
ParaUel Implementation of Hierarchical

Tetrahedral - Octahedral (HTO) Subdivision

for 3-D Finite Element Mesh Refinement

by

Chulhoon Park

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of Master of Engineering.

Computational Analysis and Design Laboratory

Department of Electrical and Computer Engineering

Mc Gill University

Montréal, Canada

June 2006

© Chulhoon Park, 2006

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page cou nt,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-28613-5
Our file Notre référence
ISBN: 978-0-494-28613-5

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Parallel computing is being used more and more frequently in 3-D finite element

(FE) mesh generation in electromagnetics, due to its improvements in efficiency.

When applying parallel computing, the computational problem usually needs to

be broken into discrete pieces, so that it can be solved simultaneously with

multiple compute resources. Less time is then required than with a single compute

resource. In this thesis, an algorithm for hierarchical tetrahedral - octahedral

(HTO) subdivision was studied and implemented with a parallel message passing

interface (MPI). The data structure was designed in such a way as to store the

geometric data during the mesh computation. AIso, broadcasting and data

gathering was used to build up the final geometric file. The experimental results

and the enhancement of system performance are presented, comparing sequential

computing with parallel computing. The pro gram was implemented in C

language/MPI, and the results obtained have made use of the CLUMEQ 1

supercomputer Centre facilities at McGill University.

J CLUMEQ stands for Consortium Laval UQAM McGill and Eastern Quebec for high
performance computing.

i

RÉSUMÉ

La computation parallèle est de plus en plus fréquemment utilisé dans la méthode

de production d'un maillage d'éléments 3-D finis en électromagnétique à cause

des améliorations. de son efficacité. Pour appliquer la computation parallèle, la

tâche informatique doit généralement être divisé en sous tâches discrètes qui

peuvent être accomplies simultanément à l'aide d'ordinateurs multiples, réduisant

ainsi le temps qui aurait été requis par un ordinateur unique. Dans cette thèse,

nous étudierons un algorithme pour la subdivision tetrahédrale - octahédrale

hiérarchisée et nous l'exécuterons utilisant une interface de transmission de

message parallèle. La structure des données sera conçue pour stocker les données

géométriques dans le processus de production de mailles. Nous procéderons aussi

à la transmission et la collection des donnés pour compiler le fichier géométrique

final. Les résultats et les améliorations à la performance du système seront

présentés, comparant la computation séquentielle avec la computation parallèle.

Le programme sera exécuté à l'aide du langage C/MPI, et les -résultats seront

compilés utilisant les super-ordinateurs du centre CLUMEQ à l'Université McGill.

ii

ACKNOWLEDGMENTS

Firstly, 1 give thanks to my Lord, Christ Jesus. My Lord gave me strength and

wisdom to fulfill the mission of this research work. AIso, 1 would like to thank all

the people who have supported me to carry out this work to the end. The greatest

thanks belong to my supervisor Dr. Dennis D. Giannacopoulos for his guidance in

this research work, and for many helpful discussions. 1 am also very thankful to

Da Qi Ren and Baruyr Mirican, my colleagues at the CAD Laboratory, for

providing advice and giving insights that greatly helped me in the work of this

thesis. Last, but not the least, 1 would like to thank my wife, Joanna Park for

always being encouraging and supportive.

iii

TABLE OF CONTENTS

TABLE OF CONTENTS ... iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

Chapter 1 Introduction .. 1

1.1 The Finite Element Method .. 1

1.2 Tetrahedral Mesh Generation ... 2

1.3 Tetrahedral Mesh Refinement .. 3

1.4 Motivation and Objectives .. 5

1.5 Thesis Overview ... 6

Chapter 2 The Sequential Program Design for Hierarchical Tetrahedral- Octahedral (HTO)

Subdivision ... 7

2.1 The Regular Refinement Rule .. 7

2.2 The Data Format for Geometric Computing ... 9

2.3 The Design of Vertex and Face Refinement.. ... 12

2.3.1 Tetrahedral Vertex and Face Refinement. ... 12

2.3.2 Octahedral Vertex and Face Refinement... .. 14

2.4 The Process Functional Design .. 18

2.5 The Design of the Data Flow .. 21

Chapter 3 Parallelization using MPI ... 24

3.1 Parallel Models ... 25

3.2 Parallel Programming ... 27

3.3 MPI Main Functions in this Work .. 29

3.4 The Design of the Parallization .. 30

Chapter 4 Experiments and Results .. 34

4.1 Experimental Setup ... 34

4.2 Measuring the Performance of the Parallel System .. 36

iv

4.2.1 Speedup Factor .. 36

4.2.2 Efficiency .. 36

4.3 Overview of Implementation .. 37

4.4 Results and Evaluation ... 50

4.4.1 Sequential vs. Parallel execution time ... 50

4.4.2 Time cost distribution of each PE ... 53

4.4.3 Time Cost of Mesh Refinement .. 59

Chapter 5 Conclusions .. 63

5.1 The Original Contribution Appearing in a Publication ... 64

5.2 Future Work .. 64

LIST OF REFERENCES .. 65

v

LIST OF TABLES

Table 3-1: The initialload distribution ... 33

Table 4-1: Stokes and hn ... 34

Table 4-2: Timing results for sequential vs. paraUel time cost ... 50

Table 4-3: Time cost (seconds) results of each PE: 20d subdivision ... 54

Table 4-4: Time cost (seconds) results of each PE: 3rd subdivision .. 55

Table 4-5: Time cost (seconds) results ofeach PE: 4th subdivision .. 56

Table 4-6: Time cost (seconds) results ofeach PE: 5th subdivision .. 57

Table 4-7: Time cost (seconds) results of each PE: 6th subdivision .. 58

Table 4-8: Time cost (seconds) ofmesh refinement. .. 60

Table 4-9: Timing results for sequential computing vs. MPI PEso ... 61

vi

LIST OF FIGURES

Figure 1-1: A view of the physical simulation process [4]. .. 2

Figure 1-2: Subdivision of a tetrahedron into 8 subtetrahedra by adding the edge aa' [9].4

Figure 2-1: Tetrahedral regular refinement [13] ... 8

Figure 2-2: Octahedral regular refinement [13] .. 9

Figure 2-3: Data format for Geomview [16] ... 11

Figure 2-4: Vertices numbering for tetrahedral refinement. ... 14

Figure 2-5: Vertices numbering for octahedral refinement: m[12] is barycentre 17

Figure 2-6: Diagram of the recursive functional flowchart: TetraO is processTetraO, Tetral is

processTetral, Tetra2 is processTetra2, and Octa is processOcta ... 20

Figure 2-7: Simplified diagram of the recursive functional flowchart: ... 20

2x, 3x, 4x, and 6x are total numbers of iterations in each process function 20

Figure 2-8: Diagram of the data flow .. 23

Figure 3-1: Parallel model structures [20] .. 26

Figure 3-2: The Master-Slave mode!. ... 31

Figure 3-3: Initial domain decomposition ... 32

Figure 4-1: CLUMEQ infrastructure [34] ... 35

Figure 4-2: The master PE initializes the vertices of the initial tetrahedron 38

Figure 4-3: The function middle() .. 39

Figure 4-4: The MPI_Bcast () and the MPI_Barrier () ... 40

Figure 4-5: The function processTetraO () ... 41

Figure 4-6: The function processTetral () ... 42

Figure 4-7: The function processTetra2 () .. .43

Figure 4-8: The function processOcta ()45

Figure 4-9: The function copy _vertex () .. 46

Figure 4-10: The function add_face () .. .46

Figure 4-11 : The function find _vertex () .. .47

vii

Figure 4-12: The MPI_Gather () .. 48

Figure 4-13: The MPI_Gatherv () .. 49

Figure 4-14: Sequential vs. Parallel execution time cost using 6 PEs ... 51

Figure 4-15: Speedup comparison .. 51

Figure 4-16: Efficiency ... 52

Figure 4-17: Concept ofmeasuring time cost. ... 53

Figure 4-18: Time cost distribution: 2nd subdivision ... 54

Figure 4-19: Time cost distribution: 3rd subdivision .. 55

Figure 4-20: Time cost distribution: 4th subdivision .. 56

Figure 4-21: Time cost distribution: 5th subdivision .. 57

Figure 4-22: Time cost distribution: 6th subdivision ... 58

Figure 4-23: Time cost ofmesh refinement. ... 60

Figure 4-24: Timing comparison ofmesh refinement: ... 61

Sequential computing vs. MPI PEs at 5th iteration .. 61

Figure 4-25: Timing comparison of mesh refinement: ... 62

Sequential computing vs. MPI PEs at 6th iteration .. 62

viii

Chapter 1

Introduction

In the introduction, a basic background will be provided to understand this research

work. In discussion will be the finite element method, tetrahedral mesh generation,

and tetrahedral mesh refinement. The motivation and objectives, and the overview of

this thesis are presented.

1.1 The Finite Element Method

The finite element method (FEM) is a numerical tool used in the study and evaluation

of engineering problems for determining approximate solutions [1, 2]. lt is widely

used for the analysis of problems govemed by partial di fferenti al and integral

equations. The principle of the fini te e1ement method is to replace an entire continuous

domain by a number of sub-domains. It is assumed that the behaviour of the complex

structure, whose solution may be difficult, can be described by simple functions of the

coordinates within the element. These functions are known as shape functions, and

they describe the relationship between the unknowns at the nodes and the unknowns

within an element [1, 3].

The steps to solve a problem are shown in figure 1-1. The first step is that a physical

problem should be transformed into a mathematical model followed by an

approximate numerical solution of the mathematical model. For a given mathematical

1

model the FEM is an efficient method of obtaining a numerical approximate solution.

Then the second step is to divide the region into a number of smaller regions. It is

necessary to reduce the number of degrees of freedom to a finite number. Thus, in

using the fini te element method the essence of solving the problem is the discretization

of the continuous problem by users. The users should properly discretize the problem

to lead to a solution. The finite element method is a popular discretization technique

for representing a physical system [4].

FEM

Physical Mathematical Discrete Discrete
System Model Model Solution

IDEALIZATION DISCRETIZA TION SOLUTION

Figure 1-1: A view of the physical simulation process [4].

1.2 Tetrahedral Mesh Generation

A mesh is a list of elements, nodes, faces, edges, and other data that describes the

computational domain. The geometry in a finite element analysis is represented by the

collection of finite elements used, known as a mesh. Creating the mesh is often a

difficult part of 3-D finite element modeling [4, 5]. With the capabilities of modem

computers software developers have taken advantage of CAD-like interfaces for finite

element programs. For the purpose of graphical observation, mesh generation can be

performed graphically, manipulating hnes on a computer screen to form elements.

