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Abstract 

Catalysis plays a major role at mitigating the environmental impact of the chemical industry, 

drastically cutting its energy and material consumption. For this perspective, we have chosen 

C=O reduction in the context of biomass as a benchmark reaction to introduce and illustrate 

essential aspects of green catalysis. We first covered the most used C=O hydrogenation 

substrates made from biomass. Then, we looked at alternative energy sources to convective 

heating, discussed the use of greener solvents and reductants, and listed a few precious metal-

free catalytic systems. Finally we looked at various hydrogen sources, including bio-sourced 

ones. In particular, we emphasized the use of metrics in order to quantify the actual impact of 

these innovations.  
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C=O reduction of biomass was used as a benchmark to give an overview of recent 
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Introduction 

From the inception of green chemistry, catalysis has been considered a key tool to achieve 

a more sustainable chemical industry, and was coined a “pillar of green chemistry”, in addition 

to being one of its 12 principles.1 Indeed catalysis offers the possibility to positively impact a 

chemical process in many different ways, including lowering energy and materials inputs, 

increasing conversion and selectivity, thus improving upon separation and purification and 

favoring less dangerous and toxic reagents. In a quarter century of green chemistry research,2 

catalysis has enabled some of its finest developments. Catalysis has proven a particularly 

appealing strategy towards tackling the grand challenge of biomass conversion to useful 

chemicals and fuels.  

Catalytic reduction is among the most important chemical transformations in volume in 

industry and are routinely employed at all scales of chemical production.3 Reduction is a 

particularly crucial process in the context of biomass transformation, since the lignocellulosic 

material is oxygen rich, with a key feature on carbonyl reduction.4 Indeed, most biomass-

derived molecules are naturally C=O/C-O-rich, in contrast to petroleum-based chemicals.5 

Hydrogen gas is often considered an ideal reducing agent both in terms of cost and atom 

economy. Indeed, hydrogenation has been largely explored in academia, with the first catalytic 

example reported in 1874 for olefin hydrogenation.6 It has become a powerful tool for key 

processes in the industry, such as the Haber-Bosch process, the Fischer-Tropsch synthesis, or 

oil refining.7 Despite its advantages, the use of H2 gas may be problematic in some settings 

because of its flammability and the need for pressurization. On the other side of the spectrum, 

in the pharmaceutical industry, the most common reducing agents used are LiAlH4 and NaBH4. 

These inorganic salts are particularly reactive toward carbonyls, and have been successfully 

implemented in large-scale processes (>100 mol scale).8 Noyori-type catalysts are, on their 

end, most used for asymmetric prochiral ketone reduction.9  

In the context of biomass upgrading, H2 is commonly used as the reducing agent, in 

conjunction with a catalyst. Platinum group metals (PGMs) such as Pd, Ru as both 

homogeneous and heterogeneous systems are commonly investigated for their activity and 

selectivity. These come with their own drawbacks: low abundance,10 high toxicity,11 and 

recycling issues.12 Thus a lot of research efforts are dedicated to the development of 

heterogeneous catalysts and/or the use of earth abundant metals in the context of biomass 

upgrading.13 Transfer hydrogenation methodologies have also been explored.4 
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For this perspective, we have chosen C=O reduction in the context of biomass as a benchmark 

reaction to introduce and illustrate essential aspects of green catalysis. We have reviewed some 

of the most used C=O hydrogenation substrates taken from biomass (1). We looked at 

alternative energy sources and solvent used in this context (2 and 3). We then explored the 

development of greener catalysts based on nonprecious metals (4), before exploring the 

importance of the hydrogen sources, with a special attention to bio-sourced ones (5). 

Throughout the manuscript, attempts were made to highlight how green chemistry metrics were 

used to shed light on the relevance of the reported methods. Green metrics are an essential 

means to bring rational comparison and perspective and their use is encouraged.14 The field of 

biomass catalytic reduction is the center of a lot of scientific attention and as such, the reader 

is encouraged to consult recent reviews of this field.4 

C=O hydrogenation substrates 

Benzylic carbonyls (namely benzaldehyde and acetophenone) are commonly reported as 

model substrates for the C=O hydrogenation reaction, due to their high reactivity and ease of 

handling, and are easy first steps in the exploration of a new reduction catalyst. Unsurprisingly 

reduction of biomass-derived platform molecules, in particular levulinic acid (LA) or 5-

hydroxymethylfurfural (5-HMF), is intensely explored as well.15 They can be made from acidic 

treatment of glucose or cellulose, and for both, pilot plants dedicated to their production from 

biomass have been built.16-17 Their reduction products are useful building blocks available for 

further functionalization, showing the key role of C=O hydrogenation in chemical industry. 

Typically, selectivity is an important aspect, with carbonyl hydrogenation being less favored 

compared to nitroarene, alkyne and alkene hydrogenation (Error! Reference source not 

found.).18  

 

Scheme 1. Usual reactivity trends in hydrogenation. 

