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Abstract 

We present a class of metrics, defined on the state space of a finite Markov 

decision process (MDP), each of which is sound with respect to stochastic 

bisimulation, a notion of MDP state equivalence derived from the theory of 

concurrent processes. Such metrics are based on similar metrics developed 

in the eontext of labelled Markov processes, and like those, are suit able for 

state spaee aggregation. Furthermore, we restrict our attention to a subset 

of this class that is appropriate for certain reinforcement learning (RL) tasks, 

speeifieally, infinite horizon tasks with an expeeted total diseounted reward 

optimality eriterion. Given sueh an RL metrie, we provide bounds relating 

it to the optimal value function of the original MDP as well as to the value 

function of the aggregate MDP. Finally, we present an algorithm for calculat­

ing such a met rie up to a prescribed degree of aeeuraey and sorne empirieal 

results. 
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Résumé 

Nous présentons une classe de métriques, définies sur l'espace des état d'un 

processus fini de décision de Markov (PFDM), chacune étant compatible 

avec la bisimulation stochastique; une notion d'équivalence d'état de PFDM 

dérivée de la théorie des processus parallèles. Ces métriques sont basées sur 

des métriques similaires développées dans le contexte des processus marqués 

de Markov. Comme ces derniers, les métriques conviennent à l'agrégation 

des états. De plus, nous limitons notre attention à un sous-ensemble de 

cette classe appropriée pour certaines tâches d'apprentissage par renforce­

ment (APR); spécifiquement, les tâches à horizon infini, avec pour critère 

d'optimalité l'espérance de la récompense totale escomptée. Étant donné 

une telle métrique PFDM, nous donnons des bornes la comparant à la valeur 

optimale du PFDM original en plus de la fonction de valeur du PFDM agrégé. 

Finalement, nous présentons un algorithme pour calculer une telle métrique à 

n'importe quel degré de précision désiré ainsi que certains résultats expériment-

aux. 

2 



Acknowledgements 

1 owe an enormous debt of gratitude to each of the following people (and 

probably to many others whose names escape me at the moment) for helping 

me with this seemingly neverending thesis. 

l'd like to thank my supervisor, Prakash Panangaden, for always provid­

ing significant insight into any problem with which 1 confront him, for always 

keeping me on my toes, and for being extremely patient with me. Rock on 

Prakmaster P! 

l'd also like to thank my co-supervisor, Doina Precup, for al ways being 

able to provide a unique perspective to every problem we encounter, enabling 

me to understand concepts in a way 1 just never could on my own, for also 

being very patient with me, and for being probably the nicest person 1 have 

ever met. Thanks! 

Many thanks are also due to the people in the School of Computer Science 

(particularly, the lovely ladies in the CS office) for providing a wonderful 

learning atmosphere and helping me wade through administrative matters. 

1 would like to thank the many friends 1 made here at McGill for helping 

me stay afloat. In particular, 1 would like to thank Marc Berndl, Bogdan 

(Boggy) Nica, Igor Khavkine, and Sébastien Loisel for the many helpful 

discussions. 

A very special shout out goes to Spidey, May, Gobby, HCP, Doctor Zaius, 

Matthias and the Family, Villan os IV and V, Ruggero Deodato, Cthulhu in 

His house at R'lyeh, and Red-Faced Guy. 

Last, but certainly not least, 1 owe many thanks to my family, inc1uding 

my brother Ryan Ferns, my mother Ruth Pinto Ferns, my sister Raquel 

3 



Ferns, Pebbles the bird, and my father Norman Ferns Sr. for, among other 

things, the love, the support, the inspiration, the food, the money, waking 

me up in the morning, the food again (it really is that good Mamma), and 

for not kicking me out of the house. 

This work is dedicated to aIl the oddball-siacker-ioser-weirdos out there. 

4 



Contents 

1 Introduction 7 

1.1 Outline. ............................. 10 

2 Background 

2.1 Markov Decision Pro cesses 

2.2 Reinforcement Learning 

2.2.1 Policies ..... 

2.2.2 Optimality Criteria 

2.2.3 The Value of a Policy . 

2.2.4 Policy Evaluation and Value Iteration. 

2.3 Labeled Markov Pro cesses .. 

2.3.1 Bisimulation for LMPs 

2.4 Metrics............. 

2.4.1 Metrics Applied to Distributions. 

2.5 Metrics for LMPs . . . . . . . . 

2.5.1 Logical Characterization 

2.5.2 Fixed Point Characterization 

5 

Il 

11 

15 

16 

17 

21 

23 

25 

26 

28 

29 

37 

38 

40 



3 A Metric for Finite Markov Decision Processes 42 

3.1 A Metric for Markov Decision Pro cesses 42 

3.1.1 Bisimulation. . . . . . . . . . . 43 

3.1.2 A Class of Bisimulation Metrics 46 

3.1.3 A Class of RL Metrics ..... 51 

3.1.4 An Alternate Characterization of RL Metrics 53 

3.1.5 A Logical Characterization . . . . 54 

3.2 Bounds for the Optimal Value Function . 60 

3.2.1 The Original MD P 61 

3.2.2 The Aggregate MDP 62 

3.2.3 Restricting the Policy Space 66 

3.3 An Algorithm ... ......... 70 

4 Experimental Results 72 

4.1 Random MDPs 72 

4.2 Software .... 73 

4.3 Experiments and Results 73 

5 Conclusion 94 

5.1 Summary 94 

5.2 Related Work 95 

5.3 Future Work . 96 

6 



Chapter 1 

Introduction 

Consider each of the following scenarios: 

• Mobile Robotics[ll} 

An autonomous mobile robotic agent must perform the following task: 

deliver, in a timely manner, a fixed number of packages of varying pri­

orities to different locations on the same floor of a certain building, 

while attempting to respect the relative package priorities. The robot 

has access to a 2D map of the location, which is assumed to be dis­

cretized into a grid. Within each grid cell, the robot may choose to 

move in one of four directions (NORTH, SOUTH, EAST, WEST) with 

the provision that actions leading the robot off the grid leave the robot's 

position unchanged. However, there is a small probability of error, i.e. 

if the robot chooses to move into a certain grid, it may actually move 

into another grid adjacent to its current position or even not move at 

all. 
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• Airline Meal Provisioning[9} 

Airline meal provisioning involves the production of meals on the ground 

prior to flight departure for eventual inflight passenger service. An im­

portant question is to determine the quantity of meals that should be 

prepared beforehand in order to achieve high passenger satisfaction 

while maintaining low costs. More specificaIly, we have the follow­

ing simplified decision-making scenario: long before flight departure 

a fixed number of meals is prepared. At several subsequent decision 

epochs prior to flight departure, the meal quantity may be adjusted, 

i.e. meals may be added or subtracted. However, meals added doser to 

the time of departure are more costly. Here, one aims to find a policy 

of optimal adjustment for each of these decision epochs. 

• Came of Tetris[25} 

In the game of tetris, "bricks" fall one at a time into a rectangular 

grid. The horizontal position and orientation of each piece is chosen 

by the user as it faIls, until it hits the current pile of "bricks" or the 

bottom of the grid. If the resultant configuration fins an entire row of 

the grid, the row of "bricks" in that row is eliminated and the next 

piece fans. The game continues in this manner, unless the pile of pieces 

reaches the top of the grid, in which case the game is over. The goal of 

the game is to continually choose the position and orientation of pieces 

so as to eliminate the most rows (or equivalently, to acquire the most 

game points). 

Underlying each of these situations is the notion of a Markov decision 

pro cess (see [20]). A Markov decision pro cess (MDP) is a model for discrete-
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time sequential decision making under uncertainty used widely throughout 

such fields as operations research, control theory, electrical engineering, and 

computer science. It is characterized by a set of states, a set of actions 

available in each state, (Markovian) state transition probabilities for each 

action, and numerical rewards or costs associated with each state and action. 

For example, one can model a game of tetris by taking as a state a par­

ticular configuration of a pile of "bricks" and a falling piece, as an action 

available in that state an orientation and a horizontal position for the falling 

piece, and as a reward the number of rows eliminated by choosing that action 

in that state. Transition probabilities can be set by determining the impact 

of the falling piece and noting that the next falling piece is generated at 

random. 

Given an MDP, one seeks to solve it by finding a strategy that dictates 

the "best" action to take in each state. Of course, what is meant by "best" 

varies with each problem. In tetris, for example, one seeks a strategy for 

choosing piece positions and orientations in order to eliminate the most rows 

in the long run. In reinforcement learning (RL) one generally seeks a strategy 

that maximizes longterm reward (or minimizes longterm cost). Fortunately, 

there exist many RL algorithms to solve these types of problems in time 

polynomial in the size of the input. Unfortunately, it is often the case that 

these methods become impractical for real-world problems with large state 

space models. It is therefore highly desirable to model problems with MDPs 

of small size. 

In this work we introduce a family of distance measures, or metrics, on 

the states of an MDP with finite state and action spaces with the following 

9 



property: each metric assigns to a pair of states a distance that is inversely 

proportional to how "similar" those states are. Such metrics could potentially 

be used for lossy MDP state compression by clustering states which are within 

a small distance of each other. Of course, aIl of these concepts need to be 

formalized. 

Before proceeding let us note that it is our ultimate goal to extend such 

tools to handle continuous state space MDPs; however, as is usually the case, 

it is worthwhile to begin our investigation in a suitably simplified setting, that 

being the realm of finite state space models. 

1.1 Outline 

The result of this work is outlined as follows: 

• In chapter 2 we formally introduce the basics of finite Markov decision 

pro cesses , reinforcement learning, and metrics, as weIl as recent work 

in metric based compression of certain probabilistic systems. 

• In chapter 3 we derive a family of metrics for finite MDPs and provide 

a polynomial time algorithm to compute a subset of such metrics useful 

for certain rein forcement learning tasks. 

• In chapter 4 we provide experimental results demonstrating the rela­

tionship between the metrics and solutions to various finite MDPs. 

• In chapter 5 we conclude by discussing related and future work. 

10 



Chapter 2 

Background 

In this chapter we will provide background on finite Markov decision pro­

cesses in the context of reinforcement learning, as well as metric-based com­

pression of a related model. The reader is assumed to have a basic knowledge 

of probability and measure theory. 

2.1 Markov Decision Processes 

Consider the sequential decision model represented in figure 2.1 (originaUy 

from section 3 of [1]), depicting the interaction between a decision-maker, or 

agent, and its environment. We assume that time is discrete, not necessarily 

consisting of equal units but rather a sequence of discrete decision epochs. At 

each discrete time step t E {D,l, 2, ... ,T}, the agent perceives the current 

state of the environment St from the set of aU states S. We refer to T 

as the horizon and note that it may be either finite or infinite. On the 

basis of its state observation the agent selects an action at from the set 
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St ------+Il AGENT JI----------.... 
rt 
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Figure 2.1: Agent-Environrnent Interaction. 

ACTION 
at 

of actions allowable in St, ASt. As a consequence, the following occurs 

irnrnediately in the next tirne step: the agent receives a nurnerical signal rHI 

(interpreted as a reward or a co st ) frorn the environrnent and the environrnent 

evolves to a new state according to a probability distribution induced by 

at. The agent then perceives state SHI and the interaction between agent 

and environrnent continues in this rnanner, either indefinitely or until sorne 

specified terrnination point has been reached, in accordance with the length 

of the horizon. 

We further suppose that the following conditions are true of the stochastic 

nature of the environrnent: state transition probabilities obey the Markov 

property: 

and are stationary, i.e. independent of tirne: 
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The state and action spaces together with the transition probabilities and 

numerical rewards specified above comprise a discrete-time Markov decision 

process (MDP). We will restrict our attention to the case where both the 

state space and the action space are finite. While our goal, ultimately, is to 

apply metric-based compression to continuous state space MDPs, the finite 

state space MDP, lacking any measure theoretic hassles, is an appropriately 

simple place to begin our investigation. Moreover, compression of large finite 

state space MDPs is itself of great importance due to the dependence of the 

running times of algorithms used to "solve" MDPs and the sizes of those 

MDPs. 

