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Abstract

The stabilization of a hip-actuated spatial double inverted pendulum can be considered as

a problem of postural control of a humanoid robot. Based on an existing model of this

underactuated mechanical system with four degrees of freedom, the ultimate objective is

to design a suitable controller to achieve global stabilization around the unstable upright

equilibrium position. This thesis presents a number of control algorithms and simulation

results that provide either local stabilization or semi-global swing-up.

For the effort of local stabilization in the vicinity of the upright equilibrium position, both

an lqr controller and three types of linearization-based sliding mode control algorithms

are presented. The region of convergence of the lqr controller is investigated. System

performance and robustness against disturbances are compared for all controllers.

In order to realize semi-global swing-up, two types of nonlinear sliding mode control ap-

proaches are explored for the swing up of the system in an attempt to bring the system into

the region of convergence of the local linear controllers. The hybrid approach is proposed

to switch from the swing-up controller to a local linear controller under certain conditions

in the vicinity of the upright equilibrium to complete the stabilization effort. However,

despite extensive tuning of the controllers, it has not been possible to achieve global stabi-

lization with such an approach. Further investigation is needed in order to resolve this issue.

The main contribution of this thesis is a successful extension of existing 2-dimensional

sliding mode control algorithms into 3-D for the control of the spatial double inverted

pendulum. The linearization-based sliding mode controllers serve as alternatives to lqr

for local stabilization. The nonlinear sliding mode controllers are able bring the system

from a configuration far from the upright equilibrium to the vicinity of the unstable upright

equilibrium in semi-global swing-up.
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Résumé

La stabilisation d’un double pendule spatiale inversé actionné à la hanche peut-être con-

sidérée comme un problème de contrôle de la posture d’un robot humanöıde. Basé sur

un modèle existant de ce système mécanique sous-actionné avec quatre degrés de liberté,

l’ultime objectif est de concevoir un régulateur approprié pour obtenir une stabilisation

globale autour de l’instable position d’équilibre debout. Cette thèse présente un certain

nombre d’algorithmes de contrôle et les résultats de simulation qui permettent une stabil-

isation locale ou semi-globale pivoter-vers-le-haut.

Pour l’effort de stabilisation locale dans le voisinage de la position d’équilibre en posi-

tion verticale, à la fois un contrôleur lqr et trois types de linéarisation basée sur des

algorithmes de contrôle de mode glissant sont présentés. La région de la convergence du

contrôleur lqr est étudiée. La performance et la robustesse du système sont comparées

pour tous les contrôleurs.

Afin de réaliser la strateǵie semi-globale pivoter-vers-le-haut, deux types d’approches de

commande non linéaire de mode glissant sont explorés pour le balancement du système

dans un essai pour amener le système dans la région de convergence locale des contrôleurs

linéaires. L’approche hybride est proposée pour passer du contrôleur pour pivoter-vers-le-

haut à un contrôleur linéaire local sous certaines conditions dans le voisinage de l’équilibre

en position verticale afin de compléter l’effort de stabilisation. Toutefois, malgré des ajuste-

ments des contrôleurs, il n’a pas été possible de parvenir à une stabilisation globale avec

une telle approche. Une enquête plus profonde est nécessaire pour résoudre ce problème.

La contribution principale de cette thèse est la réussite une d’extension d’algorithmes de

commande de 2-dimensions de mode glissant qui existent pour le cas de 3-D pour le contrôle

du double pendule inversé spatial. Les contrôleurs de mode glissant basés sur un modèle du

système linéarisé servent comme alternatives au contrôleur lqr pour la stabilisation locale.

Les contrôleurs de mode glissant non-linéaires sont capables, à partir d’une configuration

loin de l’équilibre de mettre le système dans la proximité de l’équilibre debout vertical

utilisant le principe semi-global pivoter-vers-le-haut.
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Chapter 1

Background

Humanoid robots are autonomous robots that resemble humans in terms of appearances

and behaviours. They are typically designed to perform various tasks to make our lives

easier and so are becoming increasingly important for applications. As we gain more

knowledge in the area of human cognition, we are better equipped to build more advanced

humanoid robots that could perform more complicated tasks.

Robot control is the backbone of robotics. While the control of robots have fascinated

control engineers for several decades, control of humanoid robots is playing an increasingly

important role in the development of robotics.

The subject of postural stability has been extensively studied in humans, yet the stabiliza-

tion of the standing posture has not received much attention in robotics literature. The

stabilization of inverted pendulum systems is a classical problem in the control field that

resembles postural stabilization of humans. However, most of the existing control tech-

niques are applied to 2-D systems, which cannot represent the 3-D movements of humans

and animals. (See Fig. 1.1)

In addition, the balance control in the absence of actuation at the ankle has been poorly

studied. Finding effective control strategies that are applicable to systems actuated only

at the hip joint would contribute to the art of humanoid robot design and control. One

possible application of this work can be the stabilization of a walking robot standing on a

single leg.
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Fig. 1.1 Birds, viverridea, and people, among several other species, master
standing behaviours on a small footprint.

One way to model such type of system is to construct a spatial double inverted pendulum

(SDIP), which is the 3-dimensional version of an acrobot [1]. In case of a negligible small

footprint, we can limit the actuation torques to act at the hip joints while the ankle joint is

fixed to the floor and remains un-actuated. We aim to find a suitable method to stabilize

and balance such a system in this thesis.
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Chapter 2

Literature Review

2.1 Underactuated Mechanical systems

A mechanical system is underactuated if it has more degrees of freedom (dof) than the

number of actuators. Some of the most popular underactuated mechanical systems that

exist in control literature for the purpose of stabilization include Inverted Pendulum, Pen-

dubot, and Acrobot. All of them operate in a plane, and a general description of these

systems can be found in [1].

The SDIP system falls into the category of the nonlinear underactuated mechanical sys-

tems. Stabilization of underactuated systems, forced by fewer actuators than dof, presents

a challenging problem. In this chapter, stabilizing control strategies for a number of similar

systems are introduced and compared, both in the plane and in the space.

2.2 Review of Sliding Mode Control

Sliding Mode Control (SMC), also known as Variable Structure Control (VSC), is the

emphasis of this thesis, thus its concepts should be reviewed here. It is a relatively new

control method that applies the control action primarily as a discontinuous state function

to drive the system to the so-called “sliding surface”, usually described by the equation

s = 0 . SMC can be used to control both linear and nonlinear systems [2]. Also, SMC can

be in the form of discontinuous control law with signum functions of the sliding variable

s, continuous functions of s, or a linear combination of both.

Recently invented, Higher-Order Sliding Modes (HOSM) generalize the SM idea, acting
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on higher order time derivatives of the sliding variable s instead of just influencing its first

derivative as it happens in standard SMC to provide higher accuracy in realization, see [3].

Standing out from a number of algorithms that exist in HOSM are the twisting algorithm

and super-twisting algorithm (STA). Both are second order sliding mode (SOSM) control

techniques that bring the system to the desired sliding manifold in finite time and ensure

that s = ṡ = 0. The twisting algorithm is used mostly when the system is of relative

degree 2 w.r.t. the sliding variable s, see [3], and the control signal is a function of both s

and ṡ while the advantage of STA over the standard twisting algorithm is twofold:

• STA does not need any information on the time derivative ṡ of the sliding variable s.

• The control signal is a continuous function of the sliding variable s. As a result, the

chattering effect of the controller output is reduced significantly.

2.3 Linearization-based Stabilization Strategies

By way of a literature survey of existing methods to stabilize the pendulum systems in

the vicinity of the unstable upright equilibrium, it has been found that the lqr with state

feedback is the most common approach as it has been used to control a number of under-

actuated inverted pendulum systems including an inverted pendulum on a circular base

[4], a trip inverted pendulum [5], an acrobot [1], and the SDIP system [6]. The design

of an lqr controller is simple, yet, since the design is based on the linearized state space

model around the unstable upright equilibrium point, it can only stabilize the systems

when initial states are relatively close to the upright equilibrium.

In addition, SMC has been used to provide local stabilization of underactuated systems

such as a Cart-Pendulum system [7] and the rotary Furuta’s pendulum system [8]. The

former relies on nonlinear state space system transformation and utilizes SOSM with a

nonlinear sliding surface while the latter relies on a linearized state space model and the

design of variable gain STA (VGSTA) to achieve system stabilization with uncertainties

and disturbances. However, those techniques have been studied in application to planar

robots only.
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2.4 Swing-up Control Strategies in 2-D

In the robotics literature, swing-up and stabilization of double inverted pendulum systems,

such as an acrobot or a pendubot, have received great attention in the past 15 years. An

acrobot is hip-actuated, and can be viewed as the 2-D version of the SDIP system. One of

the earliest work on the swing up control of the acrobot comes from Spong [9], [10]. In [9],

he proposed a method based on partial feedback linearization [11] for swing-up and lqr for

the stabilization phase. In swing-up phase, a well-designed reference function associating

the angular velocity of the unactuated joint with the angular position of the actuated one

is used to properly command the swing up process; in [10], the swing up effort relies on an

energy-based algorithm.

More recently, better methods have been proposed for the swing up of the acrobot such

as the output zeroing controller proposed by T. Yonemura et al. [12] and a new partial

linearization controller proposed by T. Henmin et al. [13]. The former takes an output

function defined by the angular momentum around the unactuated joint at the foot and

controls it to zero in order to perform the swing up; the latter extends the idea by Spong [9]

and modifies the reference function to allow simultaneous swing up of both links. However,

neither approach was able to completely stabilize the system without switching to a linear

controller under certain conditions after the acrobot is swung up. Alternatively, a tracking

controller can be implemented to allow the acrobot to track certain oscillatory trajectories,

[14], in the vicinity of the upright equilibrium position.

SMC has also been used to control a class of underacutated mechanical systems, especially

for the swing-up and stabilization of pendulum systems. F. Mnif [15] designed nonlinear

first order SM controller for the swing up of the whirling pendulum based on partial feed-

back linearization, in which a sliding surface similar to the reference function defined in [9]

was used. S.A. Puga et al. [16] designed a hybrid SOSM tracking controller for an acrobot,

also based on partial feedback linearization, but used the unactuatd angle at the ankle as

the sliding variable, thus by first using the twisting algorithm to swing up the lower link,

the upper link will rotate around by almost a full circle before the tracking controller takes

over to track the desired trajectories described in [14].

