i
”E\a
»
-
sy,

1
-~

P
. .
4 4
» B
]
/ ’ .
R .

S : Conditional Stuck-At Fault Model for
PLA Test Geger’ation

°

B ' ' _ v v
¢ ¢ 4 \
|
1
]

u ‘ Olivian E. Cornelia

- ——— g

3

“Department of Electrical Engineering
McGill University

' t
Y

_i "~ A thesis submitted to the Faculty of Grdduate Studies and Research

4 L

\ 'in partial fulfillment of the requirements for the degree of
’

r
) 3
.
N

Master of Engineering

December., 1987

..... " © OlivianE. Comelia

AL
1"; e \‘; . X‘
a v A A

N

~
o

)
LY
N

Al?stract

_ This thesis presents a new faulf model called the conditional stuck-at (CSA)
fault model. In this model, each stuck-at fault on a line might have associated with
it a condition which requires that a test pattern for this fault should, in addition to
testing for the fault, produce a specific binary value on another specified line in the
gate model. The new fault model can efficiently model defects which do not result
in purely stuck-at faults, such as bridging faults, and missing or additional transistors
faults. This allows deterministic test patterrd generation not only for stuck-at faults, but
~a.lso for bridging faults and for additional or missing transistor falﬂts. The conditional
stuck-at fault model has been applied to Programmable Logic Arrays and it has been
shown that all single stuck-at faults,\single cross-point, and single bridging faults in
a PLA can be covered by this new I[}Ofiel. 'The CSA fault model allows one to solve
the problem of test generation for PLA’s by using the classical test pattern generation
and simulation tools after minor changes, without requiring an extended gate model of
the PLA. Since all the three ﬁlost lilrcely to occur faults in PLA’s are treated under a
unique fault model, the CSA fault model enables one to test embedded PLA’s without
requiring any additional controllability/observability schémes or Built-In Self Test. The
viability of the conditional stuck-at fault model is demonstrated by simulation results
for some benchmarking PLA’s. Coverage figures are reported for stuck-at faults, for

cross-point faults, and for bridging faults. v

I {

. Résumé

Cétte thése propose un nouveau modéle de défaut appelé “défaunt bloqué

conditionnel” (DBC). Avec le modele DBC, chaque défaut “bloqué” d’une ligne d’un

circuit peut dans certains cas étre associé & gne condition sur une autre ligne. Cette

" condition exige qu’un vecteur de test pour le défaut “bloqué” doit, en plus de détecter

le défaut “bloqué”, produire une certaine valeur binaire sur ’autre ligne specifiée. Ce
nouveau modéle de défaut peut servir a modelnser de mamére éfficace, des types de
défauts qui ne peuvent étre modelisés par le modele de défaut “bloqué”. Des exemples
de ces types de défauts sont: “point de traverse”, “de pont”. Ceci permet la génération
mique de vecteurs de test non seulernent pour dés défauts de type “bloqué”,
ais aussi pour des défauts de type “point de traverse”— et “de pont”. Le modeéle DBC a
été appliqué aux Structures de Logique Programmables (SLPs). Il a été deinontré que
tous les défauts simples de type “bloqué”, “point de traverse”, ou “de pont”d’une SLP,
peuvent étre détecté par le modele DBC. En vue de résoudrele probléme de la génération
des vecteurs de test pour une SLP, le modéle de @éfaut DBC permet l'utilisation des
outils classiques de génération de vecteurs de test et de simulatjon de défauts auxquels
doivent étre apportés qu.e de simples modifications, et donc ne necessite pas que la SLP
soit décrite par un modele de portes logiques spécialement élaboré a cet éffet. Puigque
les trois types de défauts les plus courants dans une SLP peuvent &tre traité par 'unique
modele DBC, ce dernier permet donc la vérification de SLPs intégrées dans un circuit
logique sans avoir recours & des moyens spéciaux de contrfle et -d’obseravation, ou a
une structure d’autovérification. L'attrait du modele DBC est soutenu par des résultats
de simulations obtenus sur des SLPs qui servent d’exemples pour la comparaison de
différents algorithmes. Des pourcentages de détection de défauts “bloqué”, “point de

traverse” et “de pont” sont inclus dans les résultats.

y

ol

3
o

Acknowledgements

«

L o Y
It is a great pleasure to expréss oy sincere appreciation to Professor Vinod
K. Agarwal for his supervision and guidance of this research project. With tremendous
patience and con_1petence, he provided the encouragement needed in the hard fimes
of this work, and :always shared the enthusiasm when results were obtained. Spetial
thanks are due to Professor Nicholas Rumin and t\o Professor Janusz Rajski for helpful

technical discussions.

&o

Thanks are also due to the Natural Sciences and Engineering Research Coftin-

cil of Canada for providing financial assistance for this research project.

I sincerely thank my colleague, André Ivanov for his assistance in under-

standing the details of a large ATPG and simulation tool. Thanks are also due to all

the students in the VLSI Group for creating such a pleasant work environment.

»

4

iv

N

IO

s

% {"f

Y S
¢ “d

i | | 1& ‘ ’ - Contents
. Contents | -
&
Abstract e S reree e T)
Résumé.................. ‘R\& ..)
" , . Acknowledgements evr e e P w
. . Tableoj;C'ohtents % ARETERTE \ EEPEPPRI
List of"Figurc.s 11; et @ e, . il
List of Tables e SRR e i
E Chfipter }1 ‘Introduction e 1
Chapter 2 Literature Review e 7
2.1 Test Generation for Digital Integrated Circuiyts e ereeer e ie. 8
w22 PLAFAulis.....oooieiiiieeieiiien s, R e, o
2.3 Deterministic TPG Algorithms for PLA’s.............. 12
2.4 Embedded PLA Testing'j Classical Solutions seeenn 17
Chapter 3 Conditional Stuck-At Fault Model............ T
3.1 Cross-Point Faults Modeled as CSA Faults ... & < 25
3.2 Bridging Faults Modeled as CSA Faultscouu.... e 28
) Chapter 4 §ingle Bridging Faults e 30
41 B LINeS «vvvnveeeiesesiieeanannn, e teeenoerantannatieneenennas 30
| 4.1.1 Casepg....oevvviiirinninennns i e e e 30
412 Casepl...oviiiiiiiiiiiiiiiiii e, e e 31
413 Casepy............. e i i e e 34
U ’ 4.14 Caseps........... ﬁ/ T 34
. 4.1.5 Combinationsp; —po—pg «ovvvvvviiinviaiivaneann, Ve 36
6 4.2 Product Lines................... e, 36
'
v

Ty "
o . -
Eé:.“.:.’,w w e trad it L e

-

—~—
"
.

- ? e,
S o
L T

. Contents f
421 Casegy........ Prvevnennn etenierees 37’
422 Casgg.ueneerinininnnn P URURURPRE ' S
4.2.3 Comi:inations G1 =92 =03 cvvrerenionnnnnnans i iieeenaeees 40
43 OQutput Linescovvvivinnninnecns Ceeeeens M eriiseeeaesiaaes . 40
4.4 Cross-Point Shorts Y i Ceveverneesennnns ..od4l
4.41 Bit and Product LinesS . vueenreniseeeeeenannnns 4
4.4.2 Product and Output Lines"............... e e 45 w
- — . ,
4.5 Conclusion e eaeetere ettt e ettt b ececernsnas R ¥ {
Chapter 5 Experiments and Rgsuliig‘ 49
¥ S
5.1 CSA Faults......... i r et R Cene 49
52 ATPG Tool............. e e, eveiene. B2
5.3 CSA Coverage e et 54
5.4 Coverage by Tgg covvvvvenensnn N -
Chapter 6 Conclusion i ee .. 65
T S _ ’
REFERENCES . / e e 67
\ :
1
% S .
st Q
\‘ ‘ (,0 . .
i
' ! vi

1.1

2.1

2.2
23
24
3.1
3.2

4.1

4.2

4.3
4.4
4.5
4.6

5.1

5.2

, o List of Flgnm
v Lisé of Figures)
\ ' .

PLA Representations W e . ?
PODEM Decision Tree..... B 10
Functional Effects of CP, Faults — Examples......................... 14
Stuck-at Models for Créss-Poiht :ll?aults 19
Stuck-at Model for Bridging Fault, AND Effect 20
Missing CP Fault Modeling ’. RR R PR PP PR RPPRPI PP TZG
Additional CP Fault Modeling - NOR-NOR Implementation 27
Adjacent Bit Lines Shorted .* iiiniiiiiiiirenennrnnnn. . 31
Adjacent Bit Lines; Case ;)1; AND E:ffé::t 33
Adjacent Bit Lines ; Case p3 ; AND Effectooiveevinneeennnnn. 35
Adjacent Prpduct Line Patterns............. e ELTTRR PP 37
Adjacent Product Lines; Case g1; AND Effect....................... 38
Bit and Prod@:t Line‘- Fault (¢/a, p; = B) (AND Effect) ceeian 44
Assumed Layout Positioning for NOR-NOR Implementation 52
Fault Dictionary Data Structure................. Y e . ’53

»
. y |
/-
‘ﬁ

vii

. o .) Izist of Tables
List of Tables
1) d

2.1 Extended Model - Gate'Qounts TP {. ... 21
4.1 Bridging Faults Between lsi;mra.llel Wires on the Same Layef' u .. 47 , |

4,2 Bridging Faults Between Lines on Different Layers................. ‘ \48

"5.1"5 Calibrationcoiitiiiin i iiiiin e niinnennns BRI 50

5.2 Time Required for CSA Generation:...........c..iiiiiiisnnennn.) 51

5.3 Cross-Point Fault Coverage e e e e , 57

5.3 Cross-Point Fault Coverage - Continued........... B j .. 58

5.4 Same Layer Bridges..............ocovvn. ... | e [T 59

54 Same Layer Bridges - Continued c 60

5.5 Same Layer Bridges - Toga_srp and Tg 4 - e 61

5.5 Same Layer Bridges - Tog4_grp and Tg 4 — Continued. 62

5.6 Cross-Point Shorts' e e 63

‘5.6 ’Cross-Point Shorts — Continuedc.cviiiiiiiviniiinennn, 64

1]
' N
—
> ‘ \
'
vili

" Chapter 1. . ° . Introduction

Advarices in microelectronic technology éllow hundreds of thousands of tran-
sistors to be placed on a sipgle chip. Designing such a vé;'y compléx integrated circuit
represents a serious challenge and requires a structured approach as well as veryl effi-
cient computer-aided design tools. To cope with the designlcomplexity, it has become
necessary to use standard cells, atutomatic layout generation from boolean equations,
and, for specific applications, automatic layout generation from a high level description
of the circuit (silicon compilation). Along these lines, array structures have emerged
as a very efficient way to implement logic blocks which may be used afterwards ag ba.-
e, BIC com%onents One of the most popular type of arrays are the Programmable Logic
Arra.ys (PLA’S). Their regularity allows automatic layout generation, which decreases

significantly the design time, esf)eéially in the case of design iterations.

o

PLA’s are wxdely used to lmplement two-level multlple output boolea.n func-
" tions. The PEA’s used as standard parts are usually programmed in the field by blowing
fuses (FPLA's). PLA's may also appear as blocks in larger integrated circuits or as stan-
dard parts. PLA’s can be implemented both in bipolar and in MOS technologies. When
used in larger integrated circuits, the PLA’s are called embedded PLA’s. They are fre-

quently used to‘;implement instruction decoders and, along with memory elements, finite

state machines [1], [2]7 >

A PLA, as shown in figure 1.1, basically consists of two rectangular adjacent
arrays of wires representing the two levels of the logic functions they implement. Tra-
ditionally, the two arrays are called AND and OR, due to the function they implement

l

>

W

Introduction

o LY

in bipolar tecimology. A N6R—NOI§~ implementation is, commonly used in the MOS -

technology, but the names for the arrays are still preserved. The vertical lines in tﬁ?

~

" AND array are the decoded values of the inputs and are called bst lines. Usually, each

.] x .
input is decoded separately into two bit lines, as shown in figure 1.1. It is possible
however to decode two input lines into four’it lines [3]. It has been shown in [4] that
ti}is implementation is more efficient as far as occupied area is concerned. In this thesis,

only the single inptt decoder implementation will be analyzed.

A I

L - . {The Vhorizdntall lines in both arrays are called product lines. In the AND
a.rray, each product line” is an output of a gate, either AND or NOR, dependmg on the
1mplementat101 In the OR’ array, product lines are input lines for'the gates jn the
array {fig. 1a) " The vertical lines in the OR array represent the OR gates amécil)l hence
thé oﬁtputg of %Jhe PLA. For the NOR-NOR implementation, the second level of NOR

gates is followed by inverters and therefore the NOR gates in the OR _p]ane plus the

'othput inverters implément on OR function. L

N
¢ 0

The inté‘rsectié}n of a horizontal and a vertical line ‘is called’ a cross-point.
Here, a device (transistor or diode) may or may not be present. If a device exists, then
the product/output line depends on the bit/product line, respectively. aUsually,, such
a cross—poir;t is called a used cro§s—point. Ifrio devite is pres@ then no depender;ce
exist.s between the t’\yo lines. In the symbolic PL*A representation shown in figure 1.1g,

a device is represented by a dot at the corresponding. cross-point.

—

A PLA can be very well described in the cubical notation. The representation

‘of the PLA in cubical notation, called personaljity matrix, consiste of two adjacent two-
* dimensional arrays of symbols corresponding to the cross-points in the AND array and

‘OR array. For the AND array, each entry in the personality matrix represents a pair of

i}

Across-points, at the intersection of two bit lines (of the same \nput) and some product

“_”

line. If neither cross-point is used, then the entry is “x” (or “”). If a device i is placed
on the inverfed input, then the symbol is £0”. If a device is placed on the non-inverted '
input. then the symbol is “1”. In:the OR array, if a device exists at some cross-

¢
point, then the entry in the personality matrix is “1”, otherwise ‘it is “0”. .The cubical

>

. Iptro;lﬁction
(% ~ a) Symbolic Represeniaiion
Input Oulput
Decoders * Bufprs
& /
. S OR Arvoy ,ﬁ
6) Cubyical c) Logric FMuncitons :.
Representution : ’
f01a 010 0 - Gumnt Gaat Gel
071 =zat 011 ot Tzemt 5535
0101 101 U 7 BTT AANT W
000z 110 . Ua = vyl Zp3p0aT4t Bpdy Xy
z010 1.01 o

d) NMOS NOR-NOR Implementation :
z! z2 z8 o4 gt g2 g3

V1717 7] 4447

S s

g

| KR Lo o
KR T 7T 4%

c ' ‘f Figure 1.1 PLA Representations o

Introduction

- .
representation of the PLA is widely used in logic minimization, test generation, and

layout generation algorithms.