Formally, we have the following: 

Definition 2.1.1. A finite Markov decision process is a quadruple 

(S, {Asis ES}, {P('ls, a) Is E S, a E As}, {r(s, a) Is E S, a E As}) 

where: 

• S is a finite set of states 

• A = usEsAs is a finite set of actions 

• Vs E S, As is the set of actions allowable in state s 

• Vs E S, Va E As, P('ls, a) : S -+ [0,1] is a stationary Markovian sub­

probability transition function. Vs' E S, P(s'Is, a) is the probability of 

transitioning from state s to state s' under action a and will be denoted 

by psasl ' 

• Vs E S, Va E As, r(s, a) is the immediate reward associated with choos­

ing action a in state s. 
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Allowing P('ls, a) to be a subprobability function, i.e P(Sls, a) rnay have 

total rnass less than 1, rneans that there rnay be a positive probability of not 

transitioning, given of course by 1 - P(Sls, a). We will rnake the cornrnon 

assurnption that this is not the case, i.e. for every s and a, P( 'Is, a) is a full 

probability function. 

A finite MDP (hereafter, MDP) can also be specified via astate-transition 

diagrarn as seen in figure 2.2. 

rg = 0.5 
r3 = 0.5 

{{a, b}, 1.0} 

{a, 1.0} 

{b, 0.8} 

rf = 0.1 
rr = 1.0 

Figure 2.2: A finite state MDP with 2 states labeled 0 and 1, and 2 actions 

labeled a and b. On action astate 0 yields a reward of 0.5, state 1 yields 

a reward of 0.1, and each transitions with probability 1.0 to the other. On 

action b state 0 once more yields a reward of 0.5 and transitions to state 1 

with probability 1.0. However, state 1 yields a reward of 1.0, transitions to 

state 0 with probability 0.8, and rernains in state 1 with probability 0.2. 

A Markov Decision Problem consists of an MDP together with sorne opti­

rnality criterion concerning the strategies that an agent uses to pick actions. 
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The particular Markov decision problem we will be concerned with is known 

as the Reinforcement Learning Problem. 

2.2 Reinforcement Learning 

We will adhere to the somewhat simplified view that artificial intelligence is 

the science of intelligent agents, that is, the entities that perceive and act 

within an environment. The environment, then, is defined to be an that is 

external to the agent. 

Accordingly, we define reinforcement learning, also known as neuro-dynamic 

programming, to be that branch of AI that deals with an agent learning 

through interaction with its environment in order to achieve a goal. This 

interaction is exactly as described in the Markov decision pro cess framework 

above. Here we think of the numerical signal received by the agent as a 

means of providing it with a reward or a punishment as a direct consequence 

of its actions, thereby enabling it to learn which action selection strategies 

are good and which are bad via its own behaviour. The optimality criterion 

of a reinforcement learning problem is aimed roughly towards maximizing 

the cumulative reward achieved throughout the course of interaction, i.e. 

favours strategies that are beneficial in the long run. The intuition behind 

reinforcement learning is that of learning by trial and error. By contrast, 

in supervised learning an external supervisor provides examples of desired 

behaviour from which an agent can learn, much as a student learns from a 

teacher. 

15 



2.2.1 Policies 

An action selection strategy, or policy, is essentially a mapping from states 

to actions, i.e. a policy dictates what action should be chosen for each state. 

More generally, we allow for policies that are stochastic, history-dependent, 

and even non-stationary. These characteristics lead to six classes of policies 

which we will formally introduce shortly. First we introduce sorne notation. 

A trajectory is an alternating sequence of states and actions sOaOsl al .... 

A history is a trajectory oflength n E N denoted hn = SOaOSlal ... Sn-Ian-ISn. 

The space of all histories of length n is Hn = (8 x A)n x 8. 

Definition 2.2.1. A randomized policy is a sequence of mappings {7rn} where 

7rn : Hn x A -+ [0,1] is such that 7rn(hn, a) is the probability of choosing ac­

tion a given history hn, and 7rn(hn, AsJ = l. 

Definition 2.2.2. A policy is said to be: 

(a) randomized Markov if each mapping depends only on the current state, 

in which case 7rn : 8 x A -+ [0,1]. 

(b) randomized stationary if each mapping is time independent, in which 

case it consists of a single mapping 7r : 8 x A -+ [0,1]. 

(c) deterministic if each history completely determines an action, in which 

case 7rn : Hn -+ A and 7rn(hn) E Asn. 

(d) deterministic Markov if it is deterministic and each mapping depends 

only on the current state, in which case 7r n : S -+ A. 

(e) deterministic stationary if it is deterministic and each mapping is time 

independent, in which case it consists of a single mapping 7r : S -+ A. 

16 



We denote the class of aH randomized, randomized Markov, randomized 

stationary, deterministic, deterministic Markov, and deterministic stationary 

policies by rrR, rrRM , rrRS, rr, rrM , and rrs respectively. Clearly we have 

rrRS ç rr RM ç rrR 

We will also denote an arbitrary policy by 7r; its explicit form (as a sequence 

of mappings or as a single mapping) will be clear from the context. 

Suppose we are given an initial distribution on states Po (for example, 

one might take Po to be the Dirac measure at sorne initial state s, i.e Os 

where os(A) is 1 if A contains sand 0 otherwise). Then any policy 7r induces 

a distribution on the space of histories via 

n-l 

P7r(hn ) = Po(so) II 7rk(hk, ak)PSakkSk+l 
k=O 

(which may be simplified in case 7r is Markov, stationary, or deterministic). 

These probabilities may be extended to conditional probabilities (indepen­

dent of Po) in the usual way (for a formaI development the reader is directed 

to section 2.1.6 of [20]) and so it makes sense to speak of the condition al 

expectation given 7r. We will use this to formalize the optimality criteria for 

RL tasks. 

2.2.2 Optirnality Criteria 

We have previously stated that the optimality criterion of the RL problem 

is concerned with maximizing the sum of the sequence of numerical rewards 
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obtained via the agent's interaction with the environrnent. More specifically, 

a RL task involves finding a policy 1f that rnaxirnizes for every state sES: 

1. finite horizon (episodic task) 

T-(t+1) 

where the return Rt = L rt+k+l 
k=O 

2. infinite horizon (continual task) 

(a) total reward 

(b) average reward 

( c) total discounted reward 

T-(t+1) 

where Rt = L /,krt+k+l for sorne /' E [0,1). 
k=O 

whenever each exists and is finite. In these cases such a rnaxirnizing policy is 

said to be optimal and in the infinite horizon case total reward optimal, aver­

age reward or gain optimal, or discount optimal, depending on the particular 

criterion used. 

For the most part, we will foeus on infinite horizon tasks, as is the case 

in rnuch of the research in the RL cornrnunity. Our reasons for doing so 

are rnany. For exarnple, if the horizon, T, is not too big then there exists 
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an efficient solution to the problem of determining an optimal policy (as 

discussed in section 2.2.4). More troublesome is the fact that optimal policies 

for an episodic task are generally nonstationary (see [20]), which is somewhat 

impractical in real world planning or control operations, where an easy-to­

implement policy is of great importance. 

As far as infinite horizon problems are concerned, the total reward crite­

rion, while formalizing exactly what we desire, is problematic since there is 

no guarantee that the limit exits. For example, even in a finite MDP, where 

rewards are necessarily bounded, it is possible for the return we are attempt­

ing to maximize to be infinite. To get around this problem, researchers have 

turned to the average and discounted reward models. 

With an average reward criterion one seeks to maximize the long term 

average cumulative reward. This criterion is unattractive for many reasons. 

The limit may fail to exist even in the case of a finite MDP (see section 

8.1.1 of [20]). When limits do exist, average reward optimality may still 

fail to distinguish between gain optimal policies that are behaviourally quite 

different. As a result a more advanced analysis is required (one looks for 

biased-gain optimal policies), which (while not technically difficult) is quite 

laborious. Moreover, the average reward model can be expressed as the limit 

of the expected total discounted reward model as the discount factor 1 tends 

to 1. The latter model is technically pleasing and quite easy to handle; so, 

while there exist situations in which an average reward criterion is the model 

of choice, for the most part one works with the discounted model. 

The total discounted reward criterion involves geometrically discounting 

the sequence of rewards obtained. The reasoning behind discounting is that 
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rewards obtained in the future are less valuable than rewards received imme­

diately, an idea prevalent in economic theory. Alternatively, we may view it 

sim ply as a mathematical tool to ensure convergence. In any case, the dis­

counted reward model possesses many nice properties, such as mathematical 

tractability and existence of stationary optimal policies (see [20]), resulting 

in its being the dominant model used for RL tasks. For these reasons, we 

will mainly concentrate on the discounted model in the rest of this work. 

We conclude with a simple example (from [12]) demonstrating the differ­

enCeS between the optimality criteriajust discussed. Consider the finite MDP 

in figure 2.2.2 with 14 states and 3 actions. AlI transitions have probability 

1 for the specified actions and the unlabeled actions are assumed to be a. 1 

AlI rewards are assumed to be zero, except as indicated in the diagram. It is 

evident that the only real choice occurs in state s, where actions a, b, and c 

each restrict the agent to one of the three chains. Consider a finite-horizon 

model in which decisions are made for the first H steps only. With H = 5 

the three actions a, b, and c yield returns of 6, 0, and 0 respectively, so that 

action a is optimal. Under a discounted criterion with 'Y = 0.2 the same 

three actions yield returns of 0.1, 0.004, and 0.00088, so that action a is still 

optimal. However, if we choose H = 15 in the finite-horizon model then 

the three returns are 26, 100, and 99, making action b optimal. If we take 

'Y = 0.9 in the discounted model then the three returns are 16.2, 59.049, and 

58.45851, again making action b optimal. On the other hand, if we use an 

ITo ensure that aIl induced distributions have total mass 1 we may add an absorbing 

state which transitions to itself on aIl actions and receives a reward of zero, and then add 

transitions to this state as needed. Clearly, this do es not affect the optimal actions for s 

under the different criteria. 
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average reward criterion the expected average returns are 2, 10, and 11, so 

that action c is optimal. 

r = 11 

Figure 2.3: An MDP with different optimality criteria. In state s, action a 

is optimal if H = 5 but action b is optimal if H = 15 in the finite horizon 

model. In the discounted reward model, action b is optimal if"f = 0.9 but 

action a is optimal if "f = 0.2. In the average reward model, action c is 

optimal. 

2.2.3 The Value of a Policy 

The expression we seek to maximize in the infinite horizon discounted model, 

limT-too E7r[Rt lst = s], is known as the value of astate s under a policy 

7r, and is denoted V 7r (s). For finite MDPs the limit al ways exists (as re­

wards are necessarily uniformly bounded) so that we may rewrite V7r(s) as 

E7r[L~=o "fkrt+k+l]' The induced map on states, V7r, is called the state-value 

function (or simply value function) for 7r. Much of RL is concerned with 
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estimating these value functions, as they yield mu ch information pertaining 

to policies. 

In terms of value functions, a policy 7f* is optimal iff V1l"* (s) ~ V1l" (s) 

for every sES and 7f E rr R. As we have mentioned above, a valuable fact 

about infinite horizon discounted models is that an optimal policy always 

exists. Moreover, a stationary optimal policy always exists. Thus, we need 

only examine the space of stationary policies in our search for an optimal 

policy. Actually, we will restrict our attention to the space of randomized 

stationary policies, rrRS . 

Given 7f E rrRS, we can use the Markov property to derive for any sES: 

V1l"(s) 
00 

E[L '/rt+k+1l st = s] 
k=O 

00 

aEAs k=O 
00 

L 7f(s, a)(r~ + ')'E[L ')'krt+k+2I st = s, at = a]) 
aEAs k=O 

00 

L 7f(s, a)(r~ + ')' L psas,E[L ')'krt+k+2Ist = s, at = a, SHI = S']) 

aEAs ~ES k=O 

L 7f(s, a)(r~ + ')' L P~,E[Rt+1lst+1 = s']) 
aEA. s'ES 

aEAs s'ES 

The fixed point equations 

aEAs s'ES 
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are known as the Bellman equations for policy 7f, and it is a theorem that 

V71" is their unique solution. Note that while the value function for a given 

policy is unique, there may be many policies corresponding to the same value 

function. 

