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ABSTRACT

This thesis is a comprehensive and systematic examination of the wire-
grid modeling technique applied to radiating antennas mounted on or near conducting
bodies. The central objective is to seek general guidelines both for the grid model
formulation and for the computational process structure. The study is carried out in
terms of closely coordinated and garallel numerical and experimental analysis of eight
progressively more complicated antenna structures ranging from a simple monopole on a

finite ground plane to a complex aircraft structure ..

The computational and experimental results are compared and evaluated
in terms of far field patterns. The study establishes the relative influence and signifi-

cance of, and indicates guidelines for, the following essential features of the wire-grid

modeling technique :

@) the numerical formulation of the basic integral equation,
Gi) the computational modeling of the excitation source,
(ii)  the kind of basis function used for segment current approximation,

(iv) computational details regarding geometrical data accuracy and
exploitation of symmetry features,

) the use of the 'stationary lines of flow' concept,

(vi) the geometry of the wire-grid model,

(vii)  the numbers of grid wires used and their segmentation,

(viii) the cross-section geometry and dimensions of modeling wires, and

(ix) the continuing importance of experimental measurements.

The conclusions suggest the eventual possibility of formulating wire—grid modeling pro-
cedures from basic canonic forms and indicate the need to examine the influence of

additional features such as grid-wire junctions and wire element peripheral current dis-

tribution.
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CHAPTER |

INTRODUCTION |

1.1 Background : The Linear Antenna in Unbounded Space

This thesis considers the general problem of wire antennas mounted near
conducting surfaces. In order to introduce the subject, a review of thin wire antennas
in unbounded space is necessary. The fundamental concepts of linear antenna theory
form an essential foundation to this study, and the introduction therefore begins with a

survey of classical and numerical methods of linear antenna analysis.

1.1.1  Classical - Analytical Studies

The thin wire antenna in free space (|.1o ’ eo) has been studied as a
boundary-value problem for quite a long time. The basic problem is to determine the
current distribution along the antenna due to a known time-harmonic (e ot ) excita-
tion, and to evaluate the resultant electromagnetic field and the driving—point impedance.
When the antenna takes the usual thin and uniform cylindrical shape as shown in Figure
1.1 (@), the field equations, derived from Maxwell's equations, can be formulated
directly in terms of cylindrical coordinates. The required solutions, however, have
never been easy to obtain because a finite cylindrical surface does not belong fo any
set of regular coordinates for which the separation of variables technique is possible .
Consequently, the solutions to this antenna problem have been sought generally by in-

troducing some geometric approximation, or by seeking completely different methods.

In broad terms, as discussed more fully by Aharoni [1], and Schelkunoff [21], three
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Figure 1.1. Three Basic Mathematical Models of the Straight Thin Wire Antenna.

different mathematical methods have been used :

(1) the antenna is treated as a boundary-value problem ;

(2) the antenna is considered to be a transmission-line-like

waveguide, and

(B) the antenna is described as a circuit problem defined by

an integral equation.

As radio communications technology developed, engineering approximations were also
introduced to improve the design of broadcast towers and high frequency antennas. The

three mathematical methods assume that the antenna surface is a perfect conductor.

Aside from this common assumption, the approximations used in each method are radically



different. The exact boundary-value type of solution first obtained by Chu and

Stratton [3] was based on prolate spheroidal geometry shown in Figure 1.1 ®b). A
prolate spheroid coordinate system is one of the few for which boundary conditions can

be matched directly and separation of variables carried out (41 . Although in prac-
tice antennas were not (and are not) designed as spheroids, the complete oscillatory
solutions obtained were nevertheless found useful by providing results which could be
compared with other solutions. When the spheroid is elongated and the ratio h /a >>1,
it approximates a thin cylindrical antenna very closely, and thus the important antenna
parameters can be deduced. Starting with a different approach, Schelkunoff [5]

arrived at similar results. The antenna was approximated by a wide-angled conical
transmission line with a source between the apexes of the conical arms as in Figure 1.1 (c).
It was postulated that the arms of the transmission line act as a waveguide, launching

the radiated energy into space. From transmission-line-like equations for the electric
vector E (in place of voltage V) and the magnetic field vector H (in place of cur-
rent 1), field solutions were derived. The unknown coefficients were determined by
matching boundary conditions at different regions. If the cone angles 2 ¥ were taken
to be narrow, it was argued, the conical configuration approximated a cylindrical an-

tenna, and once again important antenna parameters were evaluated.

While the fundamental antenna problem was being studied mathematically,
moré practical attempts were being made to arrive af some useful engineering models
and approximations. The earliest successful studies were made by Carter [6] on short
monopoles, and Brown [7] on long antennas. The thin wire antenna was compared

to an open—ended transmission line, and some basic similarities noted. Despite struc~



tural differences, field solutions applicable to a coaxial transmission line were directly
extended to the center-fed wire antenna. This led to one of the most important approxi-
mations in antenna engineering - namely that the current distribution along the antenna
could be approximated by simple sinusoidal functions with constant phase. Actually

this result was proposed earlier by Pocklington [8] in a mathematical study of electri-
cal oscillations in a thin wire. |t is significant to note that the whole foundation of
linear antenna engineering has been largely based on the assumption of trigonometric-

function current distribution [9], [10], [11].

The main limitation of the classical "sinus'oidul" theory is that it predicts
fields inaccurately near the antenna surface and consequently cannot be relied upon for
the determination of input impedance. Various other methods have b.2n proposed there-
fore for determining the current distributicii analytically. A major starting point has
been the one—dimensional integral equation first formulated by Ho||éﬁ (127, which he
solved asymptotically. Most subsequent investigations for solving Hallen's integral
equation are described in King's definitive book [14] . More recent techniques along
similar lines are surveyed by Collin and Zucker [15], and King and Harrison [16] .

In addition to Schelkunoff's and Hallen's work, significant contributions have been made
also by Albert and Synge [17], whose rigorous integral equation was shown to be equi-
valent to Hallén's and has provided useful insight into the physical and mathematical

modeling for the excitation source of the wire antenna.

1.1.2  Recent Numerical Techniques for Thin Wire Antennas in Free Space

As in the case of many other electromagnetic problems, the wire antenna

problem has been analyzed by recently developed computational techniques. Hallen's



integral equation, though difficult to solve analytically, has been easily discretized
by Mei [18]. The collocation technique which he used was later improved by Yeh
and Mei [19], and the procedure has been extended to thin wire antennas of arbitrary
shape. The moment method exploited by Harrington [201, [21] in simplifying the
study of many electromagnetic problems has also been applied to the thin wire antenna.
A more recent attempt has been made by Popovid¢ [ 22 ] to solve Hallen's equation
using polynomial approximations. Significant numerical contributions have also been

made by Harrington and Mautz [23], and Thiele [24].

1.2 Wire Antennas Near Conducting Surfaces : A Survey of Theoretical

and Experimental Studies

For the purpose of this thesis, a conducting surface may be a disk, a
cylinder, a plane sheet, any curved surface, or any combination cmdA intersection of
such surfaces. The surface may be closed or open ; it can be partially or totally formed
by a wire-grid, or meshed structure, but it must have finite electrical dimensions. By
a wire antenna is meant a monopole or dipole fed against a conducting surface or any
straight wire antenna placed near a conducting surface. (The terms “electric dipole (s), "

"dipole (s)" or monopole are used frequently in the text instead of the term "wire an-

tenna (5)").

If the problem of the isolated wire antenna in unbounded space is quite

difficult, the problem of the wire antenna mounted on or near a conducting surface is
considerably more formidable. The fundamental questions are still the same as in the

case of the simple isolated antenna : "How to determine the impressed or induced
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current distribution on the complex antenna structure, and thence how to find the re-
sulting fields and driving-point impeddnce ?" The basic departure from the simple
antenna situation is the presence of impressed or induced currents on the neighbouring

conducting surfaces which will most likely modify the radiation pattern of the isolated

antenna.

The simplest wire antenna - conducting surface system which has received
considerable atfention consists of a monopole on a conducting disk. One prominent
contribution to this problem is that by Leitner and Spence [25] who calculated the
radiation pattern of a quarter-wave monopole above a disk by formulating the scalar
wave equation in spheroidal coordinates. The current distribution on the disk was com=-
puted and the radiation pattern obtained for various disk radii . Another important
solution was made by Storer [26] who applied variational methods to an electric field
integral equation. His method removed the restrictions on the length of the monopole,
but its range of validity is limited to angles above and beyond the plane of the disk.

In addition to the above radiation pattern studies, extensive experimental and theore-
tical investigations concerning the impedance characteristics of the monopole antenna
on a disk have been made by Meir and Summers [27], Storer [28], and Bekefi [29],
to name a few. The next complex structure is probably the corner reflector antenna which
was first studied by Kraus [30], and later more extensively by Moulin [31] using the
image theory technique. The same problem has been treated by Wait [32] by means

of potential equation formulations. Still another study of the corner reflector has been
made by Ohba [33] who obtai .ed radiation patterns for finite reflectors by applying the

geometrical theory of diffraction. Proyressing to other shapes, the case of an electric



dipole antenna mounted on or near a sphere has been studied by Pappas and King [34],
and Harrington [35]. The general problem of wire antennas near cylinders was first
investigated by Carter [36] using diffraction theory and the reciprocity principle.
Sinclair [37] later extended the same method to dipole and loop antennas mounted
near cylinders of elliptic cross.section. Lucke [38] also obtained similar results for
electric dipoles near cylinders of circular and elliptic cross sections using a Green's
function method. A further simplification of Carter's method has been attempted by
Knight [39] . Wait's treatise [40], which is mainly devoted to studies of radiation
from conducting surfaces excited by slots, also describes the corner reflector, axial

dipoles near conducting cylinders, and radial dipoles near cylindrical surfaces.

For most radiating structures consisting of wire antennas and conducting
surfaces, especially those with complex or irregular shapes, radiation patterns have
been determined in practice by experimental measurements on actual systems or scaled
models. One busic reference for the modeling technique is the work of Sinclair and
others [41] who also formulated the theory for scale model measurements [42] . Direct
determination of current distribution on aircraft frames has been made by Granger and
Morita [43], but in practice such measurements are far more difficult to perform than
the direct determination of radiation patterns. The scale model technique has been
applied to antennas mounted on ship structures by Wong and Barnes [44], and there

have been similar numerous measurements of radiation patterns made for aircraft and

helicopters [45] .



1.3 Computational Techniques for Wire Antennas near Conducting Surfaces

One inherent problem in the scaled-model measurement technique has
always been the excessive time and cost involved in the design and construction of
equipment and the antenna models. Recent advances in numerical and computational
techniques show a definite promise for overcoming this difficulty. Research in the
computational methods is currently in three or four areas. Balanis [46] has con-
sidered the problem of a dipole near a relatively large cylinder of circular or rectan-
gular cross=section. His method resolves the problem into two components - in the
first part, rigorous solutions for a radial current element near an infinite ground plane
are applied, and in the second part, diffraction contributions from the edges of the
large but finite cylinder are added. The method essentially follows well-known
diffraction techniques. More exact numerical techniques have, however, been applied
only to surfaces with electrical dimensions of the order of a wavelenéfh and half (or

smaller). Two equivalent but different techniques have been used.

One method divides the conducting surface into a discrete number of small
surface current elements. The second method involves the modeling of the complete
antenna structure by an equivalent grid of thin wires. Both techniques follow the same
numerical and computing procedures. Integral equations are formulated in which the
unknowns are either surface currents in the case of the surface element method, or line
currents in the wire-grid modeling method. Using point-matching techniques, the in-
tegral equations are transformed into a system of algebraic equations which are solved
by standard matrix methods. The surface element method has been formalized into a

magnetic field integral equation by Poggio and Miller [47] . A variation of the same



method known as the surface distribution technique, has been applied by Oshiro and
Metzner [48] to scattering problems. Tesche and Neurether [49] have used mag-
netic field and electric field integral equations with Green's functions to determine

the current distribution and radiation patterns of one or two monopole antennas mounted
on a conducting sphere. In a more complete form, the surface element technique has
been used by Goldhirsh and others [50] to obtain the radiation pattern of a short radial
electric dipole near a finite conducting cylinder. The wire-modeling technique, which
appears to be more efficient both from the modeling and computational points of view,
was first developed by Richmond [51] for the study of scattering by conducting surfaces.
This can be considered as the dual of the surface modeling technique in that the inte-
gral equation defines an electric field. The technique has been successfully applied

by Miller and others [52] to the analysis of helicopter antennas, and by Thiele and

others [53] to a monopole mounted on the base of a cone.

The basic approach of Miller and his co-workers has been to solve a
scattering problem, and then to deduce radiation patterns by using the induced cusrent
method . Thiele and others assumed a current distribution on the monopole, and then

proceeded to determine the unknown currents on the surface of the cone.

Besides the above two equivalent methods, there have been attempts made
to combine classical and computational techniques. Bolle and Morganstern[54] have
studied the radiation pattern of a monopole on a sphere by applying Schelkunoff's method

for conical antennas. A more extensive study of a monopole mounted on a sphere or a

cylinder has been made by Tai [55], who employed image theory and transform techniques.
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1.4 The Present Work

Despite the progress made in computational techniques to reduce complex
antenna structures to surface elements or wire grids, previous work has been usually
directed to isolated problems. With the exception of the wire-grid method which is
beginning to show practical application, the other methods (e.g. Tesche and Neurether,
Bolle and Morganstern, Tai) emphasize mainly the mathematical and numerical aspects
of the techniques. The use of the wire-grid method by other investigators for scatter-
ing by conducting bodies has laid a foundation for its application to energized radiating
arbitrarily shaped conducting bodies. However, at this time the principal gaps in the
technique are : (a) the lack of systematic procedures for establishing the wire-grid
models of complex structures, and (b) the lack of comprehensive methods for the seg-
mentation of the wire-grid mode! and the subsequent discretization details necessary
for practical computation. A major long-range goal of research in i’his area therefore
should be an attempt to formulate definitive methods for wire-grid modeling - methods
which might be described as canonic forms of modeling and computation. A basic ob-
jective of this present thesis therefore is to undertake a series of systematic coordinated
studies of antenna systems to seek some indication how such canonic forms might be
established in the future. To substantiate the accuracy of computed patterns, and
hence to provide an independent validation of the modeling procedures, there also

exists a need to obtain experimental results.

The thesis is thus aimed at determining radiation patterns by applying the
wire—-grid method of analysis to a number of finite antenna structures, and thereby

prepare a foundation for the general goal mentioned above. The specific objectives

of the study are as follows :
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() To develop a more systematic method for arriving at

a wire—-grid model for a given antenna configuration.

(i) To apply the wire-grid technique to structures which to
date have not been considered or have only been examined

partially.

(ii) To complement most of the computed patterns by experi-
mental measurements. The experimental investigation is

an integral part of the study because

(@) it indicates the degree of equivalence of con-
tinuous conducting surfaces and their wire-grid

models,

() it provides an insight to significant parameters

that affect the accuracy of the computed patterns.

(iv) From a comparison of the computed and experimental patterns,
to draw conclusions regarding the general applicability, ac-
curacy, and limitations of the technique, and to seek a set of
criteria for the determination of the number and the distribu-

tion of wire elements needed for a given antenna structure.

In realizing the above objectives, and in testing the computer programs,
the computed patterns are also compared whenever possible with results based on other

techniques such as :
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(@) Classical analytical approximations.
®) Equivalent numerical techniques.
(c) Experimental measurements by other investigators.

The basic features of some patterns have also been compared with those available from

commercial data.

It should be pointed out that no claim is made about the originality of
either the numerical techniques used or the experimental procedures followed. How-

ever, the following claims are made :

() The wire—grid modeling technique is applied in a compre-
hensive and systematic way to a wide range of radiating

antenna systems.

(i) Unlike previous work, notably that of Miller [52] where
scattering techniques and induced-current method have been
used, or Thiele [53] where the source currents have been
assumed, the antenna structures in this study have been
treated as active radiating systems with the excitation vol-
tage specified and the resulting impressed current distribution
on the complete antenna system as the unknown. The ap-
proach has required a representation of the coaxially-fed
excitation point either by a finite-width gap with a uniform

electric field or a magnetic frill source sufficiently accurate
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for radiation pattern calculations. These source models
have been studied before in the treatment of balanced di-
pole antennas or ground-~based monopoles by King [14],
Harrington [20] , Albert and Synge [17], and Tai [55].
However, as far as it could be established, they have not

been used previously in the study of complex radiating

structure.

(i) An attempt has been made to establish the effect of the
thinness of the wire models on the accuracy of the patterns.
This step has been found to be important especially in apply -
ing the computation programs to antenna systems in which
wires of different radii or thin strips of different widths are

part of the structure.

(iv) Extensive effort has been made to substantiate the computed

patterns experimentally for most of the antenna configurations

investigated in the study.

The numerical-computational part of the thesis begins in Chapter Il where
the basic equations and numerical techniques are described. Starting with Pocklington's
integral equation, the field in'rercctic;'ms of neighbouring current segments are formulated.
The numerical analysis essentially involves the use of pulse basis functions and impulse

weighting functions. In transforming the equations into "Kirchhoff-like network equations, "
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a slight but significant departure is made from the basic methods formulated by

Harrington [20], Poggio and Miller [47], and Thiele [56]. Approximations

for radiation pattern computations are also established.

In Chapter 11, the wire—grid analysis method is described, and its appli-
cation to calculation of current distribution of specific antenna configurations is
developed. It is shown that the use of the technique is Aependenf to a large extent
on the type of source feeding, and the geometry of the radiating structure. The
method is applied in two steps. First, simple structures are considered, and these are
then followed by more complex radiating structures. The simple structures consist of
a monopole on a disk, a monopole on a sphere, a dipole mounted on the side of cylin-
drical towers (or masts) of different diameters, and a corner reflector antenna for
different corner angles. The most complicated structure approximates a monopole
mounted on the tail section of a helicopter. But before this structt;re is analyzed,
intermediate configurations are modeled . First a radial dipole mounted on the side
of a finite cylinder, next a dipole on the end of the cylinder, and finally a dipole on
the large end of a truncated cone are considered. The technique is finally applied
to determine the elliptically polarized radiation pattern of a monopole placed on a
helicopter tail section. The effect of a variable geometry is also investigated partly
by considering the effect of different positions of the helicopter rotor blades. The

appropriate segmentation schemes and the particular computational procedures followed

are discussed in some detail.

Chapter IV outlines a description of the experimental antenna models

used and the experimental procedure followed.
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A discussion of the computed and measured far-field radiation patterns
is given in Chapter V . Plots of radiation patterns for principal plane cuts and

polarization components are presented.

Finally, the significant results, conclusions and contributions are sum-
marized in Chapter VI. The main observation drawn from comparisons of computed
and measured patterns is that the wire-grid method of ana.lysis is an effective practical
and flexible technique, capable of wide application provided certain basic modeling
steps are followed in obtaining wire models of antenna structures. Guidelines for these

steps form an important contribution to this investigation.
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CHAPTER I

EQUATION FORMULATION, NUMERICAL TECHNIQUE,

AND RESPRESENTATION OF EXCITATION SOURCE

2.1 Introduction

The field of an isolated current element is first formulated in terms of its
current distribution. The current element is assumed to be a perfectly conducting
wire, and its radius and length are taken a.;, parameters. The method of equation
formulation is then extended to a finite number of neighbouring current elements. The
basic numericall technique for transforming the integral equations into a system of line~
ar equations which can be referred to as "Kirchhoff-like network equations” is then
outlined. The solution of these network equations yields the unknown current distri-
bution on the wire elements. Since the representation of the source is essential to the
setting up of the equations, an extensive consideration of excitation source models is

presented. Finally the radiation field equations, which are needed for pattern com-

putation, are derived.

. 2.2 Integral Equation Formulation

2.2.1 Fields of a Cylindrical Current Element

Consider the cylindrical element of finite length s andradius a << X\,
where A\ denotes wavelength. As shown in Figure 2.1, the element is oriented along
the z-oxis. A time-harmonic current | (z')exp (j wt) is assumed. The current at

any point along the element is considered to be uniform around its periphery .
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A

P(pt¢,2)

Figure 2.1. A Cylindrical Current Element of Length s and Radius a .

The electric field at an observation point P ( o ,©, z) near the current
element is sought, where 0, ¢, z are cylindrical coordinates. The time exponen-
tial will be hereafter omitted in the derivqﬁons, and the medium surrounding the current
element is assumed to be free space (po P eo) . Since the current | (2z') is taken to
be uniform around the element periphery, the fields will be independent of ¢ , and
hence the observation point can be taken in the y -z plane. The z - component of

the vector potential A and the scalar potential @ can be written, respectively, in the

form
s/2
—IJO r- ' ot '
A (o, n/2,2) =% [i@z)06(2,2)dz @.1
-s/2
and

s/2
& (o,7/22) = 7= [ a() G(z 4z @2.2)
0_5/2
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where 1 (z') has been defined above, and q (2') is the charge per unit length of

the element. The Green's function G (z, z') is given by

-|kR
G (z, 2 = I E ey @.3)
o
with
= [(z—z')2+ p2+ 02 - 2pa cosep ]]/2 2.4)

where | = /-1 and k= o ,\/po €, is the wave number for radian frequency w .
The coordinates of the source point on the surface of the current element are taken to
be (a,®' ,z'). Since the current element is assumed to be perfectly conducting,
then because of skin effect the current is concentrated on the surface of the cylinder.

Thus the element can be solid or a hollow cylinder provided the condition @ < < X

is satjsfied.

The electric field E° due to the current and charge on the element can

be obtained from the potentials by

—s
E

=-in-V<I> (2'5)

where the superscript s is used to distinguish this field from an impressed (or in-

cident) electric field E' . The vector and scalar potentials satisfy the condition
V'A+|upoe°¢=0 2.6)

The line current | (z') and the charge density q (z') also satisfy the continuity

relation
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) e a@) =0 @.7)

Thus with Equations (2.5), (2.6), and 2.7), it can be shown that

—_ H —_ 2

EP=- L [ v (v.- )+ K*K] @.8)
k

Because of the ¢ - symmetry, the vector E® will have radial and axial components

only, i.e.,
E' =7 E: +T7 E° @.9)

where Tz and Tp are unit vectors in the axial and radial directions. Thus from

Equations 2.1) , 2.8), and (2.9), the z - component of the electric field can be

written in the form

. s/2 2 .
Ezs=z_1r'—w_e°~r/2'(2l) [a—ga—i‘;——'z).,_kze(z,z')]dz' @.10)
=S

Similarly, the radial component becomes

s/2 2
| (2 28z =)

S T
Sese—" dz @.11)

N |
o 4dnue A
° -s5/2

E

Equations (2.10) and (2.11) give the complete field, and they are valid for regions
near and including the surface of the wire element. If in addition an impressed field
—=i

Ez is applied parallel to the axis of the element, and is also uniformly distributed

around its periphery, then the boundary condition
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E,+E_ =0 @2.12)

must be satisfied on the wire surface since it has been assumed to be perfectly conducting.

Re-writing (2.12) in the form

ES = - E, 2.13)

and substituting (2.13) in 2.12), the integral equation

s/2 2

A T 128z s Pe iz lde - -E,
4rwe 3z z
o -s/2

2.14)
is obtained. |If -E'i is known or given, then (2.14) is an equation for the current
dis’rribuﬁon‘ | (') . The equation is commonly referred to as Pocklington's integral
equation, and it has been used as the starting point in formulating equations for straight
wire antennas [14]. The Green's function G (z, z') can be infe'grc’red numerically,
but it is also frequently approximated by [16]

e-ikr
G(z,2") ® ———— (.15)

r

where
r = [(z-z')2+ p2+02]]/2 2.16)

With this approximation, the differentiations in (2.10) and 2.11) can be carried

out inside the integral signs. The resulting relations are

P 7 2 2 22 e 1k"
= - Jl(z')[2r (1 +jkr) - (o +02)(3+3ikr-kr]e——r-—-dz'
41rueo-5/2 5
2.17)
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and,
5/2 _-k
i . , . 2 2.e I*F
E° = - J' 1(z2) [(z-2') (3+3jkr-k'r ]———5-—dz'
dnoue r 2.18)
o -s/2

Equations (2.17) and (2.18) are the fundamental relations used in the wire—-grid

analysis method.

2.2.2  Field Equations for N Interacting Current Elements

The formulations given in (2.17) and (2.18) can be easily applied to

a system of N (= 2) arbitrarily oriented cylindrical current elements.  First consider

‘the two current elements shown in Figure 2.2a . Each element is specified by its

length s and s_, rddius a_ and a_, and centre coordinates (x_,y_,r2z. ).,
m n m n m’’m’ “m

and (x_ /Y, r Z.) . respectively, with respect to the origin O .

Q(*'Yn 1)

Figure 2.2 a. Two Arbitrarily Oriented Cylindrical Current Elements.
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Axial coordinates £ and 7 are defined in the direction of current flow in each

element, and the respective current distributions are

|m (v) - sm_/2 =v = sm/2

and
In(f) -Sn/zsfssn/z

for elements S and St respectively. Let the impressed field along the axis of

S be Eig . It is required to express the total axial electric field along the axis of
S The total field consists of two components : one part is the given impressed field
EiE , and the other component is the field due to the self-current b, (v ) plus the
field due to the current ln (v) on element S, - The total field, by (2.12), must
be zero on the surface of S This boundary condition can, however, be matched at

any point inside s and this will be done along the axis of S Thus at any point

inside Sm and along its axis, there exists the condition

By * Ep = 0 2.19)

where ElE is given, and

S S

B = (E ), * (Esn)m | | ' 2.20)

s . N _ s
In (2.20), (Em)m is the axial field due to the self-current 'm (v) , and (En)m
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is the field component* due to the current In (t) on segment S, The (Esm) 0
component can be deduced from (2.17) provided new coordinate axes are defined

with the ¢ -axis replacing the z - axis of Figure 2.1 . To evaluate (E: )m , a
coordinate transformation is required, and it should be noted that Richmond's main con-
tribution [51) in the development of the wire~grid technique probably lies in simpli~-

fying this coordinate transformation.

An approach which is partially different is presented below. The direction
of the current flow in each element has already been specified, but further information
about the angular orientation is also needed. Using Richmond's notation, each ele-
ment lies an angle o below a plane parallel to the x -y plane, and its projection
in the x -y plane makes an angle B with the x - axis. The angles are shown in

Figure 2.2 b, with the arrow indicating the direction of current flow.

[}

~Ja

1<

I 7/

y

x /

Figure 2.2 b. Direction of Current Flow in a Wire Element
Specified by Angles a and B .

