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Abstract 

Each year, sudden aircraft performance degradation due to ice accretion causes several 

incidents and accidents. Icing is a serious and not yet totally mastered meteorological 

hazard due to supercooled water droplets (liquid water droplets at a temperature below 

the dew point) that impact on aerodynamic surfaces. Icing results in performance 

degradations including substantial reduction of engine performance and stability, 

reduction in maximum lift and stall angle and an increase of drag. 

A realistic ice accretion simulation is achieved if the three contributing factors: the 

aerodynamic flow field, the water droplet trajectories, and the thermodynamic ice 

accretion process, are accurately modeled. A new approach to in-flight icing analysis is 

formulated and validated into this work. The methodology presented in this thesis is 

intended to be based on modern CFD algorithms to develop a useable new ice accretion 

tool for aircraft and engines, including: the solution of the 3D compressible turbulent 

Navier-Stokes equations; the computation of the collection efficiency by an Eulerian 

method; and a new module for the three-dimensional ice accretion process. 

To successfully complete the work, an appropriate turbulence model has been added to 

the existing flow solver. Therefore a part of this work has been the implementation and 

validation of the Spalart-Allmaras model. This turbulence model appeared to be robust 

and easy to use even in situation of complex 3D flow patterns encountered in icing. 

The new ice accretion model is expressed with mass and heat transfer balance at the 

aerodynamic surface using partial differential equations and four compatibility relations 

to close the system. An appropriate numerical scheme based on finite volume method is 
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derived to solve the resulting system. 2D and 3D validations of the complete in-flight 

system (dry air flow field/droplets/ice accretion) conclude this work. 

in 



Resume 

De nombreux accidents aeronautiques sont provoques, chaque annee, par des 

phenomenes lies au givrage. Lorsqu'un aeronef traverse un nuage d'eau surfondue (eau 

liquide a une temperature sous le point de congelation), il peut se former du givre sur les 

parties sensibles de l'appareil. Le givrage induit une deterioration des performances 

aerodynamiques et peut provoquer la perte de controle de l'appareil. 

Un code numerique de simulation du givrage est generalement compose de trois 

modules : un module de calcul de l'ecoulement d'air autour de la structure ; un module de 

calcul de l'impact des gouttelettes sur la surface ; et un module thermodynamique de 

calcul de 1'accumulation de glace proprement dit. Le travail presente dans cette these 

propose d'utiliser les techniques modernes en simulation numerique de la dynamique des 

fluides afin de developper une nouvelle generation de codes de givrage. Cette 

methodologie innovatrice est basee sur la resolution des equations de Navier et Stokes en 

regime turbulent pour le calcul de l'ecoulement d'air, le calcul du coefficient d'impact 

des gouttelettes par une approche eulerienne, et la creation d'un nouveau modele 

tridimensionnel d'accumulation de la glace. 

Afin de rendre cette approche operationnelle le modele de turbulence a une equation, 

Spalart-Allmaras, a ete rajoute au code Navier et Stokes deja existant. Apres validations, 

il s'avere que ce modele robuste se prete bien aux conditions exigeantes rencontrees en 

givrage. 

L'elaboration du nouveau module d'accretion de glace se fait a l'aide de deux equations 

aux derivees partielles. La premiere exprimant la conservation de la masse et la deuxieme 
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la conservation de l'energie. Quatre relations de compatibility, exprimees sous la forme 

d'inegalites, ferment le probleme. Un schema numerique approprie base sur la methode 

des volumes finis est propose pour resoudre le systeme obtenu. Des validations 2D et 3D 

de la chaine de givrage (ecoulement/gouttes/glace) completent le travail. 
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Introduction 

When an aircraft/helicopter/UAV or any other flying object traverses a cloud containing 

supercooled water droplets (liquid water droplets at a temperature below the dew point), 

ice may accrete on its surface, figure 0.1. Although the problem has been recognized 

since the Wright Brothers first flew, each year sudden aircraft performance degradation 

due to ice accretion still causes several incidents and accidents1. Experiments conducted 

in icing tunnels indicate that for the same geometry, depending on speed and altitude, ice 

can accrete in many different places and with a wide variety of shapes and surface 

roughness. The amount and shape of ice accreting depend on several factors: the droplets 

mean diameter and size distribution, the cloud's Liquid Water Content (LWC), the 

ambient temperature, the instantaneous shape of the aircraft (slat, flap, ailerons 

deflected), the speed of the aircraft, its altitude and the time and intermittency of the 

exposure. 

When supercooled water droplets hit the aircraft, a range of icing types may occur, 

figure 0.2. At very low temperatures, droplets will instantaneously freeze on contact with 

the surface, leading to rime ice with shapes that are still "quite aerodynamic" but with a 

rough surface. The other extreme occurs when the temperature is near the freezing point 

of water. In this case, liquid water and ice melt on the structure and form glaze ice 

("horns", "lobster tails") that tends to substantially distort the aerodynamic profile of the 

wing. Both types of ice could be present on the same aircraft at different locations, and 

both types severely degrade aerodynamic performance, the first by sapping the flow's 
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energy and the second by separating the flow. In between these two extremes, other ice 

accretions are labeled mixed-ice. 

WING LEADING 
EDGES 

PROPELLERS 

RADOME 

ESSENTIAL INSTRUMENTS 

ENGINE AIR 
INLETS 

Figure 0.1: Area of the aircraft that may require ice protection, source: FA A, Technical Report ADS-

4, December 1963. 

Glaze ice 

Figure 0.2: Range of icing types that may occur when supercooled water droplets hit the aircraft. 

Because of the enormous amounts of thermal or mechanical energy that would be 

required, complete prevention of ice formation or its complete removal, is not 



economically feasible. Furthermore anti- or de-icing hot air, bled from engines, is often 

needed during climb, when the diversion of this power can least be afforded especially 

for smaller aircraft. Therefore, in practice, some areas of the aircraft are anti-iced, some 

are only de-iced and a large part is left unprotected. 

In-flight ice accretion can be minimized or prevented by3,4: 

• Chemical systems: chemical systems (antifreeze) lower the freezing point of 

water so that it will not freeze. 

• Mechanical de-icing: 

o Pneumatic boots: the ice accreted is removed cyclically by using 

pneumatic boots made of a flexible, rubber-like material, which, when 

inflated, breaks the ice off the surface. This is mostly used on turboprops 

and on the leading edge of some engine nacelles. Boots have problems 

removing small amounts of ice. 

o Pneumatic impulse devices: work on the same principle as pneumatic 

boots, while eliminating the problem of small amount of ice by using a 

number of small tubes instead of one large one. These devices are built 

into the aircraft during construction and work by flexing the metal surface 

using air. 

o Electroimpulse: a series of electromagnets are pulsed in cycles, flexing the 

metal surface. These systems may cause problems with metal fatigue. 

o Electro expulsive: An electric current runs through parallel layers of flat, 

copper ribbon. A repelling magnetic field is created, causing a high 



acceleration to break the ice into tiny particles that fall from the airplane's 

surface. 

• Thermal anti- or de-icing5,6: ice is melted by heating. If sufficient heat is added to 

prevent supercooled water droplets from freezing, the process is called anti-icing. 

If heat is added to melt the ice after freezing, it is called de-icing. The following 

technologies are used: 

o Piccolo tubes or S- and D-ducts: hot air is taken from the engine's first 

stage compressor exit and redirected through a piccolo tube encased in the 

leading edge area to impact onto the leading edge of wings or S- and D-

duct to impact the leading edge of nacelles. 

o Electrothermal pad: electrothermal systems use electrical heater elements 

which are laminated to the surface to be deiced. These heater elements 

consist of metal ribbons which emit heat when electrical current is passed 

through them. This ribbon is surrounded by insulation and is covered with 

top metal layer for protection. 

The boot is not an anti-icing device, it is a de-icer. A minimum ice thickness, labeled 

initial ice, is needed for the boot to be effective before it is ever activated or cycled once 

more. Moreover, since a boot cannot operate continuously, inter-cycle ice may form, and 

after each boot cycling residual ice also remains. With thermal de-icers and even 

mechanical ones the water may runback along the protected surface and freeze further aft 

on an unprotected part. 



While the shape of the ice has considerable impact, observations have shown that even a 

small amount of ice, depending on location on the aircraft, can result in substantial 

degraded aerodynamics by reducing maximum lift and stall angle and increasing drag. 

The influence of roughness is more important7 in the case of small amounts of ice. Ice 

shapes that can form between two de-icing cycles or in the case of de-icing system failure 

are usually composed of small ice protuberances only a few millimeters in thickness but 

can cause dramatic drag increase, especially on laminar wing airfoils7. 

Given the adverse effects of icing, commercial airplane manufacturers have to 

demonstrate, through a rigorous and lengthy certification process, that their airplanes can 

continue safely flying into known-icing conditions. On the other extreme, except for one 

European and a Russian helicopter, no other helicopter is certified to fly into known icing 

and pilots are instructed to immediately exit any icing conditions. Certification can be 

carried out through a combination of flight tests, wind and icing tunnel tests and 

numerical simulation. Because not all the natural icing conditions required by the 

certification process can be explored via flight tests, additional tests are performed in dry 

air with simulated ice shapes obtained from icing tunnel simulations or icing computer 

codes. 

In real operational conditions, ice may accrete with many different shapes, sizes and 

locations. The challenge facing researchers and aircraft designers is then to be able to 

predict the physical characteristics of the ice accretion for any ambient conditions (flight 

and meteorological) and determine which is the worst-case scenario terms of 

performance degradation. While numerical simulation is known to be cheaper and faster 



than the least expensive flight test or icing tunnel campaign, it has been highly underused 

for in-flight icing. Many reasons can be invoked, but a "disconnect" has traditionally 

existed between the icing and Computational Fluid Dynamics (CFD) communities: none 

was really interested in the other. In general, the field remains stuck in 2D, non CAD 

(Computer Aided Design)-based analysis, incompressible and inviscid approaches, with 

little current capability or upgrade potential to simulate the aerodynamically complex 

situations that lead to or are caused by the formation of ice. 

As an aid to the certification process, such CFD codes are mostly used to predict 2D 

sectional ice shapes, which are then manufactured from a light material and attached as 

disposable profiles on the test aircraft to investigate it for stability and control under icing 

encounters. Such methods, presented in chapter 1, are based on either a 2D or 3D inviscid 

(incompressible linear potential or Euler) flow codes to compute the airflow solution, on 

Lagrangian tracking techniques for droplet impingement calculations, and on a ID model 

for mass and heat transfer balance at the surface to predict ice shapes. The United States 

(NASA National Aeronautics and Space Administration)8, France (ONERA2 Office 

National d'Etudes et de Recherches Aerospatiales) and Canada (Bombardier Chair, Ecole 

Polytechnique9 and NRC National Research Council Canada, among others) have 

developed proprietary codes based on these classical approaches. England10, Italy11'12 and 

other countries are still attempting to develop indigenous codes. The conclusion is that 

CFD has been underused. One can ensure a more complete coverage of the combined 

flight and icing envelopes with the help of CFD simulations. CFD can solve the equations 

of physics of the 3D motion of air and water droplets to: 



• Predict flow around the complete aircraft, 

• Predict droplet impact regions, 

• Predict ice accretion shapes, 

• Predict performance degradation. 

A new approach to in-flight icing analysis is formulated and validated into this work. 

This "CFD methodology", developed in chapter 2, is intended to be based on modern 

CFD algorithms with respect to true geometries (Computer Aided Design, CAD) and be 

modular. The main objective of this work is thus to develop a useable new ice accretion 

tool for aircraft and engines, including: 

• Models based on partial differential equations, rather than a control volume 

approach; 

• Increased geometric fidelity by solving in 3D; 

• Increased flow fidelity by basing the flow on a Navier-Stokes solver; 

• Increased modularity, by developing an ice accretion module that can be tacked to 

any CFD solver, and any impingement analysis. 

Already a 3D Navier-Stokes flow solver and a 3D droplet impingement solver have been 

completed outside of the present thesis. But because ice shapes are strongly influenced by 

convective heat transfer fluxes, an appropriate turbulence model with transition from 

laminar to turbulent flow and with roughness representation has to be added to this flow 

solver. Therefore a part of this work, chapter 3, has been the implementation and 

validation of the one-equation Spalart-Allmaras model. 



A new thermodynamic approach for predicting 3D ice shapes is formulated in chapter 4, 

including: 

• A fully three-dimensional approach to icing; 

• A new physical model based on a partial differential equations system for mass 

and energy conservation; 

• An appropriate numerical scheme to solve the system of equations. 

The new physical model will be shown to be close to the well-known shallow water 

equations and will be called SWIM, for Shallow Water Icing Module. In this thesis, the 

development of SWIM, in the framework of the code ICE3D (ICE3D-SWIM), and its 

validation, are presented. 

Preliminary validation results of this in-flight icing system are presented in chapter 5 and 

compared to available 2D test cases. In chapter 6, two three-dimensional ice accretion 

simulations are presented. The results obtained are compared to numerical and/or 

experimental results when available. 



Chapter 1 

Background Material 

The aim of an in-flight icing accretion code is to accurately predict the ice accretion 

shapes and their effect(s) when an aircraft flies through a cloud containing supercooled 

water droplets, freezing rain or freezing drizzle. A realistic13 simulation is achieved if the 

three contributing factors: the aerodynamic flow field, the water droplet trajectories, and 

the thermodynamic ice accretion process, are as accurately modeled as possible. Current 

icing thermodynamic models are quite similar in that they use the Messinger model and 

typically follow the same solution structure (figure 1.1): 

GEOMETRY 

I 
INVISCID FLOW FIELD CALCULATION 

BOUNDARY LAYER CODE DROPLET TRAJECTORIES 

THERMODYNAMIC ANALYSIS 

t 
ICED GEOMETRY 

Figure 1.1: Structure of traditional icing codes. 

The flow field around the geometry is first calculated enabling the trajectories of the 

cloud water droplets to be computed. This is used to determine the amount and impact 



location of water on the surface. Once the collection efficiency has been determined, the 

next step is to predict whether this water will freeze. For a given temperature, a heat and 

mass thermodynamic balance over each section of the "meshed" surface geometry will 

determine the amount of water that will freeze, run back or evaporate within each 

element. The convective heat transfer is traditionally computed by solving the integral 

boundary layer equations and using an equivalent sand-grain roughness to account for the 

roughness of the iced surface. The mass rate of evaporation is then computed using the 

convective heat transfer coefficient and the saturation vapor pressure at the surface. Thus, 

an ice profile is gradually obtained from the predicted ice growth rates. The best-known 

codes using this structure are NASA's LEWICE14 and the ONERA15 code, two national 

codes not available to foreign users, and several proprietary codes that often mimic these 

two, such as MTRAJ / TRAJICE2 / SPINNICE / ICECREMO16 (DERA, now QinetiQ), 

MULTI-ICE / HELICE (CIRA) and CANICE17 (Bombardier Chair, Ecole 

Polytechnique). This chapter will serve to describe the classical approaches18 used by the 

LEWICE and ONERA codes (which are quite similar except in minor details, and are 

representative of all other codes) to solve each of these phenomena and serve as an 

introduction and a justification for the work undertaken in this thesis. 

1.1. Flow field determination 

The first step in an ice accretion simulation process is the accurate determination of the 

velocity field. Excluding codes in development, most current ones determine an inviscid 

flow field, and couple it to a boundary layer code for viscous effects. The inviscid 

velocity field is obtained by solving either the linear potential flow equation14"17 (Panel 

method19' 20: incompressible) or the Euler equations15 (compressible). If the intention is 
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not to limit CFD only to ice shape prediction, then performance degradation becomes an 

important item. In this case, the most suitable method ought to be able to handle the 

computation of the flow both around the clean airfoil and over the contaminated one, 

which may have irregular non-aerodynamic shapes due to ice accretion. 

1.1.1. LEWICE 

The simplest model to solve an inviscid flow field is the panel method, pioneered by Hess 

and Smith in the 1960's. Panel methods solve the incompressible, inviscid, irrotational 

flow and utilize the superposition of fundamental solutions of the linear Laplace 

equation, based on one or more singularities types such as sources, sinks, doublets and 

vortices. The panel method first discretizes a body by a finite number of panels (segments 

in 2D), over each of which acts an unknown singularity value or a distribution. The local 

potential induced by all singularities is calculated at n control points on the surface with 

the no-penetration condition used to balance this against the potential induced by the free 

stream. This results in a nxn full matrix that is then solved for the unknown strengths of 

the singularities needed to achieve the no-penetration condition. Special techniques are 

called for when the system is large, otherwise solution costs get prohibitive. 

Compressibility corrections (such as the Prandtl-Glauert compressibility correction) up to 

Mach 0.5 are added to the classical Panel method. While LEWICE was first based on a 

2D panel method14, numerous modified versions are now in use, like three-dimensional21 

version of the panel method (LEWICE3D, in which the flow prediction is 3D, while icing 

calculations are done in 2D along straight cuts given by the 3D solution). In truth, this 

can only be called a 2.5D solution, as ice accretion do not account for the spanwise 
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effects. Another version also is in use where the pseudo-viscous field is solved by 

viscous-inviscid interaction22 methods, etc. 

1.1.2 ONERAcode 

In the ONERA15'23 code, the inviscid flow field might be modeled either by the linear 

potential flow equation or by the Euler equations. For the first model, a 3D panel method 

code (ECOPAN) is used with compressibility corrections up to Mach 0.5 (the Prandtl-

Glauert compressibility correction). For the Euler equations a 3D finite element method 

is used. This code requires the creation of a volumetric C-grid. Stabilization is obtained 

through artificial viscosity and a multigrid method is used for convergence acceleration. 

1.1.3 Conclusions: advantages and limitations 

Both methods require a "mesh", a skeletal one on the body surface for panel methods, 

and a volumetric one on the entire domain for the Euler approach. 

2D panel methods are very fast and efficient for simple 2D, nearly incompressible, icing 

calculations. In 3D, however, the on-surface velocity computation is fast, but for out-of-

the-surface velocities CPU-time can increase rapidly as all panels must be summed up. 

Global compressibility corrections can be added to approximately Mach 0.5, but it is not 

possible to take into account local compressibility effects, say due to the growth of an ice 

horn. 

The Euler method overcomes compressibility limitations, as it is valid for subsonic, 

transonic and supersonic flows. 

However, none of the methods discussed above directly takes into account the viscous 

effects. If the computation of the boundary layer (described in the following section) 
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allows the representation of most of the viscous effects of the flow, it cannot give an 

accurate representation when flow is separated. According to experiments, while it is 

unusual that ice accretes in a region of separation, separation can strongly modify the 

flow pattern around the geometry and thus modify the impingement, as well as the 

convective heat transfer distribution on the body, indirectly affecting the ice shape. 

Moreover it is not possible to use the same mesh and these inviscid codes to analyze 

performance degradation due to icing. Usually, to study aerodynamic penalties caused by 

icing, a new mesh is generated and a Navier-Stokes flow solver is used. 

1.2. Boundary layer code14'17 

The flow field determination, presented in the previous section, is based on inviscid 

calculations. Therefore the boundary layer equations are subsequently solved, usually in 

integral form, to determine the convective heat transfer coefficient on the iced geometry. 

Sometimes the boundary layer code is also coupled with the inviscid code, as in the work 

initiated by Cebeci22, to improve accuracy. When ice accretes on a body surface, a 

surface roughness forms on the body enhancing the convective heat transfer coefficient. 