The optimal value function V*, corresponding to an optimal policy 7f*, 

satisfies a more specialized family of fixed point equations, 

(2.2) 

of which it is also the unique solution (see sections 6.1 and 6.2 of [20]). These 

are known as the Bellman optimality equations. 

2.2.4 Policy Evaluation and Value Iteration 

The Bellman equations are an important tool for reasoning about value func­

tions and policies. They allow us to represent a value function as a limit of 

a sequence of iterates, which in turn can be be used as a backup rule for 

value function computation. This is a essentially a consequence of the Ba­

nach fixed point theorem, and is known respectively as policy evaluation and 

value iteration: 

Theorem 2.2.3. Let 7f E rrRS . Define 

• V;(s) = 0 Vs E Sand 

Then {Vi71"hEN converges to V71" uniformly. 

Theorem 2.2.4. Define 
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• Vo(s) = 0 Vs E Sand 

Then {VihEN converges to V* uniformly. 

These results can be realized via a dynamic programming (DP) algorithm 

that computes value functions up to a prescribed degree of accuracy. For 

example, if one is given a positive error t then iterating until the maximum 

difference between consecutive iterates is ~(~~À) guarantees that the current 

iterate differs from the true value function by at most t (for details see section 

6.3.2 of [20]). 

The DP algorithm for value iteration is a standard RL solution method; 

many alternative solution methods are based on it while aiming to improve 

computational efficiency. The problem with the DP algorithm is that, while it 

is polynomial in ISI and lAI, it is also subject to the curse of dimensionality: 

roughly, if we think of the state space as being generated by state variables 

then the computational costs involved increase exponentially with an increase 

in state variables. In general, we should still expect such methods to be 

impractical when dealing with fairly large state spaces, as the entire state 

space must be examined. 

It would, therefore, be of great importance to be able to express a par­

ticular model via a behaviourally equivalent model of significantly reduced 

size, so that one could obtain information about the original model by solv­

ing the reduced model. Various methods have been proposed as to how this 

should best be done; in the next few sections we will see how distances can 

be assigned to states of a particular finite state system, allowing for the use 
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of distance-based compression. 

2.3 Labeled Markov Pro cesses 

As previously stated, our goal is to efficiently and accurately compress the 

state space of an MDP. Then an RL problem can be solved using the com­

pressed MDP. We will utilize a method of state space reduction first employed 

in the context of labeled Markov pro cesses (LMPs) [2]. 

Definition 2.3.1. A labeled Markov process is a quadruple 

(S,~,A,{Tala E A}) 

where: 

• S is an analytic 2 set of states 

• ~ is the Borel (J - field on S 

• A is a finite set of actions 

• Va E A, Ta : S X ~ -+ [0,1] is a stationary subprobability transition ker­

nel, i.e. VX E ~,Ta(', X) is a measurable function and Vs E S, Ta(S,·) 

is a subprobability measure 

LMPs are roughly (continuous state space) MDPs without rewards (note 

that an MDP can equivalently be formulated simply by specifying the entire 

action space A, rather than the action set As for each state sES). 

2 An analytic set is the continuous image of a Polish space under a map between Polish 

spaces. A Polish space is a topological space homeomorphic to a complete separable metric 

space. For more information see section 13.2 of [6]. 
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2.3.1 Bisimulation for LMPs 

The notion of LMP state equivalence used in [4] originates from the theory 

of concurrent processes, and is known as bisimulation [18]. Milner utilized a 

strong bisimulation in [16] as a notion of process equivalence for his Ca1culus 

of Communicating Systems (CCS), a language used to reason about parallel 

processes. Bisimulation in this context can informally be seen as the largest 

type of matching relation, i.e. pro cesses p and q are related iff for every 

a-labeled transition that pro cess pean make to pro cess p', pro cess q can 

make an a-labeled transition to sorne process q' related to p', and vice versa. 

Alternatively, bisimulation equivalence on pro cesses can be characterized by a 

modallogic known as Hennessy-Milner logie [10]; two pro cesses are bisimilar 

iff they satisfy precisely the same formulas. 

In [15], Larsen and Skou extended this notion to a probabilistic frame­

work. Their probabilistie bisimulation was developed as an equivalence no­

tion for labeled Markov chains (LMCs), the discrete version of LMPs. They 

provide characterizations of probabilistic bisimulation both in terms of a 

maximal matching relation and a probabilistic modallogic. 

For LMPs we consider strong probabilistic bisimulation. Given a relation 

R on S, a subset X of Sis said to be R-closed iff {s' E SI:3s E X. sRs'} ç X. 

Definition 2.3.2. A (strong probabilistie) bisimulation relation is an equiv­

alence relation on S that satisfies the following property: 

sRs' {:::} Va E A, VR-closed X E 2;, Ta(S, X) = Ta(S', X) 

We say states two states are (strongly probabilistie) bisimilar iff they are 

related by sorne bisimulation relation. 
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Bisimulation is essentially the largest of the bisimulation relations, where 

each such relation relates those states that can be "behaviourally lumped" 

together. In other words, an outside observer witnessing the behaviours of 

an LMP and the reduced state space LMP in which an bisimilar states have 

been combined, could not distinguish between the two systems. 

Unfortunately, bisimulation is too restrictive. Consider as an example 

the LMC in figure 2.4 taken from [24]. The states ° and 1 are bisimilar 

{a,0.5} 

cD 

Figure 2.4: States ° and 1 are bisimilar iff E = 0, where E E [-0.5,0.5]. 

iff E = 0, since each must have the same probability of transitioning to the 

class containing state 4. However, if E is very close to ° then we should 

expect the systems to be almost bisimilar, i.e. they should mostly behave 

the same way. This is particularly striking when one considers that in most 

systems one works with approximations of the system parameters rather than 

with the exact values of the parameters themselves. A quantitative notion 

of bisimulation is needed. The appropriate notion is found in the realm of 
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metrics. 

2.4 Metrics 

A metric is essentially a function that assigns distances between points in a 

space. 

Definition 2.4.1. A pseudometric on a set 5 is a map d : 5 x 5 -+ [0, (0) 

such that for all s, s', s": 

1. s = s' ::::} d(s, s') = 0 

2. d(s, s') = d(s', s) 

3. d(s, s") :::; d(s, s') + d(s', s") 

If the converse of the first axiom holds as well, we say d is a metric. 

Note that every pseudometric d induces an equivalence relation on the set 

5, obtained by equating points assigned distance zero by d. Applying d in 

the obvious way to the quotient space under this relation yields a full-fiedged 

metric. 

For convenience in the rest of this work we will use the words "metric" 

and "pseudometric" interchangeably; however, should the need arise to use 

"metric" in its proper sense as defined ab ove , we will point this out. 

Definition 2.4.2. Let M be the c1ass of I-bounded pseudometrics on S. 

We define a partial ordering on M as follows: 
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Lemma 2.4.3. (M, j) is a complete lattice. 

Pro of. The least element, ~, is given by 

{
o if s = s' 

~(s, s') = 

1 otherwise 

and the greatest, T, by Vs, s', T(s, s') = O. Greatest lower bounds are given 

by (n{ mi} )(s, s') = sup{ mi(s, s')}. D 

An important part of calculating distances between states for the models 

in consideration involves ealculating the distances between the induced state 

distributions. In order to do so, we need sorne meehanism for moving met ries 

on astate spaee to metries on the set of distributions on the state spaee. 

2.4.1 Metrics Applied to Distributions 

There are many ways to extend metrics on a space S to met ries on the 

space of probability measures on S (see, for example, [7]). The partieular 

metric we will use is known variously as the Monge-Kantorovieh distance, the 

Kantorovieh-Rubinstein distance, the Hutehinson distance, and the bounded 

Wasserstein distance. We will refer to it sim ply as the K antorovich metric. 

The Kantorovich metric arose in the study of the M onge-K antorovich 

optimal mass transportation problem(see [26]): Assume we are given a pile 

of sand and a hole, oecupying measurable spaces (X, ~x) and (Y, ~y) (see 

figure 2.5). The pile of sand and the hole are assumed to have the same 

volume, and the mass of the pile is assumed to be normalized to 1. Let /1 

and 1/ be measures on X and Y respectively, such that whenever A E ~x 

29 



Figure 2.5: Kantorovich Optimal Mass Transportation Problem. 

and B E ~y, J.l[A] measures how much sand occupies A and lI[B] measures 

how much sand can be piled into B. Suppose further that we have sorne 

measurable cost function e : X x Y --7 lR, where e(x, y) tells us how mu ch 

it costs to transfer one unit of mass from a point x E X to a point y E Y. 

The goal is to determine a plan for transferring all the mass from X to Y 

while keeping the cost at a minimum. Such a transfer plan is modelled by a 

probability measure 7r on (X X Y, ~x ® ~y), where d7r(x, y) measures how 

much mass is transferred from location x to y. Of course, for the plan to be 

valid we require that 7r[A x Y] = J.l[A] and 7r[X x B] = lI[B] for an measurable 

A and B. A plan satisfying this condition is said to have marginaIs J.l and 

li, and we denote the collection of all such plans by Il(J.l, li). We can now 

restate the goal formally as: 

minimize r ed7r over 7r E Il (J.l, li) 
JXXY 

This is actually an instance of an infinite linear program. Fortunately, under 
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very general circumstances, it has a solution and admits a dual formulation. 

This is true, for example, whenever at least one of f.L and v is perfect3 and c 

is a bounded measurable cost function (see [22]). The general form of duality 

from [22] states that for any bounded measurable cost function c, 

inf r cd7r = sup r cjJdf.L + r 'ljJdv 
7rEII(j.L,v) } XxY (<f>,,p)EL'(C)} X }Y 

where L' (c) consists of aIl pairs of measurable functions (cjJ, 'IjJ), integrable with 

respect to f.L and v respectively, such that for every (x, y) E X x Y, cjJ(x) + 
'IjJ(y) ::; c(x, y). If 8 and c satisfy certain regularity conditions, and c is 

additionallya metric, then even more can be said. Assume, for example, that 

X = Y = 8 is an analytic space equipped with its Borel a-field~. Then every 

probability measure on (8,~) is perfect.4 Let c be a bounded measurable 

pseudometric on 8 and let Lip( c) be the set of measurable Lipschitz functions 

mapping 8 to the unit interval, i.e. f : 8 -+ [0, 1] with f (s) - f (s') ::; c( s, s') 

for every s, s' E 8. Then from [22] and chapter 4 of [21] we have 

inf r cd7r = sup r fd(f.L - v) 
7rEII(j.L,v) } SxS fELip(c) } S 

and both extrema are attained. This motivates the following definition. 

Definition 2.4.4. Given measurable m E M, the Kantorovich metric ap-

3 A probability measure P on (S,~) is perfect iff for every real valued ~-measurable 

function 1 there exists a Borel set Bf of ~ such that Bf ç I(S) and P(f-l(Bf)) = 1. 

For more information see chapter II, section 4 of [19]. 

4Every probability measure on a Polish space is tight and therefore perfecto Moreover, 

every measure on an analytic space can be lifted to (i.e., is the the image measure of) a 

me as ure on a Polish space. It follows that every probability measure on an analytic space 

is perfecto For more information see theorem 4.1 of [19]. 
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plied to p, and v is defined as: 

sup (r fdp, - r fdv) 
fELip(m) J s J s 

and is denoted by m(p" v). 

The fact that this defines a I-bounded pseudometric on the space of 

probability measures on (S,~) is easy to see; for symmetry simply note that 

f is non-expansive iff 1 - f is non-expansive. In addition, this definition may 

be extended to subprobability distributions by adding the requirement that 

p,(S) 2 v(S); however, duality in this case does not necessarily take the form 

described above. 

What happens when we try to compute the Kantorovich metric using an 

affine transformation of a metric m, i.e. with a cost clm(x, y) + C2 for sorne 

constants Cl, C2, with Cl nonnegative? In this case the general form of duality 

yields: 

Lemma 2.4.5. 

