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ABSTRACT

An interior principal curvature estimate for a class of Weingarten curvature

equations is proved. An emphasis is placed on the completeness of the presen-

tation, and accordingly most of the common assertions made in literature when

treating the subject are carefully proved as preliminaries.

Given a hypersurface in the Euclidean space whose principal curvatures satisfy

a Weingarten-type curvature equation, an a priori interior bound for the principal

curvatures can be given; that is, the bound is not dependent on the particular form

of the solution or its behaviour near the boundary, and only depends on the preset

equation in the interior.

Afterwards, some theoretical context for the estimate and a discussion of its

significance in application are provided.

iv



ABRÉGÉ

Une estimation de courbure principale à l’intérieur pour une classe d’équations

de Weingarten de courbure est prouvée. L’accent est mis sur l’exhaustivité de la

présentation, et en conséquence la plupart des affirmations ordinairement faites

dans la littérature lors du traitement du sujet sont soigneusement prouvée comme

préliminaires.

Étant donné une hypersurface dans l’espace euclidien dont les courbures

principales satisfont une équation de type Weingarten de courbure, une borne à

priori à l’intérieur des courbures principales peut être donnée ; autrement dit, la

borne ne dépend pas de la forme particulière de la solution ou de son régularité

près du bord, et ne dépend que de l’équation prédéfinie à l’intérieur.

Ensuite, un certain contexte théorique pour l’estimation et une discussion sur

son importance dans l’application sont fournis.
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CHAPTER 1
Introduction

1.1 Introduction

Our problem of concern will be the prescribed Weingarten curvature problem

in the Euclidean space. Weingarten curvatures are elementary symmetric functions

of the principal curvatures κ1, κ2, ..., κn. Roughly speaking, the problem asks to

find an embedded hypersurface M ∈ R
n+1 whose Weingarten curvatures satisfy a

given condition, typically in the form of an equation involving a function given in

the ambient space or express parametrization.

We would like to establish an a priori estimate of the principal curvatures

given such an equation: bound on the principal curvatures on the solution if one

exists, with no more information than the given equation. Specifically, the rigorous

setting for our problem is as follows. One considers a local, strictly star-shaped

solution M to a problem

Q(κ1(X), κ2(X), ..., κn(X)) = f(X) > 0, X ∈ M (1.1)

where Q is a given positive C2 function invariant under switching the order of its

arguments, conditions on which to be laid out in the next section. By uniformly

star-shaped we mean that the support function u := 〈X, ν(X)〉 has a positive lower
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bound:

u = 〈X, ν〉 > 2c0 > 0 (1.2)

.

By local solution, we mean that M is a slice of a hypersurface in R
n+1 and

X is a parametrization from B1 ⊂ R
n. We specialize so that M is the graph

{(x,X(x)) : x ∈ B1 ⊂ R
n}, but the estimate process will not involve the setting

except that f is given on the same domain B1. Our estimate is of the form

|κi(X(0))| ≤ C(|f |C2(B1), |X|C1(B1), |f−1|C0(B1), c0, Q), ∀i (1.3)

It should be clear that this result in fact imply the general interior estimate on a

compact subset Ω′ � Ω for a solution on a general domain Ω:

|κi|C0(Ω′) ≤ C(|f |C2(Ω), |X|C1(Ω), |f−1|C0(Ω), c0,Ω
′,Ω, Q), ∀i (1.4)

Note that although our setting is simple, there are many ways to formulate

a similar problem, for most of which our methodology will work. Our proof

essentially reproduces that in [11], with some minor admissibility conditions

modified in the result. The graph can be defined on (a subset of) Sn as in [3] or

[7]; instead of being defined on the parametrization domain, f can be defined in

the ambient set within R
n+1 where the hypersurface is contained in as in [4]. f

can also depend on the normal to the surface, some cases of which is treated in

[8]. In addition, once the hypersurface is assumed to be represented in some way
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as a graph of a function u, one can also formulate a version where Q takes as its

arguments simply the eigenvalues of the Hessian D2u as in [2].

We prove the estimate by employing a maximum principle: set up a suitable

test function, and the estimate will follow from the fact that the test function

achieves a maximum within a bounded domain. The estimate is on the curvature,

a geometric quantity, proved using primarily geometric identities, and thus has

the advantage of being applicable in general settings as noted above. One of the

primary applications of a curvature estimate is in establishing existence by method

of continuity (e.g. in [3]); there one converts the curvature estimate into a Hessian

estimate of a function, where the specificity of a setting comes into play.

The resulting interior estimate (1.4) does not depend on the shape of or the

behaviour of the hypersurface on the boundary of Ω, and thus is distinct from the

global estimates presented in the above-cited sources. It will trivially imply the

global estimate in case of a compact domain with no boundary, e.g. in [3].

1.2 Statement of the Result

We first clarify the conditions to be imposed on the C2 symmetric function

Q. The following are based on the conditions assumed in [4], but include further

restrictions meant to be used in the estimate procedure. Its domain will be

denoted Γ ⊂ R
n; Γ shall be an open convex cone, invariant under switching of its
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components, with the following size restriction:

{∀i, λi > 0} ⊂ Γ ⊂ {
∑
i

λi > 0} (1.5)

If a solution of (1.1) has principal curvatures at every point in Γ, it shall be called

admissible.

For Q itself, we start by noting complications arising from computing Q.

