
Lock-based Concurrency Control for XML

Namiruddin Ahmed

Master of Science

Computer Science

McGili University

Montreal, Quebec, Canada

2007-01-14

A thesis submiUed to the McGiII University in partial fulfillment of the

requirements of the degree of Master of Science

©Copyright 2006 Ali rights reserved

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-32651-0
Our file Notre référence
ISBN: 978-0-494-32651-0

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ACKNOWLEDGMENTS

1 am grateful to my supervisor, Bettina Kemme, for her guidance and

dedication to helping me finish this project successfully. Our weekly

discussions were invaluable to me in crystallizing my research ideas; in

addition she helped me quickly pinpoint any deficiencies in my work based

on her extensive background in database research. 1 also thank her for

her financial support which allowed me to concentrate fully on my studies

and finish on time. 1 would like to thank my parents and sister for their

moral support formy decision to pursue undergraduate/graduate studies

far away from home. Without their endless love and support, 1 would not

be able to make such huge steps forward in my life.

ii

TABLE OF CONTENTS

TABLE OF CONTENTS .. iii

Chapter 1 Introduction ... 8

Chapter 2 Background .. 13

2.1 XML Semantics ... ; 15

2.2 XML DOM Representation .. 17

2.3 XPath: XML Path Language ... 20

2.3.1 XPath Examples .. 20

2.4 XQuery: XML Query Language .. 22

2.4.1 XQuery Example ... 22

2.5 XQuery Extensions for Updates ... 24

2.5.1 Update Operation Examples ... 25

2.6 Transactions ... 28

2.6.1 Transaction Examples ... 29

2.6.2 Transaction Properties .. 30

2.6.3 Serializability .. 31

2.7 Concurrency Control ... 34

2.7.1 Lock-based Protocols .. 34

2.7.1.1 Deadlocks .. 36

2.7.2 Optimistic Concurrency Control ... 36

2.7.3 Concurrency on XML ... 38

2.8 McXML: A Native XML Database ... 38

2.8.1 McXML Architecture .. 39

2.8.2 Storage Manager .. , 40

2.8.3 Query Execution Engine .. 42

Chapter 3 Related Work .. 44

Introduction ... 44

Locking-based Concurrency Control .. 44

3.1 Pa th Locking Schemes ... 44

3.1.1 Path Lock Propagation (PROP)45

3.1.2 Path Lock Satisfiability (SAT) .. 47

3.1.3 Suitability Discussion .. 48

3.2 Basic Hierarchical Locking ... 48

3.2.1 Implementation .. 48

3.2.2 Suitability Discussion .. 51

3.3 Flexible and Fine-Granular Concurrency Control. .. 53

iii

3.3.1 Direct Node Access ... 53

3.3.2 Navigational Access .. 56

3.3.3 Suitability Discussion .. 58

3.4 2PL Protocols ... 59

3.4.1 Doc2PL. ... 60

3.4.2 Node2PL ... 60

3.4.3 N02PL. .. 61

3.4.4 002PL .. 62

3.4.5 Suitability Discussion .. 62

3.5 DGLOCK Protocol .. 63

3.5.1 DataGuides ... 63

3.5.2 DGLOCK Protocol Description .. 65

3.5.3 Suitability Discussion .. 68

3.6 Snapshot based Concurrency Control Protocols .. 69

3.6.1 Snapshots .. 70

3.6.1.1 Reading from a Snapshot .. 71

3.6.2 OptiX: Optimistic Concurrency Control for XML .. 73

3.6.3 SnaX: Snapshot Isolation for XML .. 74

Chapter 4 LockX Theory ... 77

4.1 LockX Pitfalls .. 77

4.1.1 Serializability .. 77

4.1.2 Avoiding Phantoms .. 78

4.2 Lock Types .. 79

4.2.1 Read Locks .. 80

4.2.2 Write Locks .. 81

4.3 LockX Expected Results ... 84

4.3.1 Read Queries .. 84

4.3.2 Update Queries ... 87

4.4 Compatibility Matrix .. 88

4.4.1 Deciding conflicts ... 90

4.4.2 Detailed Analysis ... 91

4.5 Handling Aborts .. 94

Chapter 5 LockX 1 mplementation .. 98

5.1 High-Ievel overview ... 98

5.2 LockX Components .. 100

5.2.1 Lock Table ... 100

5.2.2 Compatibility Checker .. 102

iv

5.2.3 Lock Manager .. 102

5.2.3.1 Circumventing Scheduling Fairness .. 103

5.2.4 Deadlock Detector ... '" ... 105

5.2.4.1 Detecting cycles and transaction to abort .. 105

5.3 Implementing Transaction Aborts ... 109

5.3.1 Abort Aigorithm .. 110

5.4 Query Execution using LockX. .. 113

5.4.1 Operation Modes ... 113

5.4.2 Finding nodes with matching labels .. 114

5.4.2.1 Preorder traversai .. 114

5.4.2.2 Absolute Path Search .. 116

5.4.2.3 Update Queries .. 118

5.4.3 Matching predicates .. 118

5.4.4 Returning Results .. 121

Chapter 6 Performance Evaluation ... 122

6.1 Experimental Setup .. 122

6.2 Impact of Document Structure .. 124

6.3 Impact of Read Operations ... 13 1

6.4 The XMark Benchmark ... 133

6.4.1 Auction XML document ... 133

6.4.2 XMark Queries ... 134

6.4.3 Update Operations .. 137

6.4.4 Evaluation .. 138

6.5 LockX. vs. SnaXiOptiX .. 142

6.5.1 Flat (Worse) ... 143

6.5.2 XMark Benchmark (Worse) ... 145

6.5.3 Deep (Significantly Worse) .. 146

6.6 Contribution ... 149

Chapter 7 Conclusion .. 151

LIST OF REFERENCES 154

v

ABSTRACT

As XML gains popularity as the standard data representation model, there

is a need to store, retrieve and update XML data efficiently. McXml is a

native XML database system that has been developed at McGili University

and represents XML data as trees. McXML supports both read-only

queries and six different kinds of update operations. To support

concurrent access to documents in the McXML database, we propose a

concurrency control protocol called LockX which applies locking to the

nodes in the XML tree. LockX maximizes concurrency by considering the

semantics of McXML's read and write operations in its design. We

evaluate the performance of LockX as we vary factors such as the

structure of the XML document and the proportion of read operations in

transactions. We also evaluate LockX's performance on the XMark

benchmark [16] after extending it with suitable update operations [13].

Finally, we compare LockX's performance with two snapshot-based

concurrency control protocols (SnaX, OptiX) that provide a commiUed

snapshot of the data for client operations.

vi

ABRÉGÉ

Comme XML gagne en popularité en tant que modèle de représentation

de données, le besoin s'impose de pouvoir stocker, extraire et mettre à

jour les données XML de manière efficace. McXML est un système natif

de base donnée XML, développé par l'Université McGill, et qui représente

les données sous forme d'arbre. McXML permet d'effectuer aussi bien des

requêtes en lecture seule que six autres types de mise à jour. Pour faire

face aux accès concurrents, nous proposons un protocole de contrôle

appelé LockX et qui impose un verrouillage aux nœuds de l'arbre XML.

LockX permet de maximiser les accès concurrents en prenant en compte

dans son architecture la sémantique des accès en lecture et écriture de

McXML. Nous évaluons la performance de LockX en faisant varier des

facteurs tels que la structure du document XML ainsi que la proportion

des opérations de lecture dans les transactions. Nous évaluons

également la performance de LockX grâce au banc d'essai XMark [16],

après avoir étendu son implémentation de manière appropriée [13]. Enfin,

nous comparons la performance du système LockX avec deux protocoles

de contrôle basé sur les clichés, c'est à dire utilisant un cliché des

données dédié aux opérations client.

vii

Chapter 1 Introduction

XML (eXtensible Markup Language) is widely believed to be the present and

future of data transmission and manipulation across heterogeneous computer

systems [17]. Its growth in popularity is largely attributed to its ability to provide a

standardized extensible means of including semantic information within

documents describing semi-structured data [1]. Almost ail computer systems use

XML in one form or another. Companies like Microsoft, IBM, Sun Microsystems

and Oracle have ail embraced XML as a data format for exchanging information

with their products. Furthermore, software to parse, transform, define, query,

store and transmit XML data is readily available.

The World Wide Web Consortium (W3C) [6] is in the process of standardizing

query languages for XML called XPath [18] and XOuery [19]. XOuery and XPath

are query languages for retrieving parts of an XML document based on path

expressions. XML storage has generally been provided by relational databases

which map XML data to a relational mode!. Oueries over XML data are th en

converted to SOL queries and executed. More recently, native XML databases (

e.g. [5, 2, 1]) have emerged. They provide features such as their own data

model, storage management and query processing using XPath [18] and XOuery

8

[19]. They provide the benefits of preserving the native structure of XML

documents and processing XML documents in schema-free environments. One

such native XML database called McXML [2] has been developed at the McGiII

University Distributed Information Systems Lab. Since XQuery does not provide

any standards for updating XML data, McXML implements its own update

extensions, based on the work done by Tatarinov et al. [3], which allows it to

handle many different kinds of update operations.

As such native XML databases evolve, they need to be able to manage many,

potentially large documents. A variety of applications with workloads, ranging

from read-only to update-intensive, need to be supported efficiently. Specifically,

applications supporting concurrent access by different clients on the sa me

document to perform reads/updates can pose challenges. One solution would be

to allow only one client access to the document at one time but this would create

poor performance. There will be unnecessary blocking even when clients

perform their operations on different parts of the document. Hence, we need a

concurrency control mechanism which allows multiple users to work on a

document at the sa me time without affecting each other.

9

Controlling concurrent access to an XML document is not trivial and many

complications can arise. For example, consider an online book store which stores

its inventory information in an XML document. If two users attempt to buy a book

at the same time, we cannot predict what will happen. To avoid such

unpredictable behaviour, there is a need for transaction management. Each

client's actions on the XML document are encapsulated into transactions. A

transaction is an atomic unit of read/write operations on the data. Transactions

provide isolation Le. if two clients execute their transactions concurrently on a

document, each client has the impression that he/she is working alone on the

document. Furthermore, the interleaved execution of the transactions is

equivalent to one transaction executing serially after the other.

Most concurrency control approaches for XML we have studied are based on

locking [8, 10, 11, 22]. Transactions acquire locks before accessing parts of an

XML document preventing other transactions from accessing these parts

concurrently. None of these locking schemes were well-suited to our needs

because of various reasons discussed later. In this thesis, we therefore propose

a concurrency control protocol, based on locking, called LockX which was

specificallY designed ta meet the special needs of McXML. But we believe that

LockX is suitable for other native XML databases which use a tree model ta

10

represent XML documents. Furthermore, the semantics of McXML's update and

read operations are considered to maximize concurrency.

We conduct an extensive performance analysis of our implementation of LockX

into McXML considering various factors such as the structure of the document

and impact of differing proportions of read operations. We also analyze the

performance of LockX on a benchmark auctioning application to test it in real

world conditions. Finally, we compare the performance of LockX with two

snapshot-based protocols (OptiX, SnaX [13]). These protocols avoid read locks

on data by providing a committed snapshot to the client. OptiX is a variation of

optimistic concurrency control adjusted to use snapshots and work on XML data.

SnaX provides the isolation level snapshot isolation [14] that does not keep track

of read operations at ail.

The advantage of LockX over OptiX and SnaX is that it can easily be

implemented into the query execution engine of most available native XML

databases. In contrast, snapshot-based concurrency control protocols require the

implementation of a complete multi-version infrastructure beforehand as detailed

in section 3.6. At the same time, LockX's performance for real-life XML

documents, in terms of response times, is only slightly worse than those for the

11

snapshot-based protocols (SnaX, OptiX) even though LockX has significantly

more overhead. Our abort rates are generally lower than those for SnaXlOptiX

which is an important transactional concern for users.

The remainder of this thesis is structured as follows: Chapter 2 introduces XML,

XQuery (including update extensions), transactions, lock-based/optimistic

concurrency control protocols and McXML. Chapter 3 discusses the various

locking-based concurrency control protocols we have encountered in the

literature. We also discuss OptiX and SnaX in more detail. In Chapter 4, we

discuss the goals of LockX, our different lock types and their inter-compatibilities.

We also look at how transaction management is handled on a high level. Chapter

5 looks at LockX in detail. We discuss the data structures and algorithms we

have used and how LockX has been integrated in McXML to control concurrent

access to XML documents. The performance of LockX is evaluated in Chapter 6

and finally Chapter 7 concludes the thesis.

12

Chapter 2 Background

XML (eXtensible Markup Language) is a predefined standard way of

representing and exchanging information between heterogeneous information

systems. It is similar to HTML (Hyper Text Markup Language) because both are

semi-structured markup languages based on markup tags. In HTML, the tags are

used to describe how the data looks and how it is presented. In XML, the markup

tags actually describe the data they encapsulate. HTML was designed as a

platform-independent standard to enable web browsers to display data. XML was

designed to provide a straightforward way of exchanging data on the web among

heterogeneous sources.

Table 1 below illustrates the comparison of the same book information using both

XML and HTML. The HTML document on the left uses standardized tags to

generate the look and feel of the information. For example, the "Year:" text will

appear bold and in its own paragraph. Its surrounding tags only control its

presentation. In contrast, the "TCP/IP IIlustrated" information in the XML

document on the right has title tags surrounding it. This indicates that this

information relates to the title of the book.

13

XML allows us to model information in a natural and intuitive way. The properties

[1] that make XML such a powerful information modelling tool are as follows:

• Heterogeneity. As opposed to relational data base records which are

constrained to have a fixed set of fields, records can have different data

fields in XML.

• Extensibility: ln relational databases, data types have to be defined in

advance and cannot be changed. In contrast, XML allows us to add new

data types at will allowing us to embrace rather than avoid change.

• Flexibility: XML does not restrict the size of data elements. Each element

can be as long or short as necessary.

14

<html>

<head>

<title>Book Information</title>

</head>

<body>

<p> Year: <lb> 1994 </p>

<p> Title: <lb> TCP/IP Illustrated </p>

<p> Author: <lb> W. Stevens </p>

<p> Publisher: <lb> Addison

Wesley</p>

<p> Price: <lb> 65.95 </p>

</body>

</html>

<bib>

<book year="1994">

<title>TCP/IP Iliustrated</title>

<author>

<last>Stevens</last>

<first>W. </first>

</author>

<publisher>Addison-Wesley

</publisher>

<price>65.95</price>

</book>

</bib>

Tab/e 1: Comparison of XML and HTML documents

2.1 XML Semantics

Figure 1 below shows an instance of an XML document called books.xml. The

document contains both actual data, such as the priee of a book, and metadata

such as the book tag. This feature of self-description makes XML documents

easily understandable even for new readers. XML documents are amalgamations

of different types of nodes such as e/ements, aftributes and content nodes. The

main building blocks of XML documents are elements. Elements start using the

15

<> tags and end using the </> tags. For example, the element named title starts

with <title> and ends with </title>. Elements in XML can consist of other

elements, attributes and content nodes. Attributes are defined in the start

element tag and usually define some identifying attributes of the element. They

consist of a name/value pair with the value enclosed in quotations. For example,

the book elements in Figure 1 ail have an attribute called year listed in their

opening tag. Elements can have other elements nested inside them to an

arbitrary depth. For example, the author elements have inside them two elements

named first and fast. Lastly, elements consist of actual content. "TCP/IP

IIlustrated" is actual text data enclosed inside the title element of the first book

element.

<?xml version="l.O" encoding="ISO-8859-1"?>

<Bib>
<book year="1994">

<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>

<book year="1998">
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>

<book year="1999">
<title>The Technology and Content for Digital TV</title>
<editor>

16

<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>

<book year="2000">
<title>Content for Digital TV</title>
<editor>

<last>Dirtbarg</last><first>Darcym</first>
<affiliation>CITY</affiliation>

</editor>
<publisher>Kluwer Publishers</publisher>
<price>l39.95</price>

</book>
</Bib>

Figure 1 Books.xml

XML documents need to be well-formed to be usefully read and parsed by

various XML tools such as XML parsers. This means that the XML document

needs to obey certain syntax rules such as: (1) Each element has to have

matching start and end tags. (2) If an element E2 is nested within another

element E1, E2 must be completely enclosed within E1. For example, Books.xml

would not be considered well-formed if the ending tag of a title element was

outside a book element but the starting tag was inside it.

