since T defines a KZ-doctrine then one gets

naoa = Taoyry

v

TaoTn,

T(aon,)

id.

Hence the structure a is a reflection left adjoint to 54 and thercfore is uniquely

determined. m]

In particular, the Smyth and Hoare algebra structure of a locale, il it exists, is
uniquely determined.

The Vietoris power locale, however, does not give rise to a KZ-monad for other-
wise we should have Vane < 12y, (and hence Ca = Oa for all a) and this is clearly

not the case.



Iu order to show that the aigebras of the monads V; have naturally a semilattices
strncture (in Loc), we need the following two lemmas about products of locales

{fur a characterization of products of locales see, for example. [Bord]).
Lemma 41 There is @ naturel isomorphism
¢+ Vi(A) @ Vi(B) = 1i(4 x B)
where @ and x denote the product and the coproduct in Loc.
Proof. Let us define ¢7 : V(A x B) — V(A) ® V() setting:
e ¢"(Q(a, b)) = Do @Ok
e ¢°(Ola, b)) = (Ca@1) V(1 QOb).

We have to verify that ¢7 preserves the presenting relations:

(V1) i {(a:, ) }ier is a divected subset of 4 x B, then:

fl'(D(V(ﬁsebe))) = (D\/a,-)@(l:l\/bj)
(V/Bar)© (V Ob)
= V(Dai & Db.)

= V¢ (Oai b));

(V2): if (a;,4:) € A x B forz =1,2, then:

¢"(O((ar, 1) A(az,82))) = D(ar Aa2) @0T(by Ad2)
= (Oa; A Daz) @ (Qby A Oby)
= (Oa; ® Qb)) A (Qaz @ Ob,)
= ¢"(Q(a1, 0)) A ¢°(B(az, b2));



(V3 if {{a:. i) }igr is any subset of A x B. then:

1

OV (@) = (V) I DV (1O b))
= V{(Caq 2 DV (1 0b)

= V{(Ca; @ )V (1 oOh)

= V¢ (Oaibi)):

(Vi) if (@i b)) isin Ax B for i = 1.2 then:

g (B({e1.5) V (a2.02)))
T(ar V a2) Q@ B(by V ba)

A

(C!al & D(bl \Y b'_i)) v (Oag & D(bl A" b'_!))

N

(Dal @ Dbl) \'% (Dm @ Ob_v) v (Oag @ D(bl A" b-_b))

IA

(Da; © Bby) V (1 Q@ Oba) V (Caz @ 1)
g {(Ofay, b)) V ¢7(Olaz, b))

(V3): if (a;, b) is in Ax B for i = 1,2 then:

7" (O((e1.b1) A (a2, b2)))
(0((11 l\ag) ) 1) V' (1 @O(b] A b‘_)))

v

(O @NA(C2O 1))V (106 A (1 © b))

v

((Ba; @ Ob) A (Ca2 @ 1)) V ((Ha, @ Oby) A (1 Q@ Obs))
(Ca, @OH) A ((Ca2® 1) V(1 @ Oba))
9" (B(a1,0)) A g7 (Olaz, br))

In the other direction we can define two maps:
r;:VA— V(Ax B)

and

r3: VB — V(AxB)
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by puiting rj(0a) = Sla. 1), ri{Ca) = O(a.0) and similarly for r3: the relations
(V1)-(V5) are preserved (easy checking) and therefore we have a frame homo-

morphism (ry,r2)" : VA VB — V{ax B) defined by:

(r1.72)(x D y) = ri(z) Ari(y).

Morcover
(r1,72)" 0 ¢7(B(a,8)) = (r1,72)"(Ba @ Tb)
= r}(Ca) A r3(0b)
= Ofa.1) AD(1,b)
= O(a.b)
and

(r,m2)" 0 ¢7(Q(a. b)) = (r.r2)"((Ca® 1)V (1©OH)
= r}(Oa) V ri(Ob)
= Ola,0) Vv O(0,b)

O(a, b)

and therefore (r),72)" 0 ¢" = d.
Similarly we have ¢~ o (r;,72)" = id, since the maps ¢7 o r! are the projections
pi’s of the product VA® V B; for example for z = 1 one has:
g ori(Ba) = ¢*(O(a,1))
= Oa®1

pi1(Da)

and
g ori(Ca) = ¢°(<(a,0))
= (©a®1)V(1®0)
= p;;r}a).

It



Thus ¢ is an isomorphism: its naturality follows from the defnition, ]

Lemma 42 There is a natural map d 2 Va(A)@Va(B) — VL(AXB) defined by:
1. d(0c)=V{BadBb:ab< c}
and
2, & (Ce) =V{0aeOb:aDb<L ¢}
forany c in AR B.
Proof. Remark that if ¢ is an open rectangle, say a®b. then d°(C(a®h)) = Can) b
but d*(O(a @ b)) # Oa © Ob since we always have 0 @21 = 0 < a ¢ b, but
00 ®1 £ Oae © Ob unless b = 1 because 00 # 0; this also shows that, when
we work with the strict Vietoris power locale, we have 00 = 0 and therefore

d*(0(a ® b)) = Oa @ Ob. Now let us verify that d preserves the presenting
relations (V1)-(V5):

(V1) and (V3) are similar: let us see for example (V3): note that every element
of AQ B is the join of the open rectangles it containes. So to verify that d°
preserves relation (V3) it is enough to prove it for joins of the kind (V;a;) © b
(and similarly a @ (V, 4;)):
EO((Va)@b) = (0Va)®(0h)

= (v Cu;) @ (Ob)

= V((©a) @ (oh)

= \/d‘(O(a,-@b,-)).