*  Some additional explanation about the superscripts and subscripts is needed here.
The superscript " s " has been defined on page 19 . The internal subscript
denotes the source current, and the external subscript refers to the point of obser-

vation.
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Referring again to the two elements in Figure 2.2 a , it is seen that element S 7 G
is defined by its centre-coordinates (xm * Y zm) with respect to a chosen
reference system centred at 0, and orientation angles a and B - Similarly
current element S is defined by (sn P A X Y0 2 o pn) . To
simplify the derivation, it can be assumed that a =9 =a. The next step is to
define a new coordincte system (x', y', z',) centred at (xn A zn) ’

with the z' - axis coinciding with the z - axis, i.e. the axis of element s, - The

following unit vectors are also defined :
B : inthe (x,y, z) coordinate system.

T, : inthenew (x', y', z') system.

T in the direction of current flow in element S -
: in the direction of current flow in element s,
ip :  radial unit vector in the (x , y, z) system.

o' :  radial unit vector in the (x', y', z') system.

In terms of the orientation angles, it can be shown that

i, =1 + 1 s sin -1 _sina .21
|g i cosa  cos Bm 'y cos a Bm 2 m 2.27)
Similarly
- he < b - - .
= = s a_ sin - i_sina .22
h e i cosa cos B, * ly cos a_ B, 2 o (2.22)
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If the direction cosines ()\] r My Ul) ' ()\2 r By s v2) . and (}\3 r B3 u3)
are defined for each of the new x', y', z' axes with respect to the fixed reference

system of axes [57], then the new coordinates will be given by the following rela-

tions :
x' = AN X + Py + vz (2-23q)
y' = )\zx TRy Uy 2 (2.23b)
z' = Agx + Hay + Vyz (2.23c)
with )\] = | sin Bn ¢/ By = -cos Bn ;Y= o, (2.24q)
)\2 = - sin a cos Bn s My = - sin a sin B,s V3 = —cosa_ , (2.24b)
and )\3 = cos a  cos Bn s Mg = cosa sin [Sn P Vg = - sin a - (2.24¢)

e

Knowing the transformation coefficients, the coordinates of element Sy, can be re-
ferred to the new system of axes. A point Q is chosen on the axis of element Sy !
and its coordinates can be specifiedby Q (x ,y, z) or Q (x', y', z'). I
the distance from the origin of the new system (i.e. X0 Y zn) to the point Q

is defined by 7', it can be expressed either in the form

- =
rt o= - +
r b (x xn)

Y

(y-yn) + z(y-zn) (2.25q)

or r* =i, , +

T S S (2.25b)
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Then the cylindrical radial distance is given by

ot = [1T1% - 227172

(2.26)
Thus the radial unit vector To' is given by
o T he X /0t iyt /o @2-270)
or equivalently by,
'pl = (r' - lzl zl)/p (2'27b)

Once the unit vectors _i'e ’ Tn (or Tz') and To, are described in terms of the unit

vectors T;( , Ty ’ —iz , the field component (E;)m can be evaluated by
s - = s - - s
(E ). =i, ~ i, E, +1i, i, E, 2.28)
n’m € z' 2 £ o o'

. S - .
where, once again, (En) m 18 the field at S due to the curreni on S, The com~

ponents Ei, and E:, , are to be determined using (2.17) and (2.18), respectively.
m m

When thereare N > 2 neighbouring elements, the above procedure can
be repeated. This will be illustrated by considering the four elements shown in Figure

2.3. Consider the case where it is required to find the total field due to the four

current elements inside and along the axis of Sy - Then, with (2.20), the field at



27

T Q(x.y,z)
. 3 z

&,
" £(n4)
== ="
o) R4 $2
S A==
x 5
Figure 2.3. Four Arbitrarily Oriented Current Elements.
Q would be given by

3
s _ s s
By = (E5), + > (E) | 2.29)

n=1

where (Ef4 ) 4 will be the self-field, and (E:\ )4 represents the contribution from
each of the neighbouring elements, and is to be evaluated by (2.28). Thus for N
arbitrarily oriented current elements, all assumed to be perfectly conducting and thin
cylindrical wires, the field inside and along the axis of the mfh element con be ex-
pressed in the f;arm
- N-1 .
G- B, T, 0o

n=1

n#m
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It should be noted that the point Q (x , y , z) at which Es£ is to be
evaluated has not yet been specified. This will be done after the numerical method

for solving the approximate current values is outlined in the following section.

2.3 Numerical Technique

The numerical method used in this study is essentially the éeneralized
method of moments described by Harrington [20], [21] . However, the wire-grid
analysis method was formulated earlier by Richmond [51] without any recourse to the
moment method, and the "network equations” for the unknown current distribution
were established by Aharoni [1], Schelkunoff [2], and Schelkunoff and Friis [58],
long before high-speed digital computers became generally available. The numerical
technique, however, contributes a firm mathematical foundation for. the approximations

needed to transform the integral equations into a system of algebraic equations similar

to Kirchhoff's network equations.

2.3.1 Generalized Moment Method

Integro-differential or integral equations of the types of (2.5) or 2.10)

can be formulated in the form [20]
L B (z) = h(z) (2.31)

where L is defined as a linear integro~differential operator, B (z) is the unknown
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function or response, and h (z) is the known function or excitation. [n general,
B (z) and h (z) are complex functions. The first step in the moment method re-

quires an approximation of B (z) by a finite series of basis or expansion functions

such that
N
B(z) ~ ) b £ (2) . ' @.32)
n=1

The bn' s are undetermined coefficients, and the f (z)'s are independently defined
over the domain of L, i.e. the space of functions on which L is defined and per-
mitted to operate. The function h (z) is said to be in the range of L, i.e., the

space of all functions that L can generate by operatingon B (z) . The operator has

been defined to be linear, and therefore it satisfies the condition

L [akfk(z)+azfz(z)+.... + a fk‘(Z) ]=a.| Lf.l (z2)+....+q, f, @

k 'k
(2.33)
where Ay s Gy, en. a, are constant coefficients.
Thus if (2.32) is substituted into (2.31) , the resulting relation would be
N
> b Lf (z) ~ h(z) . 2.34)
h=1

where L, because of (2.33) , operafe;s over each basis function. The approximate

equality sign should be noted, because of the finite sum representation of B (z) as
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indicated by (2.32). It is required that a residual error ¢ (z) defined
by

_ N

e(z) = LB(2) - ) b Lf (2) 2.35)
n=1

converges to zero as the number of basis functions tends to infinity. In practice,
the summation in (2.32) is finite, and consequently the residual error will not be
zero [21]. In general, the fn 's can be defined as being non-zero over the entire
domain of L, and in such cases they are referred to as entire-domain basis functions.
However, in most applications, especially in wire antenna siudies, they are defined
in the domain of L , but exist only over parts or subsections of the domain. Hence

they are denoted sub-domain or piecewise bases.

The next important step in the moment method is to introduce a set of

weighting or testing functions Wm (z) , and to define an inner product [59]

<Wm (z) , Lf(z) > = <wm (z) , h(z) > 2.36a)

or in integral form,
Jw (@) (i@ dz = [ W @) h*()dz @2.36b)

where the asterisk denotes conjugation. Using (2.34) , Equation (2.36a) can be

put into the form

N
Z <wm,|_fn>b ~ <W_,h> 2.37)

n
n=1
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where the coefficients bn have been factored out by (2.33). Using network

equation notation (2.37) can be stated in matrix form
[zmn] [|nJ = [va (2.38)
where the "impedance" coefficient Zmn is given by

yA = <W , Lt >
mn m n

= j' W (z) [Lfn (z) 1* dz @2.39)

and the "voltage" V_ by

JW_(z) h* (2) dz 2.40)
The column “current” matrix [ 1 ) defined by

(11 = ( bn] @.41)
represents the unknown coefficients.

Two special cases of the moment method are :

)] Galerkin's method in which the weighting functions

Wm are chosen from the same class of basis functions,
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W_(z) = f_(2) | @.42)
and
(ii) The collocation or point-matching method in which
the weighting functions are delta - functions,
Wm (z) = 6(z - zm) (2.43)
which are applied at z = z - A distinction is usually made between collocation

and point-matching methods [47]. In the former case, triangular, sinusoidal and

polynomial functions can be employed, whereas in the latter only rectangular piece-

wise pulses are used as basis functions.

The choice of basis functions depends on the complexity of the problem

and the degree of accuracy required. The functions commonly used as mentioned above

in the analysis of wire antennas are the following three sub-domain approximations [56] :

Rectangular Pulses :
b for z in Az
fn = 2.44)

0 otherwise

Triangular Functions :

b (zn-i-l mz) 4 bn+'l (z-zn)

n
Az
n

f = for z in Azn (2.45)

0 otherwise
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Sinusoidal Interpolation Functions :

ol + bn sin k(z-zn) + e cosk(z-zn)*

f = for z in Azn (2.46)
0 otherwise
In Equations (2.44), (2.45) ond (2.46) , A z denotes the length of a current

element centred about z and it is equivalent to the symbol 5, introduced earlier

in the chapter.

When the moment method is applied to equation formulation of the type in
(2.14), L represents a combined integration—differentiation operation, B (z) is the
element current distribution 1 ) , and h () is the impressed field E'z along the

axis of each element. The approximations involved in the discretization process are

discussed in the next section.

2.3.2 Formulation of Network Equations

The network equations,a system of algebraic equations resulting from Pocklington's
integral equations, are to be solved numerically for the current distribution on the arbi-
trary set of thin conducting cylinders as discussed in Section 2.2.2. The accuracy of
the current values is directly related to the order of the basis functions. Higher order
functions, for example triangular or sinusoidal functions, have been shown to yield
better accuracy with faster convergence than the simple rectangular basis function f1i9el,

[60] . Unfortunately the determination of the unknown coefficients in (2.45) or

* A prime notation is used here to avoid confusion with bn coefficients elsewhere.



(2.46) is quite lengthy even for the simplest geometric shape — namely the straight
wire antenna.* Consequently, in many applications, the general practice is to use
pulse basis functions with impulse weighting functions. Such an approximate point-
matching method cannot be relied upon to give accurate near field or impedance
values. Nevertheless, it has proved to give reasonably accurate radiation patterns

if the condition s =< 0.1 )\ is satisfied by the length of each current element [ 56].

The wire elements discussed in Section 2.2.2 could be small sections of
one long straight or curved wire, or they could be sections of a number of closely
arranged wires. Provided the radius of each element << X\, and its length < 0.1 A,

then the current in the 5h th element can be approximated by

In @) = . @.47)

0 otherwise

Hence, ln can be taken outside the integral sign in (2.14) . Next the boundary

condition (2.19) must be matched at the centre point Q (xm 'Y

' zm) . Thus
if E:n is substituted for Eé , then with Esg obtained from (2.28), the point-matching
method would yield, with N neighbouring elements, the relations

N

' = -
) Z! 4 = -E 2.48q)
-1

or in matrix notation,

To illustrate the computational complexities involved when higher order basic functions

are used, additional details on the sinusoidal interpolation functions (see Equation (2.46))
are given in Appendix A.

O e L
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. e g
[zmn] [ln] = [ Em] (2.48b)

where

z = (T T E (T, " T Ep . 2-49)

It should be noted that Ez, and ED, are different * from Esz, and Eso, , and

m m
are defined by '

E. = E.. /|n @.50)

S
Egr = Ep. /|n (2.51)

The subscripts z:n , and p:n refer to the axial and radial components of the electric

field due to current element s at the z' and p' coordinates of Q(x_,y_ rZ)
n m m m’’m’ m

More explicitly,

with respect to the new coordinate system, centred at (xn ' Yot zn) .

E,. and E o ¢ SN be expressed , respectively, by

)

. 2 B
E' = - ' f[ BGZ(Z’”l 4 k2G(z' ,t)1dt
zZ 4 v a z—-z m

TWE _Sn/2 z m

@.52)

*  The symbols EZl and E o used here follow Richmond's notations [517 with

the exception that in his case the Ez' and Ep' electric field components

appear fo correspond to E;, and Eso,. used above in (2.50) and (2.51).
m “m
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and

13
: n/2 a2 G 2 1)
E, = - [t oy 14y 2.53)
P 4dawe -Sn/2 dz 3¢t z—zm,
° o=p_,

where p:n and z'm will be expressed below in terms of angles of orientation and centre
coordinates of the current elements. It is important to note that the integrations in both
2.52) and (2.53) are carried out with respect to the dummy variable t along the z'
(or m ) axis of element 5, If the approximate kernel of (2.15) is used, the inte-
gration in (2.53) can be evaluated analytically. For m # n, i.e. non-diagonal
terms of Z.mn s 2.52) has to be dciermined numerically, and it has been shown [56]
that either a fifth or ninth order Newton-Cotes integration scheme [61] would give good
results. The choice between the fifth or ninth order is made depending on whether the
distance between (xn r Y zn) and (xm Y

m zm) is greater or less than about

five times the radius of element S, - The self-impedance terms, i.e. the case when

m=n , can be approximated by analytical integrations of finite series expansions, as

described in Appendix C .

The Z'mn “impedance” parameters of (2.52) are direct measures of the
field interaction of elements S and s The following derivations will show how they
are related to the angles of orientation (am ' pm) and (an ’ [3") , and their separa-

tion distances. Using (2.21) and (2.22) gi\)es the dot product

£ . TT) = cos am cos ﬁm cos an cos [Sn + cos am sin Bm cos an sin Bn

2.54)

+ sin a  sin a
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To determine the product _fg - T_,, the unit vector Tp' has to be described more

From Equation (2.25a), the vector r' is given by

explicitly.
= _ T -
r ioxo ly Yon T 'z Zon (2.55)
where
X~ *m " %" Yon T Ym0’ fmn T *m T % 2.56)
The cylindrical coordinates z' and o', are given by
[ ] — . - -
z! = X . cos a cos Bn + Yo €05 @ sin Bn z , Sina (2.57)
and
o = [1T12 - 5 27172 2.58)
m m .

From (2.22) , (2.27b), (2.57) and (2.58), the unit vector Tp' is given by

Tp' = Tx (xmn - z'm cos o cos ﬁn)/p'm
+ i (y_. - 2' cosa sian)/o'm (2.59)

+ oz sin oa(n)/.pm

Therefore the dot product £ : TO' gives
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|€ * i o' = cosa cosBm (xmn -z cos @ €Os pn)/pm,
+ cosa sin Bm (Ymn - z'm cos a_ sin Bn)/'om' (2.60)
- - : -
sina (zmn + z'  sin an)/pm'

In summary the non-diagonal Z'mn parameters can be expressed in ferms of space co-

ordinates and angles of orientation of 5 and Sy ! and also in terms of the values of

Ez. and Ep' as defined by (2.52) and (2.53) in the form :

1 I | 1
Zmn = (Ezl szp./pm) (coscxm cos Bm cos @ cos Bn

+ cos a_ sin B_ cos a_sin B_+ sin a_ sin a )
m m n n m n

2.61)

4
E (% cosa cosB_ Ty

cos a  sin
(o} m Bm

mn

- H )
z o sin cxm)/ o'

This completes the formulation of the “network equations®, and the problem that now

remains is to determine how the [- E:n ] excitation matrix is to be filled.

2.4 Representation of the Source of Excitation

As mentioned in the introductory outline of this study, one major area which

has not been fully covered in previous wire-grid analysis applications is a computational
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representation of an actual excitation source located on or near a finite conducting
surface. In the following discussion an appraisal of source field representation for

wire antennas is given and then the numerical evaluation of the source fields is formu-

lated.

2.4.1 Physical and Mathematical Models of the Field Source for Wire Antennas

Very difficult and crucial questions that have been raised about the source
in cylindrical antenna studies can be re-stated as follows :
What is the source of radiation 2 Where exactly is it located ? How can it be
modeled mathematically 2  These problems have been considered by many antenna
engineers and applied mathematicians, notably by Hallen [12], King [14],
Schelkunoff [21, Infeld [62], Albert and Synge [17], and recently by Chen and
Keller [63], Kingand Wu [64], and‘ Otto [651, [66] . The basic field con-
siderations used for reference are usually the coaxial feed arrangement of Figure 2.4 (@)
_or the balanced dipole feed shown in Figure 2.4 (). An obvious observation is of
course that the source is really a dielectric gap across which a time harmonic excita=
tion voltage V exp (j wt) is maintained, V being the complex voltage amplitude,
_and w is radian frequency. The general location of the source is also easily identi-
fied. In the case of the coaxial feed, it is at-the base of the monopole, and in the

symmetrical dipole case it must be between the arms of the antenna.

“While higher modes may also exist [65], the principal excitation wave
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(@) Coaxially-Fed Monopole (b) Centre-Fed Di,ols=
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Figure 2.4. Basic Source Feeds.

in both types of gaps is @ TEM-mode. Thus the mathematical model for both an-
tennas * is usually the well-known delta-gap model (Figure 2.5) which is used in
evaluating current distribution, input impedance, and near and far fields.  The delta-
gap model, which assumes an infinitesimal gap of width 2 g .across which the voltage
V is maintained, has greatly influenced the theoretical analysis of linear antennas.

The representation was first introduced by Halleh to simplify the formulation of his in-

gral equation for the centre-fed dipole by imposing on the impressed field the condition

* |t is assumed that the conducting plane against which the monopole is fed, is in-
finitely large, and hence an image of the monopole is formed below the plane

as indicated in Figure 2.5 (a).
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Figure 2.5. Delta~-Gap Generator Models for (a) Base-Fed Monopole,

() Centre-Fed Dipole. (Note : Source Region Expanded
to show details of Modeling) .

-V 8§ (2) _ 1zl < g

E, = @.62)

0 g <lzll

That is, the impressed electric field is zero on the surface of the perfectly conducting
antenna except across the infinitesimal gap at the feed point. It can be easily seen
that the simplifications made to arrive at this mathematical model are drastic, and yet

the idealized approximations have proved to be effective and extremely useful .

Despite its immense success, especially in the hands of King and his re-
search associates [14], [64], the delta-gap generator has been criticized on many

occasions, mainly on physical grounds. One persistent doubt has been raised about the

fact that a very narrow gap idealization, besides being artificial, leads to zero impedance
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or infinite admittance values. To clear this difficulty, a number of different assump-
tions and formulations have been tried. In Schelkunoff's work [2] , the source was
treated as a singularity enclosed within a spherical aperture of small radius as indicated
in Figure 1 (c) . This fitted very well with his conical theory of antennas, but the
associated mathematics was very complex. Perhaps the only working model which has

come fo be regarded as an alternative to the delta - gap mode!, especially in recent

computational applications, is the magnetic frill source shown in Figure 2.6 (@) . This
model was proposed by Albert and Synge [17] to represent the coaxial feed of Figure
2.4 (@). They also argued that in the case of the center - fed dipole, a more accurate

model would be the finite width gap of Figure 2.6 () .

1:

=

{)—
N

Frill Finite -Width
8 .E./ Gap

(@) Magnetic Frill Source ) Finite -Width Con

Figure 2.6. Alternative Mathematical Models of Antenna Feeds.
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For a delta - gap source, they observed, with the electric field along
the surface of the antenna being almost everywhere zero, the existence of radiation
could not be explained. To avoid this difficulty, the inclusion of an actual gap of
finite width was therefore recommended.  Similar observc'ﬁons have been made by
infeld [62], and Chen and Keller [63] . In defining the approximate gap width,

Albert and Synge postulated the condition,

wavelength > > length of gap > > radius of antenna .

The requirement "length of gap > > radius of antenna ® is somewhat stringent , but
on the whole the finite - width gap and the frill model are nearer to physical situations
than the idealized delta - gap model. Mathematically, the frill excitation source is

a radial electric field given by [65]

v , a <o' <b
p'In ('—°)
g = ° 2.63)
o .
0 R o' > b

where V is the voltage amplitude, a and b are the inner and outer radii of the frill

as shown in Figure 2.7.



Figure 2.7. Details of the Frill Source.

Equivalently, from the relationship [35]

M = Exn 2.64)

where M is magnetic surface current density and 7 is a unit vector normal to the

plane of the frill, the source can be put in the form

\'4
- . ! b
__F ’ a < 0o <
M ping .
. (p' = . (2.65)
0 ’ o' > b

The field equations can be formulated using either (2.63), or (2.64) as the excita-

tion source.

Other recent investigations have tended to establish the equivalence of the
frill and delta - gop models [67], [68] . still the basic feature of the various models

remains essentially the same : the source of radiation in wire antennas is the large elec-
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tric field (or equivalently, magnetic surface current) that is excited in the gap ir-
respective of whether it is assumed to be a frill, or a circumferential gap of finite
width . On the surface of the perfectly conducting antenna, the same boundary con-
dmons are postulated, and in the far field, the same rudnahon relationships are assumed.
Consequently, the derived solutions give close agreement in predicting basic antenna

characteristics and patterns.

The above brief summary of the mathematical representation of the source
of elecfromagnéﬁc radiation fields in linear antennas is not intended to be exhaustive
and complete, nor is it intended to verify the different methods of highly involved mathe-
matical formulations and derivations. |t provides a firm perspective for the computational
source models used in this work. It will be seen in the next section that modified ver-
sions of the finite-width gap or frill model can represent the source adequafely for far

field pattern computations.

2.4.2 Computational Source Models

In seeking computational source models, the essential objective is to evaly-
ate numerically the source terms on the right hand side of (2.48b) or for an equivalent
form to be derived below. With reference to Figure 2.8, the problem can be stated in

two parts :

(@) Given a balanced dipole antenna mounted near an arbj-
trary conducting surface, how can the excitation field be

determined ?
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b) Given a coaxially-fed wire antenna mounted on an
arbitrary structure what source representation is ade-

quate for far field computations ?

In both types of feed-arrangements, the radiafing structures have
finite electrical dimensions, and consequently image theory methods cannot be applied
directly. Instead, the source models in Figure 2.8 are postulated. The model for
the balanced dipole seems obvious, and the only point to be stressed is that it is a gap
with finite width. On the other hand, the representations of the coaxial feed cannot
be explained simply. A possible justification for the frill model is that, intuitively,
it appears to be a nearer approximation to the actual source as in the case of an infinite
plane structure. To justify the axial gap model, one has to resort probably to Schel-
kunoff's contention that the source of TEM and TM waves in linear antennas is a
"spherical input boundary” of small radius concentrated around the feed point [2] .
This suggests that the radial electric field can be approximated by an equivalent axial
field within the radius of the "input boundary”. However, the only strong justifica-
tion for the finite width gap in place of the frill appears at this stage to depénd mainly
on its us;afulness. Within computational accuracy, it predicts the far field patterns
that would be obtained with a frill source model as demonstrated in Chapter {II where

current values computed with the two excitation representations are compared.

Having proposed the required models, attention can now be given to
the numerical procedures. The frill source will be considered first. If the magnetic
current density M in (2.64) is known, then the electrical vector potential F is

given by [35]
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z
Dipole ‘ 1
17 Antenna
2g YU—----z=0
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—-z=0
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- () Frill Source Model
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Feed Cable
() 2¢g ! _z=0
(i) Finite-Width Gap Model
Figure 2.2. Physical Feed Arrangements and their Source Models :

(@) Dipole mounted near a Conducfing Surface .

()  Monopole mounted on a Conducting Surface.
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v . ~ “ikrg
F = -2 f Me ds' .66)
4w Frill "o

Surface

where Fo with reference to Figure 2.7 is given by

s © 2+ o? s p? - 200p" cos (p-0') @.67)

The primes indicate the source coordinates, and the observation pointisat (p, o, z).
To simplify the derivations, it is assumed, without loss of generality, that the frill is
centred at the origin of the coordinate system in, Figure ‘2.3 . Since M has only
one component, M(p' , F also has an F(p comporlxenf, and from axial symmetry, F
will be independent of ¢ . Thus the observation point can be taken in the x - z

plane, and from (2.66) ,

b 211' -ikro

€
o -V e
F = — r osep'd' dp' .68

@ 47 ‘a o ln(b/o)( fo ) cose ' @.9)

The electric field E is related to F by [35]

E= D vxF 2.69)
o
and hence
E' = Tz E'z + Tp E; 2.70)

where
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io_ _ 1 d ' ‘
E, = o 55 (P Fp) 2.71)
and
i _ 1 3
Ep—e—o— =z (Fo) . 2.72)

E. = i“5 - E (2.73)

where Tg , as defined by (2.21) is a unit vector parallel to the direction of current
flow in element S ! and (2.71) and (2.72) are evaluated at the centre of s

It can be shown that the expression of F(p in (2.68) involves the determination of a

complete elliptical integral of the first kind [551, [56]. The integrations and dif-

ferentiations can readily be carried out numerically, and further details of derivations

~ and analytical approximations are outlined in Appendix B .

The corresponding formulations for the finite-width gap involve much less
computation. To begin with, the boundary conditions on the impressed field for the

source model of Figure 2.8 (a), can be stated in the form

-_Q\Lg_ , 1zl < g
i
£ = @.74)
0 ' lzl > g
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and for the axial-gap model of Figure 2.8 (b) by

- 2! , 0 <z < 2g
E'z= @.75)
o , Z > 2g

In each case, 2 g is the total gap width. The only difference between (2.62)
and (2.74) is that instead of an impulse function impressed over a delta-gap,

there is now a uniform field over the finite-width gap.

Suppose now that the excitation gap is surrounded by a number of cylin-
drical current elements. The gap can be considered as a typical current element over
which current is flowing, and at whose centre the boundary condition postulated by
2.12) is also to be satisfied. First, from (2.75) , provided the gap width 2g =< 0.1 ),

the relationship

i
-2g Ez over source element

Vv = 2.76)

0 all other elements

. . . . . th .
is obtained. To generalize this result, if the m  element of length s, s taken

and if (2.45q) is multiplied by =S then

N

< i

L\, Zmn n = Vm 2.77)
n=1

where



—

51

Zn = sy 20, 2.78)
z.mn has been defined previously, and
i _ i
v.oo= sm) E, - @.79)

If the total number of current elements including the source gap is N , and if the

excitation "element” is identified as the lth elemént, then (2.76) , (2.77) and
2.79) yieldthe N by N matrix *

(2.80)

~where

0
v ] = 1 1™ row @.81)
0

and the excitation voltage has been normalized to 1 volt. Equation (2.81) states

that the excitation voltage is zero at the centre of every element except the Ith ele-

ment across which a uniform field is impressed. This type of approximation was first

*  Only square coefficient matrices have been considered in this work.
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shown by Harrington [20] to yield good results for current distribution computations

on straight wire antennas * , **. However, as far as the author could determine,

this is the first time that the method has been extended to arbitrary three dimensional

structures.

4
Thus two approximate but alternative methods are available for determin-

ing the excitation fields, without which the element current distributions cannot be

determined. Most of the computations made in this study have been based on the finite~

width gap source model. Although programming and computational details have yet to

be outlined, it is easy to see that (2.81) is simpler to handle than (2.73) , because

the latter requires separate subprograms for integration and differentiation. However,

it appears that the frill representation is probably more accurate than the artificially in-

troduced gap with finite width [56] .

