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ABSTRACT 

As XML gains popularity as the standard data representation model, there 

is a need to store, retrieve and update XML data efficiently. McXml is a 

native XML database system that has been developed at McGili University 

and represents XML data as trees. McXML supports both read-only 

queries and six different kinds of update operations. To support 

concurrent access to documents in the McXML database, we propose a 

concurrency control protocol called LockX which applies locking to the 

nodes in the XML tree. LockX maximizes concurrency by considering the 

semantics of McXML's read and write operations in its design. We 

evaluate the performance of LockX as we vary factors such as the 

structure of the XML document and the proportion of read operations in 

transactions. We also evaluate LockX's performance on the XMark 

benchmark [16] after extending it with suitable update operations [13]. 

Finally, we compare LockX's performance with two snapshot-based 

concurrency control protocols (SnaX, OptiX) that provide a commiUed 

snapshot of the data for client operations. 
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ABRÉGÉ 

Comme XML gagne en popularité en tant que modèle de représentation 

de données, le besoin s'impose de pouvoir stocker, extraire et mettre à 

jour les données XML de manière efficace. McXML est un système natif 

de base donnée XML, développé par l'Université McGill, et qui représente 

les données sous forme d'arbre. McXML permet d'effectuer aussi bien des 

requêtes en lecture seule que six autres types de mise à jour. Pour faire 

face aux accès concurrents, nous proposons un protocole de contrôle 

appelé LockX et qui impose un verrouillage aux nœuds de l'arbre XML. 

LockX permet de maximiser les accès concurrents en prenant en compte 

dans son architecture la sémantique des accès en lecture et écriture de 

McXML. Nous évaluons la performance de LockX en faisant varier des 

facteurs tels que la structure du document XML ainsi que la proportion 

des opérations de lecture dans les transactions. Nous évaluons 

également la performance de LockX grâce au banc d'essai XMark [16], 

après avoir étendu son implémentation de manière appropriée [13]. Enfin, 

nous comparons la performance du système LockX avec deux protocoles 

de contrôle basé sur les clichés, c'est à dire utilisant un cliché des 

données dédié aux opérations client. 
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Chapter 1 Introduction 

XML (eXtensible Markup Language) is widely believed to be the present and 

future of data transmission and manipulation across heterogeneous computer 

systems [17]. Its growth in popularity is largely attributed to its ability to provide a 

standardized extensible means of including semantic information within 

documents describing semi-structured data [1]. Almost ail computer systems use 

XML in one form or another. Companies like Microsoft, IBM, Sun Microsystems 

and Oracle have ail embraced XML as a data format for exchanging information 

with their products. Furthermore, software to parse, transform, define, query, 

store and transmit XML data is readily available. 

The World Wide Web Consortium (W3C) [6] is in the process of standardizing 

query languages for XML called XPath [18] and XOuery [19]. XOuery and XPath 

are query languages for retrieving parts of an XML document based on path 

expressions. XML storage has generally been provided by relational databases 

which map XML data to a relational mode!. Oueries over XML data are th en 

converted to SOL queries and executed. More recently, native XML databases ( 

e.g. [5, 2, 1] ) have emerged. They provide features such as their own data 

model, storage management and query processing using XPath [18] and XOuery 
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[19]. They provide the benefits of preserving the native structure of XML 

documents and processing XML documents in schema-free environments. One 

such native XML database called McXML [2] has been developed at the McGiII 

University Distributed Information Systems Lab. Since XQuery does not provide 

any standards for updating XML data, McXML implements its own update 

extensions, based on the work done by Tatarinov et al. [3], which allows it to 

handle many different kinds of update operations. 

As such native XML databases evolve, they need to be able to manage many, 

potentially large documents. A variety of applications with workloads, ranging 

from read-only to update-intensive, need to be supported efficiently. Specifically, 

applications supporting concurrent access by different clients on the sa me 

document to perform reads/updates can pose challenges. One solution would be 

to allow only one client access to the document at one time but this would create 

poor performance. There will be unnecessary blocking even when clients 

perform their operations on different parts of the document. Hence, we need a 

concurrency control mechanism which allows multiple users to work on a 

document at the sa me time without affecting each other. 
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Controlling concurrent access to an XML document is not trivial and many 

complications can arise. For example, consider an online book store which stores 

its inventory information in an XML document. If two users attempt to buy a book 

at the same time, we cannot predict what will happen. To avoid such 

unpredictable behaviour, there is a need for transaction management. Each 

client's actions on the XML document are encapsulated into transactions. A 

transaction is an atomic unit of read/write operations on the data. Transactions 

provide isolation Le. if two clients execute their transactions concurrently on a 

document, each client has the impression that he/she is working alone on the 

document. Furthermore, the interleaved execution of the transactions is 

equivalent to one transaction executing serially after the other. 

Most concurrency control approaches for XML we have studied are based on 

locking [8, 10, 11, 22]. Transactions acquire locks before accessing parts of an 

XML document preventing other transactions from accessing these parts 

concurrently. None of these locking schemes were well-suited to our needs 

because of various reasons discussed later. In this thesis, we therefore propose 

a concurrency control protocol, based on locking, called LockX which was 

specificallY designed ta meet the special needs of McXML. But we believe that 

LockX is suitable for other native XML databases which use a tree model ta 
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represent XML documents. Furthermore, the semantics of McXML's update and 

read operations are considered to maximize concurrency. 

We conduct an extensive performance analysis of our implementation of LockX 

into McXML considering various factors such as the structure of the document 

and impact of differing proportions of read operations. We also analyze the 

performance of LockX on a benchmark auctioning application to test it in real

world conditions. Finally, we compare the performance of LockX with two 

snapshot-based protocols (OptiX, SnaX [13]). These protocols avoid read locks 

on data by providing a committed snapshot to the client. OptiX is a variation of 

optimistic concurrency control adjusted to use snapshots and work on XML data. 

SnaX provides the isolation level snapshot isolation [14] that does not keep track 

of read operations at ail. 

The advantage of LockX over OptiX and SnaX is that it can easily be 

implemented into the query execution engine of most available native XML 

databases. In contrast, snapshot-based concurrency control protocols require the 

implementation of a complete multi-version infrastructure beforehand as detailed 

in section 3.6. At the same time, LockX's performance for real-life XML 

documents, in terms of response times, is only slightly worse than those for the 
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snapshot-based protocols (SnaX, OptiX) even though LockX has significantly 

more overhead. Our abort rates are generally lower than those for SnaXlOptiX 

which is an important transactional concern for users. 

The remainder of this thesis is structured as follows: Chapter 2 introduces XML, 

XQuery (including update extensions), transactions, lock-based/optimistic 

concurrency control protocols and McXML. Chapter 3 discusses the various 

locking-based concurrency control protocols we have encountered in the 

literature. We also discuss OptiX and SnaX in more detail. In Chapter 4, we 

discuss the goals of LockX, our different lock types and their inter-compatibilities. 

We also look at how transaction management is handled on a high level. Chapter 

5 looks at LockX in detail. We discuss the data structures and algorithms we 

have used and how LockX has been integrated in McXML to control concurrent 

access to XML documents. The performance of LockX is evaluated in Chapter 6 

and finally Chapter 7 concludes the thesis. 
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Chapter 2 Background 

XML (eXtensible Markup Language) is a predefined standard way of 

representing and exchanging information between heterogeneous information 

systems. It is similar to HTML (Hyper Text Markup Language) because both are 

semi-structured markup languages based on markup tags. In HTML, the tags are 

used to describe how the data looks and how it is presented. In XML, the markup 

tags actually describe the data they encapsulate. HTML was designed as a 

platform-independent standard to enable web browsers to display data. XML was 

designed to provide a straightforward way of exchanging data on the web among 

heterogeneous sources. 

Table 1 below illustrates the comparison of the same book information using both 

XML and HTML. The HTML document on the left uses standardized tags to 

generate the look and feel of the information. For example, the "Year:" text will 

appear bold and in its own paragraph. Its surrounding tags only control its 

presentation. In contrast, the "TCP/IP IIlustrated" information in the XML 

document on the right has title tags surrounding it. This indicates that this 

information relates to the title of the book. 
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XML allows us to model information in a natural and intuitive way. The properties 

[1] that make XML such a powerful information modelling tool are as follows: 

• Heterogeneity. As opposed to relational data base records which are 

constrained to have a fixed set of fields, records can have different data 

fields in XML. 

• Extensibility: ln relational databases, data types have to be defined in 

advance and cannot be changed. In contrast, XML allows us to add new 

data types at will allowing us to embrace rather than avoid change. 

• Flexibility: XML does not restrict the size of data elements. Each element 

can be as long or short as necessary. 
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<html> 

<head> 

<title>Book Information</title> 

</head> 

<body> 

<p> <b>Year: <lb> 1994 </p> 

<p> <b>Title: <lb> TCP/IP Illustrated </p> 

<p> <b>Author: <lb> W. Stevens </p> 

<p> <b>Publisher: <lb> Addison

Wesley</p> 

<p> <b>Price: <lb> 65.95 </p> 

</body> 

</html> 

<bib> 

<book year="1994"> 

<title>TCP/IP Iliustrated</title> 

<author> 

<last>Stevens</last> 

<first>W. </first> 

</author> 

<publisher>Addison-Wesley 

</publisher> 

<price>65.95</price> 

</book> 

</bib> 

Tab/e 1: Comparison of XML and HTML documents 

2.1 XML Semantics 

Figure 1 below shows an instance of an XML document called books.xml. The 

document contains both actual data, such as the priee of a book, and metadata 

such as the book tag. This feature of self-description makes XML documents 

easily understandable even for new readers. XML documents are amalgamations 

of different types of nodes such as e/ements, aftributes and content nodes. The 

main building blocks of XML documents are elements. Elements start using the 

15 



<> tags and end using the </> tags. For example, the element named title starts 

with <title> and ends with </title>. Elements in XML can consist of other 

elements, attributes and content nodes. Attributes are defined in the start 

element tag and usually define some identifying attributes of the element. They 

consist of a name/value pair with the value enclosed in quotations. For example, 

the book elements in Figure 1 ail have an attribute called year listed in their 

opening tag. Elements can have other elements nested inside them to an 

arbitrary depth. For example, the author elements have inside them two elements 

named first and fast. Lastly, elements consist of actual content. "TCP/IP 

IIlustrated" is actual text data enclosed inside the title element of the first book 

element. 

<?xml version="l.O" encoding="ISO-8859-1"?> 

<Bib> 
<book year="1994"> 

<title>TCP/IP Illustrated</title> 
<author><last>Stevens</last><first>W.</first></author> 
<publisher>Addison-Wesley</publisher> 
<price>65.95</price> 

</book> 

<book year="1998"> 
<title>Data on the Web</title> 
<author><last>Abiteboul</last><first>Serge</first></author> 
<author><last>Buneman</last><first>Peter</first></author> 
<publisher>Morgan Kaufmann Publishers</publisher> 
<price>39.95</price> 

</book> 

<book year="1999"> 
<title>The Technology and Content for Digital TV</title> 
<editor> 
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<last>Gerbarg</last><first>Darcy</first> 
<affiliation>CITI</affiliation> 

</editor> 
<publisher>Kluwer Academic Publishers</publisher> 
<price>129.95</price> 

</book> 

<book year="2000"> 
<title>Content for Digital TV</title> 
<editor> 

<last>Dirtbarg</last><first>Darcym</first> 
<affiliation>CITY</affiliation> 

</editor> 
<publisher>Kluwer Publishers</publisher> 
<price>l39.95</price> 

</book> 
</Bib> 

Figure 1 Books.xml 

XML documents need to be well-formed to be usefully read and parsed by 

various XML tools such as XML parsers. This means that the XML document 

needs to obey certain syntax rules such as: (1) Each element has to have 

matching start and end tags. (2) If an element E2 is nested within another 

element E1, E2 must be completely enclosed within E1. For example, Books.xml 

would not be considered well-formed if the ending tag of a title element was 

outside a book element but the starting tag was inside it. 

2.2 XML DOM Representation 

Since XML documents are hierarchical in nature, modern applications typically 

use tree representations to manipulate them in memory. Such tree structures can 
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be created using the W3C [6] (World Wide Web Consortium) standard DOM 

(Document Object Model) API. Figure 2 below shows a tree representation of the 

Books.xml document similar to the DOM representation. We have omitted some 

of the book elements in Books.xml to have a concise representation for 

discussion. Element nodes are depicted as light grey rounded rectangles. Text 

nodes are described as dark grey squares. Attributes are represented as white 

normal rectangles. Note that the node numbering is not part of the DOM model 

and has been added for the author's convenience. We urge the reader to 

become familiar to this tree representation as weil as the Books.xml document in 

Figure 1 as they will be the basis for most of the examples in later sections. 

We will now introduce some notation that will be used later. From a concurrency 

perspective, elements, text nodes and attributes are ail treated the same way. 

Therefore, we will use the term nodes to describe themall in a general way. Let 

Tr represent a tree with root r and let P and q be two nodes in this tree. p is the 

parent, parent(q), of q (q is a child of p) if there is a an edge from p to q. p and q 

are siblings if they have a common parent. We denote as path(pn) the sequence 

of nodes P1,P2 ... , pn such that P1 is the root of the tree and each adjacent pair of 

nodes pi,pi+1 are such that Pi is the parent of pi+1. Node p is considered to be an 

ancestor of node q (and q is a descendant of p) if path(p) is a prefix of path(q). 
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For anode p, ancestors(p) represents the set of ail nodes that are ancestors to p. 

Similarly, descendants(p) is the set of ail nodes which are descendants to p. 

Subtree(p) is the subtree of Tr rooted at p. 

Figure 2 Books.xml tree 

19 



2.3 XPath: XML Path Language 

XPath is an expression language used to select portions of an XML document. It 

allows information to be located by navigation using paths or arbitrarily using 

unique node identifiers. Predicates can also be used to narrow down the set of 

results. XPath can best be understood by going through a few examples which 

are presented below. These examples are based on Figure 2 above. For a more 

detailed discussion of XPath, please see work detailed by Berglund et al. [18]. 

2.3.1 XPath Examples 

• /Bib/book 

This expression retrieves ail book elements which are direct descendants 

of the root element Bib. It will return as a result set Subtree(2) and 

Subtree( 15). 

• //author 

This expression means look for author elements which can be located 

anywhere in the tree hierarchy, i.e. at any level. It will return Subtree(6), 

Subtree(19) and Subtree(24). 

• /Bib/book[author/last="Abitebou/'j 
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This expression queries for ail books which are direct descendants of the 

Bib element and have an author's last name of Abiteboul. The text 

enclosed in the square brackets acts as a predicate filtering out any books 

which do not meet this condition. The result set in this case is only 

Subtree(15). 

• /*/book[@year>1994] 

This expression illustrates the use of wildcard operators which are also 

allowed in XPath. It will select ail book elements one level below the root 

level which have a year attribute greater than 1994. Note that the @ 

symbol represents an attribute and that this expression will accept ail root 

elements not just Bib. In our case, the result will be the subtree rooted at 

the book element with year 1998 (Subtree(15)). 

• /Bib/book[firstO] 

XPath also allows you to identify nodes based on position. The above 

expression selects the leftmost book under Bib. Therefore, Subtree(2) will 

be returned to the user. 
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2.4 XQuery: XML Query Language 

XQuery is an XML query language which uses XPath expressions to query XML 

data from heterogeneous sources. XQuery is considered for XML what SQL 

(Structured Query Language) is for relational databases. XQuery is written as 

FLWOR (pronounced "flower") expressions. These FLWOR (FOR, LET, WHERE, 

OROER SV, RETURN) statements are the building blocks of XQuery. XQuery is 

also best explained through an example. 