Another industrially relevant and bio-based target is citral. It contains one C=O and two 

unsaturated C=C bonds with various steric hindrances, making for challenging selectivity 

issues as well. In the context of using biomass as substrate for hydrogenation, it is important to 

note that there are still open questions about the sustainability of such resources. One must also 

take in account the origin of a chemical, as well as its fate after use. Life Cycle Analysis (LCA) 

comes in as a powerful tool to thoroughly evaluate a chemical’s environmental impact through 
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different scopes (e.g. ozone depletion, fossil fuel consumption, ecotoxicity, global warming, 

etc…).19 For instance, Montazeri et al. compared the LCA of the production of lignin-based 

tert-butyl catechol (TBC) and fossil fuel-based TBC.20 They showed that the use of 

dichloromethane as an extraction solvent in the former route heavily penalized its ozone 

depletion burden by a 1000-fold factor while overall both routes had the same global warming 

impact (1.25 kgCO2/kgTBC). More work on this field is certainly important to provide context in 

some of the chemistry described in this review.21 22  

Levulinic acid 

LA forms γ-valerolactone (GVL) upon hydrogenation and subsequent cyclization 

(Scheme 2).23 GVL is useful in itself as a fuel additive or solvent,24 and can be further reduced 

to 2-methyltetrahydrofuran (2-MeTHF) for similar purposes. It can be further converted to α-

methylene-γ-valerolactone (MeMBL) using formaldehyde, and serves as a methyl 

methacrylate upgrade in its polymerisation.25 Indeed, it increases the glass transition 

temperature of the resulting copolymer by 100°C compared to pure poly-methyl methacrylate. 

GVL can also reversibly convert to pentenoic acid (PEA),26 which can be further hydrogenated 

to pentanoic acid (PA). All these intermediates can be decarboxylated or used as chemical 

building blocks or fuel additives.27 Another closely related pathway to carbonyl hydrogenation 

is reductive amination, from which LA can form 2-pyrrolidinone derivatives.28 In practice, 

since the carboxylate function in LA can poison catalyst surfaces, ethyl levulinate (EL) and 

butyl levulinate (BL) can be used instead. Both of them can be easily converted to GVL by 

C=O reduction.29 

 

Scheme 2. LA hydrogenation and further upgrade pathways. 

Furfural and 5-Hydroxymethylfurfural 
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Furfural (FF) and 5-HMF are both furan derivatives that can be generated from the acid-

catalyzed dehydration of biomass-derived xylose and glucose respectively.30 Both of them 

constitute promising substitutes building blocks derived from petrochemicals in the production 

of plastics and fine chemicals.31  

The reduction of 5-HMF into 2,5-dihydroxymethylfuran (DHMF) has been covered by 

Hu et al. (Scheme 3).32 This symmetrical diol can be directly used as a co-monomer, for 

example with succinic acid to form poly(2,5-furandimethylene succinates) (PFS).33 It can also 

be etherified using various short chain alcohols to form 2,5-bis(alkoxymethyl)furan (BAMF) 

that can be used as fuel additives.34 Lastly, it can be re-arranged into 6-hydroxy-6-methyl-4-

enyl-2H-pyran-3-one (HMEPO), an intermediate for the synthesis of sugar analogues and 

compounds with excellent biological activities.35 Furfural can be reduced to furfuryl alcohol 

(FFA), that can be mostly converted to fuel additives (2-methylfuran and 2-

methyltetrahydrofuran) and solvents (tetrahydrofurfuryl alcohol).36 FFA can also be 

hydrogenated then isomerized into cyclopentanone, an important chemical intermediate to 

produce insecticides and rubber chemicals.37 
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Scheme 3. FF and 5-HMF hydrogenation and further upgrade pathways. 

Citral 

Citral, a monoterpenoid containing three unsaturations (1 C=O bond and 2 C=C bonds), 

is distilled from essential oils such as lemongrass oil. It is responsible for the ‘citrus effect’ in 

perfumes and other flavored consumer goods, and widely used as such. It can be cyclized into 

other flavors such as menthol.38 Stolle et al. have identified citral hydrogenation as a 

challenging process, considering the selectivity issue stemming from the presence of three 

double bonds (making up to 8 potential products, Scheme 4).39 Carefully designed catalytic 

systems, composed of transition metals Ag, Ru or Os, combined with acidic promoters such as 

In2O3, CeO2 or MgO, have enabled breakthrough toward improved reactivity and selectivity in 

favor of C=O reduction.40 

 

Scheme 4. Citral hydrogenation selectivity issues (each hydrogenation pathway is indicated 

above the arrows). 

