
Fatigue Structural Testing Enhancement Research
(FASTER)

by

Robyn Fortune

Department of Mechanical Engineering
McGill University, Montreal

December 2019

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

Master of Engineering

Supervisor:

Professor James Richard Forbes

Robyn Fortune

robyn.fortune@mail.mcgill.ca

© Robyn Fortune 2019

All Rights Reserved

Acknowledgements

First, I would like to thank my supervisor, Prof. James Forbes, for being an exceptional

mentor. I greatly appreciated his constant insight and enthusiasm throughout the project.

I also want to thank André Beltempo, Stéphane Brunet, and Cathy Cheung at the National

Research Council (NRC) for all of their support and feedback, especially during my time at

NRC. I could not have done it without all of you.

I would like to acknowledge the financial support of the NRC, the Natural Sciences and

Engineering Research Council of Canada (NSERC), the Fonds de recherche du Québec -

Nature et technologies (FRQNT), and the Department of Mechanical Engineering at McGill

University. In addition, I want to thank NRC not just for the funding, but for providing

access to their large-scale test facilities and the personnel support. I cannot count the number

of times my test caused the hydraulics to shut down, and yet Andy Christie, Denis Beaulieu,

and Steph Cloutier always fixed it with a smile on their faces.

I want to thank Niels van der Laan for all of his help with reduced-order modelling. In

particular, Niels collaborated on the results presented in Section 3.1.2.4 and Appendix A.

Furthermore, I want to thank the rest of my research group, especially my fellow master’s

students Jon Arsenault and Ken Lee, and (now) Prof. Ryan Caverly. Ryan was an invaluable

resource to me during our time at McGill, and continued to promptly respond to all of my

email queries even after leaving.

I greatly appreciate the support of my family. Even though I’m pretty sure they (and

especially Buddy) can’t explain what I’ve been working on for the past two years, they have

always been there for me. I also want to thank all of my friends for their support, and

especially Adam, Danny, Katie, Marina, Emma, and Rachel for making the move to Ottawa

so much easier. I very much appreciate the support I received from Anthea and Sabrina,

although they made the move from Montreal that much harder. I would like to thank Jason

and especially Sookie for being the perfect roommates while I was in Montreal, and big

thanks to Will for housing me during my time in Ottawa. Many thanks to Kevin for the

support throughout the thesis writing process, and for the snacks.

Finally, I want to thank the Dominion Arboretum for providing a peaceful and idyllic

environment in which I spent a lot of time working on this thesis.

ii

Preface

The contributions of this thesis that are original to the author’s knowledge are as follows.

In Chapter 5, a novel iterative method for synthesizing H∞-optimal PI controllers is pre-

sented. In Chapters 6 and 7, the application and implementation of SISO and MIMO 2DOF

H∞ controllers to a fatigue structural testing rig is presented. Although the inversion-based

feedforward controller synthesis method and the 1DOF and 2DOF H∞ controller synthe-

sis methods presented are not novel, these types of controllers have not previously been

implemented on a load-controlled fatigue structural testing rig to the author’s knowledge.

All text, plots, illustrations, and numerical and experimental results in this thesis are

produced by Robyn Fortune, although Niels van der Laan assisted with the reduced-order

modelling in Section 3.1.2.4 and Appendix A.

iii

Table of Contents

Acknowledgements . ii

Preface . iii

List of Figures . viii

List of Tables . x

List of Appendices . xi

List of Abbreviations . xii

List of Symbols . xiii

Abstract . xiv

Part I Introduction 1

Chapter

1. Introduction . 2

1.1 Motivation and Objectives . 2
1.2 Prior Work . 3
1.3 Thesis Overview . 3

1.3.1 Modelling and System Identification 4
1.3.2 Controller Synthesis . 5

2. Preliminaries . 6

2.1 Discrete-Time Systems . 6
2.1.1 Discrete-Time to Continuous-Time 7
2.1.2 Continuous-Time to Discrete-Time 8

2.2 Linear Least Squares . 8
2.2.1 SISO Least Squares . 8

iv

2.2.2 Recursive Least Squares . 9
2.2.3 MIMO Least Squares . 11

2.3 Optimization . 12
2.3.1 Convex Sets . 13
2.3.2 Linear Matrix Inequalities 13

2.4 Linear Systems Theory . 14
2.4.1 BIBO Stability . 14
2.4.2 The H∞ Norm . 14
2.4.3 The Generalized Plant . 15
2.4.4 Tuning Weights . 20

2.5 Implementing Alternative Controllers 20
2.5.1 Order Reduction . 21
2.5.2 Code Generation . 21
2.5.3 Signal Injection . 22

2.6 Testing and Post-Processing . 23
2.6.1 Profile Segment Optimization (PSO) 23
2.6.2 Data Collection and Sampling Frequency 23
2.6.3 RMS Error . 24

Part II Modelling and System Identification 25

3. Modelling and Cycle Estimation . 26

3.1 Plant Model . 27
3.1.1 Servovalve . 27
3.1.2 Actuator . 28
3.1.3 Load Cell . 32
3.1.4 Overall Plant Model . 33

3.2 Test Article . 35
3.2.1 Rayleigh-Ritz Method . 35
3.2.2 Equations of Motion . 35
3.2.3 State-Space Formulation 36

3.3 MTS Controller . 37
3.3.1 Load Profile . 37
3.3.2 Null Pacing . 37
3.3.3 Cross-Coupling Compensation (CCC) 39
3.3.4 Integral Control and Integrator Limit 40
3.3.5 Proportional Control . 40
3.3.6 Derivative Control . 40
3.3.7 Forward Loop Filter (FLF) 41
3.3.8 Setpoint . 41
3.3.9 Valve Balance . 41
3.3.10 Valve Dither . 41

3.4 System Units . 42

v

3.5 Cycle Estimation . 42
3.5.1 Simplified Test Article Model 43
3.5.2 Cycle Time Estimates . 43
3.5.3 Results . 44

4. System Identification . 45

4.1 Problem Setup . 45
4.1.1 Model Order Selection . 46
4.1.2 Data Generation . 46

4.2 Open-Loop Identification . 47
4.2.1 Open-Loop Identification Algorithm 47

4.3 Closed-Loop Identification . 48
4.3.1 Direct Method . 48
4.3.2 Indirect Method . 48
4.3.3 Dual-Youla Method . 49

4.4 Model Comparison and Error Metrics 53
4.4.1 Variance Accounted For . 53
4.4.2 NRMS Error . 53
4.4.3 Simulated Control Effort 54

4.5 Results . 54
4.5.1 SISO System Identification 54
4.5.2 MIMO Identification on Actuators 1 & 2 58
4.5.3 MIMO Identification on Actuators 3 & 4 60
4.5.4 4-Actuator MIMO Identification 64
4.5.5 Discussion . 66

Part III Controller Synthesis 67

5. Using the H∞ Norm to Synthesize Optimal PI Gains 68

5.1 Starting Gains . 69
5.1.1 MATLAB PID Tuner . 69

5.2 Static Output Feedback Method . 69
5.2.1 Integral State . 69
5.2.2 Generalized Plant . 70
5.2.3 Synthesis Method . 71

5.3 Iterative Method . 72
5.3.1 PI Controller . 72
5.3.2 Generalized Plant . 73
5.3.3 Synthesis Method . 73

5.4 Results . 74
5.4.1 Analytical Model . 74
5.4.2 Identified Model . 77

vi

5.4.3 Discussion . 77

6. SISO Two Degree-of-Freedom Control 82

6.1 Feedback Control . 82
6.2 Feedforward Control . 82

6.2.1 Order Reduction . 83
6.2.2 Mirroring Non-Minimum Phase Zeros 83
6.2.3 Inverting a State-Space System 85
6.2.4 Synthesis Method . 86

6.3 Results . 86
6.3.1 Discussion . 87

7. MIMO Two Degree-of-Freedom Control via H∞ 92

7.1 PI Control “Prewrap” . 92
7.2 H∞ Controller Synthesis Method . 93

7.2.1 Order Reduction . 94
7.3 Results . 94

7.3.1 Actuators 1 & 2 . 95
7.3.2 Actuators 3 & 4 . 95
7.3.3 All 4 Actuators . 97
7.3.4 Discussion . 100

Part IV Conclusion 101

8. Closing Remarks and Future Work . 102

8.1 Conclusions . 102
8.2 Recommendations for Future Work 103

Appendices . 105

vii

List of Figures

Figure

1.1 The SHM platform at NRC. 4
2.1 Block diagram for controller synthesis. 16
2.2 1DOF controller structure. 17
2.3 General 2DOF controller structure. 18
2.4 Feedback plus feedforward 2DOF controller structure. 19
2.5 Weighting function frequency responses. 21
3.1 Block diagram of closed-loop system. 26
3.2 Block diagram of servovalve model. 28
3.3 Block diagram of actuator model. 29
3.4 Order-reduction for MTS 252.12 actuator model. 32
3.5 Block diagram of load cell. 33
3.6 Frequency response comparison of reduced-order plant and full-order plant. 34
3.7 Controller block diagram. 37
3.8 Linear vs. PCHIP interpolation. 38
3.9 Null pacing block. 39
3.10 Load profile segment with null pacing. 39
3.11 Block diagram of closed-loop system. 43
3.12 Load output. 44
4.1 Open-loop system. 47
4.2 Closed-loop system. 48
4.3 Reparametrized plant and noise structure [1]. 51
4.4 Load profile for SISO system identification. 55
4.5 Direct method—training data for actuator 3. 56
4.6 Indirect method—training data for actuator 3. 57
4.7 Dual-Youla method—training data for actuator 3. 59
4.8 Load profile for MIMO system identification of actuators 1 & 2. 60
4.9 Direct method—training data for actuators 1 & 2. 61
4.10 Indirect method—training data for actuators 1 & 2. 62
4.11 Dual-Youla method—training data for actuators 1 & 2. 63
5.1 Block diagram for controller synthesis. 68
5.2 Simulation results for PID tuner applied to the analytical model. 75
5.3 Simulation results for static output feedback applied to the analytical model. 76
5.4 Simulation results for iterative method applied to the analytical model. . . 78

viii

5.5 Simulation results for PID tuner applied to the identified model. 79
5.6 Simulation results for static output feedback applied to the identified model. 80
5.7 Simulation results for iterative method applied to the identified model. . . 81
6.1 Feedforward-feedback control architecture. 83
6.2 Bode diagram comparison of plant and feedforward controllers. 84
6.3 PI control + CCC. 88
6.4 PI control + 2nd-order FFW. 89
6.5 1st-order H∞ + 2nd-order FFW. 90
6.6 3rd-order HI

∞ + 2nd-order FFW. 91
7.1 Joint proportional and H∞ control. 93
7.2 P control “prewrap.” . 93
7.3 2nd-order H∞ on actuators 1 & 2. 96
7.4 1st-order H∞ on actuators 3 & 4. 98
7.5 2nd-order H∞ on actuators 1 & 2 and 1st-order H∞ on actuators 3 & 4. . . 99
A.1 Servovalve gain substitution. 106
A.2 Load cell gain substitution. 107
A.3 Piston dynamics gain substitution. 107
A.4 GPQ(s) gain substitution. 108
A.5 Piston dynamics first-order substitution. 108
A.6 GPQ(s) first-order substitution. 109
A.7 Piston dynamics and GPQ(s) first-order substitution. 109
A.8 Single pole cancellation. 110
A.9 Double pole cancellation. 110
A.10 Two pole/one zero cancellation. 111
A.11 No leakage. 111
A.12 Shifted integrator pole. 112
A.13 No leakage and shifted integrator pole. 112
A.14 First-order actuator substitution. 113
A.15 Second-order actuator substitution. 114
A.16 Lower-frequency first-order actuator substitution. 115

ix

List of Tables

Table

3.1 Compliance Coefficients . 40
4.1 SISO system ID results for actuator 3. 55
4.2 NRMSE for MIMO identification of actuators 1 & 2. 58
4.3 %VAF for MIMO identification of actuators 1 & 2. 59
4.4 NRMSE for MIMO identification of actuators 3 & 4. 64
4.5 %VAF for MIMO identification of actuators 3 & 4. 64
4.6 NRMSE in training for 4-actuator MIMO identification. 64
4.7 NRMSE in validation for 4-actuator MIMO identification. 65
4.8 %VAF in training for 4-actuator MIMO identification. 65
4.9 %VAF in validation for 4-actuator MIMO identification. 65
6.1 SISO results for actuator 3 with a minimum time of 0.4 s. 87
6.2 SISO results for actuator 3 with a minimum time of 0.1 s. 87
7.1 MIMO results for actuators 1 & 2 with a minimum time of 0.4 s. 95
7.2 MIMO results for actuators 1 & 2 with a minimum time of 0.1 s. 95
7.3 MIMO results for actuators 3 & 4 with a minimum time of 0.4 s. 97
7.4 MIMO results for actuators 3 & 4 with a minimum time of 0.1 s. 97
7.5 4-actuator MIMO results for all actuators with a minimum time of 0.4 s. . 100
7.6 4-actuator MIMO results for all actuators with a minimum time of 0.1 s. . 100

x

List of Appendices

Appendix

A. Reduced-Order Models . 106

B. Sample Code . 116

xi

List of Acronyms

PI Proportional-integral

PID Proportional-integral-derivative

1DOF One degree-of-freedom

2DOF Two degree-of-freedom

SISO Single-input-single-output

MIMO Multi-input-multi-output

LTI Linear time-invariant

BIBO Bounded-input-bounded-output

OLHP Open-left-half-plane

ORHP Open-right-half-plane

RMS Root-mean-square

NRMS Normalized root-mean-square

VAF Variance accounted for

MP Minimum phase

NMP Non-minimum phase

CCC Cross-coupling compensation

FLF Forward loop filter

PSO Profile segment optimization

PCHIP Piecewise cubic hermite interpolating polynomial

xii

List of Symbols

R the set of real numbers

R
n the vector space of real n dimensional vectors

R
m×n the space of real m× n dimensional matrices

tr(·) trace of a matrix

(·)T transpose of a matrix

(·)−1 inverse of a matrix

0 zero matrix

1 identity matrix

⋆ symmetric portion of a matrix

‖·‖2 2-norm

‖·‖
F

Frobenius norm

‖·‖
∞

H∞ norm

kp proportional gain

ki integral gain

M > 0 matrix M is symmetric positive definite

H∞ H-infinity

HI
∞ H-infinity with integrator

xiii

Abstract

This thesis focuses on the modelling and optimal control of a load-controlled fatigue struc-

tural testing rig. The modelling phase involves first attempting to analytically model the test

system and the test controller, then using these models to estimate test cycle times. After-

wards, a system identification approach is taken to generate a more reliable numerical model

using data. Open-loop and closed-loop methods are discussed, although only closed-loop

experiments can be performed on fatigue testing rigs to prevent unnecessary damage to the

valuable test article. The direct, indirect, and dual-Youla closed-loop system identification

methods are applied to measurement data from a fatigue testing rig at the National Re-

search Council of Canada (NRC). The identified models are validated then used in various

controller synthesis methods. First, two methods for generating “optimal” proportional-

integral (PI) gains are presented. The first uses H∞-optimal static output feedback, and the

second employs the Bounded Real Lemma, iteration, and bisection method. Next, a single-

input-single-output (SISO) approach to designing two degree-of-freedom (2DOF) controllers

is presented. The feedback controller can be a PI or H∞ controller, for example, and the

feedforward controller is designed using an approximate inverse of the plant transfer func-

tion. Finally, a multi-input-multi-output (MIMO) 2DOF H∞-optimal controller synthesis

method is described. The alternative controllers are implemented on the test rig and used

to perform tests. Tracking results and their comparison to the standard PI controller are

presented.

xiv

Résumé

Cette thèse porte sur la modélisation et le contrôle optimal d’un banc d’essai structurel de

fatigue à charge contrôlée. La phase de modélisation consiste d’abord à tenter de modéliser

analytiquement le système de test et le contrôleur, puis à utiliser ces modèles pour estimer

la durée des cycles de test. Ensuite, une approche d’identification du système est adoptée

pour générer un modèle numérique plus fiable utilisant des données mesurées. Les méthodes

en boucle ouverte et en boucle fermée sont discutées, bien que seulement des expériences

en boucle fermée puissent être effectuées sur des bancs d’essais de fatigue, afin d’éviter les

dommages inutiles à l’article de test de valeur importante. Les méthodes directe, indirecte

et dual-Youla d’identification de systèmes en boucle fermée sont appliquées aux données

mesurées d’un banc d’essai de fatigue du Conseil National de Recherches du Canada (CNRC).

Les modèles identifiés sont validés puis utilisés dans différentes méthodes de synthèse de

contrôleur. Premièrement, deux méthodes pour générer des gains proportionnel et intégral

(PI) ≪optimaux≫ sont présentées. La première utilise la rétroaction à sortie statique H∞-

optimal, et la seconde utilise la méthode du lemme réel borné (Bounded Real Lemma), de

l’itération et de la bissection. Ensuite, une approche à entrée simple et sortie simple (SISO)

pour la conception de contrôleur à deux degrés de liberté (2DOF) est présentée. Le contrôleur

de rétroaction peut être un contrôleur PI ou H∞, par exemple, et le contrôleur adaptatif

par action anticipatrice (≪feedforward≫) est conçu en utilisant un inverse approximé de

la fonction de transfert du procédé. Enfin, une méthode de synthèse de contrôleurs H∞

optimaux à deux degrés de liberté, à entrées multiples et sorties multiples (MIMO) est décrite.

Les contrôleurs alternatifs sont implémentés sur le banc d’essai et utilisés pour effectuer des

tests. Les erreurs de poursuite et leur comparaison avec le contrôleur PI standard sont

présentées.

xv

Part I

Introduction

1

Chapter 1

Introduction

1.1 Motivation and Objectives

Fatigue testing is a necessary part of aircraft certification, where aircraft load conditions

are simulated through the use of hydraulic actuators that apply loads to the airframe [2].

Tests must account for the service lifetime of the aircraft and include relevant operating

conditions. Despite its ubiquity in the aerospace industry, fatigue testing remains a time-

consuming process, with large-scale fatigue tests taking weeks, months, and even years to

complete [3]. Without a reliable numerical model, there is no method to assess the optimality

or robustness of the test system, provide an initial estimate of adequate controller gains, or

synthesize model-based controllers. The controllers themselves are typically proportional-

integral (PI) controllers, which have advantages in terms of familiarity and simplicity, but

are not necessarily optimal in terms of performance and robustness. The practice of fatigue

testing is consequently governed by “rules of thumb” where tuning of the controllers is

performed by hand. Evidently there is a need to improve the fatigue testing process.

Fatigue Structural Testing Enhancement Research (FASTER), a research partnership

between McGill University and the National Research Council of Canada (NRC), aims to

improve the efficiency of large-scale fatigue testing. The initial goals of the project are to

provide a numerical basis for trade-offs in hardware selection and provide improved estimates

of system cycle times and initial gain settings. These goals will be accomplished by modelling

the system components and using the models in controller synthesis and simulation. In the

long term, FASTER intends to use the developed tools to then push the state-of-the-art in

terms of test control, in an attempt to maximize cycle times to the limits of the physical

systems. The second phase of the project is more exploratory, and involves the design and

implementation of alternative controllers. Ultimately, the goal of the project is to allow

fatigue tests to run faster.

2

1.2 Prior Work

Previous work was completed at the NRC on the modelling and cycle estimation of a

fatigue structural testing rig. Both Hewitt [4, 5] and Cheung [6] worked on modelling the

components of a fatigue test system. Cheung also developed a simulation environment using

MATLAB/Simulink in which a single-actuator fatigue test could be simulated using selected

hardware models. Much of the fatigue testing equipment at NRC is supplied by the MTS

Systems Corporation, including hydraulic components, such as servovalves and actuators,

and test controllers. The work of Hewitt and Cheung focused on an earlier version of the

MTS controller, but the servovalves and actuators they modelled are the same as those in use

today. The models from Hewitt and Cheung thus provide a starting point for the analytical

models developed in Chapter 3.

Additionally, Zlotnik [7] completed some preliminary work on the system identification

and H2-optimal control of a helicopter tail boom structural health monitoring test. Zlotnik’s

work was useful in learning how to implement alternative controller schemes within the MTS

system, and provided an initial review of some closed-loop system identification methods.

However, Zlotnik’s work did not include formal tests of the H2 controller, or its comparison

to PI control. Although the optimal controllers implemented in this thesis are of the H∞

variety, H2 controllers can be implemented in a similar fashion.

1.3 Thesis Overview

This thesis is divided into two parts. The first part focuses on the development of

numerical models for fatigue structural testing rigs, both using first-principles modelling and

system identification techniques. In addition, the MTS controller is modelled and a cycle

estimation tool is developed. The second part includes various controller synthesis methods.

Two methods for synthesizing “optimal” PI controllers are presented. Next, methods for

synthesizing two degree-of-freedom (2DOF) controllers for single-input-single-output (SISO)

and multi-input-multi-output (MIMO) systems are presented.

Although the models and methods included in this thesis can theoretically be applied to

any fatigue structural testing rig, the test system used to generate experimental results is

the SHM platform at NRC. Pictured in Fig. 1.1, the SHM platform consists of an aluminum-

composite beam with four hydraulic actuators, one at each corner. The beam is welded at

its center to a metal post. Attached to each actuator is a hydraulic manifold and servovalve,

and a load cell that measures the applied force. The test controller applies a voltage to a

two-stage servovalve with a hydraulically-piloted spool that amplifies the solenoid voltage

3

to provide full pump flow to either chamber of the loading actuator [8]. In this way, the

actuator can extend or retract as flow is metered through the servovalve. This actuator

movement applies a force to the test article that is measured by the load cell.

Figure 1.1: The SHM platform at NRC.

1.3.1 Modelling and System Identification

The test rig itself can be broken down into three main systems. The structure undergoing

fatigue testing is known as the test article, which can range from an entire airplane to an

aircraft part, such as a wing. The hydraulic system, which consists of actuators, servovalves,

load cells, pumps, and accumulators, is used to apply the loads to the article. Lastly, the

test structure serves to keep the article and hydraulics in place and distribute loads to

the test article [4]. Although modelling each distinct system may be possible, attempting

to accurately capture the interactions between them in an analytical model proves to be

extremely difficult.

4

Nevertheless, an attempt was made to model the key components of a fatigue structural

testing rig from first-principles. The models, along with a tool developed to estimate cycle

times, are detailed in Chapter 3. In Chapter 4, the linear time-domain system identification

problem is explained. System identification is a powerful technique for generating numerical

models for systems that are difficult to model analytically. Input-output data is used to solve

for model parameters using a least squares approach. Open- and closed-loop system identi-

fication methods are presented, however, closed-loop methods must be used in the context

of fatigue testing to avoid damaging the test article. Identification results are presented for

the SHM platform using first SISO then MIMO data.