What we actually have is the suitably differentiable components of the second

fundamental form matrix (hij); extracting individual eigenvalues of the matrix

in order to plug into Q is often a convoluted process. Without delving into the

relevant algebraic geometry, we simply (and reasonably, since Q is symmetric in

its arguments) assume that Q can be calculated in a C2 manner as a function

of symmetric matrices; that is, if λ := (λ1, λ2, ..., λn) ∈ Γ is the eigenvalue of a

symmetric matrix W , we have a C2 function Q on W such that

Q(W ) = Q(λ) (1.6)

where we abuse the notation Q to mean both the function on the matrix and the

eigenvalues. Note Q(W ) is invariant under orthonormal conjugations on W , since

the eigenvalues do not change.
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On Γ, Q is supposed to satisfy:

∂Q

∂λi

> 0, ∀i (1.7)

Q is concave and positive. (1.8)

This is common to most settings of the problem. (1.8) in fact implies a useful

upper bound: from concavity, we know the tangent line in the direction of λ at λ,

stays above the graph: ∀s > 0,

0 < Q(sλ) ≤ Q(λ) + (s− 1)
∑
i

∂Q

∂λi

λi

∑
i

∂Q

∂λi

λi ≤ Q(λ) from setting s → 0 above (1.9)

Then for the lower bound we assume that there exists a positive, strictly increasing

function φ on the positive reals (particular to a specific Q) such that

∑
i

∂Q

∂λi

λi > φ ◦Q > 0 (1.10)

this particular uniformity condition follows [3]. If, in addition to being symmetric,

Q is a homogeneous function of degree m, we have in fact

∑
i

∂Q

∂λi

λi = mQ
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which is Taylor’s formula. This, coupled with (1.9), implies that any non-degree

1 homogeneous Q should be powered to 1 in order to hope for concavity. Now we

can assume one of the following conditions in order to ensure the estimate:

∃K > 0, α < 1 :
∑
i

∂Q

∂λi

(λ) < K(1 + |
∑
i

∂Q

∂λi

λ2
i |α) (1.11)

∃K,N > 0, ∀i :∂Q
∂λi

(λ) < Kλ2N
i (1.12)

In particular, (1.11), in addition to the aforementioned (1.6), (1.7), (1.8), and

(1.10), is satisfied by Q := σk

σk−1
, 1 < k ≤ n, where σi is the i-th elementary

symmetric function. Q is defined on Γk := {λ ∈ R
n : σi(λ) > 0, i ≤ k}. The precise

definition thereof and the proof of its eligibility will be presented in Chapter 2.

Now we are ready to give the rigorous form of the estimate.

Theorem 1.2.1. Let C2 symmetric function Q defined in a suitable cone Γ satisfy

(1.6), (1.7), (1.8), (1.10), and at least one of (1.11) and (1.12). Then given a C2

positive function f and a C4 function u defined on the ball B1 ⊂ R
n such that its

graph M = {x, u(x) : x ∈ B1 ⊂ R
n} in R

n+1 is an admissible uniformly star-shaped

solution to (1.1), the principal curvatures of M satisfy an interior estimate of the

form (1.3).

And as noted above, the immediate corollary:

Corollary 1.2.2. Let C2 symmetric function Q defined in a suitable cone Γ satisfy

(1.6), (1.7), (1.8), (1.10), and at least one of (1.11) and (1.12). Then given a C2

positive function f and a C4 function u defined on a domain Ω ⊂ R
n such that its

graph M = {x, u(x) : x ∈ B1 ⊂ R
n} in R

n+1 is an admissible uniformly star-shaped
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solution to (1.1), given a compact subset Ω′ � Ω the principal curvatures of M

satisfy an interior estimate of the form (1.4).

Proof. Since Ω′ is compact, there exists r > 0 such that Br(x) ⊂ Ω for all x ∈ Ω′.

Then given x in Ω′, by precomposing a map B1 → Br(x) we get an estimate at

x of the form (1.3); since r only depends on Ω′,Ω, and Cn bounds on Br(x) are

trivially bounded by bounds on Ω, (1.4) holds.

1.3 Organization of the Thesis

The organization of this thesis is as follows. We recap preliminaries to the

subject in Chapter 2; this is not only to recall theory, but also to fix various

conventions such as signs and normalizations and thus ground the discussion in

rigorous terms. The main computations are in Chapter 3, where we prove the main

estimate. The final chapter will be devoted to putting some context to the result

and highlighting its significance, including some possibilities of application.
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CHAPTER 2
Preliminaries

In this chapter, we present important backgrounds to the subject, split into

two sections. First we make precise the notions of principal curvature and related

quantities in recalling extrinsic notions in differential geometry. Then we study the

elementary symmetric functions, in particular proving that their quotients indeed

satisfy the conditions (1.7)-(1.11) as asserted in the introduction. Much literature

(e.g. [2] [7]) concerning the prescribed curvature problem presents, or refers to, the

general theory of hyperbolic polynomials by Lars G̊arding [5] which implies the

same results; there it provides some context for the general conditions laid out in

the introduction, such as the convexity and positivity of the admissible cone. We

instead opt to give straightforward elementary proofs to results we need.

2.1 Extrinsic Riemannian Geometry

This section recalls classical theory of surfaces, which is often only presented

in 3-dimensions but immediately generalized to hypersurfaces in (n+ 1)-dimensions

(for example, see [1]). We assume basic definitions in Riemannian geometry.

