
1] 1

\, \ f\

a' \ ;(""J'

Î~ ~
, ri

/

"

~ .

•

"

- .

-

Conditional Stuck-At Fault Model for
PLA Test Generation

Olivian E. Cornelia

\

"" Department of Electrical, Engineering

McGill University

. ,

\

1 ...

'1

1

l
\
1

1

,
1

\ .

.. A thesis Bubmitte~, to the Faculty of G duate Studies and Research

:Gi,~
" , "

t , ,-
,
~~

~;'i l \

~~~'.. , ", 
~t ',..:l~ f~\- ~ ~ 111'\ w':. i >~ 
~I~~fr.~t:t!.«l.~,\ ...... ~'~ \.. )~,~'1 r ~~I ~~ ... \ 

'in partial fulfillmenp of the requirements for the degree of , 
Master of Engineering 

December, 1987 

-_ .. - @ Olivian E. Cornelia -

Q -

,1>.. 
.... ' 

" 

" 

It ;"/ ~ 

~,~t 
; 

~ 



• 
(, 

,', 

, 

o 

1 

Abstract 

, ~, 

This thesis presents a new fauit modei called the eonditional stuck-at (CSA) 

.fauit model. In this model, each stuek-at fauit on a line might have associated with 

it a ,condition which requires that a test pattern for this fauit should, in addition to 

testing for the fault, produee 8; specifie binarr value on another specified line in the 

gâte model. The new fault modei can efficiently modei defects which do not result' 

in purely st,+ek-at faults, such ~ bridging fauits, and missing or additional transistors 

faults. Thïs allows deterministic test pat terri gene~ation not only for stuck-at faults, but ( 
, "" 
aIso for bridging faults and for addition al or missing transistor faults. The conditional 

stuck-at fault model has been applied to Programmable Logic Arrays and it has been ' 

shown that aIl sïngle stuck-at faults, \ single cross-point, and single bridging faults in 

a PLA can be covered by this new model. \ The CSA fault model allows one to solve . ~ 
the problem of test generation for PLA's by using the classical test pattern generation 

and simulation tools after minor changes, without requiring an extended gate model of 

the PLA. Sinee aIl the three most likely to oecur fauIts in PLA's are treated under a 
t 

unique fauit model, the CSA fâ,ult model enahles one to test embedded PLA's without 
- . 

requiring any additional controllability 1 observability schemes or Built-In Self Test. The 

viability of the conditional stuck-at fauit model is demonstrated by simulation results 

for some benchmarking PLA's. Coverage figures are reported -for stuck-at fauits, for 

cross-point fauIts, and for bridging faùlts. 

\ 

ü 
/ 

( 



~,' ~I( '-, 
" 

cr-

e· 
~ ,', 

'~ 

, . 

Résumé 

C~tte thèse propose un nouvea.u modèle de défaut a.ppelé "défaut bloqué 

.conditionnel" (DBC). Avec 'le modèle DBC, chaque défaut "bloqué" d'une ligne d'un 

. circuit peut dans certains cas être associé à fIe condition s~ une autre ligne. Cette 

condition exige qu'un vecteur de test pour le défaut "bloqué" doit, en plus de détecter 

le défaut "bloqué", produire une certaine valeur binaire sur l'autre ligne specifiée. Ce 
, \ 

nouveau modéle de défaut peut servir à modeliser de manière éfficace, des types de 

défauts qui ne peuvent être modelisés par le modèle de défaut "bloqué". Des exemples 

de ces t es de défauts sont: "point de traverse", "de pont". Ceci permet la génération 

algori mique de v,ecteurs de test non ~eulement poUf des défauts de type "bloqué", 

ais aussi pour des défauts de type "point de traverse" et "de pont". Le modèle DBC a 

été appliqué aux Structures de Logique Programmables (SLPs). Il a été demontré que 

tous les défauts simples de type "bloqué", "point de traverse" , ou "de pont"d'une SLP, 
; . \ 

peuvent être détecté par le mpdèle DBC. En vue de résoudre le problème de la génération 

des vecteurs de test pour une SLP, le modèle de défaut DBC permet l'utilisation des , 

outils cÎassiques de génération de vecteurs de test et de simulat)on de défauts auxquels 
- ", 

~oivent être apportés que de simples modifications, et donc ne necessite pas que la SLP 

soit décrite par un modèle de portes logiques spécialement élaboré a cet éffet. P-ui~que 

les trois types de défauts les plus courants dans une SLP peuvent être traité par l'unique 

modèle DBC, ce dernier permet donc la vérification de SLPs intégrées dans un circuit 

logique sans avoir recours à des moyens spéciaux de contrôle et 'd'obseravation, ou à 

une structure d'autovérification. L'attrait du modèle DBC est soutenu par des résultats 

de simulations obtenus sur des SLPs qui servent d'exemples pour la comparaison de 

diffêrents algorithmes. Des pourcentages de détection de défauts "bloqué", "point de 

traverse" et "de pont" sont inclus dans les résultats. 

ili 



.\ 

./ 

-
;' 

o 

." 

., 1·· " 

a , ' 

Acknowledgements 

, ~ 1 

It is a great pleasure to express Illy sincere appreciation to Professor Vinod 

K. Agarwal for his supervision and guidance of this research project. With tremendous 
-

patience and competence, he providéd the encouragement needed in the hard times 

of this work, and always shared the enthusiasm when res~lts were obtained. Spetial 
" \ 

thanks are due to Professor Nicholas Rumin an~ to Professor Janusz Rajski for helpful 

technical discussions . 

Thanks are also due·to the Natural Scienëes and Engineering Research COWl-
, . 

cil of Canada for providing fin'ancial assistance for this research project. 

1 sincerely thank my colleague, André Ivanov for his assistance in' under­

,standing the details of a large ATPG and simulation tooI. Thanks are also due to a.Il 

the students ih the VLSI Group for creating such a pleasant work environment . 
• 

"1 

", 

iv 

. , 

, '. 

, ' 



?( . 

~ 

-. 

>, 

~(:.~,_. ~ .. " ~>,0.;l~:! l ~ ~, _V'" 

ri 
!"\ 
1: r 
Ir 

Contents 

- 1 Contents 
\ -

, 
(\ 
l, 

\:1, . ' ~ -
Abstract ................. III ............................. --rT •••• "" •••••••• , • • • • •• Il 

Résumé ............ : ...... il' ............... : ................... ' ....... , III 
, 1 r 

Acknowledgements ••......• , .•..•••.....•••.. , ..•.....•••. 1 • • • • • • • • • • • •• IV 
, " 

.' \ 

, '1" bl l' l ' ,. \ ' 

~a e 0 Contents .......... . \ ....•...... 1 •••• lit •••••••••••••••••••• " •• •• •• li 
\ ~ - ,'" ~ 

L 't iF' l t 0 '~' .. 

18 0 'gures .. , f ........... ~ •••••• 'It ••• t ••• 10 •••••••• t •••••••••••••••• l' VII 
1 Il ~ •• 

, • t- ~ ~ 

" . List of Tables . ... , ...... , . ~ ........ ., .....• --.-•....••......•... J" • : •• /,,\ ..... viii 
)-

Chapter 1 Introduction ...................... : . . .. .. .. . . . . . .. .. .. 1 

Chapter 2 Literature Review .................. ,..' . ; ......... : .. .. 7 

2.1 Test' Generation for Digital Integrated Circuits ............... " •.... , .. 8 
. -., 

2.2 PLA Faults., . la ••• ., ••• ., .......................... t' • " ...... ' •••••• ,.. • • Il 

2.3 Deterministic TPG Aigorithms for PLA 's ................... '. . . . . . . . 12 
, . 

2.4 Embedded PLA Testing - Classical Solutions .. ~ .............. : ...... 17 

Chapter 3 Conditional Stuck-At F~ult Model ............... : 24 
111. 

3.1 Cross-Poin, FauIts Modeled as CSA Faults .....•..... 6. • • • • • • • • • . • . • 25 

3.2 Bridging Faults Modeled as CSA Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

o 

Chapter 4 Single Bridging Faults ............................. : 30 

4.1 Bit Lines .......................... l • • • • • • • • • • • • • • • • • • • • • • • • • • • • 30 

4.1.1 Case Po .•...•..••..•••••••••• .- •••••• :. • • • • • • • • • • • • • • • • • • . . 30 

4.1.2 Case Pl .....................••••... .' .•..•... '. • • . . . . . . . . . . . 31 

4.1.3 Case P2 ............. " ..................... , . . . . ... . . . . . . . . . 34 

4.1.4 Case P3 •••••.••••• # ....................... ~ . . . . . . . . . . . . . 34 

~.1.5 Combinations Pl - PZ - Pa ••••.••••..••••••••••••.• , • • • • • . •• 36 

4.2 Product Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

• 
v 

, , 



~F: J~~~. 
'>"11 • , ' 

, 1 

o 4.2.1 Case 91 . . . . . . · ............. . • ••• , ,'J_ 
• .37 

4.2.2 Case 93 • ............................. . . . . . . . . . . . . . . . . 
1 

4.2.3 Oombinations gl - 92 - 93 ................. . 40 
q 

4.3 Output Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

4.4 Cross-Point Shorts ... • 1' •••••••••• .. .............. . 41 

4.4.1 Bit and Product Lines .'. 41 

4.4.2 Product and Output Lines -.. 
• • 45 ,:ç 

4.5 Conclusion •••• ' ••••••••••••••••••••• " " " •••••• (JI ......... . .-.. -47 

Chapter 5 Experiments and lt§$ults ~ 
'1 '; '. "" 

49 
, ., 

5.1 CSA Faults .........•...•...... L' • .. . " 49 

5.2 ATPG Tool .... -. ....... " \ ..........•... . . . , . , .. ...... , .... 52 
j 

5.3 CSA Coverage .. , \1 ............ . 54 

5.4 Coverage by Ts A ••••• , • ••• , ••••••• 41 • \1 •••• III ..... 56 

Chapter 6 Conclusion · ......... . .... • ••• If ••••• " 65 
~, 

1 1 
~E~ERENCES'r 67 

\ 

.. 
• 

•• 

• 

o 
vi 

. 
i"L>.~/· if)',! ./f 



Liat of Fipne , Lift of Figures 

1.1 

\ 
--':.... q. .. 

PLA RepresentatioUfJ ...... 'O ••••••••••••••• ;....................... 3 

2.1 PODEM Decision Tree .... .' .... ~ .~ .. "1/ .............................. . 10 

2.2 Functional Effects of C~ Faults - Examples ........................ . 14 
! ." 

2.3 Stuck-at Modela for Cross-Point 'Faults ............................ . 19 

2.4 Stuck-at Model for Bridging Fault, AND Effect ................ ~.:... 20 

3.1 
l' • 

Missing CP Fault Modeling ..... ~ ................................. t26 
3.2 Additiorial CP Fault Modeling - NOR-NOR Imp.lementation . .. . ...... 27 

4.1 Adjacent Bit Lines Shorted . " ..................... ~ . . . . . . . . . . . . . . .. 31 
o ' Â , 

4.2 Adjacent Bit Lines; Case Pl; AND Effect ........................... " 33 

4.3 Adjacent Bit Lines j Ca:se P3 ; AND Effect ......... .' . . . . . . . . . . . . . . . . 35 

4.4 AdJ'acent Product Line Patterns. . . . . . . . . . .. . . . . . .. . . . .. . . . . . . . . . .. 37 
\ . \ ' 

4.5 Adjacent Product Linesi Case g1; AND Effect.. . . .... . . .... . . .. ..... 38 

4.6 
\ 

\ 5.1 

Bit and Prodjct Line - Fault (a/a, Pi == fJ) (AND Effect) ...... " : . . . . . 44 
, . . 

Assumed Layout Positioning for NOR-NOR Implementation.. . . . ..... 52 

t 5.2 Fault Dictionary Data Structure ................ ',' . . . . . . . . . . . . . . . . . 53 

. \ 

./ 
( 

vü 



, 1 

• 
2.1 

4.1 

4,2 

'5.1") 

5.2 

5.3 

5.3 

~ 'S.4 

5.4 

5.5 

5.5 

'<! 5.6 

5.6 

-, .. , " 

... List of :l'ables 
( 

List of Tables 

t _, 

• .1 
Extended Model - Gate Counts .. . . . . . . . . ........................ . 

Bridging Faults Between Parallel Wires on the Same Layer .......... . 

Brldging Faults Between Lines on Different Layers ................. ~< 

Calibration ........ 1 1 ••••• 1 ........ :; •••••••••••• , •••••• " ••••••••• 

Time Required for CSA Generation: ....................... ,_ ....... . 

Cross-Point Fault Coverage ................ , . < •••••••••••••••••••• 1 

- -- ; 
Cross-Point Fault Coverage - Continued ........................... '. . 
Same Layer Bridges ........................ ' ..................... . 

Same Layer Bridges - Continued ........ : ........................ . 

Same Layer Bridges - TCSA-SLB and TSA .. _~.: ............. ',' .... . 

Same Layer Bridges - TCSA-SLB and TSA - Continued .. 'b' •••••••••• 

, " 

Cross-Point Shorts .................... ' ........... 1 ••••••••••••••• 

Cross-Point Shorts - Continued .................................. . 

o , 

\1 
,\ 
1 

21 

47 / 

48 

50 

:51 

57 

58 

59 

60 

61 

62 

63 

64 

viii 

'j 
! 

/ 

! 
1 

(t;. 



f ~) 
'If , .' 

.. 
" . 

. Chapter 10 Introduction 

Advances in microelectronic technology allow hundreda of thousands of tran-
,- , 

sistors to b~ placed on a sip.gle chip. DesigIling such a very complex integrated circuit 
- J 

represents a serious challenge and requires a. structured approach as weIl as very effi-
) , 

dent computer-aided deàign tools. To cope with the design complexity, it has become 
~ . 

necessary to use standard cells, automatic layout geheration from boolean equations, 

and, for specifie applications, automatic layout generation from a high level,d,escription 

of the circuit (silicon compilation). Along these lines, anay structures have emerged 
"' 

as a very efficient way to implement logic blocks which may be used afterwards a§ ba-

~ sic com~onents. One of the most popular type of arrays are the Progra.mrÎJ.~b-l~ L~gic 
l , 

:t:_, 

Arrays (PLA's). Their regularity allows automatic layout generation, which decreases 

significantly"the design time, espeèially in the case of design iteratioDB . . 
b , .. 

PLA's are widely used to implement two-Ievel mul~iple output boolean fune-. . , 
tions. The PLA 's uiJed as standard parts are usually programmed in the field by blowing 

fuses (FPLA's). PLA's mayalso appear as blocks in larger integrated circuits or as stan­

dard parts. PLA's can he implemented both in bipolar and in MOS technologies. When 
• used in larger integrated circuits, the PLA's are called embedded PLA's. They are fre-

, 

quently used to,!implement instruction decQders and, along with memory element~, finite 

state machines f[l], [2}:- (j'o , : 

A PLA, as shown in figure 1.1, bàsicaUy consista of two rectangular adjacent 

anays of wires representing the two levels of the logic functions they implement. Tu.-, 

dltionally, the two arrays are called AND and OR, due to the function they implement 



~f;f~· .; -~. 
, , 

..,'" ~ ~ 

• 

" 1 

" 
, . 

o. 

Introduction 

1 ~ } ... :, 

in bipolar technology. A NOR-NO~ implernentation is, commonly useg in the MOS . 

technology, but the.names for the arrays are still preserved. The verticàl lines in tfM 
D 4 / ........ ~ 

. AND array are the decoded values of the inputs arid are called bit lines. Usually, 'each 
, 4' 

i~put is decoded separately into .two bit line~, as ,shown in figure 1.1. It is possible 

lJ howe~er to decode two input lines into four~it Hnes [3]. It nas,been shown 'in [4] that 

titis implementation is more efficient as far as occupied areaois concerned. In this thesis, 
t _~ 

only' the single i,np\It oecodér implementation will he analyzed. 
( 

, -
, - J~ ~ , .. 

" ,~"" ~ ,,: t'The horizdntàl lines in both arrays are called product lin es. In the AND 
, 

arr.ay, e~ product 'line ois an output of agate, either AND or NOR, depending on the . " 1 • 

irnpl~rnentaîio~l. In 'the, ~R' ~rray,. product lines are input Hnes for "the gate~'n the 

array 1fig. la)'. The vertIcal IIlles III the OR array represent the OR gates an hence . 
the putput~ of the PLA. For the NOR-NOR implementation, the second level of NOR 

g~tes is f~llowed by inverters ~d therefore the NOR gates in the OR plane plus the 

oùtput iilVerters implèment on OR function. 

~' 1 " .. ," " .. The intêrsecti~n of a horizontal and a vertiçal line 'is called' a cross-point. 

Here, a devi~e (transistor or diode) may or may not be present. If a device exists, then 

the product/output line depends on the bit/product Hne, respectively. Usually,; s,!ch 
1 • G ~ 

a cross-point is called a used cross-point. Ifno devite is pres~ then no dependence . ' . 
'l>-

exis~s between the t\yo lines. In the symbolic PLf representation shown in figure 1.la, (J 

a device is represented by a dot at the correspondine~ cross-point. " 

A PLA can he very well described in the cubical notation. The representation 

of the PLA in cubical notation, called personaijty matrix, consists of two adjacent twû­

, dimensional arrays of symbols corresponding to the cross-points in the AND array and' 

"OR array. For the AND array, each entry in the personality rl1atrix repr{'sents a pair of 
n 

,cross-points, '!t the il1tersection of two bit Hnes (of the sarne \nput) and sorne product 
, , '" 
Hne. If rrëtther cross-point is used, then t'he entry is "x" (or "-"). lf a dêvice is placed 

> 

on the inverted input, then the symbol is ;'0". If a device is placed on the, non-inverted 

input. then the symhol is "1". Inlthe OR array, if a device exists at sorne cross­
.... 