2.5 Radiation Fields

Once the current distribution on a given system of N neighbouring current

elements is known, the radiated far field can be evaluated by a simple superposition of

* %

Mei [18] bypassed the problem of source modeling, since he applied the collocation
method to Hallen's integral equation directly.  Popovid [22] also essentially fol~
lowed a similar procedure except that in his method the antenna current distribution is

approximated by 'entire~domain' polynomials.

One other noteworthy attempt has been made by Thiele [24] to model the excitation source

of a linear antenna by means of a current generator. However, this formulation suffers

from a basic disadvantage in that it cannot be used easily to determine input impedance .
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contributions from each element. Consider the element S (with s, = 0.1 )

shown in Figure 2.9.

P(r.0.9), P(x,Y,z)

.

[<

bt
:
Nﬁ,

Figure 2.9. Coordinate System for Radiation Field of Current Element S

The thin element is uniquely specified by the already defined parameters :
length S ! coordinates X0t Ym? Zm v and angles of orientation a and B, -

Let the constant current distribution be - Then the vector potential at the observa-

tion point is

Am = ig Am
o @.82)
= T Po Im sm e Ikro
£ 4 ¢ r!

o]

where the unit vector Tg is in the direction of current flow, and has been defined

by (2.21) , and



rn = l:(x-xm):2 + (y—‘ym)2 + (z—zm)2]]/2 2.83)

If the rectangular coordinates (x , y , z) are expressed in terms of the spherical

coordinates (r, ©, @), then

' _ 2 . . . 1/2
g ~ r[1 —r—(xmsm9cosgo+ymsm95m<p+zm cos 0)]

@.84)

& r - (xmsmg cosQ + y sin @ sinp + z cos ©) (2.85)

For the denominator of (2.82), following Schelkunoff's formulation [62],
the standard far field approximation is to sef r:) =~ r ; for the phase exponential ,
however, the more complete expression given in (2.85) is retained, because the phase
changes involved can be significantly large. Hence, the far field vector potential
takes the form

A =1,A

m € 'm

2.86)

Im s -ikr jk [xmsm9costp+ymsm95m<p+ z_ cos 0]

i, M e e
£7° 4ar

The electric field has been expressed in terms of the vector potential by

(2.8). Because of 1 /r2 dependence, the component - jw ( V(V - A )) /k2
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is mainly localized in the near field region, and it can therefore be neglected in the

far field region. Thus the radiation field is given by

T =~ -juA _ (2.87)

Em = ig Ee + i(DE(D . (2.88)
m m
where
Ee = g - ig (-iuAm) (2.89)
m
=7 -7 _ . .90
E, = T, " Ty (miwA)) @.%0)
m .
and TQ , Ttp are spherical unit vectors given by the transformations
i = |xcose cos ¢ + ly cos 8 sin @ - |zsm9 2.91)
and
I‘P = - sin¢o + iy cos © 2.92)

Thus the total radiated field due to N neighbouring current elements will have an

E o component of the form
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N .
E0 = ~jw 2 (cos © cos o cos a  cos Bm
=1

(2.93)
+ cos O sin @ cos a sin Bm + sin © sin am) Am
and an E(p component of the form
N
E(p = jow z (sin @ cosa cosB - cos¢ cosamsinﬁm) A (2.94)
n=1

In general Eg and E:p are not in phase ; i.e., the radiation field is elliptically

polarized.

It is important to emphasize an observation made earlier about the location
of the current elements. They could be small sections of an arbitrarily shaped thin wire,
or they could be just short wire elements distributed in some fashion over a three-
dimensional configuration, and as stated in the introductory chapter, the nature of their

distribution forms one of the basic problems of this study.

In summary, this chapter outlines the integral equation formulation and
numerical methods for transforming these equations into a system of network equations.
Physical and mathematical models of coaxially-fed sources have been discussed and the
general expressions for the radiation fields described. The maferi(.ll as a whole forms
a more complete basis for the wire-grid analysis method for radiating bodies with con-

tinuous surfaces, or with wire—-grid structures. It is claimed to be more complete because



a solution to the problem of excitation source representation has been proposed
without any recourse to such methods as image theory or the use of the specialized
delta~gap model. In the next chapter, the technique is applied to specific antenna

systems for which the wire-grid model process and computer programming details are

described.



CHAPTER 11

WIRE-GRID ANALYSIS OF WIRE ANTENNAS

NEAR CONDUCTING BODIES

3.1 Introduction

The task of this chapter is to apply the "network™ equation formulations
just presented to wire antennas mounted near finite conducting bodies which, as men-
tioned earlier, may be continuous surfaces or thin wire structures. The main emphasis
is laid, however, on continuous surfaces. In formulating the equation, it is assumed
that each element is uniquely specified by its dimension parameters and spacé coordi~
nates with respect to a fixed reference system. [t is also assumed that the current flow
direction in each wire element is pre -assigned. The problem therefore is to attempt re-
lating the current elements to the actual induced or impressed surface current distribution
on a given conducting body excited by a nearby wire antenna.  Specifically, the aim is
to replace the continuous surface by a thin wire structure, not arbitrarily, but by following
intuitive, heuristic but physically valid procedures. The resulting wire mode! segmented
into small elements then allows the derivation of specific "network” equations. The equa-
tions are then solved for the approximate current distribution on the continuous body which

is simulated by the wire model. The chapter is divided into four major topics, namely :

(D] Basic Wire-Grid Modeling and Analysis,

@i1) Programming Aspects of Current Distribution Computations,

@ii) Applicafﬁon to Simple Radiating Surfaces, and |

(iv) Application to a number of increasingly more complex thin wire
structures, commencing with a radial dipole on a cylinder and

progressing to a dipole on a helicopter tail section.

The surfaces studied in this work are assumed to be perfectly conducting.  Considerable
effort is made to justify the models used by resorting to physical considerations of source-
feed arrangement and the shape of each antenna structure.  One major objective of the

segmentation schemes in the case of the simple radiating structures is to improve the pro-
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gramming efficiency by exploiting the symmetry of the radiating body. Only the
current distributions are considered here and the resulting radiation patterns are dis-

cussed in Chapter V .

3.2 Basic Wire-Grid Modeling and Analysis of a Conducting Body

with @ Wire Antenna near its Vicinity

3.2.1 Problem Formulation

The use of wire-grids or meshes in place of metal plates or surfaces has been
known for quite a long time in antenna engineering design. In the case of the corner
reflector antenna, extended reflecting sheets that would be normally used are ;'eplcced
by parasitic conducting rods. Another standard design procedure is the replacement of
a conducting disk by a grid of radial wires for a 'ground plane' antenna. Similarly the
conducting ground planes of broadcast tower antennas are normally constructed from .
mesh of buried copper conductors [10] . Not only are these practices well-established,
but they also have good theoretical and experimental basis. For example, Maley and
King [70] have made a theoretical ~experimental study to support design criteria for ra-
dial wires. Kraus [30] and Moulin [31] have been able to derive design parameters
for the corner reflector antenna from theoretical-experimental investigations. In general,
grids or meshes have been found to act essénﬁally the same as the continuous metal sur-
faces which they replace, without significant alteration to the results provided that the
mesh gauge is small relative to the wavelength used. Thus the basic problem, as far as
this work is concerned is not whether wire grids can be substituted for conducting sur-
faces, but whether the wire—grid modeling method can be formalized to simple rules or
procedures. Such procedures would make the technique applicable to any arbitrary wire
antenna in the vicinity of any conducting body while making the wire grid model as simple
as possible in order to make it amenable to computational techniques. Therefore to formu-

late the problem more broadly, the following four questions are considered :

@ Given a continuous conducting surface with a wire antenna mounted

near its surface, how should its wire-grid model be established ?



®) For a given thin wire structure which may have been obtained
by modeling a continuous surface, or which may already be in
a grid form, how are the one-dirensional integral equation

formulations and the derived "network” equations applicd ?

H

(¢) How significant is the thinness of the wires in a given model ?

d)  Are there direct or indirect criteria for establishing whether

the wire-grid model is "correct” or not ?

It will be shown that the answer to question (@) hinges on an intuitive appraisal of the
physics of the particular antenna problem. The answer to question b) involves essen-
tially known techniques, but more emphasis is laid on how it can be related to the first
and third questions. The question of the thinness of wires used in grid modeling has not
been fully considered in recent computational works. Its influence is first qualitatively
established, and then later verified in Section 3.4 by examining computed current dis-
tributions for a simple structure. The final question implies one of the following three
possibilities : (i) knowing beforehand what the ‘correct' model should be, (ii) going
through a trial computational procedure to arrive at the final model, and (iii) working
from experimcntally measured radiation patterns for the continuous surface and / or ifs
wire-grid model. The third possibility has been found to be very important to this study,

and it will be examined later. Here it will be indicated that it is still difficult to formu-

late precise rules which would lead to a final 'correct' model. Still, it is possible to

set heuristic guidelines based on source location and antenna configuration.

A fifth question can also be raised. How are currents at the junctions in a
wire-grid model to be handled ? This problem is not considered in this investigation be-
cause of the greatly increased complexity which would be added to the computational
procedures. A possible approach to this problem however might be based on a method
proposed by Schelkunoff and Friis [581, which attempts to satisfy Kirchhoff's junction

law and assumes a continuous potential distribution.

The remainder of this thesis shows how the above questions can be approached,

and the results suggest the degree to which they can be answered at this stage of develop-

ment.
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3.2.2 Stationary Lines of Flow and Wire Grid Modeling

In Figure 3.1 are shown three general cases of antenna mountings and
conducting surfaces which are representative of the structures investigated in this
work. Figure 3.1 (a) illustrates an antenna near an arbitrarily shaped thick cylinder ;*
in Figure 3.1 (b) is a monopole centrally located on an essentially symmetrical shape ;
and Figure 3.1 (c) represents a radial dipole mounted on an arbitrarily shaped cylinder
in an unsymmetrical manner. In each case, the dotted lines suggest the directions of
flow for the induced (Figure 3.1 (@)) , or impressed surface currents. [f it is assumed
that the surface current at any point can change in value, (i.e. depending on the
strength of excitation) but not in the path along which it flows, then such lines may be

described as stationary lines of flow [1]1. This concept of stationary lines is central to

the wire—grid analysis method as applied in this study.

The important question is how to establish these stationary flow lines. Here
one might rely on a heuristic approach by resorting to the wave function type of solutions
that would be obtained by classical methods. For time harmonic fields, the usual formu-
lation of the partial differential equations derived from Maxwell's equations can be made

in terms of the Hertz potentials & which are written in the form [40], 711

S VAT @.1)

where ‘.Ti is the impressed current density.  Each vector component of (8.1) is then
treated as a scalar Helmholtz wave equation for which solutions, when permitted by the
surface geometry, are found by separation of variables. This is followed by derivation
of the electric field E and magnetic field H from the relations

E=02pe'1—r+V(V-"ir') (3.2)

and

H= jop Vx 3.3)

By a "thick cylinder” is meant here a circumference of the order of 0.1 xmw

wavelength at any sectional plane [67] .
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Antenna

Antenna

®)

Antenna

Figure 3.1. Radiating Antennas mounted near or on'Conducting Surfaces.
@  Antenna neor a Cylinder.
() Antcnna on a rounded surface with some degree of symmeiry .

(€)  Antenna on an arbitrary, largely unsymmetrical surfacs.
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If E and H are known just outside the conducting surfaces of Figure 3.1, then, in

principle, the surface current density J; can be determined by imposing the tangential

boundary conditions

n x E = 0 @3.4)
and .

n x H = J 8.5)

where T is a normal unit vector directed outwardly from the surface.* In practice, the
main difficulty is thet most conductor surface geometries, even if regular, are such that
the boundary condiilinc (3.4) and (3.5) cannot be matched directly to the possible se-
parable soi.iisns of scalar wave equations. Fortunately, the direction of js can be
deducud for many situations without undergoing the difficult formal solutions by examining
carefully the feed arrangement, the antenna structure, and the polarization of the impressed
or radiated fields. Going back to Figure 3.1 (@), the stationary lines are indicated in the
general direction of the dipole field polarization, whereas for Figure 3.1 (), the lines are
shown to be essentially radial. However, it is to be noted that in Figure 3.1 (c) crossed
stationary lines are postulated. It is well-known that cylindrical conductors with radial
dipoles near their surfaces give rise to elliptically polarized radiation patterns (40]. This
fact therefore suggests that the surface current density on the cylinder in Figure 3.1 (c)
must have different vectorial components, and hence the need to assign to this particular

configuration orthogonal stationary flow lines.

Despite the stated reasons for the chosen distribution of stationary lines of flow

in the above threc examples, it must be pointed out that these cannot possibly cover all

In determining experimentally the current distribution on aircraft structures,
Granger and Morita [43] measured the magnetic field H by mounting an
exploring loop near the conductor surface, and then by (3.5) , they were
able to obtain maps of current distribution. It should also be mentioned that
the data was interpreted qualitatively using results obtained from quasi- static

arguments which are somewhat similar to the concept of stationary lines of flow.



cases of wire antennas near conducting surfaces. In fact, it should be mentioned that
their choice is dictated by the types of specific structures which are to be discussed in
Sections 3.4 and 3.5 below. Nevertheless, the basic steps would remain essentially
the same, except that other problems might contain increasingly greater complexity .

The main observation, whether one uses mathematical analysis or depends on a heuristic
process, is that the orientation and distribution of the stationary lines of flow should

serve as the point of departure for wire-grid modeling of any antenna system.

3.2.3 Wire-Grid Modeling and Anolysis'

The method of wire-grid analysis as used in this work follows generally known
techniques. However, two important fundamental aspects are emphasized here for the
first time. One refers to the excitation source representation, which has already been
considered in the previous chapter. The second relates the location of the thin wires
directly to the distribution of stationary lines of flow on the conducting body, as was con-
cluded above. The thin wires, which mdy be straight or curved depending on whether
the stationary lines of flow are straight or curved, are then segmented into small elements
whose orientation is established frcn the lines of flow, and whose normalized coordinates
(i.e. with respect to wavelength) are defined with reference to a chosen system of axes.
The standard segmentation scheme for straight wires is simply to make equal lengths, but
in certain cases it may be convenient to vary the segment lengths depending on the location
of the wire members with respect to the feed region. Curved wires are first divided into
small arcs, and then the arcs are approximated by chords. For simple surfaces of revolu-
fion; the whole segmentation scheme can be handled by a subroutine. On the other hand,
for an arbitrary structure it may not be so easy to generate the segments, and it may there-
fore be required that coordinate data be supplied. This has fo be done especially for
arbitrary structures that are already in wire grid form. In the end, each wire element has
to be specified by the parameters introduced in Chapter 11, namely : its centre coordi-

nates, its length and radius, and its angle of orientction.

In the integral equation formulation, it was assumed that the element length

s was smaller than a wavelength, and its radius a was much smaller than a wavelength.
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The more specific conditions

a << A or ka <<1 3.6)

and

24 < s = 0.1 A 3.7)

are now stated. But it should be pointed out that the grid wires are not necessarily’
restricted to be of circular cross section. Possible examples are wires with elliptical
cross section or flat strips. King [14] has shown that if an arbitrary wire has a maxi-

mum cross—sectional dimension of 2 v, and length s satisfying the conditions

ku < < 1 : (3.8q)
and
20 < s = 0.1\ | (3.8b)

then it can be treated as a cylindrical wire of equivalent radius a_ and length s .

For the flat strip of Figure 3.2 (a) , the equivalent radius a, is given by

a, = W/4 | @3.9)

where W is the width of the strip.

20.=W/2
et ————

b

Figure 3.2. Equivalent Circular Wire of Radius a_
for a Flat Strip of Width W.
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In the experimental part of this study, both wires with circular cross sec-
tion and flat strips have been used in constructing wire-grid medels, and hence the
technique was applied to either type or a combination of both types of structures. It
well may be argued that a flat strip is the more meaningful wire element to use when
the modeling attempts to represent a surface situation. This argument, however, might
necessitate the re—examination of the assumption made at the very beginning that the
current distribution is uniform around the circumference of the wire element. This would

particularly affect the formulation of the kernel of the integral equation in (2.14) .

3.2.4 Significance of Wire Radius Parameter in Wire-Grid Modeliﬁg

The significance of the element length s has been emphasized in the deri-
vation of the network equations in Section 2.3.2, and also by condition (3.7). It has
been pointed out that because of computational difficulties, one is forced to consider
only pulse - type basis functions. This would yield current distributions that are accurate
enough for radiation pattern compuiutions, but perhaps not for near field or impedance
evaluaiions. The next question that arises is whether the wire thinness would also have
much influence on the computed current distributions, and hence on the radiation pat-
terns. In replacing a continuous surface by wire grids, one tends to assume that the wires,
which are put on the stationary lines of flow, must bé vanishingly thin. Certainly (3.6)
and (3.7) have to be satisfied for each wire element in a given model, for otherwise the
one—dimensional integral equations of 2.1) and (2.2) would not be valid [14], [72].
But in formulating, the electric field integral equations (2.17) and (2.18) and then in
deriving the system of algebraic equations (2.77) for the unknown current distributions,
it was stipulated that the tangential electric boundary condition was to be matched along
the axis of each element. |t was also assumed that the current would be uniform around
the circumference of each wire element. Thus the wire radius, or the equivalent wire
radius in the case of flat filaments or strips, from purely physical arguments, should be

expected to affect the results of the wire modeling.

Assuming that it does, one is then led to ask why or how. In the recent

discussions of numerical techniques in the literature, except in the case of the straight



67

wire antenna [73], the influence of the wire radius has not received detailed study.
However, its sigrﬁficance has been established experimentally and theoretically by
Moullin [31] for wire—grid models of some conducting surfaces. He showed that the
effectiveness of a grid of parasitic rods replacing metallic reflectors depended, in addi-
tion to the number of rods and their spacings, on critical values of the diameters of the
rods. With this background, the influence of the wire radius on the numerical evalua-
tion of (2.48b) and (2.77) was investigated. The impedance matrices [Z'mn] and
[Zmn ) are diagonally dominated by the self-impedance elements [18]. These terms
being functions of the wire radius parameter are strongly affected by the value of a

chosen, both in their real and imaginary parts. A strong dependence on a is thus to be

expected.

Looking ahead to the experimental part of this study, it should be stressed
that this awareness of the influence of the radius parameter was reached only after repeated
computations failed to match adequately well with measured patterns.  Current distribu-
tions computed for one of the simple grid models for different radius values will be examined
in Section 3.4. [t will be indicated there how the results have been interpreted for

specifying the wire radii of an arbitrary thin wire structure for current computations.

3.2.5 Accuracy of Modeling

The fourth important question is whether the wire-grid representation used in
a current (and pattern) computation is actually a ‘correct' model, and also whether the
number of elements obtained by segmentation is adequate. By a 'correct' mode! is meant
here that the distribution and number of wire segments have been chosen to give as accurate
results as possible.  Obviously the question is directly related to the three previous questions
in the problem formulation set. Since the ‘correct’ model cannot in general be known be-
forehand, it implies that either one has to proceed through an iterative process until conver-
gence in current values or preferably in radiation pattern is achieved, or else one has to
depend on experimental results for reference. While measured patterns are indeed the best
tests for accuracy, the problem is of course that they are not always readily obtainable.

Besides, the desired aim is to arrive at reasonably accurate patterns by wire grid analysis
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without resorting to scaled model or full scale measurements. However, from the com-
putational point of view, an iterative procedure would be unnecessarily expensive. It
is here that a fundamental set of “canonic " rules would be extremely useful. If such
rules were available, they could be applied both in the modeling and segmenting pro-

cedures. As yet unfortunately, it has not been possible to formulate such rules precisely .

In similar related studies, practical figures of merit have been derived to
serve as guidelines for determining the necessary grid wires and their spacing. In design-
ing wire—grid lenses, Tanner and Andreasen [74] have calculated values for the ratio of
square root of surface area to wavelength.More closely related to the problem at hand,
Miller and others [52] have evaluated, from extensive scattering studies the sizes of
wire grid openings which would adequately model radar cross sections of solid conducting
surfaces. In a recent appraisal, Miller and others [75] have concluded however, that
it is impossible to establish a complete set of guidelines for the modeling or segmentation
requirements of an arbitrary conducting body. While the results of the present study as
will be shown seem to suggest that there might be a set of "canonic” rules, still it .should
be stated that the fundamental approach has been largely intuitive and based essentially on
heuristic arguments. One general observation that appears to be evident for the particu-
lar radiating surfaces studied is to put as many segments as possible near the source area.
Althougl?,:c’:ppl ied to all the structures studied, it also appears that more segments might be

placed on the side facing the wire antenna than on the "shadow" area of the conducting

surface.

In seeking an accurate wire grid model, it should also be remembered that the
segmentation is to be made as simple as possible. If the desired 'correct’ model is more
refined, then a relatively complex segmentation subprogram has to be prepared. Thus
quite often a compromise has to be made between programming simplicity, and the need for
more accurate wire grid modeling requirements. In summary, such a compromise would

necessarily have to depend on simple heuristic approaches, depending on the antenna con-

figuration and on experience.
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3.3. Computation of Current Distributions : Basic Programming Aspects

3.3.1 Flow Chart of Current Computation Program

The organization of the basic program for the computation of current dis-
tribution on a given wire grid structure is shown in Figure 3.3. The program has been
adopted from Thiele's work [56] with some minor and major changes. Blocks with (*)
marks have been retained essentially in the same form as in Thiele's program. Blocks
with (* *) marks have either been modified to suit particular applications or have been
added and extended. Those blocks in double frame have been newly developed to handle
structures that have not been solved previously by wire modeling method. The dimension
list consists of both complex (impedance and current distributions) and real arrays.
Generally, the segmentation subprogram reads in space coordinates in length units (e.g.
centimeters) , and these are then normalized with respect to wavelength. For simple
geometries, the segmentations are carried inside the subprograms using a few data inputs,

e.g. number of segments, wire antenna lengths and wire diameters.

The choice of source model can be made using two IF statements ; one IF
leads to the evaluation of either the [Z'mn] of (2.48b) or the [Zmn] of 2.77) .
The other IF statement selects, for the source column, either the impressed voltages of
[V"i1 ]l in (2.80) or .fhe impressed electric fields at the points of matching. The latter
column, i.e. the E:n of (2.73), are computed from the magnetic frill source model. A
Gaussian elimination scheme which can handle systems of equations with complex coefficients
has been adopted from McCracken [76] . Because the impedance [Z'mn] or [zmn]

matrices are characterized by large self-impedance terms as mentioned above, the elimina-

tion scheme used pivots directly on the diagonal elements without any further search for

positioning [61] .

The excitation voltage in both source representations is set at one volt, and
the computed current output is in amperes per volt. Further details on the computational

structuring followed will emerge in the applications.

3.3.2 Vadlidity and Accuracy Test

It will be shown (Chapter V) that the soundness of the computed patterns

in this study has been established for most cases by comparison with measured or known
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patterns. It has already been pointed out that the significance of the wire radius para-
meter hgs been suggested by the experimental results . However, before being used in
this study, some of the basic programming routines had to be tested. The two outstand-
ing routines are the Gaussian elimination subprogram that is referred in Figure 3.3 and
the source modeling representations discussed earlier. The validity and accuracy of their
use was tested by computing current distributions on centre-fed dipole antennas by the
moment method using sinusoidal basis functions. Both source models (i.e. the finite~
width gap and the magnetic frill) have been attempted, and computed current values

have been found to agree with known resuifs.

As to the accuracy or rather the precision of computation, test runs have shown
that Single Precision (SP) computations are sufficient for the purposes of this study. Be-
sides the obvious saving in core memory storage, the gain in using Double Precision (DP)
was found to be marginal, and this was established in the early phases of the investigation.
Differences between SP and DP calculations appeared only in the sixth or seventh deci-
mal places. Consequently, practically all final computations except for one limited use

of DP in one segmentation subprogram, have been carried out in SP.

Up to this point, the foundations of the wire grid analysi; method have been
outlined. Equation formulations, and numerical techniques were covered in Chapter I1.
The first half of this chapter has been devoted to a closer examination of the wire grid
modeling procedure and general programming aspects. The remainder of this chapter ad-

dresses itself to an application of the techniques to specific structures in considerable detail .

3.4 Wire Grid Analysis of Antennas near Simple Conducting Surfaces

The lines of stationary flow for simple conducting surfaces can be easily estab-
lished, and hence their wire grid models determined using a physical and intuitive approach.
Four basic geometries are considered here : a monopole on a sphere, a monopole on a disk,
a dipole near a cylindrical tower or mast, and a dipole in a corner reflector. Because the
sphere and disk are the simplest shapes and also share common programming details, they

will be taken first together. The dipole near the cylinder is then considered next, and the

corner reflector last.
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3.4.1

Monopole on Sphere or on Plane Disk

Figure 3.4 (a) shows a monopole of height h mounted on a sphere. The

monopole current distribution is denoted by Iz (z') where z'= 0 corresponds to
z = R . The current I (©) on the sphere is assumed to flow on the meridian lines,

and thus the wire—grid model of Figure 3.4 (b) is obtained. For the case of a monopole

Figure 3.4. Wire-Grid Modeling of a Conducting Sphere.

. of height h mounted on a disk of finite radius Ry (Figure 3.5 (a)), the model is the

well-known grid of radial wires, shown in Figure 3.5 (b). In both cases the arrows indi-

cate the directions of current flow on the stationary lines.

Figure 3.5. Modeling of a Conducting Disk by Radial Wires.
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3.4.1 (@) Segmentation Scheme for the Disk Radial Wires

Although the sphere was modeled before the disk, it is easier to consider
the segmentation scheme for the latter structure first. As indicated in Figures 3.6 (a)
and 3.6 (b) the monopole, and one typical radial wire are segmented into short wire
elements. The segmcntation scheme proposed, at this sfoge; is heuristic and arbitrary

but conforms to conditions (3.6) and (3.7) . The source (shaded region) is also re-

Monopole
Segments

s 1 1]
I |

Source

Radial Wire Segments

1 ————— 7
S| Sz 53 SMR S| i S 53 SMR
(@) )

Figure 3.6.  Details of Segmentation for Monopole Mounted on a Conducting Disk.

@ Uniform Segmentation. () Linearly increasing Segmentation.

presented by one segment. In Figure 3.6 (a), the segments are such that the lengths

are equal, i.e.

