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Abstract 

 

 

This thesis deals with the theoretical study of the linear and nonlinear dynamics of a slender 

flexible cantilevered cylindrical structure subjected to external axial water and air flows, of 

interest because of several important practical applications such as nuclear reactor fuel-element 

bundles, double pipe heat exchangers, and angioplasty. Lack of knowledge to account for the 

three-dimensional behaviour, important in the above-mentioned practical applications, was the 

motivation behind the present work. The theoretical results were obtained in the form of the 

amplitudes and frequencies of the instabilities, as well as the critical flow velocities at which 

these instabilities occurred.  

Experiments were conducted to validate and complement the theoretical results for water 

flow. The results obtained from the experiments were presented in the form of dimensionless 

mean displacements, their corresponding root mean square values, and frequencies as a function 

of dimensionless flow velocity. Finally, the path traced by the oscillating cylinder was mapped. 

   In fluid-structure interaction problems, the fluid forces such as the inviscid 

hydrodynamic forces, the frictional or viscous forces, and the hydrostatic or pressure forces 

acting on the flexible structure play a vital role in defining the dynamics of the system. 

Therefore, a precise calculation of the force coefficients, such as longitudinal and normal viscous 

coefficients, base drag coefficient, and zero-flow normal force coefficient present in the 

equations of motion associated to the above mentioned fluid forces, is imperative. These 

presently calculated force coefficients were then incorporated in the linear and nonlinear 

equations of motion and solved to obtain the response of the cylinder in water flow. The 

response of the system from the linear model in air flow was also obtained. The effect of 

confinement on the linear dynamics was also studied.  

A nonlinear three-dimensional cantilevered cylinder model was also created and 

simulated in a commercially available finite element modeling and simulation package, namely 

ADINA, in order to complement the results obtained from the linear and nonlinear models. The 

results of the ADINA simulations were obtained in water as well as air flows. 

Experimental results validated the analytical and numerical model results. The results, 

thus obtained, are expected to play an important role in improving the above-mentioned 

engineering and medical applications to ensure operation below critical flow conditions. 
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Sommaire 

 

Cette thèse traite de la dynamique linéaire et non linéaire d'une structure mince et flexible dans 

un écoulement axial d'eau ou d'air. Ce sujet a des applications importantes, par exemple en ce qui 

concerne les vibrations des faisceaux d'éléments combustibles dans les réacteurs nucléaires, les 

échangeurs de chaleur et l'angioplastie. Le manque de connaissances sur le comportement 

tridimensionnel de la structure mince dans les applications mentionnées ci-haut a motivé la 

recherche présentée dans cette thèse. Les résultats théoriques donnent les vitesses d'écoulement 

critiques pour le déclenchement des instabilités fluide-élastiques, ainsi que les amplitudes et 

fréquences associées à ces instabilités.   

Des expériences ont été menées afin de valider et de compléter les résultats théoriques 

pour des écoulements d’eau. Les résultats obtenus à partir des expériences sont présentés sous la 

forme de moyennes de déplacements adimensionnels ‘root-mean-square’, et les fréquences en 

fonction de la vitesse d'écoulement adimensionnelle. Enfin, la forme tracée par le cylindre 

oscillant a été cartographiée. 

Dans les problèmes d'interaction fluide-structure, les forces de fluide, telles que les forces 

hydrodynamiques non visqueuses, les forces associées au frottement, et les forces hydrostatiques 

et de pression agissant sur la structure souple jouent un rôle vital sur la dynamique du système. 

Par conséquent, un calcul précis des coefficients de ces forces est impératif dans les équations de 

mouvement associés aux forces fluides mentionnées ci-dessus, tels que les coefficients 

longitudinales et normales visqueux, le coefficient de traînée de base, et le coefficient de force 

normale dans un fluide stagnant. Ces coefficients de force actuellement calculés ont ensuite été 

intégrés dans les équations linéaires et non linéaires du mouvement, et les équations ont été 

résolues pour obtenir la réponse du cylindre dans l'écoulement d'eau. La réponse du système à 

partir du modèle linéaire d’un écoulement d'air a également été obtenu. L'effet du confinement 

sur la dynamique linéaire a aussi été étudié. 

Un modèle de cylindre en porte à faux tridimensionnel non linéaire a également été créé 

et simulé dans un logiciel de modélisation par éléments finis et de simulation un logiciel 

commercial, à savoir ADINA, afin de compléter les résultats obtenus à partir de modèles 

linéaires et non linéaires. Les résultats des simulations de ADINA ont été obtenus pour des 

écoulements d'eau, ainsi que des écoulements d'air. 

Les résultats expérimentaux ont validé les résultats des modèles analytique et numérique. 

Les résultats ainsi obtenus sont appelés à jouer un rôle important dans l'amélioration des 

techniques et applications industrielles et médicales mentionnées ci-dessus pour assurer un 

fonctionnement au dessous des conditions d'écoulement critiques. 
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Contributions to Original Knowledge 

 

 

The linear and nonlinear dynamics of a slender flexible cantilevered cylinder subjected to axial 

water and air flows is the subject of this thesis. To the author’s best knowledge, this is the first 

time that a study on such a system in water and air flows has been undertaken from both a linear 

and a nonlinear point of view, both theoretically and experimentally. Below is a summary of the 

main contributions of this thesis to original knowledge. 

 
1. In fluid-structure interaction problems, the fluid forces such as the inviscid hydrodynamic 

forces, the frictional or viscous forces, and the hydrostatic or pressure forces acting on the 

flexible structure play a vital role in defining the dynamics of the system. Therefore, a 

precise calculation of the force coefficients such as longitudinal and normal viscous 

coefficients, base drag coefficient, and zero-flow normal force coefficient associated to 

these forces present in the equation of motion is imperative. In the calculation of these 

force coefficients, the physical parameters of the experiments are used. This was done so 

as to be able to compare the theoretical results to those pertaining to the experimental 

system. A unique method is developed involving the use of a finite element modeling and 

simulation package, namely ADINA to calculate these coefficients. These are then 

incorporated in the linear and nonlinear equations of motion. 

 
2. The linear and nonlinear dynamics of cantilevered cylinder in air flow was investigated. 

The model in air flow develops a different dynamics than that in water flow.    

 
3. A nonlinear three-dimensional cantilevered cylinder model in axial flow is created and 

simulated in ADINA. One of the multiphysics capabilities of ADINA is Fluid-Structure 

Interaction (FSI). ADINA offers FSI capabilities in one single program for the solution of 

problems where the fluids are fully coupled to structures that can undergo highly 

nonlinear response due to large deformations and contact with the surrounding 

boundaries. In addition, the ADINA simulations consider the fluid forces in all three-

directions and the resulting dynamics can be visualized as three-dimensional.  
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Nomenclature 

 

 

Alphabetic Symbols 

 

A cylinder uniform cross-sectional area, m
2
 

B (η) boundary condition 

b height of two-dimensional horizontal beam model, m 

C Courant number 

Cmax maximum value of Courant number 

c normalized zero-flow normal coefficient 

Cb base drag coefficient 

cb normalized base drag coefficient 

CD zero-flow normal coefficient, m/s 

Cf friction drag coefficient 

cf normalized friction drag coefficient 

CN normal friction coefficient 

cN normalized friction coefficient in the normal direction 

co and cL rotational spring constant, N.m/rad 

CT tangential friction coefficient 

cT normalized friction coefficient in the tangential direction 

[C] damping matrix 

C
+
 a constant in the expression for the logarithmic law of the wall for turbulent 

flow  

D cylinder diameter, m 

Dch channel diameter, m 

Dh hydraulic diameter, m 

Di inner diameter of a pipe, m 

Do outer diameter of a pipe, m 

 slope of the angle of inclination dxdy



x 

 

E Young’s modulus, N/m
2
 

E
*
 viscoelastic constant 

EI flexural rigidity of the cylinder, N.m
2
 

F resultant force, N 

FL viscous force per unit length in the longitudinal direction, N/m 

FN viscous force per unit length in the normal direction, N/m 

Fpx hydrostatic force in the x-direction, N 

Fpy hydrostatic force in the y-direction, N 

F (η) equation of motion 

f end-shape factor 

fcr,fln dimensional frequency at the critical flow velocity for the n
th

 mode flutter, Hz 

fD Darcy-Weisbach friction coefficient 

ffln dimensional flutter frequency in its n
th

 mode, Hz 

fn natural frequency of the cylinder in its n
th

 mode, Hz 

g gravitational constant, m/s
2
 

h ratio of the cylinder diameter and the hydraulic diameter of the channel 

hHg height of mercury column, m 

I second moment of area, m
4
 

[I] unit matrix 

[K] stiffness matrix 

k Von Karman constant in the expression for the logarithmic law of the wall for 

turbulent flow 

ko and kL translational spring constants, N/m 

L total length of the cylinder including the end-piece, m 

Lch length of channel, m 

Leff effective length of cylinder, m 

Lent entrance length, m 

l length of the cylinder end-piece, m  

lbeam length of two-dimensional horizontal beam model, m 

M added (virtual) mass of the fluid per unit length, kg/m 

[M] mass matrix 



xi 

 

m mass of the cylinder per unit length, kg/m 

n number of desired cylinder modes 

nmax highest desired cylinder mode 

 mean value of pressure, N/m
2
 

pL pressure at the sides of the cylinder, N/m
2
 

pb base pressure, N/m
2
 

∆p pressure gradient, N/m
2
 

Q lateral shear force, N 

 a constant 

{Q} eigenvector 

 vector of generalized coordinates 

 first order time derivative of the generalized coordinate vector 

 second order time derivative of the generalized coordinate vector 

qr (τ) generalized coordinates in the transverse direction 

R radius of cylinder 

r refractive index 

Rch radius of the channel 

2
fitR  goodness of fit 

Re Reynolds number 

S cylinder cross-sectional area  

[S] resulting matrix of the eigenvalue problem 

Stk Stokes number 

s cylinder axial distance, m  

sh backward facing step height, m 

T axial tension, N 

Tc kinetic energy, J 

 externally imposed uniform tension, N 

t time, s 

∆t time step in numerical simulations, s 

U uniform dimensional flow velocity, m/s 

p

Q

{ }q

{ }q&

{ }q&&

T



xii 

 

u dimensionless flow velocity 

ucr,dn critical flow velocity for the onset of divergence in n
th

 mode 

ucr,fln critical flow velocity for the onset of flutter in n
th

 mode 

urn re-stabilization of cylinder from n
th

 mode 

u
+
 dimensionless velocity in the expression for the logarithmic law of the wall for 

turbulent flow 

u
*
 frictional velocity, m/s 

Vc potential energy, J 

W vertical concentrated point load, N 

δW virtual work by the fluid-related forces acting on the cylinder, J 

x axial distance, m 

∆x axial distance increment, m 

xe, se parameter representing the axial variation in the end-piece cross-sectional area, 

m 

x̅e, s̅e  parameter representing the axial variation in the end-piece diameter, m 

y (x, t) cylinder displacement in the transverse direction at any longitudinal distance 

and time, m  

y
+
 dimensionless wall coordinate in the expression for the logarithmic law of the 

wall for turbulent flow 

z displacement in z-direction, m 

 

Greek Symbols 

γ gravity parameter  

γc confinement parameter 

ϕr (ξ) eigenfunctions of cantilevered cylinder 

δ (ξ-1) Dirac’s delta function 

δ  ratio of inner to outer diameters of a pipe 

δmax maximum deflection of the cylinder or beam end, m 

δn logarithmic decrement of the cylinder of its n
th

 mode  

δx element of the cylinder with minuscule length in longitudinal direction, m 



xiii 

 

ρ density of fluid, kg/m
3
 

ν Poisson’s ratio 

νk fluid kinematic viscosity, m
2
/s 

χ confinement factor 

ξ dimensionless distance in the x-direction 

η dimensionless distance in the transverse direction 

η (1)r.m.s. r.m.s. value of the dimensionless cylinder tip amplitude 

η*
(1) dimensionless mean cylinder tip displacement 

τ dimensionless time 

λr beam eigenvalues 

α ratio of channel and cylinder diameters 

 viscoelastic damping constant 

β mass ratio 

Γ dimensionless externally imposed uniform tension 

ε slenderness factor 

Π dimensionless mean pressure 

χe dimensionless parameter representing the variation in the end-piece cross-

sectional area  

�̅� dimensionless parameter representing the variation in the end-piece diameter  

λr, λj eigenvalues of cylinder in rth or jth mode 

θ angle of inclination of the cylinder to the incoming fluid flow 

Ω radian frequency, rad/s 

Ωn radian frequency of cylinder in its n
th

 mode, rad/s 

ω dimensionless frequency 

ωcr,fln dimensionless flutter frequency of cylinder at the critical flow velocity in its n
th

 

mode 

ωfln dimensionless flutter frequency of cylinder in its n
th

 mode 

L Lagrangian of the system 

 hysteretic damping constant 

 

*α

*µ



Chapter 1 

Introduction and Literature Review 

 

1.1. Introduction 

 

The dynamics of flexible cylindrical structures in fluid flow (cross-flow and axial flow) is rather 

complex. To simplify the problem, an assumption is usually made that the flow is either purely 

normal to the axis of the structure (cross-flow) or purely axial (axial flow) (Modarres-Sadeghi 

2006). A structure interacting with fluid in cross-flow and axial flow collectively is studied so 

extensively that a distinct field has emerged namely Fluid-Structure Interaction (FSI). FSI is the 

interaction of a deformable structure with an internal or external fluid flow (Bungartz and 

Schäfer, eds. 2006). Cylinders in cross-flows exhibit significant dynamic deformations and 

oscillations. This problem has retained much attention from researchers and designers in the past, 

due to its important industrial applications such as heat exchanger tube banks (Chen 1978), as 

shown in Fig. 1.1, feed-water heater ( Kaneko et al. 2008), and chimney stacks (Zdravkovich 

2003). In contrast, cylindrical structures in axial flow undergo relatively smaller transverse 

vibrations. The importance of this problem was not immediately felt, resulting in relatively less 

extensive research work in this area.   

 Cylindrical structures in axial flow can be categorized into unconfined and confined 

flows. When the cylinder is isolated in the ocean or in a fairly large flow channel, such that the 

pressure-drop within the outer flow is very small, the cylinder is considered to be in unconfined 

flow. When the cylinder is in close proximity to adjacent cylinders or to the flow-containing 

channel, such that pressure drop is clearly not negligible, the cylinder is then considered to be in 

confined flow. There are many important engineering applications in the second category. An 

axial flow induces smaller- amplitude transverse vibrations in cylindrical structures than that a 

cross-flow. The amplitudes are so small that, in some cases, they might be of little concern. They 

can become worrisome in applications such as in nuclear reactor fuel-element bundles, 

monitoring tubes, and control rods and in double pipe heat exchangers where the flow is mainly 

axial. In both cases, the problem originates from either close spacing between the cylindrical 

elements or between the cylindrical elements and intermediate supports; therefore, even small 

amplitude vibrations result in impact, resulting in accelerated wear and with time, might cause 
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the rupture of the cylindrical elements (Paїdoussis 2004). Thus, unlike cross-flow-induced 

vibration problems, low-amplitude axial-flow-induced vibration problems usually become 

prominent after long period of time, causing fatigue and cracking due to cyclic stresses. Another 

important reason for interest in axial-flow-induced vibration is that some systems are inherently 

very flexible because of their material, support configuration, or length. These systems are prone 

to larger amplitude vibrations (Paїdoussis 2004). According to Paїdoussis (2004), most of the 

interest as early as 1958 in the low amplitude vibration of cylindrical structures in axial flow was 

directly related to the power industry and related work was carried out for one of the following 

reasons: (a) measurement of the amplitude of vibration of particular cylindrical structure 

configurations, e.g., modeling nuclear reactor components such as fuel rods, monitoring tubes, 

and tubular cylindrical elements in the steam generator and the flow conditions; (b) 

comprehending the reasons of vibration; (c) development of mechanisms for foreseeing the 

vibration amplitudes.  

One of the practical examples of cylindrical structures in axial flow is seismic receiver 

arrays. Seismic sonars are often used to survey the undersea geological deposits such as oil and 

gas below the seafloor. Sound pulses generated from a sonar transmitter attached to a vessel 

travel through the water and into the see bed. The reflected pulses are recorded by the seismic 

receiver arrays also attached to the same vessel. These seismic arrays are extremely long, 

neutrally buoyant, and slightly submerged in water (Paїdoussis 2004). The reflected pulses are 

then analyzed to detect the presence of any mineral deposits lying under the sea floor (AML 

Oceanographic 2013). In order for the system to work effectively, the dynamical behaviour of 

the slender cylinder-like arrays in the water needs to be understood.  

Another practical application, in biomedical science, is ‘catheterization’. This technique 

is used to open a blocked or narrowed coronary artery due to substantial buildup of fatty matter. 

A long narrow flexible guide wire called a ‘catheter’, equipped with a small deflated balloon and 

a stent (a stainless steel mesh tube), is inserted into the artery and reaches where blockage has 

occurred. The balloon is then inflated and it fixes the stent to keep the artery open. Another way 

of widening the artery passage is by using a balloon catheter. A deflated balloon on a catheter is 

passed into the narrowed locations and then inflated to a fixed size. The balloon crushes the fatty 

deposits, opening up the blood vessel to improve flow; the balloon is then collapsed and 

withdrawn (Morgan and Walser 2010). Dynamic instability of catheters can become substantially 
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critical for the successful completion of the above mentioned procedures and patient health 

recovery. The instability in terms of dynamic buckling or whipping action of the catheter is one 

of the reasons for coronary or vascular perforation that may lead to severe complications or even 

death. It has been reported as a result of the study taken place in Columbia University where, 

between April 2004 and October 2008, 13,466 angioplasties were performed and out of these, 33 

(0.245%) coronary perforation cases were documented with 26 (78.8%) angiographically severe 

cases. Among the fifteen patients who were treated using a single catheter, there were three 

deaths (20%), two surgical explorations (13.3%), eight emergent pericardiocenthesis (53.3%), 

and one event of severe anoxic brain damage (6.7%) (Ben-Gal et al. 2010). Therefore, 

understanding the dynamics of such system becomes very important.  

 

1.2. Literature Review 

 

In this section, a review of the representative previous studies on the system of a slender cylinder 

subjected to axial flow will be presented, starting from the studies done on unconfined flow, 

followed by studies on confined flow.  

 

1.2.1. Experimental Studies on Slender Flexible Cylinders in Axial Flow  

 

One of the early experimental studies on the dynamics of slender flexible cylinders in unconfined 

axial flow was conducted by Paїdoussis (1966b). He conducted experiments on horizontally 

positioned cantilevered and simply supported cylinders in axial water flow. To remind the 

reader, cantilevered cylinder has one of its ends clamped/fixed while the other end is free. 

Simply supported cylinder has both its ends pinned to a rigid support. He fixed a smoothly 

tapered rigid end-piece at the free downstream end of the cantilevered cylinder, whereas made 

both the ends of the simply supported cylinder tapered over a very short distance. The 

experiments served as a means to compare and validate the theoretical model of similar system 

also developed by him (1966a). Paїdoussis et al. (1980b) examined, experimentally, the 

dynamical behaviour of the flexible slender cylinder in axial flow, perturbed harmonically in 

time. They compared the experimental results with those of theory (Paїdoussis et al. 1980a) and 

found good agreement between them. 
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For solitary cylinder, Paїdoussis and Pettigrew (1979) conducted experiments to study the 

dynamics of flexible cylinder in an axisymmetric confined axial fluid and two-phase flows. They 

also compared the results qualitatively and quantitatively with theoretical predictions and found 

that the agreement was qualitatively good and quantitatively fair. Later, Gagnon and Paїdoussis 

(1994b) studied, experimentally, the coupling characteristics of cluster of cylinders clamped at 

both ends in turbulent axial flow. Two, four, and twenty eight cylinder clusters were used for the 

experiments with a maximum of four flexible instrumented cylinders in the cluster. The rest of 

the cylinders were rigid. They recorded the vibration amplitudes of the cylinders in two 

orthogonal directions. They presented the results for the clusters in the form of Power Spectral 

Density (PSD), coherence plots, and inter-cylinder phases. They also conducted experiments on 

four-cylinder cluster to see the effect of inter-cylinder gap. They used the experimental results to 

support the theory for similar system developed by them (1994a).   

 

1.2.2. Theoretical Studies on Slender Flexible Cylinders in Axial Flow  

 

1.2.2.1.Linear Models 

 

One of the earliest studies on the dynamics of slender flexible structures in axial flow was 

undertaken by Hawthorne (1961). He reported the designing, fabrication, and experimental 

testing of many designs of towed flexible barge all made of flexible material.  Dracone is a 

slender flexible container towed behind a small ship, used to transport lighter-than-sea-water 

liquids such as gasoline, kerosene, and fresh water. After delivery of the cargo, the Dracone is 

either rolled and carried on the ship or filled with air and towed back to land (Paїdoussis 2004). 

He was concerned with the directional stability of the towed Dracone system in order to avoid 

excessive stresses that might develop while towing the system in water. 

Following Hawthorne’s work on towed flexible structures, Paїdoussis (1966a) studied the 

dynamics of slender flexible cylinders in unconfined axial flow. This was a two-part study 

comprising of (i) the development of linear analytical model of the flexible cylinder dynamics 

for different boundary conditions and (ii) experiments to compare and validate the theory. The 

experimental part is described in Section 1.2.1. The boundary conditions considered for the 

cylinder were either clamped or pinned at both ends of the cylinder, or clamped at the upstream 

end and free at the other end. The two-dimensional linear model accounted for small, free, lateral 
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motions of the cylinder immersed in fluid flowing parallel to the axis of the cylinder. He did not 

account for the damping in the material of the cylinder. He used the standard boundary 

conditions for the cylinder supported at both ends. However, in case of the free downstream end, 

he considered a rigid end-piece at the free end the cross-sectional area of which was assumed to 

be tapered smoothly to zero over a short distance such that l/L << 1. Here, L is the total length of 

the cylinder including the end-piece and l is the length of the end-piece. He applied the time- and 

velocity-dependent boundary condition at this free end. He observed that the inviscid force 

contributed considerably in the cylinder response.    

This study, however, contained an error in completely specifying the forces causing the 

vibration in the cylinder. The error arose due to the absence of the term FL (∂y/∂x) in the y-

direction (transverse direction) force balance equation. This error was carried forward, 

undetected, to others’ work, for example, Ortloff & Ives (1969), Pao (1970), and Chen & 

Wambsganss (1972). The model itself was later extended and corrected, leading to the most 

complete linear model of Paїdoussis (1973). Furthermore, a linear analytical model pertaining to 

the case of a cluster of cylinders or a solitary cylinder in confined flow was also developed in 

this work. The model took gravity and pressurization into account, and determined the frictional 

forces in a systematic way.  

Later, Paїdoussis (1974) studied the small amplitude vibration, termed sub-critical 

vibration, induced in cylindrical structures by turbulence in the axial flow. Sub-critical vibrations 

are small amplitude vibrations occurring at flow velocities lower than the critical flow velocities 

at which fluid-elastic instabilities develop in the cylinder. Considering the range of axial flow 

velocities pertaining to most industrial systems, the vibration amplitudes were small. In this 

work, based on the theory developed for cylindrical structures in axial flow (Paїdoussis 1973), he 

developed an analytical model to predict the dynamics of slender flexible cylinder in unconfined 

and confined axial flows. Furthermore, he derived an empirical relation to predict the sub-critical 

vibration amplitudes. He also explained the mechanisms of sub-critical vibrations in the 

cylindrical system. He categorized the sub-critical vibrations as forced, parametric, or self-

excited. He also discussed other analytical models developed by other researchers such as 

Quinn’s (1962) self-excited vibration model, Reavis’s (1969) and Chen & Wambsganss’s (1972) 

forced-vibration models, Gorman’s (1969, 1971) two-phase flow forced-vibration model, and 

Chen’s (1970a,b) parametric vibration model. Hannoyer and Paїdoussis (1978) examined the 
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dynamics and stability of cylindrical tubular beams conveying fluid and simultaneously 

subjected to axial external flow by deriving and solving the equation of motion while taking into 

account the boundary-layer thickness on the cylinder due to the external flow, internal 

dissipation, and gravity effects. They also conducted experiments on similar system in order to 

support the theoretical predictions. 

Paїdoussis et al. (1980a) investigated, theoretically, the dynamical behaviour of a solitary 

flexible slender cylinder in pulsating flow. They first conducted the theoretical analysis of the 

system in steady and unperturbed flow for various sets of boundary conditions, and established 

(i) the eigenfrequencies of the system at any given flow velocity and (ii) the critical flow 

velocities that mark the onset of system instabilities. Then they did the analysis of the system in 

pulsating flow, establishing the existence of parametric resonances. They also looked into the 

effects of the mean flow velocity, boundary conditions, dissipative forces, and virtual 

(hydrodynamic) mass on the extent and location of the parametric instability zones. Paїdoussis 

(1983) reviewed the two classes of flow-induced vibrations encountered in nuclear reactors and 

reactor peripherals, vibration of cylindrical structures induced by cross-flow and by axial flow. 

In view of the importance of safety for reactor plant in order to safeguard the potentially very 

delicate environment and people, this study highlighted the potential causes of reactor damage 

due to flow-induced vibrations and their underlying mechanisms. The review encompassed 

buffeting, often referred to as subcritical vibration, in a solitary cylinder subjected to axial flow, 

flow periodicity, as well as fluid-elastic instabilities in cylinder also subjected to axial flow.  

De Langre et al. (2007) investigated the effect of length on long flexible cylinders in axial 

flow. Following Paїdoussis (1973) and Paїdoussis et al. (2002), they modelled the cylinder as 

beam. They proposed a new dimensionless form of the equation of motion governing lateral 

vibrations to make it appropriate for the analysis of the effect of the length. They also found a 

limit regime where the length of the cylinder did not affect the characteristics of the instability 

and the deformation was confined to a finite region close to the downstream end. Wang and Ni 

(2009) reviewed the linear dynamics of different flexible structures as a result of interaction with 

fluid flow. They considered the fundamental case scenarios of the fluid-induced instabilities in 

structures such as straight pipes conveying fluid, nano-tubes conveying fluid, tubular beams 

subjected to both internal and external axial flows, cylindrical shells subjected to axial flow, 

plates in axial flow, and slender structures in axial flow or axially towed in quiescent fluid. 
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Considerable work has been done on the dynamics of clusters of flexible cylinders in 

axial flow and solitary cylinder in annular axial flow; both are cases of confined flow. One early 

study is by Paїdoussis (1979). A linear theory of the dynamics of clusters of independently 

supported flexible cylinders in axial flow was developed and an extensive discussion of the 

behaviour of such systems with increasing flow velocity was presented, with emphasis on the 

modal forms of free coupled motions of the cylinders and on the onset of the instabilities. Results 

of an experimental study, involving systems of two, three, or four cylinders with different inter-

cylinder gaps and support conditions were also presented and compared with theoretical results. 

Related to the earlier work, Paїdoussis et al. (1983a, b) in a two part study analyzed the dynamics 

of a cluster of three structurally interconnected cylinders in vacuum in part 1. The 

interconnection was modeled through translational and rotational linear springs. The knowledge 

and experience gained in the first part was later utilized to analyze the dynamics of the same 

system in axial flow.  

