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Abstract

Computation methods, while powerful, often struggle with complex prob-
lems that demand flexibility, intuition, and creative thinking. In contrast,
human decision making excels, in scenarios that demand thinking, identify-
ing patterns and making intuitive leaps—attributes that machines struggle to
imitate. By encouraging individuals to apply these abilities through citizen
science games, we not only boost engagement but also unleash their potential
to contribute to real-world scientific problems.

By analyzing information gathered through community driven projects,
like Borderlands Science and Project Discovery in EVE Online in this re-
search paper shows how players’ tactics frequently excel or work alongside
methods — especially in problems, like Multiple Sequence Alignment and
Cytometry Data Clustering. Despite the variety of individual approaches,
players display a shared problem-solving logic that allows them to navigate
potential solutions more efficiently than automated systems do. In my work,
with Imitation Learning techniques I have created models that replicate the
strategies used by players and capture the decision making processes that hu-
mans apply to tasks. This is a skill that often eludes current computational
methods.

In this thesis, I will review algorithms that have merged instinct with a
methodology to provide smarter and flexible solutions, therefore providing
more efficient and adaptable solutions for complex scientific problems. By
integrating human insights into these systems through imitation learning, I
have created a powerful synergy where computation benefits from human
flexibility, and human input is scaled through automation. This showcases
opens up new possibilities for solving bioinformatics challenges and demon-
strates the potential of combining human creativity with machine efficiency to
push the boundaries of discovery.
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Abrégé

Les méthodes informatiques, bien que puissantes, peuvent peiner à faire face
à des problèmes complexes qui demandent de la flexibilité, de l’intuition et
de la créativité. À l’inverse, les humains excellent dans ces scénarios qui
nécessitent de la réflexion, l’identification de motifs et autres problèmes de-
mandant de l’intuition et de la déduction. En encourageant des individus
à appliquer ces habiletés à travers des jeux de science participative, il de-
vient possible d’améliorer la capacité de ces jeux à motiver les joueurs tout
en débloquant leur potentiel de contribution à la résolution de problèmes
scientifiques concrets.

En analysant l’information accumulée par des projets communautaires de
ce type comme Borderlands Science et Project Discovery, nous démontrons
comment les stratégies employées par les joueurs excellent et se combinent
aux méthodes traditionnelles, particulièrement dans le contexte de problèmes
difficiles comme l’alignement de séquences biologiques et le clustering de
données de cytométrie en flux. Malgré la l’hétérogénéité de ces approches
individuelles, les joueurs montrent une approche commune de la résolution
de ces problèmes, qui leur permet de naviguer parmi les solutions poten-
tielles plus efficacement que les systèmes automatisés. Dans cette thèse, je
présente mes travaux sur l’imitation de ces techniques, dans lesquels j’ai
conçu des modèles qui répliquent les stratégies des joueurs et capturent le
procédé décisionnel que les humains appliquent à ces tâches, une technique
qui est encore très difficile pour les méthodes informatiques.

Dans cette thèse, je présente des algorithmes qui combinent l’instinct hu-
main avec des méthodes d’intelligence artificielle afin d’atteindre des solutions
plus intelligentes, efficaces et flexibles. En intégrant la perception humaine
à ces systèmes à travers l’apprentissage par imitation, j’ai créé une synergie
entre la puissance de l’informatique et la flexibilité humaine, qui ouvre de
nouvelles possibilités pour résoudre des défis bioinformatiques et démontre
le potentiel de la combinaison entre la créativité humaine et l’efficacité des
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machines pour repousser les limites de la découverte scientique.



Contribution

This thesis contains three research articles, each co-authored in collaboration
with several contributors. My specific role, along with the contributions of
each co-author, is outlined in the Preface of Chapters 1, 2 and 3. While the
detailed scholarly contributions are provided in the prefaces of the respective
chapters, they can be summarized as follows:

Part 1
• Developed a machine learning model trained on player data collected

from the game Borderlands to solve small puzzles, which represent
multiple sequence alignment problems. The model integrates human
problem-solving strategies with biological constraints, resulting in im-
proved alignment accuracy. By leveraging the cognitive patterns of hu-
man players, the model captures complex biological relationships more
effectively than traditional alignment techniques (Chapter 1).

• Conducted a comprehensive comparison between the proposed algo-
rithm and classical sequence alignment methods, evaluating both the
accuracy and computational efficiency. The results demonstrate the
superiority of my approach in handling real-world biological datasets
(Chapter 1).

• Enhanced the model architecture by incorporating an advanced frame-
work based on generative adversarial networks. This approach improves
both the efficiency of the alignment process and the model’s ability to
generalize. By introducing adversarial training, the model adapts to a
wider range of biological questions, further boosting alignment perfor-
mance (Chapter 2).
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Part 2
• Designed a novel model for clustering cytometry data, trained using

player-generated solutions from the game EVE Online’s Project Dis-
covery. The model is tailored to identify complex clusters in biologi-
cal data, leveraging the problem-solving approaches demonstrated by
players. This human-in-the-loop method allows the model to recognize
patterns in cytometry data that are often missed by traditional clus-
tering techniques, leading to more accurate and interpretable biological
insights (Chapter 3).

• Extracted and analyzed decision-making processes from player data to
inform the clustering algorithm. By incorporating human intuition and
strategy, the model identifies clusters with greater precision, enhancing
the biological relevance of the results and providing new insights into
cellular behaviors (Chapter 3).
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1

Introduction

Many challenges in bioinformatics belong to a category of problems known as
NP problems that are extremely difficult to solve efficiently for large datasets
due to computational constraints. At the same time, volumes of biological
data are accumulating at an accelerating pace, spurring demand for compu-
tational efficiencies. Despite using the algorithms and computers available
today, it remains difficult to manage the sheer complexity and volume of
data, in a significant obstacle when processing and analyzing crucial biolog-
ical information.

There is no denying how critical biological data is—it is the foundation
of modern breakthroughs in health and science. However, the challenge is
actually turning this sea of raw information into actionable knowledge. Un-
less analyzed and interpreted, this dataset is only a potential to uncover
crucial information. This therefore underlines the importance of techniques
to decipher data; they may change how we approach disease genetics and
biomedical research in the future.

While machine learning and computational biology are strengths, there
are tasks that are particularly challenging for machines yet relatively easy
for humans. This is often because such tasks involve pattern recognition and
decision making, areas where humans excel. Therefore, the main challenge
lies in encouraging people to contribute time to help solve these problems for
the advancement of science.

This is where Citizen Science Games step in. Public bioinformatics chal-
lenges allow the participation of hundreds or thousands of players to solve
difficult puzzles on online platforms. Players generate data that can be cap-
tured and analyzed to extract valuable insights through machine learning.
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These games have the potential to crowdsource scientific tasks that are cur-
rently beyond the capabilities of available algorithms.

In this thesis, I focus on the problem of aggregating and extracting in-
sights from citizen science data in two key tasks: Multiple Sequence Align-
ment and Cytometry Data Clustering.

1. The Multiple Sequence Alignment (MSA) challenge is represented as
small puzzles in the Borderlands 3 mini-game, Borderlands Science.
This game leverages genome fragments of human gut microbes, se-
quenced by the Microsetta Initiative, and tasks players with aligning
sequences. By engaging players in this way, we turn a computationally
intense bioinformatics problem into a series of intuitive visual puzzles,
enabling the generation of high-quality alignments that go beyond the
limits of current algorithms.

2. Cytometry Data Clustering is explored in Eve Online through a mini-
game where players analyze graphical representations of cell popula-
tions. Players contributed to the analysis of protein structures related
to SARS-CoV-2, helping accelerate scientific understanding During the
COVID-19 pandemic. Players were presented with datasets and asked
to classify cell populations, a task that algorithms struggle with due
to the complexity of biological data, but one in which human pattern
recognition excels.

The central hypothesis of this thesis is that the data generated from play-
ers playing these citizen science games can be aggregated to create algorithms
capable of emulating human strategies in problem-solving. It is here that, by
automating such processes, we create solutions not only capable of imitating
human intuition but ones that go on to much more efficiently deal with these
complex tasks in bioinformatics.
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2

Background

Throughout the course of history many of the problems have been resolved
not by individuals but through the combined efforts of numerous people.
From ancient civilizations using shared knowledge to solve agricultural prob-
lems, to the impressive scientific collaborations of the modern days, the power
of collaboration has been undeniable. As we entered into the era of technol-
ogy and digital, this idea of collective problem-solving took on new forms,
with the rise of crowdsourcing being a key development.

2.1 Crowdsourcing
Crowdsourcing, the method of engaging a crowd for views and ideas, is

a popular approach in this Internet era. This is quite a popular approach
in the digital age, offering a versatile framework for tackling a wide range of
tasks.

Amazon Mechanical Turk (AMT) is an example that demonstrates the
advantages of this method. The platform allows individuals, called "Turk-
ers," to tackle tasks that remain difficult for automated systems to handle
effectively, such as sentiment analysis, content moderation, and data anno-
tation. By assigning these tasks to a broad participant base, AMT acceler-
ates their completion while utilizing human skills that are hard to replicate
through computational methods. The focus here is, on linking knowledge
with computer processing power and highlighting the importance of crowd-
sourcing, in present day problem solving methods [RYHH10, SF08, PCI10,
KCS08].

The difficulties associated with AMT have been widely acknowledged in re-
search works. One major challenge is the cost involved in expanding projects
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to handle datasets [MW09]. Since workers are paid per task, costs can quickly
escalate, especially when factoring in the need for quality control measures.
Another concern is the absence of variety among participants [DFI18]. Many
workers tend to be younger and tech-competent, often hailing from specific
geographic regions, which can result in a more limited range of perspectives
and contributions [IS13]. Furthermore since employees are mainly motivated
by rewards, they often prioritize speed over accuracy, which can negatively
impact the quality of the data [PCI10]. Finally, AMT faces the problem of low
long-term engagement — once a task is completed, workers typically have lit-
tle motivation to stay involved in the project, in the undertaking hindering
efforts that necessitate continuous involvement.

2.2 Games and Gamified Systems
However, to overcome some of the limitations seen in traditional plat-

forms like AMT, researchers have turned to gamified crowdsourcing as a
more effective alternative [Bra08, MHK16, MHKM17]. Gaming offers mo-
tivation prompting participants to tackle problem solving tasks for pleasure
challenge and rivalry than solely for monetary rewards. This leads to more
thoughtful and high-quality contributions. Moreover, games intrinsically cre-
ate long-term commitment: players become quite interested in the desire to
achieve high scores, pass to new levels, or compete with their opponents and
hence remain actively engaged for extended periods of time [CEO14]. It is
such long-term engagement which forms one of the high valued resources
in scientific projects that necessitates prolonged participation and massive
datasets. Furthermore games appeal to a range of players, from backgrounds
and demographics thus adding diverse perspectives to the collected dataset.
[ESd+17]. By turning complex scientific problems into game-like tasks, sci-
entists can access the creative and problem solving skills of humans yielding
more detailed and sophisticated data that aids in advancing scientific knowl-
edge.

2.3 Examples of Success
A typical example of such gamification-based crowdsourcing involves the

Foldit website [CKT+08], which is basically an online video game-based puz-
zle where players can tinker with structures of proteins to find better folds.
Indeed, protein folding is one of the very hard problems in molecular biology,
although, while computational approaches can predict protein structures,
many times with good accuracy. Results derived from Foldit let players
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solve such puzzles, and their cumulative efforts have yielded many significant
scientific breakthroughs, including discoveries related to the structure of viral
proteins, such as those in human immunodeficiency virus. By tapping the
power of human intuition and three-dimensional spatial reasoning, Foldit
has shown that non-experts can usefully contribute to scientific problems that
require deep, creative problem-solving [CKT+10, KCT+11, KDG+11].This
achievement was recognized when biochemist David Baker, whose innovative
approach harnessed gamification as a novel paradigm for solving complex sci-
entific challenges paved the way for further advancements in the field. Baker’s
groundbreaking use of gamification has been instrumental in advancing pro-
tein design and prediction, which lies at the core of his Nobel Prize-winning
work [Bak24].

Another successful example is EyeWire, which is a game of mapping neu-
ral connections within the brain by tracing 3D neuron structures [KGZ+14,
HBT+13]. The work requires detailed visual pattern recognition-something
that is difficult for machines to handle due to the complexity of the data.
Large-scale contributions made by players in EyeWire are considered the
main source in the development of neuroscience; they map out how the brain
is wired, helping people to understand its structure and function. Develop-
ment of better models mimicking functions of the brain remains indispensable
with contributions.

The success of Sea Hero Quest has shown the potential of gamification
for health awareness and behavioral change. This mobile game was developed
to gather large-scale data on human spatial navigation, providing researchers
with valuable insights into cognitive decline and early indicators of conditions
such as Alzheimer’s disease [CSM+18, CMG+19]. Players explore virtual
worlds through a series of spatial tasks, generating data on large numbers
of people at different ages and backgrounds that are otherwise difficult to
obtain.

These projects demonstrate how the community could be involved in the
solution of significant scientific challenges.

2.4 Human Abilities in Problem Solving
The human brain – especially visual perception and pattern recognition

– is one of the reasons gamified crowdsourcing solves such tough scientific
problems. Approximately 25% of the human cortex is dedicated to process-
ing visual information, giving humans an exceptional ability to recognize
patterns, shapes, and colours — abilities that machines often struggle to

23



COMBINATORIAL PROBLEMS

mimic accurately [HMT18, POLO23, GMR97]. This natural ability allows
humans to quickly identify spatial relationships, detect anomalies, and make
sense of visual information in ways that computers struggle with, especially
when the data is noisy or incomplete.

For instance, research shows that people can easily tell the difference be-
tween groups of objects in two dimensions-something challenging for AI mod-
els without extensive preparation or data manipulation [AKDL22, dBTW08,
RCZC19]. Such is the case in clustering problems, like the categorization of
cells in microscopy images, where human intuition makes one notice subtle
differences that might be passed over by algorithms. Research has demon-
strated that humans can cluster visual data quite accurately in broad applica-
tions with very little training simply by using their innate pattern recognition
abilities [BDTSW22].

It is also possible for a human being to recognize patterns and spatial
structures that algorithms can’t, particularly in cases where the data is un-
structured or noisy [Lud23]. For example, in tasks like sequence alignment
humans can naturally identify correlations and structures that might elude
or be misconstrued by a computational approach because of their capacity
to apply context specific comprehension and adjust their methods based on
visual hints and changing details.

Humans play a role when engaging in the solving of challenging problems
over and above simple calculations, where datasets include intricate or varied
data that may not yield to fully automatic or algorithmically efficient pro-
cessing. This is more so evident in tasks such as visual pattern recognition
or sequence alignment, but it is equally so in the area of combinatorial
problems, since solving such a problem needs something more than the ap-
plication of mere computation, it needs insight, adaptability and innovation.

2.5 Combinatorial Problems
Data clustering, or the grouping of objects according to needs, is such

a combinatorial problem. In general, combinatorial problems are concerned
with the valuation of the most valued combination, arrangement, or selection
of discrete objects that satisfy some constraints. While not all combinatorial
problems are intractable, many combinatorial problems belong to NP-hard
problems, whose computational complexity increases exponentially with the
number of objects or constraints, hence intractable as scale increases [Kar75].

Common examples include optimization problems (like the Traveling
Salesman Problem, where the objective is to find the shortest possible route

24



COMBINATORIAL PROBLEMS

between a set of cities), assignment problems (like the Knapsack Problem,
where the goal is to maximize the value of items selected within a weight
limit), and organizing objects, into clusters based on specific standards.

While for combinatorial problems, humans intuitively and heuristically
can easily come up with a solution. For example, for such tasks as the Trav-
eling Salesman Problem or the Knapsack Problem, instead of strict rules,
humans use perception and flexible strategies to reveal patterns and short-
cuts that possibly could not be seen by algorithms [MO96]. In the work
of Acuna and Parada (2010), the authors investigated how individuals can
solve combinatorial problems including clustering and optimization better
than some algorithms. The research conducted by the authors proves that it
is possible for human problem solving techniques to outperform algorithms
in some instances [AP10].

Moreover, the wisdom of crowds theory by James Surowiecki where he ex-
plains how the collective intelligence of individuals can exceed that of experts
as well as that of algorithms in solving a particular problem. In combinato-
rial problems like the Traveling Salesman Problem and Minimum Spanning
Tree, solutions generated by groups of individuals often outperform both in-
dividual efforts and standard algorithms [Sur05, YSLD12]. This collective
human insight, when applied through crowdsourcing platforms or gamified
environments, shows that humans have a natural benefit in solving combi-
natorial challenges by using adaptive strategies that balance constraints and
objectives.

2.5.1 Multiple Sequence Alignment
Bioinformatics is the area concerned with problems that can be approached

by different configurations to solve them efficiently. Among those, one of the
most important is the multiple sequence alignment (MSA) problem, a basic
problem where the aim is to align more than two biological sequences with
the purpose of finding regions of similarity that could indicate structural,
functional, or evolutionary relationships.

Formally, given a set of sequences S = {s1, s2, . . . , sn}, where each se-
quence si is composed of characters from a finite alphabet, the goal of MSA
is to insert gaps into these sequences so that they are all of equal length, max-
imizing a scoring function f(A) over the alignment A, where A represents the
aligned sequences. The scoring function typically reflects biological criteria
such as matching characters, penalizing gaps, and handling substitutions.

Mathematically, this can be expressed as:
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A∗ = argmaxAf(A)

where A∗ is the optimal alignment and f(A) is the scoring function that
sums matches, mismatches, and gap penalties across all aligned positions.

2.5.2 Computational Approaches for Multiple Sequence
Alignment

The challenge with MSA becomes more intricate as the number of se-
quences and their lengths grow, leading to an increase in potential align-
ments to consider carefully. One of the foundational methods is Dynamic
Programming (DP), exemplified by algorithms like the Needleman-Wunsch
[NW70] and Smith-Waterman [SW+81] algorithms. These techniques use op-
timal pairwise alignments to generate globally optimal alignments between
sequences. While dynamic programming offers solutions for problems at
hand such solutions become costly in terms of computation as the quan-
tity of sequences and their lengths grows because of its quadratic or cubic
time complexity. For instance, aligning dozens of long DNA or protein se-
quences using dynamic programming becomes computationally prohibitive
as the number of required calculations grows exponentially with the dataset
size.

Besides this increasing difficulty, an exact solution of the MSA problem
is viewed to be NP-hard. In other terms, this problem category represents
problems in which computational effort drastically increases together with
dataset growth. Accordingly, finding its exact solution has a low order of
feasibility regarding time for large instances of the input datasets; generally
speaking, scholars can only attain optimal or heuristic results within decent
time limits using fast heuristics or approximating methods of alignments.
These methods can only find near-optimal solutions, while possibly sacrificing
some accuracy for highly divergent sequences.

A more general and profound problem in MSA lies in defining the most
appropriate score, for evaluating the alignments, while defining the quality
of an alignment has to be based on specific criteria, such as similarity of
sequences or biological relevance. In many cases, the ideal scoring system,
or at least a difficult-to-precise-define one, may not exist.

Therefore, in practice, proxy systems are often used, such as substitution
matrices like PAM or BLOSUM [TN20], which approximate biological rela-
tionships between sequences. However, these proxies are not universally ap-
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plicable and can introduce biases, especially when applied to diverse datasets.
In the absence of a gold standard, the results of different alignment meth-
ods vary, and thus, comparing methods or validating results across different
studies is difficult. These challenges have to be put into a wider context by
realizing the inherent trade-offs within the methods of MSA. The computa-
tional resource issues preclude exact solutions in most cases, while the lack
of a commonly accepted scoring system further complicates the evaluation
of alignments. These are some of the important issues that need to be taken
into consideration in developing robust and scalable algorithms which bal-
ance computational efficiency with biological relevance; at the same time,
these also bring forth the need for improving proxy scoring methods or novel
ways of developing an evaluation system.

To address the scalability issue, approximation methods such as ClustalW
[THG94] and MUSCLE [Edg04] have been proposed. Indeed, these ap-
proaches are based on effective heuristics, either in the progressive alignment
or iterative refinement directions, to compute MSA rapidly. Although these
methods reduce computation time significantly, they do not ensure global
optimality, while their accuracy might be inconsistent in the case of highly
diverged sequences. Other heuristic methods that have been investigated are
simulated annealing [KPC94], which relies on an iterative search for optimally
aligned structures while progressively reducing the size of the search space;
optimization-based approaches, including particle swarm optimization and
ant colony optimization [RK03, XC09, MJ03].

Probabilistic Models, including Hidden Markov Models (HMMs) [Edd98]
and profile-based alignments, use statistical frameworks to model sequence
relationships and improve alignment accuracy by leveraging probabilities for
matching, inserting, or deleting characters in sequences. These methods
enhance alignment accuracy by considering probabilities for the match, in-
sertion, or deletion of characters in sequences. These models require large
amounts of training data and can be computationally intensive for larger
datasets.

More modern approaches have also emerged in recent years, such as
MAFFT (Multiple Alignment using Fast Fourier Transforms) [KMKM02]
and MUSCLE (MUltiple Sequence Comparison by Log-Expectation) [Edg04].
MAFFT employs a progressive alignment method, using Fast Fourier Trans-
form to cluster sequences quickly in the initial step, while MUSCLE begins
with a rapid draft alignment followed by iterative refinement stages to op-
timize alignment accuracy. Specialized software like PASTA (Ultra-Large
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Multiple Sequence Alignment) [NMKW15] has been designed for handling
extremely large datasets by combining divide-and-conquer strategies with
progressive alignment techniques.

Even though these approaches have improved, a concern over slow con-
vergence and alignment accuracy makes it apparent that there’s still much
work to be done to make MSA better – especially with with large datasets.

Recently, reinforcement learning (RL) methods have been applied to
tackle the MSA problem. RL is particularly appealing for its ability to
explore large search spaces and learn policies that optimize the alignment
process over time. In 2014, [MBD14] pioneered the use of Q-learning, a clas-
sic RL approach, to solve MSA. Their method involved representing ordinal
numbers as RL states and learning to predict the optimal sequence alignment
location as an action. Although this method showed promise, it faced limi-
tations related to slow convergence due to a brute-force style search process
that included many invalid operations.

To improve performance, researchers have employed Deep Q-Networks
(DQN) for MSA, as seen in the work of [JJKR19]. By incorporating Long
Short-Term Memory (LSTM) [HS97] networks, their DQN model could bet-
ter process DNA sequences through sequential computation, allowing the RL
agent to retain information over long sequences.