Another common first order SM approach for the swing up and the stabilization of under-
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actuated pendulum systems is to decouple the system expressions into the actuated and

unactuated subsystems, where a suitable pair of first level sliding surfaces in two different

variables, s1 and s2, is constructed and a second level sliding surface S is constructed as

a linear combination of s1 and s2. The control law acts directly on S to guarantee that

the second-level sliding surface can be reached in an asymptotically stable manner, but

the SM parameters need to change according to different conditions in order to guarantee

the asymptotic stability of s1 and s2. Existing literature gives such a SM control approach

different names, such as the Decoupling SM Control of a pendulum-cart system by M.S.

Park et al. [17], Double Layer SM Control for an overhead crane system by W. Wang et

al. [18], Hierarchical SM control to swing up a pendubot by D. Qian et al. [19]. According

to the literature search, this approach has only been analyzed and tested in single-input

systems with underactuation degree of one, operating in a plane. Such an approach could

be easily extended to work in our SDIP system.

If the control input remains scalar and the underactuation degree is more than two, a more

powerful SM algorithm is needed. Based on the concept of hierarchical structure of the

sliding surfaces, the so called ”Incremental SM controller” was proposed by Y. Hao et al.

[20] and it offers 2n−1 sliding surface layers for 2n state variables. In short, the ith sliding

surface depends on the (i−1)th sliding surface. The controller is designed to guarantee the

rapid convergence to zero for all sliding surfaces and it has been tested in a double-inverted

pendulum and cart system, which has 3 subsystems with underactuation degree of 2.

2.5 Swing-up Control Strategies in 3-D

Many of the aforementioned approaches have been successfully applied to simple planar

systems, but have not been extended to 3-D, which is the type of system the SDIP belongs

to. Miyashita et al., [21], considered a method based on the idea of output zeroing con-

troller [12] for an acrobot to control a 3-D system called AcroBOX, which can be viewed

as a 3-D version of an acrobot, except that it has 5-dof with 3-dof at the ankle, which

is unactuated. For our SDIP system, Xinjilefu et al. achieved global stabilization by using

a stochastic programming algorithm to achieve on-line minimization of the system La-

grangian, [22], as well as a hybrid approach with energy and passivity based control, [6],

for the swing-up phase combined with lqr for complete stabilization.

In order to implement the SMC for the SDIP system, the existing control methods, such
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as the VGSTA described in [8] and Hierarchical SM control described in [19] can be easily

extended into 3-D by the vector control approach described in [2], using diagonal gain

matrices as parameters of the control system since the sliding surfaces and the torque are

2-dimensional vectors.
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Chapter 3

The Objectives of the Thesis

The aim of this thesis is the study and the control of an underactuated mechanical system

in 3-D: a spatial double inverted pendulum (SDIP) with 4 dof actuated only at the hip.

Two major linearization-based approaches to stabilization around the unstable upright

equilibrium position are examined:

• The LQR control

• The quasi-linear SMC methods

The ROC of the system using both algorithms is approximated by way of simulations. In

addition, two nonlinear SM methods are explored towards complementing the swing-up

of the system in a semi-global attempt to bring the system towards the unstable upright

equilibrium.
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Chapter 4

Dynamic Models

Robot dynamics is concerned with the relationship between the actuation forces and the

motion of bodies in a mechanical system. It is important in mechanical design, control,

and computer simulation. The robot dynamics are mainly classified into the following two

problems:

• Forward dynamics : given the applied joint forces/torques, determine the joint accel-

erations.

• Inverse dynamics : given the joint accelerations, work out applied join forces/torques.

A dynamic model links the forces/torques with accelerations of a rigid body mechanical

system and incorporates the architecture and inertia parameters of the system.

In this chapter, we will show how the equations of motion of a robotic system can be

derived using Euler-Lagrange Equation, based on the results from Xinjilefu [23] using

forward dynamic calculations. The system model is then presented in detail for the later

purposes of controller design and simulation.

4.1 Joint Space Formulation using Euler-Lagrange Equation

In this section, we show that the equations of motion of a robotic system can be derived

using Euler-Lagrange equation.
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The motion of a robotic system can be described by a set of differential equations in the

joint space, referred to as the joint space formulation:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (4.1)

By convention, the symbol q denotes the vector of joint position, it specifies the coordinates

of a point in the system’s configuration space. The elements of q are referred to as the

generalized coordinates. In a similar fashion, we define q̇ as the generalized velocity, q̈ as

the generalized acceleration. M(q) is a symmetric positive definite matrix called general-

ized inertia matrix ; C(q, q̇) is a square matrix where C(q, q̇)q̇ is the vector of Coriolis and

centrifugal terms; G(q) is the vector of gravity terms and τ is the vector of the generalized

forces. More terms can be added to Eq. (4.1) to account for various dynamic effects, such

as frictions, external forces, etc.. In this thesis, Eq. (4.1) suffices for controller algorithm

development and these dynamic effects are neglected from the model.

For complex mechanical systems, it is either very difficult to derive the closed form for

the terms in Eq. (4.1), or there is no need to calculate them. However, knowing their

relationship to the energy of the system could help developing control algorithms, and

it is a standard procedure in classical mechanics to derive the equations of motion from

Lagrangian of the mechanical system. The Lagrangian is defined as:

L(q, q̇) = K(q, q̇)− V (q) (4.2)

where L(q, q̇) is the Lagrangian function, K(q, q̇) and V (q) are the kinetic and potential

energies of the system, respectively. The kinetic energy is related to the generalized inertia

matrix by

K(q, q̇) =
1

2
q̇>M(q)q̇ (4.3)

Conversely, the generalized inertia matrix can be calculated given the expression of the

system kinetic energy by

Mi,j(q) =
∂2K(q, q̇)

∂q̇i∂q̇j
(4.4)

The dynamic equations of motion can then be developed using Euler-Lagrange equation
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for the system:

d

dt

∂L

∂q̇
− ∂L

∂q
= τ (4.5)

If Eq. (4.5) is written in the scalar form, then we have for k = 1, · · · , n

n∑
j=1

Mkj(q)q̈j +
n∑
i=1

n∑
j=1

Ck
ij(q)q̇iq̇j +Gk(q) = e>k τ (4.6)

where ek is the k-th standard basis vector in Rn, and where the gravity terms and the

Christoffel symbols of the first type [24] are given by

Gk(q) =
∂

∂qk
V (q) (4.7)

Ck
ij(q) =

1

2

[
∂Mij(q)

∂qk
+
∂Mki(q)

∂qj
− ∂Mjk(q)

∂qi

]
(4.8)

Eq. (4.6) is an alternative expression of Eq. (4.1) in scalar form. The gravity terms in

Eq. (4.1) is related to the potential energy of the system by

G(q) =
∂V (q)

∂q
= [G1(q), ..., Gn(q)]> (4.9)

The elements of C(q, q̇) in Eq. (4.1) can be defined using the Christoffel symbols Ck
ij(q) as

Ci,j(q, q̇) =
n∑
k=1

Ck
ij(q)q̇k (4.10)

4.2 System Model

It has been explained by Xinjilefu [23] that as far as the problem of postural control is

concerned, the simplest multi-body system that can capture the essential kinematic and

dynamic features of standing in the upright position is the SDIP system that can be viewed

as an open kinematic chain. Referring to Fig. 4.1, the model has two main rigid cylindrical

links of lengths li, and radii ri, with masses mi, i = 1, 2, representing the legs and upper

body, respectively. Additional point masses m̄1 and m̄2 are attributed to the hip and to

the head, where we consider the hip belonging to the lower link and the head belonging
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to the upper link. The motion of the links is restrained by two universal joints: at the hip

and at the ankle. It is assumed that the balancing act is implemented by two actuating

torques at the hip while the ankle is unactuated.

θ4

θ3

θ2

θ1

m1

m2

m̄1

m̄2

r1

r2

l1

l2

τ2 = 0τ1 = 0

τ4τ3

Fig. 4.1 Model of the SDIP with 4-dof with underactuation degree of 2

In this thesis, we base our analysis on the inertial frame of reference as the Cartesian X-Y-Z

coordinates system with origin at the foot. We consider the axis of rotation of θ1 as the

X-axis, that of θ2 as the Z-axis, and Y being the vertical axis perpendicular to the ground

(X-Z plane). The model is easily seen to have the following inertia parameters for each

link:

• Mass: mi + m̄i

• com relative to the bottom of the link in the upright equilibrium:

Ci =


0

1
2
li
mi + 2m̄i

mi + m̄i

0


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• Centroidal Mass Moment of Inertia:

Hi =


1

12
mi(3r

2
i + l2i ) +

1

4

mim̄i

mi + m̄i

l2i 0 0

0
1

2
mir

2
i 0

0 0
1

12
mi(3r

2
i + l2i ) +

1

4

mim̄i

mi + m̄i

l2i


for i = 1, 2.

Another important property of this model, yet hidden from the previous descriptions, is

that the order of joint rotations matters when visualizing the actual configuration given

the values of joint angles: the rotation of even joint angles θ2 and θ4 are effectuated before

θ1 and θ3, respectively, and the rotations do not commute. For example, a seemingly

symmetric configuration of q = [45◦,−45◦, 0◦, 0◦]> would look different when viewed from

different perspectives. When viewed from the Y -Z plane, the lower link makes an angle of

45◦ w.r.t. the ground (X-Z plane). However, when viewed from the X-Y plane, it makes

less than 40◦ w.r.t. the ground, as observed using SimMechanics, which is the system

modelling tool discussed in the next chapter.

