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ABSTRACT 

Parallel computing is being used more and more frequently in 3-D finite element 

(FE) mesh generation in electromagnetics, due to its improvements in efficiency. 

When applying parallel computing, the computational problem usually needs to 

be broken into discrete pieces, so that it can be solved simultaneously with 

multiple compute resources. Less time is then required than with a single compute 

resource. In this thesis, an algorithm for hierarchical tetrahedral - octahedral 

(HTO) subdivision was studied and implemented with a parallel message passing 

interface (MPI). The data structure was designed in such a way as to store the 

geometric data during the mesh computation. AIso, broadcasting and data 

gathering was used to build up the final geometric file. The experimental results 

and the enhancement of system performance are presented, comparing sequential 

computing with parallel computing. The pro gram was implemented in C 

language/MPI, and the results obtained have made use of the CLUMEQ 1 

supercomputer Centre facilities at McGill University. 

J CLUMEQ stands for Consortium Laval UQAM McGill and Eastern Quebec for high 
performance computing. 
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RÉSUMÉ 

La computation parallèle est de plus en plus fréquemment utilisé dans la méthode 

de production d'un maillage d'éléments 3-D finis en électromagnétique à cause 

des améliorations. de son efficacité. Pour appliquer la computation parallèle, la 

tâche informatique doit généralement être divisé en sous tâches discrètes qui 

peuvent être accomplies simultanément à l'aide d'ordinateurs multiples, réduisant 

ainsi le temps qui aurait été requis par un ordinateur unique. Dans cette thèse, 

nous étudierons un algorithme pour la subdivision tetrahédrale - octahédrale 

hiérarchisée et nous l'exécuterons utilisant une interface de transmission de 

message parallèle. La structure des données sera conçue pour stocker les données 

géométriques dans le processus de production de mailles. Nous procéderons aussi 

à la transmission et la collection des donnés pour compiler le fichier géométrique 

final. Les résultats et les améliorations à la performance du système seront 

présentés, comparant la computation séquentielle avec la computation parallèle. 

Le programme sera exécuté à l'aide du langage C/MPI, et les -résultats seront 

compilés utilisant les super-ordinateurs du centre CLUMEQ à l'Université McGill. 
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Chapter 1 

Introduction 

In the introduction, a basic background will be provided to understand this research 

work. In discussion will be the finite element method, tetrahedral mesh generation, 

and tetrahedral mesh refinement. The motivation and objectives, and the overview of 

this thesis are presented. 

1.1 The Finite Element Method 

The finite element method (FEM) is a numerical tool used in the study and evaluation 

of engineering problems for determining approximate solutions [1, 2]. lt is widely 

used for the analysis of problems govemed by partial di fferenti al and integral 

equations. The principle of the fini te e1ement method is to replace an entire continuous 

domain by a number of sub-domains. It is assumed that the behaviour of the complex 

structure, whose solution may be difficult, can be described by simple functions of the 

coordinates within the element. These functions are known as shape functions, and 

they describe the relationship between the unknowns at the nodes and the unknowns 

within an element [1, 3]. 

The steps to solve a problem are shown in figure 1-1. The first step is that a physical 

problem should be transformed into a mathematical model followed by an 

approximate numerical solution of the mathematical model. For a given mathematical 
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model the FEM is an efficient method of obtaining a numerical approximate solution. 

Then the second step is to divide the region into a number of smaller regions. It is 

necessary to reduce the number of degrees of freedom to a finite number. Thus, in 

using the fini te element method the essence of solving the problem is the discretization 

of the continuous problem by users. The users should properly discretize the problem 

to lead to a solution. The finite element method is a popular discretization technique 

for representing a physical system [4]. 

FEM 

Physical Mathematical Discrete Discrete 
System Model Model Solution 

IDEALIZATION DISCRETIZA TION SOLUTION 

Figure 1-1: A view of the physical simulation process [4]. 

1.2 Tetrahedral Mesh Generation 

A mesh is a list of elements, nodes, faces, edges, and other data that describes the 

computational domain. The geometry in a finite element analysis is represented by the 

collection of finite elements used, known as a mesh. Creating the mesh is often a 

difficult part of 3-D finite element modeling [4, 5]. With the capabilities of modem 

computers software developers have taken advantage of CAD-like interfaces for finite 

element programs. For the purpose of graphical observation, mesh generation can be 

performed graphically, manipulating hnes on a computer screen to form elements. 

Thus, these techniques were developed for the creation of complex geometric models. 
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Geometries that already existed in sorne format can now be used directly for 

simulation, assuming the programs being used have the necessary interface 

capabilities. Once the geometry is entered in the system, most finite element programs 

allow for sorne type of automatic meshing. This is a process by which a finite element 

mesh can be created automatically. 

A tetrahedron is the most flexible element in three dimensions [6]. It is defined by four 

vertices and a function sampled at these vertices leads to a unique function which has 

useful properties for reconstruction and interpolation [6]. 

1.3 Tetrahedral Mesh Refinement 

Mesh refinement is the substituting of elements with modified elements, creating 

points inside domains or on the boundaries of the domains and inserting those points 

in the initial mesh [6-8]. The increase ofthe accuracy ofthe solution in that area of the 

mesh is the purpose of the refinement. 

Successive tetrahedral mesh refinement is crucial in the finite element methods where 

the elements are based on tetrahedral meshes [9]. Zhang [9] proposed two methods for 

subdivision of a regular tetrahedron: labelled-edge subdivision and short - edge 

subdivision. These methods are depicted in figure 1-2. 

When refining a tetrahedron into half-sized tetrahedra, new vertices are added at the 

middle of the six edges. Thus, the four corner tetrahedra and a central octahedron are 
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produced. The octahedron can be further subdivided into four tetrahedra by cutting in 

three ways (by adding the edges aa', bb' or cc') [9]. Figure 1-2 shows that an 

octahedron is subdivided into 4 tetrahedra by ad ding the edge aa'. The 1abeUed-edge 

subdivision scheme employs a direct numbering scheme for vertices being generated 

and subdivides the octahedron in accordance with this numbering [9]. In the short

edge subdivision scheme the shortest of the three interior edges is chosen [9]. In this 

thesis, the splitting shown in figure 1-2 is used for the hierarchical tetrahedral -

octahedral (HTO) subdivision algorithm in chapter 2 to get rid of the octahedra at the 

finest level and to get a mesh of aU tetrahedra. 

Cut off 4 corner tctrahedra 

Cut the inner octahedron 

Figure 1-2: Subdivision ofa tetrahedron into 8 subtetrahedra by adding the edge aa' 

[9]. 
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1.4 Motivation and Objectives 

Tetrahedral finite elements are amongst the simplest shapes into which 3-D regions 

can be broken down, and they are well-established in mesh generation. For the 

purpose of achieving the geometric discretization of the problem domain in 3-D 

electromagnetics, they are extensively used to analyze and design with the FEM [10-

12]. 

The hierarchical tetrahedral - octahedral (HTO) subdivision algorithm [13] generates 

a hierarchy for 3-D finite e1ement (FE) meshes. As subdivisions increase, however, the 

elements in the shape of tetrahedra or octahedra have an enormous number of vertices 

(nodes) and faces. Due to the size ofmany FE problems, a direct sequential solution is 

a time consuming task. Thus, other techniques are useful to solve this problem. 

Computing with different processing elements (PEs) of a FE problem at the same time 

(i.e. parallel computing) should greatly reduce computing time. 

This thesis is focused on analyzing a real parallel algorithm with message passing 

interface (MPI). We first design a sequential pro gram for HTO subdivision, and then 

implement it using parallel computing. Through MPI implementation designed with a 

master - slave parallel computing structure, we figure out the efficiency of 

parallelization, the balance of the workload, and the time cost distribution. 
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1.5 Thesis Overview 

In chapter 2, we investigate a method for hierarchical tetrahedral - octahedral (HTO) 

subdivision, and develop a pro gram to demonstrate sequential computing based on a 

regular refinement strategy. The data structure was designed to store the geometric 

data during the mesh computation. 

Chapter 3 presents the parallelization of the sequential algorithm using MPI. In this 

chapter we present an overview of available parallel architecture and general 

principles for the parallel algorithm design. We also will give an overview ofMPI. We 

designed our parallel structure based on a master - slave structure, considering sub

domain distribution, and load balancing. 

The sequential pro gram design in chapter 2 and the paraUe1 pro gram design in chapter 

3 are then implemented and tested. The results of experiments are given in chapter 4. 