Due to their distinctive features, the PLA testing problem has become an
important research:problem [5},6],7],(8],{9],[10],[11],[12]. In general, the faults w}\li{:h
are most likely to occur in PLA’s are stuck-at faults, bridging faults, and cross-point
faults, The layout information contained in the personality matrix and the regularity
of the PLAs allow for more accurate modeling of defects. "For’ the field programmable
logic arrays, the defects which are the most likely to occur are the cross-point defects.
They consist of some connection at a cross-point where there should not ex{st one ;
or no connection at a cross-point where there'should exist one. Clearly, programming
er.rorsncan be mapped into cross-point defects. Thefe defects have been modeled by the
PLA—gpeciﬁc cross-point fau]'t model. The cross-point fault model is considered to be
superior to the stuck-at fault model because the functional effects of all single stuck-at
. faults except outputs stuck-at one can be mapped into functional effects of cross-point

faults, while the reverse is not true unless extra circuitry is added [11],[13].

9

PLA bridging faults are particularly important due to the high density of the
PLA layout which contains long wires running in parallel in both orthogonal directions.
A bridging faul§ is caused by a short between two or more wires, none of which is
‘ground or power supply. Usually, the PLA layout preserves the relative poéition of the
lines in the PLA personality matrix. This provides the basic information required for
considering bridging faults, that is the lines \;vhich maysabe involved in a bridge. The
st,atisticall analysis presented in [12] showé that the probability of occurrence for bridging
faults is in the same range as the probability for stuck-at faults. Therefore, the problem
of detec_ting bridging faults requires more research work. One of the important problems
related to bridging faults is to determine what the effect of the bridge is. Traditionally,
it Las been assumed that a bridging fault has a definite logic effect, either AND or

" OR |7]. Under this assumption, it has been shown in [7] that single bridging faults in

.PLA’s can be modeled as multiple cross-point faults. However, no exact reports exist
on how well this kind of mix%ling performs in covering bridges. The analysis of PLA
N

bridging faults under both AND and OR effects presentéd in (7] concludes by dividing

4

Introduction

P

their coverage into three classes : fault detection guaranteed (by a single cposs-point
test set), not guaranteed, and detected if any testable cross-point is altered. Another
problem re;lated to bridging faults is the lack of an efficient way to model these faults. In
[7], bridging faults are modeled as multiple cross-point faults. In [11], they are modeled
as stuck-at faults by adding extra gates and the coverage of bridges is given at the

computational cost of handling an extended quel of the PLA.

Various methods for PLA testing have been proposed in the literature. Some
representative a.pproaches will be reviewed in chapter 2. Most ofsihe deterministic test -
pattern generation algorithms for PLA’s are based on the cross-point fault model [6,]9)
a.;ld assume that the PLA inputs and outputs are directly accessible. These algorithms
are designed for two-level circuits and the computation of test vectors relies on cube
processing. Many heuristics have been developed to make these algorithms time efficient
and generate compact test sets [7],]9]. Clearly, by using a specific fault model, these

algorithms are applicable to PLA’s only. For the case of embedded PLA’s, where the

assumption of accessible inputs and outputs does not hold, the tools based on the cross-

point fault model are of limited value, unless additional controllability /observability

schermes are used.

To avoid the computational effort related to test pattern generation, some
easily testable PLA designs have been proposed in the literature [14),[15],[16]. The
easy testability is achieved by adding extra hardware which increases the controllability
and observability of all PLA crosspoints and makes the redundant cross-points testable.
Quite often, easily testable PLA designs can be easily transformed into built-in self test

designs [14], [17].”

¢

For embedded PLA’s, the two alternatives proposed so far are built in self:
test [18},(17],[19] and enhanced controllability /observability schemes. Built-in self test
for PLA’s basically consists'of on-chip test pattern generation and PLA outpout response
analysis and may require further extra hardware for the PLA itself [20]. The second
method involves off chip deterministic test pattern generation followed by test pattern
application and output response observation. In order to control the PLA inputs (i.e.

apply the test patterns) and observe the outputs, some extra circuitry has to be added.

[4

! v
.
i 5

Introduction

It usually consists of a scan path [21],[22] which not only occupies extra silicon area but
implies long test pattern application time. The PLA has to be treated separately since
different fault models are used for the larger circuit and for the embedded PLA. Both
methods for embedded PLA testing require extra design effort, éxtra hardware, may

require extra pins, and may result in PLA performance degradation.

. This thesis will introduce a new alternative for PLA testing, which is based on
a new fault model called conditional stuck-at (CSA) fault model. It will be shown that
stuck-at, cross-point, and bridging faults can be modeled .as conditional stuck-at.faults
| in the two-level logic model of the PL& without requiring extra gates or lines. The new
fault model is applicable to general combinational circuits, as well as PLA’. The{c‘efore,
embedded PLA’s can be tested as part of the larger circuit using a unique fault model
and covering% all PLA faults. This will avoid additional' controllability /observability or
BIST ‘schemes, or an extended gat‘e model for the PLA, wh;ch have been used so far for
embedded PLA testing. ,Morgover, é]assical test pattern generation and simulation tools
" can be used after minor changes for éondition;l st/uck-at faults. The use of the CSA
fault model allows deterministic test pattern generation fqr stuck-at faults, cross-point
faults, and for bridging faults. Therefore, exact coverage figures can be obtained for all °
these types of faults. Experiments and results will be presented, showing the viabiiity

of the new fault model.

4

£y

The thesis is organized as follows. A review of the methods pfoposed in
the literature for PLA testing is presented in chapter 2. Chapter 3 presents the new
fault model and proves its capability toymodel stuck-at, cross-point, and bridging faults.
Chapter 4 presents an ana}ysis of the five types of bridging faults which may occur in
PLA’s and their mapping into the new fault model. Chapter 5 describes the experiments.
performed and the results obtained for a repr;asentative set of benchmarking PLA’s.

Concluding remarks are included in chapter 6.

Chapter 2 Literature Review

Digital circuit testing bgconfes increasingly important as djgital systems be-
come more complex. Therefore, there is much activity in trying to develop and improve

testing techniques and test generation techniques. Various algorithms have been pro-

) 7 oo
posed for generating test vect®S for combinational circuits [23),/24],(25], and many tools
have been implemented based on these algorithms. These tools are widely used in the
industry.) .

There are, however, certain types of circuits, such as PLA’s, which cannot

\ be handled directly by these general test pattern generation tools, and require specific

test generation techniques. The PLA testing problem has received considerable atten-

v tion due to the extensive use of PLA’s, both as standard pa;ts and as building blocks.
Starting with the assumption that that PLA inputs and outputs are directly accessi-
ble, various deterministic test pattern generation and simulation algorithms have been
proposed in the literature [6],[7],[9],[8]& for PLA’s only. Embedded PLA’s, where inputs
and outputs are not directly accessible, have to be provided with additional controlla-
bility /observability, or BIST schemes, or all PLA faults have to be modeled as stuck-at
faults in an extended model of the PLA. o

This chapter will review some of the representative approaches for general
»
digital circuyit test generation, PLA deterministic test pattern generation, and for em-

(G bedded PLA testing.

<

E}'&Iﬁr‘
5
A

e

]

T

.

2.1 Test Generation for Digital Integrated Girtuits

2.1 Test Generation for Digital Integrated Circuits
£, 3

The fault model which has received the most attention and has been’ the
most widely used for integrated circuit testing is formulated at the gate level and is
called the stuck-at fault model. This model assumes that physical failures cause input
or output lines of logic gates to be permanently stuck at the logic 0 or 1 levels. For test
' generation purposes, it is poséible to consider all possible multiple faults in a circuit, or

to restrict the fault set to all possible single faults. Because of the exponential size of
the set of multiple faults (3”71, in a circuit with n lines), the single stucil)zxa.liault model
is the most commonly used. This is also supported by Itheoretical results presented in

[26] and a case study reported in\[27] which shows that single fault test sets do provide
high multiple fault coverage.

1

The generation of test patterns can be done in two different ways: randomly
or deterministically. Deterministic test pattern generation algorithms can be further
divided into two ’basic groups [28] : algebraic algorithms and structural algorithms. In
algebraic alg(;rithms, test generation is done by manipulating Boolean algebraic repre-
sentations of the fault-free and faulty circuits. These glgorithms are known to be very
costly in terms of computation time and memory requirements. Structural algorithms
use the topoloéical representation of the circuit to generate test vectors, most often

. at the gate level. Several structural algorithms have been developed and successfully

used in the industry. The most popular structural algorithms are the D-algorithm 23],
PODEM |[24], and FAN [25]. The PODEM algorithm will be briefly reviewed in this

section.

PODEM is described by its author as an “implicit enumeration algorithm”.
Such algorithms are a subset of the branch and bound algorithms designed specifically
for searching an n-dimensional 0-1 state space [24]. PODEM is based on a five-valued
logic {0,1, X, D, D}, where D(D) designates a value of 0(1) in the case of a faulty circuit

and 1(J) in the case of the fault-free circuit.

The basic step of the algorithm essentially consists of assigning logic values

to selected primary inputs. An implication is performed after each assignment to verify

8

]
&
§ 7

2.1 Test Generation for Digital Integraéed Circuits

?
t

(the effects of the assignment on the propagation of the D or D values to some primary
output. If no inconsistency occurs, another primary input is selected and a value is
assigned to it. This is the branching operation. If an inconsistency is detected, then

 branching stops and bounding begins. There are two cases which require bounding :

1) The line value for the faulty line is the same as the stuck value. This implies

¢ that the fault is not activated under the current assignments.
é§

o

N .
2) There is no path from an internal line to a primary output such that the
internal line is at the D or D value, and all other lines on the path still have
unassigned values. That is, propagation of the effect of the fault is impossible

under the current assignments.

Bounding consists of assigning the complementary value to the most recently
assigned primary input. Branching resumes from this primary input with the newly as-
- signed value. If both alternatives for some primary input have been tried unsuccessfully,
then the branching resumes from the most recent primary input assignment where the
alternative value has not yet been tried. This process continues until a test is found or

the space is exhausted, that is, the.fault is found to be untestable.
| 8

PODEM is best represented by a binary decision tree, as shown in figure 2.1,
where the nodes represent assignments of the primary inputs. In this représentation,
branching consists of going as deeply as possible into the tree. Bounding consists of
backtracking to the brother of the most recent ancestor node which still has an untried

alternative. This is where branching Tesumes.

In practice, this binary decision tree can be implemented as a last-in first-out
(LIFO) stack. Each initial primary input assignment results‘ in pushing an unflagged
node into the stack. Bounding results in popping nodes from the stack until an unflagged
node is popped out. The search resumes by pushing this last node back into the stack,
this time with the complementary value, as a flagged node. The process continues

until a test is found, or until the stack becomes empty, which means that the fault is

@ undetectable.

BEn N
.
.

P
i

initial

assignment

PI2=1

unused alternative
asstgnment

Pl4=¢’
’l
N4
backup
no test

~

2.1 Test Generation for Digital Inteéfated Circuits

All Pls initially
START | % ¢

Plt=0 ynused alternative
assignment

No remaining
alternative

PIg=1, " PI3=0
\ no remaing
; alternative 7
A “ -
\“PI4-1 . . Pl4=0

\ ‘\'_

\ -~

.)\ node

baockup V! removed
no test ‘J' re

’I' “
PI5=0/ ° PIS=0
! \
? A

¢ \

backup backup
no test no test

Figure 2.1 PODEM Decision Tree

An important “problem is to decide which is the next primary input to be

, assigned a binary value. PODEM uses heuriétics to decide on which PI the next assign-

ment to be made, and what value should be assigned to it. For each fault, the search of

a test vector is executed by repeatedly defining an objective. Specifically, an objective

is defined as a pair (I,v), where [represents a line and v represents the desired logic

level on line [. Given an objective, the choices made in the execution of the algorithm

are such that they should help towards meeting the objective.

\

-

Initially, when the output of the faulty gate does not have a D or a D value,

the initial objective is directed towards promoting setup for the gate. Once this setup

10

2.2 PLA Faults

is obtained, the objective is aimed at propagating a D or a D one gate level closer to a
primary output. Given the objective (I,v), the next step is to trace a path from line ! to
an unassigned primary input. Various heuristics are _proposed in [24] for the backtrace
operation. The backtrace operation leads eventually to a primary input and a binary

value for it.
e

PODEM [24], D-algorithm [23], and FAN [25] are designed to generate test)

vectors for stuck-at faults. Therefore, these algorithms are of limited value for defects
which cannot be modeled as stuck-at faults in the gate model of the circuit. Examples
of such defects are additional transistor faults, or bridging faults, which may occur in

array structured circuits. .

2.2 PLA Faults

n

- Generally, the faults which are n{ost likely’ to occur in PLA’s are stuck-at,
cross-point, and bridging faults. The faults which a?{considered to be PLA specific
are the cross-point faults, and a fault model has been introduced in [6] to model these
faults. The fault model assumes that, due to some defect, a transistor may disappear
from a used cross-point or a transistor may appear at a unused cross-point. These two
types of faults are usually called missing cross-point and additional cross-point fault,
respectively. It has been shown in [6],[7] that PLA stuck-at faults, except output lines

stuck-at one, can be modeled as cross-point faults.

The likelihood of occurrence of cross-point faults depends on the method of

_ programming and on the technology used. In the case of field programmable PLA’s,
p .

where programming is usually done by blowing fuses [6], the cross-point faults may
occur due to fabrication defects or to programming errors. This was one of the main
reasons for introducing a PLA specific fault model in [6]. For the case of programming at
the mask level, the likelihood of occurrence of additional cross-point faults and missing
cross-point faults is technology dependent. For the single metal layer MOS technology,
the additional cross-point faults are less likely to occur. In contrast, for the double

metal layer MOS technology where programming may be done by simply creating or

11

4

2.3 Deterministic TPG Algorithms for PLA’s
b}

not creating contacts, the likelihood of occurrence of additional cross-point faults is

comparable to that of missing cross-point faults.

Another important class of defects which may occur in integrated circuits in’
.. general are the short-circuits (shorts). For PLA’s, they require increased attention due
to the high density of the layout. Clearly, if (;ne of the lines involved is a power supply
line or a ground line, then the defect is accurately modeled °by a stuck-at fault. If none
of the lines involved is power or ground, then the short cannot be modeled directly as
a stuck-at fault and it is called bi’idging fault.’ Bridging faults are caused by unwanted
spots of conductive material (metal, polysilicon, or diffusion), or b)f missing insulator
(silicon dioxide), or by a combination of both. For the particular case of PLA layout,
characterized by a high density and long wires running in parallel in both orthogonal
directions, bridging faults have an increased ;;robability of occurrence. A probabilistic'
analysis of defects was presented in [12]. The analysis retiuires layout informiation and
statistical information from the technological process:. The results of the analysis applied
to some example layout shows that the probability of occurrence i})r PLA same layer

bridging faults is in the same range as the probability of occurrence for stuck-at faults.

A detailed analysis of bridging faults presented in |7] shows that bridging
faults can be modeled as multiple cross-point faults, under the assumption that bridging
faults have a certain logic effect, either AND or OR. Depending on their detectability,
PLA bridging faults are divided into three classes [7] : fault detection guaranteed,
fault detected if any cross-point in the set which models the bridge is testable, and
fault detection not guaranteed. The results presented in [7] show, for each logic effect,
which of -the five types of PLA bridging faults belongs to each class. However, no exact
reports exist on how well this kind of modeling performs in covering bridges. Most of
the algorithms and tools available for PLA’s deal with cross-point and stuck-at faults
only. l §

2.3 Deterministic TPG Algorithms for PLA’s

-

The deterministic TPG alggrithms based on the cross-point fault model use

5 .