It is, therefore, necessary to define a rough wall model to simulate the iced wall effect on 

the boundary layer. The transition point has to also be determined, as the roughness of the 

iced geometry acts like a trip from laminar to turbulent flow. 

1.2.1. LEWICE 

The boundary layer method applied in LEWICE is required to determine the convective 

heat transfer coefficient in the laminar and turbulent regions and also to detect the 

transition from laminar to turbulent flow. The equivalent sand-grain roughness is 
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included in the turbulent skin friction coefficient definition and the Reynolds analogy is 

used to retrieve the convective heat transfer coefficient. The following sections present 

the equations used in LEWICE14. 

1.2.1.1. Transition point 

A boundary layer calculation starts at the stagnation point and considers the flow to be 

laminar until the boundary layer transition. The criterion for transition over a rough 

surface, defined by Von Doenhoff24, presumes that the flow becomes turbulent when the 

local roughness Reynolds number is greater than 600: 

R = i ^ > 6 0 0 (1.1) 

where ks is the equivalent sand-grain roughness height, uk is the velocity at y = ks. The 

velocity uk is defined by the following formula: 

uk =
 2k

s 2 
fv V f k V 

+ 
\ u J 

+ • 
1 82 du. it (, k V 

\<> J 6 v ds 8 
1 (1.2) 

where 8 is the boundary layer thickness. It can be shown that the boundary layer 

thickness is related to the laminar momentum thickness by: 

8 « 8.50, 

The laminar momentum thickness can be evaluated using the Thwaites25'p 315 formula: 

2 0.45 
0Z = 

i 

\ u5ds 
Jo ' 

(1.3) 

where it is assumed that the velocity at the edge of the boundary layer, ue, is the surface 

velocity calculated by the potential flow or the Euler equations. 
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1.2.1.2. Laminar convective heat transfer 

If the boundary layer is still laminar at a surface distance s from the stagnation point, the 

convective heat transfer coefficient is obtained from the following relation by Smith and 

Spalding25'PP327-329as: 

hc = 0.296 ^ t 

where A is the thermal conductivity of air. 

, -2.88 f* 1.88 i 

u I ue ds 
(1.4) 

1.2.1.3. Turbulent convective heat transfer 

If the boundary layer is turbulent at a surface distance s from the stagnation point, the 

convective heat transfer coefficient is obtained from the Stanton number by: 

hc = Stpuec 
e p 

St = 
c,/2 

Pn+Jc~j2(UStk) 

(1.5) 

(1.6) 

where Pn = 0.9 is the turbulent Prandtl number and Stk is the roughness Stanton 

number26 defined as: 

St. =1.156 "A 
-0.2 

where the shear velocity is: 

UT = " , V C / / 2 , 

and the skin friction coefficient is 

cJ2 = 
0.168 

( 
In 8 6 4 ^ 

-|2 
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The turbulent momentum thickness is evaluated using: 

* , = 

-10.8 

0.0156 r* 

u"1 + 3(0- (1.7) 

Since one first has a laminar boundary layer, the turbulent boundary layer begins at the 

transition point, 5 = slran, and the laminar momentum thickness, already existing, 

&i (siran) g i v e n by equation (1.3), must be added. 

1.2.1.4. Comment 

In 2D, the boundary layer code is built on the same panels used by the inviscid flow 

calculation. In 3D the approach requires considerably more effort. LEWICE3D21 

computes first the pathlines of the 3D flow and the 2D boundary layer is built on the 

streamlines of interest. 

1.2.2. ONERAcode 

In the ONERA code15'23, the three-dimensional boundary layer equations are calculated 

using a finite volume code. To improve the boundary layer calculations, the "geometric" 

grid on which the inviscid flow calculations have been performed has been found too 

coarse, and ONERA made the grid denser close to the flow singularities, the stagnation 

lines. Therefore a finer grid (figure 1.2) called the aerodynamic grid is built and used to 

compute the three-dimensional boundary layer. 

The transition caused by roughness is detected using the local roughness Reynolds 

number, with the same transition criterion as LEWICE given by equation (1.1). The 

roughness model is, however, different than LEWICE and uses the Van Driest 

formulation. The increase of the convective heat transfer is modeled by an increase of the 

16 



smooth wall turbulent shear stress. The turbulent shear stress is expressed using the 

mixing length formulation: 

2 j 2 T, = pF'l. + 
dy 

v "y ) 

dw 

a? 

v 

v vy ) 
(1.8) 

where the mixing length after Michel et al. is defined by: 

L = 8K• tanh 
( Ky ^ 

\KrS J 
(1.9) 

with Kr =0.085 and AT = 0.41 

The turbulent damping factor, F, near a smooth wall is: 

F = 1 - exp 
26A:// 

(1.10) 

The roughness effect is simulated by modifying F to reduce its damping effect and 

increase the turbulent shear stress. The modification is given by the Van Driest roughness 

model: 

F = 1 - exp 
26K/J, 

-l-exp 
( 60y^ 

V 26*. j 
(1.11) 

where ks is still the equivalent sand-grain roughness height. 

Using this roughness model, the thermal structure of the boundary layer is obtained and 

the convective heat transfer coefficient is defined as: 

h=k f(Tw-Tr) (1.12) 

where k is the thermal conductivity of air. 
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Figure L2 : Left side of the figure: ONERA aerodynamic grid on a separation line body (airfoil). X 

is the curvilinear abscissa along the profile, Z is the span direction. If the boundary layer had to be 

calculated on a) the geometric grid a large region around the stagnation line would not be calculate; on the 

contrary b) the aerodynamic grid enables the boundary-layer calculation to start close to the stagnation line. 

Right side of the figure: ONERA aerodynamic grid on stagnation point body, nose. Grid pole moves 

to be coincident with the stagnation point permitting boundary-layer calculation to start as close as wanted 

to the pole. 

1.2.3. Conclusions: advantages and disadvantages 

According to Hedde15, the roughness models used by the LEWICE and ONERA codes 

give similar satisfactory results for typical roughness heights encountered in icing 

simulations. However, both models have difficulty predicting the convective heat transfer 

for high Reynolds numbers. 
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In 2D, the boundary layer code is solved on the same mesh used by the inviscid flow 

calculation and the duo (inviscid code + boundary layer) is effective and very fast. In 3D, 

however, the approach requires, in both icing codes, the computation of the streamlines. 

The approach in the ONERA code is the creation of yet another grid: the "aerodynamic 

grid"; while LEWICE3D carries out 2D boundary layer calculations on each streamline 

of interest. 

1.3. Droplet solution 

Computing impingement is the second step of an ice simulation process. This information 

is required to predict the amount (total collection efficiency, fiTOT), the distribution (local 

collection efficiency, /3) and the limits (impingement limits) of the water that impacts 

the aerodynamic body. The total collection efficiency is defined as the ratio of the actual 

mass of impinging water to the maximum value that would occur if the droplets followed 

straight-line trajectories, figure 1.3. 

5U = Upper - Surface Impingement Limit 
5, = Lower - Surface Impingement Limit 
H = Forward Projection of the Airfoil Height 

Figure 1.3: Definition of total and local collection efficiency as in LEWICE. 

Total collection efficiency: J3WT = -J- (1.13) 
H 
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where y0 is the vertical distance between the droplet release points of the upper and 

lower surface tangent trajectories. 

The local collection efficiency, /? , is also defined in figure 1.3 and can be written as: 

0 = ^ (1.14) 
ds 

It is related to the total collection efficiency by the equation: 

pT0T = -L £ pds (i.i5) 

H Js< 

where su and s, are the upper and lower surface impingement limits, respectively. 

The droplet trajectory is the solution of a partial differential equation representing the 

force balance on the droplet. The motion of a particle is analyzed as a point mass particle 

that is acted on by the flow field. The forces involved are: inertial, drag, buoyancy and 

gravitational forces. All methods are based on fundamental assumptions like: 

• The influence of water droplets on the flow field can be ignored 

• There are no grazing collisions, no bouncing, no splashing, no coalescence, no 

breakup and no droplet eccentricity. 

Important factors are the droplets size and the liquid water content of the cloud. The 

droplet size will influence the balance between inertia and drag forces. Small droplets 

will almost follow the flow streamlines until impact; while large droplets, less affected by 

the flow field, will more or less follow their own inertia before impacting. 
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1.3.1. Particle tracking techniques 

Most impingement solutions in the literature are based on Lagrangian particle tracking 

techniques14"18. A particle is launched from the freestream and followed until it hits the 

body. The LEWICE and ONERA code approaches are succinctly presented below. 

1.3.1.1. LEWICE 

Equations 

If droplets are considered rigid spheres, say for radii less than 500.0 jtan27, the only forces 

acting on them are those of drag and gravity. Then, one has to solve the following 

equation: 

mdYd-^-Pa^\\Vr\\Vr+mdg (1.16) 

where fd *s me droplet acceleration, md the mass of the droplet, Ad a characteristic area 

of the droplet, g the gravity vector, pa the air density and Vr the droplet velocity 

relative to the fluid velocity. The drag coefficient CD is a function of the droplet 

V 
Reynolds number Red = — 

Computational approach 

Droplets trajectories are integrated via a Runge-Kutta method. For simplicity, lets take 

the example of a 2D calculation. The initial particle location (x0, y0) and velocity must 

be determined, either by the user or by the code. A particle should be released far 

upstream of the body where the flow field velocity is the same as the free stream 

conditions. The program will select an x-coordinate assuming flow in x direction, by 
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searching the position where the local flow field velocity u, and the free stream ua 

velocity satisfy the condition: 

1_±L 
./Umax 

^£ (1.17) 
/Omin 

where e, y0min, y0max are input by the user to define a trial launching area at infinity, 

ômin - vomax a r e tr,e initial guesses for the y-coordinate of the upper and lower surface 

tangent trajectory release points. Equation (1.17) is tested over the range 

^Omin — yo — ^Omax ' 

One way of solving the problem is LEWICE's14 methodology: with the initial coordinate 

x set, the search is narrowed by determining two trajectories that pass below and above 

the body. The vertical distances, from which the particles are released (y0min, y0max), are 

specified by the user. Using these upper and lower trajectories as limit boundaries, the 

upper and lower impingement limits can be determined. For example, when searching for 

the upper impingement limit, the trajectory of a particle released from 

y0/1 = — is computed. If it passes over the body, the next trajectory is 

calculated from y0/2 = AZoj™—^W. if j t hits the body, the next trajectory is calculated 

from y0/2 = ^ - ^ — 0max^. Successive halving of the range y0min to y0max continues 

until the upper impingement limit is found. Convergence of this iterative procedure is 

obtained when the difference between the y0 of two trajectories, one that misses the body 

and one that hits the body is less than a tolerance specified by the user. Knowing the 
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upper and lower limits, the range of vertical positions between these two limits can be 

divided into a specified number of increments. The trajectory of each particle leaving an 

increment position will be computed and will be used to compute the local collection 

efficiency. 

Comments 

In 3D, an unstructured collection efficiency calculation method was added to 

LEWICE3D by Bidwell21. The user specifies an upstream release region (a vertical 

quadrilateral) which encompasses the region of interest and a minimum cell size. The 

region is then recursively subdivided (trajectories are released at the vertices of the 

subdivided region) in areas where particle trajectories become close or hit the body until 

the minimum cell size requirement is met. The collection efficiency for each panel is then 

equal to the number of particles that hit the panel times the area of the minimum 

upstream cell size divided by the area of the panel. According to Bidwell this method is 

more computationally expensive than traditional methods but large, and/or complex 

problems are easier to setup. 

1.3.1.2. ONERA 

In the ONERA15' 23 code gravity forces are neglected. The only force acting on the 

droplet is assumed to be the aerodynamic drag: 

mdYd=^d2CD(Red)pa V. Vr 

where d is the droplet diameter. 
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The droplets trajectories are computed using an explicit scheme15. This calculation 

requires the knowledge of the local velocity at any point in the space. As the Euler (or 

linear potential) method gives the velocity field at each node of a three-dimensional grid 

in the space around the body, a triple linear interpolation allows the calculation of the 

velocity anywhere inside a mesh element. Hence the impact position of a droplet might 

be determined. The definition of the local collection efficiency requires an evaluation of 

the area between four impact points (PI, P2, P3 and P4, figure 1.4). Such a process is not 

an easy task to implement in 3D, when the wall body surface is curved as it implies: 

• Knowing the exact coordinates position of the impact points 

• Determining the area between four points on a two-dimensional curved surface 

embedded in 3D. 

Trajectory 2 

Undisturbed flow Wall body grid 

Figure 1.423: Calculation of the local collection efficiency by ONERA, projection of the surface 

elements AS^ along the droplet trajectory lines on the body wall AS,. 

Values of /? are defined on the body wall at the center of each surface element AS,, 

figure 1.4. Therefore, an interpolation of f3 has to be done to obtain value of (3 in each 

cell of the grid used to establish the thermodynamic balance. 
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1.3.2. Conclusions: advantages and limitations 

Particles tracking techniques have been developed, but although very efficient in 2D and 

on simple geometries, these codes encounter major difficulties on complex geometries 

such as non-axisymmetric nacelles, high-lift wings, engine intakes or systems that 

combine external and internal flows. In 3D, Lagrangian methods quickly become 

computationally expensive. Indeed, the more complex is the body geometry the more 

droplets trajectories have to be computed to obtain reliable collection efficiency and 

impingement limits. The spatial marching scheme used by Lagrangian methods suffers 

from a major limitation, the tedious determination of launching areas for droplets to 

impact. Furthermore, the definition of the local collection efficiency can quickly become 

fastidious. 

1.4. Thermodynamic module14"18 

The vast majority of ice accretion modules are based on the Messinger28 model, 

developed in 1953. The equations that model the freezing process are determined after 

applying the first law of thermodynamics for mass and energy balance on a control 

volume and yield, panel by panel, the fraction of the water that freezes, runs back or 

evaporates. The control volume analyzed extends from the body surface to the liquid 

water film/air interface. The lower boundary of the control volume is initially on the 

clean geometry and moves outward with the iced geometry. In practice, a control volume 

is created on each segment (panel) defining the body geometry. The mass and energy 

equations resulting will be described. 
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1.4.1. Mass balance 

WATER :;S;.;iy 

ICE 

1. Impinging water m^ 

2. Evaporation mevap 

3. Water flow out of CV mroul 

4. Water flow into CV mrm 

5. Ice accumulation leaving the CV mice 

Figure 1.5: Mass balance for a control volume. 

The evaluation of all masses entering and leaving the control volume is shown in figure 

1.5. A mass balance can be derived from these terms by: 

mfl + mnn ~ mevap ~ mrou, = ™ic* (1.18) 

Calculation starts at the stagnation point (s = 0.0), where there is no water inflow, i.e. 

rhrm = 0.0. The freezing fraction, f, is defined as the fraction of impinging liquid that 

freezes within the region of impingement. In this formulation, f is defined as the fraction 

of the total liquid entering the control volume that freezes within the control volume, 

equation (1.19). If all the water freezes, then f=l, if no water freezes, then f=0. 

/ = '», 

mp+mnn 
(1.19) 

26 



Substituting equation (1.19) into equation (1.18), the mass balance can be expressed as: 

= ( l - / ) ( m / J + m r J - m _ (1.20) mr evap 

1.4.2. Energy balance 

The same control volume approach is used for the energy balance on the icing surface. 

The first law of thermodynamics for the control volume can be expressed as: energy 

inflow rate = energy outflow rate + energy storage rate. The modes of energy transfer are 

illustrated in figure 1.6. 
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Figure 1.6: Energy balance for a control volume. 
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Adopting the convention that the energy entering the control volume is positive, the terms 

are summed in the following manner: 

m fiKj + nJ^surU-X) = ^evaph.sur + " * ™ , V w + ™ J ice,sur + Ic^S + qK&S ( 1 . 2 1 ) 

The evaluation of the terms of the energy equation has been made by various authors, like 

Sogin , Lowzowski30, and Cansdale and Gent31. The resulting form of the energy 

equation is: 

mf 
cp„(T,- 273.15) + + ^ ™ [ < W i ) ( W i ) -273.15)]+ qKAs = 

< a J ^ J r w - 2 7 3 . 1 5 ) + L j + [ ( l - / ) ( m ^ + ^ , ) - m e v a J c p i V V ( r w -273.15) 

+ f(m0+mrin)[cpJee(Ttlir-273.15)-Lf] + he 
r u 

rp rp c e 
sur l e ,-, 

2CP, 

(1.22) 

where c , c ice, c are the specific heat capacities of water, of ice and of air, 

respectively; Ts, Tsur, Te are the temperatures of the droplets, at the surface and at the 

edge of the boundary layer, respectively; hc is the convective heat transfer coefficient; 

Lv, Lf are the latent heat of vaporization, and the latent heat of fusion; qK, rc, ue, u^ 

are the thermal conductivity of structure, the recovery factor, the velocity at the edge of 

the boundary layer and the free stream velocity. 

1.4.3. Differences 

The LEWICE and the ONERA codes use similar approaches and equations to solve the 

ice accretion phenomenon. Some differences can be observed in the evaporation model 

and in the way these codes handle three-dimensional calculations. 
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LEWICE 

In LEWICE the mass transfer rate of evaporation is analogous to the convective heat 

transfer rate and can be written14 as: 

mevap = 
K_ f^f6 7 P,P/Tsur-HrJPe/Te)PvJPs 

:„{sc) (l/0.622)Pe/Te-PvjTsur 

This term accounts for compressibility effects, as Cansdale31 term, and is similar to the 

term derived by Sogin29. 

For 3D calculations21, the ice accretion model is basically LEWICE2D applied along 

surface streamlines cuts defined by a 3D flow calculation. 

ONERA code 

Inside the ONERA code the evaporation term is defined using Jakob's formulation, 

assuming that the saturation vapor pressure at the edge of the boundary layer is the same 

as at freestream: 

m = 
evap 

i \2n u M T P -P 

.Le) cp,a Mm(fll.r) f FM 

where T = (Tsur +T„)/2 is a mean temperature. 

To simplify the thermodynamic balance in 3D a new body grid is generated by ONERA10 

along the runback paths; this grid is called the thermodynamic grid (figure 1.7) and is 

built on the complete geometry. In a three-dimensional icing model, runback water 

occurs on surfaces, it is then necessary to calculate the runback paths to know where the 

water will freeze. An order of magnitude study by Hedde et al.23 shows that, for usual 

aircraft speed, the runback water closely follows the wall air streamlines. On the 

thermodynamic grid the thermodynamic balance is nearly the same as on a two-

dimensional model. In this new grid, there is no runback across lateral grid edges. But the 
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difference with a classical 2D ice accretion code is that one or more runback lines may 

disappear or appear to keep the cell size within a given range, figure 1.8. When one or 

more lines disappear, the flow from two or more cells is mixed into one cell conserving 

heat and mass. On the other hand, when one or more lines appear, the flow from one cell 

is split between the children cells. Each child cell receives a flow that is proportional to 

the length of the edge common with the parent cell. 

Figure 1.7 : ONERA thermodynamic grid build along the streamlines (runback paths). 

Figure 1.823: To maintain a quasi-constant cell width, ONERA runback paths lines may disappear or 

appear, running back water is therefore mixed or split 
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1.4.4. Creation of the iced grid 

Given the icing rate, the ice shape is created by the deformation of a grid (figure 1.9). It 

can be either the "thermodynamic grid", or after interpolation of the icing rate the 

original geometric grid. The deformation of the original grid allows the user to re-inject it 

in the icing code and to perform a multi-stepping ice growth. 