Chapter 5 concludes this research work and investigates the objectives of possible 

future work related to this research. 
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Chapter 2 

The Sequential Program Design for Hierarchical Tetrahedral 

- Octahedral (HTO) Subdivision 

In this chapter we present the sequential pro gram design for hierarchical tetrahedral -

octahedral (HTO) subdivision, so as to simplify later discussion on parallelization of 

the algorithm in chapter 3. The algorithm follows the regular refinement rule to 

generate hierarchical subdivision of meshes. 

2.1 The Regular Refinement Rule 

In the first phase, each tetrahedron marked for refinement is divided into four sub

tetrahedra of equal volume and one octahedron [9, 13, 14]. This is do ne by adding a 

new vertex at the midpoint of each edge, building new sub-tetrahedra with the old 

vertices and the newly inserted vertices. Using this procedure we get four congruent 

sub-tetrahedra at the corners and one octahedron in the centre of the parent tetrahedral, 

as shown in figure 2-1. 

7 



1 

------ ~ 
<l) 

+ 

4 Tetrahedra 1 Octahedron 

Figure 2-1: Tetrahedral regular refinement [13]. 

At the centre of the parent tetrahedron there is one octahedron. The regular refinement 

rule [13, 14] of an octahedron subdivides an element in two steps. First, by connecting 

all edge midpoints of each face and second, by connecting the triangles at the middle 

of the faces to the barycentre of the parent element. The result is six octahedra and 

eight tetrahedra, as shown figure 2-2. 
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+ ~
------ ---

-- ---

~ffiw ~
------ ---

-- ---

60etahedra 8 Tetrahedra 

Figure 2-2: Oetahedral regular refinement [13]. 

2.2 The Data Formatfor Geometrie Computing 

Computational geometry is a rapidly evolving interconnected field, involving 

computer science, engineering and mathematics. Geometrie computing deals with 

geometric problems of an algorithm. Computing with geometry has many applications 

such as computer graphies, eomputer-aided design visualization, and computer vision 
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[15]. In general the input to a geometric algorithm is a set of geometric objects, su ch 

as the sequence of vertices of a polygon or polyhedron. The output is a response to a 

query about the objects, such as whether any of the lines intersect, or perhaps a new 

geometric object. 

For our implementation we will use Geomview [16] as the computational geometric 

too1. "Geomview is an interactive program for viewing and manipulating geometric 

objects. It runs on a wide variety of Unix computers, including Linux, SGI, Sun, and 

HP [16]." The main purpose of Geomview is to display objects whose geometry is 

glVen. 

After compiling our pro gram, the outputs data file must be formatted as required by 

Geomview. Our program is designed to produce formatted outputs for geometric 

computing so that we can use the Geomview tool for viewing and manipulating the 

geometric objects. Geomview computes the following simple data type with the 

information of vertices (nodes) and faces as shown in figure 2-3. The conventional 

suffix for object file format (OFF) files is '. off' [16]. 
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[ST] [Cl [N] [4] [N] OFF 

[Ndim] 

NVertices NFaces NEdges 

x[O] y[O] z[O] 

x[1] y[1] z[1] 

x[NVertices-1] y[NVertices-1] z[NVertices-1] 

Nv v[O] v[1] v[2] 

# Header Keyword 

# Space dimension of vertices 

#NEdges not used or checked 

# 3-D Vertices, possibly with normal 

# Faces 

# Nv = # vertices on this face (i.e. 3) 

# v[O] ... v[2]; vertex indices 

# in range 0 .. NVertices-1 

Figure 2-3: Data fonnat for Geomview [16]. 

OFF [16] files represent collections of pl anar polygons with possibly shared vertices, 

which is a convenient way to describe polyhedra. 

An OFF file may begin with the keyword OFF. Ndim is space dimension of vertices 

and present only if the keyword OFF is presented as NOFF. Three ASCII integers 

follow: NVertices, NFaces, and NEdges. These are the number ofvertices, faces, and 

edges, respectively. Current software does not use nor check NEdges; it need not be 

correct but it must be present. The vertex coordinates follow: dimension * NVertices 

11 



floating-point values. They are implicitly numbcrcd 0 through NVertices-l. 

Dimension is either 3 (default) or 4 (specified by the key character 4 directly before 

OFF in the keyword). Following these are the face descriptions, typically written with 

one line per face. Each has the fonn: N Vertl Vert2 ... VertN [color] 

Let N represent the number of vertices on this face, and Vertl through VertN are 

indices into the list of vertices (in the range 0 .. NVertices-I). 

2.3 The Design of Vertex and Face Refinement 

In order to obtain the data file (.off) for the geometric computing, in this section we 

focus on the design of the vertex and face refinement of tetrahedra and octahedra. 

2.3.1 Tetrahedral Vertex and Face Refinement 

Firstly, we consider the regular refinement of a tetrahedron. The regular refinement 

rule [13] refines each edge at the midpoint and each face into four triangles aIl of 

which are congruent to the parent face. In the first subdivision, six vertices (m[O], 

m[I], m[2], m[3], m[4], m[5]) are added at the midpoint of each edge. We regard the 

initial input data as Vo, VI, V2, and V3. The numbering of the new vertices added is as 

shown in figure 2-4. As shown in figure 2-4, 20 faces are added in the first subdivision 

and the infonnation is stored as the output for the output data file. 
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The functions of add_face ( ), copy _vertex ( ), and find_ vertex ( ) (these functions will 

be discussed in the part of overview of implementation in chapter 4) are used to do 

this job. After the first subdivision, the parent tetrahedron gives rise to the new faces 

of the four child tetrahedra and a child octahedron as follows: 

~ Tetrahedron l: 

~ Tetrahedron 2: 

~ T etrahedron 3: 

~ Tetrahedron 4: 

~ Octahedron: 

face (vO, m[O], m[l]), face (vO, m[O], m[2]), 

face (vO, m[l], m[2]), face (m[O], m[l], m[2]) 

face (vI, m[O], m[3]), face (vI, m[O], m[4]), 

face (vI, m[3], m[4]), face (m[O], m[3], m[4]) 

face (v2, m[l], m[3]), face (v2, m[l], m[5]), 

face (v2, m[3], m[5]), face (m[l], m[3], m[5]) 

face (v3, m[2], m[4]), face (v3, m[2], m[5]), 

face (v3, m[4], m[5]), face (m[2], m[4], m[5]) 

face (m[O], m[l], m[3]), face (m[O], m[2], m[4]), 

face (m[l], m[2], m[5]), face (m[3], m[4], m[5]) 

As we observe the faces of the octahedron, only 4 faces were generated for the 

octahedron. These are just the faces not already generated for the surrounding 

tetrahedra. 
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m[2] 

V, 

v" m[2] 00::------"., m[S] m[2] 

m[S] m[4] 

m[O] ~-------''''' mr31 

m[!] m[O] 

Figure 2-4: Vertices numbering for tetrahedral refinement. 

2.3.2 Octahedral Vertex and Face Refinement 

We observed that an octahedron, according to the regular refinement mIe [13], results 

in six octahedra and eight tetrahedra. These are obtained by connecting an edge 

midpoints of each face and by connecting the triangles at the middle of the faces to the 

barycentre of the parent octahedron. In the first subdivision only one vertex, among 13 

new vertices, is added to the data file since the other 12 vertices are duplicated and are 

already counted in the first subdivision of the parent tetrahedron. However, the 12 

vertices are important for continuous subdivision to occur. The numbering of the 
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octahedra vertices as weIl as their adding and their next subdivision is as shown in 

figure 2-5. 