The forward dynamic calculations were performed by Xinjilefu [23] to derive the system

equations. Let sin qi = si and cos qi = ci for i = 1, · · · , 4, then the symmetric, positive

definite generalized inertia matrix M(q) is obtained to have the following entries

M1,1 = 1
2
m1r1

2 + 1
2
m2r2

2 +
[
D − 1

4
m1r1

2
]
c22

+ A[1− (c2s4 + s2c3c4)
2] + 2Bc2(c2c3c4 − s2s4) (4.11a)

M1,2 = s3c4[Bs2 + A(c2s4 + s2c3c4)] (4.11b)

M1,3 = c4[Bc2c3 + A(c2c4 − s2c3s4)] + 1
2
m2r2

2c2 (4.11c)

M1,4 = s3[−Bc2s4 + (A+ 1
2
m2r2

2)s2] (4.11d)

M2,2 = D+ 1
4
m1r1

2+ 1
2
m2r2

2+A[1−s23c24]+2Bc3c4 (4.11e)

M2,3 = As3s4c4 (4.11f)

M2,4 = (A+ 1
2
m2r2

2)c3 +Bc4 (4.11g)

M3,3 = Ac24 + 1
2
M2r2

2 (4.11h)

M3,4 = 0 (4.11i)

M4,4 = A+ 1
2
m2r2

2 (4.11j)
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where A,B,D are constants,

A = 1
3
m2l2

2 + m̄2l2
2 − 1

4
m2r2

2 (4.12a)

B = (1
2
m2 + m̄2)l1l2 (4.12b)

D = (m̄1 + m̄2 + 1
3
m1 +m2)l1

2 (4.12c)

The potential energy is

V = Ec1c2 + F (c1c2c3c4 − s1s3c4 − c1s2s4) (4.13)

where E,F are constants,

E = (1
2
m1 + m̄1 +m2 + m̄2)g l1 (4.14a)

F = (1
2
m2 + m̄2)g l2 (4.14b)

with g denoting the acceleration of gravity. The vector G(q) representing the gravity terms.

Here we use Eq. (4.7) instead, since the potential energy of the system is available to us.

G1 =− Es1c2 + F (−s1c2c3c4 − c1s3c4 + s1s2s4) (4.15a)

G2 =− Ec1s2 + F (−c1s2c3c4 − c1c2s4) (4.15b)

G3 =F (−c1c2s3c4 − s1c3c4) (4.15c)

G4 =F (−c1c2c3s4 + s1s3s4 − c1s2c4) (4.15d)

The system is governed by

M(q)q̈ + q̇>Q(q)q̇ +G(q) = τ (4.16)

where τ , [0, 0, τ3, τ4]
> ∈ R4, Q is a matrix such that C(q, q̇)q̇ , q̇>Q(q)q̇ ∈ R4, the

later definition being standard in the literature. The terms involving q̇iq̇i represent the

centrifugal forces and the terms involving q̇iq̇j, i 6= j, stand for Coriolis forces. By re-

calling that M(q) is positive definite and hence invertible, we can introduce the Legendre

transformation with respect to q̇ [25],

p =
∂L

∂q̇
= M(q)q̇ (4.17)
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where p is also known as the generalized momentum and L is the Lagrangian function, the

model of the system Eq. (4.16) can be re-written in the Legendre normal form,

q̇ =M−1(q)p (4.18a)

ṗ =−G(q)+p>Q̃(q)p+τ (4.18b)

where Q̃(q) , [
(
M>)−1 (∂M/∂q −Q)M−1](q).

The state space system model can be expressed in either of the 2 forms shown below:

System Model I:

ẋ =

[
q̇

q̈

]
=

[
q̈

−M(q)−1G(q)−M(q)−1q̇>Q(q)q̇

]
+

[
04×2

M(q)−1F (x)

]
τa (4.19)

where C(q, q̇)q̇ = q̇>Q(q)q̇, F (x) = [e3, e4], τa = [τ3; τ4] and x = [q; q̇]

System Model II: stacking up q and p into x , [q; p] allows us see that the Legendre

normal form of the model takes the form of a smooth nonlinear system which is affine in

the control,

ẋ =

[
q̇

ṗ

]
=

[
M−1(q)p

−G(q) + p>Q̃(q)p

]
+

[
04×2

F (x)

]
τa (4.20)

where Q̃(q) , [
(
M>)−1 (∂M/∂q −Q)M−1](q), F (x) = [e3, e4], τa = [τ3; τ4] and x = [q; p]

In the above system equations, ek is the k- standard basis vector in R4 and τa is used

instead of τ to accurately reflect the actuated control torque being a 2-dimensional vector

in this 4-dof underactuated mechanical system.
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Chapter 5

Simulation Environment

With a proper model constructed for the SDIP system, it then can be implemented based

on the following approach:

5.1 System Initialization with Matlab R©

To prepare for a typical simulation, a Matlab script is run to perform the tasks in the

following order:

1. Initialize the physical parameters for the SDIP system.

2. Symbolically derive the system functions such as M(q), C(q, q̇) and G(q), etc. and

convert them into Matlab functions.

3. For a given controller, initialize constant parameters and perform necessary calcula-

tions to generate the Matlab functions used by the controller.

The system functions can also be linked together to form a mathematical model in Simulink

representing the SDIP system according to Eq. (4.1), with inputs u = [τ3, τ4]
T and state

outputs x , [q; q̇] ∈ <8.

5.2 System Modelling with SimMechanics R©

SimMechanics is part of the Simscape toolbox in Simulink, used to build mechanical sys-

tems. A SimMechanics model differs significantly from other Simulink models in how it
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represents a machine. The mathematical model enables Simulink to simulate the machine.

By contrast, a SimMechanics model represents the structure of a machine, the geometric

and kinematic relationships of its component bodies and converts them into an internal,

equivalent mathematical model.

Modelling mechanical systems is much easier with SimMechanics than with other Simulink

models. In order to construct the SDIP system using SimMechanics, a subsystem block

diagram (see Fig. 5.1) is created using components in SimMechanics, with the knowledge

of the structure of the model, com and the Centroidal Mass Moment of Inertia of each

link described in the previous chapter.

A number of simulations have been run to verify the consistency between the Simulink

model and the one modelled by SimMechanics. Therefore, we can conclude that SimMe-

chanics model has indeed simulated the true dynamics of the SDIP system.

The advantages of using SimMechanics to model the mechanical system over relying on

the explicit mathematical models for the nonlinear system are summarized as follows:

1. The speed of the simulation is improved significantly.

2. The positions, velocities and accelerations of various components of the system can

be measured directly using the body or joint sensors in SimMechanics.

3. The joint angle range in SimMechanics is [−180◦ 180◦] while mathematical models

do not respect such limits. As a result, if an angle increases past +180◦, it would

automatically restart from −180◦, making it easier to interpret the results.

4. The dynamics of the double inverted pendulum can be visualized using the 3-D

animation viewer in SimMechanics.

As a result, the SimMechanics model is chosen for the simulation purpose.

5.3 Simulation with Simulink R© and SimMechanics R©

With the state feedback control law designed and implemented onto Simulink diagram, the

joint angles, angular velocities and the torques can be directly viewed in real time during

simulation. The kinetic energy of each link is:

Eki =
1

2
wi
>Hiwi +

1

2
(mi + m̄i)|~vi|2 (5.1)
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Fig. 5.1 SimMechanics block diagram of the SDIP system

for i = 1, 2, where Hi is the Centroidal Mass Moment of Inertia, ~vi is the velocity and

wi is the angular velocity of the respective link. These velocities are obtained using body

sensors attached to both upper and lower bar in the SimMechanics block diagram. Since

the system modelled by SimMechanics has been sub-divided into the upper and lower parts,

simply summing up the kinetic energies of the two subsystems would result in the total

kinetic energy of the system: Ek = Ek1 + Ek2.

To determine the potential energy of the system, we use the following equation:

Ep = mgh (5.2)

where h = m1y1+m2y2
m1+m2

and yi, i = 1, 2 is the y-coordinate of com of each respective link.

We can see that h is essentially the Y-coordinate of the com of the whole SDIP system.

In addition, a small Matlab program was written to calculate the Cartesian coordinates of

the com given the IC, which is used in later analyses.
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Chapter 6

Linearization-based Control

Algorithms

In this chapter, two linearization-based control algorithms are implemented and tested in an

attempt to achieve local asymptotic stabilization close to the unstable upright equilibrium.

6.1 LQR

The initial objective is to design a suitable linear controller for the SDIP system that is

able to bring the system from initial angle positions to its upright equilibrium configuration

with the largest possible roc.

The lqr is a feedback controller that provides the solution to the optimal control problem

of minimizing the quadratic function representing the cost of a linear dynamic system. It

is a standard result that the solution to the optimal control problem can be represented

in the form of a linear state feedback law that is guaranteed to produce an asymptotically

stable closed-loop system. At its core, the lqr algorithm is an automated way of finding

an appropriate state-feedback controller.

The main drawback of an lqr is that since the control law relies on the linearization of the

nonlinear system, it has no guarantee to work globally when implemented on the nonlinear

system.

In this section, the state feedback lqr based on the linearization of System Model II -

Legendre normal form of the model is designed using Eq. (4.20) and tested on the nonlinear

system governed by Eq. (4.19).
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6.1.1 The Infinite Horizon LQR

For a linear time invariant system described by

ẋ = Ax+Bu

with a cost function defined as

J =

∫ ∞
0

(
x>Qx+ u>Ru

)
dt (6.1)

where Q and R represent weighting matrices and the state feedback control law that

minimizes the “cost function” is a linear function of the state given by

u = −Kx

where K is given by

K = R−1B>P

and P is found by solving the Algebraic Riccati Equation

A>P + PA− PBR−1B>P +Q = 0

The solution to the Algebraic Riccati Equation can be found numerically in MATLAB

using the command “lqr”.

6.1.2 Linearization of the Nonlinear System

The dynamics of the spatial double inverted pendulum is described by Eq. (4.20). We

denote x , [q; p], and the linearized system is computed as follows:

A =
∂f(x)

∂x

∣∣∣∣
x=0

=

[
04×4 M−1(q)

−∇G(q) 04×4

]∣∣∣∣∣
q=0,p=0

(6.2)
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where the matrix ∇G(q) is the gradient of G(q), which is also the Hessian of the potential

energy: [−∇G(q)]i,j = −∂
2V (q)

∂qi∂qj
.

