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Abstract  

English  

The COVID-19 pandemic continues to emphasize the importance of epidemiological 

modelling in guiding timely and systematic responses to public health threats. 

Nonetheless, the predictive qualities of these models remain limited by their underlying 

assumptions of the factors and determinants shaping national and regional disease 

landscapes. Here, we introduce epidemiological feature detection, a novel latent variable 

mixture modelling approach to extracting and parameterizing distinct and localized 

features of real-world trends in daily COVID-19 cases and deaths. In this approach, we 

combine methods of peak deconvolution that are commonly used in spectroscopy with 

accepted epidemiological models of disease transmission. We analyze the second wave 

of the COVID-19 pandemic in Israel, Canada, and Germany and find that the lag time 

between reported cases and deaths, which we term case-death latency, is closely 

correlated with adjusted case fatality rates across these countries. Our findings illustrate 

the spatiotemporal variability of both these disease metrics within and between different 

disease landscapes and highlight the complex relationship between case-death latency, 

adjusted case fatality rate, and COVID-19 management across various degrees of 

decentralized governments and administrative structures.  
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French 

La pandémie de COVID-19 continue de souligner l'importance de la modélisation 

épidémiologique pour guider des réponses rapides et systématiques aux menaces à la 

santé publique. Néanmoins, les qualités prédictives de ces modèles demeurent limitées 

par leurs hypothèses sous-jacentes concernant les facteurs et les déterminants qui 

façonnent les paysages pathologiques nationaux et régionaux. Nous présentons ici la 

détection des caractéristiques épidémiologiques, une nouvelle approche de 

modélisation par mélange de variables latentes permettant d'extraire et de paramétriser 

des caractéristiques distinctes et localisées des tendances réelles des cas et des décès 

quotidiens de COVID-19. Dans cette approche, nous combinons les méthodes de 

déconvolution des pics couramment utilisées en spectroscopie avec des modèles 

épidémiologiques reconnus de transmission des maladies. Nous analysons la deuxième 

vague de la pandémie de COVID-19 en Israël, au Canada et en Allemagne et constatons 

que le temps de latence entre les cas déclarés et les décès, que nous appelons latence 

des cas-décès, est étroitement corrélé aux taux de létalité ajustés dans ces pays. Nos 

résultats illustrent la variabilité spatio-temporelle de ces deux mesures de la maladie au 

sein et entre les différents paysages pathologiques et mettent en évidence la relation 

complexe entre la latence des décès, le taux de létalité ajusté et la gestion du COVID-

19 à travers différents degrés de décentralisation des gouvernements et des structures 

administratives.  
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Chapter 1  |  Introduction 

The COVID-19 pandemic has highlighted the importance of epidemiological modelling 

in responding to public health threats and continues to be a critical tool to study and 

anticipate the spread of disease, even with the introduction of vaccines and antiviral 

therapies. While there is an abundance of peer-reviewed research which sets out to 

make predictions about the short and long term spread of COVID-19 based on accepted 

epidemiological models, the study of past and emerging waves of the pandemic remains 

relatively unexplored despite the potential for understanding the impact of implemented 

public health responses. Some studies discuss the potential short term effects of 

nonpharmaceutical interventions such as mask mandates or lockdowns [1, 2] while 

others look deeper into possible disease futures, speculating about the longer term 

impacts of emerging variants, vaccination efficacies, and imperfect or waning immunities 

[3]. While these efforts broadly contribute to the decision making of public health 

authorities [4], they often place an emphasis on forecasting over retrospective 

investigations that evaluate the accuracy of predictions [5]. Models of prediction are an 

integral part of the epidemiologist’s toolbox and serve as a basis for pandemic scenario 

planning; however, precise quantitative forecasting remains an imperfect assessment of 

future disease landscapes and public health risks [6, 7]. 

 

Deterministic compartmental models of disease transmission are among the most 

common modelling techniques in epidemiology. In these models, individuals are labeled 

and compartmentalized based on their disease status (e.g., susceptible, infected, 
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recovered) and set to move between compartments over time according to model 

parameters and dynamics representative of a specified epidemiological landscape. 

Mean-field compartmental models assume that labeled populations are sufficiently large 

and homogenously mixed, such that variations in individual behaviours are 

approximated by a single averaged effect across an entire population [8]. Averaged 

analytical solutions of compartmental dynamics are generated from point estimates of 

model parameters, which provide simple approximations of disease progression but limit 

the ability to quantify model uncertainty, especially for long term forecasting [8, 9]. While 

the simplifying assumptions of these models pose limitations on their predicative 

abilities, they provide a parsimonious framework for measuring and monitoring past and 

real-time trends in disease landscapes based on spatiotemporal data [2]. 

 

To complement ongoing scenario planning initiatives for pandemic preparedness, 

science advisors and policymakers need to take an empirical approach to modelling 

disease landscapes. Empirical models are not intended to derive projections of disease 

progression but instead use analytical methods to interpolate and better estimate drivers 

of disease over time. These approaches to disease spread use epidemiological 

frameworks, such as compartmental models, to quantify and simulate real-world data 

as opposed to forecasting based on assumptions of epidemiological parameters such 

as reproduction number, contact rate, or critical vaccination threshold. They are often 

used to estimate such parameters [10] and may also be used to assess the validity of 

projections set forth by predictive models [5, 11]. 
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While compartmental models serve as a basis for studying disease landscapes, the 

ability of these models to provide spatiotemporal information on disease progression is 

limited by the granularity of the data being studied and by their capacity to extract and 

relate latent epidemiological features across different data types (e.g., cases and 

deaths). Motivated by the concept of feature detection used in the field of computer 

vision [12], a feature represents a distinct and localized grouping of new cases, deaths, 

and other epidemiological data (e.g., hospitalizations) from a larger disease landscape. 