As shown in figure 2-5, we see a total of 68 faces; 36 faces from six octahedra and 32 

faces fonn eight tetrahedra. However, most of the faces are duplicated. Finally, only 

28 faces among 68 faces excluding duplication are stored for the output data file. The 

functions of add_face ( ), copy _vertex ( ), and find_ vertex ( ) do this job. The newly 

obtained infonnation of faces is as follows: 

~ Tetrahedron 1: 

~ Tetrahedron 2: 

~ Tetrahedron 3: 

~ Tetrahedron 4: 

~ Tetrahedron 5: 

~ Tetrahedron 6: 

~ Tetrahedron 7: 

face (m[l], m[3], m[7]), face (m[l], m[3], m[12]), 

face (m[l], m[7], m[12]), face (m[3], m[7], m[12]) 

face (m[2], m[3], m[12]), face (m[2], m[9], m[12]), 

face (m[3], m[9], m[12]) 

face (m[O], m[2], m[5]), face (m[O], m[2], m[12]), 

face (m[O], m[5], m[12]), face (m[2], m[5], m[12]) 

face (m[O], m[l], m[12]), face (m[O], m[4], m[12]), 

face (m[l], m[4], m[12]) 

face (m[4], m[6], m[8]), face (m[4], m[6], m[12]), 

face (m[4], m[8], m[12]), face (m[6], m[8], m[12]) 

face (m[5], m[6], m[12]), face (m[5], m[lO], m[12]), 

face (m[6], m[lO], m[12]) 

face (m[9], m[lO], m[ll]), face (m[9], m[lO], m[12]), 

face (m[9], m[ll], m[12]), face (m[lO], m[ll], m[12]) 
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~ Tetrahedron 8: face (m[7], m[8], m[12]), face (m[7], m[11], 111[12]), 

face (111[8], m[ Il], m[ 12]) 

'}> Octahedron 1: face (vO, m[O], m[2]), face (vO, m[I], m[3]) 

~ Octahedron 2: face (vI, 111[0], m[5]), face (vI, m[4], m[6]) 

~ Octahedron 3: face (v2, m[l], m[7]), face (v2, m[4], [8]) 

~ Octahedron 4: face (v3, m[2], m[5]), face (v3, m[9], m[lO]) 

~ Octahedron 5: face (v4, m[3], m[7]), face (v4, m[9], m[11]) 

~ Octahedron 6: face (vS, m[6], m[8]), face (vS, m[10], m[ll]) 
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Figure 2-5: Vertices numbering for octahedral refinement: r 
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2.4 The Process Functional Design 

The design of the sequential algorithm used is based on a recursive algorithm. A 

recursive algorithm caUs itself with smaller (or simpler) input values [17]. Then it 

obtains the result for the CUITent input by applying simple operations to the retumed 

values for the smaller (or simpler) input [18]. It may retum to its small input values 

until it reaches the base case. Using recursion, a complex problem can be split into its 

single simplest case. Recursive functions are important paradigms in recursive 

programming, for they only know how to solve the simplest case. 

As we observed in the sequential pro gram design, the recursive algorithm is necessary 

for the design of hierarchical tetrahedral-octahedral subdivision. The major advantage 

of using a recursive algorithm is that it is simpler for the parallelization of the 

sequential program. Because of this advantage, we have selected a recursive algorithm 

to design the pro gram. 

This sequential algorithm is composed of the main function, the process functions, and 

other utility functions. In order to reduce the duplication of element information of 

mesh generation, our design makes use of three different processes of the tetrahedron: 

processTetraO, processTetral and processTetra2. According to the regular tetrahedral 

refinement rule, the process function of each parent tetrahedron generates four child 

process functions of the tetrahedra and a child process function of the octahedron as 

follows: 
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);> The processTetraO generates five process functions: four processTetraO 

functions and one processOcta function. 

);> The processTetral generates five process functions: two processTetraO 

functions, two processTetral functions, and one processOcta function. 

);> The processTetra2 generates five process functions: one processTetra2 

function, three processTetral functions, and one processOcta function. 

According to the regular octahedral refinernent rule [13], the process function of each 

parent octahedron generates eight process functions of the tetrahedron and six process 

functions of the octahedron. In order to reduce the duplication of elernent information 

of rnesh generation, the eight process functions of the tetrahedron are cornposed of 

four processTetra2 functions and four processTetraO functions. 

);> The processOcta generates 14 process functions: four processTetra2 function, 

four processTetra1 functions, and six processOcta function. 

Two diagrarns of the recursive functional flowchart are shown in figure 2-6 and figure 

2-7. Figure 2-7 shows the sirnplified diagrarn of the recursive functional flowchart. 
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~ TetraO ~ Tetral ri Tetra2 ri Oeta 

.. .. .. .. 
1-- TelraO - Tetral ~ Tctra2 ~ Oeta 

1-- TetraO 1-- Telral Telral ~ Oeta 

1-- TetraO TetraO Te(ral ~ Oeta 

1-- TetraO TetraO Tetral ~ Oeta 

Oeta Oeta Oeta ~ Oeta 

Oeta 

Te(ra2 

~ Tetra2 

~ Tetra2 

'--
Tetra2 

TetraO 

~ TetraO 

~ TetraO 

'--
TelraO 

Figure 2-6: Diagram of the recursive functional flowchart: TetraO is processTetraO, 

Tetral is processTetral, Tetra2 is processTetra2, and Oeta is processOcta. 

4x 2x 3x 4x 

Figure 2-7: Simplified diagram ofthe recursive functional flowchart: 

2x, 3x, 4x, and 6x are total numbers of iterations in each process function. 
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2.5 The Design of the Data Flow 

Let us set the initial input data for the ancestor tetrahedral: Va, VI, Vz, and V3. Then 

let us set the newly added six vertices at the midpoint of each edge: m[O], m[ 1], m[2], 

m[3], m[ 4], and m[ 5]. The six vertices and the initial vertices produce new data. They 

become new input data for the next subdivision. After the first subdivision, the input 

data of each child tetrahedron for the next subdivision is as follows: 

~ Tetrahedron 1: (VI, m[O], m[I], m[2]) 

~ Tetrahedron 2: (m[O], VI, m[3], m[4]) 

~ Tetrahedron 3: (m[l], m[3], Vz, m[5]) 

~ Tetrahedron 4:(m[2], m[4], m[5], VJ) 

~ Octahedron: (m[O], m[I], m[2], m[3], m[4], m[5]) 

For octahedral subdivision, let us set 12 vertices at the midpoint of each edge: m[O], 

m[I], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[lO], m[ll]. And let us set 

the vertex at the barycentre: m[12]. After the first octahedral subdivision, the input 

data of each child tetrahedron for the next subdivision is as follows: 

~ Octahedron 1: 

~ Octahedron 2: 

~ Octahedron 3: 

~ Octahedron 4: 

~ Octahedron 5: 

(vO, m[O], m[I], m[2], m[3], m[12]) 

(m[O], vI, m[4], m[5], m[12], m[6]) 

(m[I], m[4], v2, m[12], m[7], m[8]) 

(m[2], m[5], m[12], v3, m[9], m[lO]) 

(m[11], v4, m[7], m[9], m[12], m[3]) 
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~ Octahedron 6: (vS, m[11], m[8], m[10], m[6], m[12]) 

~ Tetrahedron 1: (m[12], m[7], m[3], m[l] ) 

~ Tetrahedron 2: (m[3], m[2], m[12], m[9]) 

~ Tetrahedron 3: (m[12], m[O], m[2], m[5]) 

~ Tetrahedron 4: (m[O], m[4], m[12], m[l]) 

~ Tetrahedron 5: (m[12], m[4], m[6], m[8]) 

~ Tetrahedron 6: (m[6], m[10], m[12], m[5]) 

~ Tetrahedron 7: (m[12], m[lO], m[9], m[11]) 

~ Tetrahedron 8: (m[II], m[8], m[12], m[7]) 

The diagram of data flow is shown in figure 2-8. This diagram shows the data flow, 

such as input data by user, the data generated by each process function, and the stored 

data. 
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[O],m[1 ],m[2],m[3], 
I---+---_----+----I~. [4],m[5],m[6],m7[], 

m8[],m[9],m[10],m[11 ], 
m12] 

Figure 2-8: Diagram of the data flow. 
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Chapter 3 

Parallelization using MPI 

Parallelization is necessary and becomes useful when the processing of a sequential 

computing problem takes too much time. The main goal of parallelization is to use a 

parallel computer to reduce the time needed to solve a single computational problem. 

In the simplest sense, a parallel computer is a collection of processing elements (PEs) 

that cooperatively solve the given task. Parallel computing involves taking a problem 

and di vi ding it into pieces that are to be solved concurrently [19]. Each concurrent 

piece is called a process. In order to pass information, communication and 

synchronization are required between the processes. 

When interactive methods are parallelized on a multiprocessor system the distribution 

of data and the communication scheme between nodes of the system are important for 

an efficient execution. We discuss our strategy and implement the algorithm for 

hierarchical tetrahedral - octahedral (HTO) subdivision using the message passing 

interface (MPI). We will use broadcasting and data gathering to build up the final 

geometric file. 
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3.1 Parallel Models 

A parallel computer is a collection of processing elements (PEs) used to perfonn a 

given task [20, 21]. Parallel computation al models can be classified into four different 

categories: Single Instruction Single Data (SISD), Multiple Instruction Single Data 

(MISD), Single Instruction Multiple Data (SIMD), and Multiple Instruction Multiple 

Data (MIMD) depending on whether single (S) or multiple (M) streams are used for 

instructions (1) and data (D) [20-23]. This classification is too rough: SISD denotes 

sequential computers, MISD is not very practical, SIMD denotes only a small group of 

architectures but MIMD contains tens of architectures [20, 23]. 

