
i 

 

 

 

 

Cache aware load balancing for scaling of Multi-Tier 

Architectures 

 

Neeraj Santosh Tickoo 

  

Master of Science 

 

School of Computer Science 

McGill University 

Montréal, Québec, Canada 

January 2011 

 

A thesis submitted to McGill University in partial fulfillment of the 

requirements of the degree of Master of Science in Computer Science 
 

 

Copyright © 2011 by Neeraj Santosh Tickoo 

All rights reserved 

 

  



ii 

 

ACKNOWLEDGEMENTS 

 

This thesis would not have been possible without the able guidance and support of 

several individuals who contributed and offered their valuable assistance in the 

preparation and completion of this study.  

First and foremost, I would like to extend my sincerest gratitude to my supervisor Dr. 

Bettina Kemme for giving me an opportunity to work on this thesis. This work would not 

have been possible without her ideas, opinions, guidance and financial support.  

I would also like to thank the School of Computer Science Help Desk team, which 

helped me in setting up the cluster. Special thanks to Andrew Bogecho and Ron Simpson 

who helped me in the critical stages of the system set up. I would also like to thank 

Kamal Zellag and Shamir Ali for our insightful discussions.  

Finally, I would like to thank my family, which has supported me since I came to Canada 

and steadily gave me moral support throughout my study. 

 

 

 

 

  



iii 

 

ABSTRACT 

 

To keep pace with the increasing user base and resulting processing requirements, 

enterprise and e-commerce applications need constant innovation in their application 

design and system architecture. Scalability and availability are the basic principles that 

must be adhered to by the businesses if they want to retain and expand their customer 

base. The most popular design which provides for both availability and scalability is 

when the application tier is replicated. In it, all the application servers share a single 

database, and to prevent the database from becoming the bottleneck in a high volume 

scenario, caching layers are deployed in each application server. By serving requests 

from the local cache instead of going to the database, response times are reduced and the 

load at the database is kept low. Thus, caching is a critical component of such 

architectures. In this thesis, we focus on object caches at the application tier, which cache 

Java EE entities. Our target applications are e-commerce applications which are database 

driven and are resource intensive. 

In this thesis we design a cache aware load balancing solution which makes effective 

usage of the caching layer. This results in a more scalable application tier of a multi-tier 

architecture. Most of the load balancing solutions present in literature are cache agnostic 

when making the dispatching decision. Example solutions like round-robin cause 

duplication of the same cache content across all the application servers. In contrast, we 

present a cache aware load balancing algorithm, which make best possible effort to 

prevent the duplication of cached entries across the different caches in the cluster, 

enabling us to make a more efficient usage of cache space available to us. This in turn, 

results in less cache evictions. We also extend our cache aware load balancing algorithm 

to take into account the dynamic nature of the application server cluster where the nodes 

can come up and shutdown as the system is running. The evaluation of our 

implementation shows improvements in response time and throughput of a well known 

e-commerce benchmark compared to existing strategies. 



iv 

 

ABRÉGÉ 

 

Afin de suivre le rythme croissant d'utilisateurs ainsi que les demandes de traitements 

résultants, les applications entreprise et de commerce électronique ont besoin 

d'innovations régulières dans leur conception et architecture. L'extensibilité ainsi que la 

disponibilité sont primordiales pour tout type d'affaires ayant intérêt à garder, voir même 

étendre, leur clientèle. L'architecture la plus populaire qui fournit en même temps 

l'extensibilité et la disponibilité est celle pour laquelle le serveur d'applications est 

répliqué. Une architecture au niveau de laquelle les serveurs d'applications partagent une 

seule base de données et chacun d'entre eux utilise des couches de cache afin de réduire 

la charge sur la base de données. En servant les requêtes à partir du cache local, au lieu 

de les servir à partir de la base données, les temps de réponses sont réduits et la charge de 

traitement de la base de données est maintenue à un bas niveau. Ainsi, la mise en cache 

est une composante critique pour ce type d'architectures.  

Dans cette thèse, on se concentre sur la mise en case d'objets au niveau du serveur 

d'applications, qui met en cache des entités Java EE. On vise principalement les 

applications de commerce électroniques qui sont basées sur les bases de données et qui 

demandent assez de ressources. Dans cette thèse, nous concevons une solution de 

balancement de la charge qui tient en compte la mise en cache, ce qui rend l'utilisation de 

la couche du cache assez effective. Ceci résulte en un serveur d'applications assez 

extensible pour les architectures multi-tier. La plupart des solutions de balancement de la 

charge ne tiennent pas en compte la mise en cache lors de la distribution de leur requêtes. 

Par exemple des solutions comme le round-robin entraînent la duplication du même 

contenu du cache à travers tous les serveurs d'applications. En revanche, nous présentons 

un algorithme de balancement de la charge qui tient en compte la mise en cache et qui 

fait de son mieux pour éviter la duplication des entrées mises en cache à travers tous les 

caches distribués. Ceci nous permet d'utiliser d'une façon efficace l'espace de cache 

disponible et de réduire le nombre d'expulsions d'entités à partir du cache. Au niveau de 

notre algorithme de distribution de la charge, et qui tient en compte la mise en cache, 



v 

 

nous prenons en considération le nombre dynamique des applications serveurs. En fait, 

lors de l'exécution d'un système réel, les noeuds de serveurs peuvent joindre ou quitter le 

système à n'importe quel moment. L'évaluation de notre implémentation montre des 

améliorations en terme de temps de réponse et de débit de requêtes pour un benchmark 

bien connu, comparativement à des stratégies existantes.  

 

 

 

 

 

  



vi 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ................................................................................................ ii 
 

ABSTRACT ....................................................................................................................... iii 
 

ABRÉGÉ ............................................................................................................................ iv 
 

LIST OF FIGURES ......................................................................................................... viii 
 

LIST OF TABLES ............................................................................................................. ix 

 

1 Introduction................................................................................................................... 1 

2 Background ................................................................................................................... 5 

2.1 Multi-Tier Architecture ......................................................................................... 6 

2.1.1 Java Enterprise Edition (Java EE) Architecture ............................................. 8 

2.1.1.1 Client Tier ................................................................................................ 10 

2.1.1.2 Web Tier ................................................................................................... 10 

2.1.1.3 Business Tier ............................................................................................ 10 

2.2 Scalability ............................................................................................................ 13 

2.3 Load Balancing ................................................................................................... 17 

2.3.1 Content Blind Load Balancing ..................................................................... 19 

2.3.2 Content Aware Load balancing ................................................................... 20 

2.4 Caching ................................................................................................................ 21 

2.4.1 Challenges of caching in horizontally scaled multi-tier architectures ......... 23 

2.4.2 Caching Architecture in Java EE ................................................................. 24 

2.5 Related Work ....................................................................................................... 26 

3 Cache Aware Load Balancing .................................................................................... 30 

3.1 Fixed Cluster ....................................................................................................... 31 

3.1.1 Identifying different types of user requests ................................................. 32 

3.1.2 Identifying the working sets of user requests .............................................. 33 

3.1.3 Grouping requests ........................................................................................ 35 



vii 

 

3.1.4 Forwarding requests ..................................................................................... 38 

3.1.5 Replication ................................................................................................... 39 

3.2 Dynamic Cluster .................................................................................................. 39 

3.2.1 Load Distribution within an Application server Group ............................... 41 

3.2.1.1 Load Calculation ...................................................................................... 41 

3.2.1.2 CPU Usage Load Metric .......................................................................... 43 

3.2.1.3 Busy Connector Thread Load Metric ....................................................... 43 

3.2.2 Application Server Group Configuration ..................................................... 44 

3.2.2.1 Calculating and Comparing Group Loads ................................................ 44 

3.2.2.2 Addition of node ....................................................................................... 46 

3.2.2.3 Re-allocation of Nodes among application server groups........................ 46 

4 Performance Results and Evaluation .......................................................................... 49 

4.1 Experiment Test-bed ........................................................................................... 49 

4.1.1 Cluster Specification .................................................................................... 49 

4.1.2 System Architecture ..................................................................................... 50 

4.1.3 Benchmark ................................................................................................... 52 

4.2 Evaluation and Results ........................................................................................ 55 

4.2.1 Methodology ................................................................................................ 56 

4.2.2 Results .......................................................................................................... 59 

4.3 Summary ............................................................................................................. 69 

5 Conclusion and Future Work ...................................................................................... 71 

5.1 Conclusion ........................................................................................................... 71 

5.2 Future Work ........................................................................................................ 72 

6 Bibliography ............................................................................................................... 74 

 

 

 

 



viii 

 

LIST OF FIGURES 

 

Figure 2-1 - Client/Server Architecture ............................................................................... 6 

Figure 2-2 - 3-Tier Architecture........................................................................................... 7 

Figure 2-3 - Java EE architecture ......................................................................................... 9 

Figure 2-4 - Object to Relational Mapping ........................................................................ 12 

Figure 2-5 - Vertical Scaling .............................................................................................. 14 

Figure 2-6 - Horizontal Scaling of the application tier and the database tier .................... 15 

Figure 2-7 – Java EE Caching Architecture ...................................................................... 26 

Figure 2-8 - LARD ............................................................................................................. 27 

Figure 2-9 - Content Blind Load Balancing – Round Robin Scheduling .......................... 27 

Figure 3-1 - Cache Aware Bin Packing Algorithm ........................................................... 38 

Figure 3-2 - Load Balancing algorithm for a dynamic cluster ........................................... 45 

Figure 3-3 - Watchdog Thread Algorithm ......................................................................... 48 

Figure 4-1 - Test-bed Architecture..................................................................................... 52 

Figure 4-2 - Transaction Response Times ......................................................................... 64 

Figure 4-3 - Throughput ..................................................................................................... 65 

Figure 4-4 - Average Response Time ................................................................................ 66 

Figure 4-5 - DB network I/O.............................................................................................. 67 

Figure 4-6 – Comparison of response time with varying number of clients...................... 70 

Figure 4-7 - Comparison of throughput with varying number of clients ........................... 70 

 

 

file:///C:/Users/asahi/Desktop/Thesis%20Corner/Thesis%20WriteUp/Writeup/Final%20Working%20Copy/Final/Thesis-For%20Submission%20-%20Editing16Jan%20-%20Copy.docx%23_Toc282970807
file:///C:/Users/asahi/Desktop/Thesis%20Corner/Thesis%20WriteUp/Writeup/Final%20Working%20Copy/Final/Thesis-For%20Submission%20-%20Editing16Jan%20-%20Copy.docx%23_Toc282970810
file:///C:/Users/asahi/Desktop/Thesis%20Corner/Thesis%20WriteUp/Writeup/Final%20Working%20Copy/Final/Thesis-For%20Submission%20-%20Editing16Jan%20-%20Copy.docx%23_Toc282970811
file:///C:/Users/asahi/Desktop/Thesis%20Corner/Thesis%20WriteUp/Writeup/Final%20Working%20Copy/Final/Thesis-For%20Submission%20-%20Editing16Jan%20-%20Copy.docx%23_Toc282970812
file:///C:/Users/asahi/Desktop/Thesis%20Corner/Thesis%20WriteUp/Writeup/Final%20Working%20Copy/Final/Thesis-For%20Submission%20-%20Editing16Jan%20-%20Copy.docx%23_Toc282970813
file:///C:/Users/asahi/Desktop/Thesis%20Corner/Thesis%20WriteUp/Writeup/Final%20Working%20Copy/Final/Thesis-For%20Submission%20-%20Editing16Jan%20-%20Copy.docx%23_Toc282970814
file:///C:/Users/asahi/Desktop/Thesis%20Corner/Thesis%20WriteUp/Writeup/Final%20Working%20Copy/Final/Thesis-For%20Submission%20-%20Editing16Jan%20-%20Copy.docx%23_Toc282970814


ix 

 

LIST OF TABLES 

 

Table 1 - System Specification for Experiments ............................................................... 50 

Table 2 - CALB - 1300 clients ........................................................................................... 61 

Table 3 - LARD - 1300 clients .......................................................................................... 62 

Table 4 - Round Robin – 1300 Clients .............................................................................. 63 

Table 5 - Average Network I/O for CALB, LARB and Round Robin at DB Server ........ 66 

  



1 

 

 

 

 

Chapter 1 

1 Introduction 
 

The Internet has experienced tremendous growth since its inception. According to 

Internet World Stats [1], there has been a 444% increase in the number of Internet users 

in the world between 2000 and 2010. At the same time, e-commerce businesses, which 

use the Internet to carry out business activities, have experienced a phenomenal increase 

in user base because of ease of use and simplicity. The online sales from e-commerce 

websites are increasingly making a huge proportion of the revenues of the companies. A 

sense of this can be gauged from the fact that an e-commerce website like eBay has an 

active user base of more than 90 million spread all over the world [2]. According to the 

eBay website [2] 

“In 2009, the total worth of goods sold on eBay was $60 billion which amounts to a 

figure of $2,000 every second”.  