2.2 XML DOM Representation

Since XML documents are hierarchical in nature, modern applications typically

use tree representations to manipulate them in memory. Such tree structures can

17

be created using the W3C [6] (World Wide Web Consortium) standard DOM

(Document Object Model) API. Figure 2 below shows a tree representation of the

Books.xml document similar to the DOM representation. We have omitted some

of the book elements in Books.xml to have a concise representation for

discussion. Element nodes are depicted as light grey rounded rectangles. Text

nodes are described as dark grey squares. Attributes are represented as white

normal rectangles. Note that the node numbering is not part of the DOM model

and has been added for the author's convenience. We urge the reader to

become familiar to this tree representation as weil as the Books.xml document in

Figure 1 as they will be the basis for most of the examples in later sections.

We will now introduce some notation that will be used later. From a concurrency

perspective, elements, text nodes and attributes are ail treated the same way.

Therefore, we will use the term nodes to describe themall in a general way. Let

Tr represent a tree with root r and let P and q be two nodes in this tree. p is the

parent, parent(q), of q (q is a child of p) if there is a an edge from p to q. p and q

are siblings if they have a common parent. We denote as path(pn) the sequence

of nodes P1,P2 ... , pn such that P1 is the root of the tree and each adjacent pair of

nodes pi,pi+1 are such that Pi is the parent of pi+1. Node p is considered to be an

ancestor of node q (and q is a descendant of p) if path(p) is a prefix of path(q).

18

For anode p, ancestors(p) represents the set of ail nodes that are ancestors to p.

Similarly, descendants(p) is the set of ail nodes which are descendants to p.

Subtree(p) is the subtree of Tr rooted at p.

Figure 2 Books.xml tree

19

2.3 XPath: XML Path Language

XPath is an expression language used to select portions of an XML document. It

allows information to be located by navigation using paths or arbitrarily using

unique node identifiers. Predicates can also be used to narrow down the set of

results. XPath can best be understood by going through a few examples which

are presented below. These examples are based on Figure 2 above. For a more

detailed discussion of XPath, please see work detailed by Berglund et al. [18].

2.3.1 XPath Examples

• /Bib/book

This expression retrieves ail book elements which are direct descendants

of the root element Bib. It will return as a result set Subtree(2) and

Subtree(15).

• //author

This expression means look for author elements which can be located

anywhere in the tree hierarchy, i.e. at any level. It will return Subtree(6),

Subtree(19) and Subtree(24).

• /Bib/book[author/last="Abitebou/'j

20

This expression queries for ail books which are direct descendants of the

Bib element and have an author's last name of Abiteboul. The text

enclosed in the square brackets acts as a predicate filtering out any books

which do not meet this condition. The result set in this case is only

Subtree(15).

• /*/book[@year>1994]

This expression illustrates the use of wildcard operators which are also

allowed in XPath. It will select ail book elements one level below the root

level which have a year attribute greater than 1994. Note that the @

symbol represents an attribute and that this expression will accept ail root

elements not just Bib. In our case, the result will be the subtree rooted at

the book element with year 1998 (Subtree(15)).

• /Bib/book[firstO]

XPath also allows you to identify nodes based on position. The above

expression selects the leftmost book under Bib. Therefore, Subtree(2) will

be returned to the user.

21

2.4 XQuery: XML Query Language

XQuery is an XML query language which uses XPath expressions to query XML

data from heterogeneous sources. XQuery is considered for XML what SQL

(Structured Query Language) is for relational databases. XQuery is written as

FLWOR (pronounced "flower") expressions. These FLWOR (FOR, LET, WHERE,

OROER SV, RETURN) statements are the building blocks of XQuery. XQuery is

also best explained through an example.

2.4.1 XQuery Example

FOR $b in document("books.xml")/Sib//book

LET $t := $b/title

WHERE $b/price < 139.95

OROER SV $b/price

RETURN $t

• FOR: The FOR clause selects ail book elements which are located at any

level under the Bib element, one by one in a loop, into a variable called

$b. When this assignment has been made successfully, we say that $b

has been bound and refer to its target nodes as its current binding.

22

• LET: The LET clause selects ail title elements which are direct

descendants of the binding of $b and binds them to $t. This assignment is

made in the form of a set.

• WHERE: The WHERE clause selects only those book elements which

have a priee less than 139.95. Therefore, there is a filtering-out of ail those

nodes in $b which don't match this predicate condition.

• OROER BV: The OROER BY clause sorts the book elements so that their

priee elements are in ascending order.

• RETURN: The RETURN clause returns the title elements of the sorted

books.

The result set is shown in Figure 3 below. Note that these title elements are fram

book elements which satisfy the predicate (priee < 139.95) and have been sorted

in ascending order according to the priee.

<title>Data on the Web</title>

<title>TCP/IP Illustrated</title>

<title>The Technology and Content for Digital

TV</title>

Figure 3 Result of XQuery Operation

23

2.5 XQuery Extensions for Updates

Presently, there is no formalized standard for updating XML data. In our

implementation, we follow the update extensions to XQuery FLWOR expressions

proposed in the influential paper written by Tatarinov et al. [3]. FLWOR

expressions are replaced with FLWU expressions. The OROER BY and

RETURN clauses are both removed because update operations do not return

any XML data. Instead, we introduce an UPDATE clause which accounts for the

U in FLWU. The UPDATE clause allows for more specialized nested sub

operations once the target set of nodes have been identified by the FLW clauses.

We will now illustrate the possible update types. Let p be a target node

determined by the FLW expression.

• delete (p): This operation deletes Subtree(p).

• replace(p, Sub tree (q)): p and q must be of the sa me type. If they are

elements, Subtree(p) is deleted and replaced with the new Subtree(q).

Similarly if p and q are attributes, the operation simply replaces the

name/value of the attribute with q's name/value pair. If they are text

nodes, the value of the text is changed to q's value.

• rename(p, newname): This operation only works on element and attribute

nodes. It changes the name of the elemenUattribute p to newname.

24

• Insert-into(p, Subtree(q)): This operation inserts Subtree(q) as a child of p.

Our implementation inserts Subtree(q) as the rightmost child of p.

• Insert-after(p, Subtree(q)): This operation inserts Subtree(q) as a new right

sibling of p. p must be an element and q must be element or text. It is

important to note that q does not have to be directly after p.

• Insert-before(p, Subtree(q)): This operation inserts Subtree(q) as a new

left sibling of p. It is important to note that q does not have to be directly

before p.

2.5.1 Update Operation Examples

1. FOR $b in document("books.xml")/Bib//book, $p in $b/publisher

LET $t := $b/title

WHERE $b/@year = 1998

UPDATE $b {

}

INSERT <award>Pulitzer Prize</award>

RENAME $t to name

REPLACE $p with <editor>Rapunzel Editors</editor>

25

The statement above is an example of an update operation using the FLWU

structure. It performs Insert-Into, Replace and Rename update operations within

the subtree of the book element with the year aUribute of 1998 as shawn in

Figure 4 below. The nodes with white numbering boxes have either been

modified or inserted into the book subtree. Subtree(award) has been inserted as

the child of node 15. Node 17 has been renamed fram title ta name. Finally,

Subtree(editor) has replaced the publisher subtree previously at that location.

Figure 4 Update Operation 1 's changes

26

2. FOR $b in document("books.xml")/Bib//book, $p in $b/publisher

LET $t := $b/title

WHERE $b/@year = 1994

UPDATE $b {

}

INSERT <publisher>O'Reilly Publishers</publisher> AFTER $p

INSERT <publisher>Morgan Publishers</publisher> BEFORE $p

DELETE $t

This update operation performs /nserl-after, /nserl-before and de/ete operations

on some child elements of the book element with year 1994. Figure 5 shows the

updated book subtree with new nodes having white numbering boxes. Two new

publisher subtrees, Subtree(15) and Subtree(17), have been added on either

side of Subtree(11). In addition, the title subtree visible in Figure 2 has been

deleted.

27

Figure 5 Update Operation 2's changes

2.6 Transactions

1 n the context of databases, transactions are viewed as a sequence of read/write

operations which satisfy a request and ensure database integrity. They are

delimited by begin-transaction and end-transaction statements. The end of a

transaction has either a commit or abort operation. The commit operation

indicates that the transaction has executed successfully and ail changes are

flushed to disk. On the other hand, an abort operation indicates something has

go ne wrong in the computer program and ail changes are rolled back as if the

transaction had never occurred.

28

2.6.1 Transaction Examples

Suppose that a person John with an account A works in a company Enron with

account B which is used to pay company employees monthly. This is a typical

use case which is ideally suited to transactions. We see below in Figure 6 what

such a transaction would look like.

begin transaction

Read account balance of account B

Read account balance of account A

Update 8 to 8-4000 in the database

Update A to A+4000 in the database

Commit

Figure 6 Account Transfer Transaction

ln this situation, we want ail the operations to be executed successfully or none

of them. A scenario should never occur where 4000 dollars are removed from

Enron's account but are not deposited in John's account.

With respect to our implementation, a transaction would be a sequence of

XQuery read/write operations as we have defined earlier. For example, a typical

transaction consisting of four operations could look like this:

• FOR $b in document("Bib.xml")/bib/book

WHERE $b/title="The Techno"

29

RETURN $b

• FOR $b in document("Bib.xml")//book

WHERE $b/price < 100

RETURN $b/publisher

• FOR $b in document("Bib.xml")//book

LET $a := $b/author

WHERE $b/price < 100 AND $b/@year=1994

UPDATE $b { RENAME $a TO writer}

• FOR $b in document("Bib.xml")//book[@year>2004]

LET $t := $b/title

UPDATE $b { INSERT <size>100 pages </size> AFTER $t}

• commit

2.6.2 Transaction Properties

ln order to maintain data integrity, transactions are required to have the following

ACID properties where each of these letters stands for the first letter of a

property.

• Atomicity. Either ail the operations of a transaction should succeed or the

transaction has no update effect on the database.

30

• Consistency. Assuming that the database had a consistent state before

the transaction started, the transaction should leave the data base in a

consistent state when it ends. For example, the accounts A and 8 fram the

example should have positive balances when the transaction ends.

However A and 8 may be allowed to have an inconsistent state, such as a

negative value, during the execution of the transaction.

• Isolation: Concurrently running transactions should get the impression that

they are operating alone on the database.

• Durability. If a transaction manages to commit, its changes should be

made persistent. Therefore, a commit is a guarantee that the transaction's

changes will not be lost in any failure case. Typically, ail changes of a

transaction are flushed to disk for this purpose.

2.6.3 Serializability

We continue our example fram section 2.6.1 regarding John's bank account A.

Suppose that A is a joint account which can be accessed by John's wife Sheila.

Now assume that, by some coincidence, Enron and Sheila are performing their

transactions on A concurrently. Enron is depositing 4000 dollars in transaction Ti

while Sheila is trying to withdraw 100 dollars in transaction T2. Also assume A

31

has an account balance of 1000 dollars before these transactions start. Table 2

shows the interleaving of the operations of these transactions in a specifie order.

Read(A)

Read(A)

A = A + 4000

A = A -100

Commit

Commit

Table 2 Lost Updates

Both Sheila and Enron read A's value of 1000. Enron makes the commit of its

new balance of 5000 to disk. Sheila then performs her update changing the

balance to 900 and then commits. However, this new balance in the data base

does not reflect that Enron has successfully deposited 4000 dollars into the

account. Sheila has effectively overwritten Enron's update. This problem is

commonly known in database literature as the Lost Update Problem [7].

To prevent problems such as above, concurrency control protocols are built

which guarantee serializability, i.e. the execution of transactions is equivalent to

32

some seriai execution. This is done by detecting conflicts between operations

from different transactions if they access the sa me data item and at least one is a

write operation. For these conflicting operations, the execution order is important.

For example, if transactions T1 and T2 both write the same data item x their

execution order determines what the final value of x is. Now assume that T1

reads data item x and T2 writes it. T1 will read a different value of x depending on

whether it reads x before or after T 2 writes it. However, two read operations on x

can be executed in any order or concurrently without affecting each other. We

then only accept interleaving concurrent executions of transactions which have

these conflicting operations in one order.

An execution E is serializable if there is a seriai execution E1 (one where entire

transactions are executed serially one after the other without any interleaving)

such that for any two conflicting operations 01 and 02 where 01 executes before

02 in E, 01 also executes before 02 in E1. This approach of detecting conflicts

would solve the problem above because T2 would detect a conflict between A=A-

100 and A=A+4000 (they are both write operations on the same data item). T2

would therefore be blocked until T1 commits. In this scenario, the execution is

equivalent to a seriai execution where T1 executes before T2 and both

transactions have their changes recorded in the database.

33

2.7 Concurrency Control

This section introduces the basic concepts of lock-based protocols and optimistic

protocols used for concurrency control. For a more detailed discussion of existing

protocols, please see Chapter 3.

2.7.1 Lock-based Protocols

The primary means of achieving serializability is locking protocols. Before any

operation on a data item, a suitable lock has to be obtained on it. Since there are

two kinds of operations, reads and updates, we assign them S (shared) and X

(exclusive) locks respectively. Based on the reasoning of section 2.6.3, we derive

the compatibility matrix shown below in Table 3. The + represents compatibility

and - represents incompatibility. Assume that the row is the lock already held

by a transaction and the column is a lock wanted on the same data item by a

different transaction. If multiple transactions want to do a read on a data item, it is

permissible and they will ail be granted S locks. If, for example, an S lock has

been granted to a transaction T1 on a data item, transaction T 2 wanting to acquire

an X lock will have ta wait until this S lock is released. There are no conflicts

between locks held by the same transaction.

34

s x

s + -

x - -

Table 3 Compatibility Matrix for read/write locks

ln order to guarantee serializability, transactions use a two-phase locking (2PL)

mechanism. In 2PL, a transaction has a growing phase where it acquires locks

and a shrinking phase where it releases locks. After releasing a lock, a

transaction is not allowed to acquire any more locks. Databases normally

implement strict two-phase locking where ail locks are released at the end of

transactions. This is necessary to avoid cascading aborts. For example, assume

T1 releases a lock on x before committing and T2 now acquires this lock and

reads x. If T 1 aborts, T 2 will also have to abort because it read a wrong value of x.

Any transactions which read T2'S changes will also abort (and so on) causing a

long chain of rollbacks.

35

2.7.1.1 Oeadlocks

Since our concurrency control protocol (LockX) is based on locking, we need to

introduce the concept of deadlocks. A deadlock refers to a specific condition

when two or more transactions are each waiting for another to release a lock. For

example, suppose that transaction T1 acquires an X lock on object A and

transaction T2 acquires an X lock on object B. Now suppose that T1 wants to

acquire an X lock on object Band T 2 wants to acquire an X lock on object A.

They are both deadlocked on each other with no further progress. Such

deadlocks are usually detected by building a wait-for graph and detecting cycles

within it. The wait-for graph for the above situation is shown in Figure 7 below.

Each arrow represents a wait-for condition i.e. T1 is waiting for T2 and T2 is

waiting for T 1. One possible solution is to abort one of these transactions leading

to the breaking of this cycle and hence the deadlock.

Figure 7 Wait-for Graph

2.7.2 Optimistic Concurrency Control

Optimistic Concurrency Control (OCC) is a concurrency control technique which

doesn't use locking. It is based on the premise that transactions mostly don't

36

conflict with each other. This allows the protocol to be as permissive as possible

in allowing transactions to execute.

acc is composed of three phases:

1. WORKING: On the first operation on a data item, the transaction retrieves

a commiUed copy from the database and caches it. This is called the

working copyand henceforth it will be used for ail operations on this data

item. Read and Write sets are maintained for the data items read and

written.

2. VALIDATION: This phase is used to check whether the transaction

conflicts with other transactions. In backwards validation, the transaction

checks for conflict with ail concurrently executing transactions that have

already commiUed. Two transactions Ti and Tj are considered concurrent if

Ti started its working phase before Tj committed or vice-versa. In forward

validation, the transaction checks for conflicts with active transactions that

have not entered the validation phase. If there is a conflict, the transaction

aborts. Otherwise, it enters the UPDATE phase. Transactions are not

allowed to be in the VALIDATION phase concurrently. The validation arder

is used to determine the serialization order of transactions.

37

3. UPDATE: On a successful validation, (Le., no conflicts) the transaction's

changes are flushed to disk and committed.