(V2) and (V5) are similar: let us verify for example (V2): let ¢, c2 be in A® 5;

clearly we have

d-(D(Cl A C2)) S d.(D(‘I) A d-(DC2).
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To prove the reverse inequality semark that if @, 20 < ¢; and @2 @ b2 < ca. then:
{Qay & Chy) A{0ux = 0ba) = Ofay Aay) © O A by)
< &{O(c Aco))
and hence by the distributivity of the meet over arbitrary joins we get
d*(Oey) Ad™(De2) S d7(O(ey A cz))

and therefore the equality holds.

(V4) follows from the calculation:

Oa0(hVvh) < (Be©0b)V (Oa® Oh)

IA

(Ga ® Oby) V (00 © Oby) V (Ga © ko)

IA

(Ca@0h)V(AIR1) V (Ca® Obs)
" (O(a @ b)) V & (O{a @ b2)).

IA

O

Remark that the previous lemma holds also for the Smyth powerlocale (where d*
is defined just by 1.), the Hoare power locale (where d” is defined just by 2.) and
for all strict power locales.

Let us denote by SLat(Loc) the category of localic semilattices.

Proposition 43 For any locale A, Vi(A) can be given a structure of semilattice

in Loc, i.e. we can think of the V;’s as functors
V; : Loc — SLat(Loc)
fori=0,1,2.

Proof. Let us denote by 1 the termiral locale in the topos Set, t.e. the two
elements locale. We can consider the point py : 1 — V' A defined by p3(Ce) =1

¢
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and pp(<Ca) = 0. As binary semilattice operation take:
nrVA@VA - V(x4 S ya
where ¢ is defined as in 41 and ¥ : Ax A — Ais the codiagonal map. Since

(V¥)(Oe) = 0(a.e) and (V) ($a) = Ofa.a)

we have n™(0e¢) = Oa © Da and n~(Oa) = (Ca @ 1) V (1 & Ca).
Commutativity and associativity of n follow directely from the definition. ldems-

potency, i.c. the fact that noA = idy- 4. comes from the following two calculations:
Aon*(0¢) = A"(Qa® Oa)
= DO« /O«

= Qa
and
A'on’(Ca) = A((Cae®@ 1)V (1 Q Ca))
= CaV<u
= Ou.

We are only left to prove that pg is a unit for n, i.c. that
no(id®@p): VAR VAR = VARVA VA
is the identity. This is true, since:
(id @ po)" on*(Qa) = (id ® p,)"(Da ® Ca)
= Da®l
which corresponds to Oa under the isomorphism VA 2 VA® 1, and similarly:
(id ®po) on™(Ga) = (id®po)((Ca@1)V(130))
= (id@pp)"(Ca®1)
= Ca®l
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which corresponds in VA to Ca. D
We can generalize this result to all Vi-algebras,

Proposition 44 Any Vi-algcbra has a natural semilatlice structure, i.c. the for-
getful functor from Vi-algebras to locales faclors through the category of localic

semilatiices,
Proof. Given a V-algebra (4,a: VA — A) we can consider the following maps:
z0:1 > VA A
and
sTAQAMF VAQVA VA - A,

Let us start with two remarks:

1. any V-algebra homomorphism f : (4,a¢) — (B, ) is 2 homomorphism for
the operations o and s (since pg, 74, 7 are natural and because foa= goV f);
2. Lhe operations induced on a free V-algebra (VV A, 2,1} as above are exactly the

operations defined in the previous proposition, since
- po=paopy:l = VA VA4,
-n=aono(pa®@a): VAQVA - VIARQVIA - VIA S VA
The first equality holds trivially. The second follows from:
(ma®pVA) on’opu™(Oa) = (qva @V A)" 0n*(0(0a))

= (a4 ®nVA)(0(0a) ® O(Ta))

= Ela@l:la

Il

n~(0Oa)

and similar calculation for <a.

Remark that o : (VA,u4) — (A,a) is a homomorphism of V-algebras and
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therefore by the two remarks it is a homomorphism from (VA . p) to (AL s, ry).
Now, by axiom of V'-algebra. a is split epi in Loc since a o 54 = id 4. Therefore
s and xg satisfy all the equations of the theory of semilattices. Let us check for
example that s is idempotent. l.e. that s 0oV = iy, We can consider the

following diagram:

A 2a A® A
na NaAdna
VA VA VARV A

.‘m /
VA
la
A

Remark that

the square commutes because of the naturality of 74;

the triangle commutes since n is idempotent;

the composite a o idy 4 0 5,4 is the identity;

the composite map « o n o g4 @ 174 comnmutes by definition of s.

Hence we get that so V4 = id4. 0
Given the uniqueness of the algebra structure in the Smyth and Hoare casc, we
can conclude that the the algebras for these two monads are particular classes of
localic semilattices, rather then semilattices with a richer structure. The same

result holds for the Vietoris monad. We can simplify the problem remarking that,

for any locale A, we have the following isomorphism:
p:1xV;FA — VA

defined by
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e >"(Ca) = (1.0a). and
o o (Cu) = (0.Oa)

This map is well defined since 2 can be obtained from Q(V'A) imposing the
further relations B0 ~ | and ©1 ~ 0. Moreover it is an isomorphism, since we

can define its inverse o~! by putting:
¢ (v=')(1,0a) = Da;
o (¢~1)7(0,0a¢) = O1 A Oq;
* (¢71)7(0,0a) = Oa;
e (~1)*(1,0a) = Ca Vv OO0.