Customers expect e-commerce systems to be highly available and have acceptable 

quality of service. This quality of service has to be guaranteed irrespective of the 

increasing consumer base which puts more and more strain on the existing system 

resources. As is obvious from above, a few seconds of slow response time can cause a 

huge loss of revenue. Thus, scalable, flexible and high performing systems are needed for 

the survival of the e-commerce businesses, to maintain an edge over other competitors 

and to retain the customer base.  



2 

 

To this end, multi-tier architectures have emerged as the dominant distributed computing 

solution which assures flexibility and scalability. Such a system architecture forces the 

developers to develop application components targeted towards different tiers namely: 

client tier, web tier, application tier and database tier. In it, the client tier provides the 

interaction point for the end users, the web tier handles HTTP requests and returns HTML 

content to the end-user, the application tier hosts the logic which solves the actual 

business problem and the database tier stores business critical data. This separation of 

concerns not only simplifies system design and maintenance but also allows system 

administrators to keep pace with the increasing consumer load by adding additional 

hardware to a particular tier or replicating a particular tier. Replication if often preferred 

as it is more flexible and cheaper. In a replicated system, a load balancer abstracts the 

existence of the multiplicity of the servers at a particular tier and becomes the point of 

contact for all its clients. Though replication can be used for all the tiers, it is less 

common for the database tier as data replication is more complex. However, e-commerce 

applications are often data-driven and have huge dynamic content needs. Thus as the 

customers base increases, the database layer easily becomes the bottleneck. In such 

situations, system administrators usually incline towards having a caching layer at the 

application server level to avoid the database becoming the bottleneck and to improve 

response times. Having a caching subsystem increases the performance as it avoids re-

computation and redundant access to the database for already cached items.  

In a Java EE multi-tier architecture, all of this translates into having a cache at the 

application tier which caches the most frequently used database objects. Often, there is a 

cluster of Java EE application servers, each hosting its own object cache and all of them 

sharing a single database. The cluster of Java EE application servers is shielded by a load 

balancer which forwards the requests to them and is also responsible for replying back to 

the clients.  

In the most common configurations, the load balancer distributes the requests to the 

application servers in a round robin manner. Such a load balancing approach is very 

flexible and simple, but it introduces the duplication of cached objects in all the caches as 



3 

 

the time passes by as each cache keeps the same most frequently used objects. For 

example in a cluster with N servers, each having D Gigabytes of cache space available, 

one will end up with merely more than D gigabytes of cached data. This prevents the 

system from exploiting the entire cache space available. Also, having duplicates means 

that we need to have mechanisms that ensure cached copies are consistent with each 

other.  At the same time, duplication causes under-utilization of the caching component 

which causes the middle tier to contact the database more frequently resulting in huge 

database traffic and thus, preventing the scalability of the database component. 

In this thesis, we work towards a cache aware load balancing (CALB) algorithm at the 

application server level, which tackles the above challenges associated with the caching 

solution. This is achieved by having a smarter load balancer which distributes each 

request to the application server which has already cached the data needed for this 

request. This work is inspired by Elnikety et al. [3]  However, in Elnikety et al. [3], the 

load-balancer was in front of a replicated database system, while this thesis works at the 

application server level.  

In our work, we concentrate mainly on applications which are database driven and have 

dynamic content needs (e.g. e-commerce websites). For such systems our cache-aware 

load balancer works at the application server level, distributing requests to a cluster of 

nodes in such a way that it tries to partition the content into nearly disjoint subsets which 

are then cached by the different nodes in the cluster. The load balancer also takes into 

account the cache space available on each server machine. This consideration prevents 

allocating too many requests to the same application server, preventing overfilling of the 

cache at a particular application server and thus, avoiding cache evictions. All of this 

ensures that we achieve a high cache hit rate, which in turn translates into less network 

traffic directed towards the database layer and lower response time.  

We also adapt our cache aware load balancer to a set-up where we have a dynamic 

number of nodes in the cluster. Commercial load balancers like Linux Virtual Server [4], 

Apache httpd load balancer [5], do not handle the addition or removal of a node when the 



4 

 

system is running. In contrast, our load-balancer can handle the addition and removal of 

nodes while the system is running and at the same time retains the features of our earlier 

implementation.   

More precisely, the contributions of this thesis are: 

 We first design the CALB algorithm for a cluster of application servers. In the 

initial design, the number of nodes in the cluster is fixed and does not change 

while the system is running.  

 We then extend the CALB algorithm so that it can handle the addition and 

removal of application servers in the cluster while the system is running. 

 We then evaluate the performance of CALB and compare it against other load 

balancing algorithms.   

 

Thesis Outline 

The remainder of this thesis is structured as follows:  

In Chapter 2 we discuss the background information on multi-tier architectures, Java EE 

technologies, scalability in multi-tier architectures, caching and load balancing. We also 

discuss different types of load balancing approaches. We then focus on content-aware 

load balancing algorithms and discuss the related work in that field. 

In Chapter 3 we describe the contribution of this thesis in detail. We touch upon the 

design and implementation details. 

In Chapter 4 we discuss the implementation and provide performance results for a 

common multi-tier benchmark. We also compare the performance of our solution with 

other known content-aware and content-blind load balancing algorithms.  

Finally in Chapter 5 we draw conclusions and discuss future work. 

 



5 

 

 

 

 

Chapter 2 

2 Background 
 

The emergence of the Internet led to the adoption of the client/server architecture for the 

design and deployment of distributed applications. Gradually, the client/server 

architecture became the de-facto model for distributing a system over a network. The 

client/server architecture divides the application into the two layers of clients and servers. 

The client tier is responsible for presenting an interface to the end user which it uses for 

interacting with the system. The client tier may also host some processing logic 

depending on the way the application has been designed. On the other hand, the server 

layer is responsible for hosting the business logic necessary for satisfying the client 

requests. The server is responsible for executing the bulk of the processing. The client 

server interaction is always started by the client and follows a request/reply pattern. A 

typical example of the client server architecture is the World Wide Web. A web server 

hosting some website is an example of a server and any computer requesting the web 

content hosted by this web server is the client. 

The biggest advantage of the client/server architecture is the separation of concerns by 

distributing the logic over different computers in the system. This also allows greater 

ease with application maintenance. 

The client/server architecture is also referred to as two tier architecture. A client/server 

system can be shown as in Figure 2-1. 



6 

 

 

The tremendous growth of the Internet in the last few decades demanded a more scalable 

and flexible distributed architecture for applications. A simple client/server architecture 

has scalability issues as the single server quickly becomes the bottleneck when the user 

base increases. This led to the emergence of multi-tier architecture. 

 

2.1 Multi-Tier Architecture 
 

In a multi-tier architecture, an application is designed and distributed across different 

tiers where each tier is responsible for providing a dedicated functionality. In such an 

architecture design, a change in one layer/tier does not affect the other layers. Therefore, 

this architecture design pattern provides distinct advantages such as: 

 Reusability 

 Flexibility 

Figure 2-1 - Client/Server Architecture 



7 

 

 Improved Security 

 Maintainability 

 Scalability 

A 3-tier architecture is the most common instance of a multi-tier architecture. A 3-tier 

architecture consists of the following layers: 

1. Presentation/Client Tier: It is at this tier, where the interaction with the end user 

takes place.  

 

2. Middle/Application Tier: The middle tier hosts the complex business logic and 

it is here where the bulk of the processing and computations takes place.  

 

3. Database Tier: The database tier consists of a database and is responsible for 

storing business critical data.  

A pictorial representation of the 3 tier architecture is show in Figure 2-2.  

 

Figure 2-2 - 3-Tier Architecture 

 



8 

 

2.1.1 Java Enterprise Edition (Java EE) Architecture 
 

As the use of the Internet has grown for carrying out e-business activities, there has been 

a strong need to have a framework which developers can use to quickly develop 

distributed and reliable multi-tier applications. The Java Platform, Enterprise Edition or 

Java EE [6] provides such a specification for developing distributed, reliable multi-tier 

modular applications. 

Sun Microsystems, now owned by Oracle, released the Java Platform Enterprise Edition–

Java EE (previously known as J2EE), a specification for the design and development of 

distributed enterprise applications.  

The Java EE has been described on its Oracle documentation homepage [6] as follows: 

“The Java EE application model defines an architecture for implementing services as 

multi-tier applications that deliver the scalability, accessibility, and manageability 

needed by enterprise-level applications. This model partitions the work needed to 

implement a multitier service into the following parts: 

 The business and presentation logic to be implemented by the developer 

 The standard system services provided by the Java EE platform 

The developer can rely on the platform to provide solutions for the hard systems-level 

problems of developing a multitier service.” 

Since Java EE is a specification, different vendors provide their implementations for it. 

The Java EE specification includes API’s for JDBC, RMI, e-mail, web services, etc [7]. 

A vendor whose application server conforms to these specifications is known as Java EE 

compliant. Some examples of open-source application servers that follow the Java EE 

specification are JBoss [8], JOnAS [9] and Glassfish [10] etc. A Java EE compliant 

application server provides an environment where a developer can leverage the existing 

features like transaction management, concurrency control, security, etc and concentrate 

on developing the business logic of the problem at hand rather than focussing on re-



9 

 

inventing the wheel every time an enterprise application needs to be developed. This 

leads to a shorter development time and better application maintenance.  

Java EE has been described as a 4 tier architecture in [6] consisting of the following 4 

tiers (Figure 2-3) which we discuss in the coming sections: 

 Client-tier 

 Web-tier  

 Business-tier 

 Enterprise information system (EIS) tier. 

In [6], Java EE applications are also referred to as 3-tier applications as they are 

distributed over three separate locations, namely the client machine, the application 

server and the database server. In this configuration, the application server hosts both the 

web-tier and the business tier. 

 

Figure 2-3 - Java EE architecture 



10 

 

2.1.1.1 Client Tier 

 

The client tier is responsible for taking the input from the user, communicating with the 

server using an appropriate protocol (usually HTTP), capturing the response from the 

server and displaying the output to the end user. In Java EE, the client tier can be a web 

client or an application client. 

A web client is also known as a thin client. The most common instance of such clients is 

a web browser. Such clients usually use HTML to display the interface to the end user. In 

such thin clients the bulk of the processing is done on the server side and the client does 

not contain any business logic.  

Application clients are usually used when users need a richer graphical user interface as 

that provided by a web client.  

 

2.1.1.2 Web Tier 

 

In the Java EE architecture, it is the web tier which intercepts the requests and is 

responsible for generating the HTML pages which are then displayed by the client tier. 

The web tier is associated with a web server and its major components are JSPs and 

Servlets. JSPs (also known as JavaServer Pages) and Servlets are Java technologies 

which simplify the generation of dynamic content. Static HTML pages are not considered 

as web components by the Java EE specification [6].  

 

2.1.1.3 Business Tier 

 

This tier hosts the business logic needed for solving business problems concerning a 

particular domain like an e-commerce website, financial industry etc. The Java EE 



11 

 

specification provides the concept of Enterprise Java Beans (EJB) [11] towards this end. 

EJBs are components that are responsible for handling the requests of the clients, 

processing them, interacting with the database and generating the results. The results are 

then usually transformed into an HTML response and returned to the client by the web 

tier. The business tier consists of an Enterprise Java Bean server which hosts the EJBs. 

As mentioned in [6], Java EE defines 2 types of EJBs namely:  

 Session beans 

 Message-driven beans 

J2EE 1.4 [7], the predecessor version of Java EE 5, had an additional type of EJB called 

Entity Bean. Since the release of EJB 3.0 with Java EE 5, Entity Beans have been 

replaced by the Java Persistence API [12] also known as JPA which principally deals 

with persistence entities. 

Here, we mainly discuss JPA/Java Persistence Entities as they are most relevant in the 

context of our thesis. We later touch upon session beans and message-driven beans for 

the sake of completeness. 