°

, e
, ~ - .
~— R : 2
' Z.S‘Detemlinistic TPG Algorithms for PLA’s

- ‘
cube ir'ocessing to compute test vectors. These compﬁtations are based on the effects of
cross—p.‘oint faults on the two-level functions implemented by PLA’s. From this point of
View, 8 cross-point fault may have one of the following effects, depending on its location

(AND or OR plane) and on its type (missing or additional) :

-

. growth :. a missing device in the AXD array causes a literal to disappear

S

. . alz, e .
from an implicant and hence the implicant covers more minterms. .

v 2. shrinkage : an additional device in the AND array causes a literal to appear in

an implicant and therefore the number of minterms covered by the implicant
is reduced. '

‘ 3. disappearance : a missing deviceé in the OR array causes an implicant to

}

disappear from a function. : ‘ a
¥

4. appearance : an additional device in the OR array causgs a unwanted impli-
cant to appear in some function. ¢ ’
For example, consider one of the functions implemented by the PLA in figure
1.1, say g1, and its K-map representation in the fault-free case, shown in figure 2.2a. -
A missing transistor at the intersection of bit line z9-and product line py causes the

product to grow, as shown in figure 2.2b. Figures 2.2c, 2.2d, and 2.2e show examples of

shrinkage, disappearance, and appearance faults, respectively.

———

One of the earliest algorithms introducéd for PLA f:esting is the one presented
in [6]. The algorithm selects a fault from the fatlt dictionary, generates a test vector for_
the fault, if it is testable, and then determines which other faults are d}.atect,ed by the
newly generated test vector. It is pointed out in [6] that the order in which t‘he faults
are considered may have a considerable effect on the size of the test set. It has been
noted that the closer a fault is to the primar§ outputs, the more tests it has. Therefore,

the faults with fewer tests are considered first, that is, growth and shrinkage fa:ults, in

- ¥
the hope that test vectors for these faults will accidentally detect a large number of the

appearance and disappearance faults which are easier to detect.

[
| AN

' 1T _
zsz\ 00 01 11 10

00 | '
ot 8‘@ . |
| | | »
B AR el

G =T1T2T3 Tyt T1 T3 T3 + Ty T3 Ty

a) | | J

1%2 1Z2 .
ZgZ% 00 01 11 10 TyT 00 01 11 10

u, - T)
\ 00 ! ! { 00 t] \

—
-

or | |0} | or | ()
11 ' 11

_ N\ _ o,

0] _ 0]) @l

G =EBa Ty my+ B Ta + T2 Ty G =y TaT3myt Ty Tp Tl + TpTa Ty

"b) c)

—— -

1%2 1Tz K
zgxy 00 01 11 10) zgTy 00 01 11 10

00| | 00 ()
| O or | |

‘ 11 1

0]) : 0]) C]

G=F0e Tt A+ G, = Tea,t TiEsTs + T%s By

! . + E;xgz.,l

d) | e). %

O | . Figure 2.2 Functional Effects of CP Faults - Examples

14

- e

P 2.3 Deterministic TPG Algorithms for PLA’s

N A growth faultl is caused by the disappearance of a device at some crofis-
point (i.e. of a literal from a product). In order to exercise a growth fault, the test ‘ .
pattern must activate the minterm(s) which have been added to the fault-free product |
as a result of the fault. These minterms are algorithmically determined by the “sharp \
product” [6] of the faulty and“fault-free {mplicant. The oberation returns the minterms
which are covered by the faulty product but are not covered by the fault-free product.

For’ the example in figure 2b, the fault- free product 71 - T3 - T3 has grown to the faulty

T7 - 73 due to a missing transistor. The sharp operation on the corresponding-cubes is :
0z0z # 000z = 010z

Note that the cube resulting from this shoarp operation contains the complement of
the literal which disappeared from the fault-free product, while the other literals are
the same as in the fault-free product. All the literals of a product represent bit lines
which are fed into the same AND gate. Since a test vector for the growth fault has
to activate some minterm in the cube returned by the sharp operation; the gate input
corresponding to the missing literal (Z7 in the example) has to be “0” while all the other
inputs have to be “1” (AND-OR implementation). I'he important point is that the bit L

'line corresponding to the tested cross-point carries a dominant value while the other bit

lines participating in the product carry nondominant values.

A test vector, if it exists, is given by a sharp operation between the cube. ,
representing the minterm which exercise the fault, and all the other implicants of a
function which uses the product line containing the tested cross-point. This is the

sensitization part, and all the output lines which use the product containing the growth

‘} fault are considered sequentially until a test ve€tor is found, or the fault is declared
undetectable. For the example considered before and the output line g¢, a test vector
is computed as follows :

a

((010z) # 0101) # 2010 = 0100 °

This operation returns the minérms which are added to the function in the faulty case,

and are not covered by any other product which participates in the function. Another

test vector may be calculated in a similar way via the output line g3. If the result is void

15

2

-

| ' o ' 23 - Deterministic TPG Algocithme |

1

34
~ i, s o
T vk

for all the output lines, then the fault is.pntestable. Similar calculatnons are required

for the shrinkage faults. g

The tests for appearance and dmappeamnce faults are slightly easier to com-
pute The gates in the OR array are assumed to be directly observable and therefore
‘only the fault exercising step is required. A test vector for a disappearance fault has
to activate some minterm which is uni‘quely brought into the function by the tested

product. A cube of such minterms can be calculated by performing a -sharp operation

. . . between the tested product and all the other implicants of the function. Similarly, a
test vector for an appearance fault has to activate some minterm which is covered by

13

the tested product but not covered by any implicant of the function.

h——

° 3

The same basic ideas for PLA test pattern generation and simulation can
be found in [7]. The algorithm presented in 7] is designed for PLA’s with two:input
decoders. The values of the test vectors are combuted at the level of bit lines rather
than primary input lines, but, as pointed out in 7], the conversion to primary input
values is a straight forward process. These features make the algorithm quite general :
it can be used for PL.A’s implemented both with single input and double input decoders

without any modification.

One of the more-recent test generation algorithms for PLA’s is PLATYPUS,

presented in [9]. It combines biased random test pattern generation and deterministic

test generation in an a.ttempt to achieve the best balance between run time and test

, set minimality. It 1ntroduces heunatlcs for test compaction and uses the heuristic for

) _ cube ordering and the fault simulation algorithm introduced in [7]. The deterministic
| test pattern generation algorithm uses the sharp product as well, but the computational

* efficiency i; improved (by using the Shannon’s expansion theorem combined with the

properties of unate functions). The algorithm and the heuristics are supported by

extensive experiments performed on a set of 56 benchmarking PLA’s.

The difficulty of test generation for PLA’s is mainly due to very large gate

fan-in and a relatively large number of redundant cross-points, which can be found

- in almost all practical PLA’s. The testing problem can be simplified significantly by

16"

“~

&=

& ° : : . : oo W T

\) - o J2.4 Embedded PLA Testing ~ Classical Solutions

esigning the PLA to be easily testable. [14],[29],[16]. This is done by adding extra
hardware, which increases the controllability and observability of all PLA cross-points,
resulting in a PLA which requires less computational effort for test pattern generation.

In the case of the design proposed in [14], the augmented PLA can be tested with

universal test sets, and the coverage obtained is 100% of all single stuck-at, and cross-.

point faults and most of the multiple stuck-at and cross-point faults. However, the
size of the test set may becomre very large compared to the size of the test set for the
non-easily testable PLA’. It is reported in [30] that for the 56 benchmarking PLA’s
[9), the easily testable PLA designs proposed in [31),[32],[29] require an average test set
of 5876,3077 and 488 vectors, respectivély, compared to an average of 436 vectors given
by PLATYPUS [9]. Agother aspect related to the easily testable PLA designs is signal
degradation. From this point of view, it is desirable that in nprmal mode of operation
the PLA does not haweD additional devices connected in series on inputs. For example,

in the desoign reported_in [29], edch inverted bit line passes through a pass transistor

which in normal mode of operation adds to the input resistance of the inverted bit lines.

Thus, the easily testable PLA designs represent tradeoffs over fault coverage, silicon

area overhead, size of the test set, and performance degradation.

2.4 Embedded PLA Testing — Classical Solutions -

-

B

The algorithms discussed so far are all based on the cross-point fault model
and are designed under the assumption that the PLA inputs are fully ¢ontrollable and
th'e PLA- outputs are fully observable. This assumption does not hold for embedded
PLA’s. Therefore, to test embedded PLA’s with test vectors generated on the spe-
cific ‘f’aﬁlt model, extra hardware has to be provided to gontrol [observe the PLA in-
puts/outputs, “as proposed in [21] and [22) f%r the general case. There are various
disadvantages related to such 'schemes. They require extra design effort, occupy extra
s']\i on area, require extra pins, require long test pattern application time:, and may
result in performance degradation.) ’

-
One alternative is to use the s&mk—at fault modgl which allows deterministic

{est pattern generation for the entire circuit, without requiring additional controllabik
1} ’ , 17

4

1 d \
.
' N .

AT R e

s
ek

o . ERAE i}%
24 Embedded PLA Testing - Classical Solutions "

£

ity/observability schemes. Such an approach has been proposed in [33]. The cross-point
fault model has been discarded and the algorithm simply considers the set of collapsed
st_uék-at faults in the logic representation of the PLA. It is pointed out in [33] that
the missing cross-point faults (growth and disappearance) can be mapped into stuck-at
faults in the two-level gate model, and that the additional cross-point fault (shrinkage
and appearance) is not sign_iﬁca.nt in the MOS technology. The second statement can
be suppbrted by the res'ults‘presented in [12], [34], and [35], for the single metal layer
NMOS techn@log}f. Statistical analysis of defects, based on information from industry
shows that the probability of a missing transistor fault or an additional transistor fault
is three orders of magnitude smaller than the probability of a single line stuck-at zero,

anid two orders of magnitude smaller’ than the probability of bridging faults between

/"—'—J-\

0

product lines [12].

The fault’set has been reduced by fault collapsing to three types of faults :
stuck-at one faults on the inputs of the gates in the AND plane, stuck-at zero faults on
the inputs of the gates in the ®R plane, and stuck-at one faults on the PLA outputs.
Various heuristics are used to improve the algorithm efliciency. For example, the test set
is dynamically compacted and the faults are considered in a certain order, starting with
the AND plane and ending with the PLLA output stuck-at one faults. The algorithm

* and the heuristics are tailored for two-level functions and the experimental results [33)
show that the algorithm has a good time and test set size performance. However, the
initial assumptions limits its application to the MOS technology.” The bridging faults

- . are not considered at all, even though their probability of occurrence is the same order . <\
’\ of magnitude as that of stuck-at faults. In this respect, it is mentioned in [33] that the
problem of bridging faults will make the subject of future v;'ork. ‘

Another approach, based on the stuck-at fault model, is présented in [11].
The cross-point faults are modeled as stuck-at faults by adding a two-input extra gate
and an extra input which carries a constant value for each cross-point. This model has

0 been used in [13] to study multiple faults in PLA’s. For example, consider the PLA in

s ‘9 18

P

-

b)

Figure 2.3 Stuck-at Models for Cross-Point Faults

figure 1.1 a) and its*NOR-NOR implementation in figure 1.1 d) *. The missing cross-
point fault at thé intersection of Zj and product line p; can be modeled as shown in

figure 2.3 a) by adding one extra two-input AND gate and one constant input ez;. The

missing cross-point fault is covered by the test vector for the fault ex; stuck-at zero
-

[13],{11]. The stuck-at model for the additional cross-point fault at the intersection of

product line p; and bit line z4 is shown in figure 2.3 4). The additional cross-point
fault is covered by the stuck-at one fault on the extra line exy feeding the two-input
AND gate. The cross-point faults in the OR plane can be modeled in a similar way, as

shown in figure 2.3 ¢). Since all the PLA cross-point faults can be modeled in this way,

a complete single stuck-at test set generated- for this model would cover all detectable -

% CP faults. However, the size of the model is prohibitive. The PLA two-level logic model

becomes a four-level model and a two-input ‘gate is introduced' for each crosspoint.

The bridging faults of interest (36] are modeled as stuck-at faults as well, by
adding four two-input gates for each bridging fault\It is assumed that the bridge has a
de'ﬁnite logic value, either AND or OR. For example, consider a bridging fault between
two product lines p; and py. Assuming that the bridge has an AND logic effect, it can
Voo / :
) -

* Recall that the NOR-NOR mmplementation requires mversxon of mputs and outputs, with
respect to the representatlon in figure 1.1.

24 Embedded PLAsesting ~ Clussical Solutions’

AN

.) . e
T
(' 2.4 Embedded PLA Testing — Classical Solutions . 3
———————— —1 1 r— [—
| By ex _]
- Pry |
*
I {
I !
. AND ! ! OR
array ° : —:D_‘_ 0 : array .
| b |
2 BDan
=) I
I !
! . i

Figure 2.4 Stuck-at Model for Bridging Fault, AND Effect -

be modeled as shown in figure 2.4. The bridge is covered)by the test vector for the
stuck-at zero fault on line ex. The bridging faults between bit lines or between output
lines are modeled in the same way. Note that the model for each bridging fault requires

four two-input gates and one constant input.

This inethod has been applied to three example PLA’s and the results are
.reported in [11]. The gate counts for the models used are shown in table 2.1. Columns
2,3, and 4 correspond to the three example PLA’s. Rows 1,2, and 3 show the number -
of input, product, and output lines; row 4 shows the number of gates in the two-level
gate model of the PLA'’s; rows 5,6, and 7 show the' gate count of the extended model for
stuck-at plus cross-point faults, stuck-at plus bridging faults, and stuck-at plus cross-
point plus bridging faults, respectively. Notice that only the bridging faults of interest
have been considered in [11], and for example 3, the gate count in the extended model
for stuck-at, cross-poinﬁ, and bridging faults of interest is_28 times bigger than the

two-level logic model.

The advantage of the method is that it allows test generation for PLA stuck-
at, bridging and cross-point faults using the classicaLstuck-at tools, since a unique
fault model is used. It also allows deterministic testing of embedded PLA’s without
requirtag additional controllability /observability schemes. The Izain disadvantage is

that the method requires a very large model of the PLA. The computational burden

20

’
" S0,
BH O S

"2.4 Embedded PLA Testing - Classical Solutions

1 2 3 4
Example 1 | Example 2 | Example 3
1 ip 22 17 16
2 pr 47 184 70
3 op 15 PO 20
4 | 2-level model .)
(nr. gates) 121 274 142 L e
5 SA+CP | N
mode] 3874 n.a. 3478 ?
(nr. gates) . . i
6, SA+BR ’
model n.a. 2380 691
(nr. gates) . 5
. 17| SA+CP+BR
o model] n.a. n.a. 4027 o ¢
"(nr. gates) ’
n.a. : not available

2 .,

Table 2.1 Extended Model - Gate Counts

for a large model is even more significant when the PLA is treated as part of the larger

circuit [22]. . -

With respect to the idea of testing only for the stuck-at faults in the two-)
level model of the PLA, the following experiment is reported in [11]. A complete single
stuck-at test set (T's4) was generated on the two-level gate model of the PLA and then
applied to the larger circuit which models cross-points and bridging faults as stuck-at-

faults. Notice however that this experiment is limited to just three PLA’s and therefore

* it does not provide much generality. For example 3, the results show that Tg4 covers

82% of cross-point faults and stuck-at faults (6% iredundant faults not covered) and
99.5% of the bridging faults of interest and stuck-at faults. For applications where a

high coverage is required, this is a significant difference.