ST = Sy, T . ... s (3.10)

S, =s. = A, s, -s, = A, ... (3.11q)
or

+ A, s =52+A, s4=s3+ a, . ... 3.11b)

where A is a small increment, and the segmentation length is said to be linearly increasing.
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This has been introduced to place as many shori segments as possible near the source region

where the current is stronger than near the disk edge region. If the total number of seg-

ments n per radial wire is known, and the first segment length s; are known, the increment

can be easily determined from the relation
2R 2s
d 1
Aee) - @ 3-12)

The monopole segments can be taken very small or relatively long. If one is interested

in improving the current values, segments lengths as small as 0.01 A would provide
reasonably accurate distribution. For far field pattern calculations, the monopole segments
can be safely taken as large as 0.05 A . Since the current at the end of the monopole
should go to zero, a half - segment is normally left near the top end [20] , but again for

. 1 in (3.12) can be

set equal to the length of a monopole segment or any other value can be chosen provided

the condition

far field approximations this is not a crucial point. The value of s

s, = 0.1 3.13)
is satisfied. The increment A can also be chosen judiciously, and if A= 0, then

Ry

SY = S = e ... = s = | (3.14)

n n
The dots in Figure 3.6 represent the centre points of the wire elements. The other radial

wires are segmented similarly, and this is followed by specifying the x, y, z coordinates

of the centre points, and their angular orientation.

3.4.1 b) Segmentation Scheme for Meridian Lines on Sphere

In the segmentation of curved wires there is, along with the "electrical"”
approximation problem, the additional problem of piecewise linear geometric approxima-

tion of a curve. Consider the arc AB and chord AB in Figure 3.7. The error difference

As between the arc and chord lengths is given by

. , 9
As = Rc e - 2Rc sm(—2—) | (3.15q)



75

Figure 3.7. Approximating an Arc by a Chord.

where R, is the radius of the circle AB C and © is the angle subtended by AB.
This can be approximated by

R ©°

A, m o, (6/2) <1 (3.15b)
2503
— % . (06/2) <1 3.15¢)

It is easy to see that provided ® =< x /3, the error will be less than 59% . Thus follow-
ing this example, the meridans in Figure 3.4 (b) are first divided into arcs, and then the
arcs are represented by chords as shown in Figure 3.8 (a) with constant segmentation, or in

Figure 3.8 (b) with linearly increasing segmentation. The determination of the centre co-

|
| |
| I
@) ®)
Figure 3.8. Segmentation of a Typical Semi-Circular Wire from the Sphere's
Wire-Grid Model :

(@) Unifrom Segmentation, () Linearly increasing Segmentation.



76

ordinates and the angular parameters is obviously somewhat complicated, and this is

especially true if linearly increasing segmentation is employed. If the one full meridian

Figure 3.9. Details of Segmentation for the Sphere Grids.

circle in Figure 3.9 is considered, it can be concluded that symmetric segments will have
identical a angles (i.e. with respect to the x -~y plane) but their B angles will be
different by = radians. It is also important to note that for the assumed flow of current
distribution, the o angles are all negative, since a is defined as shown in Figure 3.10(a)

with the limits indicated in Figure 3.10 (b).. These physical details of the segmentation

Current Line Parallcl
. I fo— Elements — i to X-Y Plane
a=-nj2 /
- ) A
_a=m/2

Figere 3.10.  Maximum and Minimum Ranges of the Current Direction Angle a .



procedure involve elementary operations in three ~-dimensional geometry, but it should
be mentioned that this was recognized only after the problem had been successfully

solved. For a more complete description of the gr'id model segmentation for the sphere,

reference may be made'to Appendix D . \

3.4.1 () Evaluation of the Impedance Matrix Elements

Not only are the above grid models obvious, but because of structural sym-—
metry, the current distribution at corresponding points on the meridians or radials must

be the same. This fact has been exploited in reducing the dimensions of the impedance

matrix arrays, and the essential steps are examined as follows.

Let
NM = number of segments on monopole,
MR = number of segments on meridian or radial lines,
L =  number of meridians or radial lines,

where it is assumed that L is even. [f the total number of current elements is denoted

by NWS , then
NWS = NM + L x MR (3.16)
Of these, however, rhe number of unique current elements is given by
- MW = NM + MR 3.17)

Obviously an impedance matrix which is MW x MW will be far less costly to operate
on than an impedance matrix which is NWS x NWS . Hence in evaluating the im-
pedance elements a reduced matrix is desirable and the next problem is to fill the reduced
matrix. The dimensions of the impedance matrix array are shown in Figure 3.11. where

all the lengths have been defined except for MKS and MLS , which are given by
MKS = L x MR/2 (3.18q;)

and

MLS MKS + MR (3.18b)
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2) AKX 13) (aY]

i t 7 ”
A7 7~ 2 Z

NWS

Com |

et NWS )‘l

Figure 3.11. Impedance Matrix Evaluation for Monopole on

Conducting Sphere or on. Disk.

To understand the different shaded regions, consider the impedance equations given by

@.77) with Zii and Ii replacing Zmn and I, v respectively. First, it can be seen

that
MW NWS
i .
zzii'i+zzii'i_vi’ 1 si s NM 3.19)
i=1 =NM+1
Bt NWS MW

"

Z.1. =1L Z..1.)., 1 =i
z | * (z 3 I)
i=NM+1 i=NM+1

NM ' (3.20)
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since the contributions from segments at a fixed distance from a point on the monopole

are the same. Thus the region (1) in Figure 3.11 represents the left-hand side of
(3.20). Continuing with additional MR rows, one would obtain

NM NWS
= i H
Zn o+ > Zgti = V; o NMa1Sios MW @.21)
j=1 i=NM+

The first summation in (3.21) is represented by region @) in Figure 3.11. Now the

second summation on the right hand side of (3.21) can be replaced by

NWS MKS MLS
zzii'i=2xzzii'i+ Zzii'i

=NM+1 =NM+ =EMKS+l ., NM#l s i s MW @.22)
‘ Region (3) Region (4)

NM#1 < | 'S MW

The multiplication by the factor 2 is based on symmetry considerations, but the second
sum on the right hand side determines the contributions from radial segments on the same
diameter or meridian segments lying on the same circle. The next step in the reduction

process requires identifying the symmetrically located segments. Such segments carry

equal currents such that

=N = ha= e , NM+l < k £ MW 3.23)

with ki = k+MR, k2 = k+2MR, . . . andsoon. Thus (3.22) can be rewritten

in the form

NWS MW
Yzats L ZietZa tZet ) e (3.24)
i=NM+1 k =NM+1 NM+l =i s MW

where regions (2) , (3) and (4) are now compressed into region (2). Hence using

(2.80) and (2.81) , the final reduced matrix equation to be solved takes the form
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Zig o e Z, Mw I 0

Zy1 Cee e Ty MW e 1= ] 7 (3.25)
LZMW’] e Z\ W MW | | w | i o_

where MI signifies the source excitation segment. The excitation column in (3.25) could
also be filled with impressed electric field values computed with a frill source, and then
each ith row in the impedance matrix of (3.25) would have to be divided by s; ¢ el

the length of the ith segment, as discussed earlier in Section 2.3.

Once the MW current values are determined, the corresponding symmetrical
elements are evaluated by (3.23), and therefore the approximate but complete current

distribution on the monopole and on either the disk or the sphére is known.

3.4.1 d) Significant Results from Current Computations for the Sphere Grid Models

The sphere was chosen in this study as a test model for the many basic assumptions
and approximations involved in the wire grid analysis method. Consequently, somewhat ex-
tensive computations were carried out, and these are summarized in Table 3.1. Five different
values of sphere radius (A /8, 3X/16, N/4, 5A/16, and 3X/8) were con-
sidered, and the number of meridians replacing the continuous surface was varied from 8 to
32, with the total number of current segments, including the monopole segments, ranging
from 125 to 825. The computed radiation patterns will be discussed later, and at this
point more attention will be paid to : (i) the influence of sphere radius and the number of
grids on the current distribution, and (ii) the equivalence of the excitation source models.
Except for one trial computation, the wire radius a for all the elements in the spherical grid

structure was determined from the well-known antenna parameter [14]
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TABLE 3.1

SUMMARY OF COMPUTATIONS WITH WIRE-GRID MODELS
OF CONDUCTING  SPHERE
(HEIGHT OF MONOPOLE SET AT 0.25)\)

SPHERE SEGMENTATION MAIN PURPOSE (S)
RADIUS OF
R's L MR NM MW NWS COMPUTATION (S)
1. \/8 16 16 25 41 281 A
2 A/4 16 16 25 41 281 A, B
3 \N/4 24 16 25 41 409 B
4 \/4 24 25 25 50 625 B, D
5 A/4 32 25 25 50 825 A, B, C, D
6 3n/16 32 25 25 50 825 D
7 5N/16 32 25 25 50 825 D
8 3N/8 32 25 25 50 825 D
9 AN/4 16 15 5 20 245 E

Key of symbols used in "Main Purpose(s).of Computation (s) "

A : Testing of validity and accuracy of wire grid model by comparison
with known results.

B : Computations made to arrive at an "optimum" grid model .

Study of source modeling : Finite-width gap model versus frill
current source.

D :  Pattern computations for comparison with measured patterns.

E Testing of coarse segmentation for pattern computation.
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a = 21n (2h/a) (3.26)

where h is the height of the monopole .* The value of a was chosen tobe 9.6, which
for h = N\/4, yields **

a = 0.00412 A (3.27)

The problem of determining the current distribution on the surface of a perfectly
conducting sphere has been studied in some detail by Pappas and King [34] . However,
in that work, the current on the monopole was assumed to be a sinusoidal distribu-
fion . Thus direct comparison cannot be made because in the results shown below, the real
and imaginary components of the monopole current are seen to be influenced by the radius of
the sphere. The plots shown in Figures 3.12 to 3.19 indicate the normalized computed
currents Iz(z') versus z' for the monopole, and Iy ®) versus © for a typical meridan
line on the surface of the sphere. The parameters are R, (radius of sphere) , and the seg-
mentation variables L.and MR. Comparing Figures 3.12 and 3.13, there appears to be
very little change introduced by the increase in sphere radius despite the fact that L is also
doubled for R, = 3 A/16 . InFigures 3.14 and 3.15, it can be seen that for a fixed
sphere radius of R.s = N/4 , there are significant variations in the real and imaginary com-
ponents, although the current magnitudes appear to remain essentially of the same shape .
For larger values of R, both real and imaginary components of ls ©) begin to exhibit oscil-

latory variations, as indicated in Figure 3.19.

The ‘equivalence of the finite-width gap model and the frill current source was
established for R .= A /4 with L=32 and MR =25. The computed current results are
compared as shown in Table 3.2 where it can be seen that an essentially fixed ratio .
exists between the two values. The discrepancy arises because the inner and outer radii of

the frill in Figure 2.7 have to be approximated from physical dimensions. Thus the ratio

b /a is very critical in that it scales down or up the impressed field by the factor 1 /In (b/a)

according to (2.63). Although this does not affect the far field pattern, it does change

the magnitude of the computed current values.

* A more concise definition of the antenna parameter is a = 2 In (total antenna

length / conductor radius).

#%  This value of a was also chosen by Tesche and Neurether [49] .
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3.4.1 ) Important Results from Computations with the Disk Radial Wires

Most of the sphere computations listed in Table 3.1 were also repeated
witha 0.166 A monopole mounted on a disk with Ry = 0.5\ . However, the seg-
mentation used was quite coarse because by the time the disk was successfully modeled
(including the source), enough experience had been accumulated for the wire grid
modeling procedure. During the course of the investigation, it was found that as long
as the two conditions in (3.6) and (3.7), were satisfied, the segmentation as fine as
used for the sphere was not necessary if far field patterns only were required. The disk
was modeled with L= 8, 12, 16 and 24 radials. For the monopole, the number of
segments was kept constant at NM = 3, and for each radial wire, MR=9 was also
kept constant. The important results obtained were : () the equivalence of the source
models was again established, and (i) the significance of the wire radius parameter,
as indicated in Tables 3.3 .(CI) and 3.3 (b), was shown. The current results in the
latter tables demonstrate that the wire radius is indeed a significant parameter, and the
obvious conclusion drawn is that its value should be chosen judiciously. More specifi-
cally, if one were to apply the wire grid analysis method to actual thin wire structures,
then the wire radius dimensions must be taken into ccnsideration as accurately as pos—
sible. This interpretation has influenced significantly the relative accuracy of computed

patterns in comparison with measured patterns for antenna structures studied in this work.
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TABLE 3.2.

EQUIVALENCE OF MAGNETIC FRILL AND FINITE-WIDTH GAP SOURCE MODELS 88
CURRENT DISTRIBUTION FOR 1/4A MONOPOLE MOUNTED ON SPHERE OF

RADIUS = 1/4 A. (APPROXIMATE CURRENT VALUES, I,IM MA/V/OLT)
FRILL SOURCE: 1= | +jlo FINITEGAP: I=l3 +{ 4 RATIOS

N* A 12 I3 i4 RYAL 14 /12

1 2.7240 | —4.8610 2.96%8 | -5.0295 1.0888 1.0340
2 2.6032 | -4.8808 2.8342 | -5.2883 1.1887 1.0835
3 "2.0.9056 | -4.900% 2.7171 -5.3285 .1.00088 1.0874
4 2.2950 | -4.8926 2.607% | -5.,3255 1.2887 1.0885
5 2.2982 | -4.8612 2.5020 | ~-5.,2935" 1.6887 1.0889
6 2.2030 | ~4.8084% 2.3985 | -5,2371 1.-887 1.0892
7 2.1084 | -4.7358 2.295% | ~5.1584% 1.0887 1.0892
B 2.0136 | —-4.6440 2.1922 | ~5.,0587 1,n387 1.0893
9 1.9178 | ~4.5338 2.0879 | ~%.92389 1,n887 1.0894
10 1.5.208 | ~4.4058 1.9824 | ~4,7995 1.n888 1,0804
11 1.7226 | ~4.2604 1.8755 | -4.6412 1.17888 1.0894
12 1.5228 | =4.0982 1.76569 | ~4.4646" 1,7888 1,0894
13 1,%216 ~3,9196 1.6560 —4.270} 1.0887 1.0894%
14 1.6188 | =3.7252 1.5447 ~4,0583 1.0887 1.0894
15 1.3146 | -3,5152 1.4312 -3,8297 1.0887 1.0895
16 1.2090 -3,2904% 1.3162 ~-3,5846 1.00887 1.0894
17 1,1018 ~3.0508 1.1996 | -3.3236 1.0888 1.0894
18 00"}934 "2.7968 ‘..0816 "3.0‘!69 11”888 1:089"
19 0.5838 ] -2.5286 0.9622 -2,7548 1.0887 1,0895
2G 0.7728 | -2.24662 0.8413 | -2.,4471 1.n886 1,0894
21 0.5602 ) -1,9492 0.7188 | -2.,1235 1,n888 1.0894
22 0.5458 | =1.6364 0.5943 | ~1,7828 1,889 1.0895
23 0.4290 | -1.3056 0.4670 | -1.,4225 1,5886 1,0895
24 0.%080 | ~0.9516 0.3352 | -1,0366 1.r:883 1.0893
25 0.,1782 -0.5592 0.1940 | ~0,6092 1,:887 1.0894
26 0.0900 ~-0.1718 0.0981 ~-0.1829 1.0900 1.06406
27 Q.0712 ~-0.1636 0.0775 | -0,1763 1,885 1.0776
28 0.2536 | -0.166% 0.0583 |~-0,1800 1.0877 1.0817
29 0.2316 | ~0.16866 0.0345 |-0.1826 1.0918 1.0830
a0 0.C064 )} -0.1670 0.0070 {-0.1810 1.?938 1.0838
31 ~0.0204 | ~0,15906 ~0.0222 |~0,1731 1,582 1.0846
32 ~0.0464 | -0,1458 ~-0.0504 -0,1582 1.:862 1.03850
a3 -0.02694 | -0,1256 ~0.0753 |-0,1363 1,0850 1.0852
24 -0.0876 | -0.1002 -0.0951 |-0.1087 1,0856 1.0848
a5 -0,nr998 1 -0. 0712 ~0.1083 |-0,0771L 1.0:852 1.0829
36 ~-0,1054 | -0. 0404 -0.1145 ~0,0437 1,:863 1.0817
a7 ~0.1048 | -0,0100 -0.1137 }|-0.0108 1,:849 1.0800
38 ~0.0984 0.,0178 ~-0.1l067 0.0194 1.5843 1,0899
39 ~0.0874 0.0412 -0.0948 0.0448 l.0847 1,0874
Ho ~0.3734 0.0590 -0.0797 0,064} 1.0858 1.0864
41 -0,0580 0.0704 -0.0630 0.0765 1.7.862 1.0866
42 -0,428 0.0750 ~0.0406% 0.,0816 1.:841 1.0380
43 -0.0:290 0.0736 -0.0314 0.0799 1.2828 1.0856
l'l. "on’!l..lb ()-0666 —000191 0-0723 "‘852 110;‘56
45 -0,1:092 0.0556 -~0.0099 0,0603 1.00761 1.0845
b6 -0.0038 0.0420 -0.0040 0.0457 1.6526 1.0881
477 -0.5008 0.0280 ~-0.0008 0.,0305 -

! Current Distribution on Monopole : N = 1 (source element at base of monopole) to
N = 25 (near top end of monopole). (See Figure 3.4 (a)) .

Current Distribution on a Typical Meridian : N =26 (near 6 = 0) to N=47 (© -180°%)
Note : the sphere was modeled by 32 meridians.




INFLUENCE OF WIRE RADIUS PARAMETER "o" ON COMPUTED CURRENT DISTRIBUTION FOR

TABLE 3.3,

0.166 A MONOPOLE MOUNTED ON RADIAL GROUND WIRES (RADIUS =0.5)).

=1+l

(@) MONOPOLE MOUNTED ON 12 RADIAL WIRES

2 = 0.00104 ) 2= 0.00182 X 0=0.00564\ | a=0.00728)
N " l" ll l." 'l I" " '“
] 7.2045 16.3462 3.32605 13,0106 1.2842 9.5309 1.2197 0,600
2 6.5990 12,5173 2.8210 9.7787 1.0896 6,0549 1.0374 6.1327
3 4.0)12 7.1978 1.7323 5.5891 0.6835 3.8606 0.65% 3.7943
4 0.6578 1.31%9 0.2797 1.0466 0.1068 0,7601 0.1014 n.7523
5 0.7396 l.19 0.3165 €.9248) 0.1187 0.6479 0.1120 0.h35%1
& 0.92938 1.1327 ¢.4021 0.6836 0.1492 0.5763 0.1400 $.5609
8 1.3788 1.0364 0.6058 0.,8246 0.2245 0.4511 042100 N.&7¢6
) 1.49606 "0.9355 0.6642 0.7599 0.2470 0.43%4 0.2310 0.4151
10 1.4578 0.7766 0.£530 0.6483 0.2453 | 0.30682 0.2257 0.3454%
14 1.2162 | 0.5602 | 0.5523 | 0.4845 | 0.2106 | 0.,2735 | 0.1976 | 0.2551
12 07474 0,259 0.,3454 0.2708 001351 | _0,1541_ | _0.1273_[_ 0.1461_
®) MONOPOLE MOUNTED ON 16 RADIAL WIRES
a=0.00104 ) 0.=0.00182.\ . ..a=0.0054x |  a=000728A __
N II h l" |l Ill |l lll ll lll
1 18.3890 | 21.8326 6,707 | 17,7710 1.6028 10,4565 1.3035 9.9321
2 15.2957 16,5441 5.4707 | 13,2511 1.3437 7.5337 1.1775 7.0911
3 9.1108 9.4224° 3.2950 | 7.6115 0.8364 46,2429 |- 0.7399 3.9941
4 1.2403 1.4031 0,4397 1.1372 0.1023 N.6421 0.0a681 0.5024
5 1.2070 1.1683 0.4419 0.2672 0.1096 0.5399 0.0956 0.5043
6 1.3507 1.0047 0.5178 0.8797 0.1364 0.4791 | 0.1199 0.44863
7 1.5743 0.8586 0.6292 0.8244 0.1738 0.4407 0.1535 0.60%0
E 1.7363 0.704>7 0.7376 0.7675 0.2107 0.,4065 0.1869 0.3755
9 1.5989 0.5332 0.8050 0.6807 0.2360 0.35638 0.2100 0.3349
10 1.6330 0.3533 ‘0.7956 0.5698 | . 0.2389 0.3052 0.2132 0.28n2
1 1.5263 0.184%6 0.6733 0.4142 0.2090 0.2276 0.1873 0.2033
12 0.5397 | 0.0555 | 0.4287 | 0.2248 | 0.1365 | 0,1281 | 0.1231 | 0.1177]
Note : (i) The above approximate current values are in milliamperes per volt.

N

(i) N =1 -3 correspond to current elements on monopol
= 4-12 correspond to current. elements on one ra

e, and

dial wire (in both Tables).
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3.4.2 Dipole Antenna Moﬁnfed on the Side of a Cylindrical Support

The next case that can be modeled readily is an isolated thick cylindrical
structure (e.g. a tower or mast) supporting a dipole antenna on its side with the di-
pole oriented parallel to the axis of the cylinder. Side and top views of the antenna

mounting are shown in Figure 3.20 with cylindrical coordinates z and ¢ .

z
/
_ Dipole
| Py / o " 7nfenna
=0
he |£_. __Z_ hd—'i -—‘- —_— e ——
lea— §
o 1
' (@) ®)

Figure 3.20. Dipole Mounted on the Side of a Cylindrical Conductor.
(@) Side View, ®) Top View.

The cylindrical support modifies the pattern of the dipole depending on its diameter D,
and the separation distance S . The height of the cylinder, hc , is not too critical
provided it is longer than the height of the dipole, hd . Because the thickness of the
cylinder is likely to be significant, i.e. (D = 0.1 \) , the induced surface current
distribution, with stationary lines of flow parallel to the cylinder axis, can no longer be
still, it is physicelly ap-

assumed to be uniformly distributed around its circumference.

parent that the cylinder may be replaced by a set of thin wires as shown in Figure 3.21.

The real problem then is how to choose a sufficient number of thin wires which
would simulate the continuous surface. If it is assumed that the induced surface current
density is an arbitrary function of ¢, but independent of z , it would be possible to re-

late the required number of current lines to the order of a wave function of solution [35] .
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-Figur;a 3.21. Cylinder Replaced by Four Thin Wires.
@ Side View, b) Top View.

One might express the vector potential as a series summation of cylindrical Bessel
functions, truncate the series by a finite sum, and hence obtain the order number. The
number may turn out to be related directly to the number of symmetrically located cur-
rent filaments. However, the problem under consideration is a finite cylinder, and the
current distribution cannot be assumed to be independent of z . In fact, intuitively
the current on each filament may be expected to be maximum near the dipole region and
“then vanish toward the cylinder ends. The only remaining course to follow is a simple
modeling procedure using four, six and eight current lines. The computed patterns may
then be compared qualitatively with patterns obtained by other methods [37], [38],
or available from commercial data [77] . The comparisons are repeated for different
combinations of D and S, and also with experimental models, discussed later. Re-

peated computations suggest the following modeling procedure :

Cylinder Diameter Number of Current Lines or Filaments
D =~ A/8 to 3A/16 4
D =~ AX/4 to 3)7/8 6

D =~ A/2 to 3)/4 8
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These guidelines have been followed in making final computations for experimental
comparisons, and it will be shown that the results obtained have been on the whole
satisfactory. Although not quite as efficient as the sphere~disk matrix reduction or
the corner reflector program (to be discussed in the next subsection), an attempt has

also been made to reduce the size of the impedance matrix using symmetry considera-

tions.

3.4.2 (@) Significant Parameters for Modeling the Cylindrical Conductor

with an Axial Dipole

The significant parameters for computation used in modeling the mast-

mounted dipole antenna are shown in the following table :

L. Dipole Mounting : Symmetrical about centre of Cylinder
2., Source Model : Finite-Width Gap Source
3.  Cylinder Height : 0.75X to 1.0\ in Trial Computations
4 hc = 0.6 X to 1.0 )\ for Experimental models
4.  Cylinder Diometer : '
D = 0125\ to 0.5\
5. Dipole Antenna Height : , 0.5\ in Trial Computations
hd = 0.3 to 0.5 )\ for Experimental Models
6. Dipole Separation Distance :
S ~ 0.25\ to 1.0
7.  Number of Current Filaments :
NC = 4 to 8
8.  Number of Segments per current Filament :
NT = 11 to 15
9. Number of Segments for Dipole Antenna :
NM = 7 to N

10. Wire Radius

a = : 0.002 A in Trial Computations and for
the experimental models,

= 0.001 A to 0.0017 A for Dipole Antenna

= 0.0015 X to 0.0025 A for Current Filaments

11. Total Number of Segments or
Current Elements

NWS = NM+ NC x NT

. 12.  Total Number of segments
for which current is computed :

NA = NM+(NC/2+1) x NT
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3.4.2 b) Typical Computed Current Distributions

In Figures 3.22 to 3.27 are shown representative results of the current
computations. For each antenna mounting, the diameter of the conducting cylinder,
the separation distance S, and the number of segments used in modeling the cylindri~-
cal surface are indicated in the top left side corner. The height of the cylinder was
keptat 1.0 A . and the dfpole height was a half-wavelength. s interesting to note
that except for changes in magnitudes, the current distribution on the dipole antenna
remains essentially similar to the distribution on an isolated half-wavelength antenna.
As predicted, the currents on the filaments modeling the cylinder are symmetrical func-
tions of z which tend to vanish at the two cylinder ends. Close examination of the
current plots from () io (d), or () to ), or () to () reveals the fact that the
induced current, in addition to being z - dependent, is also ¢ - dependent. Again,
this was one of the initial assumptions made in specifying the modeling procedure for the
cylinder. By comparing Figures 3.22 and 3.23, Figures 3.24 and 3.25, and
Figures 3.26 and 3.27 , ( and also the corresponding radiation patterns) , the guide-

lines stated earlier for determining the number of current filaments were reached.

3.4.3 Wire-Grid Analysis of the Corner Reflector Antenna

The corner reflector antenna as used in practice is in a wire grid form. its
radiation patterns have been documented from extensive experimenial measurement by
Wilson and Cottony [78] , and earlier by Harris [79] . However, it has always been
a difficult boundary-value problem to tackle. References have already been made to
the work of Kraus [30], Moulin [31] , and Wait [32] . Kraus derived practical
design figures for wire spacings and corner angles ; Moullin, using image theory methods,
obtained more extensive radiation patterns for special corner angles which are sub-
multiples of 180° . Wait introduced a method which can be applied to arbitrary corner
angles. However, both Moullin and Wait considered reflecting surfaces with infinite
dimensions. The only treatment of a corner reflector with finite dimensions that has been
reported so far is that of Ohba [33] who used the geometrical theory of diffraction ap-

proach. Thus the analysis of a finite corner reflector using the grid modeling approach
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Figure 3.22.
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serves several special purposes. It provides more detailed understanding of a well-
known antenna form which helps to validate some of the modeling assumptions
mentioned earlier and it is useful in improving programming efficiency in the light
of the symmetrical structure. As indicated below the programming scheme turns out

to be very challenging and differs significantly from the programs for the previous

three cases.