Alternative energy sources 

As outlined by Varma et al., a number of alternative energy inputs have been successfully 

applied to both organic chemistry and material synthesis.41 These all constitute an effort 

towards improving the efficiency of a reaction from an energetic perspective. Indeed, most 

organic reactions are conducted using convective heating, a slow method relying on convection 

currents and thermal conductivity to transfer energy to the reaction mixture.42 

Microwave heating 
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Microwave irradiations occur in the 0.3-300 GHz range and are typically used in 

chemistry at 2.45 GHz. This frequency corresponds to a wavelength of 12.24 cm, and photon 

energy of 0.0016 eV, thus lower than Brownian motion.43 Instead, microwave dielectric heating 

relies on the capacity of the reaction medium to absorb microwave energy and dissipate it into 

heat through a dipole oscillating field alignment then friction phenomenon, along with an ionic 

conduction mechanism.44 In the case of conducting or semi-conducting materials such as 

metals, ohmic heating phenomenon can be involved as well.45 Overall, this results in a faster 

and more homogeneous heating of the reaction medium, and has been successfully applied to 

both organic chemistry and nano-material synthesis.41 By drastically reducing reaction time,46 

energy efficiency is increased compared to conventional heating (>30%).47 

Early examples (1997-2002) of the use of microwave heating were straightforward 

transposition of known transfer hydrogenation reactions, namely NaBH4 reduction48-49 and the 

Meerwein-Ponndorf-Verley reaction.50-51 Later, the advent of microwave reactors adapted to 

organic reactions led to better controlled chemical processes. In 2008, Varma and co-workers 

reported Ni supported on a magnetite support, using dopamine as a linker (Ni@Fe3O4).
52 Later 

on, they published a similar report using Ru supported on a magnetite core with a silica shell 

(Ru@Fe3O4).
53 Yoshida et al. also reported the preparation of Cu supported on hexagonal 

mesoporous silica (Cu@HMS) under microwave.54 These three catalysts share similar 

performances for the transfer hydrogenation of ketones using iPrOH in microwave, requiring 

a base (NaOH or KOH), and showing high recyclability with no metal leaching (Scheme 5A). 

Gowda et al. reported the use of non-noble metal carbonyls (Fe, Mo, Co, W) as in situ 

precursors to nanocatalysts for LA hydrogenation to GVL (Scheme 5B).55 While under 

conventional heating HCO2H/NEt3 reductant was required, EtOH under microwave served as 

both solvent and reductant in the reaction with a drastic reaction time decrease (from 48 h to 

20 min).  
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Scheme 5. Microwave heating for catalytic carbonyl transfer hydrogenation. 

Mechanochemistry 

20 million tons of organic solvents are produced every year, and make up to 85% in 

mass of waste emission for the synthesis of active pharmaceutical ingredients.56 These large 

quantities are required not only to ensure the homogenization of a chemical mixture, but also 

to perform extraction, purification and cleaning purposes.57 A mechanochemical reaction is 

defined by the IUPAC as ‘a chemical reaction that is induced by the direct absorption of 

mechanical energy”, through impact and/or shearing with a milling apparatus.58 Furthermore, 

the absence of solvent can favor an acceleration of reaction rate through high concentration, 

and offers an opportunity to solve substrate solubility issues. 

In fact, mechanochemical reactions are the oldest and simplest techniques used in history, as 

mortars and pestles have been well documented throughout the history of food and medicine 

preparation. NaBH4-induced carbonyl reduction has been readily transposed to 

mechanochemistry, starting with an early report by Toda et al. using manual grinding and 

improved by Cho et al. with the addition of acids (benzoic acid, p-toluene sulfonic acid or 

H3BO3).
59-60 Mack et al. reported the first mechanochemical reduction of carbonyls using a 

ball-mill mixer, with a further mechanistical study by Naimi-Jamal et al.61-62 Notably, the 

addition of LiCl salt could induce the in situ formation of LiBH4 that is reactive enough to 

reduce esters. Lastly, Solà et al. reported a sustainable route for the synthesis of Fluoxetine 

(Prozac), using microwave heating and ball-milling.63 In their second step, ball-milling with 

NaBH4 was successfully applied for the reduction of an aminoketone (Scheme 6A). Our group 

contributed to mechanochemical reduction of carbonyls. In this case the source of hydrogen 

was not conventional NaBH4, but a solid waste from the silicone industry, 
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polymethylhydrosiloxane (PMHS), activated by tert-butyl ammonium fluoride on silica 

(TBAF@SiO2) as a catalyst.64 Notably, 5-HMF was reduced through the fractioned addition of 

PMHS in three portions, reaching a 69% yield (Scheme 6B). Interestingly separation of product 

and reagent was simplified compared to the solution-based method.  

 

Scheme 6. A) Sustainable synthesis of Fluoxetine B) Mechanochemical reduction of 5-HMF. 