Latent (or hidden) features could include city-wide outbreaks that become indiscernible 

at a national scale or local superspreader events smoothed over amidst provincial data, 

and they often manifest asynchronously across cases and deaths to shape disease 

landscapes. On a broader scale, these features are often the result of many confounding 

real-world events which share the same spatiotemporal localizations.  

 

Epidemiologists should have access to other tools and techniques, such as peak 

deconvolution, to extract hidden features from disease landscapes and improve existing 

epidemiological frameworks where richer data inputs may be unavailable. Peak 

deconvolution describes the process of deconstructing overlapping data features into 

individual components to extract hidden information about underlying phenomena. For 

example, in surface-enhanced Raman scattering (SERS), deconvolution of complex 

SERS spectra is used for the detection and characterization of molecular species based 

on the position and intensity of extracted peaks [13]. In an epidemiological context, 

similar peak deconvolution methodologies are useful for the extraction of hidden features 



 4 

from disease landscapes and provide a previously unexplored perspective into the 

progression of the COVID-19 pandemic.  

 

Here, we introduce a peak deconvolution method to deconstruct previous waves of daily 

case-death trends into smaller sub-waves and isolate latent features of disease 

landscapes to track distinct and localized changes in disease progression over time. Our 

work demonstrates how peak deconvolution can be used to quantify epidemiological 

feature parameters, such as CDL, from the second wave of the COVID-19 pandemic in 

Israel, Canada, and Germany. We also present a variation of the susceptible-infected-

recovered (SIR) model to empirically simulate peak fits taken from CDL analyses. We 

show how this parsimonious model can be used to quantify feature parameters of 

deconvolved sub-waves to better understand drivers of disease progression such as 

rates of infection, death, and recovery. Together, these tools serve as a novel method of 

epidemiological feature detection, with which each component pair of case-death peaks 

can be attributed to specific biological, behavioural, and social – among other – factors 

and determinants of disease. Finally, we discuss how these findings can inform 

researchers and policymakers with actionable insights regarding the outcomes of public 

health policies being implemented across various governments and administrative 

structures, the effectiveness of COVID-19 testing programs and intensive care 

infrastructure, as well as the spread of COVID-19 variants, among other epidemiological 

considerations. 
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Chapter 2  |  Literature Review 

Feature Detection 

The concept of feature detection as it is applied here in an epidemiological context was 

inspired by techniques developed in the field of computer vision under the same name. 

In the field of computer vision, an image feature or keypoint is broadly defined as a pixel 

neighbourhood with a distinct and localized pattern, such as an edge or a corner, which 

conveys specific information about its unique position within the image. In this sense, 

image features are the parts of an image that are generally more likely to be identifiable 

within and across different images with similar depictions. Identifying the same features 

across multiple images is the basis for a range of computer vision techniques as these 

features allow images and the objects within them to be – among other applications – 

matched based on the relationships between their featural similarities [12]; transformed 

using methods of image registration and stitching [14]; as well as tracked from one frame 

to another in the case of motion and video (also known as optical flow) [15]. 

 

Features typically possess various properties, sometimes referred to as feature 

descriptors, which parametrize their distinctiveness. For instance, Lowe (1999 & 2004) 

famously introduced a method of feature detection called the scale invariant feature 

transform (SIFT), where each pixel neighbourhood identified as a feature is described by 

4 parameters: position, scale, orientation, as well as an image gradient descriptor that 

summarizes the spatial structure of the feature [12, 16]. Many other similar approaches 

have since been developed under different names (e.g., SURF [17] and MSER [18]), 
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which use different methods of selecting and describing features to accomplish the 

same goal.  

 

Features are not only useful for extracting and characterizing the components parts of 

an image, but also for inferring context from those parts. Features can be grouped into 

feature sets, which may be used as multi-dimensional inputs into more complex 

detection and classification algorithms based on machine learning and deep learning 

frameworks [19, 20]. For example, Viola and Jones (2001) used collections of image 

filters (i.e., features) to train a classifier for face detection [20], and Dalal and Triggs (2005) 

later trained a linear support vector machine (SVM) to detect pedestrians based on 

complex feature sets of test images, which included SIFT descriptors [19].  These 

examples show that feature detection, as it is used in computer vision and the broader 

field of computer science, is not only a power tool for deconstructing complex images 

into meaningful parts, but in many cases, it also forms the basis for reconstructing 

meaning from those parts.  

 

While the use of featural representations is popular in computer science, the notion of 

features is broadly applicable to a variety of scientific disciplines, such as spectroscopy 

[13, 21] and chromatography [22], in which complex data is decoded into component 

parts. In SERS spectroscopy, spectra can be deconstructed into series of overlapping 

peaks, used for the detection and characterization of molecular species and biological 

materials based on feature descriptors such as peak positions, widths, and magnitudes. 

In many cases, spectra are taken from multiple parts of a sample to provide additional 
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information about the spatial localization of molecular species and properties of the 

tissues being studied [21]. For instance, this approach has been used in oncology to 

identify localized tissue features (i.e., biochemical compositions) associated with 

different stages of cancer progression such as cell proliferation, lipid reduction, and 

neovascularization [23]. This example demonstrates how spectral fingerprints can be 

used to form a hierarchy of features at various biological scales, which all serve to shed 

light on a larger system. 

 

Many of the ideas regarding feature detection as they are applied to computer science 

and the other scientific disciplines discussed are also applicable to epidemiology. In the 

case of epidemiological data, the various data types which arise from a disease 

landscape – be it cases, deaths, hospitalizations, vaccinations, among many others – 

may each be interpreted as distinct snapshots of the same scene. Each of these data 

inputs can be treated as feature sets, which may be stratified spatially as well as 

temporally into features that reveal locally distinctive patterns within larger disease 

landscapes. 