Another significant contribution came from [RSB18], who developed RLALIGN,
an actor-critic architecture using *Asynchronous Advantage Actor-Critic (A3C)
and convolutional neural networks. Compared with the other existing RL ap-
proaches, RLALIGN would directly leverage the currently current alignment
state in predicting the next action and representation for a nucleotide to
move to a direction. Yet, when increasing the sequence number, there is a
exponential increase of dimensions over the state space, creating convergence
difficulties.

While progress is being made in the use of RL for MSA, a number of
challenges do remain, particularly in the scaling of these models to tackle
larger datasets and longer sequences. Indeed the paper [Joe21], has shown
that RL models perform really well while aligning sequences of comparable
lengths; however, they often fail while aligning longer or heavily diversified se-
quences, where the traditional algorithms, including Clustal and MUSCLE,
are still unbeaten by the RL methods. However, techniques like Negative
Feedback Policy (NFP), introduced by proposed by [ZZL+22] have been ef-
fective enough to improve the convergence of an RL model by incorporating
sequence profiles into the alignment process.
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Some researchers have been working on simplifying the complexity prob-
lem by creating RL techniques specifically designed for pairwise sequence
alignment. For example, [SJS+21] introduced DQNalign, which relies on
pre-processing techniques such as Clustal and MUMmer to break down MSA
into iterative pairwise alignments, reducing computational time and mem-
ory requirements. Similarly, [LT23] developed EdgeAligs, an efficient RL
model for pair-wise sequence alignment on embedded devices using a slid-
ing window. While these methods help in understanding the issue from an
easier-to-understand perspective, it is really important to consider the view
for enhancing effectiveness and speed when dealing with extensive MSA as-
signments.

2.5.3 Flow Cytometry Clustering
Another problem in bioinformatics research is the flow cytometry data

clustering task. Generally, flow cytometry is a technique employed in anal-
ysis, chemical properties of cells or particles in a liquid run them through
a laser. The information coming from flow cytometry studies is multi-
dimensional since every cell is represented as a vector in a space whose
dimensions correspond to a given attribute, size, textural features, and iden-
tification of specific markers.

The objective in flow cytometry data analysis is to cluster cells into bi-
ologically meaningful groups based on their measured properties. Formally,
given a set of cells X = {x1, x2, . . . , xn}, where each cell xi is a vector in Rd

representing the d-dimensional feature space, the goal is to assign each cell xi

to one of k clusters C = {C1, C2, . . . , Ck}, where Cj ⊆ X and ∪k
j=1Cj = X,

such that cells within each cluster are more similar to each other than to
those in other clusters.

The clustering process can be represented as the following optimization
problem:

min
C

k∑
j=1

∑
xi∈Cj

∥xi − µj∥2

where µj is the centroid of cluster Cj, and ∥xi − µj∥2 is the Euclidean
distance between cell xi and the cluster centroid. The goal is to minimize the
total within-cluster variance, leading to compact, well-separated clusters.

Clustering in flow cytometry is challenging because of the complexity
of the data with its dimensionality and noise levels. Traditional clustering
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algorithms, such k-means [Llo82] or hierarchical clustering [Joh67], may not
perform well on large and noisy data sets and may fail to identify the real
biological clusters.

2.5.4 Computational Approaches for Flow Cytometry
clustering

Different computational approaches have been employed for flow cytom-
etry data analysis; however, all have, to a certain extent, surmounted the
problems related to big, noisy, and complex cellular data in many ways.
Conventional algorithms used for clustering, some graph-based techniques,
machine learning, and statistical methods form parts of such attempts.

As classically clustering methods are very straightforward, a variety of
classical methods were conventionally applied to the flow cytometry data. A
two-stage clustering method couples Fuzzy-C-Means with Markov clustering
identifies the cellular subtypes and detect anomalies effectively in various
real-world datasets [PJBN16] with high F-measure value greater than 91%.
But as it heavily relies on the fuzzy-C-Means, has limited capabilities han-
dling complex structure of the data in high overlapping cases. Another poten-
tial defect the method may possess is the sensitivity to the initial parameters,
which can eventually cause variations in the result regarding clustering.

In clinical settings, the MegaClust Algorithm is used for flow cytometry
data, which enables effective recognition of immune cell subsets [BSH+21].
For detecting rare populations, it would be very effective since its tuning is
dynamic to count the events. However, like for any other method, parameter
tuning is needed-for instance, the minimum number of events to detect a
cluster-so optimization of the findings across different datasets is hard.

It might be extended by several different advanced techniques and meth-
ods, including machine learning, in which deep learning approaches-Deep
Convolutional Autoencoder-based Clustering (DCAEC) being one of them-
have proven to be a very efficient tool. The results clearly indicated the im-
pressive performance of the DCAEC model in differentiating between white
blood cells of healthy ones and those suffering from leukemia with 97.9%
accuracy [ZCT+23]. However, these models have a number of healthy and
leukemic white disadvantages, including the requirement of big datasets for
training and black-box approach, hence not the most wanted in clinics when
understanding the process of decision-making is important.

Statistically, the LAMBDA Framework applies Bayesian data analysis for
model-based clustering [AMM+20]. It is highly efficient in the detection of
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cell populations that are not yet known but may be computationally expen-
sive. The framework requires carefully tuned parameters, and there may be
some scalability limitations for large data sets.

Another recent work proposes a method of unsupervised clustering that
aligns the histogram features of the two datasets and seeks to find maximum
mutual information between the two [UOPS23]. This technique has improved
accuracy in clustering by emphasizing features that are informative; thus, it is
more suitable for subtle cell population differences. Similar to other feature-
guided methods, its efficiency depends highly on appropriate selection of
features, which can be a disadvantage in data with high variability.

These methods will always show the balance between accuracies, scalabil-
ity, and computational complexities while solving a flow cytometry clustering
problem. None of these techniques is devoid of limitations; the areas that
need further developments are indicated.

Human intuition, especially, plays a key role in complex combinatorial
problems like flow cytometry clustering or MSA, where the focus is on pat-
terns, subtle groupings, conserved regions, and meaningful gaps in high-
dimensional data. In each of these contexts, human problem-solving aug-
ments algorithmic approaches through the uncovering of biologically relevant
patterns that algorithms may overlook, particularly when noisy or incom-
plete data are dealt with. With crowdsourcing or gamified platforms, for
instance, researchers may more intuitively tap into human pattern recogni-
tion to guide the process of clustering or alignment. The combination of
such a human insight with computational methods can help in dealing with
intrinsic challenges presented by the combinatorial nature of such tasks in
general, which would translate into higher accuracy, better alignment quality,
and more meaningful interpretation of results in bioinformatics.

2.6 Citizen science games and bioinformatics
As mentioned in previous sections, bioinformatics has successfully applied

gamified crowdsourcing to a wide variety of combinatorial problems. That
provides an innovative way to utilize the human problem-solving capability
for scientific discovery. Three of the most salient examples involve complex
optimization tasks in molecular biology: Foldit, EteRNA, and Phylo. These
provide very good illustrations of how such gamified platforms can leverage
human problem-solving abilities to solve very intricate scientific problems
that are difficult for algorithms to solve alone.
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2.6.1 Borderlands Science
Besides these examples, the latest major citizen science applications that

have emerged are video gaming-such as Borderlands Science and EVE On-
line’s Project Discovery - where human players will create valuable sci-
entific data during meaningful game play.

Borderlands Science, embedded in the popular video game Border-
lands 3, has engaged over 5 million players to address the multiple sequence
alignment problem. In the game, colored tiles are aligned that correspond to
DNA sequences; these will help in solving a real-world genomics challenge.
Since its launch in April 2020, it has generated above 150 million alignments,
many of which provided valuable human-driven solutions with the potential
to help researchers improve the accuracy of DNA sequence analysis. This
effort uses the ability of players to recognize patterns and hence allows in-
sight into bioinformatics problems that algorithms cannot capture, extending
large-scale genomic research.

2.6.2 EVE Online’s Project Discovery
Similarly, EVE Online’s Project Discovery integrates citizen science

into the massively multiplayer online game EVE Online, which boasts over
24 million registered users. In one iteration alone, more than 327,000 players
classified cell populations from flow cytometry experiments and thus ana-
lyzed real-world scientific data. By identifying patterns and clusters in this
complex, high-dimensional data, the players contributed to solving the chal-
lenge of grouping cells based on their physical and chemical characteristics.
By 2021, over 40 million classifications had been submitted and provided
researchers with data for a better understanding of the cell behaviour and
population structure. This gamified approach solves a problem that current
algorithms cannot by embracing human pattern recognition, which in turn
produces serious scientific output.

Both games actually gamify complex scientific activity in an effective way,
hence making bioinformatics problems very challenging yet accessible and
agreeable to non-experts. Sequence alignment in the case of Borderlands
Science or cellular data classification in EVE Online’s Project Discov-
ery comes as a fun puzzle while being a part of that game’s universe. These
examples give an idea of how scientific research is transformed into appealing
experiences that can be used by the general public to contribute to critical
research areas through well-designed games. By converting complex prob-
lems into approachable tasks, these platforms tap into the collective intelli-
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gence of non-experts, fostering widespread participation in scientific discovery
through enjoyable gameplay.

First of all, the first time I started this project, I had already gathered
so much data contributed by players, apparently very good to contribute to
complex scientific problems. These are like little puzzle pieces embedded in
a game, and producing them requires large-scale human effort. From here
on, I began exploring how to take this crowdsourced, decentralized decision-
making and turn it into a more unified, increasingly automated system. This
goal means transforming many small, individual decisions made by players
in scientific games into one system that can work automatically, without
needing people to guide it every time. These player decisions are often useful
but scattered and inconsistent. To make them work together, we need to
collect and organize this data, and then use it to train computer models that
can learn from how people solve problems. One way to do this is through
imitation learning, where a system learns to copy human actions. By doing
this, we can build models that not only give answers but also learn to "think"
more like the human players who are good at spotting patterns in complex
data. This kind of automation is important because it lets us apply human
insight at a much larger scale - helping scientists analyze difficult biological
data faster, more accurately, and without always needing a person in the
loop.

The main possible solution to this problem can be in the area of imita-
tion learning. With it, I would be able to learn models from this approach
and imitate players’ decisions. In general, the key behind imitation learn-
ing is that the model has to observe and imitate experts in order for it to
be able to get closer to detailed strategies and solution-finding approaches.
Unlike traditional approaches, the agent learns in a trial-and-error manner,
interacting with an environment that provides rewards or penalties to the
agent in; this is what’s known as reinforcement learning. Imitation learning
circumvents these challenges by skipping the need to design a reward func-
tion, instead directly duplicating human behavior. This is especially useful
in complex environments wherein defining a reward function or exploration
to learn optimal behavior is hard or computationally expensive.

Imitation learning draws its roots from both behavioral biology and some
early works in robotics. From the perspective of behavioral biology, imitation
has been said to be a basic mode of learning both in man and animals. Many
forms of learning in both animals and humans at young, tender ages are
normally recorded through observation and subsequent replica of such actions
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[CF19]. This led to the inspiration of natural learning through observation
and copy, which is known as imitation learning.

One of the very early and distinct findings of the use of imitation learning
implemented on a robot came through: Autonomous Land Vehicle in a Neural
Network (ALVINN), developed by Pomerleau in 1989 [? ]. ALVINN made
use of learning through a neural means where it drove an unmanned ground-
moving vehicle having experience exclusively as to how to drive a vehicle like
itself yet mimic the same driving habits as reflected by the human. It had
been trained on human-labelled data, i.e., pairs of visual inputs - road images
- and corresponding steering actions; hence it learned a policy to steer the
vehicle based on visual input. This pioneering work paved the way for what
is known as behavioral cloning, a particular kind of imitation learning.

Other state-of-the-art applications for imitation learning, AlphaStar was
trained, first and foremost, through the use of imitation of human games
extracted from professional competitions [Aca23]. Indeed, this application
has considered hundreds of thousands of human games where a general idea
regarding strategies could be observed: micro-management or a decision-
making profile. DeepMind has claimed the above two reasons to be respon-
sible for a 95% win rate by AlphaStar against top-ranked players of the
StarCraft II European server with regard to their paper: first, initial policy
learned from human demonstrations gave an excellent baseline; second, after
being further fine-tuned by self-play, surpassing human performance by an
enormous margin seemed pretty much effortless [WSQ+21, Dee19, Dee20].

Approached from another direction, various autonomous driving tech-
nologies have effectively drawn upon imitation learning, sometimes referred
to as imitation with demonstrations. Waymo Self-Driving Car Technology
used imitation learning. The work of Waymo is credited with one of the
flagship milestones of training a model using more than 10 million miles of
driving developed by human drivers [Way21]. This was possible by training
first how the human drives, enabled from the collected dataset of approxi-
mately six years. Imitation learning yielded modeling driving behavior quite
similar to that of humans, and brought a sharp improvement in road handling
for the vehicle from diverse conditions and interactions on the road. Indeed,
studies have shown that models trained on imitation learning attained a re-
duction of 30% regarding intervention rates when compared to traditional
systems based on handcrafted rules. Imitation learning improves generaliza-
tion in real-world, even complex urban environments; the performance of the
autonomous system was shown to operate at a human level.
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OpenAI applied imitation learning to robotic manipulation tasks such as
solving a Rubik’s Cube with a robot hand. In that respect, imitation learning
allows foundational manipulation strategies to be endowed upon the system
through structure human demonstrations [ZB24]. These strategies were fur-
ther optimized using reinforcement learning and domain randomization. Un-
der normal conditions, the system could solve the Rubik’s cube with a success
rate of 60%, and was even able to adapt to perturbations such as modification
of the cube’s physical properties or adding distractions in the environment.
This result, considering only about 30 hours of training data from human
demonstrations, constituted a demonstration of how imitation learning can
effectively bootstrap complex motor control tasks in high-dimensional envi-
ronments.

Imitation learning generally employs two main methodologies: behavioral
cloning, and inverse reinforcement learning. Both methods aim at learning
and replicating the expert’s strategy and present different ways to approach
tasks that require human expertise.

2.6.3 Behavioral cloning
In behavioral cloning [? BDTD+16? , ZMJ+18], the task of learning

from human demonstrations is treated as a supervised learning problem.
The goal is to train a model to imitate a human’s policy πH by minimizing
the difference between the actions taken by the human and those predicted
by the model. Let D = {(s1, a1), (s2, a2), . . . , (sn, an)} represent a set of
demonstrations, where si is the state and ai is the action taken by the human
in that state. The objective of behavioral cloning is to learn a policy πθ,
parameterized by θ, that minimizes the error between the predicted action
πθ(s) and the demonstrated action a.

This can be formalized as:

L(θ) = E(s,a)∼D[ℓ(πθ(s), a)]

where ℓ(·, ·) is a loss function depending on the nature of the task. The
model is trained to minimize this loss by adjusting its parameters θ so that the
predicted actions align as closely as possible with the human’s demonstrated
actions.

It has found effective applications in behavioral cloning for autonomous
driving [BDTD+16], robotics [ZMJ+18], and video game AI, whereby ma-
chines can tap into expert human knowledge without having to worry about
designing complex reward structures. This simplicity and efficiency are the
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reasons why it has found so many successful applications in domains where
the environment provides the setting where human expertise can be modeled
directly [? VBC+19].

2.6.4 From Supervised Learning to Behavioral Cloning:
The Shift in Objectives

What actually sets behavioral cloning apart from classic applications of
supervised learning is not the learning mechanism itself, but rather the con-
text in which it is applied and the type of behavior it aims to capture. At
first glance, both rely on labeled data, yet their goals and operational dy-
namics diverge meaningfully. Supervised learning is traditionally designed
to predict outputs by searching for patterns among static, independent sam-
ples—a methodology that serves very well in tasks that are, by their nature,
classification or regression [GBC16]. But what if the task at hand requires
reproducing human decision-making in dynamic, sequential environments?
This is where BC becomes relevant — still supervised, yet operating under
different assumptions and objectives.

BC seeks to replicate expert strategies by learning from trajectories, or se-
quences of state-action pairs indicative of decision-making over time [Pom91].
Unlike the standard i.i.d. assumption in supervised learning, BC must ac-
count for the fact that actions are interdependent, and their consequences
propagate over time. For example, small mistakes made early in a trajectory
can cascade due to prediction errors, gradually steering the system away from
desirable behaviors. This well-known issue, referred to as covariate shift, il-
lustrates how even a methodologically supervised process like BC can face
challenges well beyond typical supervised settings [RGB11].

The distinction also deepens when considering the philosophical goals of
these approaches. While supervised learning focuses on optimizing predictive
accuracy, BC aims to approximate the often subtle, implicit logic of human
expertise. Human demonstrations are more than just labeled data—they
embed context, foresight, and the ability to adapt to changing conditions. BC
excels in settings where these elements are critical, enabling the extraction
of heuristics and strategies that defy purely statistical modeling.

In this light, behavioral cloning is best understood as a supervised learn-
ing technique applied within an imitation learning framework. Its method-
ology is familiar, but its function is tailored to capturing and reproducing
expert behavior in high-dimensional, sequential environments. While super-
vised learning builds systems that learn from examples to generalize pre-
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dictions, BC builds systems that learn from demonstrations to generalize
strategic behavior—preserving the structure of human decision-making even
under uncertainty. This difference does not negate BC’s identity as super-
vised learning, but rather highlights how its goals stretch beyond standard
predictive modeling into the realm of behavioral replication.

2.6.5 Generative Adversarial Imitation Learning
While generally effective, however, behavioral cloning can suffer from

compounding errors if the encountered states shift from those glimpsed in
training, the accumulation as the model acts in ever more unfamiliar ways
leading to performance decay, commonly seen. Such limitations overcome
the development of the following, more sophisticated ones: Generative Ad-
versarial Imitation Learning (GAIL) that couples, in a consistent way, ideas
of Imitation Learning with the adversarial training framework provided by
Generative Adversarial Networks (GANs) [GPAM+20].

GANs, first proposed by Ian Goodfellow [GPAM+20], are a deep accom-
plishment in machine learning. They are composed of two neural networks:
the generator and the discriminator. These networks compete against each
other in a process. The generator tries to generate realistic data while the
discriminator assesses the originality of such data against real data. This goes
on until the generator learns to fool the discriminator, which in turn generates
much better data. In an adversarial framework, this encourages the genera-
tor to come up with realistic outputs. Originally, GANs were first applied to
image generation but are now applied to a wide variety of domains, includ-
ing natural language processing and bioinformatics [MAP23, Tut23, ASF23].
The ability of GANs to model complex data distributions has made them
very crucial in domains requiring data synthesis.

Building on the concept of GANs, GAIL emerged as a method for imi-
tation learning, introduced by Jonathan Ho and colleagues in 2016 [HE16]:
a generator G and a discriminator D . The generator G, representing the
learned policy πθ, aims to produce actions that mimic the human expert’s
actions. The discriminator D is trained to distinguish between actions taken
by the expert and those generated by the policy πθ. The goal of the generator
is to fool the discriminator by producing actions that are indistinguishable
from those of the expert.

Formally, the GAIL objective is to minimize the following adversarial loss:

min
π

max
D

EπH
[logD(s, a)] + Eπθ

[log(1 −D(s, a))]
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In this formulation, πH represents the expert policy, and πθ is the learned
policy. It trains the generator to produce actions that minimize the discrim-
inator’s capability of differentiating between human and machine-generated
actions while training the discriminator to improve its capability for distin-
guishing between the two.

Imitation learning, especially behavioral cloning and some of its exten-
sions like GAIL, provides a generic yet powerful paradigm for teaching ma-
chines to emulate human behaviors. By learning from expert demonstrations
directly, these techniques avoid the pain points involved with reward design
and explorations of the environment so that models often yield effective, scal-
able solutions to domains reliant on human intuition and problem-solving
[HE16, OPN+18, ACVB09].

2.6.6 From Patterns to Policies: the Shift from GANs
to GAIL

Having already explored GANs and their adaptation into generative ad-
versarial imitation GAIL, it becomes essential to focus on the critical dif-
ferences between the two. Both frameworks share a common foundation—a
generator and a discriminator engaged in adversarial training—but their ob-
jectives and applications diverge profoundly. While GANs were designed to
model static data distributions, such as images or sequences, GAIL shifts
this paradigm to target the replication of human decision-making strategies
in dynamic, sequential environments [GPAM+20, HE16].

The key difference is related to the nature of the generated output. GANs
generate output that follows the distribution of the data they have been
trained on, whether that is generating realistic images or samples of text.
The fidelity of a dataset is the objective, and the discriminator works to make
sure that generated outputs resemble examples labeled. On the other hand,
GAIL does not seek to generate static data but rather attempts to mimic
expert behavior. GAIL trains a generator to generate sequences of actions
or policies while the discriminator evaluates if those policies are aligned with
what was shown by the human expert and not necessarily similar data.

This difference in distinction changes all things in how the training and
deployment of the models are carried out. GANs operate within a statically
bound dataset where the generator iterates to refine their outputs against
a fixed discriminator. Whereas in GAIL, it introduces one into a feedback
loop with an environment: a generator must dynamically change its policy
based on what happens in response to the actions. This embedding into a
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reinforcement learning framework implies that, instead of merely generating
samples, GAIL is indeed learning policies in order for it to attain expert
performance. Success in GAIL thus requires the replication not of patterns
but of the intent and adaptability underlying human decisions. By targeting
behavior instead of static outputs, GAIL overcomes challenges that GANs
can’t. It performs great in domains where the context and sequence mat-
ter; for example, demonstrations by a human encode not only what to do
but also when and why to do it. For instance, GAIL is better suited for
robotics, simulation tasks, or combinatorial problems where strategies evolve
by considering the environment. That’s a deep shift from generation of data
to generation of intent, and one that speaks to a far greater possibility with
general imitation learning in capturing rich detail in human expertise than
is possible with GANs alone.

2.7 From Players to Algorithms
Open questions regarding the interaction of combinatorial problems and

collective human problem-solving are still left untreated by literature. Whereas
substantial advances have been achieved in computation methods, some com-
binatorial tasks still resist efficient solutions. Evidence from many practical
and experimental settings does demonstrate that the very same problems
can often be satisfactorily solved by players playing games. This points to a
curious, under-explored dynamic between human decision-making and com-
binatorial optimization.

Although this connection between human problem-solving in games and
combinatorial tasks has not been directly researched in depth, the deeper
I delved into this area during my research, a variety of ideas and hypothe-
ses came up, some of which were supported or challenged by the literature
available.