Then, if (A,a : VA — A) is a V-algebra structure inducing the semilattice

structure (A, s, ), we have the diagram

1
Pol F
VA——4
Pz
VtA

where the upper triangle commutes by the definition of . Hence « is uniquely

determined if and only if ot is.

Now let us call (C*(A),¢) the equalizer of the maps

AQVH(A) AV H AY@VH A) — L~ VHARA) L V4 4)

T ’F:
A
where m; is the projection of the product on the first component.

Lemma 45 The map < a*,1 >: VH(A) — A® V*(A) factors through c.
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s - . o
Proof. Since C*(.4) has been defined ax an equalizer it is enough to show that

the following diagram is commutative:

VHA) 2 VHA@V H ) — VA L

at .J:f;

A
where 3 =< 7t 0 o, 1 >. But we only need to prove the commutativity of this
diagram for free V*-algebras since the above one then will be obtained using
naturality of a* and the fact that V*({a) is split. Hence we want to show the

commutativity of

VH(A) —EVHHA) @ VHH(A) d VHVFA@ VHA) 8L v o)
ui ne4 A
V+A

where B =< 74 o pf 1>,
The proof is just a matter of (long!) calculations: the reader is referred to [Joh85,

Lemma 2.3] o

Lemma 46 The composite of the maps:

CHA)—SAQVHA) 2L AQAL -4
N §)

™

are equal.

Proof. Though no conceptual difficulty arises, the proof is a rather involved matter

of diagram chasing: again the reader is referred to [Vie22, Lemma 2.6). o
We are finally ready for the main result.

Theorem 47 Let (A,s,z} be a localic semilaltice. Then there is al most onc

Ve-algebra structure on A inducing s and z.
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Proof. As ohserved previously we only need to show that if (A.a7) and (A.aF)
are VyF-algebra structures. then af and af are equal. Consider the diagram:

43

(ot.) f 1Gat . R
VHA) AR VHA) == AR A= A

CH(A)

Since the two smaller triangles are commutative because of the two previous
lemmas. we have

mofaf.)=so0(1®al)o(af.1)

and therefore

Interchanging of and oF, and recalling that s is commutative, we get:

of = solof ©a})
= sofat @ af)

=Q;

2.3 Points of the power locales

In this section we present a constructively sound characterization of the general-
ized points of power locales {[Vic95b]). The points of V;(D) at stage E (i.e. the
locale homomorphisms from E to V;(D)) are identified with particular sublocales

of the product E® D.

The proofs rely onto two “coverage theorems”, that enable us to convert frame
P g

presentations into equivalent suplattice and preframe presentations.
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Theorem 48 (The Suplattice Coverage Theorem) L N be a A-semilal-
tice. Let C be a relation from oS to 8 such that if (X.u) is in O (read as

X covers u) then:
o fre X then » < uland

o ifac S then {x Aa:x € X} covers uAa.

Then:

Fr < § (qua semi-lattice ju < \/X for (X.u) € C >
= sl < § (qua posel)fju S \/X for (X.u) € C >

(where Fr stands for frame and sl for complete suplattice).

Proof. Sce [AV93]. o

Theorem 49 (The Preframe Coverage Theorem) Lel S be a V-semilattice
and let C be a relation from oFin(8) to Fin(8) such that if (X,G) is in C {read

as X covers GG) then:

if Fisin X then F <sG;

X is inhabited:;

if Fi and 5 are in X then there is some F in X with F\ <s F and I, <5 F;

ifaisinS then {{xVa:z € F}: F € X} covers {yVa:y € G}.

(Fin(S) stands for the finite powersel of S; <s stands for the the Smyth ordering
on Fin(S), ie. F<sGifVye G.3z e F.x <y).
Then:

Fr < S (qua V -semilattice)| N\G < \/ \F for (X,G)€C >
Fex
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> pl'r < S {qua posclj| /\C.' < v /\ Ffor( X.GYe(C >
FeX

where pl'r stands for preframe).
} s

Proof. Sce [JV1). 0

2.3.1 Points of the Smyth power locale

Classically there is an order reversing bijection between the global points of the
Smyth power locale Vo{ D) and the compact fitted sublocales of D (a locale is
Jitted if it can be expressed as an intersection of open locales).

Indeed, a global point of Vo(D) (i.e. a homomorphism of locales 1 — V(D))
corresponds to a preframe map X : O(D) — R, since OVp(D) is the frame freely
generated by O(D) qua preframe.

To the map X then we can associate the (compact fitted) sublocale D' presented
by the relations 1 < b for any b in O(D) such that X(b) = 1. Vice versa, given
a compact fitted sublocale D’ with presenting relations 1 < & for i € I, we can
define a preframe map X : O(D) — Q by putting X(a) = 1 iff a = & for some
zin 1.

Clearly, the bigger is X, the more relations have to be considered and therefore
the smaller is D’: hence the bijection is order reversing.

This bijection can be set up also by constructively sound methods (see [Joh85,

Lemma 3.4]). We present a generalized version of this result, as in [Vic95b].

Definition 46 Let f: D — E be a map of locales. We say that D is compact
over E iff f is a proper map.