Pro of. Here we use the general form of duality and simply note that clm(x, y)+ 

C2 is a bounded measurable co st function and for every f E Lip(clm + C2), 

(I, - 1) E L'(clm + C2). Finally, 
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sup r f d(fl - v) ::; sup r cpdfl + r 'ljJdv 
fELip(Clm+c2) } S (1/>,7jI)EL'(Clm+C2) } S } S 

= inf r (Clm + c2)dn 
1rEII(J.L,v) } SxS 

= Cl inf r mdn + C2 
1rEII(J.L,v) } Sx S 

= Cl SUp r fd(fl- V) + C2 
fELip(m) } S 

o 

We now note that in the case of a finite state space, measurability condi­

tions are no longer required. Here, noting that integration reduces to sum­

mation, we see that the Kantorovich metric applied to state distributions P 

and Q is given by the following linear program: 

ISI 
~ax L (P(Si) - Q(Si))Ui 

, i=l 
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Its dual is given by 

subject to: Vk, L lkj = P(Sk) 
j 

Vj, L lkj = Q(Sj) 
k 

Vk,j,lkj 2:: 0 

The discrete minimization program has an interpretation as a Hitchcock 

transportation problem. This is a specialized minimum cost network flow 

problem as depicted in figure 2.6. 

• • • 

m(N,N) 

• • • 

Figure 2.6: Hitchcock Network Transportation Problem (N = ISI). 

Here we have ISI source nodes and ISI sink nodes. For each SES, there 

exists a source node labeled with a supply of P( s) units and a sink node 
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labeled with a demand (or negative supply) of Q(s) units. Between each 

source no de and each sink node, say labelled P(8) and Q(s') for sorne s, 

s' E S, respectively, there is a transportation arc labelled with the cost of 

transporting one unit from the source to sink, given here by m(s, s'). A fiow 

is an assignment of the number (nonnegative) of units to be shipped along 

aIl arcs. We require that the total fiow exiting a source node is equal to the 

supply of that node, and the total flow entering a sink no de is equal to the 

demand at that node. We also require that the total supply equals the total 

demand, which in this case is 1. The cost of a fiow along an arc is sim ply 

the cost along that arc multiplied by the fiow along that arc. The co st of the 

flow for the entire network is take to be the sum of the fiows along aIl arcs. 

The goal then is to find a fiow of minimum cost. 

An immediate consequence of this interpretation is that the Kantorovich 

metric in the discrete case is comput able (assuming m is comput able ), as 

linear programming techniques such as the network simplex method may be 

used to compute it. In fact, there exist strongly polynomial algorithms to 

solve it. For an up to date account of minimum cost flow algorithms we refer 

the reader to [27]. The fastest strongly polynomial algorithm is originally due 

to Orlin (see [17]) and has worst case running time O(mlogm(m + nlogn)) 

where n is the number of nodes and m is the number of arcs. Here, n = 2181 
and m = n2

, so that the Kantorovich distance can be computed in time 

O(IS1 2 10g ISI)· 
Thus, we can move metrics on the state space to metrics on distributions. 

Moreover, the ordering on metrics is preserved while doing so, as is easily 

seen from the dual program. 
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Lemma 2.4.6. Suppose ml, m2 E M with ml ~ m2. Then for aU distribu­

tions P and Q, ml(P, Q) ~ m2(P, Q). 

The result above tells us that given a collection of I-bounded metrics {mi} 

on S, we can move these to the complete lattice of I-bounded metrics on the 

space of distributions on S, P(S). Here, as before, the greatest lower bound is 

given by (np(S){mi})(P,Q) = sup{mi(P,Q)}. Naturally, the question arises 

as to whether this metric is induced by the corresponding metric in M. In 

other words, is it true that np(S) {mi} is the Kantorovich metric of nM {mi} ? 

Under certain conditions, we show that this is so. 

Lemma 2.4.7. Let {md ç M be a monotone decreasing sequence. Then 

for any distributions P and Q, (n{mi} )(P, Q) = Umi(P, Q). 

Proof. It is obvious that Umi(P,Q) :::; (n{mi})(P,Q), since a feasible solu­

tion for the primaI LP for mi(P, Q) is a feasible solution for the primaI LP 

for (n{mi})(P,Q) for every i. 

For the other inequality we use the dual LP. For every i let li; be a 

feasible solution yielding the minimum for mi(P, Q). Note that for every i 

each constitutes a feasible solution for the dual LP for (n{mi} )(P, Q). Define 

E~; = (n{mi})(sk,Sj) - mi(sk,Sj) and 6kj = min(P(sk),Q(Sj)). Then for 

every k, j, and i: 

(i) 0 d l' (i) 0 
• E kj ~ an Imi-+= E kj = 
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Thus, 

k,j 

k,j 

By taking i -+ 00 on both si des of the inequality above we obtain 

as required. D 

We are now ready to examine the role of metrics in the compression of 

LMPs. 

2.5 Metrics for LMPs 

In [4] the authors devised a collection of bisimulation metrics, metrics as­

signing distance zero to states iff they are bisimilar, on the state space of an 

LMP. They did so via a real valued modal logie characterizing bisimulation. 

On the other hand, in [23] the authors used methods from category theory 

to develop a fixed point eharaeterization of these bisimulation met ries (in 

addition to others). We will present both characterizations in the context of 

LMCs; however, our presentation of the fixed point formulation will follow 

that given in [5], utilizing domain theoretical results in favour of categorical 

ones. In that work the system of interest is the labeled concurrent Markov 
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chain (LCMC), roughly an LMC in which sorne states are allowed to make 

nondeterministic transitions. 

For our presentation we fix an LMC (S, A, {Ps~, la E A, S, s' E S}). 

Note that in the discrete case there is no need to specify a a-field, and 

(sub )probabilities can be specified pointwise. 

2.5.1 Logical Characterization 

The logical characterization of bisimulation metrics derives from the logical 

characterizations of bisimulation. We already know that, for the systems 

in consideration, two states are bisimilar iff they satisfy exactly the same 

formulas in sorne fixed logic (see [4], [5]). The intuition in moving to met ries 

is that the bisimilarity of two states is directly related to the complexity of 

the simplest formula that can distinguish them; the "more bisimilar" two 

states are, the harder it should be to find a distinguishing formula, so that 

such a formula is necessarily "big". Of course, to formalize this one needs 

to find sorne quantitative analogue of logical formulas and satisfaction. One 

idea of how to do this in the context of a probabilistic framework cornes 

from [14]: 

Classical Logic Generalization 

Truth values 0,1 Interval [0,1] 

Propositional function Measurable function 

State Measure 

The satisfaction relation F Integration f 
The idea is that just as the satisfaction relation maps states and proposi­

tional formulas to truth values, integration maps measures and measurable 
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functions to extended truth values (values in the closed unit interval [0,1]). 

On the basis of these ideas, Desharnais et al. in [4] developed a class of 

functional expressions, or formulas, that can be evaluated on the state space 

to yield values in [0, 1]. The result of formula evaluation gives a quantitative 

measure of the extent to whieh states satisfy a partieular formula. By cal­

eulating the difference of these quantities for a fixed pair of states aeross aIl 

formulas, a family of bisimulation met ries is eonstrueted. Formally, we have 

the following: 

Fix c E (0,1] and let :Fc be a family of functional expressions whose 

syntax is given by the following grammar: 

f := 11 max(f, f)l(a)fI1 - flf e q 

where a and q range over A and [0, 1] respeetively. These funetional expres­

sions are evaluated on S as follows: 

l(s) 

max(fI, f2)(S) 

((a)f)(s) 

(1 - f)(s) 

(feq)(s) 

1 

max (JI (s), fz(s)) 

cE Pff [I] = c L psas' f (s') 
s'ES 

1 - f(8) 

max(f(s) - q, 0) 

Define dC : S x S -+ [0,1] by dC(s, s') = SUPfE:FC If(s) - f(s') 1. We have 

the following result from [4]: 

Theorem 2.5.1. For every c in (0, 1], dC is a l-bounded bisimulation metric. 
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Unfortunately, while this does establish the existence ofmetrics possessing 

the desired bisimulation properties, it do es not provide us with a means of 

computing such metrics. It is not even clear that they are computable. In 

fact, they are (for c < 1). This can be shown through the use of domain 

theoretical tools to establish a fixed point eharaeterization of {dClc E (0, 1]}. 

2.5.2 Fixed Point Characterization 

In addition to its relational and logieal eharaeterizations, bisimulation also 

has a fixed point characterization. This naturally leads to the development 

of a class of fixed point bisimulation metries whieh, as it turns out, is the 

same class of bisimulation metries that result from the logie above. The 

main teehnieal tool used to ereate this class is known as the K naster- Tarski 

Theorem for maximum fixed points (see [28]): 

Theorem 2.5.2. Let (L, Ç) be a complete lattice. Let f : L -t L be a 

monotonie function, i.e. such that if x ç y then f(x) ç f(y). Then f has a 

greatest fixed point, which is also its greatest postfixed point.5 

Take the complete lattice M of I-bounded pseudometries and define, for a 

fixed cE (0,1], FC : M -t M by FC(m)(s, s') = cmaxaEA m(Psa, Ps~) (here we 

are using the Kantorovieh met rie extended to subprobability distributions). 

Since moving metries from states to distributions preserves the ordering of 

M, it easily follows that eaeh FC is monotonie on M and so has a greatest 

fixed point mC. Adapting the proof of [5] we obtain 

5 A point x ELis said to be a fixed point of f if f(x) = x. It is said to be postfixed if 

x ç f(x). 
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Theorem 2.5.3. For every c in (0,1], mC is a l-bounded bisimulation metric. 

In fact, the following is true 

Theorem 2.5.4. For every c in (0,1], m C = dC. 

A key step in this proof relies on approximating mC via a sequence of 

iterates. Each mC is expressible as n{mi} where mû = T and mi+l = FC(mi). 

Formally, one says that each FC has c10sure ordinal w. 

An additional advantage of the existence of these iterates is that they 

allow one to approximate each m C to within any prescribed degree of accuracy. 

80 each mC is comput able (for c < 1). This follows simply by noting that 

by induction, mC(s, s') - mi(s, s') ~ ci. That each iterate mi is computable 

follows from the computability of the Kantorovich metric. 
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Chapter 3 

A Metric for Finite Markov 

Decision Processes 

In this chapter we will emulate the creation of metrics for LMPs in order to 

develop such metrics for use in finite MDP compression. Sinee our primary 

coneern lies with computing such metrics we will do so first via a fixed point 

formulation. The contents of this chapter will be, for the most part, self­

contained. 

3.1 A Metric for Markov Decision Processes 

In the following we will establish a pseudometric, defined on the states of a 

finite MDP, satisfying the requirement that two states are assigned distance 

zero iff they are "behaviourally indistinguishable". We will formally specify 

what we mean by "indistinguishable" in a moment. First, we introduce the 

model and assumptions to be used throughout. 
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Let M = (S,A,{P:s': a E A,S,S' E S},{r~: a E A,s ES}) be a finite 

MDP where: 

• A is a finite set of actions such that Vs E S, As = A. We will denote the 

cardinality of A by lAI and sometimes enumerate A as {al, ... ,aIAI}' 

• Since rewards are bounded we will assume without loss of generality 

that Va E A, Vs E S, r~ E [0,1]. 

3.1.1 Bisimulation 

When are two states indistinguishable? In [8], Givan et al. examined different 

notions of state equivalence to answer this very question. They concluded 

that the most appropriate notion, derived from the theory of concurrent 

processes, is stochastic bisimulation. 

Definition 3.1.1. A (stochastic) bisimulation relation R is an equivalence 

relation on S that satisfies the following property: 

SRS' {:} Va E A, (r: = r:, and VC E SIR, P:(C) = Ps~(C)) 

where psa(c) = ~cEC P:c-

We say states s and s' are (stochastically) bisimilar, written s rv s', iff 

SRS' for sorne stochastic bisimulation relation R. 

Roughly speaking, two states s and s' bisimilar iff for every transition 

that s makes to a class of states, s' can make the same transition with the 

same probability and achieve the same immediate reward, and vice versa. 

Bisimulation for MDPs can also be formulated via fixed point theory and 

it will be fruitful for our purposes to do so. 
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Definition 3.1.2. Let (Rel, Ç) be the complete lattice of binary relations 

on S. Define F : Rel ---+ Rel by 

where Rrst is the refiexive, symmetric, transitive closure of R. 