A hypersurface M in R
n+1 is an embedded n-dimensional submanifold i :

M ↪→ R
n+1. In the context of Riemannian geometry, it is natural to equip M with
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the pullback of the Euclidean metric on R
n+1. That is, with a parametrization X,

the tangent space TXM embeds as the hyperplane

TXM := spani

〈
∂

∂xi

X = Xi

〉
< R

n+1

as normed vector spaces. This means in particular that we can calculate the unit

normal to the surface in the familiar Euclidean manner. As long as M is connected

and orientable, the Gauss map ν : M → R
n+1 is uniquely determined up to a sign

by

|ν(X)| = 1, ν(X) ⊥ TXM (2.1)

The choice of the sign represents a choice of orientation.

Then we define the second fundamental form W , which is a bilinear form on

the tangent space TXM , by

W (v, w) = 〈dνX(v), w〉

This is dependent on the choice of orientation–one can make it independent

of it by having it be the coefficient of the normal ν, as is done usually ([1]).

However, one still obtains a scalar value by contracting with the normal again

when calculating the principal curvatures, therefore the principal curvatures are

dependent on the orientation in any case.
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W is symmetric, which is the easiest to see in local coordinates as above. Note

differentiating 〈ν(X), Xi〉 ≡ 0 with respect to xj gives 〈(ν ◦X)j, Xi〉 = −〈ν,Xij〉:

W (Xi, Xj) = 〈dνX(Xi), Xj〉 = 〈(ν ◦X)i, Xj〉 = −〈ν,Xij〉 = W (Xj, Xi) (2.2)

So we can diagonlize W in an orthonormal basis; the resulting eigenvalues of

W are called principal curvatures. Concretely, if {Xi} is positively oriented and

orthonormal, the second fundamental form is given by the symmetric matrix (hij)

with the principal curvatures as its eigenvalues, where the components hij are

given by

hij = 〈dνX(Xi), Xj〉 = 〈νi, Xj〉

There is accordingly a divergence within the literature on the sign in the

definitions of W and the principal curvatures, and we, keeping with conventions

in [7], fix the definitions so that we do away with optional negative signs. For

example, [3] has opposite sign conventions to us, so that they work with negative

principal curvatures.

We now prove a few identities relating to the aforementioned quantities which

will be useful for us. First, we recall the definition and existence of local normal

coordinates ([1], p115):

Lemma 2.1.1. Let M be an n-dimensional differentiable manifold. Given m ∈ M ,

there exists a local coordinate X which maps into a neighbourhood containing m

such that the metric is trivial and the covariant derivatives coincide with partial

derivatives at m, or gij(m) = δij and Γk
ij(m) = 0 ⇔ ∂kgij(m) = 0, ∀i, j, k.
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Now we comment on some notational features which will be employed from

now on. We extend the subscript notation, which has already been employed

to signify partial derivatives of the coordinate and Gauss maps, to in fact mean

general covariant derivatives on tensors. Some care is needed, as in the proof of

(2.5). We will also use the Einstein summation convention from now on: a dummy

index repeated in a term is summed over unless otherwise stated.

We now prove a few identities that will be useful for us in the next chapter.

This particular collection follows [7].

Proposition 2.1.2. For the second fundamental form (hij) and the Gauss map ν

written in local normal coordinates X around m, the following holds at m:

Xij = −hijν (2.3)

vi = hj
iXj = hijXj (2.4)

hijk = hikj (2.5)

Rijkl = hikhjl − hilhjk (2.6)

where R is the Riemann curvature tensor. Note Xij, vi are partial differentiated;

all the additional subscripts will mean covariant differentiation. Since the last two

identities are tensor identities, they in fact hold in arbitrary coordinates.

Proof.
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(2.3, Gauss formula): Differentiating 〈ν, ν〉 = 1 gives

νj ⊥ ν ⇒ νj ∈ spani 〈Xi〉

Then the coefficient of Xi in the expansion of νj is given 〈νj, Xi〉 = −hij since {Xi}
is orthonormal.

(2.4, Weingarten equation): Differentiating 〈ν,Xi〉 = 0 with respect to xj gives

〈ν,Xij〉 = −〈νj, Xi〉 = −hij. It turns out there is no other component other than

in the ν direction by (2.1.1).

(2.5, Codazzi equation): Diffrentiating hij = −〈ν,Xij〉

hijk = −〈ν,Xij〉k = −〈νk, Xij〉 − 〈ν,Xijk〉 = −〈ν,Xijk〉

= −〈ν,∇k∂jXi〉 = −〈ν, ∂k∂jXi〉 = −〈ν, ∂j∂kXi〉 = −〈ν, ∂jXik〉

= −〈ν,∇jXik〉 = −〈νj, Xik〉 − 〈ν,Xikj〉 = −〈ν,Xik〉j = hikj

(2.6, Gauss equation): Rabcd = ∂cΓabd − ∂dΓacb. Using gij = 〈Xi, Xj〉

Γabd =
1

2
[〈Xab, Xd〉+ 〈Xa, Xdb〉+ 〈Xad, Xb〉

+ 〈Xa, Xbd〉 − 〈Xba, Xd〉 − 〈Xb, Xda〉]

=
1

2
[〈Xa, Xdb〉+ 〈Xa, Xbd〉]

in differentiating the Christoffel symbol, we use 〈Xij, Xkl〉 = hijhkl and the fact

that the subscripts of Xijk can be exchanged as in the proof of (2.5).
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∂cΓabd =
1

2
[〈Xac, Xdb〉+ 〈Xac, Xbd〉+ 〈Xa, Xdbc〉+ 〈Xa, Xbdc〉]

∂dΓacb =
1

2
[〈Xad, Xbc〉+ 〈Xad, Xcb〉+ 〈Xa, Xbcd〉+ 〈Xa, Xcbd〉]

∴ Rabcd = hachdb − hadhbc

Now we prove the existence of an even more specific form of local normal

coordinates: the one that diagonalizes the second fundamental form. This simple

proposition is used widely in maximum principle arguments involving the matrix

elements of the second fundamental form.