Photochemistry 

Photocatalysis is a mode of catalysis where a dye is used to absorb light and cause 

chemical activation of substrate molecules, usually through the separation of e-/h+ pairs. Early 

carbonyl hydrogenation photocatalysts consisted in light absorption semi-conductors such as 

CdS NPs,65 TiO2 NPs,66-67 or poly(p-phenylene) (PPP),68 using sacrificial electron donors such 

as Et3N, iPr2NH, β-mercaptoethanol and lactic acid (Scheme 7A). Sharma et al. reported Ru 

supported on graphitic carbon nitride (Ru@g-C3N4), using and short chain alcohols as 

reductants (EtOH, nPrOH, iPrOH).69 C3N4 is a visible light absorbing heterogeneous semi-

conducting material, that could be recycled up to 6 times (Scheme 7B). König et al. reported 

the synergistic activity of proflavine (PF) as a dye and a Rh complex for aldehyde reduction, 

functioning under blue light (455 nm) and being compatible with flow conditions (Scheme 

7C).70 Call et al. eventually showed that an earth abundant, oxygen- and water-stable 

photocatalytic tandem based on Cu and Co was suitable as well.71 Although outside the scope 

of this perspective, the field of CO2 reduction by photoactivation has been particularly dynamic 
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in the past few years, and the reader is directed towards recent reviews for more details.72 73 

Interestingly there, water is used as a H2 source, via a water splitting scheme.  

 

Scheme 7. A) General scheme for photo-induced reduction of carbonyls. B) Ru@g-C3N4 as a 

photocatalyst C) [Rh]/PF as a photocatalytic duet. 

Plasmonic catalysis. Plasmonic photocatalysis is based on visible-light absorption of metal 

NPs resulting from their localized surface plasmon resonances (LSPR).74 Indeed, visible light 

can enable the collective oscillation of the valence electrons of coinage metal NPs (Au, Ag, 

Cu) and Al NPs, allowing them to act as catalyst through the generation of high-energy 

electrons. Hao et al. used Au NPs supported on SiC (Au@SiC) as plasmonic catalysts for the 

C=O-selective transfer hydrogenation of α,β-unsaturated carbonyls under visible light (Scheme 

8).75 Similarly, our group exploited the same phenomenon with Ag nanocubes (Ag NC, Scheme 

8).76 Under mild H2 pressure (1 bar), especially for Ag NPs, Landry et al. successfully reduced 

a range of 12 carbonyls including aliphatic ketones and cinnamaldehyde at the C=O position. 

Citral was selectively reduced into geraniol in high yields (79%).  

 

Scheme 8. Plasmon-driven selective reduction of carbonyls using Ag NC.  

Solvents 

A number of organic solvents are harmful, toxic and environmentally damaging. However, 

they are crucial in most organic reactions to dissolve chemical compounds, enable heat 
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dispersion and ensure proper mass transfer. Substituting them or alleviating their use is no 

simple task, as many factors (such as safety, separation cost, viscosity, solvation properties, 

chemical stability) must be taken in account to evaluate their impact.77 As stated earlier, 

switching to solvent-free processes is a viable option, whether it is in liquid or solid phase. Not 

using solvents allows higher reaction rates due to higher concentration (for bimolecular 

reactions and beyond), as well as lower costs. However, low diffusion rates and heat dispersion 

issues due to higher mixture viscosity can be encountered in solvent-free conditions. 

Ultimately, the impact of a solvent on the performance of a reaction or on the economics of a 

process are the governing parameters, respectively in academia and industry.  

In 2010, Prof. Jessop conducted a survey aiming at identifying solvents causing the least 

environmental damage. Most parameters pointed at supercritical CO2, water and carefully 

chosen traditional organic solvents (these 3 categories added up to 75% of the total poll 

responses).78 This puts in perspective the importance given to Ionic Liquids (ILs), in particular 

in the Green Chemistry journal where 50% of the papers describe results with this class of 

solvents. These high-end and very polar solvents come with a heavy synthetic cost, although 

they can be used to treat usually insoluble biomass polymers such as lignin and cellulose.79 In 

the context of C=O reduction in particular, ILs featured poorly as they favor C=C reduction 

instead.80-81 Finally, Prof. Jessop listed a few scientific challenges in green solvent 

development, such as developing more diverse solvents in terms of polarity and hydrogen bond 

donor capacity (cf. Kamlet-Taft diagram), while taking in account the synthetic route and safety 

parameters. For instance, developing a sustainable low boiling-point polar aprotic solvent is 

still highly desirable. Besides, solvent choice is now made easier via the published guides 

produced by pharmaceutical companies (Pfizer,82 GSK,83-84 Solvay85) and the ACS Green 

Chemistry Institute (ACS-GCI) Pharmaceutical Roundtable.86 In a holistic approach, these 

aggregated several key parameters such as safety and waste treatment, conveniently helping 

the process chemist in choosing the most appropriate solvent. 