Thus, these techniques were developed for the creation of complex geometric models.

2

Geometries that already existed in sorne format can now be used directly for

simulation, assuming the programs being used have the necessary interface

capabilities. Once the geometry is entered in the system, most finite element programs

allow for sorne type of automatic meshing. This is a process by which a finite element

mesh can be created automatically.

A tetrahedron is the most flexible element in three dimensions [6]. It is defined by four

vertices and a function sampled at these vertices leads to a unique function which has

useful properties for reconstruction and interpolation [6].

1.3 Tetrahedral Mesh Refinement

Mesh refinement is the substituting of elements with modified elements, creating

points inside domains or on the boundaries of the domains and inserting those points

in the initial mesh [6-8]. The increase ofthe accuracy ofthe solution in that area of the

mesh is the purpose of the refinement.

Successive tetrahedral mesh refinement is crucial in the finite element methods where

the elements are based on tetrahedral meshes [9]. Zhang [9] proposed two methods for

subdivision of a regular tetrahedron: labelled-edge subdivision and short - edge

subdivision. These methods are depicted in figure 1-2.

When refining a tetrahedron into half-sized tetrahedra, new vertices are added at the

middle of the six edges. Thus, the four corner tetrahedra and a central octahedron are

3

produced. The octahedron can be further subdivided into four tetrahedra by cutting in

three ways (by adding the edges aa', bb' or cc') [9]. Figure 1-2 shows that an

octahedron is subdivided into 4 tetrahedra by ad ding the edge aa'. The 1abeUed-edge

subdivision scheme employs a direct numbering scheme for vertices being generated

and subdivides the octahedron in accordance with this numbering [9]. In the short

edge subdivision scheme the shortest of the three interior edges is chosen [9]. In this

thesis, the splitting shown in figure 1-2 is used for the hierarchical tetrahedral -

octahedral (HTO) subdivision algorithm in chapter 2 to get rid of the octahedra at the

finest level and to get a mesh of aU tetrahedra.

Cut off 4 corner tctrahedra

Cut the inner octahedron

Figure 1-2: Subdivision ofa tetrahedron into 8 subtetrahedra by adding the edge aa'

[9].

4

1.4 Motivation and Objectives

Tetrahedral finite elements are amongst the simplest shapes into which 3-D regions

can be broken down, and they are well-established in mesh generation. For the

purpose of achieving the geometric discretization of the problem domain in 3-D

electromagnetics, they are extensively used to analyze and design with the FEM [10-

12].

The hierarchical tetrahedral - octahedral (HTO) subdivision algorithm [13] generates

a hierarchy for 3-D finite e1ement (FE) meshes. As subdivisions increase, however, the

elements in the shape of tetrahedra or octahedra have an enormous number of vertices

(nodes) and faces. Due to the size ofmany FE problems, a direct sequential solution is

a time consuming task. Thus, other techniques are useful to solve this problem.

Computing with different processing elements (PEs) of a FE problem at the same time

(i.e. parallel computing) should greatly reduce computing time.

This thesis is focused on analyzing a real parallel algorithm with message passing

interface (MPI). We first design a sequential pro gram for HTO subdivision, and then

implement it using parallel computing. Through MPI implementation designed with a

master - slave parallel computing structure, we figure out the efficiency of

parallelization, the balance of the workload, and the time cost distribution.

5

1.5 Thesis Overview

In chapter 2, we investigate a method for hierarchical tetrahedral - octahedral (HTO)

subdivision, and develop a pro gram to demonstrate sequential computing based on a

regular refinement strategy. The data structure was designed to store the geometric

data during the mesh computation.

Chapter 3 presents the parallelization of the sequential algorithm using MPI. In this

chapter we present an overview of available parallel architecture and general

principles for the parallel algorithm design. We also will give an overview ofMPI. We

designed our parallel structure based on a master - slave structure, considering sub

domain distribution, and load balancing.

The sequential pro gram design in chapter 2 and the paraUe1 pro gram design in chapter

3 are then implemented and tested. The results of experiments are given in chapter 4.

Chapter 5 concludes this research work and investigates the objectives of possible

future work related to this research.

6

Chapter 2

The Sequential Program Design for Hierarchical Tetrahedral

- Octahedral (HTO) Subdivision

In this chapter we present the sequential pro gram design for hierarchical tetrahedral -

octahedral (HTO) subdivision, so as to simplify later discussion on parallelization of

the algorithm in chapter 3. The algorithm follows the regular refinement rule to

generate hierarchical subdivision of meshes.

2.1 The Regular Refinement Rule

In the first phase, each tetrahedron marked for refinement is divided into four sub

tetrahedra of equal volume and one octahedron [9, 13, 14]. This is do ne by adding a

new vertex at the midpoint of each edge, building new sub-tetrahedra with the old

vertices and the newly inserted vertices. Using this procedure we get four congruent

sub-tetrahedra at the corners and one octahedron in the centre of the parent tetrahedral,

as shown in figure 2-1.

7

1

------ ~
<l)

+

4 Tetrahedra 1 Octahedron

Figure 2-1: Tetrahedral regular refinement [13].

At the centre of the parent tetrahedron there is one octahedron. The regular refinement

rule [13, 14] of an octahedron subdivides an element in two steps. First, by connecting

all edge midpoints of each face and second, by connecting the triangles at the middle

of the faces to the barycentre of the parent element. The result is six octahedra and

eight tetrahedra, as shown figure 2-2.

8

+ ~
------ ---

-- ---

~ffiw ~
------ ---

-- ---

60etahedra 8 Tetrahedra

Figure 2-2: Oetahedral regular refinement [13].

2.2 The Data Formatfor Geometrie Computing

Computational geometry is a rapidly evolving interconnected field, involving

computer science, engineering and mathematics. Geometrie computing deals with

geometric problems of an algorithm. Computing with geometry has many applications

such as computer graphies, eomputer-aided design visualization, and computer vision

9

[15]. In general the input to a geometric algorithm is a set of geometric objects, su ch

as the sequence of vertices of a polygon or polyhedron. The output is a response to a

query about the objects, such as whether any of the lines intersect, or perhaps a new

geometric object.

For our implementation we will use Geomview [16] as the computational geometric

too1. "Geomview is an interactive program for viewing and manipulating geometric

objects. It runs on a wide variety of Unix computers, including Linux, SGI, Sun, and

HP [16]." The main purpose of Geomview is to display objects whose geometry is

glVen.

After compiling our pro gram, the outputs data file must be formatted as required by

Geomview. Our program is designed to produce formatted outputs for geometric

computing so that we can use the Geomview tool for viewing and manipulating the

geometric objects. Geomview computes the following simple data type with the

information of vertices (nodes) and faces as shown in figure 2-3. The conventional

suffix for object file format (OFF) files is '. off' [16].

10

[ST] [Cl [N] [4] [N] OFF

[Ndim]

NVertices NFaces NEdges

x[O] y[O] z[O]

x[1] y[1] z[1]

x[NVertices-1] y[NVertices-1] z[NVertices-1]

Nv v[O] v[1] v[2]

Header Keyword

Space dimension of vertices

#NEdges not used or checked

3-D Vertices, possibly with normal

Faces

Nv = # vertices on this face (i.e. 3)

v[O] ... v[2]; vertex indices

in range 0 .. NVertices-1

Figure 2-3: Data fonnat for Geomview [16].

OFF [16] files represent collections of pl anar polygons with possibly shared vertices,

which is a convenient way to describe polyhedra.

An OFF file may begin with the keyword OFF. Ndim is space dimension of vertices

and present only if the keyword OFF is presented as NOFF. Three ASCII integers

follow: NVertices, NFaces, and NEdges. These are the number ofvertices, faces, and

edges, respectively. Current software does not use nor check NEdges; it need not be

correct but it must be present. The vertex coordinates follow: dimension * NVertices

11

floating-point values. They are implicitly numbcrcd 0 through NVertices-l.

Dimension is either 3 (default) or 4 (specified by the key character 4 directly before

OFF in the keyword). Following these are the face descriptions, typically written with

one line per face. Each has the fonn: N Vertl Vert2 ... VertN [color]

Let N represent the number of vertices on this face, and Vertl through VertN are

indices into the list of vertices (in the range 0 .. NVertices-I).

2.3 The Design of Vertex and Face Refinement

In order to obtain the data file (.off) for the geometric computing, in this section we

focus on the design of the vertex and face refinement of tetrahedra and octahedra.

2.3.1 Tetrahedral Vertex and Face Refinement

Firstly, we consider the regular refinement of a tetrahedron. The regular refinement

rule [13] refines each edge at the midpoint and each face into four triangles aIl of

which are congruent to the parent face. In the first subdivision, six vertices (m[O],

m[I], m[2], m[3], m[4], m[5]) are added at the midpoint of each edge. We regard the

initial input data as Vo, VI, V2, and V3. The numbering of the new vertices added is as

shown in figure 2-4. As shown in figure 2-4, 20 faces are added in the first subdivision

and the infonnation is stored as the output for the output data file.

12

The functions of add_face (), copy _vertex (), and find_ vertex () (these functions will

be discussed in the part of overview of implementation in chapter 4) are used to do

this job. After the first subdivision, the parent tetrahedron gives rise to the new faces

of the four child tetrahedra and a child octahedron as follows:

~ Tetrahedron l:

~ Tetrahedron 2:

~ T etrahedron 3:

~ Tetrahedron 4:

~ Octahedron:

face (vO, m[O], m[l]), face (vO, m[O], m[2]),

face (vO, m[l], m[2]), face (m[O], m[l], m[2])

face (vI, m[O], m[3]), face (vI, m[O], m[4]),

face (vI, m[3], m[4]), face (m[O], m[3], m[4])

face (v2, m[l], m[3]), face (v2, m[l], m[5]),

face (v2, m[3], m[5]), face (m[l], m[3], m[5])

face (v3, m[2], m[4]), face (v3, m[2], m[5]),

face (v3, m[4], m[5]), face (m[2], m[4], m[5])

face (m[O], m[l], m[3]), face (m[O], m[2], m[4]),

face (m[l], m[2], m[5]), face (m[3], m[4], m[5])

As we observe the faces of the octahedron, only 4 faces were generated for the

octahedron. These are just the faces not already generated for the surrounding

tetrahedra.

13

m[2]

V,

v" m[2] 00::------"., m[S] m[2]

m[S] m[4]

m[O] ~-------''''' mr31

m[!] m[O]

Figure 2-4: Vertices numbering for tetrahedral refinement.