Proposition 2.1.3. Let M be an n-dimensional differentiable manifold. Given

m ∈ M , there exists a local normal coordinate X around m such that the second

fundamental form (hij) with respect to it is diagonal.

Proof. Suppose X ′ : U → M, 0 ∈ U ⊂ R
n is any local normal coordinate at

m such that X ′(0) = m . If (h′ij(0)) is the matrix of the second fundamental

form in the coordinate, it is symmetric by (2.2), and thus diagonalizable by a real

orthogonal matrix A: AT (h′ij)A is diagonal at m. Then X := X ′ ◦ A : ATU → M ,

ν := ν ′ ◦ A : ATU → M satisfies

Xi = X ′
kAki

νj = ν ′lAlj

13



and thus

hij = 〈Xi, νj〉 = AkiAlj 〈X ′
k, ν

′
l〉 = h′klAkiAlj

which means precisely that (hij(0)) = AT (h′ij(0))A is diagonal.

The fact that X is another local normal coordinate is immediate since the

transformation is linear and A is orthogonal.

2.2 Elementary Symmetric Functions

We introduce a few properties of and notations involving elementary sym-

metric functions. Our normalization for the symmetric functions will be, for

1 ≤ k ≤ n, λ = (λ1, λ2, ..., λn),

σk(λ) :=
∑

1≤i1<i2<...<ik≤n
λi1λi2 · · ·λik

If λ ∈ R
n, and 1 ≤ i1 < i2 < ... < im ≤ n, we define (λ|i1, i2, ..., im) ∈ R

n−m by

(λ|i1, i2, ..., im) = (λ1, ..., λ̂i1 , ..., λ̂im , ..., λn)

where hat denotes omission of the element. Note the simple but useful facts:

σk(λ) = σk(λ|i) + λiσk−1(λ|i)
∂σk

∂λi

= σk−1(λ|i)

14



Now recall Γk = Γk(R
n) is the open cone defined by Γk := {λ ∈ R

n : σi(λ) >

0, ∀i ≤ k}. It is convex [7, Lem 2.4]:

Proposition 2.2.1. For 1 ≤ k ≤ n, the cone Γk(R
n) is convex.

We now prove an important lemma:

Lemma 2.2.2. Suppose for k > 1 λ = (λ1, λ2, ..., λn) ∈ Γk(R
n). Then (λ|i) ∈

Γk−1(Rn−1) for each i ∈ {1, 2, ..., n}.

Proof. Without loss of generality, show (λ|1) ∈ Γk−1. Since Γk is open, for some

δ > 0 (λ1 − δ, λ2 − δ, ..., λn − δ) ∈ Γk. Note, ∀Ri > 0, (R1, R2, R3, ..., Rn) ∈ Γk. By

convexity the sum λ(R) := (λ1 − δ +R1, λ2 − δ +R2, ..., λn − δ +Rn) ∈ Γk. Since

σk(λ(R)) = σk(λ(R)|1) + (λ1 +R1 − δ)σk−1(λ(R)|1)

= σk(λ(R)|1) + (λ1 +R1 − δ)σk−1(λ(R)|1) > 0, ∀Ri > 0

thus we have σk−1(λ(R)|1) ≥ 0. But σk−1(λ(R)|1) is nonconstant (take R1, R2 large

enough to have λ(Ri) = (Ki, Ki, ..., Ki) and K1 �= K2) and linear in each of Ri, so

it cannot attain zero and stay nonnegative.

Now we present classical inequalities, attributed to Newton and MacLaurin

[7]. The proofs are standard, which we reproduce without a specific source.
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Proposition 2.2.3. Suppose λ = (λ1, λ2, ..., λn) ∈ Γk(R
n), 2 < k < n. Then

(n− k + 1)(k + 1)σk−1(λ)σk+1(λ) ≤ k(n− k)σ2
k(λ) (2.7)

σk+1(λ) ≤
(

n
k+1

)
(
n
k

) k+1
k

σ
k+1
k

k (λ) (2.8)

Proof.