 

Epidemiological Models 

There are two main types of epidemiological models for studying disease outbreaks such 

as the COVID-19 pandemic [24], which include compartmental models [8, 25] as well as 

more computationally complex and data-intensive agent-based models (sometimes 

referred to as individual-based models) [26, 27]. While compartmental models assume 

homogenously-mixed populations comprised of labeled, but otherwise 
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indistinguishable, hosts [28], agent-based models avoid aggregation assumptions and 

instead approximate heterogenous populations as graph networks of interconnected 

nodes, where each node represents a distinct autonomous individual [29]. In agent-

based models, the disease status of each agent is updated and stored independently as 

opposed to being processed in aggregate based on their compartmental status (e.g., 

susceptible, infected, recovered), and they also allow for the explicit representation of 

complex transmission networks [30]. For example, the COVID-19 Agent-based Simulator 

(Covasim) is an agent-based model, which takes into account country-specific 

demographics, disease transmission across various social levels including households, 

schools, and communities, as well as age-specific disease outcomes (among other 

considerations), to inform the unique qualities and interactions of each individual 

simulated by the model [31].  

 

The notion of epidemiological features can be applied in the context of both 

compartmental and agent-based modelling frameworks. Both of these models can be 

adapted to study the spatiotemporal patterns (i.e., features) of disease landscapes with 

various degrees of resolution and granularity mainly by incorporating metapopulation 

approaches [32, 33]. In epidemiology, metapopulation models divide bulk populations 

into structured sub-populations, which are broadly grouped based on their ability to 

influence the dynamics of a disease landscape [28]. Subpopulations are often structured 

based on their geographic location at various scales (e.g., state, county, community); 

however, they may also be stratified using demographic descriptors such as age and 
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sex [34] as well as more elaborate population breakdowns such as travel networks [35] 

and contact patterns [36], which help define their influence on a disease landscape.  

 

Metapopulation models help to deconstruct the spread of disease within and between 

subpopulations and often provide insights into distinct and localized trends that are 

overlooked when studying aggregated population data. For instance, Schüler and 

colleagues (2021) combined a metapopulation approach with a modified SEIRD 

compartmental model to study the localized spatial patterns of disease progression 

across Germany’s 412 districts during the first wave of the COVID-19 pandemic [37]. 

They used this model to highlight specific disease hotspots in the South of Germany 

early in the outbreak and showed that simulation results at the district level could be 

aggregated to accurately reflect the cases reported at the state and national levels. In 

this example, the SEIRD models fitted at a district level could be interpreted as distinct 

features of the national disease landscape that provide otherwise hidden insights into 

the spatiotemporal patterns of disease progression.  

 

A current example of an agent-based metapopulation network approach is the global 

epidemic and mobility model (GLEAM) [35, 38]. GLEAM structures subpopulations 

around more than 3800 major transportation hubs across roughly 230 countries (as of 

May 2022) based on real-world data. These subpopulations are interconnected based 

on the data-driven patterns of travellers moving between them. Chinazzi and colleagues 

(2021) demonstrated the application of this mobility network to assess the impacts of 

early travel restrictions in Wuhan, China on the spread of COVID-19 to the rest of 
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mainland China and the world [39]. They showed that strict travel quarantine measures 

reduced international case importations from Wuhan by 80% for almost a month after 

they were first implemented in late January 2020. This study provides insights into how 

spatial representations generated from mobility data can serve to define and interelate 

features of the disease landscape at a provincial, national, and international level.  

 

There are also spatial representations other than metapopulations, which generally 

involve compartmental models defined by systems of diffusion-mediated partial 

differential equations (PDEs) [40-43]. Unlike metapopulation approaches which utilize 

discrete subpopulations, PDE models provide continuous spatiotemporal descriptions 

of disease landscapes which can be further informed by real-world considerations such 

as geographical boundaries and population distributions [43]. For example, Viguerie et 

al. (2021) used a SEIRD-based model of PDEs to study the Italian region of Lombardy 

and showed that lockdown restrictions should be tailored to local population densities 

to optimize the success of reopening strategies [42]. In a more recent paper, the same 

research group also showed how the PDE models could be discretized and aggregated 

at various scales to consolidate spatially-localized patterns such as hotspots, similar to 

the analyses performed by Schüler et al. (2021) for Germany [37]. 

 

Like any model, each type and variation of epidemiological model comes with simplifying 

assumptions and sources of uncertainty and needs to be carefully considered within the 

context in which it is applied [44]. In this sense, complexity does not guarantee model 

accuracy, nor is it a necessary feature of accurate models. As more advanced network 
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models are used, the need for greater computational resources and detailed input data 

increases [29]. Although simpler models are often limited by their inability to account for 

the effects of complex human interactions and spatial mixing patterns on disease 

dynamics, these limitations also make them less sensitive to misestimations of 

parametric assumptions which dominate more complex models [44]. In many cases, the 

underlying biology of disease dynamics, which includes incubation period, contagious 

period, and transmissibility, likely plays a larger role in determining the accuracy of 

epidemiological models compared to explicit considerations of spatial or social 

heterogeneities between individuals or structured subpopulations [45]. Such 

considerations form the basis of even the simplest compartmental models.   