2.3.2 Octahedral Vertex and Face Refinement

We observed that an octahedron, according to the regular refinement mIe [13], results

in six octahedra and eight tetrahedra. These are obtained by connecting an edge

midpoints of each face and by connecting the triangles at the middle of the faces to the

barycentre of the parent octahedron. In the first subdivision only one vertex, among 13

new vertices, is added to the data file since the other 12 vertices are duplicated and are

already counted in the first subdivision of the parent tetrahedron. However, the 12

vertices are important for continuous subdivision to occur. The numbering of the

14

octahedra vertices as weIl as their adding and their next subdivision is as shown in

figure 2-5.

As shown in figure 2-5, we see a total of 68 faces; 36 faces from six octahedra and 32

faces fonn eight tetrahedra. However, most of the faces are duplicated. Finally, only

28 faces among 68 faces excluding duplication are stored for the output data file. The

functions of add_face (), copy _vertex (), and find_ vertex () do this job. The newly

obtained infonnation of faces is as follows:

~ Tetrahedron 1:

~ Tetrahedron 2:

~ Tetrahedron 3:

~ Tetrahedron 4:

~ Tetrahedron 5:

~ Tetrahedron 6:

~ Tetrahedron 7:

face (m[l], m[3], m[7]), face (m[l], m[3], m[12]),

face (m[l], m[7], m[12]), face (m[3], m[7], m[12])

face (m[2], m[3], m[12]), face (m[2], m[9], m[12]),

face (m[3], m[9], m[12])

face (m[O], m[2], m[5]), face (m[O], m[2], m[12]),

face (m[O], m[5], m[12]), face (m[2], m[5], m[12])

face (m[O], m[l], m[12]), face (m[O], m[4], m[12]),

face (m[l], m[4], m[12])

face (m[4], m[6], m[8]), face (m[4], m[6], m[12]),

face (m[4], m[8], m[12]), face (m[6], m[8], m[12])

face (m[5], m[6], m[12]), face (m[5], m[lO], m[12]),

face (m[6], m[lO], m[12])

face (m[9], m[lO], m[ll]), face (m[9], m[lO], m[12]),

face (m[9], m[ll], m[12]), face (m[lO], m[ll], m[12])

15

~ Tetrahedron 8: face (m[7], m[8], m[12]), face (m[7], m[11], 111[12]),

face (111[8], m[Il], m[12])

'}> Octahedron 1: face (vO, m[O], m[2]), face (vO, m[I], m[3])

~ Octahedron 2: face (vI, 111[0], m[5]), face (vI, m[4], m[6])

~ Octahedron 3: face (v2, m[l], m[7]), face (v2, m[4], [8])

~ Octahedron 4: face (v3, m[2], m[5]), face (v3, m[9], m[lO])

~ Octahedron 5: face (v4, m[3], m[7]), face (v4, m[9], m[11])

~ Octahedron 6: face (vS, m[6], m[8]), face (vS, m[10], m[ll])

16

m[?]

m[9]

mrlll v;
V4 ~---------------------------------7~'

mr31 /
/

/
/

/
/

/

//m[IO

/ " /

VII ~--------------~----------------~ mro

mlI21 m[S]

m112] m[lO]

Figure 2-5: Vertices numbering for octahedral refinement: r

17

m[ll]

m[ll]

is barycentre.

2.4 The Process Functional Design

The design of the sequential algorithm used is based on a recursive algorithm. A

recursive algorithm caUs itself with smaller (or simpler) input values [17]. Then it

obtains the result for the CUITent input by applying simple operations to the retumed

values for the smaller (or simpler) input [18]. It may retum to its small input values

until it reaches the base case. Using recursion, a complex problem can be split into its

single simplest case. Recursive functions are important paradigms in recursive

programming, for they only know how to solve the simplest case.

As we observed in the sequential pro gram design, the recursive algorithm is necessary

for the design of hierarchical tetrahedral-octahedral subdivision. The major advantage

of using a recursive algorithm is that it is simpler for the parallelization of the

sequential program. Because of this advantage, we have selected a recursive algorithm

to design the pro gram.

This sequential algorithm is composed of the main function, the process functions, and

other utility functions. In order to reduce the duplication of element information of

mesh generation, our design makes use of three different processes of the tetrahedron:

processTetraO, processTetral and processTetra2. According to the regular tetrahedral

refinement rule, the process function of each parent tetrahedron generates four child

process functions of the tetrahedra and a child process function of the octahedron as

follows:

18

);> The processTetraO generates five process functions: four processTetraO

functions and one processOcta function.

);> The processTetral generates five process functions: two processTetraO

functions, two processTetral functions, and one processOcta function.

);> The processTetra2 generates five process functions: one processTetra2

function, three processTetral functions, and one processOcta function.

According to the regular octahedral refinernent rule [13], the process function of each

parent octahedron generates eight process functions of the tetrahedron and six process

functions of the octahedron. In order to reduce the duplication of elernent information

of rnesh generation, the eight process functions of the tetrahedron are cornposed of

four processTetra2 functions and four processTetraO functions.

);> The processOcta generates 14 process functions: four processTetra2 function,

four processTetra1 functions, and six processOcta function.

Two diagrarns of the recursive functional flowchart are shown in figure 2-6 and figure

2-7. Figure 2-7 shows the sirnplified diagrarn of the recursive functional flowchart.

19

~ TetraO ~ Tetral ri Tetra2 ri Oeta

..
1-- TelraO - Tetral ~ Tctra2 ~ Oeta

1-- TetraO 1-- Telral Telral ~ Oeta

1-- TetraO TetraO Te(ral ~ Oeta

1-- TetraO TetraO Tetral ~ Oeta

Oeta Oeta Oeta ~ Oeta

Oeta

Te(ra2

~ Tetra2

~ Tetra2

'--
Tetra2

TetraO

~ TetraO

~ TetraO

'--
TelraO

Figure 2-6: Diagram of the recursive functional flowchart: TetraO is processTetraO,

Tetral is processTetral, Tetra2 is processTetra2, and Oeta is processOcta.

4x 2x 3x 4x

Figure 2-7: Simplified diagram ofthe recursive functional flowchart:

2x, 3x, 4x, and 6x are total numbers of iterations in each process function.

20

2.5 The Design of the Data Flow

Let us set the initial input data for the ancestor tetrahedral: Va, VI, Vz, and V3. Then

let us set the newly added six vertices at the midpoint of each edge: m[O], m[1], m[2],

m[3], m[4], and m[5]. The six vertices and the initial vertices produce new data. They

become new input data for the next subdivision. After the first subdivision, the input

data of each child tetrahedron for the next subdivision is as follows:

~ Tetrahedron 1: (VI, m[O], m[I], m[2])

~ Tetrahedron 2: (m[O], VI, m[3], m[4])

~ Tetrahedron 3: (m[l], m[3], Vz, m[5])

~ Tetrahedron 4:(m[2], m[4], m[5], VJ)

~ Octahedron: (m[O], m[I], m[2], m[3], m[4], m[5])

For octahedral subdivision, let us set 12 vertices at the midpoint of each edge: m[O],

m[I], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[lO], m[ll]. And let us set

the vertex at the barycentre: m[12]. After the first octahedral subdivision, the input

data of each child tetrahedron for the next subdivision is as follows:

~ Octahedron 1:

~ Octahedron 2:

~ Octahedron 3:

~ Octahedron 4:

~ Octahedron 5:

(vO, m[O], m[I], m[2], m[3], m[12])

(m[O], vI, m[4], m[5], m[12], m[6])

(m[I], m[4], v2, m[12], m[7], m[8])

(m[2], m[5], m[12], v3, m[9], m[lO])

(m[11], v4, m[7], m[9], m[12], m[3])

21

~ Octahedron 6: (vS, m[11], m[8], m[10], m[6], m[12])

~ Tetrahedron 1: (m[12], m[7], m[3], m[l])

~ Tetrahedron 2: (m[3], m[2], m[12], m[9])

~ Tetrahedron 3: (m[12], m[O], m[2], m[5])

~ Tetrahedron 4: (m[O], m[4], m[12], m[l])

~ Tetrahedron 5: (m[12], m[4], m[6], m[8])

~ Tetrahedron 6: (m[6], m[10], m[12], m[5])

~ Tetrahedron 7: (m[12], m[lO], m[9], m[11])

~ Tetrahedron 8: (m[II], m[8], m[12], m[7])

The diagram of data flow is shown in figure 2-8. This diagram shows the data flow,

such as input data by user, the data generated by each process function, and the stored

data.

22

[O],m[1],m[2],m[3],
I---+---_----+----I~. [4],m[5],m[6],m7[],

m8[],m[9],m[10],m[11],
m12]

Figure 2-8: Diagram of the data flow.

23

Chapter 3

Parallelization using MPI

Parallelization is necessary and becomes useful when the processing of a sequential

computing problem takes too much time. The main goal of parallelization is to use a

parallel computer to reduce the time needed to solve a single computational problem.

In the simplest sense, a parallel computer is a collection of processing elements (PEs)

that cooperatively solve the given task. Parallel computing involves taking a problem

and di vi ding it into pieces that are to be solved concurrently [19]. Each concurrent

piece is called a process. In order to pass information, communication and

synchronization are required between the processes.

When interactive methods are parallelized on a multiprocessor system the distribution

of data and the communication scheme between nodes of the system are important for

an efficient execution. We discuss our strategy and implement the algorithm for

hierarchical tetrahedral - octahedral (HTO) subdivision using the message passing

interface (MPI). We will use broadcasting and data gathering to build up the final

geometric file.

24

3.1 Parallel Models

A parallel computer is a collection of processing elements (PEs) used to perfonn a

given task [20, 21]. Parallel computation al models can be classified into four different

categories: Single Instruction Single Data (SISD), Multiple Instruction Single Data

(MISD), Single Instruction Multiple Data (SIMD), and Multiple Instruction Multiple

Data (MIMD) depending on whether single (S) or multiple (M) streams are used for

instructions (1) and data (D) [20-23]. This classification is too rough: SISD denotes

sequential computers, MISD is not very practical, SIMD denotes only a small group of

architectures but MIMD contains tens of architectures [20, 23].

Perkowski [23] classifies parallel architectures into SIX practical models: SIMD,

parallel vector processor, symmetric multiprocessor, massive parallel processor,

cluster ofworkstations and distributed shared memory.

» The Single Instruction Multiple Data (SIMD) has only a single control unit so

that only one process runs. This model suits such an algorithm where input

data can be divided into several groups and processed concurrently [23].