• One of the most salient points of this discussion is that a large number
of crowdsourcing platforms are already available, a significant number
of which can be repurposed for solving some of the major bioinformat-
ics challenges. These crowd-sourced initiatives utilize collective intelli-
gence to bring forth new strategies for dealing with complex biological
data, much of which cannot be meaningfully processed through tradi-
tional computational approaches. Section 3 Crowdsourcing expands on
this idea.

• It soon became clear that there is a significant volume of current cit-
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izen science projects focused on bioinformatics work, underlining the
important contribution that can be made by the public toward solving
some of the major challenges in this area. Such projects have proved
exceptionally valuable, especially when there is a complex problem to
solve which benefits from multiple contributors and insights. This will
be discussed in more depth in Section 2.6, Citizen Science Games and
Bioinformatics.

• Another important revelation here is that, intuitively, humans have this
’pattern-recognition’ ability in data. A pattern recognition that quite
often gives way to decision-making substantially different from, and
sometimes superior to, the available traditional computational meth-
ods. The human players rely on intuitive thinking that allows them to
find connections that algorithms do not. This points to a special link
between citizen science games and bioinformatics: it indicates that
human intuition and pattern recognition can be good tools for com-
binatorial tasks, and that such approaches can sometimes outperform
the standard computational methods in a way.

• Yet another important notion is that humans have an innate aptitude
for pattern recognition in data. This often leads to decision-making
strategies quite different from, and sometimes superior to, those emerg-
ing from traditional computational approaches. Human players seem
to rely on intuition that guides them toward connections which algo-
rithms may not catch. This concept is discussed in Section 2.4, Human
Abilities in Problem Solving, and further explored in Section 2.6, Com-
putational Approaches.

These reflections have led me to ask new and important questions, which
have shifted my approach toward the main issues in this research. By empha-
sizing the unique link between citizen science and bioinformatics, this work
has deepened my understanding of how human problem-solving can comple-
ment computational biology. These can also be combined in a manner that
leverages the strong points of both computational and intuitive decision-
making as demonstrated through human players to devise hybrid approaches
which marry human insight with algorithmic efficiency. The results from this
work not only attempt to address some current challenges but also point to
some very promising directions for the future in computational biology and
human health.

40



FROM PLAYERS TO ALGORITHMS

Multiple Sequence Alignment
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Playing the System: Can Puzzle
Players Teach us How to Solve

Hard Problems?

Preface
Background reflects upon points of intersection between combinatorial

problems and their application within computational contexts; particular
attention is paid to one of these - a Multiple Sequence Alignment problem
- implemented within the game of Borderlands. In this paper, I introduce
a behaviorally cloned algorithm on data from the game of Borderlands. As
it is shown in this paper, this method outperforms the classical methods of
sequence alignment in many aspects; hence, it brings a new perspective into
the solving of alignment problems.

The core contribution of this work is in its novel application of behav-
ioral cloning to multiple sequence alignment, using gaming data in ways not
explored to date. This chapter, except for the present preface, was presented
at the 2023 CHI Conference on Human Factors in Computing Systems.

The full list of authors is Renata Mutalova, Roman Sarrazin-Gendron, Ed-
die Cai, Gabriel Richard, Parham Ghasemloo, Sébastien Caisse, Rob Knight,
Mathieu Blanchette, Attila Szantner, and Jérôme Waldispühl.

Eddie Cai created the post-analysis of the result and the first draft of the
optimal solution searching algorithm. Roman Sarrazin-Gendron provided the
expertise for the RNA analysis and made contributions to the writing.

Jérôme Waldispühl supervised the project, provided financial support,
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and offered guidance throughout its development. Gabriel Richard and
Sébastien Caisse did the implementation of Borderlands Science.

Key findings of this research are given in Figure 4.5, showing the main
methodology; Figure 3.5 and Figure 3.6 and show the results compared
to classical approaches for solving the MSA problem.

The contribution of mine in this work involves dataset preparation, for-
matting for training, designing model architecture, and implementing all the
benchmark methods. I also performed the post-processing of data and wrote
most of the text. In addition, I ran all experiments and calculated the results
presented in this section. This is the prepublication version of the following
article: Published as: Playing the System: Can Puzzle Players Teach Us How
to Solve Hard Problems? Proceedings of the 2023 CHI Conference on Hu-
man Factors in Computing Systems, pp. 1–15. The version you are reading
is very close to the published version.

43



Introduction
In 2019, Americans spent an average of over 37 minutes a day playing

video games and has only increased since then [Edd22]. The time invested
in gaming is usually seen as pure entertainment, like watching a movie, but
what if the efforts of the players could be harnessed to accomplish useful
tasks? This is the objective of "games-with-a-purpose", which fill this gap
and pair entertainment with a computational task such as image labelling
[vAD04a, VA06] .

Nearly every game can be summarized as a series of tasks that the user has
to solve. In many situations, players display inventiveness and creativity in
solving these tasks [MCS17, ESB+12, ON20]. Typically, games are designed
to optimize the enjoyment of the user [CSBG18, KGL+98]. However, when
these tasks can be adapted to solve real-world problems [VAD04b], games
become powerful vehicles to access the millions of hours of active problem-
solving efforts conducted every week by the players [WSK+20].

Citizen science efforts, which aim to involve non-scientists in the solving of
scientific problems, often struggle with finding enough participants to address
large-scale problems. The potential contribution from the gaming community
could bring a major paradigm change in the type and scale of problems that
can be solved through this type of approach.

Enter Science Discovery Games (SDGs). These games are specifically de-
signed to help with analysis of scientific data and assist research projects.
They rely on the intuition of humans (i.e., the players) to solve computa-
tional problems that are challenging for computers because of their complex-
ity [CKT+10, KRK+12] or because the solution is based on human perception
and agreement [PAD+17, PKY+21, BDTSW22].

Among the types of important problems that classical algorithms struggle
to solve are NP-hard problems, for which no polynomial time algorithms are
known to exist. Many classical bioinformatics problems are NP-hard [WJ94],
including the multiple sequence alignment problem. This problem, which
has applications in fields ranging from biology to linguistics, is particularly
difficult due to the lack of a well-defined ground truth, leading to many
approaches being parameter-sensitive and difficult to generalize, or too inef-
ficient for use on real-world problems. Many approaches have been proposed
to tackle this problem [CMC+16], such as phylogeny-aware methods [LG08]
or non-coding multiple sequence alignment [SS13], and new methods are reg-
ularly published, because there is still significant room for improvement. In
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particular, there is room for human contribution, because the lack of a well-
established optimal target state is less of a challenge for citizen scientists
than it would be for deterministic algorithms.

The first citizen science game to tap into this potential was Phylo (2010)
[KRK+12], a sequence alignment puzzle game in which players could im-
prove computer-generated alignments in a lightly gamified environment. This
project showed that humans could significantly improve alignments, but the
limited gamification led to the game being heavily expert-dominated, which
reduced the opportunity to learn how the average player plays an alignment
game.

In order to bridge that gap by targeting a much wider group of potential
players, Borderlands Science (see Figure 4.1) was released as a much more
gamified mini-game inside Borderlands 3, a shooter-looter game played by
millions of players [Sza16]. To attract a more general audience more used
to fast-paced games and less familiar with puzzles, the methods from Phylo
were adapted to simplify and speed up puzzle solving. With over 3 million
participants and 100 million games played, and a relatively even contribution
across individual players, we now have enough data to thoroughly investigate
how human players solve these puzzles, and how this can be leveraged for
the broader problem of sequence alignment.

3.0.1 Game design
In Borderlands Science (Figure 4.1), the player is shown 7 to 12 columns

of bricks. Each column represents a homologous DNA sequence fragment
(note that this representation is the transposed version of the typical mul-
tiple alignment representation where sequences constitute alignment rows).
The number and length of sequences increases with the difficulty level. Each
individual brick represents one of the four types of nucleotide bases in DNA
that are encoded with a specific tile and color. Each puzzle in Borderlands
Science is made of fragments of microbial 16S ribosomal RNA gene sequences
provided by the American Gut Project [MHD+18]. In the initial configura-
tion of the puzzle, the bricks are piled up at the bottom of the screen (see
Figure 4.1), as though they were under the effect of gravity.

The player is provided with a limited number of gap tokens, which they
can insert between bricks to maximize the alignment of bricks against the
guides on the left. These guides provide insight about the overall context of
the alignment region the sequence fragments come from [WSK+20]. The cost
of adding a gap is conveyed to the player as the resistance to the gravity effect.
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Figure 3.2: Borderlands Science interface: The sequences to align are pre-
sented vertically with tiles of four colors representing the four nucleotides
A,C,G,T. On the left, the guides represent the tiles to match in each row to
collect points. The user must insert gaps (i.e., yellow tiles) to maximize the
reward. The number of gaps is limited and full rows get an extra bonus.

The main challenge of the game is to reach a target score which is the integer
that is above the nominal score set by the naive greedy player in the face of
limited number of gap tokens and move on to the next puzzle. We also display
the highest score previously submitted to push the participants to optimize
that score. (See official trailer at https://youtu.be/L_mH6Ak_Ny0.)

3.0.2 Hypotheses
The strategies employed by the players to achieve this goal appears to be

heterogeneous without obvious pattern. Are these strategies efficient (i.e.,
the solution simultaneously maximize the score and minimize the number of
gaps used)? Can we learn from the the collected solutions new heuristics to
solve the puzzles?

This article explores the potential of crowdsourcing human intuition to
tackle NP-hard problems, focusing on the typical problem of multiple se-
quence alignment. We attempt to formalize, extract, and reproduce the
players’ puzzle-solving strategies to show they match an effective and repro-
ducible strategy. By establishing the meaningfulness of the solutions submit-
ted by the players, we open an avenue for further work in human-inspired
multiple sequence alignment algorithms, especially as new developments in
reinforcement learning and Transformers-based methods unlock new possibil-
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ities for exploiting crowdsourcing results. We hypothesized that the wisdom
of crowds could be an effective solution for the multiple sequence alignment
task in particular, and for other types of NP-hard problems more generally.
Specifically:

H1: Human solutions use complex strategies that are not repli-
cating basic heuristics. H1 aims to tests whether the strategies used by
the participants follow simple and intuitive rules. To address this question,
we device several bots simulating players that are using simple explicit rules
to solve the puzzles. We compare the solutions returned by the human par-
ticipants to those from the bots to identify similarities and differences.

H2: Human solutions perform at least as well as standard al-
gorithms for the MSA problem. This hypothesis compares several well-
established and non-trivial algorithms designed to solve the multiple sequence
alignment problem embedded in Borderlands Science. Again, we compare
the performance and similarities between solutions obtained from these al-
gorithms and humans.

H3: We can learn and reproduce player strategies using be-
havioural cloning. This part of the work considers whether the decisions
of the players are reproducible using behaviour cloning. We hypothesize that
being able to reproduce the puzzle solutions obtained by the players is an
indirect confirmation that the players’ strategies have features in common.

We test these hypotheses and aim to establish the relevance of small,
fast-paced puzzles, when previous work in this field typically relied on very
complex puzzles, such as those in Phylo [KRK+12].

3.1 Related work
Understanding human abilities related to combinatorics and optimization

problems has been of interest for the past few decades. In 1990, MacGregor
et al. found that human solutions to the Travelling Salesman Problem sig-
nificantly outperformed solutions obtained using Nearest Neighbor [MO96],
Largest Interior Angle or Convex Hull algorithms [MO96]. They noticed
that human-based decisions were not related to how state-of-the-art algo-
rithms solve these problems, but were based on human perception. Acuña
similarly observed that human performance outperformed not only a random
approach, but also many common heuristics, and that humans can improve
on the best existing solutions [AP10]. Hidalgo-Herrero provides an analysis
of humans solving the Knapsack and Vertex Cover problems [HHRRR13],
concluding that human solutions to these problems outperform genetic algo-
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rithms. They also observed that human performance decreases with increas-
ing task complexity, and that children develop more diverse and interesting
strategies than adults.

Problem-solving tasks in games are good environments to mobilize the
human knack for tackling complex problems. Gamification of scientific tasks
has gained traction since the release of Foldit in 2008 [CKT+10], with many
science discovery games reaching hundreds of thousands of players, such as
EteRNA [LKL+14], Galaxy Zoo, Eyewire, Project Discovery and, in partic-
ular, Phylo (2010) [KRK+12], the first multiple sequence alignment SDG,
which showed humans could improve existing alignments through participat-
ing in a game.

James Surowiecki’s wisdom of crowds theory [Sur05] suggests that a com-
bination of solutions from different sources may be better than an individ-
ual solution. This theory has been described and applied in projects in
diverse fields including business, economics and sociology [Sur05], but has
only recently been applied to computer science. In 2010, Yi defined classic
combinatorics problems such as the Minimum Spanning Tree and Traveling
Salesman as puzzles divided into fragments solved by human participants
[YSLD12]. These fragments were then assembled into a global solution that
outperformed the results of standard algorithms.

The main limitation of this class of crowdsourcing initiatives is the re-
liance on a large number of participants to solve a single problem. There
is thus a natural synergy with artificial intelligence methods that augment
crowdsourced data or apply the knowledge gained from humans to other
problems. This led to the idea of the wisdom of artificial crowds (WoAC), a
strategy successfully applied to general computational problems such as the
Travelling Salesman Problem, as well as to real-world games such as Sudoku
[YEB11, RSS+15].

The multiple sequence alignment problem, due to its importance in bi-
ology, has been studied for over 50 years, and hundreds of algorithms have
been proposed to tackle it [THG94, BKR+04, PHB+08, DMBB05, MWP+05].
While these methods are still very popular, an increasing number of new
approaches involving machine learning have been published recently [AN16,
KLG20], with a small minority involving Reinforcement Learning (RL) [RSB18].

In Reinforcement Learning, an agent interacts with an environment by
following a policy in order to maximize its reward function [SB18]. An ex-
ample of this class of method is the application of Q-learning to the MSA
problem [JJKR19]. Their results were later significantly improved with Deep
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Q-networks (DQN) [JTKRJ20]. Another application of reinforcement learn-
ing to MSA is RLALIGN (2018), which is based on Asynchronous Advantage
Actor Critic (A3C) [RSB18].

The main disadvantage of the RL approach is the explicit definition of
the Reward Function, which can be quite complex [SG15]. Alternatively,
Behavioural Cloning (BC) can be used as an approach focused on the capture
and reproduction of human abilities and sequences of actions [Sam10]. This
approach has been successfully applied to various video game tasks [HVP+18,
GHT+19, ZWL+20]. A recent benchmarking paper reviewing 10 modern
games showed that, despite low productivity compared to humans, agents
can learn the basic strategy and rules and emphasize that data quality rather
than quantity matters for RL [KPH20].

Game-related tasks are well suited for Reinforcement Learning because
they typically involve a well-defined action space and reward system: these
are key features of game design. Reinforcement Learning has important
limitations: it requires a designed environment in which an agent can interact
with a game, which can be costly to implement and maintain, and once the
environment is in place, agent training can take thousands of years of game
time.

However, we know that humans can learn to perform tasks through im-
itation, and can leverage this approach for automated learning. Applying
this learning method to an autonomous agent is referred to as learning from
demonstration (LfD) or Imitation Learning (IL) [HGEJ17]. The commonly
used approaches within this paradigm can be divided into two broad cate-
gories: Behaviour cloning (BC) and Inverse Reinforcement Learning (IRL).
AI Players based on the players behavior can solve a large number of different
tasks [HGEJ17]. For example, using player experience as observational data,
we can train a generative model to play Atari games, which is a benchmark
for many RL approaches [CTG+21]. Pfau used this approach to ensure the
balancing of in-game parameters and classes to ensure the success of the Aion
game [PLV+20]. These methods can also be successfully applied in the real
world with systems in autonomous vehicles [LMYDM22].

In this article, we focus on a Behaviour Cloning approach, because it
tends to be both simple and effective in solving policy search problems [Far19,
CSLG19], and our main goal is to assess whether the player solutions can be
mimicked, a task that does not require a complex model.

Behavioural cloning [? BS95, RGB11, DBH16] is one of the main ap-
proaches for imitation learning. Rather than learning an optimal policy that
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maximizes the long-term cumulative rewards like in traditional reinforcement
learning, a set of demonstrations from an expert is used as a base for learning.

The notation is similar to that used in RL. Expert demonstrations are
divided into state-action pairs, and supervised learning is applied as a clas-
sification or regression model. The loss function depends entirely on the
application and the nature of the data. More formally, it can be written as:

• Collect demonstrations ( τ ∗ trajectories) from expert

• Treat the demonstrations as i.i.d. state-action pairs:
(s∗0, a

∗
0) , (s

∗
1, a

∗
1) , . . .

• Learn πθ policy using supervised learning by minimizing the loss func-
tion L (a∗, πθ(s))

This approach has many attractive properties. Specialized game modifi-
cations and environment creation are not needed, lengthy training is avoided,
and the same method can be adapted and reused in different games. Until
now, this class of approaches struggles to outperform human experts, and
requires a significant amount of expert examples in order to achieve similar
proficiency, despite recent advancements combining simulation and optimiza-
tion yielding promising results [CZW+20]. However, when expert imitation
is achieved, the positive outcomes can be significant because expert-level
strategies can be computed much faster than human solutions, and scales by
adding computational resources rather than through the lengthy process of
training new human experts.

The current state of the art in both human solving of hard computa-
tional problems and reinforcement learning methods creates a remarkably
favourable context to explore the synergy between these two fields. With
Borderlands Science, we are given a unique opportunity to explore this syn-
ergy and fully unlock the potential of human contributions.

3.2 Methods
In this section, we describe the multiple sequence alignment problem, and

the machine learning techniques we used to capture strategies from players.

3.2.1 Data filtering
The Borderlands Science game data consists of human gut microbe genome

fragments, sequenced by the Microsetta Initiative, which were pre-aligned
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with PASTA [MNG+15]. The puzzles submitted to players are carved out
of this pre-alignment. In the game, player optimize a bi-objective function:
reaching the maximal number of matches (the score), with a limited number
of gaps they can insert. This is the same bi-objective function traditional se-
quence alignment algorithm optimize, but powered by human intuition rather
than a scoring matrix.

For this paper, we focus on a sample of 1,000,000 randomly selected puzzle
solutions, played between April 2020 and June 2021.

To determine the value of a submitted solution, approximate the Pareto
front for each puzzle from all solutions collected for that puzzle (on average,
we collected 45 solutions per puzzle). The Pareto front is the set of solutions
to a puzzle that optimize our bi-objective function. In other words, a solution
is Pareto-optimal if there does not exist another solution that simultaneously
matches/increases the score and matches/reduces the number of gaps. We
estimate the quality of a solution from its distance from the Pareto front on
the x axis (i.e., the score difference between the two).

We aggregated puzzle solutions and extracted those close to the Pareto
front, in order to only include the best human solutions. We define a pro-
portional horizontal Pareto distance of a single solution to a puzzle as the
score improvement of that solution over the worst human solution, divided by
the improvement of the best score for this number of gaps (pareto-optimal)
over the worst human solution. Solutions associated with a distance over 0.7
were excluded from the data. This threshold was established through visual
assessment of clustering outcomes by human experts. This resulted in 53.4
percent of solutions were filtered out.

3.2.2 Multiple sequence alignment
Definition

A multiple sequence alignment can be described as a set of n sequences
S1, S2, . . . Sn, represented as vectors of the matrix A where each element ai,j
comes from the set of nucleotides or gap (A,C,G, T,−). The input to the
multiple sequence alignment problem is typically a set of ungapped sequences,
and the output sequences contain gaps. This formulation of the problem al-
lows us to consider several sequences as a matrix. This input matrix A is
dense, and the output matrix A′ contains gaps −, inserted in a specific ar-
rangement to maximize some score, such as a phylogenetically-aware scoring
scheme [BKR+04] or a simple sum-of-pairs scoring scheme [SMC73]. The
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mathematical form of the MSA problem is NP-hard for both classes of scor-
ing scheme [WJ94].

The many methods presented to tackle this problem, [THG94, BKR+04,
PHB+08, DMBB05, MWP+05] tend to have different performance charac-
teristics that depend on the type, length and number of input sequences. In
particular, PASTA [MNG+15] is specifically designed to handle large align-
ments and was used as the scaffold for the Borderlands Science puzzles. It
should be noted all these algorithms are heuristics with no guarantees of
optimality, and that multiple sequence alignment remains an open problem.

Algorithms used for comparison

The methods described above for solving the problem have different focuses
and approaches. We chose several algorithms for comparison to our methods
in two categories corresponding to our hypotheses. The first category, which
corresponds to hypothesis 2, contains traditional computational methods de-
veloped to tackle the MSA problem, included for the purpose of benchmark-
ing the performance of our methods. It includes: Dynamic Programming
(Needleman-Wunsch) [Nee70], PASTA [NMKW15], profile alignment using
HMMER [Edd92], and Greedy algorithm. The second category, correspond-
ing to hypothesis 1, aims at providing context to interpret the particularity
of player solutions. It includes methods built from basic heuristics that can
be applied by a human to solve the game. The Greedy algorithm, a Progres-
sive Profile Strategy (PPS) algorithm, and a Random algorithm are chosen
for this category. We designed the greedy and PPS algorithms ourselves. A
summary of our methods can be seen in Table 3.1.

Our dynamic programming algorithm is inspired by the Needleman–Wunsch
algorithm, a classic sequence alignment algorithm introduced in 1970 [Nee70].
Unfortunately, its complexity is O(nk), where n is the number of nucleotides
in the sequences, and k is the number of sequences. Therefore, we use an
adapted method that aligns each sequence to the guide while applying a max-
imum total width to the alignment. This type of algorithm has many equally
optimal solutions (per each sequence). In order to satisfy the gap limit con-
straint of the Borderlands Science game, we take a 2-step approach: first,
we invert the sequences and the guide and remove the gap insertion penalty
at the start (that corresponds to the top of the puzzle now), effectively ac-
counting for the "gravity" effect of the puzzle. This is required because NW
always fills the entire grid. After obtaining optimal solutions, we try differ-
ent combinations of these optimal solutions and count the number of gaps
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Name Short Description Reference Hypothesis

Random Randomly places
gaps

– H1

Progressive Profile Strategy (PPS) Progressive profile
alignment

– H1

Greedy Chooses best place
to insert a gap iter-
atively

– H1 & H2

Needleman-Wunsch (NW) Dynamic program-
ming

[Nee70] H2

PASTA Uses alignment and
tree estimation,
and HMMs

[NMKW15] H2

HMMER Uses HMMs [Edd92] H2

Table 3.1: Summary of reference algorithms used for comparison.

until we find one that respects the gap limit. If none exist, we incrementally
increase the gap limit until such a solution exists. However, due to running
time constraints of the dynamic programming algorithm for complex puzzle,
a proportion of solutions are skipped.