Paїdoussis (1993) delivered the Calvin Rice lecture in which he covered the topics of the 

stability of pipes conveying fluid and of cylinders in axial flow. He mentioned that although 

much of the research work on these topics is curiosity driven and little or no application was in 

mind, unexpected uses and applications materialized in the following years. He indicated that the 

applications ranged from a marine propulsion system to the dynamics of deep water risers. He 

described the dynamics of thin pipes (shells), cantilevered pipes, and pipes with supported ends 

conveying fluid, and cylinders and shells in axial flow and leakage flow. Later on, Gagnon and 

Paїdoussis (1994a) developed a random vibration theory to study the fluid coupling 

characteristics and turbulence-induced response of a four-cylinder cluster system. The work was 

motivated by the practical application in nuclear power plants in which vibration may be induced 

by the axial flow in the nuclear fuel elements stacked in a cluster leading to serious 

consequences. They developed the random vibration theory based on the work of Reavis (1967, 

1969) and Paїdoussis and Curling (1985). They also used the updated form of the mean flow 

theory developed by Paїdoussis and Suss (1977). The mean flow theory provides the free-

vibration lateral deflection characteristics of cluster of cylinders subjected to steady axial flow. 

In the same work, they combined both the theories (random vibration theory and mean flow 

theory) into a global multi-degree of freedom random vibration model. The distinguishing 

features of this model are the capability of predicting the response of the mixed rigid-flexible 
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cylinders cluster, changing frequencies, and modal characteristics with varying mean flow 

velocity.  

Concerning fluid-elastic vibration, Paїdoussis (1981) presented a critical assessment of 

the state-of-the-art for flow induced vibrations of cylinder arrays in cross and axial flows. He 

discussed different mechanisms that were recognized previously as potentially capable of giving 

rise to vibrations in cross and axial flows including small-amplitude vibrations induced in 

cylinder arrays in axial flow. He presented an empirical relation governing the forced vibrations 

in axial flow and discussed the underlying mechanisms of forced vibration, hydrodynamic 

coupling, parametric resonances, and fluid-elastic instabilities in cylinder arrays also in axial 

flow. 

Considerable work has been done on the dynamics of rigid cylindrical structures in 

unsteady flows inside narrow annuli. For brevity, only some representative studies are 

mentioned. Mateescu and Paїdoussis (1985) studied, analytically, the effect of unsteady potential 

flow in an axially variable annulus on the dynamics of oscillating rigid center-body. They 

extended the model to make it compatible with short center-body as well. Later, Mateescu and 

Paїdoussis (1987) investigated the unsteady viscous effects on the annular-flow-induced 

instabilities of a rigid cylindrical body oscillating about a hinge in a coaxial narrow duct. For 

that, they extended the previously developed analytical model by Mateescu and Paїdoussis 

(1985) to account for the unsteady viscous effects of a fluid flow in an approximate manner. 

They also compared the inviscid and viscous flow theories. Extending the formulation to flexible 

structures, the dynamics and stability of a flexible cylinder in annular flow was studied by 

Paїdoussis et al. (1990). The principal contribution of this work was that firstly, they formulated 

the inviscid forces based on the potential flow theory and secondly, they formulated the unsteady 

viscous forces not by an adaptation of Taylor’s expression but by a systematic application of the 

Navier-Stokes equations. They modified the linear model for a slender flexible cylinder in axial 

flow developed by Paїdoussis (1973) to make it work for the flexible cylinder in annular flows 

subjected to unsteady viscous fluid forces by substituting the formulated inviscid and viscous 

force terms in the equation of motion. They also obtained the results for very narrow annuli.  

There is a fair amount of research work on the dynamics of continuous flexible 

axisymmetric bodies in axial leakage flow. To remind the reader, when the fluid gap or annulus 

is narrow, the flow is considered to be a leakage flow. Fujita and Shintani (1999, 2001) studied 
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the flow-induced vibration instability of a long flexible axisymmetric rod due to axial leakage 

flow for different end boundary conditions. Unlike considering the axisymmetric rod as a rigid 

body and not a continuous body as in the previous studies, they considered the rod as a 

continuous flexible body. They analytically coupled the equations for the fluid and the structure. 

In the derivation of the analytical model, they obtained the expressions for the added mass, 

added damping, and added stiffness by considering unsteady pressure acting on the rod. They 

simplified the derived linear equation of motion into matrix form and then solved in MATLAB 

to obtain the complex eigenvalues. As a continuation of their work, Fujita et al. (2007) conducted 

experiments on a simply supported axisymmetric circular elastic beam subjected to laminar axial 

leakage flow. They also derived and analytically solved the coupled equations for similar system 

of fluid and beam structure for verification. They presented the analytical results in the form of 

complex eigenvalues. They, specifically, focused on explaining the generation of travelling 

waves and the energy balance for the distortion of vibration response in axial direction of the 

system at the transition from a lower predominant frequency to a higher one by means of 

experimental and analytical results. Later, Langthjem et al. (2006) bridged and extended the 

models developed by Li et al. (2002) and Fujita and Shintani (2001) to account for an eccentric 

simply supported flexible cylindrical rod undergoing static and dynamics instabilities due to 

annular laminar or turbulent leakage flow. For this, they derived the coupled fluid-structure 

equations and then discretized the equations using the Bubnov-Galerkin finite element method 

(Cook et al. 1989). They chose this discretization method because of its capability to handle 

various end boundary conditions and asymmetries in a very simple way by choosing the 

expansion functions ‘once and for all’. Finally, they grouped the coupled equations into single 

matrix system and simplified it to ‘extended’ eigenvalue problem. The results they obtained were 

in the form of complex eigenvalues. Langthjem and Nakamura (2007) investigated the effect of 

swirl on the stability of slender flexible rod in axial annular leakage flow. They derived the 

analytical relations and analyzed the results. For the derivations, they assumed laminar fluid flow 

and vibrations of the rod in one plane. More recently, Fujita and Ohkuma (2010) used the already 

proposed analytical model by Fujuta and Shintani (2001) to investigate how the critical flow 

velocities for divergence and flutter vary for different end boundary conditions of an elastic 

beam in a narrow axial flow. They also conducted parametric studies of the effects of fluid 
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temperature, width of annular gap, viscosity of fluid, and structural damping on the critical flow 

velocities. 

Some studies have specifically focused on the fundamental mechanisms and practical 

aspects of flow-induced instabilities of flexible structures in unconfined and confined flows 

together. In order to present the consequences of such instabilities, Paїdoussis (1980) compiled 

many practical cases of flow-induced vibration problems in heat exchangers and nuclear 

reactors. Later, Paїdoussis (1987) presented an abridged state-of-the-art review paper on flow-

induced instabilities of cylindrical structures for the Fluid-Structure Interaction (FSI) categories 

mentioned above. This paper provides a brief and somewhat unified discussion of the subject 

matter. Naudascher and Rockwell (1990) also discussed, very briefly, the dynamics of slender 

bodies in axial flow pertaining to a rod (they referred to the flexible cylinder as a rod) in external 

axial flow, leakage flow, and multiple bodies in axial flow. They described the effect of 

confinement in case of multiple cylinders in an array on critical velocities. A more recent paper 

by Paїdoussis (2008) discussed how the experience gained in studying the problem of pipes 

conveying fluid radiated into other areas of Applied Mechanics, particularly other problems in 

FSI involving slender structures and axial flows; specifically the dynamics of (a) Pipes 

conveying fluids; (b) slender cylinders in unconfined and confined axial flows; (c) cylindrical 

shells subjected to axial flow; and (e) plates in axial flow. It also provided a recap of equations 

and brief insight into the instability mechanisms in such problems. 

 

1.2.2.2.Nonlinear Models 

 

Through a linear model of a flexible cylindrical system in axial flow, one can reliably predict the 

occurrence of first instability, which is in most of the cases static often referred to as divergence, 

but post-divergence dynamics of the system needs to be validated through a nonlinear model 

(Paїdoussis 1998, 2004; Modarres-Sadeghi 2006). This was done in 2002 when the first 

complete two-dimensional nonlinear analytical model governing the dynamics of cantilevered 

inextensible flexible cylinders in unconfined axial flow was developed. This work was a three-

part study comprising (i) the physical dynamics (Paїdoussis et al. 2002), (ii) the nonlinear 

equations of motion (Lopes et al. 2002), and (iii) the nonlinear dynamics (Semler et al. 2002). In 

first part, the physical dynamics of the system via experimental behaviour of elastomer cylinders 

in water flow and the energy transfer mechanisms were examined from a work-energy 
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perspective without obtaining the solution of the equations of motion. They experimentally 

determined the critical flow velocities for the onset of static and dynamic instabilities in a 

vertical flexible cantilevered cylinder enclosed in a relatively wider channel with axial flow and 

studied the effects of free-end shape, mass ratio, and surface roughness and slenderness on these 

critical velocities. In the second part, the nonlinear equation of motion was derived for the 

dynamics of a slender cantilevered cylinder in axial flow terminated by an ogival free end. In 

third part, the dynamics of the cantilevered cylinder in axial flow were explored by means of the 

equations of motion derived in part 2, and using the Finite Difference Method (FDM) and AUTO 

(a bifurcation software package) as numerical tools in order to obtain the solution of the 

discretized equations.  

Modarres-Sadeghi et al. (2005) developed weakly nonlinear equations of motion for an 

extensible slender flexible cylinder with extensible centreline subjected to axial flow. They 

considered simply supported boundary conditions of the cylinder. The model comprised two 

coupled nonlinear equations describing the motions involving the longitudinal and transverse 

displacements. The derivation of the equations of motion was carried out in a Lagrangian 

framework. The equations were later transformed into a set of second-order ordinary differential 

equations using the Galerkin technique, which were finally solved numerically using Houbolt’s 

finite difference method. The authors also analyzed the influences of frictional coefficients, 

externally imposed uniform tension, and dimensionless axial flexibility on stability and 

amplitude of the buckled solution. Later, Modarres-Sadeghi et al. (2007) presented a 

comparative study of the dynamics of a cylinder with simply supported and clamped-clamped 

(both the cylinder ends clamped) boundary conditions. Houbolt’s Finite Difference Method 

(FDM) and AUTO were used to solve the equations of motion. With the combination of these 

methods, they could obtain the bifurcation diagrams and dynamic response of the cylinder over a 

wide range of flow velocity.  

 

1.3. Motivation of Present Work 

 

A comprehensive literature review indicates that earlier experiments on systems similar to the 

present one were conducted with different objectives in mind. For example, the experiments 

conducted by Paїdoussis (1966b) were focused on studying the two-dimensional dynamics of a 

horizontal cylinder subjected to axial flow in order to validate and support the two-dimensional 
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linear theory of similar system developed by him (1966a). Other set of experiments conducted by 

Paїdoussis et al. (1980b) were focused on studying the effect of harmonically perturbed axial 

flow pulsation frequency and amplitude on the parametric resonance oscillations in solitary 

cylinder clamped at its both ends. They used shorter and thinner cylindrical system than the one 

used in the present experimental study. Later, the experiments conducted by Paїdoussis et al. 

(2002) on the vertical cantilevered cylinder in axial flow were intended to compare the 

experimental results with those of the two-dimensional nonlinear theory for similar system 

developed by them (Lopes et al. 2002). Hence the need remains to conduct the experiments on 

solitary cantilevered cylinder in axial flow to study the three-dimensional dynamics of the 

cylinder by determining the critical flow velocities, cylinder displacements and oscillation 

amplitudes, oscillation frequencies, and path traced by the oscillating cylinder, and also to 

validate and complement the three-dimensional nonlinear model results for similar system. The 

present experiments are also going to serve as a validation tool for the presently used two-

dimensional linear and nonlinear models to study the dynamics of the same system.  

In fluid-structure interaction problems, a precise calculation of the force coefficients such 

as longitudinal and normal viscous coefficients, base drag coefficient, and zero-flow normal 

force coefficient present in the equations of motion associated to the fluid forces acting on the 

cylinder surface is imperative. In the previous theoretical studies on cylindrical system in axial 

flow with different support boundary conditions (Paїdoussis 1966a, 1973; Paїdoussis et al. 

1980a; De Langre et al. 2007), the force coefficients especially the viscous force coefficients in 

transverse and longitudinal directions were considered to be equal. Therefore, these force 

coefficients are calculated based on the parameters actually used in the experiments and 

theoretical models. It is expected that the implementation of these calculated coefficients in the 

linear model will enable the model to better predict the dynamics of the system. 

As indicated earlier, a linear model can reliably predict the first point of instability of a 

flexible system in axial flow, which is most of the time a static instability commonly referred to 

as divergence. The dynamics of the system thereafter has to be verified via a nonlinear model 

(Paїdoussis 1998, 2004; Modarres-Sadeghi 2006). From the literature review, it is noted that in 

the research work utilizing the nonlinear models to describe the system dynamics of a slender 

flexible system in axial flow (Paїdoussis et al. 2002; Modarres-Sadeghi 2005, 2007), the force 

coefficients were either selected within a reasonable range or obtained based on some simple 
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relations. Therefore, an effort is undertaken to solve the nonlinear equation with the presently 

calculated force coefficients incorporated in it in order to better describe the nonlinear dynamics 

of the system.       

Finally, a comprehensive literature review indicates that a three-dimensional coupled 

nonlinear model that governs the dynamics of cylindrical structures in axial flow has not yet 

been developed and studied. This, despite the fact that, in one of the aforementioned experiments 

(Paїdoussis et al. 2002), three-dimensional dynamical behaviour was observed. In fact the path 

traced by the end of the cylinder was observed to be orbital. Lack of knowledge to account for 

the three-dimensional behaviour especially the non-symmetry found in the cylinder motion, 

important in the above-mentioned practical applications, is the motivation behind the present 

work, which is aimed at developing a three-dimensional coupled nonlinear model for a confined 

flexible cylindrical structure in axial flow in a Finite Element Method (FEM) based modelling 

and simulation package called ADINA in addition to experiments and other theoretical work 

done.    

 

1.4. Objectives 

 

The objectives, therefore, are to conduct experiments on a slender flexible cantilevered cylinder 

in axial flow, obtain and incorporate the presently calculated fluid force coefficients in the two-

dimensional linear and nonlinear analytical models to study the linear and nonlinear dynamics of 

a cantilevered cylinder for a flow velocity range, investigate the effect of confinement on the 

dynamics of cylinder, develop three-dimensional nonlinear cantilevered cylinder model in 

ADINA, a specialized finite element modeling and simulation package, and investigate its 

response for a flow velocity range. The theoretical (linear and nonlinear) and numerical (created 

in ADINA) models are going to be validated with the help of experimental results. Finally, the 

results of the models are going to be compared together and presented at one place in order to 

observe the coherence of the results of the models and also to build a degree of confidence up to 

what beam mode, each model is capable of predicting the dynamics of the system.      
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1.5. Outline of the Thesis 

 

In Chapter 1, a brief introduction of the subject area, its practical applications, and motivation 

behind the present work are given. In addition, a review of the previous studies on the dynamics 

of slender flexible structures in axial flow is also presented. This review includes earlier 

analytical and numerical studies on flexible cylinders in axial flow using linear and nonlinear 

models, for the cylinder in wide and narrow channels. It also includes the experimental studies 

done so far on similar systems. Finally, the objectives of the present study are presented. 

In Chapter 2, procedures to calibrate the non-contacting laser-optical tracking systems 

used to measure the cylinder displacements and determine the essential parameters such as 

flexural rigidity, EI, logarithmic decrements, δn, hysteretic damping constant, , and the 

dimensionless viscoelastic damping constant,  of the cylinder are presented. Then the fluid 

flow velocity profile inside the water tunnel test-section is also determined with the help of Laser 

Doppler anemometry (LDA). This chapter also includes descriptions of the LDA equipment and 

the experimental set-up to obtain these measurements. Description of the experimental set-up for 

the cantilevered cylinder with ogival end piece inside the vertical transparent test section of a 

water tunnel is then presented. Finally, the experimental results and quantitative analysis are 

presented.  

In Chapter 3, the linear equation of motion of the flexible cylinder is considered. The 

linear partial differential equation is discretized by using the ‘extended Galerkin method’, 

resulting in a set of ordinary differential equations, solving them through a MATLAB code, and 

analyzing the results. The fluid forces such as inviscid forces, viscous forces, and hydrostatic or 

pressure forces acting on the surface of the cylinder contribute to the overall dynamics of the 

cylinder. Therefore, the coefficients associated to the viscous fluid forces such as longitudinal 

and normal viscous coefficients, base drag coefficient, and zero-flow normal coefficient are 

recalculated and incorporated in the linear model and the model is then solved to yield the 

dynamical behaviour of the cylinder with increasing flow velocities. 

In Chapter 4, nonlinear equations of motion are solved using Houbolt’s Finite Difference 

Method (FDM) and the results employing the previously used coefficients by Semler et al. 

(2002) and the presently calculated ones are presented. Bifurcation diagrams, time histories, Fast 

Fourier Transform, Power Spectral Density, phase plots, Poincaré map, and mode shapes are 

*µ

*α
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obtained to analyze the cylinder dynamics with increasing flow velocity. Finally, comparisons of 

the results in terms of the critical velocities for instabilities reported by Semler et al. (2002) and 

present model with previous and present force coefficients are presented. 

In Chapter 5, the results of a three-dimensional model of a flexible cylinder enclosed in a 

channel created via a commercially available finite element modeling and simulation package, 

namely ADINA are presented. The simulations are performed at different water and air flow 

velocities and the vibration response of the cylinder is obtained. Finally, water and air flow 

results in terms of critical velocities marking the instabilities of the cylindrical system are 

compared. 

 In Chapter 6, the results in terms of the critical velocities, displacement magnitudes, and 

frequencies of linear and nonlinear models, experiments, and numerical model in water and air 

flows using the previous and present force coefficients are compared. 

Finally Chapter 7 summarizes the thesis with the conclusions of the research work 

undertaken and suggestions for future work. 
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Fig. 1.1. Schematic of a heat exchanger tube bank. 

 

Bank-side flow 

Tube-side flow 



 

 

Chapter 2 

Experiments on Cantilevered Cylinder in Axial Flow 

 

2.1.  Introduction 

 

As indicated in Chapter 1, earlier experiments on systems similar to the present one were 

conducted with different objectives in mind. The experiments conducted by Paїdoussis (1966b) 

were focused on studying the two-dimensional dynamics of a horizontal cylinder subjected to 

axial flow in order to validate and support the two-dimensional linear theory of similar system 

developed by him (1966a). Using similar system to the 1966 experiments, Paїdoussis et al. 

(2002) conducted experiments this time on a vertical cylinder in order to compare the 

experimental results with those of the two-dimensional nonlinear theory for similar system 

developed by them (Lopes et al. 2002). Other set of experiments conducted by Paїdoussis et al. 

(1980b) were focused on studying the effect of harmonically perturbed axial flow on the 

parametric resonance oscillations in solitary cylinder. From the review of early experimental 

work, a need is felt to conduct experiments on the cantilevered cylindrical system in axial flow in 

order to study its three-dimensional dynamics and also to validate and complement the three-

dimensional nonlinear numerical model results of similar system. The present experiments are 

also intended to compare the presently used two-dimensional linear and nonlinear models for 

their efficacy in predicting the dynamics of similar system. 

This chapter gives an account of the experiments conducted on vertical flexible 

cantilevered cylinders in axial flow. The elastomer cylinder is made of Silastic® E RTV Silicone 

Rubber from Dow Corning. The cylinder casting is done using a two-part silicone rubber kit 

consisting of a base and a curing agent. The procedure is described by Paїdoussis (1998) and 

Rinaldi (2009). Although they have given the procedure for a pipe, it is similar for cylinder. The 

only difference is that the mould for cylinder is of different length and diameter, and does not 

have the central rod, which is meant to make a hollow cylinder (i.e., a pipe) for internal axial 

flow. The upstream end of the cylinder is clamped and supported by four arms, which are 

rounded at the leading edge and pointed at the trailing edge as shown in Fig. 2.1 (a). The 

downstream free end of the cylinder is terminated by an ogival rigid end-piece as shown in Fig. 

2.1 (b). The cylinder centreline is considered to be inextensible. The entire cylinder assembly is 
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enclosed in a vertical transparent plexiglas test-section of a closed loop water tunnel as shown in 

Fig. 2.2. The flow direction of the water inside the test-section is downwards. The objective of 

the experiments is to study the dynamics of the flexible cantilevered cylinder by determining the 

critical velocities for static and dynamic instabilities, as well as the effect of flow velocity on the 

amplitudes and frequencies of the unstable cylinder.  

This chapter also includes the procedures to determine the structural and damping 

constants of the cylinder, calibrate the flow velocity and non-contacting one-dimensional optical 

displacement sensors used to record the cylinder motions, obtain the velocity flow profile inside 

the test-section, and the profile of the path traced by the oscillating cylinder.     

 

2.2.  Physical Description  

 

The cantilevered cylinder has length, L = 0.5265 m, diameter, D = 0.0254 m, end-piece length, l 

= 0.0346 m, and tapering end-piece shape factor estimated to be f = 0.8 (see Appendix A). The 

vertical test-section (‘channel’), made of plexiglas, has length, Lch = 0.77 m and diameter, Dch = 

0.203 m. The confinement factor, χ is a measure of the confinement of a cylinder inside a 

channel or its proximity to the surrounding cylinders. It is defined by the expression (Paїdoussis 

2004)  
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Its value approaches 1 for a cylinder in unconfined flow and increases as the cylinder 

confinement is increased. Its value as calculated is 1.03. Water is circulated in the water tunnel 

by an Ingersoll-Rand type S horizontal split-case centrifugal pump with a discharge capacity of 

2,200 gallons per minute. The maximum flow velocity achieved in the water tunnel is about 5.5 

m/s corresponding to u = 8.2.      

 

2.3.  Calibrations of Laser-Optical Sensors  

 

Two laser sensors have been utilized in the experiments. Therefore, before the experiment, 

calibrating both sensors is necessary. One is a Micro-Epsilon OptoNCDT 1400-200 non-

contacting laser-optical displacement measurement sensor and the other is MEL M27L non-
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contacting laser distance sensor. The calibration of these laser sensors enable the output voltages 

from the sensors to be converted to linear distances. The laser heads of both sensors are placed at 

a known distance, x, from some reference, say a rigid vertical plate. The laser heads are then 

moved gradually with known increments, ∆x, towards the reference. At each location of the laser 

head, the DC voltage is recorded by a multimeter. The known distances, x1, x2, x3, ……, xn are 

then plotted against the output voltage for each sensor as shown in Figs. 2.3 and 2.4. Each of the 

figures shows that the output voltage varies linearly with the distance. The goodness of fit 2
fitR  

for Figs. 2.3 and 2.4 come out to be 1 and 0.9998, respectively.           

 

2.4.  Flexural Rigidity of Cylinder 

 

One of the essential quantities to know is the flexural rigidity of the cylinder, EI. The most 

convenient method to determine EI is by conducting planar free vibration experiments of a 

cantilevered cylinder hung vertically in air and excited in its first mode natural frequency. This 

can be achieved rather effortlessly by displacing and releasing the free end of the cylinder such 

that it oscillates in its first mode. The displacement of the cylinder is then measured using the 

Micro-Epsilon OptoNCDT 1400-200 non-contacting laser-optical displacement measurement 

sensor, which lies in the plane of oscillation, giving the output as a voltage. The resulting time 

signal is post-processed in a customized MATLAB code to obtain the Fast Fourier Transform 

(FFT) and Power Spectral Density (PSD) plots as shown in Fig. 2.5. FFT is an efficient 

algorithm to transform a discrete signal such as displacements of a structure in time domain into 

its discrete frequency domain (Strang 1994). PSD is a measure of the distribution of the power of 

a signal over the different frequencies (Miller and Childers 2004). From these plots, the first 

mode natural frequency, f1, is determined, which is 1.10 Hz. It is known that both the frequency 

and flexural rigidity depend on the gravity parameter, γ. Therefore, the expression given by 

Paїdoussis and Des Trois Maisons (1969), 
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is used. Here, Re (ω1) is the real part of dimensionless first mode natural frequency, g is the 

gravitational constant, Leff is the effective length of cylinder, and Ω1 = 2πf1 is the dimensional 
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first mode natural frequency in rad/s. Substituting the values of the parameters on right hand side 

of eq. (2.2) and using Table A.1 from Paїdoussis and Des Trois Maisons (1969), the 

corresponding value of γ is found by linear interpolation. EI is then calculated from the 

expression 

 

EI

mgL3

=γ , (2.3) 

 

given by Paїdoussis and Des Trois Maisons (1971). Here, m is the mass of the cylinder per unit 

length. Equation (2.3) thus gives the value of EI = 0.0719 N.m
2
.  

 

2.5.  Logarithmic Decrements 

 

The logarithmic decrements, δn, of the cantilevered cylinder in its first three modes are also 

determined experimentally by planar free vibrations of the cylinder hung in air and excited in its 

first, second and third modes. The first mode is, once again, excited manually, i.e., by displacing 

the free end of the cylinder in the plane of the measuring laser sensor. However, the second and 

third modes are excited mechanically with the help of a crank-slider mechanism. This 

mechanism consists of a DC motor attached to a rod through a crank that enables the rod to slide 

to and fro as shown in Fig. 2.6. The digital controller is used to control the r.p.m. of the motor, 

exciting the cylinder in the second and third modes.  

When the DC motor is stopped abruptly, the cylinder oscillates, for a time, in only the 

desired mode. The decaying oscillations in the first, second and third modes are then recorded 

one by one with the help of the laser sensor. A MATLAB code with low-band, pass-band, and 

high-band Chebyshev type 1 filters of order 5 for first, second, and third mode cylinder 

oscillations, respectively, is used. Filters are used in order to remove any unwanted components, 

such as noise, from the signal. Figures 2.7 and 2.8 show the time histories, FFTs, and PSDs of 

the second and third modes, respectively. 

The second and third mode frequencies, thus, determined are f2 = 4.52 Hz and f3 = 11.96 

Hz. The filtered signal of each mode is then used to obtain natural logarithm (ln) of the cylinder 

displacement and plot it against time. Figure 2.9 shows a representative plot of ln(Displacement) 

versus time of the first mode. The slope of the decaying peaks of ln(Displacement) and the 

frequency of each mode are substituted in the expression 
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n

n
f

slope
=δ  (2.4) 

 

to determine the logarithmic decrements, δn, which are δ1 = 0.021, δ2 = 0.095, and δ3 = 0.558. 

The reason of δ3 being so high than δ1 and δ2 is due to system’s rapid third mode oscillation 

decay.     