» Parallel vector processor contains a small number of powerful vector PEs

based on SIMD connected together and to the common shared memory by a

crossbar network switch [22, 23].

» The Symmetric Multiprocessor is weIl suited for any algorithm smce it

contains a small group of common processing elements that are used in

sequential computers [22, 23]. Each processing element has equal access to a

25

common shared memory and 1/0 devices via a bus. The disadvantage is that

the efficiency of the system goes down with the increasing number of PEs,

because the speed of data transfer is limited. On the other hand, the cost of this

model is low.

).- The Massive ParaUe! Processor consists of a large group of common PEso

Each PE has exclusive access to its distributed local memory. The PEs are

connected together through the use of a large number of seriaI lines to obtain

high performance [22, 23].

symmetric multiprocessors

Shared
memory

-1 C~~\;OI j+6~ ~[local]
memory

-1C~~\;OI~~ ~[local]
memory

~[local]
memory

massive parallel multiprocessors

Figure 3-1: Parallel model structures [20].

).- Cluster of workstations contains a large group of sequential computers.

Because these computers are connected together via low cost, this model can

be extremely cost effective. Each processing unit is a complete computer

having its own operating system, input-output devices, PE, and local memory

[22,23].

26

~ Distributed Shared Mem01y (DSM) combines advantages of the massive

parallel processor and the symmetric multiprocessor. The model refers to a

wide c1ass of software and hardware implementations allowing a higher

number ofPEs [22-24).

Each parallel model requires the use of a different programming technique in the

design of a parallel algorithm, because it offers different means. An algorithm

developed for the architectures with distributed memory can use message passing for

the communication between the pro cesses.

3.2 Parallel Programming

Parallel programming is a programming technique that provides the means for

executing operations concurrently, either within a single computer, or across a number

of systems [22, 25, 26].

We can identify parallel algorithms according to the use ofprograms and data used in

parallel algorithms for the decomposition of computation [27]: Multiple Program

Single Data (MPSD) parallelism, Single Program Multiple Data (SPMD) parallelism,

and Multiple Program Multiple Data (MPMD) parallelism.

~ Multiple Program Single Data (MPSD) parallelism subdivides into several

distinct functions to be applied in series to individual data items. Each function

is exc1usively assigned to its PE and a data path is provided from one PE to

27

another one. Each program task computes a part of the data and the sub-results

are combined afterwards.

~ Single Program Multiple Data (SPMD) parallelism subdivides the data set into

streams at the beginning of the computation and this partition remains together

for the whole process. The outputs of the processing of streams obtained by the

PEs are merged afterwards to get the final result.

~ Multiple Program Multiple Data (MPMD) parallelism subdivides the input

data set into multiple streams [22]. These streams are assigned to processors

executing multiple programs. This parallelism is typically designed for

architecture with distributed memory. It focuses on problems that cannot be

processed on a sequential computer because of technical limitations. Therefore,

parallelism based on MPMD algorithms does not enhance speedup and

efficiency.

After examining the parallel model structures and the methods of parallelization of

algorithms, we have chosen the scheme using the massive parallel processor as our

parallel platform for our parallel model structure. For this structure, we have

considered one built around the C programming language and the message passing

interface (MPI) communication library. AIso, the parallel programming technique

used is the single program multiple data (SPMD), which is the most extensively used

method for efficient MPI programming.

28

3.3 MPI Main Functions in this Work

MPI defines a library of subprograms for parallel computing that can be called from C

and Fortran 77 programs [19, 28-32]. It has been fully designed to allow maximum

performance on a wide variety of systems, so it has rapidly received widespread

acceptance. It is also based on message passing, one of the most widely used and

powerful techniques for programming parallel systems [28]. The basic communication

mechanism of MPI is the transmission of data between a pair of processes, one side

sending, and the other side receiving.

The fully functional message-passing pro gram in this work is implemented by using

MPI Send, MPI_Recv, MPI_Gather, MPI_Gatherv, MPI_Bcast, and MPI_Barrier.

~ MPljnit (&argc, &argv) initializes MPI. It is required in every MPI program

and must be the first MPI call.

~ MPI_Finalize () terminates MPI. AlI MPI functions must be called between

MPI_Init () and MPI_Finalize ().

~ MPI_Comm_size (MPI_Comm_world, numprocs, int *size) determines the

number of processes that the user has started for this pro gram. The value

numprocs is actually the size of the group associated with the default

communicator MPI COMM WORLD.
- -

~ MPI_Comm_rank (MPI_Comm comm., int *rank) determines the label of the

calling process.

29

~ MP/_Send (address, count, da ta type, destination, tag, comm) sends a message.

(address, count, datatype) describes count occurrences of items of the form

datatype starting at address.

~ MP/_Recv (address, maxcount, datatype, source, tag, comm, status) receives a

message. (address, maxcount, datatype) describe the receive buffer as they do

in the case of MPI Send.

~ MP/ _ Gather () gathers together values from a group of processes.

~ MP / _ Gatherv () gathers into specified locations from aIl processes in a group.

~ MP/_Bcast () broadcasts a message from the process with rank root to aIl

processes of the group, itself included. It is called by aIl members of group

using the same arguments. On retum, the contents of root's communication

buffer has been copied to aIl processes.

~ MP/_Barrier () blocks until aU processes have reached this routine. It is used

to synchronize aIl the processes in a communicator.

3.4 The Design of the Parallization

The development of a parallei algorithm that is to be executed concurrently is a major

task. In this research work, the parallel design follows a master-slave algorithm

structure as shown in figure 3-2.

When the parallel structure is decided, one needs to decide how to asslgn the

structures to the processes. In order to implement a task in paraIlel, we should divide

the computation and the data into pieces. The functional decomposition method is first

30

dividing the computation into pieces and then detennining how to associate data items

with the individual computations. In contrast, the do main decomposition method [33]

is first dividing the data into pieces and then detennining how to associate

computation with the data. We decided to use domain decomposition, a standard

method in finite element codes, since the whole structure is progressively divided into

smaller and smaller pieces.

Master PE Slave PEs

-
[

8.
Inout data §.:

N·
!=;.

J Ç)
::l

181 subdivision

+ c

+ -(t ..,
Broadcast sub-domain Receive sub-domain !=;.

assignment assignment o·
::l
rJl

+ 0,

0
El
(1)

Refine mesh on rJl
::r-

assiqned domain ..,
(1)

::n

+ ::l
(1)

El

[Send new data file
(1)

a
back

Receive new data file L 1

c: ::>

+
Write output data

Figure 3-2: The Master-Slave model.

31

Figure 3-3 below is about the initial domain decomposition for our parallclization.

m[2]

m[5] m[2

PI: 1 PI: 4

m[5]
rn[31

rn[4]

PI: 5

m[!]

PI: :2
PI: l

Figure 3-3: Initial domain decomposition.

After we detennined a paraUel structure model and a method for partitioning, the next

step was to detennine the communication pattern between processors. We chose MPI

because it has been adapted to facilitate inter-processor communications. MPI

facilitates master-slave paraUel processing, such that aU actions perfonned are

broadcast to aU the domains when using parallel processing.

32

As we observed, the master processing element (PE) initiates the program by checking

the input data. Then the master PE can assign the initial set into sub-domains. The

master PE then broadcasts the complete sub-domain decomposition data and sub-

domain assignments to the corresponding slave PEs, which proceed with the mesh

refinement of their assigned domains. The master - slave model has the master

process receiving from aIl the slave processes. The master can work out the

communication required for aU the processes, and then send the required information

back to the slave processors, which can act upon it.

If we assume that each element uses up approximately the same amount of

calculation-time, then to balance the load we simply need to balance the number of

elements per process. In general, a process can be required to send or accept objects

from either side, and works out whether to do so or not. Since we have designed the

parallelization based on domain decomposition distributing to the slave PEs as shown

in figure 3-3, the workload assigned among the slave PE 1 - PE 4 is ideally balanced

because the working domain of each PE 1 to 4 is a congruent tetrahedron. The

working domain of PE 5 is an octahedron. The table 1 shows the initialload balancing

to the slave PEso

Table 3-1: The initialload distribution.

PE 1 PE 2 PE 3 PE 4 PE 5

VO, m[O], m[O], V1, m[O], m[1], m[O], m[1], m[O],m[3],m[4],

m[1], m[2] m[1], m[2] V2.m[2] m[2], V3 m[1], m[2], m[5]

33

Chapter 4

Experiments and Results

This chapter presents experimental setup, the testing methods, and the results of the

implementation and then evaluates the design.

4.1 Experimental Setup

The algorithm is implemented using McGill University's CLUMEQ (Consortium

Laval UQAM McGill and Eastern Quebec for high performance computing)

Supercomputer Centre facilities as shown in figure 4-1 [34]. Stokes (compute nodes)

is the system where the jobs are submitted [34]. hn is the head node that is used to

compile programs [34]. See table 4-1 below for additional details:

Table 4-1: Stokes and hn

Stokes Hn

• Dell PowerEdge 6650 • APPRO-1100

• Dual Xeon 900 • 2AthlonXP 1900+

• 4GB RAM • 3GB RAM

• Linux RedHat 7.3 • 2*40 GB RAID-O

• NFS server for the nodes • PBSPro 5.4 server

34

Stokes

~ _______ Le_g_en_d ________ ~
o Ethernet 100baseT

o
o

32

Marconi
ESR-5000 Switch
144 ports

MYRINET 2000
M3-E128

128 ports 2+2
Gb/s

1

---------------------------~

Fiber 1 OOObase T

Myrinet 2000

hn

HARDWARE

-128 Appro 11 DDi 1 U
-Dual Athlon 1900+ 1.6GHz
-40GB Hard Disk IDE
-3GB Memory
-Floppy, CDROM
-460 watts power suppl Y

SOFTWARE

-Linux Redhat 9.0
-kernel 2.4.20-8smp
-PBS Pro 5.4 queuing
-PGI CDK Cluster
Development

-Myrinet GM-2.0.9 drivers
-MPICH 1.2.5 .. 10

Figure 4-1: CLUMEQ infrastructure [34].

35

4.2 Measuring the Performance of the Parallel System

The parallel pro gram designed should be properly measured and analyzed, since the

performance of a distributed parallel algorithm is influenced by system architecture,

system size, and communications delays. ldeally, the performance should increase

linearly with the system size. However, in reality performance can degrade with the

growth of the system [21, 35, 36].