2.4.1 XQuery Example 

FOR $b in document("books.xml")/Sib//book 

LET $t := $b/title 

WHERE $b/price < 139.95 

OROER SV $b/price 

RETURN $t 

• FOR: The FOR clause selects ail book elements which are located at any 

level under the Bib element, one by one in a loop, into a variable called 

$b. When this assignment has been made successfully, we say that $b 

has been bound and refer to its target nodes as its current binding. 
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• LET: The LET clause selects ail title elements which are direct 

descendants of the binding of $b and binds them to $t. This assignment is 

made in the form of a set. 

• WHERE: The WHERE clause selects only those book elements which 

have a priee less than 139.95. Therefore, there is a filtering-out of ail those 

nodes in $b which don't match this predicate condition. 

• OROER BV: The OROER BY clause sorts the book elements so that their 

priee elements are in ascending order. 

• RETURN: The RETURN clause returns the title elements of the sorted 

books. 

The result set is shown in Figure 3 below. Note that these title elements are fram 

book elements which satisfy the predicate (priee < 139.95) and have been sorted 

in ascending order according to the priee. 

<title>Data on the Web</title> 

<title>TCP/IP Illustrated</title> 

<title>The Technology and Content for Digital 

TV</title> 

Figure 3 Result of XQuery Operation 
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2.5 XQuery Extensions for Updates 

Presently, there is no formalized standard for updating XML data. In our 

implementation, we follow the update extensions to XQuery FLWOR expressions 

proposed in the influential paper written by Tatarinov et al. [3]. FLWOR 

expressions are replaced with FLWU expressions. The OROER BY and 

RETURN clauses are both removed because update operations do not return 

any XML data. Instead, we introduce an UPDATE clause which accounts for the 

U in FLWU. The UPDATE clause allows for more specialized nested sub

operations once the target set of nodes have been identified by the FLW clauses. 

We will now illustrate the possible update types. Let p be a target node 

determined by the FLW expression. 

• delete (p): This operation deletes Subtree(p). 

• replace(p, Sub tree (q)): p and q must be of the sa me type. If they are 

elements, Subtree(p) is deleted and replaced with the new Subtree(q). 

Similarly if p and q are attributes, the operation simply replaces the 

name/value of the attribute with q's name/value pair. If they are text 

nodes, the value of the text is changed to q's value. 

• rename(p, newname): This operation only works on element and attribute 

nodes. It changes the name of the elemenUattribute p to newname. 
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• Insert-into(p, Subtree(q)): This operation inserts Subtree(q) as a child of p. 

Our implementation inserts Subtree(q) as the rightmost child of p. 

• Insert-after(p, Subtree(q)): This operation inserts Subtree(q) as a new right 

sibling of p. p must be an element and q must be element or text. It is 

important to note that q does not have to be directly after p. 

• Insert-before(p, Subtree(q)): This operation inserts Subtree(q) as a new 

left sibling of p. It is important to note that q does not have to be directly 

before p. 

2.5.1 Update Operation Examples 

1. FOR $b in document("books.xml")/Bib//book, $p in $b/publisher 

LET $t := $b/title 

WHERE $b/@year = 1998 

UPDATE $b { 

} 

INSERT <award>Pulitzer Prize</award> 

RENAME $t to name 

REPLACE $p with <editor>Rapunzel Editors</editor> 
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The statement above is an example of an update operation using the FLWU 

structure. It performs Insert-Into, Replace and Rename update operations within 

the subtree of the book element with the year aUribute of 1998 as shawn in 

Figure 4 below. The nodes with white numbering boxes have either been 

modified or inserted into the book subtree. Subtree(award) has been inserted as 

the child of node 15. Node 17 has been renamed fram title ta name. Finally, 

Subtree(editor) has replaced the publisher subtree previously at that location. 

Figure 4 Update Operation 1 's changes 
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2. FOR $b in document("books.xml")/Bib//book, $p in $b/publisher 

LET $t := $b/title 

WHERE $b/@year = 1994 

UPDATE $b { 

} 

INSERT <publisher>O'Reilly Publishers</publisher> AFTER $p 

INSERT <publisher>Morgan Publishers</publisher> BEFORE $p 

DELETE $t 

This update operation performs /nserl-after, /nserl-before and de/ete operations 

on some child elements of the book element with year 1994. Figure 5 shows the 

updated book subtree with new nodes having white numbering boxes. Two new 

publisher subtrees, Subtree(15) and Subtree(17), have been added on either 

side of Subtree(11). In addition, the title subtree visible in Figure 2 has been 

deleted. 
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Figure 5 Update Operation 2's changes 

2.6 Transactions 

1 n the context of databases, transactions are viewed as a sequence of read/write 

operations which satisfy a request and ensure database integrity. They are 

delimited by begin-transaction and end-transaction statements. The end of a 

transaction has either a commit or abort operation. The commit operation 

indicates that the transaction has executed successfully and ail changes are 

flushed to disk. On the other hand, an abort operation indicates something has 

go ne wrong in the computer program and ail changes are rolled back as if the 

transaction had never occurred. 
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2.6.1 Transaction Examples 

Suppose that a person John with an account A works in a company Enron with 

account B which is used to pay company employees monthly. This is a typical 

use case which is ideally suited to transactions. We see below in Figure 6 what 

such a transaction would look like. 

begin transaction 

Read account balance of account B 

Read account balance of account A 

Update 8 to 8-4000 in the database 

Update A to A+4000 in the database 

Commit 

Figure 6 Account Transfer Transaction 

ln this situation, we want ail the operations to be executed successfully or none 

of them. A scenario should never occur where 4000 dollars are removed from 

Enron's account but are not deposited in John's account. 

With respect to our implementation, a transaction would be a sequence of 

XQuery read/write operations as we have defined earlier. For example, a typical 

transaction consisting of four operations could look like this: 

• FOR $b in document("Bib.xml")/bib/book 

WHERE $b/title="The Techno" 
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RETURN $b 

• FOR $b in document("Bib.xml")//book 

WHERE $b/price < 100 

RETURN $b/publisher 

• FOR $b in document("Bib.xml")//book 

LET $a := $b/author 

WHERE $b/price < 100 AND $b/@year=1994 

UPDATE $b { RENAME $a TO writer} 

• FOR $b in document("Bib.xml")//book[@year>2004] 

LET $t := $b/title 

UPDATE $b { INSERT <size>100 pages </size> AFTER $t} 

• commit 

2.6.2 Transaction Properties 

ln order to maintain data integrity, transactions are required to have the following 

ACID properties where each of these letters stands for the first letter of a 

property. 

• Atomicity. Either ail the operations of a transaction should succeed or the 

transaction has no update effect on the database. 
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• Consistency. Assuming that the database had a consistent state before 

the transaction started, the transaction should leave the data base in a 

consistent state when it ends. For example, the accounts A and 8 fram the 

example should have positive balances when the transaction ends. 

However A and 8 may be allowed to have an inconsistent state, such as a 

negative value, during the execution of the transaction. 

• Isolation: Concurrently running transactions should get the impression that 

they are operating alone on the database. 

• Durability. If a transaction manages to commit, its changes should be 

made persistent. Therefore, a commit is a guarantee that the transaction's 

changes will not be lost in any failure case. Typically, ail changes of a 

transaction are flushed to disk for this purpose. 

2.6.3 Serializability 

We continue our example fram section 2.6.1 regarding John's bank account A. 

Suppose that A is a joint account which can be accessed by John's wife Sheila. 

Now assume that, by some coincidence, Enron and Sheila are performing their 

transactions on A concurrently. Enron is depositing 4000 dollars in transaction Ti 

while Sheila is trying to withdraw 100 dollars in transaction T2. Also assume A 
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has an account balance of 1000 dollars before these transactions start. Table 2 

shows the interleaving of the operations of these transactions in a specifie order. 

Read(A) 

Read(A) 

A = A + 4000 

A = A -100 

Commit 

Commit 

Table 2 Lost Updates 

Both Sheila and Enron read A's value of 1000. Enron makes the commit of its 

new balance of 5000 to disk. Sheila then performs her update changing the 

balance to 900 and then commits. However, this new balance in the data base 

does not reflect that Enron has successfully deposited 4000 dollars into the 

account. Sheila has effectively overwritten Enron's update. This problem is 

commonly known in database literature as the Lost Update Problem [7]. 

To prevent problems such as above, concurrency control protocols are built 

which guarantee serializability, i.e. the execution of transactions is equivalent to 
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some seriai execution. This is done by detecting conflicts between operations 

from different transactions if they access the sa me data item and at least one is a 

write operation. For these conflicting operations, the execution order is important. 

For example, if transactions T1 and T2 both write the same data item x their 

execution order determines what the final value of x is. Now assume that T1 

reads data item x and T2 writes it. T1 will read a different value of x depending on 

whether it reads x before or after T 2 writes it. However, two read operations on x 

can be executed in any order or concurrently without affecting each other. We 

then only accept interleaving concurrent executions of transactions which have 

these conflicting operations in one order. 

An execution E is serializable if there is a seriai execution E1 (one where entire 

transactions are executed serially one after the other without any interleaving) 

such that for any two conflicting operations 01 and 02 where 01 executes before 

02 in E, 01 also executes before 02 in E1. This approach of detecting conflicts 

would solve the problem above because T2 would detect a conflict between A=A-

100 and A=A+4000 (they are both write operations on the same data item). T2 

would therefore be blocked until T1 commits. In this scenario, the execution is 

equivalent to a seriai execution where T1 executes before T2 and both 

transactions have their changes recorded in the database. 
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2.7 Concurrency Control 

This section introduces the basic concepts of lock-based protocols and optimistic 

protocols used for concurrency control. For a more detailed discussion of existing 

protocols, please see Chapter 3. 

2.7.1 Lock-based Protocols 

The primary means of achieving serializability is locking protocols. Before any 

operation on a data item, a suitable lock has to be obtained on it. Since there are 

two kinds of operations, reads and updates, we assign them S (shared) and X 

(exclusive) locks respectively. Based on the reasoning of section 2.6.3, we derive 

the compatibility matrix shown below in Table 3. The + represents compatibility 

and - represents incompatibility. Assume that the row is the lock already held 

by a transaction and the column is a lock wanted on the same data item by a 

different transaction. If multiple transactions want to do a read on a data item, it is 

permissible and they will ail be granted S locks. If, for example, an S lock has 

been granted to a transaction T1 on a data item, transaction T 2 wanting to acquire 

an X lock will have ta wait until this S lock is released. There are no conflicts 

between locks held by the same transaction. 
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s x 

s + -

x - -

Table 3 Compatibility Matrix for read/write locks 

ln order to guarantee serializability, transactions use a two-phase locking (2PL) 

mechanism. In 2PL, a transaction has a growing phase where it acquires locks 

and a shrinking phase where it releases locks. After releasing a lock, a 

transaction is not allowed to acquire any more locks. Databases normally 

implement strict two-phase locking where ail locks are released at the end of 

transactions. This is necessary to avoid cascading aborts. For example, assume 

T1 releases a lock on x before committing and T2 now acquires this lock and 

reads x. If T 1 aborts, T 2 will also have to abort because it read a wrong value of x. 

Any transactions which read T2'S changes will also abort (and so on) causing a 

long chain of rollbacks. 
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2.7.1.1 Oeadlocks 

Since our concurrency control protocol (LockX) is based on locking, we need to 

introduce the concept of deadlocks. A deadlock refers to a specific condition 

when two or more transactions are each waiting for another to release a lock. For 

example, suppose that transaction T1 acquires an X lock on object A and 

transaction T2 acquires an X lock on object B. Now suppose that T1 wants to 

acquire an X lock on object Band T 2 wants to acquire an X lock on object A. 

They are both deadlocked on each other with no further progress. Such 

deadlocks are usually detected by building a wait-for graph and detecting cycles 

within it. The wait-for graph for the above situation is shown in Figure 7 below. 

Each arrow represents a wait-for condition i.e. T1 is waiting for T2 and T2 is 

waiting for T 1. One possible solution is to abort one of these transactions leading 

to the breaking of this cycle and hence the deadlock. 

Figure 7 Wait-for Graph 

2.7.2 Optimistic Concurrency Control 

Optimistic Concurrency Control (OCC) is a concurrency control technique which 

doesn't use locking. It is based on the premise that transactions mostly don't 
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conflict with each other. This allows the protocol to be as permissive as possible 

in allowing transactions to execute. 

acc is composed of three phases: 

1. WORKING: On the first operation on a data item, the transaction retrieves 

a commiUed copy from the database and caches it. This is called the 

working copyand henceforth it will be used for ail operations on this data 

item. Read and Write sets are maintained for the data items read and 

written. 

2. VALIDATION: This phase is used to check whether the transaction 

conflicts with other transactions. In backwards validation, the transaction 

checks for conflict with ail concurrently executing transactions that have 

already commiUed. Two transactions Ti and Tj are considered concurrent if 

Ti started its working phase before Tj committed or vice-versa. In forward 

validation, the transaction checks for conflicts with active transactions that 

have not entered the validation phase. If there is a conflict, the transaction 

aborts. Otherwise, it enters the UPDATE phase. Transactions are not 

allowed to be in the VALIDATION phase concurrently. The validation arder 

is used to determine the serialization order of transactions. 
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3. UPDATE: On a successful validation, (Le., no conflicts) the transaction's 

changes are flushed to disk and committed. 

2.7.3 Concurrency on XML 

Concurrency control on XML data is non-trivial for a variety of reasons. Firstly, 

XML consists of both metadata (element and attribute names) and actual data 

(text, attribute values). Furthermore, this information can be nested in a complex 

fashion expressed by XQuery and XPath using regular expressions. Nodes in an 

XML DOM tree are directly dependent on ancestors. Deleting an ancestor will 

delete ail the descendent nodes in its subtree. Therefore, whole paths of nodes 

have to be preserved because of dependencies between them. It is also not 

always c1ear what the target entities of a query are and therefore what should be 

safeguarded from other transactions. Finally, many different kinds of read/update 

operations exist with different conflict behaviours. We will discuss concurrency 

control on XML in more detail in the next chapter. 

2.8 McXML: A Native XML Database 

McXML is a native XML DB MS (Database Management System) developed by 

the DISL (Distributed Information Systems Lab) group at the School of Computer 

Science, McGill University. The initial system was developed by Jiafeng Wu [2] 
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and supported a subset of the XQuery language and ail XQuery update 

statements, including nested updates, described by Tatarinov et al. [3]. 

2.8.1 McXML Architecture 

Figure 8 below shows a high-Ievel architecture of McXML's core components. 

We will give a step by step walkthrough of the system execution for a user 

update query. 

1. Clients connect via RMI ta a Middleware server which forwards the 

requests ta the Query Execution Engine. 

2. The Query Execution Engine requests the Storage Manager for a DOM 

model for the XML document in question. 

3. The Storage Manager retrieves the physical model from disk and converts 

it ta the DOM model. It returns the DOM model ta the Query Execution 

Engine. 

4. The Query Execution Engine computes the query on DOM tree making 

any necessary changes on the tree. 

5. The Query Execution Engine returns results to the RMI Middleware. 

6. The RMI Middleware forwards results ta the client 

39 



7. The Storage Manager writes changes back to disk whenever a transaction 

is committed. 