2.7.3 Concurrency on XML

Concurrency control on XML data is non-trivial for a variety of reasons. Firstly,

XML consists of both metadata (element and attribute names) and actual data

(text, attribute values). Furthermore, this information can be nested in a complex

fashion expressed by XQuery and XPath using regular expressions. Nodes in an

XML DOM tree are directly dependent on ancestors. Deleting an ancestor will

delete ail the descendent nodes in its subtree. Therefore, whole paths of nodes

have to be preserved because of dependencies between them. It is also not

always c1ear what the target entities of a query are and therefore what should be

safeguarded from other transactions. Finally, many different kinds of read/update

operations exist with different conflict behaviours. We will discuss concurrency

control on XML in more detail in the next chapter.

2.8 McXML: A Native XML Database

McXML is a native XML DB MS (Database Management System) developed by

the DISL (Distributed Information Systems Lab) group at the School of Computer

Science, McGill University. The initial system was developed by Jiafeng Wu [2]

38

and supported a subset of the XQuery language and ail XQuery update

statements, including nested updates, described by Tatarinov et al. [3].

2.8.1 McXML Architecture

Figure 8 below shows a high-Ievel architecture of McXML's core components.

We will give a step by step walkthrough of the system execution for a user

update query.

1. Clients connect via RMI ta a Middleware server which forwards the

requests ta the Query Execution Engine.

2. The Query Execution Engine requests the Storage Manager for a DOM

model for the XML document in question.

3. The Storage Manager retrieves the physical model from disk and converts

it ta the DOM model. It returns the DOM model ta the Query Execution

Engine.

4. The Query Execution Engine computes the query on DOM tree making

any necessary changes on the tree.

5. The Query Execution Engine returns results to the RMI Middleware.

6. The RMI Middleware forwards results ta the client

39

7. The Storage Manager writes changes back to disk whenever a transaction

is committed.

Client

2.8.2 Storage Manager

1. Request

McXml Server

Query
Execution

Engine

4. DOM Model

2. Fetch OM Model

~.l.-..._-L.....,

Storage
Manager

6. Wri e changes

3. Retri ve physical model

Figure 8 McXML Architecture

Disk

The Storage Manager component was developed by Raj Suchak [4] and Jean-

Sebastien Légaré. Its job is to store the XML document using a special physical

model similar to Natix [5]. It is based on the concept of splitting XML documents

into subtrees which are stored in records on fixed-width pages. These pages are

the basic unit for transfer between disk and main-memory. The Storage Manager

is responsible for converting this page-based model to a logical DOM model for

40

query execution purposes. However, this logical DOM model is enhanced sa as

to maintain information about the record/page subdivisions in the tree. This is

necessary for disk write-back purposes. Figure 9 shows how the McXml logical

DOM model actually looks like in memory. The boxes represent different pages

on disk. As the subtrees on a page grow, the fixed-size page can no longer

support the whole subtree. Therefore subtrees are split at suitable locations and

placed on multiple pages. Links (shown as dotted lines) are still maintained

among these pages so queries can seamlessly traverse the whole tree.

Figure 9 McXml DOM Model

41

If a part of an XML document changes, the records affected by the change are

updated and the pages containing those records are written to disk again.

Loading is done lazily, i.e., a subtree is only extracted, by loading its

corresponding records, when a transaction needs to traverse that part of the tree.

During transaction execution, ail the changes are made to the DOM tree and

written back to disk at commit time.

2.8.3 Query Execution Engine

The Query Execution Engine uses the implementation of the XQuery language

(including update extensions) to execute queries on the DOM tree received fram

the Storage Manager. It is oblivious to the underlying physical model and just

uses DOM API methods to perform its function. Consider the query below as an

example for the following discussion on how queries are parsed and executed:

• FOR $bi in document("Bib.xml")/bib, $b in $bilbook

WHERE $b/publisher="Addison-Wesley"

RETURN $b

For each variable in a query, the Query Execution Engine creates a variable

object in memory with three components: parent, value and condition. The

parent component stores the variable's parent. The value component stores the

XPath associated with the variable. Finally, the condition components stores any

42

assigned predicates. For example, for the above query, $b would be stored with

parent $bi, path /book and condition /publisher="Addison-Wesley". Queries are

executed in multiple stages. For $b above, (1) the parent variable $bi will be

evaluated and its bindings will be determined (2) the path /book will be evaluated

relative to $bfs bindings. The matching nodes (book elements which are direct

descendants of bib) are bound to $b (3) the predicate condition will be applied on

$b's bindings effectively filtering out those book nodes which don't have Addison

Wesley as publisher. (4)The bindings of $b are returned to the user. A similar

execution logic is applied for update queries except changes are made to the

DOM tree once target nodes, i.e., those assigned ta relevant variables, have

been identified.

43

Chapter 3 Related Work

Introduction

ln this chapter, we look at various concurrency control protocols for XML

documents presented in the literature.

Locking-based Concurrency Control

3.1 Path Locking Schemes

Dekeyser et al. [8] propose two locking schemes, Path Lock Satisfiability (SAT)

and Path Lock Propagation (PROP), based on path locks. PROP acquires a

multitude of read locks but has a trivial conflict checking mechanism. SAT sets

very few locks but requires more work when checking for conflicts.

Dekeyser et al. [8] use a data model of XML calied XP-Tree which is similar to

the DOM tree introduced in Chapter 2. In addition they define three operations on

which the locking schemes operate. Two of them are update operations and are

similar to our /nserl-into and De/ete operations. The read operation does not

support predicates and focuses only on path searches. Q(n, p) is defined as a

query starting from context node n with path expression p.

44

3.1.1 Path Lock Propagation (PROP)

Shared locks are defined as tuples (T, n, p) which identify the owning transaction

T of the lock, the locked node n, and an XPath expression p relative to that node.

Informally, the shared lock therefore means that T has issued a query p starting

from n. This initial lock is then used to derive other locks by a process called

read-/ock propagation. The process of read-Iock propagation causes the shared

locks on anode to be propagated to the nodes just below this node in the DOM

tree which match p.

Example:

Consider the DOM tree shown in Figure 2. Suppose that a transaction T issues a

search for ail nodes that satisfy the path expression Bib/book/author/first. The

first shared lock will be (T, 1, book/a uthor/firs t). This means that T has acquired a

shared lock on the node with identifier 1 and the path to search for is now

book/a uthor/firs t. Now, PROP derives two more shared locks on nodes 2 and

node 15. The tuples are of the form (T, 2, author/first) and (T, 15, author/first)

respectively. The next three shared locks derived are (T, 6, first), (T, 19, first) and

(T, 24, first) on nodes 6, 19 and 24 respectively. Finally we assign shared lacks

to nodes 7, 20 and 25 with a path expression * meaning the node itself is being

read.

45

Exclusive locks have slightly different semantics and are expressed as tuples (T,

n, f). T is the owner of the exclusive lock, n is the node being locked and f is

either the label of the descendent element on which the modification takes place

or * if the node n itself is being modified. The insert-inta (p, Subtree(q)) operation

requires an exclusive lock (T, p, a) where a is the label of the node q and p is

parent of q. The deJete(p) operation requires exclusive locks (T, p, *) and (T, q,

a) where q is the parent of p and a is the label of p (It is assumed that read-Jock

propagation is used to find p before the exclusive locks are applied) .

A shared lock such as (T1, n, a) or (T1, n, *) conflicts with an exclusive lock (T2, n,

a) and (T2, n, *) if T1*- T2 and a is a single element. For example in Figure 2, if

transaction T1 is deleting node 6 (author), there will be an exclusive lock (T1, 6, *)

on 6. Another transaction T 2 wanting to read node 7 would have to acquire a

conflicting shared lock (T2, 6, first) on 6 and will be blocked.

The complexity of PROP is as follows. Consider the shared lock (T1, n, a1) and

the exclusive lock (T2, n, a2). Only the equality of a1 and a2 need ta be checked.

Thus, the time complexity of checking for conflicts is 0(1).

46

3.1.2 Path Lock Satisfiability (SAn

Dekeyser et al. [8] define an alternative locking scheme which requires fewer

locks but is more complex with reference to testing for conflicts. Shared and

exclusive locks in this scheme are defined exactly the same as in the previous

scheme. In the case of read locks, it is sufficient to obtain the initial shared lock

for a query operation. Thus no lock propagation is involved. The update

operations require the same exclusive locks as defined earlier.

A shared lock (T1, n, p) conflicts with an exclusive lock (T2, m, f) if Trt: T2, n is an

ancestor of m and the path of nodes from n to m followed by f can be expressed

by the path expression p. For example in Figure 2, a shared lock (T1, 2,

author/first) is not compatible with an exclusive lock (T2, 6, first) because the path

of nodes from 2 to 6 followed by first matches exactly the path expression

author/first.

SA Ts space complexity is not an issue because it requires less locks than

PROP. However, the conflict checking mechanism is more complex because we

need to check the satisfiability of a path bya more general XPath expression.

47

3.1.3 Suitability Discussion

Dekeyser et al. [8] do not provide any implementation or evaluation of PROP and

SAT path locking schemes. Furthermore, the terminology introduced is confusing

and the protocols lack adequate detail on a theoretical javel. We also note that

any adequate locking protocol for McXML would have to handle predicates in the

path locking mechanism. For ail the above reasons, we feel that PROP and 8AT

are unsuitable for our implementation.

3.2 Basic Hierarchical Locking

3.2.1 Implementation

Most concurrency control protocols for XML data use a form of locking built on

top of hierarchical locking schemes used in relational databases [9]. In

Hierarchical Locking, there is a shared (8) lock and an exclusive (X) lock similar

to 2.7.1. It also introduces two additionallocks which are based on the concept of

intention locking. Intention locks indicate the intent to perform an operation

somewhere below the node being locked. There are two types of intention locks

in Hierarchical Locking: IS and lX. If a query wants to return Subtree(N), it would

need to place IS locks on ancestors(N) and an S lock on N itself. Similarly, for a

node N that needs to be updated, IX locks need to be placed on ancestors(N) as

weil as an X lock on N. With respect to PROP from section 3.1, ail ancestor

48

read/write locks are replaced by IS/IX locks depending on the operation.

Hierarchical Locking detects conflicts differently fram both PROP and SAT.

Whereas PROP and SAT use path checks, hierarchical locking compares only

the lock types of transactions using a conflict matrix.

S X IS IX

S + - + -

X - - - -

IS + - + +

IX - - + +

Table 4: Compatibility Matrix for Hierarchical Locking

Table 4 above shows the compatibility matrix for Hierarchical Locking. The + sign

indicates compatibility and the - sign indicates incompatibility. The raw indicates

the lock held by a transaction on the object and the column indicates the lock

wanted by another transaction on the same object. We can see that the X lock

conflicts with ail lock types including itself. This makes intuitive sense fram the

perspective of the XML DOM tree in Figure 2. If transaction T1 is updating the

49

author subtree, Subtree(6), it would place IX locks on the book and bib nodes as

weil as an X lock on the author node. Another transaction should not be able to

simultaneously read or update any node in Subtree(author) and therefore ail S,

X, IX and IS lock requests on the author node from other transactions are

blocked until T1 ends by committing or aborting. S conflicts with only X and IX

because multiple readers are allowed anywhere in the concerned subtree.

Intention locks, such as IS and IX, are compatible with each other because the

assumption is that the actual nodes being read or written further down in the tree

will be distinct. If this is not the case and two transactions want to do conflicting

operations on the same node, one of them will get blocked at that node. IX

conflicts with S and X because there will be read-write and write-write conflicts on

the same set of nodes.

Intention locks allow transactions to protect the trees enclosing the nodes they

are currently operating on. For example if Transaction T1 is updating the author

subtree, Subtree(6), in Figure 2, its IX lock on both bib and book protects T1 fram

the deletion/replacement of Subtree(book) and Subtree(bib). They also allow us

to capture conflicts earlier up the hierarchy and more efficiently. For example if a

transaction T2 was running concurrently to T1 and wanted to read the book

subtree, Subtree(2) , the conflict would be detected at the book node itself

50

because T 2'S request for an S lock would conflict with T 1's IX lock on book.

Without intention locking, T 2 would have to search the entire book subtree

because a simultaneous update occurring anywhere in there would create a

conflict.

3.2.2 Suitability Discussion

Although this locking protocol is simple and applies weil to our problem, it also

creates high blocking rates and a rtifi ci a 1 conflicts as discussed in the numerous

examples below based on Figure 2. For the following discussion, we will break

the generic update operation down into more specialized operations based on

the update extension to XQuery described in Chapter 2. We will be using

rename(p, newname), insert-into(p, Subtree(q)) and standard XPath expressions

to illustrate queries. We will assume that Transaction T1 and T2 are concurrently

running, T1 has acquired ail the locks it needs but T2 is in the process of

acquiring them.

1. Assume that T 1 is renaming the book node with 1 D 2. T 2 wants to read ail

title nodes using the path search //title. When T 2 wants to acquire a read

lock (15/5) on the book node with ID 2, it will be blocked by T1 because T1

has an X lock on this node. However the result of the title search will be

51

the same whether the book node has been renamed before it or not.

Therefore this blocking is unnecessary and an ideal locking protocol would

allow these two operations concurrently.

2. Assume T1 is inserting a new publisher element to the book with ID 2. T 2

wants to insert a pages element to the same book but it will be blocked by

the X lock on the book node by T 1. Since the seriai order of the insertions

does not affect the end result (we don't care about the order of insertion),

this is an artificial conflict created by this locking protocol.

3. Assume T1 is now inserting Subtree(editor) into the book with ID 15.

Therefore it has acquired an X lock on this book node. T 2 wants to do a

search for the last names of ail authors using the path search

//author//last. These two transactions run on different parts of the tree so

they should not conflict. However, while T 2 is doing a traversai of the tree

to find author nodes, it would try to place a read lock on T1'S book node.

T2 will be blocked by the X lock on the book node held by T1. However,

this blocking is unnecessary because the end result will be the same

whether T 2 is blocked at this point or not.

52

3.3 Flexible and Fine-Granular Concurrency Control

3.3.1 Direct Node Access

Haustein et al [10] extends the hierarchical locking protocol described above and

introduces seven different locks (NR, LR, SR, IX, ex, X, U) of varying granularity

described below.

• NR: An NR (Node Read) lock mode is requested for reading the context

(currently accessed) node.

• LR: A LR (Level Read) lock mode locks the context node together with its

direct-child nodes for shared access. This lock would save locks for XPath

expressions such as Bib/book on the DOM tree in Figure 2. We would just

need to acquire one lock for this expression rather than having to lock Bib

and then ail its direct book descendants.

• SR: A SR (Subtree Read) lock is requested for the context node c as the

root of subtree s to perform read operations on ail nodes belonging to s.

This is the same as the S lock introduced in the previous section.

• IX: An intention exclusive lock in this case is slightly different fram our

previous definition. In this pratocol, it indicates the intent to perform write

operations somewhere in the subtree but not on a direct child node of the

node being locked.

53

• CX: A Child Exclusive lock on context node c indicates the existence of an

X lock on some direct child-node and prohibits inconsistent locking states

by preventing LR and SR lock modes. This lock is necessary because an

IX lock on the parent of the node being updated would allow a level read

(LR) lock even though this is an incompatible operation.

• X: To modify the context node c (updating its contents or deleting c and

its entire subtree) an X lock mode is needed. It implies a ex lock for its

parent node and IX locks on ail other ancestors.

• U: A U lock mode (update option) allows a read operation on context

node c with the option to upgrade the mode for subsequent write access.

It can be downgraded to a read lock if inspection of c shows that no

update action is needed. If it is required, the lock mode will be upgraded to

an X lock after ail existing read locks on c are released.

NR IX LR SR ex U X

NR + + + + + + -

IX + + + - + + -

LR + + + + - + -

SR + - + + - + -

54

CX + + - - + + -

u + + + + + + -

x - - - - - - -

Table 5: Compatibility Matrix

Table 5 above shows the compatibility matrix of this locking protoco!. The NR

lock mode is compatible with ail locks except X. U doesn't create a conflict

because it is performing a read operation on the context node. However, if it is

upgraded to X, it will then create a conflict with NR. The IX lock is incompatible

with SR because the subtree under question is being modified creating the

possibility of a non-serializable schedule. A LR lock on anode N protects N and

its direct children from concurrent write operations. Therefore CX and X are

considered incompatible to LR. The SR lock mode disallows any concurrent

write operations anywhere in the subtree of the node being locked. Therefore IX,

ex and X are ail incompatible to SR. The ex lock conflicts with LR, SR and X.

The first two will create a read-write conflict with ex which can lead to a non

serializable schedule. X can create a write-write conflict with ex if both

transactions are trying to update the same nodes.