point, then the entry in the personality rnatrix is "1", otherwise 'it is "0". _The cubical 

2 



1;.: 
V' 

, ... ' .. 
. ' 

fi) SVJn6o'Co .",...'**" : 
:rI/ ~ f:3 

r­
I 

1""'" · ...,. : 
L. 

r- -, I·-.-t ..... -+~~ ... -t--+-i-t--: ..... t-I-.... ~-+- 1 
l , .. 9" 
1 ,.... ~ 

l , _ct ' , 
l , r-' 1 , , 
, ,~" 
1 1 ".... , 1 
~~ __ -4--__ -t--~~~~~~~~--.-~~ , , ', ... " 
:;-+~~~~~-'--r--+--'-TI~r--rl~--~--.. : L. ____ ~ ~ ____________ ~ 

, 

AND, Af7'IIV 
, OR Arrc:IV 

6) Cu&Wal 
~: 

a) Lof'lo l'unctions : 

fOI :J 

o t :J~1 

o 1 o 1 
o 0 0 :J 

~ 0 f 0 

010 
o t 1 
t 0 t 
110 

.f· 0 f 

't - '' • .l'''~+ :lf1l,S,+ "Iqr~ 
g, - .,iills+ iill,II4-+ iiiiiii 
" - ii :i,.,"* ~ "'_114+ Il, __ i; 

Il) N1IOS NOR-NOR Im"""""~,: 

z1 _:r:2 :r:8 z4 g1 g2 98 

Figure 1.1 PLA Representation8 o 

o 

3 

,~ 'l'"" 
-, .,' 



• 

'-

0, 

Introduction 

representatio:" of the PLA is widely used in logic minimization, test generation, and 

layout generation aIgorithrns. 

Due to their distinctive features, the PLA testing problem has become an 

important research'problem [5],[6],[7],[8],[9],[10],[11],[12]. In general, the faults wfflch 

are most Iikely to o~ in PLA's are stuck-at faults, bridging faults, and cross-poi~t 
fauIts. The layout information contained in the personality matrix and the regularity 

of the PLAs allow for more accurate modeling of defects. 'Foro the field programmable 

logic arraxs, the defects which are the most likely to occur are the cross-point defects. 

They consist of som~ connection at a cross-point where there should not exist one; 

or no connection at a cross-point where there'should exist one. Clearly, programming 

e;rors
o 
can be mapped into cross-point defects. The'!e defects have been f?odeled by the 

PLA-;pecific cross-point fault model. The cross-point fault model is considered to be 

superior to the stuck-at fault model because the function~l effects of aIl s}ngle stuck-at 

faults except outputs stuck-at .oné can be mapped into functional effects of cross-point 
- Q 

faults, whi1~ the reverse is not true unless extra circuitry is add~d [11],[13]. 7 

PLA bridging faults are particularly important due to the high density of the 

PLA layout which contains long wires rUllning in paralleI in both orthogonal directions. 

A bridging fault is caused by a short between two or more wires, none of which is 

. ground or power supply. Usually, the PLA layout preserves the relative position of the 

lin es in the PLA personality matrix. This provides the" basic information required for 

considering bridging faults, that is the Hnes which maywe involved in a bridge. The 
, . 

statistiçal, analysis presented in [12] shows that the probability of occurrence for bridging 

faults is in t~e same range as' the probab ility for stuck-at fauIts. Therefore, the problem 

, of detecting bridging faults requires more research work. One of the important problems 

reJated to bridging fau]ts is to determine what the effect of the bridge is. Traditionally, 

it l.as been assumed that a bridging fault has a definite logic effect, either AND or 

.. , OR [71. Vnder this assumption, it has been shown in [7] that single bridging faults in 

l ,PLA 's can be modeled as multiple cross-point faults. However, no exact reports exist 

on how weIl this kind of m~ling performs in covering bridges. The analysis of PLA 

bridging faults under both XND al1d OR effects presentétl in [7] concludes by dividing 

4 



". ~, 

- " 

.. 

: <. Introduction 

iheir coverage into three classes: fault detection guaranteed (by a single g:ess-point 

test set), not" guaranteed, and detected if any testable çro::;s-point is altered. Another 

problem related to bridging faults is thé lack of an efficient way to model these faults. In 

[7J, bridging faults are modeled as multiple cross-point faults. In [11], they are rnodeled 

as stuck-at faults by adding extra gates and the coverag~ of bridges is given at the 

computational cost of handling an extended m~del of ~ PLA. 

Various rnethods for PI:A testing have been proposed in the literature. Sorne 

representative approaches will be reviewed in chapter 2. Most of~he deterministic test . 

pattern generation algorithms for PLA's are based on the crbss-point fault model [6],[9] 
1 

and assume that the PLA inputs and outputs are directly accessible. These algorithms 

are designed for two-Ievel circuits and the computation of test vectors relies on cube 

prQcessing. Many heuristics have been developed to make these algorithms time efficient 

and generate compact test sets [7],[9]. Clearly, by using a specifie fault model, these 

algorithms are applicable to PLA's only. For the case of embedded PLA's, where the 

assumption of accèssible inputs and outputs does not hold, the tools based 'on the cross­

point fault model are of limited value, unless addition al controllability jobservability 
~ 

schemes are used. 

To avoid the computational effort related to test pattern generation, sorne 

easily testable PbA designs have ?een proposed in the literature [14J,[15],[16]. The 

easy testability is achieved by adding extra hardware which increases the control1ability 

and opservaçiljty of ail PLA crosspoints and makes the redundant cross-poillts testable. 

Quite often, easily testable PLA designs can be easily transforrned into built-in self test 

designs [14J, [17].0 

For embedded PLA 's, the twd alternatives proposed so far are buiIt in self. 

test [18],[17],[19] and enhan~ed controllability /observability schemes. Built-in self test 
! 

o 

for PLA's basically consists of on-chip test pattern generation and PLA output response 

analysis and ~a:y require further extra hardware for the PLA itself [20]. The second 

method involves off chip deterministic test pattern generation followed by test pattern 

application and output response observation. In order to control the PL~ inputs (i.e. 
, 

apply the test patterns) and observe the outputs, sorne extra circuitry has to be added. 

" \'" 
5 



-f'" ~ 

œl
; ~, 

'. 

l 

o 

" , 

" 
Introduction 

It usually consists of a scan path [21],[22] which not only occupies extra silicon area but 

implies long test pattern application time. The PLA has to he treated separately since 

different fault models are used for the larger circuit and for the embedded PLA. Both 

methods for embedded PLA testing require extra design effort, èxtra hardware, may 

require extra pins, and may result in PLA performance degradation. 

This thesis will introduce a new alternat}ve for PLA testing, which is based on 

a new fault model called conditional stuck-at (CSA) fault model. It will be shown that 

stuck-at~ cross-p'oint, and bridging faults can be modeled.as conditional stuck-at. faults 

in the' two-Ievel logic model of the PL~ without requiring extra gat~s or lines. The new 

fault mode! is applicable to genera! combinationaI circuits, as weIl as PLA'-s. Th~fore, 

emhedded PLA 's can be tested as part of the larger circuit using a unique fault model 
~ , 

and covering ail PLA faults. This will avoid additional controllability jobservahility or 
, • Ji' 

BIST schemes, or an extended gate modèl for the PLA, which have he~n used so far for 

emhedded PLA testing. ,Moreover, classica! test pattern generation and simulation tools , 
, \ 1 

can he used after minor changes for conditional stuck-at faults. The use of the CSA 

fault model allows deterministic test pattern generation for stuck-at faults, cross-point 

faults, and for bridging faults. Therefore, exacf côverage figures can he obtained for an 0 , . . 
these types of faults. Experiments and resuIts will he presented, showing ,the viability 

of the new fault model. 

The thesis is organized as follows. A review of the methods p;oposed ln 

• the literature for PLA testing is presented in chapter 2. Chapter 3 presents the new 

fault model and proves its capabiIity to'model stuck-at, cross-point, and bridging faults. 

Chapter 4 presents an analysis of the five types of hridging faults which may occur in . , 

PLA's and their mapping into the new fault mode!. Chapter 5 describes the experiments. 

performed and the results ohtairied for a representative set of benchmarking PLA's. 

Conclu ding remarks are included in chapter 6. 

6 



J 

• 

Chapter 2 Literature Review 

, , 

Digital cirçuit testing' becorries increasingly important 'as digital systems be-
, . 

come more complex. Therefore, there is much activity in trying to develop and improve 

testing techniques and test generation techniques. Various algorithms have been pro-
o ~ 

posed. for generating ~est vec~t~ for cOl11binational 'circuits [23],[24] ,[25], and, many tools 

have been implemented based on these algorithms. These tools are widely used in the 
, 

industry. 

There are, however, certain types of circuits, such as PLA's, which cannot 

be handled directly by these general test pattern generation tools, and require specifie 

test generation techniques. The PLA testing proôlem has received considerable atten-.. 
tion due to the extensive use of PLA's, both as standard parts and as building blocks. 

Starting with the assumption that that PLA inputs and outputs are directly accessi­

ble, various deterministic test pattern generation and simulation algorithms have been 

proposed in the literature [6],[71,[91,[81:, for PLA's only. Embedded PLA's, where inputs 

and outputs are not directIy accessible, have to be provided with additional controlla­

biIity jobservability, or BIST schemes, or aIl PLA faults have to be modeled as stuck-at 

faults in an extel'lded model of the PLA. 

This chapter will review sorne of the representative approaches for general 
• 

digital circuit test generation, PLA deterministic test pattern 'generation, and for em-

bedded PLA testing. 



"; .- , ~ . 

o 

o 

2.1 Test Generation for Digital Integr~ted. Girtu~ts 

2.1 Test Generation for Digital Integrated Circuits. 
;, 

The fault model which has received the most attention and has been the 

most widely used for integrated circuit testing is formulated at the gate level and is 

called the s~uck-at fault model. This mode} assumes that physical failures cause input 

or output Hnes of logic gates to be permanently stuck at the logic 0 or 1 levéfs. For test 

generation purposes, it is possible to consider aIl possible multiple faults in a circuit, or 

to rèstrict the fault set to aIl possible single faults. Because of the ex~nential size of, 

the set of multiple faults ( 3n - 1 , in a circuit with n lines) , the single stuck~ult model 

is the most corrimonly used. This is also supported by theoretical results presented in 
... 

126] and a case study reported in [27] which shows that single fault test sets do provide . , 

high multiple falllt coverage. 

The generation of test patterns can be done in two different ways: rj,Uldomly 

or deterministically. Deterministic test pattern generation algorithms can be further 
f 

divided into two basic groups [28] : algebraic algorithms and structural, algorithms. In 
" 

algebraic algorithms, test generation is done by manipulating Boolean algebraic repre-
Jr 

sentations of the fault-free and faulty circuits. These algorithms are known to be very 

costly in terms of computation time and memory requirements. Structural algorithms 
! 

use the topologie al representation of the circuit to generate test vectors, most often 

_ at the gate level.. Several structural algorithms have been developed and successfuIly 

used in the in,dustry. The most popular structural algorithms are the D-algorithm [23], 

PODEM [24], and FAN [25]. The POPEM algorithm will be briefly reviewed in this 

section. 

PODEM is described by its author as an "implicit enumeration algorithm" . 

Such algorithms are a subset of the branch and bound algorithms designed specifically 

for searching an n-dimensional 0-1 state space [241. PODEM is based on a five-valued 

logic {D,l, X, D, D}, where D(D) designates a value of 0(1) in the case of a faulty circuit 

and 1(:)) in the case of the fault-free circuit. 

The basic step of the algorithm essentially consists of assigning logic values 

to selected primary inputs. An implication is performed after each assignment to verify 

8 



~f- .'·.l, 

" 

2.1 Test Generation for Digital Integrated Circuits 

tHe effects of the as~ignment on the propagation of the D or D values ,to SOrne primary 

output. If no inconsistency occurs, another primary input is selected and a value is 

assigned to it. This is the branching operation. If an inconsistency is detected, ~en 
, ~ 

• branching stops and bounding begins. There are two cases which require bounding : 

1) The Hne value for the faulty Hne is the same as the stuck value. This irnplies 

that the fault is not activated un der the current assignments. 

~ . 
2) There is no path frorn an internaI Hne to a prirnary output such that the 

internaI line is at the D or D value, and aU other lines on the path still have 

unassigned values. That is, propagation of the effect of the fault is impossible 

under the current a.ssignments. 

Bounding consists of assigning the complementary :value to thé rnost recently 

assigned primary input. Branching resumes from this prirnary input with the newly as­

signed value. If both alternatives for sorne primary input have been tried unsuccessfully, 

then the branclling resurnes from the rnost recent primary input assignment where the 

atternative value has not yet been tried. This process continues until a test is found or 

the space is exhausted, that is, the.fault is round to be untestable. 

PODEM is best represented by a binary decision tree, as shown in figure 2.1, 

where the nodes represent assignrnents of the prirnary inputs. In this representation, 

branching consists of going as deeply as possible into the tree. Bounding consists of 

backtracking to the brother of the most recent ancestor node which still has an untried 

alternative. This is where branching resumes. 

In practice, this binary decision tree can be implemented as a last-in fust-out 

(LIFO) stack. Each initial primary input assignment results in pushing an unfiagged 
, 

node into the stack. Bounding results in popping nodes from the stack until an unfiagged 

node is popped out. The search resumes by pushing this last no de back into the stack, 

this time with the complementary value, as a flagged node. The process continues 

until a test is found, or until the stack becomes empty, which means that the fault is 

undetectable. 

9 



.' 

o 

, 
: ..... ' 

'. 

PIS-t,'" 

" .. -.... 
node :. 1\ 
fVmowd\V: 

r"\ 
1 \ , \ 

PU-cr '1'14-1 

./ 

1 , 
6aotup 
110 fast 

\ 
\ 
\ 

baotup 
no t.st 

2.1 Test Generation for Digitallntegtated Cir<:uÎts 

PIte(} w'IiuStcl CIltemat-iw 
aaa(gn.ment 

No nmGining 
alt.rnative 

-. 
• 
• 

, .. 
".. PU-O , 

"', 
'~-'" -

" . J't node " V,, nnnowd 
r .... , , , \ 

PlS-D " .. PISe(} , \ , \ 
1 

ba.okup 
no test 

bœokup 
no test 

Figure 2.1 PODEM Decision Tree 

An important 'problem is to decide which is the next primary input to be 
1 

. assigned a binary value. PODEM uses heuristics to decide on which PI the next assign­

ment to be made, and what value should be assigned to it. For each fault, the search of 

a test vector is executed by repeatedly defining an objective. Specifically, an objective 

is defined as a' pair (i, v), where l represents a line and v represents the desired logic 

level OJ! Hne 1. Given an objective, the choices made in the execution of the algorithm 

are such that they should help towards meeting the objective. 

-Initially, when the output of the faulty gate does not have a D or a D value, 

the initial objective is directed towards promoting setup for the gate. Once this se~up 

• 

10 1,' 



2.2 PLA Faults 

is optained, the objective is aimed at propagating a D or a D one gate level closer to a 