Then s and s'are (stochastically) bisimilar iff sRs' where R is the greatest 

fixed point of F. 

Note that the existence of a greatest fixed point in the definition above is 

guaranteed by the Knaster-Tarski Fixed Point Theorem since F is monotone 

on Rel. 

Lemma 3.1.3. The definitions of bisimulation in 3.1.1 and 3.1.2 are equiv­

alent. 

Pra of. Clearly, the greatest fixed point of F is a bisimulation relation and 

therefore contained in rv, the largest bisimulation relation. On the other 

hand, rv is easily se en to be a fixed point of F and is therefore contained in 

its greatest fixed point. D 

Unfortunately, bisimulation is too restrictive. Consider the MDP in fig­

ure 3.1 with 4 states labeled s, t, u, and v, and 1 action labeled a. Suppose: 

• r~ = O. Then an states share the same immediate reward. Moreover, 

starting in any of the four states one transitions to one of the four states 

with probability one. Thus, an states can be grouped together in one 

bisimulation c1ass; that is, an states are bisimilar. 
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rf = 0 

Figure 3.1: If r~ = 0 then all states are bisimilar. On the other hand, if 

r~ > 0 then s t'V t {:::::::} P = q, S t'V U {:::::::} P = 1 and t t'V U {:::::::} q = 1 . 

• r~ > O. Then v is the only state in its bisimulation class since it is 

the only one with a positive reward. Moreover, sand tare bisimilar 

iff they share the same probability of transitioning to v's bisimulation 

class. Each is bisimilar to u Hf that probability is zero. Thus, u, s, t 

rf v, S t'V t {:::::::} P = q, S t'V U {:::::::} P = 1. 0, and t t'V U {:::::::} q = 1. 0 . 

This demonstrates that bisimulation alone is sim ply too strong a notion. If 

r v is just slightly positive, and p differs only slightly from q we should expect 

sand t to be practically bisimilar. However, such a fine distinction cannot 

be made; all we can say is that two states are bisimilar or they are not. 

This is where metrics come to the rescue. They allow us to give a quantita­

tive notion of bisimulation, susceptible to slight variations in the parameters 

of the model. We will soon show how we can associate "how bisimilar" a 

pair of states are to a distance between zero and one. 
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3.1.2 A Class of Bisimulation Metrics 

Recall that M is the space of I-bounded pseudometrics on 5, partially or­

dered as follows: 

We say m EMis a bisimulaiion meiric Hf m(s, s') = 0 {::} s rv s'. As 

previously mentioned, our goal is to establish such metrics for finite MDP 

state aggregation in continuaI RL tasks. 

One of the first things we can remark about bisimulation metrics is that 

they constitute a class of equivalent metrics. Let bis be the bisimulation met­

ric which assigns distance 1 to all pairs of non-bisimilar states. Then for any 

bisimulation metric m, m(s, s') ~ bis(s, s') for an s, s'. On the other hand, 

let Cmin = min m(s, s') where the minimum is taken over an s, s' where m is 

positive (of course if no such states exist then T, the everywhere zero metric, 

is the only bisimulation metric for this particular model). Then Cmin > 0 

and for every s, s' E 5, cminbis(s, s') ~ m(s, s'). Thus, an bisimulation met­

ri cs are equivalent to bis, and to each other. Moreover, it is immediate that 

any metric equivalent to a bisimulation metric must itself be a bisimulation 

metric. 

What else can we say about bisimulation metrics? Consider a collection 

of metrics, {da}aEA ç M, satisfying 

(e.g., take da(s, s') = Ir~ - r~/I). Then we have: 
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Lemma 3.1.4. If m is a bisimulation metric then 

Vs, s' E S, m(s, s') = 0 {:} Va E A, (da(s, s') = 0 and m(psa, P~) = 0) (3.1) 

Pro of. First note that for a bisimulation metric we may rewrite the primaI 

LP for m(psa, Ps~) as 

max L (Psa(c) - P~(C))uc 
ua 

CES/~ 

subject to: VC, D, Uc - UD ::; ,mi,n m(si, Sj) 
tEC,JED 

VC, 0 ::; Uc ::; 1 

and so the forward direction is immediate. 

For the converse, note that if m( psa, P~) = 0 then P: (C) = Ps~ (C) 

for every equivalence class C. Suppose to the contrary that :3C such that 

psa(c) =1- P~(C). WLOG P:(C) > P~(C). Clearly C =1- S, so we may take 

Uc = minkEC,jED m(sk, Sj) and UD = 0 for an other classes and obtain a con­

tradiction by way of a positive lower bound on m(P:, Pta). The result now 

follows. o 

ls condition 3.1 sufficient as weIl? It seems reasonable to expect that 

any metric that assigns distance zero to a pair of states if and only if it 

assigns distance zero to both their rewards and their distributions should be 

a bisimulation metric. This is easily seen to not be the case, as the metric 

..l satisfies the condition and is not necessarily a bisimulation metric, as 

illustrated by the MDP in figure 3.2. However, we do have the following: 

Lemma 3.1.5. Suppose mE M satisjies condition 3.1. Then 

m(s,s') = 0 =} S rv s' 
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{a, l.ü} 

ro=üQD~ __ {a_,_l.ü_} __ +:~ ~r~=l 

{a, l.Ü} 

Figure 3.2: 1.. (Psa ,Ps~) = 1 for s =1= s', so that 1.. satisfies the bisimulation 

metric condition. However, it is not a bisimulation metric sinee it assigns 

distance 1 to bisimilar states 1 and 2. 

Proof. Define a relation R on S by sRs' {::} m(s, s') = ü. We will show that R 

is a bisimulation relation. It is clearly an equivalence relation. Now suppose 

sRs'. Then Va E A, r~ = r~1 and m(psa, Ps~) = ü. Just as in the previous 

lemma, we may rewrite the primaI LP as 

max L (Psa(c) - P:'(C))uc 
Ua 

CESIR 

subject tO: VC, D, Uc - UD :::; . min m(si, Sj) 
tEC,)ED 

VC, Ü :::; Uc :::; 1 

so that psa(c) = Ps~(C), as weIl. Thus, s rv s'. o 

Although condition 3.1 is not sufficient it does indicate the strong rela­

tionship between the distance a bisimulation metric assigns to a pair of states 

48 



and the distance it assigns to the states' induced distributions, as weIl as the 

distance between the states' immediate rewards. Motivated by this, we will 

eonstruet bisimulation met ries of the following form 

m(s, s') = cp (da(s, s'), m(psa, Ps~)) 
aEA 

The underlying funetions we will utilize are as follows: 

Let cp: [0, 1J2IAI -+ [0,1] 

1. cp(:i) = a iff i = ô. 

2. Vi, il, Z E [0, 1 J2A, Z ::; i + il =? cp(z) ::; cp(i) + cp(iJ) 

3. cp is eontinuous eoordinate-wise, i.e. for every i between 1 and 21AI 

We are now ready to eonstruet our bisimulation metries. We do so in a 

manner analogous to how we eonstrueted the maximum bisimulation relation. 

It is a somewhat surprising that in order to do so, our underlying funetions 

need only satisfy the first two properties above. 

Theorem 3.1.6. Let (M,:::s) be the complete lattice of l-bounded pseudo­

metrics on S. Let cp : [0, 1J2IAI -+ [0,1] satisfy 1 and 2 above. 

Define F<P : M -+ M by 
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Then s and s' are bisimilar iff m<P(s, s') = 0 where m<P is the greatest fixed 

point of F<P. 

Pra of. We have three things to show; namely, Vm E M. F<P E M (i.e. F<P 

is well-defined), F<P has a greatest fixed point m<P, and m<P is a bisimulation 

metric. 

Let m be in M. We need to prove that F<P(m) is a I-bounded pseudomet­

rie. It is clearly non-negative and I-bounded. F<P(m)(s, s) = 0 easily follows 

from m and da being pseudometrics and cP taking value zero at the origin. 

Symmetry also easily follows. For the triangle inequality, we first recall that 

m applied to distributions also satisfies a triangle inequality. So, by property 

2, we have 

= F<P(m)(s, u) + F<P(m)(u, s') 

So F<P is well-defined. 

To establish the existence of a greatest fixed point of F<P we appeal to 

the Knaster-Tarski Fixed Point Theorem. So we need only show that F<P 

is monotone on M. Note that properties 1 and 2 above imply that each 

underlying cP is monotone. Sinee in applying met ri cs to distributions the 

ordering of metries is preserved, monotonicity of F<P clearly holds. Thus, m<P 

exists for each cP. 

Finally, to establish that m<P is a bisimulation metric first note that 

by construction it satisfies condition 3.1. So by the preceding lemma, 

m<P(s, s') = 0 =} s '" s'. 
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For the other direction, recall that bis is the bisimulation metric which 

assigns 1 to all pairs of non-bisimilar states. By property 1 and lemma 

3.1.4, FtP(bis)(s, t) = 0 {:} Va E A, (da(s, s') = 0 and bis(psa, Ps~) = 0) {:} 

bis(s, s') = o. It follows that bis ~ FtP(bis), i.e. bis is a postfixed point 

of FtP. Since m tP is also the greatest postfixed point of FtP, b ~ m tP . Thus, 

S t'V s' ~ mtP(s, s') = o. o 

3.1.3 A Class of RL Metrics 

In the last section, we established a class of metrics each of which agrees with 

bisimulation. At this point it is necessary to recall exactly why we did so. 

We seek to aggregate large state space MDPs in order to solve continuaI RL 

tasks. The correct notion for MDP state aggregation is bisimulation, but it 

is too strong. Thus, we appeal to metrics to give us a quantitative form of 

bisimulation. Specifically, we want a bisimulation metric as previously de­

fined. However, we also desire that such a metric should reflect the variations 

in the difference between rewards and the difference between distributions. 

Moreover, we would like to recover information useful for continuaI RL tasks. 

In [8], Givan et al. were able to show that bisimilar states have the same 

optimal value. A desired property for our metrics is that if two states are 

close together under a bisimulation metric, then their optimal values should 

also be close together. 

Now we have managed to establish a class of bisimulation metrics, but 

what of the other desired characteristics? Unfortunately, they can fail to holà 

for even the simple st bisimulation metrics. Consider the underlying function 

that attains value 1 everywhere but at the origin. It is not hard to see that 
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the resulting bisimulation metric is bis. The problem here is that the ability 

of bis to distinguish states is exactly the same as that of bisimulation; it is 

too strong. There is no quantitative difference between pairs of states that 

are almost bisimilar and those that are really different. What we need to do 

is restrict our attention to a subclass of bisimulation metrics possessing the 

desired properties. 

For inspiration we look to the Bellman Equations for the optimal value 

function, which yield the following bound: 

The first component of the RHS is sim ply the distance in immediate rewards, 

while the second component is strikingly similar to the primaI LP for the 

distance in distributions. 

Based on these observations we fix a particular class of underlying func­

tions, {r/>(x) = maxl:Si:SA(CRXi+CTXA+i)}, indexed by two positive constants, 

CR and CT, in our previous theorem to obtain the class of RL metrics: 

Corollary 3.1.7. Let CR, CT E (0,1) s.t. CR+Ct ~ 1. Define FCR,cT : M -+ M 

by 

Then the RL metric mCR,CT is the greatest fixed point of FCR,CT . 

The constants CR and CT weight the distance between rewards and the 

distance between transition distributions respectively. 
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It is clear from the construction that such metrics will reflect the varia-

tions in rewards and distributions; but, do they provide the aforementioned 

bounds on optimal values? lndeed, they do; but before we can show that we 

need an alternate formulation of the RL metrics. 

3.1.4 An Alternate Characterization of RL MetrÎcs 

Note that the underlying function for each RL metric 

satisfies properties 1,2,3 above. For such functions 4>, m<P can be expressed 

as the limit of a sequence of iterates. 