PASTA [NMKW15] (Practical Alignments Using SAT’e and TrAnsitiv-
ity) allows for the computation of MSA alignments for very large nucleotide
datasets. Prior to aligning the sequences, PASTA estimates an alignment and
a guide tree from a subset of the sequences using a very simple profile Hidden
Markov Model (HMM)-based method. A set of HMMs is created from the
alignment and the tree, and the rest of the sequences are aligned to each
HMM and the best one is used to update the alignment with the sequence.
The PASTA alignment is taken directly from the uncollapsed alignment used
to generate the puzzles, so does not respect the gap limit given to the player
solutions and other algorithms.

In order to use HMMer to solve our puzzles, we used pyhmmer package.
We first build a Hidden Markov Model (HMM) profile from our guides with
DNA Alphabet, then use the HMMer Trace Aligner method. The main
challenge was to fit the solution of the algorithm into the same grid that a
player sees in the BLS and use fewer gaps than the maximum that players
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are allowed. To do this, we varied the consensus impact scale, between 0.8
and 0.95 to yield solutions that use fewer gaps, however, many solutions still
do not respect the gap limit.

Greedy algorithms, which optimize for immediate reward, can be effective
approaches for solving the MSA problem [ZSWM00] despite their simplicity.
Borderlands Science uses a naive greedy solver to set score targets for the
players. Because all solutions submitted by players must outperform the
greedy solution, that algorithm is intentionally simplistic. For the purpose
of this study, we added stochasticity to explore the limits of its reach in the
solution space, and simulate players using a strategy aiming for maximum
reward after each move.

The Progressive Profile Strategy (PPS) algorithm was inspired by Pro-
gressive MSA, combined with an effort to reproduce how players are usually
observed to solve puzzles. In this method, first, a profile is created from the
guide. We then start from the leftmost sequence and align it to the profile
by trying all possible combinations of gaps and choosing the best one. Then
we add the solution found for the first sequence to the profile, and move on
to aligning the second sequence with it. We continue this until all sequences
are aligned with the profile.

We also compared the trained models to a random player who randomly
selects a gap location based solely on the size of the puzzle and the number
of gaps added by the human players to solve the same problem. We are using
this algorithm to simulate a player without strategy.

We tested whether the strategy used by the players is distinct from these
methods, and outperforms them on any relevant criteria.

3.2.3 Imitation learning
Data representation

We consider two ways of representing our data (See Figure 3.3). First, we
can represent the puzzles as a matrix, where each of the four nucleotides
is associated with a channel (e.g., red, green and blue are three distinct
channels for traditional computer representation of images). The input is
thus a 4×L×N matrix, where, L is the number of rows, and N the number
of columns. And the output will be a two-dimensional L×N matrix storing
gap positions. We call it a image2image task.

The second option consists in representing each individual sequence as a
string. In this case, the output will be the same string in which we eventually
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Figure 3.3: Different representations of the data for image2image and
seq2seq tasks. The main differences in terms of input, output data and
architecture of the model are presented.

insert gaps gaps. We call it a seq2seq task.

Predictive models

• Fully Convolutional Network. FCNs were originally presented as a
solution to the segmentation problem [LSD15]. Unlike classical CNNs,
which rely on a fully connected layer to obtain a fixed-length feature
vector for classification after the convolutional layer, FCNs can ac-
cept input images of any size because of the set of deconvolutional
layers. This architecture has been shown to outperform the state-of-
the-art without further machinery in several settings [LLY+19, LZX16,
PCMY15].

• Transformers. Transformers are a state-of-the-art model with self-
attention [VSP+17]. Recent research has shown that self-attention is an
effective way to model text sequences [VSP+17, DCLT18]. It consists of
an encoder and a decoder. An encoder converts the input information
into one or more vectors, and a decoder generates output information
from these vectors. The input data passes through the layers of the
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encoder: some of them are standard fully-connected layers, and others
are residual connections similar to ResNet [HZRS16]. The most novel
component of the encoder section is the Multi-head attention layer, a
special layer that allows each input vector to interact with other words
through the attention mechanism, instead of passing through a hidden
state like in an RNN [She20] or CNN [LBD+89]. Its inputs are Query
vectors and several Key-Value pairs that are responsible for positional
information. This embedding will then be used by the decoder. Internal
attention layers in a decoder work a little differently than layers in an
encoder. In the decoder, the internal attention layer can only focus on
previous positions in the output sentence.

We implemented our Transformer model with 8 layers, 64 embedding
sizes, and 8 attention heads using a batch size of 100 puzzles, and them
trained for 100 epochs. To optimize the transformers-based model, we used
Adam optimization with a learning rate of 0.004 and a weight decay of 0.004.
We also set attention dropout to 0.1. In order to get the most out of the self-
attention mechanism, we selected "axial attention" architecture proposed in
[HKWS19]. This allows embedding of a 2D tensor with an autoregressive
model, while remaining economical in computation.

By contrast, our FCN model consists of stacked blocks of 2D convolution
layers, Dropout and BatchNormalization regularization and a RELU activa-
tion function. We have three layers in the encoder and three layers in the
decoder with the following parameters: filters = 4, kernel size=1, strides=1.
Each position in output data can be associated with one of two classes, indi-
cating whether this position corresponds to a gap. In experimenting with this
model, we focused on the more suitable image2image approach, leveraging
the encoder-decoder approach as presented by Noh [NHH15]. The input is a
puzzle of variable size, and the output is a label assigned to each pixel from
one of two classes, determining whether the pixel moved or stayed in place.
To optimize the FCN model, we kept the same learning rate of 0.0001, 100
epochs. Optimization was performed with cross-entropy loss minimization
as the metric and Adam optimization. The cross-entropy loss is computed
against the flattened real player solution image.

3.2.4 Evaluation
The choice of a metric that measure the similarity between outputs is

challenging, because puzzles have different sizes and numbers of gaps. To
obtain a complete picture of the similarity between solutions, we selected
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three metrics: Cosine Similarity, Hamming distance, and Jensen-Shannon
distance.

The first metric, Cosine Similarity [NB10, XZL15], measures the angle
between two vectors in multidimensional space, and is useful for evaluating
sparse data such as ours because cosine it ignores 0-0 matches. Cosine sim-
ilarity is a widely used quality metric that is used in a wide variety of ML
areas, such as text classification [LH13] or images analysis [NB10], also finds
high use in RL tasks [RLZ17]. We also use cosine similarity to obtain the
distance between each solution from algorithms and humans to the consensus
of gaps between humans.

We also present the Hamming distance [NFS12] between predicted se-
quences and player solutions. The metric shows the number of positions in
which the characters corresponding to them are different. The Hamming
distance is normalized to the string length to generalize to any puzzle size.
This metric is extremely useful as it is well interpreted by humans - visually
it is very easy to identify mismatched elements in two lines of the test. Ham-
ming distance is often used for language models [LPL21, RMS+20]. These
approaches can also be used in work and genetic chains, presenting language
model information [LSB22, PPS12].

We report the Jensen-Shannon distance [FT04], which measures the dif-
ferences between probability distributions. We compare the distribution of
gaps between predictions and real solutions. If two distributions are simi-
lar, the Jensen-Shannon distribution between them is 0. This metric is more
complex as it considers the real and predicted distributions. Jensen-Shannon
divergence has also been used by many authors to analyze their research. For
example, [WDJ04] use this metric for a scoring scheme for Sequence align-
ment profiles task, also the metric is used for DNA analysis [GBGC+02].

We also report a similarity to the centroid of player solutions. The cen-
troid of player solutions is a representative solution that is calculated by
identifying the player solution that has the highest cosine similarity to the
consensus of gaps between all player solutions for a specific puzzle. In the
context of our analysis, we use the Levenshtein distance to compare the pre-
dicted solutions to the centroid of all player solutions for that puzzle. The
Levenshtein distance is a measure of the similarity between two sequences
by measuring the amount of insertions, deletions and substitutions needed
to transform one sequence to another, and is often used in natural language
processing tasks to compare the similarity between two pieces of text. By
using the Levenshtein distance on the centroid, we can determine the simi-
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larity of the predictions to the most popular player solution, without being
heavily influenced by outliers. As this information is not at all used in the
training of RL agents, it also serves as a sanity check.

For the methods that do not adhere to the gap limit provided to the
player such as HMMer and PASTA, we can compare their performances by
looking at how many incompatibilities there are with the player solutions.
Incompatibilities are described as the number of gap deletions required to
transform a player’s solution into the algorithm’s solution using only gap
insertions. This allows us to see how similar the player solutions are to a
particular algorithm’s strategy, regardless of the number of gaps the solutions
use. The assumption is that if there are few incompatibilities, it means that
the player solutions are likely incorporating part of the strategy, but may
not have enough gap insertions to fully solve the puzzle. Figure 3.9 shows
the mean of these solutions across all puzzle difficulties and highlights the
similarities between the various algorithms.

We also measure the mean number of gaps per puzzle and the distribution
of gaps across the columns of each puzzle. These values are split into three
groups of puzzle difficulties (which correspond to the size and complexity of
the puzzle) to allow us to compare the performance of the different methods
across different levels of difficulty. Analyzing the distribution of gaps can
help us understand the strategies that lead to the results we observe.

All metrics are measured between the flattened forms of the algorithm or
agent-produced and player-solved puzzle matrices.

3.3 Results
3.3.1 Data from Borderlands Science

The Borderlands Science data was processed as described in section Meth-
ods 4.2. Table 3.2 presents a detailed description of this dataset. It contains
a total of 25,000 puzzles and 1,145,001 solutions.

3.3.2 Testing Hypothesis 1
To test whether the player strategies were significantly different from

simple heuristics, we solved the puzzles with a greedy player, a Progressive
Profile Strategy (PPS) algorithm, and a random player. We compared these
algorithmic solutions to human solutions with the methods listed in section
3.4.

First, when comparing solutions, we observe that the PPS, greedy and
random players achieve lower game scores than humans (Figure 4.5). They
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Difficulty Mean used gaps Number of puzzles

1 5.68 5443
2 5.62 3627
3 5.03 2108
4 6.60 2001
5 7.95 2292
6 9.76 3753
7 10.34 2833
8 11.37 2851

Table 3.2: Level-by-level description of the Borderlands Science data the
agents were trained on, with the average number of gaps inserted per puzzle
for each level

CosSimilarity HammingDist JensenShannonDist

Transformer 0.79 0.07 0.40
FCN 0.77 0.08 0.41
NW 0.77 0.04 0.37

Greedy 0.64 0.04 0.30
PPS 0.58 0.11 0.44

Random 0.55 0.07 0.44

Table 3.3: The three similarity metrics computed on the final state were
obtained with seven reference algorithms. We report the similarity/distance
between an algorithm’s solution to a puzzle and the Pareto-optimality-filtered
player solutions for this puzzle. The optimal result is 1 for cosine similarity,
and 0 for the two distance metrics.
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Figure 3.4: The average game score obtained by the players (real) and
models (i.e., reference algorithms) for puzzles at increasing difficulty levels.
(*) Results for the Needleman-Wunsch (NW) algorithm are computed for
10,000 puzzles on which our implementation could return a result.

also generate final states that are less similar to the averaged human solu-
tions (Figure 3.5) and further from the human solution centroid (Figure 3.6)
than the Needleman-Wunsch algorithm. Overall, this appears to indicate the
similarity between human solutions and PPS, greedy and random solutions
is low.

Second, we compare strategies. We observe that PPS places a similar
number of gaps per puzzle as the human players (near the maximum allowed)
for all difficulty levels (Figure 3.8). However, the column placement patterns
differ: humans build more columns with one gap than columns with zero,
whereas PPS builds more columns with zero gaps than columns with one
(Figure 3.9). The Greedy gap placement behaviour also significantly differs
from humans. An example result of the difference in gap placement patterns
can be seen in Figure 4.8.

Conclusion: Our results indicate that both in terms of strategy and per-
formance, there is a low similarity between human players and basic heuris-
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Figure 3.5: Cosine similarity to averaged player solutions. (*) Results for
the Needleman-Wunsch (NW) algorithm are computed for 10,000 puzzles on
which our implementation could return a result.

tics.

3.3.3 Testing Hypothesis 2
To test whether the player strategies provide a satisfying solution to the

multiple sequence alignment problem, we also included standard algorithms
to our comparison set, such as a modified Needleman-Wunsch and a greedy
algorithm.

Since these two methods could be modified to accommodate the gap limit
in the game (see methods), we can compare them to the human performance
in terms of game score, a score obtained primarily from correctly matching
nucleotides to guides. We observe that Needleman-Wunsch outperforms the
average player for the first three difficulty levels (smallest puzzles), but that as
the problem gets more complex it falls behind human solutions (Figure 4.5).
This phenomenon suggests that the players use a strategy that allows them to
quickly identify a near-optimal solution. When the combinatorial complexity
of the puzzle is growing, an exhaustive search is no longer feasible and players
clearly outperform this optimization method. The greedy algorithm is overall
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Figure 3.6: Levenshtein distance from the player solution centroid. (*)
Results for the Needleman-Wunsch (NW) algorithm are computed for 10,000
puzzles on which our implementation could return a result.

outperformed by the average human.
Because some other standard algorithms such as HMMer and PASTA

cannot accommodate the gap limit imposed on the players and cannot easily
be modified to accommodate it (as we did for Needleman-Wunsch), we also
performed a separate investigation on the compatibility of human solutions
with the outputs of advanced and widely-used algorithms HMMer [Edd92]
and PASTA [NMKW15] (see section 3.5).

In this investigation (Figure 3.9), we estimated the average number of
gaps placed by players that are not compatible with the software solution.
We observed that the behavior of HMMer is highly compatible with that of
players. In other words, the gaps inserted by players are overwhelmingly gaps
inserted by HMMer. By contrast, PASTA showed significantly more disagree-
ment with player solutions, in large part because it is very gap-adverse (i.e.,
PASTA tends to avoid opening new gaps in sequences that has none). This
is consistent with the role of PASTA in the Borderlands Science pipeline; it
builds a very tight scaffold and then players add missing gaps to improve the
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Figure 3.7: Solution Example: Greedy, Hmmer, PPS, Random, NW, Trans-
former, FCN, Average Human Solution. Average Human Solution includes a
number of how often each position has been chosen as a move.

alignment. This however comes with PASTA obtaining a much poorer score.
Conclusion: In the context of the game, humans appear to outperform

traditional algorithms for puzzles above the easiest difficulty levels, and the
moves made by human players are compatible with gap-friendly methods such
as HMMer and complementary to gap-adverse methods such as PASTA. In-
terestingly, solutions of the Needleman-Wunsch optimization algorithm bear
similarities with those of humans. Yet, the player strategy quickly becomes
more efficient at identifying a good solution when the difficulty increases.

3.3.4 Testing Hypothesis 3
To test whether it was possible to accurately learn from the human solu-

tions, we leveraged two well-researched behaviour cloning approaches.
We observed that Transformers and FCN achieve high cosine similarity to

human consensus (Figure 3.5) and low Levenshtein distance against human
centroid (Figure 3.6). RL methods obtain game scores (Figure 4.5) compa-
rable to humans, but slightly worse, notably because they place fewer gaps
(Figure 3.8), limiting itself to high-consensus gaps. In other words, after
having added the gaps that most humans agree with, adding more gaps in-
creases the distance against the majority of humans. This can be a strength
in the context of sequence alignments where gap insertion and extensions
are usually limited by some form of penalty to avoid having too many gaps.
The very small difference in score, in light of the significant difference in gap
insertions, indicates that the additional gaps inserted by humans provide a
diminishing returns, suggesting the FCN and Transformer’s gap-efficiency is
a strength.
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Figure 3.8: Comparison of the number of gaps per puzzle difficulty category
(1-2, 3-4-5, 6-7-8) to identify solution strategies between the player solutions,
ML models and naive algorithm.

Figure 3.9: Comparison of the number of inserted gaps per column per puz-
zle for each puzzle difficulty category (1-2, 3-4-5, 6-7-8) to identify solution
strategies between the player solutions, ML models and naive algorithm.
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Figure 3.10: The similarity of solutions from reference algorithms to human
solutions (i.e., mean player solution) using a customized edit distance. Our
distance reports the average number of incompatible gaps in the solutions of
the reference algorithms that must be removed to reach the human solutions.
We report the statistics for all difficulty levels together.

It should also be noted that this high game score was obtained by the
agents despite the fact that it does not perfectly copy player behavior. This
indicates that even when the agent fails to correctly imitate the players, it
still provides a solution that obtains a decent score suggesting it presents a
valid solution to the general problem of multiple sequence alignment.

In terms of strategy, RL methods produce nearly exactly as many columns
with one gap as humans over the three difficulty categories, and its gap place-
ment patterns become more similar to humans as the complexity of the prob-
lem increases (and as human solutions progressively outperform Needleman-
Wunsch).

Conclusion: We can successfully capture strategies employed by humans
using behaviour cloning techniques. Both behaviour cloning methods we
present accurately mimic the strategies of human players, with Transformers
slightly out-performing FCN.

3.4 Discussion
We have shown that all three hypotheses presented in this paper are

corroborated by experimental results: the player solutions are original, high-
quality and mimickable.

By simultaneously demonstrating that the player strategies are original
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(H1) and that they produce outputs comparable in quality to state of the art
algorithms (H2), we established the relevance of training an agent to learn
from these players on Borderlands Science. This confirms our hypothesis
based on previous successes in the solving of computational problems by
humans [MO96, AP10, YEB11, RSS+15]. Notably, humans out-performed
greedy algorithms on Borderlands Science as they did in [AP10], and we
confirmed the presence of a perceptible regular pattern in how humans solve
these tasks, as in [MO96].

We also demonstrated that accurately learning from players was achiev-
able (H3). Our results show that behavioral cloning can be an effective
approach for a puzzle game such as Borderlands Science, confirming our hy-
pothesis based on its performance on Atari [ZWL+20]. In particular, we
discovered that learning from the consensus of players leads to a gap-efficient
agent able to achieve scores comparable to humans while excluding gaps that
provide diminishing returns, a particularity that is highly relevant for tasks
such as multiple sequence alignment.

A preliminary analysis of the moves played by our model reveals that a
strategy captured from the players aims at finding a specific trade-off between
the number and length of gaps (i.e., the length of gaps is defined as the
number of adjacent gap tiles). It turns out that the determination of a gap
penalty scheme is one of the most sensitive parameters in biological sequence
alignment [VW94]. Hence, this work offers a piece of promising information
to design new sequence alignment algorithms.

There are two main application paths for the methods we have presented.
The most obvious one is to leverage the solutions from the players by applying
the strategy they taught us to new sequences, effectively generalizing the
results of the Borderlands Science initiative and taking full advantage of
the data, limiting the impact of the significant overhead cost of the project.
Another promising avenue is to use the reinforcement learning agents as
a partner for the players, for example by providing hints, thus creating a
fully-fledged Human-in-the-loop (HITL) system to leverage both human and
machine intelligence for solving combinatorial problems.

From a technical perspective, both machine learning frameworks yielded
comparable and positive results. Yet, it appears that transformers trained
with the seq2seq framing outperform FCNs trained on the full image on two
of our three metrics. This could be significant in terms of indicating a better
framing of the problem, but it could also be due to the high performance of
state-of-the-art transformer-based methods. We leave a full investigation of
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this question to future work.

3.4.1 Limitations
First, the algorithmic methods presented here as benchmarks are lim-

ited. Typical multiple sequence alignment methods do not usually have a
hard gap limit and integrating that constraint can be difficult: our modified
Needleman-Wunsch was only able to terminate for 40% of the puzzles. We
only reported results for the problems it was able to terminate on. Greedy
algorithms work well with gap limits since they optimize step by step but
they are rarely optimal for MSAs. We were unable to integrate a gap limit
to PASTA and HMMer and had to limit ourselves to assessing their com-
patibility to human solutions. The bottom line here is that humans and
algorithms solve the MSA problem with different approaches and a perfect
benchmarking of one against the other is not possible.

Second, while the purpose of the approach we present is to be able to apply
the strategies learned from human players to any dataset, its performance on
a dataset of non-microbial sequences has not yet been tested. However, we
have evidence that at least in the context this approach has been tested, it
presents a reasonable solution to the MSA problem, which seems to indicate
the agents learn general strategies that should apply to any nucleic acid
sequence.

Third, a limitation of the Borderlands Science game is that the players are
not explicitly told to optimize a bi-objective function. They have a limited
number of gaps but they have no incentive not to use all the gaps they are
given. We alleviate this limitation by showing players different numbers of
gap tokens for the same puzzle, and by filtering player output for solutions
near the pareto front, which results in a large enough set of nearly optimal
solutions.

Also, pareto-optimality, which we use here as a proxy to identify good so-
lutions to the MSA problem, is not guaranteed to provide the best solution to
this problem. It is not impossible that there exists a better way to filter this
data and extract solutions that constitute the best strategies to tackle the
MSA problem. However, this limitation is damped by the logical relevance
of pareto-optimality to the problem at hand; while we cannot guarantee the
player solutions are globally optimal, we have shown strong evidence that
they generally outperform computational methods on at least one important
evaluation criteria, which is sufficient to support the claim that these solu-
tions provide valuable information that is worth learning to reproduce (see
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H1).
Another typical limitation of a large-scale participative science approach

is the potential presence of disruptive behavior and its handling [PM19]. In
Borderlands Science, several steps were taken to limit the impact of such
behavior: the requirement of reaching the par score forces players to at least
attempt to solve the puzzle, and, solutions that are too distant from the
consensus are removed. We are inclined to trust this consensus between
players because the main feedback we received from our interaction with
the player-base was excitement about contributing to science. Finally, the
main rewards offered to player, in-game cosmetics, can only be received once
per level, which reduces the long-term value of playing the game and thus
de-incentivizes botting.

Additionally, the reinforcement learning methods presented in this article
do not cover the entirety of the state of the art for imitation learning. We
intentionally selected simpler models that are known to work well for this
type of problem rather than more complex models such as DQN to assess
whether player solutions could be mimicked with a simple model. It is possi-
ble alternate methods outperform the ones presented here. Nevertheless, we
reserve the investigation of alternative strategies for future work, as recent
work has confirmed it is possible to train an agent to play at an experienced
level in a game with behavioural cloning [VBC+19], and this is the extent of
the evidence we needed to accumulate for the claims presented in this work.