primaryoutput. Given the objective (l, v), the next step is to trace a path frorn line 1 to 

an un~signed prirnary input. Various heuristics"'â:reo'proposed in [24] for the backtrace 

operation. The backtrace operation leads eventually to a primary input and a binary 

value for it. 
.Y 

PODEM [24], ~-algorithrn [23], and FAN [25] are designed to generate test 

vectors for stuck-at faults. Therefore, these algorithms are of lirnited value for d~feets 

which cannot be modeled as stuck-at faults in the gate model of the circuit. Examples 

of such defects are additional transistor faults, or bridging faults, which rnay occur in 

array structured circuits. 

2.2 PLA Faults 

-~ Genèrally, the fauIts which are rnost Iikely to occur in PLA's are stuck-at, 

cross-point, and bridging faults. The faults which a1; considered t~ be PLA specifie 

are the cross-point faults, and a fault model has been introduced in [6] to model these 

faults. The fault m,odel assumes that due to sorne defect, a transistor rnay disappear 

from a used cross-point or a transistor may appear at a unused cross-point. 'These two 

types of faults are usually called missing cross-point and additional cross-point fauIt, 

respectively. It has been shown in [6],[7] that PLA stuck-at fauIts, except output Iines 

stuck-at one, can be modeled as cross-point faults. 

The likelihood of occurrence of cross-point faults depends on the method of 

_ programming and on the technology used. In the case of field programmable PLA's, ! 
(, . 

where programming is usually done by blowing fuses [6], the cross-point faults may 

occur due to fabrication defects or to programming errors. This was one of the main 

reasons for introducing a PLA specifie f ault model in [6L For the case of programming at 

the mask level, the Iikelihood of occurrence of additional cross-point faults and missing ~ 

cross-point faults is teçhnology dependent. For the single metal layer MûS technology, 

the addition al cross-point faults are less likely to occur. In contrast, for the double 

met al layer MûS technology where programming may be done by sirnply creating or 

11 



• 
2.3 Deterministic TPG Algorithms for PLA's 

\ 

not creating contacts, the likelihood of occurrence of additional cross-point faults is , 

comparable to that of missing cross-point faults. 

Another important class of defects which may occur in integrated circuits in' 

.,. general are the short-circuit6 (shorts). For PLA 's, they require increased attention due 

to the high density of the layout. Clearly, if one of the lines involved is a power supply 

• 

• 
line _or a ground line, t'hen the defect is accurately modeled by a stùck-at fault. H none 

of the lines involved is power or ground, then the short cannot be modeled directly as 

a stuck-at fault and it is called b~idging fault.' Bridging faults are caused by unwanted 

spots of conductive material (metal, polysilicon, or diffusion), or b~ missing insulator 

~silico'n dioxide), or by a combination of both. For the particular case of PLA layout, 

characterized by a high density and long wires running in parallel in both orthogonal , ~ 

directions, bridging faults have an increased probability of occurrence. A probabilistic 

analysis of defects was presented in [12]. The analysis requires layout information and- --
• , 

statistical information from the technological process. The results of the analysis applied 

to sorne example layout sh"ows that the probabili~Y--.9f occurrence fjr PLÂ same layer 

bridging faults is in the same range as the probability of occurrence for stuck-at faults. 

A detailed analysis of bridging faults presented in [7] shows that bridging 

faults can be modeled as multiple cross-point faults, under the assumption that bridging 

faults have a certa!n logic effect, either AND or OR. Depending on their detectability, 

PLA bridging faults are divided into three classes [7] : fault detection guaraI}t~ed, 

fault detected if any cross-point in the set which models the bridge is testable, and 

fault detection not guaranteed. The results presented in [7] show, for each logic effect, 

which of·the five types of PLA bridging faults belongs to each class. However, no exact 

reports exist on how weIl this kind of modeling performs in covering bridges. Most of 

the algorithms and tools available for PLA's deal with cross-point and stuck-at faults 

~~ ~ 

2.3 Deterministic TPG Algorithms for PLA's , 

o The deterministic TPG alg_rithms based on the cross-point fault model use 

12 

.\ 



,­
J' , 
' .... f 

, < 

t' 

, 

~
.- ., '., 

1- ' 

2.3 eterministic TPG Algorithms for PLA '8 • 
J 

cube Rfocessing to compute test vêctors. These compu'tations are based on the effects of 
-l, III .",. 

cross-point faults on the two-level functions implemented by PLA's. From this point of , . s c 

~iey\', a.' cross-point fault may have one of the following effects, depending on its location 

(AND Of OR plane) and o~ its type (missing or additional) : 
" . 

î : 1. growth :, a missing device in the AND array causes a literaI to disappear 

J from an implièant and hence the îMplicant covers more minterms. 

2. shrinkage: an additional device in the AND array causes a literaI to appear in 

an implicant and .ther~fore the number of minte~ms covered by the i:ihplicant 

is reduced. 

3. disappearance a 'missing 

disappear from a function . 

... 

{;in the OR array causes an implicant to 
} , 

4. appearance: an additional device in the OR array caus~s a unwanted impli­
t. 

cant to appear in sorne function. . 

For example, consider one of the functions implemented by the PLA in figure 

1.1, say gl, and its K-map representation in the fault-free Ca.9'e', shown in figure 2.2a. 

A missing transistor at the intersection of bit !ine X2' and product line P4 causes the 

product to grow, as shown in figure 2.2b. Figures 2.2c, 2.2d, and 2.2e show ex amples of 

shrinkage, disappearance, and appearance faults, respectively. 

) 
pne of the earliest algorithms introduced for PLA testing is the one presented 

in 16]. The algorithm selects a fault fro~ the fa'lllt dictionary, generates a test vector for 

the fault, if it is testable, and then determines which other faults are detected by the 
;r 

j ~ 

newly generated test vector. It is pointed out in [6] that the order in which the faults 

are considered may have a considerable effect on the size of the test set. It has been 
l' 

noted that the c10ser a fault is to the primary outputs, the more tests it. has. Therefore, 

the faults with fewer tests are considered first, that is, growth and shrinkage f~ults, in 
r 

1) the hope that test vectors for these fauIts will accidentally detect a large number of the 

( appearance and disappearance faults which are easier to detect. 

13~ 



• \ 

o 

o 

~ \ ' 
!', !.. . ~ '. 

''L, -

J 

,Z2 
Z82:4 00 01 11 10 

00 

Dt 0 

1:1:2 

Il 

10 

2:32: 00 01 Il 10 
00 r-- --1 

01 , __ 0 
Il 

10 

a,} 

g, == X'f2:2XSX4+ X'fDxa + X.iXs z.; 
to) 

1:1:2 
Za X 00 01 11 la 

00 

01 0 
Il 

10 

d} 

2.8 D~iaiJtiC TPa Algorlt~' ::,h:i~ " ;;~, 

- . , :,;~ 

J 

,2:2 

3:S X ~~ 01 Il 10 

00 : 

01 -0 . .-
) , 

Il 

10 

!lt ==X;2:2EàXI/+ x;Xi~f;1 + Xixs xI/ 
c} 

,2:2 
:Z:SX 00 ot Il 10 

00 
• 

01 

Il 

10 

o 

Ut ='~:Z:J!ZiX4+ z,Xixa + X;z" -t 
1+ Zi:C2z:t1 

e}. ) 

, ,(-; 
J , 
-. 

Figure 2~2 Functional ~fFects of CP Faults - Examples 

14 
- , 

,,' ... 



l'F.: 
~ 

~ ~,·:qJt 
, ,t 

2.3 Deterministic TPG Algorithms for PLA's 

\ A growth fault is caused by the disappearance of a device at some cr. 

point (Le. of a literaI from a product). In order to exercÏse a growth fauIt, the test 

pattern must activate the minterm(s) which have been added to the fault-free product 

as a result of the fauit. These minter~, ~re algorithmic~lIy determined by the "sharp 

prodtÎct" [6) of the faulty an~fault-free implicant. The operation returns the minterms 

which ilore covered by the faulty product J,>ut are not covered by the fault-free product. 
, s;J 

For"'the examp]e in figure 2b, the fault-freé' product Xl . x2 . x3 has grown to the f~ulty 
'. 

J xl . X3 due to a missing transistor. The sharp operation on the corresponding'cubes is : 

OxOx # OOOx = 010x 

o 

Note that the cube resulting from this sharp opera~ion contains the complement of 

the literaI which disappeared from the fault-free product, white the other literaIs are 

the same as in the fault-free product. Ail the literaIs of a product represent bit Hnes 

whidi are fed into the same AND gate. Since a test vector for the growth fault has 

to activate some minterm in the cube returned by the sharp operation; the gate input 

corresponding ~o the missing literaI (X2 in the example) has to be "0" while ail the other 

inputs have to be "1" (AND-OR implementation)w 'l'he important point is that the bit (> 

'Hne corresponding to the tested cross-point carries a dominant value white the other bit 

Hnes participating in the product carry nondominant values. 

A test vedor, if it exists, is given by a sharp operation between the cube. 

representing the minterm which exercise the fault, and aIl the other implicants of a 

function which uses the product Hne containing the tested cross-point. This is the 

sensitization part, and aU the output lines which use the product containing the growth 

fauit are considered seq~entially until a test veétor is found, or the fauIt is declared 
~ 

undetectable. For the example considered before and the output line gl, a test vector . 
is computed as follows : 

, ((010x) Â 0101) # ·xOlO _ 0100 n 

This operation returns the min&rms 'which are added to the function in the faulty case, 

and are not covered by any other product which participates in the function. Another 

test vector may be calculated in a similar way via the output line g3' If the result is void 

15 
, 

\ 

-, 



~'-o 

, 

o 

o 

'1 

for aIl the output lines, then _ the fault is .JU1testable. Similar ca1culations are required 
[;> ~ '.,' • 

for the s~e faults. , 

Thttests fpr appearance ~d disappearance faults are slightly easier to com-, 
pute. The gates in the OR arrayare assumed to be directIy observable and'therefore 

only the fault exercising step is required. A test vector for, a disappearance fault has 
, , 

to activate some minterm. which is uniquely brought into the function Dy the tested 
c 1 

product. A cube of such minterms can be calculated by performing a-sharp operation 

between the tested product and aIl the other implicants of the function. Similarly, a - , 
test vector for an appeatance fault has to activate sorne minterm which is covered by 

the tested product but not covered by any implicant of the function. 
o ) 

The same basic ideas for PLA test pattern generation and simul~1on can 
, 

be found in [7]. The algorithm presented in [7] ia designed for PLA's with two-input 

decoders. The values of the test vectors are computed at the level of bit Hnes rathe( 

than primary input lines, but, as pointed out in [7}, the conversion to primary input 

values is a straight forward process. These features rilake the algorithm quite general : 

it can be used for PLA 1s implemented both with single input and double input decoders 

without any modification. 

One of the more'recent test generation algorithms for PLA's is PLATYPUS, 

presented in [91. It combines biased random test pattern generation and deterministic 

test generation in an attempt to achieve the best balance between run tim~ and test 
1 '., 

set minimality. It introduces heuristics for test compaction and uses the heuristic for 

cube ordering and the fault simulation algorithm introduced in [7]. The detenninistic 

test pattern generation a.lgorithm uses the sharp product as weil, but the computational 
" . 

. efficiency is improved (by using the Shannon's expansion theorem combined with the 

properties of unate functions). The algorithm and the heuristics are supported by 

extensive experiments performed on a set of 56 benchmarking PLA's. 

The difficulty of test generation for PLA's is mainly due to very large gate 

fan-in and a relatively large number of redundant cross-points, which can be found 

in almost a11 practical PLA's. The testing problem can be simplified significantly by 

16-



• 

~\ 

, 
) 

). 'j ,,~ 'v '1 .. , .. ,,- .. ''';'<';;,:.J 
, . --' .. ., '\~ 

/~.4 Embedded PLA' Testing - Classical Solutions 

tfiesigning the PLA to be èasily testable. [14],[29J,[16]. This is done by adding extra 
, 

hardware, which increases the controllability and observability of aIl PLA cross-points, 

resulting in a PLA which requires less computational effort for test pattern generation. 

In the case of the design proposed in [14], the augmented PLA can be tested with 
• a 

univ~rsal test ~ets, and the coverage obtained is' 1QO% of aIl single stuck-at, and cross-_ 

point faults and most of the multiple stuck-at and cross-point fauIts. However, the 

size of the test set may become very large compared to the size of the test set for the 
t 

non-easily testable PLA's. It is reported in [30] th,at for the 56 benchmarking PLA's 

[9), the easily testable PLA designs proposed in [31],[32],[29] require an average test set 

of 5876,307~ and 488 vectors, respectively, compared to an average of 436 vectors given 

by PLATYPUS [9]. Another aspect related to the easily testable PLA designs is signal .-
degradation. From this point of view, it is desirable that in normal mode of Qperation 

the P,LA does not have additiona] devices connected in series oh inputs. For eXaInple, 
o , o 

in the design reported. in [29], eâch inverted bit line passes through a pass transistor 

which in normal mode of operation adds to the input resistance of the inverted bit Iines. ,. .::» 

Thus, the easily testable PLA designs represent tradeoffs over fault coverage, silicon , 
area overhead, size of,the test set, and performance degradation. 

o 

2.4 Embe,dded PLA Testing - Classical Solutions 

The algorithrris discussed 50 far are aIl based on the cross-point fault model . 
and are designed und~r the assumption th~t the PLA inpu,t~are fully ~ontrollable and 

the PLA outputs are fully observable. This assumption does not hold for embedded 

PLA 's. Therefore, to test embedded PLA 's with test vectors generated on the spe-

cific 'f'9.ûlt mo.del, extra hardware has to be provided to rontroljobserve the PLA in-
. . ~-

puts/outputs, "as proposed in [21] and [22] for the general case. There are ~arious 

disadvantages related to such schemes. They require extra de~ign effort, 'occupy extra 
~ . 

s~l\i/~n area, require extra pi~~, require lo~g test pattern application ti~e, and may 

r~stIlt in performance degradatlOn. . • 

- ! 

One alternative is to use the stuck-at fauIt mode} which allows deterministic '- --
~est pattern generation for the entire circuit, without requiring additional controUabi~ 

, 
17 

, ',' 



o 

o 

... ·~···,:.i"'-<tl 

, .:}~ 
2.4 Embedded PLA Testing - Classical Solutions ,- <', 

ity.jobservability schemes. Such an approach has oeen proposed in [33]. The cross-point 

fauIt model has been discarded and the algorithm simply considers the set of collapsed 

s\u~k-at faults in the )ogic' representation of the PLA. It is pointed out in [33] that 

the missing cross-point faults (growth and disappearance) can be mapped into stuck-at 

fauIts in the two-Ievel gate modeI, and that the additional cross-point fault (shrinkage 

and appearance) is not significant in the MûS technology. The second statement can 

be supp\)rte~ by the res'uIts presented in [12], [34], ~d [35], for the single metal layer 
o 

NMOS technology. Statistical analysis of defects, based on in!ormation from industry 

shows that the probabiIity of a missing transistor fauIt or an additional transistor fault 