JPA/Java Persistence Entities 

Due to some shortcomings in the Entity Bean’s persistence model used in J2EE 1.4 and 

its predecessor versions, the new EJB 3.0, defines a completely new persistence 

framework. The new specification is called the Java Persistence API. 

The Java Persistence API defines a framework for handling relational data stored in a 

database in a Java application. With this, the programmer receives an object-oriented 

view on the relational data stored in the database. The programmer simply works with 

Java objects also called entities. Handling the Java objects through the JPA framework 

enables the  programmer to persist the object state automatically without having to 

specifically code for it, enabling the Java objects (entities)  to outlive the lifetime of the 

application.  



12 

 

Entities in JPA are the object representation of a domain object. Typically, an entity class 

represents a table in the database. An instance of that entityclass then represents a row in 

the database table. This mapping from a class/entity to a database table is accomplished 

with a Object Relational Mapping (ORM) facility. The ORM tools use annotations or 

XML configurations supplied by the developer to map the entities and different 

relationships to the tables stored in the database. Figure 2-4 shows an example of this 

mapping. In the example, we have a User entity which is the class representation of the 

users table in the database.  

Examples of ORM frameworks widely used are Hibernate and TopLink. 

 

Figure 2-4 - Object to Relational Mapping 



13 

 

Session beans 

In [6], session beans are described as non persistent components of the Enterprise Java 

Bean server. They encapsulate business logic. Such session beans expose methods which 

are then called by client to perform a particular operation (e.g., add an item to a 

shopping-cart). A session bean models a particular domain process. Session beans are of 

two types. Stateless beans do not keep any state between method invocations while 

stateful beans maintain transient data and are usually associated with a particular client 

session. 

Message-driven beans 

In [6], message driven beans have been described as  

“A message-driven bean is an enterprise bean that allows J2EE applications to process 

messages asynchronously. The messages can be sent by any Java EE component or by a 

JMS application or system that does not use Java EE technology.” 

 

2.2 Scalability 
 

With the constant increase of the user base, the number of user requests that must be 

handled by any of the tiers increases tremendously. Thus, any tier faces the challenge to 

scale in order to accommodate the increasing workload (scalability) and remain available 

at all times (availability).  

Methods to scale a tier of a multi-tier architecture usually fall into two broad categories: 

 Vertical Scaling (scale up): Vertical scaling adds resources to a particular node 

of a tier. This typically translates in the addition of more CPUs or additional 

memory to a single machine [13] as shown in Figure 2-5. 

 



14 

 

 Horizontal Scaling (scale out): In Horizontal scaling (Figure 2-6), multiple 

hardware or software systems are deployed at the same tier and the system is 

configured in such a way that they operate as a single unit. For example, in the 

case of application servers or database servers, horizontal scaling translates into 

having multiple application servers or database servers satisfying the user 

requests. Horizontal scaling typically employs the techniques of clustering 

(running a set of servers in a cluster) and load balancing. In this design, all 

servers share the load. If one server fails then the load of that server is distributed 

to the rest of the machines in that tier.  

Figure 2-5 - Vertical Scaling 



15 

 

 

Both the discussed approaches have certain trade-offs as listed below: 

Vertical Scaling: 

Cons: 

 Expensive: Adding hardware to an existing system to scale the tier is a very 

expensive approach. 

Figure 2-6 - Horizontal Scaling of the application tier and the database tier 



16 

 

 Single point of failure. Vertical scaling puts all the resources in a single machine. 

If that machine goes down, the entire system will be unavailable. This means, 

vertical scaling addresses only scalability but does not address availability.  

Pros: 

 Vertical scaling is easy to implement and hardware upgrades usually do not 

involve changes at the application level. 

 Vertical scaling has low administration overhead as one has to manage a single 

machine. 

 Vertical scaling has a single machine in each tier. This makes the application 

design simpler as one does not need to take into account the distribution 

principles while designing the application. 

 

Horizontal Scaling Pros and Cons: 

Cons: 

 With horizontal scaling, many machines comprise a particular tier. This means 

increased management complexity and administration overhead. 

 Using horizontal scaling, the application design follows a more complex 

distributed programming model.  

Pros: 

 Horizontal scaling is cheaper than vertical scaling as horizontal scaling is usually 

achieved by adding cheap commodity machines to a particular tier. 

 Horizontally scaled systems can handle failures better as a single node failure 

does not cause the entire application to go offline.  This enhances the system’s 

fault tolerance and stability. 



17 

 

Due to the desirable features of horizontal scaling, it is the more common approach 

adopted to scale the web and application tier. But horizontal scaling causes the 

introduction of multiple servers. It would be cumbersome for the client to be aware of 

this distribution. For example, in a web-based architecture, to adapt to this distribution, 

the client can manually select alternative URL’s each representing a web server that 

hosts the website. But with this approach user transparency is lost. 

In order to abstract from this multiplicity, usually a load balancer is placed in front of a 

particular tier and it becomes the point of contact for the preceding tier. This means, the 

load balancer intercepts the requests of the tier it is abstracting and then is responsible for 

forwarding the requests to one of the servers of the next tier and returning the reply to the 

client. As shown in Figure 2-6, the clients send their web requests to the load balancer 

sitting in-front of the application server cluster, which then forwards the requests to one 

of the servers. Similarly, a load-balancer in front of the database tier distributes requests 

to the database replicas. Commercial systems, however, seldomly use horizontal scaling 

for the database servers. The problem is that the data needs to be replicated and 

maintaining data consistency is challenging. 

 

2.3 Load Balancing 
 

Load balancing is the process by which the requests are distributed across multiple 

servers at a particular tier. Cardellini et al. [14] propose a classification of the load 

balancing approaches for the web-server tier at the following four different levels: 

1. Client Based Approach: In this approach, the client is aware of the replicated 

nature of the servers at a particular tier. The client selects a node and directly 

communicates with it by sending requests to it. The selected server is then 

responsible for generating the reply and responding back to the client. The client 

based approach has limited practical applicability and is not scalable as the client 

has to know all the server replicas. 



18 

 

2. DNS Based Approach: A DNS server maps an IP address to a domain name. In 

the DNS based load balancing approach, the requests are forwarded to different 

servers by mapping the same domain name to different IP addresses in the DNS 

server. Thus, when a DNS server receives a DNS request for resolving a domain 

name, it maps it to a particular IP address based on the configured load balancing 

policy like round robin scheduling. After that, the request is dispatched to one of 

the servers in the group.  

 

3. Dispatcher Based Approach: In a dispatcher based approach, the dispatcher 

receives all requests from clients and distributes the requests to servers. Here, the 

dispatcher acts as the central point of contact for all the clients. Routing the 

requests to different servers is done transparently. Cardellini et al. [14] also 

describe several variations of dispatcher-based architectures using different 

routing mechanisms namely:  

 Packet rewriting,  

 Packet forwarding, and  

 Request redirection.  

Examples of request distribution algorithms at the dispatcher are round robin 

scheduling, least-connection and weighted round robin scheduling. The 

mentioned algorithms are very simple in nature. In principle, however, dispatcher 

based approaches can be more sophisticated and can implement a whole range of 

distribution policies. As compared to the other approaches, dispatcher-based 

approaches are more flexible and give more control over the request distribution 

policies.  

 

4. Server Based Approach: In this load balancing approach, the dispatching of the 

requests takes place in two stages. In the first stage, a server is chosen using the 

DNS based approach. In the second stage, the chosen server then reassigns the 

request to any other server in that tier. This approach allows all the servers to 

participate in the load balancing decision.  



19 

 

In this thesis, we only consider dispatcher-based load balancing approaches.  

Most load balancing algorithms fall into the below two categories 

 Content blind load balancing algorithms. 

 Content aware load balancing algorithms. 

 

2.3.1 Content Blind Load Balancing 

 

Content blind load balancing algorithms make the dispatching decision without taking 

into consideration the information contained in the request sent by the client. However, 

the dispatcher can take system’s state into account, e.g. the server CPU load or the 

number of open TCP connections. Some examples of content blind load-balancing 

policies are: 

 

 Round Robin: In round robin scheduling the load balancer dispatches the 

requests to the servers one by one. For example: if we have 3 servers A, B and C 

and the clients send 5 requests I, II, III, IV, V in the said order, then the load 

balancer will send request I to server A, request II to server B, request III to 

server C, request IV to server A and request V to server B.  

As seen from the above example, the round robin scheduling policy does an 

equitable distribution of requests to all the servers over time.  

However, this load balancing policy does not take into account the capacity of 

different servers in terms of their processing capability, available RAM etc while 

making the dispatching decision. 

 

 Weighted Round Robin: Round robin load balancing policy is best suited for an 

environment where all the servers are homogenous. To overcome this limitation, 

weighted round robin scheduling assigns weights to different servers and then 

allocates requests to them according to that assigned value. The weights can 



20 

 

reflect the processing capacity of one server as compared to the other. For 

example if we have two servers A and B, and server A has weight 2 and server B 

has weight 1, then Weighted Round Robin will assign twice as many requests to 

server A as compared to server B.  

 

 Least Connection: In this load balancing policy, the load balancer keeps a track 

of open connections at each server. It then assigns the incoming request to the 

server with smallest number of open connections.  

 

 Weighted Least-Connection: This load balancing policy is similar to Least 

Connection but weights are assigned to different servers in the cluster and the 

request distribution is done in accordance to those values. 

 

 Least Loaded: This load balancing policy needs some metric which reflects the 

load on a particular server. The metric can be the CPU load, free memory etc on a 

machine. The requests are then allocated to the server which has the lowest value 

in the load metric. In this load balancing algorithm, the server machines have to 

periodically send the load metric values to the load balancer. This can be 

implemented via daemon processes. 

 

 Random Server: In this load balancing policy the requests are assigned to the 

servers randomly but care is taken to ensure that there is equitable distribution of 

requests to each server.  

 

2.3.2 Content Aware Load balancing 
 

Unlike the content-blind load balancing, content aware load balancing algorithms utilize 

the information contained in the requests from the clients to direct the traffic to a 

particular server replica. Such a load balancer works at the application layer. An 



21 

 

interesting property of content aware load balancing algorithms is that they can be made 

application specific. However, such load balancing policies are more complex to 

implement as compared to content-blind load balancing techniques. 

 

In this thesis, we concentrate on content aware load balancing algorithms. Work related 

to Content aware load balancing algorithms will be explained in Section 2.5. 

 

2.4 Caching 
 

In multi-tier architectures, as demand for services continue to grow at a rapid pace, it is 

usually the application tier which is scaled horizontally. Horizontal scaling adds a lot of 

processing power to the application tier. The application tier in turn depends heavily on 

the database layer. As disk access is always slower than main memory access, and due to 

the data intensive nature of applications likes e-commerce systems, all of this means that 

the database easily becomes the bottleneck in the system.  

So, in addition to scaling the application tier horizontally, other steps need to be taken to 

increase the performance of the database component and thus, scale the entire system. 

As discussed before, the database tier here can be scaled either horizontally or vertically. 

However, vertical scaling is expensive and horizontal scaling is complex as it requires 

some replica control protocols to keep the database replicas consistent. Therefore, an 

alternative solution is to not scale the database but to keep the load that is submitted to 

the database low. This can be achieved by providing a caching layer between the 

application server and the database. 

The caching solution is one of the most common and flexible approaches used to keep 

the load on the database tier low. In this thesis, we concentrate on caching to improve the 

scalability of the multi-tiered architecture. 



22 

 

A cache has been defined in [15] as a temporary data store which either duplicates data 

located elsewhere or stores data which is the result of some computation. A cache 

component results in superior performance if the requested data can be satisfied from the 

results or data stored in the cache. If the requested data is found in the cache it is known 

as a cache hit. Otherwise, if the requested data is not found in the cache it is called a 

cache miss.  In case of a cache miss, the data requested is recomputed (e.g. retrieved 

from the database), stored in the cache and then returned to the client. This constitutes a 

cache put. The ratio of the number of requests satisfied from the cache to the total 

number of requests received is known as cache hit rate. A high cache hit rate is desirable 

as that means many of the requests are satisfied from the cache resulting in better 

performance. An element stored in the cache is also associated with a Time to Live 

(TTL). When TTL for an element elapses, it is said to have expired and is evicted from 

the cache.  