H2O  

For a long time, H2O as a solvent has been deemed as unsuitable for organic chemistry, 

despite reactions in nature taking place as aqueous enzymatic processes. Breslow et al. made a 

first breakthrough in 1980 by showing that Diels-Alder cyclization of cyclopentadiene with 

butanone proceeded 700 times faster faster in H2O than in iso-octane.87 In the context of 

carbonyl reduction, the authors exploited H2O as well to tune selectivity to the most 
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hydrophobic substrate. Shen et al. analyzed by surface vibrational spectroscopy H2O-hexane 

and H2O-air interfaces, showing that in all cases, about 25% of surface water molecules at the 

hydrophobic interface have one dangling -OH group, protruding into the hydrophobic layer 

without making hydrogen bonds.88 Thus, these dangling bonds have been hypothesized to 

decrease activation barriers, effectively accelerating chemical reactions where the transition 

state benefits from hydrogen bonding with H2O.89  

Surfactants can be employed to maximize water/organic layer interface, while using minimal 

amounts of organic solvents and metal catalysts (up to ppm levels).90 Overall, switching to 

micellar catalysis drastically reduces the E-factor of a reaction initially conducted in organic 

media, up to a tenth of its original value.91 Surfactants have been applied for great effect on 

metal-catalyzed asymmetric ketone transfer hydrogenation using HCO2Na, based on 

[Cp*Ru(TsDPEN)]-like complexes grafted on a sodium dodecyl sulfate (SDS) surfactant 

(Scheme 9A).92-95 

Alternatively, metal complexes can be made recyclable by making them water-soluble.96 

Typically, this is done by the grafting of hydrophilic groups on the ligand, such as sulfonate 

groups on triphenylphosphine (TPPTS).97 Grosselin et al. explored this ligand with Ru and Rh 

for the hydrogenation of α,β-unsaturated aldehydes in H2O.98 Interestingly, the metals were 

respectively selective towards C=O and C=C reduction (Scheme 9B). More recent 

developments were applied to LA hydrogenation, using water-soluble phenanthroline ligands 

(BPhDS, Scheme 9C) .99-100  
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Scheme 9. Approaches for carbonyl reduction in H2O: A) Using surfactants B) Using water-

soluble catalysts C) Application to LA hydrogenation.  

 Supercritical carbon dioxide 

Supercritical CO2 (sCO2) has seen great applications in hydrogenations due its mild 

critical point (304 K, 73.8 atm), the innocuous nature and non-flammability of CO2, the ease 

of post-synthesis removal, and notably the full miscibility of H2 in sCO2.
101-103 In comparison, 

at ambient temperature and atmospheric pressure the molar solubility of H2 in various solvents 

is as following: 0.8.10-3 M in H2O, 1.95x10-4 M in EtOH and 2.64 x10-4 M in acetone.104  

Furthermore, sCO2 promotes selective C=O reduction due to the dielectric constant of 

CO2 increasing with pressure, making it a polar solvent.105-103, 106 Arai et al. exploited this 

property for citral hydrogenation, attaining C=O and C=C reduction selectivity with Ru and Pd 

respectively (65% and 75% selectivity, Scheme 10A).107 Interestingly, Li et al. exploited sCO2 

as a medium for Zn/H2O-mediated reduction of aldehydes, through in situ H2O splitting 

(Scheme 10B).108 Harada et al. also reported a catalyst-free carbonyl reduction process in 

supercritical iPrOH (508 K, 48 bar).109-110 
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Scheme 10. sCO2 for: A) citral C=O reduction B) Zn/H2O-induced carbonyl reduction.  

Catalysts 

Catalysis relies on the principle that a catalyst does not get consumed during a reaction, 

but rather remains active to engage into further reactive cycles. Practically though, their life 

time can be limited by inactivation, or simply by the difficulty of their separation from the 

product and reuse. Not only it is problematic from an economical perspective, it causes toxicity 

issues in the final product, both for PGMs and more abundant metals (Ni, Cu).111 One option, 

which is favored in industry, is the use of heterogeneous catalysts due to their easy 

recyclability, although they tend to feature lower activity and selectivity compared to 

homogeneous complexes. In high-added value synthesis such as pharmaceutical compounds, 

the use of PGM-containing homogeneous catalysts remains essential. Nonetheless, efforts 

towards diminishing metal loading or shifting to base metals are on the rise.112  

Base-metal catalysts  

Iron. Fe has seen tremendous development in the field of carbonyl hydrogenation, through its 

cooperation with specifically tailored ligands or supports for H2 activation.113 A prime example 

is the Knölker complex, where Fe is assisted by a cyclopentadienone ligand for the splitting of 

H2.
114-117 Casey and Guan were the first to show its potency for carbonyl hydrogenation 

(Scheme 11A),118 followed by Fleischer et al.119 In parallel, Morris et al. reported a family of 

Fe-PNNP pincer complexes.120-122 In some cases, it was shown that the active species was 

actually PNNP-covered Fe(0) NPs (Scheme 11B).123-124 Finally, Fu et al. explored furfural 

hydrogenation using Fe2O3 NPs supported on N-doped graphene, with the catalytic activity 

stemming from the interaction between Fe and the N atoms of the support.125 



Alain You Li and Audrey Moores. Carbonyl Reduction and Biomass: A Case Study of Sustainable Catalysis, ACS 

Sustainable Chemistry & Engineering 2019 7 (12), 10182-10197 DOI: 10.1021/acssuschemeng.9b00811 

 