Finally, the data presented in this study is difficult to acquire. Assembling
a million solutions from players requires selecting the right problem, adding
an adequate level of gamification, and finding a way to massively distribute
the game. The overhead cost is significant. However, the methods presented
in this paper represent a promising avenue to make full use of the output by
widening its range of applications, further justifying that overhead cost.

3.5 Conclusion
In this work, we showed that Borderlands Science players leveraged het-

erogeneous and efficient strategies and that these strategies could be mim-
icked with machine learning. This contribution further supports the relevance
of scientific discovery games to tackle scientific data analysis challenges by
offering an avenue to apply these results to new data. Yet, the main novelty
of this contribution is the successful application of this strategy to an NP-
hard computational problem, charting a promising course for solving complex
problems with the wisdom of the crowd through massive-scale citizen science
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4

Player-Guided AI Outperforms
Standard AI in Sequence

Alignment Puzzles

Preface
After the publication of our first paper, we realized a few limitations con-

cerning the determinism of the model presented. We wanted to conserve the
stochastic nature of the solutions generated by players and also investigate
comparisons with models based on reinforcement learning.

These and a number of other enhancements over the previous architecture
have deepened our view on how player-generated data can be used to inform
a strong algorithm, which not only closely emulates player behavior but also
exceeds classical methods.

In this chapter, I present a novel architecture based on Generative Ad-
versarial Imitation Learning, applied to the dataset provided by Borderlands
Science, that allows maintaining the stochastic nature of human decision-
making while achieving superior alignment results with respect to state-of-
the-art methods.

The main novelty of the research is that this model, to the best of our
knowledge, for the first time has been applied to Borderlands data in a way
that grasps quite nicely the randomness of human decision-making processes.

This chapter, bar the present preface, was presented at the 2023 CM
Collective Intelligence Conference.

The full list of authors for this work includes Renata Mutalova, Ro-
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man Sarrazin-Gendron, Parham Ghasemloo, Eddie Cai, Gabriel Richard,
Sébastien Caisse, Rob Knight, Mathieu Blanchette, Attila Szantner, and
Jérôme Waldispühl.

Jérôme Waldispühl guided and supported the biological aspects of the
project. Roman Sarrazin-Gendron contributed to the writing and performed
background analysis. Gabriel Richard and Sébastien Caisse played a crucial
role in the realization of Borderlands Science, an important part of this work.

My contributions towards them were the development and actual im-
plementation of almost all coding activities related to the pre- and post-
processing. I rewrote the algorithm that exists to find the optimal solution,
making it run up to 100 times faster. I also implemented the GAIL architec-
ture and a Deep Q-Network serving as a comparative baseline algorithm. I
created the figures and tables presented in this section. This work was origi-
nally published as Mutalova, R., Sarrazin-Gendron, R., Ghasemloo Gheidari,
P., Cai, E., Richard, G., Caisse, S., ... & Waldispühl, J. (2023, November).
Player-guided AI outperforms standard AI in sequence alignment puzzles. In
Proceedings of The ACM Collective Intelligence Conference (pp. 53-62).
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INTRODUCTION

4.1 Introduction
Citizen science is an approach that engages non-scientists in scientific

projects, where they actively contribute their time, efforts, and expertise. It
harnesses the collective power of people to assist in data collection, analysis,
and interpretation. Citizen science projects can take the form of a game (Cit-
izen science games, or CSGs), in which players become active contributors
to real scientific research while enjoying gameplay. This approach has been
leveraged to tackle complex problems such as Multiple Sequence Alignment
(MSA) [KRK+12].

The purpose of a MSA is to identify homologous regions of DNA, RNA,
or protein sequences. In this process, gaps are inserted into the sequence
to accurately represent insertions or deletions of nucleotides, reflecting evo-
lutionary changes. Aligning the sequences facilitates their comparison and
downstream analysis by revealing conserved motifs and structural insights.
An MSA allows the identification of similarities and distinctions within mul-
tiple sequences, offering valuable insights into evolutionary connections and
conserved regions among the sequences. Similar to many classical bioinfor-
matics problems, MSA is known to be NP-hard [WJ94], which means that
its computational complexity increases exponentially with the number of se-
quences to be aligned [WJ94].

Several approaches have been proposed to tackle this challenging prob-
lem. Dynamic programming serves as a prevalent approach in sequence
alignment algorithms [NW70, SW+81]. To address the computational chal-
lenge of the MSA problem, researchers have proposed alternative approaches
and techniques as a potential solution. Examples include simulated anneal-
ing [KPC94], optimization-based algorithms [RK03, XC09, MJ03], heuristic
methods [MNG+15, WF93] and even quantum algorithms [HSX10]. Addi-
tionally, researchers have made multiple attempts to apply Artificial Intel-
ligence (AI) techniques to this problem [MBD14, JJKR19, RSB18, Joe21,
ZZL+22, MSGC+23]. However, these attempts have encountered issues re-
lated to convergence rate and alignment accuracy [MBD14, RSB18, ZZL+22].

Crowd computing, and more particularly citizen science games, have
emerged as a promising approach for tackling the MSA problem. One no-
table implementation of this concept is Phylo, released in 2010 [KRK+12].
Phylo utilizes crowd computing principles to engage players in gameplay
while simultaneously contributing to scientific research and genetic analysis.
In Phylo, players are presented with a set of puzzle pieces representing homol-

83



INTRODUCTION

ogous segments of DNA from various species. By aligning these sequences,
players help researchers in the analysis of genetic data and the study of evo-
lutionary relationships. The success of Phylo highlighted the potential of
crowd computing in harnessing the power of human intuition and pattern
recognition to address complex scientific problems like MSA.

Building on the success of Phylo was Borderlands Science (BLS), a mini-
game integrated into the popular video game Borderlands 3, released in 2020.
The integration of BLS into the actual game has attracted a significant num-
ber of players compared to Phylo. Also a sequence alignment game but
focused on smaller tasks, BLS offers the advantage of coming with tens of
millions of player solutions, unlocking a unique potential to explore novel
strategies not discovered by other algorithms, including AI. This raises the
question of how we can effectively leverage the knowledge gained from play-
ers’ participation in BLS and transfer these valuable ideas to tackle new
alignment problems, ultimately advancing our ability to solve a wide range
of alignment challenges beyond the game’s scope.

One approach to amplify the analysis strategies in Borderlands Science
is to incorporate Reinforcement Learning (RL), a prominent field within the
realm of Artificial Intelligence (AI). RL algorithms empower AI agents to
learn from gathered data, continually refining their decision-making processes
through feedback and rewards.

DQN, or Deep Q-Network, is a fundamental reinforcement learning al-
gorithm that utilizes deep neural networks to learn optimal policies. By it-
eratively updating the network based on interactions with the environment,
DQN enables AI agents to improve their decision-making abilities and solve
complex problems effectively. Nevertheless, the DQN model exhibits limita-
tions, including high computational demands that restrict its scalability for
larger-scale problems, and a tendency to overestimate action values, resulting
in suboptimal performance [MKS+15].

To overcome the mentioned drawbacks, improve the performance of AI
models, and mitigate the complexities of data aggregation in crowd com-
puting systems, we propose the utilization of a hybrid approach, Generative
Adversarial Imitation Learning (GAIL) [HE16]. GAIL enhances the perfor-
mance of the basic AI algorithm by incorporating data from players, allowing
for the integration of human knowledge and experiences. This integration en-
ables the algorithm to leverage extra insights and enhance its ability to make
informed decisions. Consequently, this approach effectively integrates the
strengths of AI and crowd computing.
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4.1.1 Hypotheses
This paper presents a comprehensive analysis of the potential benefits

of leveraging crowdsourcing to enhance the efficiency of RL approaches for
solving challenging puzzles from Borderlands Science.

Specifically, we aim to investigate three hypotheses:
H1: Does incorporating data from players through a human-in-

the-loop approach improve the performance of the basic AI model
in solving the BLS puzzles?

The primary objective of H1 - is to investigate the potential performance
enhancement of the DQN algorithm by incorporating optimal strategy trajec-
tories provided by players. To examine this, we employ a GAIL approach that
combines player solutions with the DQN model. This comparative analysis
aims to identify potential similarities and distinctions among these method-
ologies.

H2: Can the proposed human-in-the-loop algorithm generate
solutions that are more optimal and exhibit reduced randomness
in terms of the score-gap trade-off when compared to the basic AI
model?

This Hypothesis aims to compare the solutions provided by DQN and
GAIL in terms of game score, gaps used, and uniqueness. In this part of the
research, we analyze which of the generated solutions are scientifically signif-
icant and involve a balance between the quantity of used gaps and the game
score achieved. Our hypothesis suggests that the GAIL-based algorithm has
the potential to generate more optimal solutions compared to DQN.

H3: To what extent does the proposed human-in-the-loop algo-
rithm compare to the performance level of players?

In this phase of the research, we conduct an analysis to determine the
similarity between the generated solutions and the solutions provided by
the players. Additionally, we examine the common characteristics shared by
these solutions and assess the extent to which they align with each other.
This analysis allows us to gain insights into the level of agreement and con-
sistency between the generated solutions and the player-provided solutions.

4.1.2 Game Design
Borderlands Science features a puzzle game where each column within

the game corresponds to a distinct fragment of DNA sequence. These spe-
cific DNA sequences originate from the American Gut Project [MHD+18], a
component of The Microsetta Initiative. Subsequently, these sequences were
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Figure 4.1: Borderlands Science interface: the alignment sequences are
displayed vertically, represented by tiles of four different colors corresponding
to the nucleotides A, C, G, and T. On the left side, there are guides indicating
which tiles should be matched in each row to earn points. To maximize the
reward, the user needs to strategically insert gaps (represented by yellow
tiles) within the alignment. However, there is a restriction on the number of
gaps allowed, and completing full rows grants an additional bonus.

aligned using the PASTA algorithm [NMKW15]. This alignment procedure
generated a tight alignment, which then served as the scaffold for the creation
of the puzzles.

The puzzles in Borderlands Science feature a grid filled with coloured
blocks, with each column representing a sequence. The game typically con-
sists of 5 to 12 columns, and their difficulty level determines the number
and length of the DNA sequences. The objective for players is to align the
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bricks to the guides located on the left side of the screen in Figure 4.1. These
guides offer information about the consensus nucleotides of the corresponding
column of the PASTA alignment. To assist in the alignment process, play-
ers are given a limited number of yellow tokens representing gaps in MSA.
These tokens can be inserted between the bricks to improve the alignment
according to the guides.

The main challenge of the game is to achieve a target score that exceeds
the score achieved by the default greedy player. Furthermore, the game show-
cases the highest score previously attained to encourage players to enhance
their performance.

4.1.3 Pareto Optimality
In Borderlands Science puzzles, we collect multiple solutions per puzzle,

enabling us to explore the solution space and identify Pareto optimal solu-
tions. A solution is considered Pareto optimal if it is not strictly worse than
another solution. These are the solutions that maximize trade-offs between
used gaps and game score.

4.2 Related work
4.2.1 Reinforcement learning

Reinforcement learning, a widely employed method in the field of ar-
tificial intelligence, enables the development of intelligent agents capable
of decision-making and learning within various domains, including games
[Szi12, GEFL18, RSdW+18, MKS+13, VBC+19, BBC+19]. RL can be em-
ployed to train game-playing agents to accomplish specific tasks, such as
winning a game or achieving a particular objective. These agents can learn
from their own experiences and interactions with the game environment,
leading to an improvement in their performance over time. RL has been
successfully utilized across a range of game genres, from traditional board
games like chess and Go [SHM+16] to contemporary video games like Dota
2 [BBC+19] and StarCraft II [VBC+19].

RL algorithms, such as the Deep Q-Network, have been applied to Atari
games which share with BLS a common aspect of utilizing gaming mechanics
for problem-solving, yielding impressive results but failing to surpass human-
level performance [MKS+13]. One of the key reasons for this discrepancy is
the complexity and diversity of the real world. RL algorithms heavily rely
on extensive training in a simulated environment to learn optimal strategies,
but they struggle when faced with the vast range of uncertainties, dynamics,
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Figure 4.2: The illustration depicts two approaches in the field of machine
learning: Reinforcement Learning and Imitation Learning. On the left-
hand side, RL is illustrated as a process where an agent interacts with an
environment to learn a policy that maximizes a reward signal. The agent
takes actions based on the current state of the environment and receives a
reward based on the outcome of the action. The policy is updated using the
rewards obtained and the next state of the environment. On the right-
hand side, imitation learning is illustrated as a process where an agent
learns from expert demonstrations. The expert provides a set of examples
of actions taken in different states of the environment. The agent learns to
mimic the expert’s behavior by learning a mapping between the current state
and the action taken by the expert in that state. This mapping is learned
using techniques such as supervised learning.

and unstructured situations that humans effortlessly navigate. Humans have
natural cognitive abilities, intuition, and common sense reasoning, which
allow them to adapt and apply knowledge in various situations. In contrast,
RL algorithms often need large amounts of data and computational resources
to achieve similar levels of performance.
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4.2.2 Reinforcement learning for MSA
Multiple attempts have been made by researchers to utilize RL to address

the challenge of MSA problem [MBD14, JJKR19, RSB18, Joe21, ZZL+22].
Many of these papers leverage the DQN algorithm as the primary approach
for addressing MSA challenges [MBD14, JJKR19, Joe21]. However, re-
searchers often encounter common challenges associated with employing the
DQN algorithm for MSA, including issues such as suboptimal convergence
and the constraint of handling a restricted quantity of sequences with limited
lengths [MBD14, RSB18]. Dealing with a large number of sequences can be
a major challenge for models due to the exponential growth of states and
actions. As a result, many studies have focused on pairwise sequence align-
ment to avoid this complexity [SJS+21, SC21, LT23]. Although there have
been many proposed RL methods for multiple sequence alignment (MSA),
there is still significant room for improving their accuracy.

Can the integration of human intelligence and the diversity of machines
overcome the limitations faced by RL algorithms and mitigate the aforemen-
tioned challenges?

4.2.3 Deep Q-Network
Deep Q-Network (DQN) is a reinforcement learning algorithm that com-

bines the Q-learning algorithm with deep neural networks to learn policies
from raw sensory inputs, allowing agents to learn to play games or per-
form other tasks through trial and error [MKS+15]. DQN has been success-
ful in learning to play a wide range of video games at a superhuman level,
demonstrating its ability to learn complex behaviors from high-dimensional
sensory inputs [MKS+15]. The algorithm has also been extended to other
domains, such as robotics [LFDA16] and finance [DBK+16], where it has
shown promise in solving complex problems. Additionally, DQN has been
combined with other reinforcement learning algorithms, such as policy gradi-
ent methods [WSH+16] and actor-critic methods [LHP+15], to achieve even
better performance.

4.2.4 Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning (GAIL) and Reinforcement

Learning (RL) [HE16, WVO12] are machine learning algorithms that can be
applied for diverse tasks. Despite some similarities, there exist fundamental
differences between the two approaches.

GAIL is an imitation learning method that involves training a genera-
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tive model to create sequences similar to input sequences. This approach
is particularly effective for scenarios where expert behavior is available and
can be imitated. In the context of decision-making tasks, GAIL employs
a generator-discriminator setup to guide the policy network towards repli-
cating the expert’s behavior. This is reminiscent of the broader Generative
Adversarial Networks (GANs) framework, where GAIL’s focus is on imitat-
ing expert actions rather than generating creative samples. This approach
has found notable application in reinforcement learning tasks such as robotic
control and autonomous driving [FDSF18, BWP+22, KMWK17], enabling
the learning of complex behaviors from expert demonstrations.

On the other hand, RL is a learning technique that involves training an
agent to perform actions in an environment to maximize a reward signal. In
contrast to GAIL’s supervised learning nature, RL is a quintessential form of
reinforcement learning where an agent interacts with an environment, takes
actions, and learns through trial and error. The agent explores different
actions and receives feedback in the form of rewards, adapting its policy
to optimize its decision-making strategy over time. This optimization, per-
formed by adapting the policy, is directly linked to the rewards received from
the environment, as the agent aims to enhance its action-selection strategy
to achieve higher cumulative rewards.

The primary difference between GAIL and RL is that GAIL is a type
of supervised learning, whereas RL is a form of reinforcement learning. In
GAIL, the model is trained using examples of the desired outcome/behavior,
whereas, in RL, the model learns by exploring and receiving feedback from
the environment shown in Figure 4.2.

Although GAIL is a relatively new method, there have been some recent
studies exploring its application in various fields. For example, GAIL has
been used to model human vehicle driving behavior [BWP+22] to improve
simulations for vehicle safety validation processes, and to discover diverse
strategies for human-robot interaction by observing human-human behavior
[WPDX+22]. However, to the best of our knowledge, no previous studies
have investigated the use of GAIL for tackling the MSA problem or for game-
related tasks.

4.3 Data
The Borderlands Science game uses human gut microbe genome frag-

ments that have been pre-aligned with PASTA[MNW14] to create puzzles
for players to solve. Players aim to optimize a bi-objective function by maxi-
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mizing the number of matches while minimizing the number of gaps. In this
paper, the focus is on a sample of 25,000 puzzles with over 1 million solu-
tions. The quality of each solution is estimated based on its distance from
the Pareto front, which is the set of solutions that optimize the bi-objective
function between score and used gaps.

We selected the top-performing human solutions by aggregating puzzle
solutions and identifying those close to the Pareto front. To determine their
inclusion, we calculated the proportional horizontal Pareto distance of each
solution to a puzzle. This distance represents the improvement in score
compared to the worst human solution, divided by the improvement achieved
by the best score for the same number of gaps (considered Pareto-optimal)
over the worst human solution. Solutions with a distance exceeding 0.7 were
excluded based on visual clustering assessment by human experts. As a
result, 53.4% of solutions were filtered out.

4.4 Methods
In this section, we will discuss the implementation details of the algo-

rithms.

4.4.1 DQN Implementation
The DQN algorithm focuses on training a neural network to estimate the

Q-values corresponding to various actions in a given state. The agent selects
the action with the highest predicted Q-value, enabling the acquisition of
a policy that maximizes the expected cumulative reward over time. Addi-
tionally, the incorporation of Memory Replay proves significant, wherein the
agent’s experiences are stored in a memory buffer, facilitating learning from
past interactions. Instead of relying solely on the most recent experience,
the agent randomly samples and learns from a batch of experiences from the
memory buffer. This mechanism enhances learning efficiency and decision-
making capabilities, ultimately leading to a stabilized learning process shown
in Figure 4.3.

In our experiment, the architecture consists of a transformer attention
mechanism, which is comprised of several layers of self-attention and feed-
forward neural networks with Sinusoid Positional Encoding. To improve
training stability and prevent overfitting, the model utilizes several tech-
niques, including layer normalization, residual connections, and dropout.
Additionally, a replay memory is employed to store and sample past moves
sequences during training (memory size = 1000). We limited the number
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Figure 4.3: Deep Q-Network Architecture. The neural network is trained to
approximate the Q-values, allowing the agent to estimate the expected future
rewards for different actions in a given state, enabling informed decision-
making. Replay buffer: The replay buffer in the DQN stores the agent’s
experiences, creating a dataset from which random samples are drawn dur-
ing training, allowing the agent to learn from a diverse set of experiences.
In the DQN, the iterative process involves repeatedly interacting with the
environment, collecting experiences, storing them in the replay buffer, and
periodically sampling from the buffer to train the neural network, updat-
ing its weights to minimize the discrepancy between predicted and actual
Q-values, resulting in an improved policy over time.

of possible actions according to the game mechanism. DQN has methods
for selecting an action based on an epsilon-greedy policy, predicting the best
action for a given state, and updating the network weights using the replay
memory and a target network. The main hyperparameters used in this im-
plementation are the learning rate (0.001), batch size (128), discount factor
(gamma = 1), the exploration-exploitation tradeoff parameter (epsilon =
0.8), and decrement iteration (5).
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Figure 4.4: Generative Adversarial Imitation Learning Architecture: a
novel approach to reinforcement learning with human expertise integration.
Generator: the generator learns to generate player strategies, that closely
resemble the demonstrations or desired output. Discriminator: the discrimi-
nator is responsible for distinguishing between the generated data from the
generator and the real players demonstrations, helping to provide feedback
on the quality of the generated data. The iterative process involves training
the generator and discriminator networks in an adversarial manner, where
the generator aims to fool the discriminator while the discriminator contin-
uously improves its ability to differentiate between real and generated data,
resulting in a refined generator that produces increasingly realistic outputs.

4.4.2 GAIL Implementation
In our experiment, we extend the architecture shown in Figure 4.3 to the

circuit in Figure 4.4 and GAIL involves the following steps. The GAIL algo-
rithm involves training a generative model to mimic the behavior of players,
enabling the acquisition of policies through adversarial learning. First, data
from players demonstrations of the task the agent will be performing needs
to be collected. This data is used to train the discriminator network in the
Generative adversarial network (GAN) [WGD+17, GPAM+20]. Second, the
generator (base DQN agent) and discriminator networks in the GAN are
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trained using expert data. The agent interacts with the BLS environment
by choosing actions based on the DQN agent’s policy. The resulting state,
reward, and done flag are observed and stored in the Replay Buffer. The
DQN agent is updated by sampling a batch of experiences from the replay
buffer. The Q-network weights are updated using the DQN loss and opti-
mizer (Adam with a learning rate of 0.001). The discriminator is updated by
sampling a batch of expert demonstrations and a batch of agent trajectories
generated using the current DQN agent. The DQN agent can leverage its
ability to learn from trial and error to improve its policy, while GAIL provides
a framework for imitation learning by utilizing the discriminator network to
provide feedback and guide the generator’s training. The discriminator’s
weights are updated using the GAIL loss (Binary Cross-Entropy loss) and
optimizer (Adam, with a learning rate of 0.0001). The DQN agent is further
updated using the GAIL reward with Discount Factor = 0.99. The general
scheme is shown in Figure 4.4.

4.5 Results and Discussion
In this section, we share the findings from our examination of the com-

plete dataset gathered from the Borderlands Science game. We present the
solutions provided by all players, separated the Pareto optimal solutions con-
tributed by the players, as well as the solutions generated by the DQN in
GAIL. Notably, GAIL is a player-guided model, while DQN solely relies on
an AI-driven approach.