The coordinates and notations used are illustrated in Figure 3.28. The

z—-axis is made to coincide with the corner edge, but the x - and y — axes could have

N p PP
N
H p—"N

T

T

®)

Figure 3.28. Corner Reflector Antenna.
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been rotated so as to include the corner angle within the axes for ' < 90° , or to
have the axes contained within the corner aperture for B'> 90°. The width and
height of one reflector side are denoted by S and H , respectively. As indicated
in Figures 3.28 (@) and (b), the dipole antenna is placed at a distance D from
the corner edge, has a height Hd < H, and lies in the z - x plane parallel to the

z - axis. lts centre is in line with the centre of the corner edge at z=0 .

The continuous reflecting surfaces are replaced by an array of wires as
shown in Figure 3.29. The separation distance d between the wires is about 0.1 A,
and the total number of wires is therefore determined by the S dimension. The wires

are located symmetrically relative to the corner (the z - axis) .

v
/,\
m Y
— ~N
| /I/Ir ( i
- | N Vi
| ? N
| A
| |

| B Y A

d” A - \\ #

\\\J

Figure 3.29. Wire~Grid Modeling of Corner. Reflector Antenna
with Vertical Dipole.

3.4.3 (@) Segmentation and Current Computation Schemes

A simple generalized segmentation scheme for arbitrary values of H, S,
B* and Hy is possible, but the segment parameters must be carefully specified. To

determine the total number of wire elements, the following parameters can be proposed :



102

1. NC = Total number of parallel wires modeling

the corner reflector (e.g. 7, 9, 11, 17)

2. MR = Number of segments into which each para~-
sitic wire is to be divided (e.g. 9, 11, 13)

3. ND = Total number of segments into which the

dipole antenna is to be divided (e.g. 5,
7, 9)

Thus, the total number of current elements would be given by
NRS = NC x MR + ND (3.28)

It is important to note that NC, MR and ND are all odd numbers. NC specifies
the number of wire lines which simulate both reflecting surfaces plus the line replacing
the corner edge. ND and MR are odd bécal.Jse the current distribution must be a
symmetrical function of z in the dipole and in the passive elements. The antenna is

a half-wave dipole, and although the segmentation scheme that has been worked out

is in no way restricted, the value of H has been set at 1. 0 A, and two values (0.5 \

and 1.0 A\) have been chosen for § . The corner angle has been varied between 60°
and 130° .

The development of a compact current computation program, which again
is not restricted in any way except by the available computer memory, has required a
great deal of re-arrangement of the segments into which the current lines are divided.
The basic approach is to make use of the fact that the current distribution is not only
symmetrical on each current line, but is also identically the same on the image line in
the second surface. Consider filaments | and IX of Figure 3.29. The current lines
are re~drawn including the corner line in Figure 3.30 with new notations. Filament |
is divided into MR elements, and these can be identified as 1,2, ... M2, ...MR.
Similarly filament X is divided into MR elements which are numbered N1 ;s +-..N2....N3.
If the voltage equation from (2.77) is to be written for segment 1 on filament I, one

would obtain
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3.29)
where MR and NRS have already been defined, and l] ’ I2 g o e lNRS are ele-~
ment currents. But from symmetry considerations
L=, = Ly = |
1 MR N1 N2 (3.30)
|M2 = IN2 (3.31)
N4 = \es (3.32)
where
N1 = MR x (NC-1) + 1 (3.33)

M2 = (MR+1)/2 (3.34)
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N2 = MR x (NC-1) + M, - (3.35)
N3 = MR x NC . (3.36)
N4 = MR x NC + 1 (3.37)

Similar identities can be expressed for current elements (Figure 3.29) on filaments

il and VI, 11l and VIi, and so on. When this is done, equation (3.29) can be

rewritten in the form

(21074, ™51, TZo2 T v pja e )
F oo e e e e + (ZI,N4+ZI,NRS) 'NRS = V]
If (3.38) is generalized, it becomes
NRW :
T _ .
L Ziih =V 1 =i < NRW 3.39)

i=

where

NRW = ((MR+1)/2) x (NC +1)/2 + (ND+1) /2 (3.40)

and Zi' now represents, except for two current elements, sums of either four or two
impedance values in the NRS rows similar to (3.29). The two exceptions are the
centre currents of the corner filament, and the dipole antenna. For the other current
lines the equivalent Zii in (3.39) is given by two sums for the centre currents, and

by four impedance sums for the non-centre current elements.

After establishing the general procedure, the real difficulty arises when one
tries to keep track of the rows and columns of the NRW x NRW reduced matrix from
which the unknown element currents are to be determined. This could be best seen from
an examination of a complete computation program, however for the sake of brevity pro-

. gramming details are not presented in this thesis since the procedures are of a routine

nature.
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3.4.4 Summary of Wire Grid Analysis of the Simple Conducting Surfaces

From the current computations made for the four simple surfaces, the follow~

ing observations have been deduced.

@) The assumed source maodels are valid.

(i) In working towards a ‘correct’ wire grid model, the
current results confirm the validity of putting the thin
wires along the "stationary lines of flow " in the model -
ing procedure .

(i1i) The wire radius parameter affects appreciably the com-
puted current distribution for a given wire grid model,
and its effect on the corresponding radiation pattern will
be discussed. As will be shown in the next section,
this result has also helped in tackling wire-grid structures
built with wire segments that may have different radius
values.

(iv) The segmentation schemes and procedures apply equally well
to straight and curved wires as long as conditions (3.6) and
(3.7) are satisfied, and adequate piece-wise linear approxi-
mation of curved wires is achieved.

(v) A coarse segmentation scheme has been found to be sufficient
for far field computations. This conclusion was reached as
progress was made from the sphere where very fine segmenta-
tion was used, to the cylinder with axial dipole, and then to
the corner reflector.

(vi) Provided the physics of the problem is clearly understood -
that is the source is properly modeled, and the “stationary
lines of flow" are correctly established, the results have shown
that one can achieve computational efficiency by taking into
consideration the geometrical symmetry of a given conducting

surface [47], [56].
In Table 3.4, the reductions that have been obtained are summarized. The
possible electrical dimensions of the individual surfaces which might be handled by the

modeling and programming schemes within a 300 k core memory of an 0 /S 360 com-

puter are also indicated.



SUMMARY OF WiRE-GRID COMPUTATIONS FOR THE SIMPLE ANTENNA SYSTEMS

TABLE _3.4.

WIRE  SEGMENTS ELECTRICAL DIMENSIONS
APPROXIMATE RATIO
NUMBER REDUCED OF REDUCED MATRIX -

ANTENNA OF NUMBER OF  TO ACTUAL STRUCTURE COMPUTATIONS  POSSIBLE
STRUCTURE ELEMENTS ELEMENTS MATRIX MADE RANGES
Monopole of height h h = 0.25)\ h < 0.5\

mounted on sphere of 245-825 - 20-50 5% - 3% R = A/8
radius R 5 to Rs < 1.0
s R, = 3A/8

Monopole of height h : h = 066N h = 0.5\
mounted on disk of 75 - 219 12 3%
radius Rd Rd = 0.5\ Rd < 2.5\
Axial dipole antenna h = 075\ D < 1.5\
mounted near a cylindri- 71 =131 56 - 86 29 % - 44 % € to -
cal mast of diameter D : hc- = 1.0A hc < 2.0\
and height hc D = MB-N2

s = 0.5\ .
Corner retlector of 104 - 236 33 - 69 10%- 9% H = 1.0\ S £ 2.5\
width S and height H s = 1.0

H = 1.0\ H < 2.5\

901
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3.5 Wire Grid Analysis of a Thin'Wire Structure

The structure considered in this section is a more complicated three dimen-

sional one consisting of a truss-like body, shown in Figure 3.31, resembling the tail
section of a Bell 47G-2A helicopter. At 675 MHZ, the 1 :20 scale model is about
1.1 A long, and its front face (plane containing line A-B) which is shown in detail,
is a rectangle 0.1T A by 0.14 A . A coaxial feed is connected to the radially oriented
dipole antenna through the rod A-B. Although most of the truss members are made from
the same kind of uniform thin wire (about 0.0017 A\ in radius), there are segments in
the structure (e.g. the rod A-B) which have different radius values. Qutside the
frame itself; the line C-D, which models the rotor blades of the helicopter, is a thin
strip with a width of about 0.0032 A . Thus although the problem of determining the
stationary line of current flow is solved a. priori, one still has to take into consideration
the different wire'radii in @ current computation program. To arrive at an accurate seg-
mentation of the structure info smaller elements, one is also required to supply the geome-
trical coordinates correctly [56] . Provided these precautions are taken, the equation
formulations completed, and the source properly chosen, there is no reason in principle

why the analysis should not yield satisfactory results.

During the course of the actual computations, however, difficulties were
encountered. The most persistent source of error was due to insufficiently accurate source
data about the coordinate position of individual segments. As indicated below, each seg-
ment needs to be identified by six coordinates. One, two, or three errors in a deck of
one hundred and seventy or so data cards may completely nullify the results of a computa-
tion program that has been painstakingly assembled. There was also the more serious
problem of appreciating the physical structure of the thin wire body such as its asymmetri-
cal and three—dimensional aspects, identifying the locations of segments which could affect
significantly the current distribution, and identifying also segments which might be ignored
in the current and / or pattern computations. It was therefore seen that if the results of
the wire grid analysis of this particular problem were to be reliable and satisfactory, a

nove! and more fundamental approach would have to be attempted.

The approach chosen was essentially simple. The thin wire structure was to

be evolved gradually from known surfaces of revolution. The steps taken are pictorially
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4 - ~0.0034\
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_

Thin Wire Body which Approximates the Tail Section of a Bell 479-2A Helicopter.

The mode| was set upside~down for mounting on an Antenna Rotator for Pattern Measurements
as described in Chapter [V.

801
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illustrated in Figure 3.32. Starting with a radial dipole near the centre of a finite
cylinder, and then proceeding through a number of intermediate antenna mountings,
the situation of a radial dipole side~-mounted at the base end of a cone is reached. In
the approximation process, it was implicitly assumed that the thin wire body of Figure
3.31 could Qbe replaced by an equivalent continuous surface shown in Figure 3.32 (g).
The exact shape of this conducting surface is a compromise between the cylinder of
Figure 3.32 (¢) and the cone of Figure 3.32 (f) . The radiating systems in Figures
3.32 (@) and () not only helped in starting the modeling pro;:eclure, but also served
as direct and independent checks of the applicability of the wire grid technique accord -
ing to the formulations and assumptions used in this study. Of these two configurations
the first problem has been studied by Wait t40] and Kuel [80] by classical methods,
and recently by Goldhirsh and others [50] by numerical methods using the surface ele-
ment technique. As far as the author could determine, the case of two diametrically
opposite radial dipoles was first studied by Wait and Okashimo [81], also later discussed
by Wait [40], although Sinclair and others [41] had considered two radial dipoles
- mounted 120° apart on the surface of a cylinder. The other dipole mountings with the
parasitic stub have been introduced in the study to make the mbdeling procedure more

complete, and it seems that they have not been studied before .

In the following sub-sections, the wire models of the surfaces of revolution
are treated first, and then segmentation scheme for the thin wire structure will be outlined.

The computed patterns are once again to be discussed later in Chapter V .

3.5.1  Wire Grid Modeling of a Cylinder with Radial Dipole

The wire modeling of the surfaces given in Figure 3.32 begins by establishing
the stationary lines of flow on a finite perfectly conducting cylinder with a radial dipole
mounted on its centre. The cylinder has a length | and diameter d, and the coordinate
systems are shown in Figure 3.33. The surface current distribution is not restricted to lines
of flow parallel to the axis of the cylinder, but at least near the feed region, the currents
must also flow along circular paths around the circumference of the cylinder towards the
feed point. An attempt is made in Figure 3.34 to show the assumed current distribution.

However, it would be quite difficult to base a wire grid model on such flow lines. Instead
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Figure 3.33. Radial Dipole Mounted on the Centre of a Finite Cylinder.

-

it is postulated that a reasonably accurate model can be achieved by putting on the surface
1:

}
(AN

Y

Figure 3.34. Asssmed Directions of “Stationary Lines of Flow for the

Antenna Structure shown in Figure 3.33.

of the cylinder, lines of flow parallel to its axis, and circumferential lines of flow in
the planes perpendicular to the axis, as shown in Figure 3.35. There is a sound physical
argument behind this modeling scheme. At any point P (x', y', 2') on the surface of

the cylinder, the current distribution vector :l; can be resolved into two components such

that
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Figure 3.35. Simplified Stationary Flow Lines.

i = ly JY + g ng : (3.41)
where TG' is a unit vector tangential to the cylinder surface and given by

gt = T,c0s0 =T sin0 | | (3.42)

- - . - . . » -
and T, T_ are unit vectors in the x =, and z - directions, respectively. Obviousl!
x z Y Y

Jor is the current component flowing circularly in a plane perpendicular to the axis of the
cylinder. Thus in effect, the wire model shown in Figure 3.35 has been achieved by mak-
ing separate models for the two current components, and then combining them together on
the surface of the cylinder with fixed junctions at the points of crossings of stationery lines
of flow. Intuitively, one is led to conclude that the fixed junctions must be part of the
complete model, for otherwise the JG' component outside the z -'x plane would not be

flowing towards the feed point. More specifically, the junctions represent the points at

which the current vector J , is to be satisfied according to (3.41) .

The number of axial lines and circular loops for a given cylinder will of course
be determined by the electrical dimensions of the cylinder, i.e. its diameter d and its
length | . For large d, more axial lines will be needed, and for a longer 1, more

circular flow lines will be needed to make the wire model a good simulation of the cylipdri-

cal surface.
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3.5.1 (@) Segmentation Procedure

Once the wire model is established, the next step is to determine the’
number of segments required for current computation. The segmentation of the axial
lines is straightforward as long as condition (3.7) is met. In segmenting the rings,
experience from the sphere grid model suggests that they should first be divided into
arcs, and then the arcs replacéd by chords. The number of chords required to model!
each circle would depend on the value of d . The largest diameter that has been
tested in the study is 0.25 A\, and the circumference which is about 0.8 A is modeled
adequately by six chords.* As shown in Figure 3.36 (a), each ring in Figure 3.35 is
approximated by a regular hexagon. The axial lines are then drawn along the corners
of the hexagons as illustrated in Figure 3.36 (b). In the modeling process, the value of
I was chosen to range between 0.48 A and 0.64 A. Since the current is. more concen~-
trated near the feed region, one of the guidelines discussed earlier (Section 3.1.5)

suggests that more rings be placed near the centre and fewer near the cylinder ends.

T:

- e e amasmie
N

‘| \17 \I l\l and T Y
x L. 1 4 y
| S S S - N Y
U4 ’1 I/ (4 ’t L4
(©) ®)

X
Figure 3.36. Details of Segmentation for Cylinder with d < 0.25 )\, and | ~0.48)\.

@ o hexagonal mode!l for aring, (b) final wire modeling and seg~
mentation scheme for Antenna Structure shown in Figure 3.33.

‘Although this was attempted in experimental pattern measurements, the procedure was

not followed in the computations for two reasons : (1) it was found (from an examina-

*  The largest diameter chosen is well within the A /3 limit established by Miller

"and others [52] in similar studies.
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tion of the computed patterns) that equal segmentation was sufficient ; and 2) as
mentioned earlier, it would have required the preparation of a segment coordinate sub-
program which would manage the varying spacing between the rings. Thus for a given
value of |, the spacing between the circular lines (i.e. the length of each element
in the axial direction) was fixedat a 0.08 X . Therefore the number of segments

along the axial lines varied from six to eight equal divisions.

To make direct comparisons with the results of other workers [50], the
radial dipole was also located at different distances from the surface of the cylinder.
In such cases, there will only be an induced current distribution on the surface of the

cylinder. However, the same wire model shown in Figure 3.35 has been found to be

adequate.

3.5.1 b) Modeling and Segmentation of the Remaining Surfaces

The above modeling procedure can now be extended successively to treat
the source locations and the conducting surfaces in Figures 3.32 b) to 3.32 (f). The
final models, where again d < 0.25\ and 0.48 \ < 1 = 0.64 A, areshownin
Figures 3.37 (@) to (e) . It is important to observe the differences introduced at each
step. For example, in Figure 3.37 (a) , two equally phased sources are considered,
whereas in Figure 3.37 () , there is only one active source, and a parasitic stub has been
added. In Figure 3.37 (c), the dipole and the parasitic stub have been moved to the
right end of the cylinder. The presence of elements along a diameter at each end should
be noted in Figure 3.37 (d). The radial stub has also been increased in length to stimu-
late the rod A - B in Figure 3.31. The diametric element at the left end is placed to
approximate the loop section ( shown in a dotted line in Figure 3.32 (g) ) of the surface
replacing the thin wire body. Finally, the conical surface, for which a separate seg-

mentation subprogram had to be written, was modeled as shown in Figure 3.37 (e).

The line representing the rotor blades (C - D in Figure 3.31) can be
easily added to the final cylindrical model of Figure 3.37 (d) as shown in Figure 3.38.
The position of rotor blades parallel to the axis of the tail structure is simulated, but the

line can be placed in any direction (in a plane parallel to the x -y plane). Thus the

effect of rotor position can be examined.
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Figure 3.38. Simulation of "Rotor Blades".

So far, nothing has been said about structural symmetry in the develop-
ment of the wire models illustrated in Figures 3.36 and 3.37.° Although the current
distribution in the various segments is obviously symmetrical about the z - y plane, no
attempt has been made to reduce the number of unknown elements. That this can be
done has already been demonstrated for the simple radiating surfaces. However, the
main objective with the structures just considered has been to move through the modeling
sequences towards the thin wire body. It is clear that except for two orientations (i.e.
inthe z -y and z - x planes) the horizontal line in Figure 3.38 will disturb the sym-

metry of the structure. Consequently symmetry considerations were set aside.

The final current and pattern computations made for the above structures are
summarized in a condensed form in Table 3.5 where the electrical dimensions used and
the corresponding numbers of wire elements are indicated. The symbols used in the table

are defined as follows :

d = diameter of cylinder or cone base,
= length of cylinder or cone,
dp =  distance from centre of radial dipole to nearest

surface of cylinder,

L = number of circular wires on structure,



TABLE 3.5.

SUMMAR\-( OF CURRENT AND PATTERN COMPUTATIONS MADE FOR SURFACES

OF REVOLUTION WITH RADIAL DIPOLE(S) AND PARASITIC STUB

ELECTRICAL SEGMENTATION AND
DIMENSIONS NUMBER ‘OF WIRE ELEMENTS

AXIAL  CIRCULAR
LINES LINES TOTAL REMARKS OR

RADIATING
STRUCTURE d I dp (MR) (W] - (NWS) DETAILS
1A 0.112 ) 0.48 \ 0.625 \ 6 7 79 One Radial Dipole located
IB 0.112 A 0.48 \ 0.125 ) 7 79 at three different distances
Fig. 3.36b) IC 0.112 ) 0.48 \ 0.25 ) 6 7 79 from surface of cylinder.
ID 0.25 ) 0.48 A 0.05 \ ) 7 79 Pattern computed for comparison.
Fig. 3.37(a) [ 0.25 )\ 0.48 ) 0.05 A ) 7 80 Two Radial Dipoles.
Fig. 3.370) I 0.25 ) 0.48 A 0.05 A 6 7 80 One Radial Dipole and one stub.
Fig. 3.37(c) v 0.25 ) 0.48 ) 0.05 A 6 7 80 Dipole and stub at one end of
cylinder.
Fig.3.37¢d) VvV  0.16) 0.64 ) 0.04 ) 9 109 Radial stub 0.16 A long.
Fig. 3.37€¢) VI 0.16 A 0.64 \ 0.04 A 6 95 Truncated cone.
Fig. 3.38 Vil 0.16 A 0.64 ) - 0.04 ) 6 9 121 " Rotor " line 0.92 A long.
Note : The symbols d, |, dp, MR, L and NWS, are defined in the text.

L1
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MR = number of chords modeling one circular wire,

NWS

total number of wire segments.

As shown below, the values of NWS listed in Table 3.5 vary slightly from structure

to structure.

STRUCTURE (S) NWS
IA, 1B, IC, ID MR x (2xL -1) + 1
u, w, v MR x (2xL-1) + 2
v MR x (2xL-1) + 7
\Y! ' MR x (2xL=-3) +5
Vil MR x (2xL-1) + 12
3.5.2 Segmentation of the Thin Wire Structure

Segmenting a given thin wire structure into small wire elements involves
essentially two steps [56] . First the directions of current flow on the various wires in
the structure are assigned. Then for each wire element, the coordinates of the current-
inflow point and the current-outflow point are specified with respect to a fixed coordinate
system. Thus, fremsix x, y, z coordinates, the parameters needed for current compu-
tation - i.e. length of element, its centre coordinates, and its angular orientation are
determined using simple trignometric relations. The wire radii have, however, to be
supplied separately. If wires which are continuous between junctions are too long, they
must be divided into smaller segments. However a limit to the total number of wire ele-
ments that can be used is the size of the core memory available and the cost of compu-
tation. This may also require finding those wire members which are situated far from the
source relative to other segments, or members that are located in a "shadow” region with
respect to the source, if their influence on the current distributions may be neglected so
that they can be omitted. It is imperative that this be done judiciously, and it is clear

that considerable guess work is involved.

The above general method can now be applied to the structure shown in

Figure 3.31. A section of the body near the feed region is re-drawn in Figure 3.39 where
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Figure 3.39. Coordinate System for the Thin Wire Structure.

coordinates are also defined with the origin at the source point. To specify uniquely
the typical segment shown, the coordinates of its end points, P (x] ¢ Yy z]) and

P (x2 1Yo r zz) » were determined from a detailed drawing, and the procedure ex-
tended to all the other segments identified for current computation. The six coordinates

were then used to evaluate the segme_nfa’rion parameters for each wire element, namely :

centre coordinates, length and angular orientation. As noted earlier, the wire radii were
also supplied to the current computation program.

Two forms of the thin wire structure were considered, namely, with and

- without the rotor blades. For the latter case, only two rotor positions were considered.

However more extensive applications !0 more complex structures or configurations have

been studied and refined as reported by Kubina and others [82], Pavlasek and others
[83], Kubina [84] .

3.6 Summary

The material presented in this chapter represents about one half of the ori-

ginal contribution reported in this study. The second half is related to the efforts made
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to obtain experimental radiation patterns, and the procedures followed will be out-
lined in the next chapter. But it is essential to take stock of what was contributed

in the realm of current distribution computation.  The aim was to demonstrate how

the wire grid analysis technique might be applied systematically to simple and complex
radiating conducting surfaces excited by wire antennas. The central idea, it has been
shown, is the method of establishing a computational wire model. |t has been suggested
that there could well be some "canonical rules” to follow in order to arrive at a 'cor-
rect” model. - Although it is still not possible to state generalized rules precisely, the
concept of "stationary lines of flow" has been applied to provide a starting point for

the modeling process. It has been discussed qualitatively that the distribution and orien-
tation of the lines are dependent on the geometry of the structure and the location of the
source. Equally important, the two source representations which were described in
Chapter Il have been shown to be equally useful . Attempts have been made to show
the effects of electrical dimensions and / or of varying the number of wire grids on the
computed current distribution on a sphere with a monopole or a cylinder with an axial
dipole near its surface. Computational efficiency was achieved for the simple surfaces
by exploiting symmetry. The significance of the wire radius has been investigated in
some detail. The awareness of its influence on computed current distribution has greatly
simplified the application of the technique to a structure with non-uniform wire members.
Finally, it has been shown that a complex conducting body with a wire antenna mounted

on or near its surface can be evolved gradually from simple surfaces of revolution.
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CHAPTER IV

METHOD OF RADIATION PATTERN MEASUREMENT

4.1 Significance of Experimental Patterns in this Work

One of the objectives of the present investigation from the start has been
to complement the computed radiation patterns by experimental measurement. The ex-
perimental study followed the numerical modeling very closely. After some experience
‘with computations for straight wire antennas, it was seen that it would be far more im-
portant to test the validify of computed patterns by direct comparison with measured
patterns rather than to devote too much time to refining the numerical technique still
further. In any case, even if such refinements were developed, they would have applied
only to specialized configurations such as those referred to in Section 2.3.2, but would

not have contributed much to the structures modeled in the previous chapter.

As it turned out, the experimental work was very beneficial to the improve-
ment of the computational précedures. A number of minor but subtle approximations in the
current distribution computations could not have been made at all without the physical in-
sight obtained from the actual antenna models, and their measured patterns. The important
approximations which influenced the current computation schemes directly or indirectly
were : (i) the location of the source and its representation, (ii) the significance of the
wire radius parameter, (iii) the testing of various grid models for a given antenna struc-

ture, and most importantly, (iv) the ability to compare directly wire grid structures and

their continuous surface equivalences, or vice versa.

The measured patterns, which are presented in the next chapter, were obtained
for structures whose largest dimensions (length, width, or radius) varied from about 0.5 A\
to about 1.25 A . Although most of the measurements were made between 600 and
1000 MHZ , radiation patterns were also measured at 2600 MHZ. In the following sec-
tions, the facilities, the construction of the antenna models, and the experimental pattern

measurement technique are discussed separately.
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4.2 Experimental Facility

The measurement of radiation patterns other than on an outdoor range re-
quires the use of an anechoic room, instrumentation for measurement and recording and
the field sensing probe with its positioning mechanism. The pattern measurements re -
ported have made use of an available experimental facility that was specially developed
to allow a wide variety of different measurement. It has been described elsewhere by

Pavlasek and Kubina [85], [86], [87], and Kubina [84] . Only the essential com-

ponents are listed here.

4.2 (@) UHF Anechoic Chamber

A broadband (500 MHZ and up ) UHF, free-space environment has been
simulated by a roofless polygonal, fourteen-sided chamber whose inscribed circle is 2.25m
and wall height is 3m . The floor and walls 'of the chamber are covered with Type
BB16.and BP24 McMillan absorber, respecﬁve'|y. The BB material, which is in the
shape of "building blocks”" was also used as a "walkway" path in the floor. The BP
is a standard absorbing material in pyramidal blocks. Both absorbers are enclosed in black
polyethylene (5 mils thickness) sheeting as a protection against the weather. As shown
in Figure 4.1, the important features inside the chamber are a rotatable antenna mount lo-
cated at the centre of the floor, an inner polystyrene and an outer plywood circular arch
for probe mounting. The outer arch is about 2 m in radius, and has angle markings at
five degree intervals, and a span of 110 degrees. The innerarch is 1.2 m in radius, and
has one degree markings over a span of 130 degrees on two sides of a centre vertical line.
A movable probe carriage with a vernier scale is attached to the inner arch. A number of
HPY =24 Eccosorb ( Emerson and Cumming) absorbers have also been spread on the floor
to fill holes and cover exposed metallic surfaces that are part of the inner arch assembly.