In a multi-tier architecture, a cache layer can be placed on the 

1. Database tier,  

2. Application tier,  

3. On both database tier and application tier 

4. On a machine between database tier and application tier.  

In this thesis, we look at a configuration where each application server in the cluster 

hosts a caching component (2
nd

 approach).  Placing the caching component at the 

application tier significantly improves the application performance due to the following 

reasons: 

1. There is no network latency for the requests satisfied from the cache as there are 

no network round trips to the database. 

2. There is no marshalling and un-marshalling processing cost. 

3. Less time is spent on creating and destroying the network connections between 

the database and the application server.  



23 

 

4. Less network traffic is directed towards the database tier. This results in lower 

load on the database tier. Therefore, those requests that are submitted to the 

database can be served faster.  

All of this results in the improvement of the following performance metrics: 

1. Response time experienced 

2. The client and the overall throughput that the system can achieve. 

Benefits of having a caching subsystem at the application tier was also demonstrated by 

Luo et al [16] where they develop a research prototype called DBCache at the application 

server level for alleviating the load on the database server.  

 

2.4.1 Challenges of caching in horizontally scaled multi-tier 

architectures 
 

Current application server clusters that use caching often have the following 

configuration. There is a cluster of application servers all of which have their own cache. 

A load balancer is placed in front of the application server cluster, and it usually uses a 

content-blind load balancing algorithm like round robin for dispatching requests to the 

application servers. Due to the nature of the round robin algorithm, the requests will be 

forwarded to the application servers one by one and we would expect that after a certain 

period of time, all caches host copies of the same objects, namely the most popular 

objects. In other words, the most popular objects would be replicated across all the 

caches.  

A big disadvantage of this configuration is that we are not able to exploit the true cache 

capacity available to us which is the sum of the cache capacities of all the nodes. Assume 

a configuration with N servers, and each node has D Gigabytes of cache, in the above set 

up, we end up with barely more than D Gigabytes of total cached data in the entire 

cluster. Every server just has the copies of the same items.  



24 

 

This duplication of cached data not only prevents the scaling of the caching layer, which 

in turn prevents the scaling of the database layer, it also leads to inconsistency issues as 

the update in one copy is not reflected in other copies. This can cause different clients to 

see different versions of the same data item, which is clearly undesirable. 

Thus, in summary, the main problem of the caching approach with a naive load balancing 

policy at the load balancer is: 

 The lack of exploiting the available cache space.  

 Maintaining consistency between cached copies. 

These problems are some of the road blocks of deploying a scalable caching layer in a 

clustered environment. 

The above problems can be avoided by one of the following two mechanisms: 

 There is a cooperation mechanism between the caches, so that an object is cached 

at one location and the application layer using the cache has a single view of the 

entire cache available in the cluster. 

 There is a cache/content aware load balancing algorithm, which partitions the 

content among the cluster node caches. Each request is forwarded to the server 

whose cache hosts the partition accessed by the request. Therefore, there is 

minimal content replication among caches. 

In this thesis, we will concentrate on the cache/content aware load balancing algorithm 

which tries to circumvent the problems discussed above. 

 

2.4.2 Caching Architecture in Java EE 
 

For applications which need or will benefit from caching, Java EE framework provides 

caching services. Java EE framework provides caching services at different levels 

namely: 



25 

 

1. Level 1 Cache (L1 Cache) 

2. Level 2 Cache (L2 Cache) 

As discussed in Section 2.1.1.3, Java EE framework offers Entities whose instances map 

to a database table row. These instances are managed by an EntityManager. In Java EE, 

the mentioned levels of caching are handled in the context of an EntityManager and 

persistence context. In [6] EntityManager and persistence context are discussed as: 

“Each EntityManager instance is associated with a persistence context: a set of 

managed entity instances that exist in a particular data store. A persistence context 

defines the scope under which particular entity instances are created, persisted, and 

removed. The EntityManager interface defines the methods that are used to interact with 

the persistence context.” 

Level 1 Cache 

This level of cache is always turned on by default. It caches instances within an 

EntityManager. In it, the instances are cached on per request (session) basis. Level 1 

cache reduces the number of database accesses within a single transaction as multiple 

requests for the same objects are satisfied from the level 1 cache.  

Level 2 Cache 

Level 2 Cache is shared across different EntityManager instances. It is also usually called 

as a shared cache as it caches entity instances across requests or sessions. This cache 

needs to be enabled through a configuration property. In a typical request execution, if an 

entity is not found in the L1 cache, it is searched for in the L2 cache. If present it is 

returned and stored in L1 cache, else the results are fetched from the database and cached 

in both L1 and L2 cache. In this thesis we focus on L2 cache. 

Level 1 and Level 2 caches are also shown in Figure 2-7.  



26 

 

 

2.5 Related Work 
 

Several solutions have been proposed as distribution policies in a content aware load 

balancing design. The aim of these policies is to exploit cache locality by sending the 

requests that ask for a specific web page to a server that is likely to have it in its cache 

component. By doing this, the content is divided into disjoint subsets which are then 

cached by various nodes in the cluster. This allows for the utilization of the entire cache 

space available, which in turn increases the performance of the application by increasing 

the cache hit rate. At the same time, such an approach also prevents duplication of 

cached objects and therefore avoids inconsistency issues.  

As stated in [17], content-aware load balancing solutions improve the web application 

performance by improving the cache hit rate. Most of the content aware load-balancing 

policies presented in the literature have been designed for web systems hosting static web 

pages [17]. The central theme of such content-aware policies is to divide the content 

among the nodes of the cluster and then forward a request to the node which is 

Figure 2-7 – Java EE Caching Architecture [38] 



27 

 

responsible for the requested content. Such a policy was initially proposed by Pai et al 

[18] in their locality aware request distribution strategy named LARD.  LARD is a 

content-aware load balancing policy that considers locality of reference of static web 

pages while performing load balancing. In LARD, the requests for the same web objects 

are sent to the same node. Here, web objects are static HTML files, images, audio files, 

video files etc. By directing the web request to the same server, the requested web object 

is more likely to be found in the cache of the server node. LARD also monitors the load 

on the different servers in the cluster. This is done to avoid flooding an already 

overloaded server with additional requests. In LARD when the server load goes above a 

certain threshold, its requests are then assigned to the least loaded server in the cluster. 

The concept of LARD can be explained with Figure 2-8 shown below: 

 

 

 

Figure 2-8 - LARD 



28 

 

 

 

Figure 2-9 shows how a round robin load balancing algorithm (content blind scheduling) 

would distribute the same load. As we can see, in the round robin scheduling, the 

contents are duplicated in the caches of both the web servers. Supposedly, if the cache 

size was smaller than the combined size of all objects then it would have lead to cache 

evictions, resulting in worse response time. 

Other work related to content aware load balancing has been presented in FLEX [19] and 

in HACC [20].  The work presented in FLEX [19], targets web content hosting services. 

FLEX is an adaptive load balancing solution which forms groups of different websites 

based on their memory and access rates. The access rates and the memory needs of a 

particular website are estimated by parsing web server log files. Based on this, the 

websites are then assigned to the available nodes in the system.  

HACC, also known as Harvard Array of Clustered Computers, enhances the 

performance of a web server cluster which hosts both static files and acts as a document 

Figure 2-9 – Content Blind Load Balancing – Round Robin Scheduling 



29 

 

store.  It partitions the content over the nodes in the cluster and keeps on reducing the 

working set handled by the nodes when a new node is introduced into the cluster making 

the load balancing dynamic. 

FLEX provides a locality aware solution for the design and management of a web 

hosting service whereas HACC targets clustered web application servers. Also, FLEX is 

based on a DNS infrastructure that allocates different websites to the nodes of the cluster.  

In later work [21], the authors of FLEX propose WARD, a locality-aware distribution 

policy where the files that are most frequently accessed, are replicated across all the 

nodes in the cluster. The rest of content is divided among all the nodes with no 

replication. This design introduces replication for hot objects.  

Elnikety et al. [3] extend the previous work in this research area by developing a memory 

aware load balancing (MALB) algorithm used for a cluster of replicated database servers. 

The MALB algorithm works by grouping transactions and dispatching them to server 

groups. As explained in [3], the improvement in performance is because the transaction 

groups formed execute in the available memory of the machine thereby reducing disk 

accesses. In the evaluation, the authors show that MALB greatly improves performance 

over other load balancing techniques – such as round robin, least connections, and 

locality-aware request distribution (LARD) – that do not use explicit information on how 

transactions use memory. Unlike the above mentioned content aware load balancing 

algorithms like LARD, FLEX etc which target static content, MALB targets database 

workloads resulting from database driven websites like e-commerce applications which 

need dynamic content.  

 

 

 



30 

 

 

 

 

Chapter 3 

3 Cache Aware Load Balancing 
 

In this thesis we work towards a load balancing solution which optimizes the object 

distribution among level 2 caches in a cluster of Java EE application servers, thus making 

the load balancer cache aware. In a Java EE environment with hibernate being the ORM 

mapping framework, level 2 cache (discussed in Chapter 2) acts as a cache store of 

objects across sessions. This cache remains alive till the application is running. On the 

other hand, there is one more cache scheme that exists which is called as level 1 cache. 

Usually this acts as a cache store on a per transaction basis. The objects cached here are 

de-allocated after each session execution.  

The CALB approach discussed here is for a multi-tier architecture where we have a 

cluster of Java EE application servers all of which share a single database. An application 

server provides a managed environment for hosting enterprise applications. Such 

applications are developed in an object oriented environment. They usually make use of 

an ORM framework which converts the database table rows into objects. For the reasons 

discussed in the background chapter, in our configuration each application server also 

has its own cache. The cache is also referred to as an object cache and acts as a store of 

frequently accessed database items.  

The enterprise applications which interest us are e-commerce applications as they are 

database driven, have dynamic content needs and involve transactions at the application 



31 

 

server level. Examples of e-commerce applications are popular websites such as eBay, 

Amazon, Kayak etc. For the purpose of simplicity, we shall be focussing on read-only 

workloads of the e-commerce applications for the purpose of evaluation.  

The load balancing solution presented here is at the application server level. In particular, 

it is designed for the second level cache of Java EE application servers. This work is 

inspired by the MALB paper [3] which handles load-distribution for a replicated database 

cluster. Using MALB, the load balancer utilizes the working set information of the 

transactions to group them and then assign the groups to a database replica depending on 

its available memory capacity. This grouping of transactions ensures that the working set 

of a transaction group can be accommodated in the main memory of the database replica, 

thereby avoiding memory contention.  

In this thesis we initially develop the CALB solution at the application server level that 

follows the MALB approach. In the first step we assume a static configuration with a 

fixed number of servers. From there, we extend the system for an environment where the 

application server nodes can join or leave the cluster at any time and the load balancer 

dynamically receives the configuration information about the application servers. Our 

dynamic load-balancer can handle events such as node start-up, shutdown and 

application deploy, un-deploy. 

 

3.1 Fixed Cluster 
 

We first outline the basic requirements of the CALB. In the following sections we give a 

description of each requirement. 

To have a CALB solution, which tries to dispatch requests with the final goal of 

maximizing cache hits and minimize cache evictions we need the following: 

1. We have to identify different types of user requests at the load balancer.  

2. We have to identify the size and content of the working sets of user requests. 



32 

 

3. We have to group requests which have similar entity/table access pattern, taking 

into account the cache space available on each application server.  

4. We need a dispatching mechanism that forwards requests of a transaction group 

to the appropriate application server.  

 

3.1.1 Identifying different types of user requests 
 

User interaction with an application server is usually accomplished using the HTTP 

protocol. The web server component of an application server intercepts the HTTP 

requests and then interacts with the application server. The user request could either 

correspond to a static web object or might request a dynamic web page. Content of a 

particular static web page is the same for all requests. In contrast, content for the later 

type of request is generated dynamically and could vary from request to request. The 

content generation process for a dynamic web page often involves interaction with a 

database. In this thesis, we are primarily interested in such user requests for dynamic 

content. Generating dynamic content is both CPU and I/O intensive. This is also 

demonstrated by Iyengar et al [22]. In their work they analyze the web server 

performance under different workloads and observe that generation of dynamic HTML 

pages is the most resource demanding part of the content generation process. Thus, 

properly caching such content will result in substantial performance improvement in 

terms of response time and throughput.  