The matrix B is given by

B =

[
04×2

M(q)−1F (q)

]∣∣∣∣∣
q=0

(6.3)

and the control vector is given by

u = τa = [τ3, τ4]
> (6.4)

Using the parametersm1 = m2 = 0 kg, m̄1 = m̄2 = 1.0 kg, l1 = l2 = 1.0 m, r1 = r2 = 0.1 m,

g = 9.81 m/s2, the corresponding functions M(q) and G(q) are then obtained. For the

purpose of model simplification and the speed of simulation, the values of leg and body

masses m1 and m2 are set to zero since they are much smaller than the hip and head

masses m̄1 and m̄2, respectively. The matrix A and B are given by:

A =



0 0 0 0 1 0 −2 0

0 0 0 0 0 1 0 −2

0 0 0 0 −2 0 5 0

0 0 0 0 0 −2 0 5

29.43 0 9.81 0 0 0 0 0

0 29.43 0 9.81 0 0 0 0

9.81 0 9.81 0 0 0 0 0

0 9.81 0 9.81 0 0 0 0


B =



0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1


The Kalman Controllability Test has been performed for the (A,B) pair in Matlab with

the command ctrb(A,B). Since the controllability matrix C = [B AB A2B ... A7B] is of

full rank 8, the system is controllable, thus the design of a linear controller is feasible.

6.1.3 The Design of the LQR Weighting Matrices

A suitable linear proportional controller was designed based on the linearized state space

model of the system. The lqr design has been widely used in many similar applications,

especially on the local stabilization of inverted pendulums. Due to its popularity and

superiority over other linear controller design approaches such as pole placement, it has
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been chosen to achieve local stabilization for this system. The goal of such design is to

find the best Q and R pair, to make the roc of the controller as applied to the nonlinear

system largest possible. To achieve that, the linearized model of the system derived from

Eq. (4.20) was designed for first.

A number of simulations based on the linear state space model has been performed in

Simulink with a large set of different initial conditions. As expected, none of the simulations

failed to stabilize because the model of the “system” is linear and does not represent the

true dynamics of the SDIP system. Nevertheless, by choosing a proper positive definite

diagonal matrices Q = diag (q1, q2, q3, q4, q5, q6, q7, q8) and R = diag(r1, r2) the following

generalized observations have been made:

1. Decreasing the values in the R matrix resulted in an increase of the gain K, stronger

control torques, and less overall %OS.

2. Increasing the values in the Q matrix resulted in less overall %OS and longer settling

time.

3. The %OS in angular positions could be kept as low as possible by setting the penalty

weights for the angular velocities (last 4 diagonal entries of Q, i.e. q5, ..., q8) much

larger than those for the angular positions (first 4 entries of Q).

4. The actuated angles, θ3 and θ4, always have much higher overshoot/undershoot in

terms of both positions and velocities than the unactuated ones (θ1 and θ2). This

can be explained by noting that the controller torques are acting directly on the hip,

creating much larger ranges of movements than the corresponding ones at the ankle.

The Q and R matrices were selected by way of multiple simulations with the above ob-

servations in mind. As a result, the Q matrix has been designed to possess the following

characteristics:

1. qk = qk+1 ∀k odd, for the simplicity of the design.

2. q3,4 � q1,2 and q7,8 � q5,6, the entries (penalty weights) controlling the hip need to

be much larger than the corresponding entries controlling the ankle joints, for both

positions and velocities to reinforce the phenomenon described in observation No.4.

3. q5,6 > q1,2 and q7,8 � q3,4, to reinforce observation No.3.
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6.1.4 LQR Control of the Nonlinear System

Eventually, the linearized model should be replaced by the nonlinear one to simulate the

true dynamics of the SDIP system.

The lqr controller has been designed using the cost function from Eq. (6.1). where

Q = diag (25, 25, 500, 500, 50, 50, 3000, 3000)

R = diag (100, 100)

Solving the Algebraic Riccati Equation using MATLAB gives us the following result:

u = −Kx (6.5)

where

K =

[
−440.5 0 −147.2 0 −43.4 0 17.9 0

0 −440.5 0 −147.2 0 −43.4 0 17.9

]
(6.6)

6.1.5 LQR Design Approach

The whole lqr design procedure can be viewed as consisting of following 3 stages:

1. Completion of the linearization and the computations of state space system matrices.

2. Computation of the optimal gain matrix K provided with Q and R matrices, along

with the linearized system matrices generated in the first stage.

3. Repetitive simulations are run to see how the system responds to varying ICs.

With such a design approach, each stage depends on the outputs from the preceding stage,

and previous stage(s) do not have to be repeated if the inputs are not changed. (See

Fig. 6.1)

6.1.6 Simulation Results

The motion of the SDIP is simulated using the controller K described previously. The

simulations are performed in fixed steps of 10−3 using ode4 (Runge Kutta).

The results are displayed using two different initial conditions consisting of plots showing
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Fig. 6.1 The lqr controller design approach

joint angles θ, their velocities, kinetic energy, potential energy as well as input torques to

the system, with simulation horizon of 5 seconds. The initial angular velocities are set to

zero in both examples, because it is often the case in reality that a mechanical system start

from zero velocity. In addition, the relative elevation of centre of gravity of the system

can be directly viewed from the potential energy since they are proportional according to

equation Ep = mgh.

Example 1 The IC is q0 = [0◦, 0◦, 7◦, 0◦]>, q̇0 = 0. The system stabilizes to its equilib-

rium configuration in about 4.5 seconds, as shown in Fig. 6.2 to Fig. 6.5 next.
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Fig. 6.2 Example 1. Change of the joint angles w.r.t. time
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Fig. 6.3 Example 1. Change of joint angle rates w.r.t. time
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Fig. 6.4 Example 1. Change of kinetic and potential energies w.r.t. time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

5

10

15

20
Plot of Joint Torques

Time (sec)

Jo
in

t T
or

qu
es

 (
N

m
)

 

 
τ3
τ4

Fig. 6.5 Example 1. Change of Applied Torques from lqr

As we can see from the previous diagrams, the system operates in a 2-D (Y-Z plane)

because only one angle: θ3 is perturbed initially.
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Example 2 The IC is q0 = [10◦,−10◦,−25◦, 25◦]>, q̇0 = 0. The system stabilizes to its

equilibrium configuration in about 3 seconds, as shown in Fig. 6.6 to Fig. 6.9 next.
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Fig. 6.6 Example 2. Change of the joint angles w.r.t. time
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Fig. 6.7 Example 2. Change of joint angle rates w.r.t. time
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Fig. 6.8 Example 2. Change of kinetic and potential energies w.r.t. time
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Fig. 6.9 Example 2. Change of Applied Torques from lqr
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If Q is kept the same and R = diag(0.01, 0.01), then

Khigh ≈ 104 ×

[
−1.62 0 −0.56 0 −0.16 0 0.06 0

0 −1.62 0 −0.56 0 −0.16 0 0.06

]

As we can see, the corresponding gain is huge and it may not be practically realized in

the presence of constraints on the actuation signals. Nevertheless, it has been shown to

extend the roc significantly compared with using R = diag(100, 100). Therefore, it can be

concluded that the smaller the R matrix becomes, the harder the controller tries to push

the system into equilibrium, resulting in a larger roc. Of course, that does not mean R

matrix should be made arbitrarily small. It has been tested that making its values too

small (below 10−3) does not improve the roc and could even worsen the performance of

the controlled system.

After extensive simulations using the gain matrix Khigh, a selection of results obtained by

varying IC (all initial velocities are set to 0) is summarized Table 6.1. The first 4 rows

list the individual upper bounds of θ1 to θ4 (the largest deviation of a respective angle

by setting all other 3 angles to zero). We can see that system behaves in an asymmetric

manner, i.e, θ1 and θ3 have a larger roc than θ2 and θ4, respectively. Also, It could be

inferred that the roc is somewhat related to Rcom. Physically this means that it is easier

to stabilize the system when the com is closer to its equilibrium. However, by comparing

between the results in the table, we can also see that Rcom is only a rough indicator on

the stabilizability of the system. These results have led us to perform a an extensive suite

of simulations to determine roc in Y-Z plane by varying the θ1 from −34◦ to 34◦ and θ3

from −97◦ to 97◦, respectively, in steps of 1◦. The results collected in Fig. 6.10 are quite

promising, because the roc is not limited to the IC with com quite close to the upright

equilibrium, but as long as the θ1 is no larger in magnitude than ±34◦, there is always a

corresponding range of initial angle positions θ3 can belong to in order for the system to

be stabilized. For example, the IC of [30◦, 0◦,−80◦, 0◦] with a relatively large Rcom of 33.38

cm is still in the roc of the lqr controller.
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q0 Rcom (cm) in roc

[±3.8◦, 0◦, 0◦, 0◦]> 9.9466 Yes

[0◦,±2.68◦, 0◦, 0◦]> 7.016 Yes

[0◦, 0◦,±10◦, 0◦]> 8.7156 Yes

[0◦, 0◦, 0◦,±7◦]> 6.105 Yes

[±4◦, 0◦, 0◦, 0◦]> 10.4698 No

[0◦, 0◦,±10.5◦, 0◦]> 9.1502 No

[0.5◦, 0.5◦, 2◦, 1.8◦]> 4.197 Yes

[10◦,−10◦,−25◦, 25◦]> 9.350 Yes

[10◦,−10◦,−30◦, 30◦]> 9.13 No

[20◦, 0◦,−50◦, 0◦]> 15.707 Yes

Rcom is the com distance between initial and equilibrium configurations

Table 6.1 Simulaiton results of lqr for different initial conditions
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Fig. 6.10 roc of the lqr operating in Y-Z plane
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6.1.7 The Advantage of System Model II

The same lqr design approach has also been followed with System Model I based on

the linearization of Eq. (4.19). After extensive simulations by varying ICs, it has been

observed that System Model II in Legendre normal form offers a much broader roc than

its untransformed counterpart.

The advantage of the lqr controller based on System Model II over System Model I can

be inferred from the obvious fact that the former system has to constantly calculate the M

matrix and update the state variable p = M(q)q̇ in real time, since p depends non-linearly

on both q and q̇. As a result, the overall control system has become more sophisticated.