Client 

2.8.2 Storage Manager 

1. Request 

McXml Server 

Query 
Execution 

Engine 

4. DOM Model 

2. Fetch OM Model 

~.l.-..._-L....., 

Storage 
Manager 

6. Wri e changes 

3. Retri ve physical model 

Figure 8 McXML Architecture 

Disk 

The Storage Manager component was developed by Raj Suchak [4] and Jean-

Sebastien Légaré. Its job is to store the XML document using a special physical 

model similar to Natix [5]. It is based on the concept of splitting XML documents 

into subtrees which are stored in records on fixed-width pages. These pages are 

the basic unit for transfer between disk and main-memory. The Storage Manager 

is responsible for converting this page-based model to a logical DOM model for 
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query execution purposes. However, this logical DOM model is enhanced sa as 

to maintain information about the record/page subdivisions in the tree. This is 

necessary for disk write-back purposes. Figure 9 shows how the McXml logical 

DOM model actually looks like in memory. The boxes represent different pages 

on disk. As the subtrees on a page grow, the fixed-size page can no longer 

support the whole subtree. Therefore subtrees are split at suitable locations and 

placed on multiple pages. Links (shown as dotted lines) are still maintained 

among these pages so queries can seamlessly traverse the whole tree. 

Figure 9 McXml DOM Model 
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If a part of an XML document changes, the records affected by the change are 

updated and the pages containing those records are written to disk again. 

Loading is done lazily, i.e., a subtree is only extracted, by loading its 

corresponding records, when a transaction needs to traverse that part of the tree. 

During transaction execution, ail the changes are made to the DOM tree and 

written back to disk at commit time. 

2.8.3 Query Execution Engine 

The Query Execution Engine uses the implementation of the XQuery language 

(including update extensions) to execute queries on the DOM tree received fram 

the Storage Manager. It is oblivious to the underlying physical model and just 

uses DOM API methods to perform its function. Consider the query below as an 

example for the following discussion on how queries are parsed and executed: 

• FOR $bi in document("Bib.xml")/bib, $b in $bilbook 

WHERE $b/publisher="Addison-Wesley" 

RETURN $b 

For each variable in a query, the Query Execution Engine creates a variable 

object in memory with three components: parent, value and condition. The 

parent component stores the variable's parent. The value component stores the 

XPath associated with the variable. Finally, the condition components stores any 
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assigned predicates. For example, for the above query, $b would be stored with 

parent $bi, path /book and condition /publisher="Addison-Wesley". Queries are 

executed in multiple stages. For $b above, (1) the parent variable $bi will be 

evaluated and its bindings will be determined (2) the path /book will be evaluated 

relative to $bfs bindings. The matching nodes (book elements which are direct 

descendants of bib) are bound to $b (3) the predicate condition will be applied on 

$b's bindings effectively filtering out those book nodes which don't have Addison

Wesley as publisher. (4)The bindings of $b are returned to the user. A similar 

execution logic is applied for update queries except changes are made to the 

DOM tree once target nodes, i.e., those assigned ta relevant variables, have 

been identified. 
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Chapter 3 Related Work 

Introduction 

ln this chapter, we look at various concurrency control protocols for XML 

documents presented in the literature. 

Locking-based Concurrency Control 

3.1 Path Locking Schemes 

Dekeyser et al. [8] propose two locking schemes, Path Lock Satisfiability (SAT) 

and Path Lock Propagation (PROP), based on path locks. PROP acquires a 

multitude of read locks but has a trivial conflict checking mechanism. SAT sets 

very few locks but requires more work when checking for conflicts. 

Dekeyser et al. [8] use a data model of XML calied XP-Tree which is similar to 

the DOM tree introduced in Chapter 2. In addition they define three operations on 

which the locking schemes operate. Two of them are update operations and are 

similar to our /nserl-into and De/ete operations. The read operation does not 

support predicates and focuses only on path searches. Q(n, p) is defined as a 

query starting from context node n with path expression p. 
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3.1.1 Path Lock Propagation (PROP) 

Shared locks are defined as tuples (T, n, p) which identify the owning transaction 

T of the lock, the locked node n, and an XPath expression p relative to that node. 

Informally, the shared lock therefore means that T has issued a query p starting 

from n. This initial lock is then used to derive other locks by a process called 

read-/ock propagation. The process of read-Iock propagation causes the shared 

locks on anode to be propagated to the nodes just below this node in the DOM 

tree which match p. 

Example: 

Consider the DOM tree shown in Figure 2. Suppose that a transaction T issues a 

search for ail nodes that satisfy the path expression Bib/book/author/first. The 

first shared lock will be (T, 1, book/a uthor/firs t). This means that T has acquired a 

shared lock on the node with identifier 1 and the path to search for is now 

book/a uthor/firs t. Now, PROP derives two more shared locks on nodes 2 and 

node 15. The tuples are of the form (T, 2, author/first) and (T, 15, author/first) 

respectively. The next three shared locks derived are (T, 6, first), (T, 19, first) and 

(T, 24, first) on nodes 6, 19 and 24 respectively. Finally we assign shared lacks 

to nodes 7, 20 and 25 with a path expression * meaning the node itself is being 

read. 
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Exclusive locks have slightly different semantics and are expressed as tuples (T, 

n, f). T is the owner of the exclusive lock, n is the node being locked and f is 

either the label of the descendent element on which the modification takes place 

or * if the node n itself is being modified. The insert-inta (p, Subtree(q)) operation 

requires an exclusive lock (T, p, a) where a is the label of the node q and p is 

parent of q. The deJete(p) operation requires exclusive locks (T, p, *) and (T, q, 

a) where q is the parent of p and a is the label of p (It is assumed that read-Jock 

propagation is used to find p before the exclusive locks are applied) . 

A shared lock such as (T1, n, a) or (T1, n, *) conflicts with an exclusive lock (T2, n, 

a) and (T2, n, *) if T1*- T2 and a is a single element. For example in Figure 2, if 

transaction T1 is deleting node 6 (author), there will be an exclusive lock (T1, 6, *) 

on 6. Another transaction T 2 wanting to read node 7 would have to acquire a 

conflicting shared lock (T2, 6, first) on 6 and will be blocked. 

The complexity of PROP is as follows. Consider the shared lock (T1, n, a1) and 

the exclusive lock (T2, n, a2). Only the equality of a1 and a2 need ta be checked. 

Thus, the time complexity of checking for conflicts is 0(1). 
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3.1.2 Path Lock Satisfiability (SAn 

Dekeyser et al. [8] define an alternative locking scheme which requires fewer 

locks but is more complex with reference to testing for conflicts. Shared and 

exclusive locks in this scheme are defined exactly the same as in the previous 

scheme. In the case of read locks, it is sufficient to obtain the initial shared lock 

for a query operation. Thus no lock propagation is involved. The update 

operations require the same exclusive locks as defined earlier. 

A shared lock (T1, n, p) conflicts with an exclusive lock (T2, m, f) if Trt: T2, n is an 

ancestor of m and the path of nodes from n to m followed by f can be expressed 

by the path expression p. For example in Figure 2, a shared lock (T1, 2, 

author/first) is not compatible with an exclusive lock (T2, 6, first) because the path 

of nodes from 2 to 6 followed by first matches exactly the path expression 

author/first. 

SA Ts space complexity is not an issue because it requires less locks than 

PROP. However, the conflict checking mechanism is more complex because we 

need to check the satisfiability of a path bya more general XPath expression. 
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3.1.3 Suitability Discussion 

Dekeyser et al. [8] do not provide any implementation or evaluation of PROP and 

SAT path locking schemes. Furthermore, the terminology introduced is confusing 

and the protocols lack adequate detail on a theoretical javel. We also note that 

any adequate locking protocol for McXML would have to handle predicates in the 

path locking mechanism. For ail the above reasons, we feel that PROP and 8AT 

are unsuitable for our implementation. 

3.2 Basic Hierarchical Locking 

3.2.1 Implementation 

Most concurrency control protocols for XML data use a form of locking built on 

top of hierarchical locking schemes used in relational databases [9]. In 

Hierarchical Locking, there is a shared (8) lock and an exclusive (X) lock similar 

to 2.7.1. It also introduces two additionallocks which are based on the concept of 

intention locking. Intention locks indicate the intent to perform an operation 

somewhere below the node being locked. There are two types of intention locks 

in Hierarchical Locking: IS and lX. If a query wants to return Subtree(N), it would 

need to place IS locks on ancestors(N) and an S lock on N itself. Similarly, for a 

node N that needs to be updated, IX locks need to be placed on ancestors(N) as 

weil as an X lock on N. With respect to PROP from section 3.1, ail ancestor 
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read/write locks are replaced by IS/IX locks depending on the operation. 

Hierarchical Locking detects conflicts differently fram both PROP and SAT. 

Whereas PROP and SAT use path checks, hierarchical locking compares only 

the lock types of transactions using a conflict matrix. 

S X IS IX 

S + - + -

X - - - -

IS + - + + 

IX - - + + 

Table 4: Compatibility Matrix for Hierarchical Locking 

Table 4 above shows the compatibility matrix for Hierarchical Locking. The + sign 

indicates compatibility and the - sign indicates incompatibility. The raw indicates 

the lock held by a transaction on the object and the column indicates the lock 

wanted by another transaction on the same object. We can see that the X lock 

conflicts with ail lock types including itself. This makes intuitive sense fram the 

perspective of the XML DOM tree in Figure 2. If transaction T1 is updating the 
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author subtree, Subtree(6), it would place IX locks on the book and bib nodes as 

weil as an X lock on the author node. Another transaction should not be able to 

simultaneously read or update any node in Subtree(author) and therefore ail S, 

X, IX and IS lock requests on the author node from other transactions are 

blocked until T1 ends by committing or aborting. S conflicts with only X and IX 

because multiple readers are allowed anywhere in the concerned subtree. 

Intention locks, such as IS and IX, are compatible with each other because the 

assumption is that the actual nodes being read or written further down in the tree 

will be distinct. If this is not the case and two transactions want to do conflicting 

operations on the same node, one of them will get blocked at that node. IX 

conflicts with S and X because there will be read-write and write-write conflicts on 

the same set of nodes. 

Intention locks allow transactions to protect the trees enclosing the nodes they 

are currently operating on. For example if Transaction T1 is updating the author 

subtree, Subtree(6), in Figure 2, its IX lock on both bib and book protects T1 fram 

the deletion/replacement of Subtree(book) and Subtree(bib). They also allow us 

to capture conflicts earlier up the hierarchy and more efficiently. For example if a 

transaction T2 was running concurrently to T1 and wanted to read the book 

subtree, Subtree(2) , the conflict would be detected at the book node itself 
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because T 2'S request for an S lock would conflict with T 1's IX lock on book. 

Without intention locking, T 2 would have to search the entire book subtree 

because a simultaneous update occurring anywhere in there would create a 

conflict. 

3.2.2 Suitability Discussion 

Although this locking protocol is simple and applies weil to our problem, it also 

creates high blocking rates and a rtifi ci a 1 conflicts as discussed in the numerous 

examples below based on Figure 2. For the following discussion, we will break 

the generic update operation down into more specialized operations based on 

the update extension to XQuery described in Chapter 2. We will be using 

rename(p, newname), insert-into(p, Subtree(q)) and standard XPath expressions 

to illustrate queries. We will assume that Transaction T1 and T2 are concurrently 

running, T1 has acquired ail the locks it needs but T2 is in the process of 

acquiring them. 

1. Assume that T 1 is renaming the book node with 1 D 2. T 2 wants to read ail 

title nodes using the path search //title. When T 2 wants to acquire a read 

lock (15/5) on the book node with ID 2, it will be blocked by T1 because T1 

has an X lock on this node. However the result of the title search will be 
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the same whether the book node has been renamed before it or not. 

Therefore this blocking is unnecessary and an ideal locking protocol would 

allow these two operations concurrently. 

2. Assume T1 is inserting a new publisher element to the book with ID 2. T 2 

wants to insert a pages element to the same book but it will be blocked by 

the X lock on the book node by T 1. Since the seriai order of the insertions 

does not affect the end result (we don't care about the order of insertion), 

this is an artificial conflict created by this locking protocol. 

3. Assume T1 is now inserting Subtree(editor) into the book with ID 15. 

Therefore it has acquired an X lock on this book node. T 2 wants to do a 

search for the last names of ail authors using the path search 

//author//last. These two transactions run on different parts of the tree so 

they should not conflict. However, while T 2 is doing a traversai of the tree 

to find author nodes, it would try to place a read lock on T1'S book node. 

T2 will be blocked by the X lock on the book node held by T1. However, 

this blocking is unnecessary because the end result will be the same 

whether T 2 is blocked at this point or not. 

52 



3.3 Flexible and Fine-Granular Concurrency Control 

3.3.1 Direct Node Access 

Haustein et al [10] extends the hierarchical locking protocol described above and 

introduces seven different locks (NR, LR, SR, IX, ex, X, U) of varying granularity 

described below. 

• NR: An NR (Node Read) lock mode is requested for reading the context 

(currently accessed) node. 

• LR: A LR (Level Read) lock mode locks the context node together with its 

direct-child nodes for shared access. This lock would save locks for XPath 

expressions such as Bib/book on the DOM tree in Figure 2. We would just 

need to acquire one lock for this expression rather than having to lock Bib 

and then ail its direct book descendants. 

• SR: A SR (Subtree Read) lock is requested for the context node c as the 

root of subtree s to perform read operations on ail nodes belonging to s. 

This is the same as the S lock introduced in the previous section. 

• IX: An intention exclusive lock in this case is slightly different fram our 

previous definition. In this pratocol, it indicates the intent to perform write 

operations somewhere in the subtree but not on a direct child node of the 

node being locked. 
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• CX: A Child Exclusive lock on context node c indicates the existence of an 

X lock on some direct child-node and prohibits inconsistent locking states 

by preventing LR and SR lock modes. This lock is necessary because an 

IX lock on the parent of the node being updated would allow a level read 

(LR) lock even though this is an incompatible operation. 

• X: To modify the context node c (updating its contents or deleting c and 

its entire subtree) an X lock mode is needed. It implies a ex lock for its 

parent node and IX locks on ail other ancestors. 

• U: A U lock mode (update option) allows a read operation on context 

node c with the option to upgrade the mode for subsequent write access. 

It can be downgraded to a read lock if inspection of c shows that no 

update action is needed. If it is required, the lock mode will be upgraded to 

an X lock after ail existing read locks on c are released. 

NR IX LR SR ex U X 

NR + + + + + + -

IX + + + - + + -

LR + + + + - + -

SR + - + + - + -
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CX + + - - + + -

u + + + + + + -

x - - - - - - -

Table 5: Compatibility Matrix 

Table 5 above shows the compatibility matrix of this locking protoco!. The NR 

lock mode is compatible with ail locks except X. U doesn't create a conflict 

because it is performing a read operation on the context node. However, if it is 

upgraded to X, it will then create a conflict with NR. The IX lock is incompatible 

with SR because the subtree under question is being modified creating the 

possibility of a non-serializable schedule. A LR lock on anode N protects N and 

its direct children from concurrent write operations. Therefore CX and X are 

considered incompatible to LR. The SR lock mode disallows any concurrent 

write operations anywhere in the subtree of the node being locked. Therefore IX, 

ex and X are ail incompatible to SR. The ex lock conflicts with LR, SR and X. 