Perkowski [23] classifies parallel architectures into SIX practical models: SIMD, 

parallel vector processor, symmetric multiprocessor, massive parallel processor, 

cluster ofworkstations and distributed shared memory. 

» The Single Instruction Multiple Data (SIMD) has only a single control unit so 

that only one process runs. This model suits such an algorithm where input 

data can be divided into several groups and processed concurrently [23]. 

» Parallel vector processor contains a small number of powerful vector PEs 

based on SIMD connected together and to the common shared memory by a 

crossbar network switch [22, 23]. 

» The Symmetric Multiprocessor is weIl suited for any algorithm smce it 

contains a small group of common processing elements that are used in 

sequential computers [22, 23]. Each processing element has equal access to a 
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common shared memory and 1/0 devices via a bus. The disadvantage is that 

the efficiency of the system goes down with the increasing number of PEs, 

because the speed of data transfer is limited. On the other hand, the cost of this 

model is low. 

).- The Massive ParaUe! Processor consists of a large group of common PEso 

Each PE has exclusive access to its distributed local memory. The PEs are 

connected together through the use of a large number of seriaI lines to obtain 

high performance [22, 23]. 

symmetric multiprocessors 

Shared 
memory 

-1 C~~\;OI j+6~ ~[ local ] 
memory 

-1C~~\;OI~~ ~[ local ] 
memory 

~[ local ] 
memory 

massive parallel multiprocessors 

Figure 3-1: Parallel model structures [20]. 

).- Cluster of workstations contains a large group of sequential computers. 

Because these computers are connected together via low cost, this model can 

be extremely cost effective. Each processing unit is a complete computer 

having its own operating system, input-output devices, PE, and local memory 

[22,23]. 
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~ Distributed Shared Mem01y (DSM) combines advantages of the massive 

parallel processor and the symmetric multiprocessor. The model refers to a 

wide c1ass of software and hardware implementations allowing a higher 

number ofPEs [22-24). 

Each parallel model requires the use of a different programming technique in the 

design of a parallel algorithm, because it offers different means. An algorithm 

developed for the architectures with distributed memory can use message passing for 

the communication between the pro cesses. 

3.2 Parallel Programming 

Parallel programming is a programming technique that provides the means for 

executing operations concurrently, either within a single computer, or across a number 

of systems [22, 25, 26]. 

We can identify parallel algorithms according to the use ofprograms and data used in 

parallel algorithms for the decomposition of computation [27]: Multiple Program 

Single Data (MPSD) parallelism, Single Program Multiple Data (SPMD) parallelism, 

and Multiple Program Multiple Data (MPMD) parallelism. 

~ Multiple Program Single Data (MPSD) parallelism subdivides into several 

distinct functions to be applied in series to individual data items. Each function 

is exc1usively assigned to its PE and a data path is provided from one PE to 
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another one. Each program task computes a part of the data and the sub-results 

are combined afterwards. 

~ Single Program Multiple Data (SPMD) parallelism subdivides the data set into 

streams at the beginning of the computation and this partition remains together 

for the whole process. The outputs of the processing of streams obtained by the 

PEs are merged afterwards to get the final result. 

~ Multiple Program Multiple Data (MPMD) parallelism subdivides the input 

data set into multiple streams [22]. These streams are assigned to processors 

executing multiple programs. This parallelism is typically designed for 

architecture with distributed memory. It focuses on problems that cannot be 

processed on a sequential computer because of technical limitations. Therefore, 

parallelism based on MPMD algorithms does not enhance speedup and 

efficiency. 

After examining the parallel model structures and the methods of parallelization of 

algorithms, we have chosen the scheme using the massive parallel processor as our 

parallel platform for our parallel model structure. For this structure, we have 

considered one built around the C programming language and the message passing 

interface (MPI) communication library. AIso, the parallel programming technique 

used is the single program multiple data (SPMD), which is the most extensively used 

method for efficient MPI programming. 
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3.3 MPI Main Functions in this Work 

MPI defines a library of subprograms for parallel computing that can be called from C 

and Fortran 77 programs [19, 28-32]. It has been fully designed to allow maximum 

performance on a wide variety of systems, so it has rapidly received widespread 

acceptance. It is also based on message passing, one of the most widely used and 

powerful techniques for programming parallel systems [28]. The basic communication 

mechanism of MPI is the transmission of data between a pair of processes, one side 

sending, and the other side receiving. 

The fully functional message-passing pro gram in this work is implemented by using 

MPI Send, MPI_Recv, MPI_Gather, MPI_Gatherv, MPI_Bcast, and MPI_Barrier. 

~ MPljnit (&argc, &argv) initializes MPI. It is required in every MPI program 

and must be the first MPI call. 

~ MPI_Finalize ( ) terminates MPI. AlI MPI functions must be called between 

MPI_Init ( ) and MPI_Finalize ( ). 

~ MPI_Comm_size (MPI_Comm_world, numprocs, int *size) determines the 

number of processes that the user has started for this pro gram. The value 

numprocs is actually the size of the group associated with the default 

communicator MPI COMM WORLD. 
- -

~ MPI_Comm_rank (MPI_Comm comm., int *rank) determines the label of the 

calling process. 
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~ MP/_Send (address, count, da ta type, destination, tag, comm) sends a message. 

(address, count, datatype) describes count occurrences of items of the form 

datatype starting at address. 

~ MP/_Recv (address, maxcount, datatype, source, tag, comm, status) receives a 

message. (address, maxcount, datatype) describe the receive buffer as they do 

in the case of MPI Send. 

~ MP/ _ Gather () gathers together values from a group of processes. 

~ MP / _ Gatherv ( ) gathers into specified locations from aIl processes in a group. 

~ MP/_Bcast ( ) broadcasts a message from the process with rank root to aIl 

processes of the group, itself included. It is called by aIl members of group 

using the same arguments. On retum, the contents of root's communication 

buffer has been copied to aIl processes. 

~ MP/_Barrier () blocks until aU processes have reached this routine. It is used 

to synchronize aIl the processes in a communicator. 

3.4 The Design of the Parallization 

The development of a parallei algorithm that is to be executed concurrently is a major 

task. In this research work, the parallel design follows a master-slave algorithm 

structure as shown in figure 3-2. 

When the parallel structure is decided, one needs to decide how to asslgn the 

structures to the processes. In order to implement a task in paraIlel, we should divide 

the computation and the data into pieces. The functional decomposition method is first 
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dividing the computation into pieces and then detennining how to associate data items 

with the individual computations. In contrast, the do main decomposition method [33] 

is first dividing the data into pieces and then detennining how to associate 

computation with the data. We decided to use domain decomposition, a standard 

method in finite element codes, since the whole structure is progressively divided into 

smaller and smaller pieces. 

Master PE Slave PEs 

-
[ 

8. .... 
Inout data §.: 

N· 
!=;. 

J Ç) 
::l 

181 subdivision 

+ c 

+ -(t .., 
Broadcast sub-domain Receive sub-domain !=;. 

assignment assignment o· 
::l 
rJl 

+ 0 ...., 

0 
El 
(1) 

Refine mesh on rJl 
::r-

assiqned domain .., 
(1) 

::n 

+ ::l 
(1) 

El 

[ Send new data file 
(1) 

a 
back 

Receive new data file L 1 

c: ::> 

+ 
Write output data 

Figure 3-2: The Master-Slave model. 
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Figure 3-3 below is about the initial domain decomposition for our parallclization. 

m[2] 

m[5] m[2 

PI: 1 PI: 4 

m[5] 
rn[31 

rn[4] 

PI: 5 

m[!] 

PI: :2 
PI: l 

Figure 3-3: Initial domain decomposition. 

After we detennined a paraUel structure model and a method for partitioning, the next 

step was to detennine the communication pattern between processors. We chose MPI 

because it has been adapted to facilitate inter-processor communications. MPI 

facilitates master-slave paraUel processing, such that aU actions perfonned are 

broadcast to aU the domains when using parallel processing. 
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As we observed, the master processing element (PE) initiates the program by checking 

the input data. Then the master PE can assign the initial set into sub-domains. The 

master PE then broadcasts the complete sub-domain decomposition data and sub-

domain assignments to the corresponding slave PEs, which proceed with the mesh 

refinement of their assigned domains. The master - slave model has the master 

process receiving from aIl the slave processes. The master can work out the 

communication required for aU the processes, and then send the required information 

back to the slave processors, which can act upon it. 