Iced grid cell 

uniced body 
grid 

Figure 1.923: Generation of an iced grid. 

1.4.5. Conclusions: advantages and disadvantages 

In 2D, these icing codes are very efficient, fast and do not require large computer 

resources. Moreover, extensive validations of these codes are publicly available and 

remain a precious source of information. 

In the literature, even for three-dimensional calculations, it is basically the two-

dimensional version of the thermodynamic code that is applied on the streamlines21'23 of 

interest. ONERA even builds a new grid, the "thermodynamic grid", following the 

runback paths (the streamlines) to be able to predict where the water will or will not 

freeze, but on this grid runback across lateral grid edges is not possible. For other codes, 

the complete body geometry is not always studied, in some cases only parts of it. 
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1.5. Conclusions 

Current codes constitute valuable tools to identify important physical phenomena behind 

the ice accretion process. Lots of efforts have been put in the validation of the 2D version 

of these codes. The low amount of computer resources (CPU-time) required by the 2D 

codes allows the user to run multiple cases, choosing different parameters, and to validate 

against experiments done in icing tunnels. These analytical models also serve in the 

preliminary design phase of anti- and de-icing devices. 

For 3D complex geometries, these codes encounter major difficulties. For example, 

communications and exchanges between the three modules of a solution process (flow 

field + boundary layer, impingement solution, and ice accretion) are impossible, or at best 

painful, because each task requires the creation of a special mesh and uses a different 

class of solvers. Interpolation and extrapolation must be used to make these modules 

communicate and hence numerical imprecision, human error and time waste can occur. In 

3D, it is also not clear that these classical approaches need less computer resources. The 

particle tracking techniques are suitable for 2D simple geometries but not adapted to 

complex 3D geometries. Moreover none of these approaches is truly 3D from the flow 

field solution to the ice accretion solution. The ice accretion module remains 2D but built 

on streamlines or runback paths, without the possibility to predict across lateral grid 

edges water runback. 

It is believed that only a Navier-Stokes flow solver can take into account the viscous 

effects on complex airflow solutions and only a 3D thermodynamic icing module can 

predict runback across lateral thermodynamic grid edges. Therefore it is our intention to 

develop a modern in-flight icing system based on the resolution of the viscous flow field 
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(with the Navier-Stokes equations), on an Eulerian impingement calculation to simplify 

the determination of the local collection efficiency even on 3D complex geometries, and 

on a 3D thermodynamic icing module to be able to predict runback across lateral grid 

edges. 

The same mesh will be used by the three modules to compute the airflow solution, the 

droplets solution and the ice accretion shape and no limitation whatsoever would exist as 

to geometric complexity. In addition, because of the pervasive nature of CFD in the 

aerospace industry, both for external and internal flows, any icing system must use same 

generation tools as aerodynamics analysis systems, in order for ice protection to become 

a concurrent engineering process with aerodynamics design. 
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Chapter 2 

The CFD In-flight Icing Methodology 

Modern computational fluid dynamics (CFD) techniques can overcome many of the 

difficulties encountered by traditional icing approach. The main objective of the research 

presented in this thesis is to develop a new modular ice accretion tool and methodology 

based on modern CFD algorithms. The approach suggested here views icing accretion 

simulation as the solution, using partial differential equations, of the 3D compressible 

turbulent Navier-Stokes equations, the collection efficiency by an Eulerian method, and 

the three-dimensional mass balance and heat transfer at the aerodynamic surface. As 

shown in figure 2.1, the three modules are set in an interactive loop. Each system of 

PDEs (airflow/impingement/accretion) is solved independently, with selected variables 

exchanged and updated between modules when required. The following methods are used 

for the numerical solution of the icing problem: 

• Both the flow and droplets solvers are discretized using a weak-Galerkin finite 

element method on structured, unstructured or hybrid meshes. 

• A Newton-generalized minimal residual (GMRES) algorithm is used to solve 

each nonlinear system of equations. 

• In the ice accretion module, a finite volume approach is found more appropriate. 

• The movement of the walls caused by ice growth is done inside the flow solver 

through an Arbitrary Lagrangian Eulerian (ALE) scheme, using the ice growth 
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rate to specify the wall nodes movement. This could be complemented by a mesh 

optimization method. 

turbulent Navier-Stokes 
air flow solution 

ALE 

m ice wall 

new mesh & 
solution 

Qh 

^wall 

ice accretion module 
ice shape after n 

iterations 

P 
u 

impingement module 
droplet solution 

Figure 2.1:ModuIe interactions within an in-flight icing code. 

In this chapter, the three modules (airflow/impingement/accretion) used to perform the 

ice accretion will be briefly described, and a global icing methodology will be presented. 

2.1. Airflow solver 

,32 In our approach we suggest solving the compressible Navier-Stokes equations , thus 

fully and directly accounting for the influence of the viscosity and turbulence. A 3-D 

Navier-Stokes flow solver, FENSAP32, was already available. The contribution from this 

thesis to this flow solver is the implementation of the one-equation Spalart-Allmaras 

turbulence model, with a special representation of the surface to account for roughness. 

The equation, its discretization, and the validation of the model with and without 

roughness, are described in chapter 3. 

Why 3D? 
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It is evident that in the aerospace industry most aerodynamic analysis activities have 

become based on CAD systems, shared between various departments. This is done to 

maintain geometric fidelity and permit concurrent engineering all the way from analysis 

to manufacturing. Thus, icing analysis methods not based on CAD systems perpetuate the 

compartmentalization of the aerodynamic and icing activities and are not able to 

capitalize on the wealth of dry air solutions obtained by aerodynamicists. 

Besides physical fidelity being increased in 3D, 3D aerodynamics is not a simple 

extrapolation of 2D aerodynamics: for example a wing of finite span is not 

aerodynamically equivalent to a stacking of airfoils, figure 2.2. 

Streamline over 
the top surface 

Top view 
(plan form.i 

Front i 
view I G 

Low pic»surv 

High pressure 

Figure 2.2: Sketch of the curvature of the streamlines over the top and bottom of a finite wing, source 

Anderson (Ref. 19). 

The physical mechanism for generating lift on the wing is the existence of a high pressure 

on the bottom surface and a low pressure on the top surface. The net difference of the 

pressure distribution creates the lift. However, as a by-product of this pressure imbalance, 

the flow near the wing tips tends to curl around the tips going from high pressure to low 
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pressure. As a result, on the top surface of the wing, there is generally a spanwise 

component of flow from the tip toward the wing root. Similarly, on the bottom surface of 

the wing, there is generally a spanwise component of flow from the root toward the tip. 

When the flow "leaks" around the wing tips it creates a circulatory motion which trails 

downstream the wing, a trailing vortex is created at each wing tip (figure 2.3). 

Figure 2.3: wing-tip vortices, source Anderson (Ref. 19). 

These wing-tip vortices downstream of the wing induce a small downward component of 

air velocity in the neighborhood of the wing. The downward component is called 

downwash. The downwash, combined with the free stream velocity, creates a relative 

wind (figure 2.4), which will reduce, by a different amount along the span, the angle of 

attack seen by each section. Relations exist to derive the local angle of attack seen by the 

airfoil. Therefore, using this correction, it is possible to use 2D calculations, for most 

parts of a finite wing, except at tips and body-wing junctions. Nevertheless, there is no 

guarantee that the same correction applies to droplets of various sizes. In addition, even if 

the local angle is corrected, the spanwise velocity is not accounted for. 

Moreover a body-wing junction, a body-tail junction, a non-axisymmetric nacelle, a 

helicopter air intake are truly 3D geometries. Thus, to simulate ice accretion on complete 
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aircraft or on geometries that present strong 3D characteristics, a 3D code is an absolute 

necessity and is presently lacking. 

a Geometric unglv of iitt;ii_k 
o, induced tingle of .ictjck 
u„., - elfeciive angle of .1 ttticW 

Figure 2.4: Effect of downwash over an airfoil of a finite wing, source Anderson (Ref. 19). 

Moreover, some ice shapes characteristics, like the scalloping effects33 that are not 

currently predictable by any icing code, seem to be partially due to 3D flow patterns. At 

least, this physical phenomenon is observed on finite or infinite swept wings but not on 

airfoils. In fact, it is the cross-flow (along the leading edge) that seems to cause scallops. 

As a consequence, when scalloping effects are encountered, the numerical ice shape 

predicted on airfoils will not be representative of the experimental ice shape34 measured 

at the same positions on the wing. This can have an important impact because until now, 

2D codes are used to predict ice shapes to be attached to an aircraft during certification34. 

Of course, it is easy, when desired, to degrade a 3D code to 2D, a compressible code to 

nearly incompressible, a Navier-Stokes code to Euler, a turbulent code to laminar, while 

the reverse is not possible. 
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2.2. Impingement module 

To compute droplets impingement, an Eulerian model35 is proposed as an alternative to 

the traditional Lagrangian particle tracking approach. A Bourgault et al. Eulerian model, 

for airflows containing water droplets is thought to be more suitable for use with a field 

solver such as finite element or finite volume. Droplets velocity and volume fraction of 

water have to be computed only at the nodes where the airflow variables are known, so 

no particle has to be tracked through the mesh as in a Lagrangian method. Droplets 

impingement on complex 3D geometries36, or on multi-element airfoils, is done in an 

automatic way, without a painful determination of launching areas. In fact, as the entire 

impingement field is predicted, shadow zones (zones of very low impingement) are 

automatically determined for the placement of probes, etc. 

No modification of the Navier-Stokes equations is needed when droplets are present, 

because the loading, i.e. the ratio of the bulk density of the droplets over the bulk density 

of the air, is of the order of 103 in icing. It is usually agreed that a loading smaller than 

0.1 is well modeled by a one-way coupling37. 

The variables a(x,t) and ud (x,t) are mean values of the ratio of the volume occupied by 

water over the total volume of the fluid element and of the droplets velocity over the 

element, given a small fluid element around any specific location x in space at time t. 

The following assumptions are made: 

• a continuous medium; 

• droplets are spherical without any deformation or breaking; 

• no droplets collision, coalescence or splashing; 

• no heat and mass exchange between the droplets and the surrounding air; 
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• turbulence effects on droplets are neglected; 

• the only forces acting on droplets are drag, gravity and buoyancy. 

The continuity and momentum droplets equations are written using non-dimensional 

variables: 

— + V(aHd) = 0 (2.1) 

^•v^^s.--,)^-'-
V P J 

1 = ^ - ^ W . V « - ) (2.2) 
Fr28 + p dt dt " " 24K 

where: 

ua = non-dimensional velocity of air, 

ud = non-dimensional velocity of droplets, 

p = density of water, pa = density of air, 

d = droplets diameter, 

pdU \ua -ud\ U 
Red = ! is the droplets Reynolds number, Fr = °° is the Froude 

number, and K = — is an inertia parameter, 
18/// H 

where / is the characteristic length (typically the airfoil chord length). 

The drag coefficient for spherical droplets depends on the droplet Reynolds number 

according to equations (2.3) or (2.4): 

CD =— ( l + 0.15Re^687 ) , Red <1000 (2.3) 
Rerf 

CD = 0.4 for Rerf > 1000 (2.4) 
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The last terms on the right-hand-side of the momentum equations account for gravity and 

buoyancy effects. The system models the evolution of droplets having the same nominal 

diameter. A characteristics analysis35 shows that boundary conditions are needed on the 

inflow boundaries for all variables and that no boundary conditions are needed on surface 

walls or on the outflow boundaries. An initial solution is to take 

ud = (cos(AoA),sin (AoA)) and a = 1 everywhere except near the airfoil surface, where 

both variables are forced to zero. Here AoA stands for Angle of Attack. 

The discretization of the equations is made through a weak-Galerkin finite element 

method. Stabilization terms, streamline upwinding (SUPG) terms, are added to remove 

possible oscillations in the droplets solution. 

An important parameter that controls the accretion of ice on an airfoil is the local 

collection efficiency ft, i.e. the normalized flux of water on the aerodynamic surface. 

Within the Eulerian approach, the collection efficiency is computed on every face 

belonging to the aerodynamic surface using: 

P--aud.n. (2.5) 

The water flux mw at the airfoil surface would then be: 

mw=LWCU„p. (2.6) 

Some special care is required for the computation of the normal n to the aerodynamic 

surface at a node, but apart from that, the recovery of the collection efficiency can be 

coded very simply even for multi-element airfoils and complex 3D geometries. 

Equations (2.1) to (2.6) are derived for a uniform droplets diameter d . Clouds, however, 

usually contain a distribution of droplet diameters. The computation of flows containing 
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droplets of different sizes can be done by splitting the diameters distribution into a finite 

number of classes and by solving each class independently. If the percentage of droplets 

in the il class is given by pi the overall collection efficiency would be: 

with /?. the i* class collection efficiency. Hence, the droplets code does not have to be 

modified to handle poly-dispersed droplets, as long as the change of air momentum due 

to droplets is neglected. 

A typical and most accepted icing cloud distribution is the Langmuir-D distribution. An 

example of this distribution for a MVD of I6jum is given in table 2.1. Using a droplet 

distribution, the impingement limits are more accurately predicted, and usually the 

maximum value of the collection efficiency is larger for the monodispersed droplets . 

Percentage LWC (%) Ratio of diameters Droplet diameter (fim) 

0.05 031 5~0 

8.3 

11.4 

16.0 

21.9 

27.8 

35.5 

Table 2.1:Langmuir D distribution of droplet diameters for a MVD of \6flm. 
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2.3. Ice accretion module 

The third component, a modern ice accretion module, based on a totally rethought 

approach for ice formation, completes the necessary triad of: flow solution -

impingement solution - ice accretion solution. A new thermodynamic approach for 

predicting 3D ice shapes is formulated. A fully three-dimensional approach to icing is 

taken. In chapter 4, the new physical model, based on partial differential equations for 

mass and energy conservation is derived and an appropriate numerical scheme is 

proposed to solve the system of equations. The 2D validation of the complete system is 

presented in chapter 5, and 3D results in chapter 6. 

2.4. Methodology 

System-based ice accretion computations are obtained through an interactive process, 

figure 2.5. For geometric fidelity, a 3D CAD-based mesh is generated around the surface 

to study. A 3D turbulent airflow solution is first computed. Then, using the same mesh 

and the velocity field from the airflow solution, the droplet impingement is computed. 

Finally, with the airflow solution (friction forces & heat fluxes) and with the droplet 

solution (collection efficiency & droplet velocity), the surface node displacement due to 

ice accretion is calculated on the same mesh. 

Two approaches, figure 2.6, are used to calculate ice accretion with time: the one-shot ice 

growth and the multi-stepping ice growth. With a one-shot ice accretion, the ice accretion 

shape is computed using only the original airflow and droplet solutions. With a multi-

stepping approach the airflow solution and the droplet solution are updated during the ice 

accretion process after a certain time of ice accretion. The multi-stepping approach 
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should be more accurate. Indeed, the updated airflow solution will take into account the 

geometric deformations due to ice growth and the droplet impingement will also be 

strongly affected by the body deformations. However, a truly time-accurate unsteady 

technique is impractical so far, as it would require the calculation of the airflow and 

droplet solution after each time step of the ice accretion module and thus demand large 

computer resources. Instead, a quasi-steady approach is proposed so that the computed 

ice shapes can be compared to the experimental and numerical solutions, which usually 

involve a few minutes of ice accretion. 
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Figure 2.5: CFD methodology. 
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Figure 2.6: Two methodologies for ice accretion: the one-shot approach and the multi-stepping 

approach. 
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Chapter 3 

Spalart-Allmaras Turbulence Model 

Currently, the only industrially practical way to simulate turbulent flows is to solve the 

Reynolds-Averaged Navier-Stokes (RANS) equations together with a turbulence model. 

Modeling turbulence has become an intrinsic task in CFD40'41. In aerodynamics, simple 

algebraic turbulence models have been widely used with fair success. However, the 

algebraic models are not suitable to handle complex flow situations like separation, 

wakes, etc. In icing, separated flows occur most of the time because of the surface 

roughness and the complex ice shapes resulting from the impact of droplets. An icing 

requirement is to accurately predict convective heat fluxes on smooth and rough surfaces 

in a situation of complex turbulent flows. 

The Spalart-Allmaras model proposes an alternative to simple algebraic models or 

complex transport-equation models by creating a "local" type transport-equation, which 

is more sophisticated than algebraic models, but more robust and easier to use than the 

traditional two-equation or higher degree models. 

This chapter describes the implementation and validation of the Spalart-Allmaras 

turbulence model in FENSAP. FENSAP is a 3D code based on the compressible 

turbulent Navier-Stokes equations. The spatial discretization of the entire code (FENSAP 

+ Spalart-Allmaras model) is carried out by FEM and the governing equations are 

linearized by a Newton method. To advance the solution in time, an implicit scheme is 

used, along with a GMRES procedure to iteratively solve the resulting matrix system. 

46 



We first recall the non-dimensional form of the Navier-Stokes and energy equations used 

in FENSAP and then describe the one-equation turbulence model. The basic 

functionality of the new model is tested by solving the flat-plate turbulent boundary layer 

flow. The validation of roughness inside the Spalart-Allmaras model is then done on 

rough flat-plates and rough pipe flows. 

FENSAP Governing Equations (Navier-Stokes and energy) 

The Reynolds-averaged Navier-Stokes equations used in FENSAP can be stated in the 

following manner: 

Continuity Equation 

Momentum Equations, i = 1,...,3 

dpu( 

dt 
+ {puiui) =-pL + 

v ' J'J
 Fl Re 

( 2 ^ 
M\uiJ+uJJ--S9ukJ[ 

Energy Equation 

H=H. 

or 

pcpdT 

dt 

(r-i)Mj 
+ (pc,ujT) =(Y-1)M2^ + ^ — (KTJ) + i ^ ^ ( M , . r , y ) . \ y P j ),j \f > . D t R e p r v .Ji,j R e v « >J/,J 

oo oo 

where rtf = ju ( uLj + uj4) + A8{iuktk (2// + 3/1 = 0). 
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The Reynolds number is defined as: 

The Prandtl number is defined as: 

Re = 
p I U 

Pr„ 
M~cp. 

and the equation of state for ideal gas is used to close the system 

P--777 
YMC 

3.1. The one-equation turbulence model 

3.1.1. The basic Spalart-Allmaras (S-A) model 

The Spalart-Allmaras43'u turbulent kinematic viscosity vT is obtained from the modified 

viscosity, v, which is solved from the partial differential equation (3.1). This equation 

has a form similar to the equations for basic flow variables: density, momentum and 

temperature. The major difference is that the turbulence equation also contains strong 

source terms. The equation in non-dimensional form and without transition is: 

dv dv ~ - 1 
-— + uj—— = cMSv +• 
dt dxi 

'bV crRe„ dx, 
{v + v) dv^ 

dx + c bl 
k J 

dv dv 

dxk dxk 

Cw\Jw 
1 v-v 

Re„ 
(3.1) 

The first term on the right-hand-side represents the turbulence production, the second 

term represents diffusion and the last term is the destruction. The modified magnitude of 

vorticity is: 

S =S + 
Re„ K2d2 fv2 
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where S is the magnitude of the vorticity 

S = V2^ A a..=i(du' du> 
\ 

,J 2 Kdxj dXj j 

and d is the distance to the nearest wall. The functions fvl and fv2 are defined as 

/ v 2 = l -
X 

i+zfi vl 

where x - — with v the laminar viscosity. The destruction term is formed with: 
v 

J w o 

( 1 + c6 A 

where 

^ = r + c » v 2 ( r 6 - r ) r = 

* - V Re.. S + v/v2 

The closure coefficients of the model are: 

cw =0.1335 cb2= 0.622 cv l=7.1 

(l + ^ 2 ) c = — + v" ' ~"7 c = 0 3 c =2 
K <7 

2 
cT = — 

3 

A: = 0.41 

The kinematic turbulent viscosity is obtained from: 

3.1.2. Laminar region and tripping 

The basic model is applicable to turbulent flow without laminar boundary layer and 

transition region. In aerodynamic problems, there are typically both laminar and turbulent 

regions. The position of the transition point(s) cannot be predicted reliably using current 
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turbulence model, and must be known a priori or an educated guess (with numerical 

methods) must be made. 