6.1.8 Relationships between physical parameters and roc

The previous examples all used the same set of physical parameters and the (A,B) pair

described earlier. However, one might wonder what would happen to the roc if those

physical parameters are changed. A number of simulations have been performed and the

following relationships have been observed:

• If the lengths of the pendulums l1 and l2, as well as their masses m1 and m2 are kept

constant, increasing the ratio between hip mass m̄1 and head mass m̄2 would bring

the com closer to the hip, making Rcom smaller for all initial configurations, resulting

in larger overall roc. For example, when m̄1 is increased to 2.0 kg while m̄2 remains

1.0 kg, the system with the IC of [±4◦, 0◦, 0◦, 0◦] could be stabilized while it was not

within the roc given the original parameters as shown in Table (6.1).

• If the lengths of the pendulums l1 and l2, as well as head and hip masses m̄1 and m̄2

are kept constant, increasing the masses of both pendulums by the same amount and

keeping m1 = m2 will enlarge the overall roc. For example, when m1 = m2 = 1.0 kg,

the system with IC of [10◦,−10◦,−30◦, 30◦] could be stabilized while it was not within

the roc given the original parameters when m1 and m2 were assumed to be negligible,

as shown in Table (6.1). It can be explained by nothing that the com is brought

closer to the hip largely due the increase in the mass of the lower pendulum m1, while

the presence of m2 makes sure the com is still above the hip.

• Increasing the length of upper pendulum could enlarge the overall roc as it would

enlarge the torque acting on the hip. For example, if l2 is increased to 1.5m, the IC

of [±4◦, 0◦, 0◦, 0◦] could be stabilized.
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• The radii of the pendulums r1 and r2 have no effects on the roc of the system.

6.2 Quasi-linear STA Sliding Mode Controller

A novel Lyapunov based design of VGSTA [8] has been recently proposed ensuring global

finite time convergence to the desired sliding surface for LTI systems with absolutely contin-

uous matched uncertainties/disturbances bounded together with their gradients by known

functions.

6.2.1 Initial System Transformation

The approach is explained below and it applies principally to an LTI system of type:

ẋ = Ax+B(u+ d(x)) (6.7)

where x ∈ <n is a state vector, and u ∈ <m is a continuous control law, d(x) represents

matched perturbation in the system (6.7). Therefore, the system is quasi-linear, as d(x)

is the only nonlinearity in Eq. (6.7). The method necessitates the following additional

assumptions:

A1: rank(B) = m.

A2: the pair (A,B) is controllable,

A3: the function d together with its gradient is bounded by known continuous functions.

Under (A1) and (A2), we can apply a state transformation T to transform the system into

the regular form, as follows:1

x̃ = Tx, where T =

[
B⊥

B+

]
, B+ = (BTB)−1BT , B+B = Im, B

⊥B = 0

The system in the regular form is hence obtained as:2

˙̃x1 = A11x̃1 + A12x̃2

˙̃x2 = A21x̃1 + A22x̃2 + u+ d̃ (x̃) (6.8)

1B+ is the Moore-Penrose pseudoinverse of B
2Note that Aij ’s, i = 1, 2 and j = 1, 2 are submatrices of TAT−1 due to the transformation.
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where x1 ∈ <n−m and x2 ∈ <m.

Let us enforce the sliding mode on the surface:

s = x̃2 −Kx̃1 (6.9)

If the pair (A11, A12) is controllable, then the matrix K can be designed using either pole

placement or lqr to prescribe the required performance of the reduced-order system on

the surface:

˙̃x1 = (A11 + A12K)x̃1 (6.10)

From (6.9), we get x̃2 = s+Kx̃1, so system (6.8) becomes:

˙̃x1 = (A11 + A12K)x̃1 + A12s

ṡ = A21x̃1 + A22x̃2 + u−K(A11x̃1 + A12x̃2) + d̃(x̃)

= (A21 + A22K −K(A11 + A12K))x̃1 + (A22 −KA12)s+ u+ d̃(x̃) (6.11)

Suppose d(x) = 0, then we get

ṡ = (A21 + A22K −K(A11 + A12K))x̃1 + (A22 −KA12)s+ u (6.12)

Thus on the surface (6.9), s = ṡ = 0 and consequently

ueq = −(A21 + A22K −K(A11 + A12K))x̃1 (6.13)

Let us choose the controller in the following form

u = −(A21 + A22K −K(A11 + A12K))x̃1 − (A22 −KA12)s+ v

= ueq − (A22 −KA12)s+ v (6.14)

Then the controlled system (6.11) takes the form

˙̃x1 = (A11 + A12K)x̃1 + A12s

ṡ = v + d̃(x̃) (6.15)
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6.2.2 Sliding Mode Control Algorithms

As we can see from (6.15), the system is of relative degree 1 w.r.t. the sliding variable s.

According to [3], v could either be designed as a discontinuous control law, or a continuous

state function with s̈(x) being discontinuous. With the latter approach, a SOSM controller

can be designed to avoid chattering and make s = ṡ = 0 in finite time, while the s̈ is

discontinuous.

Therefore, we could use the following three SMC algorithms to control the system, with

v ∈ <m:

1. First Order SM controller with M0 = const. ∈ <

v = −M0sign(s) (6.16)

2. STA with constant gains k1 and k2.

The components of vi of the control vector v, for i = 1, ...,m are defined as:

vi = −k1|si|
1
2 sign(si)− k2

t∫
0

sign(si)dt (6.17)

For simplicity, we use the same set of gains k1 and k2 for all components vi of v.

3. VGSTA with variable gains k1(x̃) and k2(x̃). In this approach:

vi = −k1i(x̃)φ1i(si)−
t∫

0

k2i(x̃)φ2i(si)dt, i = 1, ...,m (6.18)

where

φ1i(si) = |si|
1
2 sign(si) + k3si k3 > 0

φ2i(si) = 1
2
sign(si) + 3

2
k3|si|

1
2 sign(si) + k3

2si

For the VGSTA design, we note that when k3 = 0 and k1 and k2 are constant, a standard

STA is recovered. The gain k3 is used to deal with perturbations growing linearly in s,

and the variable gains k1(x̃) and k2(x̃) adaptively adjust gains for the control system,

making it possible to keep the system stay on the sliding surface without being affected by

perturbations bounded by some known functions.
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In order to properly design k1(x̃) and k2(x̃), we now note that the perturbation can always

be written as:

d̃(x̃) = d̃(x̃1, x̃2) = d̃(x̃1, s+Kx̃1) (6.19)

= [d̃(x̃1, s+Kx̃1)− d̃(x̃1, Kx̃1)︸ ︷︷ ︸
g1(x̃1,s)

] + d̃(x̃1, Kx̃1)︸ ︷︷ ︸
g2(x̃1)

(6.20)

For i = 1, ...,m, the perturbation d̃(x̃) is bounded by

|g1i(x̃1, s)| ≤ ρ1i(x̃)φ1i(si)

| d
dt
g2i(x̃1)| ≤ ρ2i(x̃)φ2i(si) (6.21)

where φ1i(si) and φ2i(si) are continuous functions.

System (6.15) with VGSTA (6.18) can now be written as

˙̃x1 = (A11 + A12K)x̃1 + A12s

ṡi = −k1i(x̃)φ1i(si) + zi + g1i(x̃1, s)

żi = −k2i(x̃)φ1i(si) + d
dt
g2i(x̃1) (6.22)

According to [8], s = 0 can be reached in finite time if the variable gains are selected as

k1i(x̃) = δ + 1
β

{
1
4ε

[2ερ1i + ρ2i]
2 + 2ερ2i + ε+ [2ε+ ρ1i](β + 4ε2)

}
k2i(x̃) = β + 4ε2 + 2εk1i(x̃) (6.23)

where β > 0, ε > 0, δ > 0 are positive constants. The complete proof is described in [8].

6.2.3 SDIP Model Representation to fit the SM approach

In our nonlinear system in System Model II from Eq. (4.20), since B is a constant, it may

be expressed as:

ẋ = f(x) +Bu, or

ẋ = Ax+Bu+ e (x) (6.24)
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where x ∈ <8, u = τa ∈ <2, B =

[
06×2

I2

]
and e(x) is the linearization error, therefore

e (x) = f (x)− Ax =

[
M−1 (q) p

−G (q) + pT Q̃ (q) p

]
− Ax (6.25)

Since p = M (q) q̇, we can see that M−1 (q) p = q̇

After the transformation and using B+ = [02×6 I2] and B⊥ = [I6 06×2], we get

ẋ1 = A11x1 + A12x2 + e1(x)

ẋ2 = A21x1 + A22x2 + u+ e2 (x) (6.26)

so x = [x1;x2] , B+e (x) = e2(x) and B⊥e (x) = e1(x) with e (x) = [e1(x); e2(x)].

We can see that such transformation has not altered the states of the system at all. It

only served to separate the system into its upper and lower parts consisting of the top 6

rows and bottom 2 rows, respectively, since the system in Legendre normal form can be

considered to be already in the regular form after truncating top 6 rows of e(x), i.e, e1(x).

Although e1(x) has not been taken care of in the above regular form, as the perturba-

tion must be in the same dimension as the torque input, we have at least been able to

consider part of the error in our quasi-linear model. We can now treat e2(x) as d̃(x̃) in

the (6.8). Thus by tracking the error of e2(x) in real time, we are able to calculate the

variable gains of control the system on-line according to procedure described in Eq. (6.21)

and Eq. (6.23), and that is the intuitive reasoning why VGSTA is superior to standard STA.

For our system, the sliding surface should be chosen to be of the same dimension as u ∈ <2

s = x2 −Kx1 (6.27)

The total control law and altered system takes the same form as in (6.14) and (6.15),

respectively with x̃ and d(x) replaced with x and e2(x), respectively.
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6.2.4 Simulation Results for the disturbance-free system

Using the same (A,B) pair obtained earlier for lqr controller, K was designed using lqr

method since (A11, A12) is controllable. With Q = diag(1, 1, 1, 1, 4, 4) and R = diag(5, 5),

resulting in the gain matrix:

K =

[
31.95 0 11.12 0 3.21 0

0 31.95 0 11.12 0 3.21

]
(6.28)

Example 3 In this example, we use the First Order SM controller, with M0 = 10. The

IC is q0 = [10◦,−10◦,−25◦, 25◦]>, q̇0 = 0.
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Fig. 6.11 Example 3. Change of the sliding surfaces w.r.t. time
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Fig. 6.12 Example 3. Change of the joint angles w.r.t. time
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Fig. 6.13 Example 3. Change of joint angle rates w.r.t. time
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Fig. 6.14 Example 3. Change of kinetic and potential energies w.r.t. time
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Fig. 6.15 Example 3. Change of Applied Torques
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Example 4 In this example, we use the standard STA, with k1 = 20, k2 = 15. The IC

is q0 = [10◦,−10◦,−25◦, 25◦]>, q̇0 = 0.
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Fig. 6.16 Example 4. Change of the sliding surfaces w.r.t. time
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Fig. 6.17 Example 4. Change of the joint angles w.r.t. time
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Fig. 6.18 Example 4. Change of joint angle rates w.r.t. time
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Fig. 6.19 Example 4. Change of kinetic and potential energies w.r.t. time
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Fig. 6.20 Example 4. Change of Applied Torques

Example 5 In this example, we use VGSTA, with k3 = 20, δ = 0, β = 10 and ε = 0.5.