55

3.3.2 Navigational Access

The DOM APis we work with when manipulating XML documents have methods

which enable the traversaI/modification of trees by specifying access relative to

context nodes. Table 6 below shows examples of DOM operations which allow

us to observe and modify the structure of XML documents. For example,

getNextSibling() and getFirstChild() return the next sibling and first child of a

node respectively. appendChild() allows us to add a child to the end of the parent

node's children list. To ensure that sequences of such method calls always return

the same result nodes, the concept of virtual navigation edges is introduced as

shown in Figure 10 below. The edges of element nodes are locked in addition to

their confining nodes. While navigating the XML document a transaction

requests a lock for each edge as weil as nodes visited.

Three locks ER, EU, EX are introduced to handle this edge locking by Haustein

and Harder [10]:

• An ER (Edge Read) lock mode is needed for an edge traversai for reading

purposes such as getting the previous sibling of the context node c.

• An EX (Edge Exclusive) lock mode enables an edge to be modified when

nodes are deleted or inserted for example. For any edge affected by a

56

modification operation, an EX lock has to be acquired before the edge is

redirected to its new target node.

• An EU (Edge Update) lock is similar to the U lock discussed earlier.

Structure insertBefore

Mutators replaceChild

removeChild

appendChild

Structure firstChild

Observers lastChild

previousSibling

nextSibling

getNodeByld

getElementByTagName

Table 6 DOM Operations

57

ple':Sib:ingEdge .Â. nextSibtingEdgè' ----~---- ...
, ,

" "

fWÂ<b.r.ldEdge ,," "'" lastChLidEdge ,
"

Figure 10: Virtual Navigation Edges

3.3.3 Suitability Discussion

The locking protocol introduced in this section has 10 locks as compared to the

four locks maintained in Hierarchical Locking. We feel that this locking protocol is

unsuitable for implementation in the McXML database system. Too many logical

locks will be difficult ta maintain and will add unnecessary complexity to the

locking algorithms. Many of the locks are not needed for our purposes. Since we

just read a specifie node ta match a path search or a whole subtree of nodes for

returning to the user, LR is not needed. We do not need to downgrade locks. If a

node does not match our path and predicate criteria, we sim ply remove its lock.

Upgrades can be done directly on read/write locks such as S and IX, ta save on

the number of locks. Edge locking cannat be implemented in its entirety in our

system because nodes do not hold pointers ta their siblings; ail traversais are

done through the parent node. Furthermore, we feel that edge locking is tao low

a granularity level and can be done without.

58

3.4 2PL Protocols

Helmer et al. [11] propose four different core protocols (Doc2PL, Node2PL,

N02PL, 002PL) for synchronizing access to and modification of XML

documents. Ali four protocols require that documents are traversed top down

from the root node. As in Section 3.3, it is assumed that each node in the DOM

tree has pointers to its first child, last child, next sibling and previous sibling.

These 2PL protocols are also based on the standard DOM operations for

structure traversai and modification outlined in Table 6 in Section 3.3.

Helmer et al. [11] propose a shared lock T that has to be acquired for traversing

the document structure and an exclusive lock M for modifying document

structure. The conflict matrix, analogous to the one for S and X in Table 3, is

shown in Table 7 below.

T M

T + -

M - -

Table 7: Conflict Matrix

59

3.4.1 Doc2PL

This protocol is the simplest and locks at the document level by placing a T or M

lock at the root node depending on whether the operation is a structure traversai

or modification respectively. This is acceptable if the document has only multiple

readers. Any concurrent read-write or write-write operation is disallowed even if

the operations are executing in different parts of the DOM tree. Surprisingly, the

authors point out that this is a widely used locking protocol for XML base

management systems such as in Tamino described by Chaudhri et al. [1].

3.4.2 Node2PL

The Node2PL protocol acquires locks for ancestor nodes. For example if in

Figure 11 we want to traverse to the last child C3 of P, we need a T lock on P

because it is C3's parent. Similarly, if we want to insert a new child CO before C1,

we need to acquire an M lock for P. This example shows an important deficiency

in Node2PL. Both these operations should be allowed to execute concurrently

but are blocked unnecessarily.

60

." -- - N ode2PL

Cl 1'" ~I C2 1'" ~I C3 1-- N02PL

Figure 11: Different Lock Locations

3.4.3 N02PL

This protocol acquires locks for ail nodes whose pointers are conceptually

traversed or modified. For example, if we want to add a new child C2.5 after C2

in Figure 11 above, it will require T locks on P and C1 because P's first child

pointer and C1's right sibling pointer have to be traversed to get to C2. It will also

require M locks on C2 and C3 because their right and left sibling pointers need to

be modified respectively. However, we will not need a lock on C2.5 since no

transaction will be able to reach this node. Both C2 and C3 are M-Iocked

disallowing any traversais through them. Another concurrent transaction won't

be allowed to set a T lock to read C3's children. This is an unnecessary conflict

because the transactions are operating in the different parts of the tree and don't

affect each other.

61

3.4.4 002PL

Whereas in the previous two protocols we locked nodes, 002PL locks pointers

as shown in Figure 11. As there are four pointers for every node (first child (A),

lastchild (Z), left sibling (L), right sibling(R)) we need four traversallocks and four

modification locks. The locks are TA, TZ, TL, TR, MA, MZ, ML, MR respectively.

3.4.5 Suitability Discussion

Doc2PL has the fewest number of locks: at most one per transaction per

document. In Node2PL and N02PL, we have at most one lock per transaction

per node. However Node2PL never acquires any locks at the leaf level of

documents whereas N02PL does. 002PL acquires at most four locks per

transaction per node which is four times as many locks as N02PL.

For our purposes, Doc2PL is not attractive because it does not allow concurrent

read/write and write/write operations in different parts of the tree. We have

already shown the deficiencies with Node2PL and N02PL. 002PL is similar

conceptually to edge locking we saw in Section 3.3. Firstly in McXML, nodes do

not hold pointers to their next sibling and previous sibling. They also only have a

first child pointer so the last child can only be accessed by iterating through the

whole children list of the parent node. We argue also that four times as many

62

locks as there are nodes in the DOM tree can lead to bad performance in large

trees.

3.5 DGLOCK Protocol

3.5.1 DataGuides

DataGuides [12] are dynamically generated and maintained structural summaries

of semi structured databases. Goldman and Widom [12] specify that a

DataGuide must describe every unique path of the source (i.e., in our case the

XML DOM tree) exactly once regardless of the number of times it appears in the

source. For accuracy, the DataGuide encodes only paths that appear in the

source.

63

Figure 12 DataGuide for Books.xml

Figure 12 above illustrates a DataGuide for the Books.xml document in Figure 1.

It matches both parts of the previous definition. For example, the path

Bib/book/author/first appears only once in the DataGuide even though it appears

multiple times in the source. In addition, every path in Figure 12 is a valid path

that appears at least once in the source. DataGuides can be useful fram a

database user perspective. We can check whether a path of length n exists in the

source by examining at most n levels of the DataGuide. For example, to check

whether the path Bib/book/publisher exists in the source, we just need to check

the first three levels of the DataGuide.

64

3.5.2 DGLOCK Protocol Description

Whereas in the previous protocols we have looked at implementing locking at the

XML DOM tree level, DGLOCK [22] is a locking protocol which provides

concurrency control by locking the DataGuide instead. Locking the DataGuide is

attractive since the DataGuide is a much smaller data structure. At this point, it is

important to introduce some terminology on constraints of requests. Structural

constraints are constraints on the structure of documents whereas content

constraints are constraints on the content of elements. For example, consider the

path expression /Bib/book[price >1000]. Bib/book is a structural constraint

whereas [price>1000] is a content constraint. DGLOCK takes both kinds of

constraints into account. With regards to structure constraints, DGLOCK uses

hierarchical locking on the DataGuide of the XML document. Predicates are

tagged to the locks held on the nodes of the Data Guide to deal with content

constraints. It is important to handle content constraints using predicates

because otherwise it might lead to many false conflicts. A simple hierarchical

locking scheme would disallow any concurrent operations on two different books

in Figure 2 because they are represented by the same path in the OataGuide.

65

IS IX S X

IS + + + P

IX + + p p

S + P + P

X P P P P

Table 8 DGLOCK lock compatibility

Table 8 above shows the DGLOCK compatibility matrix. The semantic meanings

of S, X, IX and IS are the same as mentioned in Section 3.2 (Hierarchical

Locking). However for some matrix entries, we see a P which represents a

predicate test. DGLOCK provides for annotations of locks with simple predicates.

Grabs et al. [22] describe simple predicates as conjunctions of comparison of the

form x e const where e E {=, E, ;é,:$,~,>, ... }. The DGLOCK matrix does not

contain strict incompatibilities; an incompatibility occurs only if the predicates of

jocks already granted and the one of the lock requested are not compliant.

66

The basic algorithm DGLOCK uses for a new request s which is as follows:

1. Extract ail the constraints. We must obtain ail path expressions [; that

lead to data that is queried or updated by s (i.e. extract the structural

constraints). Annotate ail elements of & with the predicates that reflect the

respective content constraint.

2. Compute the set N of ail nodes of the DataGuide that match any e E [;

differentiating being nodes written and read.

3. For each node n E N, perform the following operations using the lock

compatibility matrix:

a. If n is updated by s, acquire IX locks on nodes along the path leading

fram the raot to n. Then acquire an X lock on n itself.

For each path node, we must take the annotations fram the OataGuide

as weil fram [; into account.

b. If n is only read by s, acquire IS locks on ail nodes along at least one

path that leads from the root to n. Then acquire an S lock on n. Once

again, we must take ail annotations on path nodes into account as we

request locks.

The following example illustrates how DGLOCK is used to detect conflicts in

concurrent XML transactions. Figure 13 shows the Books.xml DataGuide with

annotations of locks and their predicates for two concurrent transactions T 1 and

67

T2 . T1 wants te retrieve the author elements for ail books whose priee is greater

than 60. T 2 wants to change the prices of ail books with price less than 10 to 70.

The predicate test on node 5 reveals that these two predicates are not

compatible and therefore one of the transactions is blocked.

3.5.3 Suitability Discussion

Although DGLOCK can be implemented on the McXML database, we feel it is

unsuitable for the following reason. DOM trees for large XML documents

themselves take up large amounts of memory. A DataGuide will consume more

of this limited pool of memory and will unnecessarily hinder performance.

Furthermore, the maintenance of the DataGuide is non-trivial and has to be

included in the transaction management overhead. Finally, predicate checking is

a complex procedure. Therefore, we will implement a locking protocol which

locks the XML DOM tree rather than an indirect structure.

68

Tl s
x priee <

riee::: 70

Figure 13 Locking on the OataGuide

3.6 Snapshot based Concurrency Control Protocols

Since lock acquisition can be complex and potentially leads to high blocking

rates, Sardar [13] proposes two snapshot-based concurrency control protocols

OptiX and SnaX. These protocols avoid any read locks by providing transactions

a committed snapshot of the data. This is a practical solution because most

operations in standard applications are read-intensive. OptiX enhances

traditional optimistic concurrency control to work on XML while SnaX offers

snapshot isolation similar to relational database systems like Oracle and Post-

greSQL.

69

3.6.1 Snapshots

ln this section, we look at the snapshot mechanism used by both protocols.

Sardar [13] provides virtual snapshots using a multi-version system. The basic

concept used is that every update of a data item (i.e., XML node) creates a new

version. A transaction T then accesses the latest committed version as of the

time Tstarted.

Sardar [13] implements such a multi-version system using timestamps. Every

transaction is assigned a unique identifier. on start-up. A list EB(Ti) is maintained

for each transaction which ho Ids the identifiers of ail transactions Tj such that Tj

committed before Ti as weil as the identifier of Ti itself. Each transaction Ti then

only reads versions created by transactions from EB(Ti). In addition, each node

N in an XML document is assigned two timestamps: a valid timestamp and an

invalid timestamp. The valid timestamp V(N)= ID(Ti) indicates the transaction Ti

that created this node. Similarly, the invalid timestamp IV(N)= ID(Ti) indicates the

transaction Ti that deleted this node. If no transaction has deleted this node so

far its invalid timestamp is set to NULL.

70

3.6.1.1 Reading from a Snapshot

The timestamps mentioned earlier are used to ensure that the transaction T

reads a representation of the XML tree which is a snapshot at the time T starts.

[13] ensures this by requiring T to only read anode N if it fulfills the following

condition: V(N) E EB(T) /\ IV(N) ~ EB(T).

(

1
\ .. ~,~, ,

categories
V=l

IV = nuU

site
V=l

IV = nuU

regions
V=l

IV == nuU

Figure 14 Complete XML tree

71

people
V=2

IV::::: nun

For example, consider Figure 14 above which represents a complete XML tree

with ail versions. Assume that EB(T 5) = {1,2,3,5} and T 5 is concurrent to T 4.

Based on this information, T5 will see the XML tree shown in Figure 15 below

containing the changes of EB(T 5). It does not read the item 1 child of the asia

node because it has been created by a concurrent transaction T4. Similarly, T5

sees the Item 2 child of the asia node even though it has been deleted by T 4.

Therefore, it correctly uses the timestamps to see a snapshot of the tree taken

when it started and does not see any changes made by concurrent transactions.

72

Î
\

site
V=l

IV = null

Item 2
V=3
IV= 4 1

........)

Figure 15 XML tree seen by T5

3.6.2 OptiX: Optimistic Concurrency Control for XML

Sardar [13] adjusts traditional optimistic concurrency control so that it works with

his implementation of snapshots. OptiX also takes into consideration the

hierarchical structure of XML documents as weil as the McXml Query Execution

Engine.

73

Traditional optimistic concurrency control, based on backward validation,

compares the validating transaction's read set with the write sets of concurrently

executing transactions which have already committed. If there is an overlap in

these two sets, the validating transaction aborts because it has not read the

values of data items according to the appropriate serialization order. OptiX

breaks down the read and write sets into more granular subsets. The read set

becomes the combination of a set of nodes whose subtrees are returned to the

user, a set of nodes that are explicitly read and a set of nodes that are explicitly

read for an insertion after them. Similarly, the write set is composed of sets for

nodes that are deleted, renamed and inserted into. These sets are compiled in

the WORKING PHASE. A conflict matrix is created which is used in the

VALIDATION phase to determine whether there really is a conflict between the

specifie read set of the validating transaction and the specifie write set of the

validated transactions. If so, the validating transaction aborts immediately.

Otherwise, it proceeds to the UPDATE phase and writes its changes to disk.

3.6.3 SnaX: Snapshot Isolation for XML

Sardar [13] proposes a second concurrency control protocol which provides

Snapshot Isolation(SI) . Snapshot Isolation (SI) is a relatively new isolation level

based on multi-version concurrency control that avoids the overhead of tracking

74

reads [14]. In SI, a transaction T reads a snapshot of the data base containing ail

the updates committed as of the time T started. Read transactions always

succeed and do not require any concurrency control. Whereas OptiX aborted a

transaction that read an object written by a previously validated transaction,

SnaX aborts a transaction if it writes an object that was written by an earlier

concurrent transaction. Sardar [13] indicates that not keeping track of reads at ail

greatly reduces the overhead of the protocol because most practical applications

are read-intensive. The number of conflicts between concurrent transactions are

also reduced because reads are not tracked.

Sardar [13] uses an approach similar to that of relational systems like

PostgreSQL and Oracle. These systems implement SI using a combination of

multi-versioning and locking. In such systems, each update of a data record of a

table creates a new version of the record. A read operation on a data record

reads the last committed version before the transaction started. Whenever a

transaction wants to update a data record x, it has to acquire an exclusive lock

on x and perform a version check. If the last committed version of x was created

by a concurrent transaction, Ti aborts immediately. Otherwise it performs the

operation. If a transaction Tj holds a lock on x when Ti requests it, Ti is blocked.

When Tj commits, the lock will be granted to Ti. However Ti will then fail because

75

the version check will indicate that the last committed version is by concurrent

transaction Tj. If Tj had aborted, Tj's version check might still succeed or fail

depending on other concurrent transactions and whether they have committed a

version of x. Version checks are performed using the timestamps introduced in

3.6.1. A version check fails if there is a data record with a valid timestamp of a

concurrent committed transaction and a NULL invalid timestamp.

76

Chapter 4 LockX Theory

ln this chapter, we introduce our concurrency control protocol LockX, based on

locking, for the McXML database system. We will explain LockX on a high-Ievel

and focus on the theoretical aspects necessary to understand it weil. Detailed

explanation of LockX will follow in the next chapter.