 

 

Scheme 11. Ligand and support-assisted Fe-catalyzed hydrogenation: A) Knölker complex B) 

Morris’ PNNP pincer ligand C) Fe2O3 NPs supported on N-doped graphene 

Manganese. Homogeneous Mn has seen tremendous developments in the last two years, since 

the original breakthrough by Beller and co-workers in 2016.126-129 The Mn contamination limit 

in pharmaceutical compounds is 250 ppm compared to 10 ppm for Ru, added to the fact Mn is 

the third most abundant transition metal in the Earth’s crust after Fe and Ti. Using an air-stable 

PNP pincer ligand complex (Scheme 12), they reduced a range of nitriles and carbonyls in high 

yields (92-99% yield for carbonyls).130 Citral and 5-HMF was successfully reduced at their 

carbonyl position (78% and 90% yield respectively). Yet, the introduction of phosphine 

moieties within a ligand design greatly increases its cost, superseding the price tag of the metal 

itself. Since then, phosphine-free ligands have been explored such as NNN pincers, 

aminopyridine or aminotriazole ligands.131-133 These few examples published in only 2 years 

reveal the scientific excitement around Mn-based complexes, with special relevance to biomass 

conversion.  
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Scheme 12. Mn catalysis for carbonyl hydrogenation. 

Nickel. Early mentions of homogeneous Ni for carbonyl transfer hydrogenation using iPrOH 

were performed with halide salts (NiCl2, NiBr2), coupled with NaOH or KOH.134-136 But 

contrary to Fe and Mn, heterogeneous Ni for carbonyl transfer hydrogenation has then been 

massively investigated.137 For instance Zr0.8Ni0.2O2,
138 Raney Ni,139 Ni@CeO2,

140 or Ni(0) NPs 

generated by the reduction of NiCl2 using metallic Li all proved competent for carbonyl 

reduction using iPrOH.137, 141 Interestingly, Escande et al. prepared EcoNi(0) from the thermal 

decomposition of a Ni-hyperaccumulating plant, Psychotria gabriellae, found in New 

Caledonia (Scheme 13).142 The authors used Al2O3 as a base and the catalyst was tolerant to -

NO2, -CN and C=C groups. Typically, citral was fully selectively reduced to citronellol (97% 

yield, 6 h). 

 

Scheme 13. EcoNi(0)-catalyzed carbonyl transfer hydrogenation. 

Magnetic catalysts 

A convenient method to simplify catalyst separation is to use magnetically recoverable NPs 

(MNPs), either directly as catalysts or as supports for homogeneous or heterogeneous 

catalysts.143 A few different strategies exist around this concept: the MNPs can be used directly 

as catalysts for carbonyl reduction such as magnetic CuFe2O4 NPs in conjunction with PMHS 

as reductant.144 Alternatively, magnetic supports such as Ni on Fe3O4 NPs can be used to 

support the catalyst.145 Our group, along with Baig et al., has explored this concept with Ru for 

transfer hydrogenation in iPrOH (Scheme 14A).53, 146 In both cases the catalyst was easily 



Alain You Li and Audrey Moores. Carbonyl Reduction and Biomass: A Case Study of Sustainable Catalysis, ACS 

Sustainable Chemistry & Engineering 2019 7 (12), 10182-10197 DOI: 10.1021/acssuschemeng.9b00811 

 

 

recyclable up to 4 times. We also immobilized Ag on Fe3O4 NPs, made by microwave using 

carboxymethyl cellulose as a reductant and linker (Ag-Fe3O4@CMC).147 The catalyst was used 

for the hydrogenation of carbonyls in water, exhibiting full selectivity to C=O bonds for citral 

and α-methyl-trans-cinnamaldehyde (Scheme 14B). 

 

Scheme 14. A) Ru@SiO2@Fe3O4 and Ru@Fe for carbonyl transfer hydrogenation B) Ag-

Fe3O4@CMC-catalyzed hydrogenation of aldehydes in water 

Frustrated Lewis Pairs 

Frustrated Lewis Pairs (FLPs) are a combination of Lewis acids and bases, in which 

sterics are designed to hinder dative bond formation.148-149 Stephan and co-workers were first 

to show that FLP were to be able to split H2 , constituting attractive metal-free hydrogenation 

catalysts.150 A major breakthrough in this field was made simultaneously by both the 

Stephan151-152 and the Ashley153-154 group, showing that a strong Lewis acid such as B(C6F5)3 

could catalytically reduce carbonyls, in conjunction with Et2O or THF as a weak Lewis base 

(Scheme 15A).155 Mummadi et al. adopted the opposite approach from the previous authors, 

using an aryl-substituted 9-BBN borane as a weak Lewis acid, in conjunction with a strong 

Lewis base (Scheme 15B).156 Their system worked on the gram-scale for EL conversion to 

GVL (74% yield). 
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Scheme 15. FLP-catalyzed hydrogenation of carbonyls. 