If we assume that each element uses up approximately the same amount of 

calculation-time, then to balance the load we simply need to balance the number of 

elements per process. In general, a process can be required to send or accept objects 

from either side, and works out whether to do so or not. Since we have designed the 

parallelization based on domain decomposition distributing to the slave PEs as shown 

in figure 3-3, the workload assigned among the slave PE 1 - PE 4 is ideally balanced 

because the working domain of each PE 1 to 4 is a congruent tetrahedron. The 

working domain of PE 5 is an octahedron. The table 1 shows the initialload balancing 

to the slave PEso 

Table 3-1: The initialload distribution. 

PE 1 PE 2 PE 3 PE 4 PE 5 

VO, m[O], m[O], V1, m[O], m[1], m[O], m[1], m[O],m[3],m[4], 

m[1], m[2] m[1], m[2] V2.m[2] m[2], V3 m[1], m[2], m[5] 
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Chapter 4 

Experiments and Results 

This chapter presents experimental setup, the testing methods, and the results of the 

implementation and then evaluates the design. 

4.1 Experimental Setup 

The algorithm is implemented using McGill University's CLUMEQ (Consortium 

Laval UQAM McGill and Eastern Quebec for high performance computing) 

Supercomputer Centre facilities as shown in figure 4-1 [34]. Stokes (compute nodes) 

is the system where the jobs are submitted [34]. hn is the head node that is used to 

compile programs [34]. See table 4-1 below for additional details: 

Table 4-1: Stokes and hn 

Stokes Hn 

• Dell PowerEdge 6650 • APPRO-1100 

• Dual Xeon 900 • 2AthlonXP 1900+ 

• 4GB RAM • 3GB RAM 

• Linux RedHat 7.3 • 2*40 GB RAID-O 

• NFS server for the nodes • PBSPro 5.4 server 
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Stokes 

~ _______ Le_g_en_d ________ ~ 
o Ethernet 100baseT 

o 
o 

----------------------------

32 

Marconi 
ESR-5000 Switch 
144 ports 

MYRINET 2000 
M3-E128 

128 ports 2+2 
Gb/s 

1 

---------------------------~ 

Fiber 1 OOObase T 

Myrinet 2000 

hn 

HARDWARE 

-128 Appro 11 DDi 1 U 
-Dual Athlon 1900+ 1.6GHz 
-40GB Hard Disk IDE 
-3GB Memory 
-Floppy, CDROM 
-460 watts power suppl Y 

SOFTWARE 

-Linux Redhat 9.0 
-kernel 2.4.20-8smp 
-PBS Pro 5.4 queuing 
-PGI CDK Cluster 
Development 

-Myrinet GM-2.0.9 drivers 
-MPICH 1.2.5 .. 10 

Figure 4-1: CLUMEQ infrastructure [34]. 
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4.2 Measuring the Performance of the Parallel System 

The parallel pro gram designed should be properly measured and analyzed, since the 

performance of a distributed parallel algorithm is influenced by system architecture, 

system size, and communications delays. ldeally, the performance should increase 

linearly with the system size. However, in reality performance can degrade with the 

growth of the system [21, 35, 36]. 

4.2.1 Speedup Factor 

The speedup factor, S(p), measures the possible benefits of a parallel performance 

over a sequential performance, which is defined as [26]: 

s( ) = Execution time using single processor system 

p Execution time using a multiprocessor with p processors 
(1) 

If t sis used as the execution time of the best sequential algorithm running on a single 

processor and t pis used as the execution time for solving the same problem on a 

multiprocessor, then: S(p) = ~ 
t p 

4.2.2 Efficiency 

(2) 

Efficiency is measured by calculating how long processors are actually being used for 

the computation. The efficiency can be defined as follows [26]: 

Execution time using one processor 
E=----------------'=-----~-------

Execution time using a multiprocessor x number of processors 
(3) 
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Similarly, if t s is also used as the execution time of the best sequential algorithm 

running on a single processor and t pis used as the execution time for solving the same 

problem on a multiprocessor, then: E = _t_, - (4) 
t p x p 

It also can be written as E = S(p) x 100% when E is given as a percentage. (5) 
p 

For instance, if E =50%, the processors are being used for only half of the time during 

the actual computation, on average. An efficiency of 100% occurs where aIl the 

processors are being used on the computation at aIl times, i.e., the speedup factor, 

S(p) is p. 

4.3 Overview of Implementation 

This section describes the implementation of the software described in the previous 

sections. Prior to the development of the paraIlel version, a sequential version was 

written using C code. We used the MPI message-passing library and added it to the 

sequential version to achieve parallelism. The parallel regular refinement algorithm 

was designed based on a master - slave structure. The master PE assumes the role to 

orchestrate the entire set slave PEso It is responsible for establishing the entire model 

for analysis and then distributing data among the slave PEso The master PE initializes 

the vertices of the initial tetrahedron as shown in figure 4-2 and assigns data to each 

slave processor. The slave PEs will be waiting for commands until the master PE 

issues one and then they do the corresponding work on their own copy of the data. 
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if(mype==O) 
{ 

} 

/* Initializing the vertexes of the initial tetrahedron *j 
v[O][O]=O; v[0][1 ]=0; v[0][2]=0; 
v[1 ][0]=0; v[1][1 ]=1; v[1 ][2]=0; 
v[2][0]=0; v[2][1 ]=0; v[2][2]=1; 
v[3][0]=1; v[3][1 ]=0; v[3][2]=0; 

requiredDepth=5; 
middle(v[O], v[1], 0, m[O]); 
middle(v[O], v[2], 0, m[1]); 
middle(v[O], v[3], 0, m[2]); 
middle(v[1], v[2], 0, m[3]); 
middle(v[1], v[3], 0, m[4]); 
middle(v[2], v[3], 0, m[5]); 

Figure 4-2: The master PE initializes the vertices of the initial tetrahedron. 

We chose to implement parallelism, using a Single Program, Multiple Data (SPMD) 

approach. In this approach data is distributed and each slave processor independently 

processes its corresponding data. The main functions implemented are as follows: 

The function middle( ), which provides the midpoints of aIl the edges of the initial 

tetrahedron, was implemented as shown in figure 4-3 [37-40]. 

int middle (float vO[3], float v1 [3], int isCount, float* out) 
{ 

int i; 
if (isCount) 

vertexNumber++; 
for (i = 0; i < 3; i++) 
{ 

out[i] = (vO[i] + v1 [i])/2; 
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if (isCount) 
v[vertexNumberHi] = out[i]; 

} 
return vertexNumber; 

} 

Figure 4-3: The function middle( ). 

The MPI_Bcast ( ) is used to broadcast a message from the process with rank root to 

aIl processes of the group. The MPI _Barrier ( ) is used to synchronize aIl the 

processes in a communicator. Each slave process waits to be assigned [19, 28-30, 41, 

42]. See figure 4-4 below for additional details: 

/* MPI BCAST *j 

MPI_Bcast (m, 18, MPI_FLOAT, 0, MPLCOMM_WORLD); 

/* printf("1 st Beast done\n"); *j 
MPI_Bcast ((void *) &requiredDepth, 1 ,MPUNT,O, MPLCOMM_WORLD); 

/* printf("2nd Beast done\n"); *j 

MPI_Bcast (v, 30, MPLFLOAT,O,MPI_COMM_WORLD); 

/* printf("3rd Bcast done\n"); *j 

/* need to cheek to see if the proper values for v's were sent *j 

MPI_Barrier (MPLCOMM_WORLD); 

if(mype==1 ) 
{ 

v[1 ][O]=m[O][O], v[1][1 ]=m[0][1], v[1 ][2]=m[0][2]; 
v[2][0]=m[1 ][0], v[2][1 ]=m[1][1], v[2][2]=m[1 ][2]; 
v[3][0]=m[2][0], v[3][1 ]=m[2][1], v[3][2]=m[2][2]; 
processTetraO(v[O], m[O], m[1], m[2], 1, requiredDepth); 