(2.7): Re-normalize the symmetric functions as follows:

Wl(λ) =
σl(λ)(

n
l

)

then it suffices to prove

Wk−1(λ)Wk+1(λ) ≤ W 2
k (λ) (2.9)

We first prove (2.7) for k = n − 1. If Wk+1(λ) ≤ 0, the result is trivial. If

not, since the inequality is homogeneous, we can normalize so that σk+1(λ) =

λ1 · · ·λn = 1. Then

σ2
k(λ) =

(
1

λ1

+ ...+
1

λn

)2

=
1

λ2
1

+ ...+
1

λ2
n

+ 2
∑
i<j

1

λiλj

≥ 2

n− 1

∑
i<j

1

λiλj

+ 2
∑
i<j

1

λiλj

(2.10)

=
2n

n− 1

∑
i<j

1

λiλj

=
2n

n− 1
σk+1(λ)σk−1(λ)

where (2.10) follows from the expansion

0 ≤
∑
i<j

(
1

λi

− 1

λj

)2

= (n− 1)
∑
i

1

λ2
i

− 2
∑
i<j

1

λiλj
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For k < n − 1, we rely on the following fact: there exists λ′ = (λ′1, ..., λ
′
n−1) ∈

R
n−1 such that for i ≤ n− 1

Wi(λ
′) = Wi(λ)

Then coupled with n = k − 1 case we will be able to inductively increase n− k − 1

for which the result holds. Define and differentiate

P (t) = (t+ λ1) · · · (t+ λn) = tn + σ1(λ)t
n−1 + ...+ σn(λ)

P ′(t) = ntn−1 + (n− 1)σ1(λ)t
n−1 + ...+ σn−1(λ)

by Rolle’s theorem and explicit differentiation in case of nontrivial multiplicities, it

is clear that P ′ has n− 1 real roots. So we have for some λ′1, ..., λ
′
n−1 ∈ R

P ′(t) = n(t+ λ′1) · · · (t+ λ′n−1) = ntn−1 + nσ1(λ
′)tn−1 + ...+ nσn−1(λ′)

or

∀i ≤ n− 1 : nσi(λ
′) = (n− i)σi(λ) ⇐⇒ Wi(λ

′) = Wi(λ)

(2.8): It suffices to prove for 1 ≤ i ≤ k

Wi+1(λ) ≤ W
i+1
i

i (λ) (2.11)

If Wk+1(λ) < 0, the inequality is trivial. If not, as in (2.10)

σ2(λ) ≤ n− 1

2n
σ2
1(λ) ⇔ W2(λ) ≤ W 2

1 (λ)
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Now, if (2.11) holds for i < k, as in W
i

i+1

i+1 (λ) ≤ Wi(λ)

Wi+2(λ) ≤ W 2
i+1(λ)

Wi(λ)
≤ W

i+2
i+1

i+1 (λ)

so by induction the result holds.

We now prove the conditions (1.6), (1.7), (1.8), (1.11) for Q := σk

σk−1
((1.10)

follows since Q is homogeneous of degree 1). For (1.6), we have the following

formula: if λ = (λ1, λ2, ..., λn) represent an ordering of the eigenvalues of the

symmetric matrix W = (Wij),

σk(λ) =
1

k!

∑
1≤i1,...,ik,j1,...,jk≤n

δ(i1, ..., ik; j1, ..., jk)Wi1j1 · · ·Wikjk

where δ(i1, ..., ik; j1, ..., jk) is defined so that

δ(i1, ..., ik; j1, ..., jk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)sgn(σ) σ ∈ Sk : σ(i1, ..., ik) = (j1, ..., jk)

otherwise; in particular

0 if (im) not all distinct or

(jm) not all distinct

The identity follows from explicitly calculating det(W + tI) and extracting the

coefficient of tk, which is precisely σk(λ).

The following proposition and proof closely follows [7].
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Proposition 2.2.4. For 1 < k ≤ n, write Q(λ) = σk(λ)
σk−1(λ)

for λ = (λ1, ..., λn) ∈ R
n.

Then Qi := ∂Q
∂λi

satisfies

0 < Qi ≤ n− k + 1 in Γk, (2.12)

and Q is concave in Γk−1, or, given λ ∈ Γk−1, ξ ∈ R
n,

∂2

∂t2
Q(λ+ tξ)|t=0 ≤ 0 (2.13)

for small enough t such that λ+ tξ ∈ Γk−1, since Γk−1 is open.

Proof.

Qi =
σk−1(λ)∂λi

σk(λ)− σk(λ)∂λi
σk−1(λ)

σ2
k−1(λ)

=
σk−1(λ)σk−1(λ|i)− σk(λ)σk−2(λ|i)

σ2
k−1(λ)

≤ σk−1(λ|i)
σk−1(λ)

≤
∑
i

σk−1(λ|i)
σk−1(λ)

= n− k + 1

where we use the fact that λ ∈ Γk, (λ|i) ∈ Γk−1. On the other hand, by (2.7)

Qi =
(σk−1(λ|i) + λiσk−2(λ|i)) σk−1(λ|i)− (σk(λ|i) + λiσk−1(λ|i)) σk−2(λ|i)

σ2
k−1(λ)

=
σk−1(λ|i)2 − σk(λ|i)σk−2(λ|i)

σ2
k−1(λ)

≥ n

k(n− k + 1)

σ2
k−1(λ|i)
σ2
k−1(λ)

> 0
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Now we turn to concavity. We can calculate explicitly for Q = σ2

σ1
; given

λ ∈ Γ2, x ∈ R
n and t ∈ R,

∂tQ(λ+ tx) =

∑
i xiσ1(λ+ tx|i)
σ1(λ+ tx)

− σ2

σ2
1

(λ+ tx)σ1(x)

∂2
tQ(λ+ tx)|t=0 =

∑
i xi

∑
j �=i xj

σ1(λ)
− σ1(x)

∑
i xiσ1(λ|i)

σ2
1(λ)

− σ1(x)
∑

i xiσ1(λ|i)
σ2
1(λ)

+ 2σ2
1(x)