1.3.2 Controller Synthesis

In Chapter 5, two “optimal” PI controller synthesis methods are presented. The first

uses H∞-optimal static output feedback, and the second is a novel method for locally min-

imizing the closed-loop H∞ norm using the Bounded Real Lemma, iteration, and bisection

method. Because the optimization problem is non-convex, the resulting controllers are only

optimal locally and not globally. The algorithms were applied to the analytical model from

Chapter 3 and the SISO identified model from Chapter 4; the controllers and corresponding

simulation results are presented. Chapter 6 presents a method for designing SISO 2DOF

controllers, which are controllers that include both feedback and feedforward. In the SISO

case, the feedback and feedforward controllers can be designed independently, where the

feedback controller is PI or H∞, for example, and the feedforward controller is designed

using an approximate inverse of the plant model. Because inverting a MIMO system is not

straightforward, Chapter 7 presents a method for synthesizing MIMO 2DOF controllers using

H∞ controller synthesis methods with embedded feedforward. The SISO and MIMO 2DOF

controllers were implemented on the SHM platform and experimental results are presented.

5

Chapter 2

Preliminaries

In the chapter, standard tools relevant to system identification, optimization, and con-

troller synthesis are reviewed. These tools serve as the foundation for the methods and

algorithms described in later chapters.

2.1 Discrete-Time Systems

A discrete-time system can be described by a difference equation, where the current

output is written as a linear combination of n past outputs and m past inputs. The MIMO

difference equation is given by [9]

yk = −An−1yk−1−· · ·−A1yk−n+1−A0yk−n+Bmuk−τ + · · ·+B1uk−τ−m+1+B0uk−τ−m, (2.1)

where τ ∈ Z+ is the time delay as a positive integer number of samples, the number of

outputs is ny, the number of inputs is nu, yi ∈ R
ny , ui ∈ R

nu , Ai ∈ R
ny×ny , and Bi ∈ R

ny×nu .

Assuming quiescent initial conditions, this corresponds to a discrete-time transfer matrix

given by [10]

G(z−1) = z−τP(z−1)−1Q(z−1), (2.2)

where

P(z−1) = 1 + An−1z
−1 + · · ·+ A1z

−n+1 + A0z
−n,

Q(z−1) = Bm + Bm−1z
−1 + · · ·+ B1z

−m+1 + B0z
−m,

and n and m correspond to the orders of the denominator and numerator, respectively.

6

In the SISO case, (2.1) simplifies to

yk = −an−1yk−1 − · · · − a1yk−n+1 − a0yk−n + bmuk−τ + · · ·+ b1uk−τ−m+1 + b0uk−τ−m, (2.3)

and (2.2) to a transfer function given by

G(z−1) = z−τ bm + · · ·+ b1z
−m+1 + b0z

−m

1 + an−1z−1 + · · ·+ a1z−n+1 + a0z−n
= z−τ

∑m
r=0 bm−rz

−r

1 +
∑n

r=1 an−rz−r
. (2.4)

2.1.1 Discrete-Time to Continuous-Time

Using data to generate system identified models yields discrete-time transfer functions

and matrices. These models can be converted to continuous-time in a few different ways.

In this thesis, Tustin’s method will be used to convert discrete-time systems to continuous

time. Note that converting between discrete- and continuous-time utilizes the state-space

realization of a system.

A continuous-time linear time-invariant (LTI) state-space model is given by [11]

ẋ(t) = Ax(t) + Bu(t), x0 = x(0) (2.5)

ẏ(t) = Cx(t) + Du(t). (2.6)

The discrete-time state-space representation is [11]

xk = Āxk−1 + B̄uk−1, x0 = x(0) (2.7)

yk = C̄xk + D̄uk. (2.8)

2.1.1.1 Tustin’s Method

Tustin’s method approximates integrals using the trapezoid rule [11], which is given by

ˆ tk

tk−1

x(τ)dτ =
T

2
(xk + xk+1) ,

where T is the sample time.

7

Then the continuous-time state-space matrices are given by

A =
2

T

(
Ā − 1

) (
Ā + 1

)−1
,

B =
2

T

(

1 −
T

2
A

)

B̄,

C = C̄
(
Ā + 1

)−1
,

D = D̄ − CB̄.

2.1.2 Continuous-Time to Discrete-Time

When implementing controllers using C code on a real-time system, the continuous-time

controllers must first be discretized. For simplicity, a forward Euler method was used in this

thesis. Because the sampling frequency of the system is high (2048 Hz), and much higher

than the operating frequency of the system (approximately 1 Hz), this method works well.

2.1.2.1 Forward Euler

The forward Euler method approximates a derivative as [11]

ẋ(t) =
1

T
(xk − xk−1) .

This results in discrete-time state-space matrices given by

Ā = 1 + TA,

B̄ = TB,

C̄ = C,

D̄ = D.

2.2 Linear Least Squares

2.2.1 SISO Least Squares

The equation Φθ = ψ, where Φ and ψ are known from data and θ contains unknown

parameters, can be solved via a least squares approach as in [12]. The solution involves

minimizing the cost function given by

J(θ) =
1

2
(Φθ −ψ)⊤(Φθ −ψ) =

1

2
‖Φθ −ψ‖22 . (2.9)

8

Differentiating J(θ) with respect to θ and setting the solution equal to zero yields

Φ⊤Φθ = Φ⊤ψ. (2.10)

This equation is known as the normal equation and has solution

θ̂ = (Φ⊤Φ)−1Φ⊤ψ.

If Φ is full column rank, Φ⊤Φ is positive definite and θ̂ is a unique minimizing solution.

2.2.1.1 QR Factorization Method

To avoid computing Φ⊤Φ and taking its inverse, write Φ in terms of its QR factorization,

Φ = QR,

where Q is column-orthogonal (Q⊤Q = 1) and R is upper triangular. Then Φθ = ψ can be

written as

QRθ = ψ.

Pre-multiplying by Q⊤ yields

Q⊤Q
︸ ︷︷ ︸

1

Rθ = Q⊤ψ,

⇔ Rθ = Q⊤ψ,

which can easily be solved by backward substitution since R is upper triangular and invert-

ible.

2.2.2 Recursive Least Squares

The recursive least squares method from [12] will be used in system identification to

determine the model order. At each iteration, the order of the system is increased by one,

keeping the relative degree constant. This adds columns to the data matrix Φ while keeping

the number of rows constant. The recursive algorithm terminates when a stopping criteria

is met.

Suppose the least squares problem has been solved for θ̂ and that θ̂ contains an integer

number p of parameters. If the number of desired parameters is increased to q, where q > p,

then the solution of the p-parameter problem can be used to solve the q-parameter problem.

9

To solve the q-parameter problem, first partition θ into two parts,

θ =
[

θ1 θ2 · · · θp θp+1 · · · θq

]⊤

=

θ1

θ2

 .

The corresponding Φ matrix is then

Φ =

φ11 · · · φ1p φ1,p+1 · · · φ1q

...
. . .

...
...

. . .
...

φr1 · · · φrp φr,p+1 · · · φrq

=
[

Φ1 Φ2

]

,

where Φ1 ∈ R
r×p and Φ2 ∈ R

r×(q−p). Note that ψ is unchanged.

Then the normal equation (2.18) becomes

[

Φ⊤
1 Φ1 Φ⊤

1 Φ2

Φ⊤
2 Φ1 Φ⊤

2 Φ2

][

θ1

θ2

]

=

[

Φ⊤
1 ψ

Φ⊤
2 ψ

]

,

or equivalently,

Φ⊤

1 Φ1θ1 +Φ⊤

1 Φ2θ2 = Φ⊤

1 ψ,

Φ⊤

2 Φ1θ1 +Φ⊤

2 Φ2θ2 = Φ⊤

2 ψ.

The solution is then given by

θ̂1 =
ˆ̂
θ1 − AΦ⊤

2 (ψ −Φ1
ˆ̂
θ1), (2.11)

θ̂2 = BΦ⊤

2 (ψ −Φ1
ˆ̂
θ1), (2.12)

where

A = (Φ⊤

1 Φ1)
−1Φ⊤

1 Φ2B, (2.13)

B = [Φ⊤

2 Φ2 −Φ⊤

2 Φ1(Φ
⊤

1 Φ1)
−1Φ⊤

1 Φ2]
−1, (2.14)

ˆ̂
θ1 = (Φ⊤

1 Φ1)
−1Φ⊤

1 ψ.

On the first pass, (Φ⊤
1 Φ1)

−1 can be recycled from the solution of the p-parameter problem.

Then when computing B, only a (q − p)× (q − p) matrix inversion is required. The matrix

10

(Φ⊤
1 Φ1)

−1 can be updated recursively via

(Φ⊤Φ)−1 =

[

Φ⊤
1 Φ1 Φ⊤

1 Φ2

Φ⊤
2 Φ1 Φ⊤

2 Φ2

]−1

=

[

C + AΦ⊤
2 Φ1C −A

−A⊤ B

]

, (2.15)

where C = (Φ⊤
1 Φ1)

−1. Equation 2.15 can be derived from the Woodbury matrix identity.

2.2.2.1 Stopping Criteria

The number of parameters should stop increasing when the residual r̂ = Φθ̂−ψ fails to

decrease significantly. Instead of using r̂ directly, evaluate the cost function J(θ), which is

given by

J(θ̂) =
1

2
(Φθ̂ −ψ)⊤(Φθ̂ −ψ) =

1

2

∥
∥
∥Φθ̂ −ψ

∥
∥
∥

2

2
=

1

2
‖r̂‖22 .

In practice, terminate the algorithm when J(θ) stops decreasing significantly, or when n has

been increased to a maximum order M . The selection of M also serves to keep the total

number of rows constant.

2.2.3 MIMO Least Squares

In this MIMO least squares problem, the cost function to be minimized is

J(Θ) = 1
2
‖ΦΘ−Ψ‖2

F
= 1

2
tr
(
(ΦΘ−Ψ)⊤(ΦΘ−Ψ)

)
, (2.16)

where ‖·‖
F
denotes the Frobenius matrix norm and tr(·) is the trace of a matrix, which is

the sum of entries along the diagonal. Expanding (2.16), obtain

J(Θ) = 1
2
tr
(
Θ⊤Φ⊤ΦΘ− 2Ψ⊤ΦΘ +Ψ⊤Ψ

)
. (2.17)

Differentiating (2.17) with respect to Θ and setting the solution equal to zero yields

Φ⊤ΦΘ = Φ⊤Ψ. (2.18)

Equation (2.18) is known as the normal equation and has solution

Θ̂ = (Φ⊤Φ)−1Φ⊤Ψ.

If Φ is full column rank, Φ⊤Φ is positive definite and Θ̂ is a unique minimizing solution.

11

2.2.3.1 QR Factorization Method

To avoid computing Φ⊤Φ and taking the inverse, write Φ in terms of its QR factorization,

Φ = QR,

where Q is column-orthogonal (i.e., Q⊤Q = 1) and R is upper triangular. Then ΦΘ = Ψ

can be written

QRΘ = Ψ.

Partitioning Θ and Ψ into their ny columns, obtain

QR
[

θ1 θ2 · · · θny

]

=
[

ψ1 ψ2 · · · ψny

]

[

QRθ1 QRθ2 · · · QRθny

]

=
[

ψ1 ψ2 · · · ψny

]

. (2.19)

Equation (2.19) can be solved column-wise by solving

QRθi = ψi (2.20)

for i = 1, . . . , ny. Pre-multiplying (2.20) by Q⊤ yields

Q⊤Q
︸ ︷︷ ︸

1

Rθi = Q⊤ψi,

⇔ Rθi = Q⊤ψi,

which can easily be solved by backward substitution since R is upper triangular and invert-

ible.

2.3 Optimization

Optimization is used in the controller synthesis portion of this thesis, which is contained

in Part III. In particular, convex optimization subject to LMI constraints is used to synthesize

H∞ controllers. In Chapter 5, however, the optimization problem is non-convex and thus

iteration and bisection method are used to solve the problem locally, or sub-optimally.

12

2.3.1 Convex Sets

Definition 2.1 (Convexity [13]). A set, S, in a real inner product space is convex if for all

x, y ∈ S and α ∈ [0, 1], αx + (1 − α)y. A function, f : S → R, is strictly convex if for all

x, y ∈ S, α ∈ (0, 1), and x 6= y, f(αx + (1− α)y) < αf(x) + (1− α)f(y).

Proposition 2.2 (Uniqueness of a Convex Function Minimizer [13]). Suppose that f : S → R

is strictly convex and continuous. If S ⊂ R
n is closed, bounded, and convex, then a unique

minimizer of f exists in S.

2.3.2 Linear Matrix Inequalities

Definition 2.3 (Matrix Inequality [14]). A matrix inequality (MI), G : Rm → R
n×n, in the

variable x ∈ R
m is an expression of the form

G(x) = G0 +

p
∑

i=1

fi(x)Gi ≤ 0,

where x⊤ = [xi . . . xm], Gi ∈ R
n×n, i = 0, . . . , p.

Definition 2.4 (Bilinear Matrix Inequality [14]). A bilinear matrix inequality (BMI), H :

R
m → R

n×n, in the variable x ∈ R
m is an expression of the form

H(x) = H0 +
m∑

i=1

xiHi +
m∑

i=1

m∑

j=1

xixjHi,j ≤ 0,

where x⊤ = [xi . . . xm], Hi,Hi,j ∈ R
n×n, i = 0, . . . , m, j = 0, . . . , m.

Definition 2.5 (Linear Matrix Inequality [14]). A linear matrix inequality (LMI), F : Rm →

R
n×n, in the variable x ∈ R

m is an expression of the form

F(x) = F0 +

m∑

i=1

xiFi ≤ 0, (2.21)

where x⊤ = [xi . . . xm], Fi ∈ R
n×n, i = 0, . . . , m.

Example 2.6 (Matrix Form of an LMI). Consider the expression PA+A⊤P+Q < 0, where

A,P,Q ∈ R
n×n, Q > 0, and P is the design variable. Although this does not appear to have

the same form as (2.21), it is indeed an LMI, as shown in [14]. Instead of using the scalar

form (2.21), the LMIs in this thesis will be written in matrix form.

13

2.4 Linear Systems Theory

2.4.1 BIBO Stability

Definition 2.7 (BIBO Stability [15]). A system is bounded-input-bounded-output (BIBO)

stable if for any bounded input the corresponding output is bounded. A closed-loop system

is internally BIBO stable if all internal signals are bounded provided all external signals are

bounded.

Theorem 2.8. A system with transfer function G(s) is BIBO stable if and only if G(s) is

proper and all its poles are in the open-left-half-plane (OLHP) [15].

2.4.2 The H∞ Norm

The H∞ norm of an LTI system, which is the basis of H∞ control, is defined. The

H∞ norm of the closed-loop system is the objective function when performing H∞-optimal

controller synthesis.

Definition 2.9 (H∞ Norm of an LTI System [14]). Consider y(t) = (Gu)(t) where y(s) =

G(s)u(s), G(s) = C(s1−A)−1B+D, and A is Hurwitz, meaning all its eigenvalues lie in the

open-left-half-plane (OLHP). The H∞ norm is

‖G‖
∞

= sup
ω∈R

σ̄(G(jω)), (2.22)

where σ̄(G(jω)) =
√

λ̄(GH(jω)G(jω)), and λ̄(·) denotes the largest eigenvalue of a matrix.

Lemma 2.10 (Bounded Real Lemma [14]). Consider G(s) = C(s1 − A)−1B + D where A

is Hurwitz, (A,B) is controllable, and (A,C) is observable. The following conditions are

equivalent.

1. ‖G‖
∞
< γ .

2. There exists P̄ = P̄⊤ > 0 such that

F1 =

[

P̄A + A⊤P̄ + C⊤C P̄B + C⊤D

⋆ D⊤D − γ21

]

< 0 . (2.23)

14

3. There exists P = P⊤ > 0 such that

F2 =

PA + A⊤P PB C⊤

⋆ −γ1 D⊤

⋆ ⋆ −γ1

 < 0 . (2.24)

4. There exists Q = Q⊤ > 0 such that

F3 =

AQ + QA⊤ B QC⊤

⋆ −γ1 D⊤

⋆ ⋆ −γ1

 < 0 . (2.25)

2.4.3 The Generalized Plant

The generalized LTI plant has a minimal state-space realization given by [14]

ẋ(t) = Ax(t) + B1w(t) + B2u(t) , (2.26)

z(t) = C1x(t) + D11w(t) + D12u(t) , (2.27)

y(t) = C2x(t) + D21w(t) + D22u(t) , (2.28)

where x(t) ∈ R
nx is the system state, z(t) ∈ R

nz is the performance signal, y(t) ∈ R
ny is the

measurement signal (also the input signal to the controller), w(t) ∈ R
nw is the exogenous

signal, u(t) ∈ R
nu is the control signal, and the state-space matrices are of appropriate

dimension.

Typically, the exogenous input includes the reference, disturbances, and noise, and is

given by

w(t) =

r(t)

d(t)

n(t)

 .

Using the configuration shown in Fig. 2.1, the performance channels include weighted

noise-free tracking error and weighted control effort, where z1(s) = We(s)e(s) and e(s) =

r(s)− yp(s), and z2(s) = Wu(s)u(s). In addition, there are weighting filters on disturbances

and noise. The plant has a minimal state-space realization (Ao,Bo,Co,Do) and the weighting

transfer matrices We(s), Wu(s), Wd(s), and Wn(s) have minimal state-space realizations

given by (Ae,Be,Ce,De), (Au,Bu,Cu,Du), (Ad,Bd,Cd,Dd), and (An,Bn,Cn,Dn). Note that

the reference will not be weighted because the MTS controller already applies a smoothing

interpolation to the reference signal.

15

yp(s)r(s) C(s)

Wu(s)We(s)

e(s)−

z1(s) z2(s) d(s)

P(s)
u(s)

Wd(s)

Wn(s)

n(s)

+

+

Figure 2.1: Block diagram for controller synthesis.

2.4.3.1 Integral Control

To design a controller that includes an integrator, the input to the controller y(t) must

include the tracking error augmented with the integral of tracking error. Therefore, it is

necessary to define an “integral state.” The time rate of change of this state is set equal to

the tracking error, such that the state itself is the integral of the error [16, 17]. Taking into

account noise and disturbance, the state xi(t) is defined by

ẋi(t) = r(t)− (yo(t) + Cnxn(t) + Dnn(t))

= r(t)− (Coxo(t) + Do (u(t) + Cdxd(t) + Ddd(t)) + Cnxn(t) + Dnn(t))

= −Coxo(t)− DoCdxd(t)− Cnxn(t) + r(t)− DoDdd(t)− Dnn(t)− Dou(t). (2.29)

2.4.3.2 1DOF Control

The one degree-of-freedom (1DOF) controller structure is shown in Fig. 2.2. The input

to the controller y(t) is the error, e(t).

16

yp(s)r(s) C(s)
e(s)−

d(s)

P(s)
u(s)

n(s)

+

+

Figure 2.2: 1DOF controller structure.

The generalized plant is then given by

ẋ(t) =

Ao 0 0 BoCd 0

−BeCo Ae 0 0 0

0 0 Au 0 0

0 0 0 Ad 0

0 0 0 0 An

︸ ︷︷ ︸

A

x(t) +

0 BoDd 0

Be 0 0

0 0 0

0 Bd 0

0 0 Bn

︸ ︷︷ ︸

B1

w(t) +

Bo

−BeDo

Bu

0

0

︸ ︷︷ ︸

B2

u(t) ,

(2.30)

z(t) =

[

−DeCo Ce 0 0 0

0 0 Cu 0 0

]

︸ ︷︷ ︸

C1

x(t) +

[

De 0 0

0 0 0

]

︸ ︷︷ ︸

D11

w(t) +

[

−DeDo

Du

]

︸ ︷︷ ︸

D12

u(t) , (2.31)

y(t) =
[

−Co 0 0 −DoCd −Cn

]

︸ ︷︷ ︸

C2

x(t) +
[

1 −DoDd −Dn

]

︸ ︷︷ ︸

D21

w(t) +
[

−Do

]

︸ ︷︷ ︸

D22

u(t) , (2.32)

where x(t) =
[
x⊤
o (t) x⊤

e (t) x⊤
u (t) x⊤

d (t) x⊤
n (t)

]
⊤ includes the plant states and filter

states.

2.4.3.3 1DOF Control with Integrator

For a 1DOF controller that includes an integrator, the controller input y(t) is given by

y(t) =
[

e⊤(t) x⊤
i (t)

]
⊤ , where xi(t) is defined in (2.29).

17

The generalized plant used for controller synthesis is then given by

ẋ(t) =

Ao 0 0 BoCd 0 0

−BeCo Ae 0 0 0 0

0 0 Au 0 0 0

0 0 0 Ad 0 0

0 0 0 0 An 0

−Co 0 0 −DoCd −Cn 0

︸ ︷︷ ︸

A

x(t) +

0 BoDd 0

Be 0 0

0 0 0

0 Bd 0

0 0 Bn

1 −DoDd −Dn

︸ ︷︷ ︸

B1

w(t) +

Bo

−BeDo

Bu

0

0

−Do

︸ ︷︷ ︸

B2

u(t) ,

(2.33)

z(t) =

[

−DeCo Ce 0 0 0 0

0 0 Cu 0 0 0

]

︸ ︷︷ ︸

C1

x(t) +

[

De 0 0

0 0 0

]

︸ ︷︷ ︸

D11

w(t) +

[

−DeDo

Du

]

︸ ︷︷ ︸

D12

u(t) , (2.34)

y(t) =

[

−Co 0 0 −DoCd −Cn 0

0 0 0 0 0 1

]

︸ ︷︷ ︸

C2

x(t) +

[

1 −DoDd −Dn

0 0 0

]

︸ ︷︷ ︸

D21

w(t) +

[

−Do

0

]

︸ ︷︷ ︸

D22

u(t) ,

(2.35)

where x(t) =
[
x⊤
o (t) x⊤

e (t) x⊤
u (t) x⊤

d (t) x⊤
n (t) x⊤

i (t)
]
⊤ .

2.4.3.4 2DOF Control

In a two degree-of-freedom (2DOF) controller, the controller is based on the feedback as

well as the reference signal. The general 2DOF controller structure is shown in Fig. 2.3.

yp(s)r(s) C(s)

−

d(s)

P(s)
u(s)

n(s)

+

+

Figure 2.3: General 2DOF controller structure.

Figure 2.4 shows the controller structure in the case where the 2DOF controller includes

feedback and feedforward control. For alternative 2DOF control structures, see [15].

If the controller to be designed is a 2DOF controller without integrator, then the input

18

yp(s)r(s) Cfb(s)
e(s)−

d(s)

P(s)
u(s)

n(s)

+

+

Cff (s)

+

Figure 2.4: Feedback plus feedforward 2DOF controller structure.

to the controller y(t) is defined as

y(t) =

[

r(t)

e(t)

]

.