is three orders of magnitude smaller than the probability of a single line stuck-at zero, 

and two orders of magnitude smallerD than the probability of bridging faults between 
• fi; J 

product lines [12] . .- "-

1 

The fauW'set has been reduced by fauit collapsing to three types of faults : 

stuck·at one faults on the inputs of the gates in the AND plane, stuck-at zero fauIts on 

the inputs of the gates in the @R plane, and stuck-at o~e faults on the PLA outputs. 

Various heuristics are used to improve the algorithm ~ciency. For example, the test set 

is dynamicaily compacted and the faults are considered in a certain order, starting with 

the AND plane and ending with the PeLA output stuck-at one faults. The algorithm 

and the heuristics are tailored for two-level functions and the experimental results [33] 

show that the algorithm has a good time and test set size performance. However, the 

initial assumptions limits its application to the MûS technology." The bridging faults 

are not considered at aIl, even though their probability of occurrence is the same order 

of magnitude as that of stuck-at (aults. In this respect, 'it is ~enâoned in [33] that the 

problem of bridging faults will make the subject of future work . 
• 

Another approach, based on the stuck-at fauit model, is presented in Il.11. 
The cross-point faults are Ïnodeled as stuck-at faults by ad ding a two-input extra gate 

• J 

and an extra input which carries a constant value for each cross-point. This model has 

been used in [13] to study multiple faults in PLA's. For example, consider the PLA in '" 

t 18 

, 
f 



, (', 

-0 

. , 

\ 

1 

, 
1 

Pt 

\ a) 

P, -

b) 

, 
2.4 Embedded PLld!fes~ing - Cl~ical Solutio1l8 

o e~ 
'1',---1 
o e~ 
p,---I 

e:r: 
f ---&--1 

PJ---f 
e:r: 

f --I~ 
p,,---I 
1 e:r:f16 

~---I 

o~ 

c) 

Figure 2.3 Stuck-at Models for CrosS:Point Faults 

figure 1.1 a) and itS'""NOR-NOR implementation in figure 1.1 d) *. The missing cross­

point fault at the intersection of Xl and product Une Pl can be modeled as shown hi 

figure 2.3 a) by adding one eX,tra two-input AND gate and one ~onstant input ex!. The 

missing cross-point fault is covered by the test vector for the fault ex! stuck-at zero 
'--

f13],[1l]. The stuck-at model for the additional cross-point, fault at the intersection of 

product line Pl and bit !ine x4 is shown in figure 2.3 b). The additional cross-point 

fault is covered -by the stuck:at one fault on the eXtra line eX4 feeding the two-input 

AND gate. The cross-point faults in the OR plane can be modeled in a similar way, as 

-, shown in figure 2.3 cl. Since aIl the PLA cross-point fauIts,can be mod~led in this way, 
. 

a complete single stuck-at test set generated- foÏ' this model would cover ail detectitble -

1 CP faults. However, the size of the model is prohibitive. The PLA two-Ievellogic mode} 

becomes a four-Ievel model and a two-input 'gate is introduced' for each ,crosspoint. 

., 

The bridging fa~lts of interest [36] are modeled as stuck-at faults as weIl, by 

a~d~ng four .two-input gates for each bridging faul~t is assumed that the bridge has a 

definite logic value, either AND or OR. For example, consider a bridging fault between 

two product lines Pl and P2. Assuming that tue bridge has an AND logic effect, it can 

; 
* Recall that the NOR-NOR unplementation requires inversion of inputs and outputs, with 

respect to the representation in fi gure 1.1. Q 

19 



0 

o 

c 
--------, 

1 

• 1 
1 
l ' 

AND 1 
1 

a,rra,y 1 
1 
1 
1 

1. 
1 

Pt 

12 

f 
ex 

2.4 Embedded PLA Testing - Clusical Solutions 

r---------
1 
1 

1 
1 
1 
1 
1 
1 

P2b 1 

1 
1 
1 

OR 

a/TTrLy 

Figure 2.4 Stuck-at Model for Bridging Fault, AND Effect 

, . 

be modeled ,as shown in figure 2.4. The bridge is covered by the test vector for the 

stuck-at zero fault on line ex. The bridging faults between bit lines or betw~en output 

lines are modeled in the same way. Note th~t the model for each bridging fault requires 

four two-input gates and one constant input. 

This metqod has beèn applied to three example PLA '5 and the results are 

.reported in [111. The gate counts for the models used are shown in table .2..1. Columns 
." 1 

2,~, and 4 correspond to the three example PLA 's. Rows 1,2, and 3 show the number ~ 

of input, product, and output lines; row 4 shows the number of gates in the two-Ievel . 
gate model of the PLA 'Si "l'OWS 5,6, and 7 show the gate count of the extended model for 

stuck-at plus cross-point fa~lts, stuck-at plus bridging 'faults, and stuck-at plus cross­

point plus bridging faults, re~pectively. Notice that only the brigging faults of interest 

have been coosidered in [111, and for exampÎe 3, the gate count in the extehde,d mode} 

for stuck-at, cross-point, and bridging faults of interest is 28 times bigger than the 
o 

two-level logie mode\. 

The advantage of the rnethod is that it allows test generation for PLA stuck­

at, bridging and cross-point faults using the classica~ stuck-at tools, ainee a unique 

fault mode} is used. It also allows deterministic testing of embedded PLA's without ' -requin.lg additional controllability jobservability schemes. The main disadvantage is 

that the method requîres a very large model of the PLA. The computational burd~n 

20 



T~r~': ,. 
''i.'!.~y 
~ ~ , ~J 

, 
6 

'" 

o 

. ' 

~ (/< .1,., <~'~., ::_.' .. "_ :r, .. l' ."_ 

.. 
2.4 Embedded PLA Testing - Clas$ical Solutions 

1 

1 2 3 4 

Example 1 Example ~ Example 3 
". 1 ip 22 17 16 

2 pr 47 184 70 

3 op 15 (14 20 
" 4 2-level model 

(nr. gates) 121 274 142 

5 SA+CP ). , 
) mode} 3874 n.a . 3478 . 

(nr. gates) , 

6 SA+BR 
, 

mode} n.a. -2380 691 
, 

(nr. gates) , 0 

7 SA+CP+BR -, 

1 •• model n.a. n.a. 4027 
1 

(nr. gates) 

n.a. : no! available . 
.liP, 

Table 2.1 Extended Mode} - Gate Counts 

for a large mpdel is even more significant when the PLA is treated as part of the larger 

circuit [221. 

With respect to the idea of testing only for the stuck-at fa~lts in the two­

level model of the PLA, the following experiment is reported in [11]. A complete single 

stuck-at test set (TSA) was generated on the two-level gate model of the PLA and then 

applied td the larger circuit whièh models cross-points and bridging faults as s.tuck-at­

faults. Notice however that this experiment is limited to just three PLA's and therefore 

it does not provide much generality. For example 3, the results show that TSA covers 

82% of cross-point faults and stuck-at faults (6% iredundant faults not covered) and 

99.5% of the bridging faults of interest and stuck-at faults. For applications where a 

high coverage is required, this is a significant difference. 

~ . 
The third alternative proposed in the literature for embedded PLA testing is 

21 

f 



o 

o 

2.4 Embedded PLA Testing - Classical Solutions 

Built-In Self Test (BIST). For general circuitry, BIST schemes consist basically of pseudo 

random test pattern generation and output response compression. The' two parts are 

usually implemented using Linear Feedback Shift Registers and Multiple Input Shift 

-Registers, respectively. The very large fan-in of the gates in PLA 's makes these circuits 

random pattern resistant and the general BIST scheme has limited performance, unless 

exhaustive testing is performed Il]. As a result, PLA-specifie BIST schemes have been 

proposed, taking advantage of the regular structure of the PLA's. In test mode, these 

designs change the structure of the PLA either by partitioning it or by adding extra 

circuitry to make the PLA easily testable. 

The approach presented in [18] partitions the PLA into the AND and OR 

arrays and tests them separately. Test vectors are generated using non-linear feedback 

shift registers, which are augmented such that they can perform output response com­

pression as well, thus implementing the 50 called built-in logic bloc observers (BILBO). 

The scheme is easy to implement but require high area overhead. 

Various other BIST schemes are combined with easily testable PLA designs 

-117],119],137]. This a1l9ws the use of simple circuitry for test pattern generation and 

output response compressiorl. In the limi't, the PLA can be augmented such that the 

test vectors and lor the output response compression are independent of the functionality 

of the PLA. A representative approach in this respect is presented in [19]. The following 

circuitry is added to make the PLA easily testable : 

- a shift register which controls the product Hnes. It is used in test mode 

to enable one single product line while the other product. lines are set to 

propagating values. 

- two controllines between the input decoders and product Hnes. In test mode, 

they are used to enable the inverted or direct bit lines. 

- one or two product Hnes in the AND and OR arrays such that the number 

of devices and no devices on each bit Hne can be Jorced to be odd. 

- one.output line such that the number of devices on each product line in the 

22 



, 
~~: " .... 

2.4 Embedded PLA Testing - Classical Solutions 

, 
OR plane can be forced to be odd. r 

" This additional circuitry allows PLA testing with the univers al test set described in [19}. 

The output response Îs compressed into the cumulative parity bit sequence, which is a 

sequence of alternating O's and 1 's for the f ault-free PLA. Therefore, the compressed 

output sequence can be generated by a toggle flip-fiop, without requiring any storage, 

or it can be further compressed into two bits which give the count of 1-t0-1 transitions 

and O-to-O transiti<;>ns. The scheme is proved to coyer aH single cross-point, stuck-at and 

hridging faults. It is also proved that fewer than 2-(m+2n) of the multiple faults may 

remain undetected, where m is the number of inputs and n lS the number of outputs. 

It has been assumed that the effect of a bridging fault is AND. 

The BIST scheme has been implemented in NMOS technology and the area 

overhead has been evaluated for sorne example PLA 's. The area overhed is claimed to 

he the smaBest [191_compared to other BIST schemes. Still, for medium size PLA's (20 

inputs, 50 product Iines, and 20 outputs) the area overhead is above 50%. For large 

PLA's (60 inputs, 250 product !ines, and 50 outputs) the area overhead is 17%. 

Clearly, the classical solutions to the prohlem of embedded PLA testing rep­

resent tradeoffs over various design and manufacturing aspects, slfh as design effort, 

test computation effort, silicon area, yield, extra pins, and te~ting time. The next chap­

ter will introduce a new fault ~odel which allows PLA testing using classical ATPG and 

simulation tools after minor changes, and allows testing of embedded PLA's without 

requiring B~ST, additional controllability lobservability schemes, or an enhanced model 

of the PLA. 

.. 

23 



o 

o 

.' , --

.' , 
t .' , 

Chaptar 3 Conditional Stuck-At Fault Model 

The conditional stuck-at (CSA) fauit model introduced in this thesis satisfi.es 

the requirements of treating-both general circuits and PLA 's under the same fault mode!. 

Stuck-at faults are a subset of OSA faults. Moreover, the ATPG tools developed for 

the stuck-at fauIt model can be used for the CSA fauit model after minor changes. 

For PLA's, cross-point and bridging faults are mapped into CSA faults using only the 

two-level gate modei of the PLA. 

Definition: A fauit (lda,lj = (3), where li and lj are two Unes in a circuit and a,p E 

{Q,I} is a conditional stuck-at (OSA) fault if l,,/iX refera to the fault li stuck-at a and 

'i = f3 refers to the requirement that sorne test vector for the stuck fauit 1,/ a pro duces 

the value p on Hne IJ' This test vector is then said to detect the CSA fault (l~ / a, 1] = P). 

The definition includes the null condition possibility corresponding to a normal stuck 

fauIt, where (ld a, 13 = (3) is simply (li! a) and no li or (3 is specified. This type of OSA 
,1 , 

faults are going to be call~d null condition CSA fauits. The expression "completely 

specified OSA fauIt" will be used whenever it is necessary to emphasize the faet that 

both the condition I~e and the condition value have to be specified, as opposed ta the 

null condition CSA faults. 

\ A test vector for the OSA fault (1,/0:,1) = (3) does not have to propagate 

the value on the condition line to sorne primary output. In the fault-free case, the 

condition may not ha.ve any effect on any primary output. In the faulty case, due to 



c 

3.1 Crou-Point Faulh Modeled al OSA Paulu 

non stuck-at defect, the value on the condition Une",; changes the value on the Une~, 

which is observable at some primary output, under the corresponding test pattern. It 

follows that the values Cl and fi ha.ve to be determined such that, under the assumed 

non stuck-at fault, the interaction between lines l, and 1,. has the effect described above. . " 

ln general, a fau}t is detected by a. test vector if some primary output POz is 

ditferent from the fault-free primary output pot'. Under the single fault assumption, 

say (lk/ Àk), this. requirement reduces to observing, via some primary output, that the 

value Àk on line lk ie different from the fault-free value >.". Similarly, for the CSA 

faults, a fault which may dot be a stuck-at fault is deteeted if the value >'i on line li 

is observed to be different from the fault-free value À{ f on li' Henee, for proofs and 

discussions related to the CSA faults (li! a, 1 J = {3), it is sufficient to foeus on the two 

Unes li and li since the part l~/ a ensures a propagation path from line li to sorne primary 

output and produees the value a on line l~. 

Given a eonditional stuck-at fault (l~ / a, lj = (3), it is possible that line 1) has 

to sàtisfy sorne requirement for sensitizing the path from li to sorne primary output. 

For example, if both lz and.li in the aSA fault (l~/O, l) = 0) are input to sorne NOR 

gate, the condition has to be satisfied anyway for sensitizing the path ,for li/O. Renee, 

the conditi~n.lJ = ° need not be specified in such a case sinee it is implicitly required 

by l~/O. On the other hand, if the CSA fault is (l~/O, lj :::: 1) and li, i) are inputs to 

some NOR gate, there is a confiict between the sensitization requirements for li/O and 

the eondition lj = 1. Thus, the CSA fault (i~/O, lj ,= 1) specified above is untestabl . 

The relation betwe~n CSA faults and stuck-at faults is quite clear. For PLA 's, 

it has to be shown that cross-point and bridging faults can be modeled as CSA faults . 
... 

3.1 Cross .. Point Faults Modeled as CSA Faults 

Sorne terms have to be defined, before stating lemmas 1 and 2. A gàte llne 

in a PLA is the line which represents the output of some gate (either a product Hne or 

an output line). A variable line v ~ith respect to sorne gate Hne g is a Hne on the next 

25 



··fV 

o 

3.1 Cross-Point Faults Modeled aB CSA Faults 

11, ----1 

1 

\1/p ---i 
f _,,2:--""-_--1 

Figure 3.1 MlSsing CP Fault Modeling 

lo~er level with respect to line g. For example, bit linls are variable li~es with respect 

to product Unes. Note that the value of agate line g Jay not depend on a variable line 

v. ; 

.' It has been mentioned in (33) that fnissing cross-point faults can be mapped 

i~t~ stuck fauIts (that is, CSA faults with n)ll condition). This re~ult is formalize"ô 

below. 

Leinma 1 : Any missing cross-point fault at the intersection of sorne variable Hne v a 

sorne gate line 9 is covered by the stuck-at f ault via on the variable line v, wliere' a is 
_. - _ ... 

the nondominant value (or t~e gate g. 

... . 
Proof: Without losing any generality the lemma is going to be-proven for the NOR-

NOR implementation. Missing cross-point faults can be modeled as shown in figUre 3.1 

by adding one two-input AND gate and an extra input line ex f~r each used cross-point. 