 

Metapopulations and other spatially-heterogenous approaches to studying infectious 

disease dynamics provide comprehensive frameworks for explicitly representing 

spatiotemporal features of disease landscapes. However, these approaches require 

detailed input data, which has the potential to bias model results and compound model 

complexity. For instance, Cooper (2006) discussed the tendency of mobility networks 

based on commuting data to overestimate smallpox transmission as the spread of 

disease requires close contact that survey data showed was less likely to occur at work 

compared to at home [45]. Similarly, for GLEAM, the use of airport networks to study the 

spread of COVID-19 ideally requires additional data regarding local travel restrictions, 

testing and vaccination requirements, as well as quarantine guidelines for return 

travelers. While close attention to the cascade of considerations surrounding network-

based disease dynamics may mitigate misestimations, it is also important to consider 
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other means of deconstructing disease landscapes for situations in which limited data 

or complex assumptions make these models more difficult to use.  

 

Lastly, these models mainly provide broad representations of spatially constrained time-

series trends, but it is less clear how they can be used to study temporally localized 

variations within these trends without defaulting to complex modelling scenarios. 

Ascribing time-based features to models based on real-world data, analogously to 

structuring subpopulations based on geography or demography, could provide deeper 

insights into retrospective studies of disease dynamics and inform new methods of 

forecasting disease transmission. Time-based features are especially relevant to 

mapping relationships between compartmental statuses such as cases, hospitalizations, 

recoveries, and deaths, which manifest asynchronously across disease landscapes. 

Time-based segmentation of epidemiological data prior to modelling is considered more 

in depth throughout this thesis. 

 

SIRD Model 

The susceptible-infected-recovered-deceased (SIRD) model is a variation of the classic 

SIR model which explicitly accounts for disease-induced deaths among infected 

populations. In the SIRD model, infected individuals either recover from disease with 

natural immunity or die due to infection. The progression of the disease landscape in this 

model is represented by a set of four ordinary differential equations which each describe 

the dynamics of one of the SIRD populations as follows: 
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𝑑𝑆
𝑑𝑡 = −𝛽𝐼𝑆,			

𝑑𝐼
𝑑𝑡 = 𝐵𝐼𝑆 − 𝛾𝐼 − 𝜇𝐼,			

𝑑𝑅
𝑑𝑡 = 𝛾𝐼,			

𝑑𝐷
𝑑𝑡 = 𝜇𝐼 

 

[1] 

 

Here, β is the transmission rate constant, γ is the recovery rate constant, and μ is the 

mortality rate constant. Unlike the SIR model, the SIRD model includes an explicit 

analytical solution for the deceased population, D, which enables simultaneous 

modelling of death data in addition to case data. Cases and deaths are among the most 

commonly reported epidemiological data worldwide and serve as the basis for our CDL 

analyses. 

 

The SIRD model does not explicitly consider many of the complexities surrounding 

disease progression, such as incubation periods, asymptomatic transmission rates, and 

restrictive public health measures. Additional model compartments, such as an exposed 

(E) compartment used in SEIRD models of COVID-19 dynamics, are omitted from this 

analysis for simplicity. In many cases, simpler models have been shown to be sufficient 

for short term modelling of COVID-19 trends on the scale of several days to a couple 

months [46] as well as observationally equivalent to their more complex counterparts at 

these timescales [2, 47].  

 

Vital dynamics, which include births and natural deaths, are not considered in the SIRD 

model. These processes are generally used for modelling endemic diseases, which 

persist in populations over longer periods of time upwards of a decade [48]. With the 

SIRD model, we assume that natural deaths are negligible compared to those caused 
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by disease and similarly assume that birth processes are insignificant to overall 

population dynamics at the timescales presented.  

 

We also assume that natural immunity is conferred to recovered individuals at least 

temporarily such that they are not reintroduced into the susceptible population following 

recovery. Immune memory has been shown to persist for upwards of 3 months in most 

individuals following COVID-19 infection [49, 50] with little evidence of reinfection within 

similar timeframes [51]. In our analysis, each pair of case-death peak fits are simulated 

with a unique SIRD model and typically span between 10-15 days of the 105-120 days 

over which most second waves are observed. Given these considerations, the 

simplifying assumptions of the SIRD model without vital dynamics are reasonable for the 

timescales being studied. 

 

Case-Death Latency 

One epidemiological parameter which has remained central to calibrating and fitting 

pandemic models of disease progression is the apparent temporal lag between publicly 

reported daily COVID-19 cases and deaths, a phenomenon which we term “case-death 

latency” (CDL). CDL is in part determined by the inherent dynamics of the SARS-CoV-2 

virus [52] as well as by the unique physiological responses it imposes on each infected 

individual [53]. However, it is also influenced by other factors such as the quality of public 

health infrastructure, and centralized disease reporting and management [54, 55]. While 

this latency is reported in the literature [56] and estimated to range on average between 

13-16 days from the onset of COVID-19 symptoms [57, 58], little has been done to 
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quantify variations in CDL over time or consider these variations within a broader 

epidemiological framework.  

 

Oversimplification of CDL can misinform calculations of important epidemiological 

metrics such as case fatality rate (CFR), which is currently calculated based on crude 

estimates of CDL, if any [59]. Given that it is influenced by many confounding – and often 

unknown – variables and used to estimate important epidemiological metrics, CDL 

serves as a rich and complex metaparameter which implicitly codes for a variety of 

factors and determinants of disease. Decoding CDL could provide new insights into 

COVID-19 disease landscapes. 