Most of the enterprise and e-commerce applications are developed with a transaction 

oriented scheme. Transactions guarantee atomic execution of requests. In such 

applications, each web request translates into the execution of a particular transaction at 

the application server level. A transaction might eventually issue multiple SQL 

statements to fetch data from the database according to the user input. This data 

constitutes the dynamic content of the user request. For example in eBay, requests such 

as view item, display categories, display hot deals etc, result in the execution of different 



33 

 

corresponding transaction types at the application server. All of the above also means 

that such applications have a fixed set of transaction types which can be invoked through 

a fixed set of user requests. 

Our cache aware load balancer needs some information about the type of requests it is 

handling. To identify the type of a user request, in our evaluation, the client embeds the 

transaction type in the query string of the URL of HTTP request. For example, if the user 

wishes to view all items the client can embed an identifier “viewItems” for this request in 

the query string of the URL as:  

http://domainName/path/viewallitems.html?transactionType=viewItems 

 

Thus, when the load balancer receives this request, it can easily figure out which 

transaction/request it is handling by parsing the URL.  

 

3.1.2 Identifying the working sets of user requests 
 

Having identified the different types of transactions/requests handled by the system, we 

now need to determine the data each transaction type accesses. This data is called the 

transaction working set. Furthermore, we have to estimate the size of the working set. 

In the e-commerce applications the working set of a transaction is dominated by the 

entities it references. As described in the background chapter, entities map to tables in the 

database. The mapping is done using an ORM framework. Transactions at the application 

server level are then written in terms of the entities rather than tables.  

When caching is involved, the entities mentioned here are cached in the second level 

cache. In a Java EE cache, each entity class has its own cache region. Therefore, different 

tables or entity classes are cached in separate cache regions.  



34 

 

Calculating the working set size of a transaction requires the calculation of the space the 

objects require in the second level cache. As for a given transaction type it is not possible 

to determine the specific entities accessed but only the entity classes (i.e. tables), the 

working set of a transaction contains all entities of each entity class that is accessed. This 

means: 

 We have to determine the entity classes accessed by a transaction. 

 For all the entity classes involved in the transaction, we have to determine the 

cache region size. The cache region size of a particular entity is the size when all 

entities of the class (i.e. the entire table) are cached.  

We calculate the space    an entity class takes in memory when the entire table 

corresponding to the class is cached as below: 

                                                       

                                                        

                                                                         

        

 

A point to note here is that the object might not be stored in the cache region in object 

form. For example, Hibernate, which is the default implementer of the JPA in application 

servers like JBoss, dehydrates the persistence entity instances before storing them in the 

second level cache. 

The entity classes involved in a transaction can be determined by either analyzing the 

logs at the application server level or by parsing the application code. We take the later 

approach to determine the entity classes involved in each transaction type.  

We can easily get the number of rows in the database table of a particular entity by using 

the SQL statement 



35 

 

Select count(*) from tableName; 

 

Getting the size of a single entity in the second level cache for the particular cache we 

use is discussed in Chapter 4.  

Once we have both the row count and the size of a persistence entity, we can easily get 

the cache region size of that entity class.  

A transaction’s working set size   (  ) can then be calculated as the sum of the sizes of 

all persistence entities involved in it.  

  (  )                 

Where  

  (  )                                              

                                                                                  

                                   

 

3.1.3 Grouping requests 
 

After knowing the size and content each transactions type accesses, we need to group the 

transaction types in such a way that  

 We have an efficient utilization of the cache space available on all the application 

servers. 

 We maximize the cache hit rate on each application server.  

We also need to make sure that the transactions grouped, fit the cache space available on 

a single application server. This will benefit us as it will make sure that there are minimal 



36 

 

cache evictions. Having minimum cache evictions means that the user requests find the 

requested data more often in the cache. Application performance benefits by this because 

there are fewer calls to the database, less network traffic and less processing load on the 

database server.  

To group transactions we use a content-aware bin-packing algorithm. Bin packing [23] 

has numerous applications and has been widely used in memory allocation algorithms at 

the operating system level. It provides us with a very good approach to group 

transactions in such a way that they fit in the cache space available at a single server.  

We choose the well-known best fit decreasing bin-packing algorithm and modify it to 

make it content-aware. The bin packing algorithm used here takes as input the 

transactions along with their working sets and uses this information to group them. It also 

needs an estimate of the cache space available on an application server which it considers 

as the available bin capacity when performing bin-packing. 

If several transaction types within a group access the same content (i.e., the same table), 

the algorithm accounts for this shared content. For example if we have two transactions 

T1 and T2 which access entity classes Customers, Items, Regions and 

Customer, Bids, Items respectively, then the combined working set size of the 

two transactions will be the sum of the size of the Customers, Items, Regions 

and Bids persistence entity classes. The shared content of Customers, Items is 

considered only once as both the transactions T1 and T2 would reference the same cache 

region of Customers and Items. 

Transaction types are matched to a bin such that there is maximal overlap of contents 

within a bin and there is minimal space left after packing the transaction into the bin. 

Here, a bin refers to the second level cache on an application server. 

There is a possibility that after performing bin-packing a transaction type whose size 

exceeds the cache capacity available on any server remains unpacked. Such transactions 

are overflow transactions and are assigned their own bin.  



37 

 

The pseudo code for bin-packing is described in Figure 3-1: 

The bin packing algorithm groups transactions and maps them to a certain bin. Assume 

that the bin packing algorithm requires N0 bins to pack all transactions (N0 includes one 

bin for each oversized transaction). Then in order to do effective cache-aware load 

balancing we would need at least N0 number of application servers. In a configuration 

where we have less than N0 applications servers, multiple transaction groups need to be 

assigned to a single application server. This will cause cache contention and could result 

in poor performance and is not desirable. Also, for every oversized transaction we expect 

suboptimal cache hits. 

 

 



38 

 

 

Figure 3-1 - Cache Aware Bin Packing Algorithm 

 

3.1.4 Forwarding requests  
 

After the bin packing process, the load balancer receives a mapping that indicates which 

transaction group is handled by which application server. When the client sends an HTTP 

                                                                          
(                 (                                 )     ) 

Cache Aware Best Fit Decreasing Bin Packing Algorithm 

 

Input: 

                , -   // array of transaction types 
 

Algorithm: 

 
1:                (           , -)  // sort the transactions in the 

decreasing  
                                     order of their size 

2:                        , -     // initialize 
3:                               // number of transaction types 
4:                   
5:      (                                       , -              )  
6:                                       (           , -) 
7:                 
8:          
9:                     , -                               (           , -) 
10:                 

                                          (                   , -            , -) 
11:                    (           , -) 
12:                             
13:                     
14:         
 
 

 



39 

 

request, the load balancer figures out the transaction group to which this request belongs. 

It then looks up the mapping of transaction group to application server to forward the 

request to a particular node.  

 

3.1.5 Replication 

 

The content aware bin-packing algorithm described here makes the best possible effort to 

divide the transactions into groups which have disjoint working sets. In other words, the 

transactions belonging to different groups have minimal or no overlap in terms of 

common entities accessed. The degree of overlap depends on the type of transactions that 

exist in the system. It can very much be the case that there are no common entities 

accessed by different transaction groups. But there is also a possibility that entities exist, 

that are accessed by more than one transaction group. In the later case, the common 

entity classes will be cached by all the responsible application servers causing replication 

of those cached entries. In an environment where both read and update transactions exist, 

additional mechanisms will be needed to need to ensure the replicated cache content is 

consistent across the application servers. In this thesis, we are concentrating on read-only 

workloads, and do not consider consistency issues.  

 

3.2 Dynamic Cluster 
 

In the previous section we discussed a cache aware load balancing approach where we 

had a fixed number of applications servers in the cluster.  

Furthermore, the proposed bin packing algorithm grouped transactions without any 

regard to how resource intensive the transaction type is. It could very much be the case 

that it groups very resource heavy transaction types together and maps them to the same 

application server. This might cause the application server to be overloaded compared to 



40 

 

the other servers in the cluster. In order to avoid this problem, the load balancer can 

assign some of the resource intensive transactions handled by this over-loaded 

application server to other application servers. Alternatively one can introduce new 

application servers into the cluster and have them share the load with the most loaded 

one.  

The first approach will introduce cache contention leading to cache evictions.  This 

reduces the effectiveness of the content-aware load balancing approach. Therefore, we do 

not further consider this solution. Instead we focus on the later approach, where new 

application servers are introduced as needed to share the load with the most loaded one. 

Adding node in this way leads to the formation of application server groups.  

More precisely, an application server group is a sub-cluster of application servers 

responsible for handling the same transaction group. In this configuration, as the time 

progresses, we expect that all the nodes in an application server group will host copies of 

same objects namely the ones accessed by the transaction group. This means, we have 

cache content distributed across the application server groups as they are handling 

different transaction groups, and we have cache content replicated among the nodes in an 

application server group. 

The approach discussed here means that the load balancer should be able to handle the 

addition or removal of new application servers on the fly. In our infrastructure, when the 

application servers start, they register themselves with the load balancer. After becoming 

aware of the new application server the load balancer starts dispatching requests to it. 

Also, in our configuration, the application servers broadcast information about the 

application lifecycle events to the load balancer. These events include application 

deployment/un-deployment, node shutdown etc. Such information enables the load 

balancer to do a transparent failover to another application server in case a node goes 

down, an application is in error state or the application has been un-deployed. In our 

implementation, we use the mod_cluster [24] load-balancer provided by JBoss. It 

provides already some features that are useful in our context. For example, it allows the 



41 

 

registration and deregistration of servers. Furthermore, it offers a load aware load-

scheduling.  

In a dynamic configuration, the load-balancer has to perform two further tasks. First, 

given a replication group with more than one application server, it has to decide to which 

application server to send the requests for the corresponding transaction group. In our 

system we take advantage of the load-aware functionality of mod_cluster.  

Second, given the number of application servers and the number of transaction groups, 

the load-balancer has to decide how many application servers to assign to this group. 

This assignment should be dynamic depending on the current workload. We will discuss 

both features and their implementation in detail.  

 

3.2.1 Load Distribution within an Application server Group 
 

As there can now be several nodes in an application server group, the load-balancer has 

to decide to which node to send a particular request. For that, it uses a load-aware 

approach. This functionality is already provided by the mod_cluster [24] infrastructure. It 

calculates the load at the application servers and then sends it periodically to the load-

balancer. In our implementation the load balancer then uses this information to determine 

where to send a request. The load balancer then sends the request to the least-loaded node 

in the application server group. 

 

3.2.1.1 Load Calculation 

 

The load calculation function at the application server can take into account multiple load 

metrics to calculate a cumulative load factor (lbfactor). For calculating the 

lbfactor, we configure it to take into account the CPU load of the application server 



42 

 

and the number of connector threads in the JBoss thread pool that are busy in servicing 

requests. The metrics are explained in detail later. 

The load metrics can be assigned weights. Weights signify the importance of that metric 

while calculating the overall load factor. For example, a metric assigned a weight of 2 

will influence the load factor twice as much as a load metric which has an assigned 

weight of 1.  

As given in [25], the cumulative load factor is calculated by the following formula: 

 

           
                             

               
 

Where, 

    is the load for a particular metric and 

    is the weight of a particular metric.  

          is the cumulative load. Each application server sends periodically it’s 

           as lbfactor value to the load-balancer. Mod_cluster uses a decay function 

to calculate the load value of each metric. The decay function takes into account the 

history of the load values of that particular metric. This approach reduces the effect of 

spikes experienced in the load values of a particular metric and provides a very accurate 

estimate of the load of that metric. It also minimizes the effect of noise in load 

measurement.  

The load of a particular metric is calculated as below: 

    (
   

  
⁄  

   
  
⁄  

   
  
⁄  

   
  
⁄    

   
  
⁄    

   
  
⁄ )

 (                   ) 



43 

 

or more concisely as  

    (∑
   

  
⁄

 

   

)  (∑  
 

   

) 

Where 

   is the value of a particular load metric,   is the decay factor and   represents the 

number of historical load factor values to take into account while calculating the load. 

In the above equation, to if we do not want the historical values be taken into 

consideration while calculating the load metric value we can set   = 0. In our set up, we 

set   = 10 while calculating the load factor for a particular metric.   

Also, in our implementation we have assigned the CPU load metric a weight of 2 and 

busy connector thread metric a weight of 1.  