The generalized plant is then given by

ẋ(t) =

Ao 0 0 BoCd 0

−BeCo Ae 0 0 0

0 0 Au 0 0

0 0 0 Ad 0

0 0 0 0 An

︸ ︷︷ ︸

A

x(t) +

0 BoDd 0

Be 0 0

0 0 0

0 Bd 0

0 0 Bn

︸ ︷︷ ︸

B1

w(t) +

Bo

−BeDo

Bu

0

0

︸ ︷︷ ︸

B2

u(t) ,

z(t) =

[

−DeCo Ce 0 0 0

0 0 Cu 0 0

]

︸ ︷︷ ︸

C1

x(t) +

[

De 0 0

0 0 0

]

︸ ︷︷ ︸

D11

w(t) +

[

−DeDo

Du

]

︸ ︷︷ ︸

D12

u(t) ,

y(t) =

[

0 0 0 0 0

−Co 0 0 −DoCd −Cn

]

︸ ︷︷ ︸

C2

x(t) +

[

1 0 0

1 −DoDd −Dn

]

︸ ︷︷ ︸

D21

w(t) +

[

0

−Do

]

︸ ︷︷ ︸

D22

u(t) .

2.4.3.5 2DOF Control with Integrator

For a 2DOF controller that includes an integrator, the controller input y(t) is given by

y(t) =

r(t)

e(t)

xi(t)

 .

19

The generalized plant used for controller synthesis is then given by

ẋ(t) =

Ao 0 0 BoCd 0 0

−BeCo Ae 0 0 0 0

0 0 Au 0 0 0

0 0 0 Ad 0 0

0 0 0 0 An 0

−Co 0 0 −DoCd −Cn 0

︸ ︷︷ ︸

A

x(t) +

0 BoDd 0

Be 0 0

0 0 0

0 Bd 0

0 0 Bn

1 −DoDd −Dn

︸ ︷︷ ︸

B1

w(t) +

Bo

−BeDo

Bu

0

0

−Do

︸ ︷︷ ︸

B2

u(t) ,

z(t) =

[

−DeCo Ce 0 0 0 0

0 0 Cu 0 0 0

]

︸ ︷︷ ︸

C1

x(t) +

[

De 0 0

0 0 0

]

︸ ︷︷ ︸

D11

w(t) +

[

−DeDo

Du

]

︸ ︷︷ ︸

D12

u(t) ,

y(t) =

0 0 0 0 0 0

−Co 0 0 −DoCd −Cn 0

0 0 0 0 0 1

︸ ︷︷ ︸

C2

x(t) +

1 0 0

1 −DoDd −Dn

0 0 0

︸ ︷︷ ︸

D21

w(t) +

0

−Do

0

︸ ︷︷ ︸

D22

u(t) .

2.4.4 Tuning Weights

For the performance channels, the weights should be tuned to prioritize minimizing the

error in the operating bandwidth and penalizing control effort outside the operating band-

width. For disturbances and noise, the weights should be tuned to filter broadband white

noise into signals that mimic the disturbance and noise properties of the system. Therefore,

We(s) and Wd(s) are designed as low-pass filters, and Wu(s) and Wn(s) are chosen to be lead

compensators. Figure 2.5 shows a typical set of weights used to synthesize the controllers

presented in Chapter 7.

2.5 Implementing Alternative Controllers

There are a few practical considerations that must be addressed when implementing

alternative controller schemes on the MTS system in real-time. Typically, the controller

must be reduce-ordered, then used in code generation. Afterwards, the control signal should

be simulated in real-time to ensure that it is safe to inject. These practices will be used in

Chapters 6 and 7.

20

10
-2

10
0

10
2

10
4

10
6

-80

-60

-40

-20

0

20

10
-2

10
0

10
2

10
4

10
6

-100

-80

-60

-40

-20

0

(a) Error.

10
-2

10
0

10
2

10
4

10
6

-40

-30

-20

-10

0

10
-2

10
0

10
2

10
4

10
6

0

20

40

60

80

100

(b) Control effort.

10
-2

10
0

10
2

10
4

10
6

-100

-80

-60

-40

-20

0

10
-2

10
0

10
2

10
4

10
6

-100

-80

-60

-40

-20

0

(c) Disturbances.

10
-2

10
0

10
2

10
4

10
6

0

5

10

15

20

10
-2

10
0

10
2

10
4

10
6

0

20

40

60

(d) Noise.

Figure 2.5: Weighting function frequency responses.

2.5.1 Order Reduction

In general, because the MTS controller is limited computationally, controllers higher

than 6th-order cannot be implemented. Order reduction can be performed by manually

eliminating higher modes, or using the balred command in MATLAB. Details on the order

reduction process for feedforward and H∞ controllers are given in Chapters 6 and 7.

2.5.2 Code Generation

In order to implement alternative controllers on the MTS system, the controller must be

implemented via calculated channels. The channels themselves require code to be written

in a language similar to C, and the controller state-space matrices must be discretized in

21

real-time based on the sampling frequency of the MTS system. It was initially thought that

the sampling frequency changed dynamically, but upon further investigation it became clear

that the sampling frequency of the MTS controller used to perform experiments for this

thesis is always 2048 Hz. Code generation templates were created using MATLAB, with the

discretization method being forward Euler. A code generation template and sample MTS

code for a 2DOF H∞ controller are included in Appendix B. Because MTS calculated chan-

nels can only output scalar values, controller code for each actuator must be implemented

in a separate calculated channel.

2.5.3 Signal Injection

Even if a control signal is well-behaved in simulation, it may display undesirable behaviour

in practice. To ensure the control signal from an alternative controller does not exhibit

saturation, instability, or oscillatory behaviour, the signals should be simulated in real-time

on the MTS system before being injected. The presence of an H∞ or feedforward controller

“gain” that, for all intents and purposes, acts as a switch, allows the signal to be injected not

at all, in full, or somewhere in between. Initially, the controller code should be implemented

in calculated channels with the controller switch gain set to zero. Depending on how the

signal behaves, it may then be injected.

2.5.3.1 Feedforward Control

Because feedforward controllers are based on a smooth, noise-free reference signal, the

feedforward control signal should also be smooth. In addition, the injected feedforward signal

will be identical to the simulated signal provided the reference is the same. If the signal looks

clean and does not saturate, the feedforward control signal can be injected by setting the

controller switch gain to one.

2.5.3.2 H∞ Control

Unlike inversion-based feedforward controllers, where the input is a smooth, noise-free

reference signal, H∞ controllers act on the noisy error signal. It is not uncommon for an

H∞ controller that works well in simulation to exhibit poor behaviour when implemented

on the test rig. This is especially true because the controller synthesis method presented in

Chapter 7 does not enforce stability of the controller itself—it only requires the closed-loop to

be BIBO stable. Because the H∞ control signal is based on the error, the signal will change

based on the degree to which it is injected. For this reason, it is recommended that the H∞

control signal be injected gradually in function generation mode. This is done by increasing

22

the controller switch gain by increments of 0.1, for example, and observing how the signal

responds before injecting further. If the signal has been fully injected and is well-behaved,

it can be used to run tests.

2.6 Testing and Post-Processing

The performance of alternative controllers will be evaluated in terms of speed and error.

An MTS controller feature called PSO will be employed to determine what speeds can be

achieved by a particular controller. Afterwards, the tracking performance will be quantified

using RMS error. In this thesis, alternative controller performance will always be compared

to the standard controller, which is a tuned PI controller with cross-coupling compensation,

as described in Section 3.3.3.

2.6.1 Profile Segment Optimization (PSO)

To assess the potential improvement offered by a particular controller scheme, an MTS

controller feature called Profile Segment Optimization (PSO) can be used. A load profile,

described in Section 3.3.1, contains a sequence of loads and corresponding transition times.

PSO is a feature that automatically shortens transition times by a specified step-size as long

as the error in the transition stays within a specified error bound, which is explained in

Section 3.3.2. If the error during the transition is outside this limit, the transition time is

increased. If a test is run for multiple passes, PSO will shorten the load lines down to a

minimum possible transition time, which is specified by the user.

In this thesis, controllers are compared by activating PSO and running the same load

profile for multiple passes. The number of passes should be enough that the transition times

can, in theory, be reduced to the minimum possible transition time. Typically, the initial

transition times are set to 1 second. After the final pass, PSO is turned off and the controller

is used to run the load profile once more. The data is recorded and analyzed in terms of

runtime and error.

2.6.2 Data Collection and Sampling Frequency

The sampling frequency of the MTS system when recording “continuous” data is 128 Hz.

Tests typically run at approximately 1 Hz. Although this sampling frequency is unnecessarily

high, “continuous” data can be collected then resampled afterwards. This can be done using

the interp1 command in MATLAB, for example. When data is being collected for system

identification, a good “rule of thumb” is to use a sampling frequency that is approximately

ten times the bandwidth of the system [18].

23

2.6.3 RMS Error

The improvement in performance offered by a particular controller is quantified by the

root-mean-square (RMS) error between the reference and the output. RMS error is given by

RMSE =

√
√
√
√ 1

N

N∑

i=0

(ri − yi)2, (2.36)

where ri are the values of the reference signal and yi are the outputs of the system. RMS

error has the same units as the reference signal and system output. This metric can be

applied to both simulated and experimental data. For a MIMO system, the RMS error is

computed for each column of data.

24

Part II

Modelling and System Identification

25

Chapter 3

Modelling and Cycle Estimation

In this chapter, a fatigue test system is broken up into its key components and an an-

alytical model is developed for each distinct part. First, each component of the plant is

modelled, then these are combined to give the overall plant model. Next, the built-in MTS

controller is modelled. Finally, the plant and controller models are combined in simulation

to provide an estimate of cycle time. The closed-loop system is shown in Fig. 3.1.

+

d(s)

n(s)

r(s)
z(s)

ue(s)

Controller Servovalve Actuator Load Cell

Test Article

P (s)

error V V Q Q
L

ẍ

L

ẍ

La

Lm

La ue

−

+

Figure 3.1: Block diagram of closed-loop system.

The key components of the fatigue test system are the controller, servovalve, actuator,

load cell, and test article. The system is set up in load control, where the reference signal is a

desired force. The controller takes the error between the reference and feedback and outputs

a voltage. The voltage is sent to the servovalve and results in a flow rate, which causes

movement in the actuator along with a force output. The load cell transfers the load to the

test article and provides a force measurement that is fed back to the controller. Depending

on which sensors are installed, test article deflection may also be recorded.

The particular fatigue test system modelled in this thesis is the SHM platform at the

National Research Council of Canada, pictured in Fig. 1.1. However, servovalve and actuator

size, load cell parameters, and article stiffness can be modified to theoretically model any

fatigue test rig that uses MTS equipment.

26

3.1 Plant Model

Despite the fact that real systems are nonlinear, for the purposes of this thesis each

system is approximated as linear. This simplifies analysis and simulation and allows the use

of linear controller design techniques. Additionally, because fatigue test rigs are configured

in load control, it is possible to formulate the problem such that the test article is not “in the

loop.” Although stiffness information from the test article is incorporated into the actuator

model, this approach doesn’t require a complete numerical model of the article. Therefore

the plant, P (s) in Fig. 3.1, is comprised of the servovalve, actuator, and load cell.

3.1.1 Servovalve

Initially, a high-fidelity nonlinear two-stage servovalve model such as that presented in

[19] was investigated. However, such a model required measurements of several internal

physical parameters, in addition to continuous measurements of changing pressures and flow

rates. This approach was abandoned for two reasons. First, it is not feasible to disassemble

every valve to obtain parameter values, and second, the current system does not have sensors

in place to record internal pressures or flow rates. Next, a two-stage servovalve model with

an internal feedback mechanism like that of [4] and [6] was created. This model was much

less complicated than the previous one, but still required unknown parameter values.

Finally, identifying a transfer function from the frequency response given in the MTS

catalogue [8] provided a linear model defined in terms of given values. The catalogue gives

the frequency response of various servovalve sizes at the rated input current. Depending on

the size, the valve transfer function can be approximated as either a first-order or second-

order system. The transfer function can be identified based only on maximum flow rate, rated

current, cutoff frequency, and, for the second-order systems, damping ratio. The first-order

transfer function is given by

Gv(s) =
Q(s)

I(s)
=

Kvωc

s+ ωc

, (3.1)

where Q(t) is the flow rate with units of litres per second and I(t) is the current with units

of Amperes. Kv = Qmax/Irated is the DC gain, and ωc is the cutoff frequency.

The second-order transfer function is given by

Gv(s) =
Q(s)

I(s)
=

Kvω
2
c

s2 + 2ζωcs+ ω2
c

, (3.2)

where ζ was found by comparison with the catalogue frequency response.

27

3.1.1.1 Units

Although the controller physically applies a current to the servovalve, the MTS interface

displays control effort as a voltage. It was confirmed by MTS that the current and voltage

are related through a scaling factor that is simply the ratio of the maximum, or fullscale,

values, where the fullscale current and voltage are given by Im and Vm. Because the MTS

control law is configured to produce a voltage, the control signal must be multiplied by a

factor of Im/Vm before being passed to Gv(s). The block diagram is shown in Fig. 3.2.

Q(s)Gv(s)I(s)
Im
Vm

V (s)

Figure 3.2: Block diagram of servovalve model.

On the SHM platform, the valve used is an MTS 252.21C servovalve. Gv(s) can be

approximated by a first order transfer function with Kv = 1.2618 L/s
A

and ωc = 2π · 100

rad/s. The maximum voltage Vm is 10 V and the maximum current Im is 25 mA.

3.1.2 Actuator

Several sources were consulted in the development of a functional linear actuator model.

Originally, a model similar to that of [4] and [6] was developed. This model incorporated

compressibility effects and test article motion at the point of application. The velocity and

acceleration of the test article were “fed back” as inputs to the actuator. This formulation

assumed that actuator acceleration and velocity were equivalent to that of the test article

at the contact point. Because the load output depended on the acceleration, an input, there

was a nonzero feedthrough matrix. A slightly different approach was taken when adopting

this model. Instead of feeding back the test article motion, expressions were derived for the

actuator dynamics. In addition, a leakage term was added because the MTS actuators have

deliberate internal leakage to aid lubrication. There was no longer a feedthrough, but due

to the presence of bulk modulus β in the state-space matrices—required when considering

fluid compressibility—the formulation was very badly scaled. In numerical simulation, this

manifested as drift.

An extensive literature review of hydraulic actuator models ensued, without much success.

The models found were either nonlinear [20, 21, 22, 23] or did not have the required flow rate

input or force output [22, 23, 24, 25]. Others [26, 27] were similar to the initial model and

also resulted in drift. Because the system is in force control, it is necessary to have force as an

output. As in the original model, issues arose when force was calculated as F (t) = A∆P (t),

28

1
V
2β

s A

A

1

ms2+ds+c

s

τs+1

ks

1
m

Ctl

PL

Q
F

x
Lo

_xA _x

ẍ

Leakage

flow

Compressibility Piston dynamics

Approximate

Derivative

−

−

Simulated

Spring

Figure 3.3: Block diagram of actuator model.

where F is force, A is actuator area, and ∆P is the pressure difference across the actuator.

However, in some papers, such as Robinson and Pratt [28], a spring is modelled at the end

of the actuator and force is given by F (t) = kx(t). In this way, the initial output of the

actuator is a displacement that is multiplied by a gain to give a force. This seemed to work

better numerically, but would require a spring to be “simulated” on the SHM platform.

3.1.2.1 Simulated Spring

With the simulated spring as an option, a model with displacement as an output could be

considered. In particular, a model inspired by Alleyne and Liu [29] was tested. This model

accounts for compressibility effects and considers the actuator piston dynamics as a mass-

spring-damper system. It conditions the problem with flow rate Q(t) as an input and piston

displacement x(t) as an output. For the SHM platform, the mass of the actuator piston m

and damping d are known, and the spring force acting on the piston can be taken to be the

stiffness of the test article at the contact point. This stiffness c is found by averaging the

values of k found in the F = kx data collected on the SHM platform. In this way, some

knowledge of the test article is incorporated into the plant without actually bringing the test

article into the closed-loop system.

The simulated spring was added to the model to provide an output of force. The stiffness

was originally found by taking the maximum force output (given in the actuator catalogue

[30]) and dividing it by the maximum displacement (taken as half of the stroke length).

However, this value of ks was much too low to result in a realistic actuator response. Thus

ks was found while testing the numerical simulation at the maximum rated force and ensuring

that input current and valve flow rate were also at their maximum values. The resulting

29

actuator model including the simulated spring is shown in Fig. 3.3.

3.1.2.2 Full Model

The overall actuator transfer functions are given by

GaL(s) =
L(s)

Q(s)
=

Aks(τs + 1)(1e-3)

(V
2β
s+ Ctl)(ms2 + fs+ c)(τs+ 1) + A2s

, (3.3)

Gaẍ(s) =
ẍ(s)

Q(s)
=
F (s)/m

Q(s)
=

A
m
(ms2 + fs+ c)(τs+ 1)(1e-3)

(V
2β
s+ Ctl)(ms2 + fs+ c)(τs+ 1) + A2s

. (3.4)

The transfer functions must be multiplied by 1e-3 to account for the units of flow rate Q(t),

which is expressed in L/s. Then the units of GaL(s) and Gaẍ(s) are
N
L/s

and m/s2

L/s
, respectively.

3.1.2.3 Numerical Issues and Non-Minimum Phase Zeros

When the actuator model given by (3.3) and (3.4) is combined with the servovalve model

from Section 3.1.1 and the load cell from [6], the resulting plant transfer function is

G(s) =
−2.825e07s3 − 2.8275e10s2 + 1.952e15s+ 1.952e18

s5 + 8.742e04s4 + 1.404e08s3 + 5.857e10s2 + 5.401e12s+ 1.562e15
. (3.5)

There was extreme difficulty in finding stabilizing proportional-integral (PI) gains to control

this model. To guarantee stability and performance, at least an H2-optimal controller was

required. In practice, however, it has been established that PI control can provide stability

and tracking on the real rig.

Upon inspection, it was determined that the plant model given by (3.5) is poorly con-

ditioned numerically and therefore difficult to work with for the purposes of simulation and

controller design. The main issue is that G(s) is non-minimum phase (NMP), which means

it has zeros in the open right-half-plane (ORHP). ORHP zeros are detrimental because they

limit controller gains and hinder system performance. Moreover, because ORHP zeros limit

controller gains, the range of stabilizing controllers is reduced, making it more difficult to

find a PI controller that BIBO stabilizes the closed-loop system.

At the same time, it was determined that the actuator and load cell should be considered

as one mass, since the spring stiffness used in the piston dynamics block is that of the

test article and the load cell is located between the actuator and the test article. Lumping

the actuator and load cell masses together means that the force output of the actuator is

directly the load applied to the test article, Lo(t) rather than L(t). The load cell from [6] was

30

therefore rearranged; the details of this are included in Section 3.1.3. The actuator transfer

functions are thus given by

GaLo
(s) =

Lo(s)

Q(s)
=

Aks(τs+ 1)(1e-3)

(V
2β
s+ Ctl)(ms2 + fs+ c)(τs + 1) + A2s

, (3.6)

Gaẍ(s) =
ẍ(s)

Q(s)
=
F (s)/m

Q(s)
=

A
m
(ms2 + fs+ c)(τs+ 1)(1e-3)

(V
2β
s+ Ctl)(ms2 + fs+ c)(τs+ 1) + A2s

, (3.7)

where m is now the combined mass of the actuator piston and the load cell. This actuator-

load cell combination resulted in an overall plant transfer function that happens to be mini-

mum phase. However, there remained issues with PI design as this model is still numerically

complex.

3.1.2.4 Reduced-Order Modelling

A reduced-order modelling approach was taken in an attempt to eliminate the higher-

order dynamics that were suspected to be the cause of numerical scaling issues within the

model. An extensive survey of various model simplification methods ensued, with the result-

ing reduced-order models being used to synthesize PI gains. Closed-loop simulations were

performed using each reduced-order model and its associated set of PI gains. The details of

the survey are included in Appendix A. Upon analysis of the results, it was determined that

the “best” method is to replace the actuator by a set of first-order transfer functions, where

the cutoff frequency of the transfer function from flow rate Q(s) to load Lo(s) is lower than

the natural frequency by an order of ten. This method was deemed to be the best in that

the response is realistic (not too fast or too slow) and the model itself is easy to work with.

In addition, it was possible to synthesize stabilizing PI gains for this model using 3 different

synthesis methods.

In the model, the actuator transfer function (3.3) from flow rate Q(s) to load Lo(s) was

replaced by a first-order transfer function given by

GaLo
(s) =

Lo(s)

Q(s)
=
KℓDC

ωℓ

s+ ωℓ

, (3.8)

where KℓDC
is the DC gain of the original transfer function and ωℓ = ωn/10 is used as

the cutoff frequency. Initially ωℓ was set equal to ωn, but this resulted in a response that

was “too perfect,” as seen in Fig. A.14b. Furthermore, preliminary system identification

results suggest that the natural frequency of the system is lower than 100 rad/s. The

values used for the MTS 252.12 actuators on the SHM platform are KℓDC
= 396410 N

L/s
and

31

ωℓ = 10.7190 rad/s.

The actuator transfer function (3.4) from flow rate Q(s) to acceleration ẍ(s) was replaced

by a first-order transfer function given by

Gaẍ(s) =
ẍ(s)

Q(s)
=
KaDC

ωa

s+ ωa

, (3.9)

where KaDC
is again the DC gain and ωa = ωc, where ωc is the cutoff frequency. On the

SHM platform, KaDC
= 7.2088 m/s2

L/s
and ωa = 8.5595e04 rad/s. The order-reduction method

in (3.8) and (3.9) was automated using MATLAB. The resulting Bode diagram comparison for

the MTS 252.12 actuator model is shown in Fig. 3.4.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
ag

n
it
u
d
e
(d
B
)

-100

-50

0

50

100

150

Bode Plot - GaL(s)

First Order

Original

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-300

-200

-100

0

(a) Bode plot of GaLo
(s).

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
ag

n
it
u
d
e
(d
B
)

-40

-20

0

20

Bode Plot - Gaa(s)

First Order

Original

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-100

-50

0

50

100

(b) Bode plot of Gaẍ(s).

Figure 3.4: Order-reduction for MTS 252.12 actuator model.

3.1.3 Load Cell

The load cell model is a modified version of the one used in [6], which approximates the

load cell as two masses, one on the actuator side and one on the test article side (or the

“measuring” side). The load cell can therefore be represented by a simple gain block. In

[6], the load cell block takes in inputs of actuator load L and acceleration ẍ and provides

outputs of measured load Lm and the load applied to the test article Lo. The relationship is

given by [

Lo(t)

Lm(t)

]

=

[

1 −mt

1 −(mt −mm)

]

︸ ︷︷ ︸

Klc

[

L(t)

ẍ(t)

]

. (3.10)

32

Writing out the equations for Lo(t) and Lm(t) from (3.10) explicitly yields two equations

given by

Lo(t) = L(t)−mtẍ(t), (3.11)

Lm(t) = L(t)− (mt −mm)ẍ(t). (3.12)

However, because the actuator model from Section 3.1.2 has outputs of Lo(t) and ẍ(t), (3.10)

was rearranged to accept these as inputs while still providing Lo(t) and Lm(t) as outputs.