4.1 LockX Pitfalls

4.1.1 Serializability

The primary goal of LockX was to design and implement a concurrency control

protocol for McXML which would guarantee serializability as defined in Section

2.6.3.

As explained later in this chapter, we allow certain operations to run concurrently

because semantically they don't conflict with each other. For example, two Insert

into operations don't conflict with each other. Assume transaction T1 wants to

insert into ail book elements a size element. Simultaneously, transaction T 2

would like to insert into ail book elements a rating element. Note that the McXML

implementation would insert these new nodes at the end of the child lists for the

book elements. Assuming concurrent execution on the tree in Figure 2, the

77

ordering of size and rating elements could be different in Subtree(2) and

Subtree(15). However, if the execution were equivalent to a seriai execution, they

would have the same ordering in the two subtrees.

We argue that although the results don't indicate that such an execution is

serializable, it is semantically equivalent to either possible seriai schedule. We

care only that the end result of such an execution has both size and rating

elements added to both book elements; their respective ordering is not important.

Therefore our definition of serializability is based on a semantic equivalence to a

seriai execution when a result-based equivalence is not essential. Note in a

relational system this problem does not occur because the resources of a table

are unordered by definition. In the tree-based XML data structure, there is an

ordering between siblings.

4.1.2 Avoiding Phantoms

We wanted LockX to avoid phenomena such as phantoms [14]. Consider the

case where transaction Ti is retrieving ail book elements with a priee of 39.95.

Another concurrent transaction T2 meanwhile wants to set 2's priee element to

39.95. Assume that T2's update is executed after Ti reads 13 and therefore

deems 2 unsuitable (releasing any locks on it). Ti will therefore return only

78

Subtree(15) as part of its results. However if T1's query is run again, it will return

both Subtree(2) and Subtree(15). Therefare this execution would not be

serializable because one of the results indicates that T1 executed before T2

whereas the other indicates the opposite.

To avoid phantoms, T1 would be required to lock ail book elements so that no

unforeseen changes are made to them by other transactions. However this is too

coarse a locking granularity and would create unnecessary blocking situations.

For example, another transaction wanting to add a size element to 2 would be

blocked even if 2 would never match the predicate specified by T1 in its search.

We therefore allow phantoms in LockX, to allow more concurrency, by using

more fine-grained locking. Phantoms are also a common problem in relational

databases which typically allow them in arder to have fine-grained locks on the

record level.

4.2 Lock Types

LockX's locks are modelled after those introduced in Section 3.2 (Basic

Hierarchical Locking). However, we have changed their semantics and

granularized the S and X locks to better fit the design of the McXML Query

79

Execution Engine. We now introduce the various lock types used by the LockX

protocol.

4.2.1 Read Locks

LockX uses three different read locks (18, 8, RR) which are explained through

the following XQuery example executed on the tree of Figure 2 .

• FOR $b in document("Bib.xml U)//book, $1 in $b/author/last

WHERE $b/price=39.95

RETURN $1

1. 8: The 8 (8hared) lock is used on nodes which are explicitly read by the

XQuery through a structural or content constraint. Explicitly read nodes

don't have their descendents read (only themselves). In the above

XQuery, S locks would be placed on nodes 15 (book), 19(author) and

31 (priee).

2. RR: The RR(Read Return) lock is placed at the root of a subtree which is

returned as the result of the query. It implicitly means that nodes below the

root are also read. This lock applies only to read queries because only

they contain RETURN clauses. In the above XQuery, an RR lock would be

placed on the fast element labelled 22.

80

3. IS: The IS (Intention Shared) lock is used on nodes which are not explicitly

read by the XQuery but are part of a path to anode that is explicitly read

or returned. For example in the XQuery above, the Bib element would

have an IS lock placed on it because it is an ancestor to a book element

which is explicitly read. This lock therefore indicates the intention to

explicitly read or return a descendent node and preserves the path from

conflicting operations.

4.2.2 Write Locks

From the suitability discussion in Section 3.2.2, we discovered that the X lock

was too coarse a granularity for our system because we have six different kinds

of update operations (delete, replace, rename, Insert-into, Insert-after, Insert

before). This can lead to artificial conflicts where concurrency is acceptable. To

control exactly the conflict behaviour of these update operations, we have

decided to create a separate exclusive lock for each of the update operations.

The following Update XQueries from Section 2.5 will be used as examples.

• FOR $b in document("books.xml")/Bib//book, $p in $b/publisher

LET $t := $b/title

WHERE $b/@year = 1998

81

UPDATE $b {

}

INSERT <award>Pulitzer Prize</award>

RENAM E $t to name

REPLACE $p with <editor>Rapunzel Editors</editor>

• FOR $b in document("books.xml")/Bibl/book, $p in $b/publisher

LET $t := $b/title

WHERE $b/@year = 1994

UPDATE $b {

}

INSERT <publisher>O'Reilly Publishers</publisher> AFTER $p

INSERT <publisher>Morgan Publishers</publisher> BEFORE $p

DELETE $t

The write locks introduced by XLock are as follows:

1. RP: The RP (Replace) lock is applied on node p for the replace (p,

Subtree(q)) operation. It implicitly locks Subtree(p) disallowing

read/updates on descendents(p) and p itself. In the first update query

above, the RP lock will be applied to the publisher element labelled 29.

82

2. Il: The Il (Insert-into) lock is applied on node p for the Insert-into(p,

Subtree(q)) operation. In the first update query above, an Il lock would be

applied to the book element labelied 15.

3. RN: The RN (Rename) lock is applied on node p for the rename(p,

newname) operation. In the first update query above, an RN lock will be

applied to the tit/e element labelied 17.

4. lA: The IA(lnsert-after) lock is applied on node p for the Insert-after(p,

Subtree(q)) operation. In the second update query above, an lA lock is

applied on the publisher element labelied 11.

5. lB: The IB(lnsert-before) lock is applied on node p for the Insert-before(p,

Subtree(q)) operation. In the second update query above, an lB lock is

applied on the same publisher element labelied 11.

6. 0: The D(Delete) lock is applied on node p for the delete(p) operation. In

the second update query above, a 0 lock would be applied on the title

element labelied 4.

7. IX: The IX lock on n has similar semantics to IX in Basic Hierarchical

Locking. For each of the above update locks on anode p, ancestors(p)

have to be IX-Iocked and S-Iocked during the top-down tree traversaI.

83

4.3 LockX Expected Results

We now give some examples of the locking patterns we are seeking at the end of

query execution to see these locks in action.

4.3.1 Read Queries

Consider the McXML query operation fram Section 2.4.1 shown below. Figure

16 shows what the McXML DOM tree fram Figure 2 should look like once this

query operation is run using LockX. The locks are shown underlined on the left

hand side of the context node.

• FOR $b in document("books.xml")/Sib/book

LET $t := $b/title

WHERE $b/price < 139.95

OROER SY $b/price

RETURN $t

84

Figure 16 Locking Results (Read Query 1)

Both book nodes meet the search criteria. Therefore we have S locks on both as

weil as Bib and priee elements which are also explicitly read. Since title elements

are explicitly read, they are S locked initially. However they are later converted to

RR because their subtrees are being returned by the query.

• FOR $b in document("books.xml")//book, $1 in $b I/Iast

WH ERE $1 = "Stevens"

RETURN $b

85

For this second query, Figure 17 shows what we expect the end result of the

operation ta look like. The Bib element is fS locked because it is not explicitly

read but it is part of a path ta the book element labelled 2. The fast element is

also S locked but notice that the path between it and its book element is not

locked. This is not necessary because the node 2 is RR locked (Subtree(2) is

returned ta the user).

Figure 17 Locking Results (Read Query 2)

86

4.3.2 Update Queries

Ail update queries follow a similar theme of IX-Iocking ancestors(N) of node N

being updated and applying a specifie update lock (D, RN, RP, Il, lA, lB) to N.

We illustrate this with the following rename operation.

• FOR $b in document("Bib.xml")//book

LET $a := $b/author

WHERE $b/price < 100 AND $b/@year=1994

UPDATE $b { RENAME $a TO writer}

Figure 18 Locking Results(Rename Operation)

87

Figure 18 shows the locks acquired by the end of the operation's execution.

Locks are displayed to the left of the context node as before. Node 6 is RN

locked and ancestors(6) are IX-Iocked to protect its path while its being renamed.

Since 13,3 and 2 are explicitly read, they are S locked as weil.

4.4 Compatibility Matrix

ln order to detect conflicts between the different read/write operations correctly

and avoid artificial blocking situations, we have devised a compatibility matrix

similar to the ones in previous sections. Table 9 below shows the compatibility

matrix for the LockX concurrency control protocol on anode n. The horizontal

row of locks represents the lock already held by transaction T1. The vertical

column of locks represents the lock another transaction T 2 wants to acquire.

Note that compared to the locking protocol described in Section 3.3, we have the

same number of logicallocks(1 0). However, by removing unnecessary locks

such as LR and U, we were able ta finely granularize our locking protocol, based

on the varying needs of our read/write operations, to maximize overall

concurrency. For example, Section 3.3's locking protocol had one update lock for

ail update operations whereas we have six different kinds of update locks (one

88

for each update operation) avoiding unnecessary blocking situations as

described below.

n(T wants)

RR + + + + +

S + + + + + +

RN +

Il + + + + +

lA + + + + + +

lB + + + + + +

RP

0

IS + + + + + + +

IX + + + + + +

Table 9 LockX Compatibility Matrix

89

+

+

+

+

+

+

+

4.4.1 Deciding conflicts

We give two motivating examples that give an intuition why two locks should or

should not conflict.

Example 1 (No Conflict)

ln this example based on Figure 2, we assume that transaction Ti is inserting

into ail book elements a new element of the form <size>100 pages </size>.

Simultaneously, transaction T2 is inserting into ail book elements a new element

of the form <editor>McGiII Editors</editor>. Since we don't care about the

ordering of nodes in the tree, these two operations don't conflict. Even if the

arder of execution of the two transactions is different in Subtree(2) and

Subtree(15), the end result is the same. A size element and editor element have

been added to both book elements. Therefore two Il locks are compatible with

each other in Table 9.

Example 2 (Conflict)

Assume that transaction Ti wants to rename ail book elements in Figure 2 to

magazine elements. A transaction T 2 wants to return ail book elements. Consider

a scenario where Ti executes before T2 in Subtree(2) but after T2 in Subtree(15).

Ti is able to rename both 2 and 15 but T2 only returns Subtree(15) because 2

90

has been renamed. We will now try to establish a serialization order for these two

transactions. If T1 had executed before T2, it would imply that T2 would return no

results because ail book elements had been renamed. If T 2 had executed before

T1, both book elements would be returned because the rename operations have

not taken place yet. However, we have a situation where only one of the book

elements has been returned. We have a non-serializable schedule and hence

these two operations should conflict. Therefore, the RN and RR locks are

incompatible in Table 9.

With a lock incompatibility, the above situation of a non-serializable schedule can

never occur. T 1 would have an RN lock on 2 and T 2 would have an RR on 15. T 2

would be waiting on T1 to release its RN lock on 2 and T1 would be waiting for T2

to release its RR lock on 15. A deadlock situation would occur leading to an abort

of one of the transactions.

4.4.2 Oetailed Analysis

We will now look at pairs of operations, op1 and op2, on the sa me node and

discuss whether they conflict or not. The reasoning is as follows. If op1 is a read

and would read something different depending on whether it executed before or

after op2, then they conflict and their respective locks are not compatible. If op1

91

is a write and the effect on the tree (except node ordering) is different depending

on whether op1 executes before or after op2, then both operations conflict. We

do not discuss ail combinations but only a selection of the most interesting ones.

• RR/S/IS vs. RR/S/lS: Ali read locks are compatible with each other

because multiple readers on the same node(s) do not endanger

transaction serializability.

• RR vs. Il: An Insert-into operation on node n would change the results of a

Read-return operation on n. The result of the read is different depending

on whether it executes before or after the insert. These two locks therefore

conflict.

• RR vs. lA/lB: An Insert-after/lnsert-before operation on n does not affect

Subtree(n). The result of the read would be the same irrespective of the

order of operations and there is no conflict.

• RR vs. RP/D: These lock combinations conflict because a Replace/Delete

operation on Subtree(n) directly affects the return of Subtree(n).

• RR vs. IX: An IX lock on node n implies an update operation is occurring

somewhere in Subtree(n). This would affect a Read-return operation on n

and therefore the locks are incompatible.

92

• S vs. RN: An S lock on anode n implies that its name is being explicitly

read to match a path constraint. Since a Rename operation would change

n's name, these locks are incompatible.

• S vs. II/lA/lB: An S lock on node n means that the operation is only

reading n. Therefore the result of the read is the same independent of

whether it runs before or after the insert operations.

• S vs. RP/D: A Replace/Delete operation on n would affect an explicit read

on n. Therefore these lock combinations conflict.

• S vs. IX: An IX lock on n affects descendants(n) but not n itself. Therefore,

there is no conflict.

• RN/D/RP vs. RN/D/RN: The order of two update operations on the same

node matters and the end-result on the tree can be different based on this

order. Therefore, there is a conflict between these locks.

• RN/RP/D vs. lillA/lB: A Rename/Replace/Delete operation on n can affect

whether an Insert operation can find its context node. Therefore there is a

conflict for these lock combinations.

• RN vs. IS: These locks operate at ditferent levels of Subtree(n) causing no

conflict. Similar logic applies to Il vs. lA/lB.

• ISIIX vs. Il: These locks operate on different parts of Subtree(n). The

Insert-into operation adds a new node to Subtree(n) while the IS/IX lock

93

implies an explicit read/write on an existing node in Subtree(n). Therefore

there is no conflict.

• lA vs. lB: Since the Insert-after and Insert-before operations run on

opposite sides of n, there is no conflict.

• lB vs. lB: Assuming nodes x and y are being inserted before z, these two

operations can be run concurrently because their respective arder isn't

important. Similar logic applies to lA vs. lA.

• D/RP vs. IS/IX: Since a Delete/Replace operation on n affects Subtree(n),

an operation warking on a descendent of n would be affected. Hence

these lock combinations do conflict.

• IX/IS vs. IX/lS: Intention locks on n do not conflict with each other because

they indicate the intent to read/write somewhere below n. If there are

conflicts, they will be detected further down the tree.

4.5 Handling Aborts

As support to LockX, we have implemented transaction aborts that rollback any

changes made by the transaction on the XML DOM tree. We explain the logic on

a high-Ievel; more details will follow in the next chapter.

Consider the following transaction T 1 where operations are interdependent:

94

1. FOR $b IN document("Books.xml")/Bib/book

WHERE $b/@year="1994"

UPDATE $b {INSERT <size>100 pages</size>}

2. FOR $b IN document("Books.xml")/Bib/book, $s IN $b/size

WHERE $b/@year="1994"

UPDATE $b { RENAME $s TO length}

3. FOR $b IN document("Books.xml")/Bib/book, $IIN $b/length

WHERE $b/@year="1994"

UPDATE $b { INSERT <award>Pulitzer Prize</award> AFTER $I}

Figure 19 Before T1

95

Figure 20 After T1

Figures 19 and 20 show Subtree(2) fram Figure 2 before and after T 1 's

execution. Now suppose that T1 has to abort after executing ail its operations. To

revert Subtree(2)'s state to the one in Figure 19, it becomes necessary to apply

undo operations for each of T1'S operations. The undo operations for T1 are

shown below in the same order as their original operations:

1. FOR $b IN document(UBooks.xml")/Bib/book, $s IN $b/size

WHERE $b/@year="1994"

UPDATE $b {DELETE $s}

2. FOR $b IN document("Books.xml")/Bib/book, $IIN $b/length

96

WHERE $b/@year="1994"

UPDATE $b { RENAME $1 Ta size}

3. FOR $b IN document("Books.xml")/Bib/book, $a IN $b/award

WHERE $b/@year="1994"

UPDATE $b { DELETE $a}

The order of execution is important because of the interdependencies between

the transaction's operations. For example if they are executed in the sa me order

as above, Subtree(15) would not be deleted because the first operation is not

able to find the size element to delete. Executing these operations in the reverse

arder gives us the correct outcome.

We would like to mention that the above explanation outlines conceptually what

must be do ne to implement aborts. Our implementation would not run the undo

operations shown above. This would require us to re-find the target nodes which

we already have and acquire unnecessary locks which could le ad to deadlocks.

Therefare, we apply undo operations directly on the relevant nodes. More details

will follow in the next chapter.