The first two will create a read-write conflict with ex which can lead to a non

serializable schedule. X can create a write-write conflict with ex if both 

transactions are trying to update the same nodes. 
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3.3.2 Navigational Access 

The DOM APis we work with when manipulating XML documents have methods 

which enable the traversaI/modification of trees by specifying access relative to 

context nodes. Table 6 below shows examples of DOM operations which allow 

us to observe and modify the structure of XML documents. For example, 

getNextSibling() and getFirstChild() return the next sibling and first child of a 

node respectively. appendChild() allows us to add a child to the end of the parent 

node's children list. To ensure that sequences of such method calls always return 

the same result nodes, the concept of virtual navigation edges is introduced as 

shown in Figure 10 below. The edges of element nodes are locked in addition to 

their confining nodes. While navigating the XML document a transaction 

requests a lock for each edge as weil as nodes visited. 

Three locks ER, EU, EX are introduced to handle this edge locking by Haustein 

and Harder [10]: 

• An ER (Edge Read) lock mode is needed for an edge traversai for reading 

purposes such as getting the previous sibling of the context node c. 

• An EX (Edge Exclusive) lock mode enables an edge to be modified when 

nodes are deleted or inserted for example. For any edge affected by a 
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modification operation, an EX lock has to be acquired before the edge is 

redirected to its new target node. 

• An EU (Edge Update) lock is similar to the U lock discussed earlier. 

Structure insertBefore 

Mutators replaceChild 

removeChild 

appendChild 

Structure firstChild 

Observers lastChild 

previousSibling 

nextSibling 

getNodeByld 

getElementByTagName 

Table 6 DOM Operations 
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Figure 10: Virtual Navigation Edges 

3.3.3 Suitability Discussion 

The locking protocol introduced in this section has 10 locks as compared to the 

four locks maintained in Hierarchical Locking. We feel that this locking protocol is 

unsuitable for implementation in the McXML database system. Too many logical 

locks will be difficult ta maintain and will add unnecessary complexity to the 

locking algorithms. Many of the locks are not needed for our purposes. Since we 

just read a specifie node ta match a path search or a whole subtree of nodes for 

returning to the user, LR is not needed. We do not need to downgrade locks. If a 

node does not match our path and predicate criteria, we sim ply remove its lock. 

Upgrades can be done directly on read/write locks such as S and IX, ta save on 

the number of locks. Edge locking cannat be implemented in its entirety in our 

system because nodes do not hold pointers ta their siblings; ail traversais are 

done through the parent node. Furthermore, we feel that edge locking is tao low 

a granularity level and can be done without. 
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3.4 2PL Protocols 

Helmer et al. [11] propose four different core protocols (Doc2PL, Node2PL, 

N02PL, 002PL) for synchronizing access to and modification of XML 

documents. Ali four protocols require that documents are traversed top down 

from the root node. As in Section 3.3, it is assumed that each node in the DOM 

tree has pointers to its first child, last child, next sibling and previous sibling. 

These 2PL protocols are also based on the standard DOM operations for 

structure traversai and modification outlined in Table 6 in Section 3.3. 

Helmer et al. [11] propose a shared lock T that has to be acquired for traversing 

the document structure and an exclusive lock M for modifying document 

structure. The conflict matrix, analogous to the one for S and X in Table 3, is 

shown in Table 7 below. 

T M 

T + -

M - -

Table 7: Conflict Matrix 

59 



3.4.1 Doc2PL 

This protocol is the simplest and locks at the document level by placing a T or M 

lock at the root node depending on whether the operation is a structure traversai 

or modification respectively. This is acceptable if the document has only multiple 

readers. Any concurrent read-write or write-write operation is disallowed even if 

the operations are executing in different parts of the DOM tree. Surprisingly, the 

authors point out that this is a widely used locking protocol for XML base 

management systems such as in Tamino described by Chaudhri et al. [1]. 

3.4.2 Node2PL 

The Node2PL protocol acquires locks for ancestor nodes. For example if in 

Figure 11 we want to traverse to the last child C3 of P, we need a T lock on P 

because it is C3's parent. Similarly, if we want to insert a new child CO before C1, 

we need to acquire an M lock for P. This example shows an important deficiency 

in Node2PL. Both these operations should be allowed to execute concurrently 

but are blocked unnecessarily. 
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Figure 11: Different Lock Locations 

3.4.3 N02PL 

This protocol acquires locks for ail nodes whose pointers are conceptually 

traversed or modified. For example, if we want to add a new child C2.5 after C2 

in Figure 11 above, it will require T locks on P and C1 because P's first child 

pointer and C1's right sibling pointer have to be traversed to get to C2. It will also 

require M locks on C2 and C3 because their right and left sibling pointers need to 

be modified respectively. However, we will not need a lock on C2.5 since no 

transaction will be able to reach this node. Both C2 and C3 are M-Iocked 

disallowing any traversais through them. Another concurrent transaction won't 

be allowed to set a T lock to read C3's children. This is an unnecessary conflict 

because the transactions are operating in the different parts of the tree and don't 

affect each other. 
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3.4.4 002PL 

Whereas in the previous two protocols we locked nodes, 002PL locks pointers 

as shown in Figure 11. As there are four pointers for every node (first child (A), 

lastchild (Z), left sibling (L), right sibling(R)) we need four traversallocks and four 

modification locks. The locks are TA, TZ, TL, TR, MA, MZ, ML, MR respectively. 

3.4.5 Suitability Discussion 

Doc2PL has the fewest number of locks: at most one per transaction per 

document. In Node2PL and N02PL, we have at most one lock per transaction 

per node. However Node2PL never acquires any locks at the leaf level of 

documents whereas N02PL does. 002PL acquires at most four locks per 

transaction per node which is four times as many locks as N02PL. 

For our purposes, Doc2PL is not attractive because it does not allow concurrent 

read/write and write/write operations in different parts of the tree. We have 

already shown the deficiencies with Node2PL and N02PL. 002PL is similar 

conceptually to edge locking we saw in Section 3.3. Firstly in McXML, nodes do 

not hold pointers to their next sibling and previous sibling. They also only have a 

first child pointer so the last child can only be accessed by iterating through the 

whole children list of the parent node. We argue also that four times as many 
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locks as there are nodes in the DOM tree can lead to bad performance in large 

trees. 

3.5 DGLOCK Protocol 

3.5.1 DataGuides 

DataGuides [12] are dynamically generated and maintained structural summaries 

of semi structured databases. Goldman and Widom [12] specify that a 

DataGuide must describe every unique path of the source (i.e., in our case the 

XML DOM tree) exactly once regardless of the number of times it appears in the 

source. For accuracy, the DataGuide encodes only paths that appear in the 

source. 
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Figure 12 DataGuide for Books.xml 

Figure 12 above illustrates a DataGuide for the Books.xml document in Figure 1. 

It matches both parts of the previous definition. For example, the path 

Bib/book/author/first appears only once in the DataGuide even though it appears 

multiple times in the source. In addition, every path in Figure 12 is a valid path 

that appears at least once in the source. DataGuides can be useful fram a 

database user perspective. We can check whether a path of length n exists in the 

source by examining at most n levels of the DataGuide. For example, to check 

whether the path Bib/book/publisher exists in the source, we just need to check 

the first three levels of the DataGuide. 
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3.5.2 DGLOCK Protocol Description 

Whereas in the previous protocols we have looked at implementing locking at the 

XML DOM tree level, DGLOCK [22] is a locking protocol which provides 

concurrency control by locking the DataGuide instead. Locking the DataGuide is 

attractive since the DataGuide is a much smaller data structure. At this point, it is 

important to introduce some terminology on constraints of requests. Structural 

constraints are constraints on the structure of documents whereas content 

constraints are constraints on the content of elements. For example, consider the 

path expression /Bib/book[price >1000]. Bib/book is a structural constraint 

whereas [price>1000] is a content constraint. DGLOCK takes both kinds of 

constraints into account. With regards to structure constraints, DGLOCK uses 

hierarchical locking on the DataGuide of the XML document. Predicates are 

tagged to the locks held on the nodes of the Data Guide to deal with content 

constraints. It is important to handle content constraints using predicates 

because otherwise it might lead to many false conflicts. A simple hierarchical 

locking scheme would disallow any concurrent operations on two different books 

in Figure 2 because they are represented by the same path in the OataGuide. 
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IS IX S X 

IS + + + P 

IX + + p p 

S + P + P 

X P P P P 

Table 8 DGLOCK lock compatibility 

Table 8 above shows the DGLOCK compatibility matrix. The semantic meanings 

of S, X, IX and IS are the same as mentioned in Section 3.2 (Hierarchical 

Locking). However for some matrix entries, we see a P which represents a 

predicate test. DGLOCK provides for annotations of locks with simple predicates. 

Grabs et al. [22] describe simple predicates as conjunctions of comparison of the 

form x e const where e E {=, E, ;é,:$,~,>, ... }. The DGLOCK matrix does not 

contain strict incompatibilities; an incompatibility occurs only if the predicates of 

jocks already granted and the one of the lock requested are not compliant. 
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The basic algorithm DGLOCK uses for a new request s which is as follows: 

1. Extract ail the constraints. We must obtain ail path expressions [; that 

lead to data that is queried or updated by s (i.e. extract the structural 

constraints). Annotate ail elements of & with the predicates that reflect the 

respective content constraint. 

2. Compute the set N of ail nodes of the DataGuide that match any e E [; 

differentiating being nodes written and read. 

3. For each node n E N, perform the following operations using the lock 

compatibility matrix: 

a. If n is updated by s, acquire IX locks on nodes along the path leading 

fram the raot to n. Then acquire an X lock on n itself. 

For each path node, we must take the annotations fram the OataGuide 

as weil fram [; into account. 

b. If n is only read by s, acquire IS locks on ail nodes along at least one 

path that leads from the root to n. Then acquire an S lock on n. Once 

again, we must take ail annotations on path nodes into account as we 

request locks. 

The following example illustrates how DGLOCK is used to detect conflicts in 

concurrent XML transactions. Figure 13 shows the Books.xml DataGuide with 

annotations of locks and their predicates for two concurrent transactions T 1 and 
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T2 . T1 wants te retrieve the author elements for ail books whose priee is greater 

than 60. T 2 wants to change the prices of ail books with price less than 10 to 70. 

The predicate test on node 5 reveals that these two predicates are not 

compatible and therefore one of the transactions is blocked. 

3.5.3 Suitability Discussion 

Although DGLOCK can be implemented on the McXML database, we feel it is 

unsuitable for the following reason. DOM trees for large XML documents 

themselves take up large amounts of memory. A DataGuide will consume more 

of this limited pool of memory and will unnecessarily hinder performance. 

Furthermore, the maintenance of the DataGuide is non-trivial and has to be 

included in the transaction management overhead. Finally, predicate checking is 

a complex procedure. Therefore, we will implement a locking protocol which 

locks the XML DOM tree rather than an indirect structure. 
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Figure 13 Locking on the OataGuide 

3.6 Snapshot based Concurrency Control Protocols 

Since lock acquisition can be complex and potentially leads to high blocking 

rates, Sardar [13] proposes two snapshot-based concurrency control protocols 

OptiX and SnaX. These protocols avoid any read locks by providing transactions 

a committed snapshot of the data. This is a practical solution because most 

operations in standard applications are read-intensive. OptiX enhances 

traditional optimistic concurrency control to work on XML while SnaX offers 

snapshot isolation similar to relational database systems like Oracle and Post-

greSQL. 
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3.6.1 Snapshots 

ln this section, we look at the snapshot mechanism used by both protocols. 

Sardar [13] provides virtual snapshots using a multi-version system. The basic 

concept used is that every update of a data item (i.e., XML node) creates a new 

version. A transaction T then accesses the latest committed version as of the 

time Tstarted. 

Sardar [13] implements such a multi-version system using timestamps. Every 

transaction is assigned a unique identifier. on start-up. A list EB(Ti) is maintained 

for each transaction which ho Ids the identifiers of ail transactions Tj such that Tj 

committed before Ti as weil as the identifier of Ti itself. Each transaction Ti then 

only reads versions created by transactions from EB(Ti). In addition, each node 

N in an XML document is assigned two timestamps: a valid timestamp and an 

invalid timestamp. The valid timestamp V(N)= ID(Ti) indicates the transaction Ti 

that created this node. Similarly, the invalid timestamp IV(N)= ID(Ti) indicates the 

transaction Ti that deleted this node. If no transaction has deleted this node so 

far its invalid timestamp is set to NULL. 
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3.6.1.1 Reading from a Snapshot 

The timestamps mentioned earlier are used to ensure that the transaction T 

reads a representation of the XML tree which is a snapshot at the time T starts. 

[13] ensures this by requiring T to only read anode N if it fulfills the following 

condition: V(N) E EB(T) /\ IV(N) ~ EB(T). 

( 

1 
\ .. ~,~, .... , 

categories 
V=l 

IV = nuU 

site 
V=l 

IV = nuU 

regions 
V=l 

IV == nuU 

Figure 14 Complete XML tree 
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For example, consider Figure 14 above which represents a complete XML tree 

with ail versions. Assume that EB(T 5) = {1,2,3,5} and T 5 is concurrent to T 4. 

Based on this information, T5 will see the XML tree shown in Figure 15 below 

containing the changes of EB(T 5). It does not read the item 1 child of the asia 

node because it has been created by a concurrent transaction T4. Similarly, T5 

sees the Item 2 child of the asia node even though it has been deleted by T 4. 

Therefore, it correctly uses the timestamps to see a snapshot of the tree taken 

when it started and does not see any changes made by concurrent transactions. 
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Figure 15 XML tree seen by T5 

3.6.2 OptiX: Optimistic Concurrency Control for XML 

Sardar [13] adjusts traditional optimistic concurrency control so that it works with 

his implementation of snapshots. OptiX also takes into consideration the 

hierarchical structure of XML documents as weil as the McXml Query Execution 

Engine. 
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Traditional optimistic concurrency control, based on backward validation, 

compares the validating transaction's read set with the write sets of concurrently 

executing transactions which have already committed. If there is an overlap in 

these two sets, the validating transaction aborts because it has not read the 

values of data items according to the appropriate serialization order. OptiX 

breaks down the read and write sets into more granular subsets. The read set 

becomes the combination of a set of nodes whose subtrees are returned to the 

user, a set of nodes that are explicitly read and a set of nodes that are explicitly 

read for an insertion after them. Similarly, the write set is composed of sets for 

nodes that are deleted, renamed and inserted into. These sets are compiled in 

the WORKING PHASE. A conflict matrix is created which is used in the 

VALIDATION phase to determine whether there really is a conflict between the 

specifie read set of the validating transaction and the specifie write set of the 

validated transactions. If so, the validating transaction aborts immediately. 

Otherwise, it proceeds to the UPDATE phase and writes its changes to disk. 

3.6.3 SnaX: Snapshot Isolation for XML 

Sardar [13] proposes a second concurrency control protocol which provides 

Snapshot Isolation(SI) . Snapshot Isolation (SI) is a relatively new isolation level 

based on multi-version concurrency control that avoids the overhead of tracking 
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reads [14]. In SI, a transaction T reads a snapshot of the data base containing ail 

the updates committed as of the time T started. Read transactions always 

succeed and do not require any concurrency control. Whereas OptiX aborted a 

transaction that read an object written by a previously validated transaction, 

SnaX aborts a transaction if it writes an object that was written by an earlier 

concurrent transaction. Sardar [13] indicates that not keeping track of reads at ail 

greatly reduces the overhead of the protocol because most practical applications 

are read-intensive. The number of conflicts between concurrent transactions are 

also reduced because reads are not tracked. 