This first involves solving for L(t) in terms of Lo(t) and ẍ(t). Rearranging (3.11) gives

L(t) = Lo(t) +mtẍ(t). (3.13)

Substituting (3.13) into (3.12) yields

Lm(t) = (Lo(t) +mtẍ(t))− (mt −mm)ẍ(t)

= Lo(t) +mtẍ(t)−mtẍ(t) +mmẍ(t).

Cancelling terms, obtain

Lm(t) = Lo(t) +mmẍ(t). (3.14)

In matrix form, this becomes

[

Lo(t)

Lm(t)

]

=

[

1 0

1 mm

]

︸ ︷︷ ︸

Klc

[

Lo(t)

ẍ(t)

]

. (3.15)

The block diagram of the system is shown in Fig. 3.5. On the SHM platform,mt = 12.3955 kg

and mm = 3.3055 kg.

Klc

Lo

ẍ

Lo

Lm

Figure 3.5: Block diagram of load cell.

3.1.4 Overall Plant Model

The plant model to be used for controller design is given by the overall system model from

controller output V (t) to feedback term Lm(t). It consists of the servovalve, actuator, and

33

load cell. The test article is not included because it is outside the feedback loop, however,

stiffness information from the test article is incorporated into the actuator model. In the

SISO case, after combining the servovalve, reduced-order actuator, and load cell, the minimal

plant transfer function is given by

G(s) =
Lm(s)

V (s)
=

1.2465e07s+ 7.21e11

s3 + 8.623e04s2 + 5.471e07s+ 5.765e08
, (3.16)

which has poles at −85595.74, −628.32 and −10.72, and a zero at −57837.64. Therefore,

G(s) is both asymptotically stable and minimum phase.

If the full-order actuator model is used instead, the resulting plant transfer function is

G(s) =
4.0525e06s3 + 4.0525e09s2 + 7.7025e14s+ 7.7025e17

s5 + 8.742e04s4 + 1.403e08s3 + 5.574e10s2 + 2.129e12s+ 6.158e14
, (3.17)

which is also asymptotically stable and minimum phase, but is numerically difficult to work

with. Figure 3.6 shows a comparison of the frequency responses of (3.16) and (3.17).

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-200

-100

0

100

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-300

-200

-100

0

Figure 3.6: Frequency response comparison of reduced-order plant and full-order plant.

34

3.2 Test Article

The test article is the SHM platform, which is approximated as a beam for the purposes

of this thesis. The input to the beam system is a load and the output is a displacement.

Although the test article is outside the loop and thus its model is not required for controller

synthesis, the model presented in this section can be used to simulate test article deflection.

3.2.1 Rayleigh-Ritz Method

The lateral displacement ue of the beam was discretized using the Rayleigh-Ritz method

[31]. In particular,

ue(x, t) =
N∑

i=1

Ψi(x)qei(t),

where Ψi(x) are the basis functions and qei(t) are the elastic coordinates. The basis functions

can be selected as ψi = xi+1, which satisfy the boundary conditions of an Euler-Bernoulli

cantilever beam [31]. Considering lateral deflection only, Ψ(x) is given by

Ψ(x) =

0 0 . . . 0

x2 x3 . . . xN+1

0 0 . . . 0

 ,

where N is the number of modes or basis functions. Setting N = 4 and thus considering the

first four modes proves to be adequate for the purposes of modelling and simulation.

3.2.2 Equations of Motion

For a cantilever beam, the equations of motion are given by

Mq̈e(t) + Kqe(t) = f(t),

where

M = σ

ˆ L

0

Ψ⊤(x)Ψ(x)dx,

K = EI

ˆ L

0

Ψ′′⊤(x)Ψ′′(x)dx,

σ is the linear mass density in kg/m, and EI is the flexural rigidity in Nm2, found by

multiplying Young’s modulus and the second moment of area.

35

3.2.3 State-Space Formulation

In matrix form, the equations of motion can be written as

[

q̇e(t)

q̈e(t)

]

=

[

0 1

−M−1K 0

][

qe(t)

q̇e(t)

]

+

[

0

M−1

]

f(t).

By the principle of virtual work for I concentrated loads, work is given by [32]

W =

(
I∑

i=1

Fi(t)Ψ(xi)

)

q(t).

Taking the variation results in

δW = δq⊤

[

Ψ(x1)
⊤ . . . Ψ(xI)

⊤

]

︸ ︷︷ ︸

B̂

F1(t)
...

FI(t)

︸ ︷︷ ︸

u

,

which implies that f = B̂u. Defining the states x1(t) = qe(t) and x2(t) = q̇e(t), the state

matrices of the process model are given by

ẋ(t) =

[

0 1

−M−1K 0

]

x(t) +

[

0

M−1B̂

]

u(t).

Defining Ψ2(x) as the second row of Ψ(x), the displacement uei(t) and velocity u̇ei(t) at the

point xi are given by

[

uei(t)

u̇ei(t)

]

=

[

Ψ2(xi) 0

0 Ψ2(xi)

][

qe(t)

q̇e(t)

]

.

The output is taken to be the displacement of the beam at x = L, which is the point of force

application. If only one actuator acts on the beam, the system is SISO and the state-space

matrices are given by

ẋ(t) =

[

0 1

−M−1K 0

]

︸ ︷︷ ︸

Ab

x(t) +

[

0

M−1B̂

]

︸ ︷︷ ︸

Bb

u(t), y(t) =
[

Ψ2(L) 0

]

︸ ︷︷ ︸

Cb

x(t) + 0
︸︷︷︸

Db

u(t).

36

3.3 MTS Controller

More than just a PID controller, the MTS controller model includes many built-in features

such as null pacing, integrator limits, and cross-coupling compensation. The block diagram

of the control system model is shown in Fig. 3.7, where y is the feedback force measured by

the load cell and u is the control effort.

Forward

loop filter

τus+1
τ`s+1

Null

pacing
−

Setpoint

SP

−

CCC
Cross-coupling

compensation
y

e
Kp

1
s

Ki

Kd

Limit
Valve

balance
VB

Valve

dither

u

s

τds+1

Figure 3.7: Controller block diagram.

3.3.1 Load Profile

The load profile is an array containing load end levels and corresponding transition times.

The interpolation between end levels is performed according to the desired wave shape spec-

ified by the user in the MTS controller. Typically, a “haversine” wave shape is selected,

where the derivative of the command is zero at every end level and there is an inflection

point between each end level. The “haversine” wave shape has been approximated using

the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpolation method in

MATLAB. A sample load profile segment is shown in Fig. 3.8. Although the interpolation

method does not always exhibit the properties of the “haversine” wave shape, for the pur-

poses of modelling, it was deemed to be good enough.

3.3.2 Null Pacing

Null pacing is a feature built-in to the MTS control system that slows the test depending

on the error between feedback and reference signal. There are two types of null pacing, static

and dynamic. Static null pacing occurs if the measured force is outside a specified tolerance

at the load end level. Then the command is held until the load is achieved. Dynamic null

pacing occurs if the error during the transition is outside a tolerance. Then the transition

is slowed based on a Dynamic Null-Pacing Adjustment Rate until the feedback is within the

tolerance. In both cases, the error limit is specified by the user.

37

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4

F
or
ce

(N
)

-1500

-1000

-500

0

500

1000

1500

2000

Linear Interpolation

PCHIP Interpolation

Figure 3.8: Linear vs. PCHIP interpolation.

The null pacing function was first modelled using MATLAB and then transitioned into

Simulink using an embedded MATLAB function block. The block takes inputs of time and

error, and outputs a command. The function uses persistent variables, where the load profile

is loaded into the function workspace during the first call to the function. On subsequent

runs, the data persists in memory within the function workspace. If static and/or dynamic

null pacing occurs, the event is flagged and the load profile variables are modified. “To

Workspace” blocks are used to output the final modified load profile in addition to a “flag”

array containing occurrences of static and dynamic null pacing. Because a load profile has

a variable end time based on the amount of null pacing that occurs, a “stop” flag has been

built into the function to halt simulation when the last line of the load profile is reached.

A sample load profile segment with both static and dynamic null pacing is shown in

Fig. 3.10. The vertical lines flag the start and end of a region of null pacing, where red lines

indicate static null pacing and green lines indicate dynamic null pacing. The black circles

show the original load levels and times. The amount of null pacing is the difference between

the profile time and the actual runtime.

38

Null Pacing

e

r

stop

LP

F

time

error

command

stop

load profile

flag

Figure 3.9: Null pacing block.

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
or
ce

(N
)

-1500

-1000

-500

0

500

1000

1500

2000

Original Load Levels

Load Output

Modified Load Levels

Static Null Pacing

Dynamic Null Pacing

Figure 3.10: Load profile segment with null pacing.

3.3.3 Cross-Coupling Compensation (CCC)

Cross-coupling compensation (CCC) is a feature that is intended for test systems with

multiple actuators, or channels. For example, the SHM platform at NRC is set up with 4

channels, corresponding to an actuator at each corner of the platform.

39

CCC is a control term that accounts for the effects the channels have on each other.

These effects are represented by compliance coefficients, which can be obtained using the

MTS test system. The compliance coefficients for the SHM platform are shown in Table 3.1.

Table 3.1: Compliance Coefficients

C1 C2 C3 C4

C1 58 51 -32 -31
C2 93 105 -53 -53
C3 -52 -51 98 89
C4 -44 -44 76 87

The effect of channel 2 on channel 1 is given by the coefficient C12, which is the value in

the first row, second column of the table.

3.3.4 Integral Control and Integrator Limit

Integral control multiplies the integral of the error between reference signal and feedback

by a constant gain, Ki. In the Simulink model, a pure integrator, 1
s
, is used.

The integral limit is a feature built into the MTS controller. It limits the amount of

valve command used up by the integrator, specified as a percentage of the full-scale output.

This is modelled using a saturation block in Simulink, where the upper and lower limits are

specified as ± lim ·Qmax and Qmax is the full-scale output of the valve.

3.3.5 Proportional Control

In proportional control, the error between the reference signal and feedback is multiplied

by a constant gain, Kp. In the MTS controller, the resulting control signal is passed through

a forward loop filter (FLF), discussed in Section 3.3.7.

3.3.6 Derivative Control

In derivative control, the derivative of the feedback term is multiplied by a constant

gain, Kd. In the MTS controller, a pure derivative is used, represented by d
dt

in the time

domain and s in the frequency domain. In practice, however, pure derivative control is

dangerous because it amplifies noise. Therefore, in the Simulink model this is replaced

by an “approximate” derivative, s
τds+1

, which includes a low-pass filter with a bandwidth

defined by τd. The derivative control signal, along with the proportional control signal is

passed through the FLF.

40

In practice, derivative control is never used in systems with force feedback. Load measure-

ments tend to be very noisy, and this is exacerbated by the MTS controller which operates

in pure derivative control.

3.3.7 Forward Loop Filter (FLF)

The forward loop filter is used to filter the control signal before it is injected on the

test rig. In particular, it is applied to the sum of the proportional and derivative control

signals, and has 5 possible modes of operation. The first, Disabled, means that no filtering is

applied. The Low-Pass setting attenuates signals above a break frequency and limits filter

attenuation at frequencies greater than a recover frequency. In Band-Stop mode, signals

within a bandwidth of a notch frequency are attenuated. Controller mode uses a lead-lag

compensator in place of the FLF, with up to two poles and two zeros. Finally, the Optimized

setting uses predefined parameters for the FLF of a specific channel.

Typically, the FLF is used as a low-pass filter, where the transfer function is given by

GFLF(s) =
τus+ 1

τℓs+ 1
.

The break frequency is given by 1/τℓ and the recover frequency is given by 1/τu.

3.3.8 Setpoint

The setpoint is an offset that is applied to the drive signal. It is a constant value specified

by the user with the same units as the reference signal, which is a load. On the MTS interface,

loads are specified as pounds-force.

3.3.9 Valve Balance

Valve balance is used if the mechanical null of the servovalve is not at the physical

centerpoint. It is the voltage that must be applied to the valve to ensure that the command

and feedback are equal. If a valve is not centered, a nonzero valve balance is required to

ensure the feedback term will settle at zero load. In the MTS system, this value can be

found automatically or adjusted manually. In the Simulink model, a constant value must be

specified before performing simulation.

3.3.10 Valve Dither

Valve dither is a high-frequency, low-amplitude sine signal which keeps the valve moving

to counter the effects of friction. Dither is useful for sticky valves. The amplitude in volts

41

and frequency of the signal can be specified for each valve, but the frequency should be high

enough that a force does not have time to develop.

3.4 System Units

After the fatigue test rig and MTS controller were modelled, real-time experiments

showed that the MTS control law operates on error not in units of pounds-force (lbf), New-

tons (N), or kilo-Newtons (kN), but in units of percentage of fullscale load divided by 10.

Although error as a percentage of fullscale is displayed on the MTS system, load has under-

lying “base units” of kN but is displayed in lbf. Testing of the MTS controller confirmed

that for a percent error of, for example, 1%, the control output is 0.1 V if the P gain is 1

and the I gain is zero. The same scaling applies to integral control, except the control signal

will be proportional to the integral of error in percentage of fullscale divided by 10.

To incorporate these units into the closed-loop model, a unit conversion block can either

be added to the plant model in Section 3.1 or the controller model in Section 3.3. On the

SHM platform, the fullscale load is 2500 lbf, or 11.12 kN. To convert from Newtons to % of

fullscale/10, the output of the plant model should be multiplied by a factor of

kunit conv =
100%/10

11.12e03N
,

which is equivalent to 9.0e-04 %/N. Applying this scaling factor to (3.16) yields a transfer

function given by

G(s) =
1.122e04s+ 6.489e08

s3 + 8.623e04s2 + 5.471e07s+ 5.765e08
. (3.18)

This scaling factor should only be applied to the feedback force and not the force that is

applied to the test article, due to the fact that the model given in Section 3.2 is based on

input units of Newtons.

3.5 Cycle Estimation

Certain features in the MTS controller, in particular the null pacing feature, can have

a significant effect on cycle time. Cycle time is estimated by running a given load profile

through a Simulink model containing the MTS controller and plant model. A block diagram

of the closed-loop system is shown in Fig. 3.11, where Lm is the feedback force measured

by the load cell, u is the control effort, r is the reference signal, and ue is the test article

deflection. The model has been generalized to include disturbances, d, and noise, n.

42

MTS Controller

Plant

Test Article

d

r

Lm

n

ue

Feedback

Control effort

Reference

Voltage

Applied load

Measured load

Lo Deflection

Figure 3.11: Block diagram of closed-loop system.

3.5.1 Simplified Test Article Model

The test article was initially modelled as an Euler-Bernoulli beam using a Rayleigh-Ritz

discretization, as in Section 3.2. However, it was observed that using this beam model

slowed down simulation and cycle times. Additionally, the stiffness of the test article is

already incorporated into the actuator model. Furthermore, for most test articles, stiffness

information is typically available even when a complete numerical model is not. For these

reasons, it was decided to replace the beam model by the force relation F = kx given by

Hooke’s law [33]. The resulting simplified transfer function is then

Gb(s) =
ue(s)

Lo(s)
=

1

kb
. (3.19)

The effective beam stiffness kb was found by dividing the maximum force output by the

maximum actuator stroke. This resulted in similar deflection values to the original beam

model, without slowing down cycle time.

3.5.2 Cycle Time Estimates

Before cycle times can be estimated, the controller and plant parameters must be selected.

The controller and plant models are then combined in closed-loop and simulated with a given

load profile in MATLAB/Simulink. Once the load profile is completed, the modified time array

is available in the MATLAB workspace. These times are used to back out the corresponding

transition times and update the load profile. Afterwards, the load profile can be used to

perform tests on the real test rig.

43

3.5.3 Results

The SHM platform model given by (3.18) and the simplified test article from (3.19) were

simulated using gains of kp = 0.95 and ki = 28.5 and a sample load profile consisting of 12

lines. The profile time was 4.8 seconds, and the actual time to complete the load profile

was 4.96 seconds. The difference in time is due to null pacing, where the extension of the

transition times can be seen by the difference between the red and black circles in Fig. 3.12.

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
or
ce

(N
)

-1500

-1000

-500

0

500

1000

1500

2000

2500

Output vs. Reference Load

Reference

Output

Original Load Profile

Modified Load Profile

Figure 3.12: Load output.

44

Chapter 4

System Identification

As evidenced by the previous chapter, attempting to model a fatigue structural testing

rig from first-principles is an extremely challenging undertaking. An alternative to ana-

lytical modelling, system identification is a technique that allows a numerical model to be

“identified” using input-output data. This chapter discusses the linear time-domain system

identification problem. Open-loop and closed-loop time domain methods are presented, how-

ever, only closed-loop methods can be implemented in the context of fatigue testing in order

to protect the test article. Metrics for comparing identified models are discussed, and SISO

and MIMO system identification results from the SHM platform at NRC are presented.

4.1 Problem Setup

The discrete-time difference equation (2.1) can be rewritten as

y⊤

k = −y⊤

k−1A
⊤

n−1 − · · · − y⊤

k−nA⊤

0 + u⊤

k−τB⊤

m + · · ·+ u⊤

k−τ−mB⊤

0

=
[

−y⊤
k−1 · · · −y⊤

k−n u⊤
k−τ · · · u⊤

k−τ−m

]

︸ ︷︷ ︸

φk

Θ, (4.1)

where Θ =
[

An−1 · · · A0 Bm · · · B0

]⊤

is the parameter matrix.

45

Arranging the data at each timestep in this form yields

y⊤
N

y⊤
N−1
...

y⊤
n+1

y⊤
n

︸ ︷︷ ︸

Ψ

=

φN

φN−1

...

φn+1

φn

︸ ︷︷ ︸

Φ

Θ ⇔ ΦΘ = Ψ. (4.2)

Note that both Θ and Ψ span ny columns. The matrices Ψ and Φ are comprised of data,

and all the unknown parameters are contained in Θ. Therefore, (4.2) can be solved by a

least-squares approach, as discussed in Section 2.2.

In the SISO case, (4.2) simplifies to

yk =
[

−yk−1 · · · −yk−n uk−τ · · · uk−τ−m

]

︸ ︷︷ ︸

φk

θ,

where θ =
[

an−1 · · · a0 bm · · · b0

]⊤

is the parameter column matrix.

4.1.1 Model Order Selection

In the SISO case, the model order can be determined recursively as in Section 2.2.2. In

the MIMO case, however, the order of each transfer function in the identified transfer matrix

will be ny times the selected order n. Therefore, for a 4-actuator system, if n is set to 1, the

transfer functions will be 4th-order. To prevent the identified model from being extremely

high-order, n and m should be selected manually.

4.1.2 Data Generation

ForΦ to be full column rank and Θ̂ to be a unique minimizing solution, the data should be

sufficiently varied. This can be accomplished using a randomized input signal. In addition,

because system identification involves finding a transfer matrix, the initial conditions of

the system should ideally be zero when performing experiments. However, time-domain

identification methods can account for nonzero initial conditions, while frequency-domain

methods cannot [34]. The experiments must also excite all the relevant modes of the system,

as the model will only capture what the data captures. This can be accomplished using an

aggressive but realistic input spectrum.

46

4.2 Open-Loop Identification

Provided open-loop experiments can be performed, the open-loop system from u(s) to

y(s) can be identified. If v(s) is zero-mean, Gaussian white noise, its effect should be averaged

out when computing the least squares solution, which is the approach used in this research.

Alternatively, the signal can be filtered before identification to diminish the effect of noise.

G(s) y(s)u(s) +

v(s)

Figure 4.1: Open-loop system.

4.2.1 Open-Loop Identification Algorithm

1. Perform open-loop experiments. Measure and record inputs u(tk) and outputs y(tk).

2. Choose initial values for orders n and m and time delay τ . Typically start with n and

m set to 1. The order of the system will be ny times n, as discussed in Section 4.1.1.

3. Form data matrices Ψ and Φ using time-domain data.

4. Solve for Θ̂ using least squares or recursive least squares as in Section 2.2. Note that

the recursive least squares algorithm has only been developed for the SISO case.

5. If a non-recursive least squares solver was used, try different values for n, m, and τ

to see if the %VAF increases and/or NRMSE decreases significantly, as discussed in

Sections 4.4.1 and 4.4.2.

6. Form the discrete-time transfer matrix,

G(z−1) = z−τP(z−1)−1Q(z−1),

where

P(z−1) = 1 + An−1z
−1 + · · ·+ A1z

−n+1 + A0z
−n,

Q(z−1) = Bm + Bm−1z
−1 + · · ·+ B1z

−m+1 + B0z
−m.

7. Convert the transfer function from discrete-time to continuous-time.

47

4.3 Closed-Loop Identification

Closed-loop system identification is necessary for a variety of reasons. In the case where

a system is unstable, it cannot be run in open-loop. Alternatively, some systems, such as

fatigue testing rigs, can only be run in closed-loop to avoid damaging the test article. Closed-

loop experiments can also help capture desired system behaviour. This report discusses three

main approaches to the closed-loop system identification problem.

P(s)C(s)

G(s)

r(s) y(s)
u(s)

−

v(s)

+

Figure 4.2: Closed-loop system.

4.3.1 Direct Method

In the direct method, inputs u(s) and outputs y(s) are used to identify P(s) directly.

This approach ignores the controller and feedback, essentially saying it shouldn’t matter that

u(s) comes from a controller [35]. This assumption allows the use of open-loop identification

methods.

4.3.1.1 Direct Closed-Loop Identification Algorithm

1. Perform closed-loop experiments.

2. Measure inputs u(tk) and outputs y(tk).

3. Use open-loop methods to identify the plant P(s).

4.3.2 Indirect Method

The indirect method uses the reference r(s) and outputs y(s) to identify the closed-loop

system G(s). If the controller C(s) is known, it is possible to solve for the plant transfer

matrix P(s) [35].

48

The closed-loop transfer matrix from r(s) to y(s) is given by

G(s) = (1 + P(s)C(s))−1P(s)C(s).

This can be rearranged to solve for the plant transfer matrix, yielding [36]

P(s) = G(s)(C(s)− C(s)G(s))−1.

Note that the order of G(s) is the order of the plant plus the order of the controller.

4.3.2.1 Indirect Closed-Loop Identification Algorithm

1. Perform closed-loop experiments using a known controller C(s).

2. Measure excitation r(tk) and output y(tk).

3. Use open-loop methods to identify the transfer matrix G(s).

4. Compute the plant transfer matrix as

P(s) = G(s)(C(s)− C(s)G(s))−1.

4.3.3 Dual-Youla Method

In the dual-Youla method, the dual to the Youla parametrization of all stabilizing con-

troller is used to identify the plant model. A Youla parametrization is used to transform the

closed-loop system into an open-loop system [1].