 

2.6.  Damping Constants 

  

In order to consider the internal dissipation of the cylinder, a two-constant damping model is 

utilized. It is necessary to determine the hysteretic damping constant, *µ ,and the viscoelastic 

damping constant,
*α . The expression given by Paїdoussis and Des Trois Maisons (1971), i.e.,  

 

( )n

n
n

ωαµ

δ
δ

Re
**

*

+
=  (2.5) 

  

is used. The procedure to determine the damping constants begins with determining *

nδ  and Re 

(ωn) for each mode. This is done by reading directly from Figs. 1 and 2 given by Paїdoussis and 

Des Trois Maisons (1971) corresponding to γ calculated in Section 2.4. Substituting the known 

values of *

nδ , Re (ωn), and δn for each mode in eq. (2.5) gives rise to three independent linear 

equations. There are now two unknowns, i.e., *µ and 
*α , and three equations. From these 

equations, three sets of two equations each are formed, i.e., sets of eq. (2.5) for first and second 

modes, first and third modes, and second and third modes. Each set is solved simultaneously to 

get *µ and
*α , thus obtaining three values of each damping constant. The average of each 

constant thus provides a good estimate to start fine-tuning the values and reaching values with 

minimum error in computing *

1δ , *

2δ , and *

3δ  from eq. (2.5) as a check. This fine-tuning is done in 

MATLAB using an optimization algorithm namely “fmincon”. fmincon finds minimum of 

constrained nonlinear multivariable function. It actually attempts to find a constrained minimum 

of a scalar function of several variables starting at an initial estimate xo. The simplest of the 

syntaxes is x = fmincon (fun, xo, A, b). The algorithm starts at xo and attempts to find a 

minimizer x of the function described in fun subject to the linear inequalities A* x ≤ b. The initial 

estimate xo can be a scalar, vector, or matrix. A and b are the Linear constraint matrix and its 
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corresponding vector b, respectively (MATLAB help file 2010).  Finally, the values obtained are 

*µ = 0.0272 and 
*α = 0.000378.         

 

2.7.  Flow Velocity Measurement Calibration 

 

The water tunnel, used for the experiment, has a small bypass flow pipe for water circulation in 

addition to the main flow pipe. Venturi flow meters are fitted on both pipes. There are two 

differential-pressure transducers (Huba-692) across each of the Venturi meters, of which the 

readings are, respectively, displayed on two controllers (ATR141, used as read-out unit); one 

controller for each flow pipe. The controller ATR141 for the differential-pressure transducer 

(Huba-692) connected to the Venturi flow meter on the main flow pipe and the centrifugal pump 

speed in terms of r.p.m. are calibrated using a pitot-static tube and a mercury manometer. For 

calibration and actual experiments, the small bypass pipe is kept closed with the help of a choke 

valve and water is allowed to flow through the main pipe only. Therefore, the output panel shows 

the readings of only the Venturi meter of the main pipe. The pitot-static tube is inserted through 

the lower test-section window and its tip is carefully aligned with the centreline of the test 

section, as shown in Fig. 2.10. Thereafter, a mercury manometer is connected to the pitot-static 

tube. From the height of the mercury column, one can obtain the flow velocity using the relation, 

shown by Tang (2007) 

 

Hg

water

Hg
ghU 







−= 12

ρ

ρ
, (2.6) 

 

where, ρHg is the density of mercury, ρwater is the density of water, and hHg is the height of 

mercury column.  

The water tunnel is opreated from its idle state to higher flow velocities by increasing the 

rotational speed of the pump by increments of 50 revolutions per minute (r.p.m.); the 

corresponding values of ATR141 readings from the output panel and the height of mercury 

column from the manometer being noted. Figure 2.11 shows the plot of height of mercury 

column in inches versus the ATR141 readings and the linear curve fit of the data with 2
fitR  equal 

to 0.997. The orign corresponds to U = 0 m/s, i.e., the pump being in idle state. Figure 2.12 

shows the calculated flow velocity plotted against the ATR141 readings. The curve fit is via a 
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sixth order polynomial with 2
fitR = 0.9988. This plot provides the calibration of the controller for 

the differential pressure transducer (Huba-692). Figure 2.13 shows the linearly fit flow velocity 

calibration curve for the r.p.m. of the pump with 2
fitR = 0.9996.     

 

2.8.  Flow Velocity Profile inside the Test-Section 

 

The flow velocity profile in the test-section is measured experimentally. For that, the cylinder 

model and support are removed from the test-section. The water tunnel is filled with water and 

operated at a target flow velocity. Since the actual experiment of studying the cylinder dynamics 

is done for a velocity range mostly in the turbulent flow regime, it has been ascertained that the 

velocity profile obtained experimentally is for turbulent flow. The water tunnel was operated at 

mean flow velocity of 1.9 m/s for the experiment. The corresponding Reynolds number, Re and 

volume flow rate are 3.842×10
5
 and 0.0627 m

3
/s, respectively.   

Laser Doppler Anemometry (LDA) was used for the experimental procedure. LDA, also 

known as Laser Doppler velocimetry (LDV), is the technique of using the Doppler shift principle 

in a laser beam to measure the velocity of fluid flow in transparent or semi-transparent channel, 

or the motion of opaque or reflecting vibrating surfaces. Fluid flow measurement is undertaken 

from the Doppler shift effect on a beam scattered by very small reflecting spheres, called the 

seeding particles, moving within the fluid flow (Yeh and Cummins 1964). LDA passes two 

beams of parallel, monochromatic, and coherent laser light crossing at a point in the flow of the 

fluid being measured. These two beams are usually obtained by dividing a single beam, thus 

ensuring coherence between the two lasers. Lasers with wavelengths in the visible spectrum 

(390–750 nm) are usually used. A transmitting optics focuses the beams to intersect at the focal 

point of the laser beams, where they interfere and generate a set of fringes. As seeding particles 

moving in the fluid pass through these fringes, they reflect light that is then collected by a 

receiving optics and finally focused on a photodetector. The reflected light fluctuates in intensity, 

the frequency of which is corresponding to the Doppler shift between the incident and scattered 

light, and is thus proportional to the component of particle velocity which lies in the plane of the 

two laser beams. If the sensor is aligned to the flow in such a way that these fringes are 

perpendicular to the flow direction, the electrical signal generated at the photodetector will then 

be proportional to the seeding particle velocity inside the flow (Drain 1980).  
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Flowlite is an integrated laser-optics system developed by Dantec. The laser head 

stimulates Helium-Neon (He-Ne) laser beam with a focal length of 0.16 m. The seeding particles 

used in the flow are Iriodine 100 silver pearl having size range of 10 to 15 µm. The flowlite 

system used gives one-dimensional flow velocity. It is designed for use with Dantec’s signal 

processors and BSA Flow application post-processing software (Dantec Dynamics 2004). The 

output data appears in the software as a histogram of flow velocity probability distribution, as 

percent count. The software selects a range of flow velocity based on the data input from the 

laser-optics system. The data input contains the velocity components of the seeding particles in 

only the axial direction; if some particles flow at some angle to the cylinder axis, only the axial 

components of their velocities is recorded. In this way, a range of axial velocities are input to the 

software. These velocities are then quantized into uniform velocity ranges; each range being 

confined to a histogram bar. Each histogram bar is horizontally centered on the mean value of its 

velocity range. The histogram bar possessing the highest occurrences of its seeding particles’ 

velocities exhibits maximum percent count in the histogram and its mean velocity is considered 

as the required velocity at that particular location. In other words, the flow velocity is quantized. 

The higher the percent count of one particular histogram bar as compared to the others, the more 

uniform is the flow. Furthermore, the larger the number of histogram bars, the more accurate is 

the velocity determination. In the present measurements, a histogram resolution of 0.01 m/s, 

which is 0.53 % of the mean water tunnel velocity, with 525 histogram bars is used.  

The procedure starts by placing the laser head horizontally facing the test-section in such 

a way that the focal point of laser beams either reaches the inside centre of the test-section or 

closest to it. The data at that point is then recorded. The laser head is then moved away from the 

test-section with equal increments such that the focal point of beams inside the test-section 

moves towards its inner wall and data is recorded at each location. Two representative 

histograms and velocity plots are shown in Figs. 2.14 and 2.15. The histograms in these figures 

are not symmetric as the shape of the histogram depends on the distribution of the axial 

components of seeding particles’ velocities in the histogram bars. The histogram also shows the 

normal velocity distribution.           

Finally, the velocity profile obtained is shown in Fig. 2.16 with 2
fitR = 0.9908. The curve 

is sixth order polynomial: 
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167.11035.11007.81038.2104103109 22335465767 +×+×−×+×−×+×−= yyyyyyU . The y-

axis marks the inner surface of the test-section. The solid circles represent the velocities at 

different locations. A curve fit of the velocity data shows the turbulent velocity profile. The 

figure also shows that there are no velocity data points at radial distances less than 0.0029 m. 

The reason is that it is very difficult to measure the velocity very close to wall. Therefore, the 

velocities at radial distances between 0 and 0.0029 m are resolved theoretically by the law of the 

wall for turbulent flow. One of commonly used models for law of the wall is the logarithmic log 

law model given as 

 

+++ += Cy
k

u ln
1

, (2.7) 

 

where, u
+
 is the dimensionless velocity, k is the Von Karman constant, y

+
 is the dimensionless 

wall coordinate, and C
+
 is a constant. u

+
 and y

+
 are given by the expressions 

 

,
*

u

u
u =+  (2.8) 

and 

 

,
*

k

yu
y

ν
=+  (2.9) 

 

respectively. In these expressions, u is the mean flow velocity, u
*
 is the frictional velocity, y is 

the radial distance of the point, where velocity is to be determined, and νk is the kinematic 

viscosity of water. The known values are k = 0.41, C
+
 = 5.0, and υ = 1.004×10

6
 m

2
/s (Schlichting 

and Gersten 2000). It is known that near the wall in turbulent flow, there are two adjacent layers, 

namely the inner layer and outer layer. The inner layer is further composed of a viscous sub-

layer, which stretches in the range of 0 < y
+
 ≤ 5, a buffer layer, which stretches in the range of 5 

< y
+
 ≤ 30 (White 2003), and an overlap layer also called log law region, which stretches in the 

range of 35 ≤ y
+
 ≤ 350 (White 1974). In the viscous sub-layer, the expression u

+
 = y

+
 is 

applicable. In the buffer layer, u
+
 ≠ y

+
 and u

+
 ≠ (1/k) ln (y

+
) + C

+
. However, for 0 ≤ y

+
 < 11, u

+
 = 

y
+
 gives better results, whereas for y

+
 > 11, eq. (2.7) gives better results, though neither are 

accurate at y
+
 = 11 (Pope 2000). In the overlap layer, eq. (2.7) is applicable. The outer layer 

stretches beyond y
+
 = 350 in the turbulent flow (White 2003). Substituting u

+
, y

+
, k, C

+
, and ν at 
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given u = 1.9 m/s and Rch = 0.1015 (radius of the test-section) into eq. (2.7) gives an expression 

with u
*
 on both its sides. Through trial and error, the value of u

*
 is calculated, yielding 0.0712 

m/s. The experimentally unresolved distance is divided into five equally distant segments and for 

each radial distance y, the flow velocity, u is now calculated using eq. (2.7). The experimentally 

measured and theoretical velocities are then plotted together, as shown in Fig. 2.17. The 

theoretical data curve fit is of fifth order polynomial 

1032639412514 1011016.4106104101101 −×+×+×−×+×−×= yyyyyU . The velocities obtained 

by experimental and theoretical procedures at the common radial distance, i.e., y = 0.0029 m do 

not match having a discrepancy of 13.4%, which is quite understandable. Experimental errors 

include difficulty in controlling the seeding particles distribution in the flow, laser beam 

diffraction due to different media, and rounding off the data to some significant figures. The 

theoretical model does not give the exact true values of velocity due to the imprecise usage of the 

relations in the sub-layers, which do not have distinct boundaries.     

The effect of the distance of the laser head from the test-section on the focal length is also 

investigated. The plexiglas of the test-section having refractive index, n = 1.49, changes the focal 

length of the laser beams passing through it, and any change in the distance of the laser head 

from the test-section also effects the focal length. Using n and some trigonometric relations, the 

focal length is calculated across the test section plexiglas wall. For that, a simple MATLAB 

routine is developed which gives the focal lengths by entering, as input, the perpendicular 

distances of the laser head from the test-section outer wall. Figure 2.18 shows this linear 

variation. It is also observed that the plexiglas, in general, extends the focal length of the laser 

beams passing through it.   

Flow velocity and focal length results are quantitatively represented in Table 2.1. Table 

2.2 quantitatively shows the logarithmic log law model velocity and y
+
 results.  

 

2.9.  Cylinder Dynamics 

 

The dynamics of the flexible cantilevered cylinder has been studied using the MEL M27L non-

contacting laser distance sensor with two different set-ups. The first set-up is for estimating the 

critical flow velocity at which static instability, i.e., divergence, develops in the first and second 

cylinder modes, whereas the second set-up is for estimating the critical flow velocity at which a 
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dynamic instability, i.e., flutter, develops in second and third cylinder modes. Each set-up is dealt 

with in a separate sub-section.     

 

2.9.1. Set-up for Divergence 

 

In the first set-up, the MEL M27L non-contacting laser head is placed against the free 

downstream end of the cylinder just above the ogival end-piece at a vertical distance of 0.49 m 

(19.3 cylinder diameters) from the upstream cylinder support. The laser head is horizontally 

placed at its working mid-range from the cylinder surface. The schematic of the set-up is shown 

in Fig. 2.19.   

The flow velocity of the water tunnel is gradually increased with increments of 50 r.p.m. 

The dimensional flow velocity in m/s is obtained by using the calibration curve of velocity 

versus r.p.m (Fig. 2.13) and later rendered dimensionless by using the expression given by 

Paїdoussis (2004).  Here, it is worth mentioning that the cylinder does not remain perfectly 

stationary even at very small flow velocities but rather exhibits localized small lateral motions, 

which persist until flutter develops. These motions can be easily observed by looking at the 

cylinder tip. Because of these localized motions, it is extremely difficult to record the mean DC 

output of the laser sensor using a multimeter. Therefore, the motions of the point on the cylinder 

surface where the laser is focused are recorded for 60 seconds using a LabVIEW program 

customized for the present measurements. The data is then time-averaged to obtain reasonably 

accurate single displacement value, ȳ, for each flow velocity. ȳ is made dimensionless by η* = 

ȳ/D and plotted against the dimensionless velocity, u, as shown in Fig. 2.20.     

It is clear from the figure that divergence does not develop abruptly and hence cannot be 

identified easily. In order to estimate the critical flow velocity, ucr,d1, a criterion of η* surpassing 

a threshold of 0.5 is arbitrarily chosen. η* is the dimensionless mean cylinder displacement. 

Physically, this criterion corresponds to about half the cylinder diameter. Therefore, the resulting 

ucr,d1 is 1.87. With increasing flow, the divergence takes on a second beam-mode shape. 

Similarly, identifying the critical flow velocity for second mode divergence precisely is also very 

difficult; with increasing velocity, the first mode divergence transforms into second mode rather 

gradually. Therefore, the velocity at which the second mode shape becomes very obvious is 

considered to be ucr,d2. Its value is approximately 4.66. This value is based on visual judgment, 

therefore, the symbol ‘≈’ is used in Fig. 2.20 and the tables in Chapter 6 to present the value of 
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ucr,d2. The same set-up cannot be used to determine the critical flow velocity for flutter, ucr,fl2, 

since at higher flow velocities, the cylinder amplitudes near the downstream end become too 

large for the laser to trace the full motion. For that, the second set-up is adopted, the details of 

which are described hereunder.  

 

2.9.2. Set-up for Flutter 

 

The second set-up involves placing the MEL M27L non-contacting laser head at a vertical 

distance of 0.09 m (3.5 cylinder diameters) from the upstream cylinder support. The laser head is 

horizontally placed at its working mid-range from the cylinder surface. The schematic of the set-

up is shown in Fig. 2.21. 

The flow velocity of the water tunnel is gradually increased beyond ucr,d by increasing the 

pump speed by increments of 50 r.p.m. For each u, the data, which is obtained as distance in mm, 

is rendered dimensionless by dividing by the diameter of the cylinder; r.m.s. values of the 

dimensionless displacements η are then obtained and plotted against u as shown in Fig. 2.22. At 

ucr,fl2 = 5.92, there is a sudden increase in the ηr.m.s. value, signalling the onset of second mode 

flutter. The corresponding dimensional and dimensionless frequencies are fcr,fl2 = 3.54 Hz and 

ωcr,fl2 = 23.83, respectively. A corresponding abrupt rise to ωcr,fl2 at ucr,fl2 is depicted in Fig 2.23. 

The second mode oscillation is confirmed by comparing its frequency with the second mode free 

oscillation frequency, which is in its vicinity. At flow velocities beyond ucr,fl2, the ηr.m.s. values 

remain more or less constant until, at ucr,fl3 = 7.70, its value increases abruptly, indicating the 

onset of third mode flutter, as shown in Fig. 2.24. The critical flow velocity for third mode 

flutter, ucr,fl3, is also confirmed by comparing the dimensionless flutter frequencies of the 

cylinder at increasing velocities as shown in Fig. 2.25. As observed in Figs. 2.24 and 2.25, a 

slight drop in ηr.m.s. and ω at 6.7 ≤ u ≤ 7.5 is due to the transition from second mode cylinder 

oscillation to third mode oscillation. At ucr,fl3, the frequency increases from a mean second mode 

flutter frequency, ωfl2 = 23.27 to ωcr,fl3 = 56.49. The corresponding third mode dimensional 

frequency, fcr,fl3, is 8.39 Hz. Similar to the second mode, third mode is also confirmed by visual 

inspection and comparing its frequency with the third mode free oscillation frequency in air, 

which is in its vicinity.        

Figure 2.26 shows the time history, FFT, and PSD of cylinder second mode flutter at u = 

6.43. The frequency, ffl2, is the dominant and distinct second mode frequency. Its value is 3.51 
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Hz. 2ffl2, 3ffl2, 4ffl2, and 5ffl2 are the multiples of this fundamental frequency. Similarly, Figure 

2.27 shows the time history, FFT, and PSD of cylinder third mode flutter at ucr,fl3 = 7.70. The 

dominant third mode frequency, fcr,fl3, is 8.39 Hz. 2fcr,fl3 is the multiple of this fundamental 

frequency.  

Figure 2.28 shows the cylinder stable and unstable conditions. The unstable conditions 

correspond to divergence in first mode in (b), flutter in second mode in (c), and flutter in third 

mode in (d).       

 

2.10.  Path Traced by the Oscillating Cylinder 

 

The path traced by the fluttering cylinder is experimentally determined with the set-up shown in 

Fig. 2.29. In the figure, the top view shows the solid circle representing the equilibrium position 

of the cylinder, whereas the dotted circle represents the displaced position of the cylinder at any 

instant during flutter. The ‘+’ represents the cylinder centerline. The two laser sensor heads, i.e., 

OptoNCDT 1400-200 and MEL M27L, are placed in the vertical planes normal to each other at a 

vertical distance of 0.09 m from the upstream cylinder support. Each of the laser sensor heads is 

placed horizontally at its working mid-range.   

The water tunnel is run at flow velocities higher than ucr,fl2 in order to record the cylinder 

flutter in second and third modes using both laser heads. For each flow velocity, the cylinder 

displacements are recorded as function of time in both the planes using the laser sensors and the 

corresponding mean flutter amplitude is determined. Results show that the cylinder flutter in 

second and third modes does not follow a circular path but rather an elliptical path. The mean 

ratio of second mode flutter amplitudes recorded by OptoNCDT 1400-200 and MEL M27L 

sensors comes out to be 1.19. Representative results are presented here. Figure 2.30 shows the 

value of each of the upper bound and lower bound second mode flutter amplitudes for flow 

velocity, u = 6.43. The upper bound, bearing a positive value, represents the mean amplitude of 

all cylinder oscillations with distances greater than the distance of the equilibrium position of the 

cylinder from the laser head; the lower bound, bearing a negative value, represents the distances 

smaller than the distance of the equilibrium position of the cylinder from the laser head. It is 

obvious from the figure that there exists an asymmetry between the upper and lower bounds in 

oscillations recorded by the laser sensors. This asymmetry is due to the quasi-circular path the 

cylinder follows. It is in fact a kind of whirling ‘orbital’ motion.  
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Figure 2.31 shows the total peak to peak mean amplitude in each oscillation plane 

recorded by each of the laser sensors with respect to fixed zero reference at u = 6.43. It is very 

clear from the figure that the total mean amplitude in the plane recorded by OptoNCDT 1400-

200 laser sensor is greater than that in the other plane recorded by MEL M27L laser sensor. 

Figures 2.32 and 2.33 are additional and perhaps clearer ways of representing the results by 

showing the values of total peak to peak amplitudes in the two planes and the approximate 

visualization of the elliptical path traced by the cylinder exhibiting second mode flutter, 

respectively.     

Results also show that the asymmetry, i.e., quasi-circular path, of third mode cylinder 

flutter oscillations in the two orthogonal planes becomes more pronounced than that of the 

second mode. The mean ratio of third mode flutter amplitudes recorded by OptoNCDT 1400-200 

and MEL M27L sensors is 1.48. This is depicted in Figs. 2.34-2.37 at u = 7.95.         

 

2.11.  Summary 

 

Experiments were conducted to determine flexural rigidity, EI, logarithmic decrements δn, and 

hysteretic, *µ , and viscoelastic, 
*α , damping constants of a cantilevered cylinder. Then, an 

account of the calibration of the water tunnel flow velocity measurement was given in Section 

2.7. In addition to this, the flow velocity profile inside the test section along a single plane was 

also experimentally constructed and presented in Section 2.8. Finally, some more experiments 

were conducted to map the path traced by the cylinder oscillating in second and third modes. 

After the above experimental procedures, the main set of experiments was conducted to 

study the dynamics of the cantilevered cylinder having an ogival end-piece at the downstream 

free end. In order to determine the critical velocities for divergence, ucr,d, the laser heads were 

placed horizontally near the free end of the cylinder and static displacements with time were 

recorded. As mentioned earlier, locating ucr,d1 or ucr,d2 was very difficult, because there was not 

distinct point to identify the onset of instability. Therefore, when the displacement increased 

substantially, the velocity corresponding to it was marked as ucr,d1. Similarly, visual judgment 

was also involved to mark ucr,d2. In order to determine the critical velocities for flutter, ucr,fl, the 

leaser heads were placed horizontally in the upper half of the cylinder length and for each flow 

velocity, displacements with time were recorded. The r.m.s. value of the dimensionless 

displacements for each velocity was obtained and plotted against u. In the case of flutter, the 
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substantial increase in r.m.s. value at flutter onset was quite distinct. Hence, the critical velocities 

for flutter in the second, ucr,fl2, and third, ucr,fl3, modes were determined. Finally, the paths traced 

by the cylinder in second and third modes were experimentally obtained. The mean cylinder 

oscillation amplitude was obtained for each laser sensor at each of the given flow velocities and 

then compared with the help of plots and drawn the path. Results showed that the cylinder did 

not follow a circular path but rather a quasi-circular one, i.e., a kind of whirling ‘orbital’ path.  
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Table. 2.1. Flow velocities and focal lengths at decreasing radial distances of the laser beams 

focal point. 

 

Sr. 

No. 

Distance from 

the laser head 

(m) 

Distance inside 

the test-section, y 

(m) 

Percent of the 

radius of the 

test-section 

Focal length 

(m) 

Flow velocity, 

U (m/s) 

1 0.0847 0.0852 84.0 0.1873 2.049 

2 0.0897 0.0786 77.4 0.1856 2.049 

3 0.0947 0.0719 70.8 0.1839 2.03 

4 0.0997 0.0652 64.2 0.1823 2.049 

5 0.1047 0.0586 57.7 0.1806 2.03 

6 0.1097 0.0519 51.1 0.1789 2.03 

7 0.1147 0.0452 44.5 0.1773 2.03 

8 0.1197 0.0385 38.0 0.1756 2.03 

9 0.1247 0.0319 31.4 0.1739 2.011 

10 0.1297 0.0252 24.8 0.1722 2.03 

11 0.1347 0.0185 18.3 0.1706 2.03 

12 0.1397 0.0119 11.7 0.1689 1.992 

13 0.1429 0.0077 7.5 0.1679 1.783 

14 0.1457 0.0039 3.8 0.1669 1.612 

15 0.1464 0.0029 2.8 0.1667 1.479 
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Table. 2.2. Flow velocities and y
+
 at decreasing radial distances of the laser beams focal point.   

 

Sr. 

No. 

Distance inside the test 

section, y 

(m) 

Velocity, u 

(m/s) 
y

+
 

1 0.0029 1.281 204.38 

2 0.0023 1.242 163.51 

3 0.0017 1.192 122.63 

4 0.0012 1.122 81.75 

5 0.0006 1.001 40.88 

6 0.0000 0 0 
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Fig. 2.1. (a) Schematics of the upstream support arms and (b) the entire cylinder assembly with 

the downstream ogival end-piece.  
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Fig. 2.2. Cantilevered cylinder enclosed in a transparent plexiglas test-section.  
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Fig. 2.3. Calibration curve for MEL laser distance sensor.           , linear curve fit. 
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Fig. 2.4. Calibration curve for OptoNCDT 1400-200 laser distance sensor.          , linear curve fit. 
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Fig. 2.5. (a) Time history, (b) FFT, and (c) PSD of first mode oscillation of cantilevered cylinder. 
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Fig. 2.6. DC motor and crank-slider mechanism with digital speed controller. 
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Fig. 2.7. (a) Time history, (b) FFT, and (c) PSD of second mode oscillation of cantilevered 

cylinder. 
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Fig. 2.8. (a) Time history, (b) FFT, and (c) PSD of third mode oscillation of cantilevered 

cylinder. 
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Fig. 2.9. Plot of ln(displacement) versus time of first mode. 
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Fig. 2.10. Pitot-static tube and mercury manometer set-up for flow velocity calibration. 
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Fig. 2.11. Plot of height of mercury column versus ATR141 readings.          , linear curve fit. 
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Fig. 2.12. Plot of flow velocity versus ATR141 readings.          , polynomial curve fit. 
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Fig. 2.13. Plot of flow velocity versus pump rotational speed.          , linear curve fit. 
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Fig. 2.14. (a) Histogram with normal velocity distribution; (b) mean velocity probability plot at 

radial distance of 0.0452 m.   
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Fig. 2.15. (a) Histogram with normal velocity distribution; (b) mean velocity probability plot at 

radial distance of 0.0119 m. 
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Fig. 2.16. Turbulent velocity profile inside the test-section.     , LDA data;           , mean flow  

velocity;          , polynomial curve fit of LDA data.  
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Fig. 2.17. Turbulent velocity profile obtained from the Flowlite system and logarithmic log law. 