This means ([Ver94)) that the right adjoint V; of f~ is a preframe homomorphism

that satisfies the Frobenius identity
Vi(aV 7 (B) = Vi(a)Vh (2.1)
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fora € O(D). be O(E).

Definition 47 Let D' — D be a sublocale and It [+ D) — & be a map of
loceles. We say that the locale ' of D has compact domain over £ if foi is
proper; in the case E =1, we simply say that D' has compact domain.

Classically a locale is compact over 1 exactly when it is a compact locale: in

particular, a sublocale has compact domain exactly when it is compact.

Definition 48 A sublocale D' of D is weakly fitted over E iff it can be presented
over O(D) by relations of the kind f~(b) < a for @ in O(D} and b in O(E): when
E =1 we simply say that D' is weakly fitted.

When £ = 1 the relations f~(b) < a are classically cquivalent to cither 0 < «
(which can bc omitted) or 1 £ «: hence, we recover the definition of fitted

sublocale.

Definition 49 We will call the weakly fitted hull of 1 in D over £ the least
sublocale of D, fitted over E, that contains D',

The fitted hull of D' in D over E is presented over O(D) by all the relations of
the kind f*(b) € a for a in O(D) and & in O(E).

Let E and D be locales. We will writc c§bfor c®1V1@b{c€ O(E),be O(D)):
these elements generate £ @ D by finite unions and directed joins. Let us call

p: E®D — E and ¢: E®D — D the projections of the product.

Lemma 50 Leti: D' — E Q@D be a sublocale that is compact over E. Denole
by ¥pi : O(D") — O(E) the preframe homomorphism that exisls by compactness
of D'. Let X : O(D) — O(E) be the preframe map X =V ;01" 0 ¢". Then the
weakly fitted hull of D' in E@ D over E is presenicd by the relations
XBOR1<1IRb (2.2)
for b in O(D). If D' is weakly closed, then the relations 2.2 present D' ilself.
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Proof. The weakly fitted hull of D' in 2@ D over £ is presented by the relations
] <u (2.3)
that hold modulo £, i.¢. such that
"o pt(a) < i"(u). (2.1)
The generie clement « of £@ D can be written as a directed join
w=\{A;(c;86;) : Ajle;8b;) < u}

vwhere the intersection are finite). Then we can equivalently rewrite the equation

2.4 as

a < V{Aj(e; v X (b)) : Aj{e;8by) £ u)- (2.3)

indeed, since V;, is right adjoint to " o p* and it satisfies the Frobenius identity

2.1, one has:

a
IA

Vip 027 (u)

< Vip o i(V{Ai(c;88;) 1 As(c;885) < u})

VAV 08°(c;885) : Aj(c;865) < u}
VAV @ 1) ViT(1 @ b;)) : Ai(e;86) S )
VAV (0 p (e} Vit 0 ¢7(8))) = A(e;8h;) < u}
= V{Ai(g VVi0i0¢7(b;)) : Aj(c;8;) < u}

= V{Aile; V X(5)) : Aj(c;86;) < u}

Hence the relations X (b) @1 €1 ® b are a particular case of 2.3, with a = X(b)
and u = 1 © b and they hold modulo D’ since in the inequality 2.5 we can consider

the meet Aj{c; V X(b;)) where j ranges over the singleton, ¢; = 0 and b; = b.

o
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Vice versa, if ¢ &0 1 <« holds modulo 1Y (e, if the equation 2.5 holds) we can

deduce it from the relations of the kind X{dy 1 <1 o b

a1 < A VB DA (86 S al o

= V{Ai(e; VX)) 2 1 Ay (e80) < vl
VA (e, @ DV (X (B) & 1)) 2 A, $h,) < ul}
VA (686 1 Aj(e;80;) < w)}
< u.

I\

Therefore, the cquations 2.2 present the weakly fitted hull of Y. Siuce the hull
is the smallest weakly fitted sublocale of D containit z 1, it coincides with 1Y

when [ is weakly fitted. ®

Lemma 51 Let Y : O(D) — O(E) be a preframe homomorphism. Consider
the sublocale D' presented over Q(D) by the relations Y(B) Q1 < L Qb for b in
O(D). Then the preframe map X. defined as in Lemma 30 .coincides with Y and

D' is a locale that. over E. is fitted with compact domain.
Proof. We will show that:

1. there is a preframe homomorphism ¥V : O{D') — O(F£) such that for any

e in O(E) and b in O(D) one has Yo i*{a§b) = a vV Y (b):

2. D’ has compact domain over F since V is a right adjoint to " o p* and it

satisfies the Frobenius identity 2.1 (with V=V, and f = po1).

Hence, choosing @ = 0 in V0 i*(a§b) = a V Y (b) we sec that Yoi"o¢" = Y.

Then the map Y coincides with X, in the notation of the previous lemma (since

¥V =V} and D' is weakly fitted.



Lo We can mnink of Qv i the following wavs:

fe

Fro<OuUEWSNOUDY (gua Vesemilattice) |
% bilinear worit. direeted joins and finite meets
(e VY (ONND < afb for & < b >
=plr <QUE)XODY (qua poset) | same relations > |
The isomorphism is justified by Theorem 19, where the covering relation contains
the elemems of the kind:
- ({(Viai.- D)} {{{aib) i € 1}) for {a;}.er directed family:
- ({(a-b)- (@ 0)}. {{a A d".B)}}):

= ({lavY({¥').0)}. {{(a.8)}}) where & < b.