4.3.3.1 Youla Parametrization [15, 37]

Theorem 4.1 (All Stabilizing Controllers [15]). Let P0(s) be a plant and C0(s) be any

controller that BIBO stabilizes P0(s). Write P0(s) and C0(s) in terms of their right coprime

factors as

P0(s) = N0(s)M0(s)
−1, C0(s) = Y0(s)X0(s)

−1.

where M0(s), N0(s), X0(s), Y0(s) are all BIBO stable transfer matrices. Two transfer ma-

trices A(s) and B(s) are right coprime if and only if there exists U(s) and V(s) such that

[38]

U(s)A(s) + V(s)B(s) = 1. (4.3)

49

Equation (4.3) is known as the Bezout identity. Then all controllers that BIBO stabilize

P0(s) have the form

C(s) = (Y0(s) + M0(s)Q(s)) (X0(s)− N0(s)Q(s))−1 ,

where Q(s) is any BIBO stable transfer matrix.

4.3.3.2 Dual-Youla Parametrization [1]

The dual is useful for system identification, where given a particular controller C0(s),

P(s) is selected from the set of all plants stabilized by C0(s). The plant can be written as

y(s) = P(s)u(s) + H(s)w(s). (4.4)

Theorem 4.2 (MIMO (R(s), S(s)) Parametrization [39]). Let C0(s) be any compensator

and P0(s) be any noise-free nominal plant stabilized by C0(s). Let C0(s) = Y0(s)
−1X0(s) =

X̃0(s)Ỹ0(s)
−1 and P0(s) = M0(s)

−1N0(s) = Ñ0(s)M̃0(s)
−1 be left and right coprime factor-

izations of the compensator and nominal plant that satisfy

[

X0(s) Y0(s)

−N0(s) M0(s)

][

M̃0(s) −Ỹ0(s)

Ñ0(s) X̃0(s)

]

=

[

1 0

0 1

]

. (4.5)

Then the set of all plants stabilized by C0(s) can be parametrized by the pair (R(s), S(s)),

where R(s) is any BIBO stable transfer matrix and S(s) is any BIBO stable, stably invertible

transfer matrix (i.e., it is biproper and minimum phase), in the form given by (4.4) with

P(s) = (M0(s)− R(s)Y0(s))
−1(N0(s) + R(s)X0(s)) (4.6)

= (Ñ0(s) + X̃0(s)R(s))(M̃0(s)− Ỹ0(s)R(s))−1

and

H(s) = (M0(s)− R(s)Y0(s))
−1S(s). (4.7)

Substituting (4.6) and (4.7) into (4.4) and rearranging yields

(M0(s)− R(s)Y0(s))y(s) = (N0(s) + R(s)X0(s))u(s) + S(s)w(s),

50

C0(s) + N0(s) M0(s)
−1

S(s)

R(s)

Y0(s)X0(s)

+

+

+

w(s)

β(s)

α(s)

r1(s) y(s)

r2(s)

−

u(s)

Figure 4.3: Reparametrized plant and noise structure [1].

which can be rearranged to obtain

M0(s)y(s)− N0(s)u(s)
︸ ︷︷ ︸

β(s)

= R(s)(Y0(s)y(s) + X0(s)u(s)
︸ ︷︷ ︸

α(s)

) + S(s)w(s).

The “open-loop” system is now given by

β(s) = R(s)α(s) + S(s)w(s). (4.8)

The reparametrization of the plant is included in Fig. 4.3, which shows that

α(s) = X0(s)u(s) + Y0(s)y(s). (4.9)

Equation (4.9) is equivalent to

α(s) = X0(s) (C0(s) (r1(s)− y(s)) + r2(s)) + Y0(s)y(s)

= X0(s)
(
X0(s)

−1Y0(s) (r1(s)− y(s)) + r2(s)
)
+ Y0(s)y(s)

= Y0(s)(r1(s)− y(s)) + X0(s)r2(s) + Y0(s)y(s)

= Y0(s)r1(s) + X0(s)r2(s)− Y0(s)y(s) + Y0(s)y(s),

51

which, after cancelling the last two terms, yields

α(s) = Y0(s)r1(s) + X0(s)r2(s). (4.10)

Equation (4.10) can be used to compute α(s) given values of r1(s) and r2(s). Typically r1(s)

is the command r(s) and r2(s) is a disturbance, d(s). If disturbances are assumed to be zero,

the “open-loop” input is given by

α(s) = Y0(s)r(s).

The values of α(s) and β(s) are used to identify R(s). Then the plant transfer function

is computed as

P(s) = (M0(s)− R(s)Y0(s))
−1(N0(s) + R(s)X0(s)).

4.3.3.3 Dual-Youla Closed-Loop Identification Algorithm

1. Select the stabilizing controller C0(s) and its left coprime factors X0(s), Y0(s).

2. Use this controller to perform closed-loop experiments with chosen excitation(s) r1(tk)

and/or r2(tk).

3. Measure inputs u(tk) and outputs y(tk).

4. Choose an initial plant model P0(s) that is stabilized by C0(s), and express the plant in

terms of its left coprime factors M0(s), N0(s). Select the coprime factors to be identity,

1, if possible.

5. Filter the excitation and measurements to obtain α(tk) and β(tk), where

α(s) = Y0(s)r1(s) + X0(s)r2(s), β(s) = M0(s)y(s)− N0(s)u(s).

6. Use α(tk) and β(tk) to estimate R(s) using open-loop techniques.

7. Compute the plant transfer function as

P(s) = (M0(s)− R(s)Y0(s))
−1(N0(s) + R(s)X0(s)).

52

4.4 Model Comparison and Error Metrics

When performing system identification, it is necessary to select a metric that can be used

to compare identified models. Ideally, this metric should be non-dimensional or normalized

to allow for comparison across different datasets. The metric will be computed for both the

training data and validation data. The “best” model is selected to be the one that performs

best in validation, as this ensures that the model is robust.

Two metrics will be used to assess the performance and robustness of identified system

models. The preferred metric is percent variance accounted for (%VAF), which has a best

possible value of 100%. Normalized root-mean-square (NRMS) error will also be discussed.

In the case of NRMS error, the best possible value is zero. For MIMO systems, both %VAF

and NRMSE will be computed for each column of data.

4.4.1 Variance Accounted For

Percent variance accounted for (%VAF), which provides a measure of the quality of fit

for linear models, is given by [40, 41]

%VAF = 100×

(

1−
var(y − ŷ)

var(y)

)

, (4.11)

where y is measured data, ŷ is data simulated using the identified model, and

var(x) =
1

N

N∑

i=1

x2i −

(

1

N

N∑

i=1

xi

)2

is the variance of variable x [41]. %VAF should only be used if the residuals are zero-mean,

white, and normally distributed. The %VAF attains its highest possible value of 100 in the

case that the model is perfectly accurate and there is no noise. In general, the “best” model

is taken to be the one that has the highest %VAF in validation.

4.4.2 NRMS Error

Root-mean-square (RMS) error is given by

RMSE =

√
√
√
√ 1

N

N∑

i=0

(ŷi − yi)2, (4.12)

53

where y is measured data and ŷ is data simulated using the identified model. This metric is

not a useful comparison across different datasets as they can differ in length, amplitude, etc.

Equation (4.12) can be normalized by dividing it by
√

1
N

∑N
i=0 y

2
i . This yields

NRMSE =

√
√
√
√

1
N

∑N
i=0(ŷi − yi)2

1
N

∑N
i=0 y

2
i

.

If the model is able to perfectly recreate the data, the NRMS error would be exactly zero.

In general, the “best” model is taken to be the one that has the lowest mean NRMS error

in validation.

4.4.3 Simulated Control Effort

To further verify the accuracy of the identified plant models, the identified plant can be

recombined with the known controller in order to simulate control effort. In the case of the

indirect and dual-Youla closed-loop methods, the measured control effort is not directly used

to solve the least squares problem. Regardless, a good model should be able to accurately

reproduce this data. Therefore, the %VAF and NRMSE will also be computed for simulated

control effort.

4.5 Results

The SHM fatigue testing rig at NRC, pictured in Fig. 1.1 was used to perform closed-

loop experiments. Initially, SISO tests were performed by running a randomized load profile

on one actuator at a time. Next, MIMO tests were performed on each half of the SHM

platform using a randomized 2-actuator load profile. Finally, MIMO tests were performed

on the entire platform by simultaneously running a profile on all 4 actuators. In all cases,

the first 30 seconds of data was used as training data for the three closed-loop identification

algorithms, with the remainder being used for validation. In addition to simulating the

output of the identified models, the control effort was also simulated.

4.5.1 SISO System Identification

SISO tests were performed on all 4 actuators, and the results for actuator 3 are discussed

here. Figure 4.4 shows the load profile used to perform closed-loop experiments, where the

first 30 seconds was used for training and the remainder for validation. The controller used

54

was a PI controller with kp = 20 and ki = 20, which has a transfer function given by

C(s) = kp +
ki
s

=
kps+ ki

s
=

20s+ 20

s
. (4.13)

In all cases, a recursive least squares method was used to determine the model order and

the data was down-sampled to a sample time of 0.1 second, which is in accordance with

the “rule of thumb” mentioned in Section 2.6.2 since the operating frequency of the test

is approximately 1 Hz. Table 4.1 includes the results for all of the system identification

methods.

0 20 40 60 80 100 120 140 160 180

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4.4: Load profile for SISO system identification.

Table 4.1: SISO system ID results for actuator 3.

Identification
NRMSE %VAF

Method
Training Validation Training Validation

Input Output Input Output Input Output Input Output

Direct 0.1722 0.3373 0.1744 0.3804 97.09 90.77 97.00 90.86
Indirect 0.7442 0.0148 2.0770 0.0154 75.06 99.98 6.68 99.98

Dual-Youla 0.1452 0.0125 0.1473 0.0129 97.89 99.98 97.85 99.98

4.5.1.1 Direct Method

The direct closed-loop method identified a 4th-order BIBO stable non-minimum phase

(NMP) transfer function given by

P (s) =
−0.02733s4 + 0.3592s3 + 28.62s2 + 286.7s+ 1147

s4 + 25.7s3 + 244.4s2 + 1113s+ 202.3
.

55

Figure 4.5 provides a comparison between the measured input and output data and the

corresponding simulated data in training.

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

1.5

(a) Load data.

0 5 10 15 20 25 30

-2

-1

0

1

2

3

4

(b) Voltage data.

Figure 4.5: Direct method—training data for actuator 3.

4.5.1.2 Indirect Method

The indirect closed-loop method identified the closed-loop system as a 3rd-order BIBO

stable minimum phase (MP) transfer function given by

G(s) =
0.3004s3 + 29.8s2 + 447.4s+ 1163

s3 + 46.13s2 + 478s+ 1145
,

56

which resulted in a 2nd-order unstable MP plant system given by

P (s) =
0.003601s2 + 1.418s+ 6.198e-16

s2 + 0.4618s− 0.4423
.

Training data results are shown in Fig. 4.6.

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

1.5

(a) Load data.

0 5 10 15 20 25 30

-2

-1

0

1

2

3

4

(b) Voltage data.

Figure 4.6: Indirect method—training data for actuator 3.

4.5.1.3 Dual-Youla Method

For the dual-Youla closed-loop method, the controller coprime factors were selected as

X0(s) =
s

s+ 20
, Y0(s) =

20s+ 20

s+ 20
,

57

and the initial plant coprime factors were chosen to be

M0(s) = 1, N0(s) = 1.

The algorithm identified a 2nd-order BIBO stable NMP transfer function for R(s) given by

R(s) =
−0.8048s2 − 16.52s+ 19.81

s2 + 23.58s+ 19.85
.

This resulted in a 3rd-order BIBO stable MP plant system given by

P (s) =
0.01142s3 + 1.583s2 + 29.91s+ 23.22

s3 + 22.82s2 + 24.9s+ 0.04249
. (4.14)

The training results are shown in Fig. 4.7.

4.5.2 MIMO Identification on Actuators 1 & 2

MIMO closed-loop experiments were performed on actuators 1 & 2 using a load profile

shown in Fig. 4.8 and a PI controller with kp = 10 and ki = 50 on each actuator. The

controller transfer matrix is given by

C(s) =

(
10s+ 50

s

)

1. (4.15)

The data was down-sampled to a sample time of 0.1 seconds, which corresponds to a sampling

frequency of 10 Hz. Tables 4.2 and 4.3 show the NRMSE and %VAF for all three closed-loop

identification methods.

Table 4.2: NRMSE for MIMO identification of actuators 1 & 2.

Identification
Training Validation

Method
Input Output Input Output

C1 C2 C1 C2 C1 C2 C1 C2
Direct 0.7650 0.3563 0.6649 0.6600 0.6713 0.3527 0.7714 0.6993
Indirect 0.4580 0.7525 0.0319 0.0363 0.8801 1.1715 0.0477 0.0387

Dual-Youla 0.2988 0.2088 0.0328 0.0372 0.3057 0.1887 0.0463 0.0385

4.5.2.1 Direct Method

The direct closed-loop method identified a 4th-order BIBO stable transfer matrix for P(s).

Training data results are shown in Fig. 4.9.

58

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

1.5

(a) Load data.

0 5 10 15 20 25 30

-3

-2

-1

0

1

2

3

(b) Voltage data.

Figure 4.7: Dual-Youla method—training data for actuator 3.

Table 4.3: %VAF for MIMO identification of actuators 1 & 2.

Identification
Training Validation

Method
Input Output Input Output

C1 C2 C1 C2 C1 C2 C1 C2
Direct 42.27 87.34 55.78 53.03 57.37 87.71 39.66 58.46
Indirect 82.62 73.26 99.90 99.84 75.58 72.14 99.77 99.85

Dual-Youla 92.62 95.77 99.89 99.83 92.45 96.49 99.78 99.85

4.5.2.2 Indirect Method

The indirect method identified the closed-loop system G(s) as a 8th-order BIBO stable

transfer matrix. This translated to a 7th-order unstable transfer matrix for P(s). Figure 4.10

59

0 20 40 60 80 100 120 140 160 180

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120 140 160 180

-1

-0.5

0

0.5

1

Figure 4.8: Load profile for MIMO system identification of actuators 1 & 2.

shows the results in training.

4.5.2.3 Dual-Youla Method

The left coprime factors for the controller and initial plant were selected as

X0(s) =

(
s

s+ 10

)

1, Y0(s) =

(
10s+ 50

s + 10

)

1, M0(s) = 1, N0(s) = 1.

The identified R(s) was a 4th-order BIBO stable transfer matrix, which corresponded to a

5th-order P(s) that has one ORHP pole at 0.0592. Although the identified plant is unstable,

this transfer matrix resulted in the best feedforward and H∞ controllers in Chapters 6 and

7, indicating that it is a good model despite the instability. The training results for the

dual-Youla method are shown in Fig. 4.11.

4.5.3 MIMO Identification on Actuators 3 & 4

MIMO closed-loop experiments were also performed on actuators 3 & 4 using the load

profile from Fig. 4.8. A PI controller was used, with kp = 10 and ki = 40, yielding the

60

0 5 10 15 20 25 30

-1

0

1

0 5 10 15 20 25 30

-2

-1

0

1

(a) Load data.

0 5 10 15 20 25 30

-5

0

5

0 5 10 15 20 25 30

-5

0

5

(b) Voltage data.

Figure 4.9: Direct method—training data for actuators 1 & 2.

controller transfer matrix

C(s) =

(
10s+ 40

s

)

1. (4.16)

Tables 4.4 and 4.5 show the NRMS errors and %VAF values for all three closed-loop identi-

fication methods.

61

0 5 10 15 20 25 30

-1

0

1

0 5 10 15 20 25 30

-1

0

1

(a) Load data.

0 5 10 15 20 25 30

-5

0

5

0 5 10 15 20 25 30

-5

0

5

(b) Voltage data.

Figure 4.10: Indirect method—training data for actuators 1 & 2.

4.5.3.1 Direct Method

The direct method identified P(s) as a 4th-order BIBO stable transfer matrix.

4.5.3.2 Indirect Method

Using the indirect method, G(s) was identified as a 6th-order BIBO stable transfer matrix.

This resulted in a 5th-order transfer matrix for P(s) with two ORHP poles.

62

0 5 10 15 20 25 30

-1

0

1

0 5 10 15 20 25 30

-1

0

1

(a) Load data.

0 5 10 15 20 25 30

-5

0

5

0 5 10 15 20 25 30

-5

0

5

(b) Voltage data.

Figure 4.11: Dual-Youla method—training data for actuators 1 & 2.

4.5.3.3 Dual-Youla Method

The left coprime factors for the dual-Youla method were chosen to be

X0(s) =

(
s

s+ 15

)

1, Y0(s) =

(
10s+ 40

s + 15

)

1, M0(s) = 1, N0(s) = 1.

The identified R(s) was a 4th-order BIBO stable transfer matrix, which corresponded to a

5th-order plant system with one ORHP pole at 0.13.

63

Table 4.4: NRMSE for MIMO identification of actuators 3 & 4.

Identification
Training Validation

Method
Input Output Input Output

C3 C4 C3 C4 C3 C4 C3 C4
Direct 0.2745 0.8594 0.6652 0.7851 0.2603 0.7637 0.8000 0.8794
Indirect 0.2466 0.3606 0.0202 0.0234 0.2812 0.9272 0.0261 0.0343

Dual-Youla 0.1603 0.2292 0.0217 0.0241 0.1656 0.2857 0.0275 0.0354

Table 4.5: %VAF for MIMO identification of actuators 3 & 4.

Identification
Training Validation

Method
Input Output Input Output

C3 C4 C3 C4 C3 C4 C3 C4
Direct 93.06 34.42 54.23 53.35 93.25 41.47 36.45 22.90
Indirect 94.61 92.76 99.96 99.94 92.32 78.67 99.93 99.88

Dual-Youla 97.44 94.92 99.95 99.94 97.28 92.70 99.92 99.87

4.5.4 4-Actuator MIMO Identification

A PI controller with forward loop filters (FLF) was used to track a randomized load

profile on all 4 actuators. The same controller was used on each actuator, where the P gain

was set to 20, the I gain to 50, and the pole and zero frequencies of the FLF were set to 0.75

Hz and 2 Hz, respectively. This resulted in a 4× 4 diagonal controller transfer matrix given

by

C(s) =

(
7.5s2 + 144.2s+ 235.6

s2 + 4.712s

)

1. (4.17)

The data was down-sampled to a sample time of 0.1 seconds. The NRMS errors for the

training and validation datasets for each method are shown in Tables 4.6 and 4.7, and the

corresponding %VAF values are included in Tables 4.8 and 4.9. In the case of the direct

and indirect methods, the simulated voltage signal is unstable. These identified models are

unable to recover the voltage data. which is indicated by the “NaN” entries in the tables.

Table 4.6: NRMSE in training for 4-actuator MIMO identification.

Identification Input Output
Method C1 C2 C3 C4 C1 C2 C3 C4
Direct NaN NaN NaN NaN 0.7884 0.6197 0.8016 0.8002
Indirect NaN NaN NaN NaN 0.1266 0.1383 0.1578 0.1695

Dual-Youla 0.7112 0.7243 0.9073 0.9271 0.0808 0.0823 0.1054 0.1105

64

Table 4.7: NRMSE in validation for 4-actuator MIMO identification.

Identification Input Output
Method C1 C2 C3 C4 C1 C2 C3 C4
Direct NaN NaN NaN NaN 0.8824 0.7152 0.7481 0.8274
Indirect NaN NaN NaN NaN 0.1151 0.1334 0.1389 0.1276

Dual-Youla 0.7865 0.7832 0.8938 0.9516 0.0871 0.0958 0.1090 0.0975

Table 4.8: %VAF in training for 4-actuator MIMO identification.

Identification Input Output
Method C1 C2 C3 C4 C1 C2 C3 C4
Direct NaN NaN NaN NaN 47.36 60.85 68.17 49.52
Indirect NaN NaN NaN NaN 98.78 98.40 98.22 97.95

Dual-Youla 48.97 48.00 18.30 14.28 99.34 99.21 98.84 98.75

Table 4.9: %VAF in validation for 4-actuator MIMO identification.

Identification Input Output
Method C1 C2 C3 C4 C1 C2 C3 C4
Direct NaN NaN NaN NaN 34.74 52.07 44.39 38.72
Indirect NaN NaN NaN NaN 98.68 98.22 98.05 98.38

Dual-Youla 38.76 38.67 20.07 9.39 99.24 99.08 98.80 99.05

4.5.4.1 Direct Method

The direct method identified the plant as a 12th-order stable transfer matrix.

4.5.4.2 Indirect Method

The indirect method identified a 4th-order BIBO stable transfer matrix for G(s), which

resulted in an identified P(s) that was 2nd-order with two ORHP poles.

4.5.4.3 Dual-Youla Method

The initial plant was selected as P(s) = 1, with coprime factors

M0(s) = 1, N0(s) = 1.

65

The controller, which has diagonal entries given by (4.17), was factorized as

X0(s) =

(
s2 + 4.712s

(s+ 30)2

)

1, Y0(s) =

(
7.5s2 + 144.2s+ 235.6

(s+ 30)2

)

1.

The identified R(s) was a 4th-order BIBO stable transfer matrix, which resulted in a 6th-order

BIBO stable plant system.

4.5.5 Discussion

In all of the SISO and MIMO cases presented in this chapter, the dual-Youla closed-loop

system identification method is consistently able to produce the best results, both in terms

of NRMSE and %VAF for both the output data and simulated control effort. The SISO

and 2-actuator MIMO identified models are able to recreate the output data and control

effort data to a high degree of accuracy. In the 4-actuator case, although the output data

in validation is accurate, the simulated control effort is not. However, due to the layout of

the SHM platform, the cross-talk between each half of the platform is minimal. Therefore,

the SISO and 2-actuator dual-Youla identified models will be used for controller design in

Part III.

66

Part III

Controller Synthesis

67

Chapter 5

Using the H∞ Norm to Synthesize

Optimal PI Gains

Although PI controllers are typically tuned by hand without regard to a system model,

this chapter explores the synthesis of model-based “optimal” PI controllers. The synthesis

methods attempt to minimize the closed-loop H∞ norm using convex optimization subject

to matrix inequality constraints. However, both methods involve bilinear matrix inequalities

(BMIs) and thus the optimization problems are not convex. To deal with this, iteration

and bisection method are used, along with initial stabilizing PI gains, to solve the problem

locally or sub-optimally. Because the MTS controller includes a SISO PI controller for each

actuator, the synthesis methods in this chapter are also SISO. Both the controller synthesis

methods presented can either use the closed-loop system shown in Fig. 5.1 or that of Fig. 2.1.

If using the configuration in Fig. 5.1, there are no weighting filters on disturbances or noise.

yp(s)r(s) C(s)

Wu(s)We(s)

e(s)−

z1(s) z2(s)

n(s)

d(s)

P (s)
u(s)

Figure 5.1: Block diagram for controller synthesis.