σ2

σ3
1

(λ)

=
2σ2(x)σ

2
1(λ)− 2σ1(x)σ1(λ)

∑
i xi (σ1(λ)− λi) + 2σ2

1(x)σ2(λ)

σ3
1(λ)

=
2σ1(x)σ1(λ)

∑
i xiλi + (2σ2(x)− σ2

1(x)) σ
2
1(λ) + σ2

1(x) (2σ2(λ)− σ2
1(λ)))

σ3
1(λ)

= −
∑

i [x
2
iσ

2
1(λ)− 2σ1(x)σ1(λ)xiλi + λ2

iσ
2
1(x)]

σ3
1(λ)

= −
∑

i [xiσ1(λ)− λiσ1(x)]
2

σ3
1(λ)

and thus nonnegative. Now we induct on m ≥ 2 : Qm+1 := σm+1

σm
. We note,

combinatorially, it is immediate that

∑
i

σm−1(λ|i)λ2
i = σ1(λ)σm(λ)− (m+ 1)σm+1(λ)

then

(m+ 1)Qm+1(λ) = σ1(λ)−
∑
i

σm−1(λ|i)λ2
i

σm(λ)

= σ1(λ)−
∑
i

σm−1(λ|i)λ2
i

σm(λ|i) + λiσm−1(λ|i)

= σ1(λ)−
∑
i

λ2
i

Qm(λ|i) + λi

=: σ1(λ)−
∑
i

gi(t)

We now differentiate after plugging in λ = λ + tx. σ1(λ + tx) is linear in t, so it

vanishes in the second derivative. We write ∂tQm(λ) := ∂tQm(λ+ tx)|t=0 and so on.
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g′i(t) =
2 (λi + txi) xi

Qm(λ+ tx|i) + λi + txi

− (λi + txi)
2 (∂tQm(λ+ tx|i) + xi)

(Qm(λ+ tx|i) + λi + txi)
2

g′′i (0) =
2x2

i

Qm(λ|i) + λi

− 2λixi (∂tQm(λ|i) + xi)

(Qm(λ|i) + λi)
2

− 2λixi (∂tQm(λ|i) + xi) + λ2
i ∂

2
tQm(λ|i)

(Qm(λ|i) + λi)
2 + 2× λ2

i (∂tQm(λ|i) + xi)
2

(Qm(λ|i) + λi)
3

=
−λ2

i ∂
2
tQm(λ|i)

(Qm(λ|i) + λi)
2 +

2x2
i (Qm(λ|i) + λi)

2

(Qm(λ|i) + λi)
3

+
−4λixi (∂tQm(λ|i) + xi) (Qm(λ|i) + λi) + 2λ2

i (∂tQm(λ|i) + xi)
2

(Qm(λ|i) + λi)
3

=
−λ2

i ∂
2
tQm(λ|i)

(Qm(λ|i) + λi)
2 +

2 (xi (Qm(λ|i) + λi)− λi (∂tQm(λ|i) + xi))
2

(Qm(λ|i) + λi)
3 ≥ 0

where we note (λ|i) ∈ Γm ⇒ ∂2
tQm(λ|i) ≤ 0 from the induction hypothesis,

Qm(λ|i) + λi =
σm(λ)

σm−1(λ|i) ≥ 0. So we have shown ∂2

∂t2
Q(λ+ tx)|t=0 ≤ 0 for all m.

All in all, we have proved:

Theorem 2.2.5. For 1 < k ≤ n, the curvature equation (1.1) with Q := σk

σk−1

defined on Γk satisfies Theorem 1.2.1 and Theorem 1.2.2.
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CHAPTER 3
The Estimate

This chapter is devoted to the proof of (1.2.1). In the first section we present

relevant facts before moving on to proving the result in the second section.

3.1 Groundwork

We first explore the consequences arising from calculating Q from the second

fundamental form (hij). We assume (hij) is diagonal, using (). Then the diagonal

elements (h11, h22, ..., hnn) are precisely the eigenvalues κ := (κ1, κ2, ..., κn), and

thus we have

Qii(hij) :=
∂Q

∂Wii

(hij) =
∂

∂t
Q((hij) + tI ij)|t=0 =

∂Q

∂λi

(κ) := Qi (3.1)

where I ij denotes the diagonal matrix whose only nonzero entry is one at the (i, j)

component. Similarly, if i �= j, (hij) + tI ij is either upper- or lower-triangular, so

does not affect the eigenvalues; Qij(hij) :=
∂Q
∂Wij

(hij) = 0.

A deeper consequence is that Q’s concavity as a function on admissible

eigenvalues implies its concavity as a function on symmetric matrices with

admissible eigenvalues. This was shown in [2]; we reproduce it below.
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The core ideas are that the map from a matrix to its smallest eigenvalue

is rather well behaved, and is in fact concave, and that a concave function can

be written as an infimum on a set of linear functions. The latter is true for any

concave function, but we note in our case it follows easily because we can take

the set of tangent planes. We check the former: by the spectral theorem if W is a

symmetric matrix, with eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn and respective eigenvectors

v1, v2, ..., vn, we have the characterization

λ1 = min
v �=0

〈Wv, v〉
〈v, v〉

which is an infimum of linear (thus concave) functions, and thus concave. In

fact, by taking the tensor power W⊗k and making it act on the exterior power

Λk
R

n, which is spanned by the eigenvectors vi1 ∧ vi2 ∧ · · · ∧ vik with eigenvalues

λi1 + λi2 + ... + λik , we see we can construct a symmetric operator whose smallest

eigenvalue is λ1+λ2+ ...+λk for each k; thus the sum of first k smallest eigenvalues

is concave in W for each k

Now, if for some sets S ∈ R
n × R

Q(λ) = inf
(v,t)∈S

〈v, λ〉+ t

we can just take the subset S ′ of S where the first component, the vector v =

(v1, v2, ..., vn) is ordered in the decreasing order since Q is symmetric. Then for
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each (v, t) ∈ S