Hence we can define V to be the only homomorphism of preframes making the

following diagram commutative

O(E) x O(D) —=—O(E) Q O(D) —=O( D)
\ /
OF

where ¢ is defined by e(a.b) = a V Y () (remark that ¢ preserves the order and

the presenting relations). Hence 1. is proved.
2. To prove that ¥V is right adjoint to i o p" it is cnough to show that idoys) <

Voi"op™ and i"op” oV < idp(p,y. The first incquality follows from:

¢ < cVY(0)
Y o0:7(c§0)

ll

Voi(c§l)

= Yoi"op’(c).
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To prove the second tneaguality, observe that the cenerie element of OV s of
H A

the form 2 (aih), Henee we have:

o oYoiteih) = itopilav V(b))
= eV Y(d) .1
= (e ) VY )
= "((a§0) V (¥ ()50}
= 1“(aV Y(b)30)
< i"(ab).

The Frobenius identity 2.1 we have to prove is:
Y(aVitop™(b))=VaVb

where a is in O(D') and b in O{F). Since a is of the form 7(c§d) for suitable ¢

in Q(F) and d in O(D). we have

Y(aVitop (b)) = V(i"(c§d) Vi~ op (b))
= Voi'((c§d) V (b® 1)
= Yoi'((cVb)§d)
= cVbVY(d)
= Yoi'(c§d) Vb

= YaVb.

Theorem 52 There is an order reversing bijection, natural in E, belween the
points of Vo(D) at stage E and the sublocales of £ @ D that, over E, are weakly
fitted with compact domain.
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Proof. To prove the theorem we can equivalentdy show that there s an order
reversing isomorphism. natural in L between the poset of preframe homomaor
phisms from O(1) 1o OE) and the poset of sublocales of £ ® D that, over .
are weakly fitted with compact domain. The bijection has been set ap in the

previous two lemmas:

- to any sublocale 7 + D' — E@ D which. over . is weakly htted with
compact domain. we can assoctate the preframe map .\ defined in Lemma

30;

- to any preframe homomorphism X' we can associate the sublocale /) —

E® D defined as in Lemuma 51.

The bijection reverses the order since the bigger is N the less restraining the
presenting relations of D' are. Hence we are only left to verify the naturality of
the isomorphism. Consider a homomorphism of locales, say f: ' — E. To a
sublocale z 1 D' — E@ D the map f associates the sublocale D" — E'@ D
obtained by pulling back i along f @ idp: then D" is presented by the relations
1®b < f7oX(bj®1. This proves the naturality of the bijection. since [ acts on

preframe homomorphisms by associating to X the map f"o X. o
Corollary 53 Therc is an order reversing bijection between the global points of
Vo(D) and the weakly fitted compact sublocales of D.

Proof. This is an immediate consequence of the previous theorem: we only need

to put £ =1. O

2.3.2 Points of the Hoare power locale

Classically there is an order-preserving bijection between the global points of the

Hoare power locale Vj(D) and the closed sublocales of D. Indeed, since OV;(D)
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can be seen as the frame freely generated Hy QU qua saplatiiee, global points of
Vi Dy correspond to saplattice maps X0 Qi )y — Q0 these in turn cotrespond

Lo opens of Q0D according to the following order reversing bijection:
1o any X associate ay = V{2 QLD XNy =0}
to any a it QUD)Y associate the map X defined as X(0) = 0l b L o,

To obtain an order preserving isomorphism we can idemifv a global point of 17D}
(corresponding to a suplattice map ') with the closed sublocale D - ay.

Now, this locale is presented by the relations 6 <!3,0 XL (for b in O(D)). where
' 15 the unique map of locales from 1) to 1. Classically this inequality is either
h < 1, which can be disregarded. or & € 0. In a general topos. however. the

map !}, can assume values other then 0 and I: hence the need of generalizing the

notion of closed sublocale ([Joh89}).

Definition 50 Lef f: D — E be a localc homomorphism. D' a sublocale of D.
D' is weakly closed over E if its frame can be presented over OD by relations of
the form a < f*(b). for a in O(D) and b in OF: in the case = 1 we simply

say that D' is weakly closed.

Classically. the notion of weakly closed locale is equivalent to the notion of closed

locale.

Definition 51 We will call weak closure of D’ over D the smallest sublocale of

D which is weakly closed over E and contains D'.

The weak closurc of D' over D is presented by all the relations a < f~(b){e €
Q(D).b € O(£)) that hold modulo D' (i.e. such that i*(a) £ i" o f7(8)).

However. this is not yvet enough to characterize the points of V(D). Bunge and

Funk ([BF96]) proved that the poset W{(D) of weakly closed sublocales (which
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i a sitheoframe of Nude 0 see LIV s omorphic to the poset of suplattice
miaps frone QU 1o Nebi i The somorphisim is siven by the map y delined on

a sublocales 10 8 — [} as
et b =B

for any open U7 of QU where [[8 0 ] s the image of the map B0 0
B ~— D = . The map \ s gives tise 1o a suplattice map ygp @ QU2 — Q2
when [[BN U]} is an open sublocale for all open {7 of Q(D): this happens exactly

when B has “open domain™.

Definition 52 Let f: D — E be a locale homomorphism. 1) is open over I

if [ is an open map.

This means (see [JT84]) that the frame map f* has a left adjoint 3, which is a
homomorphism of O £)-modules. i.e. that. besides preserving suprema. satisfies

the Frobenius identity

Bf(dl\f-(b)) = 3](“)/\1). ('_)())
for a in O(D) and b in O(E).
Definition 53 Lef f : D — E be a locale homomorphism, I)' a sublocale of
D. D' has open domain over E if the map D' — D LB s open; in the case
E =1, we simply say that D' has open domain.
Classically, any locale has open domain.