The IC is again q0 = [10◦,−10◦,−25◦, 25◦]>, q̇0 = 0.
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Fig. 6.21 Example 5. Change of the sliding surfaces w.r.t. time
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Fig. 6.22 Example 5. Change of the joint angles w.r.t. time
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Fig. 6.23 Example 5. Change of joint angle rates w.r.t. time
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Fig. 6.24 Example 5. Change of kinetic and potential energies w.r.t. time
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Fig. 6.25 Example 5. Change of Applied Torques
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Example 6 In this example, we again use VGSTA, with k3 = 20, δ = 0, β = 10 and

ε = 0.5. The IC is now q0 = [4◦, 0◦, 0◦, 0◦]>, q̇0 = 0.
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Fig. 6.26 Example 6. Change of the sliding surfaces w.r.t. time
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Fig. 6.27 Example 6. Change of the joint angles w.r.t. time
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Fig. 6.28 Example 6. Change of joint angle rates w.r.t. time
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Fig. 6.29 Example 6. Change of kinetic and potential energies w.r.t. time
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Fig. 6.30 Example 6. Change of Applied Torques

VGSTA offers a feasible alternative to lqr. As evidenced through simulations, IC of in

Example 6 can be controlled properly only with VGSTA, as all the other methods including

lqr could not render the system stable. However, the cost of the VGSTA controller is

much higher than other controllers as intensive real-time calculation is required.

By varying the gain parameters for VGSTA, it has been observed that:

• Increasing k3 could help deal with more perturbations but increase the overall torque

• Decreasing K would slightly reduce the torque, but lengthens settling time and some-

what reduce the roc slightly.

• A good balance between beta and epsilon should be achieved: according to the

expressions, decreasing ε would decrease overall gain; increasing β would increase the

number of oscillations, making k2 bigger, yet decreasing k1.

6.2.5 Simulation Results for the system with disturbance inputs

Robustness Test In Examples 7 through 10, we apply a periodic disturbance pulse of

torque amplitude of 5Nm, width of 0.4 second with a period of 1s added to both torques,

with the IC q0 = [10◦,−10◦,−25◦, 25◦]>, q̇0 = 0 for lqr, SM, standard STA and VGSTA,
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respectively.
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Fig. 6.31 Periodic Pulse Disturbance

Example 7 lqr controller using the same gain as in Example 1: the lqr controller

failed to stabilize after a few seconds.
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Fig. 6.32 Example 7. Change of the joint angles w.r.t. time
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Example 8 First Order SM controller using the same gain as in Example 3: the con-

trollers handles the disturbance well with fast switching inputs.
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Fig. 6.33 Example 8. Change of the sliding surfaces w.r.t. time
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Fig. 6.34 Example 8. Change of the joint angles w.r.t. time
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Fig. 6.35 Example 8. Change of joint angle rates w.r.t. time
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Fig. 6.36 Example 8. Change of kinetic and potential energies w.r.t. time
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Fig. 6.37 Example 8. Change of Applied Torques

Example 9 STA controller using the same gain as in Example 4.
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Fig. 6.38 Example 9. Change of the sliding surfaces w.r.t. time
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Fig. 6.39 Example 9. Change of the joint angles w.r.t. time
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Fig. 6.40 Example 9. Change of joint angle rates w.r.t. time
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Fig. 6.41 Example 10. Change of kinetic and potential energies w.r.t. time

0 1 2 3 4 5 6
−25

−20

−15

−10

−5

0

5

10

15

20

25
Plot of Joint Torques

Time (sec)

Jo
in

t T
or

qu
es

 (
N

m
)

 

 
τ3
τ4

Fig. 6.42 Example 10. Change of Applied Torques
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Example 10 VGSTA controller using the same gain as in Example 5.
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Fig. 6.43 Example 10. Change of the sliding surfaces w.r.t. time
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Fig. 6.44 Example 10. Change of the joint angles w.r.t. time
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Fig. 6.45 Example 10. Change of joint angle rates w.r.t. time
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Fig. 6.46 Example 10. Change of kinetic and potential energies w.r.t. time
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Fig. 6.47 Example 10. Change of Applied Torques

6.3 Discussions on Linearization-based Control Algorithms

In this chapter we presented two major approaches to stabilize the SDIP system when it

starts off at a position relatively close to the unstable upright equilibrium: the lqr and

quasi-linear SMC. The lqr controller relies on constant gains derived from solving the

Algebraic Riccati Equation, and it has been shown that higher gains would enlarge the

roc but in the real physical systems, torque limits must be imposed and a good balance

between roc and controller gain should be achieved. The SMC methods constantly track

the sliding surfaces, drive the system into the sliding manifolds to ensure that asymptotic

stabilizations can be achieved.

The SM controller using VGSTA has been tested to extend the roc slightly by successfully

stabilizing the system with IC of q0 = [4◦, 0◦, 0◦, 0◦]>, q̇0 = 0, as shown in Example 6. How-

ever, as verified by a number of simulations, the overall roc based on these sliding mode

methods have not been significantly improved over the lqr because the sliding surfaces are

designed based on the assumption that the system is linear, but when the system moves
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further away from equilibrium position, the nonlinearities of the system will invalidate the

quasi-linear SMC approaches.

One major advantage of the SM controller is its robustness against disturbances applied at

the inputs to the system, as demonstrated in the simulations, largely because the system

is designed to be more sophisticated than the lqr controller, which is simply a constant

proportional gain matrix K. In addition, the comparisons among the three sliding mode

methods are discussed below:

• The first order constant gain SM controller is the simplest SM controller of the three,

with fast switching inputs that drive the sliding surfaces to zero very fast. However,

the controller exhibits chattering effects, yet has offered strong robustness in the

presence of periodic disturbance inputs. (See Fig. 6.34 and Fig. 6.35)

• The standard STA controller is able to successfully stabilize the system in the pres-

ence of the periodic disturbances. More importantly, it produces continuous control

inputs to the systems so chattering effects are avoided. According to the simulation

plots, in the presence of disturbances, the joint angles and velocities do not follow

the trajectories that are as smooth as the other two SM controllers. (See Fig. 6.39

and Fig. 6.40)

• The VGSTA controller combines the advantages of both of the previous controllers

by adaptively changing the gains to smoothly achieve asymptotic stabilizations with

continuous inputs with insensitivity to disturbances. (See Fig. 6.44 and Fig. 6.47)

However, due to its sophistication in implementation, it has been shown to be more

computationally expensive and runs more slowly in simulation as compared to the

previous two methods.

Both the lqr and quasi-linear SMC approaches are able to balance the SDIP with small

initial angle perturbations from upright equilibrium configuration. It is clear that the roc

is unsatisfactorily small for standing postural control purposes. Therefore, it is necessary

to explore the nonlinear approaches in order to significantly extend the roc. Nonlinear

SMC methods are explored in the next chapter.
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Chapter 7

Nonlinear Sliding Mode Control

Approaches

In this chapter, two types of nonlinear controllers are studied and implemented in an at-

tempt to enlarge the roc and provide semi-global swing-up of the spatial double inverted

pendulum towards its equilibrium configuration.

7.1 The Hybrid Approach

The two main hybrid approaches for achieving a satisfactory behaviour of the SDIP system

can be summarized as follows:

• Global stabilization (switching from swing-up controller to lqr or quasi-linear STA

controller as soon as the system reaches the roc of the linear controller.)

• Tracking of small periodic trajectories (switching from swing-up to tracking controller

using SMC when the system reaches the vicinity of the upright equilibrium)

Spong [9], and Xinjilefu [6] have used the former approach to tackle the stabilization prob-

lem by first using a nonlinear algorithm for the swing-up phase and then switching to an

lqr controller for the balance phase after the system reaches the vicinity of the equilibrium

configuration. Puga et al. [16] have used the latter approach for the swing-up and tracking

of an acrobot.
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It is obvious that achieving global stabilization is ideal if the controller can be designed

properly. The latter approach does not put the system at rest at the unstable equilibrium

and can be achieved for the SDIP system only if the zero-dynamics of the system can be

properly identified in 3-D. However, it is extremely difficult to obtain due to the enormous

size of the expressions that govern the dynamics of the system. As a result, our focus is to

design a nonlinear SM controller which is able to push the system into the roc of the linear

controller in order to achieve global stabilization, rather than relying on the stabilization

of the zero-dynamics.

Xinjilefu [6] has stated the following switching condition from the nonlinear swing-up

controller to the lqr controller: if Vmax + L(q, q̇) < 3%Vmax, switch to lqr, where Vmax

is the maximum potential energy of the system achieved only at the unstable equilibrium

position, and L(q, q̇) is the Lagrangian of the system. This is a good indicator of how stable

the system becomes because the lower its value becomes, the closer it is to the upright

equilibrium position and the less velocity it has.

7.2 Nonlinear First-Order Sliding Mode Control

A first-order sliding mode controller is a SM controller that drives the motion of system

states onto the sliding surface s = 0 and keep the system on the sliding manifold. In

this section, we design and simulate a First-Order Hierarchical Sliding Mode Controller

(FOHSMC).