68

5.1 Starting Gains

To initialize either of the algorithms mentioned in this section, a set of initial stabilizing

gains must be found. One way to find these gains is to select gains that are known to work

on the real system. Another approach is to synthesize gains using the MATLAB PID tuner.

5.1.1 MATLAB PID Tuner

MATLAB includes a built-in PID tuner that generates PID gains based on a model of the

system. The user can adjust the desired response manually using the application interface,

or synthesize gains automatically from the command line using the function pidtune. The

tuning objectives are to maintain closed-loop BIBO stability, and provide “adequate” per-

formance and robustness [42]. Because PI control is used in fatigue testing, the MATLAB PID

tuner is used to synthesize PI gains.

5.2 Static Output Feedback Method

A static output feedback controller is defined as K ∈ R
nu×ny , where u(t) = Ky(t) and

the generalized plant is given by (2.26), (2.27), and (2.28) [43]. The static output feedback

problem is non-convex due to the presence of a BMI constraint. Therefore, bisection method

will be used to solve the problem sub-optimally.

To design K to be a PI controller, the input to the controller y(t) must be defined as

the error augmented with the integral of the error. Therefore, it is necessary to define an

“integral state,” as in Section 2.4.3.1 [16, 17].

5.2.1 Integral State

The time rate of change of the integral state is set equal to the error e(t), such that the

state itself is the integral of the error. If disturbances and noise are weighted, the definition

of the integral state is given by (2.29). If disturbances and noise are not weighted, the state

xi(t) is defined by

ẋi(t) = r(t)− (yo(t) + n(t))

= r(t)− (Coxo(t) + Do (u(t) + d(t)) + n(t))

= r(t)− Coxo(t)− Dou(t)− Dod(t)− n(t).

69

Then the controller input y(t) is given by

y(t) =

[

e(t)

xi(t)

]

.

Defining the performance outputs as weighted tracking error and weighted control effort,

z(s) = [We(s)e(s) Wu(s)u(s)]
⊤ and the exogenous input is w(t) = [r(t) d(t) n(t)]⊤.

The closed-loop system from exogenous inputs w(t) to performance outputs z(t) is then

represented by

ẋ(t) = (A + B2K̄C2)
︸ ︷︷ ︸

ACL

x(t) + (B1 + B2K̄D21)
︸ ︷︷ ︸

BCL

w(t), (5.1)

z(t) = (C1 + D12K̄C2)
︸ ︷︷ ︸

CCL

x(t) + (D11 + D12K̄D21)
︸ ︷︷ ︸

DCL

w(t), (5.2)

where K̄ = (1 − KD22)
−1K.

5.2.2 Generalized Plant

In the case that disturbances and noise are weighted, in addition to weighting the perfor-

mance channels, the generalized plant including the integral state is given by (2.33), (2.34),

(2.35). If disturbances and noise are not weighted, the generalized plant is described by the

state-space realization given by

ẋ(t) =

Ao 0 0 0

−BeCo Ae 0 0

0 0 Au 0

−Co 0 0 0

︸ ︷︷ ︸

A

x(t) +

0 Bo 0

Be 0 0

0 0 0

1 −Do −1

︸ ︷︷ ︸

B1

w(t) +

Bo

−BeDo

Bu

−Do

︸ ︷︷ ︸

B2

u(t) , (5.3)

z(t) =

[

−DeCo Ce 0 0

0 0 Cu 0

]

︸ ︷︷ ︸

C1

x(t) +

[

De 0 0

0 0 0

]

︸ ︷︷ ︸

D11

w(t) +

[

−DeDo

Du

]

︸ ︷︷ ︸

D12

u(t) , (5.4)

y(t) =

[

−Co 0 0 0

0 0 0 1

]

︸ ︷︷ ︸

C2

x(t) +

[

1 −Do −1

0 0 0

]

︸ ︷︷ ︸

D21

w(t) +

[

−Do

0

]

︸ ︷︷ ︸

D22

u(t) , (5.5)

where x(t) =
[
x⊤
o (t) x⊤

e (t) x⊤
u (t) xi(t)

]
⊤.

70

5.2.3 Synthesis Method

The generalized plant equations are substituted into the closed-loop system equations

given by (5.1) and (5.2). Because the closed-loop state-space matrices contain the design

variable K̄, and P and Q are also design variables, (2.24) and (2.25) are actually bilinear

matrix inequalities in the variables P or Q, K̄, and γ. As such, they can only be solved

sub-optimally. Since (2.25) is equivalent to (2.24) through a congruence transformation with

Q = P−1, this imposes the additional constraint PQ = 1 [43]. The complete synthesis method

can be summarized as follows.

1. Let P0 = Q0 = 1, and set k = 0. Given a set of stabilizing PI gains, compute the

closed-loop H∞ norm. Multiply this value by a safety factor of 1.5, then set this as

the upper bound on γd, γu. Set the lower bound, γℓ, to zero. Then the starting γd is

equal to (γu + γℓ)/2.

2. Solve for Pk+1 = P⊤
k+1 ∈ R

nx×nx , Qk+1 = Q⊤
k+1 ∈ R

nx×nx that minimize trace(QkPk+1+

PkQk+1) such that Pk+1 > 0, Qk+1 > 0, γ < γd,

[

No 0

0 1

]⊤

Pk+1A + A⊤Pk+1 Pk+1B1 C⊤
1

⋆ −γ1 D⊤
11

⋆ ⋆ −γ1

[

No 0

0 1

]

< 0 , (5.6)

[

Nc 0

0 1

]⊤

AQk+1 + Qk+1A
⊤ Qk+1C

⊤
1 B1

⋆ −γ1 D11

⋆ ⋆ −γ1

[

Nc 0

0 1

]

< 0 , (5.7)

[

Pk+1 1

⋆ Qk+1

]

≥ 0 , (5.8)

where R (No) = N ([C2 D21]) and R (Nc) = N
([

B⊤
2 D⊤

12

])
.

3. If |tr(QkPk+1 + PkQk+1)− 2nx| is less than a tolerance, proceed to Step 4. If not, set

k = k + 1 and return to Step 2.

4. Fix P = Pk+1 and solve for K̄ that minimizes γ such that γ < γd and

P(A + B2K̄C2) + (A + B2K̄C2)
⊤P P(B1 + B2K̄D21) (C1 + D12K̄C2)

⊤

⋆ −γ1 (D11 + D12K̄D21)
⊤

⋆ ⋆ −γ1

< 0 .

(5.9)

71

Perform bisection on γd, then return to Step 2.

5. Repeat until γu and γℓ are within a specified tolerance of each other.

6. Recover the controller by K = K̄(1 + D22K̄)−1.

Equations (5.6) and (5.7) are equivalent forms of (2.24) and (2.25) found using the projection

lemma, while (5.8) is an LMI included to enforce the constraint PQ = 1 [43].

5.3 Iterative Method

The “iterative method” aims to find a set of PI gains using (2.24) from the Bounded Real

Lemma, which is discussed in Section 2.4.2. Once a PI controller structure has been specified,

the optimization problem is no longer convex due to the presence of a BMI constraint. The

problem will be solved locally through the use of iteration and bisection method.

5.3.1 PI Controller

A PI controller, which is represented by the transfer function [44]

C(s) = kp +
ki
s
,

has corresponding state-space matrices given by

Ac = 0 , Bc = 1 , Cc = ki , Dc = kp . (5.10)

Combining this controller with the generalized plant yields the following closed-loop state-

space realization,

ẋ(t) =

[

A + B2DcC2 B2Cc

BcC2 Ac

]

︸ ︷︷ ︸

ACL

x(t) +

[

B1 + B2DcD21

BcD21

]

︸ ︷︷ ︸

BCL

w(t) , (5.11)

z(t) =
[

C1 + D12DcC2 D12Cc

]

︸ ︷︷ ︸

CCL

x(t) + (D11 + D12DcD21)
︸ ︷︷ ︸

DCL

w(t) . (5.12)

Note that the design variables kp and ki are contained exclusively in Cc and Dc.

72

5.3.2 Generalized Plant

If disturbances and noise are weighted, the generalized plant is given by (2.30), (2.31),

(2.32). Otherwise, the generalized plant is described by the state-space realization given by

ẋ(t) =

Ao 0 0

−BeCo Ae 0

0 0 Au

︸ ︷︷ ︸

A

x(t) +

0 Bo 0

Be 0 0

0 0 0

︸ ︷︷ ︸

B1

w(t) +

Bo

−BeDo

Bu

︸ ︷︷ ︸

B2

u(t) , (5.13)

z(t) =

[

−DeCo Ce 0

0 0 Cu

]

︸ ︷︷ ︸

C1

x(t) +

[

De 0 0

0 0 0

]

︸ ︷︷ ︸

D11

w(t) +

[

−DeDo

Du

]

︸ ︷︷ ︸

D12

u(t) , (5.14)

y(t) =
[

−Co 0 0

]

︸ ︷︷ ︸

C2

x(t) +
[

1 −Do −1

]

︸ ︷︷ ︸

D21

w(t) + (−Do)
︸ ︷︷ ︸

D22

u(t) , (5.15)

where y(t) is the error, and x(t) =
[
x⊤
o (t) x⊤

e (t) x⊤
u (t)

]
⊤.

5.3.3 Synthesis Method

The generalized plant is substituted into the closed-loop expression given by (5.11) and

(5.12). Next, these closed-loop state-space matrices are used in the matrix inequality given

by (2.24). Typically, this formulation could be solved using convex optimization with LMI

constraints. However, because the structure of the controller is specified as PI in this case,

(2.24) is a BMI. At least one of the design variables kp and ki is present in each of the

closed-loop state-space matrices, and P is also a design variable. In the iterative method,

the algorithm alternates between fixing the gains kp and ki and solving for a feasible P, then

fixing P and optimizing over the gains. The synthesis method can be summarized as follows.

1. Given a set of stabilizing PI gains, fix kp and ki and use their values to compute the

closed-loop H∞ norm. Set γu = 1.5 ‖G0‖∞. Set γℓ = 0. Then γd = (γu + γℓ)/2.

2. Solve for P = P⊤ ∈ R
(nx+nc)×(nx+nc) such that γ < γd, P > 0,

PACL + A⊤
CLP PBCL C⊤

CL

⋆ −γ1 D⊤
CL

⋆ ⋆ −γ1

 < 0 ,

where ACL, BCL, CCL, and DCL are given in (5.11) and (5.12). Fix P then proceed to

Step 3.

73

3. Solve for kp and ki that minimize γ such that γ < γd and

PACL + A⊤
CLP PBCL C⊤

CL

⋆ −γ1 D⊤
CL

⋆ ⋆ −γ1

 < 0 .

Fix kp and ki. Perform bisection on γd, then return to Step 2.

4. Repeat until γu and γℓ are within a specified tolerance of each other.

5.4 Results

The PI controller synthesis methods were applied to the analytical model of the SHM

platform, pictured in Fig. 1.1, from Chapter 3 and the identified model of actuator 3 from

Chapter 4. In both cases, the starting gains for the static output feedback and iterative H∞

algorithms are those synthesized by the MATLAB PID tuner. The controller gains for each

method and corresponding closed-loop simulation results are presented.

5.4.1 Analytical Model

The analytical model of the SHM platform has a transfer function given by (3.16),

P (s) =
Lm(s)

V (s)
=

1.2465e07s+ 7.21e11

s3 + 8.623e04s2 + 5.471e07s+ 5.765e08
,

A unit conversion was applied such that the synthesized gains would be in the proper units

of V/(% of fullscale load/10), as explained in Section 3.4.

5.4.1.1 MATLAB PID Tuner Method

For the PID tuner, the resulting gains were kp = 0.95 and ki = 28.54, and the plots are

shown in Fig. 5.2.

5.4.1.2 Static Output Feedback Method

Using the generalized plant given by (5.3), (5.4), (5.5), the static output feedback method

synthesized gains of kp = 488 and ki = 2.367e04. The plots are included in Fig. 5.3.

74

0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 5.2: Simulation results for PID tuner applied to the analytical model.

75

0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12

-7

-6

-5

-4

-3

-2

-1

0

1

2
10

-4

Figure 5.3: Simulation results for static output feedback applied to the analytical model.

76

5.4.1.3 Iterative Method

The iterative method yielded kp = 36.0 and ki = 151.1, with the generalized plant defined

by (5.13), (5.14), (5.15). Figure 5.4 shows the closed-loop simulation results.

5.4.2 Identified Model

Next, the PI controller synthesis algorithms were applied to the identified model of ac-

tuator 3 on the SHM platform, given by (4.14),

P (s) =
0.01142s3 + 1.583s2 + 29.91s+ 23.22

s3 + 22.82s2 + 24.9s+ 0.04249
.

This transfer function is in the proper units, so the gains do not have to be converted.

5.4.2.1 MATLAB PID Tuner Method

The MATLAB PID tuner outputted gains of kp = 0.0023 and ki = 1.1992e-05. This

controller is stabilizing but unable to provide tracking, as shown in Fig. 5.5.

5.4.2.2 Static Output Feedback Method

The static output feedback method, using a generalized plant defined by (5.3), (5.4),

(5.5), synthesized gains of kp = 179.1 and ki = 0.077. Results are included in Fig. 5.6.

5.4.2.3 Iterative Method

For the identified model, a generalized plant given by (2.30), (2.31), (2.32) was used

in the iterative H∞ algorithm. This yielded gains of kp = 46.3 and ki = 106.3, with the

closed-loop simulation results shown in Fig. 5.7.

5.4.3 Discussion

Both the static output feedback and iterative methods are able to achieve better track-

ing results than the MATLAB PID tuner, using both the analytical and identified models.

Although the static output feedback controllers result in lower tracking errors than the PI

controllers synthesized using the iterative method, the iterative method produces more re-

alistic controller gains. The gains produced by the iterative method are safe to implement

and are similar to gains typically used on the SHM platform. The static output feedback

gains, on the other hand, are too high to implement. Therefore, based on the results in this

chapter, the iterative method is recommended for synthesizing initial PI gains.

77

0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Figure 5.4: Simulation results for iterative method applied to the analytical model.

78

0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5.5: Simulation results for PID tuner applied to the identified model.

79

0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Figure 5.6: Simulation results for static output feedback applied to the identified model.

80

0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 5.7: Simulation results for iterative method applied to the identified model.

81

Chapter 6

SISO Two Degree-of-Freedom Control

Two degree-of-freedom (2DOF) controllers are controllers that include feedback and feed-

forward, meaning that they act on the error as well as the reference signal [15]. In the SISO

case, 2DOF controllers can be designed by independently designing the feedback controller

and the feedforward controller. The feedback controller can be an H∞ controller or a PI

controller, for example. The feedforward controller can be designed via an inversion-based

feedforward controller synthesis method.

6.1 Feedback Control

Although feedback controllers can be designed in a number of ways, this thesis will focus

on PI and H∞ controllers. The PI controller may be tuned by hand or designed using one

of the methods presented in Chapter 5. If employing an H∞ control scheme, controllers can

be designed via the synthesis method in Chapter 7 using the 1DOF generalized plants given

in Section 2.4.3. The H∞ controller can be designed with or without an integrator.

6.2 Feedforward Control

In theory, if a system model is 100% accurate and there are no disturbances or noise,

then perfect tracking can be achieved using a feedforward controller that is the inverse of the

system model [45]. Mathematically, this results in an exact cancellation of transfer function

poles and zeros such that the output equals the reference. In reality, however, this type

of feedforward control must be implemented alongside a feedback controller, as shown in

Fig. 6.1, to account for model uncertainty. Inversion-based feedforward control has been

shown to improve tracking performance when implemented in conjunction with feedback

control [45]. Although feedback control, and specifically PI control, is used extensively

82

in fatigue testing, feedforward control is not. This thesis presents a method for generating

inversion-based feedforward controllers that use an approximate inverse of the system model.

P (s)C(s)r(s) y(s)
−

v(s)

+

F (s)

+

Figure 6.1: Feedforward-feedback control architecture.

Inversion-based feedforward controllers are only recommended for the SISO case. Al-

though it is straightforward to compute an approximate inverse for a transfer function, the

analogous process for transfer matrices is not so clear-cut. When attempting to synthesize

feedforward controllers for MIMO systems, the recommended approach is to use a 2DOF

H∞ controller formulation, which is discussed in Chapter 7.

6.2.1 Order Reduction

Because the MTS controller has a limited amount of computational power, it is often nec-

essary to implement reduced-order controllers if the initial models are relatively high order.

In the case of feedforward control, rather than reduce-ordering the synthesized controller,

the system transfer function should be reduce-ordered to the desired order before performing

the inversion. As explained in Section 2.5.1, order reduction can be performed by manually

eliminating higher modes, or using the balred command in MATLAB.

6.2.2 Mirroring Non-Minimum Phase Zeros

Inverting a transfer function is as simple as switching the numerator and the denom-

inator. If, however, the transfer function is non-minimum phase (NMP), its ORHP zeros

will yield ORHP poles when performing the inversion, rendering the inverted transfer func-

tion unstable. Therefore, any NMP zeros must first be “mirrored” into the OLHP before

performing the inversion to ensure that the resulting transfer function is BIBO stable [46].

Although mirroring alters the phase of the transfer function, the gain is unchanged.

83

As an example, a reduced-order identified model for actuator 2 on the SHM rig at NRC

obtained using the direct system identification method is given by

G(s) =
−0.2417s2 + 0.1289s+ 103.1

s2 + 95.15s+ 13.92
,

which has one NMP zero at 20.92. The inverse of G(s) is given by

G−1(s) =
4.138s2 + 393.7s+ 57.61

s2 − 0.5333s− 426.7
,

which is unstable. However, if the NMP zero at 20.92 is first mirrored into the OLHP yielding

an MP zero at −20.92, the inverse is then

F (s) =
4.138s2 + 393.7s+ 57.61

s2 + 41.32s+ 426.7
.

The transfer function F (s) is BIBO stable and can therefore be used for feedforward control.

The Bode diagrams for G(s), G−1(s), and F (s) are shown in Fig. 6.2. Despite the fact that

the phase of G(s) and F (s) vary, the gain of F (s) perfectly matches the gain of G(s).

10
-2

10
0

10
2

10
4

-20

-10

0

10

20

10
-2

10
0

10
2

10
4

-200

0

200

400

Figure 6.2: Bode diagram comparison of plant and feedforward controllers.

84

6.2.3 Inverting a State-Space System

Computing inversion-based feedforward controllers involves taking the inverse of a dy-

namic system. This can be done by inverting a transfer function/matrix using MATLAB, or

using the state-space formulation in the following lemma.

Lemma 6.1 (Inverse of a Square System [47]). Consider a square causal linear time-

invariant (LTI) system G with minimal state-space realization given by

x(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

where x(t) ∈ R
nx, u(t) ∈ R

nu, y(t) ∈ R
ny , nu = ny, and it is assumed that D is invertible. A

minimal state-space realization of the inverse of G is given by

ẋ(t) =
(
A − BD−1C

)

︸ ︷︷ ︸

Ai

x(t) + BD−1
︸ ︷︷ ︸

Bi

y(t), (6.1)

u(t) = −D−1C
︸ ︷︷ ︸

Ci

x(t) + D−1
︸︷︷︸

Di

y(t). (6.2)

The matrix D being invertible indicates that the system has non-zero feedthrough and the

transfer function is biproper, meaning that the relative degree is zero. All physical systems

are proper, however, only biproper systems can be inverted. If a strictly proper transfer

function is inverted, the resulting system will be improper. Improper transfer functions

indicate non-causality, which means present outputs depend on future inputs. Fortunately,

all of the identified models presented in Chapter 4 are biproper. In the case that a system is

strictly proper, the numerator should be multiplied by factors of (τs+ 1) until the relative

degree of the system is zero. The coefficient τ is selected to be small enough that its behaviour

is non-dominant.

The above lemma can be used to compute inverses of a transfer function. First, the

transfer function (with NMP zeros mirrored into the OLHP) can be converted to state-space

using the ss function in MATLAB. Then equations (6.1) and (6.2) can be used to compute the

state-space realization of the inverted system. The inverted state-space system can then be

converted back to a transfer function using the tf command in MATLAB.

85

6.2.4 Synthesis Method

Synthesizing a SISO inversion-based feedforward controller involves taking an approxi-

mate (BIBO stable) inverse of the system transfer function. The algorithm is as follows.

1. Reduce-order the transfer function, if desired.

2. Mirror any NMP from the ORHP into the OLHP.

3. Invert the transfer function by flipping the numerator and denominator, or using the

state-space inversion method included in Section 6.2.3.

6.3 Results

Identified models were generated for actuator 3 on the SHM fatigue testing rig at NRC,

pictured in Fig. 1.1. The 3rd-order dual-Youla identified model from Section 4.5 was used

to generate both 1DOF H∞ controllers and inversion-based feedforward controllers. Before

synthesizing the H∞ controllers, the identified model was prewrapped using a P controller

with a gain of 1, as in Section 7.1. Two H∞ controllers were successfully implemented, a

1st-order 1DOF controller without integrator, and a 3rd-order 1DOF controller with integra-

tor, where H∞ with integrator is denoted by HI
∞. 1st-, 2nd-, and 3rd-order inversion-based

feedforward controllers were also generated. The 2nd-order controller was shown to yield

the lowest RMS error in preliminary testing and was subsequently used to perform timing

experiments. This feedforward controller was implemented in conjunction with each of the

H∞ controllers, and a hand-tuned PI controller. The PI controller was tuned to have a P

gain of 40 and an I gain of 80. In addition, the FLF was enabled, with the pole frequency

set to 0.75 Hz and the zero frequency set to 3 Hz.

To assess controller performance, each controller combination was used to track the same

load profile for the same number of passes with PSO turned on. In addition, the null pacing

limits for actuators 1, 2, and 4 were opened up to 100% to ensure that null pacing could

only occur due to actuator 3. Afterwards, the RMS errors (described in Section 2.6.3) and

runtimes were analyzed and compared. The minimum transition time was initially set to

0.4 seconds, then to 0.1 seconds. First, the tuned PI controller with CCC (described in

Section 3.3.3) was implemented and used as the baseline for comparison. PI with CCC is

the controller scheme typically used to perform fatigue testing at NRC. Next, CCC was

turned off and the inversion-based feedforward controller was implemented in combination

with the tuned PI controller, the 1st-order H∞ controller, and the 3rd-order HI
∞ controller.

The results for minimum times of 0.4 and 0.1 seconds are contained in Tables 6.1 and 6.2,

86

respectively. Plots for all 4 controllers for a minimum time of 0.4 seconds are shown in

Figs. 6.3 to 6.6.

Table 6.1: SISO results for actuator 3 with a minimum time of 0.4 s.