97

Chapter 5 LockX Implementation

5.1 High-Ievel overview

Figure 21 below shows the architecture of the LockX concurrency control

protocol. There are four major components which are described below:

(1)The Lock Manager is the interface to the client (the Query Execution Engine)

wishing to apply locking operations to nodes in the McXML DOM tree.

(2) The Lock Table is the component containing the data structures that hold the

various locks of each transaction. It provides various operations such as adding a

lock, removing a lock and converting locks.

(3) The Compatibility Checker is the component which defines the type of locks

allowed by LockX as weil as their compatibilities with each other.

(4) The Deadlock Detector builds a wait-for graph in memory and uses it to

identify and remove deadlocks.

The two other components displayed are:

(1) Lock List: This is a list of aillocks held on anode.

(2) Wait Queue: This is a queue where locks which are incompatible with the

existing ones in the Lock List have to wait.

98

3. Remove from
Lock List

Deadlock 1 i/
Detector li/ 1, Check for

Deadlock

! 2. Release lock

Lock Table
3b. Add lock

Lock List

Compatibility
Checker

2. Check

------.. Transaction
Process

Deadlock
--------~ Detector

Process

compatibility

Lock
Manager

1. Lock Addition
Request

3a. Add to Wait
Queue

Wait Queue

Figure 21 LockX Architecture

Figure 21 also gives a walkthrough of the LockX execution of a client request to

add a lock to a specifie node N in the XML DOM tree. The request is received by

the Lock Manager which forwards it to the Compatibility Checker. The

Compatibility Checker checks the lock's compatibility with the existing ones in Ns

Lock List. If it is compatible, the Lock Manager forwards the request to the Lock

Table which performs the addition to Ns Lock List. Otherwise, the lock must wait

99

in Ns Wait Queue for the conflicting locks to be removed from the Lock List.

Periodically, the Deadlock Detector checks its wait-for graph for a cycle in a

separate thread. If it finds one, it picks one transaction T in the cycle to abort and

sends a request to the Lock Table to release ail of Ts locks from the various

nodes it has accessed. When a transaction commits, it flushes from ail Lock Lists

any locks it ho Ids.

5.2 LockX Components

5.2.1 Lock Table

Each lock, stored by the Lock Table, is uniquely identified by the transaction

holding it and the node on which it has been applied. It is important to note, for

the rest of this thesis, that nodes and transactions are represented in LockX by

their unique identifiers Oid and Xid respectively. Therefore, locks are applied to

the Oids representing the nodes rather than the nodes themselves.

To ease the use of LockX in McXML, it was necessary to be able to retrieve ail

the locks held bya transaction easily. In addition, each node in the McXML DOM

tree will have a list of locks associated with it. Therefore we have implemented

the Lock Table as a combination of two hash tables: McTransHash and

McNodeHash. McTransHash stores for each transaction a list of aillocks held by

100

it on various objects. Each list is uniquely identified by the transaction's identifier

Xid. Each node in this list is a tuple of the form (Oid, LockType). The

McNodeHash stores for each node a list of ail locks as weil as the Xid's of their

owning transactions. Each object in the list is a tuple of the form (Xid, LockType).

Each list is uniquely identified by an Oid. Figures 22 and 23 show what the

McNodeHash and McTransHash could look like.

2

9

7

Figure 22 McNodeHash

2

3

Figure 23 McTransHash

101

The Lock Table also pravides API methods to the Lock Manager to modify these

data structures. It is possible to:

1 . Add a lock to a specifie node N for a specifie transaction T

2. Remove a lock fram N he Id by T

3. Convert a lock L 1 to L2 on N for T

4. Release ail locks he Id by T

5.2.2 Compatibility Checker

The Compatibility Checker is responsible for storing the compatibility matrix

derived in Chapter 4. This information is fed statically into LockX by the user. The

Compatibility Checker then uses this matrix to compare the compatibility of two

tuples of the form (LockType11 T1) and (LockType21 T2) received fram the Lock

Manager. If transactions T1 and T2 are the same, their locks are always

considered compatible.

5.2.3 Lock Manager

The Lock Manager is the component which interacts with the client of LockX. The

Lock Manager holds the logic to decide whether a transaction T1'S lock should be

granted immediately on anode N. It compares the requested lock L1 with ail the

102

existing locks on N using the Compatibility Checker. If L1 is compatible, it is

added to the Lock Table. Otherwise, the Lock Manager stores the tuple (Xid1, L1)

in a wait queue for N (where Xid1 is the transaction identifier for T1). This wait

queue stores tuples for ail transactions whose locks are incompatible with

existing locks on N. The LockManager stores in a hash table a wait queue for

each node in the McXML DOM tree. Each wait queue can be uniquely accessed

using the node's Oid which is a key in the hashtable.

Whenever the list of locks on anode N is updated, the waiting transactions check

whether their locks are now compatible. Only the transaction at the front of the

queue is able to leave when suitable conditions arise i.e. when its requested lock

on N is now compatible with those in Ns lock list. This FCFS (First Come First

Served) constraint is used to ensure fairness.

5.2.3.1 Circumventing Scheduling Fairness

ln some cases, the Lock Manager must insert new tuples at the front of the wait

queue rather than the end. Although this circumvents fairness, it is necessary to

avoid deadlocks. We explain the reasoning using the following example.

103

Lock List

(3, IX) 1 (5, IX)

(2, RR) 1 (4,RP)

Wait Queue

Figure 24 Undetected Deadlocks

Figure 24 shows a lock list on anode N as weil as its corresponding wait queue.

We can see that transactions 3 and 5 have an IX lock on N. RR and RP locks are

incompatible with IX and therefore transactions 2 and 4 have to be added to the

wait queue. Now suppose that transaction 3 wants to convert its IX lock to a 0

lock. The 0 lock is not compatible with the IX lock on N from transaction 5. We

therefore add transaction 3 to the wait queue as before. The wait-for graph after

this addition is also shown in Figure 24. According to this graph, there is no

deadlock because no cycles are present. However, since transaction 3 is behind

transactions 2 and 4 in the wait queue it is implicitly waiting for them. Adding

these edges to the wait-for graph above induces a cycle and hence a deadlock.

To avoid such undesirable situations, transactions with locks to convert are

added to the front of the wait queue. In the above situation this will ensure that

104

once transaction 5's IX lock on N is released, transaction 3 can access Ns lock

list and there are no unnecessary deadlocks.

5.2.4 Deadlock Detector

As shown in the previous section, the Deadlock Detector is responsible for

building a wait-for graph which is tightly synchronized with the Lock Table. It then

periodically detects cycles in this graph to identify deadlocks. The wait-for graph

is implemented as a list of transactions (TL) where each transaction stores its

adjacency list AL, i.e. ail the transactions it's waiting for.

5.2.4.1 Detecting cycles and transaction to abort

• Main Aigorithm

while(TL has more elements)

Pick next transaction Xid

Clear VL

If Xid Il NoCycleList

Result = Run "Traverse Adjacencies" Algorithm on Xid

If (Result is valid transaction id)

cali "Remove Transaction" Algorithm on Result

Eise

105

continue

• Traverse Adjacencies Aigorithm (Xid)

Add Xid to VL

Retrieve adjacency list (AL) of Xid

/f(AL is empty)

Add Xid ta NaCye/eUst

retum "No cye/e"

\:j e/ements E in AL

Ife VL daes nat cantain E)

E/se

/f (E E NaCyc/eUst)

Resu/t = "No cye/e"

E/se

Resu/t = run 'Traverse Adjacencies" A/garithm on E

/f(Resu/t is valid transaction id or E is fast e/ement in AL)

/f (Resu/t is "No cye/e")

Add Xid ta NaCyc/eUst

retum Resu/t

Retum E

106

• Remove Transaction Aigorithm (Xid)

Retrieve Adjacency List (AL) ot Xid

C/ear AL

while(TL has more e/ements)

Pick next transaction T trom TL

Retrieve AL ot T

If(AL contains Xid)

Remove Xid trom AL

Remove Xid trom TL

Figure 25 Deadlock Detector Aigorithms

Figure 25 above shows the three algorithms used by the Deadlock Detector to

identify and remove deadlocks. The Traverse Adjacencies algorithm is used to

identify cycles in the wait-for graph. It does this by keeping a global Visited List

(VL) of ail transactions that it has visited and doing a recursive depth-first search

on the adjacencies of the transaction passed in. If it comes acrass any

transaction twice, we know that there is a cycle. The Remove Transaction

algorithm rem oves this transaction fram the wait-for graph completely to break

the deadlock. The Main algorithm runs periodically and calls the Traverse

107

Adjacencies algorithm on each transaction until it receives a valid transaction ta

remove. It then calls the Remove Transaction algorithm on this transaction. A

global NoCye/eUst is kept for optimization purposes. If we have figured out that

no cycles can be found starting fram a certain node, we store this transaction

identifier in the NoCye/eUst. This ensures that we don't have ta run the Traverse

Adjacencies algorithm on the 8ame node multiple times unnecessarily.

Figure 26 Oeadlock Example

We will now illustrate our algorithms at work for an example. Figure 26 above

shows an example of a wait-for graph with a cycle. Assume the Main algorithm

picks transaction 1 to run Traverse Adjacencies on. Transaction 1 is added ta the

Visited Ust(VL) . Subsequently, Traverse Adjacencies is called recursively on

transactions 2 and 3 respectively. They are also added ta VL. Transaction 3 has

two adjacencies: 4 and 7. Assume 7 is picked first to be traversed. 7 will be

108

added to VL and finally Traverse Adjacencies will be called on 8 causing it to be

added to VL. Having not detected a cycle, the algorithm will backtrack calling

Traverse Adjacencies on 4 (second adjacency of 3). This will cause 1 to be

visited and therefore a cycle has been detected because 1 is already in VL.

Transaction 1 is removed from the wait-for graph and the deadlock is broken.

5.3 Implementing Transaction Aborts

ln the previous section, the transaction that is removed from the wait-for graph is

aborted by LockX. We now discuss how aborts are implemented in LockX.

Recall that an abort requires ail operations of a transaction that have already

been executed to be rolled back.

Special data abstractions have been created (one per update operation) to hold

ail the necessary information for an abort:

• Rename: RNNode holds a reference to the node N which has been

renamed, its old name as weil as the operation sequence number

corresponding to this operation.

• Replace: RPNode holds a reference to the node that got replaced ON, the

new node N and the operation sequence number.

109

• Delete: DNode contains a reference ta the deleted node N, its old parent p

and the operation sequence number. Since deleted nodes have a specifie

position in the children list of their parent nodes, we need to preserve this

ordering when we re-insert N. For this purpose when N is being deleted,

we take a snapshot of ail the siblings after N into a special list called

AfterList. This is necessary because any arbitrary number of the AfterList

nodes might be deleted/replaced before the abort is initiated (more details

follow in the algorithm).

• Insert-into/insert-before/insert-after: ANode stores a reference to the

added node N and the operation sequence number.

Transactions have to ho Id certain state information to perform the aborts. Firstly,

a list is created for each operation and the matching nodes from above are

stored (AddList for ANodes, De/List for DNodes etc). In addition, we keep track of

the last operation sequence number assigned (op_seq) for the transaction.

5.3.1 Abort Aigorithm

For(int i=op_seq; i>1; i--){

tempAddList = getAddList(i)

tempDe/List = getDe/List(i)

110

tempRnList = getRnList(i)

tempRpList = getRpList(i)

\j ANades in tempAddList:

Retrieve N's parent

Remave N From parent's child list

\j DNades in tempDelList:

Retrieve N's AfterList, ald parent p

If(AfterList is empty)

add N ta end af p's child list

Else{

If(at least ane nade in AfterList exists in DOM tree)

Insert N befare first nade in AfterList which still exists

Eise

add N ta end af p 's child list

}

\j RNNades in tempRnList:

Retrieve N's ald name

Set N's name ta ald na me

\j RPNades in tempRpList:

Replace N with ON in N's parent's child list

111

clearT emplis ts ()

}

Figure 27 Abort Aigorithm

Figure 27 above shows the pseudocode for how transaction aborts are

implemented in LockX. Based on the reasoning of section 4.4.1, we do the undo

operations in the reverse order using the op_seq variable. From each of the

operation lists (AddList, De/List, Rn Lis t, RpLisO, we extract the nodes relevant to

the current operation sequence number into temporary lists. In the case of added

nodes, we delete them fram their parent nodes' children lists. For deleted nodes,

the undo operation is slightly more complex because we need to insert them

back to their previous positions. We check the AfterList to see which of its nodes

have not been deleted/replaced from the McXML DOM tree. If AfterList is empty,

this node N was at the end of p's children list. We therefore insert N back in the

same position. If at least one node in AfterList exists, it implies that we insert N

before the first node in AfterList which still exists in p's children list. If ail the

nodes in the AfterList have been deleted/replaced, we insert at the end of p's

children list. This ensures that the previous ordering of N is maintained. For

renamed nodes, we set their names back to their old ones. Finally for replaced

112

nodes, we replace the current ones with the old ones. We continue this process

until we have gone through ail the undo operations in the reverse order.

5.4 Query Execution using LockX

Now that we have explained LockX in detail, we will describe how we have used

it in the Query Execution Engine to lock nodes appropriately for read queries.

Update queries work similarly.

5.4.1 Operation Modes

Since the query execution engine should acquire different kinds of locks

depending on the operation, we have created three different operation modes

which are explained below.

1. Read: The Read mode is used for read operations which acquire IS, S

and RR locks.

2. IWrite: The /Write mode is used on variables in an update operation

relative to whose bindings the actual nodes to update are found. This

mode only uses IX locks because the nodes it works on are ancestors of

the nodes being updated. For example assume $bi is bound to

document("books.xm/')/bib, $a is bound to $bi/book/

113

author and $a is being updated. The /Write mode would be applied to $bi.

3. D/RN/RP/II/IAlIB: An update mode is created for each of the update

operations. This mode is used on variables in an update query whose

binding are the nodes to be updated. Ancestors of updated nodes are IX

locked and the updated nodes themselves are locked appropriately

depending on the update mode. Assume $a is being renamed from the

previous example. Parent(author), Le. book, will be IX-Iocked and the

author element itself will be RN-Iocked.

5.4.2 Finding nodes with matching labels

The first step in query execution is to collect ail nodes with matching labels from

the McXML DOM tree. We will discuss the locking algorithms used for the three

different styles of query execution allowed by XPath expressions.

5.4.2.1 Preorder traversai

An example of this would be document("books.xmJ")//book. The search for book

nodes is done from the root of the books.xml DOM tree. In the McXML Query

Execution Engine implementation, a preorder tree traversai is used to retrieve

book nodes. We present in Figure 28 the locking algorithm used in the tree

traversai process to lock nodes appropriately.

114

'1/ nodes in tree-traversal search

Before reading next node N, acquire 15 lock

Matching labels in query:

If(matching label)

Else

Convert IS Lock to 5 Lock

While(ancestor has 15 lock && 15 value is false)

Set ancestor's IS value to true

Hold IS

Add false to N's IS value

If(leaving 5ubtree(N) && N has IS lock)

Check 15 value for N

If (fa Ise && N not pa th protected)

Remove IS lock

Else

Keep 15 lock

Figure 28 Preorder traversai

115

Figure 28 uses a boolean 18 value for every node traversed by the locking

algorithm while looking for a certain label. Whenever anode N with the correct

label is found, N's 18 lock is converted to 8 and ancestors(N) have their 18 values

set to true. A true value on anode N determines that the 18 lock should be not be

released on leaving Subtree(N) whereas a false value indicates the opposite.

This 18 value is used to ensure that ancestors(N) don't have their 18 locks

released by LockX which could expose Subtree(N) to conflicting concurrent

operations such as Replace and Delete. A mechanism called path protection is

used by the algorithm in Figure 28 to avoid removing locks that a transaction

wants to hold. For a detailed discussion on this mechanism and its motivation,

please consult section 5.4.3.

5.4.2.2 Absolute Path 8earch

An example of this would be document("books.xml')/Bib/book. Figure 29 shows

the locking algorithm for absolute path searches.

V node N per level

Before reading, acquire IS lock on N

Comparing label with same level of the path expression

If(matching)

116

Eise

Con vert IS lock ta S lock

Proceed ta next level

If(N is not path protected)

Remove IS lock on N

If(ancestors(N) not path protected)

ReJease S Jacks on ancestors(N)

Stop searching for matches

Figure 29: Absolute Path 8earch

There is no need for 18 locks or 18 values for nodes because we are doing an

explicit path search. The basic idea is ta search for ail nodes which match exactly

this path expression. Therefore, if any stage we know that the path will not be

fulfilled we release alliocks and stop searching.