4.5.1 Testing Hypothesis 1
In order to evaluate the impact of integrating player data on the effective-

ness of the basic DQN model, we compared two strategies, DQN and GAIL.
In Figure 4.5 we can compare algorithms performance in terms of game
score, a score obtained primarily from correctly matching bricks to guides.
We show that classical Reinforcement learning methods such as DQN are un-
able to achieve human-level performance, even with precise parameter tun-
ing. In the context of the game score, the performance of this model barely
passes the minimum required score. By contrast, the results obtained with
the GAIL method are at least close to the average human performance.

Conclusion: Our findings demonstrate that the performance of the basic
AI model in solving the BLS puzzles is enhanced by incorporating data from
players through a human-in-the-loop approach.

94



RESULTS AND DISCUSSION

Figure 4.5: Comparison of algorithms performance in terms of game score:
the average game score obtained by the players (All players solution and
Pareto optimal solution) and models (DQN and GAIL) for puzzles at in-
creasing difficulty levels. The game score is primarily determined by the
correct matching of bricks to guides within the puzzles. Blue and solid line
style - Players solutions, red and dashed line style - proposed player-guided
AI and uninformed AI

4.5.2 Testing Hypothesis 2
To evaluate the effectiveness of the proposed GAIL algorithm in generat-

ing solutions that are more optimal and display reduced randomness in terms
of the score-gap trade-off, we computed the percent of Pareto optimal solu-
tions per original solutions and generated. In Figure 4.6 we observe that
GAIL is capable of generating a higher proportion of optimal solutions which
is define in the section Data. However, it is worth noting that as the puzzle
complexity increases, this percentage tends to decrease. Nonetheless, even
with the decrease, the GAIL algorithm still produces a larger proportion of
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solutions that closely resemble real solutions.

Figure 4.6: Comparison of the percentage of solutions that are Pareto-
optimal between player solutions and generated solutions

Second, we conducted an evaluation of the score-gap trade-off for all algo-
rithms. Figure 4.7 illustrates that the DQN algorithm tends to utilize fewer
gaps compared to the other algorithms. On the other hand, GAIL demon-
strates the lowest gap usage among all the described algorithms. However,
Figure 4.5 highlights that, on average, DQN achieves significantly lower
scores compared to GAIL.

Third, to evaluate the reduction of noise in solutions, we have given a
detailed analysis of one puzzle on Figures 4.8, 4.9, 4.10. The results on
4.10 indicate that the GAIL algorithm has the ability to generate solutions
that closely to the Pareto optimal front, while effectively minimizing the
number of solutions with noise in comparison to the DQN algorithm.

In Figure 4.8, we depict solutions or an integral representation of a
solution for a single puzzle. It is apparent that the average of the DQN
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Figure 4.7: Score-Gap trade-off evaluation for all algorithms: the average
number of gaps used by the players and models for puzzles of increasing
difficulty levels. Blue and solid line style - players solutions, red and dashed
line style - proposed player-guided AI and uninformed AI

solution exhibits a significant amount of noise and does not align well with
the other solutions. The GAIL solutions demonstrate good agreement with
the overall solutions and display significantly less noise compared to the DQN
solution.

Figure 4.9 demonstrates that the score distribution for DQN has a wide
range and exhibits a distribution that is close to normal, centered around
approximately score equals 30 points. On the other hand, GAIL showcases
a significant variation in solutions with a range extending beyond the score
of 30 points.

Conclusion: By incorporating player solutions, we can effectively en-
hance the RL model, resulting in reduced noise and the generation of com-
pelling options that strike a balance between the number of used gaps and
the game score.
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Figure 4.8: Solutions comparison for a single puzzle. The percentage dis-
tribution of steps for all predicted solutions. The layout is similar to the
game: the sequences are presented vertically. The GAIL solutions demon-
strate good agreement with the all-players and Pareto-optimal solutions and
display significantly less noise in comparison to the DQN solution.

Figure 4.9: Score distribution for a single puzzle. The x-axis represents the
number of gaps used. The y-axis represents the Game Score, which measures
the overall quality or effectiveness of each solution. The score distribution
provides insights into the range and variability of the achieved scores for each
algorithm and players solutions.

4.5.3 Testing Hypothesis 3
To explore if GAIL solutions match the performance level of players we

can compare them in terms of the game score. Figure 4.5 indicates that
the highest scores achieved mostly by players. Also, for puzzles with high
difficulty, the performance of our GAIL approach is comparable to All-players
solutions, and on the highest difficulty even surpasses. However, Figure 4.8,
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Figure 4.10: Trade-off between gaps used and game score for a single puz-
zle. The x-axis represents the number of gaps used. The y-axis represents
the game score, which measures the overall quality or effectiveness of each
solution. The findings demonstrate that the GAIL algorithm can generate
solutions that are close to Pareto optimal solutions and significantly reduce
the number of noisy solutions compared to DQN. The opacity of the points
represents the frequency of the solution. The varying number of points re-
flects the finite number of solutions contributed by players (approximately
25 for each puzzle) while we conducted 100 runs of the generated solutions
by DQN and GAIL to assess prediction variability.

we can observe the similarities between GAIL solutions and the decisions
made by the players. The GAIL solutions form a distribution that closely
resembles the overall solutions, with only a few distinct solutions deviating
from the pattern.

In Figure 4.9, we can observe that both the players and GAIL exhibit
a general tendency to achieve scores above 30 for this puzzle. Furthermore,
the distribution of the players’ actions in Figure 4.9 closely aligns with the
distribution of GAIL solutions.

Conclusion: Our findings indicate that a model trained using this ap-
proach can demonstrate performance levels that are close to those of humans,
exhibiting a similar degree of variability and quality in decision-making.

4.6 Discussion
The outcomes of our study answer the three hypotheses we formulated,

providing further evidence to support the claim that the performance of a
basic AI model in solving BLS puzzles can be enhanced by incorporating data
from players through a human-in-the-loop approach. Our findings indicate
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that this approach significantly enhances the performance of the AI model.
By incorporating insights and strategies from human players, we observed

a substantial increase in the game score achieved by the AI model. This
suggests that the human-in-the-loop approach allows the AI model to benefit
from the expertise of experienced players, enabling it to adopt a distinct
problem-solving strategy that leads to higher scores compared to relying
solely on the basic AI model.

Furthermore, we investigated whether the proposed human-in-the-loop
algorithm could generate solutions that are more optimal and exhibit re-
duced randomness in terms of the score-gap trade-off, when compared to
the basic AI model. Our results demonstrated that incorporating player so-
lutions effectively enhanced the RL model, resulting in reduced noise and
the generation of compelling options. The algorithm struck a better balance
between utilizing gaps and maximizing the game score.

Additionally, we explored the extent to which the proposed human-in-
the-loop algorithm matched the performance level of players. Compared
to humans, the player-guided AI model exhibited respectable variability and
quality in decision-making, suggesting that it successfully captured the game-
play characteristics observed in human players. This approach demonstrates
it is possible to extend the usefulness of player contributions to a citizen
science project beyond the limits of the original problem. Unlocking this
potential is a key step in charting a course for next-generation citizen sci-
ence, as collecting solutions from millions of participants for a single problem
could be overkill, but having the ability to leverage these contributions into
training robust AI systems to multiply their impact will allow scientists to
fully take advantage of the heterogeneity of human contributions to analyze
large scale data sets.

4.7 Limitations
There are however a few limitations to the methods and results presented

here, both in terms of how the system is trained and what it is trained on.
The limitations of the Borderlands Science game design for AI stem from

its mechanics and puzzle specifics. AI agents trained on Borderlands Science
may face challenges in adapting to larger state and action spaces, which can
impede performance and generalization. The game may not fully capture the
complexity and scalability required for demanding AI tasks, making it diffi-
cult to transfer learned policies to different game environments with diverse
rules, actions, and dynamics.
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Another drawback is related game it self Borderlands Science game is that
it doesn’t encourage players to optimize the bi-objective function for score-
gaps trade-off. Although they have a limited number of spaces, there is no
incentive for them to leave any spaces unused. To address this, we introduce
a change: players are presented with varying numbers of gap tokens for the
same puzzle. We then filter their solutions to find those that are close to
the Pareto front, resulting in a significant set of nearly optimal solutions.
Furthermore, it is important to note that the use of Pareto optimality as
a proxy for identifying good solutions to the Multiple Sequence Alignment
(MSA) problem does not guarantee the discovery of the absolute best solution
for that problem.

Another drawback of the Borderlands Science game is that it does not
include a direct incentive for players to optimize the score-gaps trade-off.
Despite having a limited number of gaps, there is no motivation for players
to leave any gaps unused. To address this issue, players are presented with
varying numbers of gap tokens for the same puzzle. Subsequently, we filter
their solutions to identify those that are close to the Pareto front, resulting in
a significant set of nearly optimal solutions. However, it is important to note
that the use of Pareto optimality as a proxy for identifying good solutions
to the Multiple Sequence Alignment (MSA) problem does not guarantee the
discovery of the absolute best solution for that problem.

Several important limitations are associated with the models. While DQN
is effective in game-based reinforcement learning, it possesses certain limita-
tions. It can be unstable, overestimate action values, and result in suboptimal
policies and poor convergence. Achieving a balance between exploration and
exploitation is challenging for DQN, as it tends to prioritize exploitation,
potentially missing out on optimal strategies. Nevertheless, researchers are
actively working to enhance DQN’s performance in gaming applications. Ad-
ditionally, GAIL may encounter difficulties in generalizing to unseen or com-
plex scenarios, as it primarily learns from provided expert demonstrations,
leading to limited diversity and suboptimal behaviour when generating new
samples.

4.8 Conclusion
In conclusion, our research provides compelling evidence that integrating

player data through a human-in-the-loop approach significantly improves the
performance of AI models in solving BLS puzzles. The incorporation of player
solutions effectively enhances the AI standard model, reducing noise and gen-
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erating compelling options that achieve a harmonious balance between used
gaps and game score. Our findings underscore the remarkable potential of
using games as an effective method to collect valuable information for train-
ing AI models. Moreover, our study aligns with a wealth of existing evidence
demonstrating the superiority of human + AI collaboration over AI alone.
By leveraging the collective intelligence and decision-making capabilities of
both humans and AI, we can unlock new frontiers of problem-solving and
achieve new performance levels.
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Caisse, Rob Knight, Mathieu Blanchette, Attila Szantner, and
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How EVE Online Players Uncover
Patterns in Cytometry Data

Preface
In the first part of my thesis, we explored multiple sequence alignment

using data provided by the Borderlands Science. In this chapter, we general-
ize this approach to other combinatorial problems by extending the dataset
with data coming from EVE Online, an online game providing annotated
cytometry data marked by players.

Since this task has a different structure, and the data type is very dif-
ferent from what we’ve been used to, the methods had to be adapted as
well. Central to our approach, even with the changes, has been the use of
player-generated data and behavioural cloning. In this chapter, I design and
experiment with a model that can help extract deeper insights from player-
provided cytometry data annotations. That would fall under visual data, and
perhaps better dealt with by a technique known as behavioral cloning. Here,
we upgrade it using the U-Net architecture, which is perfect for image-based
data processing.

I contributed to the design of the research framework, implementation of
the project, code development, data processing, model architecture design,
fine-tuning, validation, testing, and analysis of results.

I prepared a draft of the manuscript, figured out the artwork, and for-
matted tables used here. Alexander Butyav played an important role in
data preparation - actually, crucial work for such kinds of projects. Jérôme
Waldispühl guided the general design of the research, reviewed the analysis,
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critically reviewed, and edited the draft of this manuscript.
At present, the article is a manuscript awaiting submission, so this work

is still going on. We intend to submit this paper either next year.

5.1 Introduction
Within the spaces of online gaming, there are very few rivaling envi-

ronments for level and multi-layered nature as the virtual universes found
in the Massively Multiplayer Online category. Probably the most complex
example would be that of EVE Online, a game that has earned a repu-
tation for an expansive and highly detailed virtual world in which play-
ers can run economic systems, forge and maintain political alliances, and
conduct large-scale battles. EVE Online is one of a kind regarding the
player-driven economy and open-ended gameplay, while enabling players to
solve complex problems, strategize on an unprecedented scale, and cooper-
ate [Wik21, Gam24, Onl21, Gam21]. Besides conquering and exploring space,
players also need to work in a team toward attaining complex goals; these
are decisions that may lead to widespread ramifications inside the game.
This environment has also been used to solve real-world scientific problems
by crowdsourcing data analysis tasks where collective human decisions can
strongly benefit.

In the last couple of years alone, the symbiosis between gaming and aca-
demic research has given way to new ways of crowdsourcing in problem-
solving. Already, various games such as Foldit, EyeWire, and Borderlands
Science have successfully shown how players can enable scientific discovery
in domains ranging from molecular biology to neuroscience. For example,
Foldit challenged players to fold proteins in ways that led to novel insights in
biochemistry [CKT+10, KCT+11], and EyeWire challenged players to map
neural connections in the brain [TLRSH17]. Borderlands Science called on
gamers to help align genetic data and helped move the study of microbiomes
forward [WSK+20, SGGGB+24]. These projects really show how even the
most abstract scientific challenges can be turned into interactive puzzles,
which players, in some cases with great success, solve in game environments.

Similarly, EVE Online has entered the field of scientific contribution
through various projects, including Project Discovery [Gam03], which lets
players take part in the analysis of real-world datasets, such as flow cytome-
try data. Flow cytometry is a key technique in biological and clinical research
that allows for the measurement of various physical and chemical properties
of cells, including size, shape, and protein expression [McK18, GHP+14].
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Despite the value of this data, many large datasets are difficult to interpret
using flow cytometry; this is because the process of identifying clusters or
patterns in these data requires a high degree of expertise [McK18]. One of
the major problems in clustering flow cytometry data is the high dimension-
ality, hence overfitting and computation-intensive processes. This is driving
a related interest in the development of more intuitive and scalable analy-
sis tools to handle increasingly complex and higher-volume cytometric data
from modern experimental setups [AFH+13, PHW+09].

By engaging EVE Online players in this process, Project Discovery at-
tempts to turn such challenges by leveraging the intuitive pattern recognition
capability of the human brain in a novel way for meaningful engagement of
non-experts in data analysis [Mat14]. It will also contribute to crowdsourc-
ing better, scalable methods to handle complex biological data and provide
insight into how human decision-making can improve automated clustering
techniques.

The manner with which non-experts interact and analyze such complex
scientific data forms a vital clue for how human intuition can be exploited
to solve scientific challenges. Non-experts are in a better position to come
up with novel approaches for pattern recognition that complement the tra-
ditional algorithms and might offer insights into the better design of more
user-friendly and scalable data analysis tools. We base our study on four
major hypotheses:

5.1.1 Hypotheses
Do Players Reach Consensus in Cytometry Data Clustering?

The hypothesis is an investigation as to whether or not, when players clus-
tering cytometry data, these intuitive procedures can reach agreement, find
patterns, and even find signals in highly complex high-dimensional datasets.
In support of this we have evaluated the various clustering choices made
by the gamers to establish for sure how consistently non-expert intuition
catches meaningful structures with regard to human intuition, unravelling
possibly congruent or even better signals according to traditional algorith-
mic approach.
Which Clustering Models Resemble Human Decision-Making? The
second hypothesis tests the proposition of which clustering models result
closest to human decision-making: Are any of these classical clustering algo-
rithms producing results similar to the intuitive patterns players identified in
the cytometry data? Elucidation of this relationship may provide insight into
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the similarities between algorithmic and human approaches to data cluster-
ing, highlighting the models that reflect the strategies utilized by non-experts
in reaching decisions.
How Well Do Imitation Algorithms Replicate Player Strategies?
The third hypothesis probes how well imitation learning algorithms can
mimic strategies that players utilize to cluster cytometry data. In other
words, it is about whether the machine learning models learn from the way
non-expert players decide and hence reflect their particular ways of looking
at data.
What Insights Can We Extract from Human Decision-Making in
Clustering? The fourth hypothesis is an investigation into what can be
learnt from human decision-making in clustering, by means of indirect under-
standing of strategies, patterns, and intuitive approaches through modeling.
Analyses of how human solutions relate to computational models will show
deeper cognitive processes and strategies that players use when approaching
the clustering of complex cytometry data.

5.1.2 Game Design

Figure 5.1: Clustering in EVE Online: Left side shows a screenshot from
EVE Online. Overlaid on the left is a clustering visualization of player ac-
tivities and resources. The right side presents metrics such as scores and
resource collection rates through graphs and charts, illustrating player dy-
namics.

In EVE Online, Project Discovery makes for a unique crossroads between
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gaming and science, with the creation of excellently designed mini-games that
drive the players to accomplish real-world scientific tasks. Most recently, it
has focused on the analysis of flow cytometry data. The player is presented
with a graphical representation of cell populations to analyze in a mini-game
fashion. What will result on each player’s screen is that a flow cytometry
chart results with scattered plots representing another cell type. This does
involve the drawing of a polygon around clusters of the cells so that the
drawn polygon will act as scientific means of categorizing it in the process of
"gating" in old-fashioned flow cytometry.

The game is set within the universe of EVE Online. Thus, players’ con-
tributions go a long way in helping actual scientific research processes- yet
without having to leave the comfort zone of the game itself. Its intuitive
interface facilitates a scientifically sound environment wherein its view and
plot details are easily adjustable, so the data analysis accuracy turns out
to be very high. It’s a tutorial introducing a new player to the mini-game
mechanics in such a way that even a person not educated in much science is
able to contribute.

Project Discovery Performance: Success in Project Discovery is quanti-
tatively measured through a scoring system which leverages an evaluation
against a ’gold standard’ set by scientific experts in order to judge the cor-
rectness of player cell categorizations. Immediately after each and every
performance, feedback is provided because scores impact both experience
points and in-game currency rewarded, thus working as incentive systems to
do more analyses with more precision.

Indeed, devised by scientists and developers under consultation, Project
Discovery typified how to successfully gamify scientific research. They enlist
the millions in EVE Online to crowdsolve data analysis that enables such
research to scale up exponentially in speed. Interesting idea, it then was
praised as ingenious, extremely viable, serving data of true value to the
scientific world. However, it was engaging for them and educational for the
players in this joint effort.

5.2 Related work
The intersection of science and gaming, especially in games like EVE On-

line’s Project Discovery, can probably be considered the most fantastic cross-
ing of disciplines in scientific theory. It is a meeting place for many: compu-
tational biology, crowd psychology, data science-all flow into new platforms
whose ambition it is to capitalize on public engagement for the furtherance
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of frontiers in science.
Scientific task gamification is borrowed from high-publicity projects that

first deployed the public use of computing resources for scientific research.
This is inclusive of the seminal project Folding@home, which, starting in
2000, applied distributed computing power to simulate protein folding through
the idle processing of tens of thousands of volunteer-Contributed computers
across the world. This project set a precedent for how non-scientists might
contribute to complex scientific problems by providing a format that is both
accessible and useful to the scientific community [CKT+08]. We build upon
this work from Folding@home and introduce Phylo to advance the multiple
sequence alignment problem from both outside in, by its outward appeal, and
inside out, by its inward contents. Launched in 2011, Phylo asked players to
arrange sequences of DNA in an effort to contribute to the scientific study
of genetics and evolutionary biology [KRK+11].

Borderlands Science took the success of, and framework from, these pre-
viously mentioned projects and introduced them into the video game series
Borderlands. This newer program not only challenged players with solving
puzzles that would lead to mapping out the human microbiome but also fur-
ther evolved the gamification of science by showing how complex scientific
tasks could be effectively embedded in commercially available video games
to reach a wider audience [WSK+20].

This connection between Phylo and Borderlands Science demonstrates
how ideas from initial projects ignite a spark, evolve through development,
and become much more sophisticated in subsequent initiatives. Better still,
these projects undertake the coming together of scientific inquiry with game-
play, within which each entrant actually garners some new lesson and suc-
cesses its ancestors might have learned. While this approach accelerates
scientific data processing, it also extends public engagement in education,
bridging the two strata: scientists and citizens.

Flow cytometry is the name of advanced techniques found in both im-
munology and oncology, mainly focused on the analysis of physical and chem-
ical characteristics of fluid particles by passing them through a laser. It gets
even more complicated when it comes to the need for identification and quan-
tification appropriately of various cell populations, mostly similar in nature,
often with small differences in fluorescence and light scatter. Here we de-
scribe in detail some of the computational techniques most commonly in use
for the effective management of large data generated by flow cytometry and
for its analysis.
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With the successful integration of games and scientific research, this
model applied to other complex tasks is a very promising frontier; for exam-
ple, the analysis of flow cytometry. It is a technique that analyses the physical
and chemical characteristics of particles in a fluid as they pass through at
least one laser. Flow cytometry requires advanced analysis because the data
are high-dimensional. It has a number of uses in various machine learn-
ing model studies for enhancing the existing flow cytometry data analyses.
On one side, unsupervised machine learning methods, such as clustering al-
gorithms, identify cell populations in a non-prelabeled way. On the other
hand, supervised methods-like decision trees or neural networks-classify into
specific cell types based on the known labels [QM90, AFH+13].

Considering the technical difficulty and expert knowledge necessary to
analyze flow cytometry data, this opens the potential for numerous implica-
tions that the introduction of this task into a gamified environment may have
in widening participation and improving the technique of analysis. Gamifica-
tion taps into the efforts of large audiences in processing data, and in effect,
creates novel insights in ways that no other public strategy or intuition has
realized. While currently used in a range of scientific contexts for projects
involving protein folding with Foldit, it could do the same in democratizing
flow cytometry analysis to the masses, increasing public understanding and
participation in the process of science to address the most complex biomed-
ical challenges. [CKT+10].

Although the methodologies of machine learning represent state-of-the-
art, their application within the analysis of complex data, such as flow cy-
tometric ones, has been rather inhomogeneous concerning human analytics.
An interesting critical study by Kim et al. showed how tasks in which careful
image segmentation had to be performed saw much higher precisions and re-
call by experienced players than a state-of-the-art deep convolutional neural
network algorithm designed for this task. In this respect, human input is still
invaluable, even when pitted against the most advanced artificial intelligence;
sometimes, intuition and human experience can prove even more vital than
automated systems [KGZ+14].

The paper ends with a discussion on the general capabilities of the human
brain in cluster discrimination of flow cytometry as related to its natural ten-
dencies to handle visual information appropriately. A variety of perceptual
cues emanating from the visual cortex, in particular the inferotemporal cortex
and the lateral fusiform gyrus, has been employed by humans in distinguish-
ing objects. The ability to make sense of and classify objects extends further
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to shapes, colors, textures, and spatial relations. For example, in the recog-
nition of various fruits there is the recognition of typical colors and shapes
where apples are round and red, while bananas are yellow and elongated
[MIT19].