The fault is modeled by a stuck-at zero fault on Fne e:z;z. It is clear that (extIO) is 
v . 

equivalent to (YtIO) which means that a test vedor for (Yt 10) will also detect (e~O). 

Thus, the missing cross-point fault corresponding to the input Yt is detected by the test, 

vector for the stuck fault (Yt 10), which produces a dominant value on the tested' input 

while the other inputs have nondominimt values. The 'extra gates can be discarded since 

the fault (Yt/O) is going to be tested for by TSA anyway. o 

-The used PLA cross-points are represented in the two-Ievel gate model as 

gate inputs. If, due to sorne defect, such an input do~s not exist, tlien a complete single 
, 

26' 



J 

c 
f 

• ~ > 

3.1 Cross-Point Faults Modeled as CSA Faults 

11, 

0 
e:c, 

"'" 0 
e:t. 

~ 

0 e:t" 

Figure 3.2 Additional CP Fault Modeling - NOR-NOR Implementation .. 
stuck-at test set TSA detects the fault. The ünused PLA cross-points do not have any 

-iëpresentation in the two-level gate model. In sorne sense, they represent inputs which 
~ -

do not exist. It is one of the applications of CSA fault model to allow testing for the non 

existence of such inputs. This can be achieved by producing a dominant value on the 

}nput Hne as a condition and observing the gate whose other inputs are at nondominant 

values. This is formally presented in lemma 2. 

Lemma 2 : The additional cross-point fault at the intersection of.some gate Hne g and any 
r 

associated variable Hne v is detected by the test vector(s) for the CSA fault (g / a, v = (J), 

whe,e " and fi take the values " ~ 0, fi ~ 1 fo~ the NOR-~OR implementation. 

Proof: As discussed before, it is sufficient to consider isolated gates sJnce the part 

g/a in the CSA faùlt insures fault activation and propagation to sorne primary output. 

Consider the stuck-at mode) for additiona} cross-point faults of sorne gate line, as shown 
, -

in figure 3.2. The stuck-at one fault on the extra line eXk (exdl) will cover (ak/l) which 
; 

- is équivalent to (9/0). The fault (ak/l) is covered by (vk/l) as weIl. Thus, a test vector 

for (g/O) detects (ak/1) and either (exk/l) or (Vk/l). Since thE! objective is to test for 

(exk/l), the test vector for (g/O) has-to produce a one on line (Vk)' Renee thYcSA 

fauÏi (9/0, vk ::::: 1). Thus, if the unwanted transistor exists, it is goi~ dominate the ) 

gate value and the effect will be observed at sorne prirnary output. o 

Once it is decided that the CSA fault (g/O, v = 1) modela the corresponding -additional cross-point fault, the model in figure 3.2 does not have to be considered any 

more sinee it applies to any unused cross-point. Thus, for additional cross-point faults, 

27 



o 

o 

" ,~ , 

3.2 Bridging Faults Modeled as CSA Faults 

(g /0, v = 1) becomes a rule which is sufficient to generate the CSA faults from the 

personality matrix, ~and thus test thes~ {auIts. 

3.2 Bridging Faults Modeled as CSA Faults 

There is increasing evidence that .. bridging faults represent a relatively'=large 

r , part of the defects which may occu~ in MOS IC's [34], [12],[35]. Bridging fauIts can . 
be divided into two classes : bridges between wires on the same layer and bridges 

between wires on different lalers. For PLA 's, these two classes can be furth~r divided 

\ ~ as follows. On the same layer, bridging faults may occur between adjacent bit lines, 

between adjacent product Iines or bet~en adjacent output Hnes. On different Iayers 

there rnay be bridges between bit Hnes and product lines, and/or between product Hnes 

and output lines. 

Statistical informatioh from fabrication processes show that bridges may oc­

cur between more than two adjacent wires [12],[35]. However, for the purpose of this 

analysis, it has been assumed that the bridge occurs only b~tween two wires. The anal-, -

ysis can be easily extended for the'case of more than two wires shorted. The traditional 

assun(pticit that the bridge has a weIl defined logic effect, either AND or OR [7],[11], 

has been adopted. It has also been assumt that the relative position in the layout of 

an input line with re;ect to the other1np~ines, and of a product line with respect to 

the other product Iines, follows the position in the personality matrix. This assumption 

is necessary because only adjacent lines are considered as potèntial bridging faults. 

/ 
è 

It is possible that in the actuai PLA layout, the distance between two adja-

cent parallei wires is so big that a short is very unlikely to occur, as opposed to sorne 

other wires which are very close, on the same layer. In this analysis, it has been assumed 

that a bridging fauit may occur between any pair of adjacent bit lines, or product Hnes, , 
or output lines. 

In arder ta exercise a bridge it is necessary to produce complementary logic 

values on the two lines and to propagate the effect to sorne priI?ary rutput. In general, 

28 



,-

" 

3.2 BridPnI Fau1&a M,odeled iii OSA '.alt. 
" ' 

given the Unes a and h in a circuit; the bridge between the Uvo can be modeled either 
! 

as (aja.,b = (l) or (hja,a, == (l). It is important to note here that the condition value is 
- 1 ' . 

alwap the domjnant value under the logic effect 8BS~ed. The associated 8tuck~àt fault 

is always a stuck-at the dominant value s\ch that the test vector creates a nondominant 

'. value on the stuck line. This guarantees~at the short will çhange the value on the 

stuck-at Une and not on the condition line, wruch makes the fault observable at. some 

primary output via the sensitized path. 

.. It has been found out however that, depending on the personality matrix, 
~ , 

many of the bridging faults in PLA's are always detected by the test vectors for stuck-at 

faults in ~he two-Ievel gate model. Consider the conditionaf stuck-at fault (al a, h = a) 

which models the short between Iines a-and b. If some sensitization requirement for the 

stuck~at fauit al a satiafies the condition b = a then then the CSA fauit is detected by 

the test vector for the stuck-~t fault al a. Therefore, a better efficiency can be a.chieved 

if such cases are identified in advance. 

Similarly, the condition in the OSA fauit modeling some bridge may con­

tra'dict some sensitization requirement for the stuck-at Hne. For example, assume that 

the two lines a and b are inputs of the sarne NOR gate and the effect of the short 

is OR. The CSA fault (a/1,b = 1), modeling the bridging fault between a and b, is 

untestable because al 1 requir~s b = 0 and the C,SA fault requires b = 1. In the test 

generation process, the significant amount of computation required by such untestable 

faults is wasted because no incr~e in coverage is a.chieved. Thus, each untestable fault 

identified in advance implies time savings in the test generation part, provided that the 

"identifying" operation is simple. 

The following chapter presents a detailed analysis of the five types of bridging 

faults along with various patterns which may occur in personality matrices. The analyais 

is aimed at identifying the cases where the condition in a CSA fauit which models some 

bridging fault is guaranteed to be satisfied by the sensitization requirements for the 

stuck-at fault, and sorne of the cases of untestable OSA faults. 

29 

..., . 

, J \~ ~ 



~,~ ... ' ' 
of.tJ_~ 

: .. ( 

" , . o 

J. 

• 

\ 

Chapter 4 
-If 

Single Bridging Faults 

A PLA personality matrix contains both functionality and some layout in­

formation. Therefore, the analysis of the PLA bridging faults is based on the patterns 

, which occur in the personality matrix. The analysis determines the implications of these , 

patterns upon modeling shorts as null condition CSA fët.u1ts. 

4.1 Bit Lines 

In the case of adjàcent bit Unes, there are two possibilities: the shorted lines 

-belong to the same variable or the shorted l,ines belong to different variables. If the 

shorted Hnes belong to the same variable say Xi, the short is equivalent to the fault 

(xi/a). Depending on the effect of the short, a may be zero (AND eft'ect) or one (OR . 
effect). Consequently, this kind of short is modeled by null condition CSA faùlts. 

> , 

Suppose that the shorted bit lines belong to different variables, say' a and 
, 

b. Figure 4.1 shows the pos.sibilities of using the adjacent Unes a and b in produIts 

(PO, pi, P2, P3)' 

The short is modeled according to each of these possibilities (po, Pl, P2, pa) 

and for AND or OR effect. J 

4.1.1 Case Po 

, 

If neither 'ii nor b is used on a given p~oduct Une, then Ute short d~es not ." 

have any effeet on the product line. If this applies to ail product Unes then the short 

'.' 
" 

. ; 



1 . .. 

" 1 

,- . 

\ . 

o , 

" 

, ' 
, " 

, ' 

· .... • •• 
• •• 0 

1 1 à Po . . 
" . • • 

· .. · . • • 

· • • 

? , 

cr. fi 

rt~ 
• • • • a • • • • • • • • 

t ' 1 
• • • • • '\:>' 

(Z. b 

It~ ; . .J 
• • · · • • · • 

T + · • · 
Figlire 4.1 Adjacent Bit Lines Shorted 

0 

"U Bi' Lin .. 

~ 

il 

P, 

Pa 

.. 

is an undetectable fauit. This situation however will never occur in pr~tice b~ause if 
one or two bit lines are not used at aU, then they simply· do not exist. 

4.1.:1 Case Pl 

Suppose that literai a is used in a product Une but literai b is not used, 
, , . 

" 

as shown in fi~e 4.1 (Pl)' ~uming a NOR-NOR implémentatiqn of the PLA, the ~ 

fau1t-free Pl (Plf ) is: 

fi (" - " ) Pl = '1 +0 ... + a + ... + 'k 

." - ...... -:-
, =;: '1 " '2 ..... 'k . a (~.1) 

where Îlt : ••• Île "'are the other inputs to that product lige. - ; . 
" 

1 0 . , 
31 



o· 

{) 

'0 

AND Effect 

1 Assuming that the effect of the short is AND, the faulty Pl (pf) is : .. , , ' 

o 

Pl = (il + ... + 4' b + ... + ik) 

=lli· .... "ik) . (4 + b) 

= ('1 ..... ik) . 4, + ('1 . : ... 'k) . b 

= pif + (il' .... ik) . b ' . ( (4.2) 

The above expression leads to two subcases : 

1. b is used in Pl 

- .. 
2. b is not used in Pl 

If li is used in Pl' th: vi becomes: • _. ~. • ~ _ 

Pl = (il' .... b ..... ik) . a ~ (il' .... b ..... ik) . b 

, (il· ... ·b···.·'k) 
_pif 
- 1 (4.3) 

Sinee pi f ~s identical to pi, th~" fault is undetectable through proâuct Une P.l. 

If b is not 'used in Pl, then to detect, thé fault we must have Pl :f:. pif and 

the value on Pl must be observable on at Ieast one output line. It follows from the 
~ 

expression for Pl (4.2) that the the first requirement is satisfied if ('ii ..... ik )· b = 1 and 

pi J. = O. Clearly, a test pattern which cu detect the fault a/O and at the same time 
o 

produce b = 0 would satisfy bath requirements. In other words, this fault ie modeled 

as (aIO, b = 0). 

The sarne analysis can be done in terms of logic gates. Figur,e 4.2 shows the 
. , 

circuit mod~l of the short. The. effect of the short is as if the extra line ex were stuck-at 

32 
o 

:'" 



, 
" , 

\' , 
), 

0 J 

Q 

-" 

~t ~ ~ " 
02:" ~/, -.t. ',~ __ .~ . _. 1 ~ fl ,,,, 

J 

0 

.'-' , 

4.1 Bit; Lin .. 

0 i, 
0 i" p/' • • 
0 iJJl • 
1 " 
0 i, 
0 i 2 • • 

" 0 il; • 

0 b 
o ez 

Figure 4.2 '\~jacent Bit Linesj Case Pt: AND Effect 
-

one. With the constant input zero for ex, in order to test for ex/l, the only requirement 

is a sensitized path from ex to some primary output. This im;Ues p{f = 0 and pî:Z: = 1, 

which t-ranslates intb a/O and b = 0 which is ~ faet the CSA fauit (a/O, b = 0). Note 

that a sensitization path for b instead of a cannot be used sinee in the fault·free case b 

is not used in product Pl' 

OR Effed-

Under the assumption that the effect of the short is OR, the faulty product Pi. is : 

pi = (~1 + ... + (a + b) + ... + ik) 

= (Tt ...•. a ..... ifç) • ï; 

=p{f. b _ (4.4) 

1. - If b is used on p~2duct Une Pl, then Pi becomes : 
~ 

F - --Pl = (il' .••• a w ••• : ifç) . b· b (4.5) 

=0 

The short has the same effèct as a stuck-at zero fault on Une Pl and it is 

modeled by a null condition aSA fauIt, meaning that any TSA will detect 

this bridging fault. 

33 , 



o 

, 

-0 

" , - " ' -;:,' .. :,;~ 
... l '~ ... 1il~ 

J' 

4.1 Bit Lines ~ 

2. If b is not used on product line Pl, then a similar analysis as the one for the 

AND effect can easily show that this fault is covered by the test vettor for 

the OSA fault (a/l, b = 1) . 

• > 

4.1.3 Case P2 

The analysis for the case P2 is very similar to to the analysis for the case 

Pl presented above. In fact, ong can be derived from the other by simply replacing a 
, ~ 

with b and vice versa. For this reason, the details of the analysis for the case ,P2 ~re not 

presented. The results, however, are shown in table 4.1. 

4.1.4 Case P3 
o 

If co~bination P3 occurs on two adjacent input variables, then the fault-free 

prod uet p{ f is : ,,~ 

\ 
JP{f = (il +i2 +·.· +li+b+ ... +ik ) (4.6) 

= ~ . i2 ..... a . b . ik 

AND Effect 

• 0 

If the effect of the short between lines a and·b is AND, then the faulty praduct 

F (" b' ) P3 = 'lI + ~2 + ... + ~ . + ... + 'k (~.'J.) 

= il . i2 ..... (a + b) . ik 

= (il oÏ2 ..... a· ik) + (il' i2 .. , .. b. ,i/ç) 

In arder to test for this, fault, il! ... , ik have ta be s~t to propagating values 

such tnat it can be observed if there is a sum (fault-free) or a praduct (faulty) between 

li and b (expressions 4.6 and 4.7, respectively). The fault can be exe~cised by producing" 

34 



, \ 

• 

i,--.~--..... 
• 

'ÎII--·--t 
(1 ----1 

b ---.'-----' 

i,---r---.,. 1.,--.--\ 
• • .... . 

.'11----/ 
:i.--""---

i,--~--..... 
i.l--.-~ 

• 
i~--·--J b ---:-~ ___ 

"i o ez 

p/' 

Figure 4.3 Adjacent Bit Linès i Case pa i AND Effect. 

4.1 Bi~ Linea 

.co~plementary Jogic values on the two line~. Since both 1in~s are inputs to th~ same ~ 

NOR gate, the test vector for either 0,/0 or bjO will produce compJementarjr logie values 

on a ,and band obviousJy satisfy the sensitization requirements. Hence, the short is 
.-

modeled as a null condition OSA fault. 

In terms of Iogic gates, the shor"t can be modeled as shown in figure 4.3. The 

short has the same effect as the stuck~at one fault on the extra line ex. It can be easily 

seen that exil will be detected by the test yector(s) for a/O, or bjO. 

OR Effed 

, 
1 

, If the effect of the short is OR, then the faulty product pl becomes : 

.. 
.. 

F (" b' ) P3 ~ t 1 + '2 + ... + a + + ... + f, k 

= il·i2 • ... ·a·b.ik 
~ , 

_ pif 
- 3 

Thus, the fault iS undetectable tl:uough product line Pa. 

- (4.8)' 

35 

;.~ ~'~.-"".~ 

" 

• 



o 

o 

4.2 Prodad Lin • .. 
4.1.& CombinatioDS Pl -tP2 - 113 

The personality patterns discUBSed individually 80 far may occur in prac­

tice in Yarious combinations. It is thus necessary ta analyze the implications of such 

. combinations. 

Suppose Pl and P2 oecur on two adjacent input variables, say a and b. In this 

case,the effect of the fault may be propagated on two paths which May be completely or 

partially different. Thus, if the short has to be modeled as a completely specified CSA 

fault, there are two conditional stuck-at faults which might detect the short: (71/0:, b = 

a) and (bja,a = a), O! E {O,I}. These two CSA faults correspond to the patterns Pl 

and Pz respectively. Certainly, the ATPG tool will consider the E:!econd CSA fault only 

if the first is undetectable. 

If pattern P3 appears in some combination with Pl or PZ, then the case has 

to be analyzed for both AND and OR effects of the short. If the effect is AND, then 

the short is modeled as null condition CSA fauh through the pattern Pl (as shown for 
, 

the caSe P3)' Thus, there is no need to test for sorne condition al stuck-at fault (via Pl 

or 1'2) which can also model the short. 

If the effect is OR, the fault is undetectable through product line P3 and the 

fault might be detected only via Pl or P2 which appear in the combination. The analysis 

for these cases has already been carried out and it shows that the short can either he 