Sardar [13] uses an approach similar to that of relational systems like 

PostgreSQL and Oracle. These systems implement SI using a combination of 

multi-versioning and locking. In such systems, each update of a data record of a 

table creates a new version of the record. A read operation on a data record 

reads the last committed version before the transaction started. Whenever a 

transaction wants to update a data record x, it has to acquire an exclusive lock 

on x and perform a version check. If the last committed version of x was created 

by a concurrent transaction, Ti aborts immediately. Otherwise it performs the 

operation. If a transaction Tj holds a lock on x when Ti requests it, Ti is blocked. 

When Tj commits, the lock will be granted to Ti. However Ti will then fail because 
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the version check will indicate that the last committed version is by concurrent 

transaction Tj. If Tj had aborted, Tj's version check might still succeed or fail 

depending on other concurrent transactions and whether they have committed a 

version of x. Version checks are performed using the timestamps introduced in 

3.6.1. A version check fails if there is a data record with a valid timestamp of a 

concurrent committed transaction and a NULL invalid timestamp. 
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Chapter 4 LockX Theory 

ln this chapter, we introduce our concurrency control protocol LockX, based on 

locking, for the McXML database system. We will explain LockX on a high-Ievel 

and focus on the theoretical aspects necessary to understand it weil. Detailed 

explanation of LockX will follow in the next chapter. 

4.1 LockX Pitfalls 

4.1.1 Serializability 

The primary goal of LockX was to design and implement a concurrency control 

protocol for McXML which would guarantee serializability as defined in Section 

2.6.3. 

As explained later in this chapter, we allow certain operations to run concurrently 

because semantically they don't conflict with each other. For example, two Insert

into operations don't conflict with each other. Assume transaction T1 wants to 

insert into ail book elements a size element. Simultaneously, transaction T 2 

would like to insert into ail book elements a rating element. Note that the McXML 

implementation would insert these new nodes at the end of the child lists for the 

book elements. Assuming concurrent execution on the tree in Figure 2, the 
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ordering of size and rating elements could be different in Subtree(2) and 

Subtree( 15). However, if the execution were equivalent to a seriai execution, they 

would have the same ordering in the two subtrees. 

We argue that although the results don't indicate that such an execution is 

serializable, it is semantically equivalent to either possible seriai schedule. We 

care only that the end result of such an execution has both size and rating 

elements added to both book elements; their respective ordering is not important. 

Therefore our definition of serializability is based on a semantic equivalence to a 

seriai execution when a result-based equivalence is not essential. Note in a 

relational system this problem does not occur because the resources of a table 

are unordered by definition. In the tree-based XML data structure, there is an 

ordering between siblings. 

4.1.2 Avoiding Phantoms 

We wanted LockX to avoid phenomena such as phantoms [14]. Consider the 

case where transaction Ti is retrieving ail book elements with a priee of 39.95. 

Another concurrent transaction T2 meanwhile wants to set 2's priee element to 

39.95. Assume that T2's update is executed after Ti reads 13 and therefore 

deems 2 unsuitable (releasing any locks on it). Ti will therefore return only 
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Subtree(15) as part of its results. However if T1's query is run again, it will return 

both Subtree(2) and Subtree(15). Therefare this execution would not be 

serializable because one of the results indicates that T1 executed before T2 

whereas the other indicates the opposite. 

To avoid phantoms, T1 would be required to lock ail book elements so that no 

unforeseen changes are made to them by other transactions. However this is too 

coarse a locking granularity and would create unnecessary blocking situations. 

For example, another transaction wanting to add a size element to 2 would be 

blocked even if 2 would never match the predicate specified by T1 in its search. 

We therefore allow phantoms in LockX, to allow more concurrency, by using 

more fine-grained locking. Phantoms are also a common problem in relational 

databases which typically allow them in arder to have fine-grained locks on the 

record level. 

4.2 Lock Types 

LockX's locks are modelled after those introduced in Section 3.2 (Basic 

Hierarchical Locking). However, we have changed their semantics and 

granularized the S and X locks to better fit the design of the McXML Query 
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Execution Engine. We now introduce the various lock types used by the LockX 

protocol. 

4.2.1 Read Locks 

LockX uses three different read locks (18, 8, RR) which are explained through 

the following XQuery example executed on the tree of Figure 2 . 

• FOR $b in document("Bib.xml U )//book, $1 in $b/author/last 

WHERE $b/price=39.95 

RETURN $1 

1. 8: The 8 (8hared) lock is used on nodes which are explicitly read by the 

XQuery through a structural or content constraint. Explicitly read nodes 

don't have their descendents read (only themselves). In the above 

XQuery, S locks would be placed on nodes 15 (book), 19(author) and 

31 (priee). 

2. RR: The RR(Read Return) lock is placed at the root of a subtree which is 

returned as the result of the query. It implicitly means that nodes below the 

root are also read. This lock applies only to read queries because only 

they contain RETURN clauses. In the above XQuery, an RR lock would be 

placed on the fast element labelled 22. 
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3. IS: The IS (Intention Shared) lock is used on nodes which are not explicitly 

read by the XQuery but are part of a path to anode that is explicitly read 

or returned. For example in the XQuery above, the Bib element would 

have an IS lock placed on it because it is an ancestor to a book element 

which is explicitly read. This lock therefore indicates the intention to 

explicitly read or return a descendent node and preserves the path from 

conflicting operations. 

4.2.2 Write Locks 

From the suitability discussion in Section 3.2.2, we discovered that the X lock 

was too coarse a granularity for our system because we have six different kinds 

of update operations (delete, replace, rename, Insert-into, Insert-after, Insert

before). This can lead to artificial conflicts where concurrency is acceptable. To 

control exactly the conflict behaviour of these update operations, we have 

decided to create a separate exclusive lock for each of the update operations. 

The following Update XQueries from Section 2.5 will be used as examples. 

• FOR $b in document("books.xml")/Bib//book, $p in $b/publisher 

LET $t := $b/title 

WHERE $b/@year = 1998 
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UPDATE $b { 

} 

INSERT <award>Pulitzer Prize</award> 

RENAM E $t to name 

REPLACE $p with <editor>Rapunzel Editors</editor> 

• FOR $b in document("books.xml")/Bibl/book, $p in $b/publisher 

LET $t := $b/title 

WHERE $b/@year = 1994 

UPDATE $b { 

} 

INSERT <publisher>O'Reilly Publishers</publisher> AFTER $p 

INSERT <publisher>Morgan Publishers</publisher> BEFORE $p 

DELETE $t 

The write locks introduced by XLock are as follows: 

1. RP: The RP (Replace) lock is applied on node p for the replace (p, 

Subtree(q)) operation. It implicitly locks Subtree(p) disallowing 

read/updates on descendents(p) and p itself. In the first update query 

above, the RP lock will be applied to the publisher element labelled 29. 
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2. Il: The Il (Insert-into) lock is applied on node p for the Insert-into(p, 

Subtree(q)) operation. In the first update query above, an Il lock would be 

applied to the book element labelied 15. 

3. RN: The RN (Rename) lock is applied on node p for the rename(p, 

newname) operation. In the first update query above, an RN lock will be 

applied to the tit/e element labelied 17. 

4. lA: The IA(lnsert-after) lock is applied on node p for the Insert-after(p, 

Subtree(q)) operation. In the second update query above, an lA lock is 

applied on the publisher element labelied 11. 

5. lB: The IB(lnsert-before) lock is applied on node p for the Insert-before(p, 

Subtree(q)) operation. In the second update query above, an lB lock is 

applied on the same publisher element labelied 11. 

6. 0: The D(Delete) lock is applied on node p for the delete(p) operation. In 

the second update query above, a 0 lock would be applied on the title 

element labelied 4. 

7. IX: The IX lock on n has similar semantics to IX in Basic Hierarchical 

Locking. For each of the above update locks on anode p, ancestors(p) 

have to be IX-Iocked and S-Iocked during the top-down tree traversaI. 
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4.3 LockX Expected Results 

We now give some examples of the locking patterns we are seeking at the end of 

query execution to see these locks in action. 

4.3.1 Read Queries 

Consider the McXML query operation fram Section 2.4.1 shown below. Figure 

16 shows what the McXML DOM tree fram Figure 2 should look like once this 

query operation is run using LockX. The locks are shown underlined on the left 

hand side of the context node. 

• FOR $b in document("books.xml")/Sib/book 

LET $t := $b/title 

WHERE $b/price < 139.95 

OROER SY $b/price 

RETURN $t 
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Figure 16 Locking Results (Read Query 1) 

Both book nodes meet the search criteria. Therefore we have S locks on both as 

weil as Bib and priee elements which are also explicitly read. Since title elements 

are explicitly read, they are S locked initially. However they are later converted to 

RR because their subtrees are being returned by the query. 

• FOR $b in document("books.xml")//book, $1 in $b I/Iast 

WH ERE $1 = "Stevens" 

RETURN $b 
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For this second query, Figure 17 shows what we expect the end result of the 

operation ta look like. The Bib element is fS locked because it is not explicitly 

read but it is part of a path ta the book element labelled 2. The fast element is 

also S locked but notice that the path between it and its book element is not 

locked. This is not necessary because the node 2 is RR locked (Subtree(2) is 

returned ta the user). 

Figure 17 Locking Results (Read Query 2) 
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4.3.2 Update Queries 

Ail update queries follow a similar theme of IX-Iocking ancestors(N) of node N 

being updated and applying a specifie update lock (D, RN, RP, Il, lA, lB) to N. 

We illustrate this with the following rename operation. 

• FOR $b in document("Bib.xml")//book 

LET $a := $b/author 

WHERE $b/price < 100 AND $b/@year=1994 

UPDATE $b { RENAME $a TO writer} 

Figure 18 Locking Results(Rename Operation) 
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Figure 18 shows the locks acquired by the end of the operation's execution. 

Locks are displayed to the left of the context node as before. Node 6 is RN 

locked and ancestors(6) are IX-Iocked to protect its path while its being renamed. 

Since 13,3 and 2 are explicitly read, they are S locked as weil. 

4.4 Compatibility Matrix 

ln order to detect conflicts between the different read/write operations correctly 

and avoid artificial blocking situations, we have devised a compatibility matrix 

similar to the ones in previous sections. Table 9 below shows the compatibility 

matrix for the LockX concurrency control protocol on anode n. The horizontal 

row of locks represents the lock already held by transaction T1. The vertical 

column of locks represents the lock another transaction T 2 wants to acquire. 

Note that compared to the locking protocol described in Section 3.3, we have the 

same number of logicallocks(1 0). However, by removing unnecessary locks 

such as LR and U, we were able ta finely granularize our locking protocol, based 

on the varying needs of our read/write operations, to maximize overall 

concurrency. For example, Section 3.3's locking protocol had one update lock for 

ail update operations whereas we have six different kinds of update locks (one 
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for each update operation) avoiding unnecessary blocking situations as 

described below. 

n(T wants) 

RR + + + + + 

S + + + + + + 

RN + 

Il + + + + + 

lA + + + + + + 

lB + + + + + + 

RP 

0 

IS + + + + + + + 

IX + + + + + + 

Table 9 LockX Compatibility Matrix 
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4.4.1 Deciding conflicts 

We give two motivating examples that give an intuition why two locks should or 

should not conflict. 

Example 1 (No Conflict) 

ln this example based on Figure 2, we assume that transaction Ti is inserting 

into ail book elements a new element of the form <size>100 pages </size>. 

Simultaneously, transaction T2 is inserting into ail book elements a new element 

of the form <editor>McGiII Editors</editor>. Since we don't care about the 

ordering of nodes in the tree, these two operations don't conflict. Even if the 

arder of execution of the two transactions is different in Subtree(2) and 

Subtree(15), the end result is the same. A size element and editor element have 

been added to both book elements. Therefore two Il locks are compatible with 

each other in Table 9. 

Example 2 (Conflict) 

Assume that transaction Ti wants to rename ail book elements in Figure 2 to 

magazine elements. A transaction T 2 wants to return ail book elements. Consider 

a scenario where Ti executes before T2 in Subtree(2) but after T2 in Subtree(15). 

Ti is able to rename both 2 and 15 but T2 only returns Subtree(15) because 2 
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has been renamed. We will now try to establish a serialization order for these two 

transactions. If T1 had executed before T2, it would imply that T2 would return no 

results because ail book elements had been renamed. If T 2 had executed before 

T1, both book elements would be returned because the rename operations have 

not taken place yet. However, we have a situation where only one of the book 

elements has been returned. We have a non-serializable schedule and hence 

these two operations should conflict. Therefore, the RN and RR locks are 

incompatible in Table 9. 

With a lock incompatibility, the above situation of a non-serializable schedule can 

never occur. T 1 would have an RN lock on 2 and T 2 would have an RR on 15. T 2 

would be waiting on T1 to release its RN lock on 2 and T1 would be waiting for T2 

to release its RR lock on 15. A deadlock situation would occur leading to an abort 

of one of the transactions. 

4.4.2 Oetailed Analysis 

We will now look at pairs of operations, op1 and op2, on the sa me node and 

discuss whether they conflict or not. The reasoning is as follows. If op1 is a read 

and would read something different depending on whether it executed before or 

after op2, then they conflict and their respective locks are not compatible. If op1 
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is a write and the effect on the tree (except node ordering) is different depending 

on whether op1 executes before or after op2, then both operations conflict. We 

do not discuss ail combinations but only a selection of the most interesting ones. 

• RR/S/IS vs. RR/S/lS: Ali read locks are compatible with each other 

because multiple readers on the same node(s) do not endanger 

transaction serializability. 

• RR vs. Il: An Insert-into operation on node n would change the results of a 

Read-return operation on n. The result of the read is different depending 

on whether it executes before or after the insert. These two locks therefore 

conflict. 

• RR vs. lA/lB: An Insert-after/lnsert-before operation on n does not affect 

Subtree(n). The result of the read would be the same irrespective of the 

order of operations and there is no conflict. 

• RR vs. RP/D: These lock combinations conflict because a Replace/Delete 

operation on Subtree(n) directly affects the return of Subtree(n). 

• RR vs. IX: An IX lock on node n implies an update operation is occurring 

somewhere in Subtree(n). This would affect a Read-return operation on n 

and therefore the locks are incompatible. 
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• S vs. RN: An S lock on anode n implies that its name is being explicitly 

read to match a path constraint. Since a Rename operation would change 

n's name, these locks are incompatible. 

• S vs. II/lA/lB: An S lock on node n means that the operation is only 

reading n. Therefore the result of the read is the same independent of 

whether it runs before or after the insert operations. 

• S vs. RP/D: A Replace/Delete operation on n would affect an explicit read 

on n. Therefore these lock combinations conflict. 

• S vs. IX: An IX lock on n affects descendants(n) but not n itself. Therefore, 

there is no conflict. 

• RN/D/RP vs. RN/D/RN: The order of two update operations on the same 

node matters and the end-result on the tree can be different based on this 

order. Therefore, there is a conflict between these locks. 

• RN/RP/D vs. lillA/lB: A Rename/Replace/Delete operation on n can affect 

whether an Insert operation can find its context node. Therefore there is a 

conflict for these lock combinations. 