The centre point of the anechoic chamber is about 8 m away from an indoor control room.

4.2 (b) Instrumentation

The signal source, power monitoring, signal strength measuring and record-

ing arrangement is shown in Figure 4.2. The assembly consists of the following units :
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Figure 4.1. UHF Anechoic Chamber with the Antenna Mount at the
Centre and the Two Arches Used for Probe Mounting.

Figure 4.2. Signal Source, Measuring and Recording System.
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Figure 4.1. UHF Anechoic Chamber with the Antenna Mount at the

Centre and the Two Arches Used for Probe Mounting.

Figure 4.2. Signal Source, Measuring and Recording System.
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1 AlL 125 C Signal Source

1 HP 8410 A Network Analyzer

1 HP " 8405 A Vector Voltmeter

1 HP 431 B Power Meter

I Polaroid  DUI Spectrum Analyzer

1 HP 7035 B x-y Recorder

1 HP 7100 B Strip Chart Recorder
1 HP . 393 A Variable A

1 Siera 137 A Directional Coupler
1 Philco 640 A Directional Coupler
1 RL14 Sine-Cosine Potentiometer
1 HP 350 A Attenuator Set

1

Speed Control Circuitry which also includes two selsyns
" @run in parallel with two other sylsens inside the anechoic
chamber driving an EEL azimuth rotator), compass to in-

dicate azimuth position of antenna.

The complete equipment schematic is shown in Figure 4.3.

4.3 Experimental Models of Conducting Bodies and Wire Antennas

The experimental models for which radiation pattern measurements were made

are the following :

() .1/4 A monopole on spheres,
®) a short monopole on finite disks,

(©) axial dipoles mounted on the sides of conducting cylinders,
) corner reflector antenna,

(e) short radial dipole mounted on a cylinder,

(3] short radial dipole on a simulated helicopter tail structure.

The list follows the wire-grid models for which current computations were made as described

in the previous chapter. The significant features of each structure will now be examined.
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Figure 4.3. Equipment Scliematic for Instrumentotion used in Pattern Mcasurement.
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4.3 (a) 1/4 N Moncpole on Spheres

Although the spherical surface was relatively simple in the mathematical
modeling, the construction of its pHysicul models was more challenging. As shown in
Figure 4.4, one sphere with a continuous surface and three spherical grids were pre-
pared. Each sphere has a radius of 12.7 cm , and at 600 MHZ, 750 MHZ and
900 MHZ, the corres{:oncling electrical radii wouldbe N\ /4, 5\ /16, and 37 /8,
respectively. The material used for the continuous sphericul surface is bronze. It was
first sand—cast in two haiyes ., and these were then machined to a polished surface. The
three spherical grids (with 32, 24, and 16 lines each), and three monopoles were
prepared from brass wire of 1/16" diameter. To hold the grid structure firmly, a hol-
low plexiglass tube was placed across the ends of the wires. The height of the monopole
had to be kept constant at three different frequencies (i.e., 600 MHZ, 750 MHZ
and 900 MHZ) , and thus three different monopole lengths were chosen : 12.7 em ’
12.2cm and 8.4cm . The mounting of a monopole was simply done at one end of the
plexiglass, but as described later in the method of measurement, the feed cable for the

spherical grids was not run directly through the plexiglass tube.

4.3 b) Short Monopole On A Disk

Each of the continuous surface and radial disk models shown in Figure 4.5,
has a radius of 5.7 cm which corresponds to about 0.5 X near 2600 MHZ. The short
monopole used was a Type SM 204 CC Omni Spectra probe antenna with a height of

about 0.16 A . It can be notfed that one radial wire structure has a bonding ring, and

this was designed to test its effect on the measured patterns. The number of radial wires

was varied from four to twenty four. The monopole was fed coaxially at the centre of
each disk.

4.3 (c) Dipole Antenna Axially Mounted on Side of Cylindrical Support

The models were made of two styrofoam cylinders with diameters of 5 cm

and 10.2 cm, respectively, and both about 30 em high. When continuous surfaces
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. Figure 4.4. Solid Sphere and Three Wire Grid ( 32,
24, 16) Meridians with Mounted Monopoles.

Figure 4.5. Continuous Surface Ground Plane Disk

and Four Radial Wire Models..
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Figure 4.4. Solid Sphere and Three Wire Grid ( 32,
24, 16) Meridians with Mounted Monopoles.

Figure 4.5. Continuous Surface Ground Plane Disk

and Four Radial Wire Models.
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were required, the cylinders were covered by aluminum foil.  The wire grid structures
were made by pasting strips of self-adhesive thin copper tape on the surface of the
cylinders parallel to their axes. Strips of 0.3 cm width were used. At 1000 MHZ,
the cylinders would have diameters of X /6 and A / 3, respectively. Four strips
were placed on the smaller diameter cylinder, and six strips on the longer cylinder. A
balanced dipole antenna was mounted axially parallel on the side of each cylinder by
means of a rigid coaxial cable. The unbalance - to - balance transformation from the
coaxial cable to the dipcle was made using %— slots following similar designs by Kubina
[84]. Each dipole antenna had a height of a half wavelength at 1000 MHZ, and was

constructed from a thin silver-copper alloy. wire of about 36 mils in diameter.

4.3 (d) Corner Reflector Antenna

The corner reflector antenna was modeled using acrylic plastic plates for
the fundamental structure. The reflector walls were hinged at the corner and their an-
gular position determined by a protractor scale on a supporting base plate. The dipole
antenna was similar to the one used in the cylindrical mast case both in its construction
and mounting. The reflector height (H) was designed to be 1.0 A near 1000 MHZ,
and two side widths (S) were chosen : 0.5\ and 1.0 A . Again, copper tape strips
about 0.6 cm wide were used to model the grids and aluminum foil used to obtain con-

tinuous surfaces. The half-wave dipole was mounted symmetrically at a distance of 0.25 A

from the corner line.

4.3 () Cylinder with Short Radial Dipole

‘The thicker styrofoam cylinder with six strips described above was also used
to model a finite cylinder with a radial dipole on its centre. Circumferential strips were
added as described in Chapter 111 taking due care to obtain adequate bonding at the junc-
tions. The radial dipole used was the OSM 204CC Omni Spectra short antenna .
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4.3 (f) Thin Wire Structure (Helicopter Tail Section) with Radial Dipole

From the design and construction point of view, the helicopter tail sec-
tion was the most difficult to model. As shown in Figure 4.6, the truss members have
many junctions. These had to be dressed to ensure permanent contacts. Those points
at which the junctions tended to become locse due to structural stress during pattern
scanning were carefully reinforced with the adhesive copper tape material. Most of
the wires used in the structure were brass of 1/16 inches in diameter, but the support-
ingrodwas 1 /4 inch in diameter. Ath the tail end, there were also segments of
1 /8 inch diameter. Rotor blades were modeled from thin brass sheets of 9 /16 inch
width. The OSM 204CC Omni Spectra short antenna was used for testing and preli-
minary measurements. In the final measurements, it was replaced by a I.onger dipole of
about 0.2 A near 675 MHZ. The significant electrical dimensions of the structure

have already been given in Figure 3.31. Again, by covering the structure with aluminum

foil, a continuous conducting surface was obtained.

Figure 4.6. Thin Wire Structure (Helicopter Tail

Section) with Radial Dipole.
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In addition to the computational study, a motivation for constructing
this structure was to make preliminary studies of rotor modulation effects on a scaled
model (1 : 20) of a Bell 47 G -2 A helicopter. A further and more extensive
study of the problem has been made for a complete helicopter mode! by Kubina [84].

4.4 Radiation Pattern Measurements

The basic considerations of type of pattern and polarizations, the general
measurement procedure, and finally the radiation pattern measurements for the six struc-

tures are to be considered in this section.

4.4.1  Basic Considerations : Type of Patterns, Coordinate System,

and Polarization Component

It is essential that the type of radiation patterns measured ; the coordinate

system used, and the polarization components be clearly identified from the outset.

Type of Patterns

The only concern in the present experimental work has been the measurement

of electric field strength patterns. In one or two cases, power patterns were also taken.

Some attention was also given to phase behaviour.

Coordinate System

The two arches in the anechoic chamber shown in Figure 4.1 have as a com-
mon centre a point on the axis of the antenna turntable. The usual spherical coordinate
system shown in Figure 4.7 is therefore defined at this centre point as the origin [41],
[88] . While the origin was fixed, the coordinate axes however were occasionally ro-
tated to fit a particular antenna structure and mounting.  The angular coordinates -
elevation angle 8, and azimuth angle ¢ are the only significant ones since the pattern

measurements were made in far field regions following the Fresnel - zone criterion

M
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'Figure 4.7. System of Spherical Coordinates used
in Radiation Pattern Measurement.
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where D was taken as the largest dimension of each structure.

Polarization

At the observation point (R, ©, &) shown in Figure 4.7 , the electric
field in general was considered to be elliptically polarized with components E and
E(p .  Hence, whenever necessary or possible, Eg versus o, or E versus ¢ were
measured for various © - principal plane cuts. It will be indicated below how this was
done by mounting a probe dipole in one or two orientations. Other measurements made

were , Ego versus €6, and Etp versus o for different ¢ - plane cuts.

4.4.2 Baosic Measurement Procedure

The method of measurement discussed below was developed by Kubina [841].

Considerable care and effort is needed in such measurements to obtain dependable opera-
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tion of the system and reliable results. The following is an outline of the essential

adjustments and operating procedures.

The equipment schematic given in Figure 4.3 has the essential compo-
nents of apparatus for antenna pattern determination. When a vector voltmeter is
used a CW signal is required and since a phase measurement is also involved, a re-
ference signal channel is required. Signal purity, amplitude and frequency stability
are monitored by a spectrum analyzer, power meter and frequency counter. Ampli-

tude stability was continuously monitored.

Unlike usual outdoor range procedures, the antenna under test was ener-
gized. The measuring probe was an E - type dipole (approximately 1/2 X\ or less).
The analog signal output from the vector voltmeter was recorded on an X - Y plotter
arranged to operate as a polar plotter. This was achieved by driving a sine-cosine
function generator by the vector-voltmeter output and a ¢ position signal from the
azimuth rotator, thus generating V cos ¢ and V sin ¢ serving as the X and Y in-
puts to the plotter. A rectangular coordinate pattern on a strip chart recorder was
also recorded simultaneously. Since the patterns measured were to be normalized for
comparison with computed patterns, no attempt was made to calibrate the voltmeter

and the powermeter, although the signal field strength was monitored.

Rotation of the antenna mount was physically pessible only in the hori-
zontal plane about a vertical axis. However, as indicated earlier, by re-defining the
proper coordinate system and also by properly orienting the dipole probe, either E9
versus © , or E9 versus ¢ and E ° versus ¢ could be measured, depending on the
antenna structure. For each pattern scan, the positioning of the radiating structure,
probe alignment, and the compass zero settings were carefully determined. Azimuth
position of the rotator was indicated on the strip chart recordings by markers generated

in synchronism with the rotator position in order to provide position calibration.

Point-by-point measurements were attempted for some structures with the
probe mounted on the inner arch. However, because of difficulties involved in chang-
ing the probe position, and the recording of the output data, this tedious procedure was

of necessity avoided as much as possible .
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4.4.3 Pattern Measurements

Patterns of six antenna systems were measured using the general procedure
outlined above. Specific details concerning the mounting of each antenna and a
qualitative appraisal of the influence of absorber positioning are now discussed. A

summary of the pattern measurements made is presented in tabular form.

4.4.3 @) Antenna Mounting and the Measurements Made

Table 4.1, below lists the antenna models whose patterns were measured,

the significant dimensions, the field components and the coordinates within which they

were studied.

The coordinates used and the planar cuts in which the patterns were measured,
determined in each case the specific geometric form of the mounting to be used and the
position of the antenna coordinates relative to the rotator and probe coordinates.  For
example in the case of the monopole on a sphere the sphere was mounted with the mono-
pole axis either colinear with or perpendicular to the rotator axis. In each mounting
case, however special care had to be taken so that the mechanical structure used would
be sufficiently rigid and accurate to ensure correct positioning of the model's coordinates
relative to the rotator and measuring probe without disturbing the model's impedance
structure. In addition it is essential that the mounting should not disturb the electrical
structure of the model. Use of dielectric materials is thus indicated wherever possible,
but as sparingly, since even with dielectric structures, scattering effects will be present
[89)]. Furthermore, a connecting cable is required in most cases unless the antenna is
large enough to contain a small battery operated service. A self-contained source how=-

ever makes phase measurements difficult since provision of a reference signal then requires

a high resistance cable or a not too reliable second measuring probe, hopefully located

in an uncarrying portion of the field.

The above mentioned mounting problems thus result in design compromises
among the three mutually contradictory requirements of mechanical mounting, electrical

environment and instrumental arrangement. The materials used for the resulting mount-

ings were either PVC or phenolic plastic forms. In the above mentioned mounting
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ANTENNA  STRUCTURE SIGNIFICANT FIELD
. ELECTRICAL COMPONENTS PARTICULAR
CONTINUOUS SURFACE WIRE-GRID MODEL DIMENSIONS MEASURED DETAILS
1 A/4 Monopole mounted 16, 24, 32 (@) Rs s N/4 For bronze sphere, pattern measure.
on sphere of radius R Meridion wires ments made with external source an
$ ) Rs = 56 EG versus © self-contained source.
2 0.166 ) monopole moun- 8, 12, 16, 24 External source. Influence of cjr—
ted on disk of radius R ” Radial wires R P 0.5\ Eo versus 6 cvlar (ring) bonding wires on wire—
grid modeling also investigated.

3* Dipole Antenna of height 4 axial thin cop- @) D = 0.12% External source.

h, mounted axially at a per strips h =076\, Eo versus ¢
distance S from the sur- h: &~ 0.38 )\ S = 0.755)
face of a cylindrical mast _
of height h and dia— ®) 'l.‘) = ?.‘l)ézx " External source.
* D X e . g versus o
mete hg~ 0.5 S = 0.368 A
6 oxial thin cop- () D =0.33 A External source.
per strips h = 1.0 .
hg ~ 0.5 S =0.28)
(d) D = 0.202 A External source.
h =~ 0.6 Ee versus ¢ :
hy = 0.3 S = 0.686 A
) D= 0.282 External source.
h = 0.82 Ee versus o
hg~ 0.41 S =075
® l? : ?:33}‘)\ 59 versus ¢ zxtfrr‘\)ogls:c;ce.
hg =~ 0.5 e
Externalo source.

4*  Corner Reflector Antenna 9 thin copper S = 0.5\ E9 versus ¢ B-= 607, 907, 120°, 130°
with 0.5 X dipole moun- strips each 0.6 mm H= 1.0A
ted 0.25 )\ from apex of wide (=0.02 )\) E, versus B = 90°, 130°
reflector of width S and (o= Oo)
height H, and corner 17 thin copper S = 1.0\ °
angle B strips H= 1.0 IEo versus ¢ B = 60°, 90°, I'IOO, 120

Ee versus B = 90°, 110°
9 (0=0°%

5*  Radial dipole mounted on 6 axial thin cop- d =~ 0.21 ) External source. Precautions were
a cylinder of diameter d perstrips ; 7, 9 I = 0.6 Eo versus taken to maintain good electrical
aond length | circulor aluminum 8 (p=0°) contacts at the junctions of the

foil strips axial and circulor strips.

6** Radial Dipole on "heli-  Structure already in Dimensions E9 versus ¢ External source.
copter toil structure” wire~grid form given in 0 = 60°, 70°, 80°, 90°, 100°

Figure 3.31 E(o versus @ Three basic measurements

(0) without rotor blades,

() with rotor blades in parallel
@i.e. to axis of structure)
posifion,

(c) with rotor blades in perpendi-
cular position.

*

*t

Meosurements repeated with structures covered with aluminum foil.

Measurements partially repeated with structures covered with aluminum foil .
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problems the most serious one is that arising from the presence of the exposed cable
leading to the model. Typical mountings for the short monopole placed on radial

ground wires and for the mast-supported dipole are shown in Figures 4.8and 4.9

respectively.

it is well-known that in pattern measurements than the exposed cable does
introduce pattern distortions [90], [91] . Thus the general practice is to have such
cable covered by absorber and located to minimize its perturbing effects. Of the six
structures considered here, the sphere grids, the thin wire structure, and the disk had
portions of cables exposed near their antenna base. In the latter case, it was a rigid
coaxial line, and the only thing possible was to cover it with an absorber. In the case
of the helicopter tail section, it was possible by proper design to place the cable inside
the relatively large brass rod (see Figure 4.6). For the spherical grids, the cable was
not taken through the plexiglass tube ( Figure 4.4), but along one of the wire grid meri-
dians. These precautions were part of the experimental model design, and their effec-

tiveness confirmed by extensive preliminary testing.

An attractive method of avoiding fced cable interference would be by using
a self-contained source operated by a battery inside the model. However, in the case
of the small scale antenna systems, this is not always possible.  In addition unless special
provisions are made (which again introduce new metal structures) , the measurement of

phase is precluded. Consequently, this technique was limited to the solid spherical struc-

ture.

4.4.3 ) Anechoic Chamber Characteristics and Performance

The dimensions and basic layout of the anechoic room are shown in Figure.
4.10. The shape and arrangement were chosen to accommodate a centrally located model,
rotatable in azimuth, while allowing three dimensional positioning of the measuring probe
as well. The location of the chamber on a building roof, its shape and size, its " open
sky" (with removable weatherproof radome ) feature were chosen to maximize the enclosed
volume while minimizing costs. The detailed design and proof of performance tests are

described elsewhere [84]. The ‘'free-space’ region available and the ' quiet zone® re-
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Mounting of Short Monopole on Radial
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Figure 4.10. Basic Layout of Anechoic Room.
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quirements were sufficient for the measurements mode. A telling check on the room
performance was made for some test models which were also measured on a full scale
open air antenna range (Canadair Microwave Antenna Range, Montreal) giving iden-

tical results [84].

~ Some interesting difficulties which are worthy of note were encountered
however, which migbt be attributed to the anechoic room and the location of absorber

material, especially on the floor.

The first difficulty relates to weather during heavy rainfall. Inconsistencies
developed in some patterns and 'noisy" patterns would result. The root cause of this
was not ultimately diagnosed. However, the trouble departed with clear dry weather.
Suspicion is directed however to the 'radome' cover and to the effect of air moisture
on the absorber. A second noteworthy difficulty was one whose symptoms were lack of

repeatability and the appearance of dissymmetry (even for clearly symmetrical cases) in
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the case of some measurements especially those made in the 600 - 700 MHz range.
Eventually the distortions were traced to some absorber material laid on the room

floor which was inappropriately placed. Relocating and rearranging of the floor ab-
sorbers eventually yielded satisfactory results. While there appeared to be no obvious

systematic feature to this problem, it was found that essentially random positioning of
the absorber was the best.
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CHAPTER V

5.1 Introduction

The wire-grid modeling method was applied in Chapter |1l to compute

current distributions as a first step in the determination of radiation patterns of the an-

tenna structures considered. The previous chapter described the experimental procedures
used for pattern measurements. This chapter contains a systematic presentation and a

comparative evaluation of the computed and experimental patterns.

The scope of the discussion will be described further on. However,
some additional details about the radiation field computation scheme are first necessary.
After the approximate current distribution is computed for a given antenna system, the
Eg ond E " patterns are determined using 2.93) and (2.94), respectively. A flow
diagram for the computation routine is illustrated in Figure 5.1. First the principal=-
plane cuts are chosen, the current distribution data is supplied, and the pattern is then
calculated. The pattern can then be normalized and plotted directly in rectangular co-
ordinates using a line printer. |f the resulting pattern is found to differ significantly
from a known or an experimentally determined pattern, the complete computation scheme,

including the evaluation of the current distribution is re-checked, as indicated by the
dotted line.

The significant features of the computed and measured patterns are dis-
cussed in two main stages. First the computed results are considered, The aim here is
to demonstrate the logical steps involved in developing the modeling procedure. The
steps are first, the testing of the computation program on simple structures, secondly the
study of the dependence of the pattern on the number of current elements, and finally the
application to the analysis of more complicated structures. In the second stage the mea-
sured and computed patterns are compared. There are four subsections. First examples

of fields which illustrate the characteristics of the anechoic chamber are considered. Next,
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some discussion is devoted to the equivalence of continuous conducting surfaces and
their wire-grid models, thus providing an experimental validation for the wire model-
ing procedures described earlier. Then the influence of the wire radius parameter on
pattern computation is examined with reference to the short monopole mounted on twelve
or sixteen radial ground wires. The final section makes direct comparison of computer -

and measured patterns both for wire-grid and continuous surfaces in the case of four an-

tenna structures, namely :

() . sphere -mounted monopole,

(ii) mast-mounted dipole,

(iii) corner-reflector cmfennh, :

(iv) radial dipole mounted on a helicopter tail section.
While it will be found that the comparisons are satisfactory on the whole, pafferns for
which disagreements were noted are also cited. The causes of the discrepancies may be

attributed either to the inadequacy of computational models or to basic measurement con-

straints.
5.2 Discussion of Computed Patterns
5.2.1 Testing of Computation Scheme

As summarized in Table 3.1, the main object in carrying out the extensive cur-
rent computations for a 1 /4 X\ monopole mounted on different sphere models was to
establish the validity of the assumptions employed (e.g. source representation), and
also to test the general computation schemé. Figure 5.2 shows the radiation patterns

(relative power) on a rectangular plot for sphere radii of A /8 and A\ /4, respectively.

" The agreement of the wire-grid model results is very good with those published by Tesche

and Neurether [49] for the smaller sphere,and reasonably fair for the larger radius ex~
cept in the null region. * Both finite - width gap and magnetic frill source representations
were tested with the latter sphere radius. As discussed earlier, since the current distri-
butions were found to differ by a constant multiplying factor, the normalized patterns were

also identical.

*  Patterns given in Reference [49] have in turn been found to agree well with com-

putations described in Reference [54] .



141

5.2.2 Influence of Current Elements on the Computed Patterns

In seeking more ‘correct' wire-grid models, a systematic search was

conducted to determine the influence of the number of current elements used in the

wire modeling process. As described in Chapter 11l the number of segments and wires
in the grid used in computations were varied according to the following tests :

(@) the number of wires in the grid representing the "stahonary lines

of flow" and the number of segments into which each wire was di-
vided were varied ,

®) the number of wires in the grid was varied, but the number of
segments into which each wire was divided was held fixed ,

() the number of wires in the grid was kept constant, but the seg-
ment length distribution was varied.

Figure 5.3 illustrates the convergence in the minimum region of the radiation pattern
for the 1/4 A monopole mounted one of the spheres (Rs =X/4) mentioned above.
The four different patterns shown, as listed in Table 3.1 are for the sphere modeled, by
16, 24, 24 and 32 stationary lines of flow, and with the meridians divided into 16,
16, 25 and 25 segments, respectively. It is notable that in this test the resulting

pattern in each case was not changed significantly even when the number of elements was

greatly increased from 256 to 800 .

For the second test the variation in the radiation pattern of the disk-mounted
monopole was investigated. Patterns are shown in Figure 5.4 for four different numbers
of radial wires, and an experimentally measured pattern for a continuous disk is included
as a reference. In progressing from eight to twenty~four wires, it can be seen that
in.the minimum region, the computed pattern approaches the reference pattern gradually.
However, it is significant to observe that the patterns in the upper © region (8 < 80)
practically coincide with each other. One possible explanation that can be put forward
is that in this region, the current distribution on the monopole dominates the radiated
field, whereas in the region below the plane of the radial wires the monopole is largely
screened off. Thus as more radial wires are added to simulate the ground disk, the more

effective the screening becomes, and hence the deeper the minimum becomes in the com-

puted pattern.
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Similar computations were carried out for the mast-mounted dipole where

the number of current filaments modeling the cylindrical supports was varied from 4
to 6 for a cylinder diameter of \ /8 , and from 6 to 8 for cylinder diameters of
A/4 and \/2. Typical patterns are shown in Figures 5.5, 5.6 and 5.7, for

various separation distances of the dipole antenna from the cylindrical surfaces. In

each case it is seen that the patterns are \}ery close to each other, and thus the model~

ing criteria which were postulated in Chapter 111 for this antenna structure appear
justified . However, further justification is needed to substantiate the choice between

4 or 6 strips, and 6 or 8 strips to represent the mast. This will be done after the

experimental patterns have been presented.

Another structure that was found well-suited for the above testing of the in-
fluence of the number of segments on cqmpufed patterns, was the corner reflector cmténnq.
In Figures 5.8 and 5.9 are shown the horizontal (H -plane ) and the vertical (E -
plane ) patterns of a frame which is 1.0 Awide and 1.0 A high with a c.:orner angle of i
110° ,and a half-wave dipole antenna placed at 0.25 A from the corner edge. The
computations were carried out for 17 and 21 current fllamenfs, respectively, modeling
the reflecting sides, and experimental pafferns have been taken from the work of Wilson
and Cottony [78] for reference. It can be seen that for both polarization components
the computed patterns are almost identical within a span of 180° .  The agreement with
the reference patterns is quite satisfactory. Fc.ar the E - plane field, the computed pat-
terns show deep minimum at 8' = 90° on both sides of the centre beam (i.e. near either
end of the dipole antenna) . Outside this range the discrepancies in both polarizations
from the chosen reference values grow wider. The above computations were repeated for
* a reflector of the same height, but 0.5 A wide, with corner angle of 130°, with the
dipole antenna positioned at 0.2 A from the corner edge. Here the number of current
filaments used was 9 and 11, respectively, and once again comparisons are made for the
two polarization components (H - and E - planes ) in Figures 5.10 and 5.11 . The
general observations already made also apply here, and it can be seen that the slight in-
crease in the number of current filaments causes the computed patterns to move towards the

given references. Pattern measurements were carried out in this study for the 1.0 A -
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by = 1.0 A structure using 17 filaments and continuous aluminum surfaces for the
reflecting sides, as described in the pre\'lious éhapter. However, because the dimen-
sions of the reflector were too large to meet the far-zone condition ( Equation (4.1))
with respect to the probe position in the anechoic chamber, differences in levels were
found although the basic pattern features were very similar. Far better agreement be-
tween computed and measured patterns was obtained for the smaller reflector ( but with

the dipole antenna placed at 0.25 \ from the corner) as discussed later in Section

5.3.4.