modeled as a null condition CSA fault, or as a completely specified CSA fault. 

\ 

4.2 Product Lines 

The case of product lines involves fewer relevant personality patterns sinee no 
, 

product line appears both complemented and uncomplemented, as in the case of input 

lines. Two adjacent product !ines can he used in output functions as shown in figure 4.4. 

It has to he noted that gl, gz, and gs refer both to some personality pattern as shown 
< 

in figure 4.4, and to PLA output Iines before the final inversion (the implementation 

36 



4.2 Produd Lines 

• • • 
"'+:"Pt 

"'+"'PZ 
• • • 

• • • ...... + ... Pi, ... + ... PZ 
• • • 

• • • ' ... + ... Pt ... + ... p! 
• • • 

ligure 4.4 Adjacent Product Line Patterns 

88sumed is NOR-NOR). The analysis of the basic patterns gl, g2 and ga, and and various 
:tP ' , 

patterns which ma~ occur is quite similar to that for t4e pa.tterns on bit lines. 

If pattern gl OCCUrB, then the fault-free output line g{' (before the final inversion) is : 

g{' = 11'1 + 1("2 + ... + 1I"k + Pl 

= 1fi . 'fl'2 . ... '1rf . Pl 

Where 'Tri'5 are the other product terms on which the fundion g1 depends. 

AND Effect 

Assuming an AND effect of the short, the faulty output line gf ie : 

" 

gr = 11"1 + 7r2 + ... + 7r1c + Pl . P2 

= 7rl . 7r2 ..... 7rk • (Pl + pÛ 

= (1t'1 • 7rz ••••• 7rk • Pl) + (11'1 • 11'2 •••• • 1fk . Pi) 

= g{' + (7r1·11"2· .. • '1I"k' pz) 

(4.9) 

(4.10) , 

In order to detect the short, it has to be observed at some pl'imary output 
" 

that" g{' '# gf.!.. _At the same time, a nondominant value under the aBsumed effect of 

37 



o 

o. 

\ ,··~Vl~ 
,lu "l-

-J 
"" 

4.2 Produc~ LiDee " , 
the short has to be produced on Pl- It follows 40m expression 4.10 that gf f:. gf' 
if 1I'ï' 'f2 ..... 'JI'k • Pi = 1 and g{t, = O. C~arly, a test vector for the fauit Pl/0-

will p~oduce an observable 1 on Pl' If this test vector ~o pro duces a 0 on P2 then 

Tt '1f2 ....• '/rie • P2 = 1 while g{' = 0 ~d all the requirements are satisfied. In other 

.words, the short is detected by a test vector for thè CSA fault (Pl/O,P2 = 0). 

~ gr' .Z • • 
• 71i: 

PI 

,~ 
• ., 
• 

."." • 
P2 
o e2: 

ligure 4.5 Adjacent Product Lines; Case 9li AND Effect 

"' 

The same analysis can be done on the gate-level model of the short, as shown 

in figure 4.5. 

~ the effect of the short is OR, then gf is : 

(4.11) 

The short is detected if a no~dominant value (zero f6r the OR effect) can be 

observed for the fault-free case on Pl white P2 has a dominant value (one for the OR 

effect): ':r:'hese requirements are expressed in the CSA fault (P1!1,P2 = 1). 

Case g2 is very similar to case gl and results are shown in table 4.1 . 

38 



,1 
,~< ! ~.;:, '" 

4.2.2 Case g3 

If pattern 93 occurs on two adjacent product lines, the fault-free output line gs is : 

=Wï·1I'2· .. ··1fk·Pî·Pi (4.12) 

AND EfFed 

/ 

The faulty output Une is : 

g{ = ?l'1'+ 11'2 + ... + 1I'Jc + Pl' P2' 
/ 

= wr . 1rï ..... lrk . (Pl + 112) / ( 4.13) 
/ 

/ 
/ 

It follows from expressions 4.12 and 4.13 that to detect this fault, it has to be 

observed whether there is a product Pl . P2 or a sum Pl + P2 on gs. H a1l1(', 's, (~. = Lie:) 
. \ 
have propagating values, the fault is detected if Pl and P2 have complementary logic 

values. Note that aIl these requirements are satisfied by the test vectors for the stuck-at 

faults pt/O and/or n/O. There{ore, no extra condition is required. 

OR Effed r 
In this case, the faulty output Une is : 

(4.14) 

Hence, the short is undetectable through the output line g3' 

39 

/ 

/ 



\- -.' 

/ 

o 

/ 

0' , 

~ 
/ 

4.3 01ltput Linu 

4.3.1 Combinations g1 - g2 - 9S 

The basic patterns analyzed 80 far are very likely to occur in various com­

binations. As a consequence, there may exist a second alternative for testing the same 

. short. 

, 

H g1 and g2 occur on the same adjacent product tines, then the fault can be 

tested either as a stuck-at fault on line Pl with a condition for P2 or as a stuck-at fault 

on line P2 with a condition on line Pl. This is the only case when two CSA faults model 

the same product line short. Note that the number of occurrences of 91 or 92 is the 

number of paths on which the effect of the short can be propagated to some primary Ù 

oufiput. 

H pattern g3 is eneountered along with 91 and/or 92, then if the effect of the 

short is AND, the fault is detected by any TSA, as discussed for the case 93. If the effect 

is OR, then the short has to be modeled by some CSA fault involving patterns 91 or 92, 

. sinee it is undetectable ~ough g3. , ' 

4.3 Output Lines 

The short between two adjacent output lines has to be modeled as a fauit 

on the outputs of some gates on the second level. This assumes that there is no infor­

mation about the circuitry being fed by the PLA outputs. Thus, there are always two 

completely specified CSA faults which model the same output Une short. If the PLA is 

not embedded, the outputs are directly observable and only one CSA fault (either one) 

is sufficient for testing the shorr. In this case, the short is detected whenever the two 

output lines have different values in the fault-free case, independently on the logic effect 

of the short. If the PLA is embedded and the outputs are not directly observable, then 

both 0SA fauits have to be considered since either one may be untestable. 

As discussed in section 3.2 for the general case, the aSA faults which model 

a short with AND effect are (ajO,b = 0) and (bjO,a = 0). For the case of two PLA 

. ) 
'40 

/ 

,"~r 
I( l:.,,, ,., ,. 



,,, 
, 

" 

4.4 Cross-Point Shorts 

output lines g, and gJ' the CSA faults are (gj/O,g, = 0) and (g,)O,g,- = 0). For the 

case of OR effect, the-CSA faults are (g,./l,g,. = 1) and (gi/1,gJ = 1). ,> . 
4.4 Cross-Point Shorts 

The name cross-point shorts (CPS) refers to shorts between wires on different 

layers at the crossover point of bit Hnes and product !ines or product lines anq. output 

Unes. Recent research work ([12], that shorts betw:een wires on different 

layers are less Iikely to occur. Even though the proba l' of such a short to happen is 

~hree orders of magnitude smaller than the probability of shorts on the sarne layer [35], 

sorne applications may require that thelle defe weil he covered. 

The analysis assumes that the logic effect of the short is either AND or OR. 

As discussed in chapter 3, there are two CSA faults which can mode} the short. Consider 
'" 

for example a short between product line Pl and bit line X4 in the example PLA shown 
" -
in figure 1.1. As discussed in section 3.2, there are two CSA faults which can model 

the salTIe crosspoint short: (P3/0:., ix = 0:.) or (Z:J;/0:.,P3 ~ 0:.), where 0:. = 0 if the short is 

AND type and 0:. = l'if tHe short is OR type. Similarly, a short between a product line 

'pJ and an output line gk can be modeled as (PJ/a,Yk :::: 0:.) or (9k/0:.,PJ :::: a) 

The layout information available from the personality màtrix makes it pos­

sible to der ive the CSA faults which model cross point shorts. It has been established so 

far that any bridging fault can be modeled as a completely specified CSA fault. In sorne 

cases, however, this may not be necessary since a null condition CSA fault is sufficient. 

The following two sections analyze the cross-point shorts under various personality pat-
<> 

terns in order to determine thè cases where a completely specified CSA fault is required 

and to derive the corresponding CSA fault. 

4.4.1 Bit and Produd Lines 

Consider a cross-point short between product !ine Pi and bit line q,. The 

fault-free product line Pi is : 

ff " . 
P, = tl ,+ t2 .+ ... + ~k 

41 



o 

\ 

J 

o 

,;/,,;~ 

. \'}~~ 

4.4 Orou-Pom Shcru ": ~ 

.,.... ..,.... . 
= '1 . '2' .... 'Ic (4.16) 

$-," ~ 

OR Effed 

~ -

, Under the assumption of OR effect, the faulty ,product pf is : 

F -:- -:- -, 
Pi = '1' . '2 ..... 'Ic + a 

= pt! +a , (4.16) 
/ 

Depen~g on the relationship between the input a and the inputs il ... ile, 

there are ~hree possibilities : 

1. none of ij's is a (.por Ci~ j 

2. some i j is a ; 

l -t • 

.,' 

Case 1 

There is no relation bet.n a' and it ... ik' It follows from expression 4.16 

that in order to detect the fault we must have p{ f = 0, a = 1 and obse~ Pi at some 

primary output. Clearly, a test vector for the CSA fa.ult (Pi/l, ,a. = 1) ,wil~tisfy these 

conditions and detect the short. 

Case 2 

The fa.illty product is : . ' 

F· . • Pi = '1 + a. + '2 + ... +,'k+ a 

= il' Ci.' i2 ..... i" + a \ 

\ - - -= il . i2 ..... ile + a .J 
r' 

(4.17) 

42 



'. 

\ 

A test vector for the fault a/O will produce a zero on Pi in the fault-free case. In the 

presence of the sho)'t, it will pro duce a one on Pi and the short will be detected. Thus, 

a null condition OSA fault is sufficient to model the ~hort. 

Case S 

The faulty product is : 
4,~'( , . " . ii .. 

== il . (1. iï ..... 'k + 4 

=4 (4.18) 

'; 
IIÏ order to detect the fault, we must h~ve il . i2 ...... ile = 0, a = 1, and a sensitized 

~ " 

path to some primary output. AU these requirements are satisfied by a test vector for 
. " 

the fauIt 1:jjO, ij =1= a. Thus., a null condition CSA fault can model the' short. 

AND Eft'ed 

The faulty product line p[ becomes: . 

F .... .. 
Pi ~- '1 + '2 + ... + Sic • a 

.... .. 
= '1 .. '2' ... "SIc' 4 (4.19) 

Q 

Again, there are three- p08sibilities : 

1 ... none of ils is 4 (nor a); 

2. some ii i~ a ; 

3. some ij is a j 

, 

Case 1 

43 



/ 

. 
• 0 

'. 

,f 

a. ---~-~ 

, 

• • • 
• · • 

( 

Figure 4.6 Bit and Product Line - Fault (o!a, Pi = P) (AND Effed) 

o /' 

-
The pr~duçt Pi does not depend on a or a. A similar analysis as in the case 

of OR effect leads to the conclusion that the short- is going to be detected by the test 
p ~ 

vector for the fault (Pi/O, a = 0). tt' -. 
"" Case 2 

\e f~ulty product is : 

\ 
1 

\ , , 
=0 

.. 
Cleà.rly, the short is covered by the null condition OSA fault (Pi/O). 

, 

Case '3 

Being à. function of a, the product P2 beco~es : 

F -:- -:- -:-
Pi = '1 . a . '2 •.... 'k • a 

_ pif 
- 2 

( 

• 

, (4.20) 

(4.21) 

Thua, the fault (pd 01., a = 01.) is undeteetable. However, it m~y be detectable via the 

fault (a/OI.,Pi = à). The logic circuit image of thiS model is sh~n in figure 4.6. 
" , " 

44 

Il • 

, " 



1 • 
il' 
l' t·,C 
1 ~. i . 
l' 

, 
; 

o 

4.4 Cl'Ol ... Poin~ Shoria 

The short is detected by the tes~ vector for the,CSA fault (a/O,p;, = 0). This 
• < • 

_. ) will produce a one on fine a and a zero on ii. a = 0 is a nondominant value in the 

expression for Pi and thus there is no contradiction. 

'.4.~ Produd and Output Lines 

The a.Iwysis is very similar to the case Bit and" Prodtfd Lints. The only 

~itterence is that there is no inverted product Hne, the way bit lines are inverted in the 

AND plane. 

The fault-free line y{' Îs : 

= Pl' P2' .... Pk , (4.22) 

r 

• 1 

OR Effed 

The faulty Hne gr is : 

F - - -+ Yi = Pl" P2 •.••• Pk 'Ir 

= g{' + 'Ir , (4.23) 

Case! r ,The output lino 9i '~independent on 71'. The short ~ gaing ~o be detected if 

'" ~ ,9{' =: 0, 1t' = 1 (expression 4.23), and if 9i is obse:rvab1è at some primary output. In 

other wordS, the short is modeled by t,he OSA fault (9i/1,1I' = 1). 

Case 2 

The output Une gi depends on 'Ir (tised crosspoint). The faulty 'output line becomes : 0 

gr = Pl + 1t' + 1'2 + ... + Pk + 1t' 

) 
_1 Pl . 'j! . P2 ..... Pk + 'Ir 

w , .' ", = Pl . 112 • • ••. Pk + 11' (4.24) J 

45 

} . 
. . 

" -.'li 
. i 



o 

o 

4.4 Cross-Point Shorts 

A~ ~or the general case, the short can be modeled as (gi/1, 11' ....:. 1). This CSA 

fault ois detected by the test vector for the CSA fault ('Ir /0, 'If = 1), since gi/l dominates 

11' /0. But, a test vector for 7rYO pro duces 'Ir = 1 anyway, 80 no condition has to be 

specified for this case. 
\ 

" 

AND Effect 

Assuming that the effect of the short is AND, the Jault y output line g; is : 
• 0 

F 
gt = Pl + P2 f ... + Pk . 11' 

= Pl . P2 ..... Pk . 'Ir (4.25) 

Case 1 

None of Pt '8 is 7r. The analysis is similar to that for OR effect, case 1. The 

short will be detected by the test vector for the CSA fault (gt/O, 'Ir ~ 0). 

Case 2 

If Pt = 11', then g; becomes : 

"d(' ::; 0 (4.26) 

Thus, the short is modeled ~y the null condition CSA fault (gt/D). 

/ 

46 

, 
\, ~ 

.' 



.. 

4.5 - Conclusion 

4.5 Conclusion 

The PLA regularity a.nd impIicit layout information enables one to efficiently 

model bridging faults as CSA faults. The results of the PLA bridging fault analysis 
f 

. d' t hl 4 1 d 42 CIl 1 h' l' d' t'd 'f 11 the are sununanze ID a es an .. lE ar y, t IS ana ySls oes no 1 entl y a 

untestable single bridging faults, but prov des a simple method to screen a subset 0 f 

d 
~ 

the untestable bridges. Even though a Ne R-NOR implementation has been assume 

for the PLA, these results are valid for the AND-OR implementation as weIl. 
w 

1- Bit Hnes belong OR null cond. CSA 

Adjacent to the same var. ANIj>_ null cond. CSA 

- Bit lines bit lities 
1 

~ot used Undetectable 

bit lin es on different pl 1 AND b used undetectable 
, 1 

1 b unused (a/D, b = 0) 
variables 1 

l' 

OR b used null cond, CSA 1 

llhorted . b unused (a/l, b = 1) 

1 
p2 1 AND a used undetectable 

1 1 

~ a unused (b/O, a = 0) 
- - 0 , , 

OR a used null cond. CSA 

a unused (b/l, a = 1) 
p3 AND null cond. CSA ' . 

OR undetectable . 
pl & p2 & p3 indep. alternatives: pl, p2, .p3 

2. gl AND (Pt!0,P2 = 0) 
Adjacent OR (pdl,P2 = 1) 

word g3 AND nuIt cond,i-'GjA 

lines OR "", undetectable 

shorted gl & g2 & g3 indep. alternatives: gl,g2,g3 

3, 0 

Adj. output AND (9t/0,91_ = 0) or (gj)O, gt = 0) 

Hnes shorted OR (gi/l,g7 =1)or (gJ/l,gJ 1 0) 

(P, 

Table 4.1 Bridging Faults Between Parallel Wires oh the Same Layer 

47 



o 

o 

4.5 Conclusion 

The tables represent in fact a simple set of rules for deriving the OSA faults 

from the personality matrix. Once this is done, only the two-Ievel logic model of the 
. 

circuit il! used for test pattern generation, as it will be described in the section on 

expèriments and' 'ref;lults . . 

l , 4'. OR effect 1:' "a'!, not used (p/l,a = 1) 

Crosspoint 2: "a" used rtull cond. CSA 

shorts in 3: "0;" used null cond. CSA 

the AND AND effect 1: "a" not used (plo, a == 0) 
plape 2: "a" used null cond. OSA 

~ 3: "0;" used undetectable 

5. 
r 

Crosspoint OR effect 1: "p" not used (g /l,p = 1) 
shorts in 2: "pH used null cond. CSA 

the OR AND effect 1: "pH not useq., (g/O,p = 1) 
plane 2: "pH used null cond. OSA 

.... 
Table 4.2 Bridging Faults Between Lines on Different Layers 

., 

1 

,,{ 
; 
; 

" 

48 

',~~. ~:~' 
, ,~, 

'l, 



>, ' 

.. 

.. 

Chapter 5 Experiments and Résults , 

. The analysis presented in chaPte~s three and four has h.n sed 'ta implement 

an algorithm ta generate the pSA faults for PLA 's. This algo=:::~as been applied 

to the 56 bencnmarking PLA's [9]. Test vectors were generated for the CSA faults in a 

subset, of these examples. In each case, the set of fauIts contains both CSA faults with 

nu]] condition and completely specified CSA faults. The ATPG tool,used to generate 

test vectors is an existing irriplementation of PODEM [241 which has been modified 
1 

such that it processes CSA faults as weIl. Unfortunately, the ATPG tool available 

is quite inefficient and the' very large PLA's in the set of 56 benchmarking examples 

could not have been processed in a reasonable amount of time. For comparison with a 

state of the art ATPG tool [38], table 5.1 shows the time performance of the PODEM 

implementation used in these experiments, versus SOCRATES [381 for sorne of the 

weIl known benchmarking circuits introduced in [39]. For these reasons, the modified 

PODEM implementation was run only on 45 smaH and medium size PLA's out of the 

set of 56 PLA 's. The implementation of the algorithm to generate the CSA faults and 