Lemma 3.1.8. Let 4> satisfy properties 1-3. Then FtP has closure ordinal w, 

i.e. m tP = nmf where mt = T and mf+1 = FtP(mf)· 

Pra of. Since m<P j T and F<P is monotone we see by induction that m tP j 

n mt. AH that remains is to show that nmt is a fixed point of FtP. Sim ply 

note that for aH (s, s') 

(n{mf})(s, s') 

= umf(s, s') 

= u{umt+l (s, s'), a} 

= Umf+l (s, s') 

= uF<P(mT)(s, s') 

= U4>(da1 (s, s'), ... ,dalAI (s, s'), mf(psa1, Ps~l), ... ,mf(psaIAI, Ps~IAI)) 
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Since aH the coordinate values, that is the dak(s, S')'S and the mf(psak, Ps~k)'S, 

are nondecreasing with respect to i, and </J is monotone, we may replace the 

single supremum over i by a supremum over all coordinates (specifically, over 

the last lAI coordinates, since the first lAI coordinate values are constant with 

respect to i). This allows us to use coordinate-wise continuity (property 3 of 

</J) to move the suprema "inside" </J and apply lemma 2.4.7 to the appropriate 

coordinate values: 

= Uil, ... ,iIAI </J(dal (s, s'), ... ,dalAI (s, s'), mfr (P:l, PS~l), ... ,mtl (P;IAI, Ps~IAI)) 

= </J(da1 (s, s'), ... ,dalAI (s, s'), Uil mfr (Psa\ P~l), ... ,UiIAI mtl (psaIAI, Ps~IAI)) 

= </J(da1 (s, s'), ... ,dalAI (s, s'), (nil mfr ) (Psa1 ,Ps~l), ... , (nilAI mtl )(psaIAI, ps~IAI)) 

= F<P(n{mf})(s, s') 

o 

In addition, each RL metric can be expressed via a real valued modal 

logic. The intuition is exactly the same as that for LMP bisimulation metrics: 

the doser two states are (with respect to bisimulation), the greater is the 

complexity of the simplest distinguishing formula. 

3.1.5 A Logical Characterization 

Let FCR,CT be the family of functions whose syntax is given by: 

f := 11 max(J, J)lh 0 fl(a)f 
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where a E A and h is non-expansive on [0,1]. These function expressions are 

evaluated on S as follows: 

l(s) 

max(ft,12)(s) 

(hof)(s) 

((a)f)(s) 

1 

max(ft(s),12(s)) 

h(f(s)) 

CRr~ + cTEpff [f] 

Theorem 3.1.9. Let mCR,cr be the RL metric obtained via corollary 3.1.7. 

Then mCR,CT(s, s') = SUPfEPR,CT If(s) - f(s')1 

The proof of this theorem is adapted from [5]. For convenience we will 

work with a fixed pair of weights, CR and CT, and omit these as superscripts 

from :FCR,CT FCR,CT mCR,CT and {mCR,CT} in aIl that follows , , 'z . 

Define d : S x S -t [0,1] by d(s, s') = SUPfE.r If(s) - f(s')I. In order to 

prove theorem 3.1.9 we first need to establish sorne intermediate technical 

results. The first formalizes what is intuitively clear from observing the four 

logical expressions defining the logic: the modal operator, (a) f, alone makes 

distances bigger; applying a non-expansive function or a taking the maximum 

only decreases the distances between states. 

Lemma 3.1.10. For every pair of states s, s', 

d(s,s') = sup I((a)f)(s) - ((a)f)(s')1 
aEA,JE.r 

Proof. Clearly, d( s, s') ~ sUPaEA,fE.r 1 ((a) J) (s) - ((a) f) (s') 1. For the other 

direction we proceed by structural induction. SpecificaIly, we show 

Vf E:F, ~J' E:F: If(s) - f(s')1 ~ 1((a)J')(s) - ((a)J')(s')1 
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This is trivial in the cases f = 1 or f = (a)1'. If f = max(h, 12) or 

f = h 0 l' then note that 

and 

1 max(h, h)(s) - max(h, h)(s')1 :::; max Ifi(S) - fi(S')1 
iE{1,2} 

I(h 0 1')(s) - (h 0 1')(s') 1 :::; 11'(s) - 1'(s')1 

so that the result follows by the induction hypothesis. D 

The next result shows us that the Kantorovich metric with the logical 

distance, d, admits an explicit formulation solely in terms of the logic. 

Lemma 3.1.11. Let P and Q be probability distributions on S. Then 

d(P, Q) = sup IEp[J] - Edf] 1 

fEF 

Pro of. Let f E F and define Ui = f(Si)' Then 0 :::; Ui :::; land Ui - Uj :::; 

d(Si, Sj) so that {Ui} constitutes a feasible solution to the primaI LP for 

d(P, Q). Since Vf E F, IEp[J]- EQ[f]1 :::; d(P, Q), it follows that d(P, Q) ~ 

SUPfEF IEp[J]- Edf]l· 

For the other direction we first remark that the following are non-expansive 

functions on [0,1]: For q E [0, I]let 

{ 
° if ° :::; x :::; q { x + q if ° :::; x :::; 1 - q 

hq(x) = ,kq(x) = 
x - q otherwise 1 otherwise 

(we may rewrite these in terms of the logic given for LMPs as hq(x) = x 8 q 

and kq(x) = 1 - ((1 - x) e q)) 

Now, let {Ui} maximize d(P, Q) and let té > O. We will first show 
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To see this note that 

WLOG Ihij(Si) - hij(sj) 1 = hij(Si) - hij(sj) so that hij(sj) - hij(Si) < 

-d(Si, Sj) + E. Suppose: 

In both cases it is clear that fij satisfies the required properties. 

Now take fi = minj fij E F. Then fi(Si) = Ui and for j =1 i, 

fi(Sj) ::; fij(Sj) :::; Uj + E. 

Finally, take f = maXi fi E F. Then Uj ::; f(sj) ::; Uj + E. Thus, 

d(P,Q) < (Ep[J]- EQ[J]) + E L 
i:P(Si)<Q(Si) 

< sup IEp[J]- EQ[J] 1 + E L 
JEF i:P(Si)<Q(Si) 

Since Ei:P(Si)<Q(Si)(Q(Si) - P(Si)) > 0 and E is arbitrary, it follows that 

d(P, Q) :::; SUPfEF IEp[J]- Edf]l. D 

Recall that m is the greatest fixed point of F. Thus, to prove theo­

rem 3.1.9 we need only verify two facts: dis a fixed point of F, and d is at 

least as big as m (with respect to the ordering of metrics). The first fact is 

established through the preceding lemmas. 

Lemma 3.1.12. Let F be the functional defined in corollary 3.1.7. Then the 

logical metric,d, is a fixed point of F. 
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Proof. By lemma 3.1.10 and lemma 3.1.11 it follows that: 

d(s, s') sup I((a)f)(s) - ((a)f)(s')1 
aEA,JE:F 

< sup (cRlr~ - r~11 +cTIEpf[I]- Ep~[IlI) 
aEA,JE:F 

max(cRda(s, s') + CT sup IEpf[I]- Epa, [Ill) 
aEA fE:F 8 

max(cRda(s, t) + cTd(psa, P~) 
aEA 

F(d)(s, s') 

So F(d) ~ d. 

Let € > O. Then :Jf E F, a E A such that 

F(d)(s, s') - € < cRda(s, s') + cTIEpa[f]- Epa [I]I 
8 8' 

WLOG da(s, s') = r~ - r~l. Take l' E F to be: 

• (a) (1 - 1) if Epa [Il < Epa [Il 
8 8' 

Then 

F(d)(s, s') - € < 11'(s) - f'(s')1 ::; d(s, s') 

Since é is arbitrary, it follows that d ~ F(d). o 

We are now ready to prove theorem 3.1.9. 

Proof. Given the preceding lemmas, we now need only show that d is the 

greatest fixed point of F. Clearly d :::S m. 
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For the other inequality, we first define the depth, l (.), of a function in 

:F. Define l : :F -+ N inductively by 

l(1) 

l(max(h,12)) 

l(h 0 f) 

l((a)f) 

° 
max(l(h), l(h)) 

l(f) 

1 + l(f) 

Let :Fi = {1 E :Fll(f) ::::; il· Then it immediately follows that: 

• if we define di by di(s, s') = sUPfE:Fi 11(s) - l(s')1 then di {. d 

We will show by induction that Vi 2:: 0, mi ::S di. 

For i = 0, 1 E :Fi must be one of 1, max(h, 12), or ho 1'. An easy 

structural induction shows that 11(s) - l(s')1 ::::; 0, so that mo ::S do· 

For i + 1 we again use structural induction, this time to show that for 

1 E .ri+l' 11(s) - l(s')1 ::::; mi+l(s, s'). The only interesting case is 1 = (a)1' 

where l' E .ri. In this case, note that by the induction hypothesis (over i) 

so that {1' (Sk)} constitutes a feasible solution to the primaI LP for mi (psa, Ps~). 
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Therefore, 

11(s) - 1(s')1 < maxl((a)J')(s) - ((a)J')(s')1 
aEA 

< max(cRda(s, s') + CTmi(psa, Ps~)) 
aEA 

< mi+l(S,S') 

so that di+l(S, s') ~ mi+l(S, s'). 

Finally, taking limits yields m ~ d. o 

Let use reiterate the significance of the preceding result. The RL metric, 

m, obtained as a fixed point in corollary 3.1.7 can be equivalently expressed 

in terms of a real valued modal logic. This logical formulation provides the 

following intuitive reasoning behind the distances assigned by m: the distance 

assigned to states is related to the quantitative difference in the formulas 

they satisfy. Thus, m is a quantitative generalization of the exact matching 

of logical properties of states. It follows that m could be used to potentially 

analyze quantitatively certain logical properties of MDPs. Moreover, the 

family of logical expressions potentially provides a means of computing the 

distances assigned by m. 1 

3.2 Bounds for the Optimal Value Function 

Recall that if we define Vs E S. Va (s) = 0 and 

1 A more detailed discussion of metric computahility will he carried out at the end of 

this chapter. 
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then Vi converges to V*, the optimal value function with discount factor 

'Y E [0,1). 

3.2.1 The Original MDP 

We have previously stated that it is reasonable to expect that if two states are 

close together according to the RL metric then their optimal values should 

be close too. The following bounds formally establish that this is so. 

Theorem 3.2.1. Suppose 'Y :S CT. Then VS, SI E S: 

1. 1V;(s) - V; (SI) 1 < mi (s,s') Vi > O. 
t t - CR' -

2. 1V*(s) - V*(sl)1 :S m~{) 

Proof. Clearly the proof of the second item follows from the first by taking 

limits. For the pro of of the first item we proceed by induction. The inequality 

holds trivially for i = O. Now note that since 'Y :S CT 

0< CR'YV;(u) < (1- cTh < 1 
- CT t - CT(1- 'Y) -

and by the induction hypothesis 

So {~Vi(u) : u E S} constitutes a feasible solution for the primaI LP for 
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CRI max(r~ + ')' '" psau Vi( u)) - max(r~1 + ')' '" Ps~u Vi( u)) 1 aEA 6 aEA 6 
uES uES 

< CR max Ir~ - r~1 + ')' '" (Psau - Ps~u)Vi(u)1 aEA 6 
uES 

< max(cRlr~ - r~11 + cTI L (P:u - ps~u)(CR')' Vi(u))I) 
aEA CT uES 

< max(cRlr~ - r~11 + CTmi(Psa, Ps~)) 
aEA 

o 

3.2.2 The Aggregate MDP 

Now suppose that we aggregate the state space of our original MDP M and 

solve the RL problem on the resultant MDP. We would hope that optimal 

values assigned to states belonging to the same class would be related some­

how to the optimal value assigned to that class. In the following we will 

establish such a relationship, one that shows that if the states in a partieular 

class are close together aeeording to the RL met rie then 80 are the optimal 

values of these states and the optimal value of the class. 

First, we fix sorne notation and assumptions eoncerning the aggregated 

MDPM': 

M' = (S', A, {PëD : a E A,C,D E S'},{rë: a E A,C ES'}) 

where: 
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• S' is a partition of the state space of M. That is, it is a collection of 

disjoint nonempty subsets of S whose union is S. 8ince S is finite, so 

is S'. We will occasionally denote the class containing state sES by 

Cs' 

• A is the same finite set of actions as in M. 