〈v, λ〉+ t =
n−1∑
i=j

(vj − vj+1)(λ1 + ...+ λj) + vn (λ1 + ...+ λn) + t

which is concave in W . Then Q is an infimum of concave functions in W , so thus

is concave in W .

We now derive a few identities which will be used in the proof of the main es-

timate in the next section. Recall the support function u = 〈ν,X〉: differentiating
it gives

ui = 〈ν,X〉i = 〈νi, X〉+ 〈ν,Xi〉 = hik 〈Xk, X〉 (3.2)

uij = [hik 〈Xk, X〉]j = hikj 〈Xk, X〉+ hik 〈Xkj, X〉+ hik 〈Xk, Xj〉

= hijk 〈Xk, X〉 − hikhkju+ hikδjk (3.3)

Especially, if (hij) is diagonal, (3.3) becomes

uij = hijk 〈Xk, X〉+ (−h2
iiu+ hii

)
δij (3.4)

Now, we explore the implications of 1.1. Assuming the equation, we differenti-

ate

fa = Q(hij)a = Qijhija (3.5)

faa = Qij,klhija, hkla +Qijhijaa ≤ Qijhijaa (3.6)
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where the term involving the second derivative of Q is non-negative due to its

concavity.

Then it will be necessary to switch the order of the indices of hijaa in the last

term; from Gauss’ equation for the Riemann curvature tensor (2.6)

hijkl = hkijl = hkilj + hmiRmkjl + hkmRmijl

= hklij + hmi(hmkhlj − hmlhkj) + hkm(hmihlj − hmlhij) (3.7)

We finally note the existence of a suitable cutoff function ρ on B1. In partic-

ular, we would like to bound ρ′ and ρ′′ by a power ρ1−δ for given δ ∈ (0, 1). We

define, for large N ∈ N,

η(x) := (1− |x|2)N (3.8)

then

|∂x1η| =
∣∣N(1− |x|2)N−1(−2x1)

∣∣ ≤ CNη
1− 1

N

∣∣∂2
x1
η
∣∣ = ∣∣N(N − 1)(1− |x|2)N−2(4x2

1)− 2N(1− |x|2)N−1∣∣ ≤ CNη
1− 2

N

for some suitable CN = O(N). So we can take N > 1
δ
.

3.2 Curvature Estimate

First, note that because of (1.5) an upper bound will imply a lower bound.

Thus our goal will be to estimate maxi κi(0) from above.
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Recall the definitions (1.2) and (3.8). We define a C2 test function

θ =
ηmaxi κi

u− c0

on B1, which vanishes on the boundary. θ achieves a maximum in its domain, and

since maxi κi, η > 0 and u − c0 > c0 > 0, the maximum is achieved in the interior

at some m ∈ B1. By (3.1), we can obtain a local normal frame around m such that

maxi κi = h11 and (hij(m)) is diagonal. In what follows, all the function values are

assumed to be at m unless said otherwise.

Since log is increasing, log θ achieves its maximum at m. Differentiating twice

0 = (log θ)i =
ηi
η
+

h11i

h11

− ui

u− c
(3.9)

0 ≥Rn×n (log θ)ij =
ηij
η

− ηiηj
η2

+
h11ij

h11

− h11ih11j

h2
11

− uij

u− c
+

uiuj

(u− c)2
(3.10)

contracting each side of (3.10) with (Qij), which, as noted in (3.1), is positive

definite and diagonal,

0 ≥ Qij

[
ηij
η

− ηiηj
η2

]
+

Qijh11ij

h11

− Qijh11ih11j

h2
11

− Qijuij

u− c0
+

Qijuiuj

(u− c0)2

≥ Qi

[
ηii
η

− η2i
η2

]
+

f11 + h2
11Qihii − h11Qih

2
ii

h11

− Qih
2
11i

h2
11

− Qiuii

u− c0
+

Qiu
2
i

(u− c0)2

where we apply (3.7) then (3.6); now using (1.9), (1.10), (3.9), (3.2), (3.4),

≥ Qi

[
ηii
η

− 2η2i
η2

]
+
f11 + h2

11φ(f)

h11

+
2Qiuiηi
(u− c0)η

−
∑
i

fi 〈X,Xi〉
u− c0

− f

u− c0
+
uQih

2
ii

u− c0
−Qih

2
ii
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the last 2 terms combine. Also we have the following AM-GM inequality ∀ε > 0:

2uiηi
(u− c0) η

≥ − η2i
(u− c0)

2 η2ε
− εu2

i

so taking ε > 0 small such that εu2
i ≤ εh2

ii 〈X,Xi〉2 ≤ uh2
ii

2(u−c0)

≥ Qi

[
ηii
η

− C(c0, |X|C1)
η2i
η2

]
+ h11φ(f) +

c0Qih
2
ii

2(u− c0)
− C(c0, |X|C1 , |f |C2)