Color sensitivity in humans is a significant factor in object recognition. It
contributes to the decision about specific attributes of objects, like maturity
or potential danger, and thus allows one to group similar objects [Wil02].
Besides, humans make use of contextual information, such as the standard
environment of an object or its average size, to still further increase the
accuracy of recognition. The integration of the visual cue with the cogni-
tive processes enhances recognition accuracy by orders of magnitude [ar520].
These capacities then create an argument for the potential gain that could be
had from gleaning human perceptual capabilities in analyzing very complex
data sets, which flow cytometry generally churns out. In effect, it gami-
fies such natural human skills and carves a new direction toward enhancing
the efficiency and precision of tasks on data categorization, which typically
has been done with so much less versatility in computation models. This
approach not only plays into the intrinsic visual and cognitive strengths of
human beings but can also be productive in fusing together human ingenuity
with machine efficiency to lead perhaps to superior analytical outcomes in
scientific research.

5.3 Data
The third phase of Project Discovery in EVE Online used a dataset of

protein structures of SARS-CoV-2, where players participated to speed up
scientific analysis against the backdrop of the ongoing pandemic scenario
caused by COVID-19. Participants in this round received a dataset of high-
resolution images on these clusters of the protein structure of the virus, which
is important for understanding the mechanics of the virus at a molecular level.

The EVE online players will be involved in classifying and labeling of
huge datasets of such protein structures. Thus, scientific data validation is
achieved by a very large community in its aim. The players would be tasked
with a various kind of different protein clusters. The aim shall always be
to single out that feature of interest, in which biologists want the interac-
tion between viruses and the host. This is so important because it locates
potential targets for therapy or even drug development.

Technically, the dataset was reworked for a gamified environment in such
a way that accessibility and engagement would be maintained but not at the
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Figure 5.2: Example of flow cytometry data plots, illustrating cell popu-
lation densities. Higher-density regions are represented in red, indicating a
greater concentration of cells, while lighter areas are shown in blue, high-
lighting regions with lower cell densities

cost of scientific integrity 5.2. To each protein image, a set of predefined
possible features had been added that players had to choose according to
shape, distribution, and apparent interactions depicted in the photos.

Figure 5.3: Example of flow cytometry data plots illustrating different
stages of problem-solving: From left to right: (1) Initial puzzle, representing
the raw, unprocessed data; (2) All players’ solutions, showcasing individual
attempts to solve the problem; (3) Overlapping solutions, highlighting areas
of agreement among players; (4) Cleaned consensus solution, depicting the
refined outcome derived from combining and refining the overlapping solu-
tions.

Data visualization in black and white pixel segments happens in post-
processing, long after the gamers have played the game. Solutions submitted
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are filtered out for noise, leaving the dataset with the real relevant number
of solutions. For example, filtering out solutions which pick out only one
cluster, that normally doesn’t carry much scientific insight.

Next, there is a need to synthesize all other solutions that may point
towards this number of clusters. The very nature of the task being flexible
makes aggregation of these multiple solutions to a single analytical output
a critical task. This is achieved by laying one solution over the other and
searching for commonalities and disparities in how the different players decide
about the clustering output.

This makes the clustered output less jagged and hence more amenable to
scientific evaluation. We apply a Gaussian blur with boundaries smoothed,
using sigma of 0.5; this would blur edges of clusters into others, decreasing the
sharpness of the boundary lines, hence allowing visual clarity of the cluster
results.

Enhancement is done after the application of Gaussian blur, where the
remaining gray areas are removed and sharpened to give a better distinction
between clusters. It is in this processing of enhancement with high contrast
and well-defined delineation that the real scientific analysis and interpretation
become immensely important 5.3.

5.4 Methods
The dataset consisted of RGB images and their corresponding binary

segmentation masks, each resized to 256×256 pixels. These images represent
microscopy views or density plots, and each mask indicates the location of
distinct black clusters. The input image set is denoted as X ∈ RN×256×256×3

and the corresponding masks as Y ∈ RN×256×256×1, where N is the total
number of samples.

As part of preprocessing, several features were extracted to better capture
structural and density-related characteristics of the images. These included:
(1) pixel intensity values, used directly to represent density; (2) color gradi-
ent information, reflecting transitions in density levels typically color-coded
from blue (low) to red (high); (3) histogram of oriented gradients, capturing
local edge and shape patterns; (4) contour-based edge features, highlighting
boundaries using gradient detection methods; (5) geometric shape descrip-
tors such as area, elongation, compactness, and convexity to characterize
regions; and (6) statistical features including mean, variance, skewness, and
kurtosis of pixel intensity distributions.

To obtain ground truth cluster counts from the binary masks, each image
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was converted to grayscale, inverted, and thresholded to create a binary
mask suitable for contour detection. The number of outer contours was
taken as the estimated number of clusters. These counts were normalized
by the maximum observed count across the dataset and used as targets for
regression.

A convolutional neural network was trained to predict the number of
clusters the input images. The network consisted of multiple convolutional
and pooling layers followed by fully connected layers, producing a single
continuous output. The model was trained using mean squared error loss
over 50 epochs with a batch size of 8. After training, predicted counts were
rescaled to the original range and spatially expanded to match the image
dimensions. This additional feature was then concatenated to the original
3-channel input with extracted features.

For the segmentation task, a U-Net architecture was used, modified to
accept the 4-channel input. The model included an encoder-decoder struc-
ture with skip connections, and applied convolutional layers with non-linear
activations, followed by a sigmoid activation in the final layer to produce a bi-
nary mask. Training was performed for 50 epochs using binary cross-entropy
loss, and performance was evaluated based on pixel-wise accuracy.

Predicted masks were refined through post-processing. Masks were first
binarized and cleaned using morphological operations to eliminate small arti-
facts and noise. Connected components were then labeled to identify distinct
clusters, and the total count of labeled regions was recorded. For visual-
ization, convex hulls were computed around each cluster to highlight the
boundaries and provide a clearer structural interpretation.

To assess the model qualitatively, five test samples were randomly se-
lected. For each, the original input image, ground truth mask, predicted
mask, and convex hull overlays were displayed. The actual and predicted
cluster counts were also compared to evaluate both segmentation quality
and counting accuracy.

5.5 Results and Discussion
5.5.1 Testing Hypothesis 1: Do Players Reach Consen-
sus in Cytometry Data Clustering?

We then collected all clustering solutions provided by players and an-
alyzed them, noting the number of clusters each player identified and the
degree of overlap between them. We then created a consensus by overlaying
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IoU Dice Coefficient Accuracy
Model Type

Agglomerative 0.1236 0.0039 0.4157
Birch 0.0721 0.0473 0.2316
GaussianMixture 0.0687 0.0460 0.2232
KMeans 0.0692 0.0463 0.2235

Table 5.1: Mean Metrics for Clustering Models. (1) Intersection over Union
(IoU): measures overlap between two masks as the ratio of the intersection
area to the union area. (2) Dice Coefficient (F1 Score): evaluates similarity
between masks by calculating 2 times the intersection area divided by the
sum of the areas of both masks. (3) Pixel-wise Accuracy: quantifies correctly
classified pixels in both masks, providing a measure of model alignment with
human solutions.

similar solutions, highlighting areas of agreement among players.
We further purified this consensus map by applying contrast enhance-

ment, which isolated the most representative clustering solution that bal-
anced the number of clusters and their overlapping regions. We then com-
pared this enhanced-contrast solution with all player solutions exhibiting
similar overlap and cluster counts Figure: 5.3 Preprocessing and analysis
of player clustering solutions.

Our results show that players independently identify and determine the
number of clusters in the data. When players perceive a certain number
of clusters, they consistently agree on their positions. This suggests that a
strong signal is being detected from the cytometry data, as player clustering
solutions are converging both in cluster count and spatial arrangement.

5.5.2 Testing Hypothesis 2: Which Clustering Models
Resemble Human Decision-Making?

In the next section, we will discuss how close to human decision-making
various clustering models are by comparing human-generated solutions with
the results of four of the most popular clustering algorithms: KMeans [Llo82],
GaussianMixture [DLR77], Birch [ZRL96] and Agglomerative [LW67], Fig-
ure: 5.4.

Three major metrics are used for the evaluation of the likeness between
human and model solutions. The reasons for choosing this are that the
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Figure 5.4: Mean metrics for clustering models applied to flow cytometry
data. The table compares the performance of Agglomerative, Birch, Gaussian
Mixture, and KMeans models based on Intersection over Union (IoU), Dice
Coefficient, and Accuracy

data is constituted of diverse features, and we wanted to consider the topic
from different perspectives to ensure comprehensiveness from the following
viewpoints:

• Intersection over Union (IoU): This metric measures the overlap
between two masks as the ratio of the intersection area (shared space
between human and model clusters) to the union area (total space
covered by both). It provides a direct indication of how well the model’s
clusters align with human-identified clusters.

IoU =
Intersection Area

Union Area

• Dice Coefficient (F1 Score): The Dice coefficient evaluates the sim-
ilarity between two masks. It is calculated as twice the intersection
area divided by the sum of the areas of both masks. This score bal-
ances precision and recall, focusing on the degree of overlap between
clusters.

Dice =
2 × Intersection Area

Area of Mask 1 + Area of Mask 2

• Pixel-wise Accuracy: This metric measures how many pixels are
classified correctly in both masks (human and model), giving a direct
measure of how accurately the model clusters the data compared to
human solutions.

Accuracy =
Correctly classified pixels

Total pixels

These results make it obvious that no model perfectly captures human
decision-making; however, Agglomerative clustering is the best of the com-
pared models across all metrics: IoU of 0.1236, Dice coefficient of 0.0039,

121



RESULTS AND DISCUSSION

and pixel-wise accuracy of 0.4157 Table: 5.1. From this, we can see that
a higher IoU and accuracy mean that Agglomerative clustering fits human-
generated clusters more than other models. However, the far lower Dice
coefficient shows great variability in the shape and size of clusters between
human solution and model solutions.

While Birch, GaussianMixture, and KMeans results were closer to each
other, lower on IoU and accuracy, they tended to align less with the human
clustering solutions. That is, these models totally failed to recognize the
much finer patterns that human judgment produced, with poor overlap into
the image and poorly defined clusters.

The discrepancy between human clustering and algorithmic models sug-
gests that human players may be employing more intuitive, nonlinear strate-
gies that these models fail to capture and hints at the possible value of further
refinement of clustering algorithms to better align with human intuition in
complex datasets such as cytometry.

5.5.3 Testing Hypothesis 3: How Well Do Imitation Al-
gorithms Replicate Player Strategies?

We adopted an imitation learning model, as described in the "Models"
section, and trained it using player-generated data. For evaluating how well
this model mimics human decision-making, we used the same three metrics
previously used for comparing the classical clustering methods against human
solutions: IoU, Dice Coefficient, and Pixel-wise Accuracy.

The model indeed demonstrated a significant IoU alignment with human-
generated results, reaching up to 0.5636, Figure: 5.1. These values indicate
that the model not only captures the salient features of human decisions but
also mimics human performance quite well both in terms of cluster overlap
and accuracy.

This result underlines that imitation learning can be very proficient in the
implementation of intuitive strategies devised by players and points towards
very strong potential for the future applications of the model in clustering
tasks with human-like analyses of complex data.

5.5.4 Testing Hypothesis 4: What Insights Can We Ex-
tract from Human Decision-Making in Clustering?

To test this hypothesis, we first generated an artificial dataset varying
the attributes between clusters (Figure 5.5).

First experiment we are varying the distances between two clusters. The
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results indicated that the human-inspired predictive model reliably identi-
fied separate clusters when inter-cluster distances were sufficiently large (e.g.,
distances of [6, 6] or [8, 8]), clearly delineating distinct groups. However, as
inter-cluster distances decreased (e.g., distances of [1, 1] or [2, 2]), clusters
significantly overlapped, leading the model to predict a single cluster. Inter-
mediate distances ([4, 4]) represented a critical threshold, where the model
consistently differentiated two separate clusters. The experiment demon-
strated that human-inspired clustering models are sensitive to the spatial
distance between clusters. Specifically, the model reliably distinguishes clus-
ters that are well-separated spatially, yet merges clusters when distances
decrease and overlap occurs. Thus, spatial separation significantly influences
human decision-making in clustering tasks, emphasizing the need to incor-
porate distance-based criteria in clustering strategies.

In the second artificial dataset, we investigated how oval-shaped covari-
ance parameters, influencing cluster elongation, impacted predictions (Fig-
ure 5.6). Clusters with minimal elongation ([0.2, 0.2]) were reliably identi-
fied individually, resulting in accurate cluster separation. However, increased
elongation ([4.0, 2.0] or [4.0, 4.0]) produced significant overlap, prompting
predictions of single clusters due to unclear boundaries. Asymmetric covari-
ance ([1.0, 0.5] or [2.0, 0.5]) introduced uncertainty, with predictions vary-
ing between one and two clusters. This experiment showed that the shape
and elongation of clusters strongly affect how clusters are predicted. The
model reliably separated clusters when they were compact and symmetrical,
but elongated or unevenly shaped clusters often led to overlapping and un-
clear boundaries, making predictions uncertain. These results suggest human
clustering decisions depend significantly on cluster shapes, highlighting the
importance of considering shape when developing clustering methods.

Next, we explored scenarios involving three overlapping clusters of varying
densities and proximities (Figure 5.7). The model demonstrated robust
performance when clusters had distinct densities and adequate separation,
accurately predicting all three clusters. Conversely, substantial overlaps or
density variations caused the model to merge sparse clusters into denser
ones, predicting fewer clusters. In this experiment, we saw that the model
clearly identified three clusters when they were separated enough and had
similar densities. However, when clusters overlapped significantly or had
very different densities, the model combined sparse clusters with denser ones,
predicting fewer clusters. These results show that humans naturally focus on
denser, more compact groups, suggesting future clustering methods should
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Figure 5.5: Model predictions for cluster number across varying inter-
cluster distances. Larger distances resulted in clear separation and accurate
cluster prediction, whereas smaller distances produced significant overlap and
ambiguous predictions.

account for differences in cluster density.
In an additional dataset, the impact of asymmetric oval covariance pa-

rameters on three-cluster scenarios was analyzed (Figure 5.8). While clusters
with low covariance ([0.2, 0.2]) were accurately identified, increasing covari-
ance asymmetry led to elongated and irregular shapes, causing ambiguity and
resulting in fewer predicted clusters. In this experiment, we found that clus-
ters with low asymmetry were easily recognized, but as asymmetry increased,
clusters became elongated and irregular, causing the model to combine them
into fewer clusters. This highlights that people are sensitive to unusual or
stretched cluster shapes, indicating that clustering methods should better
handle irregular shapes to match human perceptions.

Finally, we examined how varying cluster rotation angles influenced the
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Figure 5.6: Effect of oval covariance parameters on cluster predictions.
Higher elongation led to ambiguous boundaries and fewer predicted clusters,
indicating shape significantly influences human decision-making in clustering
tasks.

model’s ability to identify distinct clusters (Figure 5.9). Results indicated
that small rotation angles (20°–40°) often resulted in overlapping clusters,
with fewer clusters predicted. As angles increased (90°–120°), clusters be-
came spatially distinct along rotated axes, leading to improved detection
of multiple clusters. In this experiment, we saw that small rotation angles
often made clusters overlap, causing the model to identify fewer clusters.
Larger rotation angles helped separate clusters clearly, improving detection.
This shows that people’s clustering decisions depend not only on distance
and shape but also strongly on how clusters are oriented. Future clustering
methods could benefit from considering cluster orientation more carefully.

Our experiments showed that human-inspired clustering decisions strongly
depend on cluster features such as distance, shape, density, and orientation.
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Figure 5.7: Model predictions across scenarios involving three overlapping
clusters with varying densities and spatial arrangements. Predictions re-
vealed human biases toward recognizing denser and compact regions as dis-
tinct clusters, merging sparse or heavily overlapping areas into fewer clusters.

People clearly identify clusters when they’re well separated, compact, and
similarly dense. However, when clusters overlap, become elongated, irreg-
ularly shaped, or differ significantly in density, people tend to merge them
into fewer groups. We also saw that cluster orientation matters, with better
clustering accuracy when clusters are rotated apart at larger angles. Overall,
these results suggest that clustering methods inspired by human decision-
making should carefully consider distance, shape, density, and orientation to
effectively match how people naturally group data.

5.6 Limitations
While our study provides important insights into how players can con-

tribute to the clustering of cytometry data and how their strategies compare
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Figure 5.8: Impact of asymmetric covariance parameters on cluster predic-
tions in three-cluster scenarios. Increasing asymmetry and elongation led to
ambiguous boundaries and fewer clusters predicted, illustrating human per-
ceptual sensitivity to irregular cluster shapes.

with machine learning models, there are several limitations that have to be
considered. First, the consensus generated from player solutions may not
fully capture the most accurate clustering of the data, since players’ deci-
sions were based on intuition rather than domain-specific expertise in cy-
tometry. This introduces a bias in how the tendencies of clusters become
perceived and grouped. Secondly, the general, generic models tested here
to describe clustering performance, like KMeans, GaussianMixture, Birch,
Agglomerative, have intrinsic limits in general and more importantly when
high-dimensionality of cytometry data deals the cards, hence their results
were limited to be completely successful in emulating a human decision. The
imitation learning model has also achieved success in reproducing strategies
of players; however, it may be difficult to generalize to more other datasets
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Figure 5.9: Influence of cluster rotation angles on model predictions.
Smaller angles resulted in overlapping clusters and fewer predicted clusters,
whereas larger angles improved spatial distinction and clustering accuracy,
emphasizing the role of cluster orientation in human decision-making.

or tasks than those of the player data on which it was originally trained in
this study. Lastly, the metrics for evaluation, such as IoU, Dice Coefficient,
and pixel-wise accuracy, are biased toward spatial, whereas this may not en-
compass other more qualitative aspects of human intuition-for example, why
humans chose their specific clustering. Future work shall move into more
advanced modeling and consider a wider array of evaluative criteria toward a
deepened understanding of how intuition can be best integrated within data
clustering approaches.

5.7 Conclusion
In this work, we have explored how players of EVE Online can contribute

to clustering complex cytometry data and the ways in which their decision-
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making strategies compared to both classical and imitation learning models.
Our results showed that players were able to discern coherent patterns in the
data, reaching a very rapid consensus in their solutions regarding cluster-
ing, which suggests the capability of human intuition to successfully detect
high-dimensional data signals. Among all classical clustering models, Ag-
glomerative clustering is closest to human strategies. However, imitation
learning algorithms worked out much better in the case of replicating human
decisions and proved that machine learning might not only master but also
develop further in those cases where human solutions seem irretrievable. By
finally looking at human decision-making, we got a good insight into what
factors can potentially influence cluster distance, orientation, and shape, and
this can help us improve clustering methods for future applications.
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6

Discussion

In this work, two basic combinatorial problems arising in bioinformatics
where computational approaches are not yet effective are identified. Most
often, these challenges refer either to the time needed to yield a solution or
to the completeness of the solution itself. In the present thesis, the alternative
of Citizen Science-a method that marshals crowds as a means to apply the
collective intelligence to solve such open problems-is suggested. This frame-
work opened new opportunities in those areas where computational methods
still faced severe limitations.

The core of this thesis is the question of how the solutions contributed
in citizen science can be integrated into automated systems by imitation
learning methods such that the findings and strategies devised by human
contributors are exploited for improving the performance of computational
models. That is, enabling such models to solve not only the original problems
but also similar or even more challenging problems.

As discussed in the Section Background, multiple sequence alignment
is one of the most fundamental tasks in bioinformatics, and cytometry also
presents its own unique challenges. Citizen projects such as Borderlands
Science or EVE Online’s Project Discovery highlighted the potential to
engage thousands of players in complex problems but also created valuable
data based on crowdsourcing for active solution findings in complex scientific
problem situations. This work extends that approach by applying player-
generated data to an even more challenging task-namely, the interrelated
challenges of MSA and cytometry. Specifically, two behavioral cloning models
are used here in order to mimic and extend human strategies for those tasks.

In the Playing the System part of this thesis, I introduced two behav-
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ioral cloning models. I trained these models on strategies players used to solve
alignment tasks, allowing the models to learn from human problem-solving.

The results were very positive. Not only did the model match the tradi-
tional methods, but at times, it even outperformed them. That is all the more
important because it outperforms the standard approaches across different
conditions. While these traditional methods are based on rigid heuristics,
human-driven models appear to capture an intuitive sense that enables them
to better handle the complexity involved in sequence alignment.

Encouraged by these findings, in the Player-Guided AI chapter, I ex-
tended this approach further by introducing a more advanced model in which
the previous one would be integrated. This model was bench-marked to a tra-
ditional reinforcement learning approach on its efficacy. The results showed
clear advantages for the human-inspired model. This pointed to embedding
human strategies into computational models as key to better and more scal-
able solving of bioinformatics challenges.

In the Cytomerty part of this thesis, I extend our approach to a new
kind of data and focus on the flow cytometry clustering problem. Training
the Behavioral Cloning model to do the challenging tasks in the clustering
problems was done. Although the focus shifted from sequence alignment to
cytometry, the results remained consistent. The approach adapted effectively
to this new form of data. What stands out in this work is the demonstration
of the flexibility and applicability of this approach to a wide range of bioin-
formatics problems. There is significant potential here, with many problems
that could benefit from the combination of human creativity and computa-
tional power.

6.0.1 Data Limitations
While this work highlights the success of imitation learning models trained

on data from citizen science games, the strategies used to select this data also
introduce important limitations that may affect the models’ generalization
and broader applicability.

In the case of Borderlands Science, training data was filtered to include
only those player solutions that lay close to the Pareto front, optimizing the
trade-off between game score and number of gaps. This approach ensures
high-quality demonstrations and promotes efficient strategy learning. How-
ever, it also narrows the diversity of training examples by excluding subopti-
mal yet informative solutions. As a result, the models may struggle to recover
from imperfect states, since they were not exposed to a wider spectrum of
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human strategies, including corrections or explorations off the optimal path.
Furthermore, Pareto-based filtering is inherently tied to the game’s internal
scoring logic. While effective within that system, this may inadvertently en-
code game-specific biases that do not reflect broader biological relevance or
utility beyond the game context.