} 

if(mype==2) 
{ 

v[O] [O]=m [0][0]; v[O][ 1 ]=m [0][ 1]; v[O] [2]=m [0] [2]; 
v[2][0]=m[3][0]; v[2H1 ]=m[3][1]; v[2][2]=m[3][2]; 
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} 

v[3][0]=m[4][0]; v[3][1 ]=m[4][1]; v[3][2]=m[4][2]; 
processTetraO(m[O], v[1], m[3], m[4], 1, requiredDepth); 

if(mype==3) 
{ 

} 

v[0][0]=m[1 ][0]; v[0][1 ]=m[1][1]; v[0][2]=m[1 ][2]; 
v[1 ][0]=m[3][0]; v[1][1 ]=m[3][1]; v[1 ][2]=m[3][2]; 
v[3][0]=m[5][0]; v[3][1 ]=m[5][1]; v[3][2]=m[5][2]; 
processTetraO(m[1], m[3], v[2], m[5], 1, requiredDepth); 

if(mype==4) 
{ 

} 

v[0][0]=m[2][0]; v[0][1 ]=m[2][1]; v[0][2]=m[2][2]; 
v[1 ][0]=m[4][0]; v[1][1 ]=m[4][1]; v[1 ][2]=m[4][2]; 
v[2][0]=m[5][0]; v[2][1]=m[5][1]; v[2][2]=m[5][2]; 
processTetraO(m[2], m[4], m[5], v[3], 1, requiredDepth); 

if(mype==5) 
{ 

} 

middle(v[O], v[1], 1, m[O]); 
middle(v[O], v[2], 1, m[1]); 
middle(v[O], v[3], 1, m[2]); 
middle(v[1], v[2], 1, m[3]); 
middle(v[1], v[3], 1, m[4]); 
middle(v[2], v[3], 1, m[5]); 
processOcta(m[O], m[3], m[4], m[1], m[2], m[5], 1, requiredDepth); 

Figure 4-4: The MPI_Bcast () and the MPI_Barrier (). 

As the slave PEs are assigned, the four tetrahedra and the octahedron are refined 

regularly in a partition (i.e. mesh refinement). The function processTetraO ( ), 

processTetral ( ), processTetra2 ( ), and processOcta ( ) were implemented for the 

mesh refinement. This implies that no communication with neighbouring partitions 

takes place. See figures 4-5, 4-6, 4-7, and 4-8 below for additional details: 
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void processTetraO (float vO[3], float v1 [3], float v2[3], float v3[3], int depth) 
{ 

} 

int indepth = depth + 1; 
float m[6][3]; 

middle(vO, v1, 1, m[O]); 
middle(vO, v2, 1, m[1]); 
middle(vO, v3, 1, m[2]); 
middle(v1, v2, 1, m[3]); 
middle(v1, v3, 1, m[4]); 
middle(v2, v3, 1, m[5]); 

if (indepth >= requiredDepth) 
{ 

} 

add_face(vO, m[O], m[1]); 
add_face(vO, m[O], m[2]); 
add_face(vO, m[1], m[2]); 
add_face(m[O], m[1], m[2]); 

add_face(v1, m[O], m[3]); 
add_face(v1, m[O], m[4]); 
add_face(v1, m[3], m[4]); 
add_face(m[O], m[3], m[4]); 

add_face(v2, m[1], m[3]); 
add_face(v2, m[1], m[5]); 
add_face(v2, m[3], m[5]); 
add_face(m[1], m[3], m[5]); 

add_face(v3, m[2], m[4]); 
add_face(v3, m[2], m[5]); 
add_face(v3, m[4], m[5]); 
add_face(m[2], m[4], m[5]); 

add_face(m[O], m[1], m[3]); 
add_face(m[O], m[2], m[4]); 
add_face(m[1], m[2], m[5]); 
add_face(m[3], m[4], m[5]); 

return; 

processTetraO(vO, m[O], m[1], m[2], indepth); 
processTetraO(m[O], v1, m[3], m[4], indepth); 
processTetraO(m[1], m[3], v2, m[5], indepth); 
processTetraO(m[2], m[4], m[5], v3, indepth); 
processOcta(m[O], m[3], m[4], m[1], m[2], m[5], indepth); 

Figure 4-5: The function processTetraO ( ). 
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void processTetra1 (float vO[3], float v1 [3], float v2[3], float v3[3], int depth) 
{ 

} 

int indepth = depth + 1; 
float m[6][3]; 

middle(vO, v1, 0, m[O]); 
middle(vO, v2, 1, m[1]); 
middle(vO, v3, 1, m[2]); 
middle(v1, v2, 1, m[3]); 
middle(v1, v3, 1, m[4]); 
middle(v2, v3, 1, m[5]); 

if (indepth >= requiredDepth) 
{ 

} 

add_face(vO, m[O], m[1]); 
add_face(vO, m[O], m[2]); 
add_face(vO, m[1], m[2]); 
add_face(m[O], m[1], m[2]); 

add_face(v1, m[O], m[3]); 
add_face(v1, m[O], m[4]); 
add_face(v1, m[3], m[4]); 
add_face(m[O], m[3], m[4]); 

add_face(v2, m[1], m[3]); 
add_face(v2, m[1], m[5]); 
add_face(v2, m[3], m[5]); 
add_face(m[1], m[3], m[5]); 

add_face(v3, m[2], m[4]); 
add_face(v3, m[2], m[5]); 
add_face(v3, m[4], m[5]); 
add_face(m[2], m[4], m[5]); 

add_face(m[O], m[1], m[3]); 
add_face(m[O], m[2], m[4]); 
add_face(m[1], m[2], m[5]); 
add_face(m[3], m[4], m[5]); 
return; 

processTetra1 (vO, m[O], m[1], m[2], indepth); 
processTetra1 (m[O], v1, m[3], m[4], indepth); 
processTetraO(m[1], m[3], v2, m[5], indepth); 
processTetraO(m[2], m[4], m[5], v3, indepth); 
processOcta(m[O], m[3], m[4], m[1], m[2], m[5], indepth); 

Figure 4-6: The function processTetral ( ). 
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void processTetra2 (float vO[3], float v1 [3], tloat v2[3], float v3[3], int depth) 
{ 

} 

int indepth = depth + 1; 
float m[6][3]; 

middle(vO, v1, 0, m[O]); 
middle(vO, v2, 0, m[1]); 
middle(vO, v3, 0, m[2]); 
middle(v1, v2, 1, m[3]); 
middle(v1, v3, 1, m[4]); 
middle(v2, v3, 1, m[5]); 

if (indepth >= requiredDepth) 
{ 

} 

add_tace(vO, m[O], m[1]); 
add_face(vO, m[O], m[2]); 
add_face(vO, m[1], m[2]); 
add_face(m[O], m[1], m[2]); 

add_face(v1, m[O], m[3]); 
add_face(v1, m[O], m[4]); 
add_face(v1, m[3], m[4]); 
add_face(m[O], m[3], m[4]); 

add_face(v2, m[1], m[3]); 
add_face(v2, m[1], m[5]); 
add_face(v2, m[3], m[5]); 
add_face(m[1], m[3], m[5]); 

add_face(v3, m[2], m[4]); 
add_face(v3, m[2], m[5]); 
add_face(v3, m[4], m[5]); 
add_face(m[2], m[4], m[5]); 

add_face(m[O], m[1], m[3]); 
add_face(m[O], m[2], m[4]); 
add_face(m[1], m[2], m[5]); 
add_face(m[3], m[4], m[5]); 

return; 

processTetra2(vO, m[O], m[1], m[2], indepth); 
processTetra1 (m[O], v1, m[3], m[4], indepth); 
processTetra1 (v2, m[1], m[3], m[5], indepth); 
processTetra1 (m[2], v3, m[4], m[5], indepth); 
processOcta(m[O], m[3], m[4], m[1], m[2], m[5], indepth); 

Figure 4-7: The function processTetra2 ( ). 
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void processOcta (float vO[3], float v1 [3], float v2[3], float v3[3], float v4[3], float v5[3], 
int depth) 
{ 

int indepth = depth + 1; 
float m[13][3]; 

middle(vO, v1, 0, m[O]); 
middle(vO, v2, 0, m[1]); 
middle(vO, v3, 0, m[2]); 
middle(vO, v4, 0, m[3]); 
middle(v1, v2, 0, m[4]); 
middle(v1, v3, 0, m[5]); 
middle(v1, v5, 0, m[6]); 
middle(v2, v4, 0, ml?]); 
middle(v2, v5, 0, m[8]); 
middle(v3, v4, 0, m[9]); 
middle(v3, v5, 0, m[10]); 
middle(v4, v5, 0, m[11]); 
middle(v2, v3, 1, m[12]); 

if (indepth >= requiredDepth) 
{ 

add_face(m[1], m[3], ml?]); 
add_face(m[1 j, m[3], m[12]); 
add_face(m[1], ml?], m[12]); 
add_face(m[3], ml?], m[12]); 

add_face(m[2], m[3], m[12]); 
add_face(m[2], m[9], m[12]); 
add_face(m[3], m[9], m[12]); 

add_face(m[O], m[2], m[5]); 
add_face(m[O], m[2], m[12]); 
add_face(m[O], m[5], m[12]); 
add_face(m[2], m[5], m[12]); 

add_face(m[O], m[1], m[12]); 
add_face(m[O], m[4], m[12]); 
add_face(m[1], m[4], m[12]); 

add_face(m[4], m[6], m[8]); 
add_face(m[4], m[6], m[12]); 
add_face(m[4], m[8], m[12]); 
add_face(m[6], m[8], m[12]); 

add_face(m[5], m[6], m[12]); 
add_face(m[5], m[10], m[12]); 
add_face(m[6], m[10], m[12]); 

add_face(m[9], m[10], m[11]); 
add face(m[9], m[10], m[12]); 
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} 