The restriction of the map Y, yields an isomorphism between the poset of weakly
closed locales with open domain and the poset of suplattice maps from O(D) to Q
(see [BF96, Theorem 2.1]). Since suplattice maps from O(D) to Q correspond to
frame maps from O(V;(D)) to Q (i.e. points of V{(D)), the restriction of the map
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e question vields an isormorphism between the poset of weakly closed sublocales

of 17 with open domain and the poset of the points of 17(/).

We will show that this result holds also for the generalized points of 170/

(Vienz]).

Lemma 54 Let i 1 — E@ D be a sublocale open orer £, Let 2,0 O(D) —
OUEY be the QUEY-homomorphism thal crists by openness of D', Denote by X
the suplattice homomaorphism N = 3,017 0¢" : O(D)Y — O(F). Then the weak

closure of IV iv E@ D over E can be presented by the relations

1SS X(B)Ql (2.

[ B
-]
—

Jorb e O(D). If D' is weakly closed. then the relations 2.7 present [ itself.

Proof. The weak closure of D' in EQ D over E is presented by the relations
r<pla)=a®l (xin Q(E)YR O(D). a in O(FE)) that hold modulo D'. Since
the clements of the kind ¢®b (cin Q(E}. bin O(D)) form a base of O(E)®Q O(D).

we can simply consider the relations of the form

c®b<a®l (2.

(L]
v]
—

that hold modulo D', i.c. the ones such that
"e@d) £ M(a®1).
which can be rewritten as -
iTop (c)Ai"og (b) L7 op(a).
This is equivalent to

Fpi(i"op ) Ao g (B)) <a
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since 2., 0 eft adjoint 1007 0 pmland 1o
NN S (o

since 3, satisties the Frobenius identiny 2.6,

Now. the inequality 2.9 always holds for ¢ = 1 and « = N (8. Henee all the
inequality of the kind 1 -6 < XH) - 1 hold modulo 1 and are a special case of
the relations of the kind 2.8, On the other hand, if e < 6 << - 1 holds modulo
D' e il e AXN(D) € u, we can recover it from 1 20 b < N (h) = 1L sinee by taking

the meet with ¢ 1 we get

cRbL<(eANMY I <an 1.

Lemma 35 Let Y : O(D) — O(F) be a suplattice homomorphism. Denote
byt D' — EQD the sublocale defined over O(IN@ O(E)} by the relations
QLY (BB forb in O(D). Then the suplatlice map X, defined as in Lenuna

34. coincides with Y and D' ts a sublocale that, over E, is open and weakly closed,
Proof. We will show that:

1. there is a suplattice homomorphism 3: O(D') — O(E) such that for any

ain O(E)and bin O(D) onc has 3o:"(a ©b) = a A Y(b);

2. D' is open over E since the map 3 is left adjoint to :"op” and it satisfies

the Frobenius identity 2.6 (with f~ =10 p" and 3; = 3).

Then, from 30:"{(a@b) =a A Y (d) we see that Y = F0:"0¢" (just sct a = 1).
Since 3 = 3,; (in the notation of the previous lemma), the map Y coincides with
the map X and the weak closure of D' with D’ itself: hence D' is weakly closed.
1. We can think of O(D') in the following ways:
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Fro OWEYy-ST ) rGan meet semmlatiiee
1~ biltnear wor, Aol A2 Y o ]z
Tl OCE - OND Y g mect-semilattice !
s bilinear wort, Vea - B MYV b forb< i >

TS QUEDY Q0D tqua poset )]

s billnear worit, Vee A< {a AY I bhlor b < W >

where the fast isomorphisi holds hu.mm of Iluon s 180 the elements of the

covering relation being of the kind:
({lan )i € T (Vigra )
({(1b,) 2 j & T} (1.V,esb))):
({la AY (I D)} (. b)) where b < 0.

Then we can define 3 to be the unique suplattice homomorphism completing the

diagram

O(E)x O(D) —=O(E)® O(D) —=O( D)
\\\\\\ /////

where the map ¢ is defined by e(a.b) = a A Y(b) (remark that it preserves the
order and the presenting relations). Hence 1. has been proved.

2. 'To prove that 3 is left adjoint to i~ o p~ it is enough to show that idppy <
i"op*odand doi”op” < idpg) - Since the generic clement of O(D’) is a join
of clements of the kind *(a ® 6) (for a in O(E), b in O(D)). the first inequality

follows from:

"(@a@b) < (eAY (D) Q)
< FlaaY(b)el)

i op (aAY (b))

t"op odoi(a®b).
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The second tneguality follows fron

EC‘;‘ N ‘.'J-[u‘\ oz S0t i
= \‘l'\i\

<o

Now to vertfy that the Frobenius identity holds, we only need to check d30° o
P A T e N =aATore s B (aoe e OUENL B S O sinee all the maps
involved are suplattices homomorphisms and the *(e = 51 generate Q{1 by

unjons:

Top @) Al {cd)) = 3T (pTla) Afem b))
= doi({aNe)nh)
= («Ac)AY (D)

= aAJoi(ch).
a

The following is a a generalized version. due to Vickers ([Vic95h]). of the Bunge-
Fuuk theorem ([BF96]) constructively characterizing the points of the loare

power locale V(D).