The third alternative proposed in the literature for embedded PLA testing is

wt
n

N 21

2.4 Embedded PLA Testing - Classical Solutions

Built-In Self Test (BIST). For general circuitry, BIST schemes consist basically of pseudo
random test pattern generation and output response compression. The two parts are
usually implemented using Linear Feedbaf:k Shift Registers and Multiple Input Shift
" Registers, respectively. The very large fan-in of_the gates in PLA’s makes these circuits
random pattern resistant and the general BIST scheme has limited performance, unless
exhaustive testing is performed [1]. As a result, PLA-specific BIST schemes have been
proposed, taking advantage of the regular structure of the PLA’s. In test mode, these
designs change the structure of the PLA either by partitioning it or by adding extra
circuitry to make the PLA easily testable.

The approach presented in (18] partitions the PLA into the AND and OR

~ arrays and tests them separately. Test vectors are generated using non-linear feedback
shift registers, which are augmented such that they can perform output response com-
pression as well, thus implementing the so called built-in logic bloc observers (BILBO).

The scheme is easy to implement but require high area overhead.

Various other BIST schemes are combined with easily testable PLA designs
_[17),[19],[37]. This allows the use of simple circuitry for test pattern generation and
output response compressiori. In the limit, the PL.;\ can be augmented such that the
test vectors and/or the output response compression are independent of the functionality
of the PLA. A representative approach in this respect is presented in [19]. The following
circuitry is added to make the PLA easily testable :

- a shift register which controls the product lines. It is used in test mode
to enable one single product line while the other product lines are set to

propagating values.

— two control lines between the input decoders and product lines. In test mode,

they are used to enable the inverted or direct bit lines.

— one or two product lines in the AND and OR arrays such that the number

of devices and no devices on each bit line can be forced to be odd.

— one.output line such that the number of devices on each product line in the

-z
22

Bl
{w

24 Embedded PLA Testing — Classical Solutions
OR plane can be forced to be odd. F

This additional circuitry allows PLA testing with the universal test set described in [19}.
The output response is compressed into the cumulative parity bit sequence, which is a
sequence of alternating 0’s and 1'’s for the fault-free PLA. Therefore, the compressed
output sequence can be generated by a toggle flip-flop, without requiring any storage,
or it can be further compressed into two bits which give the count of 1-to-1 transitions
and 0-to-O transitions. The scheme is proved to cover all single cross-point, stuck-at and
bridging faults. It is also proved that fewer than 9~{m+2n) of the multiple faults may
remain undetected, where m is the number of inputs and n is the number of outputs.

It has been assumed that the effect of a bridging fault is AND.

The BIST scheme has been implemented in NMOS technology and the area
overhead has been evaluated for some example PLA’s. The area overhed is claimed to
be the smallest [19] compared to other BIST schemes. Still, for medium size PLA’s (20
inputs, 50 product lines, and 20 outputs) the area overhead is above 50%. For large

PLA’s (60 inputs, 250 product lines, and 50 outputs) the area overhead is 17%.

Clearly, the classical solutions to the problem of embedded PLA testing rep-
resent tradeoffs over various design and man{lfacturing aspects, sgch as design effort,
test computation effort, silicon area, yield, extra pins, and testing time. The next chap-
ter will introduce a new fault model which allows PLA testing using classical ATPG and
simulation tools after minor changes, and allows testing of embedded PLA’s without

requiring BIST, additional controllability/observability schemes, or an enhanced model

of the PLA.

23

‘Chapter 3 Conditional Stuck-At Fault Model *

4

The conditional stuck-at (CSA) fault model introduced in this thesis satisfies

the requirements of treating both general circuits and PLA’s under the same fault model.

Stuck-at faults are a subset of CSA faults. Moreover, the ATPG tools developed for

the stuck-at fault model can be used for the CSA fault model after minor changes.

For PLA’s, cross-point and bridging faults are mapped into CSA faults using only the
two-level gate model of the PLA.

Definition : A fault ({;/a,l; = §), where /; and /; are two lines in a circuit and ,f €
{0,1} is a conditional stuck-at (CSA) fault if I, /& refers to the fault {; stuck-at < and
l; = B refers to the requirement that some test vector for the stuck fault l,/ o produces
the value 8 on line/,. This test vector is then said to detect the CSA fault (I;/a,¢, = 8).

The definition includes the null condition possibility corresponding to a normal stuck
fault, where (I;/a,i, = f) i:j simply (I;/«) and no [; or ,6 is specified. This type of CSA
faults are going to be called null condition CSA faults. The expression “completely
specified CSA fault” will be used whenever it is necessary to emphasize’the fact that
both the condition line and the condition value have to be specified, as opposed to the

null condition CSA faults.

A test vector for the CSA fault (,/a,l, = B) does not have to propagate
the value on the condition line to some primary output. In the fault-free case, the

condition may not have any effect on any primary output. In the faulty case, due to

3.1 Cross-Point Fanlts Modeled na CSA Faunlte

non stuck-at defect, the value on the condition line.l; changes the value on the line /;
which is observable at some primary output, under the corresponding test pattern, It
follows that the values o and § have to be determined such that, under the assumed

non stuck-at fault, the interaction between lines l; and [, has the effect described above.

In general, a fault is detected by a test vector if some primary output PO, is
different from the fault-free primary output POf: f. Under the single fault assumption,
say ({x/)), this requirement reduces to observing, via some primary output, that the
value Az on line I is different from the fault-free value Af ! Similarly, for the CSA
fanlts, a fault which maygot be a stuck-at fault is detected if the value); on line I;
is observed to be different from the fault-free value /\{ ! on l;. Hence, for proofs and
discussions related to the CSA faults (I;/a,l, = B), it is sufficient to focus on the two
lines I; and I; since the part /, /o ensures a propagation path from line /; to some primary

output and produces the value @ on line /,.

Given a conditional stuck-at fault (I, /e,; = B), it is possible that line {, has
to sétisfy some requirement for sensitizing the path from [; to some primary output.
For example, if both ¢, and {; in the CSA fault (/,/0,/, = 0) are input to some NOR
gate, the condition has to be satisfied anyway for sensitizing the path for /;/0. Hence,
the conditign_l ; = 0 need not be specified in such a case since it is implicitly required
by {,/0. On the other hand, if the CSA fault is (1,/0,l; = 1) and I;, I, are inputs to
some NOR gate, there is a conflict between the sensitization requirements for /;/O and

the condition /; = 1. Thus, the CSA fault (1,/0,{; = 1) specified above is untestable,

The relation betwegn CSA faults and stuck-at faults is quite clear. For PLA’s,

it has to be shown that cross-point and bridging faults can be modeled as CSA faults.

x

3.1 Cross-Point Faults Modeled as CSA Faults J

Some terms have to be defined before stating lemmas 1 and 2. A gate Line
in a PLA is the line which represents the output of some gate (eitherra product line or

an output line). A variable line v with respect to some gate line g is a line on the next

25

9
A

LY
N

3.1 Cross-Point Faults Modeled as CSA Faults

e

!
\w
1

ex,

._..__7£._

0
eIy

vlrle

Figure 3.1 Missing CP Fault Modeling

L)

lower level with respect to line g. For example, bit linds are variable lines with respect
to product lines. Note that the value of a gate line g miay not depend on a variable line

4 «

v.

¢

It has been mentioned in (33 that Cissing cross-point faults can be mapped

~
FAdEn
P

into stuck faults (that is, CSA faults with nyll condition). This result is formalized
below. :
o ot
Lemma 1 : Any missing cross-point fault at the intersection of some variable line v a
some gate line g is covered by the stuck-at fault v/« on the variable line v, where '« is

the nondominant value for the gate g.

Proof : Without losing any generality the lemma is gE)ing to be-proven for the NOR-
NOR implementation. Missing cross-point faults can be modeled as shown in figure 3.1
by adding one two-input AND gate and an extra input line ez for each used cross-pbint.
The fault is modeled by a stuck-at zero fault on line ez,. It is clear that (ex,/0) is
equivalent to (y,/0) which means that a test vecior for (y,/0) will also detect (e‘xﬁ(o).
Thus, the missing cross-point fault corresponding to the input y, is detected by the test
vector for the stuck fault (y,/0), which produces a dominant value on the tested input
while the other inputs have nondominant values. The ‘extra gates can be discarded since

the fault (y,/0) is going to be tested for by T'g 4 anyway. OJ

-

The used PLA cross-points are represented in the two-level gate model as
gate inputs. If, due to some defect, such an input does not exist, then a complete single

N
L4

28

]

3.1 Cross-Point Faults Modeled as CSA Faults

Y,

\a; %
__/’ :
: a .
ez, > .
a, :

ez, =

Figure 3.2 Additional CP Fault Modeling - NOR-NOR Implementation

il

stuck-at test set T'g 4 detects the fault. The unused PLA cross-points do not have any

‘representation in the two-level gate model. In some sense, they represent inputs which

do not exist. It is one of the applications of CSA fault model to allow testing for the non
existence of such inputs. This can be achieved by producing a dominant value on the
input line as a condition and observing the gate whose other inputs are at nondominant

values. This is formally presented in lemma 2.

Lemma 2 : The additional cross-point fault at the intefsectibn of some gate line g and any
associated variable Jine v js detected by the test vector(s) for the CSA fault (g/a,v = g),
where a and f take the values a = 0, § = 1 for the NOR—]&OR implementation.

El

Proof : As discussed before, it is sufficient to consider isolated gates since the part
g/a in the CSA failt insures fault activation and propagation to some primary output.
Consider the stuck-at model for additional cross-point faults of some gate line, as shown

in figure 3.2. The stuck-at one fault on the extra line ez, (ex;/1) will cover (ak/i) which

-is equivalent to (g/0). The fault (a; /1) is covered by (vi/1) as well. Thus, a test vector

for (g/0) detects (ay/1) and either (ez;/1) or (v /1). Since the objective is to test for
(exr /1), the test vector for (¢/0) has to produce a one on line (vj). Hence the CSA
fault (9/0,v; =1). Thus, if the unwanted transistor exists, it is going to dominate the

gate value and the effect will be observed at some primary output.]

Once it is decided that the CSA fault (¢/0,v = 1) models the corresponding
additional cross-point fault, the model in figure 3.2 does not have to be considered any

more since it applies to any unused cross-point. Thus, for additional cross-point faults,

27

&

3.2 Bridging Faults Modeled as CSA Faults

1

(9/0,v = 1) becomes a rule which is sufficient to generate the CSA faults from the

personality matrix, and thus test thesé faults.

3.2 Bridging Faults Modeled as CSA Faults

There is increasing evidence that bridging faults represent a relatively 3arge
part of the defects which may occur in MOS IC’s [34], [12],{35]. Bridging faults can
};e divided into two classes : bridges between wires on the same layer and bridges
between wires on different lagfers. For PLA’s, these two classes can be further divided
as follows. On the same layer, bridging faults may occur between adjacent bit lines,
between adjacent product lines or between adjacent output lines. On different layers
there may be bridges between bit lines and product lines, and/ or between product lines

and output lines. "%\‘*Lm

Statistical informatioft from fabrication processes show that bridges may oc-
cur between more than two adjacent wires [12],(35]. However, for the purpose of this
analysis, it has been assumed that the bridge occurs only between two wires. The anal-
ysis can be easily extended for the case of more than two w{res shorted. The traditional
assurtﬁi:)\n that the bridge has a well defined logic effect, either AND or OR [7],[11],
has been adopted. It has also been assumed that the relative position in the layout of
an input line with resgect to the other/i‘np lines, and of a product line with respect to
the other product lines, follows the position in the personality matrix. This assumption

is necessary because only adjacent lines are considered as potential bridging faults.

/

- It is possible that in the actual PLA layout, the distance between two adja-
cent parallel wires is so big that a short is very unlikely to occur, as opposed to some
other wires which are very close, on the same layer. In this analysis, it has been assumed
that a bridging fault may occur between any pair of adjacent bit lines, or product lines,
or ovtput line;.

’

In order to exercise a bridge it is necessary to produce complhementary logic

values on the two lines and to propagate the effect to some primary E)utput. In general,

28

AU
b
PR Y.
,
(o
5 }'414.1:“‘%

tra
4R

.

..value on the stuck line. This guarantees

- X Briclging Faults Modeled as CSA Faults

given the lines a and b in a circuit, the bridge between the two can be modeled either
@3 (a/0,b = &) or (b/a,s = e). It is important to note here that the condition value is
always the dominant value under thg logic effect assumed. The associated stuck-at fault
is always a stuck-at the dominant value sych that the test vector creates a nondominant

x}l{at the short will change the value on the
stuck-at line and not on the condition line, which makes the fault observable at.some

primary output via the sensitized path.

* It has been found out however that, depending on the personality matrix,
many of the bridging faults in PLA’s are always detected by the t;est vectors for stuck-at
faults in the two-level gate model. Consider the conditional stuck-at fault {a/e, b = a)
which models the short between lines a-and b. If some sensitization requirement for the
stuck-at fault a/a satisfies the condition b = & then then the CSA fault is detected by
the test vector for the stuck-at fault a /a. Therefore, a better efficiency can be achieved

if such cases are identified in advance.

Similarly, the condition in the CSA fault modeling séme bridge may con-
t?a{dict some sensitization requirement for the stuck-at line. For example, assume that
the two lines a and b are in;;“uts of the same NOR. gate and the effect of the short
is OR. The CSA fault (a/1,b = 1), modeling the bridging fault between a and b, is
untestable because a/1 requires b = O and the CSA fault requires b = 1. In the test
generation process, the significant amount of computation required by such untestable
faults is wasted because no incre’?i;ize in coverage is achieved. Thus, each untestable fault
identified in advance implies time savings in the test generation part, provided that the

“identifying” operation is simple. ,

The following chapter presents a detailed analysis of the five types of bridging
faults along with various patterns which may occur in personality matrices. The analysis
is aimed at identifying the cases where the condition in a CSA fault which models some

bridging fault is guaranteed to be satisfied by the sensitization requirements for the

_ stuck-at fault, and some of the cases of untestable CSA faults.

29

‘Chapter 4 . Single Bridging Faults

B4

A PLA personality matrix contains both functionality and some layout in-

formation. Therefore, the analysis of the PLA bridging faults is based on the patterns

. which occur in the personality matrix. The analysis determines the implications of these

patterns upon modeling shorts as null condition CSA faults.
4.1 Bit Lines

In the case of adjacent bit lines, there are two possibilities : the shorted lines
-belong to the same variable or the shorted lines belong to different variables. If the
shorted lines belong to the same variable say z,, the short is equivalent to the fault
(z;/a). Depending on the effect of the short, & may be zero (AND effect) or one (OR
effect). Consequently, this kind of short is modeled bi(null condition CSA faults.

