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Abstract

This thesis describes the design and implementation of an active surface

reconstruction algorithm for two-frame image sequences. The objective is to build a

system that uses a passive sensor and an active viewer to accumulate information for

disambiguating the depth sampling process involved in surface reconstruction. The

viewer is considered to be restricted to a short baseline. Several ideas from the fields of

optical flow, stereovision, and shape from motion will be drawn from and modified in the

context of an active vision system.

The thesis begins by examining the optical flow estimation problem. Several

algorithms are compared under the novel heading of maximal estimation theory. Each

algorithm is decomposed into three parts: pixel-estimation, sub-pixel estimation and

confidence measurement. The components are compared separately. A flow algorithm is

then obtained by combining different components.

A Bayesian framework is adopted to provide a simple approach for propagating

information in a bottom-up fashion in the system. This will also be used for combining

information both temporally and spatially in the context of a Kalman filtering scheme.

The last part of this thesis examines how an active component can be integrated

into the system to provide quicker convergence to the depth estimate. This approach is

based on statistical grouping of image gradient features.

Synthetic and real experimental results are generated in each section. These

results support ideas presented in the thesis, and suggest a basis for further research.



Résumé

Cette thèse décrit la conception d'un système actif de reconstruction de surface

basé sur des paires d'images. L'objectif est de construire un système qui utilise un

senseur passif en tandem avec un observateur actif pour réduire l'ambiguité sur les

mesures de profondeurs pour la reconstruction de surface. Différents éléments des

domaines du flot optique, de la vision en stéréo et de la reconstruction de surface seront

abordés et modifiés dans le contexte du système actif désiré.

Cette thèse débute en examinant le problème du flot optique. Plusieurs

algorithmes de ce domaine sont abordés et comparés. Le critère de comparaison utilisé

est basé sur la théorie de l'estimation, ce qui constitue une approach nouvelle dans le

domaine du flot optique. Chaque algorithme est décomposé en trois parties: la

correspondance de pixels, la correspondance de sous-pixels et la mesure de confiance.

Ces composantes sont examinées séparément. Un algorithme est obtenu en combinant

plusieurs composantes différentes.

Une stratégie bayésienne est adoptée pour simplifier la propagation d'information

dans le système. Ceci profite, en plus, au processus de fusion dans le domaine spatial et

temporel. Tout cela sera regroupé dans le contexte d'un filter de Kalman.

La dernière étape de cette thèse discutera d'une stratégie active pour accélérer la

convergence du système d'accumulation. Cette approche sera basée sur le regroupement

de caractéristiques statistiques de l'image.

Des résultats expérimentaux sont présentés pour des données synthétiques et

réelles dans chaque section. Ceux-ci supportent les idées présentées dans cette thèse.
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CHAPTERI

Introduction

The field of computer VISIon continues to play an important role lU the

development of autonomous robotic agents. Autonomous navigating robots should

ideally be able to move through an unknown environment unaided. This involves path

planning, obstacle detection, and scene recognition/interpretation [18]. Such tasks are aIl

dependent on the robot' s ability to quickly build sufficiently complete models of its

environment. Thus, surface reconstruction remains an important motivator in the field of

computer-vision.

The human visual system provides consistent proof that 2-D image sensing is

sufficient for interacting with a 3-D world. Evolution has provided biological vision

systems with a large set of tools for interacting with a 3-D world. Stereoscopic vision

provides detailed representation for nearer objects (one meter away in humans) [26]. In

most cases however, when moving through the world, objects are outside the stereoscopic

range. Human experience in every day life demonstrates that, even under such

conditions, it is possible to successfully perform many everyday tasks such as trajectory

planning, obstacle detection and figure/ground separation. A similar task in computer

vision involves recovering 3-D structure from a set of 2-D images. This problem requires

the temporal accumulation of information through a monocular observer. The

relationship between subsequent still images in a video stream provides a wealth of

information in the form of spatio-temporal change. The temporal integration of such
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velocity fields is essential for solving shape-from-motion [6, 16, 13,42,46,54, 70], time

of-collision [18], object tracking [51], object-recognition [4], and figure/ground

separation problems.

At first glance the problem of 3-D reconstruction from motion images seems

trivial as it is intuitively sound to suggest that changes in intensity on an image plane are

somewhat coupled with the projection of the apparent motion of the 3-D space

surrounding the plane. It is however incorrect to say that such projections are unique and

complete. The 10ss of a dimension, quantization of intensity, discrete sampling of

infinitesimal spatial data and sensor noise make the problem of recovering 3-D structure

from a set of2-D intensity images ill-posed [10].

This begs the question, how does the 2-D human visual system successfully

interact with the 3-D world with such consistency? Many suggest that the answer lies in

considering the human observer not as a passive viewer, but rather as an active observer

[2, 4, 7, 14, 68]. By interacting with the environment, a human can quickly and robustly

achieve sufficiently stable representations of the world for navigation.

Although the human observer is active, it is wrong to assume complete freedom

of motion exists in aIl six degrees of freedom under most conditions [18, 25, 45, 51, 59,

70]. For example, an individual driving a car is limited to very smalliaterai motions and

a dominant forward motion. As such, a large baseline (motion parallel to the image plane)

is not available to such an observer. Yet, people manage to navigate quite weIl without a

wide baseline at their disposaI.

This thesis examines weakly active surface reconstruction ln the case of an

autonomous monocular viewer. The term weakly active implies a severely constrained
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configuration space for the viewer. Most active vision algorithms assume full motion

control is available to a viewer. This is not often the case for a holonomicallyl

constrained autonomous explorer, which must first see its world before moving through

it. Thus a more realistic active motion model is considered, which constrains the'viewer

to small displacements between observations.

1. Overview of the Problem

Surface reconstruction can be defined as the process of inferring a mesh of

interconnected points representing a three-dimensional surface. The surface is often

assumed to be rigid and fixed. Points can be acquired using many types of sensors (e.g.,

range-finder, stereo-head). Computer vision systems generally wish to use image sensors

to infer the state of the world. As such, computer vision systems ideally would like to be

able to reconstruct objects or environments from a sequence of pictures. This

measurement problem is inherently ill-posed [10] as projected image intensity fails to

provide an invertible encoding of surface characteristics under most conditions. The

conditioning of the system can be described by dividing it into parts. In general, image

based surface reconstruction system can be broken up into three elements (Figure 1.1):

i) Image correspondence,

ii) Depth estimation from triangulation or back-projection, and

iii) Depth integration.

1 The physical construction of the robot and/or obstacles in the environment may prohibit certain configurations [18].
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Each of these three elements comprises an important part of computer vision literature

and, as such, can incur significant complexity in the system.

Dispacit)/[i] oepth Estimateri] Accumulated Depth[i]

Image[i]

Image[i+l)
Corresp ondence Depth Compuation Depth Integration

Motion[i] 1 1

Figure 1.1 - Depth Accumulation System. Three structural blocks are represented:
correspondence of intensity, depth estimation from correspondence and
associated motion, and accumulation of depth estimates for surface
reconstruction.

It is weIl accepted that the greatest difficulty encountered by image-based vision

systems is the correspondence problem, which for smaU motions is referred to as the

optical flow estimation problem. This involves measuring the motion of a projected point

on the image plane. As mentioned earlier, recovering motion from a pair of intensity

images is, for many reasons, ill-posed. It should also be noted that as the motion between

images increases, correspondence becomes more difficult as image features will

generaUy warp or faU outside the image-plane, and image intensity will change.

The depth estimation process, under perspective, involves transforming disparity2

measurements taken from correspondence, and the associated viewer motion parameters

into depth measurements. This task is ill-posed in sorne cases (e.g. pixels about the field-

of-expansion when moving forward, or pure rotation about the viewer's origin), and

2 Disparity measures the difference in retinal position between corresponding points in two stereo images.

4



increasingly ill-conditioned as motions between views become smaller and the angle of

disparity approaches zero.

The depth integration process combines many depth measurements to reduce the

effects of noise and increase the size of the data set. Depth measurements can be

accumulated over time or joined in a batch process. The inherent difficulty in this

process is in establishing correspondence between the many depth estimates. Much in the

same spirit as intensity registration, as the motion between the two depth measurements

increases, the correspondence becomes increasingly difficult and ill-posed. As the

surface representation is necessarily discrete, interpolation must be used to merge points

that fall in between points on the previous surface. As the depth samples become sparser,

the interpolation process becomes increasingly ill-conditioned.

In general, when considering the above elements, two forms of surface

reconstruction emerge. The first is feature based surface reconstruction [5, 9, 27, 28, 43,

49, 56]. This approach chooses features in the image that are stable for large motions.

Thus, a sparse set of very confident depth estimates is obtained. Difficulties occur when

trying to interpolate full surface representation. Often planarity assumptions must be

used, or sorne underlying knowledge of the surface must be known a priori. This

approach is in general not realistic for an autonomous robot that cannot afford to perform

large motions without attending to the scene and thus running the risk of a critical

collision.

The second approach to depth estimation is the iconic depth estimator [30, 46, 60,

70] in which aIl pixels contribute a depth estimate. This approach is more suitable for a

navigating robot as it lends itself to small motions between viewpoints. Thus, the image
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and depth correspondence problems are locally constrained and facilitated, and a dense

disparity field is obtained. The difficulty in this approach is that the depth measurement

process is very noisy. However, as the depth integration process is simplified, noisy

measurements can be filtered out given sufficient depth estimates.

The two previous mentioned approaches to surface reconstruction illustrate a clear

and well-known dichotomy in baseline stereo: smaller motions aid with the

correspondence problem, while greater baseline motion provide more stable depth

estimates but sparser data. Multi-baseline stereo [2, 37, 44, 53, 69] has sought to merge

these two problems by tracking many points over many small motions. Once a

sufficiently large baseline has been achieved, depth values are computed with less

ambiguity. As mentioned earlier, this approach is not practical for an autonomous

explorer that does not necessarily have a wide baseline at its disposition. However, the

multi-baseline approach does provide inspiration for the approach suggested in this

thesis.

2. The Approach

Given that a wide baseline is not available as in the multi-baseline approach, the

system proposed in this thesis will use repeated sampling to disambiguate the

measurements. If the measurement noise can be modeled as zero-mean, it is reasonable

to assume that sufficient temporal integration can be used to make up for the

shortcomings of a diminished baseline.
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Maximal estimation theory provides a framework for the efficient accumulation

of information in the context of a noisy measurement process. This methodology uses

qualitative data to identify how much information is entering or is already in a system.

Thus, measurements must have associated confidence values. These confidence values

are propagated in a bottom up fashion through the system. If these confidence values are

equivalent to inverse variance on the error of the associated data, it can be shown that the

system will provide a minimal solution (in the least-squares sense).

The thesis will begin by examining the correspondence process in the context of

maximal estimation theory. Different optical flow methods in the literature will be

considered. Particular attention will be paid to the confidence measures identified for

different optical flow algorithms. A novel approach to comparing these confidence

values in the context of data accumulation will be introduced. A hybrid optical flow

estimator will be constructed from the different flow-estimation algorithms considered.