• PêD is the probability of transitioning from class C to class D under 

action a. The probability distribution induced by class C and action a 

on S' is denoted by Pê. We assume this to be defined as the average 

probability of transitioning to D, where the average is taken over an 

states in C. That is, 

Clearly each is non-negative. Moreover, its total mass is given by 

I ~I L L L psasl 
sEC DES' s'ED 

I~I LLPsasi 
sEC S'ES 

1 
ïCï LI 

sEC 

1 

80 that each Pê is indeed a probability distribution on S' for each a. 

• rc is the reward associated with taking action a in class C. We assume 

that each is the average of the rewards received in that class for that 
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action, Le. 

We are now ready to describe the relationship between the optimal values 

of s, Cs, and the RL metric m. An important quantity in the foUowing will 

be the average distance under metric m from s to aU states in Cs, 

I ~ 1 L m(s, s') 
s s'EC. 

which for purposes of convenience will be denoted by avg(s, m). 

Theorem 3.2.2. Suppose 'Y ::; CT. Then Vs E S: 

2. 1V*(Cs ) - V*(s)1 ::; c~ (avg(s, m) + 12)' maxuES avg(u, m)) 

Pro of. Once more we proceed by induction. The inequality holds triviaUy 

for i = o. 

IVi+1(CS ) - Vi+1(S)1 

= 1 max(rë + 'Y '" Pë DVi(D)) - max(r~ + 'Y '" Psau Vi (u)) 1 
aEA s L. aEA L 

DES' UES 

::; IC
1 

1 L max(lr~, - r~1 + 'YI L L Ps~u Vi(D) - L psau Vi(u)l) 
s aEA 

s'EC. DES' uED uES 
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Notice that by theorem 3.2.1 {C~'YVi(u) : u E S} constitutes a feasible solu­

tion for the primaI LP for mi (psa, P:'). Rence, we may continue by noting 

that the preceding expression is bounded above by: 

:::; I~ 1 L max(cRda(s, s') + CTmi(P:, Ps~)) CR s aEA s'Ee. 

+ -1 '"'j 1 L max LPslumaxIVi(Cu) - Vi(u) 1 Cs aEA uES s'Ee. uES 

:::; ~C 1 L mi+l(S, s') + '"'jmax IVi(Cu) - Vi(u)1 
CR s uES s'Ee. 

o 

Consider the use of c1ustering as an aggregation method. Roughly speak­

ing, we choose certain seed states and for each, consider the c1ass of states 

within distance E for sorne sorne fixed positive E (while ensuring that each 

state is placed in only one c1ass). Then for a c1uster C and any state s be­

longing to it, the above tells us that IV* (C) - V* (s) 1 :::; cR(i~'Y)' provided 

'"'j :::; CT. Thus, as E decreases, the optimal values of a class and its states 

converge. 
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3.2.3 Restricting the Policy Space 

The bounds above relate the distance assigned to states by a bisimulation 

metric to the values of those states under an optimal policy. What can 

we say wh en dealing with an arbitrary randomized stationary policy? In 

general, such a policy could dictate vastly different strategies for states which 

are bisimilar, and so we should expect no useful information in these cases. 

This suggests restricting our attention to those policies whose behaviour is 

governed by the distances assigned by bisimulation metrics. Formally, we 

have the following result: 

Theorem 3.2.3. Let 7r E rrRS su ch that for some C7r ~ 0, 

max 17r(s, a) - 7r(S', a)1 ::; c7r m(s, s') VS, s' E S 
aEA 

Let 'Y ::; CT' Then 

where 

and 

• if C7r = 0 then Xi = ...L for i > 0 and x = ...L 
CR - cR 

• if 0 < C < (l-'Y)(cT-'Y) and '"V < CT then X· = ...L + IAlc".(l-'Yi) for i > 0 
7r - 'YIAlcR 1 Z CR (1-")') J' -

and x = ...L + IAIc71' 
CR (1-")') 
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Proof. The second item will foIlow from the first by taking limits. To es­

tablish the first we proceed by induction. Before we do so, note that by 

induction m(s, s') - mi(s, s') ::; 4 for i 2: 0, so that for every s, s' E 5, 

N ow the base case holds vacuously as for any s, s' E 5, Va
1r (s ), ma (s, s'), 

and Ya are aIl zero. For the inductive step, note: 

IVi~l(S) - Vi~l(S')1 

= 1 L n(s, a)(r~ + ')' L Ps
a
u Vi1r (u)) - L n(s', a)(r~1 + ')' L Ps~u vt(u))1 

aEA uES aEA uES 

aEA uES 

+ L (n(s, a) - n(s', a))(r~1 + ')' L Ps~u 1;i(u)) 1 

aEA uES 
( i+l) 

::; max Ir~ - r~1 + ')' L (Ps
a
u - Ps~u)Vi1r(u))1 + lAI max In(s, a) - n(s', a)1 1(; ')' ) 

aEA aEA - ')' uES 

::; max(da(s, s') + ')'1 ~ (Psau - P:'u)Vi1r (u) 1) + IAl c1rm(s, s') (1( _')'i+)l) 
aEA D 1-')' uES 

By the induction hypothesis we have 

(1 _')'i) IV1r () V 1r ( ')1 < (l_')'i) (') (1 _')'i) 
(1 - ')') i S - i S - (1 _')') Ximi s, s + (1 _ ')') Yi 

and 0 ::; V1r (s) ::; 1 so that {(/;=-~l Vi1r (s) Is E 5} constitutes a feasible solution 

to the primaI Kantorovich LP with cost function ~ll-=-~lximi(s, s') + ~~-=-~lYi' 
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Thus, by lemma 2.4.5 the preceding quantity is bounded above by: 

(1 i+l) 
~ max(da(s, s') + ,(Ximi(P:, Ps~) + Yd) + IAlc7rm(s, s') (; "( ) 
~A -"( 

mi+l(s, s') (( "( 1 ) (a a)) ~ + max -Xi - - CTmi+1 P s ' PSI 
CR aEA CT CR 

lAI ( ( ') i+l) (1 - "(i+l) 
+ 'Yi + Cn mi+ 1 S, S + CT (1 _ ,) 

~ Xi+lmi+l (s, s') + Yi+1 

where 

and 

{ 

.l + IAlc,,(I-,i+1) if x. < ....fL 
x. = CR (1-,) Z ,CR 

z+l A l i+1 
.lX· + 1 Ic,,( -, ) otherwise 
CT z (1-,) 

By induction, we may rewrite 

IAlc
7r
c11 1 - (~:;Ji+l "(i+l - (c} )i+l 

Yi+l = (1 -,) { 1 - .2 - 1 _ .l } 

so that .lim Yi = O. 
z-too 

• If Cn = 0 then Xo 

X = 1imxi = -.1... 
i-too CR 

CT CT 

....fL so that Xi 
'CR 

• If 0 < C < (l-,)(CT-') and 'V < CT then 
7r - ,IAlcR 1 
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Since Xo = ...l. < .EL it follows by induction that x. = ...l. + IAlc,,(l-,i) 
CR ,CR t cR (1-,) 

C • > 0 d - l' - 1 IAlc" lor 'l an x - 1mi-t<Xl Xi - - + -(1 ) . - cR -, 

• if 0 < (CITA-
I 
,) < Cn and "( < CT then since Xo = .EL it follows by induction 

, CR ,CR 

that X,; > .EL for every i and x,; = lX,;_1 + IAI(~(I),i) for i > 1. In fact, 
• - ,CR • CT· -, -

using induction once more yie1ds 

lAI 1 - (l)i+l i+l _ (l)i+l 
_ ( "( )i+l Cn { CT "( CT} Xi+1 - - Xo + -- - l 

CT 1-"( l- l 1--
CT CT 

o 

Naturally, we can extend such bounds to an aggregate MDP M'. Extend 

7[ to 7[' on M' by averaging over the states in an equiva1ence class, i.e. 

7['(C, a) = I~I L 7[(s, a). 
sEC 

Then: 

Theorem 3.2.4. Suppose"( ::; CT. Let {Xi}, {Yi}, and X be as in the previous 

theorem. Then Vs ES,' 

1. Vi ~ 0, 

i-l 

Ivt' (Cs )-vt(s)1 ::; Xiavg(S, mi)+Yi+ L "(i-k(Xk maxavg(u, mk) + Yk) 
uES 

k=l 
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This follows by emulating the pro of of theorem 3.2.2 with use of the 

bounds in the preceding theorem. 

Of course the particular situation of interest lies in using a policy for the 

aggregate MDP M' to recover one for the original MDP M along with a 

bound on the associated values of each. By working backwards and using 

the results proven above we can do just this. Assume that the partition of 

the original MDP satisfies the requirement that if two states are bisimilar 

then they belong to the same equivalence class. For example, such is always 

the case when we cluster using a bisimulation metric. Given n' for 11.1', define 

n for M by 

Then it follows that for a given bisimulation metric m, 

ma A x In(s, a) - n(s', a)1 ~ bis(s, s') ~ c7rm(s, s) Vs, s' E S 
aE 

where the latter inequality follows from the equivalence of aIl bisimulation 

metries. Moreover, 

n'(C, a) = I~I L n'(C, a) = I~I L n(s, a) 
sEC sEC 

so that the bounds proven above hold here. 

3.3 An Algorithm 

If our family of RL metrics and associated bounds are to be of any use then we 

must have sorne way of computing the metries. Our method of constructing 

the bisimulation met ries has been earried out with this in mind. The idea is 
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that for a given RL metric m we can approximate its distances via the iterates 

{md. By induction we find that for every i, m(s, s') - mi(s, s') ~ 4. Thus, 

to calculate distances up to a prescribed degree of accuracy <5 we need only 

iterate for i = Il~nc~ l steps. 

The pseudocode in figure 3.3 shows how to calculate the distances to 

within error 6. Given that each Kantorovich subproblem can be solved in time 

O(ISI 2 Iog ISI) the entire computation has running time O(IAIISI 4 Iog ISII~nC~). 

(INITIALIZATION) 

For s, s' = 1 ta N do 

m(s, s') = 0 

For a = 1 ta lAI do 

da(s,s') = abs(r~ - r~/) 

(MAIN LOOP) 

For i = 1 ta r ln" l do In CT 

For s, s' = 1 ta N do 

For a = 1 ta A do 

ProbDista(s, s') = minlkj Lk,j lkjm(k, j) 

subject ta: Lj lkj = P:k 

Lk lkj = psqj 

lkj ~ 0 

For s, s' = 1 ta N do 

mes, s') = maxa(cRda(s, s') + cTProbDista(s, s'» 

Figure 3.3: Pseudocode to compute RL metric distances to within error 6. 
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Chapter 4 

Experimental Results 

In this chapter we investigate RL metrics in practice. Specifically, our toy ex­

periments demonstrate the accuracy of value function bounds on MDPs and 

associated aggregate MDPs obtained by clustering with RL metric distances. 

4.1 Random MDPs 

The implementation of random finite MDPs used here is based upon the de­

sign advocated by Sutton and Kautz in [13]. A random MDP is generated by 

specifying the size of an enumerated state space, S, the size of an enumerated 

action space, A, and a branching factor B. The branching factor specifies 

the number of possible next states for each state. These next states are cho­

sen uniformly random from the ISI states. The B transition probabilities 

are chosen as a random partition of [0,1]. The expected immediate reward 

for each state and action is then chosen according to a normal distribution 

with mean 0 and variance 1. For convenience we then shift and scale these 
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rewards into [0,1]. 

4.2 Software 

Distance calculating code was primarily implemented in Java. The minimum 

cost flow solver used was MCFZIB, a network simplex algorithm implemen­

tation by Andreas Lobel. This particular C++ implementation is part of the 

MCFClass Project found online at http://www.di.unipi.it/di/ groups/ 

optimize/Software/MCF.html. 