Controller
H∞ Profile

Runtime
Null

RMS Error
% Difference

Order Time Pace Time RMSE

PI + CCC – 25.15 s 28.34 s 3.19 s 22.17 lbf – –

PI + FFW – 24.95 s 27.05 s 2.10 s 14.98 lbf –4.6% –32.4%

H∞ + FFW 1 24.85 s 27.29 s 2.44 s 9.09 lbf –3.7% –59.0%

HI
∞ + FFW 3 24.85 s 27.07 s 2.22 s 11.16 lbf –4.5% –49.7%

Table 6.2: SISO results for actuator 3 with a minimum time of 0.1 s.

Controller
H∞ Profile

Runtime
Null

RMS Error
% Difference

Order Time Pace Time RMSE

PI + CCC – 12.95 s 16.04 s 3.09 s 37.46 lbf – –

PI + FFW – 11.64 s 16.55 s 4.91 s 37.47 lbf +3.2% +0.03%

H∞ + FFW 1 9.44 s 12.85 s 3.41 s 31.29 lbf –19.9% –16.5%

HI
∞ + FFW 3 9.22 s 13.06 s 3.84 s 36.42 lbf –18.6% –2.8%

6.3.1 Discussion

A major advantage of feedforward control is that it is a “predictive” controller, whereas

a feedback controller is “reactive.” While feedback controllers apply a control input based on

the measured error, feedforward applies a control input based on the anticipated response of

the plant. If the system model is accurate, an inversion-based feedforward controller should

provide the bulk of the control effort. Then the feedback controller is used to “clean up”

any inaccuracies that may arise due to model uncertainty, noise, or disturbances. In the

case of each of the controllers implemented with feedforward, the feedforward controller is

contributing the vast majority of the control effort. However, the H∞ and HI
∞ controllers

are better than PI at cleaning up the control signal. Consequently, these controllers are able

to achieve the best performance, reaching faster speeds with less error.

87

0 5 10 15 20 25 30

-600

-400

-200

0

200

400

600

(a) System response data.

0 5 10 15 20 25 30

-15

-10

-5

0

5

10

15

(b) Voltage data.

0 5 10 15 20 25 30

-100

-50

0

50

100

(c) Error data.

Figure 6.3: PI control + CCC.

88

0 5 10 15 20 25 30

-600

-400

-200

0

200

400

600

(a) System response data.

0 5 10 15 20 25 30

-15

-10

-5

0

5

10

15

(b) Voltage data.

0 5 10 15 20 25 30

-100

-50

0

50

100

(c) Error data.

Figure 6.4: PI control + 2nd-order FFW.

89

0 5 10 15 20 25 30

-600

-400

-200

0

200

400

600

(a) System response data.

0 5 10 15 20 25 30

-15

-10

-5

0

5

10

15

(b) Voltage data.

0 5 10 15 20 25 30

-100

-50

0

50

100

(c) Error data.

Figure 6.5: 1st-order H∞ + 2nd-order FFW.

90

0 5 10 15 20 25 30

-600

-400

-200

0

200

400

600

(a) System response data.

0 5 10 15 20 25 30

-15

-10

-5

0

5

10

15

(b) Voltage data.

0 5 10 15 20 25 30

-100

-50

0

50

100

(c) Error data.

Figure 6.6: 3rd-order HI
∞ + 2nd-order FFW.

91

Chapter 7

MIMO Two Degree-of-Freedom

Control via H∞

In Chapter 6, 2DOF controllers were designed for SISO systems by independently design-

ing the feedback and feedforward controllers. While generating inversion-based feedforward

controllers is straightforward in the SISO case, generating MIMO feedforward controllers via

transfer matrix inversion is not recommended. In this chapter, the feedforward and feedback

controllers will be designed simultaneously using a 2DOFH∞ approach. H∞-optimal control

synthesis yields a controller that, if successful, minimizes the H∞ norm of the closed-loop

system [48]. Before performing controller synthesis, the plant model is “prewrapped” with a

detuned PI controller. Then the generalized plant is defined, as in Section 2.4.3. Specifically,

the 2DOF generalized plant formulation with optional integrator is used in this chapter.

7.1 PI Control “Prewrap”

The MTS controller includes a plethora of safety features and it was preferable to keep

these active when implementing alternative controllers. To keep the MTS controller in the

loop, while allowing the H∞ controller to provide the bulk of the control effort, the built-in

PI controller was heavily detuned. The P gain was set to 1 and the I gain to 0, compared

to typical P and I gains of 40 and 80, respectively. The detuned PI controller was used to

“prewrap” the identified system model by combining them in negative feedback. The joint

proportional and H∞ controller formulation is shown in Fig. 7.1, and an equivalent block

diagram in Fig. 7.2. The plant used for H∞ controller design is then the closed-loop system

G(s). Technically, this approach assumes that the −r(s) reference input to the P controller

in Fig. 7.2 is zero. This assumption was tested in simulation and had a negligible effect on

the tracking performance of the closed-loop system.

92

r(s) C(s)
e(s)−

P(s)
u(s)

y(s)

kp

+

Figure 7.1: Joint proportional and H∞ control.

r(s) C(s)
e(s)

−

P(s)
u(s)

kp

y(s)
−

G(s)

+ −r(s)

Figure 7.2: P control “prewrap.”

7.2 H∞ Controller Synthesis Method

The optimal H∞ controller, which minimizes γ such that ‖G‖
∞
< γ, is found by solving

a convex optimization problem subject to LMI constraints. Specifically, the problem to be

solved thus yielding an H∞ controller is [14, 49, 50]

minimize
γ,X1,Y1,AN ,BN ,CN ,DN

γ such that
[

X1 1

1 Y1

]

> 0 ,

AY1 + Y1A⊤ ⋆ ⋆ ⋆

A⊤ + AN + (B2DNC2)
⊤

X1A + A⊤X1 + BNC2 + C⊤
2 B⊤

N ⋆ ⋆

(B1 + B2DND21)
⊤ (X1B1 + BND21)

⊤ −γ1 ⋆

C1Y1 + D12CN C1 + D12DNC2 D11 + D12DND21 −γ1

< 0 .

The controller is recovered by

DK = (1 + DK2D22)
−1

DK2,

BK = BK2 (1 − D22DK) ,

CK = (1 − DKD22)CK2,

AK = AK2 − BK (1 − D22DK)
−1

D22CK ,

93

where

[

AK2 BK2

CK2 DK2

]

=

[

X2 X1B2

0 1

]−1([

AN BN

CN DN

]

−

[

X1AY1 0

0 0

])[

Y⊤
2 0

C2Y1 1

]−1

and X2 and Y2 are any matrices that satisfy X2Y
⊤
2 = 1 − X1Y1. For example, Y2 can be

set to 1, leaving X2 = 1 − X1Y1. Alternatively, X2 and Y2 can be solved using an LU

decomposition, which is the method used in this thesis.

7.2.1 Order Reduction

As mentioned in Chapter 6, the MTS controller has a limited availability of computational

overhead. Therefore, it is often necessary to implement reduced-order controllers. H∞

controllers have the same order as the generalized plant, which means they are typically

high-order, especially if multiple weighting filters are used. The H∞ controllers should thus

be reduce-ordered before being implemented on the MTS system. Order reduction can be

performed manually by eliminating higher modes, or using the balred command in MATLAB,

as mentioned in Section 2.5.1.

7.3 Results

Identified models of the SHM fatigue testing rig at NRC, pictured in Fig. 1.1, were used

to design H∞ controllers. Before performing the controller synthesis, the identified models

were prewrapped as in Section 7.1, using a P controller where the P gain was set to 1.

Then the weights were tuned as in Section 2.4.4 and used in the generalized plant. The

synthesized controllers were first tested in simulation, then reduce-ordered and discretized

using forward Euler before being implemented using C code in calculated channels on the

MTS system. They were simulated again on the MTS system, then injected gradually in

function generation mode before being used to run tests.

Initially, MIMO H∞ controllers were synthesized based on identified models for each half

of the SHM platform. First, H∞ controllers were run on actuators 1 & 2, and compared

to results obtained using PI control with CCC, where the PI controllers were tuned as in

Chapter 6 to have a P gain of 40 and an I gain of 80. Next, the same tests were performed on

actuators 3 & 4. When testing controllers on each half of the platform, the null pacing limits

on the other two actuators were opened up to 100%. In this way, null pacing could only

occur due to the actuators being tested. Afterwards, both sets of 2-actuator H∞ controllers

were used to run a load profile on all 4 actuators simultaneously. An attempt was made to

94

synthesize a MIMO H∞ controller for all 4 actuators, and although some controllers looked

promising in simulation, they could not successfully control the test rig in practice. However,

due to the configuration of the SHM platform, the effect of actuators 1 & 2 on actuators 3

& 4 is limited, and vice versa, which allows the H∞ controllers synthesized for each half of

the platform to achieve significant improvements over the base case of PI with CCC.

7.3.1 Actuators 1 & 2

Various 2DOF H∞ controllers were synthesized using a dual-Youla identified model for

actuators 1 & 2, with and without integrator, and using different sets of weighting functions.

Various reduced-order versions of these controllers were tested and two controllers were

successfully implemented: a 2nd-order H∞ controller without integrator and a 6th-order H∞

controller with integrator (denoted HI
∞). Both sets of controllers were used to PSO a 2-

actuator random load profile. The same profile was also run with PSO using the standard

PI plus CCC controller. Tables 7.1 and 7.2 include results for minimum transition times of

0.4 and 0.1 seconds, respectively. Figure 7.3 shows the system response and control effort of

the 2nd-order H∞ controller for a minimum time of 0.4 seconds.

Table 7.1: MIMO results for actuators 1 & 2 with a minimum time of 0.4 s.

Controller
H∞ Profile Run Null RMS Error % Difference

Order Time Time Pace C1 C2 Time RMSE

PI + CCC – 26.46 s 31.32 s 4.86 s 21.36 lbf 24.31 lbf – –

2DOF H∞ 2 25.97 s 28.30 s 2.33 s 15.12 lbf 16.27 lbf –9.6% –31.3%

2DOF HI
∞ 6 25.51 s 27.52 s 2.01 s 19.94 lbf 19.81 lbf –12.1% –13.0%

Table 7.2: MIMO results for actuators 1 & 2 with a minimum time of 0.1 s.

Controller
H∞ Profile Run Null RMS Error % Difference

Order Time Time Pace C1 C2 Time RMSE

PI + CCC – 15.05 s 19.12 s 4.07 s 32.92 lbf 38.02 lbf – –

2DOF H∞ 2 12.27 s 14.33 s 2.06 s 22.21 lbf 26.42 lbf –25.1% –31.4%

2DOF HI
∞ 6 11.43 s 14.83 s 3.40 s 29.99 lbf 30.25 lbf –22.4% –15.1%

7.3.2 Actuators 3 & 4

A dual-Youla identified model was used to synthesize 2DOF H∞ controllers for actuators

3 & 4. One particular set of weighting functions resulted in successful controllers, and the

95

0 5 10 15 20 25 30

-500

0

500

0 5 10 15 20 25 30

-500

0

500

(a) System response data.

0 5 10 15 20 25 30

-10

0

10

0 5 10 15 20 25 30

-10

0

10

(b) Voltage data.

Figure 7.3: 2nd-order H∞ on actuators 1 & 2.

96

1st-, 2nd-, and 3rd-order versions of this controller were implemented. Each controller was

used to PSO a random load profile (the same load profile run on actuators 1 & 2) down to

minimum transition times of 0.4 and 0.1 seconds. The results are included in Tables 7.3 to

7.4. The results for the 1st-order controller for a minimum time of 0.4 seconds are shown in

Fig. 7.4.

Table 7.3: MIMO results for actuators 3 & 4 with a minimum time of 0.4 s.

Controller
H∞ Profile Run Null RMS Error % Difference

Order Time Time Pace C3 C4 Time RMSE

PI + CCC – 26.79 s 30.82 s 4.03 s 24.90 lbf 21.55 lbf – –

2DOF H∞

1 26.93 s 28.53 s 1.60 s 19.68 lbf 19.80 lbf –7.4% –15.0%

2 25.94 s 28.06 s 2.12 s 20.26 lbf 18.50 lbf –9.0% –16.6%

3 26.14 s 29.06 s 2.92 s 21.53 lbf 19.50 lbf –5.7% –11.7%

Table 7.4: MIMO results for actuators 3 & 4 with a minimum time of 0.1 s.

Controller
H∞ Profile Run Null RMS Error % Difference

Order Time Time Pace C3 C4 Time RMSE

PI + CCC – 17.28 s 21.05 s 3.77 s 35.75 lbf 30.33 lbf – –

2DOF H∞

1 16.89 s 18.84 s 1.95 s 25.31 lbf 24.10 lbf –10.5% –25.2%

2 15.24 s 17.83 s 2.59 s 29.78 lbf 26.09 lbf –15.3% –15.6%

3 15.53 s 17.60 s 2.07 s 30.27 lbf 27.34 lbf –16.4% –12.8%

7.3.3 All 4 Actuators

A random profile was run on all 4 actuators simultaneously with PSO enabled using the

2nd-order 2DOF H∞ controller for actuators 1 & 2 and the 1st-, 2nd, and 3rd-order 2DOF

H∞ controllers for actuators 3 & 4. The 2nd-order controller was selected for actuators 1 &

2 because it is definitively the best controller tested in Section 7.3.1, both in terms of timing

and RMS error. However, for actuators 3 & 4, there is no clear “winner.” The 1st-order

H∞ controller results in the lowest error, the 3rd-order controller yields the fastest time, and

the 2nd-order controller is second best in both. Therefore, all three controllers were tested.

The load profile was run using PSO to minimum times of 0.4 and 0.1 s, and the results

were compared to the PI plus CCC case. The results are included in Tables 7.5 and 7.6.

Figure 7.5 shows results for the controller combination of 2nd-order H∞ on actuators 1 & 2

and 1st-order H∞ on actuators 3 & 4 for a minimum time of 0.4 seconds.

97

0 5 10 15 20 25 30

-500

0

500

0 5 10 15 20 25 30

-500

0

500

(a) System response data.

0 5 10 15 20 25 30

-10

0

10

0 5 10 15 20 25 30

-10

0

10

(b) Voltage data.

Figure 7.4: 1st-order H∞ on actuators 3 & 4.

98

0 5 10 15 20 25 30

-500

0

500

0 5 10 15 20 25 30

-500

0

500

0 5 10 15 20 25 30

-500

0

500

0 5 10 15 20 25 30

-500

0

500

(a) System response data.

0 5 10 15 20 25 30

-10
0

10

0 5 10 15 20 25 30

-10
0

10

0 5 10 15 20 25 30

-10
0

10

0 5 10 15 20 25 30

-10
0

10

(b) Voltage data.

Figure 7.5: 2nd-order H∞ on actuators 1 & 2 and 1st-order H∞ on actuators 3 & 4.

99

Table 7.5: 4-actuator MIMO results for all actuators with a minimum time of 0.4 s.

Controller
H∞ Profile Run Null RMS Error (lbf) % Difference

Order Time Time Pace C1 C2 C3 C4 Time RMSE

PI + CCC – 27.89 s 33.57 s 5.68 s 23.02 24.79 26.21 21.13 – –

2DOF H∞

2 / 11 27.67 s 29.08 s 1.41 s 15.84 16.26 21.48 19.77 –13.4% –22.9%

2 / 2 28.08 s 30.31 s 2.23 s 16.53 19.37 22.21 18.48 –9.7% –19.5%

2 / 3 28.35 s 31.07 s 2.72 s 15.35 15.71 22.14 20.35 –7.4% –22.7%
1 A 2nd-order controller was used on actuators 1 & 2, and a 1st-order controller was used on 3 & 4.

Table 7.6: 4-actuator MIMO results for all actuators with a minimum time of 0.1 s.

Controller
H∞ Profile Run Null RMS Error (lbf) % Difference

Order Time Time Pace C1 C2 C3 C4 Time RMSE

PI + CCC – 22.95 s 28.56 s 5.61 s 27.40 29.91 29.77 24.87 – –

2DOF H∞

2 / 1 21.29 s 24.10 s 2.81 s 18.45 20.41 25.88 22.32 –15.6% –22.2%

2 / 2 21.76 s 24.31 s 2.55 s 18.37 19.89 26.32 22.97 –14.9 % –21.8 %

2 / 3 22.09 s 25.33 s 3.24 s 17.71 19.03 26.03 23.76 –11.3 % –22.7 %

7.3.4 Discussion

In every test included in this chapter, H∞ control is able to achieve test results that are

both faster and more accurate than the PI plus CCC standard. Tuning of the controller

weights is relatively straightforward, and the H∞ controller itself is fairly simple to imple-

ment using the code generation template. However, as discussed in Section 2.5, care must

be taken to first simulate the H∞ control signal on the MTS system and then inject it grad-

ually, as many of the attempted controllers exhibited unstable and/or oscillatory behaviour.

Nevertheless, 2DOF H∞ control for MIMO systems has great potential for improving timing

and error results for large-scale fatigue testing.

100

Part IV

Conclusion

101

Chapter 8

Closing Remarks and Future Work

8.1 Conclusions

This thesis considers the modelling and optimal control of a fatigue structural testing rig.

Initially, a fatigue test system is modelled analytically and a tool is developed to estimate

cycle times. Afterwards, closed-loop linear time-domain system identification techniques

are used to identify a numerical model using data. In general, the dual-Youla closed-loop

system identification method has proven to consistently produce the best identified models,

in terms of both NRMS error and %VAF for both the input and output data. It is worth

stating that the analytical model cannot account for physical imperfections in the system;

it assumes the valves are perfectly balanced and mechanically-nulled, for example. System

identification, on the other hand, can capture this behaviour as best approximated by a

linear model. Although the analytical models presented in Chapter 3 are not as accurate

as those developed in Chapter 4 using system identification, they provide a useful starting

point in the case that the fatigue test rig has not yet been assembled. However, if the test

rig has been built, the recommended approach is to perform system identification and use

the identified model to estimate cycle times and design controllers.

Next, the various controller synthesis methods in Part III are applied to models of the

fatigue test rig. First, a few methods are presented for synthesizing PI controllers. Two of

these methods attempt to do so in an optimal fashion, and it is the iterative H∞ method that

produces the most reasonable PI gains. While formal experiments were not completed using

these gains, they are very similar to those typically implemented on the SHM platform. The

value of this method becomes evident when it is applied to models of a newly commissioned

or unfamiliar test rig. In this case, an initial estimate of starting gains can be extremely

valuable, both in terms of time saved in the commissioning phase and improved controller

performance. The identified models are also used to synthesize SISO and MIMO 2DOF

102

controllers. In the SISO case, the feedback control law can be PI orH∞ , and the feedforward

is designed via an inversion-based feedforward controller synthesis method. For MIMO

systems, a 2DOF H∞ controller synthesis method is used to design H∞ controllers with

embedded feedforward. In both the SISO and MIMO cases, 2DOF H∞ control is able to

achieve test results that are considerably better than PI plus CCC.

This thesis presents a novel method for synthesizing locally optimal PI controller gains

through the use of the Bounded Real Lemma, iteration, and bisection method. Otherwise,

the contributions of this thesis are not in the methods, but in the novel application and imple-

mentation of system identification and subsequent inversion-based feedforward and H∞ con-

troller synthesis methods to fatigue structural testing rigs. In particular, 2DOF H∞-optimal

control, in tandem with closed-loop system identification, has been shown to substantially

improve the speed and error properties of tests performed on the SHM platform at the NRC.

Despite these improvements, there is more progress to be made and recommendations for

future work are as follows.

8.2 Recommendations for Future Work

Because system identification has been shown to produce much better models than the

analytical modelling approach of Chapter 3, it is recommended that all future work involves

system identification methods rather than first-principles modelling. However, the system

identification process is not yet seamless. It is recommended that future work involves an in-

vestigation into which load profiles and controllers work best for generating identified models

to be used in controller synthesis and simulation. In addition, because the choice of dual-

Youla coprime factors can have a significant effect on the resulting identified models, it is

worth exploring how these should be selected, and perhaps if they can be chosen automat-

ically and, if possible, optimally. The system identification methods appeared to exhibit

numerical issues when all 4 actuators were included, and this can only get worse for systems

with more actuators. Therefore, future work should be done to ensure that the system iden-

tification algorithms can be robustly implemented for MIMO systems with a high number

of actuators. Finally, although nonlinear system identification was not explored, the fact

that the linear identified models in Chapter 4 are able to accurately simulate the input and

output data indicates that linear models are adequate. Nevertheless, potential future work

could explore the application of nonlinear system identification algorithms.

Before the controller synthesis methods presented in this thesis can be applied to a

“real” test article, it is recommended that they be made more robust to ensure that they

are safe to implement. Although most feedforward controllers and some H∞ controllers

103

were “well-behaved,” others exhibited saturation, instability, and oscillatory behaviour. The

behaviour of the controllers is highly dependent on the identified models used and the choice

of weighting filters. It is worth investigating how to robustly select weights such that the

resulting controllers are safe to implement. Another worthwhile task would be to characterize

the model uncertainty and then perform a robust yet optimal control design in an H∞

framework. To complete the work done specifically on the SHM platform, another attempt

should be made to synthesize a 2DOF H∞ controller for all 4 actuators simultaneously.

104

Appendices

105

Appendix A

Reduced-Order Models

A reduced-order modelling approach was taken in an attempt to eliminate the higher-

order dynamics that were suspected to be the cause of numerical scaling issues within the

analytical plant model. First, the model was simplified by removing one piece at a time and

replacing it with a gain. Next, various parts of the actuator model were reduce-ordered,

and the leakage coefficient and integral pole location were experimented with. Afterwards,

different combinations of non-dominant poles and zeros were cancelled from the full plant

transfer function. Finally, the entire actuator model was replaced by first- and second-

order systems. The transfer functions were used in MATLAB’s PID tuner to find a stabilizing

controller and the system’s response to a sample load profile was simulated.

Servovalve gain substitution: The first-order servovalve was replaced with its DC

gain. The automatic tuner yielded gains of Kp = 0 and Ki = 4.36.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
ag

n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Servovalve Substitution

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Servovalve Substitution

System response

Load profile

(b) Load profile.

Figure A.1: Servovalve gain substitution.

106

Load cell gain substitution: Note that the load cell was a gain to begin with so the

transfer function is exactly the same as the original. The automatic tuner yields gains of

Kp = 0 and Ki = 4.34.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
a
g
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Load Cell Substitution

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
a
se

(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Load Cell Substitution

System response

Load profile

(b) Load profile.

Figure A.2: Load cell gain substitution.

Piston dynamics gain substitution: The second-order expression containing the pis-

ton dynamics, ms2 + fs + c, was replaced everywhere by its DC gain. The tuner yields

Kp = 1.27 and Ki = 1226.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
ag

n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Piston Dynamics Substitution

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Piston Dynamics Substitution

System response

Load profile

(b) Load profile.

Figure A.3: Piston dynamics gain substitution.