Sui)pose that the shorted bit lines belong to different variables, say e and
b. Figure 4.1 shows the possibilities of using the adjacent lines @ and b in produlits

8

(P(), P1’7 P2, P3)'

The short is modeled according to each of these possibilities (pg, p1, P2, p3)
and for AND or OR effect. ,

4.1.1 Case pg

2

If neither @ nor b is used on a given p‘rod{zct line, then the short does not *

have any effect on the product line. If this applies to all product lines then the short

~
* : l

v v T) N
° \ ' R -
oo N - “ \ -

o ‘ ! . A.; BiﬁLill!!
* 2
' a b~ a b ?
A S
{ ypa + * p’
d 1o L
@ Y“ <
o a b a b . 6
. - s e :;4/
. e &

Figtire 4.1 Adjacent Bit Lines Shorted

is an undetectable fault. This situation however will never occur in pra&:tice because if

one or two bit lines are not used at all, then they simply- do not exist.

4.1.2 Case py . g -

Suppose that literal i‘ is used in a product line but literal b is not used,
as shown in figure 4.1 (p;). Assuming a NOR-NOR implementation of the PLA, the <

l . . fault-free py (P{f) is:

b

! L p{f= (f1+ o +T+ ..+ 1)

‘) b.—.,-ri---{;-...';;'d . ﬂ (4,'1)

where iy, ..., i}, ‘are the other inputs to that product line.

31

0 :

<
v

- . Y BT
¢ Lo ’ whh oM e SEATR

£
NFERe:

< B

<4

> | Z v
L ' _ _ , : 41 Bit Lines

“nk

AND Effect a =

Assuming that the effect of the short is AND, the faulty py (pf) is:

v = =G+ Fab+. . +i)
=t(";'"".—.k)'(a+3) ‘ o
= (?I?},’)a+(?{3§)3

S (N it B R [

The above expression leads to two subcases :
¢ L bis used in py

2. b is not used in py

-

If b is used in py- then pf' becomes:

0 — —

= (fg b tg) -

ol : E)

Since p{ f is identical to pf' , the fault is undetectable through product line p;.

If b is not 'used in py, then to detect the fault we must have pf' # p{f and
the value on p; must be observable on at least one output line. It follows from the
expression for p{" (4.2) that the the first requirement is satisfied if (77 -...-75)-5 = 1 and
p{f ‘= 0. Clearly, a test pattern which can detect the fault @/0 and at the same time
produce b = 0 would ~sa.tisfy both requirements. In other worés, this fault is modeled
as (/0,5 = 0).

* The same analysis can be done in terms of logic gates. Fighr\e 4.2 shows the

circuit inodel of the short. The effect of the short is as if the extra‘ line ex were stuck-at

-

32

B 4.1 Bit Lines

rd

1

Figure 4.2 Adjacent Bit Lines; Case py; AND Effect
one. With the constant-input zero for ez, in order to test for ex/1, the only requirement
is a sensitized path from ez to some primary output. This in:plies p{f =0and p§* =1,
which translates intd @/0 and b = 0 which is in fact the CSA fault (@/0,b = 0). Note
that a sensitization path for b instead of @ cannot be used since in the fault-free ca;se b

is not used in product p;.

OR Effect -

~

Under the assumption that the effect of the short is OR, the faulty product pf' is :

Py =Tt t (@+0) o tig)
= (L @ ig) b
.=p{f b I . (4.4)
1. - Ifbis used on product line py, then p¥ becomes :
=1 e a-Tg) b0 _ (4.5)
=0
The short has the same effect as a stuck-at zero fault on line p; and it is

modeled by a null condition CSA fault, meaning that any Tg4 will detect
this bridging fault. ’ '

33 .

4.1 Bit Lines

=

2. If bis not used on product line py, then a similar analysis as the one for the
AND effect can easily show that this fault is covered by the test vector for
the CSA fault (@/1,b = 1).

4.1.3 Case p,

The analysis for the case py is very similar to to the analysis for the case
p1 presented above. In f’actg, oné can be derived from the other by simply replacing @
with b and vice versa. For this reason, the details of the analysis for the case p; are not

»
presented. The results, however, are shown in table 4.1.

L\

4.1.4 Case p;3

-]

If confbination p3 occurs on two adjacent input variables, then the fault-free

product pg T s @
R =t Attt i) ' (4.6)
:E-g'...'a'a‘a -
AND Effect

If the effect of the short between lines @ and-b is AND, then the faulty product

p3 is! -

Pi=(1ti+t.tabt.ti) | (4.7)

. . =;1__z_2-(a+-l;);;

= (G 08p -0 dg) + (I 83+ - B i)

In order to test for this fault, ¢y, .:.,ik have to be set to propagating values
such tuat it can be observed if there is a sum (fault-free) or a product (faulty) between

@ and b {expressions 4.6 and 4.7, respectively). The fault can be exercised by producing

34

’
1 s - \J
'

;‘).
PR -

gnp ‘ o . o L : ! « .]

SR : . . . "

L ‘. - . - 4.1 Bit Lines
L ~

i Figure 4.3 Adjacent Bit Linés ; Case p3 ; AND Effect

complementary logic values on the two lines. Since both lines are inputs to the same %
NOR gate, the test vector for either @/0 or 5/0 will produce complementary logic values
on @ and b and obviously satisfy the sensitization requirements. Hence, the short is

modeled as a null condition CSA fault.

. : ﬁ ‘ »
In terms of logic gates, the short can be modeled as shown in figure 4.3. The
short has the same effect as the stuck-at one fault on the extra line ex. It can be easily
seen that ez/1 will be detected by the test vector(s) for @/0, or 4/0.
. | .

OR Effect

|
i

- !

If the effect of the short is OR, then the faulty product pg becomes :

pl=(i1+ig+ . +atbt..+ix)

=11 93w @b
;7 |
. = p3 - (4-8)
, C‘ Thus, the fault is undetectable through product line ps. .
35

4.2 Product Lines

»

4.15 Combinations p; —p2 — p3

The personality patterns discussed individually so far may occur in prac-
tice in various combinations. It is thus necessary to analyze the implications of such

.combinations.

Suppose p; and pp occur on two adjacent input variables, say a and 6. In this
case, the effect of the fault may be propagated on two paths which may be completely or
partially different. Thus, if the short has to be modeled as a comi)letely specified CSA
fault, there are two conditional stuck-at faults which might detect the short: (@/c,b =
a) and (b/e,@ = @), « € {0,1}. These two CSA faults correspond to the patterns p;
and pp respectively. Certainly, the ATPG tool will consider the second CSA fault only
if the first is undetectable.

If pattern p; appears in some combination with p; or ps, then the caa:;e has

to be analyzed for both AND and OR effects of the short. If the effect is AND, then

_the short is modeled as null condition CSA fault through the pattern p3 (as shown for
the case ps). Thus, there is; no need to test for some conditional stuck-at fault (via p;

or pz) which can also model the short.

If the effect is OR, the fault is undetectable through product line p3 and the
fault might be detected only via p; or p; which appear in the combination. The analysis
for these cases has already been carried out and it shows that the short can either be
modeled as a null condition CSA fault, or as a completely specified CSA fault.

. . .
4.2 Product Lines

The case of product lines involves fewer relevant personality patterns since no
product line appears both complemented and uncomplemented, as in the case of input
lines. Tvvo adjacent product lines can be used in output functions as shown in figure 4.4.
It has to be noted that g1, g2, and g3 refer both to some personality pattern as shown

in figure 4.4, and to PI:A output lines before the final inversion (the implementation

36

4.2 Product Lines

ese oooopf A oooPi ‘ ‘en e -oopf
soe ooopz e ooopz ons o-opz
9 9z 93

Figure 4.4 Adjacent Product Line Patterns

assumed is NOI;-N OR). The analysis of the basic patterns g1, g and g3, and and various

patterns which may occur is quite similar to that for the patterns on bit lines.

- 40201 Caﬂe gl

L

If pattern gy occurs, then the fault-free output line g{ f (before the final inversion) is :

9{’ =M+ A2+ + Tt p1

=] WG+ T+ PT (4.9)

Where 7;’s are the other product terms on which the function g; depends.

AND Effect

~

Assuming an AND effect of the short, the faulty output line gf' is :

‘ glF=7r1+7rz+--.+7rk +p1-p2
=T 172" .o Tk (P11 +72)
= (-7 - oo T - BT) + (7T - 77+ oo T - F3)

) =g{f+(fl-.f§.,_,.ﬁ.55) . (4.10)

In order to detect the short, it has to be observed at some primary output

that g{ f ot g{i.~ _At the same time, a nondominant value under the assumed effect of

37

4.2 Product Lines

N
the short has to be produced on p;. It follows from expression 4.10 that gf' # g{ !

if 7M. -7 -P3 =1 and g{f = 0. Clearly, a test vector for the fault pl/O‘_
will produce an observable 1 on p;. If this test vector also produces a 0 on p; then
L 79w - T - Pz = 1 while g{ f=o aﬁd all the requirements are satisfied. In other
.words, the short is detected by a test vector for the CSA fault (p1/0,p2 = 0).

I J :
T — g” v

Figure 4.5 Adjacent Product Lines; Case g;; AND Effect

&
[4

The same analysis can be done on the gate level model of the short, as shown
in figure 4.5. .

OR. Effect

If the effect of the short is OR, then g{" is :

g{1=7r1+1r2+...+7rk+p1+p2 “ (4.11)

The short is detected if a nondominant value (zero for the OR effect) can be
observed for the fault-free case on p; while pg has a dominant value (one for the OR

effect). These requirements are expressed in the CSA fault (p1/1,p9 = 1).

Case gy is very similar to case g; and results are shown in table 4.1 .

38

S
P
e st

4.2 Product Lines

4.2.2 Case g3

If pattern g3 occurs on two adjacent product lines, the fault-free output line ggis:

ggf=7r1+1r2+...+7rk+p1+p2

=¥ F3 . TG-P1 P2 (4.12)

" AND Effect . ’ K
3 - - //
///
The faulty output line is : //
| /
F = ' /

. g3 =T+ T+ ...+ T+ P P2)
/

=T 7% T (FT + 73) . (4.13)

» /

It follows from expressions 4.12 and 4.13 that to detect this fault, it has to be

observed whether there is a product P7- 77 or a sum By + Pz on g3. If all n,’s, (¢ = 1..k)
‘have propagating values, the fault is detected if py and p; have complementary logic
values. Note that all these requirements are satisfied by the test vectors for the stuck-at

faults p1/0 and/or pa/0. Therefore, no extra condition is required.

1

OR Effect

j In this case, the faulty output line is :

gg"=7r1ji-7r2+...+7rk+~p1+pz v

=gff o (4.14)

Hence, the short is undetectable through the outpui': line g3.

39

O

4.3 Ontput Lines

423 Combinations gy ~ g3 — g3

The basic patterns analyzed so far are very likely to occur in various com-
binations. As a consequence, there may exist a second alternative for testing the same

-

.short.

If g4 and g occur on the same adjacent product lines, then the fault can be
tested either as a stuck-at fault on line p; with a con_dition for pg or as a stuck-at fault
on line ps with a condition on line p;. This is the only case when two CSA faults model
the same product line short. Note that the number of occurrences of gy or go is the
number of paths on which the effect of the short can be propagated to some primary

output.

If pattern g3 is encountered along with g, and/or g, then if the effect of the
short is AND, the fault is detected by any T'g 4, as discussed for the case g3. If the effect
is OR, then the short has to be modeled by some CSA fault involving patterns g1 or g3,
since it is undetectable th ough g3. |

- 4.3 Output Lines

The short between two adjacent output lines has to be modeled as a fault
on the outputs of some gates on the secqnd level. This assumes that there is no infor-
mation about the circuitry being fed by the PLA outputs. Thus, there are always two
completely specified CSA faults which mode] the same output line short. If the PLA is
not embedded, the outputs are directly observable and only one CSA fault (either one)
is sufficient for testing the short. In this case, the short is detected whenever the two
output lines have different values in the fault-free case, independently on the logic effect
of the short. If the PLA is embedded and the outputs are not directly observable, then

both CSA faults have to be considered since either one may be untestable.

As discussed in section 3.2 for the general case, the CSA faults which model
a short with AND effect are (a/0,6 = 0) and (6/0,a = 0). For the case of two PLA

M0

" lines. Recent research work ([12],

i

4.4 Cross—Point Shorts

output lines g, and g,, the CSA faults are (¢;/0,9, = 0) and (g, /0, g; = 0). For the
case of OR effect, the CSA faults are (¢;/1,9; = 1) and (g;/1,9, = 1).

4.4 Cross—Poith Shorts

L)

The name cross-point shorts (CPS) refers to shorts between wires on different

layers at the crossover point of bit lines and product lines or product lines and output

that shorts between wires on different

layers are less likely to occur. Even though the probabilits of such a short to happen is
three orders of magnitude smaller than the probability of shorts on the same layer [35],

some applications may require that these defec well be covered.

The analysis assumes that the logic effect of the short is either AND or OR.
As discussed in chapter 3, there are two CSA faults which can model the short. Consider
for examy;le a short between product line p; and bit line z4 in the example PLA shown
in figure 1.1. As discussed in section 3.2, there are two CSA faulté which can model
the same crosspoint short: (p3/a,i; = @) or (1;/a,p3 = a), where a = 0 if the short is

AND type and « = 1 if the short is OR type. Similarly, a short between a product line

p, and an output line g can be modeled as (p,/a,g; = @) or (g¢/a,p, = @)

The layout informat‘ion available from the personality matrix make; it pos-
sible to derive the CSA faults which model crosspoint shorts. It has been established so
far that any bridging fault can be modeled as a completely specified CSA fault. In some
cases, however, this may not be necessary since a null condition CSA fault is sufficient.
The following two sections analyze; the cross-point shorts under various personality pat-
terns in order to determine the cases where a completely specified CSA fault is required

and to derive the corresponding CSA fault.

4.4.1 Bit and Product Lines

Consider a cross-point short between product line p; and bit line a. The

fault-free product line p; is :

pll =¥+ tix

41

te,

4.4 Cross-Point Shorts
=;‘I';r2.'u¢“'-£; (4&15)
OR Effect o v

L]

.)
- Under the assumption of OR effect, the faulty product pf is :

° pl=11-1 .- T +a

=pf +a . (4.18)

Vs

Depending on the relationship between the input a and the inputs ¢;...4,

there are three possibilities :

_‘

2

y -’ H o L]
L. none of i;’s is a (por @);
2. some t; is a ;
3. some i; 8 @;

Case 1 - : ’ 3

i

There is no relation betw{!en a’and ?3...1;. It follows from expression 4.16
that in order to detect the fault we must have p{ f = 0, @ = 1 and observg p; at some
primary output. Clearly, a test vector for the CSA fault (p;/1,a = 1) will satisfy these

conditions and detect the short.