, LDA data;    , logarithmic log law data;          , mean flow velocity;  

, polynomial curve fit of LDA data;         , polynomial curve fit of logarithmic 

log law.  
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Fig. 2.18. Focal lengths of laser beams plotted against varying laser head distances from test-

section outer wall. 
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Fig. 2.19. Schematics of the set-up to estimate critical flow velocity for divergence. 
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Fig. 2.20. Plot of dimensionless mean displacement, η*(0.49) versus dimensionless flow 

velocity, u.  
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Fig. 2.21. Schematics of the set-up to estimate critical flow velocity for flutter.  
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Fig. 2.22. The r.m.s. amplitude, [η
 
(0.09)]r.m.s. versus u showing the onset of second mode flutter.  
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Fig. 2.23. Dimensionless frequency, ω versus u showing the onset of second mode flutter.  
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Fig. 2.24. The r.m.s. amplitude, [η
 
(0.09)]r.m.s. versus u showing the onset of third mode flutter.  
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Fig. 2.25. Dimensionless frequency, ω versus u showing the onset of third mode flutter.  
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Fig. 2.26. (a) Time history, (b) FFT, and (c) PSD of second mode flutter of cantilevered cylinder 

at u = 6.43.  
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Fig. 2.27. (a) Time history, (b) FFT, and (c) PSD of third mode flutter of cantilevered cylinder at 

u = 7.70.  
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Fig. 2.28. Cylinder stable and unstable conditions: (a) stable cylinder; (b) divergence in first 

mode; (c) flutter in second mode; (d) flutter in third mode.
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Cylinder stable and unstable conditions: (a) stable cylinder; (b) divergence in first 
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Fig. 2.29. Two laser set-up to determine the path traced by the oscillating cylinder.   
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Fig. 2.30. Forward (upper bound) and backward (lower bound) motions of the cylinder about its 

mean position recorded by the two laser sensors at u = 6.43.       , upper bound;  

       , lower bound.   
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Fig. 2.31. Mean amplitudes recorded by the two lasers at u = 6.43.    
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Fig. 2.32. Mean values of (positive and negative) amplitude peaks recorded by the two lasers at u 

= 6.43.     , MEL sensor;     , OptoNCDT 1400-200 sensor.  
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Fig. 2.33. Mean values of (positive and negative) amplitude peaks traced by the two lasers at u = 

6.43.    
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Fig. 2.34. Forward (upper bound) and backward (lower bound) motions of the cylinder about its 

mean position recorded by the two laser sensors at u = 7.95.      , upper bound;  

       , lower bound.   
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Fig. 2.35. Mean amplitudes recorded by the two lasers at u = 7.95.    
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Fig. 2.36. Mean values of (positive and negative) amplitude peaks recorded by the two lasers at u 

= 7.95.     , MEL sensor;     , OptoNCDT 1400-200 sensor.    
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Fig. 2.37. Mean values of (positive and negative) amplitude peaks traced by the two lasers at u = 

7.95.    
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Chapter 3 

Linear Analysis 

 

3.1. Introduction 

 

In the previous theoretical studies on cylindrical system in axial flow with different lengths and 

support boundary conditions (Paїdoussis 1966a, 1973; Paїdoussis et al. 1980a; De Langre et al. 

2007), the details of which are given in Chapter 1, they formulated the various fluid forces such 

as the inviscid forces, viscous forces, and hydrostatic or pressure forces acting on the cylinder. 

As a matter of fact, some of the viscous forces are semi-empirical and involve fluid force 

coefficients such as longitudinal and normal viscous coefficients, base drag coefficient, and zero-

flow normal force coefficient. In most of the above cited work, they considered equal values for 

the longitudinal and normal viscous force coefficients, and considered the base drag coefficient 

varying linearly with the end-shape factor f. Hence there is need to re-evaluate these force 

coefficients based on the present problem and incorporate in the linear model. It is expected that 

the implementation of these calculated coefficients in the linear model will enable the model to 

better describe the dynamics of the system. 

In addition to obtaining these force coefficients, this chapter also gives an account of the 

linear dynamics of a vertical cantilevered flexible cylinder in axial uniform water and air flows. 

In this connection, the effect of confinement on the dynamics of the cylindrical system, both in 

water and air flows, is also presented. The effect of confinement on the system with the 

calculated force coefficients is then presented. The present model results with the previously 

reported force coefficients are then compared with those by Paїdoussis (1973) in order to 

establish the adequacy of the present solution method. In addition, the present results with 

previously used and presently calculated force coefficients are also compared together to see 

how these coefficients affect the overall dynamics of the system. Finally, the model results for 

water and air flows are compared together to understand the dynamics of the system in different 

flow media. 
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3.2. Problem Description 

 

The system under consideration consists of a flexible cylindrical body of radius R, uniform 

circular cross-sectional area A, length L, flexural rigidity EI, and mass per unit length m, and 

centrally located in a rigid channel of radius Rch as shown in Fig. 3.1 (a). The rigid channel 

contains an incompressible fluid of density ρ flowing with uniform flow velocity U parallel to 

the axis of the cylinder. The undeformed cylinder axis coincides with the x-axis, and since the 

system is vertical, the x-axis is along the same direction of gravitational force. The cylinder is 

considered to have cantilevered boundary conditions. The cylinder is generally fitted with an 

ogival end-piece at the downstream free end and considered to be short relative to the overall 

length of the cylinder as shown in Fig. 3.1 (b). Furthermore, the fluid is assumed to be contained 

by boundaries sufficiently distant from the cylinder to have negligible influence on its motion. 

The present problem of the dynamics of flexible cylinder in axial flow is a typical FSI problem. 

The basic assumptions made for the cylinder and for the fluid are that (a) the fluid is 

incompressible, (b) the mean fluid flow velocity is constant, (c) the cylinder is slender, so that 

Euler-Bernoulli beam theory remains applicable, (d) although the deflections of the cylinder may 

be large, strains are small, and (e) the cylinder centreline is inextensible (Paїdoussis 2004).  

 

3.3. Linear Equation of Motion 

 

Let us consider small lateral motions of the cylinder about its equilibrium position at rest as 

shown in Fig. 3.1 (a). Various fluid forces act on the cylinder, the relations of which are 

determined as follows: the inviscid hydrodynamic force per unit length, FA, is determined based 

on the theory developed by Lighthill (1960); the viscous forces in the normal and longitudinal 

direction, FN and FL, respectively, are determined based on Taylor’s work (1952); the hydrostatic 

forces in the x- and y- direction, Fpx abd Fpy, respectively, are determined by considering an 

element, δx, of the cylinder undergoing small oscillations, y(x, t). The equation of motion of 

cylinder, given by Paїdoussis (2004), can be written as 
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where δ = 0 indicates that the downstream end of the cylinder is free to slide axially, and δ = 1 if 

the supports do not allow axial extension (Paїdoussis 2004). In eq. (3.1), E is Young’s Modulus, 

E
*
 is the corresponding viscoelastic constant, I is the second moment of area, T is externally 

imposed uniform tension, ν is Poisson’s ratio, p is the mean value of pressure, p at x = ½ L, CT 

and CN are the tangential and normal friction coefficients, respectively, Cb is the base drag 

coefficient, CD is form drag coefficient, and m is the mass of the cylinder per unit length. E
*
 is 

complex. The real part relates to the elastic behavior of the material and defines stiffness. The 

imaginary component relates to the material’s viscous behaviour and defines the energy 

dissipation ability of the material. Mathematically, it can be defined as 

( ) φεσ i
oo eiEEE =+= 21

*
. The complete derivation of the linear equation of motion for a 

cylinder in axial flow may be found in Paїdoussis (2004). 

 

3.3.1. Boundary Conditions 

 

A set of generalized boundary conditions for cylinders with supported ends is given by 

Paїdoussis (2004) as 
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where, ko and kL are translational spring constants and co and cL rotational ones, for x = 0 and x = 

L, respectively. From the above relations, the standard boundary conditions can be extracted 

accordingly as ko, kL, co, cL are either zero or infinity.  

In the case of a free downstream end, a more general boundary condition is considered to 

tackle cases of an ogival free end. The final form obtained is:  
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where 
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f is the end-shape factor, which determines the slenderness of the end shape. Its value approaches 

1 for an ideally slender end and 0 for a perfectly blunt end. M is the added (virtual) mass of the 

fluid per unit length and m is the mass of the cylinder per unit length. χ is defined in Chapter 2. A 

complete derivation of this boundary condition is given by Paїdoussis (2004).  

 

3.4. Dimensionless Parameters  

 

In order to render the linear partial differential equation (3.1) and the ogival end-piece boundary 

conditions (eq. (3.5)) dimensionless, the following relations are used: 
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The equation of motion and the boundary conditions for a cantilevered cylinder are thus 
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For χ = 1 and h = 0, eq. (3.8) will transform into the equation governing the dynamics of the 

flexible solitary cylinder in unconfined flow.  

 

3.5. Method of Solution  

 

The dimensionless equation (eq. (3.8)) is the general equation for the cylinder in external axial 

flow. The corresponding boundary conditions for a cantilevered cylinder (eqs. (3.9) and (3.10)) 

are applied for the solution. First, the solution of the linear equation of motion governing the 

dynamics of the cantilevered cylinder in unconfined flow is obtained. Assuming a solution of the 

form ( ) ( ) ( )∑
∞

=

=
1

,
r

rr q τξφτξη , with ϕr (ξ) the eigenfunctions of a cantilevered cylinder, all 

boundary conditions are satisfied with the exception of eq. (3.10).  This boundary condition is 

time- and flow velocity-dependent and renders the solution more complicated. For this, the so-

called ‘extended Galerkin method’ is used. This method embeds the equation of motion (eq. 

(3.8)) and the free end boundary condition (eq. (3.10)) in a single equation, expressed as 

 

( )( ) ( ) ( )( ) 0,1, =−+ τξηξδτξη BF , (3.11) 

 

where F (η) is the equation of motion, B (η) is the boundary condition, and δ (ξ-1) is Dirac’s 

delta function. Applying the procedure leads to the following general form of the second order 

ordinary differential equation 
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[ ]{ } [ ]{ } [ ]{ } 0=++ qKqCqM &&& , (3.12) 

 

where { }q  is the vector of generalized coordinates, and { }q&  and { }q&&  its time derivatives 

(Paїdoussis 2004). The elements of the mass matrix [M], damping matrix [C], and stiffness 

matrix [K] are 

 

[ ] ( )[ ] ( ){ } ( ) ( )111111 jrerj fM φφβχχδβχ −++−+= , (3.13) 

 

[ ] ( ) ( )112
2

1

2

1 212121214

jrrjrjNr ufubcucC φφβχχβδβεβεαλ −+







++= , and (3.14) 

 

[ ] ( ){ } ( ) ( ) rjbTrjr cucuhcuK 







−−








−








++−Π−+Γ−+= 2224 1

2

1

2

1
11

2

1
21 δδγενδχδλ  

( ) ( ) ( ) ( ),111
2

1
1

2

1 222

jrrjNrjT fubhucduhc φφχγεγε ′−







+++








+++  (3.15) 

 

respectively. Here, 
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Also λr = λj are the eigenvalues of cylinder in rth or jth mode, r and j are the number of desired 

cylinder modes ranging from 1 to nmax, and nmax is the highest desired cylinder mode. The 

coefficients brj, crj, and drj depend on the boundary conditions and the method to evaluate them 

analytically. These are illustrated in Paїdoussis (1998) as 
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The model is then solved by converting the equation of motion (eq. (3.12)) into a set of 

first order ordinary differential equations and then eventually transforming the equation into 

matrix form. To solve this matrix equation, the following solution is considered: 

 
treQQ

λ= ,  (3.29) 

 

where Q is a constant; it is eliminated during the simplification procedure, which ends up in the 

form of an eigenvalue problem, i.e., (λr[I]-[S]){Q} = 0. Here λr are the beam eigenvalues, [I] is 

the unit matrix of order n, {Q} is the eigenvector, and [S] is the resultant matrix of the order of 

2n × 2n 
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The eigenvalue problem is finally solved using MATLAB code for eigenfrequencies by 

considering the corresponding values of [M], [C], and [K] for cantilevered cylinder. Six cylinder 

modes are considered in the Galerkin solution. 

 

3.6. Model in Water Flow with Previously Used Force Coefficients 

 

3.6.1. Adequacy of the Linear Solution    

 

Adequacy of the linear solution is established by solving the linear equation especially for this 

purpose and comparing one of the linear solution results, for instance, critical flow velocity for 

the onset of first mode divergence, represented by ucr,d1, with that obtained by Paїdoussis (1973). 

The solution of the linear equation yields ucr,d1 = 2.042. The value of ucr,d1 obtained by 

Paїdoussis (1973) is 2.04. The difference is 0.1%, which shows a very good agreement. 

Complete comparison is presented in Section 3.12.         

 

3.6.2. Analytical Results  

 

In this section, the results obtained from the solution of linear equation of motion for 

cantilevered cylinder boundary conditions in water flow are presented. The fluid force 

coefficients and other dimensionless parameters used by Paїdoussis (1973) are implemented in 

the present model. These are β = 0.5, εcN = εcT = 1, f = 0.8, χ = 1, ε = 20.276, and δ = α = εc = cb 

= γ = Γ = 0.  Figure 3.2 shows the Argand diagram, representing the dimensionless complex 

eigenfrequency, ω = Re(ω) + i Im(ω), of the cantilevered cylinder at dimensionless velocity, u 

ranging from 0 to 12 for the first three modes, obtained using n = 6. The y-axis represents the 

damping, i.e., Im (ω), whereas x-axis represents the dimensionless oscillation frequency, i.e., 

Re(ω). Cylinder motions caused by perturbation are damped at small u. At sufficiently high u, 

the cylinder first loses stability by divergence in its first mode, via a pitchfork bifurcation, at 

ucr,d1 = 2.042. The symbol cr represents the critical value for the onset of instability, d stands for 

static divergence and 1 represents the first mode shape. The system then re-stabilizes at ur1 = 

4.965, and then loses stability by second mode flutter, via a Hopf bifurcation, at ucr,fl2 = 5.173 

with a corresponding dimensionless frequency, Re(ωcr,fl2) of 10.47, since the first-mode locus 
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enters the unstable region at this critical flow velocity while Re(ω) (the real part of the complex 

eigenfrequency) remains positive. It then re-stabilizes at ur2 = 8.677, but, before that, it loses 

stability again via Hopf bifurcation at ucr,fl3 = 8.311 in the third mode by flutter. Re(ωcr,fl3) at this 

critical velocity is 32.46. It is worth reiterate that divergence is a static instability with no 

frequency whereas flutter is a dynamic instability with finite frequency. 

Figures 3.3 and 3.4 show the dimensionless oscillation frequency, i.e., the real part of the 

complex eigenfrequency, and damping, i.e., the imaginary part of the complex eigenfrequency, 

respectively, for the first three cylinder modes as function of the dimensionless flow velocity u 

for a cantilevered cylinder. For the values of u in the range 0 ≤ u ≤ ucr,d1, the real part of 

eigenfrequency continues to decrease until, at a certain flow velocity, the eigenfrequency 

becomes purely imaginary, i.e., Re(ω) becomes zero. As u continues to increase, Im(ω) becomes 

negative and this is the critical value of u, i.e., ucr,d1 at which the system loses its stability by 

divergence in its first mode. At an even higher velocity, i.e., ucr,d1 ≤ u ≤ ucr,fl3, the system 

undergoes second and third mode flutter with non-zero values of Re(ωcr,fl), as shown in Figs. 3.3 

and 3.4.  

 

3.7. Model in Air Flow  

 

3.7.1. Analytical Results  

 

In this section, the results obtained from the solution of linear equation of motion for a 

cantilevered cylinder in air flow are presented. The generation and inclusion of the model 

subjected to axial air flow in this chapter is motivated as a limiting case by the motion of a long 

train with the last carriage having a tapered end inside a tunnel. The motion of the train in 

stationary air inside the tunnel produces the same effects of fluid forces on the train as for a 

stationary train subjected to axial air flow inside the tunnel. Cantilevered cylinder model is 

considered in air flow since this model is also going to be developed and simulated in other 

modeling software and then compared with the analytical results presented in this section. In 

order to make the code run for air flow, the value of mass ratio, β is the parameter to modify. It is 

dimensionless number and is defined as 
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ρ
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as given in Paїdoussis (2004). Its value for air is 1.074×10
-3

. Other input parameters are kept the 

same as for the cantilevered cylinder model in water flow. Figure 3.5 shows the Argand diagram, 

representing the dimensionless complex eigenfrequency, ω = Re(ω) + i Im(ω), of the 

cantilevered cylinder as a function of the dimensionless velocity, u, ranging from 0 to 12 for the 

first three modes in air flow. Cylinder motions are damped at low flow velocities. At sufficiently 

high flow velocity, the complex eigenfrequency of the first mode becomes purely imaginary, 

bifurcating on the Im (ω)-axis with Re(ω) = 0. At ucr,d1 = 2.042, one of its branches becomes 

negative leading to the onset of divergence in first mode via a pitchfork bifurcation. As the flow 

velocity increases, the system losses stability in the second mode via a Hopf bifurcation at ucr,fl2 

= 3.470 with dimensionless frequency, Re(ωcr,fl2) = 13.57. It is seen in the figure that with 

increasing flow velocity, the second mode in the unstable region bifurcates on the Im (ω)-axis at 

ucr,d2 = 4.965 marking divergence in the second mode. Later, the cylinder develops divergence in 

the third mode at ucr,d3 = 9.541. In the present model, u = 4.965 is marked as the beginning of the 

second zone of divergence.  

A similar trend of the re-occurrence of divergence at high flow velocities for very small β 

was indicated by Semler et al. (2002). They solved the linear equation of motion with 

cantilevered boundary conditions for 0 < β < 1. They observed that for β < 0.38, the system never 

re-stabilizes after divergence, but goes to second and higher mode flutter. On the basis of their 

results, they established a value of u = 9.6 representing the second zone of divergence. The 

difference between the flow velocity commencing the second zone of divergence in the present 

model (u = 4.965) and the one (u = 9.6) established by Semler et al. (2002) is due to different 

values of εcN (0.5), εcT (0.5), and cb (0.3) used by them, as compared to those used in the present 

model (εcN = 1, εcN = 1, and cb = 0). Figures 3.6 and 3.7 show the dimensionless oscillation 

frequency and damping for the first three cylinder modes as function of the dimensionless flow 

velocity u for the cantilevered cylinder in air flow. 

 

3.8. Effect of Confinement 

 

3.8.1. Model in Water Flow 

 

The effect of confinement on the critical value of u for the onset of divergence and flutter of 

cylinder in water flow is considered. It is recalled that the confinement factor is 
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Using eq. (3.32), values of χ are varied from 1.01 to 2.00. These values are obtained by 

keeping the cylinder diameter, D, fixed while reducing the channel diameter. Another useful 

parameter associated with confinement is α, the ratio of channel to cylinder diameters, 

 

  .
D

Dch=α  (3.33) 

 

Table 3.1 shows the values of α corresponding to those of χ. Higher values of α signify 

low confinement and vice versa. The critical values of the flow velocity for the onset of 

divergence and flutter vary with confinement, as shown in Figs. 3.8 - 3.10. With increasing 

confinement, viscous effects become more pronounced and the streamwise pressure drop 

acquires considerable value. This results in the divergence of the cylinder occurring earlier at 

lower velocity, as shown in Fig. 3.8. A similar trend is observed in second and third mode flutter 

instabilities as shown in Figs 3.9 and 3.10, respectively.       

 

3.8.2. Model in Air Flow 

 

Next, the effect of confinement on the critical value of u for the onset of divergence and flutter of 

cylinder in air flow is analyzed. Similar to the case for water flow, values of confinement factor, 

χ, are varied from 1.01 to 2.00. The results of the critical values of flow velocity for the onset of 

divergence and flutter varying with confinement are shown in Figs. 3.11 and 3.12, respectively. 

The general trend in both the figures show the occurrences of first mode divergence and second 

mode flutter at decreasing critical flow velocities with increasing confinement. This can be 

attributed to viscous effects and the stream-wise pressure drop becoming more pronounced with 

increasing confinement. 

3.9. Force Coefficients  

 

Equation (3.8) governs the dynamics of the flexible cylindrical system. Force coefficients in the 

equation, i.e., the longitudinal viscous coefficient, cT, normal viscous coefficient, cN, base drag 

coefficient, cb, and zero-flow normal coefficient, c play vital role in the energy transfer and 

hence the system dynamics. Therefore, determining these force coefficients is imperative. These 



 

 

82 

 

are expected to be more precisely representing the fluid forces affecting the cylindrical system 

dynamics. Hence, these force coefficients, once calculated, are going to be used in the linear 

model instead of the previously used ones by Paїdoussis (1973). This section provides a step-by-

step procedure to calculate these coefficients for a given fluid and model geometry, and 

discusses the factors affecting these coefficients. 

 

3.9.1. Longitudinal Viscous Coefficient, cT 

 

Viscous forces acting on slender inclined cylinders are discussed by Taylor (1952) in relation to 

the swimming of long narrow animals such as snakes, eels, and marine worms. He idealized the 

motion of these animals in water producing propulsion by considering the equilibrium of slender 

flexible cylinders having bending waves traveling down the cylinder at constant amplitude and 

speed in water. He formulated specifically the viscous fluid forces in transverse (N) and 

longitudinal (L) directions acting on the flexible smooth and rough cylinders inclined at certain 

angles to the flow direction. As limiting cases of a rough cylinder, he presented the expressions 

of transverse and longitudinal viscous forces for string like cylinders and cylinders with thin 

disks or plates set at right angles to the cylinder axis. He symbolized the force coefficients 

associated to the form and friction drag by [CD]p and Cf, respectively.       

In case of cylinder surface roughness, Taylor noticed that the boundary layer does not 

remain laminar and that the viscous forces rely on the nature of surface roughness (Paїdoussis 

2004). He proposed the longitudinal viscous force per unit length, FL as 

 

iCDUF fL cos
2

1 2ρ= , (3.34) 

 

where D is the cylinder diameter, Cf is the coefficient associated with friction drag for a cylinder 

in cross-flow, defining i as  

( ) ( )[ ]Utyxyi ∂∂+∂∂= −− 11 tantan . (3.35) 

 

For small motions, eq. (3.34) may be linearized and, using eq. (3.35), the viscous force 

may be represented by 

 

TL CDUF 2

2

1
ρ= , (3.36) 
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where for the sake of generality, CT is adopted in place of Cf. For the present study, CT can be 

determined for a system of known cylinder diameter, fluid, and inlet flow velocity by using the 

equation 

 

2

2

DU

F
C L

T
ρ

= . (3.37) 

 

It is known that CT decreases with increasing length (Paїdoussis 2004). The parameter CT 

is modified and L is rendered dimensionless by using the relations (Paїdoussis 2004) 

 

TT Cc
π

4
= , (3.38) 

 

and 

 

D

L
=ε  . (3.39) 

 

In the past, some researchers have determined the value of CT (Heorner 1965; Hannoyer 

1977; Ni & Hansen 1978; Lee & Kennedy 1985; Dowling 1988; Sudarsan 1997) and some have 

established a range in which its value is likely to lie (Chen and Wambsganss 1972; Paїdoussis 

2004). These researchers used different relations for different flow regimes and different surface 

roughness. Paїdoussis (2004) proposed ‘a reasonable range’ for cT as 0.010 < cT < 0.025.  

Now consider a rigid circular cylinder at zero angle of inclination inside a circular 

channel with the input parameters ρ = 998.2 kg/m
3
, D = 0.0254 m, and U = 0.64 m/s as shown in 

Fig. 3.13. The inlet flow velocity is rendered dimensionless by using the expression (eq. (3.7)) 

mentioned in Section 3.4, which yields u = 1.0. The Reynolds number Re is 1.3×10
5
. The only 

parameter to be determined is FL. For this, the model is developed and simulated using a 

specialized finite element modeling and simulation package called ADINA. The total number of 

elements in the numerical fluid domain is 74294. 

After obtaining FL from the model simulation in ADINA for given ε = 20.5, CT is 

calculated from eq. (3.37). The dimensionless value cT is determined from eq. (3.38). Based on 

the knowledge that cT is inversely proportional to the length of the structure, the analysis has 

been extended to establish the trend of the values of cT with increasing ε. Values of ε varying 
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from 10 to 60 have been considered. Figure 3.14 shows the values of cT varying with ε. The 

decreasing trend of cT with ε can be described by the following fourth order polynomial 

 

0259.0102103106103 4253647 +×−×−×+×−= −−−− εεεεTc .  (3.40) 

 

Finally, the mean value of cT is 0.0234. This value is within the range prescribed by 

Paїdoussis (2004). 

 

3.9.2. Normal Viscous Coefficient, cN 

 

The normal viscous force per unit length as proposed by Taylor (1952) is 

 

( )iCiCDUF DpfN

22 sinsin
2

1
+= ρ , (3.41) 

 

where CDp is the coefficient associated with form drag. For small motions, sin i << 1, eq. (3.41), 

using eq. (3.35), may be linearized into the form 

 

t

y
DC

x

y
U

t

y
DUCF

DNN
∂

∂
+








∂

∂
+

∂

∂
= ρρ

2

1

2

1
. (3.42) 

 

Here again, CN has been adopted in place of Cf for the sake of generality. In order to 

solve eq. (3.42) for CN, consider a rigid cylinder enclosed in a channel of finite length and 

diameter. Since the cylinder is rigid, i.e., the cylinder does not move, ty ∂∂  becomes zero and 

the resulting equation is 

 

dx

dy
CDUF NN

2

2

1
ρ= . (3.43) 

 

Modification of eq. (3.43) for CN yields 

( )dxdyDU

F
C N

N 2

2

ρ
= . (3.44) 

 

Modifying CN through the expression given by Paїdoussis (2004) yields 

 

NN Cc
π

4
= . (3.45)  
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Despite the consensus of researchers’ view that cN ≠ cT at least for solitary cylinders, 

some have considered cN = cT for their research work (Paїdoussis 1966a 1973; Triantafyllou and 

Chryssostomidis 1985). Different values and ranges of cN are found in the literature (Ortloff and 

Ives 1969; Chen and Wambsganss 1972; Lee and Kennedy 1985; Dowling 1988). Paїdoussis 

(2004) proposed a range of cN well suited to the pertaining research cases, in general as 0.005 < 

cN < 0.040. 

The known input parameters of the model are ρ = 998.2 kg/m
3
, D = 0.0254 m, and U = 

0.64 m/s. The corresponding dimensionless inlet flow velocity u and Reynolds number Re are 

1.0 and 1.3×10
5
, respectively. In order to find the normal viscous force per unit length FN, the 

cylinder needs to be inclined at an angle θ to the longitudinal axis of the channel, since FN does 

not exist at zero angle of inclination. By doing this, the transverse inviscid hydrodynamic force 

or lift force also comes into play and becomes a part of the normal component of the viscous 

force; hence its effect should be removed. This is done by subtracting the inviscid force from the 

viscous force,  

 

force inviscidforce viscous −=F . (3.46) 

 

The normal component of the resultant force F is the normal viscous force per unit 

length, FN = F sin θ. The model is developed and simulated in ADINA to find FN. The total 

number of element in the numerical fluid domain is 71279. The cylinder with different angles of 

inclination to the fluid flow θ = 5
o
, 10

o
, 15

o
, 20

o
 and slenderness factors, ε = 5, 10, 15, 20, 30, 40, 

50 are considered. The ratio dxdy  is the slope of the angle of inclination. The model with 

inclined cylinder is shown in Fig. 3.15. The mean value of FN for each θ has been substituted 

into eq. (3.44) to obtain CN. The final mean value of cN is 0.0041. It is slightly lower than the 

minimum suggested value by Paїdoussis (2004), but still within acceptable range as used by 

other researchers. 