The second part of the thesis draws heavily from previous work by Szeliski [60]

and Matthies et al. [46] who discuss a Bayesian formulation for weighted accumulation

of information using a maximal estimation framework [48]. Szeliski has shown that

Bayesian modeling can be used for low-Ievel vision systems. As such, measurements can

successfully be represented as a mean and variance pair. Work by Matthies et al. shows

how such a Bayesian model can be used to temporally accumulate information using a

Kalman filter framework. This thesis will also improve on Matthies et al. 's framework

by extending the maximal estimation framework to spatial data propagation. Mathur and

Ferrie [47] provide the theory behind this improvement.
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The last part of this thesis will introduce a simple feedback mechanism for active

view selection. Work by Whaite and Ferrie [68], and Arbel and Ferrie [4] provide

inspiration for the suggested approach. Whaite and Ferrie discuss active fitting of super

ellipsoids to range data. Arbel and Ferrie develop a similar application for active object

recognition using optical flow. In this thesis, it will be shown that it is possible to predict

the most informative motions based on the intensity in the prior image. As such, the

temporal integration process for surface reconstruction will be shown to ,converge more

consistently than a passive motion sequence.

3. Outline of Thesis

The rest of the thesis is organized as follows. Due to the importance of the

correspondence problem and the particular need for a qualified measurement process for

the application presented here, Chapter 2 will be dedicated to reviewing the problems and

associated literature on optical flow, and molding a correspondence algorithm that suits

the current purpose. Chapter 3 will review reconstruction geometry for a weak

perspective camera model as weIl as the Kalman filter framework presented by Matthies

et al. An improvement to the interpolation and regularization process will be introduced

into the framework as well. Chapter 4 will discuss the addition of the epipolar constraint

as weIl as the suggested feedback mechanism in detail. It will also provide results for a

complete implementation of each previously described element of the system.

As each component of the system draws from different areas of computer vision,

the literature will be cited and results will be provided when necessary. Chapter 5 will
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conc1ude with general review of the thesis content, and sorne general observations with

respect to the results.

4. Contributions

The contributions of this thesis consist of the following:

• A novel method for comparing the confidence measures of optical flow

estimation is introduced. This approach provides a formaI methodology and

has the benefit of lending itself directly to maximal-estimation theory.

• An improved confidence measure for optical flow is provided. This method is

a more general representation of previous approaches and is shown

experimentally to provide more consistent results for a standard optical flow

test set.

• The introduction of a maximal-estimation interpolator for iconic spatial depth

accumulation. This is shown, from an information theoretic point of view, to

be more appropriate for providing spatial support than current interpolation

methods. Experimental results are provided to support the suggested

interpolator.

• The development of an active procedure for accumulating depth. It is shawn

that the gradient of the intensity in the image can successfully be used to drive

the viewer's motion. This effectively increases the convergence rate of the

depth estimator significantly (3 to 4 times) over that of a passive viewer.
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• Design and implementation of a fully functional active surface reconstruction

system using a gantry robot and an off-the-shelfNTSC camera setup.
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CHAPTER2

Correspondence and Optical Flow

An important first step in developing the desired active surface reconstruction

system is to consider the correspondence problem. As such, this chapter will be

dedicated to first discussing where ambiguity arises in optical flow estimation and how

the measurement process can be used to qualify it. The chapter will review key elements

in the optical flow literature.

1. Previous Work in Optical Flow Estimation

Optical flow is defined by Horn [32] as: the problem of estimating the apparent

motion of a brightness pattern. Barron et al. [8] consider optical flow as the process of:

computing the approximation to the 2-D motion field - a projection of the 3-D velocities

of surface points onto the imaging surface - from spatio-temporal patterns. These two

definitions are not identical, as the first treats optical flow as being independent of scene

structure, while the latter considers optical flow to be a consequence of scene structure

and noise. It is suggested later in this section that these two definitions can be reconciled

under certain conditions for an active viewer.

Horn formalizes a constraint for relating the projected 3-D motion in the scene

and the image flow. This is referred to as the image flow constraint. Under specific

conditions, it provides a relationship between the projected 3-D motion and the observed

Il



change in intensity. This constraint can be interpreted as the assumption that a point in

the 3-D surface, when projected onto the 2-D image plain, maintains a constant intensity

over time. This assumption generally holds for small motions. Mathematically it is

formulated as

l(x,y,t)= l(x - l'lx ·t,y - i1y. t,o), (2.1)

where l (x, y, t) is the intensity distribution of the image of a pixel at a point (x, y) at a

time t and 1=(Ax,L1Y) is the desired optical flow vector.

The image flow constraint provides limited conditioning to the problem for

recovering the 2-D velocity field from a sequence of intensity images. The problem of

projected motion recovery from images is ill-posed because local intensity alone fails to

completely encode motion information. Three different levels of ambiguity may occur.

The first and most severe ambiguity involves reflective and transparent surfaces.

Hom's mirror baIl problem is a good example of this. Consider a mirrored sphere. As

the sphere rotates about its center, no change in intensity is observed, yet the sphere does

possess a 3-D motion field and texture is present in the reflected image. This is the most

extreme case of ambiguity. Even biological visual systems fail under such conditions. In

general, it is assumed that the surface is matt and that its texture is glued to it.

The second and less extreme example of how intensity fails to encode projected

3-D motion involves regions of constant intensity. In such regions, motion cannot be

detected and an infinite number of solutions exist. Such cases rely on propagation of

information from surrounding estimates to interpolate a measurement. Thus

regularization is necessary to guess a solution for such areas. lu. et al. provide an

example of this in their Skin and Bones paper [36]. According to Bajcsy [7],
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interpolation and regularization should be avoided whenever possible, as they impose a

biased estimate that often resembles an educated guess.

The last form of ambiguity in flow estimation occurs when the intensity is

constant in a given direction ü. This is referred to as the aperture problem [32]. In such

cases the solution is only partially available as it is only possible to provide the

component of the solution that is perpendicular to ü, called the normal velocity estimate.

Under such conditions, an active viewer can effectively provide sufficient constraints to

remove the ambiguity. As the scene is assumed static and rigid and the motion of the

viewer is controlled up to a given certainty, it is possible to constrain the direction of the

flow measurement using geometric properties of the projection model [21]. In fact, ifthe

direction of the optical flow vector is parallel to the image gradient, the normal velocity

and the flow velocity become equivalent, as suggested by Verri and Poggio [66]. Thus,

the two definitions of optical flow mentioned earlier can be reconciled.

These different levels of ambiguity provide an important result in the

development of a motion strategy for the· viewer. The viewer should maximize the

confidence in measurement by detecting when and what type of ambiguity occurs. The

first case cannot be detected and is removed by assumption. The second and the third can

in fact be detected. Different flow algorithms provide different approaches for resolving

this problem.

Two comprehensive papers on the subject of optical flow performance exist.

Work by Liu et al. [39] has studied the efficiency!accuracy tradeoff of different

algorithms. The authors produce curves of accuracy versus efficiency for comparing

different optical flow algorithms. A curve is constructed for each algorithm by changing

13



its parameters. Barron et al. have produced a paper that compares nine classic flow

algorithms on the basis of accuracy and density. They provide a clear test set of image

sequences that can be used for quantitative and qualitative comparison of the different

algorithms. Most importantly, they discuss the different confidence measures used by

different flow algorithms.

Barronet al. [8] classify flow algorithms into four groups: differential techniques,

energy-based methods, phase-based techniques and region-based matching. DifferentiaI

[41, 50, 52, 65], energy-based [29, 40] and phase-based [22] techniques can aIl be

classified under the heading of gradient methods. These aIl perform discrete temporal

filtering and require strong temporal support to work weIl. The energy and gradient

based methods, generally require families of velocity tuned filters to work weIl, which

generally renders them much slower than differential or region matching methods. Thus,

gradient methods are unlikely candidates for the autonomous explorer implementation.

Still there are aspects concerning the confidence measurements of these algorithms that

can be of use. This becomes apparent from the differential approaches. Thus,

differential techniques will be considered briefly below, after which region matching will

be discussed.

1.1 DifferentiaI Methods

DifferentiaI techniques are characterized by gradient search performed on first

and second order spatial derivatives and temporal derivatives extracted from the image

sequence. From the Taylor expansion of the flow constraint equation, the gradient

constraint equation is obtained,

14



(2.2)

Horn and Schunk [33] combine a global smoothness tenu with the gradient

constraint equation to obtain a functional for estimating optical flow. Their choice of

smoothness term minimizes the absolute gradient of the ve10city using

(2.3)

This functional can be reduced to a pair of recursive equations that must be solved

iteratively. It provides no confidence measure.

Lucas and Kanade [41] also construct a flow estimation technique based on first-

order derivatives of the image flow constraint. In contrast to Horn and Schunk's

approach of post-smoothing regularization, they choose to pre-smooth the data. This is

represented mathematically as,

min Iw 2(x)[VI(x,t).j +I((x,t)]2 ,
XEn

(2.4)

where Wei) is a window that gives more influence to constraints near the center of the

neighborhood n. A closed form least-squares fit is then used to provide an optical flow

estimate,

(2.5)

where

(2.6)
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This approach can be described as a weighted minimization of normal constraints

where the weights are the magnitude of the spatial gradient of the image.

Barron et al. report in their survey [8] that Lucas and Kanade's algorithm

provides the second most accurate results. Liu et al. [39] evaluate Lucas and Kanade as

providing the third best efficiency-accuracy curve. Thus, there is noted interest in this

approach. However, there is an important disadvantage to this algorithm. As discrete

temporal differentiation is necessary, strong temporal support is required. The Barron et

al. implementation required 15 frames of temporal support, and a 7-frame delay. This

may be unacceptable for a real-time autonomous explorer. Aside from the noted phase

delay, an autonomous observer should not be required to provide long continuous

sequences in its path planning process [70].

There have been efforts to reduce the required temporal support. Fleet and

Langley [23] attempt a more efficient implementation of Lucas and Kanade's work using

infinite impulse response (IIR) temporal pre-filtering and temporal recursive estimation

for regularization. They reduced the temporal support to three frames white improving

computational efficiency. Unfortunately, the IIR filter mechanism cornes at a priee of

decreased precision. AIso, this approach does not lend itself weIl for non-smooth

motions. If, for example, the motion of the viewer were to change directions, the filters

would have to be reset and returned to stability.

One important contribution of these first order approaches is the suggested

confidence measure, which is independent of the temporal component of the flow

constraint. The spatial component of the first order gradient constraint is often referred to

as the Normal matrix,
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(2.7)

The eigenvalues of the Normal matrix have important significance when

considering the conditioning of the flow estimation problem. Barron et al. suggest that

when the smallest eigenvalue, ~, is less than 1.0, the aperture problem prevails. Fleet

and Langley provide additional support to this statement.