. ./
Case 2
The fa‘l;f‘lty product is : .)
F_= . x ‘
p; =11t+aet+up+..+ita \
=11+T Ig+m-ig+a x\
=TT wipta - / (4.17)

42

\“ - : N “
L

o

At

5 S » YTyt g PRI
siaet S 3
PR S '_u_«“gx
. 5

) Il

- 4.4 Cross—Point Shorts

A test vector for the fault a/0 will produce a zero on p; in the fault-free case. In the
presence of the short, it will pro;iuce a one on p; and the short will be detected. Thus,
a null condition CSA fault is sufficient to model the short.) ,

Case 3 A
The faulty product ig :
N v . ~-&’.
, : pf =T ¥a+iz+.Tig+a
=11-Q 03 i ta
' ” =a (4.18)

l“ ' .
In order to detect the fault, we must have #1 -3+ ... - 3§ = 0, a = 1, and a sensitized

path to some primary output. All these reqtiirements are satisfied by a test vector for
the fault ¢; /0, i; # @. Thus, a null condition CSA fault can model the short.

AND Effect

& The faulty product line piF becomes : * - ..

¢ pffi1+i2+...+ik-a

=110 e tp @ _ (4.19)

‘ Again, there are three possibilities :
\ 1. none of i;’s is a (nor @);

2. some iy is a ;

3. some i; is @ ;

‘ .
A ~
«5, 3
1 g .
g’ ° » §
’ .-
,

Caée 1

i
{
I

Figure 4.8 Bit and Product Line - Fault (a/a,p; = §) (AND Effect)

-

The product p; does not depend on @ or @. A similar analysis as in the case
of OR effect leads topthe conclusion that the short-is going to be detected by the test
vector for the fault (p;/0,a = 0). v '

Case 2) S
\ , ' ~
\f\he faulty product is : - . ‘ N
\' : p‘-F::?;-?I-TE-...;E-a
3 o '
Co =0 ' " (4.20)

Clearly, the short is covered by the null condition CSA fault (p;/0).

v

Case 3

Being a function of @, the product py becomes : .

- © ° q

—

pf:ﬁ-a-a-...-ik-a

e | = plf ") (4.21)

Thus, the fault (p;/a,a = a) is undetectable. However, it may be detectable via the

fault (a/a, p; = @). The logic circuit image of this model is shown in figyre 4.6.

. 44

,
‘
.
C
O
LT @ 5
N s -‘)\"A».Q’“

44 Cross-Point Shorts

The short is detected by the test vector for the.CSA fault (a/0,p; = 0). This

will produce a one on line a and a zero on 4. a = O is a nondominant value in the

J
expression for p; and thus there is no contradiction.

‘ &
443 Product and Output Lines

The analysis is very similar to the case Bit and- Product Lines. The only
difference is that there is no inverted product line, the way bit lines are inverted in the
AND plane.

*

The faulit-free line g{ fis:

o)

s = TRT :
: X e - (4.22)
OR Effect
The faulty line gf is ’ 1 i
. =P TRt _
=gl 4r (42)
Case 1 | , “ ’ ‘ .
X\ « The output line g; ois independent on 7. Tl;e short is going to be detected if
RS .g{ / = 0, 7 = 1 (expression 4.23), and if g; is obseljw,'ablé~ at some pri;nary output. In
" other words, the short is modeled by the CSA fault (g;/1,7 = 1). '

Case 2

B

The output line g; depends on 7 (used crosspoint). The faulty output line becomes : _

g,-i'=,p1+1r+pz+...+pk+7r

. ’ | =P . % (424)

R)

]

As for the general case, the short can be modeled as (g; /1,7 = 1). This CSA

fault js detected by the test vector for the CSA fault (x/0, 7 = 1), since g; /1 dominates
7/0. But, a test vector for 7/0 produces # = 1 anyway, so no condition has to be

specified for this case.
AND Effect ' . :

Assuming that the effect of the short is AND, the faulty output line gf is :

s O

F
9, =p1tp2t..+ppT
=p1-DP2 e P 7T (4_25)

Case 1 \

©

None of p,’s is 7. The analysis is similar to that for OR effect, case 1. The

short will be detected by the test vector for the CSA fault (g,/0, 7 = 0).
Case 2
If p, = 7, then ‘ng becomes :

of =p1 777 P70
<] ::0 (4.26)

-~

Thus, the short is modeled by the null condition CSA fault (g,/0).

46

4.4 Cross-Point Shorts

‘ Wﬁg

4.5 ~Conclusion

4.5 Conclusion

The PLA regularity and implicit layout information enables one to efficiently

mode] bridging faults as CSA faults. Thel results of the PLA bridging fault analysis

are summarizéd in tables 4.1 and 4.2. Clylamly, this analysis does not identify all the

untestable single bridging faults, but provides a simple method to screen a subset of
1

the untestable bridges. Even though a NOR-NOR. implementation has been assumed
for the PLA, these results are valid for the AND-OR implementation as well.

"

1. Bit lines belong i) ORJ ’ null cond. CSA
Adjacent | to the same var. AN@) null cond. CSA
Bit lines bit lin{es
not used Undetectable
bit lines on different pl]{ .| AND | b used undetectable
(. | bunused | (/0,5 =0)
variables “ OR b used | null cond. CSA
shorted . \ S . | bunused { (a/1,b=1)
p2 ' AND | a used undetectable
- | a unused | (b/0,@ = 0)
') ‘ OR | a used |null cond. CSA
a unused | (b/1,@ =1)

p3 AND null cond. CSA
’ OR undetectable
) pl & p2 & p3 | indep. alternatives: pl, p2,-p3
2. gl AND (p1/0,p; = 0)
Adjacent , OR (p1/1,p3 = 1)
word g3 AND null cond;"G§A
lines OR undetectable
shorted |. gl & g2 & g3 indep. alternatives: gl,g2,g3
3. ’ °
Adj. output | AND (9./0,9, = 0) or (g,/0,9, = 0)
lines shorted OR (g;/1,9, = 1) or (g,/1,9, = 0)

P
Table 4.1 Bridging Faults Between Parallel Wires on the Same Layer

47

45 Conclusion

The tables represent in fact a simple set of rules for deriving the CSA faults
from the personality matrix. Once this is done, only the two-level logic model of the
circuit is used for test pattern generation, as it will be described in the section on

experiments and results.

Lo 4. OR effect | 1: “a” not used | (p/1,a=1)
Crosspoint 2: “a” used null cond. CSA
shorts in 3: “@” used null cond. CSA
the AND | AND effect | 1: “a” not used | (p/0,a = 0)
plane 2: “a” used null cond. CSA
‘ ' 3: “@” used undetectable ~
5.
’ Crosspoint | OR effect |1: “p” not used | (¢g/1,p=1)
' shorts in | 2: “p” used null cond. CSA
the OR | AND effect | 1: “p” not used;| (g/0,p= 1)
plane 2: “p” used null cond. CSA

o~

Table 4.2 Bridging Faults Between Lines on Different Layers

o

G (4 . 48

[
[

Chapter 5 < Experiments and Results

,

The analysis presented in chapters three and four has been‘used to implement

an algorithm to genérate the CSA faults for PLA’. This algorithm has been applied
to the 56 benclimarking PLA’s [9]. Test vectors were generated for the CSA faults in a
subset, of these examples. In each case, the set of faults contains both CSA faults with
null condition and completely specified CSA faults. The ATPG tool used to generate
test Vvectors is an existing implementation of PODEM (24] which has been modified
such)that it processes CSA faults as well. Unfortunately, the ATPG tool available
is quite inefficient and the very large PLA’s in the set of 56 benchmarking examples
could not have been processed in a reasonable amount of time. For comparison with a
state of the art ATPG tool [38], table 5.1 shows the time performance of the PODEM
implementation used in these experiments, versus SOCRATES (38| for some of the
well known benchmarking circuits introduced in [39]. For these reasons, the modified
PODEM implementation was run only on 45 small and medium size PLA’s out of the
set of 56 PLA’s. The implementation of the algorithm to generate the CSA faults and
the modifications for the ATPG tool are the contribution of the author. The programs

have been written in “C” run on a SUN 3/50 system. .

a
e

51 CSA Faults
The input for the algorithm which generates the c(;mpletely specified CSA
faults is the PL A personality matrix. The output specifies the stuck line, the stuck value,

the condition line and the condition value for each CSA fault. The lines are specified

D

5.1 CSA Faults

Circuit | SOCRATES | PODEM
total time | total time B
- 1 ct3z 3.7 279.67 e
c499 8.1 241.66
c880 5.7 159.50
c1355 21.9 1209.80
c1908 33.1 1063.52
c2670 69.3 6601.68
¢35640 62.0 7494.29
7/

.
Table 5.1 Calibration
as 71 to Tn, p1 to pm, and Fy to Fp, for PLA input lines, product lines, and output

lines, respectively. Therefore, in the case of embedded PLA’s, The ATPG program has

to accept these names for lines which are internal to the larger circuit.

In the data structure, each input cube is represented by a linked list of 32-
bit word blocks. In each block, two words are used to encode the literals in the cube.
Therefore, each block can represent up to 31 entries in the input cube. The 3214 Hit
overlaps the 1% bit in the next block and it is used for checking the personality patt€rns
on two adjacent lines represented on two different blocks, for the case of bridging faults.
The OR plane is represented in a similar way. In this case, each output column is
mapped into a list of words. This representation of the PLA allows a very efficient use

of the memory and fast bit-wise operations.

The missing cross-point faults are covered by CSA faults with null condi-
tion (i.e. normal stuck-at faults), as stated in lemma 1, and PODEM will inherently
consider them. The CSA faults \ifor the additiqnal cross-point faults are generated by
simply traversing the list and identifying the non-connections. Two counters have to
be kept, one for the input/product line count for the AND plane, and the other for the
product/output line count for the OR plane. The words are simply shifted and ANDed
with a mask to determine whether there is a connection or not. The CSA faults for the
cross-point shorts are generated in the same pass by observing the rules summarized

in table 4.2. As discussed in chapter three, the effect of shorts may be propagated on

50

—

5.1 CSA Faults

IP | PR | OP | time (sec) IP | PR | OP | time (sec)
add6| 12 [355] 7 4.62 in5 |24]62 (14| 202
aded | 8 |75] 5 0.62 in6 [33]54)23]| 2.6
alu1 |12 |19 8 0.42 inT |26]54|10] 1.92
alu2 | 10 | 68 | 8 1.02 jbp |36(122] 57| 9.78
alu3 |10 | 66 | 8 0.98 misg (56|69 | 23 | 4.68
apla|{10 | 25 | 12| 0.40 mish {94 |82 | 34 | 10.58
beo | 26 {179 11 | 4.04 mipd | 8 [127] 8 1.38
bca | 26 | 180 46 | 6.62 opa |17 79 | 61| 4.40
beb { 26 {156| 39 | 5.00 radd | 8 |75 | 5 0.82
bee | 26 [137] 45 | 4.86 reki {32]32] 7 1.16
bed | 26 |117| 38 | 4.64 rd53 | 5 | 31| 3 0.34
chkn| 29 | 140| 7 4.00 | rd73 | 7 |127] 3 0.96
cold | 14 | 14| 1 0.24 risc |8 |28 |31 1.04
cps | 24 | 162|109 15.72 root | 8 | 57| 5 0.66
del | 4 | 9| 7 0.22 sqn | 7|38/ 3 0.44
dc2 | 8 (39| T 0.54 sqré { 6 | 50 | 11 1.00
dist | 8 |[120] 5 1.20 ti (43 |213| 67 | 20.20
dk17] 10 | 18] 11| 0.40 tial |14 |579] 8 9.06
dk27{9/8| 10 | 9 0.30 vg2 |25]110] 8 3.06
dk48 | 15 | 21| 17| 0.62 wim [4] 9| 7 0.30
exep | 30 | 109| 62 | 8.04 xldn |27 |110| 6 2.98
f5lm| 8 | 76 | 8 1.06 x2dn [82]104| 47 | 14.42
gary | 15 [107] 11 | 2.14 x6dn |38] 81| 5 3.82
in0 |15 [107| 11| 2.34 x7dn {66 |538]| 15 | 46.70
inl1 {16 |104[17| 186 x9dn |27 (120] 7 3.42
in2 |19 |135{ 10 | 3.16 zd | 7|39 4 0.62
in3 | 35| 7420 4.02 Z5xpl | 7 | 65| 9 0.98
ind |32 212|200 9.56 Z9sym| 9 | 84 | 1 0.90

Table 5.2 Time Required for CSA Generation
S 4
two paths. Therefore, a new field is used in the CSA fault specification, indicating this

possibility. If the fault is untestable via one path, the ATPG tool will try the second

b1

52 ATPG Tool

at 22 z8 z4 25 o g2 g3

7] G AAA

001z0 010
0t z1z 011 -

1101z 101 9 1
000zt 110 + ?

S
——
BRBRR

Figure 5.1 Assumed Layout Positioning for NOR-NOR Implementation
- path. B

v
¥

For the bridges between wires on the same layer (table 4.1), it is. necessary
to identify the patterns discussed in section six. The process is similar to the one for
" additional cross-point faults. In the case of b;idging faults, two adjacent bits in the
PLA representation have to be observed. It has been assumed that the impleinentation

is NOR-NOR and the layout follows the structure in figure 5.1.

The implementation uses bit-wise .operations extensively. The total time
required to generate the CSA faults corresponding to cross-point faults, cross-point
shorts, and bridging faults (AND and OR effect) for the example PLA’s is shown in
table 5.2. The set of completely specified CSA faults is subsequently used in PODEM

along with the two-level representation of the PLA.

5.2 ATPG Tool

The starting point in modifying the implementation of PODEM is the data
structure for the fault dictionary. Each stuck-at fault in the old structure has to be
capable of accepting a list of conditions. An image of the new data structure is shown
in figu1e 5.2. Each condition, along with the corresponding stuck-at fault ‘counts' as a
completely specified CSA fault while the stuck fault itself counts as a CSA fault with
null condition. Thus, the fact that many cross-point and bridging faults can be mapped
into CSA faults with null condition reduces the final size of the CSA fault set

'52

2010z 101 |\l—f_ o : 2\ ol

. 5.2 ATPG Tool

e line line e
, s.a. 1]sa 0 " : s.a. 1|s.a.<
: cond. line -1 cond. line cond. line cond. line
- cond. value cond. value cond. value| .|cond. value
cond. line cond. line cond. line cond. line
cond. value cond. value , cond. wvalue cond. value

1

one
ese
oae
e

Figure 5.2 Fault Dictionary Data Structure

The general test generation strategy is to consider each fault on each line in

the circuit. The CSA faults with completely specified conditions are considered first.
If at least one such fault is detectable, then both the completely specified and the null
condition CSA fault are counted as detected. If all the completely specified CSA faults

- attached to some line are undetectable, then the null condition CSA fault is consxdered .

alone.