4.2.1 Speedup Factor

The speedup factor, S(p), measures the possible benefits of a parallel performance

over a sequential performance, which is defined as [26]:

s() = Execution time using single processor system

p Execution time using a multiprocessor with p processors
(1)

If t sis used as the execution time of the best sequential algorithm running on a single

processor and t pis used as the execution time for solving the same problem on a

multiprocessor, then: S(p) = ~
t p

4.2.2 Efficiency

(2)

Efficiency is measured by calculating how long processors are actually being used for

the computation. The efficiency can be defined as follows [26]:

Execution time using one processor
E=----------------'=-----~-------

Execution time using a multiprocessor x number of processors
(3)

36

Similarly, if t s is also used as the execution time of the best sequential algorithm

running on a single processor and t pis used as the execution time for solving the same

problem on a multiprocessor, then: E = _t_, - (4)
t p x p

It also can be written as E = S(p) x 100% when E is given as a percentage. (5)
p

For instance, if E =50%, the processors are being used for only half of the time during

the actual computation, on average. An efficiency of 100% occurs where aIl the

processors are being used on the computation at aIl times, i.e., the speedup factor,

S(p) is p.

4.3 Overview of Implementation

This section describes the implementation of the software described in the previous

sections. Prior to the development of the paraIlel version, a sequential version was

written using C code. We used the MPI message-passing library and added it to the

sequential version to achieve parallelism. The parallel regular refinement algorithm

was designed based on a master - slave structure. The master PE assumes the role to

orchestrate the entire set slave PEso It is responsible for establishing the entire model

for analysis and then distributing data among the slave PEso The master PE initializes

the vertices of the initial tetrahedron as shown in figure 4-2 and assigns data to each

slave processor. The slave PEs will be waiting for commands until the master PE

issues one and then they do the corresponding work on their own copy of the data.

37

if(mype==O)
{

}

/* Initializing the vertexes of the initial tetrahedron *j
v[O][O]=O; v[0][1]=0; v[0][2]=0;
v[1][0]=0; v[1][1]=1; v[1][2]=0;
v[2][0]=0; v[2][1]=0; v[2][2]=1;
v[3][0]=1; v[3][1]=0; v[3][2]=0;

requiredDepth=5;
middle(v[O], v[1], 0, m[O]);
middle(v[O], v[2], 0, m[1]);
middle(v[O], v[3], 0, m[2]);
middle(v[1], v[2], 0, m[3]);
middle(v[1], v[3], 0, m[4]);
middle(v[2], v[3], 0, m[5]);

Figure 4-2: The master PE initializes the vertices of the initial tetrahedron.

We chose to implement parallelism, using a Single Program, Multiple Data (SPMD)

approach. In this approach data is distributed and each slave processor independently

processes its corresponding data. The main functions implemented are as follows:

The function middle(), which provides the midpoints of aIl the edges of the initial

tetrahedron, was implemented as shown in figure 4-3 [37-40].

int middle (float vO[3], float v1 [3], int isCount, float* out)
{

int i;
if (isCount)

vertexNumber++;
for (i = 0; i < 3; i++)
{

out[i] = (vO[i] + v1 [i])/2;

38

if (isCount)
v[vertexNumberHi] = out[i];

}
return vertexNumber;

}

Figure 4-3: The function middle().

The MPI_Bcast () is used to broadcast a message from the process with rank root to

aIl processes of the group. The MPI _Barrier () is used to synchronize aIl the

processes in a communicator. Each slave process waits to be assigned [19, 28-30, 41,

42]. See figure 4-4 below for additional details:

/* MPI BCAST *j

MPI_Bcast (m, 18, MPI_FLOAT, 0, MPLCOMM_WORLD);

/* printf("1 st Beast done\n"); *j
MPI_Bcast ((void *) &requiredDepth, 1 ,MPUNT,O, MPLCOMM_WORLD);

/* printf("2nd Beast done\n"); *j

MPI_Bcast (v, 30, MPLFLOAT,O,MPI_COMM_WORLD);

/* printf("3rd Bcast done\n"); *j

/* need to cheek to see if the proper values for v's were sent *j

MPI_Barrier (MPLCOMM_WORLD);

if(mype==1)
{

v[1][O]=m[O][O], v[1][1]=m[0][1], v[1][2]=m[0][2];
v[2][0]=m[1][0], v[2][1]=m[1][1], v[2][2]=m[1][2];
v[3][0]=m[2][0], v[3][1]=m[2][1], v[3][2]=m[2][2];
processTetraO(v[O], m[O], m[1], m[2], 1, requiredDepth);

}

if(mype==2)
{

v[O] [O]=m [0][0]; v[O][1]=m [0][1]; v[O] [2]=m [0] [2];
v[2][0]=m[3][0]; v[2H1]=m[3][1]; v[2][2]=m[3][2];

39

}

v[3][0]=m[4][0]; v[3][1]=m[4][1]; v[3][2]=m[4][2];
processTetraO(m[O], v[1], m[3], m[4], 1, requiredDepth);

if(mype==3)
{

}

v[0][0]=m[1][0]; v[0][1]=m[1][1]; v[0][2]=m[1][2];
v[1][0]=m[3][0]; v[1][1]=m[3][1]; v[1][2]=m[3][2];
v[3][0]=m[5][0]; v[3][1]=m[5][1]; v[3][2]=m[5][2];
processTetraO(m[1], m[3], v[2], m[5], 1, requiredDepth);

if(mype==4)
{

}

v[0][0]=m[2][0]; v[0][1]=m[2][1]; v[0][2]=m[2][2];
v[1][0]=m[4][0]; v[1][1]=m[4][1]; v[1][2]=m[4][2];
v[2][0]=m[5][0]; v[2][1]=m[5][1]; v[2][2]=m[5][2];
processTetraO(m[2], m[4], m[5], v[3], 1, requiredDepth);

if(mype==5)
{

}

middle(v[O], v[1], 1, m[O]);
middle(v[O], v[2], 1, m[1]);
middle(v[O], v[3], 1, m[2]);
middle(v[1], v[2], 1, m[3]);
middle(v[1], v[3], 1, m[4]);
middle(v[2], v[3], 1, m[5]);
processOcta(m[O], m[3], m[4], m[1], m[2], m[5], 1, requiredDepth);

Figure 4-4: The MPI_Bcast () and the MPI_Barrier ().

As the slave PEs are assigned, the four tetrahedra and the octahedron are refined

regularly in a partition (i.e. mesh refinement). The function processTetraO (),

processTetral (), processTetra2 (), and processOcta () were implemented for the

mesh refinement. This implies that no communication with neighbouring partitions

takes place. See figures 4-5, 4-6, 4-7, and 4-8 below for additional details:

40

void processTetraO (float vO[3], float v1 [3], float v2[3], float v3[3], int depth)
{

}

int indepth = depth + 1;
float m[6][3];

middle(vO, v1, 1, m[O]);
middle(vO, v2, 1, m[1]);
middle(vO, v3, 1, m[2]);
middle(v1, v2, 1, m[3]);
middle(v1, v3, 1, m[4]);
middle(v2, v3, 1, m[5]);

if (indepth >= requiredDepth)
{

}

add_face(vO, m[O], m[1]);
add_face(vO, m[O], m[2]);
add_face(vO, m[1], m[2]);
add_face(m[O], m[1], m[2]);

add_face(v1, m[O], m[3]);
add_face(v1, m[O], m[4]);
add_face(v1, m[3], m[4]);
add_face(m[O], m[3], m[4]);

add_face(v2, m[1], m[3]);
add_face(v2, m[1], m[5]);
add_face(v2, m[3], m[5]);
add_face(m[1], m[3], m[5]);

add_face(v3, m[2], m[4]);
add_face(v3, m[2], m[5]);
add_face(v3, m[4], m[5]);
add_face(m[2], m[4], m[5]);

add_face(m[O], m[1], m[3]);
add_face(m[O], m[2], m[4]);
add_face(m[1], m[2], m[5]);
add_face(m[3], m[4], m[5]);

return;

processTetraO(vO, m[O], m[1], m[2], indepth);
processTetraO(m[O], v1, m[3], m[4], indepth);
processTetraO(m[1], m[3], v2, m[5], indepth);
processTetraO(m[2], m[4], m[5], v3, indepth);
processOcta(m[O], m[3], m[4], m[1], m[2], m[5], indepth);

Figure 4-5: The function processTetraO ().

41

void processTetra1 (float vO[3], float v1 [3], float v2[3], float v3[3], int depth)
{

}

int indepth = depth + 1;
float m[6][3];

middle(vO, v1, 0, m[O]);
middle(vO, v2, 1, m[1]);
middle(vO, v3, 1, m[2]);
middle(v1, v2, 1, m[3]);
middle(v1, v3, 1, m[4]);
middle(v2, v3, 1, m[5]);

if (indepth >= requiredDepth)
{

}

add_face(vO, m[O], m[1]);
add_face(vO, m[O], m[2]);
add_face(vO, m[1], m[2]);
add_face(m[O], m[1], m[2]);

add_face(v1, m[O], m[3]);
add_face(v1, m[O], m[4]);
add_face(v1, m[3], m[4]);
add_face(m[O], m[3], m[4]);

add_face(v2, m[1], m[3]);
add_face(v2, m[1], m[5]);
add_face(v2, m[3], m[5]);
add_face(m[1], m[3], m[5]);

add_face(v3, m[2], m[4]);
add_face(v3, m[2], m[5]);
add_face(v3, m[4], m[5]);
add_face(m[2], m[4], m[5]);

add_face(m[O], m[1], m[3]);
add_face(m[O], m[2], m[4]);
add_face(m[1], m[2], m[5]);
add_face(m[3], m[4], m[5]);
return;

processTetra1 (vO, m[O], m[1], m[2], indepth);
processTetra1 (m[O], v1, m[3], m[4], indepth);
processTetraO(m[1], m[3], v2, m[5], indepth);
processTetraO(m[2], m[4], m[5], v3, indepth);
processOcta(m[O], m[3], m[4], m[1], m[2], m[5], indepth);

Figure 4-6: The function processTetral ().