The final model, equation (3.2), provides control over the laminar regions of the shear 

layers, a control with two functions: keeping the flow laminar where desired and tripping 

transition where desired. The subscript t will stand for "trip". This word means that the 

transition point is imposed by an actual trip, or occurs naturally but the position is 

obtained via a separate method. 

There is a problem in modeling the laminar boundary layers, since v = 0 is an unstable 

solution of the turbulence equation in thin shear layers. In a boundary-layer code the zero 

solution is easily maintained, but in a Navier-Stokes code exactly-zero values are rarely 

preserved. The model is then sensitive to numerical errors upstream of the trip. The flow 

turns turbulent at a rate that depends on numerical details and has little to do with the 

boundary layer's true propensity to transition. The solution to that problem is to modify 

the production term so that v = 0 is a stable solution in shear layers upstream of the 

tripping points. This is done by multiplying the production term by (1 - fl2) where 

f - r pi-^z2) 
Jt2 ~ Lt3c 

The proposed values for c,3 and c,4 are c,3 =1.1, c,4 = 2 . A modification, involving 

fl2, is also made in the destruction term to maintain the balance. These modifications 

ensure that a laminar solution is obtained upstream of the tripping points. The transition 

is initiated near the tripping points by adding a source term that will be non-zero only in 

small areas near the tripping points. This source term is /,,A£/2 and the model becomes: 

50 



dv dv 

dt J dx, 
1 

crRe„ dx, 

c f -ZJ± f 
wlJw ? J I 

K 

t ~\dv 
dxk 

~\2 

+ c w ( l - / f 2 ) 5 v 

1 (v\ 

Re„ 
'bl dv dv 

\a j crRe^ dxk dxk 

-r-Re^/.A/J2) 

(3.2) 

with 

fn=Cng/ 
c ' 2 ^ 

U2
+8fdf] 

g, = mm 0.1, 
AU 

S,Ax,j 

Here, 5,, is the magnitude of vorticity at the tripping point, A/7 is the norm of the 

difference between the velocity at the tripping point and at the far field point being 

considered, dt is the distance from the field point to the nearest tripping point. Suitable 

values for the constants are cn = 1 and cl2 -2. 

3.1.3. Weak-Galerkin finite element formulation 

The weak-Galerkin finite element formulation is obtained by integrating equation (3.2), 

in non-dimensional form, with respect to the weight function W, and integrating the 

spatial terms using the divergence theorem (3.3). This effectively transfers the order of 

differentiation from the spatial terms (convective) to the weight function allowing for the 

use of lower-order elements (3.4). 

Let &h be the trial solution space, 

&h = | v/v{.,t)e Hl(n)m,te [0,T] , P 7 Q , e Pk(Q
e)m,v(-,t) = fonTf\ 

and a)h the weighting function space: 

Q)u = | W/W(.,t)e Hl(Q)m,te[0,T],W /Qr e Pk(Q
e)m ,W(-,t) = 0 onTf 
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Note that for our equation m=l and k=l. The weak formulation is then given by: 

Find v e &h such that: 

J W • 
a 

Cw\Jw 

dv dv 
+ u 

{ d t 

Cb\ f 
2 J a 

K 

dXj 

1 
Re 

1 d 
crRe^ dxk 

[dj aR 

t ~\dv 
dxk 

2 dv dv 
e» dxk dxk 

-cbl(l-fl2)Sv + 

RU/„A/J2) 

(3.3) 

dQ. = 0 

VWea)L 

(•„. \ dv dxk dv dv /, , \ 

Q i dt dt dxk 

S + frt* 
R e t f V 2 v + Cw\Jw 2 J I 

K 

b\_ 
2 J 12 

1 fv^ 
Re„ v«y 

dv dv 
<xRe„ dxk dxk 

R^f^hiw\^ 

(3.4) 

3.1.4. Discretization 

The element stiffness matrix, after the Newton linearization (setting v = v + Av ), takes 

the form: 

[C,][A?]=-[r,] 

where the residual is: 

ra = 
[„r\dv dxk dv dv , \ 1 

dt dt dx, dx, 
fvlV 

Re>c2d2Jv2 v + c f -1»L f 
K 

b\_ 
2 J 12 

Re„ yd J 

v^2 

cb2 dv dv_ 

crRe„ dxk dxk 

-Re„(/,1A^)j,Q+KJ^:(, + ,)^-J1v{^-(,+^„J)^ 

The coefficient of the stiffness matrix is: 
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Q = i™{Z-^-'**-^-f«>j£&'+£ Cbl 
Cw\Jw 2 Jl2 

K $r 
d*k . „ chi dv\ ,_ r... ., 1 dv ._ r„, ., f v-t-P" 

>dQ 
Q L * crRe„dx7.J J 'y [aRe„ 3bcJ J ,y '; [<7Re„ 

r
J [crRe„dx;. >\ J " l a R e . yJ 

In a weak-Galerkin formulation, the shape functions N and the weight functions W are 

identical. 

dx 
The linearized terms for — - arise from the ALE formulation (to take into account the 

dt 

mesh movement due to ice growth). We add a corrective term to the time derivative in 

the equation to account for the movement of the grid in time. Let f{x(t),y(t),z(t);t) be 

any function defined in space at all times. The time derivative of / is: 

df__df_ df_dx_ df_dy_ df_dz_ 
dt dt dx dt dy dt dz dt 

dt J ' 

In the governing equations, the partial time derivative operator becomes: 

d d _ 
— = x..v 
dt dt 

where it is understood that — designates the time derivative taken along the trajectory of 
dt 

a node. 

These terms are omitted in the construction of the stiffness matrix (they are only included 

in the residual). Numerical experiments indicate that neglecting these terms has minimal 

effect on the overall convergence rate of the continuity and momentum equations, so the 
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same behavior is expected for the turbulence equation. Only — , corresponding to the 
At 

time discretization of , remains in the matrix. 
dt 

3.1.5. Artificial viscosity 

Numerical methods used to solve PDEs (convection type and fluid flow problems) suffer 

from inherent numerical oscillations when centered type discretization is used for the 

advection terms. The big challenge is to enhance the stability of the scheme without 

smearing the discontinuities (like shocks) and boundary layers. We propose here a new 

artificial viscosity method45 (ISOD) based on diffusion along iso-values surfaces (or 

curves in 2D). The formulation of the method is done in FEM and applied to all 

equations: continuity, momentum, energy and turbulence. The main idea is to add a 

Laplacian operator in the perpendicular plane to the gradient direction of the solution. 

This approach simultaneously stabilizes the scheme and enhances its capability to crisply 

capture both shocks and boundary layers. This is due to the fact that the perpendicular 

plane to the gradient (the diffusion plane) is tangent to the iso-values curves or surfaces. 

Therefore, the smoothing effect along the iso-values ensures the stability of the scheme, 

avoiding the negative or cross-diffusion effects of classical artificial viscosity methods. 

The ISOD weak formulation is obtained by adding to the governing equations an integral 

formulation of an adequate diffusion tensor. This tensor propagates the artificial viscosity 

on the perpendicular plane to the iso-values. 

Let V be the vector of unknowns, 
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i.e.: V = 

P 
u 

V 

w 

T 

V 

We choose p instead of p so that our formulation is valid for both compressible and 

uncompressible flows. The term added to the system of equations is: 

£ JVW -(B£Vv)d£l- jw(B£v)-ndT 

where Be
g = e(l - A ) 

an'nr 

Mv)= 
\,(V) 2\2(V) 2\,(V) 

2A2,(V) A2<2(V) 2A2,3(V) 

2AXI(V) 2AX2(V) AX3(V) 

\j(V) = 
(W)(W) 

wv 

The superscript g designates that we deal with the global (reconstructed) derivatives 

(versus local derivatives). In our FEM we use an implicit formulation, so the tensor 

Be
g(V) is estimated at time step n when we compute for Vn+l. This linearization makes 

sense since we diffuse along the iso-values of the solution at a given time step to prevent 

oscillations of the next time step solution. 
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3.2. Results 

3.2.1. Validations of the basic model 

Flow calculation around a flat plate at Re„ «104 has been performed to compare the 

solution obtained with FENSAP and the solution obtained with a finite difference 

boundary layer code, published in AIAA paper 92-043943 Both methods have been 

performed using the Spalart-Allmaras model. The comparison presented in figure 3.1 is 

only made to validate the coding inside FENSAP and check the calibration of the model 

closure coefficients. 

1 

O.B 

0.6 

0.4 

0.2 

°c 

Velocity 

Ss. V ^ " 

7 y\ 
1 Shear \ 
/ stress \ 

rj 

2 4 6 

y/5' 

AIAA-92-0439 
FPNRAP S-A 

\ - « - Eddy 
\ viscosity 

, , i N ^ ^ p ^ ^ H 
8 10 

Figure 3.1: Profiles in a flat-plate boundary layer at Re0 = 1 0 , outer coordinates. U normalized 

withf/^, T with T wall and V, with 0.025/7„,<? . Comparison of the Spalart-Allmaras model in 

FENSAP and the calibration results contained in the AIAA paper 92-0439 (figure 4). 
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The velocity profile in inner coordinates w+ = / ( v + ) is seen in figure 3.2 for three 

different Reynolds numbers: Re„ =1.4xl06 , Re„ =2.7xl06 and Re^ =5x l0 6 . The 

logarithmic curves show clearly that the velocity profiles obtained with FENSAP using 

the S-A model are in good agreement with the linear velocity profile for the viscous 

sublayer, the log-law for the logarithmic region and the experiments46 for the wake. 
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Velocity Profile at Re(x)-5x10**6, Spalart-Allmaras model 
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Figure 3.2: Velocity profiles in a Flat-plate boundary layer in inner coordinates (u + , y + ) for three 

Reynolds number: Re„ = 1 . 4 x l 0 6 , Re^ = 2 . 7 x l 0 6 , Re^ = 5 x l 0 6 . Comparison with 

theoretical law and experimental data. 

To test the model in flow fields with pressure gradients and streamline curvature, two 

transonic flows over a RAE 2822 airfoil are performed. This flow regime is not 

completely relevant to the icing problem, since icing conditions deal with lower Mach 

numbers. The intention here is more to increase the confidence in the model. The first test 

case is set at Mach number 0.725 and the second at Mach number 0.75. Both test cases 

include a shock wave. The grid spacing in the direction normal to the wall is fixed at 

5x10^0 which correspond on average at v+ =1 . A 3D C-type mesh of one element 

thickness containing 44654 nodes is shown in figure 3.3. The Mach number contours 

corresponding to the test cases are presented in figure 3.4. 
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Figure 3.3: Mesh around the RAE 2822 airfoil. 

In the first test case the flow parameters are: Ma = 0.725, AoA = 2.37", and 

Re = 6.5xl06. The predicted and experimental pressure distributions are presented in 

figure 3.5. The AoA has a strong influence on the shock location, and unfortunately the 

effective experimental AoA is uncertain in this case (Ref. 43 and 44). Thus the shock 

location is not necessarily a reliable indicator of solution quality. Nevertheless, the 

predicted pressure distribution agrees reasonably well with the experimental one. This 

test case shows that the model works also in cases more complex than a flat plate. 

However, not much can be said about the accuracy, due to the uncertainties of the 

experiments. 
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a) b) 

Figure 3.4: Mach number contours around the RAE 2822 airfoil; a) Ma = 0.725 AoA - 2.31l 

and Re = 6.5 x 106; b) Ma = 0.75, AoA = 2.52°, and Re = 6.2 x 106. 
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Figure 3.5: Pressure coefficient distribution corresponding to the following conditions: 

Ma = 0.725, AoA = 2.31°, and Re = 6 .5x l0 6 . 
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In the second test case the flow parameters are: Ma =0.75, AoA = 2.52°, and 

Re = 6.2x10 . The predicted pressure distribution is compared to experiments and 

pressure distribution of the Cebeci-Smith model in figure 3.6. The shock location 

predicted with S-A is closer to the experimental shock location than the Cebeci-Smith 

prediction. But again, it should be remembered that the experimental AoA is uncertain. 

Both models predict a stronger shock than the experiment. Globally, the S-A pressure 

distribution agrees well with the Cebeci-Smith prediction and the experiments. As a 

conclusion of these two test cases, the S-A model can be used to model turbulence around 

more complex geometries than a flat plate (like airfoils) even in the transonic flow 

regime. 
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Figure 3.6: Pressure coefficient distribution corresponding to the following conditions: 

Ma = 0.75, AoA = 2.52",and Re = 6.2xlO6. 
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3.2.2. Rough wall treatment with the S-A model 

This extension of the model47 is essential in icing studies and requires non-zero wall 

values of v and vT . The d function is increased, relative to the minimum distance dniD : 

d = dnia+0.03ks 

In the last equation, 0.03 is near exp(-8.5*-), and 8.5 is the asymptote of the theoretical 

log-law intercept, in ks units, as k* —> <*>. 

The solution for a standard constant-stress layer is the same as for smooth walls: 

v = mTd 

which requires the mixed wall boundary condition: 

dv _ v 

dn d 

To adjust the model and achieve good predictions for smaller roughness, the fvi function 

is altered by adding a shift on the function x > which becomes: 

v d 

The suggested value for cRl is 0.5 (Ref. 47). The definition of S is adjusted so that 

S =—L- still down to the wall. 
Kd 

~ 1 v v/v 
S=S+— \~PlJvli Jv2=l ~ 

Rere K2d2 , v 
v / v l 
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3.2.2.1. Modification of the surface integrals for roughness 

Instead of having a Dirichlet boundary condition v = 0 at the wall, we impose a Robin 

boundary condition. Inside the residual rQ the wall surface integrals become: 

\w\-!—(v + v)^n\dS= fJ-J_(v + P0-U 
S \ =o y/J^ j 

with d - 0 .03^ for all the wall nodes. 

3.2.2.2. Calibration of the roughness model and validation 

The convective heat transfer coefficient, strongly related to the surface roughness, 

influences the growth, shape and type of ice accretion. When the sandgrain roughness is 

increased the convective heat transfer will also increase, producing rime ice accretion. In 

contrast, when the sandgrain roughness decreases, the convective heat transfer will also 

decrease and only a fraction of the incoming droplets freezes on impact, producing glaze 

ice accretion. 

The logarithmic velocity profile of a boundary layer upon a rough surface has the form48: 

u+ = - l n y + + £ - A 5 
K 

where 

u =— y 
u. T 

and the constants defined by K = 0.41 and B = 5. 

The correction added to the constant B, AB, is related to the roughness coefficient by 

the following formula: 
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k+ -Urks AB = -\x\V -3 .65 
K 

The logarithmic velocity profile can then be directly related to the roughness coefficient 

by: 

«+ = - l n ^ + 8.5 
K k. 

(3.5) 

The agreement of the computed velocity profiles with Nikuradse's universal profiles, 

equation (3.5), in the log layer is shown in figure 3.7. The S-A model agrees pretty well 

with Nikuradse's profile. 
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Nikuradse's profile. 
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Mills and Hang have deduced a semi-empirical formula for the skin-friction coefficient 

on a sand-roughened flat plate: 

cf = 

-2.46 

3.476+ 0.707 In — 
k 

(3.6) 
J 

In figure 3.8, the computed cf -curves are compared with equation (3.6). The S-A 

model gives results quite close to the results obtained from equation. (3.6). 
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equation (3.6). 

,49 In figure 3.9, the experiments performed by Blanchard are compared to FENSAP and 

ONERA50 results. In the experiments, the surface is covered with hemispheres with a 

spacing of four times their height. For an external velocity of 58 m/s, the reduced 
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equivalent sandgrain roughness k* is about 50. In this case, the Stanton number is fairly 

well reproduced by S-A in the three codes. 

0 004 

0 0035 

2.5 

Figure 3.9: Stanton number predictions, MSU experiments, 58 m/s comparison between S-A 

ONERA, S-A Boeing and S-A FENSAP. 

The velocity gradient near a rough pipe wall is less steep than that near a smooth one, as 

can been seen in figure 3.10, in which the velocity ratio ull) obtained with FENSAP S-

A has been plotted against the distance ratio yl R for a smooth and for several rough 

pipes. All have been compared to the measurements and show good agreement of 

FENSAP S-A with experimental data. 
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Figure 3.10: Velocity profiles distribution in rough pipes, comparison with Nikuradse51. 

3.3. Influence of roughness on ice shape 

j52. 53 
Ice shapes are strongly influenced by the convective heat transfer rate from the ice 

surface. As described previously, the S-A model can predict turbulence on rough surfaces 

according to an equivalent sandgrain roughness parameter provided. Traditionally in 

icing simulation, roughness of the iced surface is taken into account with an equivalent 

sandgrain roughness parameter. This roughness will increase the skin friction, the heat 

transfer rate and will also modify the transition from laminar to turbulence flow. 

Changing the size of the roughness parameter will modify the convective heat transfer 

rate and will influence the growth rate, shape and type of ice. When the sandgrain 
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roughness is increased, the convective heat transfer will also increase, producing rime ice 

accretion. When it is decreased the convective heat transfer will decrease and only a 

fraction of the droplets freezes on impact, producing glaze ice accretion. Therefore, a 

calculated ice shape can change drastically when various roughness sizes are selected as 

can be seen in figures 3.11, 3.12 and 3.13. 
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Figure 3.11: Effects of roughness on a NACA 0012 airfoil, the ambient icing conditions are the 

following: AOA = 0 deg, T_=259A5K,U„ = 93.88m• s~l, d =30.1 jum, 

LWC = 0.94 g • m"3 and t = 225 s of ice accretion. 
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Figure 3.12: Effects of roughness on a NACA 0012 airfoil, the ambient icing conditions are the 

following: AoA = 3.5deg, T„ =262MK, U„ =W2.Sm-s~\ LWC = Ig • m'3, d = 20/^w 

and t = 91S of ice accretion. 

Empirical correlations can be found in the literature to evaluate the effect of roughness, 

but these correlations exist only for a well-defined type of roughness element. 

Furthermore, they are not relevant for ice accretion calculations. In icing, the roughness 

sizes can vary with the ambient icing conditions, the location on the body surface and the 
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length of accretion time. The influence of these parameters on roughness is complex and 

remains a specialized active research field. Because of the roughness influence on ice 

shape, all computational icing codes face the problem of defining the most appropriate 

sandgrain roughness for given icing conditions. 

It has become almost the norm that icing codes develop their own empirical correlation 

for surface roughness. The procedure followed is to first predict the ice shapes for a set of 

experimental ice shapes and convective heat transfer coefficient (or roughness 

parameter). Then they determine the value of roughness that yields the best agreement 

with the experiments. 