A few statements have been added to the forward 1mphcat10n part of the

f . program such that the value on the condition line i is monitored. If the actual value does
| not match the condition value, then a backtrack operation is performed. If the values
match (“don’t care” is considered match), the program continues. This represents a
third case which require bounding, which is added to the other two cases introduced in
[24]. For the case of a "don’t care” on the condition line, an extra function was required
to specify PLA input values for the cone leading to the condition line. This is necessary
because normally, the unspecified inputs are randomly assigned and the test vector is

then simulated.

It is important to note that no test set compaction is attempted, other tifan
random assignment of the unspecified inputs and fault simulation. Various PLA-specific

c heuristics have been presented in [9], [33] for this purpose. The CSA fault model is

\ | .

t

5.3 CSA Coverage

primarily intended for embedded PLA’s such that test vectors are generated for tl}e

entire circuit.

5.3 CSA Coverage

- A set of experiments has been performed on 45 benchmé,f'lging PLA’s, as

follows:

. Experiment 1 :

A test set has been generated for all single stuck-at faults and for all si gle

cross-point faults modeled as CSA faults. This test set is called Togas-_k p-

Experiment 2 :

This test set is called Tcg4—c pg, where CPS stands for cross-poimisghorts.
The same assumption has been made as in the previous experiment regardin

" the effect of bridging faults.

Table 5.3 (pages 57 and 58) shows the coverage obtained for cross-point
faults. Column 1 identifies PLA’s by names used in [9]; columns 2,3, and 4 provide
the number of input, product and output lines, respectively; column 5 is the number

of addit.onal cross-point faults which are not coyered by stuck-at faults in the two-level -

- model of the PLA; column 6 represents the toyal number of cross-point faults ; column

o 54,

i

[S T

5.3 CSA Coverage

7 is the coverage of all single cross-point faults by a complete test set developed using

- our tool; finally, column 8 is the coverage of single cross-point faults by T'g 4, which will

©

be described in section 5.4.

Stuck-at coverage is 100% for all cases except for the PLA named dist,
wherein one stuck fault is untestable. Therefore, the stuck-at coverage is not included in
the table. For cross-point faults, the coverage obtained is exactly the same as reported
in [9]. Therefore, it can be safely concluded that the CSA model provides the same
capabilities as the cross-point fault model in terms of the ¢overage of CP faults. Recall
from [9] that less than 100% coverage in columnn 8 corresponds to those faults which are

undetectable.

)

Table 5.4 -{pages 59 and 60) shows the results for b;idging .faults between
wires on the same layer, for AND and OR effect separately. Columns 1,2,3, and 4 show
the namé and size of the PLA. Column 5 shows the total number of single Same Layer
Bridging (SLB) faults for each PLA. Célumns 6 and 9 show the number of bridges u
which d;e found to be untestable in the preprocessing step, for AND and OR effect, ’
respectively, according to the results shown in table 4.1. Columns 7 and 10 show the
additional number of bridges found to be untestable by the ATPG algorithm. Finally,
columns 8 and 11 show the coverage of bridging faults, which includes all untestable

bridging faults as well.

Table 5.6 (pages 63 and 64) shows the coverage of cross-point shorts (CPS).
Column 5 shows the total number of cross-point shorts ; columns 6 and 8 show the
coverage of all cross-point shorts using the CSA fault model. Columns 7 and 9 show the
coverage over all croés-point shorts of a complete single stuck-at test set, as it will be
explained in section 5.4. In this case, the number of completely specified CSA faults is
quit:: large, due to the fact that it is proportional to the number of unused cross-points
in the PLA. An interesting case is the AND effect of the CPS. The CSA fault set for
cross-point faults is a subset of the CSA fault set for the CPS, AND effect. Due to the
fact that in the case of CPS the fault can be propagated on two paths, the coverage is
much higher in the case of CPS than in the case of CP faults.

] _ 55

\‘1

5.4 C:)verage by Ts 4

5.4 Coverage by Ts4
a
It has been determined for all the three sets of experiments, the coverage
performance of a complete single stuck-at test set generated on the two-level model
of the\PLA. This has been done by generating test vectors only for the CSA faults
with null ¢ondition and by simulating the completely specified CSA faults as well. As
mentioned in chapter two, coverage by Tg 4 of cross-point and bridging faults has also

o

been considered by Agrawal and Johnson f11]).

For the’cross-point faults, the results are shown in table 5.3, column 8. Note i
that the difference in coverage with respect to Tog 4 ranges between 0% and 38.3%
(z6dn). For the bridging faults between wires on different layers, the results are shown
in table 5.6 , columns 7 and 9, for AND é,nd O:J‘R effect, respectively. /Table 5.5 (pdges
61 and 62) shows the coverage of bridging faults between lines on the same layer by
Tcsa-sLB (also shown in table 5.4) and by Tg4, for OR and AND ;iffects. Column
2 sHéWs the total number of bridging fault§. The coverage obtained by Toga-g1B i
shown in columns 3 and 5, for AND,and OR effect, respectively. Columns 4 and 6 showL
the coverage of bridges by Tg4. For the AND effect, the difference in coverage ranges)
betweéen 0 and 4.47 (wim). Bridging faults under the assumption of AND effect were
also considered.in [11], but the coverage by Tg 4 reported in [11] is over bridging‘ faults
and stuck-at faults. Since the number of bridging faults considered is much smaller than -)
the number ofi stuck-at faults, the results presented in tables 5.5 and 5.6 give a more

accurate image of the coverage performance of Tg 4.

These results show that for PLA’s, the coverage achieved by Tg 4 is unaccept-
ably low in some cases. There are many examples where the drop in the Tg 4 coverage

‘over non stuck-at faults is more than 15% with respect to Tesa—cp, TeSA-SLBs OF

!

Tcsa-cPs- .

YL

5.4 Coverage by T's o
%

PLA size Faults Coverage
1 (2] 3 |4 5 6 7 8
IP| PR {OP | add. CP |total CP |Toga_cp cov(%) | Tga cov.(%)

add6 | 12 | 355 | ¥ 6258 11005 88.69 78.64
adrd | 8 | 75 | 5 820 1575 90.54 82.60
alul |12] 19 | 8 507 608 97.53 81.09
aluz |10 68 | 8 1289 1904 83.77 71.80
alu3 [10| 66 | 8 1222 1848 87.45 77.22
apla [10] 25 | 12 416 800 99.50 91.25
be0 | 21179 | 11 5904 9487 95.69 76.39
chkn | 29]140 | 7 5761 9100 93.64 - 67.60
cold |14 14 | 1 0 406 100.00 100.00 .
det [4] 9 |7 54 135 ' 94,07 92.60
de2 | 8|39 | 71 429 897 96.55 92.42
dist 120 | 5 935 2520 93.02 91.31
dk17 [10| 18 | 11 320 558 99.82 92.83
dk27] 8 |10 9 165 250 100.00 96.00
dk48 | 15| 21 | 17 654 987 99.80 94.94
exep | 28109 | 62 | 10403 | 12862 99.39 . 88.41
f5im| 8 | 76 | 8 1104 1824 92.22 80.59
gary | 15107] 11 2375 4387 94.80 85.68
in0 | 15107 11 2375 4387 94.83 85.16
inl |15]104 | 17 1951 4888 07.96 87.36
in2 {19135 10 3893 6480 96.50 83.93
in3 {34174 | 20 p 5897 7178 97.77 80.84
ind | 32212 20 | 13132 | 17808 95.40 66.37
in5 | 24|62 | 14 2574 3844 98.39 79.55
in6 [33] 54| 23 | 3822 4806 98.90 80.55
in7 [26] 54 | 10 | 2584 3348 95.31 76.46
jbp {36 (1221 57 | 13993 | 15738 98.48 87.77
misg |56 | 69 | 23 | 8894 9315 97.11 62.52
mipd | 8 |127| 8 1400 3048 94.69 93.04

Table 5.3 Cross-Point Fault Coverage

57

?

54 Coverage by Tg 4

A2

PLA size Faults L Coverage
1 23] 4 5° " 6 7 8
IP | PR | OP [add. CP | total CP | Tosa—cp cov.(%) | Ts4 cov.(%)
radd [8|75 5 820 1575 90.54 84.43
rekl [32]32) 7 | .1056 2272 100.00 100.00
rd53 | 5 (31| 3 88 403 95.28 95.28
rd73 | 7 |127| 3 500 2159 92.22 " 92.22
risc | 8 | 28 | 31 1002 1316 97.12 94.60
root | 8 | 57| 5 524 1197 89.72 86.30
sqré | 6 | 50 | 11 676 1150 93.21 92.69
sqn |7 |38 3 235 646 91.33 | 82.66
vg? |25]|110] 8 4664 6380 95.08 71.55
wim |4 9| 7 59 135 94.82 4 8741
xldn 27110 6 4562 6600 96.15 69.27
x6dn 38| 81| 5 5112 6561 97.35 59.01
x9dn | 277120 7 4924 7320 95.94 72.68
24 |7 139] 4 | . 499 702 © 85.04 “ 75.08
- Z5xpl 65| 9 933 |- 1495 -93.04 88.89
Z9sym| 9 | 84 | 1 504 1596 100.00 69.55

Table 5.3 ° Cross-Point Fault Coverage — Continued

e

. 58

- 5.4 Coverage by Tg 4

Faults

PLA size AND effect OR effect
1 [2(3]4]| 5 6 7 8 9 10 11
IP| PR | OP | total nr: untest. cov. nr. untest. cov.
SLB |pproc. | PODEM | (%) | pproc. | PODEM | (%)
add6 |12 |355| 7 | 383 0 0 100 | 345 2 100
adrd | 8 | 75| 5 | 93 0 0 100 | 65 3 100
alul (12|19 8| 48 [0 0 100 | 12 0 100
alu2 (1068 | 8 | 93 0 0 100 55 10 | 100
alu3 [10]{ 66 | 8 | o1 0 o |100] 59 3 100
apla [10] 25 | 12| 54 0 0 10| 3 0 100
be0 |21 |179] 11 | 229 0 0 100 | . 23 5 100
chkn|29 | 140 7 | 202 0 0 100 | 125 10 | 100
‘cold (14] 14 | 1 40 0 0 100 | 14 0 100
de1 4| 9| 7| 21 0 0 100 | 1 0 {100
dc2 | 8 | 39| 7 | 59 0 0 100 | 21 5 100
dist 120] 5 | 138 0 0 100 | 90 9 100
dki7|10| 18 | 11| 45 0o 4- o0 100 1 0 100
dk27|8 | 10| 9 | 32 0 0 100 1 0 100
dk48|15(21 | 17 | 65 0 "0 |100(5 0 100
exep |30{ 109} 62 | 224 0 0 | 100 4 32 100
fs5im| 8 | 76| 8 | 97 0 0 100 | 72 2 100
gary | 15107 | 11 | 145 0 0 100 | 33 . 19 | 100
in0 [15]107| 11| 145 0 0 100 | 41 15 |-100
inl 15104 17| 148'[0O 0 100 | 13 9 100
in2 {19135 10 | 180 0 0 100 | 92 15 | 100
in3 {34 74|29 | 168 0 2 100 | 28 10 | 100
in4 |32|212] 20 | 203 0 1 100 | 33 94 | 100
in5 |24 62| 14 | 121 0 0 100 | 12 3 100
in6 33| 54 | 23 | 140 0 3 100 | 8 5 100
in7 {26 54 | 10 | 113 0 1 100 33 8 100
jbp |36 1221 57 | 248 0 1 100} -45 | 12 | 100
misg |56 | 69 | 23 | 201 0 5 00| 57 | 1 100
mlp4 | 8 | 127| 8 | 148 0 0 |100]| 48 33 | 100

Table 5.4 Same Layer Bridges

59

T

54 Coverage by Tis4

PLA size Faults AND effect OR effect
1 2 3 4 o L) 7 8 9 10 11
IP | PR|OP tota.i nr. untest. cova nr. untest. cov.
SLB | pproc. | PODEM | (%) | pproc. | PODEM | (%)
radd |8 | 75| 5 193 - o 0 100 67 5 100
rckl |32 32| 7 100 0 0 100 2 0 100
rd53 | 5 | 31 3 41 0 - 0 °100 27 0 100
rd73 | 7 | 127 3 141 -0 0 100 | 120 4 100
risc 81 28| 31 72 0 3 100 2 3 100
root | 8 | 57| 5 ™ 0 0 100 28 12 100
sqn 7] 38] 3 52 0 0 100 |- 27 0 100
sqr6 | 6 | 50 | 11 70 0) 100 24 2 100
vg2 [25[110| 8 165 0 0 100 66 12 100
wim | 4 9 7 21 0 1 100 1 1 100
xldn |27 |110| 6 | 167 0 1 100:| 92 100
x6dn |38 81| & 159 0- 0 100 25 21 100
x9dn \ 271 120{ 7 178 0 2 100 102 21 100
z4 715 | 4 54 0 0 100 51 3 100
Z5xpl-| T | 65| 9 85 0 0 100 26 17 100
Z9sym 84 1 100 0 0 100 83 1 100

Table 5.4 Same Layer Bridges - Continued

60

5.4 Coverage by T'g4

PLA AND effect OR Effect
1 2 3 4 5 6
Total | cov (%) |cov.(%) | cov.(%) | cov.(%)
SLBY (Tesa-sip | Tsa |Tcsa-sis| Tsa
| adae | 383 100 100 100 100
adrd | 93 100 100 100 98.91
alul | 48 100 100 100 85.44
aluz | 93 100 100 100 96.75
alud | 91 100 100 100 96.13
apla | 54 100 _98.16 100 90.47
bcO | 229 100 100 100 95.12
chkn | 202 100 100 100 100
cold | 40 100 100 100 100
del | 21 100 100 . 100 100
de2 | 59 100 100 100 100
dist | 138 100 99.31, 100 99.99
dk17 | 46 100 100 100 89.00
dk27 | 32 100 100 100 81.59
dk48 | 65 100 100 100 84.91
exep | 224 100 100 100 85.66
f5lm | 97 100 0 100 100 98.08
gary | 145 100 100 100 97.87
in0 | 145. 100 100 100 97.87
inl | 148 100 100 100 os. |
in2 | 180 100 100 100 98.39
in3 | 168 100 98.78 100 89.77
ind | 293 100 99.62 100 04.77
in5 | 121 100 100 100 94.99
in6 | 140 100 97.88 100 94.84
in7 | 113 100 99.09 100 91.94
jbp | 248 100 99.55 100 93.15
misg | 201 100 97.53 100 94.04
mip4 | 148 100 100 100 100

Table 5.5 Same Layer Bridges - Tog 4_sr.g and Tg 4

61

-

5.4 ' Coverage by Tg 4

PLA AND effect OR Effect
1 2 3 4 5 6
Total cov.(%) | cov.(%) cov.(%) | cov.(%)
SLBF [Tocsa-siB| Tsa |Tosa-siB| Tsa
radd | 93 100 100 100 100
rckl | 100 100 100 100 100
rds3 | 41 100 {100 100 100
rd73 | 141 100 \100 100 100
o risc | 72 100 | 95.86 100 97.03
root | 75 100 100 100 100
sqn | 52 100 100 100 | 100
sqré | 170 100 100 100 100
vg2 | 165 100 100 100 , | 93.28
wim | 21 100 9553 | 100/ | 75.40
) xldn | 167 100 100 100 | 8897
x6dn | 159 100 98.80 100 93.66
x9dn | gL78 100 100 100 100
74 54 100 100 100 98.19
. Z5xpl | _85 100 100 100 100
Z9ym | 100 100 100 100 © 100