Figure 3.16 shows the variation of FN with ε at different angles of inclination of the 

cylinder with respect to channel axis. It is obvious from the figure that, with increasing ε, FN also 

increases depicting that normal viscous force per unit length is more pronounced for longer or 

wider cylinders. A similar trend is shown in Fig. 3.17, in which FN has been plotted against θ at 

different values of ε. Increasing the angle of inclination of the structure enhances the contribution 

of the normal viscous force component per unit length, i.e., FN in the overall viscous force. 
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Figure 3.18 shows the normal viscous force coefficient, cN plotted against the angle of 

inclination, θ. Contrary to FN, cN decreases with θ. The reason is that with increasing θ, the 

differential climb of dxdy is greater than that of FN. The trend for the variation of cN with θ is 

described by the third order polynomial 

 

 
232334 1036.1102.9106.2102 −−−− ×+×−×+×−= θθθNc .   (3.47)          

 

3.9.3. Base Drag Coefficient, cb 

 

Consider the case of a cylinder either free to slide axially or completely free at x = L. Recalling 

that the pA term arises from the pressure on the sides of the cylinder, and considering a slice of 

the cylinder at x = L, one obtains 

 

ApT bL −= , (3.48) 

 

where pb is the base pressure. Hence 

 

( ) ( )ApppAT bLL
−=+ , (3.49) 

 

where pL is the pressure at the sides of the cylinder. Since pb < pL generally, this is referred to as 

base drag, which may be expressed as (Paїdoussis 2004) 

 

( )
bL

CUDpAT 22

2

1
ρ=+ . (3.50) 

  

Equating eqs. (3.49) and (3.50) yields 

 

 ( ) bbL CUDApp 22

2

1
ρ=− . (3.51) 

 

From this equation, a relation for Cb can be derived as 

 

( )
22

2

UD

ppA
C bL

b
ρ

−
= . (3.52) 

 

The modified form of Cb in eq. (3.7) given by Paїdoussis (2004) is 

 



 

 

87 

 

bb Cc
π

4
= . (3.53) 

 

Many researchers have calculated the base drag coefficient cb for various base- and 

forebody-shapes in the past (Hoerner 1965; Idel’ chik 1966; Blevins 1984). Based on the 

formulation of Hoerner (1965), Paїdoussis (2004) obtained cb = 0.21 for a blunt end forebody 

and 1.17 for a hemispherical end with no forebody. Based on the past obtained values of cb, 

Paїdoussis (2004) suggested a reasonable range as 0.1 < cb < 0.7. 

Consider eq. (3.52) with known input parameters A = 5.0671×10
-4

 m
2
, ρ = 998.2 kg/m

3
, 

and D = 0.0254 m. The parameters such as pL and pb are determined by developing a rigid 

cylinder model at zero angle of inclination in ADINA as shown in Fig. 3.19. The total number of 

elements in the numerical fluid domain is 73483. Although Fig. 3.19 is similar to Fig. 3.13 but 

included for the sake of the representation of the model to determine pressures independent of 

the previous sections. Simulations are performed for U (m/s) = 0.321, 0.640, 0.960, 1.280, 1.603 

and ε = 5, 10, 15, 20, 30, 40, 50. The corresponding dimensionless flow velocities u are 0.5, 1.0, 

1.5, 2.0, 2.5 and Reynolds numbers Re are 6.5×10
4
, 1.3×10

5
, 1.9×10

5
, 2.6×10

5
, 3.2×10

5
.The 

values of pL and pb for each U and ε are substituted in eq. (3.52) to obtain Cb. The corresponding 

modified values of cb are obtained by substituting the values of Cb in eq. (3.53). Finally, the 

mean value of cb obtained is 0.2024, which is well within the suggested range by Paїdoussis 

(2004).     

Figure 3.20 shows the base drag coefficient, cb, plotted against ε for different values of 

dimensionless flow velocity u. The general trend shows that with growing ε at a certain flow 

velocity u, cb decreases. The possible reason for this trend is that, due to boundary layer 

development along the length of the cylinder, the average pressure at the sides of the cylinder 

decreases for larger ε, causing the difference between pL and pb to decrease. The eventual result 

comes in the form of reduced cb. Figure 3.21 shows cb versus u at different values of ε. 

Increasing the flow velocity, u at certain ε causes the average pressure at the sides of the cylinder 

to increase and eventually leads to widening the gap between the value of pL and pb. This causes 

the value of cb to increase. In Fig. 3.20, a peculiar peak in the value of cb at ε = 1.5 is quite 

obvious. From the results, it is observed that the base pressure first starts decreasing with 

increasing ε. From ε = 10 to 15, a sudden drop in the value of pb is observed. After that pb starts 

increasing. (pL - pb), which is a major parameter in the determination of cb results in a higher 
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value at ε =1.5 due that sudden drop. It might be a threshold value of ε after that the base 

pressure starts increasing. But still the exact reason is not clear.  Figure 3.22 shows the plot of 

average cb versus u depicting this increasing trend. 

It is important to note that all the plots in Sections 3.9.1, 3.9.2, and 3.9.3 cannot have 

smooth lines as the calculations involve the results from the ADINA simulations, which can be 

considered as numerical experiments generating discrete values.  

 

3.9.4. Zero-Flow Normal Coefficient, c      

 

Recalling eq. (3.42), the second term stands for a linear mean contribution of the quadratic 

viscous forces at no fluid flow velocity. This term is retained, since all other viscous force terms 

disappear at U = 0 (Chen and Wambsganss 1972). Here, CD is not dimensionless (Paїdoussis 

2004); it has the units of velocity. The final form of eq. (3.42) thus obtained is 

 

 
t

y
DCF D

∂

∂
= ρ

2

1
. (3.54) 

 

The drag coefficient for a long cylinder oscillating in quiescent viscous fluid has been 

discussed by Paїdoussis (1998). The viscous force per unit length is found to be given by 

 









Ω−=

dt

dz
ACF

d
ρ , (3.55) 

 

where z is the displacement, Ω the radian frequency, ρ the fluid density, A the cylinder cross-

sectional area, and Cd the drag coefficient. Comparing eqs. (3.54) and (3.55) gives the expression 

for CD as 

 

dD
CDC Ω








=

2

π
. (3.56) 

 

In order to render CD dimensionless, Paїdoussis (2004) derived the following expression 

 

DLC
EI

A
c

21
4









=

ρ

π
. (3.57) 

 



 

 

89 

 

Paїdoussis (2004) considered two cases in order to establish reasonable range of c. He 

obtained a lower value of c equal to 0.008 by considering a cylinder made of metal and a higher 

value equal to 0.06 by considering an elastomer cylinder.  Sinyavskii et al. (1980) derived the 

expression for Cd as 

 

  
( )

,
1

122
22

3

c

c
d

Stk
C

γ

γ

−

+
=  (3.58) 

 

where γc is the confinement parameter given by the expression 

 

 ,
ch

c
R

R
=γ  (3.59) 

 

where R and Rch are the cylinder and channel radii, respectively. Consider the case with no 

confinement. In this case, γc = 0 and the resulting expression for Cd obtained is 

 

.
22

Stk
Cd =  (3.60) 

 

This is the same expression derived by Batchelor (1967); Stk is Stokes number given by 

 

.
2

k

R
Stk

ν

Ω
=  (3.61) 

  

In order to calculate Ω, the expression given by Paїdoussis (2004) is used, which is 

 

2

21

L
EI

mA
Ω







 +
=

ρ
ω , (3.62) 

 

where ω is the dimensionless complex frequency and m is the mass of cylinder per unit length. 

Re-ordering of eq. (3.62) gives 

 
21

2 








+
=Ω

mA

EI

L ρ

ω
. (3.63) 
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In order to determine ω, a MATLAB code to solve the linear equation of motion for a 

cantilevered cylinder with system parameters D = 0.0254 m, ρ = 998.2 kg/m
3
, E = 2.76×10

6
 Pa, I 

= 2.0432×10
-8

 m
4
, L = 0.52 m, νk = 1.004×10

-6
 m

2
/s, and m = 0.5675 kg/m are employed. These 

parameters match the experimental ones. The iterative solution starts by considering an initial 

guess for c equal to zero in the code. From the solution, ω at the critical value of cylinder second 

mode instability, i.e., flutter, is obtained; ω is the real part of the complex eigenfrequency. The 

value of ω is substituted in eq. (3.63) to obtain Ω, which is, in turn, put in eq. (3.61) to get St. 

Hereafter, eqs. (3.60), (3.56) and (3.57) are used in order to obtain the value of c. The obtained 

value of c is plugged in the MATLAB code to obtain new values of ω, Ω, Stk, Cd, CD, and finally 

c. This procedure is repeated until a converged value of c is obtained. From the above mentioned 

procedure, the value of c thus obtained is 0.0510, which is within the range 0.008 ≤ c ≤ 0.060, 

proposed by Paїdoussis (2004). 

 

3.10. Model in Water Flow with Presently Calculated Force Coefficients 

 

3.10.1. Adequacy of the Linear Solution    

 

Adequacy of the linear solution with the presently calculated force coefficients is established by 

solving the linear equation especially for this purpose and comparing the critical flow velocity 

for the onset of first mode divergence, ucr,d1, with the experimental one. The solution of the linear 

equation yields ucr,d1 = 1.904. The measured critical flow velocity, ucr,d1, in experiments is 1.87 

(Chapter 2). The difference is 1.81%, which is in good agreement.          

 

3.10.2. Analytical Results  

 

The presently obtained force coefficients are substituted in the linear equation of motion for 

cantilevered flexible cylinder in water flow and solved using MATLAB code. The values of 

these force coefficients and other parameters are: β = 0.5, εcN = 0.0852, εcT = 0.4857, f = 0.8, χ = 

1, εc = 1.0571, cb = 0.2024, ε = 20.7283, γ = 1.23, and δ = α = Γ = 0. The results (Fig. 3.23) show 

that cylinder motions if caused by perturbation are damped at small u. As velocity is increased, 

the complex frequency becomes purely imaginary with zero frequency but remains positive, 

indicating that the cylinder displacement is damped. At sufficiently high u, however, the cylinder 

first loses stability by divergence in its first mode, via a pitchfork bifurcation, at ucr,d1 = 1.904. 
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The critical velocity ucr,d1 is marked by the imaginary branch of the complex frequency 

becoming negative along the Im(ω)-axis at zero frequency. At higher flow velocity, the cylinder 

re-stabilizes in its first mode at ur1 = 5.237. Before u1 is reached, the cylinder second mode in 

stable region bifurcates on Im(ω)-axis at u2,0 = 4.921. The dimensionless flow velocity u2,0 

signifies the velocity corresponding to zero frequency of the second mode-shape locus along 

positive Im(ω)-axis in the stable region. At slightly higher velocity, u1,2 = 5.243, the positive 

branches of the first and second mode loci coalesce and leave the axis at a point where Im(ω) > 

0, indicating the motions damped out. Soon after, at ucr,fl1,2 = 5.278, the imaginary branches of 

the couple mode loci become negative, i.e., Im(ω) < 0, at a finite frequency, indicating the onset 

of coupled-mode flutter. The corresponding value of Re(ωcr,fl1,2) is equal to 3.92. The cylinder 

does not become unstable in the third mode, even at higher velocities as high as u = 12. Figures 

3.24 and 3.25 show the frequency and damping plotted against the dimensionless velocity u.  

  

3.11. Effect of Confinement  

 

Next, the effect of confinement on the critical value of u for the onset of divergence and flutter of 

cantilevered cylinder in water flow is analyzed with the presently calculated force coefficients 

substituted in the model’s MATLAB code. The results of the critical values of flow velocity for 

the onset of divergence and coupled-mode flutter varying with confinement are shown in Figs. 

3.26 and 3.27, respectively for 1.01 ≤ χ ≤ 2.00. With increasing confinement, viscous effects 

become more pronounced and the stream wise pressure drop acquires considerable value. This 

results in the divergence and coupled-mode flutter of the cylinder occurring earlier with 

increasing flow velocity.     

 

3.12. Comparison of the Results  

 

The results using the previously used force coefficients (Paїdoussis 1973) are compared with 

those of Paїdoussis (1973). Paїdoussis (1973) solved the equations of motion by considering a 

solution of the form 

 

( ) ( ) ωτξτξη i
eY=, . (3.64) 
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For a cantilevered cylinder, he expanded Y(ξ) in terms of a power series in ξ. The procedure to 

solve the present model has already been described above. Table 3.2 shows the comparison of 

cantilevered cylinder results with those of Paїdoussis (1973). Results are in good agreement. 

Table 3.3 presents the comparison of cantilevered cylinder critical velocities and the 

corresponding dimensionless frequencies with previously used force coefficients by Paїdoussis 

(1973) and presently calculated ones. With the presently calculated force coefficients, lower ucr,d1 

are obtained than with the previous force coefficients; also coupled-mode flutter is obtained 

instead of a single mode flutter. The reason can be understood by considering the effects of f and 

cb on the dynamics of the cylinder. According to theory, decreasing f stabilizes the system for 

divergence, while increasing cb destabilizes it. Since the model with the present force 

coefficients has same value of f (0.8) and a higher value of cb (0.2024) than the one with previous 

coefficients (cb = 0.0), the results suggest that the effect of cb makes the cylinder statically 

unstable at lower ucr,d1. For flutter, theory predicts that decreasing f and increasing cb both have a 

stabilizing effect. This is exactly what is observed in the table with ucr,fl1,2 being higher for the 

model with present coefficients. Third mode flutter is not observed for the model with present 

force coefficients. Since the results show, in general, a higher critical flow velocity for flutter, 

this may lead to the occurrence of third mode flutter at a dimensionless flow velocity higher than 

u = 12, which is the maximum velocity used in the code. The results of the linear model for the 

cantilevered cylindrical system with the presently calculated force coefficients demonstrate 

similar dynamics as observed in the experiments, especially the coalesced first mode divergence 

and second mode flutter as the coupled-mode flutter (combination of the two modes leads to an 

asymmetric response also observed in Figs. 2.32 and 2.33 in Chapter 2). Hence, it can be stated 

that the linear model with the presently calculated force coefficients predicts the dynamics of the 

system better than the one with the previously used force coefficients.   

Table 3.4 presents the comparison of critical velocities of cantilevered cylinder in water 

and air flows employing the previous force coefficients. Considering the models in water and air 

flows, it is seen that ucr,d1 is the same for both models, which means that divergence is 

independent of β, as observed by Paїdoussis (2004). However, a drop in ucr,fl2 for the model in air 

flow can be seen. This is due to the inherent lower viscous damping of air. This also enables the 

cylinder in air flow to oscillate with higher frequency. In addition, the cylinder does not develop 

third mode flutter in air flow up to the maximum dimensionless flow velocity, i.e., u = 12, used 
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in the code. It may be inferred that the energy transfer from air to the cylinder is not sufficient 

enough to excite it in third mode. 

  

3.13. Summary  

 

In this chapter, after the general introduction of the problem under consideration, two-

dimensional linear equations of motion, governing the cantilevered cylinder dynamics, in 

dimensional and dimensionless forms, and the methods of solution were presented followed by 

the solutions of the models in water flow using the MATLAB code. The mass ratio was then 

modified for the cantilevered cylinder case in air flow. Effects of confinement on the dynamics 

of cantilevered cylinder in water and air flows were then studied. Force coefficients present in 

the equation of motion were then recalculated based on the present geometrical and flow 

parameters matching the experimental ones, and with the presently calculated coefficients, the 

equations of motion were solved again for the cantilevered cylinder model using MATLAB 

code. Finally, the model results were compared with the ones available in the literature and with 

each other. 

First, the general equation of motion with the boundary conditions for cantilevered 

cylinder was presented followed by its dimensionless form. In order to transform or simplify the 

two-dimensional fourth order linear Partial Differential Equations (PDE) into second order 

Ordinary Differential Equation (ODE), extended Galerkin method was used due to its time 

dependent free end boundary condition. The ODE was further simplified to a first order 

eigenvalue problem. It was then solved for a range of flow velocities using a MATLAB code and 

the respective results were presented. The present code for cantilevered cylinder was then run for 

air flow by modifying the mass ratio, β, and the results were presented. Results pertaining to the 

effects of confinement on the critical velocities for cantilevered cylinder in water and air flows 

were later presented. 

Force coefficients such as longitudinal viscous coefficient, cT, normal viscous coefficient, 

cN, base drag coefficient, cb, and zero-flow normal coefficient, c, were recalculated based on the 

present physical parameters matching the experiment conditions. After substituting the presently 

calculated coefficients in the MATLAB code, solution for the cantilevered cylinder in water flow 

was obtained. Similarly, the effect of confinement on the critical velocities for cantilevered 

cylinder was then presented. 
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Finally, three sets of comparison were done. The first set compared the critical flow 

velocities for cantilevered cylinder obtained in the present model by using the previously used 

force coefficients with the ones in the literature. The second set compared the critical flow 

velocities using the previous force coefficients with the ones obtained by using the present force 

coefficients. The third set compared the critical flow velocities for the cantilevered cylinder in 

water flow with the ones in air flow.  
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Table 3.1. Values of α at different values of χ. 

 

χ α 

1.01 14.1774 

1.10 4.5826 

1.20 3.3166 

1.30 2.7689 

1.40 2.4495 

1.50 2.2361 

1.60 2.0817 

1.70 1.9640 

1.80 1.8708 

1.90 1.7951 

2.00 1.7321 
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Table 3.2. Dimensionless critical flow velocities, ucr obtained from present runs and by 

Paїdoussis (1973) for a cantilevered cylinder in water flow. 

 

Models/critical 

velocities 

First mode 

divergence, 

ucr,d1 

First mode re-

stabilization,  

ur1 

Second mode 

flutter,  

ucr,fl2 

Second mode 

re-stabilization, 

ur2 

Third mode 

flutter,  

ucr,fl3 

Present model 2.042 4.965 5.173 8.677 8.311 

Paїdoussis 2.04 4.9 5.16 8.6 8.17 

% difference 0.10 1.33 0.24 0.90 1.73 
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Table 3.3. Dimensionless critical flow velocities, ucr of cantilevered cylinder with previously 

used and presently calculated force coefficients.  

 

Model with 
Critical velocity and 

frequency/Instability 

First mode 

divergence, 

ucr,d1 

Second mode 

flutter, 

ucr,fl2 

Third mode 

flutter, 

ucr,fl3 

Previous force 

coefficients 

ucr 2.042 5.173 8.311 

ω -- 10.47 32.46 

Present force 

coefficients 

ucr 1.904 

5.278 

(coupled-

mode) 

-- 

ω -- 3.92 -- 
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Table 3.4. Dimensionless critical flow velocities, ucr of cantilevered cylinder in water and air 

flows. 

 

Fluid 
Critical velocity and 

frequency/Instability 

First mode 

divergence, 

ucr,d1 

Second mode 

flutter, 

ucr,fl2 

Third mode 

flutter, 

ucr,fl3 

Water 
ucr 2.042 5.173 8.311 

ω -- 10.47 32.46 

Air 
ucr 2.042 3.470 -- 

ω -- 13.57 -- 
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Fig. 3.1. (a) Schematic diagram of a flexible cylinder in a confined vertical axial flow (b) 

Diagrammatic view of a cantilevered cylinder in axial flow in the test-section of a 

circulating system. 

 

 

 

 

 

 

 

 

Flexible cantilevered cylinder 

Rch 

R 

U 

g 

(a) (b) 



 

 

100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Argand diagram of the dimensionless complex frequencies, ω of the lowest three modes 

of an isolated cantilevered cylinder with a tapered free end in unconfined axial water 

flow as function of u. 
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Fig. 3.3. Dimensionless oscillation frequency of the lowest three modes of an isolated 

cantilevered cylinder with a tapered free end in unconfined axial water flow as function 

of u. 
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Fig. 3.4. Damping of the lowest three modes of an isolated cantilevered cylinder with a tapered 

free end in unconfined axial water flow as function of u. 
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Fig. 3.5. Argand diagram of the dimensionless complex frequencies, ω of the lowest three modes 

of an isolated cantilevered cylinder with a tapered free end in unconfined axial air flow 

as function of u. 
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Fig. 3.6. Dimensionless oscillation frequency of the lowest three modes of an isolated 

cantilevered cylinder with a tapered free end in unconfined axial air flow as function of 

u. 
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Fig. 3.7. Damping of the lowest three modes of an isolated cantilevered cylinder with a tapered 

free end in unconfined axial air flow as function of u. 
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Fig. 3.8. Variation of critical flow velocity for divergence, ucr,d1 with increasing confinement, χ, 

of model in water flow.  
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Fig. 3.9. Variation of critical flow velocity for flutter, ucr,fl2 with increasing confinement, χ, of 

model in water flow.  
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Fig. 3.10. Variation of critical flow velocity for flutter, ucr,fl3 with increasing confinement, χ, of 

model in water flow.  
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Fig. 3.11. Variation of critical flow velocity for divergence, ucr,d1 with increasing confinement, χ, 

of model in air flow. 
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Fig. 3.12. Variation of critical flow velocity for flutter, ucr,fl2 with increasing confinement, χ, of 

model in air flow.  
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Fig. 3.13. Numerical mesh of the model to determine cT. 
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Fig. 3.14. Dimensionless longitudinal viscous coefficient, cT as function of dimensionless length 

ε. 
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Fig. 3.15. Numerical mesh of the inclined cylinder model to determine cN. 
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Fig. 3.16. Normal viscous force, FN versus ε at different values of θ.     , θ = 5
o
;      , θ = 10

o
; 

 , θ = 15
o
;      , θ = 20

o
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Fig. 3.17. Normal viscous force, FN versus θ at different values of ε.      , ε = 5;      , ε = 10;   

      , ε = 15;       , ε = 20;        , ε = 30;       , ε = 40;       , ε = 50.       
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Fig. 3.18. Normal viscous coefficient, cN as function of θ. 
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Fig. 3.19. Numerical mesh of the model to determine cb. 
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Fig. 3.20. Base drag coefficient, cb versus ε at different values of u.      , u = 0.5;      , u = 1.0; 

     , u = 1.5;      , u = 2.0;       , u = 2.5  
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Fig. 3.21. Base drag coefficient, cb Vs u at different values of ε.      , ε = 5;      , ε = 10;   

      , ε = 15;       , ε = 20;        , ε = 30;       , ε = 40;      , ε = 50.       
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Fig. 3.22. Base drag coefficient, cb as function of u. 
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Fig. 3.23. Argand diagram of the dimensionless complex frequencies, ω of the lowest three 

modes of cantilevered cylinder with a tapered free end in water flow as function of u 

using the calculated force coefficients. 
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Fig. 3.24. Dimensionless oscillation frequency of the lowest three modes of cantilevered cylinder 

with a tapered free end in water flow as function of u using the calculated force 

coefficients. 
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Fig. 3.25. Damping of the lowest three modes of cantilevered cylinder with a tapered free end in 

water flow as function of u using the calculated force coefficients. 
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Fig. 3.26. Variation of critical flow velocity for divergence, ucr,d1 with increasing confinement, χ 

of model with present force coefficients in water flow.  
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Fig. 3.27. Variation of critical flow velocity for flutter ucr,fl1,2 with increasing confinement, χ of 

model with present force coefficients in water flow. 
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Chapter 4 

Nonlinear Analysis 

 

4.1.  Introduction 

 

As established earlier, a linear model can reliably predict the first point of instability of a flexible 

cylinder in axial flow, which is most of the time divergence (a static instability). The post-

divergence dynamics of the cylinder, however, has to be confirmed through a nonlinear model 

(Paїdoussis 1998, 2004; Modarres-Sadeghi 2006). It is also noted in the previous research work, 

presented in Chapter 1, utilizing the nonlinear models to describe the system dynamics of 

flexible slender cylinder in axial flow (Paїdoussis et al. 2002; Modarres-Sadeghi 2005, 2007), the 

force coefficients were either chosen from a reasonable range or determined based on some 

simple relations. Therefore, there is a need to solve the nonlinear equation with the force 

coefficients, calculated in Chapter 3, incorporated in it in order to predict the nonlinear dynamics 

of the system. 

In this Chapter, the dynamic response of a cantilevered cylinder in water flow, is studied 

again, this time a described by a nonlinear equation of motion. The system under consideration is 

similar to one studied in Chapter 3. The un-deformed cylinder axis coincides with the x-axis. The 

cantilevered cylinder is fitted with an ogival end-piece at the free end and considered to be short 

relative to the overall length of the cylinder. Furthermore, the fluid is supposed to be contained 

by boundaries sufficiently distant from the cylinder to have negligible influence on its motion. 

Similar assumptions are considered as in Chapter 3. First, the nonlinear model results are 

obtained by utilizing the force coefficients and other input parameters used by Semler et al. 

(2002). This is done so as to establish the adequacy of the present numerical method used for the 

solution by comparing the obtained results with those by Semler et al. (2002). Secondly, the 

presently calculated force coefficients from Chapter 3 are employed in the nonlinear equation 

and solved. Finally, the results obtained from the present work with previous and presently 

calculated force coefficients are compared with each other in order to see the effect of the force 

coefficients on the overall dynamics of the system.  
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4.2.  Nonlinear Equation of Motion 

 

Let us consider small lateral motions of the cylinder about its position of rest. Various fluid 

forces act on the cylinder namely inviscid hydrodynamic force, FA, viscous forces per unit length 

in the normal and longitudinal direction, FN and FL, respectively, and hydrostatic forces in the x- 

and y- directions, Fpx abd Fpy, respectively. The derivation of the equation of motion derived by 

Lopes et al. (2002) is via Hamilton’s principle,   
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where L = Tc – Vc is the Lagrangian, Tc and Vc being the kinetic and potential energies of the 

cylinder, respectively, and δW the virtual work by the fluid-related forces acting on the cylinder 

(Lopes et al. 2002). Finally the equation of motion of solitary cylinder in unconfined flow, given 

by Lopes et al. (2002), can be written as 
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  (4.3) 

 

All the symbols used in eq. (4.2) are defined in the Nomenclature and some in Chapter 3.  
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4.3.  Boundary Conditions 

 

The end-piece is assumed to be rigid, so that its motion is determined solely by the values of 

displacement and velocity at s = L–l. Hence, the boundary conditions for a cantilevered cylinder 

are 

 

0=′= yy                                                                           at s = 0  (4.4)  
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  and  ,  ,  ,  , &&  (Lopes et al. 2002). 

 

4.4.  Dimensionless Parameters 

 

Using the expression given in eq. (3.7) of Chapter 3, one obtains the following dimensionless 

equation of motion (Lopes et al. 2002) 
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The corresponding dimensionless boundary conditions are 

 

0=′=ηη                                                                                                     at ξ = 0    (4.9) 
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4.5.  Method of Solution 

 

The nonlinear equation (eq. (4.8)) is correct to third order, O (ε
3
); furthermore, the boundary 

conditions (eq. (4.10)) are time- and flow-velocity-dependent making the solution procedure 

rather complicated. For this, the ‘extended Galerkin method’ is used, which can be expressed as  
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( )( ) ( ) ( )( ) 0,,1,, =−+ uBuF τξηξδτξη , (4.12) 

 

where F (η) is the equation of motion, B (η) is boundary condition, and δ (ξ-1) is Dirac’s delta 

function. Applying the procedure leads to a second-order ordinary differential equation given by 

Lopes et al. (2002) as  
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Mij, Cij, and Kij are the mass, damping, stiffness matrices, respectively, while αijkl, βijkl, 

γijkl, ηijkl, µijkl, rijk, ijks , ijks~ , tijk are related to the nonlinear terms. The mass, damping, and stiffness 

matrices are defined as 
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where the constants bij, cij, and dij are already defined in chapter 2 and the nonlinear coefficients 

αijkl, βijkl, γijkl, ηijkl, µijkl, rijk, ijks , ijks~ , and tijk  are defined by Lopes et al. (2002).  