The third test, that of varying the segment distribution was used for the
mast-supported and corner reflector antenna. The number of filaments modeling the
surfaces was fixed, and the segmentation distribution was varied. In all the co mputa-
tions, however the resulting patterns were so similar to those shown in Figures 5.5, 5.6
and 5.7; and to those in Figures 5.8 to 5.11, that the actual results are not presented.
The results were predictable because, beyond the basic requirement that a current segment
length be kept within 0.1 A, the fineness of the segmentation can strongly affect the ac-
curacy of the segment current values, but the far field is not appreciably changed. Thus
the influence of the number of current elements on radiation patterns as described in
Chapter 11l has been found to depend more on the number of wire grids used to replace the
current paths rather than on the fineness of segmentation. This is of course intuitively

evident since a given continuous surface would be more closely approximated as the num-

ber of wires is increased.

5.2.3 Radiation Patterns of Radial Dipc;les Mounted on Finite Length Cylinders

Patterns are presented here for radial dipoles with or without a parasitic ele-
ment placed symmetrically and asymmetrically on finite cylinders. In Figures 5.12 to
5.15 are shown four principal-plane cut patterns for E9 versus 8 (in the x - z plane),
E9 versus © (inthe y -z plane), Ee versus @ (inthe x -y plane), and E(p ver-
sus ® (x -y plane) due toa centrally-mounted radial dipole on a uniform cylinder 0.48 )\
long and with a circumference of 0.36 A\ (or diameter of 0.115)\) . As pointed out

earlier, the dimensions were chosen to make comparisons possible with similar results com-
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puted by Goldhirsh and others [50] using the surface element t;achnique. In the latter
work, the two end faces of the cylinder have been included in the modeling scheme.
However, it appears that the radial currents on these faces were neglected in the pat-
tern computations since it is indicated that the axial currents on the ends of the

cylinder were found to vanish. 7aus since no radial currents were included in the present

wire~-grid model, the comparisons made here are valid. It is encouraging to note that

the agreements are very close.

For the same cylinder length, but a diameter of 0.25 A , the computations
were repeated, and the resulting patterns are shown in Figures 5.16 to 5.19. A pat-
tern given by Wait [40] for a radial dipole mounted on an infinite cylinder but of the
same diameter is also plotted in Figure 5.16. It can be seen that the agreement is quite
good in the shadow region, but only fair in the front side for 8 < 90°. Nevertheless
in comparison with Figure 5.12 where the Ee versus © pattern is essentially similar to
the basic pattern of an isolated dipole, the influence of the cylinder diameter is clearly

indicated by both patterns shown in Figure 5.16 in that the maximum field strength is

‘shifted below the © = 90° plane. The E9 versus ¢ pattern (Figure 5.18), which is

basically uniform as in Figure 5.14, appears to unaffected by the diameter of the cylin-

der. Similar observations can be made about the E(p versus ¢ patterns in Figures 5.15
and 5.19. .

Movunting two radial dipoles symmetrically on the above cylinder predict-

ably differs from the single radial dipole patterns as tllustrated in Figures 5.20 ( Eg versus e,
x -z plane), 5.21 (E9 versus 8, y -z plane), and 5.22 (Ecp versus @ , x =y plane)
viz Figures 5.16, 5.17 and 5.19. As can be shown from symmetry considerations, the

Eg versus @ pattern in the x -y plane vanishes, and this can also be seen from Figure
5.20 where once again a known pattern has been superimposed [40] . Since Eg versus e
patterns in both the x -z and y -~z planes are similar, it is obvious that there will be
omnidirectionality in the horizontal (Ee versus ©) pattern for planes other than 6 = 90°.
However the E(p versus @ pattern given in Figure 5.22 does not differ in shape from the

one given earlier for the single radial dipole (Figure 5.19) .

The above series of patterns were calculated mainly as additional tests for

the internal consistency of the wire -grid modeling method as applied in this study. As
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described previously, the relatively simple configuration just considered was modified

by replacing one dipole by a parasitic stub, and also by moving the dipole and the stub

to one end of the cylinder and lastly to the large end of a truncated cone. Three se-
parate sets of patterns are presented in pairs to bring out the modeling features discussed

in the computation of current distribution for the various structures illustrated in Figures
3.32 (c) to 3.32 (f). First patterns in four principal-plane cuts are cohpured in

Figures 5.23 t0.5.26 for the case of the radial dipole and the stub mounted in two dif-
ferent positions : one at the centre of the cylinder, and the other at the right end of the
cylinder. Comparisons are made with previous patterns ( Figures 5.16 to 5.19) g}ven

for the single dipole. Consider first the centrally mounted case ; there are differences in
the Ee versus © patterns (Figures 5.23 and 5.24 compared with Figures 5.16 and 5.17).
It is interesting to observe on the other hand that the patterns in the horizontal planes

(EG versus ¢ : Figure 5.25 viz Figure 5.18, E(D versus ¢ : Figure 5.26 viz Figure
5.19) are very similar. Thus the presence of the parasitic stub affects mainly the verti-
cal plane patterns. For the second antenna with parasitic element location, the Ee versus ©
pattern in the x - z plane (Figure 5.23) is still symmetrical, but is predictably asymme-
trical in the y - z plane (Figure 5.24) .. Both horizontal patterns (E9 versus @ in
Figure 5.25, E¢ versus @ in Figure 5.26) though symmetrical about the axis of the
cylinder are now radically changed. It is to be noted that the non-omnidirectionality of

the Ee versus © pattern is expected from antenna geomeiry considerations.

The next group of patterns given in Figures 5.27 to 5.30 refer to two of
the other antenna configurations illustrated in Figure 3.32. In this series, the situations

considered consisted of the cylinder with additional current lines placed across its diameter

.at both ends, and the case of the radial dipole with stub mounted on the large end of the

cone with additional current lines placed in line with the dipole across its diameter. While
the patterns are fairly similar in Figures 5.27 (Ee versus 8 , x -z plane) , and 5.29
(Ee versus © , x =y plane), the other patterns in Figures 5.28 and 5.30 are markedly
different. As it will be seen later, the cylinder was actually found to be a closer approxi-
mation to the helicopter tail section than the cone. However, it is important to note that

even though the cone surface represents a far more idealized model for this structure, its

[ o T
A S SN




N~

146

E9 horizontal pattern (Figure 5.29) still has the general characteristics exhibited by

the corresponding pattern for the cylindrical surface.

Finally, in the third set of patterns, Figures 5.31 to 5.38, comparisons
are made of the EG versus @' and Ecp versus ¢@' patterns for the cylinder configura-
tion just described, and the same cylinder with a parasitic current line parallel to the

cylinder axis attached to the stub . The patterns are given for four © - plane cuts :

o = &0°

’ 70° ’ 80° and 90°. While the Ecp versus @' patterns remain essentially
the same, the Ee versus @' pattern approaches omnidirectionality as 8 is gradually
increased from the radial dipole side to the shadow region. The presence of the hori-
zontal wire affects the patterns, but its influence appears also to be a function of © .
For example at 8 = 70° ( Figure 5.33), there is a maximum difference between the

two to polarizations of about 2 dB whereas at © = 90° Figure 5.37) , the difference

_is less than .2dB . The differences in the E(p components appear to widen in the front

region (¢ =< 90, aond ¢ = 270) as O is increased. However, the point of interest
in the above series of patterns has been focused mainly on their basic features. It will be
shown later how useful they were in predicting the radiation fields for the short monopole

mounted on the approximated helicopter tail section.

5.3 Measured and Computed Patterns

In the preceding section, emphasis was placed on demonstrating the con-
sistency and general applicability of the source representations and modeling procedures
in terms of various antenna systems. Radiation patterns which confirm more directly the
modeling procedures used in Chapter 111 will now be examined. The discussion is centred
around the experimentally measured patterns for the antenna models described in Chapter
IV in comparison with the computed patterns. Both the measured and computed results

will be found to have a special contribution to make to the understanding of the wire-grid

modeling method .



147

5.3.1 Testing of Chamber Characteristics

As in the computational part of this study, the monopole-sphere struc-
ture was useful also for the experimental testing of the anechoic chamber. Experimen-
tal polar plots of E9 versus ¢ amplitude and phase are shown in Figure 5.39 and both

are effectively omnidirectional. The phase pattern given above was useful in establish-

ing the~esseﬁtiolly uniform characteristics that are required of a free-space room. Next

an Ee versus © amplitude pattern which was obtained with the battery~operated self-
contained source inside the sphere is shown in Figure 5.40. Again, this result illustrates
the degree of symmetry that could be attained to ensure the validity of the experimental
patterns and the measurement methods as described in Chapter IV. The measurements

were repeated for different r:>robe angular positions, and the same degrees of symmetry

and uniformity were noted.

5.3.2 Experimental Validation of the Wire-Grid Modeling Procedures

Proposed in the Computational Study

Measured patterns for the disk-mounted monopole together with patterns
for fhe same monopole mounted on 8, 12 and 16 radial wires, respectively, are shown
in Figure 5.41. The wires were bonded on their periphery by circular rings. In
Figure 5.42, similar patterns are illustrated but with the rings removed. The main question
of interest is as to which wire-grid modeling procedure is ‘correct'. If one of the mo-
dels were to be based on the location of the stationary lines of flow on the continuous
surface, then the presence of the outer ring is actually unnecessary. This is simply be-
cause the flow of circulatory currents on the edge of the continuous disk cannot be
justified on physical grounds. That this observation is plausible is clearly illustrated by
examining the two sets of patterns. In Figure 5.42, the pattern for the 16 radial wires
(ring removed) practically coincides with that of the solid disk, and even the 12 and
8 radial wires appear also to be very close models. On the other hand, while its in-
fluence on the main beam is minimal, the presence of the ring changes noticeably the

pattern in the minimum region. This is true not only for the case of the 8 radial wires
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which exhibits a deep minimum, but also in the case of the 14 radial wires. [t is
therefore felt that the above patterns can serve as a good experimental validation of
the first important step in the vﬁre-grid modeling procedure, namely : that the wire
grids should only be placed along stationary lines of flow. The influence of increas—
ing the number of wire grids is al-o predictable in that the baﬂern of the continuous
disk is rapidly approached. By referring back to Figure 5.4, it can be noted that the
improvement in the patterns for the three experimental radial wire models is interest-
ingly faster than that for the computed patterns when the number is increased from 8 to
12 and then to 16. Thus while the modeling procedurés are being validated, the accu-
racy of the computational results are tested also. For the monopole mounted on the
radial wires, more weight is given to the experimental patterns. This is not necessarily

so for the other structures as described later.

The sphere models (i.e., the 16, 24, 32 meridians,. and the solid

sphere) led again to pattern comparisons somewhat similar to the above ones. However,

the most critical test for using stationary lines of flow as a basis for wire modeling in the
present study was the case of the finite cylinder with a radial dipole mounted on its sur~
face. A computed Ee versus © pattern (in the x -z piane) is compared in Figure

5.43 with experimental patterns obtained for a continuous surface, and a wire-grid model

' consisting of axial and circumferential strips. For the three curves, the nulls and maxi-

mum points are indicated to be basically in the:same positions. On the whole, close

agreements can be seen, although a maximum difference of the order of 3 - 4 dB s

. noted in the front region. Still, the patterns as presented provide a strong experimental

validation for the conclusion made earlier that as a working rule one should attempt to

predict carefully the components of the surface current distribution on a given antenna

. configuration before applying the numerical procedure.

5.3.3 influence of the Wire Radius Parameter

The patterns illustrated in Figures 5.44 and 5.45 are directly related to
the current values given in Tables 3.3 (@) and 3.3 (b) earlier where an indication of

the influence of the wire radius parameter on current computations was sought. In both
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cases, four patterns, three computed and one experimental, are compared for a short

monopole mounted on 12 and 16 radial wires, respectively.. The three computed

patterns in each figure are denoted by A, B, and C and the experimental ones by

D . Each pattern was computed with a current distribution obtained using a different
value of wire radius in the impedance matrix equations of (2.80). The resulting pat-
terns are seen to be affected by the value of wire radius employed for the three separate
cases since they are all visibly different in the region 50° s © = 145°. Thus the
‘significance of the wire radius parameter which was only qualitatively established in the

problem formulation part of Chapter 11l can now be discussed more specifically.

The important question is, how to determine the pattern which is closest to
the experimental pattern, and thence to show which value of wire radius is most appro-
priate. A close examination of the two sets of patterns (i.e. both in Figures 5.46 and

5.47) is needed . Curves are shown for the following three radius values :

) a = 0.00104 ) (Pattern A)
() a = 0.00182 (Pattern B)
({iil) a = 0.00564 A (Pattern C)

The third value above corresponds to the physical wire dimension of the radials in the ex-
perimental models shown in Figure 4.5. Calculations were made for a fourth value,

a = 0.0078 \ ; however, the resulting curve for this large radius is similar to curve C .

The three computed patterns in Figure 5.44 may be compared with the ex-
perimental pclttelln on the basis of the basic pattern features such as the main beams, nulls,
minima, side lobes. It can be easily seen all are essentially of the same shape. However,
Pattern A (i.e. the one for the thinnest wires) is clearly far removed from the experimen-
tal curve except for low values of © . Thus the choice is to be made between curves B
and C. On the main beam side, if the greatest discrepancfes are considered, curve B is
about 1.3dB below D (at © = 95% , whereas C isabout 1.4 dB above D ( at
0 = 1200). Near the minimum and minor lobe regions B appears also to be closer to D
than C. However, since the current distributions employed in the pattern computations
are in any case approximate, a fair agreement between computed and measured patterns can

only be achieved in the main beam region and at the nulls [58] . Based on this considera-

T
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tion, it is thus argued that pattern C is the closest to the experimental one. On the

other hand, curve B shows better agreement in the side lobe region.

Similar observations can be made for the patterns given in Figure 5.45.
Since the value of the wire radius appears to affect the results in the same manner as in
the previous ones, this suggests that its influence is independent of the number of wires
used in the grid, or possiBly the shape of the antenna structure. As stated earlier in
connection wfth the current computation schemes, the general conclusion drawn was
therefore to take into consideration the actual physical wire sizes in computing current
distributions on wire-grid structures. Clearly a mathematical technique, such as the
least squares curve fitting method could have been used as a basis of comparison for the
above curves. Such a statistical comparisbp however would not be necessarily as useful

qualitatively as the one used above, which is based on basic antenna pattern features.

The above observations . emphasize’ the question "how thin should the
wires be ?" when a given continuous antenna surface is replaced by an equivalent wire-
grid body. Or equivalently, can there be a certain 'correct' order of magnitude to be
assigned to the wire radius value ? This question is fundamental to the whole wire-grid
method of analysis of antenna systems. Moreover, since the results of this study have
also demonstrated that thin strips are equally useful, possibly more useful than circular thin
wires in wire modeling procedures, then the problem becomes even more complicated. In
fact, the question posed above should be re-phrased to read : " what is the largest cross-
sectional dimension that the wires (elliptical, circular, flat) should have in a grid model
of an antenna structure ? " Although no direct answer has yet been provided, nevertheless

the results suggest a need for further examination of this aspect of the wire-modeling pro-

cedure.

In closing, it should be pointed out that although the influence of the wire
radius parameter has been demonstrated by the results of this study, it is still significant
that a thin wire must be assumed for linear antennas. In the standard field formulations,
the thinness is purposely introduced or assumed so as to justify the classical sinusoidal
current distribution, or to simplify the solutions derived from Hallen's or Pocklingt‘on's in-
tegral equations. The results of the present study appear, however, to modify this assum-

slightly in that the value of “a " in the fundamental integral equation given in 2.-19)

B e L T



151

should not be arbitrarily chosen to be very small. Such a step might lead to the calcu-
lation of incorrect patterns. However, this does not mean that the use of finite wire
radius values will automatically yield correct far fields since there might be other equally
lmpori'unf factors (e.g. mathematical approximation, segmentation and modeling proce-

dures) that would also have to be taken into consideration, as will be shown by some of

the results discussed below.

5.3.4 Comparison of Computed and Measured Patterns

This section presents a broader comparison of computed and experimental
results, using four antenna structures which differ widely in terms of electrical dimensions,
location of sources, ‘geometrical shape and complexity. Patterns for the sphere -mounted
monopole are once again considered followed by an examination of the mast-mounted di-
pole, then the patterns for the corner reflector are presented and lastly, the elliptical
polarization components ( E and E(p) of the far fields for a monopole mounted on the

helicopter tail section are dnscussed for a number of © - plane cuts.

5.3.4 (@) Sphere-Mounted Monopole

Figures 5.46, 5.47 and 5.48 illustrate how the sphere radius affects the
Eg versus © patterns for the 1/4 A monopole mounted on the 32 -meridian sphere model.
The agreement is good in terms of the main beams’ side lobe, minima and nulls. It can
be noted that aé the radius is increased, the minimum region in the centre of the beam tends
to move towards © = 180°, and at the same time the main lobe moves towards the region

@ > 90°. Thus in the limit of a large sphere radius, the case of a monopole mounted on

an infinite disk would be approached.

5.3.4 b) Mast-Mounted Dipole Antenna

For the dipole antennas mounted on the cylindrical masts with varying dia-
meters and for different antenna positions, six groups of Ee versus @ patterns are given
in Figures 5.49 to 5.54. First experimental and numerical patterns are compared in

Figure 5.49 with commercially available data [77] . The same basjc pattern shapes
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including the locations of both major and secondary lobes are apparent in each curve
although discrepancies are noted in the field strengths. Better agreements between
computed and measured patterns are indicated in Figure 5.50 where two experimental
curves ( one for continuous surface and the other for a wire-grid model with six strips)
are combared wi th a numerical result. Next, two computed patterns ( one with six
strips, and the other with eight strips) are compared in Figure 5.51. The influence
of using an increased number of current paths in the computation sct.2me can be noted
in the forward region. The remaining three groups of patterns provide further illustra-
tion for the validity of the computational models. There is, however, one noticeable
qspéct in the above patterns with the exception of those shown in Figure 5.50. It is
that, although the pattern features are similar , nevertheless, the experimental and cal-
culated radiation fields are shifted from each other by appreciable offsets which range
from about 3dB (Figures 5.49 and 5.54) to about 1.3dB (Figure 5.53) . This then
suggests the need to either re~examine the accuracy of the wfre-grid modeling procedure
for this antenna structure, or the dependability of the experimental procedure. As dis-
cussed earlier in the problem formulation part of Chapter I1l, one would intuitively
expect to find more current paths on the surface near the dipole antenna and fewer on the
back side of the cylinder. However, to simplify the coordinate segmentation scheme,
the current filaments were purposely placed at equal intervals around the periphery of each
cylinJer. Even then, the proposed wire-grid models have been shown to be equivalent
to the continuous surfaces as demonstrated particularly by the patterns given in Figures
5.52 and 5.53. Thus the reason behind the offsets must lie elsewhere. Since the

measured pattern is bodily shifted along the dipole axis with reference to the computed

one the appropriate questions to ask are :

()  where is the actual axis of symmetry ?

(i) where is the phase centre ?

In the far field computations, these factors are not critical. However, in the experi-
mental arrangement since at ¢ = 0° the antenna is nearer to the probe than the cylinder,
and farthesr at ¢ = 180° , the choice of the axis of rotation could conceivable have a
bearing on the measured patterns. Nevertheless, the experimental patterns serve a useful

purpose by providing an independent validity check for the computed patterns. They also
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establish more firmly the wire modeling procedure proposed in Chapter |l where the

number of axial strips used to model a given cylindrical mast was indicated to be de-

pendent on its diameter.

5.3.4 () Measured and Computed Patterns for Corner Reflector Antenna

Computed patterns for typical finite corner reflectors have already been
considered in Figures 5.8 to 5.11 in which published measured values were used for
comparison. These are now supplemented by five additional ones shown in Figures 5.55
to 5.59 in which three H - plane and two E - plane patterns are included. In the
latter patterns (Figures 5.57 and 5.59) , the minor irregularities of the ex perimental
pattern are due to the fact that the measurements were carried out by a point - by - point
method. The agreement between the computed and measured patterns is better than 1dB
within the half-power region of the main beam, and the maximum discrepancy in the back
lobe (see Figure 5.55) is about 3 dB. It is important to note that the corner angles in-
dicated in these patterns and in the previous ones are not necessarily sub-multiples of
180°. The close agreement between the experimental and computed fields therefore de-
monstrates the fact that the wire-grid method of analysis can be applied to such relatively
simple and finite antenna structures as the corner reflector that hitherto could be studied
using either greatly simplified approximations (e.g. image theory methods) or complex

mathematical formulations (e.g. geometric diffraction techniques).

5.3.4 (d) Measured and Computed Patterns for the Short Monopole
Mounted on the Thin Wire Structure

The final series of patterns, presented in Figures 5.60 - 5.75, are for a
short monopole mounted on the helicopter tail section. The first eight patterns (Eq versus o :
Figures 5.60 to 5.63, and E versus ¢ : Figures 5.64 to 5.67) shown were obtained
for the basic wire structure without the rotor blades. The principal - plane cuts considered
are 6 = 60° ’ 70° R 800, and 90° . The remaining radiation fields demonstrate the
influence of the rotor blades (mainly on the Ee component) when they are placed

parallel (as shown in Figure 4.6) or perpendicular with respect to the axis of the wire struc-




154

ture. For the latter patterns, the Ee and E ® components were obtained for
© = 80° and 90°. Patterns were also measured for the structure covered with alu-
minum foil.. The complete set of patterns is noteworthy for two reasons :
()  Both polarization components (E, versus o and
Eg versus ¢ were predicted by fﬁe patterns shown

earlier (Figures 5.31 - 5.38) for the radial dipole
mounted at one end of a finite cylinder.

(i) Although the basic feature of the computed and mea-
sured patterns were found to be the same, still the
differences, especially in the Eo polarizations, are
relatively large.
The first observation suggests the possibility that, right from the start, the arbitrary thin
wire structure could actually have been replaced completely by the smooth continuous

surface shown in Figure 3.32 (g) . This would have meant that instead of reading co-

ordinate segmentation data from a drawing into the current or pattern computation programs,

- one could have used a simple segmentation subroutine as was done in the case of the other

simpler antenna bodies. Thus many sources of error which were encountered in the study
could have been partially eliminated. In fact, this alternative route is clearly validated
by the patterns given in Figures 5.61, 5.62, and 5.63 where, in each case, two experi-
mental patterns - one for the thin wire structure, and the other for the body covered with
aluminum foil, are illustrated. The reason why this simplified approach was not followed
was simply that it could not be predicted in advance. It became apparent only after the
series of cylinders with the radial dipoles were successfully modeled, and also after the

experimental patterns for the helicopter tail section were obtained.

. On the other hand, the fact that the differences between the computed and
measured patterns are seen to be relatively large (in some cases, greater than 6 dB as
can be noted from Figures 5.68 and 5.72) strongly implies that either the measurements
or the corresponding computations require more detailed re~consideration. The experimen-
tal patierns were repeated with considerable care and the same results were obtained. It
can be concluded that the computed patterns suffer from over simplification of the computa-

tional model.
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There were a number of factors which led to this conclusicn.  First and
foremost, to keep the size of the structure impedance matrix within a tolerable core
memory requirement (about 300 k), some wire segments had to be omitted in the cur-
rent computation schemes. The elimination process, as indicated earlier, involved some
guesswork. Because of computational costs, repeating such a procedure more than once

by varying the locations of the omitted segments was restricted to very few runs. Thus

this source of error was unavoidable.

A second source of error may be related to the coordinate segmentation data
which had to be prepared from a drawing. However, in this case the errors introduced
would be mainly of second order. The wire radius parameter is another possible factor.
Although great care was taken to assign to the various current elements their physical
wire radii, one gross assumption was made about the thick rod A - B in Figure 3.31 as
being sufficiently thin, and thus the current flowing on its surface uniformly distributed
around its circumference. This was suspected to be a questionable assumption, and since
the rod is in the vicinity of the source and the monopole, a refinement in its modeling
would have had a noticeable influence on the resulting apﬁroximafe current distribution
and hence on the computed pattern. A better modeling procedure would have been to
spiif the rod into-two or three thinner filaments. This technique was used in the case of

the mast-mounted dipole and also was found to be useful in a similar study [84] .

Finally, a major simplification which may contribute to the difference be-
tween the computed and experimental data is that of ignoring the problem of current
element junctions. As briefly mentioned in the problem formulation part of Chapter |11,
this question was set aside and continues to form one of the limitations of the modeling
technique as used here. The thin wire structure as seen from Figures 3.31 and 4.6, is
inherently characterized by many junction points.. However, because of computational

complexities, the junctions were necessarily ignored.

Afterexplaining why the above mentioned discrepancies may occur it should,

however, be repeated that the agreement is fairly satisfactory in both the Eg and E(o

components. For the E"; patterns, all the nulls, minor and major lobes are subsfontially

- confirmed by the experimental patterns although there appear to be some angular shifts
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( of the order of 15° ) in the location of the major lobes. [t should also be emphasized
that the two qdesﬁons that were raised in discussing the patterns for the mast-mounted
dipole (i.e. about axis of symmetry and location of centre of phase) are equally ap-
plicable to the present series of patterns. Thus between the two possible extremes, that
is sources of error due to computational modeling on the one hand, and experimental
validity on the other, it is concluded that the computed and measured patterns are suf-
ficiently meaningful to confirm the validity of the computational procedures used. The
application of the wire~grid modeling method to this complex structure, therefore demon~-
strates the utility of the method, and as described earlier in Chapter 11l and also in the
following chapter, important guidelines to the effective use of the technique have been

established.
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Figures 5.5. to 5.7. Computed E “vs @ (H - plane)
v Pattern (Relative Electric Field) for Dipole An- o —]
) tenna Mounted on the Side of a Cylinder Support.
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Ejgurés 5.12 to 5.19: Computed Patterns for Radial '

Dipole Mounted on Finite Cylinders.
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wsy | 2 : WIRE-GRID MODELING ¢
o ' — —— SURFACE ELEM[ENT] -0

METHOD L50 i
-0-15 |
_0'30 . i
(dB) i
-0-45 ‘;
1

Figure 5.14, I':'9 vs ¢, x -y plane. F.igure 5.15. E(p vs ©, x -y plane.
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: For Patterns (Relative Electric Field) shown
igures 5.16 to 5.19, D = 0.25 ).

“’_—'«r —— WIRE-GRID MODELING ¢ ~ (f|
———ANALYTICAL [40]

<~~.) Figure 5.18. E9 vs ©, x -y plane. Figure 5.19. Eqp vs
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Figure' 5.20 to 5.22 : Computed Radiation
Patterns (Relative Electric Field for Two
= Radial Dipoles Symmetrically mounted on -6-——-|
@, a Finite Cylinder. ¢

—— COMPUTED
——=~ANALYTICAL [40]

Figure 5.20. Eg Vs e, x -z plane.

607 300°

120° 240°

) 180°

Figure 5.22. E'p vs ©, x -y plane.
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Figure 5.23 to 5.26. Comparison of Computed Pat- '

: terns for a Radial Dipole and a Radial Parasitic : ! -
() Element mounted on Finite Cylinder as shown in Mg Y 4
Figures 3.32 (c) and 3.32 (d), respectively. -
x, x




Figures 5.27 to 5.30.  Comparison
o Patterns for Antenna Structures shown in
W, Figures 3.32 (¢) and 3.32 (f).