• RN vs. IS: These locks operate at ditferent levels of Subtree(n) causing no 

conflict. Similar logic applies to Il vs. lA/lB. 

• ISIIX vs. Il: These locks operate on different parts of Subtree(n). The 

Insert-into operation adds a new node to Subtree(n) while the IS/IX lock 
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implies an explicit read/write on an existing node in Subtree(n). Therefore 

there is no conflict. 

• lA vs. lB: Since the Insert-after and Insert-before operations run on 

opposite sides of n, there is no conflict. 

• lB vs. lB: Assuming nodes x and y are being inserted before z, these two 

operations can be run concurrently because their respective arder isn't 

important. Similar logic applies to lA vs. lA. 

• D/RP vs. IS/IX: Since a Delete/Replace operation on n affects Subtree(n), 

an operation warking on a descendent of n would be affected. Hence 

these lock combinations do conflict. 

• IX/IS vs. IX/lS: Intention locks on n do not conflict with each other because 

they indicate the intent to read/write somewhere below n. If there are 

conflicts, they will be detected further down the tree. 

4.5 Handling Aborts 

As support to LockX, we have implemented transaction aborts that rollback any 

changes made by the transaction on the XML DOM tree. We explain the logic on 

a high-Ievel; more details will follow in the next chapter. 

Consider the following transaction T 1 where operations are interdependent: 
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1. FOR $b IN document("Books.xml")/Bib/book 

WHERE $b/@year="1994" 

UPDATE $b {INSERT <size>100 pages</size>} 

2. FOR $b IN document("Books.xml")/Bib/book, $s IN $b/size 

WHERE $b/@year="1994" 

UPDATE $b { RENAME $s TO length} 

3. FOR $b IN document("Books.xml")/Bib/book, $IIN $b/length 

WHERE $b/@year="1994" 

UPDATE $b { INSERT <award>Pulitzer Prize</award> AFTER $I} 

Figure 19 Before T1 
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Figure 20 After T1 

Figures 19 and 20 show Subtree(2) fram Figure 2 before and after T 1 's 

execution. Now suppose that T1 has to abort after executing ail its operations. To 

revert Subtree(2)'s state to the one in Figure 19, it becomes necessary to apply 

undo operations for each of T1'S operations. The undo operations for T1 are 

shown below in the same order as their original operations: 

1. FOR $b IN document(UBooks.xml")/Bib/book, $s IN $b/size 

WHERE $b/@year="1994" 

UPDATE $b {DELETE $s} 

2. FOR $b IN document("Books.xml")/Bib/book, $IIN $b/length 
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WHERE $b/@year="1994" 

UPDATE $b { RENAME $1 Ta size} 

3. FOR $b IN document("Books.xml")/Bib/book, $a IN $b/award 

WHERE $b/@year="1994" 

UPDATE $b { DELETE $a} 

The order of execution is important because of the interdependencies between 

the transaction's operations. For example if they are executed in the sa me order 

as above, Subtree(15) would not be deleted because the first operation is not 

able to find the size element to delete. Executing these operations in the reverse 

arder gives us the correct outcome. 

We would like to mention that the above explanation outlines conceptually what 

must be do ne to implement aborts. Our implementation would not run the undo 

operations shown above. This would require us to re-find the target nodes which 

we already have and acquire unnecessary locks which could le ad to deadlocks. 

Therefare, we apply undo operations directly on the relevant nodes. More details 

will follow in the next chapter. 
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Chapter 5 LockX Implementation 

5.1 High-Ievel overview 

Figure 21 below shows the architecture of the LockX concurrency control 

protocol. There are four major components which are described below: 

(1)The Lock Manager is the interface to the client (the Query Execution Engine) 

wishing to apply locking operations to nodes in the McXML DOM tree. 

(2) The Lock Table is the component containing the data structures that hold the 

various locks of each transaction. It provides various operations such as adding a 

lock, removing a lock and converting locks. 

(3) The Compatibility Checker is the component which defines the type of locks 

allowed by LockX as weil as their compatibilities with each other. 

(4) The Deadlock Detector builds a wait-for graph in memory and uses it to 

identify and remove deadlocks. 

The two other components displayed are: 

(1) Lock List: This is a list of aillocks held on anode. 

(2) Wait Queue: This is a queue where locks which are incompatible with the 

existing ones in the Lock List have to wait. 
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Figure 21 LockX Architecture 

Figure 21 also gives a walkthrough of the LockX execution of a client request to 

add a lock to a specifie node N in the XML DOM tree. The request is received by 

the Lock Manager which forwards it to the Compatibility Checker. The 

Compatibility Checker checks the lock's compatibility with the existing ones in Ns 

Lock List. If it is compatible, the Lock Manager forwards the request to the Lock 

Table which performs the addition to Ns Lock List. Otherwise, the lock must wait 
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in Ns Wait Queue for the conflicting locks to be removed from the Lock List. 

Periodically, the Deadlock Detector checks its wait-for graph for a cycle in a 

separate thread. If it finds one, it picks one transaction T in the cycle to abort and 

sends a request to the Lock Table to release ail of Ts locks from the various 

nodes it has accessed. When a transaction commits, it flushes from ail Lock Lists 

any locks it ho Ids. 

5.2 LockX Components 

5.2.1 Lock Table 

Each lock, stored by the Lock Table, is uniquely identified by the transaction 

holding it and the node on which it has been applied. It is important to note, for 

the rest of this thesis, that nodes and transactions are represented in LockX by 

their unique identifiers Oid and Xid respectively. Therefore, locks are applied to 

the Oids representing the nodes rather than the nodes themselves. 

To ease the use of LockX in McXML, it was necessary to be able to retrieve ail 

the locks held bya transaction easily. In addition, each node in the McXML DOM 

tree will have a list of locks associated with it. Therefore we have implemented 

the Lock Table as a combination of two hash tables: McTransHash and 

McNodeHash. McTransHash stores for each transaction a list of aillocks held by 
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it on various objects. Each list is uniquely identified by the transaction's identifier 

Xid. Each node in this list is a tuple of the form (Oid, LockType). The 

McNodeHash stores for each node a list of ail locks as weil as the Xid's of their 

owning transactions. Each object in the list is a tuple of the form (Xid, LockType). 

Each list is uniquely identified by an Oid. Figures 22 and 23 show what the 

McNodeHash and McTransHash could look like. 

2 

9 

7 

Figure 22 McNodeHash 

2 

3 

Figure 23 McTransHash 
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The Lock Table also pravides API methods to the Lock Manager to modify these 

data structures. It is possible to: 

1 . Add a lock to a specifie node N for a specifie transaction T 

2. Remove a lock fram N he Id by T 

3. Convert a lock L 1 to L2 on N for T 

4. Release ail locks he Id by T 

5.2.2 Compatibility Checker 

The Compatibility Checker is responsible for storing the compatibility matrix 

derived in Chapter 4. This information is fed statically into LockX by the user. The 

Compatibility Checker then uses this matrix to compare the compatibility of two 

tuples of the form (LockType11 T1) and (LockType21 T2) received fram the Lock 

Manager. If transactions T1 and T2 are the same, their locks are always 

considered compatible. 

5.2.3 Lock Manager 

The Lock Manager is the component which interacts with the client of LockX. The 

Lock Manager holds the logic to decide whether a transaction T1'S lock should be 

granted immediately on anode N. It compares the requested lock L1 with ail the 
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existing locks on N using the Compatibility Checker. If L1 is compatible, it is 

added to the Lock Table. Otherwise, the Lock Manager stores the tuple (Xid1, L1) 

in a wait queue for N (where Xid1 is the transaction identifier for T1). This wait 

queue stores tuples for ail transactions whose locks are incompatible with 

existing locks on N. The LockManager stores in a hash table a wait queue for 

each node in the McXML DOM tree. Each wait queue can be uniquely accessed 

using the node's Oid which is a key in the hashtable. 

Whenever the list of locks on anode N is updated, the waiting transactions check 

whether their locks are now compatible. Only the transaction at the front of the 

queue is able to leave when suitable conditions arise i.e. when its requested lock 

on N is now compatible with those in Ns lock list. This FCFS (First Come First 

Served) constraint is used to ensure fairness. 

5.2.3.1 Circumventing Scheduling Fairness 

ln some cases, the Lock Manager must insert new tuples at the front of the wait 

queue rather than the end. Although this circumvents fairness, it is necessary to 

avoid deadlocks. We explain the reasoning using the following example. 
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Lock List 

(3, IX) 1 (5, IX) 

(2, RR) 1 (4,RP) 

Wait Queue 

Figure 24 Undetected Deadlocks 

Figure 24 shows a lock list on anode N as weil as its corresponding wait queue. 

We can see that transactions 3 and 5 have an IX lock on N. RR and RP locks are 

incompatible with IX and therefore transactions 2 and 4 have to be added to the 

wait queue. Now suppose that transaction 3 wants to convert its IX lock to a 0 

lock. The 0 lock is not compatible with the IX lock on N from transaction 5. We 

therefore add transaction 3 to the wait queue as before. The wait-for graph after 

this addition is also shown in Figure 24. According to this graph, there is no 

deadlock because no cycles are present. However, since transaction 3 is behind 

transactions 2 and 4 in the wait queue it is implicitly waiting for them. Adding 

these edges to the wait-for graph above induces a cycle and hence a deadlock. 

To avoid such undesirable situations, transactions with locks to convert are 

added to the front of the wait queue. In the above situation this will ensure that 
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once transaction 5's IX lock on N is released, transaction 3 can access Ns lock 

list and there are no unnecessary deadlocks. 

5.2.4 Deadlock Detector 

As shown in the previous section, the Deadlock Detector is responsible for 

building a wait-for graph which is tightly synchronized with the Lock Table. It then 

periodically detects cycles in this graph to identify deadlocks. The wait-for graph 

is implemented as a list of transactions (TL) where each transaction stores its 

adjacency list AL, i.e. ail the transactions it's waiting for. 

5.2.4.1 Detecting cycles and transaction to abort 

• Main Aigorithm 

while(TL has more elements) 

Pick next transaction Xid 

Clear VL 

If Xid Il NoCycleList 

Result = Run "Traverse Adjacencies" Algorithm on Xid 

If (Result is valid transaction id) 

cali "Remove Transaction" Algorithm on Result 

Eise 
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continue 

• Traverse Adjacencies Aigorithm (Xid) 

Add Xid to VL 

Retrieve adjacency list (AL) of Xid 

/f(AL is empty) 

Add Xid ta NaCye/eUst 

retum "No cye/e" 

\:j e/ements E in AL 

Ife VL daes nat cantain E) 

E/se 

/f (E E NaCyc/eUst) 

Resu/t = "No cye/e" 

E/se 

Resu/t = run 'Traverse Adjacencies" A/garithm on E 

/f(Resu/t is valid transaction id or E is fast e/ement in AL) 

/f (Resu/t is "No cye/e") 

Add Xid ta NaCyc/eUst 

retum Resu/t 

Retum E 
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• Remove Transaction Aigorithm (Xid) 

Retrieve Adjacency List (AL) ot Xid 

C/ear AL 

while(TL has more e/ements) 

Pick next transaction T trom TL 

Retrieve AL ot T 

If( AL contains Xid) 

Remove Xid trom AL 

Remove Xid trom TL 

Figure 25 Deadlock Detector Aigorithms 

Figure 25 above shows the three algorithms used by the Deadlock Detector to 

identify and remove deadlocks. The Traverse Adjacencies algorithm is used to 

identify cycles in the wait-for graph. It does this by keeping a global Visited List 

(VL) of ail transactions that it has visited and doing a recursive depth-first search 

on the adjacencies of the transaction passed in. If it comes acrass any 

transaction twice, we know that there is a cycle. The Remove Transaction 

algorithm rem oves this transaction fram the wait-for graph completely to break 

the deadlock. The Main algorithm runs periodically and calls the Traverse 
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Adjacencies algorithm on each transaction until it receives a valid transaction ta 

remove. It then calls the Remove Transaction algorithm on this transaction. A 

global NoCye/eUst is kept for optimization purposes. If we have figured out that 

no cycles can be found starting fram a certain node, we store this transaction 

identifier in the NoCye/eUst. This ensures that we don't have ta run the Traverse 

Adjacencies algorithm on the 8ame node multiple times unnecessarily. 

Figure 26 Oeadlock Example 

We will now illustrate our algorithms at work for an example. Figure 26 above 

shows an example of a wait-for graph with a cycle. Assume the Main algorithm 

picks transaction 1 to run Traverse Adjacencies on. Transaction 1 is added ta the 

Visited Ust(VL) . Subsequently, Traverse Adjacencies is called recursively on 

transactions 2 and 3 respectively. They are also added ta VL. Transaction 3 has 

two adjacencies: 4 and 7. Assume 7 is picked first to be traversed. 7 will be 
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added to VL and finally Traverse Adjacencies will be called on 8 causing it to be 

added to VL. Having not detected a cycle, the algorithm will backtrack calling 

Traverse Adjacencies on 4 (second adjacency of 3). This will cause 1 to be 

visited and therefore a cycle has been detected because 1 is already in VL. 

Transaction 1 is removed from the wait-for graph and the deadlock is broken. 

5.3 Implementing Transaction Aborts 

ln the previous section, the transaction that is removed from the wait-for graph is 

aborted by LockX. We now discuss how aborts are implemented in LockX. 

Recall that an abort requires ail operations of a transaction that have already 

been executed to be rolled back. 

Special data abstractions have been created (one per update operation) to hold 

ail the necessary information for an abort: 

• Rename: RNNode holds a reference to the node N which has been 

renamed, its old name as weil as the operation sequence number 

corresponding to this operation. 

• Replace: RPNode holds a reference to the node that got replaced ON, the 

new node N and the operation sequence number. 
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• Delete: DNode contains a reference ta the deleted node N, its old parent p 

and the operation sequence number. Since deleted nodes have a specifie 

position in the children list of their parent nodes, we need to preserve this 

ordering when we re-insert N. For this purpose when N is being deleted, 

we take a snapshot of ail the siblings after N into a special list called 

AfterList. This is necessary because any arbitrary number of the AfterList 

nodes might be deleted/replaced before the abort is initiated (more details 

follow in the algorithm). 

• Insert-into/insert-before/insert-after: ANode stores a reference to the 

added node N and the operation sequence number. 

Transactions have to ho Id certain state information to perform the aborts. Firstly, 

a list is created for each operation and the matching nodes from above are 

stored (AddList for ANodes, De/List for DNodes etc). In addition, we keep track of 

the last operation sequence number assigned (op_seq) for the transaction. 