An empirical correlation relating the surface roughness equivalent sandgrain parameter 

had been developed for LEWICE, equation (3.7). As a first approximation, this 

correlation will be used inside our flow solver. The equations determining this correlation 

are the following: 

Velocity 

= 0.4286 + 0.0044139(vJ kjc 
ks ' C)base Jv_ 

Liquid water content 

= 0.5714 + 0.2457(LWC)+1.257 \(LWC)2 kjc 
Ks I C)base JLWC 

Static temperature 
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kjc 
kjc) base 

r 
= 46.8384 

T. \ 

-ir. 
1000 

-11.2037 

In all equations, ks lc)bme is set to 0.00117, the velocity is in m/s, the LWC in g/m3 and 

the static temperature is in K. The value of the sandgrain roughness is the following: 

k = 
kjc 

Vksic) base. V„ 

kjc 

_ks/c)base. LWC 

kjc 

_kslc)base_ 

kslc)basec (3.7) 
_! 

This equivalent sandgrain roughness may be recomputed at each update of the airflow 

solution to account for the variation in ice shape and roughness. 

Figure 3.13 shows ICE3D-SWIM accretion with smooth wall and with roughness, along 

with LEWICE results and experimental ones obtained by NASA in the IRT (Ref. 66). 

The ICE3D-SWIM results have been calculated using a one shot ice accretion technique 

and first show that roughness has a significant effect on accretion. As can be noticed 

when no roughness is used, the convective heat transfer is not sufficient to freeze the 

impinging water on impact and the remainder runs back along the geometry. The figure 

3.13 also shows that using the S-A model with LEWICE roughness parameter seems to 

be a judicious choice to solve our problem. Referring to chapter 5 about the quality of 

experiments in icing we observe good agreement of ICE3D-SWIM results with the 

experimental data. Concerning the comparison to LEWICE solution, it should be recalled 

that only a one shot ice accretion has been done with ICE3D-SWIM, LEWICE did seven 

layers, which could explain the discrepancies between the two solutions . 
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Figure 3.13: Effects of roughness on ice shapes, comparison with LEWICE and the experiments on a 

NACA 0012 airfoil, Run 209. The ambient icing conditions are the following: AOA =3.5 deg , 

T„ =265.07/^, Um =130.3ms~', LWC = l.3gm~\ d =30/^m and t = 3605 ofice 

accretion. 

3.4. Conclusions 

The one-equation turbulence model developed by Spalart and Allmaras has been 

implemented in the three-dimensional finite element flow solver FENSAP. The coding 

has been verified by solving the boundary layer over a flat plate. The surface roughness 

has been taken into account and validated against numerical and experimental results. Its 

effect on ice shape has been demonstrated through test cases. It should be kept in mind 
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that, as every turbulence models based on the Boussinesq approximation, this model also 

has limitations . Nevertheless the present model appears to be robust and easy to use. 

The good agreement of the results with theory and experiments are encouraging and 

makes it a valuable tool for icing simulations. All the results presented in this thesis have 

been obtained using this turbulence model. 
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Chapter 4 

A PDE-Based Ice Accretion Module 

For the ice accretion calculation, heat and mass transfer at the body surface is taken into 

account. The model should contain all the physics that cause ice formation from rime to 

glaze, including conditions categorized as mixed. Glaze and mixed ice form when there is 

no sufficient heat transfer to immediately freeze all impinging water droplets, with some 

water running back along the dry surface or the existing ice layer and freezing further 

downstream. The convective heat transfer controls ice accretion in this case and the 

thermodynamic model used54 is the Messinger28 formulation that satisfies the first law of 

thermodynamics in terms of conservation of mass and energy in a control volume. In this 

work, we will derive a continuous form of these equations for the liquid water film and 

these partial differential equations will be shown to be close to the well-known shallow 

water equations, with the addition of source terms corresponding to the other water 

phase: solid and vapor. Their discretization, using the finite volume approach in this case, 

will be described. 

It should be noted that in this chapter, a tilde over any temperature indicates the 

temperature to be in degrees Celsius, otherwise the temperature is in degrees Kelvin. 

4.1. Physical model 

Let us define a fixed control volume V contained between the curvilinear surfaces S and 

S', figure 4.1 representing the clean body geometry and the geometry once ice is 
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accreted. S' is the normal projection of S, the distance between S and S' being the 

height of the liquid water film. 

h f = height of the film 

Figure 4.1: ICE3D-SWIM control volume. 

The velocity of the water film is a function of the coordinates x = (x],x2) on the surface 

and y normal to the surface, in other words fully 3D. The problem can be simplified by 

introducing a linear velocity profile for the film, uf = (3c, v), tangent to the wall, with a 

zero velocity at the wall: 

(4.1) 

Such a linear velocity profile assumption is justified by thin film theory in which terms of 

order higher than one in the velocity profile are negligible. The small film thickness, 

55 seldom greater than 10 ptm in icing or anti-icing simulations , would support this 

approximation. 
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In equation (4.1), fwall, the shear stress of the air, is the main driven force for the water 

film; the pressure and gravity forces being negligible except close to the stagnation point 

and at low velocities. For example, when the pressure force is considered: 

5=Jl-MAfl (4.2) 
I Mw y ds ) 

At a stagnation point in 2D the dimensionless pressure gradient is defined by: 

~f = l, (4-3) 

pue ds 

where ue is the velocity just outside the boundary layer and s the distance from the 

stagnation point. Pressure forces are negligible if: 

Twall»hf^-. (4.4) 

ds 

When the definition of the friction coefficient and equation (4.3) are used, equation (4.4) 

becomes 
0.5cf»hf/s. (4.5) 

For a small water film thickness, the pressure gradient could have an effect only very 

close to the stagnation point. With similar arguments, the gravity force can be shown to 

be negligible except in the vicinity of a stagnation point (Ref. 15). 

By averaging across the film thickness, a mean velocity can thus be derived: 

"/ = — J / "/ (x, y)dy =-J-fwaU (x,y) (4.6) 
"/ ^Mw 

In addition, because the water film is very thin, temperature changes in the direction 

normal to the wall are small and a constant average temperature through the water film is 
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used. Equation (4.6) will be used to derive a system of partial differential equations for 

mass and energy conservation. 

4.1.1. Mass conservation 

1 
impingement evap/subl 

1. Impinging water m, 

evap 
2. Evaporation/Sublimation m 

3. Water runback through V mF 

4. Ice accretion leaving V mice 

Figure 4.2: Mass balance for a control volume. 

An evaluation of all the mass of water entering and leaving the control volume is shown 

in figure 4.2. A mass balance equation can be formed from these terms: 

mv +mF=mf}+ mevap + mice (4.7) 

The following assumptions have been made to simplify the problem: 

• The mass of air trapped inside the solid ice is neglected. It is supposed that no 

reaction occurs between air and water and that no air is dissolved in water. 

The main driving force of the film is the frictional force. 
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• The properties are constant inside the control volume. 

We can evaluate and express each term of equation (4.7) in the following manner: 

Liquid water film 

The Reynolds transport theorem applied to the liquid water film states that: 

• The rate of change of liquid water within the control volume is: 

d fhi r d c r^/ 

The flux of liquid water passing into and out the control surface is: 

Thp = L I'PwUf (*>:M)•»(*)dydx = -?*- J div(fwall(3c,t)h)(x,t)\dx 

Impinging water due to impacting droplets 

mp =U„LWC jt/3(x,t)dx ~U„LWC j 0(x,t)dx 

It is assumed that the impinging water is uniformly distributed on the lower surface of the 

control volume. 

Evaporation/Sublimation 

" W = " l.Wevapfrtjdx « ~ \smevap(x,t)dx 

We assume that the evaporation is uniformly distributed on the lower surface of the 

control volume. The mass rate of water lost by evaporation/sublimation, m"vap, is 

recovered from a parametric model expressed in the following section, equation 4.9. 
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Ice accumulation 

As previously discussed, the control volume remains on the surface of the geometry as 

the ice accumulates outside the control volume. Therefore the mass rate of water leaving 

the control volume by freezing can be expressed as: 

™ice =-\sKe(X't)dx 

A partial differential equation for mass conservation 

For every volume V , i.e. every surface 5 , we have: 

dht 
-|\ 

l\Pw i)i~+div( *'*') & = J*( u-Lwc0-<* -<.) <% • V5 
j y 

Therefore the conservative form of the mass conservation can be written as follows: 

dhf 

IT • + div\ufhf) = U^LWCP-m^-m, 
evap ice 

(4.8) 

Where the three terms on the right hand side correspond, respectively, to the mass 

transfer rate by water droplet impingement (source for the film), the 

evaporation/sublimation and ice accretion (sinks for the film). For notation simplicity, we 

omit the " distinction sign concerning the evaporation and the ice mass transfer rates but 

we will keep in mind that these mass transfer rates are expressed per surface unit. 

4.1.2. A parametric model for evaporation 

MacArthur56 gives a relation to calculate the mass flux that evaporates or sublimates as: 

m evap 

O.IK 

' p.air 

'Pv,p(T)-HrjmPVi 
(4.9) 

wall 
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Where Pvp is the saturation vapor pressure at the surface, Pv>00 the saturation vapor 

pressure of water in ambient air and Pwall is the absolute pressure above the control 

volume outside the boundary layer. Hroo is the relative humidity, T the temperature in 

Kelvin, cpair the specific heat capacity of air and hc the convective heat transfer 

coefficient. 

The saturation vapor pressure is calculated using an approximation57 of the saturated 

steam table58 values: 

PV.P = 3386 -6rf,2 , o c c - i n I A - 7 T 3 0.0039 + 6.8096.10"b7/'+3.5579.10"T 

with T = 72+ 1.87 

4.1.3. Energy Conservation 

The same concept of control volume is used to write the energy balance. The first law of 

thermodynamics states that: 

Energy inflow rate = Energy outflow rate + Energy storage rate 

The modes of energy transfer are illustrated in figure 4.3. We use the convention that the 

energy that flow into the control volume is positive. 

To simplify the task we made the following energy assumptions: 

• Ice acts somewhat as an insulator59 (Qcond = 0 W): 

o The conduction between the surface and water is neglected. 

o The conduction between neighboring control volumes is also neglected. 

• Any heating of the droplet in the air is neglected (Ref. 17). 

80 



impingement 

7 \ 
radiation 

convection 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Impinging water 

Evaporation/Sublimation 

Water runback through the CV 

Ice accretion leaving the CV 

Convection 

Conduction 

Radiation 

G, 

*£evap 

QF 

*£ice 

i&conv 

*£cond 

±£rad 

Figure 4.3: Energy balance for a control volume. 

The energy due to the impact of droplets along with the energy of the water running back 

from the upstream control volume and the heat released by the freezing water represent 

the energy flow into the control volume, while the convection, conduction, radiation, 

evaporation and the energy of the water running out of the control volume represent the 

energy flow out of the control volume. A general form of the energy equation can be 

written as follows: 

QV + Qf = Qfi + Qevap + Qice + Qconv + Q. rad (4.10) 
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Liquid water film 

The water flowing through the control volume at time t will be at the surface temperature 

T(x,t). The enthalpy of the water can therefore be defined by cpwf(x,t), where cpw is 

the specific heat capacity of water. The energy term corresponding to the liquid water 

film can then be expressed as follows: 

Qv =jf\s ( £ ' PwCpJ{x,t)dy^dx=\sj\[pwcpwhJx,t)f(x,t)]dx 

and after use of equation 4.6: 

®F = Lit' ^ . / ( ^ O ^ y , ^ ^ ^ ^ 

Impingement 

Since droplets are brought to rest when they strike the geometry, it is appropriate to use 

the stagnation enthalpy to evaluate the energy of the impinging water. The reference for 

zero enthalpy in this study is water at the freezing point (Tc = 273.15K). The energy 

flow rate of the impinging water therefore is: 

Qfi = [U„LWCP Cp,w(Td.~-Tc)+ — 
d\\ dx 

where Td„ is the droplet temperature at infinity, in degrees Kelvin, and |w r f |
2 is the 

square norm of the droplet velocity at impact. 

Evaporation/sublimation 

Following an approximation of Hedde15, half of the water is considered liquid and the 

other half solid when evaporation/sublimation occurs. This simple model should take into 
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account the non-continuity of the liquid water film. It is possible to observe, on the body 

surface, bumps of ice separated by liquid water. In that case the ice will sublimate and the 

liquid water will evaporate. 

Qevap =~l - ( kvap (Tc)+ Lsub ( Tc )) ™evap dx 

where Levap(Tc) and Lsub(T(.) are the latent heat of evaporation and sublimation 

respectively evaluated at freezing point. 

Notice: Levap (Tc) and Lsub (Tc) are of the same order of magnitude. In glaze ice situations 

(liquid water + ice) LEWICE chooses another approach and considers only the 

evaporation (assuming the liquid water on the top of the ice layer). This has been also 

tested in our code but does not improve ice shapes; Hedde's approximation is then used 

for all the test cases. 

Ice accumulation leaving the control volume 

The enthalpy of ice is computed referring to the water at 273.15K. The rate of energy 

leaving the control volume with accumulated ice can be expressed as: 

Q,ce = lKeiX'0 LfusM-c^JixJ) dx 

where L, (Tc) is the latent heat of fusion and cpice is the specific heat capacity of ice. 

Convection 

The heat lost by convection is: 

Qconv = [Qs-Adx=[k 
dT. 

dn 
dx 

wall 
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where k is the thermal conductivity of air and 
dT 

dn 
is the gradient of temperature 

wall 

normal to the wall. The convective heat transfer QS_A provided by the CFD code for 

turbulent dry air is converted into a heat transfer coefficient, before ice accretion 

calculations: 

K=QS-A/(TM-T„). 

This heat transfer coefficient depends only weakly on the initial surface temperature 

distribution Tini along the airfoil, but will change depending on the boundary layer 

thickness. Therefore between each call to the flow solver, the ice accretion module uses a 

fixed value for hc(x) to obtain a convective heat flux Qh that will change with the 

surface temperature T. 

Qh=hc(T-T„) 

Radiation 

The heat lost by radiation is: 

a-=°*i T^-(f(x.t) + Te) dx 

or &--«*£ rp4 rji4 dx 

where a is the Boltzman constant and € the solid's emissivity. The heat losses by 

radiation are included, although they are important only in anti-icing simulation. 
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Relative importance of the terms 

• Source terms: the heat released by the freezing water represent the most important 

source term of the energy balance, followed by the energy due to the impact of 

droplets. 

• Sink terms: the convection is the most important term, followed by the 

evaporation. The heat lost by radiation is negligible and represent less than 1% of 

the exchange. 

Considering all the terms together, the convective heat transfer flux will remain the 

determining factor for obtaining a realistic ice shape. 

A partial differential equation for the energy conservation 

The energy terms can now be summed to form the energy equation: 

i* dhfc„T I -.\ 

-Uf- + div(ufhfcp,j) dx = c
P,Jd.~ + 

- I|2 

XU„LWC/3 + CJ£(T*-T4) 

~ 0 .5(L^ + Lsub) m^ +\Lfus-cpJaf) mice + Qh 

VS 

dx 

Therefore the conservative form of the energy equation is: 

Pw 
dhfc„T f p-w +div(ufhfcpwf) 

- II2 
U, 

T* _i_ 
p,W d,°° ry 

- 0.5(Levap+Lsub) m 

xU^LWC^ + ae^-T') 

ap+(^fus-Cp,lcef)Ke+Qh 

(4.11) 
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The coefficients pw, cpw, cpice, Levap, Lsub, Lfus are physical properties of water, while 

r̂f.oo > ôc» £WC , and 7^ are airflow and droplets parameters specified by the user. The 

ambient icing conditions completely determine these values. 

The flow solver provides the local wall shear stress fwall and the convective heat flux Qh • 

The Eulerian droplet module provides local values of the collection efficiency ft and the 

droplet impact velocity ud . 

The evaporative mass flux is recovered from the convective heat flux using the 

parametric model, equation 4.9. 

4.1.4. Compatibility relations 

Three unknowns are to be computed: the film thickness hf , the equilibrium temperature 

T within the air/water film/ice/wall interface, and the instantaneous mass accumulation 

of ice mice. 

Compatibility relations are therefore needed to close the system. Based on physical 

observations, one way to write them is as follows: 

hf >0 

m >0 
tee 

(4.12) 
hfT>0 
Kef < 0 

The first compatibility relation is a natural assumption on the film thickness, as is the 

positivity of the air density for a compressible flow. This first assumption is explicitly 

stated as there is no guaranty, at this time, that the model forces the film thickness to 

remain positive. The second compatibility relation, although not essential, just prevents 
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the remelting of ice. It could probably be removed in case inward movements of the 

geometry (for ice remelting) can be properly handled. The last two inequalities ensure 

that the model predicts no liquid water when the equilibrium temperature is under the 

freezing point (0°C), and that no ice forms at any temperature above freezing. 

4.1.5. Conclusion: system to solve 

At the end, to model the thermodynamics of the freezing process on a body undergoing 

icing, we have to solve the partial differential equations resulting from mass and energy 

balance, along with the four compatibility relations: 

Pw 
dh 

dt 
— + div[ufhf) = U.LWC0-m„o-m„ 

%^v(«-,V,.„f) 

evap tee 

f i IIUd 
Cp.w1d," """ ~ 

(4.8) 

xU^LWCfi + aefc-T*) (4.11) 

- 0 - 5 ( Kap + hub ) Kap +{LJus~ C p.ic j ) K e + Qh 

hf>0 

m,„ > 0 

hfT>0 

Kef ^ 0 

(4.12) 

To investigate the well-posedness of ICE3D-SWTM, one should first see if the 

compatibility relations lower the number of unknowns from 3 to 2. Indeed, as could be 

seen in figure 4.4, the regions of the (hf,f ,mice) - icing space delimited by the 

compatibility relations generate a connected surface, called the icing surface. But two 

degrees of freedom are enough to describe a surface. It thus becomes clear that by 

restricting the solution of ICE3D-SWIM to the icing surface, the number of unknowns 

matches the number of PDEs available. 

87 



Figure 4.4: Surface generated by the compatibility relations: I, running wet, no ice; II, glaze icing; 

III, rime icing. 

The icing surface is composed of three contiguous quarters of plane. The first one labeled 

I on figure 4.4, corresponds to a running wet-no ice growth condition above the freezing 

point: some water may impinge on the walls, but no freezing occurs. Regions U and III 

correspond to wet and dry ice growth conditions, respectively. For wet or glaze ice 

growth condition a water film and some ice are present simultaneously, and the 

equilibrium temperature should be the triple point of water. For dry or rime ice growth all 

the impinging water freezes: no water runs back and the temperature of the interface 

could be below the freezing point. Of course, the solution is not restricted in space and in 

time, and switching is done automatically by the solver. 
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4.1.6. Ice growth and nodes displacements 

The ice accretion equations are solved to get the rate of mass accretion by surface area, 

Keikg/Ks), for each node on the wall. This rate of mass accretion must be converted 

into a nodal displacement to modify the original grid and the original surface. To obtain 

the nodal displacement: 

• A growth direction must be assumed, either normal to the wall or in the opposite 

direction of the impinging droplets; 

• An ice thickness in this direction is obtained. 