} 

add_face(m[9], m[11], m[12]); 
add_face(m[10], m[11], m[12]); 

add_face(m[?], m[8], m[12]); 
add_face(m[?], m[11], m[12]); 
add_face(m[8], m[11], m[12]); 

add_face(vO, m[O], m[2]); 
add_face(vO, m[1], m[3]); 
add_face(v1, m[O], m[5]); 
add_face(v1, m[4], m[6]); 
add_face(v2, m[1], ml?]); 
add_face(v2, m[4], m[8]); 
add_face(v3, m[2], m[5]); 
add_face(v3, m[9], m[10]); 
add_face(v4, m[3], ml?]); 
add_face(v4, m[9], m[11]); 
add_face(v5, m[6], m[8]); 
add_face(v5, m[10], m[11]); 

return; 

processTetra2(m[12], ml?], m[3], m[1], indepth); 
processTetraO(m[3], m[2], m[12], m[9], indepth); 
processTetra2(m[12], m[O], m[2], m[5], indepth); 
processTetraO(m[O], m[4], m[12], m[1], indepth); 
processTetra2(m[12], m[4], m[6], m[8], indepth); 
processTetraO(m[6], m[10], m[12], m[5], indepth); 
processTetra2(m[12], m[10], m[9], m[11], indepth); 
processTetraO(m[11], m[8], m[12], m[?], indepth); 
processOcta(vO, m[O], m[1], m[2], m[3], m[12], indepth); 
processOcta(m[O], v1, m[4], m[5], m[12], m[6], indepth); 
processOcta(m[1], m[4], v2, m[12], ml?], m[8], indepth); 
processOcta(m[2], m[5], m[12], v3, m[9], m[10], indepth); 
processOcta(m[11], v4, ml?], m[9], m[12], m[3], indepth); 
processOcta(v5, m[11], m[8], m[10], m[6], m[12], indepth); 

Figure 4-8: The function processOcta ( ). 

The master PE gathers information about locally refined nodes (vertices) and faces. 

Initially, it retrieves from the partition the number of tetrahedra and octahedra 

assigned for regular refinement. The function copy _vertex ( ), add face ( ), 
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find _vertex ( ) were implemented in order to obtain the information for the geometric 

computing. See figures 4-9, 4-10, and 4-11 below for additional details: 

void copy_vertex (float vO[3], float* out) 
{ 

int i; 

for (i = 0; i < 3; i++) 
{ 

out[i] = vO[i]; 
} 

} 

Figure 4-9: The function copy _vertex ( ). 

~------------------~-------------------------------------~ 

void add_face (float vO[3], float v1 [3], float v2[3]) 
{ 

} 

copy_vertex(vO, f[faceNumber][O]); 
copy _ vertex(v1, f[faceNumber][1]); 
copy _ vertex(v2, f[faceNumber][2]); 
faceNumber++; 

Figure 4-10: The function add_face ( ). 

long find_vertex (float vO[3]) 
{ 

long i, j = 0; 
for (i = 0; i <= vertexNumber; i++) 
{ 

if (v[iHO] == vO[O]) 
{ 

} 

if (v[i][1] == vO[1]) 
{ 

} 

if (v[i][2] == vO[2]) 
{ 

return i; 
} 
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} 
return -1; 

Figure 4-11: The function tind _vertex ( ). 

The MPI _ Gather( ) was also implemented as shown In tigure 4-12 for the 

information gathering together from the group of processes. 

MPI_Gather (&vertexNumber, 1, MPUNT, vtx, 1, MPUNT, 0, 
MPI_COMM_WORLD); 
MPI_Gather (&faceNumber, 1, MPUNT, face, 1, MPUNT, 0, 

MPI_COMM_WORLD); 

for (i = 0; i < faceNumber; i++) 
{ 

} 

facelist[i][O]=find _ vertex(f[i] [0]); 
facelist[i][1 ]=find_ vertex(f[i][ 1]); 
facelist[i][2]=find_ vertex(f[i][2]); 

1* building the facelist for gathering operation slave nodes *1 

if(mype==O) 
{ 

for(i=O; i<6; i++) 
{ 

vtx[i]=3*vtx[i]; 
face[i]=3*face[i]; 

sum=O; 
facesum=O; 

} 

for(i=O; i<6; i++) 
{ 

sum=sum+vtx[i]; 
facesum=facesum+face[i]; 

\ } 

recvbuf = (float *) malloc(sizeof(float)*sum); 
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face_recvbuf:= (int *) malloc(sizeof(int)*facesum); 

if(recvbuf==NULL) 
printf("Couldn't allocate memory to recvbuf!!\n"); 

disp[O]=O; 

for(i=1 ;i<6;i++) 
{ 

disp[i]=disp[i-1 ]+vtx[i-1]; 
} 

face _ d isp[O]=O; 

for(i=1 ;i<6;i++) 
{ 

face _ disp[i]=face _ disp[i-1]+face[i-1 ]; 
} 1* Process 0 *1 

Figure 4-12: The MPI_Gather (). 

The gathered information must be stored into specified locations from aIl processes in 

the group. Finally, The MPI_Gatherv( ) was implemented for this purpose as shown 

in figure 4-13. 

MPI_Gatherv ( v, 3*vertexNumber, MPI_FLOAT, recvbuf, vtx, disp, 
MPI_FLOAT,O, MPI_COMM_WORLD); 

MPI_Gatherv (facelist, 3*faceNumber, MPUNT,face_recvbuf, face, 
face_disp, MPUNT,O, MPI_COMM_WORLD); 

time1 ); 

endtime=MPI_WtimeO; 

printf("Total Time: Process %d Time:%f\n", mype, endtime-starttime); 
printf("Gather Time: Process %d Time:%f\n", mype, endtime-time2); 
printf("Refinement Time: Process %d Time:%f\n", mype, time1-starttime); 
printf("lnformation Gathering Time: Process %d Time:%f\n", mype, time2-

if(mype==O) 
{ 
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} 

sprintf(resultfile, "Final_gathered.off'); 

if( (fp=fopen(resultfile, "w"»==NULL) 
printf("Coudn't open %s proces %d \n", resultfile, mype); 

fprintf(fp, "OFF\n"); 
fprintf(fp, "%d %d %d\n", sum/3, facesum/3, faceNumber); 

for (i = 0; i < sum; i=i+3) 
{ 

fprintf(fp, "%f %f %f\n", recvbuf[i], recvbuf[i+1], recvbuf[i+2]); 
} 

fprintf(fp, "\n"); 

{ 

{ 

} 

start=O; 
end=O; 
offset=O; 

forU=1 ;j<6;j++) 

start=start+faceU-1 ]; 
end=start+faceU]; 
offset=offset+(int)vtxU-1 ]/3; 

for (i = start; i < end; i=i+3) 

fprintf(fp, "3 %d %d %d\n", face_recvbuf[i]+offset, 
face_recvbuf[i+1]+offset, face_recvbuf[i+2]+offset); 

fprintf(fp, "\n"); 

fclose(fp ); 
free(face_recvbuf); 
free( recvbuf); 

Figure 4-13: The MPI_Gatherv (). 
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4.4 Results and Evaluation 

In our experiments, we first compared the execution time of the sequential computing 

with that of the parallel computing. For the parallel computing we used 6 PEso Then 

we observed the timing cost distribution of each PE. Lastly, the timing cost of mesh 

refinement was evaluated. 

4.4.1 Sequential vs. Parallel execution time 

Experimental results and system performance are presented, companng sequential 

computing with parallel computing using 6 PEso The results are summarized in table 

4-2 and related graphs are shown in figures 4-14, 4-15, and 4-16. 

Table 4-2: Timing results for sequential vs. parallel time cost. 