There has been sorne interest in the second order Image flow constraint for

estimating optical flow [50, 65]. The second order constraint equation takes the

following form,

- - -
H(1)·f+ll =O,

where,

H (1) = [1xx 1xy ]

l xy 1yy ,

Î =[Ilx]
1 1 .

Iy

(2.8)

(2.9)

Much in the same manner as Horn and Schunk, and Lucas and Kanade, different

forms of regularization and minimization are used to solve the system of equations (2.8).

Barron et al. confirm that a second order system requires increased constraint on the

estimation process, as the higher order implies increased instability. Thus sparser and

less accurate results are obtained.

The spatial component, H(I), of the system of equations (2.8), often referred to as

the Hessian, can be used in this case to determine the conditioning of the system. Thus,

two confidence measures are suggested. Dras et al. [65] consider the smallest condition
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number of the Hessian, K(H). Barron et al. suggest using the determinant of the Hessian,

det(H). The later is shown to provide better results by Barron et al.

It is important to note that all the suggested confidence measures used by the

differential methods do not require computing the actual flow. They only require

knowledge of the current image intensity. Thus, these confidence measures provide an

ideal mechanism for predicting ambiguity in the correspondence process for any flow

algorithm. This will prove to be very useful for developing a closed loop active viewer

control paradigm.

1.2 Region Matching Methods

Region matching is set apart from gradient methods as it forms the temporal

filters for features extracted from the previous image in the sequence. Tiles from the

previous image are matched with the next image using sorne metric. The best match

provides the most likely displacement. This is equivalent to searching a spatially shifted

and temporally differentiated space, where spatial shifts are in unit pixel distances.

This approach is better suited for the autonomous explorer application as it

provides robustness with respect to temporal differentiation. It is generally quicker since

it constructs a highly quantized solution space. The main disadvantage of region

matching is that it only provides coarse depth unless extra interpolants or sub-pixel

estimators are added.

The distance measure used by more classical algorithms such as Anandan [3], and

Singh and Allen's [58] is referred to as the sum-of-square differences (SSD). It is

formulated as
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SSD1,2 (x, y, dx,dy) = i iW(i,jXI1(x + i,y + j)- 12 (X + dx + i,y + dy + j))2 .
j=-n i=-n

(2.10)

where Il and 12 are an image pair, W is a 2-D window function, and (dx,dy)denotes the

suggested displacement vector.

Anandan constructs a multi-scale method based on the Burt Laplacian pyramid

[12]. A coarse-to-fine strategy is adopted such that larger displacements are first

determined from less resolved versions of the images and then improved with more

accurate higher resolution versions of the image. This strategy is weIl suited for cases

where the range of pixel motions is large.

Confidence measures, cmax and cmin , which are based on the principle curvatures,

Cmin and Cmax , of the SSD surface, are used to steer the smoothing process. These are

represented mathematically as

(2.11 )

(2.12)

where kl , k2 and k3 are normalization constants. The smoothness constraint is based on

the directions, emin and emax ' of the principle axes of the SSD surface, the estimated

displacements d =(dx,dy) , and the sought best-fit velocity estimate j = (&, Lly). Anandan

also includes Horn and Schunk's [33] formulation of the smoothness constraint.

MathematicaIly,
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JJ( 2 2 2 2) (- - - _)2 (- - - - )2LUx +~xy +~Yx +~Yy +Cmax j·emax -d·emax +C min j·emin -d·emin dxdy,

(2.13)

where the x,y subscripts represent partial derivatives along x,y respectively.

Anandan's sub-pixel approach is equivalent to fitting a parabolic surface to the

SSD distribution. The l-D parametrization is

SSD(x)=ax 2 +bx+c.

The sub-pixel flow is obtained by solving for the minimum of this surface.

(2.14)

Singh and Allen provide another approach to region matching based on SSD

correlation. They use a three-frame approach to the region matching method to average

out temporal error in the SSD. For a frame 0, they form an SSD distribution with respect

to frame -1 and frame +1 as such

SSDo =SSDO.l~,d)+SSDo._l(X,-d).

A two-frame method could also be implemented.

From SSDo, Singh and Allen build a probability distribution

(2.15)

(2.16)

where k is a normalization constant. The sub-pixel flow estimates le =(~ye' ~c) are then

obtained by considering the mean of the distribution with respect to d =(dx,dy),

LRc (d)dx
LUc = IRJi) ,

IRe (J)dY
~Ye = IRe(J)

(2.17)
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Singh and Allen employa Laplacian pyramid strategy similar to that of Anandan.

This provides a more symmetric distribution about displacement estimates in the SSD. A

covariance matrix is then constructed from these estimates as,

(2.18)

Singh suggests that the eigenvalues of the inverse of Cc provide a measure of confidence

for le.

For a glven flow field ]; = (Axj,L1Yj) , the least-squares estimate In a

(2w +1) x (2w +1) neighborhood about ln =(Axn ,L1Yn)can be obtained from

& =IRn(Ît~i
n IRn(jJ

t\Yn = IRnV~Yi
IRn(fi)

(2.19)

A covariance matrix Cil can then be generated in the same manner as (2.18) from

(2.17). Flow regularization is then obtained by minimizingthe sum of the Mahalanobis

distances between the estimated flow field 1and the two distributions lc and ln,

(2.20)

The eigenvalues of the covariance matrix [c;! + c;!Ji serve as confidence measures for

the regularization process.
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An interesting region matching flow algorithm is Camus' quantized flow [13].

Liu et al. [39] report that Camus' algorithm provides one of the two best accuracy-

efficiency ratio curves. Camus notes the simple relationship between velocity, distance

and time,

1
. f:.d

ve OCzty =
f:.t . (2.21)

Classical region matching algorithms set /),( to 1. The range of f:.d is defined by the

extent of the correlation search area. Camus proposes that the search be extended in

time, s frames deep, and reduced in space. For example, Figure 2.1 shows a search two

frames deep (S = 2). The winning displacement is (2,2) in Image[2]. Thus, the velocity

vector is (0,1/2).

i

2

:3

'"'-

i

2

:3

'"'-

lmagc[D] lmagc[i] lmagc[2]

Figure 2.1- Motion of pixel (2,3) in Image[O} to pixel (2,2) in Image[2}, an optical
flow of (0,1/2) pixels per frame.

The advantage of this approach is that performing a search over time instead of

over space is linear in nature rather than quadratic. Another efficient element of this

algorithm is its suitability for integer arithmetic by suggesting additional optimizations

for the correlation process under this framework. Camus proposes a box filter for W(i,j)

in (2.10) and memory management methods that make this approach extremely efficient
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and robust. The price paid for this speed is that the algorithm only provides a quantized

flow field containing S(2n + 1)2 different possible velocities.

2. Constructing a Correspondence Mechanism

It should be noted that the objective here is not to design a perfect optical flow

estimator, as this is an impossible task. Instead, a set of criteria is established to provide

guidelines for selecting components of the different flow algorithms in the construction

of a correspondence mechanism and the motion selection mechanism. After considering

the different optical flow algorithms in the literature, three e1ements must be chosen for

constructing a suitable optical flow algorithm: a pixel motion estimator, a sub-pixel

motion estimator and a confidence measurement process. Smoothing of the flow field is

neglected to thus provide the accumulation process with unbiased data.

Under the CUITent framework, the following criteria should be kept in mind when

designing a flow estimator:

i) The flow algorithm should require minimal temporal support. The

correspondence algorithm should be robust even when motion sequences

are not smooth. This, ideally, implies a two-frame correspondence

problem.

ii) It is important ta be able ta associate a confidence value with the

measurement. As long as the relative confidence in flow measurements

between images can be well estimated, the actual quality of the flow
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measurement is left as a parameter to be decided on for the particular

application.

iii) The algorithm should lend itselfwell to real-time navigation system. In the

extreme case, if an algorithm is too slow, the assumption of a rigid

environment may not necessarily hold.

Finally, the optical flow estimator results presented in this section are qualified

using Barron et al. 's standard angular error metric. This metric is described as follows.

Let a motion vector, 12 =(w,L1Yy,be represented as a 3-D directional vector,

J; == (Lix,~y,lY

~Lix2 +~i +1 .
(2.22)

For flow estimate, 12e' and corresponding ground truth, Îzc , the angular error is defined

as

(2.23)

This metric is chosen, as it appears to be the standard used by optical flow evaluation

literature.

2.1 Pixel Correspondence

The first key point in selecting an optical flow algorithm is condition i), which

suggests that shorter temporal support is desired. An important issue with differential

algorithms is their stability under such conditions. To investigate this stability, the Lucas
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and Kanade algorithrn was modified to use 2-pt and 3-pt 3 numerical temporal

differentiation with equivalent temporal smoothing. Fleet and Langley's UR filter

approach was also implemented. These were tested on the translating tree sequence

Figure 2.2 [8]. This sequence is chosen as it contains both sharp and smooth intensity

features while providing a uni-modal flow field.

~44~~~~~,~~444~~~~

~~~~4~~~4_444~~~~

............................ -!+............... 

~~~~4~4~~~~~~~~~~

~'~~~~~~~~~~~~~~~~

4444~~4~44_~44~~~
_4~~~_~~ ~~~~_~

~~1~~~~~~~~~~~_4~

~~~~4~~~_~~~~~~4~

~~~~~~~~~~~-~~~~4__444~~__4_~~__~~
..............................................._....
~~1~~~~~~~~~~~_~~

...... ~',-T""J..~,-....'............ -t-t-f'-+-t-+
_~44~~~~~~_4__~~~
__ 4~4_~_4~~44~4__

1'1~1~~~~~~~~~~~-t~

Figure 2.2 - Frame 4 from the translating tree sequence, and the ground truth optical
flow field.

The differential approach is compared to a region-matching algorithrn. Small

pixel motions may be assumed as the viewer's motion assumed smal!. Thus, the multi-

scale pyramid implementation used by Anandan and Singh may be neglected. Camus'

optimized region matching algorithm is used. This algorithrn is extremely efficient while

providing flexible and robust temporal support. The implementation presented here uses

two frames of temporal support. Spatial support was set to match that of the differential

algorithms (9 pixels).

Results for Lucas and Kanade's, and Fleet and Langley's algorithms are

compared to the traditional 5-pt temporal differentiation and Camus' region-matching

algorithrn in Table 2.1. Camus' algorithm provides the best result for this sequence.

1 Two-point and three-point differential operators were implemented as (1,-1) and (1/2,0,-1/2).
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Algorithm Angular Error (Deg)

2-pt Lucas & Kanade 22.6343
3-pt Lucas & Kanade 20.9849
3-pt Fleet and Langley 18.5682

5-pt Lucas & Kanade (..~. = 0.0) 3.7262
5-pt Lucas & Kanade (À. = 1.0) 1.9250

2-pt Camus 1.4649

Table 2.1 - Flow error computation for translating tree sequence.