42

void processTetra2 (float vO[3], float v1 [3], tloat v2[3], float v3[3], int depth)
{

}

int indepth = depth + 1;
float m[6][3];

middle(vO, v1, 0, m[O]);
middle(vO, v2, 0, m[1]);
middle(vO, v3, 0, m[2]);
middle(v1, v2, 1, m[3]);
middle(v1, v3, 1, m[4]);
middle(v2, v3, 1, m[5]);

if (indepth >= requiredDepth)
{

}

add_tace(vO, m[O], m[1]);
add_face(vO, m[O], m[2]);
add_face(vO, m[1], m[2]);
add_face(m[O], m[1], m[2]);

add_face(v1, m[O], m[3]);
add_face(v1, m[O], m[4]);
add_face(v1, m[3], m[4]);
add_face(m[O], m[3], m[4]);

add_face(v2, m[1], m[3]);
add_face(v2, m[1], m[5]);
add_face(v2, m[3], m[5]);
add_face(m[1], m[3], m[5]);

add_face(v3, m[2], m[4]);
add_face(v3, m[2], m[5]);
add_face(v3, m[4], m[5]);
add_face(m[2], m[4], m[5]);

add_face(m[O], m[1], m[3]);
add_face(m[O], m[2], m[4]);
add_face(m[1], m[2], m[5]);
add_face(m[3], m[4], m[5]);

return;

processTetra2(vO, m[O], m[1], m[2], indepth);
processTetra1 (m[O], v1, m[3], m[4], indepth);
processTetra1 (v2, m[1], m[3], m[5], indepth);
processTetra1 (m[2], v3, m[4], m[5], indepth);
processOcta(m[O], m[3], m[4], m[1], m[2], m[5], indepth);

Figure 4-7: The function processTetra2 ().

43

void processOcta (float vO[3], float v1 [3], float v2[3], float v3[3], float v4[3], float v5[3],
int depth)
{

int indepth = depth + 1;
float m[13][3];

middle(vO, v1, 0, m[O]);
middle(vO, v2, 0, m[1]);
middle(vO, v3, 0, m[2]);
middle(vO, v4, 0, m[3]);
middle(v1, v2, 0, m[4]);
middle(v1, v3, 0, m[5]);
middle(v1, v5, 0, m[6]);
middle(v2, v4, 0, ml?]);
middle(v2, v5, 0, m[8]);
middle(v3, v4, 0, m[9]);
middle(v3, v5, 0, m[10]);
middle(v4, v5, 0, m[11]);
middle(v2, v3, 1, m[12]);

if (indepth >= requiredDepth)
{

add_face(m[1], m[3], ml?]);
add_face(m[1 j, m[3], m[12]);
add_face(m[1], ml?], m[12]);
add_face(m[3], ml?], m[12]);

add_face(m[2], m[3], m[12]);
add_face(m[2], m[9], m[12]);
add_face(m[3], m[9], m[12]);

add_face(m[O], m[2], m[5]);
add_face(m[O], m[2], m[12]);
add_face(m[O], m[5], m[12]);
add_face(m[2], m[5], m[12]);

add_face(m[O], m[1], m[12]);
add_face(m[O], m[4], m[12]);
add_face(m[1], m[4], m[12]);

add_face(m[4], m[6], m[8]);
add_face(m[4], m[6], m[12]);
add_face(m[4], m[8], m[12]);
add_face(m[6], m[8], m[12]);

add_face(m[5], m[6], m[12]);
add_face(m[5], m[10], m[12]);
add_face(m[6], m[10], m[12]);

add_face(m[9], m[10], m[11]);
add face(m[9], m[10], m[12]);

44

}

}

add_face(m[9], m[11], m[12]);
add_face(m[10], m[11], m[12]);

add_face(m[?], m[8], m[12]);
add_face(m[?], m[11], m[12]);
add_face(m[8], m[11], m[12]);

add_face(vO, m[O], m[2]);
add_face(vO, m[1], m[3]);
add_face(v1, m[O], m[5]);
add_face(v1, m[4], m[6]);
add_face(v2, m[1], ml?]);
add_face(v2, m[4], m[8]);
add_face(v3, m[2], m[5]);
add_face(v3, m[9], m[10]);
add_face(v4, m[3], ml?]);
add_face(v4, m[9], m[11]);
add_face(v5, m[6], m[8]);
add_face(v5, m[10], m[11]);

return;

processTetra2(m[12], ml?], m[3], m[1], indepth);
processTetraO(m[3], m[2], m[12], m[9], indepth);
processTetra2(m[12], m[O], m[2], m[5], indepth);
processTetraO(m[O], m[4], m[12], m[1], indepth);
processTetra2(m[12], m[4], m[6], m[8], indepth);
processTetraO(m[6], m[10], m[12], m[5], indepth);
processTetra2(m[12], m[10], m[9], m[11], indepth);
processTetraO(m[11], m[8], m[12], m[?], indepth);
processOcta(vO, m[O], m[1], m[2], m[3], m[12], indepth);
processOcta(m[O], v1, m[4], m[5], m[12], m[6], indepth);
processOcta(m[1], m[4], v2, m[12], ml?], m[8], indepth);
processOcta(m[2], m[5], m[12], v3, m[9], m[10], indepth);
processOcta(m[11], v4, ml?], m[9], m[12], m[3], indepth);
processOcta(v5, m[11], m[8], m[10], m[6], m[12], indepth);

Figure 4-8: The function processOcta ().

The master PE gathers information about locally refined nodes (vertices) and faces.

Initially, it retrieves from the partition the number of tetrahedra and octahedra

assigned for regular refinement. The function copy _vertex (), add face (),

45

find _vertex () were implemented in order to obtain the information for the geometric

computing. See figures 4-9, 4-10, and 4-11 below for additional details:

void copy_vertex (float vO[3], float* out)
{

int i;

for (i = 0; i < 3; i++)
{

out[i] = vO[i];
}

}

Figure 4-9: The function copy _vertex ().

~------------------~-------------------------------------~

void add_face (float vO[3], float v1 [3], float v2[3])
{

}

copy_vertex(vO, f[faceNumber][O]);
copy _ vertex(v1, f[faceNumber][1]);
copy _ vertex(v2, f[faceNumber][2]);
faceNumber++;

Figure 4-10: The function add_face ().

long find_vertex (float vO[3])
{

long i, j = 0;
for (i = 0; i <= vertexNumber; i++)
{

if (v[iHO] == vO[O])
{

}

if (v[i][1] == vO[1])
{

}

if (v[i][2] == vO[2])
{

return i;
}

46

}
return -1;

Figure 4-11: The function tind _vertex ().

The MPI _ Gather() was also implemented as shown In tigure 4-12 for the

information gathering together from the group of processes.

MPI_Gather (&vertexNumber, 1, MPUNT, vtx, 1, MPUNT, 0,
MPI_COMM_WORLD);
MPI_Gather (&faceNumber, 1, MPUNT, face, 1, MPUNT, 0,

MPI_COMM_WORLD);

for (i = 0; i < faceNumber; i++)
{

}

facelist[i][O]=find _ vertex(f[i] [0]);
facelist[i][1]=find_ vertex(f[i][1]);
facelist[i][2]=find_ vertex(f[i][2]);

1* building the facelist for gathering operation slave nodes *1

if(mype==O)
{

for(i=O; i<6; i++)
{

vtx[i]=3*vtx[i];
face[i]=3*face[i];

sum=O;
facesum=O;

}

for(i=O; i<6; i++)
{

sum=sum+vtx[i];
facesum=facesum+face[i];

\ }

recvbuf = (float *) malloc(sizeof(float)*sum);

47

face_recvbuf:= (int *) malloc(sizeof(int)*facesum);

if(recvbuf==NULL)
printf("Couldn't allocate memory to recvbuf!!\n");

disp[O]=O;

for(i=1 ;i<6;i++)
{

disp[i]=disp[i-1]+vtx[i-1];
}

face _ d isp[O]=O;

for(i=1 ;i<6;i++)
{

face _ disp[i]=face _ disp[i-1]+face[i-1];
} 1* Process 0 *1

Figure 4-12: The MPI_Gather ().

The gathered information must be stored into specified locations from aIl processes in

the group. Finally, The MPI_Gatherv() was implemented for this purpose as shown

in figure 4-13.

MPI_Gatherv (v, 3*vertexNumber, MPI_FLOAT, recvbuf, vtx, disp,
MPI_FLOAT,O, MPI_COMM_WORLD);

MPI_Gatherv (facelist, 3*faceNumber, MPUNT,face_recvbuf, face,
face_disp, MPUNT,O, MPI_COMM_WORLD);

time1);

endtime=MPI_WtimeO;

printf("Total Time: Process %d Time:%f\n", mype, endtime-starttime);
printf("Gather Time: Process %d Time:%f\n", mype, endtime-time2);
printf("Refinement Time: Process %d Time:%f\n", mype, time1-starttime);
printf("lnformation Gathering Time: Process %d Time:%f\n", mype, time2-

if(mype==O)
{

48

}

sprintf(resultfile, "Final_gathered.off');

if((fp=fopen(resultfile, "w"»==NULL)
printf("Coudn't open %s proces %d \n", resultfile, mype);

fprintf(fp, "OFF\n");
fprintf(fp, "%d %d %d\n", sum/3, facesum/3, faceNumber);

for (i = 0; i < sum; i=i+3)
{

fprintf(fp, "%f %f %f\n", recvbuf[i], recvbuf[i+1], recvbuf[i+2]);
}

fprintf(fp, "\n");

{

{

}

start=O;
end=O;
offset=O;

forU=1 ;j<6;j++)

start=start+faceU-1];
end=start+faceU];
offset=offset+(int)vtxU-1]/3;

for (i = start; i < end; i=i+3)

fprintf(fp, "3 %d %d %d\n", face_recvbuf[i]+offset,
face_recvbuf[i+1]+offset, face_recvbuf[i+2]+offset);

fprintf(fp, "\n");

fclose(fp);
free(face_recvbuf);
free(recvbuf);

Figure 4-13: The MPI_Gatherv ().

49

4.4 Results and Evaluation

In our experiments, we first compared the execution time of the sequential computing

with that of the parallel computing. For the parallel computing we used 6 PEso Then

we observed the timing cost distribution of each PE. Lastly, the timing cost of mesh

refinement was evaluated.

4.4.1 Sequential vs. Parallel execution time

Experimental results and system performance are presented, companng sequential

computing with parallel computing using 6 PEso The results are summarized in table

4-2 and related graphs are shown in figures 4-14, 4-15, and 4-16.

Table 4-2: Timing results for sequential vs. parallel time cost.

Subdivisions No. of Sequential Parallel Speedup
Efficiency

(Iterations) Elements Time (5) Time (5) Comparison (%)

2 64 NIA 0.000632 NIA NIA

3 512 0.006 0.001686 3.559 59.312

4 4096 0.17 0.058802 2.891 48.184

5 32768 8.95 3.743384 2.390 39.848

6 262144 1181.47 569.67 2.074 34.565

50

Sequential vs. Parallel time cost

10000

- 1000 1/1
'tl 100 c:
0
u 10 QI

i • Sequentlal Time , 1/1 - 1 - 1 ~ Parall~]ïme 1/1
0 0.1 u
QI 0.01 E
t= 0.001

0.0001
64 512 4096 32768 262144

Number of Elements

Figure 4-14: Sequential vs. Parallel execution time cost using 6 PEso

Figure 4-14 shows that in general the parallel execution time is faster then the

sequential execution time.