Equation (4.8) may be used for an isolated cylinder in unconfined axial flow by 

considering χ → 1 and h → 0. The method adopted to solve eq. (4.13) is Houbolt’s Finite 

Difference Method (FDM), which is an initial value problem solver and is used to solve the 

second-order ordinary differential equation directly without any need to recast it in first-order 

form (Modarres-Sadeghi 2006). The numerical solution is obtained using FORTRAN code 

developed by Modarres-Sadeghi (2006) that is based on the Houbolt’s FDM. Six Galerkin modes 

are considered in both the axial and transverse directions in the solution.  
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4.6. Model in Water Flow with Previously Used Force Coefficients 

 

4.6.1. Adequacy of the Nonlinear Solution 

 

Adequacy of the nonlinear solution is established by solving the nonlinear equation especially 

for this purpose and comparing the critical flow velocity for the onset of first mode divergence, 

ucr,d1, with that obtained by Semler et al. (2002). The solution of the nonlinear equation yields 

ucr,d1 = 2.18. The value of ucr,d1 obtained by Semler et al. (2002) is 2.10. The difference is 3.8%, 

which may be considered acceptable. Complete comparison is presented in Section 4.8.          

 

4.6.2. Results 

 

First, the results obtained with the force coefficients and other dimensionless parameters 

implemented in the nonlinear equation of motion, previously used by Semler et al. (2002), are 

presented. These are β = 0.47, f = 0.7, cN = 0.0244, cT = 0.0244, cb = 0.3, cd
1
 = 0.0, χ = 1, and ε ≈ 

20.47. The results are obtained in the dimensionless flow velocity range of 0 ≤ u ≤ 8.0. It is 

known that for linear theory to be applicable for post-divergence dynamics, the motion must be 

small in the vicinity of the equilibrium state. No such condition is required for nonlinear theory. 

Therefore, nonlinear theory unconditionally gives reasonably accurate dynamical behaviour of 

the system. Figure 4.1 illustrates the typical bifurcation diagram of the generalized coordinate, q1 

versus the dimensionless flow velocity, u. The critical flow velocity for the onset of static 

instability, i.e., divergence, with the help of the parameters such as the generalized coordinates 

and dimensionless displacements describing the state of the system sometimes is difficult to 

identify precisely. The reason is that the divergence does not occur abruptly but evolves 

gradually from the equilibrium state of the system. But in this case, looking at Fig. 4.1, it seems 

to be very clear. The value of q1 remains essentially zero until at ucr,d1 = 2.18, it becomes non-

zero, i.e., a pitchfork bifurcation occurs and the system loses stability by divergence in first 

mode; q1 then increases with u. For u ≈ 3.2, q1 begins to decrease, reaches zero, and then 

becomes negative over a small range of u. Before q1 crosses the horizontal axis, the mode shape 

of the system is transformed from first mode shape to second mode at ucr,d2 ≈ 4.4. This value is 

approximate since the transformation is not abrupt but gradual and it is very difficult to precisely 

                                                           
1
 Semler et al. (2002) used the symbol cd to represent zero-flow normal coefficient. In the present work, 

the same parameter is represented by the symbol c, as also indicated in Chapter 3.  
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locate the critical velocity. The negative q1 indicates that the second mode shape is enhanced to 

the extent that q1 crosses the equilibrium position, i.e., the horizontal axis. Subsequently, at ur2 = 

5.41, the system is re-stabilized over a short range of u. At ucr,fl2 = 5.55, the solution loses 

stability again through a Hopf bifurcation, which results in flutter in the second mode. At higher 

flow velocity, the solution shows in first increasing and then decreasing q1. There might be some 

unstable solutions beyond ucr,fl2, but the FDM code only gives stable solutions.    

The results are obtained using 100,000 sample points in 100 dimensionless time units, τ. 

Figure 4.2 shows the time history and phase-plane plot of the system at u = 1.9. Both figures are 

obtained by plotting q1 and q̇1 against τ ≤ 16 since a stable solution is obtained even before this 

time and there is no need to extend it up to τ = 100. Both plots clearly demonstrate a stable 

system; the system returning to equilibrium position after initial perturbation. Figure 4.3 shows 

the time history, phase-plane plot, and the mode shape at u = 2.6. All three plots clearly 

demonstrate that the system has undergone a static instability, i.e., divergence. The saddle point 

is shifted to a new location. Figure 4.4 demonstrate second-mode shape divergence of the system 

at u = 5.0 with the help of time history, phase-plane plot, and mode shape. The dynamically 

unstable system in second mode flutter is shown in Fig. 4.5 at u = 6.3 with the help of time 

history, Fast Fourier Transform (FFT), Power Spectral Density (PSD), phase-plane plot, 

Poincaré map, and the mode shape. The phase-plane plot is obtained by plotting q̇1 versus q1; q̇1 

is the derivative of q1 with respect to the dimensionless time τ. The Poincaré map is obtained by 

plotting q̇1 versus q1 whenever the time derivative of second generalized coordinate, q̇2 = 0. The 

system oscillates around the original equilibrium position demonstrating periodic response. This 

is confirmed by the phase-plane plot showing, eventually, a stable limit cycle and the Poincaré 

map showing all the data points located at only two positions. It means that whenever the 

condition of q̇2 = 0 is met, q1 is located at the same positions in the upper and lower halves of the 

periodic oscillation cycles with the same corresponding q̇1 in one or the other direction. The 

negative and positive values of q1 and q̇1 are based on the sign convention for differentiation. 

The initial transient response is omitted in the Poincaré map. The flutter frequency, ffl2, is 1.89 

Hz. 3ffl2 is a multiple of the fundamental frequency as shown by PSD in Fig. 4.5 (c). 
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4.7. Model in Water Flow with Presently Calculated Force Coefficients 

 

4.7.1. Adequacy of the Nonlinear Solution 

 

Adequacy of the nonlinear solution with the presently calculated force coefficients is established 

by solving the nonlinear equation especially for this purpose and comparing the critical flow 

velocity for the onset of first mode divergence, ucr,d1, with the experimental one. The solution of 

the nonlinear equation yields ucr,d1 = 1.89. The measured critical flow velocity, ucr,d1, in 

experiments is 1.87 (Chapter 2). The difference is 1.07%, which is in good agreement.          

 

4.7.2. Results 

 

The force coefficients, calculated in Chapter 3, are going to be used in the nonlinear model 

instead of the previously used ones by Semler et al. (2002) since these are calculated based on 

the parameters of the cantilevered cylinder case under investigation and represent more precisely 

the fluid forces acting on the cylindrical system. The results thus obtained with these presently 

calculated force coefficients are presented in this section. To remind the reader, these force 

coefficients are longitudinal viscous coefficient, cT = 0.0234 [cT = 0.0244], normal viscous 

coefficient, cN = 0.0041 [cN = 0.0244], base drag coefficient, cb = 0.2024 [cb = 0.3], and zero 

flow normal coefficient, c = 0.0510 [cd = 0.0], with the coefficients used previously by Semler et 

al. (2002) shown in square brackets. Other parameters are β = 0.5, f = 0.8, γ = 1.23, and χ = 1. 

The dimensionless cylinder length, ε is equal to 20.7283. The results are obtained for the 

dimensionless flow velocity range of 0 ≤ u ≤ 7.2. Six Galerkin modes are used in the solution. In 

this case too, the first bifurcation is clear and the onset of first point of instability can be obtained 

without much difficulty, as can be seen in Fig. 4.6, which illustrates the typical bifurcation 

diagram of the generalized coordinate, q1 against the dimensionless flow velocity, u. The system 

first losses stability by first mode divergence via pitchfork bifurcation at ucr,d1 = 1.89. This is 

shown by the increase in q1. With increasing flow velocity, the plot shows an ascend in q1. Later, 

q1 start to descend at u = 2.9 and eventually crosses the equilibrium position and becomes 

negative at 4.76 < u < 4.77. Before this happens, the first mode divergence transforms gradually 

into second mode at ucr,d2 ≈ 4.4. The system again returns to equilibrium state at ur2 = 5.25. This 

is indicated by q1 becoming zero. The system remains stable over a short range of u and then 

becomes dynamically unstable by coupled-mode flutter at ucr,fl1,2 = 5.29. This coupled-mode 
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flutter involves first and second cylinder modes and is observed in the forthcoming results. At u 

> 7.2, unstable solutions also co-exist and the dynamics of the system becomes more intricate.                

These results also are obtained using 100,000 sample points in 100 dimensionless time 

units, τ. Figure 4.7 shows the time history and phase-plane plot of the system at u = 1.8. Both 

figures are obtained by plotting q1 and q̇1 against τ ≤ 16 since a stable solution is obtained even 

before this time and there is no need to extend it up to τ = 100. Both plots clearly demonstrate a 

stable system; the system returning to equilibrium position after initial perturbation. Figure 4.8 

shows the diverged system in first mode with the help of time history, phase-plane plot, and the 

mode shape at u = 2.6. Figure 4.9 shows the diverged system in second mode at u = 5.1. In Figs 

4.8 (b) and 4.9 (b), q1 moves to new fixed points, i.e., saddle points. Dynamic instability of the 

system is shown with the help of time history, FFT, PSD, phase-plane plot, Poincaré map, and 

the mode shape in Fig. 4.10 at u = 5.8. The flutter frequency at this flow velocity is, ffl1,2 = 1.95 

Hz. 3ffl1,2 is the multiple of the fundamental frequency as shown in Fig. 4.10 (c). The phase-plane 

plot, as shown in Fig. 4.10 (d), depicts a stable limit cycle. The Poincaré map, as shown in Fig. 

4.10 (e), confirms periodic motion of the system. The coalesced first and second modes are 

observed in the mode shape of the system presented in Fig. 4.10 (f). It means the cylinder 

oscillates in its second mode around a diverged position leading to an asymmetric response.            

 

4.8. Comparison of the Results 

 

The results in terms of critical velocities obtained in present work are compared with those 

obtained by Semler et al. (2002) in Table 4.1. The present results are obtained by solving the 

nonlinear equation of motion numerically using Houbolt’s FDM, whereas Semler et al. used two 

different numerical schemes namely FDM and AUTO. The software AUTO is based on a 

collocation method. It is adapted to solving continuation and bifurcation problems for differential 

equations. The small difference in the results is due to different numerical schemes used. In other 

words, the difference is attributed to numerical error of the schemes. Overall, the agreement is 

good.      

The models employing previously used and presently calculated force coefficients are 

compared in Table 4.2, which shows a salient difference in the post-divergence dynamics 

depicting coupled-mode flutter in the model employing the presently calculated force 

coefficients, i.e., the system oscillates in second beam mode around first beam mode buckled 
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position. In other words, the first and second modes coalesce and leave the axis with finite q1 

indicating the onset of coupled-mode flutter. Other observation is that the divergence of the 

system with present force coefficients occur at lower ucr,d1 (13.3 % lower) and ucr,fl1,2 (4.68 % 

lower) than with previous ones. It can be reasoned by looking at the values of the present force 

coefficients and establishing how these affect the dynamics of the system. It is noticed that the 

presently calculated force coefficients cT, cN, and cb are smaller, whereas the coefficient c is 

bigger than the previous ones. These present values affect the system by reducing its damping 

and stiffness through eqs. (4.15) and (4.16). The eventual result is that the system diverges in 

first mode and oscillates in second mode at relatively lower critical flow velocities, ucr,d1 and 

ucr,f1,2, respectively. The results of the nonlinear model with the presently calculated force 

coefficients demonstrate similar dynamics as observed in the experiments, especially the 

combined first mode divergence and second mode flutter as the coupled-mode flutter (such type 

of flutter leads to an asymmetric response, as shown in Fig. 4.10(f) and also observed in Figs. 

2.32 and 2.33 in Chapter 2). Hence, it can be inferred that the nonlinear model with the presently 

calculated force coefficients predicts the dynamics of the system better than the one with the 

previously used force coefficients.         

 

4.9. Summary 

 

In this chapter, the nonlinear equation of motion, governing the dynamics of cantilevered 

cylinder and derived by Lopes et al. (2002), was solved numerically using Finite Difference 

method (FDM). Six Galerkin modes were used for the solution. The downstream free end of the 

cylinder was terminated by an ogival end-piece. Two cases were studied; one with the previously 

used force coefficients and the other with the presently calculated ones. Results were obtained 

for a velocity range of 0 ≤ u ≤ 8.0 and 0 ≤ u ≤ 7.2 for the cases with previous and present force 

coefficients, respectively.  

The first case showed that the system first lost stability by first mode divergence. At 

higher flow velocity, the divergence transformed form first-mode shape to second-mode shape. 

As the velocity increased further, the system stabilized by returning to the equilibrium position 

for a short range of flow velocity. Then it lost stability by second mode flutter. Results showed 

that the flutter exhibited periodic response. The second case (present force coefficients) showed 

more or less the same system dynamics with an eminent difference that the post-divergence 
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flutter was in fact of the coupled-mode type, i.e., the combination of first divergence and second 

mode flutter. This chapter presented the results in view of the fact established earlier in the work 

by Paїdoussis (2004) that nonlinear theory predicts the post-divergence dynamics of the system 

more accurately than the linear theory.  

Finally, the results obtained by the present work with previously used force coefficients 

were compared with those by Semler et al. (2002) and then with the ones using the presently 

calculated coefficients. The first comparison showed reasonable agreement.    
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Table 4.1. Dimensionless critical flow velocities, ucr obtained by present work and Semler et al. 

(2002) for a cantilevered cylinder. 

 

System coefficients 

First mode 

divergence,  

ucr,d1 

Second mode re-

stabilization,  

ur2 

Second mode 

flutter, 

ucr,fl2 

Present model with 

previously used force 

coefficients 

2.18 5.41 5.55 

Model with previously used 

force coefficients by Semler 

et al. 

2.10 > 5.25 5.5 

Percent difference 3.81 ≈ 3.05 0.91 
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Table 4.2. Dimensionless critical flow velocities, ucr of cantilevered cylinder with previously 

used and presently calculated force coefficients. 

 

System coefficients 
Divergence Re-stabilization Flutter 

ucr,d1 ucr,d2 ur2 ucr,fl2 

Model with previously used 

force coefficients 
2.18 ≈ 4.4 5.41 5.55 

Model with presently 

calculated force coefficients 
1.89 ≈ 4.4 5.25 

5.29 

(coupled-mode) 

Percent difference 13.3 0.0 2.96 4.68 
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Fig. 4.1. Bifurcation diagram for cantilevered cylinder showing first generalized coordinate, q1 

as function of u. 
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Fig. 4.2. (a) Time history and (b) phase-plane plot of cantilevered cylinder in stable state at u = 

1.9. 
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Fig. 4.3. (a,b). Caption on next page. 
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Fig. 4.3. (a) Time history, (b) phase-plane plot, and (c) mode shape of cantilevered cylinder in 

first mode divergence at u = 2.6. 
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Fig. 4.4. (a,b). Caption on next page. 
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Fig. 4.4. (a) Time history, (b) phase-plane plot, and (c) mode shape of cantilevered cylinder in 

second mode divergence at u = 5.0. 
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Fig. 4.5. (a,b,c). Caption on next page.
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Fig. 4.5. (d,e). Caption on next page. 
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Fig. 4.5. (a) Time history, (b) FFT, (c) PSD, (d) phase-plane plot, (e) Poincaré map, and (f) mode 

shapes of cantilevered cylinder in second mode flutter at u = 6.3. 
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Fig. 4.6. Bifurcation diagram for cantilevered cylinder obtained with presently calculated force 

coefficients showing first generalized coordinate, q1 as function of u. 
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Fig. 4.7. (a) Time history and (b) phase-plane plot of cantilevered cylinder obtained with 

presently calculated force coefficients in stable state at u = 1.8. 
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Fig. 4.8. (a,b). Caption on next page. 
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Fig. 4.8. (a) Time history and (b) phase-plane plot, and (c) mode shape of cantilevered cylinder 

obtained with presently calculated force coefficients in third mode flutter at u = 2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-4.50E-015.00E-02

(c) 



 

 

152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9. (a,b). Caption on next page. 
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Fig. 4.9. (a) Time history, (b) phase-plane plot, and (c) mode shape of cantilevered cylinder 

obtained with presently calculated force coefficients in third mode flutter at u = 5.1. 
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Fig. 4.10. (a,b,c). Caption on next page.
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Fig. 4.10. (d,e). Caption on next page. 
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Fig. 4.10. (a) Time history, (b) FFT, (c) PSD, (d) phase-plane plot, (e) Poincaré map, and (f) 

mode shapes of cantilevered cylinder obtained with presently calculated force 

coefficients in coupled-mode flutter at u = 5.8. 
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Chapter 5 

Numerical Simulations 

 

5.1. Introduction 

 

In all the practical applications and previously conducted experiments relevant to flexible slender 

cylindrical structures in axial flow, mentioned in Chapter 1, the dynamical behaviour observed is 

three-dimensional. Not only this but the path described by the cylinder end was observed in one 

of the experiments (Paїdoussis et al. 2002) to be orbital instead of circular. Lack of knowledge to 

account for the three-dimensional behaviour, especially the non-symmetry found in the cylinder 

motion, important for the safe operation of the engineering and health delivery processes, is the 

motivation behind the present work, which is aimed at developing a three-dimensional coupled 

nonlinear model for a confined flexible cylindrical structure in axial flow in an FEM based 

modelling and simulation package called ADINA. 

In addition to the solutions of the linear and nonlinear equations of motion obtained by 

the analytical and numerical techniques, respectively, ADINA is also utilized to solve the 

problem under investigation. ADINA is a finite element analysis solver and Simulation software 

package for various physics and engineering applications, especially multiphysics or coupled 

phenomena such as Fluid-Structure Interaction (FSI). ADINA offers FSI capabilities in one 

single program for the solution of problems where the fluids are fully coupled to general 

structures that can undergo highly nonlinear response due to large deformations, contact with the 

surrounding boundaries, and temperature-dependency. A fully coupled fluid-structure interaction 

means that the response of the solid is strongly affected by the response of the fluid, and vice 

versa. From the fluid point of view, the Navier-Stokes flow can be incompressible, slightly 

compressible, low-speed or high-speed compressible. From the structural point of view, all 

available element types can be used (i.e. shell, two-dimensional and three-dimensional solid, 

beam, iso-beam, contact surfaces, etc.) as well as all available material models. Once any part of 

the computational domain deforms, the Eulerian description of the fluid flow is no longer 

applicable. Therefore, ADINA solves the governing equations of fluid flow using an Arbitrary-

Lagrangian-Eulerian (ALE) formulation (ADINA 2012). One of the benefits in developing the 

ADINA model is that it gives three-dimensional visualization of the results. 
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5.2. Validation of ADINA 

 

To check the adequacy of ADINA, results from the well known benchmark problems are 

compared with the experimental and numerical results obtained previously by other 

investigators. If the results obtained from ADINA show good agreement with the previous 

results, then it will be considered fit to be used for further analysis. Therefore, the following four 

different models were developed: (a) two-dimensional pipe flow model; (b) backward facing step 

mode; (c) point load deflection model; (d) three-dimensional point load deflection model. 

 

5.2.1. Two-Dimensional Pipe Flow Model 

 

The validation of ADINA is commenced with a very fundamental fluid mechanics boundary 

layer model, i.e., a two-dimensional pipe flow model. Two parameters, the length of the pipe 

required to achieve fully developed flow, i.e., the entrance length, and the pressure drop, ∆p 

across the pipe of given length. The model of a horizontal pipe of diameter, Dch = 0.05 m is 

generated in ADINA. Water enters the pipe from the left at a uniform flow velocity, v = 0.01 

m/sec as shown in Fig. 5.1. Standard Temperature and pressure (STP) conditions of water are 

considered. The resulting Reynolds number Re, is 500, indicating laminar flow. The flow profile 

is checked across the cross-sections of the pipe along its length. The distance from the pipe 

entrance at which a fully developed parabolic flow profile is obtained is marked as the entrance 

length, Lent. The resulting dimensionless value, Lent/Dch, comes out to be 29.8. Then, the standard 

relation for the entrance length in laminar pipe flow is considered (Shaughnessy et al. 2005) 

 

Re06.0=
ch

ent

D

L
.     (5.1) 

 

For a Re of 500, the dimensionless entrance length, Lent/Dch, is 30. The difference between the 

ADINA and theoretical result is 0.67 %.  

In order to determine the pressure drop, ∆p, in a two-dimensional pipe of given length, a 

similar model with the same flow parameters as used for the entrance length is considered in 

ADINA. The length of the pipe Lch is prescribed as 1 m. Simulation of the model in ADINA 

gives ∆p of 0.126 Pa. The standard relation of pressure drop across a pipe is given by 

(Shaughnessy et al. 2005)     
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where fD is the Darcy-Weisbach friction coefficient. For laminar flow, it is equal to 64/Re. For a 

flow velocity of 0.01 m/s, the theoretical value of ∆p obtained from eq. (5.3) is equal to 0.128 

Pa. The difference between ADINA and theoretical values is 1.56 %. 

 

5.2.2. Backward Facing Step Model 

 

The validity of ADINA is further verified by comparing the results for backward facing step in a 

rectangular duct model with the experimental and numerical results. The model developed in 

ADINA is shown in Fig. 5.2. Flow enters the inlet from left. Flow separation occurs right after 

the flow passes over the backward facing step of height sh. It reattaches to the duct bottom wall 

after a certain distance x. Therefore, the parameter selected for comparison is the reattachment 

length x of the fluid flow with the duct wall. Figure 5.3 shows the flow velocity profile 

development with the help of velocity vectors and velocity contours on the duct cross-sections 

along the length of the duct.   

The first comparison is carried out with the results of Nie and Armaly (2003). They 

performed numerical simulations for incompressible three-dimensional laminar forced 

convection flow adjacent to backward facing step in a rectangular duct in order to examine the 

reattachment region of the separated flow on the stepped wall. They selected the dimensions of 

the duct in such a way that the flow at the inlet section of the duct (x/sh = -2) was not affected 

significantly by the sudden expansion in the geometry at the step, and the flow at the exit section 

(x/sh = 50) was fully developed. It was also insured through measurements that the flow was 

laminar and steady for Reynolds number less than 600. Considering Re = 400, they obtained the 

dimensionless reattachment length, x/sh = 7.6. Similar initial and boundary condition have been 

adopted in the ADINA model. The dimensionless reattachment length, x/sh thus obtained is 7.5. 

The difference is 1.32 %.  
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The other comparison is with the experimental result of the same parameter, i.e., flow 

reattachment length, obtained by Williams and Baker (1996). They considered a three-

dimensional backward facing step model and ran numerical simulations at different Reynolds 

number, Re to compare with the work of Armaly et al. (1983). For Re = 800, they obtained the 

dimensionless reattachment length, x/sh = 14. Simulating the same model in ADINA gives value 

of x/sh = 13.122. The difference is 6.27 %. 

 

5.2.3. Point Load Deflection Model 

 

ADINA has also been tested for the purely structural mechanics part. A two-dimensional 

horizontal beam model of length, lbeam = 1 m, height, b = 0.02, infinite width, subjected to a 

vertical concentrated point load, W = 1 N at the tip of the beam is generated in ADINA as shown 

in Fig. 5.4. The beam material is steel with modulus of elasticity, E = 2.07×10
11

 Pa and second 

moment of area, I = 1.33×10
-8

 m
4
. The beam tip deflects 1.20773×10

-4
 m downwards. Increasing 

the point load to 300 N results in a tip deflection of 3.623×10
-2

 m. The relation of maximum 

beam deflection under a concentrated point load at the tip is given by (Ryder 1969) 

 

.
3

3

max
EI

Wlbeam−=δ  (5.4) 

 

The negative sign signifies downward deflection, in negative y-direction. Substituting the 

parameters of the ADINA beam model, values of δmax = 1.21×10
-4

 m and 3.632×10
-2

 m for point 

loads of 1 N and 300 N, respectively, are obtained. The corresponding differences between 

theory and ADINA are 0.19 % and 0.25 %, respectively.   

 

5.2.4. Three-Dimensional Point Load Deflection Model 

 

A horizontal circular flexible silicone rubber of cylinder length, l = 0.483 m, diameter, D = 

0.0254 m, modulus of elasticity, E = 2.76×10
6
 Pa, and second moment of area, I = 2.0435×10

-8
 

m
4
 subjected to a vertical concentrated tip load, W = 0.1 N, in the negative y-direction is 

considered. The model generated in ADINA is shown in Fig. 5.5. The maximum deflection of 

the cylinder end, δmax, thus obtained is 6.61×10
-2

 m. Making use of eq. (5.4) and substituting in 

the same parameters, δmax thus obtained is 6.66×10
-2

 m. The discrepancy between theory and 

ADINA is 0.75 %. 
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The good agreement displayed in the above validation tests between ADINA and 

analytical results have built up confidence that the ADINA model can safely be used to develop, 

simulate, and analyze the FSI model of the problem under consideration in this thesis.      

 

5.3. Model Description 

 

The three-dimensional FSI flexible cantilevered cylinder model is generated in ADINA in its two 

modules namely ADINA CFD and ADINA Structures. Dealing first with the fluid part of the 

model in ADINA CFD, a circular channel of diameter, Dch = 0.203 m and length, Lch = 0.77 m is 

generated. Then the outlines of the cylinder and the upstream supports are generated. The 

cylinder outline serves as an FSI boundary across which the information of fluid forces and solid 

motion/deformation is passed and the support outline serves as rigid wall. The fluid domain of 

the FSI model is first descritized. This is done by dividing the surfaces of the fluid domain into 

segments ranging from 10 to 60, resulting in a mesh density of around 5.6×10
6
 elements/m

3
. An 

unstructured mesh is then generated by the option available in the software. This creates the 

meshed fluid domain as shown in Fig. 5.6 (a). For model’s solid part in ADINA Structures, the 

cylinder and the upstream support are generated in such a way that the physical surfaces of these 

structures match the surfaces of the same in the model’s fluid part. In a similar way, the cylinder 

surface is set as the FSI boundary whereas the support as a rigid wall. This matching consistency 

ensures two-way continuity of information flow across the boundaries and helps ADINA to 

develop coupling between the fluid and solid domains. The cylinder material is silicone rubber, 

with modulus of elasticity, E = 2.76×10
6
 Pa, flexural rigidity, EI = 5.6391×10

-2
 N m

2
, density, ρ 

= 1120 kg/m
3
, diameter, D = 0.0254 m, and length, L = 0.52 m. The cylinder is terminated by a 

conical end-piece of length, l = 0.037 m and end-shape factor, f ≈ 0.48; the procedures to 

calculate f is given in Appendix A. The upstream support consists of four perpendicular arms. 

These are designed in such a way as to keep the flow past the support as streamlined as possible. 

The material of the support is taken as steel with E = 2.0×10
11

 Pa. The solid domain of the FSI 

model is then descritized. This is done by dividing the surfaces of the solid domain into the same 

number of segments as the fluid domain surfaces in order to match the nodes on all the common 

surfaces of both the domains. The resulting mesh density of solid domain obtained is around 

7.8×10
7
 elements/m

3
. Similar to fluid domain, an unstructured mesh is generated. The meshed 

solid domain is shown in Fig. 5.6 (b). The values of χ (defined in Chapter 2) and α (defined in 
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Chapter 3) for the present model are equal to 1.03 and 7.99, respectively. As indicated earlier, 

the value of χ arrow 1 (Chapter 2) and α >> 1 (Chapter 3) indicates the case of an unconfined 

flow. Therefore, the present model, as pointed out by the values of χ and α, is essentially the case 

of an unconfined flow.  

ADINA simulations are carried out for two different fluids, namely water and air. 