Table 5.5 Same bayer Bridges - Tog4—_sLg and Tg 4 - Continued

62

1

5 o

5.4~ Coverage by T's 4

OR Effect

PLA AND effect
1 213 4 5 6 7 8 9
IP [PR | OP | Total cov.(%) |cov.(%) cov.(%) | cov.(%)
CPS |Tesa-cps| Tsa |Tcsa-cps| Tsa
add6 | 121355 | 7 |[11005 100 83.17 99.16 95.09
adrd | 8 | 75 5 1575 100 83.37 99.94 93.27
alul [12] 197 8 608 99.83 88.94 100 98.35
{iluZ 10] 68 8 { 1904 99.90 78.52 99.94 98.11
alu3 110} 66 | 8 | 1848 99.89 81.54 99.94 92.48
apla § 10} 25 | 12 | 800 100 96.43 100 76.37
bcO | 21 {179 | 11 | 9487 99.99 93.26 99.20 91.31
chkn |29 (140 7 | 9100 99.99 72.81 99.86 93.92
cold | 14 | 14 1 406 100 95.45 100 100
del | 4 9 7 135 100 93.33 100 95.55
de2 | 8 {39] 7 897 99.89 90.96 100 90.08
dist | 8 |120] 5 | 2520 99.96 88.85 99.76 93.33
dk17 |10] 18 | 11 | 558 100 100 100 74.37
dk27| 8 | 10 9 250 99,20 95.24 100 78.79
dk48 1 15| 21 | 17 | 987 99.90 97.62 99.89 77.71
exep | 28 {109 | 62 112862 99.99 88.19 100 49.22
f5Im| 8 | 76 8 | 1824 99.95 85.84 99.62 92.27
gary |15 (107 | 11 | 4387 100 86.58 99.59 84.91
in0 {15107 11 | 4387 100 86.90 99.41 84.70
inl |15 (104 | 17 | 4888 100 86.20 100 85.42
in2 {191135] 10 | 6480 99.99 83.63 99.99 87.48
ind 1341 74) 20 7178 99.93 83.74 99,91 78.19
ind {32212} 20 {17808 99.98 69.50 100 83.09
inb (24] 62 | 14 | 3844 100 78.71 100 88.47
in6 |33 54 | 23 | 4806 100 83.21 99.98 84.71
in7 (26 54 { 10 | 3348 99.79 82.48 99.77 94.35
ibp 136|122 57 |15738 | 99.98 89.66 99.97 76.51
misg | 56 | 69 | 23 | 9315 99.94 75.31 99.97 98.35
mlp4| 8 | 127 8 | 3048) 100 94.27 99.96 89.73

Table 5.6 Cross-Point Shorts

63

5.4 Coverage by Ts A

PLA

AND effect OR Effect
1 2 3 4 5 6 7 8 9
IP | PR|OP |Total | cov.(%) | cov.(%) cov.(%) { cov.(%)

CPS |Tcsa-cps | Tsa |[Tosa-crs| Tsa

radd | 8 | 75 5 | 1575 100 85.35 99.54 93.53
rckl |32 32 7 | 2272 99.86 98.47 100 94.46
rd53 | 5 | 31 3 403 100 90.92 100 91.06
rd73 | 7 1127 3 | 2159 100 86.64 100 95.79
risc 8 | 28 | 31 | 1316 99.77 94.72 990.84 44.31
root { 8 | 57 1197 100 85.90 99.90 90.14
sqn 7 | 38 3 646 100 82.64 100 95.97
sqr6 | 6 | 50 | 11 | 1150 99.91 94.95 100 86.65
vg2 |25]110| 8 | 6380 100 71.45 100 96.55
wim | 4 9 7 135 99.27 85.66 08.39 91.11
x1dn [271110] 6 | 6600 100 72.44 100 96.68
x6dn |38 | 81 5 | 6561 99.94 63.03 100 98.70
x9dn |27 |120] 7 | 7320 100 '74.56 100 94.40
z4 713 4 702 100 77.68 100 89.74
ZSXpl 7 {65 9 | 1495 99.93 90.06 100 90.16

Z9sym | 9 | 84 1 | 1596 100 68.23 100 100

Table 5.8 Cross-Point Shorts — Continued

Chapter 6 : - . Conclusion

This thesis has introduced the Conditional Stuck-At fault model which can
model stuck-at, cross-point, and bridging faults. The new model allows deterministic
test pattern generation for all these typgs of faulté, using classical test pattern generation
and simulation tools, after minor changes. For the case of embedded PLA’s, this allows
the use of a unique fault model both for the larger circuit and for the PLA, and test for
the embedded PLA s‘tuck—at, cross-point and bridging faults, without requiring BIST,
additional controllability /observability, or an extended model of the PLA.

It has been proven that any additional cross-point fault can be modeled as
a CSA fault and that any missing cross-point fault can be modeled as a null condition
CSA fault. Under the assumption that bridging faults have a definite logic effect, either
AND or OR, it has been shown that any bridging fault is covered by two CSA faults,
any of them, if detectable, being sufficient for detecting the bridge. Therefore, the use of
the CSA fault model allows deterministic test pattern generation not only for stuck-at

faults or cross-point faults, but also for bridging faults.

The patterns which may occur in the personality matrices and their effect
on the CSA faults modeling bridges have been analyzed, identifying the bridges which
need’ to be mode!ed as completely specified CSA faults, the bridges which are modeled
as null condition CSA faults, and a large number of the undetectable bridges. The
algorithm derived from this analysis is linear in the number of cross-points. Based on
this analysis, an experimental lower bound on bridging fault coverage by any complete

single stuck-at test set can be determined for any PLA.

N,

Conclusion

The experimental results presented in chapter five show that the CSA fault
model performs as well as the cross-point fault model in terms of the coverage of cross-
point faults and much better in terms of the coverage of bridging faults. Coverage figures
for stuck-at, cross-point, and bridging faults are reported for 45 benclgnarking PLA’s. In

all cases it has been assumed that the PLA does not have any memory elements attached.

The problem of testing such PLA’s implementing finite state machines requires further

research.

L4

The model for bridging faults also requires further work. The assumption

of a well defined logic effect, used for modeling bridges, may not be true in all cases.
¢

To verify this assumption, extensive simulation of large PLA’s for various locations of

bridges is required. o,

The test pattern generation and especially the simulation tool have to be

o;;timized. The tool used for the experiments presented in chapter five was derived
with a2 minimum effort from an existing tool, to show the validity of the CSA fault
model, the main .purpose of this work being to present a new method for PLA test
pattern generation. Various heuristics can be used both in the test pattern generation

and in the simulation parts.)

- b tra @ g TN AL w0t T asar whuy WOWET L WG
" , e T, T S Ty T T R R T R

\ Tet PRI N AN

p N

REFERENCES

REFERENCES

(1] P.P. Gelsinger,“Design and Test of the 80386”,/EEE Design & Test of Computers,

Pp-42-50, xJune 1987. \

[2) H.H. Chao, S. Ong, M. Tsai, F.W. Shih, K.W. Lewis, J.Y.F. Tang, C.A. Trempel,
H.N. Yu, P.E. McCormick, C.V. Davis, A.L. Diamond, T.J. Medve and J.C.L. Hou,
“Designing the Micro/370” ,IEEE Design & Test of Computers, pp.32-40, June 1987.

[3] H. Fleisher and L.I. Maissel, “An Introduction to Array Logic®, IBM Journal Research
and Development, vol. 19, pp. 98-109, March 1975.

[4] T. Sasao, “Input Variable Assignment and Out'put Phase Optimization of PLA’s”,
IEEFE Transactions On Computers, vol. C-33, pp.879-894, October 1984.

~|8] C.W. Cha, “A Testing'Stra,tegy for PLAs”, IEEE Design Automation Conference, .

pp.326-330, 1978.

3

. { - , .
¥ l .
[6] J.E. Smith, “Detection of Faults in Programmable Logic Arrays”, IEEE Transactions

On Computers, vol. C-28, pp.845-853, November 1979.

‘ [7] D.L.Ostapko, S.J. Hong, “Fault Analysis and Fault Generation for Programmable Logic
Arrays”, IEEE Transactions On Computers, vol. C-28, pp.617-626, Sept. 1979. -

[8] P.Bose,J.A.Abraham, “Test Generation for Programmable Arrays”, Proceedings of the
19th Design Automation Conference, pp. 574—580, August 1982.

[9] R.S. Wei and A. Sangiovanni-Vincentelli, “PLATYPUS: A PLA Test Pattern Genera-
tion Tool”, Proceedings of the 22tk Design Automation Conference, pp. 197-203, June
1986.

[10] M. Robinson and J. Rajski, “PLANET: A Test Set Generation Program for PLAs”,
FEFEEFE Proceedings of the Pacific RIM Conf. on Communications,Computers, and Signal
Processing, pp. 292-295, June, 1987. l N

3

67

s
Tt

REFERENCES

[11] V.D.Agrawal and D.D.Johnson, “Logic Modeling of PLA Faults”, IEEE Proceedings
of the International Conference on Computer Design, pp. 86-88, Oct.1986.

-

[12] W.Maly, “Fault Models for the NMOS Programmable Logic Array”, IEEE Proceed-
ings of Custom Integrated Circuits Conference, pp.467-470, May 1986.

[13] V.K.Agarwal, “Multiple Fault Detection in Programmable Logic Arays”, IEEE Trans-
actions On Computers, vol.C-29, pp. 518-522, June 1980."

o

[14] H. Fujiwara and K. Kinoshita, “A Design of Programmable Logic Arrays with Uni-
versal Tests”, IEEE Transactions on Computers, vol. C-30, pp. 823-828, 1981.

. [15] S. Bozorgui-Nesbat and E.J. McCluskey, “Lower Overhead Design for Testability of -
PLA’s”, Proceedings of the IEEE International Test Conference, pp. 856-865, Novem-
ber, 1984.

o

[16] J. Rajski and. V.K. Agarwal, “Teating\ Properties and Applications of Inverter-Free
PLA’s”, Proceedings of the IEEE International Test Conference, pp. 500-507, Novem-
ber, 1985. -

[17) K.A. Hua, J-Y. Jou and J.A. Abraham, “Built-In Tests for VLSI Finite State Ma-
chines”, 14 International Symposium on Fault Tolerant Computing, pp. 292-297, 1984,

(18] W. Daehn and J. Mucha, .{A Hardware Approach to Self-Testing of Large Pro-
grammable Logic Arrays”, IEEE“Transactions on Computers, vol. C-30, pp. 829-833,
1981. |

[19] R. Treuer, A Ne;v Design of Built-In Self Testing Programmable Logic Arrqys with
‘Hi'gh Fault Coverage and Low éverhead, McGill University, Electrical Engineering De-
partment, Master Thesis, 1985.

p - ‘ :
[20] R.Treuer,H.Fujiwara,V .K.Agarwal, “Implementing a Built-In Self -Test PLA Design”,
IEEE Design and Test of Computers, pp.37-48, April 1985.) ' ,

[21] E.B. Eichelberger and T.W Williams, “A Logic Design Structure for LSI Logic”,
Proceedings of the 14" Design Automation Conference, pp. 462-468, June 1987,

- e

«

N 68

A REFERENCES

[22] P.S. Bottorf, R.E. France, N.H. Garges, E.J. Orosz, “Test Generation for Large Logic
Networks”, Proceedings of the 14”‘ Design Automation Conference, pp. 462-468, June

1987.
4

[23] J.P. Roth, “Diagnosis of Automata Failures: A.Calculus and a Method”, IBM Journal
Research and Developement vol. 10,pp- 278-291,July 1966 ‘

[24] P.Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational
Circuits” ,JEEE Transactions on Computers, Vol. C-30 No.3,pp 215-222, March 1981.

{25] H.Fuj{wara and S.Toida, “On the Acceleration of Test Generation Algorithms”, Dig.,
18th Annu. Int. Symp. Fault-Tolerant Compt\zting, Milan, Italy, pp. 98-105, June 1983.

[26] V.K. Agarwal and A.S.F. Fung, “Multiple Fault Testing of Large Circuits by Single
Fault Test Sets”, IEEE Transactions on Computers, Vol. C-30, pp. 855-865, Nov. 1981.

[27] J.L.A. Hughes and E.J. McCluskey, ““An Analysis of the Multiple Fault Detection
Capabilities of Single Stuck-At Fault Test Sets”, Proceedings of the IEEE International
Test Conference, pp. 52-58, Oct. 1984. o

[28] J. Abraham and V.K. Agarv\;al, “Dig\ita],‘Systems' Test Generation”, chapter in
Fault Tolerant’ Computing: Principles and Recent Advances, edited by D.K. Pradhan,

Prentice-Hall, 1986.

|29] S.M. Reddy and D.S. Ha,“On the Design of Testable PLAs”, Proceedings of the 19th
Annual Conference on Information Sciences and Syste\ms, Johns Hopkins University,

pp. 80-88, March 1985,

© - [30] D.S. Ha, S.M. Reddy, “An Experiment on the Size of Fault Detection Tests for Testable

PLA's”, Proceedings of the International Corference on Computer-Aided Design, pp.
151-156, 1986.

a

[31] H. Fujiwara, “A New PLA Design for Universal Testability”, IEEE Transactions ‘on
Computers, vol. C-33, pp.745-750, 1984

69

REFERENCES

¢

[32] J. Khakbaz, “A Testable PLA Design with Low Overhead and High Fault Coverage”,
IEEE Transactions on Comguters, vol. C-33, pp. 743-745, 1984.

. &

(33] J. Saiik, B.Underwood, J.Kuban an'd M.R. Mercer,An Automatic Test Pattern Gen-
eration Algorithm for PLAs, IEEE Proceedings of the ICCAD, pp.152-155, 1986

!

i
[34] J.P. Shen,W.Maly, and F.J.Ferguson, “Inductive Fault Analysis of MOS Integrated
Circuits” ,JEEE Design & Test of Computers on Manufacturing Testing, pp. 13-26,
December 1985.

L]

[35] W. Maly, “Optimal Order of the VLSI IC Testing Sequence”, Proceedings of the 23th
Design Automation Conference, pp. 560-566, 1986. T

[36] Private communications with D.D. Johnson.

[37] 8. Yajima and T. Aramaki, “Autonomously Testable Programmable Logic Arrays”,

11th International Symposium on Fault Tolerant Computing, pp. -41-43, 1981.

[38] M.H. Schulz, E. Trischler, and T. Sarfert, “Socrates : A Highly Efficient Automatic
Test Pattern Generation System”, Proceedings of the IEEE International Test Confer-
ence, pp. 1016-1026, September 1987. {

[39] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark Cir-
_cuits and a Target Translator in Fortran”, Proceedings of ISGAS, pp. 663-698, 1985.

IS