As much as possible, the ice thickness at each node must be selected as to ensure mass 

conservation for a given ice density. In other words, the ice thickness must take into 

account the deformation of the body surface. Inside the ice accretion module, the ice 

density can be chosen constant (pice = 917 kg I m3), or variable, according to the Macklin 

formula: 

pice =378 + 4251og10(/?M)-82.3(log10(^))2 for 0.2<RM <170 

pice =917kg/m3 for RM <0.2or RM > 170 

r u 
with RM - —d d'n with rd the mean droplet radius in /xm, udn the normal droplet 

velocity component and f the wall temperature in Celsius. The variable density 

approach has been chosen to perform the test cases presented in this thesis. 

For a given time interval At the volume of ice accreted is given by: 

m. 

J»A/ f '''•ice 

„ l-7Tdsdt (413) 
ice 
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The rate of mass accretion by surface area, the ice density and the area S change with 

time and position along the iced surface. The discrete form of equation (4.13) is: 

* "' m„ 
^ = £ £ — d s . i t ) 

1=0 ,=1 Pice 

where ns is the number of nodes on the wall body geometry. 

If a tight coupling between the airflow, droplet and ice accretion solver is used, the 

surface ds(t) can be considered constant in time. Therefore the ice thickness can be 

defined by: 

Dlce = ^ L (4.14) 
Pice 

and 

1=1 (=0 

If large nodal displacements occur, the area displacements change in time. The ice 

thickness must then take into account the surface deformation. 

A/ n, 

y,ce = YLDicedistdSl (4.i6) 
l=o 1=1 

where distds( is the area associated at each node at time t. Volumes from equations 

(4.15) and (4.16) are not equal, unless a corrected value for the ice thickness Dice is used. 

The rate of ice accretion must be applied on the new displaced surface. The ice thickness 

at each node becomes: 

_micedsjdistdsi 

p 
fice 

where dst is the area associated at each node at initial time. 
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A sketch of different possible deformations, with the corresponding corrected ice 

thickness h, is drawn in figure 4.5. 

ICED BODY 

ICED BODY 

CLEAN BODY CLEAN BODY CLEAN BODY 

Figure 4.5: Computation of the ice thickness according to the wall body surface deformation. 

An example of nodes displacements respecting the mass of ice accreted on an existing 

test case is shown in figure 4.6. In this figure, the resulting ice shape, when nodes 

displacements are computed taking into account the wall body surface deformation 

(equation 4.17), is compared to the resulting ice shape when equation (4.14) is used to 

compute the nodes' displacements as if no deformation occurs. As can be seen, the 

correction effect is more visible on the horn. 
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Figure 4.6: Comparison between mass conservative ice growth and non mass conservative ice growth 

on Run 308 (Ref. 66). 

4.2. Computational approach 

4.2.1. Finite volume method 

4.2.1.1. Choice of the control volumes 

Special care has to be taken because the two PDEs are expressed on the walls of the 

geometry, i.e. on a two-dimensional surface embedded in a three-dimensional one. So, 

the first derivatives, more precisely the div operator, of some unknowns, have to be 

evaluated along the wall surface. A classical way to compute the divergence of a vector 

on a surface is through the introduction of a curvilinear coordinate system on the surface. 
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To avoid the introduction of such curvilinear coordinates of an evolving (caused by ice 

growth) wall surface, the intrinsic definition of the div operator is applied: 

f u • hds 
divu(P) = lim-

V->/> vol(v) 
(4.18) 

where v is an area element that shrinks to the point P on the surface. 

The finite volume method is an application of that definition but at the discrete level. A 

finite volume cell is chosen as the area element v in equation (4.18) instead of a 

vanishing sequence of arbitrary area elements. Therefore a finite volume method is found 

more appropriate to discretize the partial differential equations. Here a finite volume cell 

means a cell of the dual surface mesh, figure 4.7. The boundary of the three-dimensional 

mesh at the air/structure walls interface is denoted as the surface mesh. From the surface 

mesh a dual mesh is obtained by connecting to cell centroids the mid-edges of the cells so 

that ICE3D-SWLM unknowns correspond one to one to the finite element nodes of the 

airflow and droplet solutions. The discrete equations are obtained upon application of the 

finite volume method on this dual mesh; the solution obtained is an average value over 

the cell and is set at the mesh nodes. 

surface mesh v * ^ « * 

X/"« /' 
s\ ** -

/"-•i '' y*-

1 ' ^ ^ / 
/ *>- / 
i»-V / / * * - „. 

\ ? H •> \ 
^ ^ I w 

-""Bra 

^>< 
/ ^\ ,' * \ 

,***̂  

* *A ' ' \r 

/f!'7*\ 

/ dual 

„ ^ v 

* . jg 

\ ^ r 

J. \ = >-̂ i 

x\ 3-D nesh 

surface nesh 

surface nesh 

3-D nesh 

Dual surface nesh 

Figure 4.7: Dual meshes on structured and unstructured grids. 
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The nodes on the surface have a global numbering coming from the 3D finite element 

mesh, and a numbering associated to the skin mesh. Because our finite volume method is 

expressed in 3D, pointers are used to go from one numbering to the other. 

4.2.1.2. Spatial discretization 

We recall that: 

uf = 7 = 
2Mw 

fwal,(x,y) 

Another way to formulate our mass and energy conservation equations is the following: 

dh, 

dt 
• + V-

h 2 \ 

'wall 

*M* 

Acp,hff) , a 
dt 

+ V' 
2?\ 

C T 
p.w wall 

hyr_ 

2MW 

sf (4.19) 

where 5 is the source term corresponding to the mass balance equation, and S is the 

source term corresponding to the energy equation. We consider that cpw is constant 

through the domain of computation. Let us define: 

U = 
~hf ' 

hfT 
F(U) = 

\ k< 1 ' 
2Mw W°" 

h)f _ 
n, ^wall 

.2^w 

s = 

~sh 

Pw 

ST 

c p 
p.w" w 

The conservative form of our system is the following: 

du 
dt 

+ V-F(U) = S 
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4.2.1.3. A Roe scheme 

The Roe scheme is a first-order Godunov60'61,62 scheme. It is a conservative extension of 

the first-order upwind scheme to non-linear systems of hyperbolic conservation laws. The 

essential ingredient of the Godunov method is the solution of the Riemann problem, 

which may be the exact solution or some suitable approximation to it. 

Let Ut and £/. be the vector of unknowns at points / and /, the Roe scheme is 

expressed in the following manner: 

JU 
vol(C,)-^- + X L ®Roe(U„UJ,n)ds = vol{Cl )S, 

dt 
(4.20) 

j neighbor of i 

with 

^Roe(Ui,UJ,n) = -{F(Ui) + F(Uj))-n--\j(Ul+l/2)-n\(UJ-Ul) (4.21) 

where j{ui+lJ2) is the Jacobian matrix defined at the mid-point by: 

J\Ui+\l2)- ^.+1/2 _ J 
£/.. + u,. i ; 

The definition of the Jacobian matrix of our system is given by equation (4.22). 

j{ui+1/2)-n = 
hff 

0 

^-(fwaii-n) -zj-^wau-n) 
2Mw 2MW 

(4.22) 

We define by ht the value of hf at node i and by Ti the value of T at node i. By 

substitution inside the definition of O ** we obtain: 
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*m{UnUJ,n) = 
-(h2+h2)a-n 

-\u-n\ 

{hj-hX 

i ^ Llll-L + MhiTi- hT 
2 2 2 v J J '. 

(4.23) 

with 

u = ^ 
2Mw 

hg=\(hl+hj) 

At node i we have to solve: 

voi(c,)[pw
d±-s>]+ £ *;=o 

/ y neighbor of i 

( 
vol(C,) Pw 

dcwhiTi of 

3* *' / j neighbor of i 

(4.24) 

(4.25) 

The summation is taken over all of the nodes / connected to the node i with R* and Rl 
J ij i] 

defined by: 

Rh = — p [ h2 +h2\u -n -p u. -n \h\ h -h] 
ij — A'tvL i j 1 ij IJ I" w i] i] \ ij L j i J 

K =C-IzLPw\h2fi+h)f]uirni]-pw *V«<, 
(hfi+hjfj) 

{hj-hJ + h^hjTj-h^) 

4.2.2. Time discretization 

The time derivatives could be discretized with any finite difference formula. An implicit 

scheme was first implemented followed by an explicit scheme. The details of each 

method are briefly discussed in the following sections. 
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4.2.2.1. Implicit scheme 

Inside the implicit scheme the variables h. and hff{ are only needed to write down the 

Roe scheme. Indeed, their use as dependent variables is not recommended for the present 

system as the film thickness, h{, may vanish in many icing situations, and /z,7) would 

also vanish, preventing the recovery of 7) from ft.7) as when ht is strictly positive. The 

variables hl and 7] seem a better choice. Even if ht vanishes at some grid points, the use 

of a fully implicit scheme will make possible the recovery of ft from the degenerated 

equations 5* = 0 and Sj = 0. 

The instantaneous ice accretion rate mice, is also a dependent variable, although 

appearing only in the source terms. At each node, i, three unknowns ht, 7) and m, are 

thus to be computed, satisfying the system (4.24) and (4.25) and the compatibility 

relations. These could be addressed later in their original form (4.12). Unfortunately, 

standard iterative methods like the Newton method cannot handle directly such a system 

of two equations and four inequalities. Even the application of nonlinear programming 

techniques63 to the original problem is tedious and expensive as four generalized 

Lagrange multipliers would have to be added at each node to cope with the four 

inequalities. 
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Figure 4.8: Icing plane: I, running wet, no ice; II, glaze icing; III, rime icing; IV, dry air, no man's 

land. 

Instead, we introduce a change of variable from a portion of the plane onto the icing 

surface. Figure 4.8 shows that portion of the plane, called the icing plane, with regions 

labeled I to III as for the icing surface in figure 4.4. An extra region, labeled IV, has 

appeared, which corresponds to dry air flight situations, i.e. without any droplets for an 

arbitrary temperature below or above the freezing point. 

The significance of each region is better understood by looking at the change of variable 

from the icing plane (u,v) to the icing surface: 

Region I 

T=v> 

hf =u 

th;,., = 0 

Region II 

T = 0 

hf =u2 

mice = v 
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f = 
*/ = 

Ke 

-u2 

0 

= v2 

Region IE \ hf = 0 Region IV 

^ 2 2 

T =v -u 

hf=0 

/n,~ = 0 

This change of variable is invertible from the icing surface onto the region / (J // U /// of 

the icing plane. Moreover the transformation is differentiable, even on the u and v axis. 

These two features allow the solution of ICE3D-SWIM in ( M,,V,) instead of ( 7;,/z,,m.) 

at each node. For example, using Newton's method, the two unknowns ( w,,v() are 

updated with the residual of the two equations (4.24) and (4.25), without compromising 

the convergence of the iterative solver because the transformation is sufficiently regular. 

Whatever ( w,,v.) is selected in the icing plane, the compatibility relations will be 

automatically satisfied. 

Whenever required, the inverse transformation could be used to recover the physical 

variables ( 7),/*,.,w,.) from ( w,,v.). A difficulty arises from the fact that the inverse 

transformation is not defined in region IV, and the iterative solver could very well 

converge to values in that region. As just stated, region IV corresponds to dry air 

situations, which are, in fact, already completely represented by the points on the portion 

of the u and v axis adjacent to this region. Region IV simply has to be avoided, 

otherwise the system (4.24) and (4.25) would be indefinite. Nonlinear programming 

techniques could be used to avoid going out of regions I, U and HJ. 

4.2.2.2. Explicit scheme 

In practice, nonlinear programming techniques64,65 are not so easy to use, especially if we 

deal with general inequality constraints. Inequality constraints can be expressed as 
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equations with help of Lagrange multipliers but each constraint will add an unknown to 

our problem. 

If we come back to our physical problem; three water phase changes are possible: from 

liquid to solid, solid to liquid or solid-liquid to gas, depending on the thermodynamic 

transfer of energy inside the control cell. These changes of phase create fronts that are 

difficult to track with a numerical scheme. Another convenient way to deal with this 

difficulty is to use an explicit scheme with small time steps to prevent instabilities. 

The phase changes can be treated as moving boundary conditions from one phase to 

another. Because physical phase may vanish or appear, special care must be taken to 

conserve mass transfer and heat transfer fluxes. 

For a simplification purpose we will express the instantaneous mass of ice accretion 

using the following formula: 

dm. 
m. =• 

dt 

Therefore the system (4.24) and (4.25) will be expressed by equations (4.26) and (4.27): 

voHcip.Q + lg-S,)* I R*=0 (4.26) 
C» 01 J j neighbor of i V 

voKcip^-^-^ -cpJt)
d-^-s2 + x K =0 <4-27> 

j neighbor of i 

where 5, corresponds to S* without the term containing m, and S2 corresponds to Sj 

without the term containing m,. The algorithm used to solve the problem is shown in 

figure 4.9. Regions I, II, and HI correspond to those of figure 4.8, i.e. I: running wet, no 

ice; II: glaze ice and HI: rime ice. At node i, the temperature of the preceding time step, 

100 



n - 1 , is used to determine the first guess region. If the compatibility relations are 

satisfied, node i remains in that region at time n, otherwise a different region is selected 

until the compatibility relations are satisfied. A water phase change occurs at node / if 

the node switches from one region to another one between time n - 1 and n. 

4.3. Conclusions 

A new equilibrium ice accretion model based on two PDEs has been developed to predict 

ice shapes on impacted surfaces using the shear stress and the convective heat fluxes 

from the airflow solver and the local collection efficiency from the droplets solver. This 

model includes some features for continuous film runback prediction on two- and three-

dimensional geometries and compatibility relations to ensure a physical solution and the 

well-posedness of the problem. By using a PDE-based model, a distinction can be made 

between the physical modeling and the numerical resolution of the resulting problem. A 

numerical scheme using the finite volume method and based on a Roe scheme is derived 

to solve the problem. In practice all the results of the following chapters have been 

obtained using the explicit scheme. 
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Figure 4.9: Explicit algorithm used to solve the problem. 
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Chapter 5 

Two-dimensional Validations 

ICE3D-SWIM has been compared to numerical solutions obtained with LEWICE, and 

experimental results done in the NASA Glenn (formerly NASA Lewis) Icing Research 

Tunnel (IRT) . All 2D calculations are carried out in a pseudo-3D manner on meshes of 

one element thickness in the spanwise direction. A consensus67'68 about the comparison 

of two icing shapes is difficult to obtain in icing. Indeed the focus can be on different 

criteria such as the limit of impact, the ice thickness or the location and angle of a 

possible horn, etc. As a consequence, the comparisons remain most of the time subjective 

but conservative enough to meet best aircraft safety. 

In December 2000, all icing computer code developers, FIA representatives, aircraft 

industries including Boeing participants met at Capua (CIRA) in Italy in the context of a 

NATO/RTO Symposium to validate their results by comparing numerical ice shapes to 

wind tunnel experiments in rime ice and glaze ice conditions on: airfoils, multi-element 

configurations, nacelles and rotary wings. This event has been unique and gave the 

opportunity to the international aircraft icing community to give their results of this 

exercise one year in advance of the workshop. The final discussion reveals that there is 

still a large discrepancy between the numerical simulations and icing wind tunnels data, 

especially for glaze ice conditions and it is almost the same between flight test results and 

laboratories experiments. The consistency of ice shapes produced in icing wind tunnels 
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needs to be investigated. Development of a reliable method to quantitatively judge 

similarity between ice shapes is needed. The method should consider the similarity 

between the aerodynamic effects of the ice shapes as well as the geometric similarities. In 

addition, discovering that various codes give various shapes will not shed light on what is 

the culprit. Ice accretion needs an airflow solution, an impingement model and an ice 

accretion model. If the first two do not agree (different solvers, mesh density, no 

specified convergence criteria, etc.), it is impossible to state why there is a difference in 

ice shapes. 

Experimental methods in icing 

Given the inherent variability69 in the shape of experimental ice accretions, when 

comparing the goodness of ice accretions formed, it is typical to use words like poor, fair, 

good or excellent. How good can the comparisons be, given the inherent variability of ice 

shapes obtained from identical icing conditions? To answer this question it is necessary 

to have access to a fair estimation of the experimental error, for each icing condition run. 

In the IRT70, for example, the data is taken by cutting out a small section of the ice 

growth and tracing the contour of the ice shape onto a cardboard template with a pencil. 

During such experiments there are several steps which can potentially cause experimental 

error: 

• Spanwise variability: 

Even with a two-dimensional wing model, the ice shape produced in the tunnel will have 

some spanwise variability due to the random nature of ice accretion process. 

• Uncertainty in setting conditions: 
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Several tests assessed experimental error70 by running the same flow and spray conditions 

for the same airfoil multiple times. The repeatability of the ice shape also raises the 

question of uncertainty in setting conditions in the icing tunnel, like for example 

controlling a constant LWC during the experiment. 

• Tracing technique: 

There are several potential errors involved in the ice tracing and digitization process 

which are difficult to quantify. Some of these errors come from the quality of the 

template, the technique used to trace the ice shape and by the digitization process. If the 

ice shape extends beyond the dimensions of the template, it cannot be traced. The 

technique used may also have an effect on the final digitized ice shape. The template may 

not be placed squarely on the airfoil, the person may only trace the top of ice feathers or 

not trace feathers at all, as the ice feather may break off due to the pressure applied by the 

pencil. The researcher may not always trace a single continuous line for the ice shape, 

making the digitalization process more difficult. Multiple tracings of the same ice shape 

are rarely performed in the IRT70 and even more rarely are more than one tracing 

digitized. 

5.1. Mesh density effects 

The effect, on the ice accretion simulation, of mesh density around the leading edge of a 

NACA 0012 airfoil has been studied with a coarse (90 nodes on the airfoil), medium (180 

nodes) and fine grid (360 nodes), figures 5.1 to 5.3. The meshes contain, respectively, 

23350, 36130 and 61690 nodes. The spacing in the direction normal to the wall is kept 

the same for the 3 meshes and is equal to S^xlO^c, c being the chord of the airfoil. The 
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ambient conditions selected for this test case correspond to the LEWICE run 40366 and 

are given in table 5.1. The accretion time is 7 minutes. The airflow, impingement and ice 

accretion solutions on the 3 meshes are compared to each other and compared to 

LEWICE solutions66. For the airflow and impingement solutions the results are plotted 

against the distance from the stagnation point. 

Parameter 

Tm 

P„ 

U„ 

AOA 

MVD 

Value 

262.04K 

100 kPa 

102.8 m.s 

4° 

20/>im 

LWC 

Re„ 

0.55g/m3 

4.39xl06 

Table 5.1: Ambient conditions corresponding to Run 403. 

5.1.1. Airflow solution 

The turbulence model selected for the simulation is the one-equation Spalart-Allmaras 

model with an equivalent sandgrain roughness of 0.55 mm. The convective heat transfer 

coefficient on the airfoil geometry is compared for the three turbulent airflow solutions in 

figure 5.4. The curve shapes are the same for the three solutions, only the amplitude 
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varies. The solutions on the medium and fine grids are similar and appear to be mesh 

independent. 
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Figure 5.1: NACA 0012 airfoil, coarse mesh. Figure 5.2: NACA 0012 airfoil, medium mesh. 
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LEWICE uses an integral method to solve the boundary layer. LEWICE and FENSAP 

solutions are compared in figure 5.5. The differences between the two curves close to the 

trailing edge are due to the thickness of the boundary layer which is not taken into 

account by the LEWICE code. Close to transition points the differences are most 

probably induced by the roughness coefficient. The equivalent sandgrain roughness 

coefficient used for this calculation is the same as LEWICE. This roughness coefficient is 

especially calibrated for LEWICE (Chapter 3, last section, equation 3.7). Although the 

two methods employed are strongly different, the two solutions agree pretty much and the 

results are satisfactory. 