107

GPQ(s) gain substitution: Transfer function GPQ(s) contains the high frequency com-

pressibility effects, as well as the actuator piston dynamics because the piston velocity is fed

back. The PI tuner doesn’t work, but the PID tuner yieldsKp = 0.63,Ki = 6.19,Kd = 0.015.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
a
g
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - GPQ(s) Substitution

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
a
se

(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - GPQ(s) Substitution

System response

Load profile

(b) Load profile.

Figure A.4: GPQ(s) gain substitution.

Piston dynamics first-order substitution: The second-order expression containing

the piston dynamics, ms2 + fs + c, was replaced everywhere by a first-order system. The

tuner yields Kp = 1.33 and Ki = 227.9.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
ag

n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Piston Dynamics First-Order Substitution

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Piston Dynamics First-Order Substitution

System response

Load profile

(b) Load profile.

Figure A.5: Piston dynamics first-order substitution.

108

GPQ(s) first-order substitution: The transfer function GPQ(s) was replaced by a first-

order system. PI control doesn’t work. The resulting PID gains are Kp = 0.63, Ki = 6.19,

and Kd = 0.016.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
a
g
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - GPQ(s) First-Order Substitution

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
a
se

(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - GPQ(s) First-Order Substitution

System response

Load profile

(b) Load profile.

Figure A.6: GPQ(s) first-order substitution.

Piston dynamics and GPQ(s) first-order substitution: The piston dynamics and

the transfer function GPQ(s) were both replaced by first-order transfer functions. The re-

sulting PI gains are Kp = 1.35 and Ki = 236.3.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
ag
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - GPQ(s) and Piston Dynamics First-Order Substitution

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - GPQ(s) and Piston Dynamics First-Order Substitution

System response

Load profile

(b) Load profile.

Figure A.7: Piston dynamics and GPQ(s) first-order substitution.

109

Single pole cancellation: The least dominant pole was cancelled from the overall

model by manipulating plant transfer function G(s) as follows

Gro(s) =
(s− pm)

|pm|
G(s),

where pm = −85784.92, the largest negative pole. This model results in gain of Kp = 0 and

Ki = 4.34.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
a
g
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Pole Cancellation

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Pole Cancellation

System response

Load profile

(b) Load profile.

Figure A.8: Single pole cancellation.

Double pole cancellation: The two least dominant poles were cancelled from the

overall model, resulting in a biproper 3rd order transfer function. This yields Kp = 0 and

Ki = 4.35.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
ag

n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Double Pole Cancellation

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Double Pole Cancellation

System response

Load profile

(b) Load profile.

Figure A.9: Double pole cancellation.

110

Two pole/one zero cancellation: The two least dominant poles and the least domi-

nant zero were removed from the plant transfer function. This yields Kp = 0 and Ki = 4.34.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
a
g
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Two Pole/One Zero Cancellation

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
a
se

(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Two Pole/One Zero Cancellation

System response

Load profile

(b) Load profile.

Figure A.10: Two pole/one zero cancellation.

No leakage: The leakage coefficient Ctl was set to zero. The PID tuner outputs gains of

Kp = 5.029e08, Ki = 7.841e10, and Kd = 8.062e05. Although the system is able to track the

reference signal, the resulting closed-loop system has two poles that are slightly in the ORHP.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
ag
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Ctl = 0

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-500

-400

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Ctl = 0

System response

Load profile

(b) Load profile.

Figure A.11: No leakage.

111

Shifted pole: The integrator pole in the 2β/V s block was shifted so as not to be exactly

at the origin. To shift the integrator pole, s was replaced by s+ω, where ω = 10. The tuner

gains are Kp = 0 and Ki = 4.34.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
a
g
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Shifted Integrator Pole

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
a
se

(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Shifted Integrator Pole

System response

Load profile

(b) Load profile.

Figure A.12: Shifted integrator pole.

No leakage and shifted pole: The integrator pole in the 2β/V s block was shifted so as

not to be exactly at the origin, and the leakage coefficient Ctl was set to zero. The resulting

PID tuner gains were Kp = 5.109e05, Ki = 8.091e10, and Kd = 8.062e05. Although the

system is able to track the reference signal, the resulting closed-loop system has two poles

that are slightly in the ORHP.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
ag

n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Ctl = 0 and Shifted Integrator Pole

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-500

-400

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Ctl = 0 and Shifted Integrator Pole

System response

Load profile

(b) Load profile.

Figure A.13: No leakage and shifted integrator pole.

112

First-order actuator substitution: Each of the two actuator transfer functions was

substituted for a first-order system. The replacement transfer functions are

GaL(s) =
398000

0.009328s+ 1
, Gaẍ(s) =

7.211

1.194e-05s+ 1
.

These transfer functions were found automatically using MATLAB. The resulting tuner gains

are Kp = 1.35 and Ki = 238.0.

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
a
g
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - First-Order Actuator Substitution

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - First-Order Actuator Substitution

System response

Load profile

(b) Load profile.

Figure A.14: First-order actuator substitution.

Second-order actuator substitution: The actuator transfer function from flow rate

Q to load L was replaced by a second-order transfer function given by

GaL(s) =
4.574e09

s2 + 10.72s+ 1.149e04
,

while the actuator transfer function from flow rate Q to acceleration ẍ was replaced by

a first-order transfer function given by

Gaẍ(s) =
7.211

1.194e-05s+ 1
.

The resulting tuner gains are Kp = 0 and Ki = 4.25.

113

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
a
g
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Second-Order Actuator Substitution

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
a
se

(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 2 4 6 8 10 12

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Second-Order Actuator Substitution

System response

Load profile

(b) Load profile.

Figure A.15: Second-order actuator substitution.

Lower-frequency first-order actuator substitution: The actuator transfer function

from flow rate Q to load L was replaced by a first-order transfer function given by

GaL(s) =
398000

0.1s+ 1
,

while the actuator transfer function from flow rate Q to acceleration ẍ was replaced by a

first-order transfer function given by

Gaẍ(s) =
7.211

1.194e-05s+ 1
.

The MATLAB PID tuner yields Kp = 0.96 and Ki = 27.1. The closed-loop response using

these gains is shown in Fig. A.16b.

The resulting plant transfer function was also used in the optimal static output feedback

(SOF) controller synthesis method. The synthesized gains were Kp = 724.4 and Ki =

6.178e04 and the response is shown in Fig. A.16c. The static output feedback gains are

much higher than the tuner gains, which translates to a faster response.

The iterative method also works when initialized with the PID tuner gains. This results

in final gains of Kp = 69.6 and Ki = 7.33e03. The response is shown in Fig. A.16d. Because

the response is realistic, this substitution is chosen as the order reduction method used in

Section 3.1.2.3.

114

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

M
a
g
n
it
u
d
e
(d
B
)

-200

-100

0

100

200

Bode Plot - Lower-Frequency First-Order Actuator

Reduced order

Full model

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
h
as
e
(d
eg
)

-300

-200

-100

0

(a) Bode diagram.

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

2500

Load Profile - Lower-Frequency First-Order Actuator

System response

Load profile

(b) Fast load profile with tuner gains.

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Lower-Frequency First-Order Actuator

System response

Load profile

(c) Fast load profile with SOF gains.

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

O
u
tp
u
t
(N

)

-1500

-1000

-500

0

500

1000

1500

2000

Load Profile - Lower-Frequency First-Order Actuator

System response

Load profile

(d) Fast load profile with iterative gains.

Figure A.16: Lower-frequency first-order actuator substitution.

115

Appendix B

Sample Code

A code generation template and sample MTS controller code for a MIMO 2DOF H∞

controller acting on actuator 1 of the SHM platform are given below. The code generation

template takes the controller state-space matrices and creates a text file with code that can

then be copied into calculated channels on the MTS system.

B.0.1 Code Generation Template

function code gen fn m n(str,m,Cx,xs,A,B,C,D)

n = size(A,1);

ny = size(B,2);

fid = fopen(sprintf('CODE/hinf %i %s %s.txt',m,str,Cx),'wt');

fprintf(fid, 'int init, i, j, k;\n');

fprintf(fid, sprintf('real A[%i], B[%i], C[%i], D[%i];\n',nˆ2,n*ny,n,ny));

fprintf(fid, sprintf('real T, x new[%i], x old[%i], u[%i], out;\n',n,n,ny));

fprintf(fid, '\nT = 1.0/2048.0; // sample time\n');

fprintf(fid, '\nif (!init)\n{\n');

for i = 1:n

for j = 1:n

k = (i-1)*n+(j-1);

fprintf(fid, sprintf('\tA[%i] = %0.2f;\n',k,A(i,j)));

end

116

end

fprintf(fid, '\n');

for i = 1:n

for j = 1:ny

k = (i-1)*ny+(j-1);

fprintf(fid, sprintf('\tB[%i] = %0.2f;\n',k,B(i,j)));

end

end

fprintf(fid, '\n');

for j = 1:n

fprintf(fid, sprintf('\tC[%i] = %0.2f;\n',j-1,C(j)/1.112));

end

fprintf(fid, '\n');

for j = 1:ny

fprintf(fid, sprintf('\tD[%i] = %0.2f;\n',j-1,D(j)/1.112));

end

fprintf(fid, '\n\tinit = 1;\n}\n');

fprintf(fid, sprintf('\ni = 0;\nwhile (i < %i)\n{\n',n));

fprintf(fid, '\tx new[i] = x old[i];\n');

fprintf(fid, sprintf('\tj = 0;\n\twhile (j < %i)\n\t{\n',n));

fprintf(fid, sprintf('\t\tk = %i*i + j;\n',n));

fprintf(fid, '\t\tx new[i] = x new[i] + (T*A[k]) * x old[j];\n');

fprintf(fid, '\t\tj = j + 1;\n\t}\n');

fprintf(fid, sprintf('\tj = 0;\n\twhile (j < %i)\n\t{\n',ny));

fprintf(fid, sprintf('\t\tk = %i*i + j;\n',ny));

fprintf(fid, '\t\tx new[i] = x new[i] + (T*B[k]) * u[j];\n');

fprintf(fid, '\t\tj = j + 1;\n\t}\n');

fprintf(fid, '\ti = i + 1;\n}\n');

fprintf(fid, sprintf('\ni = 0;\nwhile (i < %i)\n{\n',n));

fprintf(fid, '\tx old[i] = x new[i];\n');

fprintf(fid, '\ti = i + 1;\n}\n');

j = 0;

for i = xs:ny+xs-1

Cs = sprintf('C%i',i);

fprintf(fid, sprintf('\nu[%i] = "%s Command" - "%s Active Feedback";',j,Cs,Cs));

j = j + 1;

end

fprintf(fid, '\n');

fprintf(fid, '\nout = 0;\n');

fprintf(fid, sprintf('i = 0;\nwhile (i < %i)\n{\n',n));

117

fprintf(fid, '\tout = out + C[i] * x new[i];\n');

fprintf(fid, '\ti = i + 1;\n}\n');

fprintf(fid, sprintf('i = 0;\nwhile (i < %i)\n{\n',ny));

fprintf(fid, '\tout = out + D[i] * u[i];\n');

fprintf(fid, '\ti = i + 1;\n}\n');

fprintf(fid, '\n"output0" = out;');

end

B.0.2 MTS Controller Code

int init, i, j, k;

real A[4], Bff[4], Bfb[4], C[2], Dff[2], Dfb[2];

real T, x_new[2], x_old[2], r[2], u[2], out;

T = 1.0/2048.0; // sample time

if (!init)

{

A[0] = -96.08;

A[1] = 150.35;

A[2] = -20.75;

A[3] = -74.36;

Bff[0] = -70.37;

Bff[1] = -38.69;

Bff[2] = 47.29;

Bff[3] = 37.88;

Bfb[0] = -4.07;

Bfb[1] = -35.35;

Bfb[2] = -26.05;

Bfb[3] = -28.30;

C[0] = -45.50;

C[1] = 9.20;

Dff[0] = 3.78;

118

Dff[1] = 8.40;

Dfb[0] = 8.74;

Dfb[1] = -9.04;

init = 1;

}

i = 0;

while (i < 2)

{

x_new[i] = x_old[i];

j = 0;

while (j < 2)

{

k = 2*i + j;

x_new[i] = x_new[i] + (T*A[k]) * x_old[j];

j = j + 1;

}

j = 0;

while (j < 2)

{

k = 2*i + j;

x_new[i] = x_new[i] + (T*Bff[k]) * r[j];

j = j + 1;

}

j = 0;

while (j < 2)

{

k = 2*i + j;

x_new[i] = x_new[i] + (T*Bfb[k]) * u[j];

j = j + 1;

}

i = i + 1;

}

119

i = 0;

while (i < 2)

{

x_old[i] = x_new[i];

i = i + 1;

}

r[0] = "C1 Command";

r[1] = "C2 Command";

u[0] = "C1 Command" - "C1 Active Feedback";

u[1] = "C2 Command" - "C2 Active Feedback";

out = 0;

i = 0;

while (i < 2)

{

out = out + C[i] * x_new[i];

i = i + 1;

}

i = 0;

while (i < 2)

{

out = out + Dff[i] * r[i];

i = i + 1;

}

i = 0;

while (i < 2)

{

out = out + Dfb[i] * u[i];

i = i + 1;

}

"output0" = out;

120

Bibliography

[1] F. Hansen, G. Franklin, and R. Kosut, “Closed-loop identification via the fractional
representation: Experiment design,” in American Control Conference, 1989, pp. 1422–
1427, IEEE, 1989.

[2] Federal Aviation Administration, “14 CFR 25.571 Damage-tolerance and fatigue eval-
uation of structure,” Code of Federal Regulations, 2017.

[3] K. J. Marsh, Full-scale fatigue testing of components and structures. London, UK:
Butterworths, 2013.

[4] R. L. Hewitt, “State space modeling and experimental verification of a single chan-
nel, moving load cell structural test,” International Journal of Fatigue, vol. 22, no. 9,
pp. 767–780, 2000.

[5] R. L. Hewitt, “Modeling of full-scale aircraft structural tests,” ICAS 2002, 2002.

[6] C. Cheung, “A simulink block library for modelling full-scale structural test systems,”
tech. rep., National Research Council Canada, March 2004.

[7] D. E. Zlotnik, “Identification and optimal control of a structural health monitoring test
for a helicopter tail boom,” tech. rep., National Research Council Canada, August 2013.

[8] MTS Systems Corporation, 14000 Technology Drive, Eden Prairie, MN 55344-2290
USA, 100-241-355 Servovalves, 2014.

[9] J. R. Leigh, Applied digital control: theory, design and implementation. Mineola, NY:
Dover Publications, 2006.

[10] R. Pintelon and J. Schoukens, System identification: a frequency domain approach. New
York, NY: IEEE Press, 2012.

[11] K. J. Åström and B. Wittenmark, Computer-controlled systems: Theory and design.
Mineola, NY: Dover Publications, 2011.

[12] T. C. Hsia, System identification: least-squares methods. Lexington, MA: Lexington
Books, 1977.

[13] K. Lange, Optimization. New York, NY: Springer, 2013.

121

[14] R. J. Caverly and J. R. Forbes, “LMI properties and applications in systems, stability,
and control theory,” arXiv preprint arXiv:1903.08599, 2019.

[15] L. Qiu and K. Zhou, Introduction to feedback control. Upper Saddle River, NJ: Prentice-
Hall, 2010.

[16] R. L. Williams and D. A. Lawrence, Linear state-space control systems. Hoboken, NJ:
John Wiley & Sons, 2007.

[17] J. B. Hoagg, W. M. Haddad, and D. S. Bernstein, “Linear-quadratic control.” Unpub-
lished manuscript, 2019.

[18] L. Ljung, System identification: Theory for the user. Upper Saddle River, NJ: Prentice-
Hall, 1999.

[19] D. Wang, R. Dolid, M. Donath, and J. Albright, “Development and verification of a two-
stage flow control servovalve model,” in Proceedings of the 1995 ASME International
Mechanical Engineering Congress and Exposition, IEEE, 1995.

[20] S. G. Baek, H. K. Kim, K. T. Ahn, H. G. Yon, and J. C. Koo, “Study on iterative method
of electro-hydraulic actuator in force control,” in Automation Science and Engineering
(CASE), 2012 IEEE International Conference on, pp. 178–183, IEEE, 2012.

[21] A. L. Cologni, M. Mazzoleni, and F. Previdi, “Modeling and identification of an electro-
hydraulic actuator,” in Control and Automation (ICCA), 2016 12th IEEE International
Conference on, pp. 335–340, IEEE, 2016.

[22] J. Zhu and S. Chang, “Modeling and simulation for application of electromagnetic linear
actuator direct drive electro-hydraulic servo system,” in Power and Energy (PECon),
2012 IEEE International Conference on, pp. 430–434, IEEE, 2012.

[23] M. Karpenko and N. Sepehri, “Fault-tolerant control of a servohydraulic positioning
system with crossport leakage,” IEEE Transactions on Control Systems Technology,
vol. 13, no. 1, pp. 155–161, 2005.

[24] L. Nascutiu, “Feedback linearization of the double-and single-rod hydraulic servo actu-
ators,” in Automation, Quality and Testing, Robotics, 2006 IEEE International Con-
ference on, vol. 1, pp. 149–154, IEEE, 2006.

[25] D. Williams, M. Williams, and A. Blakeborough, “Numerical modeling of a servohy-
draulic testing system for structures,” Journal of engineering mechanics, vol. 127, no. 8,
pp. 816–827, 2001.

[26] M. Rahmat, S. M. Rozali, N. A. Wahab, and K. Jusoff, “Modeling and controller design
of an electro-hydraulic actuator system,” American Journal of Applied Sciences, vol. 7,
no. 8, p. 1100, 2010.

[27] V. Durbha and P. Li, “A nonlinear spring model of hydraulic actuator for passive
controller design in bilateral tele-operation,” in American Control Conference (ACC),
2012, pp. 3471–3476, IEEE, 2012.

122

[28] D. W. Robinson and G. A. Pratt, “Force controllable hydro-elastic actuator,” in
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference
on, vol. 2, pp. 1321–1327, IEEE, 2000.

[29] A. Alleyne and R. Liu, “A simplified approach to force control for electro-hydraulic
systems,” Control Engineering Practice, vol. 8, no. 12, pp. 1347 – 1356, 2000.

[30] MTS Systems Corporation, 14000 Technology Drive, Eden Prairie, MN 55344-2290
USA, 100-361-218 HydraulicActuators 244, 2017.

[31] S. S. Rao and F. F. Yap, Mechanical vibrations, vol. 4. Upper Saddle River, NJ: Prentice-
Hall, 2011.

[32] D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity.
New York, NY: Prentice-Hall, Inc., 2 ed., 2011.

[33] A. C. Ugural and S. K. Fenster, Advanced strength and applied elasticity. Prentice-Hall,
2003.

[34] K. F. Aljanaideh and D. S. Bernstein, “Initial conditions in time-and frequency-domain
system identification: Implications of the shift operator versus the Z and discrete Fourier
transforms,” IEEE Control Systems, vol. 38, no. 2, pp. 80–93, 2018.

[35] P. Van den Hof, “System identification - Data-driven modelling of dynamic systems.”
Lecture notes, Eindhoven University of Technology, March 2018.

[36] U. Forssell and L. Ljung, “Closed-loop identification revisited,” Automatica, vol. 35,
no. 7, pp. 1215–1241, 1999.

[37] D. Youla, H. Jabr, and J. Bongiorno, “Modern wiener-hopf design of optimal controllers
- Part II: The multivariable case,” IEEE Transactions on Automatic Control, vol. 21,
no. 3, pp. 319–338, 1976.

[38] C. Desoer, R.-W. Liu, J. Murray, and R. Saeks, “Feedback system design: The fractional
representation approach to analysis and synthesis,” IEEE Transactions on Automatic
Control, vol. 25, no. 3, pp. 399–412, 1980.

[39] F. Hansen, “A fractional representation approach to closed-loop system identification
and experiment design,” Ph. D. Thesis, Stanford University, 1989.

[40] D. T. Westwick and R. E. Kearney, Identification of nonlinear physiological systems,
vol. 7. John Wiley & Sons, 2003.

[41] R. Kearney and I. Hunter, “System identification of human triceps surae stretch reflex
dynamics,” Experimental brain research, vol. 51, no. 1, pp. 117–127, 1983.

[42] K. J. Åström and T. Hägglund, Advanced PID Control, vol. 461. Research Triangle
Park, NC: Instrumentation, Systems, and Automation Society, 2006.

123

[43] L. El Ghaoui, F. Oustry, and M. AitRami, “A cone complementarity linearization algo-
rithm for static output-feedback and related problems,” in Proceedings of Joint Confer-
ence on Control Applications Intelligent Control and Computer Aided Control System
Design, pp. 246–251, IEEE, 1998.

[44] K. J. Åström and T. Hägglund, PID Controller: Theory, Design and Tuning. North
Carolina: Instrumentation Society of America, 1995.

[45] L. Silverman, “Inversion of multivariable linear systems,” IEEE Transactions on Auto-
matic Control, vol. 14, no. 3, pp. 270–276, 1969.

[46] P. Martin, S. Devasia, and B. Paden, “A different look at output tracking: Control of
a VTOL aircraft,” Automatica, vol. 32, no. 1, pp. 101–107, 1996.

[47] P. Misra and R. Patel, “Transmission zero assignment in linear multivariable systems - I:
Square systems,” in Proceedings of the 27th IEEE Conference on Decision and Control,
pp. 1310–1311, IEEE, 1988.

[48] S. Skogestad and I. Postlethwaite, Multivariable feedback control: Analysis and design,
vol. 2. Wiley New York, 2001.

[49] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via
LMI optimization,” IEEE Transactions on automatic control, vol. 42, no. 7, pp. 896–
911, 1997.

[50] M. Peet, “Modern optimal control.” Lecture notes, Arizona State University.

124

	Acknowledgements
	Preface
	List of Figures
	List of Tables
	List of Appendices
	List of Abbreviations
	List of Symbols
	Abstract
	Part I Introduction
	Introduction
	Motivation and Objectives
	Prior Work
	Thesis Overview

	Preliminaries
	Discrete-Time Systems
	Linear Least Squares
	Optimization
	Linear Systems Theory
	Implementing Alternative Controllers
	Testing and Post-Processing

	Part II Modelling and System Identification
	Modelling and Cycle Estimation
	Plant Model
	Test Article
	MTS Controller
	System Units
	Cycle Estimation

	System Identification
	Problem Setup
	Open-Loop Identification
	Closed-Loop Identification
	Model Comparison and Error Metrics
	Results

	Part III Controller Synthesis
	Using the H Norm to Synthesize Optimal PI Gains
	Starting Gains
	Static Output Feedback Method
	Iterative Method
	Results

	SISO Two Degree-of-Freedom Control
	Feedback Control
	Feedforward Control
	Results

	MIMO Two Degree-of-Freedom Control via H
	PI Control ``Prewrap"
	H Controller Synthesis Method
	Results

	Part IV Conclusion
	Closing Remarks and Future Work
	Conclusions
	Recommendations for Future Work

	Appendices