Different dynamics of the cylinder is obtained for the two fluids. A model without the upstream 

support arms is also generated and simulated for velocities beyond the critical velocity for flutter 

in water flow and for the entire velocity range in air flow as shown in Fig 5.7. The faces of the 

model are divided into segments ranging from 5 to 30 resulting in mesh densities of around 

5.2×10
5
 and 7.2×10

6
 elements/m

3
 in CFD and solid parts, respectively. Such mesh densities also 

produce reasonable results. The results of both simulations are presented and compared 

hereunder.  

 

5.4. CFL Condition 

 

The Courant–Friedrichs–Lewy (CFL) condition is a necessary condition for convergence while 

solving certain partial differential equations numerically.  It arises in the numerical analysis of 

time-marching schemes, when these are used for the numerical solution. The time step must be 

less than a certain time in many time-marching computer simulations; otherwise the simulation 

will produce incorrect results. The CFL condition is commonly prescribed for those terms of 

the finite-difference approximation of general partial differential equations, which model 

the advection phenomenon (Courant et al. 1967). The Courant number, in fact, reflects the 

portion of a cell that a fluid particle will traverse by advection in one time step. For a one-

dimensional case, the CFL has the form 

 

,maxC
x

tU
C ≤

∆

∆
=  (5.5) 

 

where U is the dimensional flow velocity, ∆t is the time step, ∆x is the length interval, and C is 

the Courant number. Cmax is the maximum value of Courant number that helps in determining the 

minimum value of time step. The value of Cmax changes with the method used to solve the 

discretized equation. If a time-marching solver is used, then typically Cmax = 1. ∆t can be 

determined by re-adjusting eq. (5.5) as 
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.
U

xC
t

∆
=∆  (5.6) 

 

Since C = 1, the equation becomes 

 

.
U

x
t

∆
=∆  (5.7) 

 

The simulation has been run for flow velocities up to 6.41 m/s. In order to obtain one 

consistent value of ∆t for the entire simulation, a mean value of flow velocity is considered, i.e., 

U = 3.21 m/s; the corresponding dimensionless velocity is u = 5.0.  With the unstructured mesh 

in both fluid and solid domains, the minimum and maximum length intervals, ∆x, are found to be 

0.0039 m and 0.0425 m, respectively. Substituting U and the terminal values of ∆x in eq. (5.7) 

gives 0.001 ≤ ∆t ≤ 0.01 s. It is good to have a value of ∆t close to the lower limit especially at the 

initial stages of the simulation and cylinder higher frequency modes, because of the conditions 

being unsteady and developing, and changes in the parameters taking place mode rapidly. But 

limitations are imposed on the use of the value of ∆t smaller than a certain limit. The reason 

being that for a three-dimensional model, smaller ∆t increases the simulation time many folds 

and makes the size of the output file beyond the capabilities of many powerful systems with 

large memories. For this reason, ∆t = 0.01 s is selected. 

         

5.5. Model in Water Flow 

 

5.5.1. Adequacy of the Numerical Solution 

 

Adequacy of the numerical solution is established by simulating the numerical model especially 

for this purpose and comparing the critical flow velocity for the onset of first mode divergence, 

ucr,d1, with the experimental one. The results of the numerical model yield ucr,d1 = 1.80. The 

measured critical flow velocity, ucr,d1, in experiments is 1.87 (Chapter 2). The difference is 3.74 

%, which may be considered acceptable.          

 

5.5.2. Numerical Results  

 

First, the flexible cantilevered cylinder model is considered in water flow. The physical 

properties of water at Standard Temperature and Pressure (STP) are input in ADINA. A flow 
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velocity range of 0.064 ≤ U ≤ 8.97 m/s is utilized for the simulation runs. The relation used to 

render the flow velocity dimensionless is  

 

,

21

UL
EI

A
u 








=

ρ
 (5.8) 

 

as given by Paїdoussis (2004). Substituting the input parameters simplifies the relation as u = 

1.56 U, which gives the corresponding dimensionless velocity range as 0.1 ≤ u ≤ 14.0. Utilizing 

the relation for Re gives its range as 1.3×10
4
 ≤ Re ≤ 1.81×10

6
. The k-ω turbulence model is used 

for water flow.  

Figure 5.8 shows the dimensionless mean cylinder tip displacement, η
*
(1) = ȳ(L)/D, as a 

function of u. The figure illustrates the dynamics of the cylinder up to static instability, i.e., 

divergence. It is also clear from the figure that divergence does not develop abruptly. Therefore, 

it becomes rather difficult to locate the critical velocity for divergence, precisely. For this reason, 

a rougher but reliable criterion of η
*
(1) surpassing a threshold is used. This threshold is 

arbitrarily chosen as η
*
(1) = 0.023. Physically, this criterion corresponds to about twice the 

cylinder diameter. At ucr,d1 = 1.80, η
*
(1) surpasses the threshold and thus marks the onset of 

divergence in its first mode as shown in Fig 5.9 (a). At higher flow velocities, the cylinder 

amplitude varies; later, gradually the first mode divergence transforms into second mode at ucr,d2 

≈ 4.30 as shown in Fig. 5.9 (b). The second mode divergence is based on visual inspection. The 

results are shown in Table 5.1. As the flow velocity increases, one expects the cylinder to 

become dynamically unstable with relatively large amplitude oscillations or flutter, which has 

been observed previously by Paїdoussis et al. (2002) and Semler et al. (2002) in their analytical 

and experimental work at 5.16 ≤ u ≤ 5.5. In fact, reaching the same or even higher values of u 

does not produce any flutter in the cylinder in the ADINA simulations, as can be seen in Figs 

5.10 (b) and (c). A possible reason might be due to the inherent numerical damping imposed in 

ADINA on the solid that damps out the higher mode oscillations.      

ADINA employs a conditionally stable algorithm. A conditionally stable algorithm 

necessitates that the size of the time step used be inversely proportional to the highest frequency 

of the system. In fact, this is a strict limitation, as accuracy in the lower modes can be attained 

with time steps which are very large compared with the period of the highest mode. When only 

low mode response is of interest, it is often advantageous for an algorithm to have some form of 
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numerical dissipation or damping, which stabilizes the numerical integration scheme by damping 

out the unwanted high frequency modes (Hilber et al. 1977). As for ADINA, numerical damping 

works well at lower mode static instabilities but introduces a substantial damping effect on the 

higher modes, which is not desirable. This inherent unwanted damping effect makes the cylinder 

remain in the second mode buckled shape at u ≈ 5.10 as shown in Fig. 5.10 (a); it remains there 

for the supposedly post-flutter velocities, u = 5.5 and 5.6 (Figs. 5.10 (b) and (c)). At further 

higher dimensionless flow velocity of 8.0, the cylinder develops third mode shape but the 

dynamic response is still damped as shown in Fig. 5.10 (d) by the same damping present in the 

algorithm. For this velocity and all higher velocities, the upstream support arms are removed in 

order to nullify any of their possible effects on the dynamics of the cylinder. A practical way to 

reduce its contribution in the overall system damping as much as possible at higher frequency 

modes is to decrease the time step. By doing so, the ADINA simulation becomes very expensive 

in terms of simulation execution time (it could reach up to a couple of weeks) and size of the 

output file (it might reach up to 100 Gigabyte). There are no powerful computing systems at 

hand, which can open and post-process the output data of files of such size. For this reason, no 

attempt is made to use very small ∆t in the model to handle the numerical damping and obtain 

second and third cylinder mode flutter.  

     In addition to the inherent numerical damping imposed on the system in the software, 

it is important to also look into physical aspect such as vortex-induced vibration. Blevins (1990) 

explains the underlying physics generating structural vibration subjected to vortex shedding as: 

“As a fluid particle flows toward the leading edge of a cylinder, the pressure in the fluid particle 

rises from the free stream pressure to the stagnation pressure. The high fluid pressure near the 

leading edge impels flow about the cylinder as boundary layers develop about both sides. 

However, the high pressure is not sufficient to force the flow about the back of the cylinder at 

high Reynolds numbers. Near the widest section of the cylinder, the boundary layers separate 

from each side of the cylinder surface and form two shear layers that trail aft in the flow and 

bound the wake. Since the innermost portion of the shear layers, which is in contact with the 

cylinder, moves much more slowly than the outermost portion of the shear layers, which is in 

contact with the free flow, the shear layers roll into the near wake, where they fold on each other 

and coalesce into discrete swirling vortices. A regular pattern of vortices, called a vortex street, 

trails aft in the wake. The vortices interact with the cylinder and they are the source of the effects 
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called vortex-induced vibration”. Therefore, velocity and pressure contours are obtained at the 

cross-sections 0.71 m (7.5 cylinder diameters downstream of cylinder free end) and 0.715 m (7.7 

cylinder diameters downstream of cylinder free end) from the channel inlet at dimensionless 

turbulent flow velocities u = 5.6 and 8.0, respectively. These contours are shown in Figs. 5.11 

and 5.12. Both figures clearly show low velocity and high pressure in the wake region and 

relatively high velocity and low pressure in the swirling flow on either sides of the channel 

centreline. The apparent swirling flow seems to be part of the vortices. These vortices at the 

same cross-sections at both the flow velocities are monitored throughout the simulation but no 

vortex shedding advancing with time in either case is detected. This might also be another reason 

for the system to have no oscillations because of the absence of vortex shedding. From these 

results, a strong need is felt to verify experimentally the presence of vortex shedding in the 

present model and to see whether it contributes to the cylinder dynamics.  

   One of the effective experimental methods to observe the vortex shedding is the particle 

Image Velocimetry (PIV). Through PIV, the velocity field across the channel cross-section at 

different times can be obtained. It measures the velocity field by taking images shortly after each 

other and calculating the distance individual particles travelled within the time intervals. From 

the known time difference and the measured displacements, the velocity of each particle is 

calculated. This experimental method is beyond the scope of the present investigation and can be 

done later as a separate investigation.  

 

5.6. Model in Air Flow 

 

5.6.1. Numerical Results  

 

In addition to the simulations in water flow, the flexible cantilevered cylinder model has also 

been considered in air flow. The slender cylinder subjected to air flow is the limiting case of a 

practical application of a long train with the last carriage having a tapered end inside a tunnel. 

The physical properties of air at Standard Temperature and Pressure (STP) are input in ADINA. 

A velcity range of 5 ≤ U ≤ 65 m/s is utilized for the simulations. Substitution of the input 

parameters in eq. (5.8) yields u = 0.054 U, so that the corresponding dimensionless velocity 

range as 0.27 ≤ u ≤ 3.51. Utilizing the expression for Re gives its range 6.715×10
4
 ≤ Re ≤ 

8.73×10
5
. The k-ω turbulence model is used for air flow. It is noticeable that the dimensional 
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velocity corresponding to a dimensionless value of, say, u = 3.51 for air is far higher than its 

counterpart for water. This is because the relation to render the velocity dimensionless involves 

the density of fluid, and water is about 1000 times denser than air. The multiplying factor of the 

velocity conversion relation in the case of water is 28.9 times larger than of air. As indicated in 

Section 5.3, a cantilevered cylinder model without upstream support arms is used for simulation 

in air flow. The reason for that is to eliminate any slight possibility of flow disturbance from the 

support arms, especially at higher flow velocities at which flutter may possibly occur.  

Figure 5.13 shows the dimensionless mean cylinder tip displacement, η
*
(1), as a function 

of u. The figure illustrates the dynamics of the cylinder up to static instability, i.e., divergence. 

Similar to the model in water flow, the cylinder tip magnitudes are very small and the onset of 

divergence is gradual. Therefore, a threshold is arbitrarily chosen as η
*
(1) = 0.04. Any 

displacement surpassing this value marks the onset of divergence, which is achieved at ucr,d1 = 

1.62. Figure 5.14 (a) shows the orthographic and isometric views of the cylinder first mode. At 

higher flow velocities, the cylinder amplitude varies and later, gradually, the first mode 

divergence evolves into second mode shape at ucr,d2 ≈ 3.02. The diverged second mode of the 

cylinder is shown in Fig. 5.14 (b). The same results are also presented in Table 5.2.  

The onset of flutter is identified by obtaining the r.m.s. amplitude, η(1)r.m.s., of the 

cylinder end-piece tip response and the PSDs of the vibration signal at increasing flow velocities. 

Figure 5.15 shows a typical diagram of η(1)r.m.s. versus u, used to locate flutter. The steep rise of 

η(1)r.m.s. before ucr,fl2 does not correspond to a stable solution; the oscillations seem to be in 

transition phase. Therefore, any of these values cannot be considered for the flutter critical 

velocity. A stable solution for the Hopf bifurcation is obtained at ucr,fl2 = 3.20, which leads to 

flutter in the second mode. The reduction in amplitude, after a high of 0.0362 D is reached, 

reflects gradual changes in modal shape with increasing u. η(1)r.m.s. values are also tabulated in 

Table 5.3. Figure 5.16 shows the PSDs of the vibration signal at u = 1.08, 3.08, and 3.20. Figures 

5.16 (a) and (b) show PSDs before first mode divergence and after second mode divergence, 

respectively, and display no dominant frequency; whereas Fig. 5.16 (c) shows the PSD at the 

onset of second mode flutter and displays a dominant frequency, fcr,fl2 = 3.52 Hz. The 

corresponding dimensionless value (ωcr,fl2 = 18.96) is obtained from the expression given in 

Paїdoussis (2004).     
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5.7. Comparison of the Results 

 

The critical velocities marking the onset of static and dynamic instabilities of the models in water 

and air flow are compared in Table 5.4. Third mode flutter for the model in air flow is not 

obtained due to the system’s limitations. The word ‘static’ in the case of the water flow model is 

included to indicate inability of the software to exhibit oscillations due to the damping effect as 

already explained. The numerical model in air flow shows lower ucr,d1, ucr,d2, and ucr,fl2 than their 

counterparts for the model in water flow. One of the possible reasons for the lower ucr,d1 for the 

numerical model in air flow is the criterion of the threshold value chosen to mark the onset of 

divergence, which can vary based on the judgment. For all the models, the second mode 

divergence is evolved from the first mode before the onset of flutter. Since ucr,fl2 for the 

numerical model in air flow is lower than for the models in water flow, this makes the ucr,d2 for 

the numerical model lower too. The reason for the lower ucr,f2 for the numerical model in air flow 

is due to the inherent lower viscous damping of air, as also indicated in Chapter 3. It is also 

observed in both the numerical models that the cylinder displacement and oscillation magnitudes 

for the entire velocity range are minuscule. It seems that the negative damping of the system 

somehow does not increase considerably in ADINA resulting in small magnitudes of cylinder 

motion. The numerical and analytical model results in terms of the critical flow velocities for the 

onset of instabilities for water and air flows are compared in Chapter 6.  

 

5.8. Summary 

 

In this chapter, after the introduction of the numerical simulation software ADINA, it was 

validated followed by the determination of CFL condition for numerical stability. The 

cantilevered cylinder in axial flow was then modeled in ADINA FSI and simulated to study its 

dynamics in water and air flows. Finally, the two models were compared. 

The chapter started with the general introduction of ADINA and its solution capabilities 

in various multiphysics phenomena. The software was then validated by developing two-

dimensional pipe model, backward facing step model, point load deflection model, and three-

dimensional point load deflection model in ADINA and comparing their results with the 

experimental and theoretical results found in the literature. All showed reasonable agreements. 
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CFL condition was also utilized to determine the time step range necessary for numerical 

stability.  

The problem under consideration, i.e., cantilevered cylinder in axial flow was modeled in 

ADINA with the dimensions and input parameters nearly equal to the experimental values. Two 

such models one with upstream support arms and finer mesh and the other without the support 

arms and coarser mesh were developed with both models having cylinder downstream ends 

terminated by end-pieces. The model was first simulated in water flow and the mean 

displacements of cylinder tip at increasing velocities were recorded. Unfortunately, the 

simulations could show only the static instability, i.e., divergence in first and second modes even 

at velocities beyond ucr,fl2 determined by experiments. Possible explanation is given in Section 

5.5. The model without support arms was them simulated in air flow. Mean values of cylinder 

dimensionless tip displacements and their r.m.s. values plotted against dimensionless flow 

velocities, u, helped determining the critical velocities for divergence, ucr,d1 and ucr,d2 and flutter, 

ucr,fl2, respectively. Finally, the models in water and air flows were compared for critical flow 

velocities and the results revealed that the critical flow velocities for the model in air flow were 

lower than the one in water flow.  
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Table. 5.1. The dimensionless mean displacement of the free-end tip of the cylinder, η
*
(1), as a 

function of increasing dimensionless flow velocity, u, in water flow. 

Dimensionless 

velocity, u 

Dimensional 

velocity, U 

(m/s) 

Reynolds 

number, Re 

Dimensionless mean tip 

displacement, η
*
(1) 

0.1 0.064 1.30×10
4
 2.35×10

-4
 

0.2 0.128 2.59×10
4
 8.35×10

-4
 

0.4 0.256 5.18×10
4
 3.36×10

-3
 

0.6 0.385 7.78×10
4
 7.74×10

-3
 

0.8 0.513 1.04×10
5
 1.00×10

-2
 

1 0.641 1.30×10
5
 1.33×10

-2
 

1.4 0.897 1.81×10
5
 2.12×10

-2
 

1.8 1.154 2.33×10
5
 2.37×10

-2
 

1.9 1.218 2.46×10
5
 2.24×10

-2
 

2.0 1.280 2.59×10
5
 2.26×10

-2
 

2.1 1.350 2.73×10
5
 2.27×10

-2
 

2.2 1.410 2.85×10
5
 2.32×10

-2
 

2.3 1.474 2.98×10
5
 2.16×10

-2
 

2.4 1.540 3.11×10
5
 2.18×10

-2
 

2.5 1.602 3.24×10
5
 2.14×10

-2
 

2.6 1.670 3.38×10
5
 2.09×10

-2
 

2.7 1.730 3.50×10
5
 2.04×10

-2
 

2.8 1.790 3.62×10
5
 1.91×10

-2
 

3.0 1.920 3.88×10
5
 1.87×10

-2
 

3.2 2.050 4.14×10
5
 1.82×10

-2
 

3.3 2.120 4.29×10
5
 1.77×10

-2
 

3.4 2.180 4.41×10
5
 1.72×10

-2
 

3.5 2.240 4.53×10
5
 1.68×10

-2
 

3.6 2.310 4.67×10
5
 1.64×10

-2
 

3.7 2.370 4.79×10
5
 1.57×10

-2
 

3.8 2.440 4.93×10
5
 1.54×10

-2
 

3.9 2.500 5.06×10
5
 1.51×10

-2
 

4.0 2.560 5.18×10
5
 1.46×10

-2
 

4.1 2.630 5.32×10
5
 1.42×10

-2
 

4.2 2.690 5.44×10
5
 1.39×10

-2
 

4.3 2.760 5.58×10
5
 1.37×10

-2
 

4.4 2.820 5.70×10
5
 1.39×10

-2
 

4.5 2.880 5.82×10
5
 1.36×10

-2
 

4.6 2.950 5.96×10
5
 1.37×10

-2
 

4.7 3.010 6.09×10
5
 1.32×10

-2
 

4.8 3.080 6.23×10
5
 1.33×10

-2
 

4.9 3.140 6.35×10
5
 1.33×10

-2
 

5.0 3.210 6.49×10
5
 1.33×10

-2
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Table. 5.2. The dimensionless mean displacement of the free-end tip of the cylinder, η
*
(1), as a 

function of increasing dimensionless flow velocity, u, in air flow.  

 

Dimensionless 

velocity, u 

Dimensional 

velocity, U 

(m/s) 

Reynolds 

number, Re 

Dimensionless mean tip 

displacement, η
*
(1) 

0.270 5.0 6.72×10
4
 3.44×10

-3
 

0.540 10.0 1.34×10
5
 1.21×10

-2
 

1.080 20.0 2.69×10
5
 3.18×10

-2
 

1.620 30.0 4.03×10
5
 4.12×10

-2
 

2.160 40.0 5.37×10
5
 4.00×10

-2
 

2.700 50.0 6.72×10
5
 3.39×10

-2
 

2.970 55.0 7.39×10
5
 3.06×10

-2
 

3.024 56.0 7.52×10
5
 2.98×10

-2
 

3.078 57.0 7.66×10
5
 2.99×10

-2
 

3.132 58.0 7.79×10
5
 2.87×10

-2
 

3.159 58.5 7.86×10
5
 2.76×10

-2
 

3.164 

 
58.6 7.87×10

5
 3.07×10

-2
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Table. 5.3. The r.m.s. amplitude of cylinder end-piece tip vibration, η(1)r.m.s., versus u, in air 

flow. 

 

Dimensionless 

velocity, u 

Dimensional 

velocity, U 

(m/s) 

Reynolds 

number, Re 

r.m.s. amplitude of tip 

vibration, η(1)r.m.s. 

0.270 5.0 6.72×10
4
 2.63×10

-4
 

0.540 10.0 1.34×10
5
 7.41×10

-4
 

1.080 20.0 2.69×10
5
 3.09×10

-3
 

1.620 30.0 4.03×10
5
 5.61×10

-3
 

2.160 40.0 5.37×10
5
 6.94×10

-3
 

2.700 50.0 6.72×10
5
 6.77×10

-3
 

2.970 55.0 7.39×10
5
 6.59×10

-3
 

3.024 56.0 7.52×10
5
 6.33×10

-3
 

3.078 57.0 7.66×10
5
 6.52×10

-3
 

3.132 58.0 7.79×10
5
 6.64×10

-3
 

3.159 58.5 7.86×10
5
 6.54×10

-3
 

3.164 58.6 7.87×10
5
 1.28×10

-2
 

3.170 58.7 7.88×10
5
 1.44×10

-2
 

3.175 58.8 7.90×10
5
 1.68×10

-2
 

3.181 58.9 7.91×10
5
 2.14×10

-2
 

3.186 59.0 7.92×10
5
 2.61×10

-2
 

3.191 59.1 7.94×10
5
 3.46×10

-2
 

3.197 59.2 7.95×10
5
 3.46×10

-2
 

3.202 59.3 7.96×10
5
 3.53×10

-2
 

3.213 59.5 7.99×10
5
 3.58×10

-2
 

3.224 59.7 8.02×10
5
 3.64×10

-2
 

3.229 59.8 8.03×10
5
 3.62×10

-2
 

3.294 61.0 8.19×10
5
 3.62×10

-2
 

3.510 65.0 8.73×10
5
 3.23×10

-2
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Table. 5.4. Comparison of critical flow velocities for instabilities between models in water and 

air flows.  

 

Fluid/instabilities 

First mode 

divergence,  

ucr,d1 

Second mode 

divergence, 

ucr,d2 

Second 

mode 

flutter,  

ucr,fl2 

Third mode 

flutter, 

ucr,fl3 

Water 1.80 ≈ 4.30 
≈ 5.10 

(static) 

≈ 8.0 

(static) 

Air 1.62 ≈ 3.02 3.20 -- 
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Fig. 5.1. Two-dimensional flow model in ADINA showing (a) pressure contours, (b) velocity 

vectors, and (c) velocity contours. 
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Fig. 5.2. (a) Mesh of the backward facing step in rectangular duct model in ADINA; (b) 

development of the flow velocity profile and reattachment in the rectangular duct. 
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Fig. 5.3. Development of the flow velocity profile shown by velocity vectors and velocity 

contours. 
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Fig. 5.4. Two-dimensional point force deflection beam model. 
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Fig. 5.5. Three-dimensional point force deflection cylinder model.  
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Fig. 5.6. (a) Fluid domain in ADINA CFD; (b) solid domain in ADINA Structures.  
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Fig. 5.7. (a) Fluid domain in ADINA CFD; (b) solid domain in ADINA Structures.  
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Fig. 5.8. The dimensionless mean displacement of the free-end tip of the cylinder, η
*
(1), as a 

function of increasing dimensionless flow velocity, u, in water flow showing the 

development of divergence.  
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Fig. 5.9. Cylinder mode shapes at (a) ucr,d1 = 1.8; (b) ucr,d2 = 4.3 in water flow. 
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Fig. 5.10. (a,b,c). Caption on next page. 
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Fig. 5.10. Cylinder mode shapes at (a) u = 5.1; (b) u = 5. 5; (c) u = 5.6; (d) u = 8.0 in water flow. 
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Fig. 5.11. (a)Velocity contours and (b) pressure contours at a distance of 0.71 m from the 

channel entrance at u = 5.6 in water flow. 
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Fig. 5.12. (a)Velocity contours and (b) pressure contours at a distance of 0.715 m from the 

channel entrance at u = 8.0 in water flow. 
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Fig. 5.13. The dimensionless mean displacement of the free-end tip of the cylinder, η
*
(1), as a 

function of increasing dimensionless flow velocity, u, in air flow showing the 

development of divergence.  
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Fig. 5.14. Cylinder mode shapes at (a) ucr,d1 = 1.62; (b) ucr,d2 = 3.02 in air flow. 
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Fig. 5.15. The r.m.s. amplitude of cylinder end-piece tip vibration, η(1)r.m.s., versus u, in air flow 

showing the onset of second mode flutter.  
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Fig. 5.16. PSD of cylinder oscillations at (a) u = 1.08, (b) u = 3.08, and (c) u = 3.20.  
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Chapter 6 

Comparison of the Models 

 

6.1.  Introduction 

 

In this chapter, the results in terms of critical flow velocities for the onset of static and dynamic 

instabilities obtained from linear and nonlinear models, experiments and the numerical model in 

water and air flows using the previously used and presently calculated force coefficients are 

compared with each other. All the models are run for a cantilevered cylinder with an end-piece at 

the downstream end. Experiments were conducted in a vertical test-section water tunnel. The 

comparison gives a good picture of the dynamics of cantilevered cylinders in axial flow 

investigated by different models and helps to understand the phenomena better by reasoning any 

discrepancies present in the results.  

 

6.2.  Comparison of the Linear and the Nonlinear Models in Water and Air Flows with 

Previously Used Force Coefficients 

 

The results of linear and nonlinear models employing the force coefficients previously used by 

Paїdoussis (1973) are compared with each other in this section. The results of the linear and 

nonlinear models employing the previous force coefficients are presented and discussed in 

Chapters 2 and 3, respectively. Table 6.1 shows these results in terms of critical flow velocities 

for the onset of static and dynamic instabilities. Qualitatively, quite similar dynamical behaviors 

of the cylinder are observed in the linear and nonlinear solutions subjected to water flow with the 

exception of the evolution of second mode divergence not observed in the linear model. Third 

mode flutter is not observed in the nonlinear results but one can expect it to occur after the flow 

velocity, i.e., u = 7.70. For the linear model in air flow, third mode flutter is not observed. It may 

be inferred that the energy transfer from air to the cylinder is not sufficient to excite the cylinder 

in third mode.     

Quantitatively, for models in water flow, the linear model exhibits higher critical flow 

velocity for first mode divergence, ucr,d1, i.e., 2.042 as compared to 1.95 for the nonlinear one, 

whereas nonlinear model shows higher ucr,fl2, i.e., 5.18 as compared to 5.173 for the linear one. 

The overall maximum deviation is not more than 4.7 %. Linear model in air flow has the same 
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ucr,d1, whereas lower ucr,fl2 than the one in water flow. These observations are explained in 

Chapter 3. Finally, the results of the model in air flow show the occurrence of second mode 

divergence at ucr,d2 > ucr,fl2. This late occurrence of second mode divergence is explained in 

Chapter 3. The comparison of the model results in water flow is also illustrated in Fig. 6.1.    