When comparing Figure 2.3(a) and Figure 2.3(b) to Figure 2.3(c) and Figure

2.3(d),it becomes apparent that, for the translating tree sequence, that the differential

method is unreliable for two- and three-image sequences. It is noted that the flow

estimates are most unstable along strong intensity changes. Normally, such features are

band-limited through temporal smoothing. From a signal processing point of view, this

smoothing seems counter-intuitive, as features with higher frequency signatures should

provide more information for the correspondence proce~s. Region matching algorithms

avoid the temporal smoothing process, and as such, provide a broadband approach for

matching signaIs with higher-band frequencies.

The disadvantage of Camus' region matching algorithm is that it doesn't provide

a true sub-pixel estimate or a measure of confidence. Thus, it becomes necessary to

invent or borrow these components from other algorithms. Sub-pixel estimation

approaches and confidence measures are discussed in the next two sections.
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Figure 2.3 - Optical Flow fields for Lucas & Kanade, and Camus for translating tree
sequence.

2.2 Sub-pixel Correspondence

Four approaches to sub-pixel estimation are described. Three approaches are first

considered: a bilinear interpolation method, Singh's method and Anandan's method. A

fourth method, that combines Anandan and the bilinear approaches, is derived. Table 2.2

provides results for each of these approaches for several standard synthetic image

sequences for which the respective ground-truth IS known. Camus' pixel estimation

27



approach, as well as the percentage of pixel motion estimates that are within a single

pixel range of the ground truth optical flow, are provided to help identify how much room

for improvement is available to the sub-pixel estimator.

Angular Error for Image Sequence (De~)

Sub-Pixel Type Sine-B Sine-C Trans. Tree Diver. Tree Yosemite
(no sky)

Camus 5.21324 0 1.46495 16.2144 13.0404
(% in pixel range) (100%) (100%) (99.5%) (98.9%) (90.9%)

Bilinear 2.80501 0 1.25434 7.41948 7.92528
Singh 4.86211 0 2.66364 16.5368 13.1318

Anandan 1.17886 2.3822 2.57259 6.95023 6.46842
Bilinear & Anandan 0.0124328 0.525342 1.22560 5.68054 7.21033

Table 2.2 - Sub-pixel estimation results.

The first sub-pixel flow estimator uses a bilinear interpolator to up-sample the

local patches of image around the SSD minimum by a factor of four. A new refined sub-

SSD is obtained at this point. Results for this approach demonstrate that this method

provides a robust estimate that is, however, still coarse. This is noted in sequences where

the distribution of phase of the flow-field is well spread such as the Diverging Tree and

Yosemite sequences. Singh's approach provides poor results overall. It relies on

statistical estimation of the sub-pixel displacement. Thus large patches of the image must

be used to obtain statistical correctness. This is an undesirable property as the larger the

image patch becomes, the less local information is represented. Barron et al.'s comment

conceming a bias for sub-pixel values that approach zero is noted as weIl, as Singh's

algorithm performs well for the Sine-C which has no sub-pixel component, and the

translating tree which only has a sub-pixel component in its x- component. Anandan's

method was computationally efficient and provided better results than the previous three
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mentioned. Conversely to Singh's method, it is overambitious in cases where no sub

pixel displacement exists. This is observed for the Sine-C sequence. A fourth flow

estimation algorithm is implemented that takes advantage of the robustness of the linear

method to constrain Anandan's estimation. Thus, a bilinear sub-SSD is first computed;

Anandan's quadric surface fit is then applied to the sub-SSD surface to refine the

estimate. This method provides the best sub-pixel flow estimate overall and is adopted.

It is similar to Matthies et al.' s approach of using a cubic interpolator on top of

Anandan's sub-pixel flow estimator to provide a sub-sub-pixel flow estimation.

2.3 Measure of Confidence

The last step in building a correspondence estimator involves developing a

confidence measure. This section provides a novel and formaI mechanism for comparing

different optical flow confidence measures in the context of maximal estimation theory.

From this, a more general and improved confidence measure is suggested and

demonstrated experimentally.

Three measures of confidence are proposed: the differential method, Singh's

approach, and a modified Anandan technique. Barron et al. evaluate these confidence

measures by applying thresholds to reject undesirable flow estimates and then re

evaluating the sparser flow-field. The evaluation approach taken here is to determine

how weB the confidence values represent the information contained in the estimate. As

such, flow estimates are never rejected. Instead, emphasis is placed on using the

confidence values as weights to maximally merge information. Thus, a weighted least-
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squares approach is used to determine how well error is attenuated by the confidence

measures. For a linear measurement model,

z=HX+y, (2.24)

where H is a linear operator relating the state vector x to a measurement z, and r is

White Gaussian measurement noise with an associated covariance matrix,

2
(Jzl

c =m (2.25)

In the case of an ideal measurement process, the inverse confidences should be equivalent

to the variances on the flow measurements. In the flow-estimation framework, each of a

confidence pair (cx,cy) is provided for the x,y components of the flow estimate,

[
_1 0]

Cm =: :y (2.26)

This framework requires modifying the original confidence formulations. For the

differential approach, the diagonal components of the Normal matrix (2.7),1; and I~,

are used. For Singh's approach the diagonals of (2.18) are used. Similar to Anandan's

approach, Matthies et al. choose to use the curvature along the x,y directions of the SSD

surface about its minimum as a confidence measurement. This is reasonable as sharpness

of the parabolic SSD provides a direct metric of dissimilarity between the minimum and

its neighbors. The attribute is fully described by the second order derivative of SSD(x)

which is parameter a of (2.14),
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(2.27)

where (ax,ay) represent the curvatures along the x,y directions of the SSD. Anandan's

original confidence measure can be expressed as,

(2.28)

A more general and novel form for Anandan' s method is introduced here,

(2.29)

where K determines the weight of the SSDmin values.

The maximal weighted least-squares estimator of (2.24) is [48],

(2.30)

and the associated state variance, CT§ , is obtained from the following expression

(2.31)

For perfect confidence values, y should contribute minimally to x. As the error in the

flow measurement is known for synthetic sequences, it is possible to determine how the

confidence measure predicts the error in the measurement. For simplicity, H , is chosen

to be

(2.32)

and, y, is chosen as

(2.33)
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where (Axe,~yJ is the flow errer for a pixel (i,j). The weighted error is then

A ..2 A 2
CyLUe + CxL.!Ye

ei,j = C + C (2.34)
x y

For an MxN flow field, the full weighted error, based on the state variance, a~, IS

provided by the following expression,

L e~j
.. a

E = l,j Xi,)

w 1

La?
l,} Xi,j

(2.35)

When Cx = Cy , no information about how to combine the measurements is available. As

such, e;,j becomes the squared average of (Axe,~Ye)' Thus, the average error over the

flow-field is provided by the following expression,

(2.36)

To evaluate how effective the confidence values are for merging measurements over the

full field, the following ratio of Ew and E A is computed as

E . - EA -Ew
Gam - E

A
(2.37)

Table 2.3 shows a compilation of results for synthetic sequences and a pair of real

zero-flow sequences. Two values are provided in each cell. The top value is the

effective confidence ratio EGain , the second in parentheses indicates the percentage of

flow estimates in the image that had

(2.38)
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As such, comparing these two values provides a measure of how effective the state

variance, Œ1, is for weighing the errors of the MxNfield.

Effective Confidence Ratio (%)
(lm proved Estimate Ratio 1%»

Confidence Sine-B Trans. Diver. Yosemite Still Still
Type Tree Tree (no sky) Camera Camera

(WeIl lit) (Somber)
DifferentiaI 3.05444% 10.3638% -1.2124% 72.2748% 67.0919% 78.3251%

(53.09%) (59.70%) (43.71%) (58.01%) (8.69%) (55.93%)
Singh 0.1851% 61.7852% -0.4616% Il.6308% 61.9962% 33.9959%

(77.37%) (66.85%) (40.69%) (57.85%) (9.01%) (56.45%)
Matthies et al. 5.8855% 25.1118% -4.1464% 69.8526% 67.2141% 81.9122%

(K=O) (60.73%) (65.11%) (46.01%) (61.68%) (8.76%) (57.57%)
Anandan 6.3547% 42.5485% -1.7531% 64.4385% 66.0995% 74.9688%

(K=l) (60.73%) (65.11%) (46.01%) (61.68%) (8.76%) (58.52%)
Mod. Anandan 6.6879% 45.0589% 25.4441 51.6768% 64.8500% 45.7176%

(K=2) (60.73%) (65.11%) (46.01%) (61.68%) (8.76%) (58.52%)
Mod. Anandan 6.8727% 43.0914% 64.4974% 47.4398% 63.4580% 35.1616%

(K=3) (60.73%) (65.11%) (46.01%) (61.68%) (8.76%) (58.52%)
Mod. Anandan 6.8991% 41.9948% 77.9971% 47.4786% 61.9814% 35.0015%

(K=4) (60.73%) (65.11%) (46.01%) (61.68%) (8.76%) (58.52%)

Table 2.3 - A study of how different optical flow confidence values model noise
covariance in the context of a maximal estimation framework. Two results are
provided for each table entry. Comparing these results establishes how weIl
the confidence values reduce error when combining the x,y components of a
single measurement (2.38), as weIl as how good confidence values are for
merging many measurements (2.37).

The results presented in Table 2.3 show that the most consistent estimator is the

generalized Anandan method for K=2, 3 and 4. It is consistently positive for aIl

sequences. It out-performs Singh's method five times out of six. It performs similarly or

slightly better than the differential confidence measure five times out of six. AIso, the

K=2, 3 and 4 results provide more consistent results than the K=0, 1 implementations,

which return negative values for the translating and diverging tree sequences.
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To determine how stable these confidence estimators are under noisy conditions,

two real image sequences were tested. These involved taking two pairs of still pictures

under weIl and poody lit conditions (Figure 2.4). The ground truth flow is assumed to be

a zero vector flow field. Comparing these two sets of results indicates how sensitive the

confidence measurement is to noise. It is noted that the differential method is relatively

insensitive to noise. This is due to the spatial smoothing process involved in computing

Ix and ly. Both Singh and Anandan's methods are sensitive to noise. Singh's method

performs much more poody under the somber conditions. It is noted that as K gets

bigger, Anandan's approach becomes more sensitive, as noise is accumulated in the SSD

distribution, and the SSDmin value gets amplified. For this reason K=2 is chosen over

K=3 or 4.

(a) Somber image (b) Welliit image

Figure 2.4 - Real images for zero flow confidence tests.
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CHAPTER3

Small Motion Surface Reconstruction

The problem of shape-from-motion is defined in two parts: the recovery ofviewer

motion parameters, followed by 3-D shape reconstruction from a group of images [1, 31,

54,63]. This part of the thesis is mainly concerned with the second part ofthis problem 

- recovering structure given that the motion has already been determined up to a given

certainty. For a two-image approach, the literature sometimes groups this problem with

stereovision. An important discrepancy with stereovision problem resides in the fact that

the motion is not known deterministically in the current problem. As such, it is probably

more appropriate to calI this problem monocular motion-stereo. Independently of the

nomenclature, this problem clearly does draw strongly from the area of traditional

stereovision.