1500 -

1200 -

900 -

600 -

300 

Figure 5.4: Convective heat transfer coefficient (W/m2K) distribution against the distance from 

stagnation point for the coarse, medium and fine grids. 
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Figure 5.5: Convective heat transfer coefficient (W/m K ) distribution against the distance from 

stagnation point, comparison between FENSAP S-A (fine grid) and LEWICE solution. 

5.1.2. Impingement solution 

The local collection efficiency, for the 3 meshes, is compared in figure 5.6. The solutions 

are identical for the 3 meshes. 

The comparison with LEWICE is shown in figure 5.7. The maximum collection 

efficiency predicted by the two codes is identical. The impingement limits are slightly 

different on the upper part of the airfoil (s > 0). This is most probably due to a loss of 

precision from LEWICE, which uses panel methods for flow calculations. 
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Figure 5.6: Local collection efficiency distribution against the distance from stagnation point for the 

coarse, medium and fine grids. 
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Figure 5.7: Local collection efficiency distribution against the distance from stagnation point, 

comparison between DROP3D (fine grid) and LEWICE. 
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5.1.3. Ice accretion solution 

For the ice accretion module, a one-shot ice accretion simulation is performed on each 

mesh. The aim is to have bigger ice shapes to compare, and also to not mix the effect of 

mesh density with the effect of airflow solution updates on the solution. This last aspect 

will be studied in isolation in the next section. 

The comparison of ice shapes on the three meshes is shown on figure 5.8. The mass of 

ice accreted is the same for the three meshes and is equal to 0.496 kg per unit span. The 

three ice shapes are similar, with only some details like the ice thickness close to the 

stagnation point and close to the impingement limits varying for the coarse grid 

compared with the fine and medium grids. It is also possible to miss some details on the 

ice shape with the coarse grid, as can be seen on the pressure side of the airfoil. 

For this run number, two experimental solutions are available. The LEWICE numerical 

solutions obtained with a multi-stepping approach composed of 7 layers is also available 

and shown in figure 5.9. The one-shot ICE3D-SWIM shape is acceptable compared to the 

experimental and numerical solutions, especially if we take into account the fact that the 

over predicted ice thickness on top of the airfoil will substantially decrease if a multi-

stepping approach were used (see figures 5.10, 5.11 and 5.12). Indeed this part of the 

airfoil will be in the shadow zone of the bump located between the coordinates: 

0 < Y < 0.2 in. 
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Figure 5.8: Run 403, comparison of the ice shape obtained with the coarse, medium and fine grids. 
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Figure 5.9: Run 403 [NASA-CDROM], ice shape comparison between ICE3D-SWIM (fine grid), 

LEWICE and experiments. 
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5.2. Effects of airflow solution updates on ice shapes 

When multiple layers of ice are grown with an update of the airflow and impingement 

solution after each layer, more features can be seen on the ice shape (figure 5.10). If one 

part of the airfoil is in a shadow zone due to the ice growth, a one-shot ice accretion will 

over estimate the ice thickness in that region. For example in figure 5.11, we can notice 

that the one-shot ice accretion predicts a bigger ice thickness on the upper part of the 

airfoil. It is then usual that a one shot ice accretion predicts a bigger ice thickness close to 

the impingement limits (figures 5.10, 5.11 and 5.12). For glaze ice accretion, if a horn 

develops, a one-shot ice accretion will predict a shorter and larger horn than a multi-

stepping approach. It is also possible to predict impact behind a horn due to the air 

recirculation (figure 5.12). 
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Figure 5.10: Effects of multiple layers on ice shapes, NACA0012 at 0° AoA. 
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Figure 5.11: Effects of multiple layers on ice shapes, NACA0012 at 4° AoA. 
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Figure 5.12: Effects of multiple layers on ice shapes, glaze ice conditions with a horn. 
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5.3. Validation on symmetrical airfoil: NACA 0012 

The NACA 0012 airfoil, figure 5.13, has been used in several test entries. The data from 

this airfoil represent the highest number of ice shapes which have been created in the 

IRT. Through all this section, the ice shapes are plotted in inches. 

NACA0012 Airfoil 
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Figure 5.13: NACA0012 Airfoil. 

5.3.1. Run 404 

In the first comparison, ice is accreted for 7 minutes on a NACA 0012 airfoil at an AoA 

of 4°. The ambient icing conditions, which should be close to rime ice accretion are given 

in table 5.2 and correspond to LEWICE Run 40466. 

The first five minutes of accretion are calculated in five 1-min time steps and compared 

to the LEWICE solution in figure 5.14. The first minute of ice accretion is almost 

identical for ICE3D-SWIM and LEWICE. The limits of impact are the same and the ice 

thickness coincides almost everywhere. The location and angle of the upper bumps match 

in the two numerical solutions. One can notice that ICE3D-SWIM slightly over predicts 

the ice thickness on the top bump and just below the stagnation point. This can be 
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explained by a larger amount of runback predicted by LEWICE. Naturally, the 

differences magnify after each update of the airflow and droplet solutions. 

Parameter Value 

P. 

U~ 

AOA 

MVD 

LWC 

Re„ 

256.49K 

90.76 kPa 

102.8 m.s"1 

4° 

20pim 

0.55g/m3 

4.14xl06 

Table 5.2: Ambient conditions corresponding to Run 404. 

The behavior observed during the first time steps is still observable in the final ice shape 

after 7 minutes of accretion. Figure 5.15 shows the final ice shape computed by LEWICE 

and ICE3D-SWIM, compared to the experimental ice shape obtained in the IRT. The 

limits of impact are identical for LEWICE and ICE3D-SWIM and match the experiments 

on the suction side of the airfoil but are under predicted by both codes on the pressure 

side of the airfoil. ICE3D-SWIM's ice shape is thicker and closer to the experimental ice 

shape than LEWICE on the upper part of the airfoil. This may be due to a larger 

estimation of the water evaporation from LEWICE. ICE3D-SWM also predicts a slightly 

smaller ice thickness on the pressure side where the LEWICE solution is closer to the 

measurement. 
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Figure 5.14: Run 404 [NASA CD-ROM] comparison between ICE3D-SWIM and LEWICE after 1, 2, 

3, 4 and 5 min of ice accretion. 
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Figure 5.15: Run 404 [NASA CD-ROM] comparison between LEWICE, and IRT experimental ice 

shape. 
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5.3.2. Run 308 

In the second comparison, ice is accreted on a NACA 0012 airfoil at an AoA of 4° for 

231 seconds. The ambient conditions, closer to glaze ice conditions, are summarized in 

table 5.3 and correspond to LEWICE Run 30866. 

Figure 5.16 shows the comparison between LEWICE and ICE3D-SWTM numerical 

solutions after 47.58 and 95.16 seconds of accretion. At 47.58 seconds of accretion, 

ICE3D-SWIM and LEWICE solutions are identical: same ice thickness and limits of 

impact for both codes. After 95.16 seconds of accretion, LEWICE and ICE3D-SWIM 

solutions remain very close to each other, LEWICE predicting a slightly bigger amount 

of runback than ICE3D-SWTM. Both codes predict the formation of a horn on the upper 

part of the NACA 0012 airfoil, with the same angle and ice thickness. 

Parameter Value 

T„ 

P-

u„ 

AOA 

MVD 

LWC 

D o 

262.04K 

90.76 kPa 

102.8 m.s" 

4° 

20jum 

lg/m3 

A 1 / lw1A6 

-1 

Table 5.3: Ambient conditions corresponding to Run 308. 
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After 95.16 seconds of accretion, the horn predicted by ICE3D-SWIM induces a 

separation in the flow solution. Contrary to LEWICE, which may be able to predict but 

not compute separation with only a viscous/inviscid interaction, ICE3D-SWLM's 

convective heat transfer coefficient and shear stress decrease suddenly in the separation 

area. As a consequence impact may be predicted behind a horn as can be seen in figure 

5.16. ICE3D-SWIM's final ice shape is very close to LEWICE's. But both codes fail to 

predict the horn's angle of the experimental ice shape. There is still room for 

improvement in the quality of ice accretion shape predictions yielded by current icing 

codes, as large differences between predicted and experimental ice shapes are often 

encountered in glaze ice conditions, compounded by the problem of the lack of 

consistency of ice shapes produced in icing wind tunnels. 
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Figure 5.16: Run 308 [NASA CD-ROM] comparison between ICE3D-SWIM and LEWICE after 

47.58 and 95.16 s of ice accretion. 
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Figure 5.17: Run 308 [NASA CD-ROM] comparison between ICE3D-SWIM, LEWICE and IRT 

experimental ice shape. 

5.4. Cambered airfoil: NLF-0414 

The NLF-0414 airfoil is representative of a laminar flow design for general aviation. It is 

shown in figure 5.18. 
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Figure 5.18: NLF-0414 Airfoil. 
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For the NLF-0414 airfoil, a glaze ice test case, corresponding to Run 62366, has been 

chosen. In this particular test case, LEWICE fails to predict the ice shape. ICE3D-SWM 

is run to see if the same difficulties are encountered. The ambient conditions of this run 

are presented in table 5.4 

Parameter 

7L 

P. 

u„ 

AOA 

MVD 

LWC 

Value 

267.30K 

90.76 kPa 

66.9 m.s"1 

2° 

20/*m 

0.54g/m3 

Re„ 4.289x10° 

Table 5.4: Ambient conditions corresponding to Run 623. 

Ice is accreted on the NLF airfoil at an AoA of 2° for 22.5 minutes. A one-shot ice 

accretion is performed and is compared to the LEWICE solution and the experimental 

measurements in figure 5.19, where the dimensions used are still expressed in inches. 

Following the other 2D test cases performed with the present code, it is considered that a 

one-shot ice accretion would be sufficient to conclude if our numerical code encounters 

the same difficulties as LEWICE for this test case, even though LEWICE performed a 

multi-stepping approach with 15 layers. As can be shown in figure 5.19, the ICE3D-

SWIM shape is closer to the experimental solution on the suction side of the airfoil. 
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Contrary to LEWICE, ICE3D-SWIM predicts well the location and angle of the horn. 

However, on the pressure side, the LEWICE prediction is slightly better than ICE3D-

SWIM, but both codes predict qualitatively similar ice shapes. LEWICE difficulties to 

accurately predict collection efficiency on the NLF-041477 airfoil can be surmised as a 

problem due to the airflow solution, which is not amenable to a panel method calculation 

because of the importance of the boundary layer. Taking figure 5.12 as a possible 

reference, a multi-stepping approach will probably increase the size of the horn and 

improve the solution on the pressure side of the airfoil. 
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Figure 5.19: Run 623 [CD-ROM], comparison between ICE3D-SWIM, LEWICE and IRT 

experimental ice shape. 
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5.5. Conclusions 

This chapter presents some 2D results obtained on 3D meshes of one element thickness. 

The resulting ice shape, for each test case, is compared to LEWICE numerical ice shape 

and the experiments obtained in the IRT. These preliminary 2D validations are 

encouraging. The proposed in-flight system is able to predict ice shapes in rime and glaze 

ice situations on symmetrical and cambered airfoils. The complexity of the ice shape and 

the details will increase if a finer grid is used and/or if a multi-stepping approach, with 

airflow and impingement updates, is selected. It is common to observe that wind tunnel 

experimental ice shape limits on the pressure side of the airfoil are further than those 

predicted by numerical codes. This phenomenon cannot be explained easily and require 

much more investigations. The validation of ICE3D-SWIM continues in chapter 6 with a 

couple of 3D test cases. 
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Chapter 6 

Three-dimensional Results 

In icing, three-dimensional experimental results are not numerous. Moreover, when 

three-dimensional experiments are done, the results are most of the time not publicly 

available or the geometry used during the tests is confidential. Hence, it is not easy to 

find 3D experimental data to compare with. 

In this chapter, two 3D test cases have been selected to test the new algorithms for ice 

accretion simulations. In the first one, a 3D Eurocopter/ONERA helicopter rotor blade 

tip, the results of Hedde and Guffond were chosen, and from their published 

information, clearly given as being based on known NACA 13106 airfoils, we were able 

to reconstruct a complete three-dimensional geometry with which to carry out the 

calculations71. However, after some talks with Eurocopter engineers, it appears that the 

geometry may have been initially based on NACA 13106 airfoils, but that the final 

airfoils are quite different from that base shape. It became clear that the exact geometry 

was and will remain confidential. As a consequence, the three-dimensional results can 

only be compared qualitatively. 

In the second test case, a non-axisymmetric Boeing 737-30072 inlet nacelle is selected. 

Airflow solution, droplets impingement and ice accretion have been performed and are 

compared73 with numerical and/or experimental results, whichever available. 
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6.1. 3D helicopter rotor blade tip results 

A three-dimensional helicopter rotor tip geometry is succinctly described in reference 23 

as follows: "from the base to the top along the span, the chord varies from 0.6 to 0.2m, 

the leading edge sweep angle starts at 0 and ends at 60deg. The trailing edge is 

perpendicular to the flow and is lightly spun so that the incidence angle at the top is 0.74 

deg less than at the base. The span is 0.48m. The rotor blade tip is built from a NACA 

13106 airfoil". The CAD of the geometry was produced with the ICEM DDN software. 

The one-equation Spalart-Allmaras model was used for turbulence modeling within 

FENSAP and mesh adaptation was carried out with OptiMesh74, an automatic anisotropic 

(highly directional and highly stretched) mesh adaptation code. It should be noticed that 

the rotor blade tip was fixed in the wind tunnel during experiments and not in rotation. 

6.1.1. Airflow solution and mesh adaptation 

The ambient conditions for the simulation are shown in table 6.1. To improve the quality 

of the flow solution, three mesh adaptations cycles were carried out with OptiMesh. The 

OptiMesh algorithm utilizes mesh movement, edge refinement, coarsening and swapping 

to automatically yield a nearly-optimal anisotropic (highly stretched) adapted grid. Figure 

6.1 shows a 2D cut of the original mesh which contains 221,800 nodes and 1,118,131 

elements, and figures 6.2, 6.3 show the last adapted grid containing 467,705 nodes and 

2,546,857 elements. 
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Parameter Value 

T 
OQ 

pm 

Mach 

AOA 

MVD 

LWC 

time 

-30.5°C 

45.6 kPa 

0.52 

9.5° 

20jum 

lg/m3 

91s 

Table 6.1: Ambient conditions, helicopter rotor blade tip. 

Figure 6.1: 3D rotor blade tip, initial mesh. Figure 6.2: Third mesh adaptation on the 3D 

rotor blade tip. 
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Figure 6.3: Zoom on the third mesh adaptation, 3D rotor blade tip. 

The equivalent sandgrain roughness used is obtained with equation (3.7) of chapter 3 and 

corresponds to 0.269 mm in this case. To help the discussion of the results, two-

dimensional (X,Z) cuts at four different spanwise locations are presented. The cuts are 

referred to as station 1 (location Y=0.09m), station 2 (Y=0.25m), station 3 (Y=0.30m) 

and station 4 (Y=0.45m). The origin of the coordinate system is at the root of the wing at 

the leading edge. The X-axis is in the chordwise direction, the Y-axis is in the spanwise 

direction and the Z-axis is in the normal direction to the plane (X,Y); (X,Y,Z) being the 

Cartesian reference system. 

As presented in figure 6.4, the finite blade modeled engenders 3D aerodynamic effects, 

first with the creation of an aerodynamic angle of attack locally different from the free 

stream and, second, with the creation of a tip vortex at the blade extremity. Due to a 

negative twist angle and a high AoA, the numerical solution shows a separation and a 

small sweep angle. All aerodynamic variables are affected by this flow pattern. The 

distributions of turbulent viscosity are presented in figure 6.5. Figure 6.6 shows the 
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convective heat transfer coefficient for stations 1, 2, 3 and 4. The heat transfer coefficient 

curves are quite similar along the blade, except close to the tip where the separation 

decreases the airspeed and hence the heat transfer coefficient. 

Figure 6.4: Three-dimensional rotor blade tip, turbulent airflow solution, Mach number contours, 

and streamlines at the tip. 

Figure 6.5: Turbulent viscosity distribution at stations 1,2 and 4. 
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Figure 6.6:Two-dimensional cuts of the convective heat transfer coefficient, in W/m2K. 

6.1.2. Collection efficiency distribution 

The droplet solution has also been computed by DROP3D on the adapted grid, using the 

FENSAP adapted airflow solution. Figure 6.7 presents the collection efficiency 

distribution on the blade, with water volume fraction contours. The water volume fraction 

increases in the recirculation zone induced by the tip vortex. 

129 



Figure 6.7: Collection efficiency distribution on the wing and liquid water volume fraction contours 

for stations 1, 2, and 4. 

The maximum of the collection efficiency increases with the length of the chord. In 

figures 6.8 and 6.9, the airfoil corresponding to each station is presented in non-

dimensional units, using the chord length, to make comparison easier. Usually, the ft 

curves are created using curvilinear coordinates with the origin located at the stagnation 

point. Finding the stagnation line in 3D is, however, not always an easy task, and we 

choose to represent the curves in the inner coordinates (X,Y,Z) even if it becomes a little 

more difficult to find the part of the curve corresponding to the upper part of the wing 

and the one corresponding to the lower part. The limit of impingement on the lower side 

of the blade extends further back closer to the tip (figure 6.8). On the other hand, the 

impingement limit on the upper side of the blade decreases from station 1 to station 4 
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(zone of positive Z in figure 6.9), showing a three-dimensional effect due to the negative 

twist angle. 
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Figure 6.8: Two-dimensional cuts of the collection efficiency for stations 1-4 along the non-

dimensional X axis, the chord direction. 
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Figure 6.9: Two-dimensional cuts of the collection efficiency for stations 1-4 along the Z axis. 

6.1.3. Ice accretion 

Once the FENSAP airflow solution and the collection efficiency from DROP3D have 

been determined, ice accretion can be performed on the adapted grid. The 91-second 

exposure was simulated in one shot. The effect of intermediate airflow solutions with 

automatic mesh movement using ALE was not studied in this case, as the unavailability 

of experimental data did not warrant the additional effort. Figure 6.10 gives a 3D view of 

the ice accretion at the tip. The apparent roughness is due to the discrete representation of 
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the surface by triangular faces. Ice is assumed to grow in the direction normal to the wing 

surface. Two-dimensional cuts of the ice shape corresponding to station 1, 2, 3, and 4 are 

plotted in figure 6.11. The global aspect of the ice shape qualitatively agrees with the 

numerical and experimental results of ONERA, figure 6.12. However no closer 

comparison can be made because of the discrepancies between the real geometry and the 

published one. In figure 6.12, we respect the scale published in reference 23. It would 

have been interesting to compare with results from another 2D icing code, but none of the 

existing codes was available for carrying out such a comparison. The 3D effects are not 

spectacular, as the geometry does not present strong 3D features and the very cold 

temperature corresponds to rime ice conditions, making water runback less of an 

important factor. 