Note : @' =0 corresponds to axis of Cylinder or Cone (or to ¢ = 900}.
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Figure 5.39. Testing of Anechoic Chamber Performance : Figure 5.40. Testing of Anechoic Chamber :
Measured E, vs ¢ Amplitude and "Phase ' Measured E, vs © Pattern (Amplitude) }
Patterns for~ Sphere .mounted Monopole. (Ex- ' for Sphere-mounted Monopole. ( Bat-
ternal source used to Energize the Monopole). tery-operated source used to energize ‘

the Monopole). ‘
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- RELATIVE "ELECTRIC FIELD .

-
5 O . o

o

{7 1
XKL A

0° .150
Curve } No. of Radial Wires
~DA— 8
X X X 12
® o e ]6 . .
—O—O— CONTINUOUS DISK (EXPT.)
o Vs © Measured Patterns for Sherf Monopole Mounted
n Different Radial Wires Bonded,\YT.hin Wire Rings.
Pattern for Continuous Disk also included.




RELATIVE ELECTRIC FIELD

Curve No. of Radial Wires
T 8
12
_ 16
—0—0— CONTINUOUS DISK (EXPT.)
-Ee vs 8 Measured Patterns for Short Monopole on '

igure 5.42.

Radial Ground Wires with the Bonding Rings removed.
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RELATIVE ELECTRIC FIELD

10/ ,
r—q .
V! 0.166 A Monopole mounted
![’ on 12 Radial Wires of
. Radius = 0.5\ .
Curve a/\

A 0.00104

B 0.00182

C 0.00564

D
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0 (Degrees)

Figure 5.44. Short Monopole mounted on 12 Radial Ground Wires :
Study of Influence of Wire Radius Parameter "a" .
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RELATIVE ELECTRIC FIELD

!f, 0.166X Monopole mounted
on 16 Radial wires of
Radivus Rd s 0.5\

Figure 5.45.
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Short Monopole mounted. on 16 Radial Ground Wires.
Study of Influence of Wire Radius Parameter "a" on Pattern Computation.
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5.46 to 5.48

Figures

e
Field)

e
mounted on 32 - Wire-

0O 000

()

Figure 5.46. Rs = N/4.

-6
00

180°

180°

180°

)

= 3)1/8.

Figure 5.48. Rs

Figure 5.47. R, = 5\/16.
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Figure 5.49 to 5.54. E, vs ¢ Computed and Measured Patterns (Relative
Electric Field? for Dipole Antenna mounted on the Side of a
(} Supporting Cylinder, ZA
) Note :
(1) Additional Parameters : Cj
. NC = NO. OF WIRES USED IN COMPUTATION-
AL MODELING OF CYLINDER. | o
NE = NO. OF WIRES USED IN EXPERIMENTAL L, ’A E
. MODELING OF CYLINDER. ¢ _-h‘ -
(2) Abbreviations : o
WGM =  WIRE-GRID MODELING o
CSM =. CONTINUOUS SURFACE MODEL ( )
- D Sy

COMPUTED  (NC = 6)

COMPUTED (NC = 6)

— — — EXPERIMENTAL WGM, NE = 6) — = — EXPERIMENTAL (WGM, NE = 6)
—x—x— DATA FROM REF .[77] —0—0— EXPERIMENTAL (CSM)
Figure 5.49. D = 0.28 ), h.c = 0.823 ). Figure 5.50. D=0.202)A, S=0.55\.

(} S = 0.75), hd = 0.414 ). hc=0.63 A, hd=0.3 A.

e i N S SARrL
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180
———— COMPUTED (NIC = 6)
—e—+— COMPUTED (NIC = 8)
—— — EXPERIMENTAL (WGM, NE=6)

Figure 5.51. D = 0.33\, S = 0.28A.
‘hc= 1.0M, hd= 0.5\ .

180
COMPUTED (NIC = 4)
— ——EXPERIMENTAL (WGM,NE = 4)
—o—o0— EXPERIMENTAL (CSM)

D=X/6, $=0.368 A.

Figure 5.53.
h = 100 A' hd = 0'5 A .
c :

g

180

180
.COMPUTED (NC = 6)
— —— EXPERIMENTAL WGM, NE = §)
—o—o— EXPERIMENTAL (CSM)

Figure 5.52.

D = 0.33)\, S = 0.914).
hc= 1.0, hd=0.5)\

N— ,
LY

/W 5 |
R

e

T
—o—— COMPUTED (NC =8)
—o0—o— EXPERIMENTAL (CSM)

Figure 5.54. D=0.257 A\, S = 0.6%9 A.
¢ hc=0.823)\, hd=0.38)\.
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Figures 5.55 to 5.59. Computed and Measured H- /i
(J plane and E-plane Patterns (Relative Electric . ' ~0. R l
Field) for a Finite Corner Reflector) with e _
Height , H = 1.0\ _—° N
Width , S = 0.5) /, )
Distance, D = 0.25)\ A "1/ |
4 1 Y
Note : Symbols NC, NE, WGM and CSM as > J
defined on page 179 are also used here. H . -
J//<B>\
120° 90° 60°
== — >
N
©
” "( ~. 30
/ )
150° Y
- \
—— ¢
180° ,;*. = : o°——j
< /
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~ Ve / 4
™~ )
: Q /’
> -
{ p o
( 270°

—x——COMPUTED (NC = 9). COMPUTED (NC = 11), ———EXPERIMENTAL (WGM,NE=9).
Figure 5.55. E9 vs © (H -plane) for B = 60°,
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S Figure 5.56. EG vs ¢
(H-plane) for B = 90°.
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Figure 5.58. EG vs @ !
H-plane) for B = 130°.
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Figures 5.60 to 5.75

/I

z
Computed and Measured Patterns ANTENNA T—g/
Relative Electric Field) for Thin _ T~/
(' ) Wire Structure. x
- - Note : _ ‘

<

\

B

WOR = Without Rotor Blades.
WRL = With Rotor Blades Parallel.
WRR =

With Rotor Blades Perpendicular.

180°

Figure 5.60. Eg vs @ e = 60° (WOR)’ Figure 5.61. Eg vs @ e = 70° WOR)
Computed
—-—— Measured (Wire-Grid) ¢ g

—0—0— Measured (Cont.)

—_r
X

. 2D
180 .

Figure 5.62. E9 vs ©, 0 = 80° (WOR)

180
Figure 5.63. Eg vs ©, @ = $0° (WOR)
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120°

1

vs ¢, 6 = 70° (WOR)
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5.65.

vs ¢, 6 = 60° (WOR) Figure

E

5.64.

Figure

5.67. E, Vs @, © = 90° (WOR)

Figure
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vs ¢, 6 =

5.66. E
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Figure 5.68. Eg vs 0,0 = 80° (WRR) Figure 5.69. Eg vs @, © = 80° (WRL)

(o]
Figure 5.70. E(p vs ©, © = 80°(WRR) Figure 5.71. E(p vs ©, & = 80" (WRL)
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CHAPTER VI

CONCLUSIONS

The central objective of this study was to apply the wire-grid method of
analysis systematically to linear antennas mounted near conducting bodies, with the
broad aim of establishing guidelines both for the formulation of the wire-grid models and

for the structuring of the computational process.

The computational analysis of the antenna systems studied and the accom-
panying experimental measurements have yielded results which are generally in good

agreement. The important findings and conclusions based on this investigation are as
follows :

@ The study was started on the basis of the concepts, methods, and
assumptions of linear antenna theory using Pocklington's integral
equation as the fundamental formulation. The problem of the ex-
citation source representation was given special attention. In
seeking computational models for the sources, recourse was had to
classical studies of straight wire antennas. The models used were
either the finite-width gap or the magnetic frill current source.
While these models have been exploited in a restricted form by
others in the case of simple wire antennas, it is claimed that the
results reported in this study demonstrate the effectiveness of the
adaptation of these source models to complex three -dimensional
antenna structure. Detailed computations of current Jistributions
have shown the two source representations to be equally useful for
far field patterns. It should be noted that some formal representa-
tion of the source is essential to make the use of the wire-grid

technique possible for the analysis of the type of antenna systems
considered in this work.

't
1
|
i
j
2
3
!
i

®) The basic computational approximations used and numerical pro-
cedures followed have been developed elsewhere. However, much
effort was expended on the general structuring of the computations
into self-contained schemes. Particular attention was given to the

the evaluation of "impedance" matrices and their solution using a
standard matrix elimination method.

(c) In applying the wire-grid analysis method to linear antennas near
conducting bodies, considerable insight has been gained for develop-
ing a modeling procedure on a sound physical basis. Unlike applica-
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tions to scattering by conducting bodies where mesh size is the
starting criterion for correct modeling, the present study has
emphasized the concept of stationary lines of flow as the basis
of wire~grid modeling. It has been demonstrated that this ap-
proach removes considerable doubt about the location of the thin
wires needed to model a given continuous surface. Although the
concept has been known in antenna analysis and commonly used
in engineering designs (e.g. grid-like corner reflector antennas),
its usefulness in current distribution computation has been recog-
nized only in this study. The validity of this approach has been
demonstrated by the computed and measured results.

The stationary line of flow approach has been applied to specific
antenna systems and modeling and segmentation details have been
developed for them. Depending on antenna location and configu-
ration of the supporting surface, two general cases have been

‘considered:

() bodies in which the surface currents have a single
common vectorial orientation, . and

(i) bodies in which, surface elements need to be con-
sidered in terms of two or more orientations.

It has been shown that each antenna structure needs an appropriate
segmentation scheme before it becomes amenable to current and pat-
tern computations. The possibility of achieving programming
efficiency in current computations using symmztry has been demori-
strated. Computation of radiation patterns has re-emphasized the
sufficiency of the point-matching method for far field calculations.

Modeling criteria have been established for specifying the number of

paths to be used for the different antenna configurations and have

been corroborated experimentally. Segmentation procedures have

also been developed and tested by comparing calculated, measured

or known patterns. The influence of the number of wire elements used

in a given computation has been shown to depend more on the number

of current paths included in the wire model rather than on the fineness

of segmentation provided that a certain upper limit of size is not exceeded.

An important ‘insight has been gained into the influence of the wire-
radius parameter for antenna structures already in a wire-grid form.
The conclusion is drawn that in applying the wire-grid technique to
such structures, the physical wire radius values must be taken into
consideration. This conclusion would not have been reached with-
out the availability of experimental results.
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The experimental work has emphasized two special aspects of the wire-
modeling process :

() the use of narrow strips in place of thin circular cross section
wires,

(i) the replacement of grid-like structures by continuous surfaces.

In the first case it was found that narrow flat strips are as useful as round
wires. In the second case, -which experimentally is a reversal of the nu-
merical modeling procedure, results were obtained which were essentially
identical for grid or continuous surface models, thus giving substantial
credibility to the wire-grid modeling concept.

It must also be emphasized that at this stage of development of the wire-grid
modeling technique, experimental measurement still serves a function more

- crucial than mere corroboration of the calculations. Experimentation on

models in this investigation served as an essential factor in helping to deve-
lop insight into the numerical technique. It helped to reduce expensive or

even misleading "iterations" or trial computations by a considerable amount
and contributed substantially to the development of the "correct” models.

Two major sources of error were encountered in the computational proce-
dures :

() errors due to coordinate segmentation subprograms, and
(i)  errors in the computation of "network impedance” elements.

Even after the wire modeling approximations were satisfactorily established,
it was sometimes found in preliminary test runs that some minor detail in the
segmentation scehme would cause major errors. As an example, the centre
coordinates of the current elements might be evaluated correctly, but the
angular orientation would differ from the assumed direction of the stationary
current lines, thus leading to wrong results.  Such errors are further aggra=
vated by the computer’s ready ability to produce an output that may either
be relevant or meaningless. Similarly, serious errors in impedance compu-
tation were noted under conditions for which program debugging was very
difficult. This kind of situation occurred particularly for antennas with
geometrical symmetry. In the reduction of an impedance matrix,it was
found essential for the compact impedance structure to give results identical
to those given by the complete matrix. The fact that there is symmetry in a
current distribution can be seen easily enough heuristically, but to program
the appropriate structure data correctly, great care is needed in the arrange-
ment of the unique current elements.
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In summarizing the above observations it can be concluded that the wire-

grid method of analysis has a wide range of applicability provided that careful attention

is given to the *“correct " modeling, coordinate segmentation, source representation and

computational structuring. It is in fact difficult to find other alternative methods amongst

those discussed in the introductory chapter which would have as powerful a scope of appli-

cation, except possibly the surface element method, which is of the same generic family.

The modeling procedures evolved in the present investigation are adaptable

to a wide variety of specific antenna problems and a series of procedural guidelines have

become apparent as described in the body of the thesis. These guidelines relate in parti-

cular-to :

Correct source representation and location.

Use of the stationary current flow concept for the modeling
of the wire grid.

The choice of segmentation and structuring of the computation
process. '

The use of a finite radius for the wire elements.

In addition to the above conclusions, the results of the study suggest further

areas for research. These are as follows :

@) -

®)

It has been demonstrated that thin circular wires or thin fila-
ment strips can be used to make experimental wire-grid models
of antenna surfaces. From a physical point of view, the wires
representing a surface structure actually should be strips. If
this can be achieved, then by adjusting the width of the strips
the procedure could possibly be made to approximate the surface
element modeling technique. However, this would first require

a fundamental restatement of the basic integral equation formu-
lation.

The influence of the wire radius parameter for circular wires had
been established for grid-like structures. It is suggested that its
influence on the accuracy of the wire modeling process for a con-
tinuous surface be explored further. This might be done by re-
assessing the assumption made about the current distribution being
uniformly distributed around the periphery of a thin cylindrical
current element especially in the presence of nearby elements.
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() The comparisons between computed and measured patterns
have shown that the agreements were fairly good for those
structures which were modeled by wire grids with few
junctions. However, in the case of the thin wire structure
approximating the tail section of a helicopter, many junc-
tions were part of the structure, and the pattern agreements
were found to be rather unsatisfactory in the detail. It is
suggested that Kirchhoff's junction condition may have to be
satisfied for this type of structure even though in other struc-
tures this condition was up till now successfully neglected.
Investigation in this area no matter how difficult might make
the wire-modeling technique more rigorously complete.

@) Ithas been stated and implicitly assumed that the antenna
structures studied had finite electrical dimensions. It would
be of considerable interest to make a systematic search for the
“finiteness” of the boundary beyond which the wire modeling
technique might become inappropriate. The bounds to the
technique may arise from considerations of either computation-
al capacity limitations or from the existence of other analytical
methods which may be more pertinent to larger size systems.

€) Finally, it is recommended that a systematic application of the

surface element method be examined in a manner similar to that

undertaken in the present investigation. Such a study might

hopefully bring out further additional insight which would sup=

plement the conclusions reached in this work.

In summary, although the precise formulation of a set of "canonic* rules
has yet to be attained, it is contended that important guidelines for the use of the wire-grid
method of analysis have emerged from the study. The application of the technique for de-

termination of patterns of practical antenna systems which hitherto were mainly attainable

only by scaled or actual size measurements, or by approximate analysis, is firmly established.

Furthermore even if generalized canonic theorems should prove to be un-
attainable, a systematic development of wire-grid models for the frequently used antenna
configurations, organized in an encyclopaedic manner, along with programming and com-
putational details, could be envisaged. Such a compendium is possible and would be a
powerful research and design tool, since once a wire grid model for a particular antenna
form is established and proven, it can be used exhaustively to investigate and optimize the

antenna system in terms of its various parameters.

e ——— e s o
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APPENDIX A

USE OF SINUSOIDAL INTERPOLATION AS BASIS FUNCTIONS

The computational complexities involved in using higher order basis functions

to approximate segment currents on thin wire structures can be illustrated for the sinusoi-

_dal interpolation function given in (2.46) . Consider a centre fed thin linear antenna

which is divided into N current elements for current computation using Hallén's inte-

gral equation. The formulation is given commonly in the form

z =-h

Figure A.l1. Segmentation of a_Straight Antenna |

for Current Computation.

h .
Jree(ze) dz' = Beskz + 4L sink 121 A.1)
=h o

where | (z') denotes the current distribution, G (z, z') is the usual Green's func-
tion given in 2.16) , V is the complex amplitude of the excitation voltage, Zo is the

free space impedance , and B is an unknown coefficient to be determined using the end
conditions [14].
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Ih) = 1(-h) (A.2)
Applying the collocation method to the above equation yields [18]

N -

z I li(z')G(zi',i')dz' = Bc:c>s|<zi +'—\-/-sin k,lzi)

i=l Az, 2z

A.3)

To simplify the discussion, the segmentation can be chosen to be uniform, i.e.

Zi T zi = .zi - .zi_] = A zi . (A.4)

where zi_] ’ zi , and zi are centre coordinates of three neighbouring segments

+1
as shown in Figure A.1. Along the ifh segment centred about Z; r it has been shown
[19] that for faster convergence (i.e. with fewer segments), the current can be ap-

proximated by (2.46) which can be re-written in the form

Ii(z') = Ai+Bi sin k (2’ -zi) + Ci cos k (z' -zi) (A.5)

for z'in _Azi

= 0 otherwise

in which Ai ’ Bi ’ Ci are unknown coefficienfs.. Let l._] , 1., and li"‘] be the

current values at Zig 0 % and Zig respectively. Then, by matching the current

distribution at the three neighbouring points, the following expressions are obtained :

li'] = An - Bi sin k di'] + Ci cos di"] A.6)
1. = A, + C. A.7
| I | ¢ )
and where '
i+1 = Ai + Bi sin k di"‘] + Ci cos k di+'l (A.8)
. di"] T T Az A.9)
and




W

j+1

Defining = sink Az

q = cosk Az

then the three unknown coefficients can be expressed as follows :

Ly - 2al+ iy

A, =

: 2(1-q)

B = "Lt

| 2p

and
-1, + 21 -1

c. = i~} I| l|-l-'|
b 2(1-q)
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(A.10)

(A.11)

(A.12)

A.13)

A.14)

(A.15)

Thus the above expressions can be substituted into (A.3) , and the impedance matrix

coefficient for the unknown current distribution determined. However, it is apparent

that the integrations have now become much more involved than was the case with pulse

basis functions.
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APPENDIX B

FIELD COMPUTATIONS WITH A MAGNETIC FRILL SOURCE MODEL

As stated in (2.66), the magnetic current-density M gives rise to an
electric vector potential from which the electric field E' is to be derived according
to (2.69). For a monopole mounted on a plané conducting disk, it has been shown

elsewhere [56] that the space surrounding the frill source (see Figure 2.7) can be

divided into three regions :

() Near field region in which elliptic integral
evaluation is involved ;

(i) Far field region in which closed form approxi-
mations are used ;
and

(i1i) Axial field region, along the monopole axis,
for which closed form field expressions are also

obtained.
The boundary surface between the near and far field regions can be chosen judiciously
depending on the accuracy required for the current values. Typically it can be located
at a radius distance equal to five times the outer radius of the frill. |f the observation
point isplaced in the x - z plane, then from (2.66)
2

ro= [22+p

o + p'2 -2pp' coso'] B.1)

and the electric vector potential would then be given by

b =

€ = jkrg
Ffp = - = _]F J I eosor (2=—2ydo apr (B.2)
2‘|'l' ln; a o - r°

‘where a and b are the inner and outer radii of the frill, respectively, and the excita-

tion voltage is set at 1 volt . Because of symmetry it should be noted that integration

in ©' isfrom 0 to w . Itcan be shown [55], [56] that for the near field region, F ¢

can be written in the form
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w

b .
€ -jkr
- F(P ="'_.?.. . _‘_E. I [Z‘K(%‘)PZ'FI(COS(D'e o-—l-)dcp']dp'
© 2v (@ a o o o (8.3)
where
o= [z2 + (0 + p')2] | \ (B.4)
o = LB X .5

) .
22 4+ (p+ p')>

and K (-12'— . p2) = complete ellipﬁca.l integral. of the first kind. Using the relations
given in (2.71) and (2.72) for the E'z and E;, field components, integrations and

differentiations can now be carried out numerically by means of (B.3). Simpson's rule
can be used to perform the integrations, and Lagrange's three—point (equally-spaced ab;

scissas) formula has been found to give sufficiently accurate partial differentials [56] .
For the far field region, the approximation starts by setting
rp, = [22 + p2 ] (B.6)

and then by taking r, fo be given by

2

1
(N, p' _ pP'cso - (8.7)
2r2 r2 .
Thus
. o . .2 02. 312 . ' 3
_.!_..RS _;__[]+—2—F:-ocos(p'--—-2-2p + = pzoszw _.O-P4 cose'+...]
"o 2 2 fa 9 2
' (8.8)

Substitution of (B.8) into (B.2) yields

)

& . O U e
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e b = ~ 2 2
_ o | 1 op cose' p' 2 .2 cos“ o'
Fo = 5 1 B IIT“*'z ‘22*-"" -z
w n(a-)a o r Fo . o fo
(B.9)

. 3 . _
—o'o__—_%?_s..&o..]cosw'e Ikro d‘p'dp'
r .
2

Integration with respect to @' leads to zero, first and second order Bessel functions

]
with ( k f 0 ) argument. These can be approximated further by series expansions
to give

: € - =jkr b - . 3
FE o~ - o e'72 K irkpo' _jrkpop
@ 21r|n€-) f, @ 2 fp - 4 r23
2/ (8.10)
» -ikp' " /2r
+ ®P P'J e 2 d p'
-jkr
‘€ 2 2 2
~ o (b2-c|2) kpe [l +k(b +a)
8 In (a-) fo k fo 4 o
. b2 + 02 @10
2 fo
Finally'express’ions for E'z and E'p are obtair.ed by partial differentiation.
For the axial region, Eip is zero, and Eiz is given by
. F oOF
E = lm [-L1 2 _ ® ] (®.12)
limo=0 o0-0 o p ‘o °p
The final expression for Eiz is given by
. ’ ;ikr3 - ikry
E'z = L [ - ] (8.13)
lim 0 =0 2 In(g-) 3 "4

i
}
|
i
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where | . ‘
rg = [22 + 02] (B.14)
and
g = [22 + b2] . ‘ ’ (B.15)

Once E'z and Elp are known at the centre of a wire element excited by the frill
source, the right hand side of (2.48b) can be determined using (2.73). In general

the antenna configuration may consist of an arbitrary distribution of thin wires.
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APPENDIX C

EVALUATION OF THE SELF-IMPEDANCE TERMS

IN THE "NETWORK" EQUATIONS

The self impedance terms in (2.48b) are evaluated from approximate
analytical expressions. This is first done by finding a finite series expansion for e.-ik'-‘
and the in'fe'graﬁons are then carried out after separating the integral in 2.52) into
real and imaginary parts. Consider an mfh segment of length s and radius a

in a given distribution of cylindrical current elements.

Let
E. = Re [z;nmJ ‘ . c.n
EE = Im EZ'mmJ (C.2)
s o= s : ‘ (C.3)
a = a | (C.4)

where, form (2.49) , 2.52) and (2.17)
s/2

. s . =jkr
z =4m:e J [2r2(l+ikr)—02(3+3ikr)-k2r2]er5 dz'
o "5/2
(C.5)
and by (2.16)
r = [z'2 + 0231/2 (C.6)

since p= 0 and z = 0. It is important to note that the self-impedance of element
sy, isfo be determined from its self-field evaluated along its axis (hence p=0),

and its centre-point (hence z=0) as illustrated in Figure 2.1.
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From (C.1), (C.2) and (C.5), and using a nine-term MacLaurin series expansion for

e-ikr , one obtains for the real part .
s/2
3 5 2 .5 7 2
e o~ -4 [ [-% LSS S L IS I P
41rue° /2 3 15 15 210
c.7)
and the imaginary part becomes
£ m f _ 3a ey S st 1%
' 41tue° (z'2+¢::)5/2 2(z'2+a )3/2 8 (' +¢'1)]/2
4 _ (C.8)
6 2
+(‘2l< -k a)(z' +da )I/Zsz

438

While the integrations in (C.7) are straightforward, further re-arrangements are needed

in (C.8). The final approximate expressions become

2 2 4. 4 =k )

o s a k a k t 2
El‘ ~ "'—3—.—)-\-[2"—3—-—+—1-0-5—+—-2-1-0—(0 k ']4)] (C.9)
and
s 1 1 "2"3 K2 o2 k4':f
E, =~ - [ + —+ — (1~ ) ]
' 2e N Kory 2 8 8 288
. (C.10)
14+ —
2 2 4 4 2¢
1 k™ a k a t
- [1- + J1 ]
2 % 4 o (l-s/Zrt)
where X
2 1 .
w = [(s/2 + o212 C.11)

It should be pointed out that there are notable differences in both E and E. from
i

the corresponding expressions given in Reference [56] .
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) APPENDIX D

/o

"~ SEGMENTATION OF THE MERIDIANS.

IN WIRE-GRID MODEL OF SPHERE

Consider one 'typi'cal meridian on the wire-grid model of the monopole

sphere structure discussed in Section 3.3.

Monopole

Figure D. 1.

In Figure D.1 are shown the coordinates nceded to specify uniquely the six segmen=
tation parameters for the mth element : the three centre coordinates (xm v Y ! zm) ’
the length S and the angular orientations a and Bm . The meridian is re-drawn

in Figure D. 2 in the ¢ plane.

Pa (x50 ¥2r 7))

Figure D. 2

Ca e L N B . PPy
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(J fe, o, ¥ on.d Rs are defined, then one obtains

Rg = Rs cos (v/2) . (.1)

and therefore

x = Rg sin (6 + ‘}'/25 cos @ | | : (D.2)
Ym = Rg sin (6 + ¥/2) sing (D.3)
z"n = R9 cos (6 '+ v/2) : (D.4)
T 2 R, sin (v/2) (D.5)

The ﬁm angular orientation is given by
B = © ® < <271 - D.6)
B, = ©-m 05 =g (D.7)

The angle o is determined using the six coordinates (x2 1Yo r 22' ;) and
(xyr ¥+ 244 ) which can be expressed in terms of R, and © for the first set,

and Rs and 8 + ¥ for the second set as shown in (D.2), (D.3) and (D.4) .

To determine a first let

zZ, -~z
a' = arctan (—2—-—!—) ' - . (D.8)
m

Then
a = a -%SG'so | (D.9)
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It should be noted that the segment angle ¥ is constant if the segmenta-
tion is uniform. If, on the other hand, the segmentation scheme involves putting finer
segments near the monopole region and coarser ones near 8 = 1800, then ¥ is appro-

priately incremented.

Segmentation schemes for other antenna structures studied in this work

follow the above basic procedure in a similar manner.