For example, assume we are searching for Bib/book/size on the tree in Figure 2.

We compare the first level of the tree with 1. Since 1 has a matching label, we

convert the 18 lock we had acquired ta an S lock and proceed ta the next level.

We follow a similar procedure with 2 and 15 because they match the book label

117

and proceed to the third level of the tree. We acquire IS locks on this level and

search their labels. However, we find no size label. We therefore release ail IS

locks and move up the hierarchy to release the S locks on 1,2 and 15. We

immediately stop searching because the tree has no matches for this path

expression.

5.4.2.3 Update Queries

Update operations use similar algorithms but different lock types. Instead of IS

locks, IX locks are used before reading nodes. If anode has a label matching the

XPath expression, the IX lock is either converted to a specific update lock or left

as is depending on the operation mode. For the preorder traversai from the root,

we use an IX value for anode similar to the IS value in Section 5.4.2.1.

5.4.3 Matching predicates

An example of a predicate could be /titfe="Hello World". Once we have retrieved

the nodes with matching labels, we need to filter this list L to include only those

nodes which match the given search criteria in the WHERE clause. Figure 30

below describes the algorithm used for this purpose.

118

v node N found in L

If(WHERE clause requires new pa th searches From N)

Find new descendant nodes SN with matching labels in WHERE

clause

S lock these descendants SN

Check condition

If condition is matched

Else

Store path From N upwards to the root

. Release locks From SN upto but not including N

Add N to a Iist of nodes to discards locks From (Oiscard List)

Remove N trom L

v node N in Discard List

Release locks From N upwards to the root for nodes which are not path

protected.

Figure 30 Matching predicates

119

The algorithm in Figure 30 uses a concept of path protection for nodes which

match both an XPath expression and a search predicate. For such nodes, we

store the path leading to them from the document's root node. This means that

for each node along this path, we store the node's unique identifier along with the

lock type held by the transaction T. This is important because a transaction T

often has multiple operations. The locking algorithms attempt to release locks

immediately from nodes which don't match path or predicate criteria. However,

these locks may have been needed for a previous operation and therefore need

to be held till the end of the transaction according to 2PL behaviour. Path

Protection allows transactions to remember which locks should not be removed

from which nodes.

For nodes which don't match our search criteria, we remove them fram our list L

holding nodes with matching labels. We place them in a special Discard List DL.

For each node N in DL, we then remove locks from N up to the root if the node's

id and lock type have not been path-protected already.

For example, assume that 2 and 15 trom Figure 2 matched our path expression

Bib/book and we stored them in a list L. Now, we want to match the predicate

authorilast=''Abiteboul'' on them. First 6 and 9 are S locked but 9 does not match

120

the predicate so we release these locks. 2 is added to the Oiscard List and

removed tram L. Next, 19 and 22 are S locked and the predicate is checked.

Since it matches, we store the path tram 15 upto 1. Finally, we retrieve 2 tram

our Oiscard List. We remove 2's S lock and then move up to 1. However 1 has

just been path pratected, so we don't remove its S lock.

5.4.4 Returning Results

Based on our locking algorithms, the nodes which need to be returned by the

operation have already been S locked. We theretore convert the S locks to RR

locks and return the subtrees raoted at these nodes.

121

Chapter 6 Performance Evaluation

We now evaluate the performance of LockX by varying factors such as the

structure of the tree and the proportion of read operations in transactions. We

also run LockX on an auctioning application benchmark set up to simulate real

world usage conditions. Finally, we analyze how LockX performs compared to

the SnaXlOptiX [13] concurrency control protocols already implemented in

McXML.

6.1 Experimental Setup

For our experiments, we have used a Pentium 4 PC with a 3.4 GHz processor

and 1 Gigabyte of memory running Linux. The experiments of sections 6.2 and

6.3 were carried out using synthetic XML documents generated by the XML

generator located on the IBM alpha works website [15]. The experiments of

section 6.4 were performed using documents generated with the XMark

benchmark project [16].

We have four clients in the system that concurrently submit transactions so that a

desired system-wide throughput is achieved. Note that this is a closed client

model, i.e., a client can only start a new transaction when its previous transaction

122

has terminated. Each transaction has five operations which can be either queries

or updates. When a transaction aborts, the client keeps resubmitting it until it is

committed successfully. In the following experiments, we vary the throughput of

the system and then measure the corresponding response times and abort rates

of the transactions.

The abort rate is calculated as follows:

x = number of transactions aborled

y = number of transactions sent by clients

Aborl Rate = x/y * 100 (%)

For example, if a transaction is aborted three times before being executed

successfully by a client, it would count as four transactions with three aborted

resulting in a 75% abort rate.

The response time is the average time it takes for a transaction fram start to

finish on the McXML server. In the above case, the response time would include

the execution time for the three aborted transactions as weil as the successful

one.

123

For the following experiments, we assume that the Deadlock Detector checks for

deadlocks every 250 milliseconds. We say that LockX saturates at a certain

throughput x txns/sec if it cannot achieve a higher throughput based on the

transactional response times of the McXML Server.

6.2 Impact of Document Structure

The first experiment evaluates how the structure of an XML document affects

performance. Two synthetic XML documents were created using the XML

generator of IBM alpha works [15]. Documents were generated by specifying

three parameters; the scaling factor specifies the number of children of the root,

the depth determines the maximum number of levels in the XML treeand the

fanout specifies the average number of children of internai nodes. These three

parameters collectively determine the size of the document. In our documents,

except for the root (Ievel 1), the children of the root (Ievel 2) and the parents of

the leaves (level = depth-1), each inner node has the same number of children.

Furthermore the path length < path(n) is the same for allleaf nodes n.

124

Figure 31: XML tree (scaling factor = 3, depth = 4, fanout = 2)

Figure 31 shows a sam pie document with scaling factor 3, depth 4 and fanout 2.

The children of the root ail have the same element name b. Each of these

elements has one ID attribute. No other elements in the tree have an attribute.

Each element on level x, where 2~ x ~ (depth-2) has exactly two (fanou~ child

elements. Each child element has a different name. For instance, each element

with name b on level 2 has two children c and d. The structure of the tree makes

it easy to access specifie nodes since the children of the root have attributes

which can be used in predicate conditions in the query. The leaves of the tree are

text nodes indicated by the rectangular boxes.

125

Scaling Factor Depth Fanout Size

flat.xml 96 4 2 577

deep.xml 3 9 2 577

Table 11: File parameters

Table 11 shows our parameter configuration used to generate two documents;

f1at.xml has a fiat wide tree while deep.xml has a deep narrow tree. We chose

small documents to stress-test our protocols.

ln this experiment, each transaction has five update operations leading to 0%

reads. Each operation randomly selects one node of the document to update.

Running an automatically generated workload at high submission rates is difficult

when the structure of the document changes. Our benchmark therefore

combines ail types of update operations so that the end result of each transaction

is again the sa me document.

Figure 32 compares LockX's response times, with increasing throughput, for

fla t. xml and deep.xml. LockX has consistently higher response times for

deep.xml compared to f1at.xml. Although similar at the start, the gap between the

126

response times grows larger until response times for deep.xml are double those

for fla t. xml. This can be attributed to the high abort rates of deep.xml with

increasing throughput shown in Figure 33. Transaction aborts directly affect the

response times because aborted transactions have to be executed from the start

again.

ln LockX, transactions are only aborted when a deadlock has been detected. The

reason there are a high number of deadlocks for deep.xml in LockX is that the

scaling factor is 3. Therefore, there are only three main paths causing a lot of

conflicts between transactions acquiring locks. flat.xml has a scaling factor of 96

resulting in many different paths for the queries ta run on. flat.xml therefore does

not have any transaction aborts causing lower response times and a higher

saturation point of 32 txns/sec compared ta 24 txns/sec for deep.xml. Note that

for flat.xml with four clients experiencing a response time of around 122 ms, we

cannot achieve a higher throughput th an 32 txns/sec because we use a closed

client mode!.

127

Response Time vs. Throughput

180 .•............

160

140

/'
-+- LockX flat.xml //
__ LockX deep.xml .-.

~ 120 / 1

/ / en
E .,
E
;::
QI en
c:
o· a.
en
QI

II::

:,!:

$
cu

100

80

60

1

/ / ~ /7 ~
------~ 40

20

0

-

1

10 15 20 25 30 35

Throughput(txns/sec)

Figure 32: Response Time (Document Structure)

Abort Rate vs. Throughput

10 +-r------------,-------------------------. 7'''---------------j
-+- LocI<)(deep.xml

a:: 6 ----------------------- -------------------------1
1::
o .c «

4+-----------------------~------------------------------~

10 15

Throughput(txns/sec)

20 25

Figure 33: Abort Rate (Document Structure)

128

30

Figures 34 and 35 show again the response times for the two files with

increasing throughputs. However, this time we analyze where the execution time

is being spent. Wait is the average time spent by each transaction in wait queues

waiting for locks on nodes. Query is the average time spent by each transaction

on query processing in the McXML Query Execution Engine. Lock is the average

time spent by each transaction dealing with locks and LockX's various

algorithms.

The proportion of wait time increases from 0% to 23% and 9% to 51 % for flat.xml

and deep.xml respectively. The latter file has a consistently greater proportion of

response time spent on waiting because of the larger number of conflicts that

arise in a deep narrow tree.

deep.xmfs proportion of query time drops from 31 % to 19% whereas that for

flat.xml drops from 58% to 48%. flat.xml has a consistently greater proportion of

response time spent in Query state because the Query Engine has to evaluate

predicate conditions on 95 child elements of the root while only 3 evaluations are

needed for deep.xml.

129

Response Time vs. Throughput (flat.xml,read=O%)

140

120

100

"' E .,
80 E

j:: .,
U)

c::
0 60
Q.
U) .,
0::

40

20

4 12 16 20 24 28 32

Throughput(txns/sec)

Figure 34: Response Time breakdown (flat.xml)

Response Time vs. Throughput(deep.xml,read=O%)

180

160

140

"' 120
E .,
E 100
j:: .,
U)
c::
0

80
Q.
U) .,
0:: 60

40

20

0

4 12 16 20 24

Throughput(txns/sec)

Figure 35: Response Time breakdown (deep.xml)

130

6.3 Impact of Read Operations

ln this experiment, we analyze LockX's performance on deep.xml when the

percentage of read and write operations are varied. Results were similar for

f1at.xml in relative terms. As in the previous section, each update operation

randomly selects one node to update. Half of the read operations select a single

leaf node whereas the other half choose a random level in the tree, returning one

node of this level and its subtree.

Figures 36 and 37 compare LockX's performance for transactions with five

operations out of which 0% or 50% are read operations. Results are similar with

LockX (0% reads) having slightly higher response times and abort rates than

LockX (50% reads). The gap between the two is small at the beginning but

increases as we raise throughput. In the beginning, response times are similar

because there are a similar number of conflicts for low throughputs.

Once again, our two performance parameters are correlated. LockX with 0%

reads performs worse with respect to response times because there are more

transaction aborts. Conflicts and therefore deadlocks are more likely to appear

when ail operations are updates because update operations are more likely ta

conflict with each other. We must also consider the fact that ail conflicts do not

131

lead to deadlocks but add to the time each transaction spends in the wait queue

affecting the response times. If half of our operations are reads, there will more

operations which are able to execute concurrently and therefore less conflicts,

less deadlocks and better performance results.

180

160

140

Iii' 120
E .,
E 100
i=

'" CIl
:5 BO
a.
CIl

'" I:t: 60

40

20

a

Response Time vs. Throughput

/' U -+- LockX read=O% 1 / - LockX read=50%

/ ---'"

/ ~~"..

/ /
~: __ ;AI"

;::::::-- .. ---
-~- -------~---~~~-------~~-~-

a 5 10 15

Throughput(txns/sec)

20 2S

Figure 36: Response Time (Read Operations)

132

30

Abort Rate vs. Throughput

12

~ LockX read ~ 0%

-......... LockX read = 50%

J "t---~--------------+--------------~
< j

/'
~/

2 ----

~. ~ ..
0 .. ~~

0 5 10 15 20 25 30

Throughput(txns/sec)

Figure 37: Abort Rate (Read Operations)

6.4 The XMark Benchmark

We now analyze the performance of LockX on an established benchmark that

emulates a practical application. The XMark benchmark [16] provides XML

documents and queries for an auctioning application.

6.4.1 Auction XML document

Figure 38 shows the structure of the Auction XML document we used in our

experiments. Elements are shown in rounded rectangles, attributes are squares

and text nodes are rectangles. The site root element encompasses various

133

information needed for an auctioning application. Firstly, information about the

various users of the system is stored in person elements. The open_8uction

element stores a list of ail open auctions in the system. Each open_8uction

element stores information about the bidder and item of interest. Finally, each

auctioning item is hierarchically organized based on the continent it belongs to.

For detailed schema information, please refer to work described by Schmidt et al.

[16].

6.4.2 XMark Queries

ln our experiments, we use the following subset of the queries proposed by

XMark [16]. Sardar [13] has created corresponding query statements for each of

the following queries, and we use those modified statements.

• Q1: Return the name of the person with ID 'personO' registered in North

America

• Q2: Return the initial increases of ail open auctions

• Q5: How many sold items co st more than 40?

• Q6: How many items are listed on ail continents?

• 07: How many pieces of prose are in our data base?

• 08: List the names of persons and the number of items they bought. Joins

person, closed_auction.

134

• 013: List the names of items registered ln Australia along with their

descriptions.

• 015: Print the keywords in emphasis in annotations of closed auctions.

• Q18: Convert the currency of the reserve of ail open auctions to another

currency.

• Q19: Give an alphabetically ordered list of ail items along with their

location.

• 020: Group customers by their income and output the cardinality of each

group:

• QN: This query is not part of the original XMark [16] benchmark but we felt

this would be an interesting query to test the system. It lists ail items that

belong to a certain category.

135

<site>
<people>

<person id = "l"> ... </porson>

</peolpe>
<open_auctions>

<open_uuction> ... </open3uction>
<open_uuction>

<bidder>
<personrefperson"" "1"/>

</bidder>
<itemref item == "1"1>

</open _ auction>

</open_ductions>
<ragions>

<europe>, .. </europe>
<asia>

, ...
/

/
/

1
site

<item id "" "1 "> /
<description> A Gold \Vatch </descriptiol,)'>

/

"

regions
""---:C~-~- <

/./,,/'''

i

<l'item> /
<item id == "2"> ... <ji~~m?' t
... ",,5) "" """"'\

</asia> ropen auctions '
r-l /

t'i4')--~-", r' africa ',1
\ 'r'" .,/'

! " \",

</rogions>

</site>

f

. ~.
i ,

i , l ,
i

!

/
/

(is)- ,
f' item
\.

(if)
1 description
" ,

(i§~)-, --'-----,
A Gold Watch

Figure 38: Auction XML Document

136

'" /

6.4.3 Update Operations

XMark does not contain any update operations. The refore , Sardar [13] has

proposed a set of suitable update operations as an extension to XMark. Using

the XQuery update extensions [3], Sardar [13] has created corresponding update

statements for each of the following:

• U1: Create a new Person. This update operation adds a new person to the

XML document as a child of site/people/.

Subtree(person) will contain important information about a person such as

his/her name, e-mail, address, age and categories he/she is interested in.

• U2: Create a new Item. In this update, we create a new item and create an

open_auction for thatitem because it is assumed that the item is being

created to put on auction. The item is created as a child of

site/regions/(any of the six regions)/. It contains important information

about the item such as its name, category it belongs to, location, shipping

method, description, quantity and a reference to the owner. As part of the

same operation, a new open_auction is created for this item as a child of

site/open_auctions/. The new open_auction has a reference to the item

and a reference to the seller of the item, the initial priee, the reserved priee

and other time relevant information like the closing time of bidding on this

item.

137

• U3: Bid on an item. A person can bid on an item that is still open for

auction, i.e., has an open_auction that refers to it. When a person bids on

an item, information such as bidding time, increase in price and reference

ta bidder are added ta the open_auction corresponding to that item. The

new price of the open_auction is updated and a reference to this

open_auction is also added to the person who bid on the item.

• U4: Close an open 8uction. This operation simulates the c10sing of an

open_8uction. When the closing time of an open_auction comes it is

removed fram the open_auctions subtree and is. placed in the

c1osed_8uctions subtree. A person can no longer bid on this item.