 

6.3.  Comparison of the Models in Water and Air Flows with Presently Calculated Force 

Coefficients 

 

The results from linear and nonlinear models, experiments, and numerical models in water flow 

are compared in this section. In addition, numerical model results in air flow are also presented. 

All the results, in this section, are obtained by employing the presently calculated force 

coefficients. The present force coefficients are calculated using a three-dimensional model 

generated in ADINA based on the input parameters matching those of experiments, meaning that 

the coefficients represent closely the experiment conditions. That is why the results of 

experiments and numerical model of ADINA are included in the comparison here in this section. 

Table 6.2 shows these results in terms of critical flow velocities for the onset of static and 

dynamic instabilities. Qualitatively, the linear and nonlinear models show coupled-mode flutter. 

For both models, third mode flutter is not observed. One possible reason is that the linear model 

becomes less accurate in predicting the dynamics well especially at high flow velocities, whereas 

the nonlinear model solution becomes unstable at such high velocities to predict third mode 

flutter. In addition, linear model does not show the transformation of first mode divergence into 

the second mode. Also, second mode flutter is not observed in the numerical model; the reason 

being the inherent numerical damping imposed on the cylinder, damping out the oscillations. For 

the numerical model in air flow, third mode flutter is not observed up to the flow velocity, u = 

3.51. It is expected to observe it as the flow velocity increases further but at flow velocities 

higher than 3.51, the solution becomes more prone to becoming numerically unstable and the 

program crashes. 

Quantitative comparison show that ucr,d1 for models in water flow show good agreement 

with discrepancies up to 3.74 %. The critical flow velocities, ucr,d2, for the models are reasonably 

close with the maximum deviation up to 7.7 %. The critical flow velocities for coupled-mode 

flutter, i.e., ucr, fl1,2, for the linear and nonlinear models are in good agreement with each other. 

However, ucr, fl2 from experiments differs substantially. For experiments and numerical model, 
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ucr,d1 is obtained by arbitrarily choosing a threshold value of η
*
(1). The numerical model in air 

flow shows lower ucr,d1, ucr,d2, and ucr,fl2 than their counterparts for the models in water flow. This 

is explained in Chapter 5. The comparison of the model results in water flow is also illustrated in 

Fig. 6.2.  

It is known that the cantilevered cylinder is a non-conservative system. Such a system is 

an open dissipative system, which means that mechanical energy may enter or leave the system. 

The state of the system depends on how the system is subjected to the forces such as the inviscid 

non-conservative and frictional forces. The frictional forces transform a small part of the 

mechanical energy of the system such as the kinetic energy into heat, which leaves the system 

and is lost. Therefore, the mechanical energy is not conserved when non-conservative forces are 

present. The dynamics of the cantilevered cylinder depends on how these forces are formulated 

and solved. The linear model of such cantilevered system has these forces formulated by 

considering only the linear terms, making it less accurately predictive specifically in the post-

divergence velocity range. In nonlinear cylinder model, these forces are formulated, more 

accurately by considering the nonlinear terms too, making it a better predictive tool for the 

dynamics than the linear model. The numerically simulated model in ADINA is also nonlinear 

with relatively less control on the formulation of the forces and any modification in the model 

equation. Experiments, on the other hand, have no simplifying assumptions. The numerical 

schemes employed to solve the nonlinear and the numerical models also have some inherent 

numerical error, which cannot be totally eliminated. Also, the linear and nonlinear models 

account for the fluid forces in two-dimensions only, whereas the ADINA simulations and the 

experiments consider the fluid forces in all three-dimensions. In addition, for the experiments, 

the onset of divergence is not abrupt and the values chosen for the onset of flutter depend on the 

increments of fluid velocity chosen for data recording. Hence, the above factors can possibly 

explain the small discrepancies present in the model results.   

The linear equation solution does not give the displacement amplitudes directly; rather 

the results are in terms of the complex eigenfrequencies and the instabilities are identified by the 

imaginary part. In the case of the nonlinear model, the results show the state of the system in 

terms of the generalized coordinate, q1. However, in the case of the experiments and the 

numerical model, the displacement is represented by η
*
, the mean dimensionless displacement or 

ηr.m.s., the r.m.s. value of the dimensionless displacement. Experimental results show that ηr.m.s. of 
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second mode flutter either stays relatively constant or decreases with increasing flow velocity by 

up to approximately 13 % at u = 7.4.  Hence, it is observed that numerical model results show far 

smaller values of η
*
(1) than those of experiments. A possible reason as explained earlier in 

Chapter 5 is that the negative damping of the system somehow does not increase considerably in 

ADINA, resulting in small magnitudes of cylinder motion. 

The frequencies of flutter of the models are now compared. The linear model directly 

provides the dimensionless frequency as the real part of the complex eigenfrequency, whereas 

nonlinear and numerical models and experiments first provide the dimensional frequency, which 

is rendered dimensionless by using eq. (3.62). The Experimental results show that dimensionless 

second mode flutter frequency either stays relatively constant or decreases with increasing flow 

velocity by up to approximately 5 % at u = 6.9, whereas the third mode flutter frequency stays 

relatively constant with a minuscule variation of 0.2 %. It is observed that the dimensionless 

frequencies obtained from linear model are far higher than the ones obtained from other models. 

The reason is that the real part of the eigenfrequency is in fact the resonant frequency of the 

system. On the other hand, the frequencies observed by experiments and nonlinear and numerical 

models are the ones at which the system oscillates in that particular mode and flow velocity. 

Lastly, observing the results of the linear and nonlinear models in water flow with 

previous and present force coefficients reveal that for models with the present force coefficients, 

divergence occurs earlier than for the models with the previous coefficients used by Paїdoussis 

(1973). For flutter, the models with the present force coefficients show a coupled-mode flutter 

occurring at higher critical flow velocity than that for the models with the previous coefficients. 

This can be explained with the help of the end shape factor, f, and the base drag represented by 

cb. As mentioned earlier in Chapter 3, a decrease in f and an increase in cb have opposing effects 

on divergence while the same on flutter, i.e., decreasing f stabilizes the system for both 

divergence and flutter, while increasing cb destabilizes and stabilizes for divergence and flutter, 

respectively. Since the model with the present force coefficients has same f (0.8) and higher cb 

(0.2024) than that with the previous force coefficients (cb = 0.0), we can say that the opposing 

effect of increasing cb on divergence and flutter causes the system with the present force 

coefficients to destabilize by divergence at lower ucr,d1 and by flutter at higher ucr,fl2. In addition 

to this, the coalescing of first and second modes in the coupled-mode flutter also contributes in 

the delay.       
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6.4.  Summary 

 

In this chapter, the critical velocities, ucr, obtained from linear and nonlinear models, 

experiments, and numerical model in water and air flows using the previous and present force 

coefficients were compared. Results from the models in water flow with the previous force 

coefficients showed that linear and nonlinear models had the respective critical flow velocities 

quite close to each other except that the nonlinear model could not go beyond u = 7.70 to show 

third mode flutter because of numerical instability issues. The results of the models in water flow 

with the present force coefficients showed reasonable agreement with each other except the 

value of ucr,fl2 for experiments. In each of the linear and nonlinear models with present force 

coefficients, a coupled-mode flutter was observed. In the numerical model and experiments, the 

emergence of first mode divergence was not abrupt and some threshold had to be chosen to help 

obtaining the critical flow velocities. The second mode divergence in nonlinear and numerical 

models in water and air flows, and experiments in water flow was mainly based on visual 

inspection. However, second and third mode flutters in the models could be precisely located 

with the help of r.m.s. values of the dimensionless displacements and the frequencies of 

oscillations. It was also noticed that for the linear models with the previous and the present force 

coefficients, evolution of second mode divergence was not observed at all. 
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Table 6.1. Comparison of critical flow velocities of instability for different models in water and 

air flows using previous force coefficients. 

 

Fluid Models/instabilities 

First mode 

divergence, 

ucr,d1 

Second 

mode 

divergence, 

ucr,d2 

Second 

mode 

flutter, 

ucr,fl2 

Third 

mode 

flutter, 

ucr,fl3 

Water 
Linear 2.042 -- 5.173 8.311 

Nonlinear 2.04 ≈ 4.40 5.18 -- 

Air Linear 2.042 4.965 3.470 -- 
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Table 6.2. Comparison of critical flow velocities of instability for linear and nonlinear models in 

water flow using present force coefficients. 

 

Fluid Models/instabilities 

First mode 

divergence, 

ucr,d1 

Second mode 

divergence, 

ucr,d2 

Second mode 

flutter,  

ucr,fl2 

Third mode 

flutter, 

ucr,fl3 

Water 

Experimental 1.87 ≈ 4.66 5.92 7.70 

Linear [prev.] 

(impr. from prev.) 

1.904 [2.04] 

(80.12 %) 
-- 

5.278 [5.16] 

(coupled-mode) 

(15.51 %) 

-- 

Nonlinear [prev.] 

(impr. from prev.) 

1.89 [2.10] 

(91.30 %) 
≈ 4.40 

5.29 [5.5] 

(coupled-mode) 

(-50 %) 

-- 

Numerical 1.80 ≈ 4.30 -- -- 

Air Numerical 1.62 ≈ 3.02 3.20 -- 
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Fig. 6.1. Critical flow velocities, ucr versus the instabilities for different models in water flow 

using previous force coefficients.     , linear model;    , nonlinear model.  
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Fig. 6.2. Critical flow velocities, ucr versus the instabilities for different models in water flow 

using present force coefficients.     , experiments;     , linear model;     , nonlinear 

 model;     , numerical model.  
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Chapter 7 

Conclusions 

 

7.1.  Overview 

 

In this thesis, the nonlinear dynamics of a slender flexible cantilevered cylinder subjected to 

external axial flow was studied, both theoretically and experimentally. An extensive literature 

review in Chapter 1 revealed that a three-dimensional coupled nonlinear model for the flexible 

cylinder had not been developed. The motivation behind the present research work was to 

account for the three-dimensional nonlinear behaviour, important in the practical applications 

such as nuclear power production, heat exchangers, undersea geological survey, and biomedical 

science. In addition, the fluid force coefficients used previously by Paїdoussis (1973) and Semler 

et al. (2002) were re-evaluated to find out if these coefficients actually were suitable for the 

present model.  

The objectives outlined in Chapter 1 were achieved by solving the linear and nonlinear 

equations, simulating numerical models, and conducting experiments. Also, the force 

coefficients were recalculated based on the present experimental input parameters and then 

implemented in the linear and nonlinear equations. The linear and nonlinear equations, with 

these presently calculated force coefficients incorporated, were then solved. In addition, the 

effect of confinement on the dynamics of linear model was also investigated. To complement the 

linear and nonlinear models, three-dimensional model of flexible cylinder with cantilevered 

boundary conditions was developed in a Finite Element Method (FEM) based multiphysics 

simulation software called ADINA. Finally, experiments were conducted and the results 

obtained from analytical linear, nonlinear, and numerical models, all in water flow, were then 

validated by comparing them with those from the experiments. The results showed reasonable 

agreement. Some special runs of linear and numerical models were also conducted in air flow. 

The model results were also compared with each other.  

 

7.2.  Summary of the Work 

 

In the previous section, steps taken to achieve the objectives were mentioned briefly, while in 

this section, a detailed enumeration is presented. 
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Series of experiments were conducted on the confined cantilevered cylinder in a vertical 

test section of a water tunnel. Water flowed from top to bottom of the test section. The 

downstream free end of the cylinder was fitted with a rigid ogival end-piece. The upstream end 

was clamped to a central rigid cylindrical support with four perpendicular arms extending to the 

wall of the test section. Before the experiments were conducted, the laser sensors, utilized to 

record the displacements of the cylinder in the experiments, were calibrated for known linear 

distances and their calibration curves were obtained. The essential parameters such as flexural 

rigidity, EI, logarithmic decrements, δn, hysteretic damping constant, , and the dimensionless 

viscoelastic damping constant,  of the cylinder were then determined experimentally. The 

flexural rigidity was determined by first exciting the cylinder in its first mode and finding out the 

first mode natural frequency. Using this frequency and the set of expressions and table given by 

Paїdoussis and Des Trois Maisons (1969), EI was calculated. In order to obtain the logarithmic 

decrements, the cylinder was excited in its first, second, and third modes. The first mode 

excitation was done the same way as done for EI. However, the second and third cylinder modes 

were excited mechanically with the help of a crank-slider mechanism and hence the respective 

natural frequencies were determined. The natural logarithm of the displacement data for each 

mode was then plotted versus time and the slope of the decrement was calculated. Later dividing 

the slopes by the respective frequencies led to δ1, δ2, and δ3. and  were then calculated 

using the expressions and the plots given by Paїdoussis and Des Trois Maisons (1969).  

The controller ATR141 for the differential-pressure transducer (Huba-692) connected to 

the Venturi flow meter on the main flow pipe and the centrifugal pump speed in terms of r.p.m. 

were calibrated using a pitot-static tube and a mercury manometer. The pitot-static tube was 

carefully inserted through the lower test section window to align its tip with the centre-line of the 

test section. Its static and stagnation pressure ports were connected to the mercury column 

manometer. In addition to this, readings of the pressure transducers across the Venturi meter, 

fitted in the water tunnel, were also recorded with the help of the controller ATR141. The tunnel 

was then run at given pump r.p.m. A calibration curve, establishing the relationship between the 

ATR141 readings and the flow velocity, was finally obtained. The velocity profile inside the test 

section was also obtained experimentally using Laser Doppler Anemometry (LDA). In order to 

establish the velocity profile in close proximity to the test section wall, law of the wall for 

turbulent flow was utilized. Finally, in order to determine ucr,d1 and ucr,d2, the laser beam was 

*µ

*α

*µ *α
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horizontally pointed on the cylinder near its downstream free end. Mean dimensionless 

displacements were plotted against u and the critical velocities were determined by choosing a 

threshold value. The critical flow velocities ucr,fl2 and ucr,fl3 were determined by placing the leaser 

head horizontally near the cylinder upstream end. The r.m.s. values of the cylinder dimensionless 

displacements led to distinct critical flow velocities for flutter. At the end, the path traced by the 

cylinder was also mapped. 

The calibration curves of the laser sensors were linear. The calibration curve of ATR141 

readings and the flow velocity was of sixth order polynomial. The half-symmetric flow velocity 

profile had some mismatching between the experiment and the theoretical values at y = 0.0029 m 

due to the inherent experimental errors such as difficulty in controlling the uniform density of the 

seeding particles in the flow, laser bean diffraction due to different fluid and solid media. In 

addition to these, rounding off the data of both the experimental and theoretical results to some 

significant figures also made the values differ from each other. The theoretical model did not 

give the exact true values of velocity due to the imprecise usage of the relations in the viscous 

sub-layers, which do not have distinct boundaries. While recording and observing the evolution 

of cylinder displacements at increasing flow velocity, it was obvious that the onset of first and 

second mode divergences were not abrupt. Therefore, a threshold value had to chosen, especially 

for ucr,d1, which ensured significant displacements and hence could confidently be considered as 

the onset of divergence. For flutter, the r.m.s. values of the dimensionless displacements showed 

substantial variation of the values at the onsets of second and third mode flutters. The overall 

response of the cylinder showed the onset of first instability by first mode divergence followed 

by a gradual evolution into second mode divergence. The cylinder then lost stability again by 

second mode flutter and later by third mode flutter. The path traced by the cylinder in both 

second and third mode flutters was observed to be quasi-circular path. In third mode flutter, the 

difference between the major and minor axes of the path was found to be more than in second 

mode flutter, making the quasi-circular path more pronounced in the third mode flutter. 

Linear equation of motion, derived by Paїdoussis (1973), was considered for a slender 

flexible cylinder with cantilevered boundary conditions, having the downstream free end of the 

cylinder terminated by an ogival end-piece. The equation was then simplified to second-order 

Ordinary Differential Equation (ODE) and finally to an eigenvalue problem. In order to 

accommodate the time- and flow velocity-dependent free end boundary condition, a procedure 
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namely the ‘extended Galerkin method’ was adopted. The eigenvalue problem was then coded in 

MATLAB and solved, using six Galerkin modes, for the complex eigenfrequencies comprising 

of the resonant frequency as its real part and the damping as its imaginary part. The force 

coefficients previously used by Paїdoussis (1973) were used. The results in the form of critical 

flow velocities for the onset of instabilities were obtained for water flow. The effect of 

confinement on the cylinder dynamics was also studied. The solution of the equation in air flow 

was also obtained. Furthermore, the fluid forces such as inviscid hydrodynamic forces, frictional 

or viscous forces, and hydrostatic or pressure forces acting on the cantilevered cylinder were 

considered and the associated viscous force coefficients such as longitudinal viscous coefficient, 

cT, normal viscous coefficient, cN, base drag coefficient, cb, and zero-flow normal coefficient, c 

were recalculated. The values of the present force coefficients were found to be within their 

respective suitable ranges suggested by Paїdoussis (2004). These present force coefficients were 

incorporated into the linear equation and obtained the results. The effect of confinement on the 

dynamics of the cylinder with the present force coefficients was also investigated. Finally, the 

present model results with previously available force coefficients were compared with those of 

Paїdoussis (1973) who solved the equation by a different method. A comparison was also done 

between the results obtained with the previous and present force coefficients and then between 

the results with water and air flows. 

The results for an isolated unconfined cantilevered cylinder showed that the free motions 

were damped at small dimensionless flow velocity, u. At sufficiently high u, however, the 

cylinder first loses stability by divergence in its first mode followed by re-stabilization and then 

single second mode flutter. At further higher u, the model lost stability again by third mode 

flutter. The results for the model in air flow showed that at sufficiently high u, it lost stability by 

first mode divergence followed by second mode flutter. At further higher u, third mode flutter 

did not occur rather second mode divergence and third mode divergence occurred. Increasing 

confinement of the model in water flow resulted in a decrease in ucr,d1 as well as ucr,fl2. For the 

model in air flow, increasing confinement resulted in the same trend as in water flow. The results 

of the model with present force coefficients showed that with increasing u, the model first lost 

stability by first mode divergence followed by re-stabilization. Later, it lost stability again by 

coupled-mode flutter. The cylinder did not become unstable in the third mode. As for the effect 

of confinement with present force coefficients, the model exhibited the same trend of ucr,d1 and 
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ucr,fl2 as observed in the model with previous force coefficients. The comparison of the results of 

present model with the ones reported by Paїdoussis (1973), both having the previous force 

coefficients, showed good agreement. Previous and present force coefficient results were also 

compared. The results revealed that the model with the presently calculated force coefficients 

exhibit similar dynamics as observed in the experiments, especially the coalesced first mode 

divergence and second mode flutter as the coupled-mode flutter (combination of the two modes 

leads to an asymmetric response also observed in Figs. 2.32 and 2.33 of Chapter 2). Hence, it can 

be concluded that the linear model with the presently calculated force coefficients predicts the 

dynamics of the system better than the one with the previously used ones. The comparison of 

model in water flow with the one in air flow showed similar values of ucr,d1. However, ucr,fl2 for 

the model in air flow was lower than that in water flow. 

The nonlinear equation of motion, derived by Lopes et al. (2002), was considered for a 

confined slender flexible cylinder with cantilevered boundary conditions, having the downstream 

free end of the cylinder terminated by an ogival end-piece. Hamilton’s principle was utilized for 

the derivation. Due to the time- and flow velocity-dependent free end boundary condition, 

‘extended Galerkin method’ was used to transform the PDE into ODE. The force coefficients 

previously used by Semler et al. (2002) were used. The obtained equation was then solved using 

Houbolt’s Finite Difference Method (FDM) using a FORTRAN code. Six Galerkin modes were 

considered in both the axial and transverse directions in the solution. The presently calculated 

force coefficients were then incorporated into the nonlinear equation and the results sought.  

It was observed in the results with the previous coefficients that with increasing u, the 

cylinder first lost stability by first mode divergence followed by a gradual evolution into second 

mode. The cylinder then re-stabilized for short range of u and again became unstable by second 

mode flutter. Instability in third mode was not observed. The results of the present model were 

compared with those obtained by Semler et al. (2002), both with previous force coefficients, and 

showed good agreement. Finally, the present models with previous and present coefficients were 

compared to understand how the force coefficients affect the critical flow velocities. The results 

of the model with the present force coefficients showed similar sequence of instability 

occurrences as for the model with the previously used force coefficients except that the former 

model had higher critical flow velocities, typically 13.30 % and 4.68 % higher for divergence 

and flutter, respectively, than the latter one.  
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A cantilevered cylinder model, possessing the same input parameters as for the model in 

experiments, was developed in ADINA. The cylinder had its downstream free end terminated by 

an end piece. The upstream support had two configurations one with the support arms and the 

other without. The study started by first validating the software with the help of theoretical and 

experimental results of the benchmark problems reported in the earlier work. The solution time 

step range was them determined using the CFL condition. The simulations of the model were 

first done in water flow followed by the simulations in air flow. The model in water flow had the 

upstream support arms attached to the central rigid cylindrical support, whereas the model in air 

flow was devoid of those. Finally, a comparison was done between both the models. 

The results of all the benchmark problems obtained from ADINA were in good 

agreement with the ones previously reported. The dynamics of the cylinder in water flow showed 

that, with increasing flow velocity, the cylinder first lost stability by divergence in first mode 

followed by the evolution of second mode. Flutter did not occur even at very high flow velocity. 

The model without support arms in water flow was also tested to see if flutter occurs but the 

results were the same. A possible reason might be due to the inherent numerical damping 

imposed in ADINA on the solid that damped out the oscillations. The dynamics of the cylinder 

in air flow was the same except that in this case the second mode flutter was actually observed. 

The value of ucr,fl2 was decided based on the r.m.s. values of the dimensionless amplitudes of the 

cylinder, which was sustained over sufficient period of time. Finally, the models in water and air 

flow were compared. It was observed that all critical velocities in air flow were lower than their 

counterparts in water flow.  

The results in the form of the critical flow velocities of linear and nonlinear models, 

experiments, and numerical model in water and air flows using the previous and present force 

coefficients were compared with each other. It was noticed that for the linear model in water 

flow, evolution of second mode divergence was not observed at all. The results of the models in 

water flow with the present force coefficients showed reasonable agreement with each other 

except the value of ucr,fl2 for experiments. In each of the linear and nonlinear models with present 

force coefficients, a coupled-mode flutter was observed. In the numerical model and 

experiments, the emergence of first mode divergence was not abrupt and some threshold had to 

be chosen to help obtaining the critical flow velocities. The second mode divergence for 

nonlinear and numerical models in water and air flows, and experiments in water flow was 



 

 

206 

 

mainly based on visual inspection. However, second and third mode flutter in the models could 

be precisely located with the help of r.m.s. values of the dimensionless displacements and the 

frequencies of oscillations. The results, overall, showed reasonable agreement. 

 

7.3.  Suggestions for Future Work 

 

The main goal of this thesis was to investigate the dynamics of a cantilevered cylinder in water 

and air flows with the help of analytical and numerical models, supported by experiments. Due 

to the wide scope of the present research work, some suggestions for future research in the same 

area can be given. 

There is little or no work done on the experiments pertaining to investigating the 

dynamics of a slender flexible cylinder in confined axial flow. Confinement can be achieved 

either by considering the cylinder in the presence of adjacent cylinders or in close proximity to 

the flow-containing channel. It is known that with increased confinement, pressure drop is 

clearly not negligible and viscous effects of fluid on the cylinder and on the flow channel 

become more pronounced. In fact, confinement case is often present in many practical 

applications such as nuclear fuel rods bundled together, heat exchanger tubes, and angioplasty. 

Therefore, it is worth investigating this area with different boundary conditions such as 

cantilevered, pinned-pinned, and clamped-clamped. 

Eccentricity is encountered in many applications possessing enclosed slender cylinders. 

In angioplasty, it is almost impossible to keep the slender flexible catheter concentric inside the 

artery. Also, in the drilling operations of oil and gas wells, mud is pumped from a surface mud 

tank via the drill pipe (several kilometers in length), through nozzles in the rotating drill bit, and 

back to the mud tank through the annular space between the well bore wall and the drill pipe. It 

is extremely difficult to keep the drill pipe concentric inside the well bore. Since mud flows 

upward out of the well bore, any eccentricity present in the annulus can induce motion in the drill 

pipe and can seriously affect the drilling operation. Therefore, it is important to investigate, both 

experimentally and theoretically, how the dynamical behavior of the slender flexible cylinder is 

affected by eccentricity. With eccentricity, the eccentric annulus causes the fluid forces acting on 

the cylinder to be non-symmetric and, therefore, an appropriate coordinate system must be 

adopted to resolve these forces. A bipolar coordinate system is the most suitable for this purpose. 
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The other way to account for the eccentricity was adopted by Mateescu et al. (1994), who used a 

coordinate transformation factor to account for the circumferential variation of the annulus. 

It is also worth investigating the combined effects of confinement and eccentricity on the 

response of a slender flexible cylindrical system placed inside a channel subjected to axial flow, 

both experimentally and theoretically. Both cases (confinement and eccentricity), combined, are 

expected to restrict the motion of the cylinder. 

It is also suggested to investigate other boundary conditions for the flexible cylindrical 

structure such as clamped-pinned as limiting case, both experimentally and theoretically.  The 

above mentioned boundary conditions can be swapped or the flow direction reversed to see if 

there is any variation in the response of the cylinder from the first condition.  
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Appendix A 

 

A.1.  Determination of End-Shape Factor, f 

 

In the experiment, the cantilevered cylinder downstream end is fitted with an ogival end-piece. 

Paїdoussis (1966b, 2002) investigated, experimentally and theoretically, the effect of the end-

piece shape on the cylinder instability pattern. He found both experimentally and theoretically 

that transforming the end-piece from a well streamlined shape to a blunt shape stabilizes the 

system for both divergence and flutter. He characterised the perfectly streamlined shape by the 

end-shape factor, f = 1 and the perfectly blunt one by f = 0. Since the shape of the end-pieces 

represented by the end-shape factor, f, it becomes important to find the value of f both for 

theoretical models and experiments. Hannoyer and Paїdoussis (1978) proposed the expression 
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where se is the axial variation in the end-piece cross-sectional area. se is dimensional quantity and 

has the unit of length, i.e., m; Di and Do being the inner and outer diameters of a pipe conveying 

fluid, respectively. In order to render eq. (A.1) dimensionless, the expressions 
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are used (Paїdoussis 2004). Do is the external diameter of a pipe or cylinder. The dimensionless 

form thus obtained is 
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For a cylinder, 0=δ  and ( )2

io DD − in eq. (A.1) is replaced by 2

oD . Hence, the dimensional and 

dimensionless expressions for a cylinder become 
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The end-piece used in the experiments resembles closest to an ellipsoidal shape. Hence, for an 

ellipsoidal end-piece, Paїdoussis (2004) defined se as 

 

.
3

2
lse =  (A.7) 

  

Here, l is the length of the end-piece. Do is the same as D as used in the present case as both 

represent the external diameter of the cylinder. For the present experiments, the parameters 

involved in determining f are L = 0.5265 m, Do = 0.0254 m, and l = 0.03462 m. Substituting the 

values in the above expressions gives f = 0.8. This value of f is also going to be used in the linear 

and nonlinear models.    

 

 

 

 

 

 

 

 

 

 

 