4·
3.5

3
g. 2.5
-g 2
QI

~ 1.5
1

0.5

Speedup comparison

o _.~~~~~-=~~~~~~~~~~~~~~~~~~
64 512 4096 32768 262144

No. of Elements

Figure 4-15: Speedup comparison.

51

From the speedup comparison graph in figure 4-15, it is clear that the speedup factor

(S p) slowly goes down as the number of elements increases.

Efficiency

70

60

50

40
~ 0

30

20

10

0
64 512 4096 32768

No. of Elements

Figure 4-16: Efficiency.

The efficiency graph in figure 4-16 shows c1early that the efficiency decreases as the

number of elements increases. The performance above is caused by the significant

overload of communication between PEs as the number of elements increases (details

are presented in the section 4.4.2).

52

4.4.2 Time cost distribution of each PE

Experimental results and time co st distribution of each PE are presented. The concept

of measuring time cost distribution is shown in figure 4-17.

~ tl (Mesh refinement computation time): for mesh refinement computation

~ t2 (Pre-processing time): for gathering information to the pre-processor for

the MPI Gather

~ t3 (Data gathering time): for data gathering into specified locations from aIl

pro cesses In a group

~ Ove raIl time cost = t1 + t2 + t3

5tart
time

End
time

ti

h

t3

M t PE as er

[Input data

[1st subdivision

i
...

[Broadcast sub-domain
assignment

[Receive new data file

...
[Write output data

51 ave PE s

J

J

Receive sub-domain
assiqnment

...
Refine mesh on

assigned sub-domain

't'

[Send new data file
back

1

r

Figure 4-17: Concept ofmeasuring time cost.

53

.....,
::;
::'.'
[
N'
d.
0
:;:l

J

.....,
(1)
~
0'
::;
[Il

J
0,
S
(1)
[Il

~
....
(1)

::n
::;
(1)

S
(1)

g

Table 4-3 and figure 4-18 below give the distribution time cost results of each PE for

the 2nd subdivision.

Table 4-3: Time cost (seconds) results of each PE: 2nd subdivision.

Distribution

Mesh
refinement

Pre-
processing

Data
gathering

Overall

Cil
-0
C

0.0006

0.0005

8 0.0004
~
ëii
o
(.)

Ql 0.0003
E
1=

0.0002

0.0001

ID of Each PE

PI: 0 PI: 1 PI: 2 PI: 3 PI: 4 PI: 5

0.000261 0.000375 0.000297 0.000385 0.000174 0.000180

0.000238 0.000244 0.000237 0.000235 0.000239 0.000231

0.000108 0.000006 0.000006 0.000007 0.000007 0.000008

0.000607 0.000625 0.000540 0.000627 0.000420 0.000419

Time cost distribution: 2nd subdivision

iD Data gathering
1

1

II1II Pre- processing
,DMesh ref e nt

PE 0 PE 1 PE 2 PE 3 PE4 PE 5

ID of each PE

Figure 4-18: Time cost distribution: 2nd subdivision.

54

Table 4·4 and figure 4·19 below give the distribution time cost results of each PE for

the 3rd subdivision.

Table 4-4: Time cost (seconds) results of each PE: 3rd subdivision.

Distribution

Mesh
refinement

Pre·
processing

Data
gathering

Ove rail

0.0018

0.0016

0.0014

0.0012

"' "0
C
o
il 0.001
!!!..
ii)
o
u 0.0008
Q)

E
i=

0.0006

0.0004

0.0002

ID of Each PE

PEO PE 1 PE 2 PE 3

0.000283 0.000303 0.000313 0.000313

0.00121 0.001176 0.001178 0.001167

0.000193 0.000013 0.000012 0.000015

0.001686 0.001492 0.001503 0.001495

Time co st distribution: 3rd subdivision

PE 0 PE 1 PE 2 PE 3 PE 4

ID of each PE

PE4 PE 5

0.000196 0.000256

0.001174 0.001118

0.000011 0.000023

0.001381 0.001397

! 0 Data gathering]

1
l1li Pre- pro.ceSSing

L!=l-.MllJib..reÜDJmle.ot

PE 5

Figure 4-19: Time cost distribution: 3rd subdivision.

55

Table 4-5 and figure 4-20 below give the distribution time cost results of each PE for

the 4th subdivision.

Table 4-5: Time co st (seconds) results of each PE: 4th subdivision.

Distribution

Mesh
refinement

Pre·
processing

Data
gathering

Overall

0.07

0.06

0.05

"' u
c
80.04
Q)

2-
1il
o
()

Q) 0.03
E
;::

0.02

0.01

o
PE 0

ID of Each PE

PE 0 PE 1 PE2 PE 3

0.000265 0.000668 0.000641 0.000652

0.056878 0.056661 0.056661 0.056688

0.001659 0.00004 0.000041 0.000057

0.058802 0.057369 0.057316 0.057397

Time cost distribution: 4th subdivision

PE 1 PE 2 PE 3 PE4

ID of each PE

PE4 PE 5

0.000384 0.001029

0.056687 0.056138

0.000049 0.001628

0.05712 0.058795

ID Data gatherin~]
1

111 Pre- processing
L[JJlI1~_sh reiinemlml

PE 5

Figure 4-20: Time cost distribution: 4th subdivision.

56

Table 4-6 and figure 4-21 below give the distribution time cost results of each PE for

the 5th subdivision.

Table 4-6: Time cost (seconds) results of each PE: 5th subdivision.

Distribution

Mesh
refinement

Pre·
processing

Data
gathering

Overall

4

3.5

3

~2.5
c
a
(,)
ID
VJ

i 2
a
(,)

ID

~ 1.5

0.5

o
PE 0

ID of Each PE

PEO PE 1 PE 2 PE 3

0.000356 0.001915 0.002078 0.001791

3.731448 3.729679 3.729704 3.72996

0.001158 0.003769 0.005299 0.00586

3.743384 3.735363 3.737081 3.737611

Time cast distribution: 5th subdivision

PE 1 PE 2 PE 3 PE 4
ID of each PE

PE4 PE 5

0.00195 0.006032

3.72972 3.72546

0.007111 0.011593

3.738781 3.743085

PE 5

ID Data gathering

l'III Pre- .proce.ssing
o M.es.hJ.efinem ent

Figure 4-21: Time cost distribution: 5th subdivision.

57

Table 4-7 and figure 4-22 below give the distribution time cost results of each PE for

the 6th subdivision.

Table 4-7: Time cost (seconds) results of each PE: 6th subdivision.

Distribution

Mesh
refinement

Pre·
processing

Data
gathering

Overall

600

500

400
U;
'0
c:
a
al
(/)

i 300
a
" Ql

E
f=

200

100

o
PE 0

ID of Each PE

PE 0 PE 1 PE2 PE 3 PE4

0.000281 0.014 0.014 0.012 0.014

569.569 569.603 569.603 569.605 569.603

0.053 0.02 0.026 0.029 0.036

569.67 569.638 569.643 569.647 569.653

lime cost distribution: 6th subdivision

PE 1 PE 2 PE 3 PE 4 PE 5

ID of each PE

Figure 4-22: Time cost distribution: 6th subdivision.

58

PE 5

0.048

569.569

0.0533

569.67

1

10 Data gathering i
III Pre- processing :

lf:!Mesh refinem ent '

Figure 4-18 to 4-22 show the time cost distribution comparison of each PE. These

figures show that overaIl the workload is weIl balanced. These also clearly show that

the more the elements increase, the more the time ratio of pre-processing (information

gathering; communication cost) increases. The communication cost is significant due

to overload for communication between PEs as the number of elements increases. It is

clear that the delay between times, when the first and the last contacted processor is

able to start, grows with the number of elements. This negatively influences the

workload balance. Therefore, the performance of the parallel algorithm drops. In order

to reduce the communication cost, a pipelined communication strategy must be

designed for our mesh refinement scheme. However, the design seems to be quite

efficient in general, even though the mesh refinement algorithm does require a lot of

communication.

4.4.3 Time Cost of Mesh Refinement

Mesh refinement is the essential part of hierarchical tetrahedral - octahedral (HTO)

subdivision. From table 4-3 to table 4-7, we compare timing results of mesh

refinement for each PE and observe the balance of the workload assigned to each PE.

Then, we compare it with the sequential computation time cost. Experimental results

and time cost of mesh refinement are presented. The table and corresponding graphs

are given below. Table 4-8 gives the timing results for MPI for 5 mesh refinement

iterations.

59

Table 4-8: Time cost (seconds) of mesh refinement.

Mesh ID of Each PE
Refinement
Iterations PE 0 PE 1 PE 2 PE 3 PE4 PE 5

2 0.000261 0.000375 0.000297 0.000385 0.000174 0.00018

3 0.000283 0.000303 0.000313 0.000313 0.000196 0.000256

4 0.000265 0.000668 0.000641 0.000652 0.000384 0.001029

5 0.000356 0.001915 0.002078 0.001791 0.00195 0.006032

6 0.000281 0.014 0.014 0.012 0.014 0.048

Time cost of mesh refinement

0.01
fi)
'0
C

i=1I
a
u

m 31 Cl>
.!:?-
ûî 4!

! ! a

~ u
Cl>
E
i=

0.001

o 2 3 4 5 6

ID of each PE

Figure 4-23: Time cost of mesh refinement.

60

The figure 4-23 shows that PEs l to 4 have similar computation time for a given

iteration, for the workload assigned to them are ideally balanced. PE 5 has a little

longer computation time as the iterations increase, because its working domainis an

octahedron. The timing results for mesh refinement comparing sequential computing

with each PE are presented in figure 4-24 and 4-25.

Table 4-9: Timing results for sequential computing vs. MPI PEso

Mesh Seque ID of Each PE
Refinement
Iterations

-ntial PE 0 PE 1 PE 2 PE 3 PE4 PE 5

5 0.015 0.000356 0.001915 0.002078 0.001791 0.00195 0.006032

6 0.085 0.000281 0.014 0.014 0.012 0.014 0.048

Timin~ comparison 01 mesh relinement: 5th iteration

0.016

0.014

0.012

~ 0.01

~ i 0.008

Q)

E
F 0.006

0.004

0.002

Sequential PE 0 PE 1 PE 2 PE 3 PE4 PE 5

Figure 4-24: Timing comparison ofmesh refinement:

Sequential computing vs. MPI PEs at 5th iteration.