 

3.2.1.2 CPU Usage Load Metric 

 

The CPU load is being calculated by using the function 

ManagementFactory.getOperatingSystemMXBean().getSystemLoadAverage()  

of Java. The above function is supported by Java 1.6 and above versions and returns the 

CPU usage of a particular machine. 

 

3.2.1.3 Busy Connector Thread Load Metric 

 

Application servers typically keep a thread pool on standard ports for accepting requests. 

This is done to ensure that many requests can be served simultaneously. The load 

balancer in our architecture forwards the requests it receives to the port at 8009 where the 



44 

 

application server keeps a connector thread pool. If all the threads in this thread pool are 

busy servicing requests then the client either experiences a large response time or the 

request could time out.  

Therefore, the connector thread pool usage is an important metric to be considered while 

calculating the application server load. In our case, the connector thread pool load is the 

percentage of connector threads from the thread pool that are busy servicing requests.  

The load balancing algorithm for dynamic cluster is shown in Figure 3-2. 

 

3.2.2 Application Server Group Configuration 
 

As discussed previously, application server groups consist of one or more application 

servers. For our dynamic cluster configuration, we need a metric which reflects the load 

of an application server group. This metric will help us decide to which group we should 

add the newly introduced node in the cluster. At this same time, this metric will also aid 

us while performing re-allocation of nodes to maintain equitable distribution of load 

among the groups.  

 

3.2.2.1 Calculating and Comparing Group Loads 

 

An application server group load is calculated by averaging the load balance factor of all 

the nodes present in the group. For example, if there is a group which has three nodes 

with load balance factors as 30, 45, 75 respectively, the load of the group will be 50.  

When comparing the loads of application server groups, we compare their average loads. 

For example, to select the group with maximum load we return  

   *           (      )            (      )               (      )+ 

as the most loaded group.  



45 

 

 

Figure 3-2 - Load Balancing algorithm for a dynamic cluster 

 

 

 

        

 

 

 

Load Balancing Algorithm for Dynamic Cluster 

Input:   

                 // http request 
 
Output: 
                   // application server responsible for handling the  

 
Algorithm: 
 

1:                                     (                   ) 
2:                                               (                ) 
3:                      
4:                                     (                      ) 

5:                         
6:                                                      
7:        

8:                              
9:                           
10:      
11:   

      (                                                                         ) 
12:                                                                         
13:                             
14:          
15:                                                      
16:           
17:        

  

 



46 

 

3.2.2.2 Addition of node 

 

We assume that at system start-up there exist at least as many servers as there are 

transaction groups. That is, for each transaction group there exist an application server 

group with at least one application server. From there, whenever a new application server 

is added to the cluster, the load balancer adds the server to the group with the maximum 

load.  

 

3.2.2.3 Re-allocation of Nodes among application server groups 

 

In the above set up it can be the case as the system is running that an application server 

group is more loaded as compared to the other groups. In that case it would make sense 

to perform re-allocation of nodes so that there is a more even distribution of the load 

among the groups in the cluster and no group becomes the bottleneck. To perform this re-

allocation we have a watchdog thread which keeps on monitoring the load of each server 

group and when the load of a certain group rises above a certain threshold 

(            ) re-allocation of nodes from the least to the most loaded group happens.  

Instead of using the current load statistics of an application server group to determine the 

least loaded group, we calculate the future load of the group after a node is removed from 

it and then select the one which will have the least load. For example: If we have 3 

application server groups        ,      ,       .         has 3 machines with load 

40, 50, 60 and average load of 50;         has 2 machines with load 45, 45 and average 

load of 45 and         has load of 80, 85, 90 and average load of 85. In this case if a 

node is removed from         then the future load it will experience will be 

(40+50+60)/2 = 75 and if the node is removed from second group then it will have load 

of 45+45/1 = 90. Hence it makes more sense to take a node from         and assign it to 

      . This will ensure that re-assignment will not make the donor group the 

bottleneck in the system. Furthermore, if for all the groups the future load is greater 



47 

 

than             , then no application server is taken out. This ensures that the 

donating group does not become the bottleneck if node were removed from it. 

Finally, if any application server group is loaded below a certain threshold value 

            , the watchdog thread tries to perform re-allocation between this group 

and the most loaded application server group.  

The algorithm for the watch dog thread is shown in Figure 3-3: 

 

 

 

 

 



48 

 

 

Figure 3-3 - Watchdog Thread Algorithm 

 

 

 

 

 

Watch Dog Thread Algorithm 

 
 

 

Algorithm: 
 

1:                       , -                                (            ) 
2:                                   

3:                   
4:                  
5:           (                      , -                    ) 
6:                                  ( )    // returns a group with load less  

                                                                             than               after removing                                                          
                                       least loaded application server 
                                       from it 

7:            (                  )         
8:                         
9:                                                                // no node can donate node 

10:               
11:                                     (          )   // returns least loaded  

                                                 Node from                                                                
                                                                         

12:                                                          ,   - 
 

13:                            (          )        //  updates lbstatus factor of  the  
                                                        by distributing the  
                                             lbfactor of donated node          

14:                
15:               

16:         (          )         
17:                                                      // since no donor group available therefore exit 
18:          

19:         
 



49 

 

 

 

 

Chapter 4 

4 Performance Results and Evaluation 
 

In this chapter we present the evaluation of our CALB algorithm. Here, we first describe 

the experimental test bed and its specification. Then, we describe the benchmark used to 

evaluate our load balancing algorithm in a dynamic content environment. In the 

evaluation section, we discuss the methodology used to evaluate the system and compare 

our implementation with other load balancing algorithms. Later, we present the various 

figures and statistics obtained and discuss the significance of those numbers. 

 

4.1 Experiment Test-bed 

 

4.1.1 Cluster Specification 
 

The machines and the LAN network in the cluster have the following specification: 

 

 

 

 

 



50 

 

CPU 

 

Intel(R) Pentium(R) D CPU 2.80GHz 

With 2 MB L2 Cache. 

 

 

RAM 

 

1 GB DDR 

 

Hard Disk 

 

80 GB, 7200 RPM 

Network Card 

         

1000 Mb/s  

 

 

Switch 

 

100 Mb/s 

 

Table 1 - System Specification for Experiments 

 

4.1.2 System Architecture 
 

The experiment test-bed is set up as a multi-tier system. We have a client tier which 

communicates with a load balancer. Behind the load balancer we have a cluster of 

application servers and a database server. The back-end cluster is set up on a local LAN.  

In our set up, every machine except the load balancer used in the experimental evaluation 

has Ubuntu [26] 9.04 with kernel version 2.6.28-19-generic installed. We are using 

JBoss [8] version 6.0.0.M2, a Java EE compliant application server installed on the 

middle tier. In JBoss, we use Hibernate as the ORM mapping facility. For persistence, 

we use PostgreSQL [27] version 8.4.1 as our database server. 

The load balancer set up in our case is a dispatcher level load balancer. We use Apache 

httpd [28] web server integrated with the mod_cluster [24] module from JBoss as our 

load balancer. The operating system installed on the load balancer machine is Windows 

Server 2008 [29]. The apache httpd and mod_cluster module are compiled and installed 

http://www.postgresql.org/


51 

 

for the said platform. In the set up, the load balancer is running as a reverse proxy where 

it acts as the gateway for the servers in the cluster. It is the sole point of contact for all 

the client machines and fetches the content from the back end nodes transparently. We 

have made changes in the mod_cluster module for installing our load balancing 

algorithms.  

In our configuration, the load balancer communicates with the back end application 

servers through the AJP protocol. AJP stands for Apache JServ Protocol. It is a 

binary protocol that can forward inbound requests from a web server to application 

servers which sit behind the web server [30]. AJP is frequently used in load-balanced set 

ups where one or more front-end web servers forward requests to multiple application 

servers in the back end. Communication between application server and the Apache httpd 

web server (load balancer in our configuration) is more optimal in terms of bandwidth 

when using AJP protocol compared to the http protocol.  

In our middle tier which is hosting the Java EE based application server (JBoss) for our 

configuration, we use Hibernate version 3.3.0 as the ORM framework. EHcache 

[31] version 2.0.1 is used as our 2
nd

 level cache provider.  

For our implementation we mainly change mod_proxy_cluster module of mod_cluster 

from JBoss. Some changes are also made to mod_proxy module of Apache httpd. We 

also change the EHcache source code for our CALB algorithm. Except for all these 

components which we enhanced for our load-balancing strategy, all other components 

were used off-the-shelf without any modification.  

In all the machines, we have Java from Sun (now Oracle) with version 1.6.0_16 installed.  

The system architecture of our experiment test bed is shown in Figure 4-1. 

http://en.wikipedia.org/wiki/Load_balancing_(computing)


52 

 

 

Figure 4-1 - Test-bed Architecture 

 

4.1.3 Benchmark 
 

We use the RUBiS [32] benchmark to evaluate our implementation. RUBiS is described 

as below on its homepage [32]. 

“RUBiS is an auction site prototype modeled after eBay.com that is used to evaluate 

application design patterns and application server’s performance scalability.” 

 

 



53 

 

RUBiS Benchmark description 

RUBiS is a popular benchmark widely used to evaluate the performance of web and 

enterprise applications and servers [33]. 

RUBiS models and implements the basic functionality of an auction site, i.e. selling of 

items, browsing and bidding on items. As described in [33], RUBiS provides three types 

of user sessions:  

 Buyer Session: In this type of interaction, the user needs to log into the system 

with a username and password before it can carry out any transaction. The user 

needs to register itself for the first time before it is allowed to log in and use the 

system. In this session, a user typically puts bids on items and buys them.  

 Visitor Session: This type of user interaction needs no log-in into the system but 

the services/transactions allowed to this user are limited. For example: the user 

cannot buy or bid on items while in a visitor session.  

 Seller Session: For a seller session, like for a buyer session, the user needs to log 

in into the system. The typical transactions carried out in this session are 

reserving a price for an item, etc.  

In RUBiS, a single session consists of multiple interactions of a single client with the 

server. The RUBiS client emulates a client/customer of the auction website by spawning 

a thread which then opens a persistent HTTP connection to the server. The connection is 

cleaned up at the end of the session. After having received a response from a previous 

session and before initiating the next request, the spawned thread waits a certain time, 

which is set by the think time property in RUBiS. As stated on RUBiS homepage [32]  

“The think time and session time is generated from a negative exponential distribution 

with a mean of 7 seconds and 15 minutes, respectively.”  

There is also a possibility to set the think time from a configuration file.  



54 

 

The relational database schema of RUBiS consists of 7 tables namely: users, items, 

categories, regions, bids, buy_now and comments. Also, the RUBiS benchmark defines 

26 different request types. The type of the next request that the client will submit to the 

server is determined by a transition matrix fed to RUBiS through a configuration file. 

The transition matrix specifies the probability of going from one state to the next state. 

Here, state means a request type. In other words, the request execution pattern in RUBiS 

can be thought of as a directed graph where different vertices represent the different 

states/request types and the edges connecting the vertices as possible transitions from a 

particular vertex. The weight on the edges can be thought of as the probability of going 

from one state to the next.  

The RUBiS benchmark defines several types of workload mixes. For instance, the 

browsing mix is made of only read-only transactions while the bidding mix has 15% 

read-write transactions. For the purposes of our evaluation, we only use the browsing 

(read-only) mix. Our main target is to evaluate the benefit of a cache aware load 

balancing algorithm on caching at the application server level. Thus, a read only mix 

gives us the best case scenario for evaluating it. In a read-only workload, we are likely to 

have higher cache hit rate compared to a read write mix where an update has to go to the 

database to update the record. Hence a write request cannot take advantage of the cached 

data. At the same time, having a read-only mix simplifies the system design as one does 

not have to consider the inconsistencies that can occur if several servers cache the same 

object. 

The client emulator in RUBiS is written in Java. In RUBiS, the client execution profile is 

defined by a properties file. One can vary the workload by varying the number of clients. 

The client emulator in RUBiS generates various useful statistics like average CPU load, 

average network I/O, etc, and produces graphs for CPU utilization, memory use, network 

interface traffic, disk, I/O, etc over time. RUBiS collects all this information from the 

machines participating in the experiment by using ssh and calling the sar linux/unix 

utility. It then uses the ksar [34] utility and various other scripts to generate the graphs. 



55 

 

In addition to all this, for each transaction type, RUBiS also displays statistics like 

average, minimum and maximum execution response time.  