 

Chapter 3  |  Methods 

Data Selection and Processing 

The COVID-19 case and death data used in this manuscript was downloaded from the 

Johns Hopkins Coronavirus Resource Center’s open access database [60] and 

subsequently analyzed using our novel approach to epidemiological feature detection, 

which is outlined in Figure 1. Prior to analysis, all data was smoothed in MATLAB using 

a gaussian-weighted moving average filter with a window length of 25 days to obtain 

quasi-continuous trends, as shown in Figure 1A, which were more suitable for peak 

deconvolution than the noisy raw data. Pairs of corresponding case-death trends for 

each region of interest were min-max normalized between 0 and 1 to maintain 

consistency in our analyses across these regions. 
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The regions and waves of interest we analyzed were mainly selected for the purposes of 

demonstrating this novel approach and follow a few general selection criteria. Firstly, 

regions of interest where the daily reporting of cases and deaths was relatively consistent 

and showed distinct surges were preferred as they facilitated data smoothing and peak 

deconvolution. Higher income countries reporting peak surges upwards of 5000 cases 

per day generally fit these criteria often due to the greater capacities of their healthcare 

networks to document disease progression.  

 

The second wave of the pandemic in each region of interest was selected for analysis 

based on the assumption that COVID-19 cases and deaths were more accurately 

reported following the first wave due to constant improvements in testing and reporting 

infrastructure through the early stages of the pandemic. Additionally, the second wave 

was chosen instead of later waves to investigate COVID-19 disease landscapes prior to 

widespread vaccines rollouts. Although these selection criteria were used to guide the 

present analysis, this approach to epidemiological feature detection is broadly 

applicable to the study of disease landscapes beyond nationally reported surges in 

COVID-19 cases and deaths, including regions with sparser disease reporting. 
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Figure 1 Epidemiological feature detection methodology: A reported daily cases and deaths data for a region of 

interest are cleaned and smoothed, B case and death trends are deconstructed into component peaks, C peak 

pairs are isolated for SIRD modelling, D time derivatives for analytical solutions of SIRD model are used to model 

peaks, E SIRD model parameters are optimized to fit each peak pair, F case and death trends are reconstructed 

using modelled peak pairs. 
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Peak Deconvolution 

Peak deconvolution was used to deconstruct national time series trends from the second 

wave of the COVID-19 pandemic into their component peaks, or sub-waves, as shown 

in Figure 1B. Following data selection and processing in MATLAB, peak deconvolution 

was performed using Fityk, an open source curve fitting and data analysis software [61]. 

The quality of the fit for each of the deconvoluted time series trends was assessed based 

on their coefficient of determination, R2, where an R2 value greater than 0.99 was 

considered acceptable for this analysis.  

 

To fit corresponding case-death surges within a region of interest, time windows of the 

same length for each data type were offset to account for the average CDL between 

trends. The offset between case and death time windows was defined by maximizing 

the cross-correlation function between case-death surges. Although time windows were 

constrained to be the same length for the case and death trends within each region of 

interest, they were allowed to vary between regions as the duration of the second wave 

was unique to each region studied. 

 

For the purposes of peak deconvolution, the time window ultimately defined the distance 

between the center of the first and last deconvoluted peaks flanking case-death surges, 

which, for example, is indicated in Figure 1B as twindow for the trend in daily deaths. Each 

trend can be fit with at least 3 peaks (i.e., two flanking peaks and 1 unconstrained peak), 

and the number of peaks can be increased to enhance the resolution of feature 

extraction. Corresponding case-death trends within a region of interest must be fit with 
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the same number of peaks to ensure correspondence between individual features 

extracted from the case and death landscapes. For instance, Figure 1B shows a pair of 

case-death trends fit with 6 peaks each, of which the 4 central peaks from each trend 

are shown as isolated peak pairs in Figure 1C. Each of the trends in this thesis were 

deconvoluted into 6 peaks, which proved to be the minimum number of peaks that 

accurately fit all these trends (i.e., the number of peaks was limited by the most feature-

rich landscapes). Consistent peak fitting across each region of interest provided 

uniformity of model outputs, which facilitated comparisons of regional disease 

progression across these regions.  

 

Each isolated peak pair comprises a case and death peak of identical widths and 

represents a unique epidemiological feature. Peak widths may vary across isolated peak 

pairs but are kept constant between the case and death peaks of each individual pair to 

consolidate the temporal parameterization of each feature. CDL is defined as the center-

to-center distance between the case peak and death peak of each isolated peak pair, 

which is indicated as ∆ in each of the subplots in Figure 1C. The peak deconvolution 

process yields a sequence of distinct and localized features from real-world data that 

can be further parameterized with compartmental models of disease transmission. 

 

SIRD Modelling 

While the case and death data for peak deconvolution are shown as the change in daily 

counts (i.e., new cases and deaths), the explicit analytical solutions of the SIRD model 

are expressed as total daily counts as shown in Figures 1D1 and 2. To convert the 
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population dynamics of the model to daily changes in the SIRD populations, we take the 

numeric derivative of the model’s analytical solutions using the forward difference 

formula, which are shown in Figures 1D3 and 4. New daily cases are approximated using 

the negative time derivative of the susceptible population, S, given that changes in S are 

governed by a single term as shown in Eq. 1, which describes the rate of irreversible 

transition between susceptible and infected populations. Analogously, the time 

derivative of the deceased population, D, is used to approximate new daily deaths. 

 

Modelled cases and deaths are fit to pairs of reported case-death peaks using non-linear 

least squares regression, which is illustrated in Figure 1E. The optimization process 

works to minimize the residual sum of squares between the model and reported data 

over the time interval spanning the case-death peak pair of interest. Minimization of the 

model error is defined by the objective function, f(x), as follows: 

 

					𝑚𝑖𝑛‖𝑓(𝑥)‖! = 𝑚𝑖𝑛 78𝐶" − 𝐶#(𝑥):
! + 𝜆8𝐷" − 𝐷#(𝑥):

!= 
 

[2] 

 

where C and D represent case and death peaks, respectively, and are denoted with a d 

for deconvoluted peaks or m for SIRD-modelled peaks. Here, x is a vector variable of 

the parameters and initial conditions used in the SIRD model and λ is a scaling factor 

intended to compensate for the general disparity in the magnitude of cases compared 

to deaths. Model parameters include the transmission, recovery, and mortality rate 

constants while initial conditions include the initial susceptible, infected, and recovered 
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populations. For simplicity, we constrained initial recovered populations to zero and kept 

initial infected populations arbitrarily low compared to their corresponding initial 

susceptible populations (i.e., a ratio of approximately 1:100,000 infected to susceptible 

individuals). The initial susceptible population of each peak pair model was scaled 

proportionally to the relative area occupied by its death peak as mortality was assumed 

to be a more reliable indicator of disease prevalence than cases due to variability in 

testing rates within and across regions of interest throughout the pandemic [62]. 