61

<il
"0
c:
o

0.09

0.08

0.07

0.06

al 0.05
~
en
o
tl 0.04
Q)

E
i=

0.03

0.02

0.01

o

Timin(l comparison 01 mesh relinement: 6th Iteration

Sequential PE 0 PE 1 PE 2 PE 3 PE4 PE 5

Figure 4-25: Timing comparison ofmesh refinement:

Sequential computing vs. MPI PEs at 6th iteration.

The above figures clearly show that the time cost for each mesh refinement iteration is

indeed reduced using MPI.

62

Chapter 5

Conclusions

The parallel mesh refinement algorithm for hierarchical tetrahedral - octahedral (HTO)

subdivision was successfully implemented using MPI. The efficiency of parallel

computing using speedup factor was observed. The distribution time cost for mesh

refinement computation, pre-processing for data gathering, and data gathering were

also presented.

From the performance analysis results presented in the previous chapter, we have

shown the efficiency of parallel computing over sequential computing. Parallel

execution time is much faster then the sequential time, although the speedup factor

slowly goes down as the number of elements increase. Most of aIl, we have clearly

shown that the time cost for the mesh refinement is significantly reduced using MPI.

The parallel method for hierarchical tetrahedral-octahedral subdivision for 3-D finite

element mesh refinement indeed enhanced the performance.

The results of the distribution time cost shows that the communication delay is

significant as the number of elements increases due to the build up of a geometric file.

In order to reduce the communication delay, a pipelined communication strategy for

the mesh refinement algorithm is necessary.

63

5.1 The Original Contribution Appearing in a Publication

The research and experimental results related to parallel hi erarchi cal tetrahedral

octahedral subdivision: modeling, simulation and validation was accepted for

publication in conference proceedings at CEFC 2006 (IEEE Conference on

Electromagnetic Field Computation). CEFC 2006 was held in Miami (USA), April 30

- May 3, 2006 [43]. This contribution will also appear in IEEE Transactions on

Magnetics [44] .

5.2 Future Work

There is possible future work in continuing this project or in this area. We have

worked with a fixed number of processing elements (PEs) - 1 master PE and 5 slave

PEs because we considered 4 tetrahedra and 1 octahedron after the first subdivision of

an initial tetrahedron and allocated each element to each PE slave. However, it would

be necessary to investigate the parallel algorithm using varying numbers of salve PEs

with various sub-domain distributions.

Since the communication delay is significant due to the build up of a geometric file, it

would be beneficial to modifying the algorithm by the addition of a pipelined

communication strategy for the mesh refinement algorithm.

64

LIST OF REFERENCES

1. Lewis, R.W., P. Nithiarasu, and K.N. Seethararnu, Fundamentals ofthejinite
element method for heat andfluid flow. 2004, Chichester, England ; Hoboken,
NJ: Wiley.

2. G.Castanos, J. and J.E. Savage. Paral/el Rejinement ofUnstructured Meshes.
in Proceedings o.lthe IASTED International Conference. 1999. MIT, Boston,
USA.

3. Jin, J.-M., Thefinite e!ement method in electromagnetics. 2002, New York:
Wiley.

4. Felippa, C.A., Introduction to Finite Element Method.
http://caswww.colorado.edu/course.d/IFEM.d/Horne.htrnl.

5. Dorica, M., Novel Mesh Quality Improvement Systems for Enhanced Accuracy
and Efficiency of Adaptive Finite Element Electromagnetics with Tetrahedra,
in Computational Analysis and Design Laboratory Department of Electrical
and Computer Engineering. 2004, McGill University: Montreal, Canada. p. 79.

6. AlberteUi, G. and R.A. Crawfis. Efficient Subdivision of Finite-Element dataset
into Consistent Tetrahedra. in '97., Proceedings. 1997.

7. Yuan, 1., L. Zhang, and Z. Li, A step-by-step Approachfor Three-dimensional
Finite Element Mesh Generation. IEEE Transactions on Magnetics, 1998.
34(5): p. 3375-3378.

8. Tsukennan, 1. and Alexander Plaks, Refinement Strategies and Approximation
Errorsfor Tetrahedral Elements. IEEE Transactions on Magnetics, 1999.35
No. 3: p. 1342-1345.

9. Zhang, S.Y., Successive Subdivisions ofTetrahedra and Multigrid Methods on
Tetrahedral Meshes, in Houston J of Math. 1995. p. 541-556.

10. Ren, D.R. and D.D. Giannacopoulous. A Preliminary Approach to Simulate
ParaUe! Mesh Rejinement with Petri Nets for 3-D Finite Element
Electromagnetics. in Proceedings of ANTEM 2004. p. 127-130.2004.

Il. Giannacopoulos, D.D. and D.Q. Ren. Analysis and Design of ParaUe! 3-D
Mesh Rejinement Dynamic Load Balancing Algorithms for Finite Element
Electromagnetics with Tetrahedra. in COMPUMAG 2005. June 2005. China.

65

12. Ren, D.Q. and D.D. Giannacopoulos. ParaUel Mesh Refinementfor 3-D Finite
Element Electromagnetics with Tetrahedra: Strategies for Optimizing System
Communication. in COMPUMAG 2005. June 2005. vol. l, p. 120-121. China.

13. Greiner, G. and R. Grosso, Hierarchical tetrahedral-octahedral subdivision for
volume visualization, in The Visual Computer. 2000. p. 357-369.

14. Schaefer, S., J. Hakenberg, and 1. Warren. Smooth Subdivision ofTetrahedral
Meshes. in Eurographics Symposium on Geometry Processing. 2004.
Gennany.

15. Vegter, G., http://www.cs.rug.nl/~gert/compgeom.html.

16. Philip, M., Geomview Manual. 1998.

17. Burgin, M.S., Super-recursive algorithms. Monographs in computer science.
2005, New York, NY: Springer.

18. Wilkinson, B. and C.M. Allen, ParaUe! programming : techniques and
applications using networked workstations and paraUel computers. 2005,
Upper Saddle River, NJ: PearsoniPrentice Hall.

19. Quinn, M.J., ParaUe! programming in C with MPI and openMP. 2004, Boston
; London: McGraw-Hill Higher Education.

20. Kohout, 1., Delaunay Triangulation in ParaUe! and Distributed Environment,
in Department of Computer Science and Engineering. 2005, University of
West Bohemia: Pilsen, Czech Republic. p. 127.

21. D'Ambra, P., et al. Advanced Environmentsfor ParaUe! and distributed
computing. in ParaUe! Computing 28.2002: Elsevier Science B.V.

22. Duncan, R., A Survey of Pa ra Ue! Computer Architectures, in Survey &
Tutorial Series. February 1990. p. 5-15.

23. MA., Perkowski, Digital systems design using VHDL and Verilog. Lecture
Notes 1999. 1999, Portland State University: Portland.

24. Blazy, S. and O. Marquardt. ParaUe! Refinement of Tetrahedral Meshes on
Distributed-Memory Machines. in Proceedings of the 23rd IASTED
International Multi-Conference. 2005. Innsbruck, Austria: ParaUel and
Distributed Computing and Networks.

25. Lakshmivarahan, S. and S.K. Dhall, Analysis and design ofparaUel algorithms
: arithmetic and matrix problems. McGraw-Hill series in supercomputing and
parallel processing. 1990, New York: McGraw-Hil1.

66

26. Gupta, A., A. Grama, and V. Kumar, Isoefficiency: Measuring the Saclability
of Parallel Aigorithms and Architectures. IEEE Parallel and Distributed
Technology, August 1993: p. 12-20.

27. TW., C. An introduction to parallel rending. in Parallel Computing 1997.
1997.

28. Pacheco, P.S., Parallel Programming with MPI. 1997: Morgan Kaufmann
Publishers, Inc.

29. Gropp, W., E. Lusk, and A. Skjellum, Using MPI: portable paraUel
programming with the message-passing interface. Scientific and engineering
computation. 1999, Cambridge, Mass. ; London: MIT Press.

30. Gropp, W., E. Lusk, and R. Thakur, Using MPI-2 : advanced features of the
message-passing interface. Scientific and engineering computation. 1999,
Cambridge, Mass. ; London: MIT Press.

31. Snir, M., MPI -- the complete reference. Scientific and engineering
computation. 1998, Cambridge, Mass. ; London: MIT Press.

32. Geist, G.A., lA. Kohl, and P.M. Papadoulos, PVM and MPI: a Comparison of
Features. 1996. p. 1-16.

33. Takubo, H. and S. Yoshimura, Parallel decomposition of laa-million DOF
meshes into hierachical subdomains. 1999, University of Tokyo: Tokyo. p. 13.

34. CLUMEQ Infrastructure, http://www.clumeq.mcgill.ca/.

35. Hsu, l-M. and P. Banerjee, Performance Measurement and Trace Driven
Simulation of Parallel CAD and Numeric Applications on a Hypercube
Multicomputer, in 1 7th Int'l Symp. on Computer Architecture. 1990.

36. Andrews, G.R. and F.B. Schneider, Concepts and Notations for Concurrent
Programming, in Computing Surveys. 1983. p. 1-39.

37. Kutti, N.S., C and Unix programming: a comprehensive guide incorporating
the AN SI and POSIX standards. 2002, Mt. Pleasant, SC: Lightspeed Books.

38. Microsystems, S., Sun HPC Cluster Toois 5 Sofeware User's Guide. 2003: Sun
Microsystems Inc.

39. Microsystems, S., Sun MPI 6.0 Software Programming and Reference Manual.
2003: Sun Microsystems Inc.

67

40. Schildt, H., C Programming Language: Explained to Learn Easier. 1998,
Seoul: E-Han Publishers, Inc.

41. Chandra, R., ParaUe! programming in OpenMP. 2001, San Francisco, CA:
Morgan Kaufinann Publishers.

42. Buyya, R., High performance cluster computing. 1999, Upper Saddle River,
N.J. : Prentice Hall PTR.

43. Ren, D.Q., C. Park, B. Mirican, D.D. Giannacopoulos and S. McFee, ParaUel
hierarchical tetrahedral-octahedral subdivision: modeling, simulation and
validation in lnvited paper in the 12th BienniallEEE Conference on
Electromagnetic Field Computation (CEFC 2006).2006. Miami, Florida USA.

44. Ren, D.Q., C. Park, B. Mirican, D.D. Giannacopoulos and S. McFee, ParaUe! 1

hierarchical tetrahedral-octahedral subdivision: modeling, simulation and
validation IEEE Transactions on Magnetics, (submitted), 2006.

68