Theorem 56 There s an order isomorphism, natural in ., belween the points
of Vi(D) at stage E and the sublocales of E® D that, over E, are weakly closed

with open domain.

Proof. To prove the theorem we can equivalently show that there is an order
isomorphism, natural in E, between the poset of suplattice homomorphisms from
O(D) to O(E) and the poset of sublocales of £E® D that, over £, are weakly
closed with open domain. -

The bijection has been set up in the previous two lemmas:;
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to any sublocale ¢ 0 1) — @ 12 which, over £ ix open and weakly elosed

wer canassoctate the suplattice map detined i Femna 54

to any suplattice map X, we can associate the sublocale D" — @D

defined in Lemima 53,

It is elear that the bijection preserves the order. Hence we are only feft to venfy
the naturality of the isomorphisimn. Consider a homomorphismn of locales, say
f: k" — . To a sublocale i 1 ) — F® D the map [ associates the
sublocale 7 — ['® D obtained by pulling back 7 along f & idp: then D" is
presented by the relations 126 < f* o X(8) & 1. This proves the naturality of
the bijection. since f acts on suplattice homomorphisms by associating to X' the

map f~o X. a

Corollary 57 There is an order isomorphism between the global points of V(D)

and the weakly closed sublocales of D with open domain.

Proof. The result follows immediately from the previous theorem. considering

E=1. wi

2.3.3 Points of the Vietoris power locale

Global points of the Vietoris power locale have been studied classically by John-
stone ([Joh85. Theorem 3.7]): he identified them with the set of compact semi-
fitted sublocales of D (a sublocale is semifitted if it is the intersection of a fitted
sublocale and of a closed sublocale).

The result, however, is valid also constructively, provided that we introduce the

necessary generalizations. as in the previous two sections {[Vic95b]).



Definition 34 [t IV e ) be a sublocale, £ 00V — [T«

ﬂ‘.‘.‘.” 1" ;’('l( it~ Hr
san that D is weakly semititted over B ot os o meet of aoweeadiy Nited subloeeds
and ¢ weakly closed subiocale over Foowhen Fo= 1 u sonply sy that 1V

i~

weakly semifitted.

[u terms of presemting relations, 17 s weakly semifitted i it can be presented by

relations of the form

b
f'(u')

1

i) (2

IA

o 2410
for a. @' in Q(E) and b. &' in O(D).

Remark that. classically, weakly semifitted coincides with semifitted,

If f: E — D is an open map, we can consider the sup-preserving map 3y
which is left adjoint to f~. Recalling that OVi(D) is the frame freely generated

by O(D) qua suplattice, we can define uniquely a map of frames I* such that

*(Oa) = 34(a). i.c. such that the following diagram commutes

o(D) oW(D))

O(E)

Similarly, if f : £ — D is a proper map, we can consider the preframe ho-
momorphism V; which is right adjoint to f*. Then there is exactly one map of
frames r™ such that r"(Qa) = V;a, since Q(V,(D)) s the frame freely generated
by O(D) qua preframe and r* makes the following diagram commute:

(D) O(Vo(D))

\O(E/

Lemma 58 Let f: D — E be an open and proper map. Then <l,r >: E —
Vi(D) @ Vo(D) factors through a point € of Va(D) at stage E.
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l“!‘rmf. Consider the ] -,;,')1 1;-% [Hi e 1-11 ”,‘ atrd '.‘;‘!JI ‘::" [)) — llll i)\ detined
an B3, Uy = Daand 5 020 = T they are well defined. since any presenting
relation ef Vord2 and A7/ adso a presenting relation of Voi/h. Then the
homomtorphism <. fp> Vi — WD @ Vo) delines a sublocale, stnee
any eicment of V0DV is a joir of elemenis of the kind Cay A L0 A $u,, A 36 for
suitable «, and & in QD). Then there is exactly one map of locales £ ¢ [/ —

Vo) such that

I L2 DR Vol D)
\ A:o
13 D)

is & commutative diagram. Indeed. putting §*(Ba) = Vy{a) and & (Ob) = 3;4(b)
we define the required map. Because of the properties of 3¢ and ¥V we only need

to check the mixed relations:

£*(Da) A E(Oh) Vy(a) A 3s(B)

([T oV (a)Ab)

IN

Js(a Ab)

(Clanbd))

since 3y satisfies the Frobenius identity 2.6 and f~ oV, < id:

S0ave) = VeV
< VYi(aV 7o 3(h)
= Vy(a)V 3(d)
= £(Qa) Vv E(Ob)
since id < f° o 3y and V; satisfies the Frobenius identity 2.1. o

Lemma 59 Let: : D' — EQD be a sublocale with compact. open domain.

Consider the map of locales £ : E — Vo(D") defined as in the previous lemma.
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!,!:‘ _\- : 1’"_‘ — 1_‘[1’1' .:’f ;‘A::.’ l."l’.‘f.".’ f’_" \_-‘ f’)‘ l:.f .'.:-'."l.; ".".',‘ \ ‘I::, I'\ .
smaifest weaniy semiied sudiocels of R vorraruie 1 car e e e i

the refalrons:

Lo o~ XD RRRY

AT L s SREE

for b in O{D).