 

Each pair of modelled case-death peaks represents a unique SIRD simulation generated 

from a single set of optimized parameter values (i.e., β, γ, and μ), which ensures that 

corresponding case-death data for each isolated peak pair is satisfied under the same 

epidemiological conditions. Model parameter values of different peak pairs are 

independent of one another. During the simulation process, modelled peaks are also 

temporally shifted to be aligned with the time series data and ultimately result in a purely 

mathematical recreation of the original time series trends as illustrated in Figure 1F. 

 

Chapter 4  |  Results 

Peak Analysis 

Nationally reported data from the second waves of the COVID-19 pandemic in Israel, 

Canada, and Germany were analyzed using the presented peak deconvolution and SIRD 

modelling methodology to investigate the relationship between CDL and other 

epidemiological parameters shaping these disease landscapes. Daily case and death 
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trends for each country were fit with 6 peaks as shown in Figure 2. While the scale of the 

x-axes is the same for each of the subplots, Israel’s second wave started approximately 

100 days before those of Canada and Germany. 

 

The durations of the second waves of cases and deaths, which were calculated as the 

number of days between the centers of the two peaks flanking each fit (i.e., peaks 1 and 

6), were between 110 and 115 days for all three countries. The consistency of the second 

wave durations across these countries is suggestive of an epidemiologically invariant 

phenomenon underlying these transient surges in the spread of COVID-19. Despite this 

similarity, the deconvoluted case and death trends shown in Figure 2 depict a unique 

disease landscape for each country within each of their second waves. The surge in 

Israel’s daily cases shown in Figure 2A has a backloaded bimodal distribution, whereas 

Canada’s cases (Figure 2C) increase steadily; both of which are distinct from Germany’s 

sudden and relatively sustained spike in daily cases (Figure 2E). As expected, surges in 

daily deaths shown in Figures 2B, D, and F lag behind their respective surges in daily 

cases and also bare shaped-based resemblances to them. 

 

The similarity between the respective trends in second wave cases and deaths was 

confirmed and compared by calculating the Pearson correlation coefficients and 

dynamic time warping (DTW) minimum distances for each of the pairs of case-death time 

series shown in Table 1. These similarity measures were calculated using independently 

normalized case and death trends, which were temporally shifted to maximize their 
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Figure 2 Peak fits for national daily cases and deaths reported from the second wave of the COVID-19 pandemic: 

A Israel daily cases, B Israel daily deaths, C Canada daily cases, D Canada daily deaths, E Germany daily cases, 

and F Germany daily deaths. 
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 cross-correlation functions. The Pearson correlation coefficients for each country are 

greater than 0.95, which indicates a strongly positive correlation between the national 

case and death trends of each country. The similarity between respective trends 

confirms a level of consistency between the reporting of case and death data within each 

of these countries required to fit and model the same number of analogous case-death 

peaks in the analyses presented. Additionally, the Pearson correlation coefficients and 

DTW minimum distances both show that Canada’s case-death trends are most similar, 

followed by those of Israel and then Germany. 

 

Table 1 Correlation between the deconvoluted trends in daily cases and deaths in Israel, Canada, and Germany 

during the second wave of the COVID-19 pandemic. 

 

Model Validation 

To validate the SIRD model, we first calculated and compared the adjusted case fatality 

rate (aCFR) for each of the deconvoluted and modelled peak pairs. CFR is defined as 

the ratio of deaths to cases over a specified period of time while aCFR accounts for CDL 

and is defined as the ratio of deaths to cases where the deaths are temporally offset by 

their respective latency. This epidemiological measure is generally reported as a 

percentage, where larger percentages are indicative of more severe disease outcomes. 

The majority of nationally reported CFRs for COVID-19 based on aggregate data range 

Country Pearson Correlation Coefficient Dynamic Time Warping 
Minimum Distance 

Israel 0.977 1.332 

Canada 0.991 1.173 

Germany 0.961 1.946 
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between 0.5-5.0%: Israel reporting 0.6%, Canada 1.7%, and Germany 2.2%, as of 

October 2021. For the deconvoluted peak pairs, aCFRs were calculated by dividing the 

area under each death peak by that of its corresponding case peak. The corresponding 

rates for each modelled peak pair were similarly calculated using their respective SIRD 

model parameters as follows: 

 

𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑	𝐶𝐹𝑅 =
𝜇𝐼
𝛽𝐼𝑆 ≈

𝜇
𝛽𝑆$

				𝑤ℎ𝑒𝑟𝑒	𝐼 << 𝑆 
 

[3] 

 

Here, in addition to the rate constants, β, I, and μ, introduced in Eq. 1, S0 is the initial 

susceptible population for each modelled peak pair. Figure 3 provides a comparison of 

the reported and modelled aCFRs within and between each country. As expected, the 

plot shows a strong linear correlation (R2 greater than 0.99) with an equal proportionality 