In this chapter different concepts of stereovision and shape-from-motion will be

examined. The projective geometry for estimating depth from a pair of images will be

reviewed, methods for accumulating depth estimates will be examined and the Kalman

filter framework of Matthies et al. will be described. The latter will be modified to

include maximal-estimation for spatial support in the depth interpolation process. This is

a novel improvement to the Kalman framework, and as such, results will be provided to

support this claim.
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1. Perspective Projection Stereo

The notation used in this thesis refers to points in 3D space using capitalletters.

Points in the camera's image plane are denoted using lower case characters. Bold

characters indicate homogeneous motion operators. A subscript i is used to denote

different iterations of the camera motion being considered.

A pinhole camera of focal length f is assumed and a viewer-based coordinate

system is adopted (Figure 3.1). The origin is at the focal point of the camera. The image

plane is at Z = f. The Z-axis runs along the optical axis, and the X- and Y-axes are

paraUel to the x- and y-axis of the image plane respectively. This is a common right-

handed projection model for most shape-from-motion and stereovision problems.

y

Figure 3.1 - Pinhole camera of focallengthfwith a viewer-based coordinate system
where, ni =(Ox Oy Oz), about an axis passing through the origin, and a
translation, Ti =(Tx TyTz).

Equation (3.1) provides mathematical representations for the pinhole camera,

Xi f/Zi 0 0 0 Xi

Yi 0 f/Zi 0 0 ~= (3.1)f 0 0 f/Zi 0 Zi

f/Zi 0 0 0 f/Zi
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The ego-motion of the camera is decomposed into a rotation about an axis passing

through the origin, and a translation. Any three-dimensional motion can be represented

as such [20]. This is denoted as (1; on;), where 0 indicates a composite operator. Given a

the new location of the point, (xi+!,I;+!,Zi+I), is given by (3.2). This homogenous operator

assumes a small rotation approximation, sin e~ e ,

X i+1 1 -0 Oy Tx Xiz

~+l Oz 1 -0 Ty ~x=
Zi+l -0 °x 1 Tz Zi (3.2)y

1 0 0 0 1 1

From expressions (3.1) and (3.2) an expression for the projected motion, (Llxi'~Yi)' of a

point on the image plane can be derived [54]. For clarity, the iteration subscript, i, is

dropped from this point on. Thus,

where,

[Ax] = ( 1 )Hf + Rn
~Y z -T~ , (3.3)

and

[
- 1

H= o
o

-1 (3.4)

Matthies et al. derive a similar expression,

[Ax] = ~Hf +Rn
~y z .

(3.5)

(3.6)
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They use a differential formulation that assumes infinitesimal image sampling. This

assumption is correct as long as any motion in the Z-direction is much smaller than the

depth of the point (i.e; Tz « Z). If this condition is met, expression (3.3) and (3.6) can

be considered equivalent. Considering that a smaIl motion constraint is imposed on the

autonomous viewer system described here, this assumption is deemed valid, and (3.6) is

adopted instead of (3.3).

2. Multi-Image Depth Accumulation

There are two general approaches to multi-image shape-from-motion. The first

involves simultaneously considering aIl data collected for computing a minimum

solution. This is referred to as the batch method [31, 54, 63]. This approach is elegant,

and generally very robust, but it does not lend itself weIl to an active autonomous

scenario in which real-time interaction is required. The second approach is recursive and

often takes the form of a Kalman filter. This approach and related elements in the

literature are described in the following section.

2.1 The Kalman Filter

The Kalman filter is a weighted sum mechanism derived from maXlmum

estimation theory. It is often used in robotics and shape-from-motion application for

temporal integration of data [6, 9, Il, 16, 30, 35, 38, 46, 60, 70]. The different
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components of a Kalman filter are: measurement model, state transition model and

update phase [18].

The measurement model relates a current measurement to an estimated CUITent

be1ief about the state, x(k), of the world. The forward measurement process, where A

represents the linear relationship between the expected measurements given a CUITent

state, and w(k) is the noise function, is described as such,

z(k) =Ai(k)+w(k). (3.7)

This relationship is generally not invertible. If w(k) is zero-mean and Gaussian with

covariance matrix cw , least-squares minimum solution can be estimated [48],

(3.8)

as weIl as its associated covariance matrix,

(3.9)

The state transition model provides a prediction of the new state given a CUITent

action, ü(k), is applied to the system. For linear systems, a state transition matrix, r,

models physical characteristics of the state-space and takes the form of a predictive

element (interpolator or extrapolator). This is represented as

x(k + 11 k) =rû(k) + y(k) , (3.10)

where i(k) is zero-mean Gaussian noise with covariance matrix cr introduced into the

system during state transitions. The associated projected covariance matrix is obtained

from

(3.11)
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The update phase is used for integrating the CUITent measurement with the

predicted state to provide a new CUITent state estimate

(3.12)

with associated covariance matrix

(3.13)

The Kalman gain, Kk+l , is used to weigh the importance of the new state estimate,

obtained from the measurement, with respect to the predicted estimate, obtained from the

state-transition model. MathematicaIly,

(3.14)

The Kalman filter framework has the important property of providing a provable

least-squares solution to a state-space estimation problem. An important component of

this solution includes confidence measure in the form of a covariance matrix. The

following criteria are required of a state-space model for it to be optimal in the context of

a Kalman filter:

• Zero mean system noise.

• Independent noise.

• A linear model for evolution over time.

• A linear relationship between the system state and the measurement made.

It is often impossible to ensure that aIl the above requirements are met. This does

not, however, imply that the Kalman filter cannot be used. Rather, it suggests that the

estimator may not be optimal. Despite non-optimal conditions, there is much work in the
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areas of computer vision and robotics that supports the daim that the Kalman filter is a

valid tool for accumulating noisy measurerilents [18, 48, 60]. Most often the Kalman

filter is used for tracking and motion estimation problems. There are however

applications in which this mechanism is used for depth estimation.

Beardsey et al. [9] demonstrate how an Iterated Extended Kalman Filter (IEKF)

can be used for feature-based depth accumulation. This work shows how corners can be

used to reconstruct planar scenes in an autonomous navigation scenario. The extended

Kalman filter is used to approximate a non-linear projective measurement model by a

first order Taylor expansion. Several iterations (the authors suggest three) are used to

improve the linearized approximation.

Kumar et al. [38] also develop a feature based Kalman framework. They use a

two-step approach in which shallow structure is first estimated, and in the second step

model refinement and extension are applied. The first step is obtained from a pseudo

batch approach, while the second involves a Kalman mechanism.

Azarbayekjani et al. [6] use an Extended Kalman Filter (EKF) framework to

extract 3-D motion parameters and point-wise depth for rigid objects in a scene. They

follow Tomasi and Kanade's [63] approach for extracting image features. Motion is

described with respect to the camera frame, while depth is described with respect to the

object's coordinate frame.

Although, the Kalman framework is generally used for feature tracking, it is also

used for iconic depth estimation. In such a framework it is standard practice to treat each

depth element as being independent, despite the fact that these local estimates are not

usually independent. This is necessary to make the solution computationally tractable
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[30, 35,46, 70]. As such, the image becomes an array of scalar and independent Kalman

filters to which spatial support is applied separately. Several different approaches to

iconic depth accumulation exist in the literature.

A particularly interesting approach is Heel's work [30]. The author shows how to

integrate the image flow constraint (2.1) into the Kalman framework using the following

direct depth measurement (3.15), thus avoiding the computation of the optical flow,

where,

-s·Tz=--
Ef+v·n'

(3.15)

(3.16)

Hung and Ho [35] build on Heel's approach. They use the image gradient in the

predictive phase of the filter. They also integrate a local smoothness constraint into their

framework. Just as the gradient optical flow methods, this approach requires temporal

derivation. Thus, sufficient temporal support and smoothness must be supplied for

proper temporal numerical differentiation.

Xiong and Shafer [70] implement an iconic depth estimator using an Extended

Kalman Filter. They concentrate on augmenting the depth uncertainty with motion

information. They suggest mathematical techniques such as Sherman-Morrison-

Woodbury matrix inversion and a weighted principal component analysis framework for

making the approach computationally tractable. They use the current depth estimate to

bootstrap the next motion estimate.
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The Kalman framework used in this paper is very c10sely related to that of

Matthies et al. The small motion assumption makes the depth-estimation formulation

expressed in (3.6) valid. This approach is advantageous as it provides a linear

measurement model using the inverse-depth (or disparity) instead of the true depth as the

state variable. The use of a correlation-based optical flow estimator provides temporal

robustness for non-smooth image sequences and a scalable, efficient computational

framework.

The measurement model is described first. As mentioned in the introduction, the

correspondence problem and triangulation problem are ill-posed and ill-conditioned,

respectively. A qualified estimator of the projected motion should reflect and weight

these issues. In the same manner as (3.8), Matthies et al. provide a least-squares solution

to this problem. They begin by rectifying the image by removing the rotational

component ofthe optical flow (which is independent of the depth),

[fur] [fu]= -Rn
~Yr ~Y .

(3.17)

The least-squares disparity estimate can then be obtained from the rectified optical flow

as

(3.18)

where Cf represents the covariance of the measurement error ofthe optical flow vector,

(3.19)

The corresponding variance, a3 , of the disparity estimate is obtained from
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2 2

2 f( )7' -1 ( ))-1 ajiajy

ad =~ HT Cf HT = 2( T _ 1r)2 . 2( T _ Ir )2 .
a lIy x z J L X + a i\x y z J L Y

(3.20)

For baseline stereovision (Tz == 0) expression (3.20) illustrates the advantage of a

larger baseline motion mentioned in the Introduction of this thesis. A larger baseline

between views provides more robust triangulation of a 3-D point. This becomes apparent

from (3.20) as the magnitude of the baseline, II(Tx,Ty~l, increases, cr~ decreases. As the

autonomous system here has limited control over the magnitudes of Tx and Ty parameters,

it is only natural to instead take advantage of an active strategy to maximize cri, and cr;y.

This will be the approach used for selecting the motion strategy described in the next

chapter.

For looming motions, where Tz =F 0, a vanishing point is observed where the

vector connecting the two centers-of-projection of the two images traverses the projection

plane. This point of contraction/expansion is referred to as the focus-of-expansion (FOE)

and is computed from (3.20) as

(3.21)

The depth estimate becomes increasingly ill-conditioned around the FOE, while it is

completely ill-posed at the FOE.