≥ C(c0, |X|C1 , δ)
∑
i

Qi

ηδ
+ h11φ(f) +

c0Qih
2
ii

2(u− c0)
− C(c0, |X|C1 , |f |C2)

Now we branch into options (1.11) or (1.12). If (1.11) holds, we take β > 1

close to 1 so that (specifically, βα < 1) (
∑

i Qi)
β ≤ K ′ + c0

2(u−c0)Qih
2
ii and then δ

small enough so that δβ
1−β = 1. Then using Young’s inequality with p = β, q = β

β−1 :

C(c0, |X|C1 , δ)
∑
i

Qi

ηδ
≥ −C(c0, |X|C1 , δ,K)

1

η
− (

∑
i

Qi)
β

we have

0 ≥ −C(c0, |X|C1 , Q)
1

η
+ h11φ(f)− C(c0, |X|C1 , |f |C2)

and thus we have a bound ηh11 ≤ C(c0, |X|C1 , |f |C2 , Q).
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If (1.12) holds, we use Young’s inequality on each Qi with p = 1 + β, q = 1+β
β

such that βN = 1. Again, take δ > 0 small that δ(1+β)
β

= 1 Then

C(c0, |X|C1 , δ)
Qi

ηδ
≥ −C(c0, |X|C1 , Q)

1

η
− c0

2Kβ(u− c0)
QiQ

β
i

≥ −C(c0, |X|C1 , Q)
1

η
− c0

2(u− c0)
Qik

2
i

and we have

0 ≥ −C(c0, |X|C1 , Q)
1

η
+ h11φ(f)− C(c0, |X|C1 , |f |C2)

yet again.

Now, a bound on ηh11 means bound on θ; that in particular means a bound

on

h11(0)

u(0)− c0
= θ(0)

and we finally have our upper bound.
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CHAPTER 4
Applications

This chapter caps off earlier discussion and result by placing them in context.

The estimate presented clearly offers distinct information compared to estimates,

say, obtained in [3] or [4], where one assumes a solution regular up to the bound-

ary. We present some types of arguments in which a local estimate like this might

be applied in this section.

4.1 Local Estimates

One case where a local estimate might be used is the local pre-compactness

argument to establish existence or higher regularity. Since existence can be

considered locally and smoothness is a local property, it often suffices to show the

existence of a solution or a derivative locally, coupled with a kind of uniqueness

argument.

First, recall the Arzel-Ascoli threorem [10, Thm 7.25]: a uniformly bounded

and equicontinuous family of functions on a compact set is sequentially compact,

that is any sequence has a uniformly convergent subsequence. Then we set the

argument up so that such a limit will be the derivative required to show regularity.

There are other distinct but similar arguments which translate uniform bounds to
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existence of topological limits: for example, method of continuity [6, Thm 17.8].

widely used in nonlinear elliptic PDE, and Banach-Alaoglu theorem [9, Thm 3.15],

used in variational techniques.

We first consider, for a model of the argument, probably the most basic and

fundamental problem in elliptic partial differential equation theory: Poisson’s

equation. As a linear uniformly elliptic PDE, it satisfies the following interior

estimate [6, Thm 6.2]

Theorem 4.1.1. Suppose u ∈ C2,α(Ω) is a solution of the equation Δu = f on

Ω ⊂ R
n where f ∈ Cα(Ω). Then for any Ω′ � Ω

|u|C2,α(Ω′) ≤ C(Ω′, |f |Cα(Ω), |u|C0(Ω)) (4.1)

This estimate can be used to show that in this setting increasing regularity in

f increases regularity in u by defining for small h, a unit vector v, the difference

operator

Δhu(x) :=
u(x+ hv)− u(x)

h

which approximates the yet-C1,α ∂vu as h becomes smaller. If f ∈ C1,α then

(4.1) can be used to establish local uniform bounds on ∂iΔhu, and ∂ijΔhu and

thus extract a Cα third derivative from the set of ∂ijΔhu for small h. We can

inductively continue this process, the resulting interior regularity theorem [6,

Thm 6.17] being

Theorem 4.1.2. In the setting of Theorem 4.1.1, f ∈ Ck,α implies u ∈ Ck+2,α. In

particular, f ∈ C∞ implies u ∈ C∞
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With a similar approximating argument, [11, Thm 1.2] proves from their

interior curvature estimate an existence theorem; an interior gradient estimate is

assumed, especially since the curvature estimate depends on it. Noting that their

interior curvature estimate only slightly in the assumptions from ours, we can state

the following application of our result, deferring to them the proof.

Theorem 4.1.3. Suppose Ω ⊂ R
n is a bounded domain, and consider the equation

(1.1) for a graph of the function u over Ω. If f ∈ C1,1(Ω̄) there is an admissible

subsolution ū ∈ C2(Ω) ∩ C0,1(Ω̄) such that its graph and its principal curvatures κ̄i

satisfy

Q(κ̄1, ..., κ̄n) ≥ f

then there exists an admissible solution u ∈ C3,α(Ω) ∩ C0,1(Ω̄) of (1.1) with u = 0

on ∂Ω.

The domain Ω is not assumed to have more than a C1 boundary for u to have

C3 regularity, which is where the local estimate comes into play. As above, the

proof extracts a subsequence from the sequence of already existing uε for small

ε > 0 to get the wanted solution u.
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