7.2.1 Hierarchical SM Controller Design

This section is devoted to the implementation of the hierarchical sliding mode control

approach [19] that has been designed and implemented for 2-D systems such as a pendubot

with underactuation degree of 1 into this 3-D system with underactuation degree of 2. First,

the lower half of System Model I from Eq. (4.19) can be viewed as:

q̈ = f(q, q̇) +B(q, q̇)τa = −M(q)−1[G(q)− q̇TQ(q)q̇] +M(q)−1F (q)τa (7.1)
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where the matrices and vectors can be partitioned as:

q̈ =

[
q̈u

q̈a

]
f(q, q̇) =

[
fu(q, q̇)

fa(q, q̇)

]
B(q, q̇) =

[
Bu(q, q̇)

Ba(q, q̇)

]

Thus the system model can be re-written into the following form:

q̈u = fu(q, q̇) +Bu(q, q̇)τa (7.2a)

q̈a = fa(q, q̇) +Ba(q, q̇)τa (7.2b)

where qu = [q1 q2]
> and qa = [q3 q4]

> are the unactuated and actuated DoFs, respectively.

We can now construct a suitable pair of bottom-level sliding surfaces:

s1 = C1qa + q̇a (7.3a)

s2 = C2qu + q̇u (7.3b)

where C1 = diag(c11, c12) and C2 = diag(c21, c22) are positive definite diagonal parameter

matrices. Then using the equivalent control method, by setting ṡ1 = ṡ2 = 0, the equivalent

control law of the subsystems can be obtained as:

τeq1 = −Ba(q, q̇)
−1(fa(q, q̇) + C1q̇a) (7.4a)

τeq2 = −Bu(q, q̇)
−1(fu(q, q̇) + C2q̇u) (7.4b)

For our SDIP system, it is difficult to control 4 state outputs with 2 actuators. Therefore,

to ensure that each subsystem follows its own sliding surface, the total control law should

include the equivalent control law from each subsystem. The total control law can be

defined as:

τa = τeq1 + τeq2 + τsw (7.5)

where τsw is the switching part of the sliding mode controller. The top-level sliding surface

can be constructed as follows:

S = Ps1 +Qs2 (7.6)
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where P = diag(p1, p2) and Q = diag(q1, q2) are sliding mode parameter matrices. The

objective is to design a swing-up control law that drives the system into the desired sliding

surfaces. The switching control law that guarantees reachability of the top-level sliding

surface can be designed by first defining the Lyapunov energy function as follows:

V (t) =
1

2
STS (7.7)

A Lyapunov analysis can be performed by differentiating V w.r.t. time t:

V̇ = STṠ = ST(P ṡ1 +Qṡ2)

= ST[P (C1q̇a + q̈a) +Q(C2q̇u + q̈u)]

= ST[P (C1q̇a + fa +Ba(τeq1 + τeq2 + τsw))

+Q(C2q̇u + fu +Bu(τeq1 + τeq2 + τsw))]

= ST[PBa(τeq2 + τsw) +QBu(τeq1 + τsw)]

= ST[(QBuτeq1 + PBaτeq2) + (PBa +QBu)τsw] (7.8)

Let (QBuτeq1 + PBaτeq2) + (PBa + QBu)τsw = −K1S − K2sgn(S) where K1 and K2 are

positive definite diagonal constant matrices, then

τsw = −(PBa +QBu)
−1[(QBuτeq1 + PBaτeq2) +K1S +K2sgn(S)]

As a result, the total control law τa of the control system is given by:

τa = τeq1 + τeq2 + τsw

= τeq1 + τeq2 − (PBa +QBu)
−1[(QBuτeq1 + PBaτeq2) +K1S +K2sgn(S)]

= (PBa +QBu)
−1(PBaτeq1 +QBuτeq2 −K1S −K2sgn(S)) (7.9)

Then (7.8) becomes:

V̇ = ST[−K1S −K2sgn(S)]

= −K1 ‖S‖2 −K2 ‖S‖1 < 0 (7.10)

Therefore, the top-level sliding surface is stable. However, the first layer sliding surfaces

are not guaranteed to follow their own surfaces. The conditions for first-layer stabilities
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have been proposed and analyzed in [19], where the weighting parameters are varied with

varying conditions, but are difficult to be transplanted into our controller. As a result, our

best hope is that by choosing a suitable set weighting matrices, the kinetic energy could

be minimized at the vicinity of the unstable equilibrium, i.e, Vmax + Lagrangian is small

enough so the linear control can take over.

The diagonal weighting matrices P , Q, C1 and C2 are designed and tuned with the following

considerations in mind:

• The weighting matrices P and Q dictate the relative importance of each bottom-

level sliding surface to the top-level sliding surfaces of actuated and unactuated joint

angles, respectively.

• C1 and C2 dictate the relative relative rates of convergence to and after reaching the

bottom-level sliding surfaces of actuated and the actuated joint angles.

• The gains K1 and K2, should be chosen to match the speed of convergence of the

top-level sliding surface.

7.2.2 Simulation Results

In the following two examples, FOHSMC is used to perform the swing-up of the system.

After some tunings, the gain parameters are designed to be: K1 = diag(8, 8), K2 =

diag(0.3, 0.3), C1 = diag(5, 5) and C2 = diag(4, 4). The plot of Vmax + Lagrangian will be

included in all of the simulation results that follow, where Vmax is 29.43 J with the physical

parameters used in previously in section (6.1).

Example 11 FOHSMC with P = diag(7, 5), Q = diag(3, 2) and q0 = [10◦,−10◦,−30◦, 30◦]>,

q̇0 = 0, outside the roc of the linear controller.
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Fig. 7.1 Example 11. Change of S w.r.t. time
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Fig. 7.2 Example 11. Change of s1 w.r.t. time
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Fig. 7.4 Example 11. Change of the joint angles w.r.t. time
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Fig. 7.5 Example 11. Change of joint angle rates w.r.t. time
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Fig. 7.7 Example 11. Change of kinetic and potential energies w.r.t. time
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Example 12 FOHSMC with P = diag(8, 7), Q = diag(1, 0.5) and q0 = [30◦, 20◦,−135◦,−25◦]>,

q̇0 = 0, quite far from the unstable equilibrium.
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Fig. 7.11 Example 12. Change of the s2 w.r.t. time
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Fig. 7.12 Example 12. Change of the joint angles w.r.t. time
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Fig. 7.13 Example 12. Change of joint angle rates w.r.t. time
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Fig. 7.14 Example 12. Change of Vmax + Lagrangian w.r.t. time
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Fig. 7.15 Example 12. Change of kinetic and potential energies w.r.t. time
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7.2.3 Discussions

In this section we have extended the existing hierarchical first order sliding mode control

approach to 3-D in order to work for our SDIP system. According to simulation results,

the swing-up controller is able to bring the system to a region quite close to the upright

equilibrium configuration. However, when switching condition described by Xinijlefu [6]

is satisfied at t ∈ [0.1, 1]s in Fig. (7.6) and t ∈ [0.5, 0.8]s in Fig. (7.14), neither the lqr

controller nor the VGSTA controller used in the previous chapter has been able to take

over the nonlinear controller during the above time interval to stabilize the system success-

fully. This has led us to believe that aforementioned switching condition is not sufficient

to guarantee that the system has indeed arrived inside the roc of the linear controller, as

previously thought by Xinijlefu.

Also, since the sliding surfaces are decoupled into two actuated and unactuated angular

components, the strategy of simply using linear combination of these two sliding surfaces

to combine into the top-level sliding surface has not yet worked well for the system using

the hybrid approach since all angles are intercorrelated in certain ways. Nevertheless, it

has great potential for further improvements. Such investigation is beyond the scope of

this thesis. As expected, according to the simulation results, the top-level sliding surface

can be brought to zero easily and in achieving so, the system can be always brought to

the vicinity of the upright equilibrium by a reasonable choice of P and Q weighting matrix

pairs.

7.3 Nonlinear Second-Order Sliding Mode Control

With second order SM control, the derivative of the sliding surface can be brought to zero

in addition to the sliding surface itself in finite time. As a result, it offers clear advantages

in both robustness and high accuracy of resulting motions [16]. In this section, we design

and simulate a Second-Order Optimal Sliding Mode Controller (SOOSMC).

7.3.1 Partial Feedback Linearization

Due to the positive definiteness the generalized inertia matrix, the entire class of underac-

tuated mechanical systems possesses the so-called collocated partial feedback linearization

property [11].
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Collocated linearization refers to control that linearizes the equations associated with the

actuated dof, whereas non-collocated partial feedback linearization refers to control that

linearizes the equations associated with the unactuated dof, which is only possible under

a special assumption of the generalized inertia matrix. We consider both the collocated

linearization and the non-collocated linearization in this thesis. Referring to Eq. (4.1), the

Euler-Lagrangian equations of the underactuated spatial double inverted pendulum can be

written as:

M11(q)q̈u +M12(q)q̈a + Cu(q, q̇) +Gu(q) = 0 (7.11a)

M21(q)q̈u +M22(q)q̈a + Ca(q, q̇) +Ga(q) = τa (7.11b)

where the matrices and vectors are partitioned as

M(q) =

[
M11 M12

M21 M22

]
, C(q, q̇)q̇ =

[
Cu(q, q̇)

Ca(q, q̇)

]

G(q) =

[
Gu(q)

Ga(q)

]
, qu =

[
q1

q2

]
, qa =

[
q3

q4

]

Collocated Partial Feedback Linearization

In Eq. (7.11a), the 2 × 2 block matrix M11(q) is invertible, as M(q) is positive definite,

then q̈u can be solved as

q̈u = −M−1
11 M12q̈a −M−1

11 Cu(q, q̇)−M−1
11 Gu(q) (7.12)

When substituting Eq. (7.12) into Eq. (7.11b) we obtain

(M22 −M21M
−1
11 M12)q̈a + (Ca −M21M

−1
11 Cu) + (Ga −M21M

−1
11 Gu) = τa (7.13)

Let us redefine the following:

Ma = M22 −M21M
−1
11 M12

Ca = Ca −M21M
−1
11 Cu

Ga = Ga −M21M
−1
11 Gu
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then Ma is positive definite since M(q) is positive definite. Eq. (7.13) can be written as

Maq̈a + Ca +Ga = τa (7.14)