For Project Discovery in EVE Online, clustering labels were derived from
consensus-based aggregation of multiple players’ solutions. Although con-
sensus is a robust way to reduce noise and achieve high label quality, it also
has its drawbacks. The aggregation process removes individual variation, po-
tentially masking less common but valid strategies. It also assumes that the
majority interpretation is always correct, which can reinforce systematic bi-
ases or errors shared among the player base. Most importantly, this approach
captures only the final results of clustering, not the human decision-making
process leading up to them. As a consequence, imitation learning models
trained on consensus data may learn to reproduce the output but not the
strategy, reducing their ability to extrapolate to novel or ambiguous data.

These limitations highlight a trade-off: while filtering and aggregation
improve data consistency and label quality, they may also limit the model’s
exposure to the full range of human reasoning and flexibility. This can lead to
inflated performance on curated in-distribution data while hindering gener-
alization to real-world or less-structured scenarios. Future work may benefit
from integrating a wider range of player behaviors and from capturing not
just what players decided, but how they reached those decisions. Doing so
could further strengthen the connection between human insight and scalable
AI systems trained through gameplay.

6.0.2 Gameplay Insights
The potential to combine human intuition with computational power is

an exciting prospect in dealing with complex problems. However, effective
human problem-solving is much more than just fancy recombinations of how
to present the problem for solution.

In particular, the challenge in Borderlands Science was to improve mi-
crobial sequence alignments by making use of human pattern recognition.
While the question being asked is more fundamental, it is all the same ab-
stract and mostly algorithm-driven.

It took some abstraction to set it up as a game, translating nucleotide se-
quences with colored tiles bearing the face of main characters that are moved
by players to achieve maximum alignment while minimizing gaps. This was
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a simplified graphical representation that maintained many key biological
constraints of the problem while allowing players to leverage intuition rather
than formal training in making.

Interestingly, these alignments from players were actually often better
than those from standard algorithms. For example, players might perceive
patterns or overlaps which algorithms could not, such as subtle compensatory
changes indicative of conserved secondary structures. Of course, this success
did not come without its challenges. While the essence of alignment was pre-
served in this game, some of the biological subtleties-like how RNA secondary
structure informs sequence conservation-were lost in abstraction. This re-
quired rigorous validation to make sure that player-generated alignments
were scientifically valid. Of course, not all of the challenges of cytometry
clustering lent themselves quite so easily to gamification. Data produced in
flow cytometry are complex, high-dimensional captures of fluorescence inten-
sities across many markers for millions of cells. For EVE Online’s Project
Discovery, this was reimagined for the players by reducing the data down to
two-dimensional scatterplots, which represent different projections in multi-
dimensional space. These provided a visual approximation of structure in the
data, with players able to sketch over clusters by drawing boundaries around
points. While there has ever been a set of exciting opportunities, citizen
science games still have to deal with all those challenges typical of gaming in
general: addiction, poor sleeping, and many other social well-being concerns.

For that reason, the design of games need to be approached with such
possible downsides in order to assure that they might not overshadow the
gains of the games. While these concerns are attached to larger issues of
problem gaming, it is not yet clear if the effects have their full impact in
these games compared to traditional forms. Further research is needed to
understand properly how these impact players, in order to develop ways of
maximizing engagement while minimizing harm. While there is certainly a
risk of it, gamification has mostly been in use for the facilitation of bridging
between human intuition and computational challenges.

This methodology raised concerns, however, about the fidelity of the re-
sults, since the players might misinterpret distortions in data that had been
simplified. In this vein, tasks were made redundant, so that multiple players
analyzed the same data for consistency and reliability. Expert curation then
further validated these most contentious results, integrating human intuition
with biological expertise. It is this iterative relationship-in which algorithms
are informed by human judgments, and human insight is refined through
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algorithmic output-that best illustrates the full potential of hybrid systems
based on gamification.

6.0.3 Implications for Game Design
These gameplay insights also provide fertile ground for shaping the next

generation of citizen science platforms. Building on the lessons from Bor-
derlands Science and Project Discovery, we can draw clear implications
for designing future games that not only attract and retain users but also
produce useful data for scientific research. This includes well-designed user
interfaces, smart reward systems, and strong technical setups that support
large-scale participation and easy integration with machine learning. As fu-
ture problems become more abstract and complex, design choices will play a
key role in keeping tasks both accessible to players and scientifically mean-
ingful.

On the gameplay side, both platforms showed how difficult scientific prob-
lems can be turned into familiar and enjoyable experiences. These examples
highlight the importance of reducing complexity through simple interactions
and visual clarity, while still keeping the underlying task challenging and
scientifically valid. Features like limited action options, clear scoring, and
progression through increasing difficulty helped guide players toward better
solutions while keeping them engaged.

Motivation was another key element. While rewards such as in-game
currency, items, or rankings helped keep players active, many were also driven
by the feeling that they were contributing to real science. Both games made
efforts to communicate the scientific purpose of the tasks, using in-game
messages, status updates, or community goals. Players were more likely to
stay involved when they saw that their actions had real value. Future games
can build on this by showing how individual contributions improve models
or advance research, and by offering more personal or social feedback—such
as progress bars, community milestones or comparison to peers.

From a technical perspective, these games were carefully designed to pro-
duce data that was immediately useful. Each move a player made represented
a specific action in the scientific task, whether aligning sequences or outlin-
ing cell populations. The Borderlands system also tracked not just the final
results, but the entire decision process, which is especially useful for training
imitation learning models that aim to learn human-like strategies. Aggre-
gating multiple player solutions through consensus methods improved the
reliability of the data, turning variation among users into a strength. This
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suggests that future platforms should include built-in ways to gather and
combine multiple views on the same problem, and to identify which solu-
tions are most trustworthy.

As citizen science expands to other areas, some problems may not have
such obvious visual or game-like representations. More abstract tasks—such
as modeling networks, solving equations or exploring theoretical spaces—will
require new ways of thinking about game design. One approach could be
to split big problems into smaller, easier ones, or to build simulations where
player actions follow scientific rules. Storytelling, tutorials, and adaptive
difficulty could also help teach players the skills they need as they progress.
These ideas will be important for keeping players engaged while still collecting
valid and useful data.

Finally, future systems could use a combination of human and machine
input. Models trained on earlier player data could suggest starting points
or complete easier parts of puzzles, leaving more difficult cases for humans.
This hybrid approach can save time while still taking advantage of human
intuition. To make this work well, systems should continue to record how
decisions are made, not just what the answers are. This richer data opens
the door for training models that better reflect how humans solve problems.

In summary, these insights point to a design strategy that brings together
user-friendly interaction, strong motivational structure, and solid technical
foundations. When these parts are aligned, citizen science games can do more
than just engage the public—they can become powerful tools for tackling
scientific challenges that are hard for computers alone to solve. With careful
design, these platforms can expand the role of players in research and create
new paths for collaboration between humans and AI.

6.0.4 Healthcare Applications
Gamification and citizen science are new frontiers representing great promises

for bioinformatics, with a very important impact on healthcare diagnostics
and drug development. This approach leverages human pattern recognition
and computational scalability for solving problems which, if purely algorith-
mic methods were employed, are traditionally far beyond the limits.

Arguably, one outstanding success in this direction involves gamification
in malaria diagnostics. Players analyzing digitized blood smear images reach
an accuracy of over 99% in diagnoses [Waz18], thereby often outperforming
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many algorithmic approaches. Such a platform leverages human spatial rea-
soning to extend and reinforce diagnostic workflows, particularly for resource-
constrained settings where automated solutions may not as yet perform quite
so well.

There have been a number of broad applications of gamification in man-
aging chronic diseases, such as diabetes, cancer, and hypertension. These
gamification techniques aim to improve the level of patient activity, rehabili-
tation training, symptom management, and medication adherence. Examples
are interactive applications and games that engage one in consistent thera-
peutic routines in return for rewards, leaderboards, and feedback. However,
most studies lack a uniform standard whereby gamification effectiveness is
reviewed and hence limits comparability of personal interventions. Interven-
tions should be customized to fit individual patient needs for outcomes to be
optimized [HXL+23].

Gamified interventions also proved to work in education and cancer pre-
vention. "Tapamole" amongst other virtual reality games serve in educating
melanoma patients, the signs of the disease, and use sun protection. These
will eventually help in improving self-efficacy in patients and self-screen on a
habitual basis. Games such as "Re-Mission involves young adults in gaining
the awareness of the seriousness or severity of cancer and thus its prevention
measures. These interventions help in cultivating attitudes that are preven-
tive while encouraging active health behaviors among the clients [PGV+23].

Interventions based on gamification also seem to be of promise in promot-
ing physical activities among cancer survivors. Positive effects on quality of
life and general health have indeed been reported for web-based interventions
focused on the motivational aspects of moderate physical activities. However,
meta-analysis has pointed out that results for those are inconsistent, which
widely has been attributed to profound methodological heterogeneity within
studies. Larger and strictly designed trials are needed but confirmatory find-
ings are partly established by strong evidence within this context [PGV+23].

My thesis shows how human ingenuity and machine learning can change
healthcare. Think of algorithms that are trained on gamers’ strategies and
adapt to find anomalies in blood smears, diagnosing with precision in remote
clinics. Think of how gamified insights might optimize drug discovery, un-
covering molecular patterns that would have remained hidden to traditional
methods. Melding human intuition with computational power, this approach
revolutionizes diagnostics, therapy personalization, and disease prevention-
heralding smarter, more accessible healthcare solutions.
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6.0.5 Drugs Development
Another domain in which gamified platforms are very likely to make a

transformation is that of drug development.
The most noticeable application of gamification in drug development is

education and training. The "SCREENER" game is a very good example
of how such gamified tools can simulate the whole process of drug discovery
and development for educational purposes.

SCREENER was the first hybrid board and card game designed to take
them through each stage of a DDD pipeline, including target validation and
through into regulatory approval [NXM+21]. The much-needed accessible
education tool, SCREENER, needed in this arena, is now available; pharma
companies’ previous attempts to gamify the process either stalled entirely
or were shut behind proprietary firewalls, accessible within companies only.
Other evidence of the educational impact of gamification comes from a sys-
tematic quantitative review of gamification in pharmacy education. It indi-
cated that gamified interventions are widely adopted across the globe, with
12 countries represented, involving over 8,000 students and health profession-
als. The interventions ranged from board games to immersive simulations,
with the most popular format involving escape rooms [HGRK23, HGRK23].

While these initiatives have also shown promise in increasing engagement
and retaining knowledge, the review highlighted the need for more robust
reporting and closer alignment between education objectives and outcomes.

Other ingenious uses have come in the form of "MedChem Game," which
is an Android-based teaching aid for medicinal chemistry [D LPP24]. Gamifi-
cation merged with artificial intelligence in one platform for teaching medic-
inal chemistry not only provided knowledge at a foundational level to the
users but also interactively involved them in designing new small-molecule
drugs. AI in MedChem Game navigates a user through a solution of com-
plex tasks in medicinal chemistry in an easy and interactive way. Beyond
education, citizen science with gamification has also had remarkable value in
the realm of contributing directly to drug discovery.

While gamification holds immense potential in health, there are also many
challenges on the way to implementation. Privacy and security of subject
data hold prime importance for health care. Regulations in GDPR and
HIPAA play an important role in participant privacy. More importantly,
such gamified platforms need to be accessible across a wide population in
order to eliminate bias and problems of representativeness in the collected
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data. Accomplishment of these goals can take place by ensuring that multi-
lingual interfaces with adaptive difficulty levels are present to finally ensure
inclusivity.

Other challenges include player-generated data validation. Through ex-
pert curation and introduction of redundancy in tasks, one can ensure that
results of high fidelity are indeed realized; curated data may be used to train
more advanced machine learning models further.

In a nutshell, gamification of drug development goes beyond education in
rewriting the way drugs are found and optimized. Melding human creativity
with computational power, these platforms have created a promising path-
way to accelerate therapeutic innovation and develop the next generation of
researchers.

My thesis redefines the process of drug development by transforming
gamified platforms into tools of education, innovation, and discovery. By
leveraging player-generated data and baking inclusivity into practice, your
work accelerates drug discovery and democratizes access to state-of-the-art
pharmaceutical innovation. The combination of human creativity and AI
advances the pace of therapeutic breakthroughs while nurturing the next
generation of scientific leaders.

6.0.6 Societal Impact
The impact that citizen science games have is much wider in societal

impacts compared to the participation of individuals and scientific data col-
lection.

There are several motivations for people participating in citizen science
games. Most studies have shown that the major reasons for citizens par-
ticipating in citizen science are based on a background interest in science
and helping to advance scientific research [MGGC22, PHKK18, RBG+09,
FCS+17]. However, in most cases this is followed by a power-law distribu-
tion of work pattern with only a few highly active participants [ACL+22].

The use of citizen science games has attracted much interest, especially
when obtaining relevant scientific results and in the development of more
public involvement in science. On the one hand, it creates an inherent con-
tradiction between the motivational aspects of gaming and the generation of
relevant scientific results. Secondly, there is ongoing debate regarding the
tensions between game elements and scientific rigour, and for gamification
approaches to be tailored to specific tasks and domains [Cur14a, Sch24].

However, the challenges identified in the work do not impede either the
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evolution or the reach of citizen science games. Recent developments include
the introduction of citizen science activities within popular commercial video
games that could widen the audience for scientific participation [SGGGB+24].
As such, while this field is still evolving, further research will be required
into the experiences of players, motivations, and engagement to realize the
impacts and effectiveness within the contexts of citizen science game devel-
opment for the advance of scientific knowledge and public engagement in
science.

I believe, this approach brings us closer to a world where citizen science
games become an entry point for society actively to engage in scientific dis-
coveries. By gamifying science, we turn complex problems into engaging
puzzles. Therefore, we empower the masses to make remarkable contribu-
tions. This work also envisions such platforms as hubs for inclusivity and
education, where anyone - regardless of age or background - can learn, play,
and leave a real-world impact. Imagine these games as platforms that evolve
to become ecosystems, fund education, raise awareness, and drive the next
generation of citizen scientists. Beyond data collection, these games have
a ripple effect on driving public curiosity about science, fostering a global
community of problem-solvers, and redefining what it means for society to
"play for change."

6.0.7 The Power of Collaboration: From Citizen Science
Games to Scalable AI

This integration of classical bioinformatics, citizen science games, and im-
itation learning forms a revolutionary paradigm to address complex scientific
problems. It combines the flexibility and creativity of human intuition with
the precision and scalability of AI, thus achieving unparalleled progress in
solving bioinformatics problems.

Citizen science games like Borderlands Science and EVE Online’s
Project Discovery have already shown that non-experts can be a great
help in solving complex scientific tasks. These platforms convert these ab-
stract bioinformatic challenges into interesting video games, such as aligning
microbial sequences or performing cytometry clustering. Since such platforms
challenge players in the relevant tasks, they produce insights that uniquely
have their origins in the use of human cognitive capacities of pattern recog-
nition and intuition based on tacit thinking. For instance, when alignment of
microbial sequences has taken place, players repeatedly bring out conserved
motifs along with subtle patterns which existing algorithms had failed to
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demonstrate.
These insights bring out the importance of human problem-solving in

bioinformatics workflows. First, crowdsourcing complex problems through
these games allowed for breakthroughs that had been hard to achieve con-
ventionally [Cur14b]. As I mentioned, Foldit has made remarkable break-
throughs in protein structure prediction by demonstrating the power of hu-
man collective intelligence in solving computationally hard problems. It com-
plements the computational analyses through human intuition and pattern
recognition capabilities, thereby enhancing the data quality and showing re-
lationships or anomalies not easily depicted by an algorithm [Kat19]. This
is true in the case of cytometry clustering, among other areas that usually
involve high-dimensional data and need subtle interpretation. Above all,
these games allow outreach and education: they constitute places of infor-
mal science learning, creating the opportunity for the general public to be
meaningfully engaged in research, hence encouraging further appreciation for
scientific research [Cur14b].

Second, scalability: the models trained by combining AI and human strat-
egy are scalable to bigger datasets and completely new problems [MSGC+23].
This makes the solutions extendable beyond what was envisioned in the scope
of the citizen science games themselves and enables breakthroughs in ge-
nomics, proteomics, and immunology, among other diverse bioinformatics
areas. Third, the iterative nature of this framework supports continuous im-
provement. As more and more people start using these platforms and hence
feeding data into them, the AI models start to evolve and get refined. This
continuous cycle of human input and machine learning ensures that the mod-
els remain robust and accurate, even as the complexity and scale of the tasks
increase over time.

This synergy eventually leads to new research directions in both bioinfor-
matics and artificial intelligence [YA23, LYY+24]. This marriage of strengths
brings forth completely new directions of interdisciplinary research, such as
using human strategies to help focus machine learning, and may result, for
example, in next-generation advances in personalized medicine in which nu-
anced human insights complement data-driven approaches. Using this frame-
work sets up the platform to further investigate the gamification of AI for
domains such as environmental monitoring and healthcare diagnostics. Imi-
tation learning has become a critical bridge between human problem-solving
and AI. For instance, behavioral cloning can enable AI systems to closely
mimic player strategies by distilling decision-making processes underlying
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CONCLUSION

human expertise. These models can go beyond simple replication to gener-
alize human strategies toward much larger and more complex problems.

For instance, AI models trained on player-generated data for microbial
sequence alignment have performed not only comparably to traditional al-
gorithms but have even outperformed them in cases with noisy or highly
variable datasets.

Central to this is the "humans-in-the-loop" paradigm: the integration of
human insights directly into computational workflows. The players provide
initial data by solving gamified tasks, while their solutions inform the train-
ing of machine learning models. In return, the strategies are fine-tuned and
scaled using these models, creating a feedback loop that improves the con-
tributions by humans and machines. This two-way relationship enriches the
interaction in finding solutions not only with high accuracy and efficiency but
also in understanding deeper biological insights from the problem at hand.

In conclusion, citizen science games in combination with classical bioinfor-
matics and imitation learning are the power of interdisciplinary collaboration,
enhancing problem-solving capabilities, enabling scalability and continuous
improvement, and new research directions. This is the new paradigm for
how scientific challenges are approached. As this synergy develops further,
it might turn out to change the panorama of bioinformatics and unleash a
similar approach in a wide range of scientific and technological domains.

6.1 Conclusion
This work demonstrates the potential transformation possible through

the integration of citizen science, bioinformatics, and imitation learning—a
bold step toward solving some of the most intractable problems in genomics
and systems biology. The successes reported herein stand as testimony to the
power of collaboration between human intuition and computational precision,
offering new avenues by which to explore limitations and opportunities within
these crossroads. But the way ahead needs critical reflection, with an eye to
what has been accomplished and remaining complexity.

Basically, this research underlines the power of leveraging human
problem-solving strategies in computational models to solve bioinformatics
challenges. The successes within MSA and cytometry clustering are exem-
plary of how insights guided by humans can lead to the improvement in
the performance of algorithms, especially while working with variability and
noise that confound traditional methods. Yet, these successes should not be
seen as panaceas but rather as proofs-of-concept for what can be achieved
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when human creativity and machine learning harmonize. They represent
the beginnings, a scaffolding upon which more comprehensive, developed
methodologies can be built.

Yet, the ramifications of this work go far beyond the direct applications
of MSA and cytometry. They question the very borders of the traditional ar-
eas of computational methods, underlining the role of human intuition as an
integral part of the problem-solving pipeline. Bioinformatics as a discipline
is increasingly having to come to grips with data that is not only vast but
also multi-dimensional and deeply interconnected. This, in a sense, points to
a view whereby the future of bioinformatics will be based on whether it can
afford hybrid systems where human insight is regularly captured, enhanced,
and embedded into scalable computation flows. This is how such a redefini-
tion of workflow with human-computer collaboration holds the potential for
change: in the ways of our thinking about scalability, adaptability, and even
creativity in scientific problem-solving.

This work also highlights the fragility of such a schema. Particularly when
done through gamification, depending on human-derived strategies brings in
complexities that cannot be ignored. This abstraction used to translate the
bioinformatics problems into game mechanics may result in a loss of critical
nuances and, in turn, can compromise the biological validity of solutions gen-
erated by players. Similarly, while redundancy and expert curation go some
way to mitigate these risks, they also suggest the importance of ensuring
that human contributions make sense in intricate, sometimes hidden, rela-
tionships between biological data. It is this tension between simplification
for accessibility and scientific rigour where future research will need to tread
with a great deal of care.

Another powerful dimension, however, is the intersection of innovation
with inclusiveness. This study democratizes participation in bioinformat-
ics, allowing non-experts to meaningfully contribute to scientific discovery
through engaging the public in citizen science games.

While it enhances not only the pool of data with diverse perspectives
but also fosters shared ownership of science, participation itself is simply not
enough for democratization. This has to be sustained with the education
and empowerment of contributors toward ensuring equitably distributed and
far-reaching benefits of the system. This becomes even more important in
a global context where access to such technologies and opportunities might
be distributed very unevenly. The implications are huge for the future. The
methodologies pioneered here extend an invitation toward the exploration
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of even more complex challenges in bioinformatics, like systems-level inter-
actions in proteomics, epigenomics, and microbiomics. These areas involve
approaches able to explore intricate networks of biological relations while
adapting to the scale and diversity of the underlying data. At the same
time, this work points toward a general philosophical question: how is one
to design the interplay between human intuition and machine precision so as
to maximize discovery without losing the particular advantages of each?

In all probability, the explanation is rooted in deeper interdisciplinary col-
laboration. As this work illustrates, the intersection of domain knowledge in
bioinformatics, machine learning engineering, and game design is not merely
helpful but rather crucial. The future of hybrid systems in science depends
on how well these disciplines can come together, playing to their respective
strengths to develop tools that are rigorous yet accessible. Moreover, incor-
poration of recent advances in areas like explainable AI and multimodal data
integration will be critical in making the developed systems interpretable and
robust. The work, therefore, is not an end but a beginning; a foundation upon
which more sophisticated, inclusive, and impactful systems can be built. The
combination of citizen science, bioinformatics, and imitation learning is not a
methodological advance but rather a paradigm shift in the way we approach
some of the most complex scientific problems. This research provides a kind
of roadmap to the future in recognizing the limits of these first steps while
celebrating their promise a vision of science collaborative, adaptive, and pro-
foundly human-centered. It represents an invitation to further innovation
grounded in the conviction that the most important discoveries lie ahead
where creativity, rigor, and inclusivity intersect disciplines.
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Gaidon. Exploring the limitations of behavior cloning for au-
tonomous driving. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 9329–9338,
2019.

[CSM+18] Antoine Coutrot, Ricardo Silva, Ed Manley, Will de Cothi,
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