To allow RUBiS to ssh into the cluster machines and monitor the nodes during the 

experiment, we use PortTunnel software [35]. The software provides the service of port 

forwarding on the Windows Server 2008. We need port forwarding here because our 

entire cluster is on a local private LAN which is abstracted by a load balancer having a 

public IP. The port forwarding service then forwards the TCP/IP packets that are send to 

a configured port on the load balancer to the desired machine and port of our cluster 

machine. 

The RUBiS application, which gets deployed in an application or web server, has two 

content generating components. One is the static part which contains static HTML files 

and images. The other is the dynamic content generator which involves interaction with 

the database. For handling dynamic content RUBiS provides three different 

implementations. The three implementations use the PHP Web-scripting language, Java 

Servlets and Enterprise Java Beans respectively.  In our experiments, we use the Servlet 

implementation of RUBiS. The Servlet implementation is packaged as a WAR file and 

deployed in the JBoss application server.  

 

4.2 Evaluation and Results 
 

In this section we talk about the evaluation methodology adopted and then discuss the 

results of the different test runs. In regard to evaluation methodology, we discuss the way 

the system was configured for the test runs.  

In the evaluation section we compare our implementation of the CALB with the well 

known content aware load balancing algorithm LARD [18] and with round robin 

scheduling. We later present the results and discuss the observations made. 

 



56 

 

 

 

4.2.1 Methodology 

 

For our evaluation, as mentioned before, we only consider the read-only workload mix of 

RUBiS. The read-only workload mix of RUBiS consists of the following 10 

transaction/request types: 

1. BrowseItemsInRegion 

2. BrowseCategories 

3. BrowseItemsInCategory 

4. BrowseCategoriesInRegion 

5. BrowseRegions 

6. SelectCategoryToSellItem 

7. ViewItem, 

8. ViewUserInformation 

9. ViewBidHistory 

10. AboutMe 

The above transactions/request types have dynamic content needs, which involve 

accessing the database and fetching records matching the user query parameters. There 

are some request types in RUBiS which access static content like images and HTML files. 

A few examples of such requests types are: Home, Register, Browse, etc. Our cache 

aware load balancer does not focus on such requests. Such transaction types are 

forwarded to application servers based on the current load of the nodes (least loaded 

one). These requests could be included in our cache aware load balancing algorithm but 

the static files in our case are only a few Kilobytes in size. Therefore, we can safely 

ignore such requests in our consideration. 

In our test configuration, the RUBiS database size is 60 Mb. Since the bin packing 

algorithm used in the load balancing algorithm targets the cache size available on an 



57 

 

application server, we need an estimate of how much space a row needs in object 

oriented format in the cache and then get an estimate of the size of the entire table in the 

second level cache. In the succeeding paragraph we describe how we estimate the table 

size.  

We use EHcache as our second level cache provider. EHcache caches each table in its 

corresponding cache region, which means all tables in the database are cached in separate 

cache regions. This configuration is fed to EHcache through its ehcache.xml 

configuration file. To estimate the size of a cache element in memory we use API’s of 

EHcache.  EHcache has an interface method that provides an estimate of the size of an 

element in the cache region. We then calculate the table (cache region) size by 

multiplying the size of a single cache element with the number of rows in the database 

for the table corresponding to that cache region.  

Also, for our purposes we need to have a way of restricting the entire cache size in 

memory. In other words, we should be able to dedicate a pre-fixed amount of memory in 

Kilobytes or Megabytes for the second level cache. Since we are running JBoss which 

executes in a Java Virtual Machine, the amount of memory that will be allocated for the 

second level cache only happens on demand and we cannot predefine a size. If the cache 

size exceeds the Java Virtual Machine heap size, we will get an out of heap error. Also, 

the memory usage varies in JVM as the ORM framework (Hibernate) has a first level 

cache which gets de-allocated after each session. Such behaviour makes the memory 

usage of other running instances in the JVM unpredictable. This means, we cannot 

control the cache size by varying the JVM heap parameters. 

To control the amount of memory that EHcache uses for all of its cache regions we 

modify the EHcache source code. EHcache controls the cache region size in terms of the 

number of elements that can be accommodated in it. There is no way to specify the 

cumulative size in Kilobytes or Megabytes that EHcache should occupy in memory when 

it is running.  An example configuration of a typical cache region in EHcache is: 

 



58 

 

    <cache name="edu.rice.rubis.hibernate.User" 

           maxElementsInMemory="2000000" 

           eternal="true" 

           timeToLiveSeconds="120000" 

           overflowToDisk="false" 

           memoryStoreEvictionPolicy="LRU"> 

    </cache> 

 

Here, the maxElementsInMemory attribute of the cache element controls the maximum 

number of allowed elements in the cache region named “edu.rice.rubis.hibernate.User”.  

Since EHcache 2.0, certain aspects of the cache configuration can be changed 

dynamically at runtime [36], namely 

 timeToLive 

 timeToIdle 

 maxElementsInMemory 

 maxElementsOnDisk 

 memory store eviciton policy 

We take advantage of this feature of EHcache 2.0 to set a cap on the memory in 

Kilobytes used by EHcache. To this end we implemented a cache listener  which gets 

notified on the following events: 

 Notify Element Removed  

 Notify Element Put  

 Notify Element Updated  

 Notify Element Expired 

 Notify Element Evicted 

 Notify Remove All 

To set the cap on the memory size of EHcache, we use the “Notify Element Put” event. 

Inside the event, on an element put to any cache region, we check the memory used by 



59 

 

multiplying the number of elements present in all the cache regions by their respective 

element size. We dynamically set the element count as soon as the cache limit specified 

in Kilobytes is reached. At this juncture, we can say that the cache has been filled and 

any cache put will lead to a cache eviction 

The cache size in our case is 33 Megabytes for each application server. The in-memory 

size of the database is around 100 Megabytes.  

 

4.2.2 Results 
 

The cache aware bin packing logic gives the following grouping of transactions. Each 

transaction group is then matched to an application server group. This means in our 

evaluation we have 3 application server groups each responsible for one of the below 

transaction groups. 

 

Group 1 

BrowseItemsInRegion 

BrowseItemsInCategory 

BrowseCategoriesInRegion 

BrowseRegions 

BrowseCategories 

Group 2 
ViewUserInformation  

SelectCategoryToSellItem 

Group 3 
AboutMe 

ViewItem 

ViewBidHistory 

 

In the above transaction groups we have some degree of replication of content between 

the groups as the groups formed by the bin packing are not completely disjoint. For 



60 

 

example: Group 1 and Group 2 both access the entity class Categories is common. 

This means Categories entities can be replicated between the application servers 

responsible for Group 1 and Group 2.  Between Group 2 and Group 3 entity class 

Comments and Users are common. There is no persistence entity class which is 

replicated across all the transaction groups. 

We evaluate our CALB against LARD and Round Robin. Recall that LARD forwards 

same requests to the same application server without any regard to how much data that 

server can cache. On the other hand, round robin forwards requests one by one to the 

application server cluster nodes.  

Here, we perform different test runs by gradually increasing the number of clients in the 

RUBiS client emulator. In our evaluation, the system reaches saturation at around 1300 

clients. It is at this point we observe maximum system throughput. Increasing clients 

beyond this number results in a worse system response time. We present detailed results 

for this test run and present a summarized comparison for different parameters 

(throughput and response time) for different number of clients in the summary section of 

this chapter. For 1300 clients, we note the response time of individual transactions and 

make comparisons with the ones obtained for different load balancing algorithms. The 

duration of each test run is 3600 seconds. The warm up phase in our experiments had 

duration of 120 seconds. 

Tables 2, 3, 4 show the response times of individual transactions and also shows the 

overall response time for three load-balancing algorithms. Tables 2, 3, and 4 also show 

the throughput obtained for the above mentioned load balancing algorithms.  

 

 

 

 



61 

 

Request Type 
Minimum Response  

Time 

Maximum  
Response  

Time 
Average Time 

BrowseCategories 9 ms 12458 ms 202 ms 

BrowseItemsInCategory 9 ms 56054 ms 1292 ms 

BrowseRegions 11 ms 12166 ms 201 ms 

BrowseCategoriesInRegion 10 ms 10023 ms 178 ms 

BrowseItemsInRegion 8 ms 48469 ms 424 ms 

ViewItem 9 ms 93571 ms 327 ms 

ViewUserInformation 10 ms 45380 ms 221 ms 

ViewBidHistory 9 ms 21185 ms 240 ms 

SelectCategoryToSellItem 0 ms 0 ms 0 ms 

AboutMe 0 ms 0 ms 0 ms 

    

Average throughput 167 req/s 

Completed sessions 1117 

Average Response Time 748 ms 

 

Table 2 - CALB - 1300 clients 

 

 

 

 



62 

 

 

Table 3 - LARD - 1300 clients 

 

 

 

 

Request Type 
Minimum Response  

Time 
Maximum  Response  

Time 
Average Time 

BrowseCategories 9 ms 48117 ms 298 ms 

BrowseItemsInCategory 9 ms 51694 ms 1540 ms 

BrowseRegions 11 ms 33054 ms 298 ms 

BrowseCategoriesInRegion 9 ms 33128 ms 277 ms 

BrowseItemsInRegion 7 ms 46716 ms 576 ms 

ViewItem 10 ms 66655 ms 403 ms 

ViewUserInformation 10 ms 45046 ms 316 ms 

ViewBidHistory 9 ms 33828 ms 314 ms 

SelectCategoryToSellItem 0 ms 0 ms 0 ms 

AboutMe 0 ms 0 ms 0 ms 

        

Average throughput 

 
157 req/s 

 
 

Completed sessions 

 
1066 

 
 

Average Response Time 
 

907 ms 
 



63 

 

 

Table 4 - Round Robin – 1300 Clients  

 

 

 

Request Type 
Minimum Response  

Time 
Maximum  Response  

Time 
Average Time 

BrowseCategories 7 ms 36122 ms 338 ms 

BrowseItemsInCategory 7 ms 93849 ms 1771 ms 

BrowseRegions 8 ms 39790 ms 328 ms 

BrowseCategoriesInRegion 7 ms 45046 ms 353 ms 

BrowseItemsInRegion 6 ms 45198 ms 646 ms 

ViewItem 9 ms 90295 ms 483 ms 

ViewUserInformation 8 ms 55582 ms 376 ms 

ViewBidHistory 7 ms 47111 ms 364 ms 

SelectCategoryToSellItem 0 ms 0 ms 0 ms 

AboutMe 0 ms 0 ms 0 ms 

    

Average throughput 152 req/s 

Completed sessions 1043 

Average Response Time 1050 ms 



64 

 

The below graph (Figure 4-2) presents the average response times of individual 

transactions in the three different load balancing algorithms. As is clearly evident, all the 

transactions have the least response time using the CALB algorithm, followed by LARD 

and then Round Robin.  

 

Figure 4-2 - Transaction Response Times 

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
v

e
ra

g
e

 R
e
s
p

o
n

s
e
 T

im
e
 i
n

 m
s

 

Transaction/Request Type 

Individual Transaction Average Response Time Comparison Graph 

CALB LARD RR



65 

 

 

 

Figure 4-3 - Throughput 

 

As shown in the above graph (Figure 4-3), CALB gives an improvement of 6.3 % in 

throughput over LARD and an improvement of 9.8 % over Round Robin scheduling 

algorithm.  

For response time (Figure 4-4), CALB gives an improvement of about 17% compared to 

LARD and an improvement of 28% percent as compared to Round Robin. The decrease 

in response time can be attributed to the increase in the cache hit rate and fewer accesses 

to the database, which considerably reduce the response time for the client. Later, we 

present statistics which substantiate our reasoning.  

Also, CALB completes more sessions than LARD and Round Robin. 51 more sessions 

are completed in CALB algorithm as compared to LARD, whereas 74 more sessions are 

completed in CALB compared to Round Robin. 