Due to the novelty of FLPs in hydrogenations, no formally heterogenized version has been 

reported so far. A few closely related systems are worth mentioning though, as they could give 

some hint on the future of heterogeneous FLPs. Primo et al. reported in 2014 exfoliated 

graphene as a C=C hydrogenation catalyst.157-158 While the nature of the active sites remains 

unclear, the authors did mention the co-existence of basic and acidic sites on their material, 

effectively exerting a FLP-induced H2 activation.  

From the examples covered throughout in this section, the following themes have been 

tackled: 

-Investigation of base metal catalysis. Indeed, base metals such as Co, Cu, Fe, Ni and Mn are 

more abundant than most PGMs but have remained comparatively underdeveloped.48-49, 159-160 

-Improvement of post-reaction catalyst separation and recyclability. This is also possible on 

homogeneous catalysts, for example by using hydrosoluble complexes,96 IL-soluble 

complexes161 or by using magnetically tractable supports. PGM would benefit in particular 

from a better catalyst re-usability due to their higher cost and toxicity.  

-High level of reduction activity and selectivity. In the context of carbonyl reduction, this 

means that investigation on C=O/C=C selectivity, low H2 pressure and/or mild reductants 

should be further pursued.162 

Hydrogen sources 

Carbonyl hydrogenation illustrate well the importance of metric choice. One of the first 

green chemistry metrics, concept of atom economy (AE), was developed by Prof. Trost in 

1991163 and it translates the conversion efficiency of a process to integrate every atom of the 

reactants into the desired product. Unsurprisingly, H2 gas exhibits a full efficiency in terms of 

atoms employed to reduce a carbonyl, while the atom efficiency of any other reductant falls 
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below 11% (Table 1). However, safety (regarding the use of pressure, or flammability), 

reactivity, recycling, as well as the sourcing of the reducing agent is not taken into account in 

AE. 164-165 Thus transfer hydrogenation is a viable alternative to direct hydrogenation.166 

Reductant % Active H 

H2 100% 

NaBH4 11% 

PMHS 7% 

HCO2H 4% 

iPrOH 3% 

glycerol 2% 

NaH2PO2 2% 

glucose 1% 

Hantzsch ester 0.7% 

Table 1. Common reductants in carbonyl reduction-atom economy. 

Similarly to what the ACS-GCI did with solvents, they recently published an online reagent 

guide, comparing for a given process several reagents with considerations on their 

environmental impact and scalability.86 Furthermore, the field of transfer hydrogenation will 

greatly benefit from future progresses in hydrogen storage, as reviewed by Sordakis et al.167  

The most popular hydrogen sources in the pharmaceutical industry, shown by their prevalence 

in large scale processes, are hydride salts (NaBH4, LiAlH4). These are obtained from 

respectively the treatment of B(OMe)3 with NaH (discovered in 1953168) and AlCl3 with LiH 

(discovered in 1947169). Hydride salts must be used in stoichiometric amounts, despite efforts 

made to use them in catalytic amounts,170 and they mostly suffer from flammability and 

cumbersome waste generation. Alcoholic hydrogen sources are available from biomass (EtOH, 

MeOH) and their byproduct can be potentially recycled (Scheme 16).164 Moreover, some waste 

chemicals from the biodiesel and silicon industry can be re-used as reductants (respectively 

glycerol and PMHS), opening up new avenues in sustainable transfer hydrogenation. Other 

unusual reductants such as glucose171 or NaH2PO2
172 have been explored as well for carbonyl 

reduction. 
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Scheme 16. An overview of hydrogenation sources. 

Short chain alcohols  

The discovery of hydride salts as reductants allowed in their time supplanting the 

‘classical’ reduction methods such as the Meerwein-Ponndorf-Verley (MPV) reduction, 

discovered in the 1920s.173-176 In this process, the carbonyl is introduced to an excess of 

reducing alcohol (iPrOH), with an Al or B-based transfer agent such as Al(OiPr)3. Upon 

coordination of an alkoxide to Al3+ or B3+, its α-hydride can be readily transferred to the 

carbonyl through a 6-member transition state (Scheme 17A). Since the process is reversible, 

an excess of iPrOH and Al(OiPr)3 is required to drive the reaction to completion, as well as 

typically long reflux times (3-8 h).177 However, the prospect of using alcohols as safe reducing 

agents sparked interest into improving over the original MPV reaction, that remained an 

inspiring system. For instance, it has been discovered that adding trifluoroacetic acid or using 

sterically hindered Al/B complexes helped drastically cutting reaction down time (up to 15 

min).177-181 The MPV reaction has seen in the last 5 years much development on GVL 

production, based on Al182-183 and Zr184-188 oxides as catalysts for LA and derivatives reduction 

(Scheme 17B).189 Lately, a more recent variant of MPV reactions was discovered by using 

cheap and widely available metal alkali such as NaOH or KOH.190-191 Similarly to Al3+ and 

B3+, K+ and Na+ cations are also able to mediate the direct hydride transfer through a similar 

6-member intermediate (Scheme 17C).  
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Scheme 17. MPV reduction: A) Mechanism B) LA reduction C) Base-catalyzed version. 