If we choose a new control input v such that

τa = Mav + Ca +Ga (7.15)

then Eq. (7.14) is partially feedback linearized to

q̈a = v (7.16)

together with Eq. (7.11a), the complete system can be described by

M11(q)q̈u + Cu(q, q̇) +Gu(q) =−M12(q)v

q̈a = v (7.17)

Non-Collocated Partial Feedback Linearization

Similarly, in Eq. (7.11a), the 2× 2 block matrix M12(q) seems to be invertible.1 Whenever

it is invertible, q̈a can be solved as:

q̈a = −M−1
12 M11q̈u −M−1

12 Cu(q, q̇)−M−1
12 Gu(q) (7.18)

After substituting Eq. (7.18) into Eq. (7.11b) we eventually obtain:

Muq̈u + Cu +Gu = τa (7.19)

where

Mu = M21 −M22M
−1
12 M11

Cu = Ca −M22M
−1
12 Cu

Gu = Ga −M22M
−1
12 Gu

1with the exception of a set of states most probably of measure zero in <4, as the singularity of M12(q)
has not been encountered in simulations.
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If we choose a new control input u such that

τa = Muu+ Cu +Gu (7.20)

then Eq. (7.19) is partially feedback linearized to

q̈u = u (7.21)

together with Eq. (7.11a), the complete system can be described by

M12(q)q̈a + Cu(q, q̇) +Gu(q) =−M11(q)u

q̈u = u (7.22)

7.3.2 Controller Design with Twisting Algorithm

Suppose we want to control only the unactuated joint angles qu, then let us define the

sliding surface:

s = qu (7.23)

The system (7.19) has a relative degree of two w.r.t. the sliding surface s, so the 2-sliding

point set is defined as:

s = ṡ = 0 (7.24)

the controller u can be designed using the so-called twisting algorithm to force the trajec-

tories of the system to the 2-sliding manifold in finite time:

u = −K1s−K2ṡ−K3sgn(s)−K4sgn(ṡ)

= −K1qu −K2q̇u −K3sgn(qu)−K4sgn(q̇u) (7.25)

where Ki, i = 1, ..., 4 are positive definite diagonal matrices. Similarly, the controller

v = −K1qa −K2q̇a −K3sgn(qa)−K4sgn(q̇a) (7.26)

will drive the actuated joint angles to zero in finite time.
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7.3.3 Optimal Controller Design

Our purpose is to combine the controllers u and v in some optimal way in an attempt to

stabilize all angles, from Eq. (7.15) and Eq. (7.20), we obtain:

M
−1
u τa −M

−1
u (Cu +Gu) + u = 0 (7.27a)

M
−1
a τa −M

−1
a (Ca +Ga) + v = 0 (7.27b)

stacking up the above two equations assuming the same controller is used, we obtain:[
M
−1
u

M
−1
a

]
τa −

[
M
−1
u (Cu +Gu) + u

M
−1
a (Ca +Ga) + v

]
=

[
0

0

]

As we can see, it is impossible to find a controller that can simultaneously achieve objectives

of controlling both qu and qa unless [M
−1
u (Cu + Gu) + u;M

−1
a (Ca + Ga) + v] is in the

range of [M
−1
u ;M

−1
a ]. Since the 4× 2 matrix [M

−1
u ;M

−1
a ] does not have an inverse, direct

computation of τa is not feasible. However, we can construct an optimal control problem

by first introducing an OR α, which is a relative weight of controlling qa vs. qu, now rewrite

the augmented system as:[
M
−1
u

αM
−1
a

]
τa −

[
M
−1
u (Cu +Gu) + u

α(M
−1
a (Ca +Ga) + v)

]
=

[
0

0

]
, Bτa − c = 0 (7.28)

with B , [M
−1
u ;αM

−1
a ], c , [M

−1
u (Cu +Gu) + u;α(M

−1
a (Ca +Ga) + v)]

Now the problem is transformed into finding τa such that ‖c−Bτa‖ is minimized, therefore:

τmodified = B+c (7.29)

where B+ is the Moore-Penrose pseudoinverse of B.

7.3.4 Simulation Results

In the following examples, the SOSM controller with twisting algorithm is used to perform

the swing-up of the system. After some tunings, the gain parameters chosen are: K1 =

diag(20, 20), K2 = diag(7, 7), K3 = diag(0.7, 0.7) and K4 = diag(0.2, 0.2).
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Example 13 To show the effectiveness of the twisting algorithm, we let q0 = [5◦, 0◦,−3◦, 0◦]>,

q̇0 = 0, and only uses the unactuated angular positions as the sliding surface.
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Fig. 7.17 Example 13. Change of the joint angles w.r.t. time
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Fig. 7.18 Example 13. Change of joint angle rates w.r.t. time
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Fig. 7.19 Example 13. Change of kinetic and potential energies w.r.t. time
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Fig. 7.20 Example 13. Change of Applied Torques

As expected, the controller is able to drive both the position and velocity of the unactuated

angle θ1 to zero in less than 1 second while the actuated angle θ3 was not taken care of

and moved away from the vicinity of equilibrium position with an accelerated rate.
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Example 14 To see how different the system behaves by applying the SOOSMC, we use

OR = 0.3 and the same IC as in Example 13: q0 = [5◦, 0◦,−3◦, 0◦]>, q̇0 = 0.
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Fig. 7.21 Example 14. Change of the joint angles w.r.t. time
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Fig. 7.22 Example 14. Change of joint angle rates w.r.t. time
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Fig. 7.23 Example 14. Change of kinetic and potential energies w.r.t. time
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Fig. 7.24 Example 14. Change of Applied Torques



7 Nonlinear Sliding Mode Control Approaches 80

Although the controller with OR of two could not simultaneously take care of the stabi-

lization of both angles, the control effort has been divided so both angles are under some

control, since actuated angle θ3 has only gone up to 50◦ by 1.2 seconds compared to 80◦

in Example 13, see Fig (7.17) vs Fig (7.21). It is also noted that with the optimal control

approach, the control torque and the total kinetic energy did not increase as much as those

in the earlier example during the first 1.2 seconds, see Fig (7.19) vs Fig (7.23) as well as

well as Fig (7.20) vs Fig (7.24).

Although the two angles do not seem to cooperate well with each other in this example,

we have been able to see what the optimal control approach can offer. Its benefits would

not be realized unless the IC moves further away from the upright equilibrium position, as

the two examples that follow will show.

Example 15 SOOSMC with OR = 2 with q0 = [10◦,−10◦,−30◦, 30◦]>, q̇0 = 0, the same

IC as in Example 11 with FOHSMC.
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Fig. 7.25 Example 15. Change of the joint angles w.r.t. time
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Fig. 7.26 Example 15. Change of joint angle rates w.r.t. time
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Fig. 7.27 Example 15. Change of Vmax + Lagrangian w.r.t. time
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Fig. 7.28 Example 15. Change of kinetic and potential energies w.r.t. time
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Fig. 7.29 Example 15. Change of Applied Torques
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Example 16 SOOSMC with OR = 0.8 and the same IC as in Example 12: q0 =

[30◦, 20◦,−135◦,−25◦]>, q̇0 = 0.
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Fig. 7.30 Example 16. Change of the joint angles w.r.t. time
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Fig. 7.31 Example 16. Change of joint angle rates w.r.t. time
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Fig. 7.32 Example 16. Change of Vmax + Lagrangian w.r.t. time
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Fig. 7.34 Example 16. Change of Applied Torques

7.3.5 Discussions

With q0 = [10◦,−10◦,−30◦, 30◦]> and q0 = [30◦, 20◦,−135◦,−25◦]>, both the FOHSMC

and the SOOSMC produced similar results in terms of the swing-up behaviours and and it

has been easily noted that the switching condition based on the value of Vmax+Lagrangian

had been met for both scenarios. It has also been observed that the SOOSMC is able to

perform slightly better than the FOHSMC along the transient trajectories. (See Fig. (7.4)

vs Fig. (7.25) as well as Fig. (7.12) vs Fig. (7.30)). Yet, after extensive simulations by

varying the ICs, neither controller has been able to successfully switch to the linear con-

trollers (either lqr or SM) in order to render the system asymptotically stable.

In all, both the FOHSMC and SOOSMC are able to bring the system from a configuration

far from the roc of the linear controller to a region quite close to the unstable upright

equilibrium. However, it has not been possible to determine a sufficient condition to

switch to the linear controller in order to render the system stable. In addition, one

major limitation of the designed nonlinear SM controllers is that the controller parameters

must be properly tuned for the given IC in order to swing up the system in the desired
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manner. Therefore, we conclude that in order for the hybrid approach to succeed with

the current design of the SM swing-up controller, detailed investigation on the sufficient

switching condition is needed and further computationally expensive tunings for the swing-

up controller would also be necessary for this purpose.



87

Chapter 8

Conclusions and Future Research

Directions

In this thesis, the SDIP system is considered to be a model that is well fit to study

the phenomenon of the standing postural control because it is simple, yet captures the

key kinematic and dynamics features of a standing animal or machine. The lqr controller

worked well when the system starts off at a position relatively close to the unstable upright

equilibrium. However, this “simple” system is found to be difficult to control globally, not

only due to the spatial nature of the system but also because this 4-dof system is under-

actuated with control deficiency of two.

In summary, the main achievements in this thesis include:

1. A proper design of the lqr controller for the local stabilization of the SDIP system

and an exploration of its roc.

2. A successful implementation of the STA controllers as superior alternatives to lqr.

3. Successful extensions of existing 2-D versions of nonlinear SM control methods to

3-D to perform swing-up of the system.

While we are encouraged by the above accomplishments, the objective of global stabiliza-

tion requires more work. The problem remains to be solved in the future, and the following

possible approaches could be envisaged:

• Redefining the nonlinear SM surface using momentum control w.r.t. the foot [21] for

the purpose of swing-up.
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• Developing an adaptive control algorithm to tune the weighting matrices in an on-line

fashion for the FOHSMC or SOOSMC.

• Discovery of a sufficient switching condition from the swing-up controller to the lqr.

After a successful controller design, it must be adapted to work on the real physical plant.

Currently, the motor in the already built prototype could only support up to 0.5Nm. As

a result, it is preferable for the theoretically designed algorithm to minimize the gains of

the controller. In addition, an observer can be designed to avoid state feedback in order

to reduce the number of sensors required.
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