Matthies et al. introduce spatial support into their system using interpolation and

regularization stages [62]. They suggest that the state transition model can be treated

equivalently to a polygonal mesh. Thus, the iconic depths are transformed as if they were

a polygonal mesh under homogenous transformation. Reel [30], and Xiong and Shafer

[70] use a similar approach to interpolation. A bilinear interpolation scheme, similar to
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Gouraud shading is used to predict the new variance values of the predicted depth

estimates. This can be expressed as such: given a triplet of connected disparity estimates

on the surface, do , dl and d2 , the new disparity value, di, is computed as

(3.22)

where Wo , w, and W2 represent the weighted distances to the interpolated disparity, di'

for each point, do , dl and d2 , respectively. The associated variance for the inverse depth

is computed by pre- and post-multiplying the Jacobian of (3.22) onto the covariance

matrix constructed from 0"30' 0"31 and 0"32' This effectively results in

222 2222
CJ"di = WOCJ"dO + Wl CJ"dl + W2 CJ"d2 • (3.23)

The authors then suggest that a pure blend may be used to interpolate the new confidence

values,

(3.24)

The interpolation method of Matthies et al. and Beel leads to an increase in

uncertainty when interpolating. Information theory suggests the opposite; on average,

conditional entropy of a random variable should not increase as more measurements are

combined into an estimate [15]. The entropy of a random variable measures its

uncertainty. As such, uncertainty should not increase. Thus,

2 .(2 22)
CJ"di ::;; mID\CJ"dO ,CJ"dl ,CJ"d2 •

The upper bound for expressions (3.24) and (3.23) is

2{ 2 2 2)
CJ"di ::;; max\CJ"dO ,CJ"dl ,CJ"d2 ,

(3.25)

(3.26)

which implies that the approach used by Matthies et al. and Beel does not conform to

basic information theory.
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In the implementation presented here, regularization is dropped and the

maximum-estimation approach is extended to the prediction procedure. It seems that, as

the spatial and temporal estimation processes have already been decoupled, and that

confidence information is available from the temporal estimator, a maximal estimation

approach to the spatial interpolation of the surface is the natural extension to the current

framework. Work by Mathur and Ferrie explains how to do this for local curvature

models such a Bezier frames [47]. The approach taken here will involve a simpler local

surface model -- the triangle. As such, the depth interpolator is described as follows

(3.27)

The variance associated to the new disparity value is

(3.28)

This approach conforms to the mles of information theory. It performs well provided

that the linear interpolation model is correct. Computer graphies theory has shown that

for dense depth fields this is an acceptable assumption [24].

The last step in the Kalman framework is the update phase. The Kalman gain is

computed as

K _ Pk+11k
1+1 - 2 ,

Pk+11k + ad
(3.29)

where Pk represents the current depth estimate covariance. The new measurement is

integrated into the current disparity estimate as such

(3.30)

and the updated confidence is obtained as
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(3.31 )

3. ResuUs

This section presents results for the depth accumulation procedure described

above. Synthetic data is used to demonstrate that the maximum estimation approach to

spatial interpolation outperforms the previous approach used by Matthies et al. The

synthetic environment is constructed from the rendering of a range image (an owl). The

object is placed 3 units away from the viewer. A plane is placed perpendicular to the

camera's viewing axis 6 units away (Figure 3.2). A horizontal texture is applied to

reduce the aperture problem along the vertical direction. The viewer performs fifteen up-

and-down iterations ofT = (0,0.044,0) and T = (0,-0.044,0).

(a) abject in space (b) Textured object (c) Ground truth depth

Figure 3.2 - Sample images of synthetic experimental setup.

The error in estimated depth is measured as the root-mean-square (RMS) of the

difference between the estimate and the ground truth over the full MxN depth image,

Err = _1_L (dgt (i, j) - dEst (i, j )~
MxN

(3.32)
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Although this metric is not ideal for providing a global description of the reconstruction,

it is certainly reasonable for comparing convergence rates for the depth estimation

process.

Figure 3.3 provides convergence plots for the three different interpolation

methods suggested. The square weighted sum provides the worst results. The maximal

estimation method provides the best results by converging to a lower RMS-Error. Figure

3.4, Figure 3.5 and Figure 3.6 depict confidence, depth and error maps associated to the

fifteenth iteration of the estimation process. Confidence is represented as

Ic(i,j) = -log(Pk(i,j)). Thus brighter intensity indicates higher confidence. For the error

maps, 1Err (i, j) = (dgt (i, j) - dest (i, j)~ , and as such darker intensity imply less error.

RtJS-Erro, ....,.."" Time
().4

Max. Estimati n
+ "" Blend
+ + Square Blend
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0.3

ë
ù:i
1 0.25
~
Il:

02

0.15

0.1
0 2 4 6 8 10 12 14 16

Nurrt;:.er o~ ~era1ions

Figure 3.3 - RMS-Error as a function of time for squared interpolation method, for
blend method, and for maximal-estimation method.
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Figure 3.4 and Figure 3.5 indicate that Matthies et al's approach relies heavily

on regularization to guess the surface where the measurement has low confidence. When

the regularization process is removed, less confident estimates have the upper hand and

propagate. This results in large holes in the confidence maps. Even if the regularization

process were included, no framework for generating new confidence values is provided

for the interpolated depths elements. As well, this method fails to take advantage of

confidence measures already available. The maximal estimation approach provides a

complete, compact and robust method for simultaneously interpolation and propagating

information to areas of low confidence, as can be seen when examining Figure 3.6 in

contrast to results presented in Figure 3.4 and Figure 3.54
.

(a) Confidence map

(c) Depth map

(b) Error map

4 Figures were ail scaled linearly. Confidence values ranged between 0 and le30. Depth and error values ranged between 0 and 30.
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Figure 3.4 - Confidence, depth and error maps after 15 iterations of SQUARED
interpolation method.

Ca) Confidence map Cb) Error map

Cc) Depth map

Figure 3.5 - Confidence, depth and error maps after 15 iterations of BLEND
interpolation method.
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(a) Confidence map (b) Error map

(c) Depth map

Figure 3.6 - Confidence, depth and error maps after 15 iterations of MAXIMAL
ESTIMATION interpolation method.
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CHAPTER4

Active Reconstruction

1. Active Vision

From earlier discussion on correspondence and depth estimation, it should be

clear that both multi-image feature and iconic approaches to surface reconstruction can

fail to recover depth for passive motion, even if the images are textured and the viewer

motion is not ambiguous. This occurs when the viewer's motion fails to take advantage

of image features that require a selective direction for correspondence. Figure 4.1 shows

an example of a horizontally textured scene and its associated depth maps after 10

horizontal and vertical motions. Figure 4.2 shows the RMS-Error of the measured depth

for several iterations of horizontal and vertical motions. This result suggests that a

passive viewer moving horizontally will fail to recover depth for this scene. Thus, it is

suggested in this thesis that an active control strategy should be adopted to attempt to

maximally extract information for image features.
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(a) Horizontally textured
scene

(b) Depth map after 10
horizontal motions

(c) Depth map after 10
vertical motions

Figure 4.1- Vertical and horizontal motions for reconstructing a horizontally textured
scene.

Figure 4.2 - RMS-Error plot of horizontal and vertical motions for the horizontally
textured scene.

Active vision generally provides two approaches for reducing the ambiguity that

results in the measurement process: active sensing, and passive sensing from an active

viewer. The first approach involves controlling the lighting conditions in the scene such

that ambiguity in the image formation process is removed. Active photometry and laser-

range finders are examples of such systems [14, 64, 68]. These methods provide good
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results under the assumption that the lighting over the sampled surface is controllable and

that the ref1ective properties of the surface are sufficient for correct image formation.

Such methods, clearly, also assume that the projection of a laser or colored light will not

impede the measurement or cause detriment to the environment. These conditions do not

necessarily lend themselves well to exploration of an unknown environment, as surface

characteristics are generally unknown a priori.

The second approach involves a passive sensor and an active viewer. As such, the

camera geometry is used to constrain the depth estimation process. For this thesis, the

camera is moved to provide multiple samples of the surface from different points of view.

The relationship between the viewpoints is actively controlled to profit from geometrical

properties of the sensory apparatus [2]. The active viewer introduces a known

relationship (up to a given certainty) between the different views, thus providing sorne

constraints for inverting the correspondence and depth measurement sub-problems. This

is often referred to as the epipolar constraint, and is discussed in section 2. Second, the

active viewer selects the next-step that is predicted to best reduce ambiguity or increase

confidence in next measurement. Figure 1.1 is updated with a new process block for

selecting the next motion of the viewer to obtain Figure 4.3. This strategy is developed

in the section 3.
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Disparity[i] Depth Estimate[i] Accumulatcd Depth[i]

Image[i]

Image[i+L]
Correspondence Depth Compuation Depth lntegration

r M otion[i+ L] r
1 rE----Motion Selection

Figure 4.3 - Block diagram of active depth accumulation system. A new component
is added that uses depth confidence values and image features to select a new
motion.

2. Epipolar Constraint

An important element in the geometry of stereovision is the epipolar constraint

[21]. Epipolar geometry constrains the angular components of an optical flow field.

When the motion parameters between two views are fully known, the search space in the

correspondence problem can be restricted to a line.

Image; Imagei+1

Figure 4.4 - Epipolar geometry for two image frames with respect to a point P.
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As depicted in Figure 4.4, a ray can be constructed by connecting the centers of

projection, q and a 3-D point, P. This ray projects to a point Pi in the first image. The

ray, O;P , projects to a line, ei , in the second image. This suggests that all 3-D points that

project to Pi in the first image must project onto the line ei in the second image. The

essential matrix represents this structure mathematically [21, 64],

E=[ ~z
-0y

(4.1)

Thus, it is sufficient to search along this line to match the pixels in the two images. This

can be interpreted as an angular constraint on the flow measurement. The epipolar line in

the second frame, given that the image point in the prior frame is (xp'Yp,J), is computed

as follows,

(4.2)

given the following form for the equation of a line,

(4.3)

The offset term b is ignored as it only contains information about the position of the

epipolar line in the new image. This information is available under the trivial condition

where a null motion is applied and X p does not move. When expanding (4.1) and (4.2),

the terms mx and my are described as

(4.4)
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(4.5)

Epipolar geometry can also be used when the motion parameters are not known

deterministically. More precisely, an additional constraint that takes into account the

expected motion and respective covariance can be imbedded into the correspondence

procedure by adding a bias to each cell of the SSD(i,j) surface, where i,j are the

coordinated pixel distances from the center point of the SSD distribution. The bias is

derived from the square of the Mahanalobis distance, M ep (i, j)2 , of the i,jth cell from the

expected epipolar line. Thus a robust constraint is used to sway the minimum of the SSD

surface in the direction of the epipolar line, and SSDmin becomes

S'S'T"I • = . (C"S'T"I(' ') Mep(i,J? )Umm min jJ, u l,j + e . (4.6)

Uncertainty in the motion parameters and Image point parameters can be

projected into the epipolar parameter space, to obtain (4.7), by pre and post-multiplying

the diagonal covariance matrix by the Jacobian of expressions (4.4) and (4.5),

o
Co.

o
o

o
o
2

CYxp

o
(4.7)

Given that a normalized directional vector at each pixel in the SSD distribution is

f
A(, ')_ (i,j)

l,j -

~i2 + / '
(4.8)

the squared Mahanalobis distance between the unit epipolar vector, m= (mx,my ), and the

i,jth cell of the SSD is
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(4.9)
2

CTmy

which, after sorne manipulation, becomes

where from the symmetry of expressions (4.4) and (4.5),

2 2 2
CTm = CTmx = CTmy •

(4.10)

(4.11)

The bias is added when searching the SSD for its minimum. It is removed again when

computing the actual confidence in the flow measurement.