6.4.4 Evaluation

We now compare the performance of LockX for two different sizes of the Auction

document. XMark allows its users to create documents of different sizes by

specifying a factor f We generated documents of sizes 557KB (f = 0.005) and

207KB (f=0.002). Since in an auctioning site, the number of queries is usually

more than the number of updates, we use transactions with 5 operations where

75% are queries. We give each update operation a different prabability ta be

called considering that some operations are more Iikely to occur than others (e.g.

138

bidding is more likely than creating a new item). Table 12 illustrates the likelihood

of each operation being chosen by a transaction.

Q1 Q2 Q5 Q6 Q7 Q8 Q13 Q15 Q18 Q19 Q20 QN U1 U2

6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 1.25 2.5

Table 12: Probability (%) of occurrence of each operation

Response Time vs. Throughput

200rr---------,----------------~--------_7~------~

--LockX f = 0.005

Ci) LockX f = 0.002

~150~========~----------~~----~~--------------~ Q)

E
j::
Q)
II)
c
o
~100r-------------~~--~--------------------------~

f!i

50 ~--_.

Or---------~--------~--------~--------~------~
o 5 10 15 20 25

Throughput(txns/sec)

Figure 39: Response Time (XMark)

139

U3 U4

18.75 2.5

Abort Rate vs. Throughput

--LockX f = 0.005

--- LockX f = 0.002

4r-----------------------------~--_7------------~

-----------+~----------------~
-E-----------~

1

o 10 15 20 25

Throughput(txns/sec)

Figure 40: Abort Rate (XMark)

Figures 39 and 40 show the response times and abort rates for LockX with

increasing throughput on two different document sizes. The response times for

both document sizes are similar with f = 0.005 having slightly higher times. This

higher response time for the larger document is because more time will be spent

traversing and acquiring locks on the larger tree. There could also be greater

waiting times because each query is potentially waiting for conflicting locks to be

released on more nodes. The abort rates are low and comparable to each other.

They are low because 75% of the operations are reads and therefore there is a

140

lower probability of conflicts between transactions compared to previous

experiments.

Comparing LockX from this experiment with results for deep.xml (read=O.5), we

see that LockX on the Auction document has worse response times for the same

throughput range (4-20 transactions/sec) even though these experiments had

extremely low abort rates. We feel that this is because the structure of

Auction.xml is more complex making query execution a more expensive process.

ln addition, read queries (75% of our operations on the Auction document) are

more complex than update queries because our update queries are generally

based on simpler path and predicate searches.

Here are examples of read and update queries run on the Auction XML

document:

• FOR $a in document(Hauction.xml")/site, $c in $a/people/person, $d in

$c/watches

WHERE $c/@id = H person35"

UPDATE $d { INSERT <watch open_auction="open_auction20"></watch>

}

141

• FOR $p in document(Uauction.xml")/site

RETURN $p//description, $p//annotation, $p//email

Whereas the update query uses a simple absolute path and predicate search to

identify the right watches element to insert into, the read query retrieves ail

descrÎption, annotation and emaÎl elements anywhere below the root site

element. The latter query is clearly the more expensive operation not only in

terms of query execution but also in terms of wait time because each node has to

be locked before being read. Such read queries with expensive preorder tree

traversais are used more often in this experiment than in the previous ones.

6.5 LockX vs. SnaX/OptiX

ln this section, we compare the performance of our locking-based protocol LockX

with the two snapshot-based protocols SnaX and OptiX [13]. Although LockX

generally performs worse than SnaX and OptiX, the degree of performance

difference varied based on the experiment type. We highlight three cases; one

where LockX performs significantly worse and two where its performance closely

approaches the other two.

142

6.5.1 Flat (Worse)

Figure 41 compares the response times of LockX with those for OptiX and SnaX

on flat.xml. Response times for LockX are on average twice as high as those for

the snapshot-based protocols. With a scaling factor of 96, there are many

different paths in this tree causing few conflicts for LockX resulting in low

response times. However there is still the overhead of locking nodes for reads

and waiting for conflicting locks to be released which SnaX and OptiX don't have.

The difference between the response times of LockX and SnaXiOptiX is less

than a factor of two in the beginning but increases to a maximum factor of almost

four. This is because as the throughput increases, the probability that different

transactions are operating on the same paths increases causing more conflicts

for LockX.

LockX has no aborts whereas SnaX and OptiX reach a maximum abort rate of

20% at a throughput of 40 transactions/second as shown in Figure 42.

SnaXiOptiX have higher abort rates because transactions perform operations on

their snapshots of the XML tree leaving the validation tilliater at commit time.

143

Response Time vs. Throughput

140T·_·_········-_·-··············_·····_·····-···--··· - - - ... -.... ,

120 t--,---------,------------------------F---.- .. -.-.-----... ------.
-+- LockX flat.xml
--- OptiX flat.xml

100 SnaX flat.xml .,
E
Qi' E 80+-------------------------------~~------------------,&~------~

i= ., .,
c:
o 60+-----------------------__ ~----------------------_1~----------~
c.. ., .,
0::

40+---------------·--------

20+--~

0+-----,------r----~---~-----_r-----~----r_----_r----__4

o 5 10 15 20 25 30 35 40 45

Througput(txns/sec)

Figure 41: Response Time

Abort Rate vs. Throughput

25,--·· .. --·------------------------··----···---------·-----···--------------~

20+-r-~~~--~,---~----~
-+- OptiX flat.xml
........ SnaX fiat.xml

~ 15+---~~L-------~

l
1::
o
~ 10+--

5 t-------

o+---~~--~~----==r=====~~--~------~~--~----~----~
o 5 10 15 20 25 30 35 40 45

Throughput(txns/sec)

Figure 42: Abort Rate

144

6.5.2 XMark Benchmark (Worse)

We now compare LockX's performance with SnaX and OptiX on the Auction

document with f = 0.002. Figure 43 compares the response times of the three

with increasing throughput. Results are similar to the last section with LockX

performing worse in response times by an average factor of 2. SnaX performs

the best because it does not consider read-write conflicts and there is a low

probability of write-write conflicts because of the large proportion of read

operations. OptiX performs second best because it also does not have to apply

read locks but it considers read-write conflicts. LockX's response times are

slightly higher than those of the other two because read locks are compatible so

the time spent by a transaction waiting is only because of read/write lock

incompatibilities. These are less likely because the Auction tree has a moderate

number of distinct paths. Because of the higher response times, LockX saturates

at a throughput of 20 transactions/sec compared to 32 transactions/sec for

OptiXlSnaX.

145

250

200

"' §. 150

'" E
i=

'" U)

" o
~ 100

'" 0::

50

o
o

Response Time vs. Throughput

-+- LockX f = 0.002 / ---SnaX f = 0.002

......... OptiXf=0.002

7
/ ~

5 10 15 20 25 30

Throughput(txns/sec)

Figure 43: Response Time

6.5.3 Deep (Significantly Worse)

35

Figure 44 shows response times of LockX, OptiX and SnaX with increasing

throughput on deep.xml with a read probability of 0%. LockX performs worse by

an average factor of nine over its throughput range of 4-24 transactions/sec.

The gap between LockX and SnaXiOptiX response times widens from a factor of

five to a maximum of sixteen with increasing throughput.

146

We believe that SnaX and OptiX perform significantly better because of the

snapshot-based reading mechanism and the special structure of the tree.

Whereas SnaX and OptiX read the latest committed version of anode, LockX

has to acquire a lock before reading any node. For read operations which do

preorder tree traversais on a deep narraw tree, this can create a lot of conflicts

with locks fram write operations because there are only three main paths.

Therefore waiting times can be a significant overhead for LockX causing the

relatively high response times. OptiX/SnaX consequently saturate at a much

higher thraughput of 72 transactions/sec compared to 24 transactions/sec for

LockX.

As described earlier in Section 6.2, there is a high likelihood for deadlocks using

LockX on deep.xml. During the tree traversai for path/predicate searches, LockX

acquires and releases many short locks. These locks are for nodes which don't

match our search criteria; we don't follow a strict two-phase locking procedure for

them. LockX can get into many artificial deadlocks while trying to acquire these

short locks for deep trees. We believe this is the reason for LockX's higher abort

rates for the sa me throughput range as shown in Figure 45.

147

Response Time vs. Throughput

180

160

140 1-·------
-+- LockX deep.xml

-+--OptiX deep.xml

li) 120

+---------;-+------------------1--6-snax deep.xml -,

J E
Qi'
E
i=
Il)
1/)
c:
0
C-
I/)
Il)

a::

100

80

60

----;-+/---~--~----_._-~--~:
;
;

J
~ ----------

40 +------------.--------------------~ ~-- ---i

20r:=========~~F--/-[
o+-------~------~----~----~----~----~-----~------~

o 10 20 30 40 50 60 70 80

Throughput(txns/sec)

Figure 44: Response Time

Abort Rate vs. Throughput

10~-~~~-~r_---~-------------------~
-+- LockX deep.xml

-+-- OptiX deep.xml

--6- SnaX deep.xml

8~========~-_+~---------------~
~ o

l
a:: 6
t
o .c
0(

4 ----------+------------:/"------------------J

2+-------r------~-----~~------------~

o+---~---~ __ ~-----~--------~-------~----------~--------~
o 10 20 30

Throughput(txns/sec)

40

Figure 45: Abort Rate

148

50 60

6.6 Contribution

As expected both snapshot-based protocols (SnaX, OptiX) performed better than

LockX because they do not require read locks but instead provide transactions a

committed snapshot of the nodes. However, LockX only has approximately

double the response times for real-life XML documents, such as the Auction

document in the XMark Benchmark [16], even though it has considerable

execution overhead in wait times. For fiat documents, response times for LockX

are also double those for SnaX/OptiX. However, LockX has no transaction aborts

whereas abort rates for OptiX/SnaX go as high as 20%. LockX has nine times

higher response times than SnaX/OptiX in deep narrow trees because of the

large number of conflicts among transactions operating along the same paths

including a rtifi ci a 1 ones on non-suitable nodes.

We feel that our contribution to the native XML database community is valid for

the following reasons:

• For real-life XML documents, such as the Auction document, response

times approach closely those of the snapshot-based protocols which have

no locking/waiting overhead. Our abort rates are generally lower than

those for SnaX/OptiX which is an important transactional concern for

users.

149

• LockX can easily be implemented into the query execution engine of most

available native XML database systems. On the other hand, OptiX and

SnaX require a complete multi-version infrastructure to be implemented

beforehand for the XML tree model.

• The current limitations of LockX (avoiding phantoms and enabling

serializability) are open problems even in the context of relational

database systems.

150

Chapter 7 Conclusion

ln this thesis, we have presented a locking-based concurrency control protocol

called LockX. LockX was designed to take the semantics of McXML's read and

write operations into account to maximize concurrency. It is pluggable into any

native XML database which uses a tree model for representing XML data. LockX

is easily tuneable to handle different lock types and compatibility information.

Oeadlocks can easily be detected and removed based on cycles in the wait-for

graph.

A performance analysis is done to judge the impact of document structure and

read operations on LockX's response times and abort rates. LockX generally

performs better on flatter trees. The higher the proportion of read operations in a

workload, the lower the response times and abort rates because there are less

conflicts between transactions. For fiat files, the majority of the response time is

spent by the Query Execution Engine to identify the required nodes. For deep

narrow files at high throughputs, the majority of the response time is spent by

transactions waiting to acquire locks on nodes. The locking overhead can

become significant. Finally, lock contention and deadlocks are more likely on

deep trees than bushy ones. LockX performs worse than snapshot-based

151

protocols in terms of response times but has generally lower abort rates and can

be used with the existing XML database system in place.

McXML is still in its early stages and there is a lot of room for improvement.

Some of the areas where future work can be do ne are:

• LockX: LockX has to acquire a lot of short locks on nodes which don't

match the search criteria. If our locking mechanism was more selective in

path/predicate searches, it would improve performance results.

• Query Execution Engine: McXML has a slow query execution engine. It

can be optimized a lot to reduce the number of stages involved in

executing a query successfully. An index manager can also be

implemented.

• Labelling: A labelling mechanism should be implemented to ease the

identification of ancestor/descendent relationships among the nodes.

• XQuery: McXML only supports a small subset of XQuery at the moment.

To make it more powerful, the implementation of XQuery can be made

more comprehensive.

• Page Unloading: McXML loads XML documents lazily Le. a page is only

loaded from disk when the subtree on it needs to be traversed. Similarly,

152

there should be unloading of unneeded pages so complete trees are not

kept unnecessarily in main memory.

• Databases presumably run for long periods of time and the issue of Xids

and Oids being exhausted needs to be addressed by McXML.

153

LIST OF REFERENCES

[1] A.B. Chaudhri, A. Rashid, and R. Zicari. XML Data Management. Native XML

and XML-Enabled Database Systems. Addison-Wesley, first edition, 2003.

[2] J. Wu. Updating and indexing XML data. Master's thesis, McGili University,

Canada, 2004.

[3] 1. Tatarinov, Z. G. Ives, A. Y. Halevy, and O.S. Weld. Updating XML. In

SIGMOD International Conference on Management of data, 413-424, 2001.

[4] R. Suchak. A page based storage manager for a native XML database.

Master's thesis, McGili University, Canada, 2005.

[5] T. Fiebig, S. Helmer, C.C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, and

T. Westmann. Anatomy of a native XML base management system. In

International Journal on Very Large Data Bases (VLDB), 11 (4):292-314, 2002.

[6] World Wide Web Consortium (W3C).

http://www.w3c.org

154

[7] DB2 Universal Database.

http://publib.boulder.ibm.comlinfocenter/db2Iuw/v8/index.jsp?topic=/com.ibm.db2

.udb.doc/admin/c0005267.htm

[8] S. Dekeyser, J. Hidders, and J. Paradaens. A transaction model for XML

databases. World Wide Web (W3C), 7(1):29-57,2004

[9] J. Gray, R. A. Lorie, and G.R. Putzolu. Granularity of locks and degrees of

consistency in a shared data base. In International Conference of Very Large

Data Bases (VLoB 1975),428-451, 1975.

[10] M. P. Haustein, T. Harder. A Lock Manager for Collaborative Processing of

Natively Stored XML Documents. In Brazilian Symposium on oatabases (SBBo),

230-244,2004.

[11] S. Helmer, C.C. Kanne, and G. Moerkotte. Lock-based Protocols for

Cooperation on XML Documents. In International Conference on Oatabase and

Expert Systems Applications (oEXA) , 230-234, 2003.

155

[12] R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and

Optimization in Semi structured Databases. In International Conference on Very

Large Data Bases (VLDB 1997),436-445,1997.

[13] Z.M. Sardar. Snapshot based Concurrency Control Protocols for XML.

Master's thesis, McGili University, Canada, 2005.

[14] H. Berenson, P.A. Bernstein, J. Gray, J. Melton, E. J. O'Neil, and P.E.O'Neil

A Critique of ANSI SQL isolation levels. In SIGMOD International Conference on

Management of Data, 1-10, 1995.

[15] A. L. Diaz and D. Lovell. XML generator, 1999.

http://www.alphaworks.ibm.com/tech/xmlgenerator

[16] A. Schmidt, F. Waas, and M. Kersten. XMark: A benchmark for XML data

management. In International Conference on Very Large Data Bases (VLDB

2002), 974-985, 2002.

[17] Liam Quin: Extensible Markup Language (XML) 1996-2003.

http://www.w3.org/XML

156

[18] A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay, J. Robie and

J. Siméon. XML Path Language (XPath) version 2.0. World Wide Web

Consortium (W3C) Recommendation, June 2006.

[19]S. Boag, D. Chamberlin, M. F. Férnandez, D. Florescu, J. Robie, and J.

Siméon. XQuery 1.0: An XML Query Language. World Wide Web Consortium

(W3C) Recommendation, June 2006.

[20] S. Abiteboul, D. Quass, J. McHugh, J. Widom and J. L. Wiener. The Lorel

query language for semistructured data. In International Journal on Digital

Ubraries, 1 (1): 68-88, April 1997.

[21] H. V. Jagadish, S. AI-Khalifa, A. Chapman, L.V.S. Lakshmanan, A. Nierman,

S. Paparizos, J.M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.

TIMBER: A native XML database. In International Journal on Very Large Data

Bases (VLDB), 11 (4):274-291,2002.

157

[22] T. Grabs, K. Bohm and H-J. Schek. XML TM: Efficient Transaction

Management for XML documents. In International Conference on Information

and Knowledge Management (e/KM), 142-152,2002.

158