In particular. if Y s weakly semifitted, the equations 212 and 2 i 3present 1Y
iself,

Proof. The smallest weakly semifitted sublocale of @ D containing [V is clearly
the intersection of the weak closure (U D) of D' and the weakly fitted hull
H(D") of D). Since D' has compact and open domain, we have the adjunctions
3, pT o 4V, and. applying lemmas 34 and 50, we can present 1) by the

relations

10b < 3poioq(h)nl (0.14)
and H({D') by the relations

Vot og (b))l < 1wbd L15)

for b in O(D). Hence D’ is presented by the equation 2.1 and 2.15 together and
they are equivalent to the equations 2.12 and 2.13. Indeed. since £7(0b) = V,,(b)

and & (Ob) = 3,:(d) (b in O(D)). one has:

X°(Ob)

£ 0 Vai® 0 Vag™(Ob)
= £ olai(O(l 2 b))
= £©if(1ab)
= J0i(15b)

= 3,,.- ot" o q(b)
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and

XT(Qb} = £ olhio lig(Oh)
= ol (O(1 )
= £(G: (1= h))
= Yoi'(la@b)

= Vp,' or" o (]-(1))

Lemma 60 Let ¥ : E — 2(D) bc a map of locales. The sublocale D' —
E® D presented by the equations

196 < Y (Ob)®1 (2.16)
Y (0ol < 106 (2.17)

(for b in O(D)) is weakly semifitted over E and has compact and open domain.
Moreover, the map X, defined as in Lemma 38 with f = pi, coincides with the

map Y.

Proof. Consider the weakly semifitted sublocale i : ) — E® D defined by the

relations

1LY (Oh) @1

and

Y"(O0b)®1<1®5b
for 5 m O(D). We will show that
1. there is a suplattice homomorphism 3,; : O(D') — O(F) left adjoint to

p" o such that 3,0 (a® b) = a A Y*(<Ob) and the Frobenius identity 2.6
holds;



2. there is a preframe homomorphism V., : O(D) — O£ right adjoint to
p*o:" and such that ¥y 0:7(a§b) = ¢ v Y5 (3H) and the Frobenins identity

2.1 holds.

Hence the domain of D' is open (because of 1.) and compact (because of 2.). Also.
we can consider the points [ : £ — V(D) and r: ' — 14(D) (notations as
in the previous lemma) and the point & : £ — V3( D) such that < L r>=<{l;»
o> of. We want to show that the point X' = 1hg o 147 0 & coincides with
Y. This happens iff <{p.fip> oX =<{p.ftp> oY (recall that <{p.ftp> is a
monomorphism), i.c. iff {{p oX ={p o} and fip oX =ftp oY. This is the case,

since we have:

X*o I3 (Ob) = X"(Ob)
= & oVhi" o Vag (Ob)
= £(OI(19b)
= 3,0i(19b)
= Y"(Ob)
= Y o {3 (Ob)

and similarly’ for the other equality (just replace || by ft and © by O),
So, we are only left to prove statements 1. and 2,

1. The proof goes along the lines of Lemma 55. Applying Theorem 48, we can
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think of Q(D') in the following ways:

Fr<O(E)xO(D) (qua meet-semilattice) |
& 1s bilinear w.r.t. \/:
1ab< Y (Ob)al:
Y (O o1<19b>
= Fr< O(EY© O(D) (qua meet-semilattice) |
® is bilinear w.r.t. V;
a@RbL(aAY (O))@bfor b < b
(@AY (O Qb (e AY (V) Q(BAY) >
=l < O(F)Q O(D) (qua poset)| same relations > .

Then we can define the poset map e : Q(E)xO(D) — O(E) by putting e(e,d) =
a A Y™ (Ob). This map respects the relations; the first two are just straightforward
calculation; the third involves the presenting relation Oa A Ob £ O(a A b) of
OVz(D):

e(a A Y™ (QV), b)

a AY"(BY) A Y™ (Ob)

a AY*(0b A Ob)

e AY*(O(b A Y) A TH)

aAY (QY)AY(O(bAY))
e(a AY*(DH).bAY)

IA

Hence by the universal property of O(D') qua suplattice, there is exactly one
suplattice map Jp; such that 307" (a®b) = aAY"(Ob). Then, just as in Lemma
55, we have that 3,; is left adjoint to i* o p™ and it satisfies the Frobenius identity
2.6.

2, The proof goes along the lines of Lemma 49. We can think of O(D') in the
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following ways:

Fr < O(EYxO(D) (qua join-semilattice) |
§ is bilinear w.r.t. finite meets and directed joins
aV Y- (QU)§h < afbfor & < b
aV Y (OME(bV ) < (a VY (OH)N§h >
= pFr < O(E)xO(D) (qua poset) | same relations > .
Then we can consider the order preserving map e : O(E)O(D) — O(E) defined
by e(a,b) = a v Y"(0b). It is straightforward to verify that ¢ preserves the first
two presenting relations. The last one follows from the axiom O(aVvb) < OaV Ob

of Va(D), since we have:

e(a VY (O¥).bv ) avY (OY)vY (a(bv b))

aVY (O vO(bv b))

IA

aVY (O vOoyvas)

a VY (Ob) v Y (Ob)
e(a V Y™ (OV), b)

Theorem 61 Let D and E be locales. Then there is a bijective correspondence,

natural in E, between the points of Vo(D) at stage E and the sublocales of E@ D

that, over E, are weakly semifitted with compact, open domain.

Proof. The bijection has been set up in the previous two lemmas. o

Corollary 62 The global points of Va(D) can be identified with the weakly sem:-

fitted sublocales of D with compact, open domain.

Proof. It follows directly from the previous theorem, putting £ = 1. o
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