Formate 

Formic acid (HCO2H, FA) is the simplest of carboxylic acids, made from the 

carbonylation of MeOH into HCO2Me, and subsequent hydrolysis.192 The direct synthesis of 

formic acid from CO2 reduction with H2 or water by photoelectrocatalysis is a very active 

research topic.193 In conjunction with a base (such as Et3N) or as sodium formate, formic acid 

has been widely used as a reducing agent, decomposing into CO2 and H2 under catalytic 

conditions.194 It has been particularly useful in prochiral ketone reduction into secondary 

alcohol, using Ir,195 Ru,196-198 Rh complexes,199 or enzymes200 (Scheme 18A). Furthermore, LA 

is co-generated with LA 5-HMF acidolysis,17 giving a strong incentive to use FA to reduce 

LA.4 A seminal example was reported by Du et al., using small Au NPs supported on ZrO2 

(Au@ZrO2).
201 The catalyst was tested on freshly prepared solutions of LA/FA mixture made 

from the treatment of carbohydrates with H2SO4, establishing the robustness of their method. 

The Fu group also showed the viability of homogeneous Fe/Tris[(2-

diphenylphosphino)ethyl]phosphine complexes for LA reduction.202 Finally, Varkolu et al. 

used Ni supported on SiO2 (Ni@ SiO2) and applied in continuous flow for GVL synthesis 

(Scheme 18B).203 



Alain You Li and Audrey Moores. Carbonyl Reduction and Biomass: A Case Study of Sustainable Catalysis, ACS 

Sustainable Chemistry & Engineering 2019 7 (12), 10182-10197 DOI: 10.1021/acssuschemeng.9b00811 

 

 

 

Scheme 18. Formic acid/akali metal formate in A) prochiral reduction and B) Co-generation 

of LA and FA from 5-HMF and subsequent reduction to GVL. 

Glycerol 

Glycerol is a non-toxic, non-hazardous, and non-volatile liquid, the 1,3-dihydroxylated 

analogue of iPrOH.204 Contrary to iPrOH though, glycerol is a biomass waste from manufacture 

of biodiesel fuel from vegetable oils (100 kg generated per ton of biodiesel fuel produced, 

Scheme 19A).205 Thanks to its low price, there has been a strong economic incentive to use it 

as a solvent and a reducing agent. In catalytic carbonyl reduction, homogeneous Ru and Ir 

complexes in conjunction with KOH have been mostly used206-208 except for Ni@Fe3O4 

reported by Gawande et al. (Scheme 19B).209  

 

Scheme 19. A) Glycerol production from biomass B) Ni@Fe3O4 for carbonyl reduction in 

glycerol. 

PMHS 

In contrast to most silanes, PMHS is an inexpensive and non-toxic reducing agent. In 

the absence of an activator, it is an inert and easy to handle liquid. It was first prepared by Sauer 

and co-workers,210 and has been since reported in a substantial number of reduction 
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processes.211 Upon treatment with BF3·OEt2, the resulting PDMS byproduct can be recycled 

into MeSiH3-xFx synthons that are useful building blocks in the silicon industry.212 Early reports 

consisted in using Sn salts as activators,213-215 and since then a wider variety of activators, 

especially in metal–free schemes, has been reported. Nucleophilic activators such as 

fluorides,216 phosphines217 or bases218 have been successfully applied to PMHS-mediated 

ketone hydrosilylation (Scheme 20). Eventually, non-noble metals such as Fe219-221 and Zn 

were shown to activate PMHS as well, with Zn being able to enantioselective prochiral ketones 

into chiral secondary alcohols.222-225 

 

Scheme 20. PMHS for carbonyl reduction. 

Conclusion 

As seen throughout the plethora of examples of carbonyl reduction exposed here, a broad 

and diverse toolbox of chemical methods is available to organic chemists in order to design a 

performant reduction process in the context of biomass upgrading. We have attempted here to 

illustrate efforts to introduce various green chemistry concepts including the choice of 

substrate, energy, solvent, catalyst and reducing agent. Our hope is to show, educate, and ease 

the application of sustainability methods to the chemists to come. These examples showcase 

an interesting trend in the field. While the use of water, or mechanochemistry are very hot 

topics and are certainly innovative, they both rely in much older concepts. Water has always 

been the solvent of choice in biochemical pathways, and on Earth’s lifetime scale the use of 

organic solvents in modern organic chemistry can be seen as an historical anomaly. Likewise, 

mechanochemistry has been used in human history long before the first oil bath was ever 

used,226 and photochemistry or iron catalysis has been fully exploited by nature for even longer, 

as plants and blood cells can testify. These re-discovered techniques are key to tackle long-

standing challenges. In fact, some fundamental chemical considerations such as solvent effect, 

substrate solubility or reaction chemoselectivity are worth considering through these new 

scopes.40 
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