Figure 6.10: Three-dimensional ice shape at blade tip. 
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Figure 6.11: Two-dimensional ice cuts along the spanwise direction for stations 1-4. 
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Figure 6.12: Two-dimensional ice cuts along the spanwise direction; comparison between ICE3D-

SWIM and ONERA numerical solutions with the experimental solution. 
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To highlight ICE3D-SWIM's predictive three-dimensional capabilities, the convective 

heat flux has been modified, figure 6.13, to produce icing with runback and the results of 

that study is presented in figures 6.14 and 6.15. 
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Figure 6.13: Two-dimensional cuts of the modified convective heat transfer coefficient, in W/m2K. 

The results may have no real physical meaning, but they show that the numerical method 

can predict three-dimensional icing with runback. Two-dimensional cuts corresponding 

to station 1, 2, 3 and 4 are also plotted in figure 6.15. The water runback in that case is 

quite important. The resulting ice shape is a lot more complex than the previous one, 

especially close to the tip where the separation and tip vortex dramatically affect the ice 
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accretion profile. It is also possible to observe drastically different spanwise behavior of 

the ice accretion process, on a single geometry. 

Figure 6.14: Three-dimensional ice shape at blade tip. 
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Figure 6.15: Two-dimensional ice cuts along the spanwise direction for stations 1-4. 
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6.2. Boeing 737-300 inlet nacelle 

In this exercise we intend to predict ice accretion on a 3D non-axisymmetric Boeing 737-

30075 nacelle inlet and compare ICE3D-SwTM's predictions to LEWICE's. A Complete 

set of computational and experimental results, made by NASA72, are available for the 

airflow solution and the collection efficiency. The icing calculation process requires three 

steps: the computation of the airflow solution, the computation of the droplet solution and 

the prediction of the ice shape. Each "step solution" will be compared to LEWICE's 

solutions and the experiments, whichever is available. 

Two cases were analyzed at different incidences of the nacelle: they correspond to run id 

092385-1, 2, 3-737-0 in reference 75 for 0 degree nacelle incidence, and run id 092385-

13, 14, 15-737-15 in reference 75 for 15 degree nacelle incidence. Five circumferential 

positions, sketched in figure 6.16, have been selected to make the comparisons; they 

correspond to the experimental blotter strip locations (see Appendix). 

Figure 6.16: Experimental blotter strip locations on the 3D Boeing 737-300 inlet nacelle. 
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6.2.1. Airflow solutions 

Two cases were analyzed at an airspeed of 75 m/s, inlet mass flow of 10.4 kg/s, static 

temperature of 7°C, static pressure of 95840 Pa and nacelle incidences of 0 and 15 

degrees. Euler solutions have first been calculated on this geometry and the results have 

been published by Tran et al.lb. Turbulent airflow solutions using the S-A model are then 

computed. Four mesh adaptation cycles have been performed with OptiMesh. The 

original mesh and the final one corresponding to the 15 degree incidence solution are 

shown in figures 6.17 and 6.18. 
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Figure 6.17: Original mesh (symmetry plane). 
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Figure 6.18: Final adapted mesh corresponding to the 15 degree incidence solution (symmetry plane). 

Experimental data available for the airflow solution give access to the Mach number 

distribution for the five circumferential positions. Using the distribution of the pressure 

coefficient at the wall from the Navier-Stokes solution, the Mach number distribution at 

the edge of the turbulent boundary layer is recovered. Therefore, the Mach number 

distribution for Navier-Stokes and Euler solutions can be compared to experimental 

measurements. For all circumferential cuts and both incidences, the turbulent airflow 

solution agrees very well with the Euler solution, two 2D cuts are presented in figures 

6.19 and 6.21. The influence of mesh adaptation on the solution can be seen in figures 

6.20 and 6.22. At the end, regarding the two last cycles of mesh adaptation, the solution 

appears to be mesh-independent. 
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Figure 6.19: Mach number distribution for the Boeing 737-300 inlet for 15 deg AoA and an inlet 

mass flow rate of 10.4 kg/s; comparison at 0 deg circumferential position between Navier-Stokes 

solution (FENSAP S-A), Euler solution (FENSAP EULER) and Experiments. 
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Figure 6.20: Influence of mesh adaptation on the 15 deg AoA Navier-Stokes solution, comparison at 0 

deg circumferential position. 
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Figure 6.21: Mach number distribution for the Boeing 737-300 inlet for 15 deg AoA and an inlet 

mass flow rate of 10.4 kg/s; comparison at 45 deg circumferential position between Navier-Stokes 

solution (FENSAP S-A), Euler solution (FENSAP EULER) and Experiments. 
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Figure 6.22: Influence of mesh adaptation on the 15 deg AoA Navier-Stokes solution, comparison at 

45 deg circumferential position. 

141 



The calculated Euler Mach number distributions compared to experimental data and 

LEWICE results for both incidence and all circumferential positions are presented in 

Appendix, figures A-3 and A-4. The calculated Mach number distributions are in very 

good agreement with both experimental data and with LEWICE results, for all 

circumferential positions, at both incidences. 

6.2.2. Droplet impingement 

In order to compute the local catch efficiency /3, DROP3D was run for a Langmuir-D 

droplet distribution with a droplet mean volumetric diameter (MVD) of 20.36jum and 

the same ambient conditions of the airflow solution, figure 6.23. The comparison of local 

catch efficiency distribution along the same circumferential cuts is presented in figures 

6.25 and 6.26 pages 145 and 146. The comparison between DROP3D and experimental 

data is very good for most circumferential positions for both incidences. The limits of 

impingement are correctly predicted and the local catch efficiency peak in amplitude is 

shown to be within experimental capability estimated in reference 75 to be between 0.2 

and 0.25. The results show that, while DROP3D and LEWICE catch efficiency results 

agree over most of the nacelle, the impingement limits predicted by DROP3D are closer 

to experiments. The curves for 15 deg. incidence and 135 deg. circumferential positions 

are, however, not in close agreement with the experimental data. Nevertheless, the 

predictions of LEWICE are even further from experiments. Since the comparison at zero 

incidence for the same circumferential position is very good and all other comparisons at 

15 deg. incidence are also quite acceptable for both codes, it is only logical to conclude 

that the difference for that particular curve may be due to experimental inaccuracies. 
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Figure 6.23: 3D impingement solution (Langmuir-D distribution: 20.36/tm MVD) on the Boeing 737-

300 inlet, at 0° AoA and an inlet mass flow of 10.4 kg/s. 

6.2.3. Ice accretion 

Two icing conditions were calculated for each incidence of the Boeing 737-300 inlet. The 

conditions were chosen to represent a rime and a glaze ice situation. The rime conditions 

are the following: an accretion time of 30 minutes with a LWC of 0.2 g/m3 and a static 

temperature of -29.9°C. For the mixed condition, the time of exposure is still 30 minutes 

but the LWC is 0.695 g/m3 and the static temperature is -9.3°C. Both LEWICE72 and 

ICE3D-SWIM have performed one-shot ice accretion simulations since no experimental 

data were available. A 3D view of the ice shape obtained on the nacelle is shown in 

figure 6.24, page 144. 

In the rime ice case, the comparison between LEWICE and ICE3D-SWIM is very good 

for all circumferential positions and for both incidences, figures 6.27 (page 147) and 6.28 
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(page 148). For the glaze ice condition, the LEWICE and ICE3D-SWIM predicted ice 

shapes, figures 6.29 and 6.30 (pages 149 and 150), agree pretty well for all 

circumferential positions and for both incidences. 

Although no experimental data was available, it is comforting that the results obtained by 

the two codes are in good agreement and looked consistent with the conditions for which 

the shapes were generated and with the airflow and droplet solutions. 

Figure 6.24: 3D ice accretion on the Boeing 737-300 inlet, rime ice accretion for 15° AoA and an inlet 

mass flow of 10.4 kg/s. 
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Figure 6.25: Local collection efficiency distribution for 0° AoA, comparison between DROP3D, 

LEWICE and Experiments. 
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Figure 6.26: Local collection efficiency distribution for 15° AoA, comparison between DROP3D, 

LEWICE and Experiments. 
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Figure 6.27: Rime ice for the Boeing 737-300 nacelle, 0° AoA, comparison between ICE3D-SWIM 

and LEWICE. 
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6.2. Conclusions 

A fully 3D ice accretion prediction has been completed on a 3D helicopter rotor blade tip 

and on a Boeing 737-300 nacelle inlet. ICE3D-SWIM yields a fully three-dimensional ice 

shape, as opposed to selected 2D cuts of a 3D geometry. The preliminary 3D validations 

of the proposed in-flight icing system are encouraging and should continue. 

Unfortunately, three-dimensional ice accretions with publicly available experimental 

results are still rare. Indeed, it would have been interesting to identify a test case as an 

installed system, with available experimental results, for which the three-dimensional 

features would be more pronounced. 
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Conclusions and Summary 

Icing is a serious and not yet totally mastered meteorological hazard that may affect 

aircraft and helicopter operations. It is due to supercooled water droplets that impact on 

aerodynamic surfaces. Icing results in substantial performance penalties and flying 

qualities deterioration. During the in-flight icing certification process, manufacturers 

have to demonstrate that an airplane can fly into known icing conditions. Certification 

can be carried out through a combination of flight tests, wind and icing tunnel tests and 

tanker tests. Because not all the natural icing conditions required by the certification 

process can be explored during flight tests, shapes obtained from icing computer codes 

are manufactured from a light material and attached as disposable profiles on a test 

aircraft to investigate it for stability and control under icing. 

It is evident that icing analysis methods that remain 2D and not based on CAD systems 

perpetuate the compartmentalization of the icing and aerodynamic activities and are not 

able to capitalize on the wealth of dry air solutions obtained by aerodynamicists at design 

time. Therefore, a new modular ice accretion tool and methodology based on modern 

CFD algorithms was long needed and its accretion part has been developed in the present 

thesis. The fundamental goal behind this work is the simplification of the aerospace 

industry's task by proposing a partial differential equations-based three-dimensional icing 

analysis procedure that uses a single mesh through all concurrent engineering processes, 

from aerodynamic analysis to manufacturing and performance degradations due to ice 
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accretion on complex geometries, or complete aircraft. The objective has been reached. 

The approach suggested here views ice accretion simulation as: 

• The solution of the 3D compressible turbulent Navier-Stokes equations; 

• The computation of the collection efficiency by an Eulerian method (no particle 

has to be tracked through the mesh as in a Lagrangian method and the recovery of 

the collection efficiency on complex 3D geometries is done in an automatic way, 

without a painful determination of launching areas); 

• The solution of the three-dimensional mass balance and heat transfer at the 

aerodynamic surface using partial differential equations. 

The three modules are set in an interactive loop. Each system of PDEs (airflow / 

impingement / accretion) is solved independently, with selected variables exchanged and 

updated between modules when required. To complete this project many milestones have 

been reached. 

First, in Chapter 3, the one-equation Spalart-Allmaras turbulence model has been 

implemented in the existing three-dimensional finite element flow solver. This model has 

been chosen for its robustness and its simplicity in use, to code and to impose transition. 

The high Reynolds number model, k - s, was already available in the code. But the 

transition is not an easy task to impose inside a i - 5 model. Moreover, high-Reynolds 

number models require special mesh elements for the first layer off the wall. 

The coding of the turbulence model has been verified by solving the boundary layer over 

a flat plate for different Reynolds numbers. To test the model in flow fields with pressure 
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gradients and streamlines curvature, two transonic cases of flow over an airfoil RAE 

2822 have been performed and the results compared to experimental data. 

An important requirement to predict reliable ice shapes is to be able to model the 

roughness of the iced surface. The effects of surface roughness have been taken into 

account by the turbulence model and validated against numerical and experimental 

results. The skin friction coefficient has been compared to analytical results (Mills and 

Hang) for rough flat plates. The roughness calibration for convective heat fluxes on a 

rough flat plate has also been verified through comparison of the Stanton number with 

experiments performed by Blanchard. Velocity profiles distribution in rough pipes has 

also been compared to Nikuradse experiments. 

Coming back to icing, roughness effects on ice shape have been demonstrated through 

some test cases on a NACA 0012 airfoil. Ice shapes computed with and without 

roughness have been compared to LEWICE and experimental ice shapes for the Run 209 

of the NASA CD-ROM. The results show that roughness has a significant effect on ice 

accretion and that the Spalart-Allmaras model does an excellent job of modeling it. To 

conclude, this turbulence model appears to be robust and easy to use even with complex 

3D geometries or complex flow patterns containing separations. The good agreement of 

the results with theory and experiments are encouraging and makes it a valuable tool for 

in-flight icing simulations. 

In Chapter 4, a new three-dimensional equilibrium ice accretion model, based on PDEs, 

has been developed. For rime, glaze and mixed ice conditions this model predicts ice 

shapes on impacted surfaces, using the shear stress and the convective heat fluxes from 
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the airflow solver and the water catch from the droplets solver. The model includes some 

features for continuous film runback prediction on two- and three-dimensional 

geometries and compatibility relations to ensure a physical solution and the well-

posedness of the problem. By using a PDE-based model, a distinction can be made 

between the physical modeling and the numerical resolution of the icing phenomena. 

This allows the inclusion of time derivatives in the model, thus carefully accounting for 

unsteady effects of the underlying phenomena. An explicit numerical scheme using the 

finite volume method and based on a Roe scheme is derived to solve the problem. 

No special mesh is needed to predict runback paths, as the present model predicts 

runback across lateral grid edges and can use the same mesh as the aerodynamic solution. 

One limitation of this model is that it considers the water film continuous. Indeed, 

sometimes in icing, the water film breaks down into rivulets and dry patches appear on 

the surface. 

Another point to mention is that by doing large ice accretion simulations (to be able to 

compare with experiments) the effects of the unsteady terms are not visible. It would 

have been interesting to carefully study the effects of these unsteady terms accounted for 

by the time derivatives. This can be done by solving the ice accretion for the first few 

seconds of the phenomenon and taking into account unsteady parameters like the thermal 

inertia of the solid structure. 

The CFD methodology (airflow/impingement/accretion modules) proposed in this work 

has been shown to be a comprehensive icing system for in-flight ice accretion simulations 

in three-dimensions, as well as in two dimensions. 
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This in-flight icing system has been shown to successfully predict ice shapes on two-

dimensional symmetrical (NACA 0012, NASA Runs 209, 403, 404 and 308) and 

cambered (NLF 0414, NASA Run 623) airfoils (2D results are obtained on 3D meshes of 

one element thickness). For each test case of chapter 5, the ICE3D-SWIM ice shape is 

compared to LEWICE's numerical ice shape and the experimental one obtained in the 

IRT. These preliminary 2D validations are encouraging because ICE3D-SWTM shows 

good agreements with LEWICE and experiments. ICE3D-SWIM is able to predict ice 

shapes in rime and glaze ice situations. The complexity of details of the ice shape will 

increase if a finer grid is used and/or if a multi-stepping approach, with airflow and 

impingement updates, is selected to perform the simulation. Concerning CPU time, the 

overall process is not competitive for 2D calculations compared to the traditional two-

dimensional ice accretion codes. While it is no more costly to test 3D geometries than 2D 

ones, it is much easier to find two-dimensional publicly available numerical and 

experimental results. The reason is simple: the non-existence of 3D ice simulation codes 

makes the exercise not of much use for comparison purposes. The 2D validation becomes 

then mandatory but cannot be, in such a time, as exhaustive as LEWICE validation for 

example. 

Finally, the last step is to test the model for what it has been developed: 3D ice accretion 

predictions. For that, a 3D ice accretion prediction has been completed on a 3D helicopter 

rotor blade tip and on a Boeing 737-300 nacelle inlet, in Chapter 6. The objective is 

reached: the proposed ice accretion module yields a fully three-dimensional ice shape, as 

opposed to selected 2D cuts of a 3D geometry. The helicopter rotor blade tip 
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demonstrates that it is possible to observe drastically different spanwise behavior of the 

ice accretion process, on a single geometry. For the Boeing 737-300 nacelle inlet, it is 

comforting that the results obtained by the two codes, ICE3D-SWIM and LEWICE3D, 

are in good agreement and look consistent with the conditions for which the shapes were 

generated and with the airflow and droplet solutions. 

These preliminary 3D results of the proposed in-flight icing system are encouraging and 

should continue. Unfortunately, three-dimensional ice accretions with publicly available 

experimental results are still rare. 

To simplify the three-dimensional process when the multi-stepping approach is used an 

automatic mesh movement will be coupled to the ice accretion module, so that even large 

and complex 3D ice shapes will be automatically meshed. 

It is generally observed that wind tunnel experimental ice shape limits on the pressure 

side of the airfoil are further than those predicted by numerical codes. This phenomenon 

requires some investigations to be explained. This discrepancy between the numerical 

results and experiments may be due to: 

• The fact that droplet diameter distributions exist in the wind tunnel and are not 

monodispersed; 

• Wind tunnel blocking effects; 

• The absence of rivulets modeling. 

An interesting challenge facing an ice accretion code is the simulation of scallop ice. 

Indeed some ice shapes characteristics, like the scalloping effects that are not predictable 
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by any icing code currently, seem to be partially due to 3D flow patterns. At least this 

physical phenomenon is observed on finite or infinite swept wings not on airfoils. The in­

flight icing system, proposed into this work, being truly 3D, it will be interesting, after 

the thesis, to try to capture this type of ice shapes. 

A natural evolution of a numerical icing code is the addition of anti- or de-icing 

capabilities inside the thermodynamic ice accretion module. Today, computer codes are 

used to predict or optimize the protection efficiency of thermal anti-(de-)icing systems. In 

other words, for an imposed thermal heat flux distribution, the ice accretion code should 

be able to determine if any ice is forming on a given geometry. Further developments of 

the runback model will be required for that, like criteria for the break-up of thin liquid 

film and the creation of rivulets. The partial differential equation expressing the energy 

conservation also has to be modified as the conduction through the metal skin and the 

ice/water layer becomes an important factor in this case. To properly model the 

conduction through the solid structure, special care has to be taken since the external 

solid wall boundary condition will depend on the surface state (dry, wet, iced, or melted: 

liquid water + ice). 
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Appendix 

Boeing 737-300 inlet nacelle 

A variety of test models and conditions were selected for the Boeing 737-300 inlet to 

provide an extensive data base. According to NASA75, the engine inlet angle of attack 

was limited to 15 degrees to keep the inlet models well within the uniformity region of 

the IRT tunnel. The installation of the nacelle inside the tunnel is shown in figure A.l. 

Figure A.l: Installation of Boeing 737-300 inlet in the IRT test section (Ref. 75). 

The spray pressure ratios chosen correspond to water droplet clouds which are 

representative of realistic icing cloud conditions. Blotter paper strips are used 
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experimentally to measure the local collection efficiency. Their location on the nacelle is 

shown in figure A.2. 

Figure A.2: Blotter strip locations on Boeing 737-300 inlet for 0 deg and 15 deg AoA (Ref. 75). 

76 
In the paper by Tran et al. the solutions obtain with FENSAP has been compared to 

experimental data and LEWICE solution. The results of these comparisons are presented 

in figures A.3 and A.4. For all circumferential cuts and both incidence, the FENSAP 

solution agrees very well with LEWICE solution and experiments. 
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Figure A.3: Mach number distribution for the Boeing 737-300 inlet for 0 deg AoA and an inlet mass 

flow rate of 10.4 kg/s, comparison between FENSAP, LEWICE and Experiments. 
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Figure A.4: Mach number distribution for the Boeing 737-300 inlet for 15 deg AoA and an inlet mass 

flow rate of 10.4 kg/s, comparison between FENSAP, LEWICE and Experiments. 
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