------~-----
--::>- - --------- ~----------._--------- -------------

=-' ~=---=======-...:----=----_._--
._--------- ~-, ---~--_ .. -
~~---C\: --- ~.--~ -~-~~

._---._--._--- ---- --~----------

(a) Sample field for vertical motion (b) Sample field for horizontal motion

Figure 4.5 - Flow fields for vertical and horizontal motions in horizontally textured
environment.

Figure 4.5 shows sample flow fields for the horizontal and vertical motions when

epipolar geometry is ignored. When moving vertically, the y- components of the flow-

field are constrained, while the x- components are unstable. In this case, one could say

that the magnitude of the flow-field is constrained, while the phase is not. When moving

horizontally to the image gradient, the opposite condition occurs -- the image constrains
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the angle of the flow field, while leaving the magnitude unconstrained. It is thus

necessary to either reduce the ambiguity in the magnitude or the angle of the flow vectors

respectively in Figure 4.5(a) and Figure 4.5(b). Epipolar geometry offers a solution for

removing ambiguity in the flow angle. Figure 4.6 shows the vertical motion when the

epipolar constraint is applied to the correspondence process. The epipolar constraint

effeetively reduees instability of the flow-field's x-eomponents.

Figure 4.6 - Flow field for vertical motion with epipolar constraint applied.

3. Defining a Motion Space

The first step in building an active viewer is to define the space of aH motions

from which the next viewpoint must be selected. The union of three different constraints

must be considered:

• the holonomie eonstraints on the viewer,

• eomputational eonstraints for eorrespondenee, triangulation and

interpolation; and

• a minimal spanning search spaee from which the motion is selected.
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The full configuration space for a viewer can be defined for the six degrees of

live in unrestricted intervals,

Tx , Ty and Tz E(- 00, 00)

Q x' Q y and Q z E (- Jr, Jr] . (4.12)

The weakly active viewer is forcibly restricted to a subset of this space. For the

holonomically handicapped application described here, these intervals become

(4.13)

The definition of SMALL is dependent on the physical parameters of the system at

hand. It is, however, desirable to make SMALL as large as possible as suggested by

expression (3.20). For this reason it will be assumed that the total baseline motion is

fixed at KBmax• The range of the rotations assumes a pan-tilt setup.

Additional constraints must be applied to the Tz , nx , ny and n z due to

computational assumptions made in the previous chapter. As described in (3.6) Tz «Z.

Thus,

1~ E (- SMALL, SMALL)

and, to satisfy the small rotation constraint of (3.2),

Qx' Qy and Q_ E [- .!!-,.!!-]
~ 36 36 .

(4.14)

(4.15)

Although the magnitudes are small, the motion space remains a six degree space

and thus difficult to search quickly. It tums out that the motion space from which the

active viewer will select its next step can be further constrained. Justification for further
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reducing the configuration space is provided by [19, 46, 61], who all demonstrate that

forward motion provides very little information for depth estimation as the ill-posedness

of the vanishing point dominates. Thus, Tz will be zero when performing depth

accumulation. Similarly, rotations about the focal point (Figure 3.1) provide no insight

or additional information about the depth of the image, and are thus omitted. It should be

noted that this does not imply that the viewer cannot move forward or rotate, as the

interpolation process can predict views for small forward and rotational motions. It is

just assumed here that the information introduced by such a motion is negligible. As

such, these motions are not included in the motion space. This leaves short baseline

motions with a fixed magnitude as the motion space available to the active viewer,

This can be reduced to a single angular parameter,

e == tan-1[T
yJTT'
x

(4.16)

(4.17)

This is a severely restricted 1-D motion space (hence the term weakly active), which has

the computational advantage of providing a quick solution to the motion selection

problem, yet offering a near maximal basis for matching gradient distributions in natural

scenes. As a final note conceming the motion of the viewer, each motion Ti is followed

by a motion Ti +! such that,

(4.18)

This ensures that the scene remains relatively centered in the image.
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4. Choosing the Next Motion

This section examines how the viewer can be actively controlled to optimally

extract depth information from the intensity projection of a scene. It begins by reviewing

key elements in the active vision literature. It then introduces a strategy for selecting a

next-step based on statistical grouping of image gradient features.

Aloimonos and Bandyopadhyay did early work on the active vision paradigm in

their landmark paper [2]. In this work they examine the advantages of an active observer

for several shape-from-X problems. In particular, they discuss a multi-baseline approach

for recovering Lambertian surfaces to which an adaptive image coordinate system, based

on epipolar geometry and isophotes, is applied. They demonstrate that controlled view

selection can be used to reduce the ambiguity involved in the correspondence process,

and yields a stable and robust framework for shape recovery.

Bajcsy [7] provides a more general methodology for active perception. She

defines active vision as an intelligent data acquisition strategy for which measurement

parameters, which reflect ambiguity in the scene, are used as a feedback mechanism to

the acquisition process. The author discourages regularization by suggesting that the

computational effort should not be spent on processing and artificially improving

imperfect data, but rather on accepting imperfect, noisy data as matter of fact and

incorporating it into the overall processing stage.

Whaite and Ferrie [68] suggest a formaI mathematical framework in which

ambiguity is equated to uncertainty. The measurement model is defined as a general

linear system,

d =G(x)m, (4.19)
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where d is the observation, G is the forward sensor model for a glVen sensor

configuration x (including location), and m is the set of model parameters, which can also

be considered as the state vector. A least-squares solution is suggested for inverting O,

The associated uncertainty to this solution is,

(4.20)

where Cm is the model covariance that results from projecting the measurement noise into

model space. The active viewer chooses a sensor configuration x, such that

H =G(xY G(x), (4.21 )

maximally reduces the uncertainty, Cm. The authors apply their theory in the context of

autonomous model fitting application. The measurement consists of laser-range data, and

the model space is defined as the set of super-ellipsoids.

Arbel and Ferrie [4] develop similar work for selecting the most informative view

for autonomous object recognition. Training involves the acquisition of a cross section of

short arc optical flow measurements on a tessellated view sphere surrounding the object.

The state space is the set of confidence values associated to each object. A Bayesian

inference is used to compute the confidence values associated to each object for each

viewpoint. Principal components analysis (PCA) is used to build a compact parametric

space representing the flow sphere of each object. A set of entropy maps, which provides

a measure of distinctiveness for each object given a viewpoint and pose, is also

constructed during the training phase. The recognition process starts by placing the

viewer at a random pose on the view sphere of an unknown object. The optical flow

cross-section at this viewpoint is projected into the PCA space and a confidence value is

retumed for each object. A Bayesian chaining process is used to accumulate evidence for
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each hypothesis object. The wmmng hypothesis is defined as the object that has

accumulates the greatest certainty. Given the hypothesized object and its associated

entropy map, the viewer moves to what it estimates is the most informative new

viewpoint.

In the context of the image-based surface reconstruction problem, Huang and

Aloimonos [34] have developed an approach for obtaining relative (purposive) depth

using the normal components of the optical flow. They suggest that when the local

intensity has high gradient, the normal optical flow approximates the component of the

projected motion field parallel to the image gradient. This agrees with the earlier

mentioned analysis of Verri and Poggio [66]. This work fails to provide an accumulation

strategy or respective confidence values, and does not suggest a strategy for actively

choosing the viewer's motion. It only provides depth estimates where the optical flow

happens to be parallel to the image gradient. This results in a sparse depth image and

fails to ensure that the full potential of image features is used.

Sandini and Tistarelli [57] also propose a depth estimation system based on

normal flow for computing scene depth. They use a DOG operator to extract edges in the

image. They perform correspondence on the edges until a sufficient baseline is achieved

and then triangulate. As is the case for Huang and Aloimonos, no feedback is applied in

the system and the measurements are not qualified. Also, depth measurements are only

available along distinguishable edges, and as such are sparse.

The approach presented in this thesis draws inspiration from all the above

mentioned active systems. It attempts to improve the convergence rate of the system by

using the image gradient to estimate the most informative camera motion angle, eT'
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4.1 Predicting the Most Informative Motion

Arbel and Ferrie, and Whaite and Ferrie's definition of what is the best motion is

borrowed here. The objective of the active viewer is to select the most informative

motion over the whole MxN array of Kalman filters. In the context of the Kalman filter

framework, the most informative view is the one that maximally reduces Pk (i,j) . This is

equivalent to minimizing (3.20) by maximally reducing the values of oL and aiy. The

strategy adopted to obtain this behaviour is described as follows:

i) where the gradient information is unidirectional, the Vlewer should be

directed to move parallel to the image gradient, thus providing the best

measurement and maximal information;

ii) in the opposite case where the aperture problem is negligible, the choice of

the motion is less important, as, ideally, any motion should provide an

equivalent increase in information; and

iii) when no intensity information is available, the point should be ignored, as it

provides no contribution to the solution and is completely dependent on the

interpolation process.

These characteristics are fully encompassed by the eigenvalues, ~ and ~, of the

Normal matrix (2.7), where ~ > ~. Table 4.1 provides an intuitive association of

eigenvalues to the three conditions mentioned above:
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~ ~ Condition
Number

LARGE LARGE (ii)
LARGE SMALL (i)
SMALL SMALL (iii)

Tabre 4.1 - Interpretation of Normal matrix eigenvalues.

Extending this idea to a full MxN array (image) of depth estimates, d(i,j) ,

involves developing sorne statistical tools. The approach taken here strongly resembles

that of the Hough transform. Thus, a weighted histogram approach is adopted. The

histogram represents a voting function in which each patch votes according to its gradient

angle. The gradient angle with the most votes is adopted as the best motion angle, eT'

The weight, w(i,j), of each depth element's vote is set according to the system variance

of the respective Kalman filter Pk (i,j) and the predicted conditioning of the patch

according to N(i,j). The weighting function should have the following characteristics:

• be strong for large system uncertainty when the aperture problem prevails,

• be weak for large system uncertainty where there is no aperture effect, and

• be weak when the system is very certain of its estimate.

The suggested expression for the weighting function is

( ' ') p, (' ') ~ (i,j)
Wl,} = k l,} (l+~(i,j))~(i,j)' (4.22)

The choice of the inverted ~ term in (4.22) is based on the observation made by

Barron et al. [8] and, Fleet and Langley [23] that the normal matrix predicts the aperture
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problem for the condition where Az < 1.0. The ~ ratio is used to neglect votes of

elements where no gradient information is available.

It is accepted that most natural and indoor scenes contain sorne form of structured

gradient information. The traditional feature-based stereovision approaches have fit

parametric models (e.g. lines, corners, polygons) to image pairs, thus taking advantage of

spatial relationships between these somewhat invariant features to provide robust

correspondence. Difficulties arise in the fitting process, which can be time consuming

and ill-conditioned. Additional difficulties arise in matching these high-Ievel features

which may be numerous, small and difficult to detect.