(slope of 1.0), which demonstrates that the aCFRs calculated for each of the isolated 

peak pairs are closely and consistently approximated by their respective SIRD model 

parameters. Figure 3 also shows a clear separation between the reported second wave 

disease landscapes of each of these countries, where Israel has the lowest aCFRs on 

average, followed by Canada, and then Germany. Moreover, the variation in aCFRs 

between peak pairs from the same country highlights the potential for peak 

deconvolution methodologies to identify increasingly granular features of these disease 

landscapes. 
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Figure 3 Reported peak-by-peak aCFRs compared to aCFRs calculated from SIRD model parameters in Israel, 

Canada, and Germany during the second wave of the COVID-19 pandemic. 
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Case-death Latency 

While aCFRs provide an overview of these disease landscapes, studying their underlying 

infection and death rates enables a deeper understanding of the epidemiological 

parameters most heavily influencing each country’s pandemic response. Figure 4 shows 

the modeled infection, death, and aCFRs versus CDLs for each of the isolated peak pairs 

for Israel, Canada, and Germany. The plot of the recovery rates versus latencies is not 

shown as it closely resembled that of the infection rates shown in Figure 4A, given that 

more than 95% of reported cases led to non-fatal disease outcomes across all three 

countries. In Figure 4, peaks pairs – each represented by an individual data point – are 

uniquely defined within each plot and clustered by country, which illustrates the dynamic 

variability of these disease landscapes even within a single wave of the COVID-19 

pandemic. In Germany, such time dependent variations in aCFRs during the second 

wave outbreak have been linked to changes in the age distribution of confirmed cases 

[63]. 

 

Between countries, death rates (Figure 4B) varied significantly more than infection rates 

(Figure 4A). Based on the weighted average rates for each country reported in Table 2, 

national death rates showed a 76% deviation from the average, whereas infection rates, 

which showed an 18% deviation, were relatively constant. These observations indicate 

that higher death rates were the main drivers of larger aCFRs across these disease 

landscapes during the second wave of the COVID-19 pandemic. They also suggest that 

the risk of COVID-19 infection was relatively independent of country and time. 
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Studying case death latency provided further segmentation of these epidemiological 

parameters by country. For the three countries presented, we observed that the average 

death rates and aCFRs were directly proportional to CDL. In particular, the average 

Figure 4 CDL compared to modelled infection rates (A), death rates (B), and aCFRs (C), in Israel, Canada, and 

Germany during the second wave of the COVID-19 pandemic. 
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aCFRs showed a strong linear correlation (R2 = 0.91) to the latencies reported in Table 

2, which is also illustrated in Figure 4C. Overall, this trend is suggestive of a more 

complex relationship between disease severity and the temporal dynamics of disease 

progression and reporting both at an individual and societal level, which needs to be 

considered when comparing aCFRs across multiple countries. 

 

 

Chapter 5  |  Discussion  

To further investigate the strongly positive correlation between CDL and adjusted case 

fatality rate across Israel, Canada, and Germany during the second wave of the COVID-

19 pandemic, multiple underlying factors must be considered. One of the main factors 

governing the trends in the disease landscapes across these three countries are the 

governments themselves [64]. The governments of Israel, Canada, and Germany each 

embody unique administrative structures, which influence the unity of their pandemic 

responses at local, state, and federal levels. Based on our analyses, we propose a 

working theory that governments with increasingly decentralized and codependent 

Country CDL (Days) Infection Rate Death Rate aCFR (%) 

Israel 14.631 1.791 0.013 0.661 

Canada 21.997 1.404 0.026 1.776 

Germany 23.827 2.024 0.062 2.801 

Table 2 Weighted averages of CDLs, infection rates, and death rates calculated from peak fits and SIRD model 

parameters in Israel, Canada, and Germany during the second wave of the COVID-19 pandemic. 
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administrative structures are more likely to experience worse disease outcomes due to 

a lack of decisive policy making and timely access to systematic healthcare data. 

 

While the degree of government centralization in each of these countries is difficult to 

quantify, broad comparisons of their different administrative structures and subsequent 

pandemic responses – informed by factors including population size, distribution, and 

segmentation – provide insights into the correlation across countries between CDLs and 

aCFRs. For example, Israel has a population of 9 million people living across 6 districts 

within a unitary state of centralized federal governance. Under this government, laws and 

public health policies are exclusively implemented at the federal level (e.g., countrywide 

lockdowns). During the second wave of the pandemic, Israel opted to decentralize the 

management of COVID-19 to the country’s four universal health plans, which oversee 

the administration of primary care services such as testing and patient education [65], 

and municipalities had the option to implement additional health measures based on a 

classification system of local disease severity set forth by Israel’s Ministry of Health [66]. 

However, these health plans ultimately belong to a system of direct oversight by the 

State, which resulted in a nationally homogeneous second wave pandemic response 

and lower CDLs as well as aCFRs in Israel compared to those of Canada and Germany. 

 

Canada and Germany are both governed as federations, which operate on a spectrum 

of shared power distributed between state and federal levels. In Canada, which has a 

population of 38 million people living across 10 provinces and 3 territories, neither 

provincial governance nor federal jurisdiction are subordinate to the other. Instead, 
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Canada’s provincial and federal governments act autonomously to exercise their 

respective constitutional responsibilities and only coordinate policies through voluntary 

negotiations where there is mutual interest in intergovernmental collaboration [67]. 

Based on this system of governance, the early stages of the pandemic in Canada saw 

mask mandates and regional lockdowns implemented at the provincial level while the 

federal government maintained national border closures as well as international travel 

restrictions including mandatory quarantining for return travellers [68, 69]. Canada’s 

heterogeneous second wave pandemic response, which was highlighted by provincial 

autonomy and cooperative national decision making, led to moderate aCFRs with the 

largest variation in CDLs compared to Israel and Germany.  