5.3.1 Abort Aigorithm 

For(int i=op_seq; i>1; i--){ 

tempAddList = getAddList(i) 

tempDe/List = getDe/List(i) 
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tempRnList = getRnList(i) 

tempRpList = getRpList(i) 

\j ANades in tempAddList: 

Retrieve N's parent 

Remave N From parent's child list 

\j DNades in tempDelList: 

Retrieve N's AfterList, ald parent p 

If(AfterList is empty) 

add N ta end af p's child list 

Else{ 

If(at least ane nade in AfterList exists in DOM tree) 

Insert N befare first nade in AfterList which still exists 

Eise 

add N ta end af p 's child list 

} 

\j RNNades in tempRnList: 

Retrieve N's ald name 

Set N's name ta ald na me 

\j RPNades in tempRpList: 

Replace N with ON in N's parent's child list 
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clearT emplis ts () 

} 

Figure 27 Abort Aigorithm 

Figure 27 above shows the pseudocode for how transaction aborts are 

implemented in LockX. Based on the reasoning of section 4.4.1, we do the undo 

operations in the reverse order using the op_seq variable. From each of the 

operation lists (AddList, De/List, Rn Lis t, RpLisO, we extract the nodes relevant to 

the current operation sequence number into temporary lists. In the case of added 

nodes, we delete them fram their parent nodes' children lists. For deleted nodes, 

the undo operation is slightly more complex because we need to insert them 

back to their previous positions. We check the AfterList to see which of its nodes 

have not been deleted/replaced from the McXML DOM tree. If AfterList is empty, 

this node N was at the end of p's children list. We therefore insert N back in the 

same position. If at least one node in AfterList exists, it implies that we insert N 

before the first node in AfterList which still exists in p's children list. If ail the 

nodes in the AfterList have been deleted/replaced, we insert at the end of p's 

children list. This ensures that the previous ordering of N is maintained. For 

renamed nodes, we set their names back to their old ones. Finally for replaced 
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nodes, we replace the current ones with the old ones. We continue this process 

until we have gone through ail the undo operations in the reverse order. 

5.4 Query Execution using LockX 

Now that we have explained LockX in detail, we will describe how we have used 

it in the Query Execution Engine to lock nodes appropriately for read queries. 

Update queries work similarly. 

5.4.1 Operation Modes 

Since the query execution engine should acquire different kinds of locks 

depending on the operation, we have created three different operation modes 

which are explained below. 

1. Read: The Read mode is used for read operations which acquire IS, S 

and RR locks. 

2. IWrite: The /Write mode is used on variables in an update operation 

relative to whose bindings the actual nodes to update are found. This 

mode only uses IX locks because the nodes it works on are ancestors of 

the nodes being updated. For example assume $bi is bound to 

document("books.xm/')/bib, $a is bound to $bi/book/ 
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author and $a is being updated. The /Write mode would be applied to $bi. 

3. D/RN/RP/II/IAlIB: An update mode is created for each of the update 

operations. This mode is used on variables in an update query whose 

binding are the nodes to be updated. Ancestors of updated nodes are IX

locked and the updated nodes themselves are locked appropriately 

depending on the update mode. Assume $a is being renamed from the 

previous example. Parent(author), Le. book, will be IX-Iocked and the 

author element itself will be RN-Iocked. 

5.4.2 Finding nodes with matching labels 

The first step in query execution is to collect ail nodes with matching labels from 

the McXML DOM tree. We will discuss the locking algorithms used for the three 

different styles of query execution allowed by XPath expressions. 

5.4.2.1 Preorder traversai 

An example of this would be document("books.xmJ")//book. The search for book 

nodes is done from the root of the books.xml DOM tree. In the McXML Query 

Execution Engine implementation, a preorder tree traversai is used to retrieve 

book nodes. We present in Figure 28 the locking algorithm used in the tree 

traversai process to lock nodes appropriately. 
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'1/ nodes in tree-traversal search 

Before reading next node N, acquire 15 lock 

Matching labels in query: 

If(matching label) 

Else 

Convert IS Lock to 5 Lock 

While(ancestor has 15 lock && 15 value is false) 

Set ancestor's IS value to true 

Hold IS 

Add false to N's IS value 

If(leaving 5ubtree(N) && N has IS lock) 

Check 15 value for N 

If (fa Ise && N not pa th protected) 

Remove IS lock 

Else 

Keep 15 lock 

Figure 28 Preorder traversai 
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Figure 28 uses a boolean 18 value for every node traversed by the locking 

algorithm while looking for a certain label. Whenever anode N with the correct 

label is found, N's 18 lock is converted to 8 and ancestors(N) have their 18 values 

set to true. A true value on anode N determines that the 18 lock should be not be 

released on leaving Subtree(N) whereas a false value indicates the opposite. 

This 18 value is used to ensure that ancestors(N) don't have their 18 locks 

released by LockX which could expose Subtree(N) to conflicting concurrent 

operations such as Replace and Delete. A mechanism called path protection is 

used by the algorithm in Figure 28 to avoid removing locks that a transaction 

wants to hold. For a detailed discussion on this mechanism and its motivation, 

please consult section 5.4.3. 

5.4.2.2 Absolute Path 8earch 

An example of this would be document("books.xml')/Bib/book. Figure 29 shows 

the locking algorithm for absolute path searches. 

V node N per level 

Before reading, acquire IS lock on N 

Comparing label with same level of the path expression 

If(matching) 
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Eise 

Con vert IS lock ta S lock 

Proceed ta next level 

If(N is not path protected) 

Remove IS lock on N 

If(ancestors(N) not path protected) 

ReJease S Jacks on ancestors(N) 

Stop searching for matches 

Figure 29: Absolute Path 8earch 

There is no need for 18 locks or 18 values for nodes because we are doing an 

explicit path search. The basic idea is ta search for ail nodes which match exactly 

this path expression. Therefore, if any stage we know that the path will not be 

fulfilled we release alliocks and stop searching. 

For example, assume we are searching for Bib/book/size on the tree in Figure 2. 

We compare the first level of the tree with 1. Since 1 has a matching label, we 

convert the 18 lock we had acquired ta an S lock and proceed ta the next level. 

We follow a similar procedure with 2 and 15 because they match the book label 
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and proceed to the third level of the tree. We acquire IS locks on this level and 

search their labels. However, we find no size label. We therefore release ail IS 

locks and move up the hierarchy to release the S locks on 1,2 and 15. We 

immediately stop searching because the tree has no matches for this path 

expression. 

5.4.2.3 Update Queries 

Update operations use similar algorithms but different lock types. Instead of IS 

locks, IX locks are used before reading nodes. If anode has a label matching the 

XPath expression, the IX lock is either converted to a specific update lock or left 

as is depending on the operation mode. For the preorder traversai from the root, 

we use an IX value for anode similar to the IS value in Section 5.4.2.1. 

5.4.3 Matching predicates 

An example of a predicate could be /titfe="Hello World". Once we have retrieved 

the nodes with matching labels, we need to filter this list L to include only those 

nodes which match the given search criteria in the WHERE clause. Figure 30 

below describes the algorithm used for this purpose. 
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v node N found in L 

If(WHERE clause requires new pa th searches From N) 

Find new descendant nodes SN with matching labels in WHERE 

clause 

S lock these descendants SN 

Check condition 

If condition is matched 

Else 

Store path From N upwards to the root 

. Release locks From SN upto but not including N 

Add N to a Iist of nodes to discards locks From (Oiscard List) 

Remove N trom L 

v node N in Discard List 

Release locks From N upwards to the root for nodes which are not path

protected. 

Figure 30 Matching predicates 
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The algorithm in Figure 30 uses a concept of path protection for nodes which 

match both an XPath expression and a search predicate. For such nodes, we 

store the path leading to them from the document's root node. This means that 

for each node along this path, we store the node's unique identifier along with the 

lock type held by the transaction T. This is important because a transaction T 

often has multiple operations. The locking algorithms attempt to release locks 

immediately from nodes which don't match path or predicate criteria. However, 

these locks may have been needed for a previous operation and therefore need 

to be held till the end of the transaction according to 2PL behaviour. Path 

Protection allows transactions to remember which locks should not be removed 

from which nodes. 

For nodes which don't match our search criteria, we remove them fram our list L 

holding nodes with matching labels. We place them in a special Discard List DL. 

For each node N in DL, we then remove locks from N up to the root if the node's 

id and lock type have not been path-protected already. 

For example, assume that 2 and 15 trom Figure 2 matched our path expression 

Bib/book and we stored them in a list L. Now, we want to match the predicate 

authorilast=''Abiteboul'' on them. First 6 and 9 are S locked but 9 does not match 
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the predicate so we release these locks. 2 is added to the Oiscard List and 

removed tram L. Next, 19 and 22 are S locked and the predicate is checked. 

Since it matches, we store the path tram 15 upto 1. Finally, we retrieve 2 tram 

our Oiscard List. We remove 2's S lock and then move up to 1. However 1 has 

just been path pratected, so we don't remove its S lock. 

5.4.4 Returning Results 

Based on our locking algorithms, the nodes which need to be returned by the 

operation have already been S locked. We theretore convert the S locks to RR 

locks and return the subtrees raoted at these nodes. 
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Chapter 6 Performance Evaluation 

We now evaluate the performance of LockX by varying factors such as the 

structure of the tree and the proportion of read operations in transactions. We 

also run LockX on an auctioning application benchmark set up to simulate real

world usage conditions. Finally, we analyze how LockX performs compared to 

the SnaXlOptiX [13] concurrency control protocols already implemented in 

McXML. 

6.1 Experimental Setup 

For our experiments, we have used a Pentium 4 PC with a 3.4 GHz processor 

and 1 Gigabyte of memory running Linux. The experiments of sections 6.2 and 

6.3 were carried out using synthetic XML documents generated by the XML 

generator located on the IBM alpha works website [15]. The experiments of 

section 6.4 were performed using documents generated with the XMark 

benchmark project [16]. 

We have four clients in the system that concurrently submit transactions so that a 

desired system-wide throughput is achieved. Note that this is a closed client 

model, i.e., a client can only start a new transaction when its previous transaction 
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has terminated. Each transaction has five operations which can be either queries 

or updates. When a transaction aborts, the client keeps resubmitting it until it is 

committed successfully. In the following experiments, we vary the throughput of 

the system and then measure the corresponding response times and abort rates 

of the transactions. 

The abort rate is calculated as follows: 

x = number of transactions aborled 

y = number of transactions sent by clients 

Aborl Rate = x/y * 100 (%) 

For example, if a transaction is aborted three times before being executed 

successfully by a client, it would count as four transactions with three aborted 

resulting in a 75% abort rate. 

The response time is the average time it takes for a transaction fram start to 

finish on the McXML server. In the above case, the response time would include 

the execution time for the three aborted transactions as weil as the successful 

one. 
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For the following experiments, we assume that the Deadlock Detector checks for 

deadlocks every 250 milliseconds. We say that LockX saturates at a certain 

throughput x txns/sec if it cannot achieve a higher throughput based on the 

transactional response times of the McXML Server. 

6.2 Impact of Document Structure 

The first experiment evaluates how the structure of an XML document affects 

performance. Two synthetic XML documents were created using the XML 

generator of IBM alpha works [15]. Documents were generated by specifying 

three parameters; the scaling factor specifies the number of children of the root, 

the depth determines the maximum number of levels in the XML treeand the 

fanout specifies the average number of children of internai nodes. These three 

parameters collectively determine the size of the document. In our documents, 

except for the root (Ievel 1), the children of the root (Ievel 2) and the parents of 

the leaves (level = depth-1), each inner node has the same number of children. 

Furthermore the path length < path(n) is the same for allleaf nodes n. 
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Figure 31: XML tree (scaling factor = 3, depth = 4, fanout = 2) 

Figure 31 shows a sam pie document with scaling factor 3, depth 4 and fanout 2. 

The children of the root ail have the same element name b. Each of these 

elements has one ID attribute. No other elements in the tree have an attribute. 

Each element on level x, where 2~ x ~ (depth-2) has exactly two (fanou~ child 

elements. Each child element has a different name. For instance, each element 

with name b on level 2 has two children c and d. The structure of the tree makes 

it easy to access specifie nodes since the children of the root have attributes 

which can be used in predicate conditions in the query. The leaves of the tree are 

text nodes indicated by the rectangular boxes. 
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Scaling Factor Depth Fanout Size 

flat.xml 96 4 2 577 

deep.xml 3 9 2 577 

Table 11: File parameters 

Table 11 shows our parameter configuration used to generate two documents; 

f1at.xml has a fiat wide tree while deep.xml has a deep narrow tree. We chose 

small documents to stress-test our protocols. 

ln this experiment, each transaction has five update operations leading to 0% 

reads. Each operation randomly selects one node of the document to update. 

Running an automatically generated workload at high submission rates is difficult 

when the structure of the document changes. Our benchmark therefore 

combines ail types of update operations so that the end result of each transaction 

is again the sa me document. 

Figure 32 compares LockX's response times, with increasing throughput, for 

fla t. xml and deep.xml. LockX has consistently higher response times for 

deep.xml compared to f1at.xml. Although similar at the start, the gap between the 
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response times grows larger until response times for deep.xml are double those 

for fla t. xml. This can be attributed to the high abort rates of deep.xml with 

increasing throughput shown in Figure 33. Transaction aborts directly affect the 

response times because aborted transactions have to be executed from the start 

again. 

ln LockX, transactions are only aborted when a deadlock has been detected. The 

reason there are a high number of deadlocks for deep.xml in LockX is that the 

scaling factor is 3. Therefore, there are only three main paths causing a lot of 

conflicts between transactions acquiring locks. flat.xml has a scaling factor of 96 

resulting in many different paths for the queries ta run on. flat.xml therefore does 

not have any transaction aborts causing lower response times and a higher 

saturation point of 32 txns/sec compared ta 24 txns/sec for deep.xml. Note that 

for flat.xml with four clients experiencing a response time of around 122 ms, we 

cannot achieve a higher throughput th an 32 txns/sec because we use a closed 

client mode!. 
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Response Time vs. Throughput 
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Figures 34 and 35 show again the response times for the two files with 

increasing throughputs. However, this time we analyze where the execution time 

is being spent. Wait is the average time spent by each transaction in wait queues 

waiting for locks on nodes. Query is the average time spent by each transaction 

on query processing in the McXML Query Execution Engine. Lock is the average 

time spent by each transaction dealing with locks and LockX's various 

algorithms. 

The proportion of wait time increases from 0% to 23% and 9% to 51 % for flat.xml 

and deep.xml respectively. The latter file has a consistently greater proportion of 

response time spent on waiting because of the larger number of conflicts that 

arise in a deep narrow tree. 

deep.xmfs proportion of query time drops from 31 % to 19% whereas that for 

flat.xml drops from 58% to 48%. flat.xml has a consistently greater proportion of 

response time spent in Query state because the Query Engine has to evaluate 

predicate conditions on 95 child elements of the root while only 3 evaluations are 

needed for deep.xml. 
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Response Time vs. Throughput (flat.xml,read=O%) 
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Figure 34: Response Time breakdown (flat.xml) 
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6.3 Impact of Read Operations 

ln this experiment, we analyze LockX's performance on deep.xml when the 

percentage of read and write operations are varied. Results were similar for 

f1at.xml in relative terms. As in the previous section, each update operation 

randomly selects one node to update. Half of the read operations select a single 

leaf node whereas the other half choose a random level in the tree, returning one 

node of this level and its subtree. 

Figures 36 and 37 compare LockX's performance for transactions with five 

operations out of which 0% or 50% are read operations. Results are similar with 

LockX (0% reads) having slightly higher response times and abort rates than 

LockX (50% reads). The gap between the two is small at the beginning but 

increases as we raise throughput. In the beginning, response times are similar 

because there are a similar number of conflicts for low throughputs. 

Once again, our two performance parameters are correlated. LockX with 0% 

reads performs worse with respect to response times because there are more 

transaction aborts. Conflicts and therefore deadlocks are more likely to appear 

when ail operations are updates because update operations are more likely ta 

conflict with each other. We must also consider the fact that ail conflicts do not 
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lead to deadlocks but add to the time each transaction spends in the wait queue 

affecting the response times. If half of our operations are reads, there will more 

operations which are able to execute concurrently and therefore less conflicts, 

less deadlocks and better performance results. 
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Abort Rate vs. Throughput 
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Figure 37: Abort Rate (Read Operations) 

6.4 The XMark Benchmark 

We now analyze the performance of LockX on an established benchmark that 

emulates a practical application. The XMark benchmark [16] provides XML 

documents and queries for an auctioning application. 