In the context of the gradient-based weighted histograrn, the spatial structure of

the features is ignored. However, there still remains a strong relationship between the

gradient-structures in the image and the histogram's distribution. Generally, different

features with common intensity orientations will result in a peak. As there may be

several dominant orientations in the image, several such peaks may occur. To distinguish

these features, sorne form of clustering is necessary for segmenting the gradient

distribution histogram. A slightly modified version ofPuziacha et al. 's [55] unsupervised

histogram clustering algorithm is used to group the votes into histogram clusters. The

original implementation of Puziacha et al. 's clustering algorithrn was for image

segmentation. The algorithm uses annealed maximum a-posteriori estimation in a

Bayesian framework to compute an optimal clustering solution. The authors report that

this algorithm performs better and more efficiently than standard K-mean and proximity

based clustering approaches. Slight modification was made as the context of this thesis.

As the algorithm is used for angular values, which live on a (-"/2",,,/2) interval, the
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ends of the histogram were joined to provide correct clustering of angles near -,,/2 and

The direction of the camera motion, eT, is based on the mean value of the c1uster

with the most votes. This ensures that a maximum number of optical flow estimates are

agreeable to the expected direction of the flow field, and a maximum amount of depth

information is thus extracted from the flow-field. The histogram is recomputed after each

motion pair, Ti and Ti+ l . Thus, an attention-like mechanism is obtained for driving the

viewer's motion and closing the next-step controlloop.

Figure 4.7 shows the histogram distribution and segmentation for several

different textures. The first two are synthetic horizontal and diagonal textures. The last

three are natural images of a window, a desert and the surface of the planet Mars. Each

of these textures is mapped onto the synthetic owl scene. The segmented histograms

show that the natural images do indeed contain gradient structure.

l'· ,~.

(a) Horizontal texture

_2 _I.S _, -(1.' () 0.5
""9"'(R_n~,

~,!---J\7-7--;:~,'--T-o--t<"--:-------,..-----;
Mvl-11'I_nl
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0,,0'

(b) Diagonal texture

1
~ ~l.$ _1 -1).' Il 0.5

""9'-IIl_ioM)

(c) Window image

(d) Desert scene

(e) Mars image

Figure 4.7 - Real and synthetic textures with associated gradient and segmented
gradient histograms.
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(4.23)

The histograms indicate that a dominant gradient direction is present in each

texture. The synthetic textures confirm the obvious dominant gradient directions of -90

degrees and 45 degrees. The window image results in a triplet of dominant directions in

the horizontal and vertical directions. The desert texture provides a dominant gradient

around 42 degrees. Most interesting is the Mars texture, which has no visually dominant

gradient direction. The histogram segmentation indicates a dominant gradient direction

of -72 degrees. Thus, the observer, in each case, chooses its first motion angle, 0 TO ' as:

90 degrees, 45 degrees, 0 degrees, 42 degrees and -72 degrees, respectively for each of

the textured scenes in Figure 4.7. After each motion, the histogram is updated with the

new confidence values and a new motion angle is selected.

5. Generating a Passive Trajectory

To provide a measure of effectiveness of the active algorithm over a passive

approach, it is necessary to first define a paradigm for the passive viewer. The passive

viewer is approximated as a series of successive random angular motion pairs, for which

depth values are accumulated, where no angular motion is repeated,

eTi = Random[O··Jr1 eTi :;teTj VjE(O ... i-l)

This approximation to the passive viewer is however somewhat inexact. In

general, sorne form directed bias is observed for the passive viewer. Thus, a random

angular motion sequence does not truly represent the passive motion sequence. When

considering this, it is important to note that the random angular motion has the advantage

of conditioning the noise in the measurement process to the desired zero-mean. Thus, the
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random angular motion provides better depth estimation than a true passive observer.

Still, it is used in the next section to draw sorne understanding as to how weIl the active

algorithm works.

6. Results

For each of texture in Figure 4.7 a senes of thirty different passive motion

sequences were tested. The mean of the RMS-Error and respective standard deviation are

provided for each step of the group of passive sequences. These are compared to the

RMS-Error for the active motion sequence. Each sequence was constructed from five

successive motion pairs. The results are presented in Figure 4.8, Figure 4.9, Figure

4.10, Figure 4.11 and Figure 4.12 below.

RMS-Error versus Time

0.71-----,r-----r-----.-----,----;::==~====~

1

.... .... Active 1
-- Random

OB

05

0.2

0.1

OL-__-'- L-__-'-__--''--__--'-__--'
o 2 4 6 8 10 12

Nurrt.er 01 Hera~ions

Figure 4.8 - RMS-Error plot for vertical texture.
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Rto'1S-Error versus Time
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Figure 4.9 - RMS-Error plot for diagonal texture.
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Figure 4.10 - RMS-Error plot for window image.

72



Rto'1S-Error ver'Sus Time
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Figure 4.11 - RMS-Error plot for desert image.
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Figure 4.12 - RMS-Error plot for Mars image.
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These results show that the active algorithm is indeed capable of taking advantage

of texture features of synthetic and natural scenes for improving the convergence rate of

the depth estimation process. In aIl cases, the active method falls below the mean RMS

Error of the passive observer. The active error is generally around a standard deviation

better than the passive viewer RMS-Error for the earlier iterations in the sequence. The

noise conditioning caused by the random element of the passive viewer is observed in the

later iterations, where the active viewer is usually weIl within the standard deviation

range. In general, the active method can be said to converge between 3 and 4 times faster

than the passive viewer.

As a last addition to this thesis a pair of real surfaces were scanned using the

active reconstruction system. A Panasonic GP-KS 152 camera with a focal length of

approximately 7mm was mounted on the end effecter of a gantry robot. The robot

provided a pose that was repeatable up to Imm. The camera was place 32cm away from

a calibration grid (Figure 4.13), and permitted to explore two surfaces: a flat calibration

grid and a step edge 10cm tall (Figure 4.14). The baseline was fixed at 4mm. Figures

show the experimental setup and the camera' s view during the experiment. The resulting

surface reconstructions after 10 iterations are provided in Figure.
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(a) Experimental setup for
calibration grid.

Figure 4.13 - Calibration grid experiment.

(a) Experimental setup for step
edge.

Figure 4.14 - Step edge experiment.

(b) Camera view of calibration
grid experiment.

(b) Camera view of step edge
experiment.
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Figure 4.15 - Reconstruction of calibration grid.
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Results from these experiments (Figure 4.15 and Figure 4.16) show that the

system is capable of estimating depths with an error of approximately Smm. The

surfaces are surprisingly smooth given that no explicit regularization was performed, and

that the scene was only partially textured. The estimated step edge was nearly

perpendicular and the height of the edge was successfully recovered.
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CHAPTER5

Conclusion

This thesis has described the design and implementation of an active surface

reconstruction algorithm. The system was designed in the context of an autonomous

explorer and does not assume continuous image sampling is available. As such, it was

constrained to two frames of temporal support and a short baseline.

Surface reconstruction is known to be ill posed for several reasons. Vnder a

small-motion assumption, the reconstruction can be simplified, leaving correspondence

as the main source of ambiguity in the system. The problem is thus formulated in a

maximal-estimation theory framework. Vsing this formulation, it is possible to recast

previous work that uses a multi-baseline strategy and/or invariant image feature selection.

New insight is provided by suggesting that it is not necessarily sufficient to select a wide

enough baseline or invariant features. It is shown that, to ensure maximal information is

extracted from the image sequence, the epipolar angles of the flow field and the

directional predisposition of image features must be considered. This thesis shows that

an adaptive active strategy can be used to improve the conditioning of the problem.

The thesis begins by examining the optical flow estimation problem. Different

optical flow algorithms are examined at three levels: pixel correspondence, sub-pixel

estimation and confidence measures. For the last criterion, a formalized framework for

evaluating confidence measures in the anticipated maximal estimation context is

78



introduced. Results from this section of the thesis suggest that Camus' optical flow

algorithm is best suited for two-frame flow estimation due to its important computational

advantages and its robustness for short temporal support. Sub-pixel estimation was found

to be most effective when combining a bilinear interpolation method with Anandan's

sub-pixel method. A generalized confidence measure was suggested and shown to be

more consistent for attenuating error for the standard flow estimation test set and an

additional pair of real image sequences. This generalized confidence measure was shown

to include previously suggested confidence measures by Anandan and Matthies et al.

It is expected that the suggested formaI approach for determining the

effectiveness of confidence measures is an important contribution to the fields of optical

flow estimation and dense depth estimation. This methodology certainly offers a clear

path for future work in the development of optical flow confidence measures as weIl as

possible improvements to other confidence measures that were not considered in the

context of this thesis.

The next important theme discussed in this thesis involved the accumulation of

depth information. The Kalman filter was described and various elements of the

literature were reviewed. It was shown that the current polygonal mesh models for

interpolating the surface measurements are inconsistent with information theory. As such,

it was suggested that maximal estimation approach used for temporal accumulation

should indeed be extended to the spatial interpolation step of the Kalman Filter.

Experimental results were provided to support this. It was shown that when

regularization was removed from the current approaches, the algorithms actually

regressed their surface estimation, thus creating large gaps in the surface estimates. The
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maximal-estimation approach successfully filled the gaps by implicitly

interpolating/extrapolating the depth values.

Although the current implementation of this approach works sufficiently well, it is

felt that there is still room for improvement. Future work in this area should attempt to

develop a relationship between the size of the correlation windows and the current

confidence of the surface estimate. Thus more confident depth estimates should reduce

image patch sizes to avoid smoothing out edges, while areas of low confidence should

increase the patch sizes to include greater spatial support.

The last part of this thesis demonstrated how a generalized statistical model for

local image gradient features could be used for improving the estimation process. As

such, a statistical histogram-clustering algorithm was modified, and shown to

successfully provide correct gaze guidance to the viewer. Several synthetic and real

textures were tested experimentally. The active strategy was compared to a pseudo

passive viewer that was composed of thirty random motion sequences. Results show that

the active approach was in general a full standard deviation bellow the mean RMS-Error

of the passive walks for the first five iterations of the estimation process. More generally,

the active strategy improves the convergence rate of the accumulation process by a factor

of 3 to 4. This effectively demonstrates that the directional predisposition of the image

features does in fact have an important impact on insuring that information in the image

is maximally extracted.

It should also be noted that the system should be tested under conditions where

segmentation of image gradient results in a more evenly distributed histogram. Under

such conditions, the active strategy would probably fail to provide any advantage. It can
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even be anticipated that it might be better to use a motion sequence for which the motion

angles are evenly distributed, thus conditioning the noise as zero-mean.

Thus, this thesis has provided a consistent approach to demonstrating that

statistical grouping of local gradient direction can indeed be used for directing the motion

of a viewer. This effectively does significantly improve the depth estimation process.

There is still much work to be done at alllevels of the system described here, but it is feh

that the contents of this thesis provide a clear basis for future work.
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