4.3 Experiments and Results 

Our experiments are designed to demonstrate the usefulness of the RL met­

ri cs in the case where RL metric distances are explicitly used for state space 

aggregation. We do so by examining two quantities: tightness of the opti­

mal value bound for aggregation as given in the previous chapter, and the 

variation in size of the aggregate MDP. Let us elaborate: we fix a setting 

of parameters 151 = 25 (size of state space), lAI E {2, 5, 10} (size of action 

space) , B E {2, 5, 10} (branching factor), and '"'( E {0.1, 0.5, O.g} (discount 

factor). For each parameter setting, 100 random MDPs are generated using 

the procedure described above. For each MDP we compute the RL metric 

distances with CT = '"'( and CR = 1 - '"'(. Next we fix a cluster size, E, chosen 

from [0,1] in steps of 0.01. We obtain an aggregate MDP for this E by choos­

ing the first state of the enumerated state space and clustering together aH 

states within RL distance é. We then take the next state not already within 
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a cluster and repeat the clustering until the entire state space has been par­

titioned. Finally, we assign rewards and transition probabilities by averaging 

these values over clusters, as described in the previous chapter. 1 We now 

compute the optimal values of the states in the original MDP and in the 

aggregate MDP using the traditional dynamic programming method. This 

allows us to compare the exact difference between the optimal values of a 

state and its equivalence class (cluster) with the theoretical bound provided 

in the previous chapter. Specifically, we look at 

1 "'( 
max -(avg(s, m) + -- maxavg(u, m)) -IV*(Cs ) - V*(s)1 
sES CR 1 - "'( uES 

where CT = "'(, CR = 1 - "'(, m is the corresponding RL metric, and Cs is the 

equivalence class of the aggregate MDP containing state s. We also look at 

the size of the aggregate MDP. Both these quantities are averaged over the 

100 random MDPs. We then plot the averaged quantities of bound tightness, 

and aggregate MDP size as the cluster size varies. All data was plotted using 

95% confidence intervals. 

The results can be seen in figures 4.1 to 4.18. It is worthwhile for the 

reader, as hejshe examines the graphical data, to compare our results to 

the case in which exact bisimulation alone would be used for compression. 

Figures 4.1 to 4.9 each display plots of the cluster size for an aggregate MDP 

versus the maximum error bound accuracy for a given setting of lAI and E, 

and aU values of"'( (recall 181 = 25 for all experiments). Figures 4.10 to 4.18 

lOf course, this is not the only way to obtain an aggregate MDP. One could alternatively 

choose random seed states and cluster around these, or place states in more than one cluster 

and use weighted averages for rewards and transition probabilities. However, for purposes 

of illustration our simple clustering method is sufficient. 
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similarly each contain plots of the cluster size versus the size of the aggregate 

MDP. Note that the variations of the bound tightness and the variations of 

the MDP size are each typified by figures 4.1 and 4.10, and so it will be 

helpful to observe these as we analyze the results. 

Observe that convergence indeed occurs smoothly, i.e. as the cluster size 

varies the change in the maximum error bound and the change in the size of 

the aggregate MDP is not too large for each. Additionally, note that as the 

cluster size tends to zero, the aggregate model "tends" to the original model 

as expected. By contrast, using exact bisimulation both the error bound and 

the MDP size would be maximal for aIl cluster sizes save O. 

The graphs of both data quantities additionally demonstrate the strong 

dependence of the data on CT (= "( here). Note that for high values of CT (close 

to 1) the rate of change of the error bound tightness with é increases mu ch 

more quickly than for low values. The same can be said for the rate of change 

of the MDP size. This is somewhat troublesome as high values of CT would 

be more useful for practical applications. Thus, for such applications greater 

care must be taken wh en choosing a cluster size. Yet, it is not immediately 

clear how this can be done for a given parameter setting. 

N evertheless, we are still confident in the potential usefulness of the RL 

metrics. The graphical representations show that each parameter setting 

admits a range (decreasing in length with increases in CT) of cluster sizes in 

which RL metric aggregation is advantageous, i.e. the tradeoff between the 

error and the aggregate MDP size is not too great. Moreover, the greater 

structure usually present in real world models could potentially improve the 

performance results. Of course, this, along with proper determination of 
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Figure 4.2: Error Bound Accuracy for ISI = 25, lAI = 2, B = 5 
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Figure 4.3: Error Bound Accuracy for ISI = 25, lAI = 2, B = 10 
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Figure 4.4: Error Bound Accuracy for IBI = 25, lAI = 5, B = 2 
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Figure 4.5: Error Bound Accuracy for 181 = 25, lAI = 5, B = 5 
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Figure 4.6: Error Bound Accuracy for ISI = 25, lAI = 5, B = 10 

81 



Maximum Error Bound 

0.4 gamma=O.1 

0.2 

0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1.5 ... 
gamma=o.sl e ... 

w 
1 E 

::J 
E 
.~ 0.5 
~ 

0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

40 

gamma=o.91 
30 

20 

10 

0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Cluster Size 

Figure 4.7: Error Bound Accuracy for ISI = 25, lAI = 10, B = 2 
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Figure 4.8: Error Bound Accuracy for IBI = 25, lAI = 10, B = 5 
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Figure 4.9: Error Bound Accuracy for 181 = 25, lAI = 10, B = 10 
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Size of Aggregate MDP as Cluster Size Varies 
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Figure 4.10: Aggregate MDP Sizes for 181 = 25, lAI = 2, B = 2 
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Size of Aggregate MDP as Cluster Size Varies 
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Figure 4.11: Aggregate MDP Sizes for ISI = 25, lAI = 2, B = 5 
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Size of Aggregate MDP as Cluster Size Varies 
25 

20 gamma=O.1 

15 

10 

5 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Q. 25 
CI 

~ 20 
1iî 
0>15 
~ 
0> 
~10 -0 

5 Q) 
N 

èi5 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

25 

20 gamma=o.91 
15 

10 

5 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Cluster Size 

Figure 4.12: Aggregate MDP Sizes for IBI = 25, lAI = 2, B = 10 
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Size of Aggregate MDP as Cluster Size Varies 
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Figure 4.13: Aggregate MDP Sizes for 181 = 25, lAI = 5, B = 2 
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Size of Aggregale MDP as Clusler Size Varies 
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Figure 4.14: Aggregate MDP Sizes for IBI = 25, lAI = 5, B = 5 
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Size of Aggregate MDP as Cluster Size Varies 
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Figure 4.15: Aggregate MDP Sizes for ISI = 25, lAI = 5, B = 10 
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Size of Aggregate MDP as Cluster Size Varies 
25 

20 gamma=O.1 
15 

10 

5 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

a. 25 
Cl 

gamma=O.sl ~ 20 
iii 
g' 15 
"-
Cl 

~10 
'0 

5 Q) 
N 

ü5 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

25 

20 gamma=o.91 
15 

10 

5 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Cluster Size 

Figure 4.16: Aggregate MDP Sizes for 151 = 25, lAI = 10, B = 2 

91 



Size of Aggregate MDP as Cluster Size Varies 
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Figure 4.17: Aggregate MDP Sizes for 181 = 25, lAI = 10, B = 5 
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Size of Aggregate MDP as Cluster Size Varies 
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Figure 4.18: Aggregate MDP Sizes for ISI = 25, lAI = 10, B = 10 
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Chapter 5 

Conclusion 

5.1 Summary 

In this work we have established the met rie analogue of bisimulation for finite 

MDPs, thereby providing a new tool to reason about such models. As we 

have seen, such metrics can be used for finite MDP state aggregation. More 

specifically, the contributions of this thesis are: 

• the formulation of bisimulation metrics for discounted reinforcement 

learning tasks 

• a polynomial time algorithm for computing such metrics up to a pre­

scribed degree of accuracy 

• bounds relating the values of states to distances assigned by bisimula­

tion metrics 

• bounds relating the values of states in a compressed MDP to the val­

ues of states in the original MDP, in terms of distances assigned by a 
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bisimulation metric 

5.2 Related Work 

Much of the recent work on metric based compression ofprobabilistic systems 

cornes from [4], [23], [24], and [5] and indeed our presentation is based heavily 

on these. 

With respect to compression of MDPs the works closest in nature to our 

own are those of [8] and [3]. In the former, Givan, Dean, and Greig use an 

iterative algorithm based on exact bisimulation to aggregate MDPs. Thus, 

their technique is subject to the same shortcomings, due to bisimulation 

being too restrictive, discussed in the beginning of chapter 3. In the lat­

ter, Givan, Dean, and Leach aggregate MDPs using t-approximate stochastic 

bisimulation homogeneous partitions; these are partitions of the state space 

in which for each class and each pair of states in the class, the states' respec­

tive rewards and their respective transition probabilities to other classes each 

differ by at most t. This is not aggregation in the usual sense; rather, an 

t-homogeneous partition is used to define a bounded Markov decision process 

(BMDP) in which reward and transition functions map to closed intervals of 

real numbers, instead of single values. A modified form of value iteration, 

known as interval value iteration, can then be applied to the BMDP to yield 

an interval of values bounding the optimal value of a state, for each state in 

the original MDP. Our method, by contrast, yields bounds on optimal values 

of states and classes in terms of distances between states in a class, which is 

tighter than an t-cluster radius. 
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As a final remark, we note that each of the methods ab ove , unlike our 

own, have been tailored to factored Markov decision pro cesses (see below). 

5.3 Future Work 

1. Improved algorithm. One of the primary advantages of our fixed 

point presentation of the reinforcement learning bisimulation metrics is 

that it readily admits a polynomial time algorithm for computing such 

metrics. Unfortunately, this algorithm is still too slow to be useful in 

practice. One reason for this is that computing the Kantorovich met­

ric, while strongly polynomial, is computationally intensive. Obviously 

since our algorithm involves iteratively computing many Kantorovich 

metrics this contributes to a significant slowdown, especially when com­

pared to simply solving the original MDP directly. In order to improve 

performance we will either have to find an extremely efficient means 

of computing the Kantorovich metric, replace it with an easily com­

put able approximation, or find a way of eliminating it altogether from 

our computations. 

2. Continuous state space MDP. We briefly mentioned in the intro­

duction that our ultimate goal is to extend bisimulation metrics to 

handle continuous state space MDPs. In sorne respects we are half way 

there, as mu ch of our development of the bisimulation metrics has been 

done in sufficient generality to hold in a continuous setting. 

3. POMDP. In many real-world situations a decision maker do es not 

know with absolute certainty the current state of the environment. In-
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stead the agent can only make observations about the current state of 

the environment, observations which typically provide only incomplete 

information due to noise or uncertainty. One says that the environment 

is "partially observable". This leads to an extension of the MDP model 

known as the partially observable Markov decision process (POMDP). 

Formally, a POMDP is simply an MDP with an addition al set of ob­

servations, 0, and a probability distribution on 0 at time t + 1 given 

that the system transitioned from unobserved state s at time t to s' at 

time t + 1 under action a. 

N aturally, we would like to extend our bisimulation met ries to han­

dIe POMDPs. A well-known result states that for every POMDP P a 

eontinuous state space MDP M p can be construeted sueh that a solu­

tion to one gives a solution to the other. Thus, one way of extending 

our metries would be through handling continuous state spaee models. 

However, there do exist methods for solving POMDPs directly and it 

would likewise be desirable to directly extend our met ries to handle 

POMDPs. 

4. Factored MDP. Although we have worked exclusively with the finite 

MDP, the model of ehoice in praetiee is a slight variation known as 

the factored Markov decision process. In this model the state spaee is 

generated by a finite set of state variables, each taking on finitely many 

values. Enormous representational savings are made by working with 

the state variables instead of the explicit state space of state variable 

vectors, since there are exponentially many of the latter. Moreover, 

many data structures and algorithms take advantage of the faetored 

97 



nature of such models to provide even more efficiency. 

In order to get the most value out of our bisimulation metrics it is nec­

essary to apply them to factored MDPs. One could immediately do so 

by applying the metrics to the explicit state space of a factored MDP. 

This is, however, highly undesirable as one would lose the enormous 

savings achieved by the factored representation. Instead, we need to 

redefine such metrics to directly take advantage of the structure under­

lying factored MDPs. 

5. Action space aggregation. Our investigation into metric based 

MDP compression has focused only on reducing the state space. Since 

large actions spaces are also a limiting factor in RL tasks, a natural 

extension would be to apply such methods to aggregating action spaces. 
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