6.4.1 Auction XML document 

Figure 38 shows the structure of the Auction XML document we used in our 

experiments. Elements are shown in rounded rectangles, attributes are squares 

and text nodes are rectangles. The site root element encompasses various 
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information needed for an auctioning application. Firstly, information about the 

various users of the system is stored in person elements. The open_8uction 

element stores a list of ail open auctions in the system. Each open_8uction 

element stores information about the bidder and item of interest. Finally, each 

auctioning item is hierarchically organized based on the continent it belongs to. 

For detailed schema information, please refer to work described by Schmidt et al. 

[16]. 

6.4.2 XMark Queries 

ln our experiments, we use the following subset of the queries proposed by 

XMark [16]. Sardar [13] has created corresponding query statements for each of 

the following queries, and we use those modified statements. 

• Q1: Return the name of the person with ID 'personO' registered in North 

America 

• Q2: Return the initial increases of ail open auctions 

• Q5: How many sold items co st more than 40? 

• Q6: How many items are listed on ail continents? 

• 07: How many pieces of prose are in our data base? 

• 08: List the names of persons and the number of items they bought. Joins 

person, closed_auction. 
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• 013: List the names of items registered ln Australia along with their 

descriptions. 

• 015: Print the keywords in emphasis in annotations of closed auctions. 

• Q18: Convert the currency of the reserve of ail open auctions to another 

currency. 

• Q19: Give an alphabetically ordered list of ail items along with their 

location. 

• 020: Group customers by their income and output the cardinality of each 

group: 

• QN: This query is not part of the original XMark [16] benchmark but we felt 

this would be an interesting query to test the system. It lists ail items that 

belong to a certain category. 
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<site> 
<people> 

<person id = "l"> ... </porson> 

</peolpe> 
<open_auctions> 

<open_uuction> ... </open3uction> 
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</bidder> 
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Figure 38: Auction XML Document 
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6.4.3 Update Operations 

XMark does not contain any update operations. The refore , Sardar [13] has 

proposed a set of suitable update operations as an extension to XMark. Using 

the XQuery update extensions [3], Sardar [13] has created corresponding update 

statements for each of the following: 

• U1: Create a new Person. This update operation adds a new person to the 

XML document as a child of site/people/. 

Subtree(person) will contain important information about a person such as 

his/her name, e-mail, address, age and categories he/she is interested in. 

• U2: Create a new Item. In this update, we create a new item and create an 

open_auction for thatitem because it is assumed that the item is being 

created to put on auction. The item is created as a child of 

site/regions/(any of the six regions)/. It contains important information 

about the item such as its name, category it belongs to, location, shipping 

method, description, quantity and a reference to the owner. As part of the 

same operation, a new open_auction is created for this item as a child of 

site/open_auctions/. The new open_auction has a reference to the item 

and a reference to the seller of the item, the initial priee, the reserved priee 

and other time relevant information like the closing time of bidding on this 

item. 
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• U3: Bid on an item. A person can bid on an item that is still open for 

auction, i.e., has an open_auction that refers to it. When a person bids on 

an item, information such as bidding time, increase in price and reference 

ta bidder are added ta the open_auction corresponding to that item. The 

new price of the open_auction is updated and a reference to this 

open_auction is also added to the person who bid on the item. 

• U4: Close an open 8uction. This operation simulates the c10sing of an 

open_8uction. When the closing time of an open_auction comes it is 

removed fram the open_auctions subtree and is. placed in the 

c1osed_8uctions subtree. A person can no longer bid on this item. 

6.4.4 Evaluation 

We now compare the performance of LockX for two different sizes of the Auction 

document. XMark allows its users to create documents of different sizes by 

specifying a factor f We generated documents of sizes 557KB (f = 0.005) and 

207KB (f=0.002). Since in an auctioning site, the number of queries is usually 

more than the number of updates, we use transactions with 5 operations where 

75% are queries. We give each update operation a different prabability ta be 

called considering that some operations are more Iikely to occur than others (e.g. 
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bidding is more likely than creating a new item). Table 12 illustrates the likelihood 

of each operation being chosen by a transaction. 

Q1 Q2 Q5 Q6 Q7 Q8 Q13 Q15 Q18 Q19 Q20 QN U1 U2 

6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 1.25 2.5 

Table 12: Probability (%) of occurrence of each operation 

Response Time vs. Throughput 

200rr---------,----------------~--------_7~------~ 

--LockX f = 0.005 

Ci) ......... LockX f = 0.002 

~150~========~----------~~----~~--------------~ Q) 

E 
j:: 
Q) 
II) 
c 
o 
~100r-------------~~--~--------------------------~ 

f!i 

50 ~--_. 

Or---------~--------~--------~--------~------~ 
o 5 10 15 20 25 

Throughput(txns/sec) 

Figure 39: Response Time (XMark) 

139 

U3 U4 

18.75 2.5 



Abort Rate vs. Throughput 
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Figure 40: Abort Rate (XMark) 

Figures 39 and 40 show the response times and abort rates for LockX with 

increasing throughput on two different document sizes. The response times for 

both document sizes are similar with f = 0.005 having slightly higher times. This 

higher response time for the larger document is because more time will be spent 

traversing and acquiring locks on the larger tree. There could also be greater 

waiting times because each query is potentially waiting for conflicting locks to be 

released on more nodes. The abort rates are low and comparable to each other. 

They are low because 75% of the operations are reads and therefore there is a 
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lower probability of conflicts between transactions compared to previous 

experiments. 

Comparing LockX from this experiment with results for deep.xml (read=O.5), we 

see that LockX on the Auction document has worse response times for the same 

throughput range (4-20 transactions/sec) even though these experiments had 

extremely low abort rates. We feel that this is because the structure of 

Auction.xml is more complex making query execution a more expensive process. 

ln addition, read queries (75% of our operations on the Auction document) are 

more complex than update queries because our update queries are generally 

based on simpler path and predicate searches. 

Here are examples of read and update queries run on the Auction XML 

document: 

• FOR $a in document(Hauction.xml")/site, $c in $a/people/person, $d in 

$c/watches 

WHERE $c/@id = H person35" 

UPDATE $d { INSERT <watch open_auction="open_auction20"></watch> 

} 
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• FOR $p in document(Uauction.xml")/site 

RETURN $p//description, $p//annotation, $p//email 

Whereas the update query uses a simple absolute path and predicate search to 

identify the right watches element to insert into, the read query retrieves ail 

descrÎption, annotation and emaÎl elements anywhere below the root site 

element. The latter query is clearly the more expensive operation not only in 

terms of query execution but also in terms of wait time because each node has to 

be locked before being read. Such read queries with expensive preorder tree 

traversais are used more often in this experiment than in the previous ones. 

6.5 LockX vs. SnaX/OptiX 

ln this section, we compare the performance of our locking-based protocol LockX 

with the two snapshot-based protocols SnaX and OptiX [13]. Although LockX 

generally performs worse than SnaX and OptiX, the degree of performance 

difference varied based on the experiment type. We highlight three cases; one 

where LockX performs significantly worse and two where its performance closely 

approaches the other two. 
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6.5.1 Flat (Worse) 

Figure 41 compares the response times of LockX with those for OptiX and SnaX 

on flat.xml. Response times for LockX are on average twice as high as those for 

the snapshot-based protocols. With a scaling factor of 96, there are many 

different paths in this tree causing few conflicts for LockX resulting in low 

response times. However there is still the overhead of locking nodes for reads 

and waiting for conflicting locks to be released which SnaX and OptiX don't have. 

The difference between the response times of LockX and SnaXiOptiX is less 

than a factor of two in the beginning but increases to a maximum factor of almost 

four. This is because as the throughput increases, the probability that different 

transactions are operating on the same paths increases causing more conflicts 

for LockX. 

LockX has no aborts whereas SnaX and OptiX reach a maximum abort rate of 

20% at a throughput of 40 transactions/second as shown in Figure 42. 

SnaXiOptiX have higher abort rates because transactions perform operations on 

their snapshots of the XML tree leaving the validation tilliater at commit time. 
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Response Time vs. Throughput 

140T·_·_········-_·-··············_·····_·····-···--··· .................................... - ................ - ............. - ........................................................................... -.... , 

120 t--,---------,------------------------F---.- .. -.-.-----... ------. 
-+- LockX flat.xml 
--- OptiX flat.xml 

100 ........ SnaX flat.xml ., 
E 
Qi' E 80+-------------------------------~~------------------,&~------~ 

i= ., ., 
c: 
o 60+-----------------------__ ~----------------------_1~----------~ 
c.. ., ., 
0:: 

40+---------------·--------

20+----------------------------------------------------------~ 

0+-----,------r----~---~-----_r-----~----r_----_r----__4 

o 5 10 15 20 25 30 35 40 45 

Througput(txns/sec) 

Figure 41: Response Time 

Abort Rate vs. Throughput 

25,--·· .. --·------------------------··----···---------·-----···--------------~ 

20+-r-~~~--~,-------------------------------------------~----~ 
-+- OptiX flat.xml 
........ SnaX fiat.xml 

~ 15+---------------------------------------------------~~L-------~ 

l 
1:: 
o 
~ 10+------------------------------------------

5 t-------

o+---~~--~~----==r=====~~--~------~~--~----~----~ 
o 5 10 15 20 25 30 35 40 45 

Throughput(txns/sec) 

Figure 42: Abort Rate 

144 



6.5.2 XMark Benchmark (Worse) 

We now compare LockX's performance with SnaX and OptiX on the Auction 

document with f = 0.002. Figure 43 compares the response times of the three 

with increasing throughput. Results are similar to the last section with LockX 

performing worse in response times by an average factor of 2. SnaX performs 

the best because it does not consider read-write conflicts and there is a low 

probability of write-write conflicts because of the large proportion of read 

operations. OptiX performs second best because it also does not have to apply 

read locks but it considers read-write conflicts. LockX's response times are 

slightly higher than those of the other two because read locks are compatible so 

the time spent by a transaction waiting is only because of read/write lock 

incompatibilities. These are less likely because the Auction tree has a moderate 

number of distinct paths. Because of the higher response times, LockX saturates 

at a throughput of 20 transactions/sec compared to 32 transactions/sec for 

OptiXlSnaX. 
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6.5.3 Deep (Significantly Worse) 

35 

Figure 44 shows response times of LockX, OptiX and SnaX with increasing 

throughput on deep.xml with a read probability of 0%. LockX performs worse by 

an average factor of nine over its throughput range of 4-24 transactions/sec. 

The gap between LockX and SnaXiOptiX response times widens from a factor of 

five to a maximum of sixteen with increasing throughput. 
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We believe that SnaX and OptiX perform significantly better because of the 

snapshot-based reading mechanism and the special structure of the tree. 

Whereas SnaX and OptiX read the latest committed version of anode, LockX 

has to acquire a lock before reading any node. For read operations which do 

preorder tree traversais on a deep narraw tree, this can create a lot of conflicts 

with locks fram write operations because there are only three main paths. 

Therefore waiting times can be a significant overhead for LockX causing the 

relatively high response times. OptiX/SnaX consequently saturate at a much 

higher thraughput of 72 transactions/sec compared to 24 transactions/sec for 

LockX. 

As described earlier in Section 6.2, there is a high likelihood for deadlocks using 

LockX on deep.xml. During the tree traversai for path/predicate searches, LockX 

acquires and releases many short locks. These locks are for nodes which don't 

match our search criteria; we don't follow a strict two-phase locking procedure for 

them. LockX can get into many artificial deadlocks while trying to acquire these 

short locks for deep trees. We believe this is the reason for LockX's higher abort 

rates for the sa me throughput range as shown in Figure 45. 
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Response Time vs. Throughput 
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6.6 Contribution 

As expected both snapshot-based protocols (SnaX, OptiX) performed better than 

LockX because they do not require read locks but instead provide transactions a 

committed snapshot of the nodes. However, LockX only has approximately 

double the response times for real-life XML documents, such as the Auction 

document in the XMark Benchmark [16], even though it has considerable 

execution overhead in wait times. For fiat documents, response times for LockX 

are also double those for SnaX/OptiX. However, LockX has no transaction aborts 

whereas abort rates for OptiX/SnaX go as high as 20%. LockX has nine times 

higher response times than SnaX/OptiX in deep narrow trees because of the 

large number of conflicts among transactions operating along the same paths 

including a rtifi ci a 1 ones on non-suitable nodes. 

We feel that our contribution to the native XML database community is valid for 

the following reasons: 

• For real-life XML documents, such as the Auction document, response 

times approach closely those of the snapshot-based protocols which have 

no locking/waiting overhead. Our abort rates are generally lower than 

those for SnaX/OptiX which is an important transactional concern for 

users. 
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• LockX can easily be implemented into the query execution engine of most 

available native XML database systems. On the other hand, OptiX and 

SnaX require a complete multi-version infrastructure to be implemented 

beforehand for the XML tree model. 

• The current limitations of LockX (avoiding phantoms and enabling 

serializability) are open problems even in the context of relational 

database systems. 
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Chapter 7 Conclusion 

ln this thesis, we have presented a locking-based concurrency control protocol 

called LockX. LockX was designed to take the semantics of McXML's read and 

write operations into account to maximize concurrency. It is pluggable into any 

native XML database which uses a tree model for representing XML data. LockX 

is easily tuneable to handle different lock types and compatibility information. 

Oeadlocks can easily be detected and removed based on cycles in the wait-for 

graph. 

A performance analysis is done to judge the impact of document structure and 

read operations on LockX's response times and abort rates. LockX generally 

performs better on flatter trees. The higher the proportion of read operations in a 

workload, the lower the response times and abort rates because there are less 

conflicts between transactions. For fiat files, the majority of the response time is 

spent by the Query Execution Engine to identify the required nodes. For deep 

narrow files at high throughputs, the majority of the response time is spent by 

transactions waiting to acquire locks on nodes. The locking overhead can 

become significant. Finally, lock contention and deadlocks are more likely on 

deep trees than bushy ones. LockX performs worse than snapshot-based 
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protocols in terms of response times but has generally lower abort rates and can 

be used with the existing XML database system in place. 

McXML is still in its early stages and there is a lot of room for improvement. 

Some of the areas where future work can be do ne are: 

• LockX: LockX has to acquire a lot of short locks on nodes which don't 

match the search criteria. If our locking mechanism was more selective in 

path/predicate searches, it would improve performance results. 

• Query Execution Engine: McXML has a slow query execution engine. It 

can be optimized a lot to reduce the number of stages involved in 

executing a query successfully. An index manager can also be 

implemented. 

• Labelling: A labelling mechanism should be implemented to ease the 

identification of ancestor/descendent relationships among the nodes. 

• XQuery: McXML only supports a small subset of XQuery at the moment. 

To make it more powerful, the implementation of XQuery can be made 

more comprehensive. 

• Page Unloading: McXML loads XML documents lazily Le. a page is only 

loaded from disk when the subtree on it needs to be traversed. Similarly, 
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there should be unloading of unneeded pages so complete trees are not 

kept unnecessarily in main memory. 

• Databases presumably run for long periods of time and the issue of Xids 

and Oids being exhausted needs to be addressed by McXML. 
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