140

145

150

155

160

165

170

CALB LARD RR

R
eq

u
es

ts
/S

ec
o

n
d

 
Throughput 

Throughput



66 

 

 

 

Figure 4-4 - Average Response Time 

 

We also note the average network I/O at the database server. The four parameters 

reported by the sar utility for the network interface traffic in the three algorithms are 

given below (Table 5): 

 
CALB LARD RR 

rxkB/s 15.62 24.34 27.75 

txkB/s 39.61 80.84 94.52 

rxpck/s 42.49 95.19 108.22 

txpck/s 33.8 89.95 101.07 

 

Table 5 - Average Network I/O for CALB, LARB and Round Robin at DB Server 

0

200

400

600

800

1000

1200

CALB LARD RR

A
v

er
a

g
e 

R
es

p
o

n
se

 T
im

e 
in

 m
s 

Response Time 

Response Time



67 

 

 

Here  

rxpck/s  is the total number of packets received per second.     

txpck/s  is the total number of packets transmitted per second. 

rxkB /s is the Total number of kilobytes received per second.  

txkB /s is the Total number of kilobytes transmitted per second. 

  

Our main figure of interest here is rxKB/s which gives the amount of data in kilobytes 

received by the database server per second. This data is mostly database query packets 

sent by the application servers to the database server. It is evident from the graph that 

CALB decreases the amount of database accesses by a great extent by making an 

effective use of cache.  

 

 

Figure 4-5 - DB network I/O 

 

0

10

20

30

40

50

60

70

80

90

100

rxkB/s txkB/s

Database network IO 

CALB LARD RR



68 

 

As we can clearly see, CALB results in a significant decrease in the traffic directed to the 

database (35% decrease compared to LARD). This indicates that a majority of requests in 

CALB are getting satisfied from the cache itself resulting in fewer accesses to the 

database and hence lower network interface traffic at the database. The huge jump in 

network traffic in case of LARD and Round Robin can be related to the cache evictions 

that occur in LARD and Round Robin. This happens because both LARD and Round 

Robin do not consider the working set size of the transactions in the context of the cache 

space at an application server while dispatching the transactions to them. This can result 

in multiple transactions be dispatched to an application server such that the entire 

working set of those transactions cannot be accommodated in the cache space available. 

This results in cache contention among the transactions dispatched to the same 

application server node, resulting in cache evictions later on. In Round Robin, this 

contention is even worse as it also completely ignores the type of data accessed by a 

transaction and its working set size. Thus, it performs the worst among the three load 

balancing algorithms in discussion here. Whereas, in CALB the working set of the 

transactions is accommodated in the cache space available on an application server. This 

results in zero cache evictions. On the other hand LARD does not take into account this 

criterion while dispatching requests. In LARD, eventually the cache will be overfilled 

resulting in cache evictions. This causes it to perform worse than CALB. Compared to 

Round Robin, LARD achieves a higher cache hit rate as it does take into account the type 

of data needed by a request while dispatching them to application server cluster nodes. 

This explains the better performance of LARD as compared to Round Robin. Round 

Robin on the other hand, is completely cache agnostic and blindly forwards the requests 

to the application server nodes. Because of this, Round Robin does not make an effective 

usage of the cache space available resulting in huge cache evictions and misses. This 

results in bad performance and explains why Round Robin performs worse than LARD 

or CALB.  

To substantiate our reasoning, we also measure the number of cache evictions in the 

above test runs. The number of cache evictions in LARD is around 80,000 whereas the 



69 

 

number of cache evictions in Round Robin is around 100,000. In CALB we don’t 

observe any cache evictions as the working sets fit the cache space available. 

 

4.3 Summary 
 

The above discussion clearly indicates that the CALB results in a significant decrease in 

the transaction response time compared to LARD and Round Robin. CALB not only 

increases the throughput but also reduces the network traffic that the database 

experiences because of cache misses. This reduces the processing load on the database, 

and thereby results in an overall scalable system at the database level. Such a load 

balancing algorithm allows the system to use the cache effectively and efficiently. 

In Figures 4-6 and 4-7, we compare the response time and throughput for the different 

load balancing algorithms for 750, 1000, 1250, 1300 and 1500 clients. 

 

 

 

 

 

 

 

 

 

 

  



70 

 

 

Figure 4-6 – Comparison of response time with varying number of clients 

 

 

Figure 4-7 - Comparison of throughput with varying number of clients 

 

0

500

1000

1500

2000

2500

750 1000 1250 1300 1500

re
sp

o
n

se
 t

im
e 

in
 m

s 

Number of clients 

Response Time Comparison 

CALB LARD RR

0

20

40

60

80

100

120

140

160

180

750 1000 1250 1300 1500

re
q

/s
 

Number of clients 

Throughput Comparison 

CALB LARD RR



71 

 

 

 

 

Chapter 5 

5 Conclusion and Future Work 

 

5.1 Conclusion 
 

Scalable multi-tier solutions are crucial for database driven applications. As the 

businesses become more and more dependent on the internet to drive their commercial 

activities, a cost effective, scalable and highly available solution is needed. Different 

solutions have been presented in the literature to enhance the performance of the e-

commerce and enterprise applications. A caching layer hosted by mirrored application 

servers, all of which share a single database, is a commonly deployed configuration to 

this end. In this thesis, we presented a cache aware load balancing solution (CALB) at 

the application server level, with the end goal of utilizing the cache space available on 

the application server cluster effectively. Our solution is integrated into a JEE server 

cluster. By identifying the different transactions in the applications and grouping them, 

the requests are divided into groups which have nearly disjoint content needs. This 

means less duplication of cache content over the application servers and much more 

effective usage of the caching component. We also extend the design of our cache aware 

load balancing solution to a configuration where the application server can start up and 

shut down while the system is running. 

 



72 

 

We have run experiments on our implementation and compared it with a content blind 

(round robin) and a content aware (LARD) strategy to demonstrate the effectiveness of 

our cache aware load balancer. In our evaluation, we observed a decrease of 17% in 

response time as compared to the LARD and a decrease of 28% in response time as 

compared to the round robin scheduling. In throughput, CALB resulted in an 

improvement of 6.3% compared to LARD and 9.8% compared to round robin. At the 

same time, the amount of network traffic in bytes received by the database server 

compared to LARD is decreased by 35%. This demonstrates that a larger proportion of 

requests are being satisfied from the cache and hence lesser network traffic is directed to 

the database server. 

  

5.2 Future Work 
 

A few possible directions for future work are discussed below: 

The work presented in this thesis focused on a read-only workload for the purpose of 

evaluation. An evaluation against an update intensive workload would mean 

incorporating some consistency mechanisms at the cache level. Existing consistency 

mechanisms use a time-to-live approach, invalidation or polling. In [37], Cao et al. do a 

comparative analysis of the mentioned approaches on the performance of an application. 

A similar study can also be carried out on our infrastructure. 

At the same time, in CALB, replication of content across caches is very minimal. It 

would be nice to take this into consideration while designing consistency mechanisms. 

Taking this feature of CALB into account would mean lesser amount of network traffic 

accounted by the invalidation messages sent across the network for maintaining cache 

content consistency. 

Another future direction of work would be to automate the request type detection in the 

load balancer. Right now, the load balancer needs the client to identify the type of 



73 

 

requests it is handling. This can possibly be automated with some machine learning 

techniques or some sort of statistical analysis of the logs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 

 

6 Bibliography 
 

[1] Internet World Usage Stats. [Online] June 30, 2010. 

http://www.internetworldstats.com/stats.htm. 

[2] Who We Are eBay Inc. [Online] http://www.ebayinc.com/who. 

[3] Elnikety, S., S. Dropsho, and W. Zwaenepoel, Tashkent+: memory-aware load balancing 

and update filtering in replicated databases, in Proceedings of the 2nd ACM 

SIGOPS/EuroSys European Conference on Computer Systems 2007. 2007, ACM: Lisbon, 

Portugal. p. 399-412. 

[4] The linux Virtual Server Project. [Online] http://www.linuxvirtualserver.org/. 

[5] The Apache HTTP server project. [Online] 

http://httpd.apache.org/docs/2.1/mod/mod_proxy_balancer.html. 

[6] The Java EE 6Tutorial. [Online] Oracle, October 2010. 

http://download.oracle.com/javaee/6/tutorial/doc/. 

[7] The J2EE 1.4 tutorial. The J2EE 1.4 tutorial. [Online] 

http://download.oracle.com/javaee/1.4/tutorial/doc/. 

[8] JBoss AS - JBoss Community. [Online] http://www.jboss.org/jbossas/. 

[9] JOnAS Open Source Java EE Application Server. [Online] 

http://wiki.jonas.ow2.org/xwiki/bin/view/Main/. 

[10] Glassfish Open Source Application Server. [Online] https://glassfish.dev.java.net/. 

[11] Enterprise JavaBeans Technology. [Online] http://www.oracle.com/technetwork/java/index-

jsp-140203.html. 

[12] Java Persistence API - A Simpler programming model for entity persistence. [Online] 

http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html. 

[13] Scalability. Wikipedia. [Online] http://en.wikipedia.org/wiki/Scalability. 

[14] Cardellini, V., M. Colajanni, and P.S. Yu, Dynamic Load Balancing on Web-Server Systems. 

IEEE Internet Computing, 1999. 3(3): p. 28-39. 



75 

 

[15] Ehcache. [Online] http://ehcache.org/EhcacheUserGuide.html. 

[16] Luo, Q., et al., Middle-tier database caching for e-business, in Proceedings of the 2002 

ACM SIGMOD international conference on Management of data. 2002, ACM: Madison, 

Wisconsin. p. 600-611. 

[17] Gilly, Katja, Juiz, Carlos and Puigjaner, Ramon., An up-to-date survey in web load 

balancing, World Wide Web, 2010, pp. 1-27. 

[18] Pai, V.S., et al., Locality-aware request distribution in cluster-based network servers. 

SIGOPS Oper. Syst. Rev., 1998. 32(5): p. 205-216. 

[19] Cherkasova, L., FLEX: Load Balancing and Management Strategy for Scalable Web 

Hosting Service, in Proceedings of the Fifth IEEE Symposium on Computers and 

Communications (ISCC 2000). 2000, IEEE Computer Society. p. 8. 

[20] Zhang, X., et al., HACC: an architecture for cluster-based web servers, in Proceedings of 

the 3rd conference on USENIX Windows NT Symposium - Volume 3. 1999, USENIX 

Association: Seattle, Washington. p. 16-16. 

[21] Cherkasova, L. and M. Karlsson, Scalable Web Server Cluster Design with Workload-Aware 

Request Distribution Strategy WARD, in Proceedings of the Third International Workshop 

on Advanced Issues of E-Commerce and Web-Based Information Systems (WECWIS '01). 

2001, IEEE Computer Society. p. 212. 

[22] Iyengar, A., E. MacNair, and T. Nguyen. An analysis of Web server performance. in Global 

Telecommunications Conference, 1997. GLOBECOM '97., IEEE. 1997. 

[23] Lodi, Andrea., Algorithms for Two-Dimensional Bin Packing and Assignment Problems, 

Universita degli studi di bologna. Bologna, 1999. PhD thesis. 

[24] Jboss mod_cluster. [Online] http://jboss.org/mod_cluster. 

[25] mod_cluster Load Metrics. [Online] 

http://docs.jboss.org/mod_cluster/1.0.0/html/javaload.html. 

[26] Ubuntu. [Online] http://www.ubuntu.com/. 

[27] PostgreSQL. [Online] http://www.postgresql.org/. 

[28] Apache Httpd. [Online] http://httpd.apache.org/. 

 



76 

 

[29] Windows Server 2008. [Online] 

http://www.microsoft.com/windowsserver2008/en/us/default.aspx. 

[30] AJP Wikipedia. [Online] http://en.wikipedia.org/wiki/Apache_JServ_Protocol. 

[31] Ehcache - Performance at any scale. [Online] http://ehcache.org/. 

[32] RUBiS. [Online] OW2 Consortium. http://rubis.ow2.org/. 

[33] Amza, C., et al. Specification and implementation of dynamic Web site benchmarks. in 

Workload Characterization, 2002. WWC-5. 2002 IEEE International Workshop on. 2002. 

[34] KSar. [Online] http://sourceforge.net/projects/ksar/. 

[35] PortTunnel. [Online] http://www.steelbytes.com/?mid=18. 

[36] Ehcache - Cache Configuration. [Online] 

http://ehcache.org/documentation/configuration.html. 

[37] Cao, P. and C. Liu, Maintaining Strong Cache Consistency in the World Wide Web. IEEE 

Transactions in Computing., 1998. 47(4): p. 445-457. 

[38] JPA Caching. [Online] http://weblogs.java.net/blog/archive/2009/08/21/jpa-caching. 

 

 