 

Germany, which has a population of 83 million people living across 16 states (known as 

Länder), responded in much the same way as Canada with the main differences arising 

from Germany’s consensus-based federal system. With lawmaking abilities 

predominantly resting in the states’ hands and requiring unanimity from state leaders 

[67], Germany’s second wave pandemic response was guided by fragmented 

governance and fractious federal-state relations. Despite the implementation of delayed 

and compromising nationwide lockdowns, rules around local social restrictions, face 

masks, and other public health policies varied across each Länder [70]. The 

decentralized healthcare systems of Germany’s states have presented a heterogeneous 

response throughout the pandemic, which has ultimately resulted in substantial 

differences in disease landscapes across the country, especially during the second wave 

of the pandemic [71]. Of the three countries presented, Germany showed the largest 
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CDLs and aCFRs during their second wave. However, the range of CDLs in Germany’s 

second wave (21.6 to 25.4 days) was smaller than that of Canada’s (17.4 to 25.9 days), 

which may reflect Germany’s more unified response across Länder. 

 

Decentralized governments, such as the federal systems in Canada and Germany, tend 

to exhibit patchwork responses to large scale public health outbreaks [72]. Non-

standardized disease reporting across these heterogeneous policy and data collection 

landscapes often leads to a lack of timely and systematic healthcare data, which can 

hamper pandemic responsiveness [70]. In Germany, for example, delays in registered 

COVID-19 deaths (i.e., from the date of death to date of publication) of one to three 

weeks were common throughout the second wave of the pandemic [55]. Overall, the 

decentralization of COVID-19 management may be a contributing factor to the higher 

CDLs and aCFRs observed during the second waves of the pandemic in Canada and 

Germany compared to Israel. 

 

For Germany, the codependency of state governments to enact policies at a national 

level may have also contributed to the country having the highest CDLs and aCFRs of 

the three countries analyzed. However, timely pandemic responses are important to 

smaller unified governments. For example, Israel’s more severe second wave has been 

attributed to delayed government action during the early weeks of the country’s second 

wave outbreak [73]. Ultimately, unified governments and healthcare networks are more 

likely to effectively respond to emerging outbreaks and report on them in a way that 

reflects their true disease landscapes, whereas decentralized networks experience 
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greater latencies, which are more prone to underestimates in disease severity and costly 

delays in implementing public health interventions and countermeasures.  

 

While administration and governance are overarching factors which have undoubtedly 

contributed to the progression of the pandemic, CDLs and aCFRs are also influenced by 

many other confounding factors, especially at subnational levels. Such factors may 

include the emergence of different variants of concern throughout the second wave of 

the pandemic, which are associated with a higher risk of mortality compared to earlier 

variants for cases running longer clinical courses (i.e., more than 2 weeks since 

diagnosis) [74]. Population level factors such as age demographics are also important to 

consider, as higher case fatality rates are disproportionately observed among older 

populations [75] while the relationship between age and CDL is relatively unexplored 

[76]. Other socioeconomic factors such as access to healthcare resources and GDP per 

capita also play a significant role in shaping these disease landscapes [77]. These 

additional factors and determinants of disease are areas of interest for future work, 

especially as relevant stratified data for each of these considerations continues to 

become more available. 

 

As the pandemic progresses, new types of data also become available, allowing for 

further analyses of emerging waves. For instance, the methodologies introduced in this 

work could be used to analyze subsequent waves of COVID-19 for various regions. 

Analyses of third wave data could provide unique insights on the early impacts of 
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vaccinations, which could be studied alongside cases and deaths by applying 

compartmental models that account for vaccinal and waning immunities [3]. 

 

Furthermore, analyzing additional regions at various scales would allow for more 

conclusive findings to be drawn regarding the methodology presented here. Analyzing 

and comparing smaller regions, such as cities, provinces, or states, could provide more 

detailed insights into the spatiotemporal characteristics of disease progression, such as 

when individuals travel from one homogenous region to another. These analyses could 

additionally be used to explore temporal features of disease landscapes previously 

studied using mobility networks and metapopulation approaches [38, 39]. Ultimately, the 

versatility of the epidemiological feature detection method presented here makes it 

applicable to a wide variety of applications within epidemiology.  

 

Chapter 6  |  Conclusions  

In this thesis, we introduced and applied a novel latent mixture approach, which we coin 

epidemiological feature detection, to analyze the second wave of the COVID-19 

pandemic in Israel, Canada, and Germany. Applying this approach, we used peak 

deconvolution methods to extract and relate distinct and localized features from trends 

in daily cases and deaths, and we further characterized these features using a SIRD 

model of disease transmission to quantify spatiotemporal variations in epidemiological 

parameters including infection, death, and recovery rates. We found that the average 

death rate across all three countries varied more than 4 times as much compared to the 



 35 

average infection rate, which suggests that higher death rates, as opposed to lower 

infection rates, are the main drivers of increases in adjusted case fatality rates. 

Additionally, we found a strongly positive correlation (R2 = 0.91) between average 

adjusted case fatality rate and the lag time between reported cases and deaths of 

isolated features, which we term case-death latency. Of the three countries presented, 

Israel showed the lowest average case-death latency and adjusted case fatality rate 

(14.6 days and 0.7%), followed by Canada (22.0 days and 1.8%), and Germany (23.8 

days and 2.8%). We further discuss this trend in the context of increasingly decentralized 

governments and administrative structures in these respective countries. We highlight 

the importance of cooperative decision making and timely access to systematic 

healthcare data for effective responses to emerging public health outbreaks. Overall, this 

work emphasizes the need for new empirical approaches to complement ongoing 

pandemic scenario planning initiatives and illustrates the potential for epidemiological 

feature detection to improve health security and pandemics preparedness for COVID-19 

and beyond. 
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