Subdivisions No. of Sequential Parallel Speedup 
Efficiency 

(Iterations) Elements Time (5) Time (5) Comparison (%) 

2 64 NIA 0.000632 NIA NIA 

3 512 0.006 0.001686 3.559 59.312 

4 4096 0.17 0.058802 2.891 48.184 

5 32768 8.95 3.743384 2.390 39.848 

6 262144 1181.47 569.67 2.074 34.565 
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Figure 4-14: Sequential vs. Parallel execution time cost using 6 PEso 

Figure 4-14 shows that in general the parallel execution time is faster then the 

sequential execution time. 
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Figure 4-15: Speedup comparison. 
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From the speedup comparison graph in figure 4-15, it is clear that the speedup factor 

(S p ) slowly goes down as the number of elements increases. 
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Figure 4-16: Efficiency. 

The efficiency graph in figure 4-16 shows c1early that the efficiency decreases as the 

number of elements increases. The performance above is caused by the significant 

overload of communication between PEs as the number of elements increases (details 

are presented in the section 4.4.2). 
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4.4.2 Time cost distribution of each PE 

Experimental results and time co st distribution of each PE are presented. The concept 

of measuring time cost distribution is shown in figure 4-17. 

~ tl (Mesh refinement computation time): for mesh refinement computation 

~ t2 (Pre-processing time): for gathering information to the pre-processor for 

the MPI Gather 

~ t3 (Data gathering time): for data gathering into specified locations from aIl 

pro cesses In a group 

~ Ove raIl time cost = t1 + t2 + t3 
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Figure 4-17: Concept ofmeasuring time cost. 
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Table 4-3 and figure 4-18 below give the distribution time cost results of each PE for 

the 2nd subdivision. 

Table 4-3: Time cost (seconds) results of each PE: 2nd subdivision. 

Distribution 

Mesh 
refinement 

Pre-
processing 

Data 
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Overall 
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Figure 4-18: Time cost distribution: 2nd subdivision. 
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Table 4·4 and figure 4·19 below give the distribution time cost results of each PE for 

the 3rd subdivision. 

Table 4-4: Time cost (seconds) results of each PE: 3rd subdivision. 
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Figure 4-19: Time cost distribution: 3rd subdivision. 
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Table 4-5 and figure 4-20 below give the distribution time cost results of each PE for 

the 4th subdivision. 

Table 4-5: Time co st (seconds) results of each PE: 4th subdivision. 
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Figure 4-20: Time cost distribution: 4th subdivision. 
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Table 4-6 and figure 4-21 below give the distribution time cost results of each PE for 

the 5th subdivision. 

Table 4-6: Time cost (seconds) results of each PE: 5th subdivision. 
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Figure 4-21: Time cost distribution: 5th subdivision. 
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Table 4-7 and figure 4-22 below give the distribution time cost results of each PE for 

the 6th subdivision. 

Table 4-7: Time cost (seconds) results of each PE: 6th subdivision. 
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Figure 4-22: Time cost distribution: 6th subdivision. 
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Figure 4-18 to 4-22 show the time cost distribution comparison of each PE. These 

figures show that overaIl the workload is weIl balanced. These also clearly show that 

the more the elements increase, the more the time ratio of pre-processing (information 

gathering; communication cost) increases. The communication cost is significant due 

to overload for communication between PEs as the number of elements increases. It is 

clear that the delay between times, when the first and the last contacted processor is 

able to start, grows with the number of elements. This negatively influences the 

workload balance. Therefore, the performance of the parallel algorithm drops. In order 

to reduce the communication cost, a pipelined communication strategy must be 

designed for our mesh refinement scheme. However, the design seems to be quite 

efficient in general, even though the mesh refinement algorithm does require a lot of 

communication. 

4.4.3 Time Cost of Mesh Refinement 

Mesh refinement is the essential part of hierarchical tetrahedral - octahedral (HTO) 

subdivision. From table 4-3 to table 4-7, we compare timing results of mesh 

refinement for each PE and observe the balance of the workload assigned to each PE. 

Then, we compare it with the sequential computation time cost. Experimental results 

and time cost of mesh refinement are presented. The table and corresponding graphs 

are given below. Table 4-8 gives the timing results for MPI for 5 mesh refinement 

iterations. 
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Table 4-8: Time cost ( seconds) of mesh refinement. 

Mesh ID of Each PE 
Refinement 
Iterations PE 0 PE 1 PE 2 PE 3 PE4 PE 5 

2 0.000261 0.000375 0.000297 0.000385 0.000174 0.00018 

3 0.000283 0.000303 0.000313 0.000313 0.000196 0.000256 

4 0.000265 0.000668 0.000641 0.000652 0.000384 0.001029 

5 0.000356 0.001915 0.002078 0.001791 0.00195 0.006032 

6 0.000281 0.014 0.014 0.012 0.014 0.048 

Time cost of mesh refinement 

0.01 
fi) 
'0 
C 

i=1I 
a 
u 

m 31 Cl> 
.!:?-
ûî 4! 

! ! a 

~ u 
Cl> 
E 
i= 

0.001 

o 2 3 4 5 6 

ID of each PE 

Figure 4-23: Time cost of mesh refinement. 
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The figure 4-23 shows that PEs l to 4 have similar computation time for a given 

iteration, for the workload assigned to them are ideally balanced. PE 5 has a little 

longer computation time as the iterations increase, because its working domainis an 

octahedron. The timing results for mesh refinement comparing sequential computing 

with each PE are presented in figure 4-24 and 4-25. 

Table 4-9: Timing results for sequential computing vs. MPI PEso 

Mesh Seque ID of Each PE 
Refinement 
Iterations 

-ntial PE 0 PE 1 PE 2 PE 3 PE4 PE 5 

5 0.015 0.000356 0.001915 0.002078 0.001791 0.00195 0.006032 

6 0.085 0.000281 0.014 0.014 0.012 0.014 0.048 

Timin~ comparison 01 mesh relinement: 5th iteration 

0.016 

0.014 

0.012 

~ 0.01 

~ i 0.008 

Q) 

E 
F 0.006 

0.004 

0.002 

Sequential PE 0 PE 1 PE 2 PE 3 PE4 PE 5 

Figure 4-24: Timing comparison ofmesh refinement: 

Sequential computing vs. MPI PEs at 5th iteration. 
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Figure 4-25: Timing comparison ofmesh refinement: 

Sequential computing vs. MPI PEs at 6th iteration. 

The above figures clearly show that the time cost for each mesh refinement iteration is 

indeed reduced using MPI. 

62 



Chapter 5 

Conclusions 

The parallel mesh refinement algorithm for hierarchical tetrahedral - octahedral (HTO) 

subdivision was successfully implemented using MPI. The efficiency of parallel 

computing using speedup factor was observed. The distribution time cost for mesh 

refinement computation, pre-processing for data gathering, and data gathering were 

also presented. 

From the performance analysis results presented in the previous chapter, we have 

shown the efficiency of parallel computing over sequential computing. Parallel 

execution time is much faster then the sequential time, although the speedup factor 

slowly goes down as the number of elements increase. Most of aIl, we have clearly 

shown that the time cost for the mesh refinement is significantly reduced using MPI. 

The parallel method for hierarchical tetrahedral-octahedral subdivision for 3-D finite 

element mesh refinement indeed enhanced the performance. 

The results of the distribution time cost shows that the communication delay is 

significant as the number of elements increases due to the build up of a geometric file. 

In order to reduce the communication delay, a pipelined communication strategy for 

the mesh refinement algorithm is necessary. 
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5.1 The Original Contribution Appearing in a Publication 

The research and experimental results related to parallel hi erarchi cal tetrahedral

octahedral subdivision: modeling, simulation and validation was accepted for 

publication in conference proceedings at CEFC 2006 (IEEE Conference on 

Electromagnetic Field Computation). CEFC 2006 was held in Miami (USA), April 30 

- May 3, 2006 [43]. This contribution will also appear in IEEE Transactions on 

Magnetics [44] . 

5.2 Future Work 

There is possible future work in continuing this project or in this area. We have 

worked with a fixed number of processing elements (PEs) - 1 master PE and 5 slave 

PEs because we considered 4 tetrahedra and 1 octahedron after the first subdivision of 

an initial tetrahedron and allocated each element to each PE slave. However, it would 

be necessary to investigate the parallel algorithm using varying numbers of salve PEs 

with various sub-domain distributions. 

Since the communication delay is significant due to the build up of a geometric file, it 

would be beneficial to modifying the algorithm by the addition of a pipelined 

communication strategy for the mesh refinement algorithm. 
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