the modifications for the ATPG tool are the contribution of the author. The programs 

have been written in "C" run on a SUN 3/50 system. 

5.1 CSA Faults 

The input for the algorithm which generates the completely specified CSA 

fauIts is the PLA personality matrix. The output specifies the stuck Hne, the stuck value, 

the condition !ine and the condition value for each CSA fauIt. The lines are specified 

. , 

\ 



o 

o 

5.1 OSA Paulte 

.. 
Circuit SOCRATES PODEM 

totaltime total Ume 

c432 3.7 279.67 

c499 8.1 241.66 

cSSO 5.7 159.50 

c1355 21.9 1209.80 

c1908 33.1 1063.52 

c2610 69.3 6601.68 

c3540 62.0 7494.29 
/ 

Table 5.1 Calibration 

as :el to :en," Pl to Pm, and FI to Fp, for PLA input lines, product lines, 'and output 

Unes, respectively. Therefore, in the case of embedded PLA's, The ATPG program. has 

to accept these names for lines which are internaI to the larger circuit. 

In the data structure, each input cube is _represented by a linked Hst of 32-

bit word blocks. In each block, two words are used to encode the literais in the cube. 

Therefore, each block can represent up to 31 entries in the input cube. The 32nt't 
overlaps the l"t bit in the next block and it is used for checking the personality pat rns 

on two adjacent Iines represented on two different blacks, for the case of bridging fau s. 

The OR plane is represented in a similar way. In this case, each output column is 

mapped into a Hst of words. This representation of the PLA allows a very efficient use 

of the memory and fast bit-wise opera.tions. 

The missing cross-point faults are covered by CSA faults with null condi­

tion (i.e. normal stuck-at faults), as stated in lemma 1, and PODEM will inherently 

consider them. The CSA faults \for the additio.nal crosB-point faults are generated by 

simply traversing the Hst and identifying the non-connections. Two counters have to 

be kept, one for the inputjproduct line count for the AND plane, and the other for the 

prodùct/output line count for the OR plane. The words are simply shifted and ANDed 

with a mask to determine whether there ie a connection or not. The CSA faults for the 

cross-point shorts are generated in the sarne pass by observing the rules summarized 

in table ~2. As discussed in chapter three, the effect of shorts may be propagated on 

50 

,', 

, 
. " , , 



·c 

'~ . -, 

:)fi:. 

IP PR OP time (sec) IP PR 
ad~6 12 355 7 4.62 in5 24 62 

adr4 8 75 5 0.62 in6 33 54 

alu1 12 19 8 0.42 in7 26 54 

alu2 10 68 8 1.02 jhp 36 122 

alu3 10 66 8 0.98 misg 56 69 

apla 10 25 12 0.40 mish 94 82 

beO 26 179 11 4.04 mlp4 8 127 

bea 26 180 46 6.62 opa 17 79 

beb 26 156 39 5.00 radd 8 75 

bec 26 137 45 4.86 rckl 32 32 

bed 26 117 38 4.64 rd53 5 31 

chkn 29 140 7 4.00 rd73 7 127 

co14 14 14 1 0.24 risc 8 28 

cps 24 162 , 109 15.72 root 8 57 

deI 4 9 7 0.22 sqn 7 38 

de2 8 39 7 0.54 sqr6 6 50 

dist 8 120 5 1.20 ti 43 213 

dk17 10 18 11 0.40 tial 14 579 

dk27 9/8 10 9 0.30 vg2 25 110 

dk48 15 21 17 0.62 wim 4 9 

exep 30 109 62 8.04 x1dn 27 110 

f51m 8 76 8 1.06 x2dn 82 104 

gary 15 107 11 2.14 x6dn 38 81 

inO 15 101 11 2.34 x7dn 66 538 

in1 16 104 17 1.86 x9dn 21 120 

in2 19 135 10 3.16 z4 7 39 

in3 35 74 29 4.02 Z5xpl 7 65 

in4 32 212 20 9.56 Z9sym 9 84 
1 

r 
-' 

Table 5.2 Time Required for CSA Generation 

~ 

~I \ 'i\' 
"r 

5.1 OSA Faultll 

OP time (sec) 

14 2.02 

23 2.76 

10 1.92 

57 9.78 

23 4.68 

34 10.58 

8 1.38 

61 4.40 

5 0.82 

7 1.16 

3 0.34 

3 0.96 

31 1.04 

5 0.66 

3 0.44 

Il 1.00 

67 20.20 

8 9.06 

8 3.06 

7 0.30 

6 2.98 

47 14.42 

5 3.82 

15 46.70 

1 3.42 

4 0.62 

9 0.98 

1 0.90 

two paths. Therefore, a new field is used in the CSA fault specification, indicating this 

possibility. li the fault is untestable via one pa:th, the ATPG tool will try the second 

51 



1 
1 

o 

""0 ' -

6.2 ATPG Tooi 

ut gZ g3 

001,,0 010 
pt 

p2 
.01%1:1: Off 

1'8 
11012: 1 0 1 " 

p4 
o 0 o % t t t 0 

p5 
II: 0 10:1: t 0 t 

Figure 5.1 Assumed Layout Positioning for NOR-NOR Implementation 

. path. 

For the bridges between wires on the same layer (table 4.1), it is.necessary 

to identify the patterns discussed in section six. The process is similar to the one for 

additional cross-point fauIts. In the case of bridging faults, two adjacent bits in the 

PLA representation have to be observed. It has been assumed that the implementation 

is NORrNOR and the layout follows the structure in figure 5.1. 

The implemeritation uses bit-wise -operations extènsively. The total time 

required ta generate the CSA faults corresponding to cross-point fauits, cross-point 

shorts, and bridging faults (AND and OR effect) for the example PLA's is shown in 

table 5.2. The set of completely specified CSA faults ie subsequently used in PODEM 

along with the two-level representation of the PLA. 
___ (li 

5.2 ATPG Tool 

The starting point in màdifying the implementation of PODEM is the data 

structure for the fault dictionary. Each stuck-at fauit in the old structure has to be 

capable of accepting a list of conditions. An image of the new data structure is shown 

in figul ~ 5.2. Each condition, along with the corresponding stuck-at fault counts as a 

completely specified CSA tauit while the stuck fault itself counts as a. CSA fault with 

null condition. Thua, the fact that many cross-point and bridging faults can be mapped 

into OSA faults with null condition reduces the final size of the CSA fault set 

'52 

(, 
'. 



• • • 
s.a.. 

/ 
cond. line 

OOM. value 

cond. line 
cond. value 

.". 

line 
1 1 S.a.. 0 

. 
\ 

cond.. line 
cond. value 

cond. line 
cond. 

· • • 

value 

, 

S.a.. 

/ 
cond.. line 

cond.. valtœ 
-

cond. line 
cond.. value 

f 

Figure 5.2 Fau]t Dictionary Data Structure 

,5.2 ATPG TooI 

Une 

1 1 S.a.. 0 

'\ 
cond. line 

cond. value 

cond. line 
cond. value 

l 

• • • 

••• 

• 

The general test' generation strategy is to consider each fault on each line in 

the circuit. The CSA faults with completely specified conditions are considered first. 

If at least one su ch fault is detectable, then both the completely specified and the null 

condition CSA fault are counted as detected. If ail the completely specified CSA faults 

attached to sorne Hne are undetectabJe, then the null condition CSA fault is considered 

alone. 

, 
A few statements have been added to the forward implication part of the 

\ 

program such that the value on the condition line is monitored. If the actual value does 

not match the condition value, then a backtrack operation is performed. If the values 

match ("don 't care" is considered match), the program continues. This represents a 

third case which require bounding, which is added to the other two cases introduced in 

[24]. For the case of a "don't care" on the condition Hne, an extra function was required 

to specify PLA input values for the cone leading to the condition Hne. This is necessary 

because normal1y, the unspecified inputs are randomly assigned and the test vector is 

then simulated. 

It is important to note that no test set compaction is attempted, other t -random assignrnent orthe unspecified inputs and fault simulation. Various PLA-specifie 

heuristics have been presented in [9], [33] for this purpose.~ The CSA fault model is 

\ 53 

" 



o 

o 

1 -
\ 

.J 

5.3 CSA Coverage 

primarily intended for embedded PLA 's such that test vectors are generated for t~e 

entire circuit. 

... -

,5.3 CSA Coverage 

- A set of expe iments has been performed on 45 benchma1~ing PLA 's, as 

follows: 

Experiment 1 : 

A test set has be~n generated for aIl single stuck-at faults and for aU s' gle 

cross-point faults modeled as CSA fàults. This ~est set is called TcsA- p. 

Experiment 2 : 

A te~t set has been generated for aIl single stuck-at faults an 
, c 

bridging tauIts on the same layer (SLB), modeled as CSA fa This test 

set is cal!ed TCSA-SLB. It has been assumed that the 10 c effect of the 

~ bridging faults 'is the same, either AND or OR, in the entir 

Experiment 3 : , 

A test set has been generated for aU single stuck-at fault 

bridging- faults betw~en wires on different layers, modeled 

This test set is called TOSA-CPS, where CPS stands for 'cross-poin horts . 

. The same assumption has 'b,een made as in the previous experiment regardm 

the effect of bridging faults. 

Table 5.3 (pages 57 and 58) shows the coverage obtained for cross-point 

faults. Column 1 identifies PLA's by names used in [9]; columns 2,3, and 4 provide 

the number of input, product and output lines, respectively; column 5 is the number 

of addit.onai cross-point fauIts which are not cofred by stuck-at faults in the two-level 

. model of t.he PLA; column 6 represents th71 number of cross-point faults ; column 

• M 
- /,'\ 

J 



1 

I~ 

c· 
5.3 CSA Coverage 

7 is the coverage of aIl single cross-point faults by a complete test set developed using 

- our tool; finally, column 8 is the coverage of single cross-point faults by TSA' which will 

be described in section 5.4. 

Stuck-at coverage is 100% for aU cases except for the PLA named dist, 

wherein one stuck fault is untestable. Therefore, the stuck-at coverage is not included in 

the table. For cross-point faults, the coverage obtained is exactly the same as. reported 

in [9]. Therefore, it can be safely concluded that the CSA model provides the same 

cap~bilities as the cross-point fault model in terms of the ~overage of CP faults. RecaIl 

from !9] that less than 100% coverage in column 8 corresponds ta those faults which are 

undetectable. 

Table 5.4 -(pages -59 and 60) shows the results for bridging faults between 
• • 

wires on the same layer, for AND and OR effect separately. Co\umns 1,2,3, and 4 ~how 

the name and size of the PLA. Co\umn 5 shows the total number of single Saffie Layer 

BridgiIig (SLB) faults for each PLA. Côlurons 6 and 9 show the number of bridge~ 

which a!e found to be untestable in the preprocëssing step, for AND and OR effect, 

respectively, according to the results shown in table 4.1. C~lumrîs 7 and 10 show the 

additional- number of bridges found to be untestable by the ATPG algorithm. Finally, 

columns 8, and 11 show the coverage of bridging faults, which inc1udes aB untestable 

bridging faults as weIl. 

Table 5.6 (pages 63 and 64) shows the coverage of cross-point shorts (CPS). 

Column 5 shDws the total number Df cross-point shorts i ~olumns 6 and 8 show the 1 

coverage Df aIl cross-point shorts using the CSA fault model. Columns 7 and 9 show the 

coverage over ail cross-point shorts of a complete single stJ1ck-at test set, as it will be 

explained in section 5.4. In this case, the number of completely specified CSA faults is 
p 

quite large, due to the fact that it is prDportional to the number Df unused cross-points 

in the PLA. An interesting case is the AND effect of the CPS. The CSA fault set for 

cross-point faults is a subset of the CSA fault set for the CPS, AND effect. Due tD the 

fad that in the case of CPS the fau]t can be propagated on two paths, the coverage is 

much higher in the case of CPS than in the ease" of CP faults. 

55 

" , 
" 

""" 



o 

" 

, 

o 

5.4 C~verage by T SA 

5.4 Coverage by TSA 

, It has been determined for aIl the three sets of experiments, the coverage 

p~rforfance ~f a complete single stuck-at test set generated on the tw~level mode} 

of the~. This has been done by generating test vectors only for the CSA faults 

with null condition and by simulating the completely specified CSA faults as weil. As 

mentioned in chapter two, coverage by TSA of cross-point and bridging faults has also 

been con~idered by Agrawal and Johnson 111]. 

( 

For the cross-point faults, the results are shown in table 5.3, column 8. Note ' 

that the difference in coverage with respect to Tes A ranges bètween 0% a!ld 38.3% 

(x6dn). ~or the bridging faults between wires on different layers, the results are shown 

in table 5.6 , columns 7 and 9, for AND and Or effect, respectiveJy. ~Tab)e 5.5 (p-ages 

61 ~nd 62) shows the coveragè of bridging faults between Hnes on th~ same layer by 

TCSA-SLB (also shown in table 5.4) and by TSA, for OR and AND effects. Column 

2 sh~ws the total number of'bridging fault~. The coverage obtained by TCSA-SLB iS

l shown in columns 3 and 5, for AND,and OR effect, respectively. Columns 4 and 6 show 

the coverage of bridges by TSA. For the AND effect, the difference in coverage ranges 

betweeh-O and 4.47 (wim). Bridging fauIts under the assumption of AND effect wer.e 

a]so considered-in [11], but the coverage by TSA reported in [111 is over bridging faults 

and stuck~at faults. Since the number of bridging faults 'considered is much smaller than 
." 

the number of stuck-at faults, the results presented in tables 5.5 and 5.6 give a more 

accurate image of the coverage performance of TSA. 

These results show that for PLA's, the,coverage achie"ed by TSA is unaccept­

ably low in sorne cases. There are many examples where the drop in the TS A coverage 

'over non stuck-at faults is more than 15% with respect to TCSA-CP, TCSA-SLB, or 

TCSA-OPS· 

56 

\ 

":'. ~ 

, ' 



PLA Bize 

1 2 3 4 

IP PR OP 

add6 12 355 

""'" adr4 8 75 5 

alu1 12 19 8 

alu2 10 68 8 

aIu3 10 66 8 

apla 10 25 12 

beO 21 179 11 

chkn 29 140 7 
o 

eo14 14 14 1 

dc1 4 9 7 

de2 8 39 7 

dist 8 120 5 

dk17 10 18 11 

dk27 8 10 9 

dk48 15 21 17 

exep 28 109 62 

f51m 8 76 8 

gary 15 107 11 

inO 15 107 11 

in1 15 104 17 

in2 19 135 10 

in3 34 74 29 

in4 32 212 20 

in5 24 62 14 

in6 33 54 23 

in7 26 54 10 

jbp 36 122 57 

misg 56 69 23 

mlp4 8 127 8 

Faults 

5 6 

add. CP total CP 

6258 11005 

820 1575 

507 608 

1289 1904 

1222 1848 

416 800 

5904 9487 

5761 9100 

0 406 

54 135 

429 897 

935 2520 

320 558 

165 250 

654 987 

10403 12862 

1104 1824 

2375 4387 

2375 4387 

1951 4888 

3893 6480 

5897 7.178 

13132 17808 

2574 3844 

3822 4806 

2584 3348 

13993 15738 

8894 9315 

1400 3,048· 

" 7 

5.4 Coverage by TSA 

" 
Coverage 

8 

TOSA-CP cov.(%) TSA cov.(%) 

88.69 78.64 

90,54 82.60 

97.53 81.09 

83.77 71.80 

87.45 77.22 

99,,50 91.25 

95.69 76.39 

93,64 - 67.60 

100.00 100.00 ' 

a 94.07 92.60 

96.55 92.42 

93.02 91.31 

99.82 92.83 

100.00 96.00 

99.80 94.94 

99.39 
"ft 88.41 

v 

92.22 80.59 

94.80 85.68 
. 

94.83 85.16 

97.96 87.36 

96.50 83.93 

97.77 80.84 

95.40 66.37 

98.39 79.55 

98.90 80.55 

95.31 76.46 

98.48 87.77 

97.11 62.52 

94.69 93.04 

Table 5.3 Cross-Point Fault Coverage 

57 



r ' 

o 

b- .' 

PLA size 
, 

1 

radd 

rckl 
rd53 

rd73 

·flSC 

root 

sqr6 

sqn 

vg2 

Wlffi 

x1dn 

x6dn 

x9dn 

z4 

·Z5xp1 

Z9sym 

2 

Ir 
8 

32 

5 

7 

8 

8 

6 

7 

25 

4 

27 

38 

27 

7 

7 

9 

. . , 

fJ 

3 

PR 

75 

32 

31 

127 

28 

57 

50 

38 

110 

9 

110 

81 

120 

39 

65 

84 

Faults 

4 5' 
. 

6 

OP add. CP total CP 

5 820 1575 

7 .1056 2272 

3 88 403 

3 500 2159 

31 1002 1316 

5 524 1197 

Il 676 1150 

3 235 646 

8 4664 6380 

7 59 135 

6 4562 6600 

5 5112 6561 

7 4924 7320 

4 499 702 

9 933 1495 

1 504 1596 

, 

, "" j ',', : .,.rl(" 
." , c-~'J~ 
- ?il 

" -, , ~., 

, 5.4 Coverage by T SA 

Coverage 

7 8 

TOSA-OP COv.(%) TSA cov.(%) 
Q 

90.54 84.43 

100.00 100.00 

95.28 95.28 

92.22 . 92.22 

97.12 94.60 

89.72 86.30 

93.21 92.69 

91.33 82.66 

95.08 71.55 

94.82 J. 87.41. 

96.15 69.27 

97.35 59.01 

95.94 72.68 
, A' 

85.04 75.08 

·93.04 > 88.89 

100.00 '69.55 

Table 5.3 ' Cross:"Point Fault Coverage - Continued " 
' . 

. ' 
\, ' 

.' . ~ 

-• 

58 

,'. 

" 
j 



5,4 çoverage by TSA 

PLA size 
0 

Faults AND effect OR effect 

1 2 3 4 5 6 
1 

7 8 9 1 10 11 

IP PR OP total nrf untest. COY. nr. untes,t. COY. 

0 SLB pproc. PODEM (%) pproc. PODEM (%) 

add6 12 355 7 383 0 0 100, 315 2 100 

adr4 B 75 5 93 0 0 100 65 3 100 
alu1 12 19 " 8 48 0 0 100 12 a 100 

, 
alu2 10 68 8 93 0 a 100 55 10 100 .. 

, 
alu3 10 66 8 91 0 0 100 59 3 100 

apla 10 25 12 54 0 0 100 3 a 100 

bcO 21 179 11 229 0 a 100 ,23 5 100 
chkn- 29 140 7 202 0 0 100 125 la 100 
·co14 14 14 1 40 0 0 100 14 0 100 

dc1 4 9 7 21 0 0 Q100 1 O' 100 

dc2 8 39 7 59 0 0 100 21 5 100 

dist 8 120 5 138 0 0 100 90 9 100 

dk17 10 18 11 45 0 - 0 100 1 a 100 

dk27 8 10 9 32 0 0 100 1 0 100 

dk48 15 21 17 65 0 0 100 5 0 100 

exep 30 109 62 224 0 0 100 4 32 100 

f51m 8 76 8 97 0 0 100 72 2 100 

gary 15 107 Il 145 0 0 100 33 . 19 100 

inO 15 107 Il 145 0 0 100 41 15 ·100 

in1 15 104 17 148 \ 0 0 100 13 9 100 
, , in2 19 135 10 180 0 0 100 92 15 100 

in3 34 74 29 168 0 2 100 28 . 10 100 

in4 32 212 20 293 0 1 100 33 94 100 

in5 24 62 14 121 0 , 0 100 12 3 100 

in6 33 54 23 140 0 3 100 8 5 100 

in7 26 54 10 113 0 1 100 33 8 100 

jbp 36 122 57 - 248 0 1 100 045 12 100 

misg 56 69 23 201 0 5 100 57 ' 1 100 

mlp4 8 127 8 148 0 0' 100 48 33 100 

Table 1i.4 Same Layer Bridges 

59 

r 

r_ '. 



• PLA size Faults AND effect OR effect 

1 2 3 4 5 6 1 7 8 9 1 10 Il 
IP PR OP total nr. untest. cov" nr. untest. cov. 

SLB pproc. PODEM (%) pproc. {'ODEM (%) 
radd 8 75 5 193 . 0 a 100 67 5 100 

.) 

rekl 32 32 7 100 a 0 100 2 0 100 

rd53 5 31 3 41 -0 a '100 27 0 100 

rd73 7 127 3 141 -0 a 100 120 4 100 

risc 8 28 31 72 0 3 100 2 3 100 

root 8 57 5 15 a 0 ,100 28 12 100 

sqn 7 38 3 52 a 0 100 27 0 100 

sqr6 6 50 Il 70 0 0 100 24 2 100 

vg2 25 110 8 165 0 0 100 66 12 100 

Wlm 4 9 7 ~ 0 1 100 1 1 100 

x1dn 27 110 6 167 0 1 100' 92 8 100 

x6dn 38 81 5 159 o - 0 100 25 21 100 

x9dn"", 27 1-20 7 178 0 2 100 102 21 100 

z4 7 59 4 54 0 0 100 51 3 100 

Z5xpl' 7 65 9 85 0 d 100 26 17 100 

Z9sym 9 84 1 100 a a 100 83 1 100 

Table 6.4 Same Layer Ifridges - COlltinued 

. , ) , 

o , , 

60 

, ' 



, "r, r ' 
'.J' 

5.4 Ooverage by T SA 

PLA AND effect OR Effeet 

1 2 3 4 5 6 

Total cov.(%) eov.(%) cov.(%) eov.(%) 

SLBF TCSA-SLB TSA TCSA-SLB TSA 

add6 383 100 100 100 100 

adr4 93 100 100 100 98.91 

alu1 48 100 100 100 85.44 

alu2 93 100 100 100 96.75 

aIu3 91 100 100 100 96.13 
J' apla 54 100 98.16 100 90.47 

beO 229 100 100 100 95.12 

chkn 202 100 100 100 100 

co14 40 100 100 100 100 

deI 21 100 100 , 100 100 

dc2 59 100 100 100 100 

dist 138 100 99.31, 100 99.99 

dk17 "46 100 100 100 89.00 

dk27 32 100 100 100 81.59 

dk48 65 100 100 100 84.91 

exep 224 1UO 100 100 85.66 

f51m 97 100 <1 100 100 98.98 

gary 145 100 100 100 97.87 

inO 145_ 100 100 100 97.87 

in1 148 100 100 100 98.~' 

• in2 180 100 100 100 98.39 

in3 168 100 98.78 100 89.77 

in4 293 100 ml'. 62 100 94.77 

in5 121 100 100 100 94.99 

in6 140 100 97.88 100 94.84 

in7 113 100 99.09 100 91.94 

jbp 248 100 99.55 100 93.15 

mlsg 201 100 97.53 100 94.04 

mlp4 148 100 100 100 100 

Table 5.5 Same Layer Bridges - TCSA-SLB and TSA 

61 



'\ 

5.4 ' Coverage by TS'A 

o 
PLA AND effect OR Effect 

1 2 3 4 5 6 

Total cov.(%) cov.(%) cov.(%) cov.(%) 
SLBF TCSA-SLB TSA TCSA-SLB TSA 

radd 93 100 100 100 100 

rckl 100 100 100 100 100 

rd53 41 100 1100 100 100 

rd73 141 100 100 100 100 

risc 72 100 ~5.86 100 97.03 

root 75- 10V 100 100 100 

sqn 52 100 100 100 t). 100 

sqr6 70 100' 100 100 100 

vg2 165 100 100 100 ) 93.~8 

wim 21 100 95.53 
. 

100/ 
... 

75.40 

x1dn 167 100 100 1»6 88.97 

x6dn 159 100 98.80 100 93.66 

x9dn ~8 100 100 100 100 

z4 100 100 100 98.19 54 

Z5xp1 . __ 85 100 100 100 100 

Z9sym 100 100 100 100 100 

Table 5.5 Sante Layer Bridges - TOSA-SLE and TSA - Continued 

o· 
62 



5.4' Covero.ge by TSA 

( PLA AND effec,t OR Effeet 

1 2 3 4 5 6 7 8 9 

IP PR OP Total cov.(%) cov.(%) cov.(%) cov.(%) 

cps TOSA-OPS TSA TOSA-OPS TS A 

add6 12 355 7 11005 100 83.17 99.16 95.09 

adr4 8 75 S 1575 100 83.37 99.94 93.27 

alu1 12 19 - 8 608 99.83 88.94 100 98.35 

alu2 10 68 8 1904 99.90 78.52 '99.94 98.11 

alu3 10 66 8 1848 99.89 81.54 99.94 92.48 

apla 10 25 12 800 100 96.43 100 76.37 

beO 21 179 11 9487 99.99 93.26 99.20 91.31 

chkn 29 140 7 9100 99.99 72.81 99.86 93.92 

co14 14 14 1 406 100 95.45 100 100 

del 4 9 7 135 100 93.33 100 95.55 

deZ 8 39 7 897 99.89 90.96 100 90.08 

dist 8 120 5 2520 99.96 88.85 99.76 93.33 

dk17 10 18 11 558 100 100 100 74.37 

dk27 8 10 9 250 99.20 95.24 100 78.79 

dk48 15 21 17 987 99.90 97.62 99.89 77.71 

exep 28 109 62 12862 99.99 88.19 100 49.22 

f51m 8 76 8 1824 99.95 85.84 99.62 92.27 

gary 15 107 11 4387 100 86.58 99.59 84.91 

inO 15 107 11 4387 100 86.90 99.41 84.70 

in1 15 104 17 4888 100 86.20 100 85.42 

in2 19 135 10 6480 99.99 83.63, 99.99 87.48 

in3 34 74 29 7178 99.93 83.74 99.91 78.19 

in4 32 212 20 17808 99.98 69.50 100 83.09 --
jnS 24 62 14 3844 100 78.71 -100 88.47 

in6 33 54 23 4806 100 83.21 99.98 84.71 

in7 26 54 10 3348 99.79 82.48 99.77 94.35 

jbp 36 122 57 15738 99.98 89.66 99.97 76.51 

misg 56 69 23 9315 99.94 75.31 99.97 98.35 

mlp4 8 127 8 3048 
. 

100 94.27 99.96 89.73 

. 
V 

( Table 5.6 Cross-Point Shorts 

63 



5.4 Coverage by TSA 

• PLA AND effect OR Effect 

1 2 3 4 5 6 7 8 9 

IP PR OP Total cov.(%) eov.(%) cov.(%) eov.(%) 

CPS TOSA-CPS TSA TOSA-CPS TSA 

radd 8 75 5 1575 100 85.35 99.54 93.53 

rckl 32 32 7 2272 99.86 98.47 100 94.46 

rd53 5 31 3 403 100 90.92 100 91.06 

rd73 7 127 3 2159 100 86.64 100 95.79 

TIse 8 28 31 1316 99.77 94.72 99.84 44.31 

root 8 57 5 1197 100 85.90 99.90 90.14 

sqn 7 38 3 646 100 82.64 100 95.97 

sqr6 6 50 Il 1150 99.91 94.95 100 c 86.65 

vg2 25 110 8 6380 100 71.45 100 96.55 

wim 4 9 7 135 99.27 85.66 98.39 91.11 

xldn 27 110 6 6600 100 72.44 100 96.68 

x6dn 38 81 5 6561 99.94 63.03 100 9a.70 

x9dn 27 120 7 7320 100 ' 74.56 100 94.40 

z4 7 39 4 702 100 77.68 100 89.74 

'Z5xp1 7 65 9 1495 99.93 90.06 100 90.16 

Z9sym 9 84 1 1596 100 68.23 100 100 

, 

Table 5.6 Cross~Poil1t Shorts - Continued 

• 1 

64 



L 
i:.f~ .", .' , , 

.... , , 

Chapter 6 Conclusion 

This thesis has introduced the Conditional Stuck-At fault model which can 
.. 

model stuck-at, cross-point, and bridging faults. The new mode} allows deterministic 

test pattern generation for aIl these types of faults, using c1assicai test pattern generation 
'-, 

and simulation tooIs, after minor changes. For the case of embedded PLA's, this allows 

the use of a unique fauit model both for the larger circuit and for the PLA, and test for 

the embedded PLA stuck-at, cross-point and bridging fauIts, without requiring BIST, 

additional controllability lobservability, or an extended modei of the PLA. 

It has been proven that any additional cross-point fé!-ult can he modeled as 

a OSA fault and that any missing cross-point fauit can' be modeled as a null condition 

CSA fault. Under the assumption that bridging faults have a definite Iogic effect, either 

AND or OR, it has been shown that any bridging fault is covered by two CSA fauIts, 

any of them, if detectable, being sufficient for detecting the bridge. Therefore, the use of 

the CSA fault model allows deterministic test pattern generation not only for stuck-at 

faults or cross-point fauits, but also for bridging faults. 

The patterns which may occur in the personality matrices and their effect 

on the CSA faults modeling bridges have been analyzed, identifying the bridges which 

need to be mode!ed as completely specified CSA faults, the bridges which are modeled 

as null condition CSA faults, and a large number of the undetectable bridges. The 

algorithm derived from this analysis is !inear in the number of cross-points. Based on 

this analysis, an experimentaliower bound on bridging fault coverage by any complete 

single stuck-at test set can be determined for any PLA. 

, , 



o 

0-

.:., 

" 

Conclusion 

, 
The experimental results presented in chapter five show that the OSA fault 

model .performs as weil as the cross~point fault model in terms of the coverage of cross­

point faults and much better in terms of the coverage of bridging faults. Coverage figures 

for stuck-at, cross-point, and bridging fauIts are reported for 45 benchmarking PLA's. In 

ail cases it has been assumed that the PLA does not have any memory elements attached. 

The prohlem of testing such PLA 's implementing finite state machines requîres further 

research. 

The model fQr bridging faults also requires further work. The assumption 
o 

of a weIl defined logic effect, used for modeling bridges, Olay not be true in aIl cases. 
~ 

To verify this assumption, extensive simulation of large PLA's for various locations of 

bridges ie required. 

The test pattern generation and especially the simulation tool have to be 

optimized. The tool used for the experiments presented in chapter five was d~rived 

with a minimum effort from an existing tool, to show the validity of the OSA fault . 
model, the main purpose of this work being to present a new method for PLA test 

pattern generation. Various heuristics can he used both in the test pattern generation 

and in the simulation parts. ) 

" 

66 

J 

- " 



" 

. . 
REFERENCES 

REFERENCES 

111 P.P. Gelsinger, "])esign and Test of the 80386" ,IEEE Design fi Test of Computers, 

pp.42-50, .June 1987. 

121 H.H. Chao, S. Ong, M. Tsai, F.W. Shih, K..w. Lewis, J.Y.F. Tang, C.A. Trempel, . . 
H.N. Y,u, P.E. Mc Cormick , C.V. Davis, A.L. Diamond, T.J. Medve and J.C.L. Hou, 

"Designing the Micro/370" ,IEEE Design 8 Test of Computers, pp.32-40, June 1987. 
- . 

131 H. Fleisher and L.l. M;aissel, "An Introduction to Array Logic", IBM Journal Research 

and Development, vol. 19, pp. 98-109, March 1975. 

[4] T. Sasao, "Input Variable Assignment and Output Phase Optimization of PLA's" 1 

IEEE Transactions On Computers, vol. C-33, pp.879-894, October 1984. 

t 

"15] C. W. Cha, "A l'esting Strategy for PLAs", IEEE Desigr:t AU,tomation Conference, . 

pp.326-330, 1978. 

1 

!6] J.E. Smith, "Detection of' Faults in Programmable Logié Arrays" ~ IEEE Transactions 

On Computers, vol. C-28, pp.845-853, November 1979. 

, 17]' D .L.Ostapko, S.J. Hong, "Fault Analysis and Fau]t Generation for Programm~b]e Logic 

Arrays", IEEE Transactions On Computers, vol. C-28, pp.617-626, Sept, 1979 .. 
• 

{8] P.Bose,J.A.Abraharn, "Test Generation for Programmable Arrays", Proceedings of the 

19th Design AutomatIOn Conference, pp. 574-580, August 1982. 

[9] R.S, Wei and A. Sangiovanni-Vincentelli, "PLATYPUS: A PLA Test Pattern Genera­

tion Tool"" Proceedings of the 22t1i' Design Automation Conference, pp. 197-203, June 

1986, 

IIPl M. Robinson and J. Rajski, "PLANET: A Test Set Generation Program for PLAs", 

IEEE Proceedings of the Pacific RIM Conf. on Communications, Computers, and Signal 

Process,'ng, pp. 292-295, June, 1987. 

67 



o 

1 _ 

o 

REFERENCES 

[11] V.D.Agrawal and D.D.Johnson, "Logic Modeling of PLA Faults", IEEE Proceedings 

of the International Conference on Computer Design, pp. 86-88, Oct.1986. 

[12] W.Maly, "FauIt Models for the NMOS Programmable Logic Array", IEEE Proceed­

ings of pustom Integrated Circuits Conference, pp.467-470, May 1986. 

[13] V.K.Agarwal, "Multiple Fault Detection in Programmable Logic Arays", IEEE Tr~ns-
, , 

actions On Gomputers, vol.C-29, pp. 518-522, June 1980.' 

[14] H. Fujiwara and K. ~inoshita, "A Design of Programmable Logic Arrays witp: Uni­

.versal Tests", IEEE Transactions on Computers, vol. C-30, pp. 823-828, 1981. 

[15] S. Bozorgui-Nesbat and E.J. McCluskey, "Lower Overhead Design for Testability of . 

PLA's", Proceedings 0/ the IEEE International Test Gonference, pp. 856-865, Novem­

ber, 1984. 

[16] J. Rajski and. V.K. Agarwal, "Teating Properties and Applications of Inverter-Free 

PLA's", Proceedù1,gs of the IEEE I~ternationa[ Test Conference, pp. S00-507, Novem­

ber, 198~. " 

[17] K.A. Hua, J.-Y. Jou and J.A.' Abraham, "Huilt-In Tests for VLSI Finite State Ma­

chin5;!s" , i4th'International Symposium on Fault Tolerant Computing, pp. 292-29~, 1984 . 

. [18] W. Daehn and J. Mucha; _~ Hardware Approach to Self-Testing of Large Pro­

grammable Logic Arrays", IEEE---Transaetions on Gomputers, vol. C-30, pp. 829-833, . ' 

1981. 

[19] R. Treuer, A New Design of Built-In Self Testing Programmable Logie Arr~Ys ~ith 

Hi'gh Fault Goverage and Low Overhead, McGill University, Electrical Engineering De­

partment, Master Thesis, 1985. 

P , • 

[20] R.Treuer,H.Fujiwara,V.K.Agarwal, "Implementing a Huilt-In Self -Test PLA Design", 
~ 

IEEE Design and Test of Gomputers, pp.37-48, April 1985. 

[21] E.B. Eichelberger and T.W Williams, "A Logic Design Structure for LSI Logic"; 

Proceedings ol the 1lh Design Automation Gonference, pp. 462-468, June 1987. 

68 

"1 - 1"· "_" 2~·~ 

'r' 
" 



l," 

c-, 

\ 

REFERENCES 

[22] P.S. Bottorf, R.E. France, NJI. Garges, E.J. Orosz, "Test Generation for Large Logic 

Networks", Proceedings of the 14th Design Automation Conference, pp. 462-468, June 

1987. 

[23] J.P. Roth, "Diagnosis of Automata Failures: A·Calculus and a Method", IBM Journal 

Research and Developement,vol. lO'Iij>' 278-291,July 1966 

124] P.Goel, "An Implicit Enumerij.tion Algorithm ,to Generate Tests for Combinational 

Circuits" ,IEEE Transactions on Computers, Vol. 9-30 No.3,pp 21,5-222, March 1981. 
- " 

125] H.FuJ~wara and S.Toida, "On the Acceleration of Test Generatiott Algorithms", Dig., 

. 13th Annu. Int. Symp. Fault-Toierant Computing, Milan, Italy, pp. 98-105', June 1983. 
, \ 

[26] V.K. AgarwaI and A.S.F. Fung, "Multiple Fault Testing of Large Circuits by Single 

- ~ult 'Test Sets", IEEE Transactions on Computers, Vol. C-30, pp. 855-865, Nov. 1981. 
- , 

-
127) J.L.A. Hughes and E.J. McCluskey, "An Al!atysis of the Multiple Fault Detection 

Capabilities of SIngle Stuck-At Fault Test Sets", Proceedings of the IEEE International 

Test Conference, pp. 52-58,' Oct. 1984. 

128) J. Abraham and V.K. Agarwal, "Digital, Systems. Test Generation", chapter in 

Fault Tolerant' Computing: Principles anf/, Recent Advances, edited by D.K. P.radhan, 

Prentice-Hall, 1986. 

129] S.M. Reddy and DoS. Ha, "On the Design of Testable PLAs"', Proceedings of the 19th 
, 

Annual Conference on Information Sciences and Systems, Johns Hopkins University, 

pp. 80-88, March 1985. 

- [30] D.S. Ha, S.M. Reddy, "An Experiment on the Size of Fault Detection Tests for Testable 

PLA's", Proceedz"ngs of the International Conference on Computer-Aided Design, pp. 

151-156, 1986. 

-
/31] H. Fujiwara, "A New PLA Design for Univer~al Testability" " IEEE Transactions on 

Computers, vol. C-33, pp.745-750, 1984 

69 



" j, 
i<, 

o 
REFERENCES 

132] J. Khakbaz, "A Testable PLA ,Design with L~w Overhead and High Fault Coverage", 

IEEE TranSactions on Computers, vol. 0-33, pp. 743-745, 1984. 
,il 

- . 
[33] J. Salik, B.Underwood, J.Kuban and M.R. Mercer,An Automatic Test Pattern Gen,-

eration Algonthm for PLAs, IEEE Proceedings of the ICCAD, pp.152-155, 1986 

! 
1 

[34] J.P. Shen,W.Maly, and F.J.Ferguson, "Inductive Fault Analysis of MOS Integrated 

Citcuits" ,IEEE Design & Test of Computers on Manufacturing Testing, pp. 13-26, 

December 1985.' 

[35] W. Maly, "Optimal Order of the VLSI IC Testing ~equence", Proc~edings of the 29th 

Design Automation Conference, pp. 560-566, 1986. , 

[36] Private communications with D.D. Johnson. 

[37] S. Yajima and T. Aramaki, "AutonomouSly' Testable Programmable Logic Arrays", 

llth International Symposium on Fault Tolerant Computing, pp. -41-43, 1981. 

[38] M.H. Schulz, E. Trischler, and T. Sarfert, "Socrates : A Highly Efficient Automatic 

Test Pattern Generation System", Proc,eedings of the IEEE International Test Confer­

ence, pp. 1016-1026, September 1987. ~' 

[39] F. Brglez and H. Fujiwara, "A Neutral Netlist of 10 Combinational Benchmark Cir­

, cuits and a Target Translator in Fortran", Proceedings 0/ ISGAS, PI? 663-698, 1985. 

'. 

.. 70 

... ! ~,._- (~>~~ 

.~.~ 
" 

,. 

J . ,"l 


