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ABSTRACT

The aim of this thesis is to provide tools and generate knowledge that assist in

the creation of content for 3D movies. Such movies have made a recent comeback to

mainstream entertainment and it is vital to assess their quality. Bad stereo content

will lead to discomfort for viewers that will hurt the popularity of 3D movies. In

this thesis, we focus on stereo window violation as it is one of the common problems

related to stereo content. The stereo window violation problem is analysed in the

framework of computational stereo vision. We propose a method, for stereo window

violation detection, that implements a depth based object tracker that is also aware

of objects in focus. Using such a method we are able to identify objects that cause

window violation and raise an alert accordingly. Secondly, we investigate conflicting

monocular and stereoscopic cues as another problem that ruins the 3D perception and

makes watching 3D movies more tiring. The thesis also proposes a methodology to

estimate half occlusion regions at a pixel level. Half occlusions are identified as a key

feature that allows us to determine depth boundaries. Additionally, half occlusions

allow us to narrow down regions of interest to search for other problems such as

occlusion and stereopsis conflicts. Our motivation is that the tools and knowledge

generated through this thesis will be used on the sets of shooting 3D movies as well

as during post production and as an aid for 2D-to3D conversions. Doing so will allow

easier and automated assessment of stereo quality and lead to the creation of better

quality movies uplifting the popularity of 3D movies for the long run.
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ABRÉGÉ

L’objectif de cette thèse est de fournir des outils et de développer des connais-

sances qui aideront à la création de contenu pour les films en 3D. Ces films ont

connu un récent regain de popularité et il est maintenant essentiel d’évaluer leur

qualité. Un contenu stéréo de piètre qualité peut causer de l’inconfort chez les spec-

tateurs, ce qui nuira à la popularité de la technique. Dans cette thèse, nous nous

penchons sur la violation de fenêtre stéréoscopique puisque c’est un des problèmes

fréquemment rencontré avec le contenu stéréo. Le problème de la violation de fenêtre

stéréo est analysé à l’aide d’outils issus du domaine de la vision artificielle. Nous

proposons une méthode pour sa détection qui met à profit une technique de suivi

de la profondeur des objets de la scène dont la mise au point procure une image

nette. L’utilisation d’un tel procédé permet d’identifier les objets qui causent une

violation de fenêtre et de déclencher une alerte en conséquence. Nous étudions aussi

un second problème pouvant nuire à la perception 3D et au confort de visionnement

: les conflits d’indices de profondeurs monoculaires et stéréoscopiques. La thèse pro-

pose une méthodologie pour estimer les régions de semi-occlusion à un niveau de

précision de l’ordre du pixel. Les semi-occlusions sont identifiées comme un élément

clé, permettant de déterminer les discontinuités de la profondeur. En outre, les semi-

occlusions permettent d’identifier les régions sujettes à d’autres problèmes tel que

le conflit occlusion-stéréopsie. Notre motivation est de fournir un ensemble d’outils

et de connaissances qui sera utilisé tant sur les plateaux de tournage des films en

3D, que pendant la post-production ou encore, pour aider au cours du processus de

v



conversion 2D à 3D. Cela permettra d’évaluer plus facilement et automatiquement

la qualité de la stéréo et conduira à la création de films de meilleure qualité, édifiant

la popularité des films en 3D à long terme.
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CHAPTER 1
Introduction

1.1 Background

The current movie industry places a heavy emphasis on 3D movies. These movies

have taken a step further than traditional movies by incorporating the perception of

depth to enhance the immersive experience. Depth perception is created and altered

using stereoscopy. Stereoscopy is a technique that is used to create a perception

of depth by taking a pair of images which have a different perspective of the same

scene and presenting them to the left and right eye of a viewer. Such image pairs

can be made by creating a copy of a current single image and adding horizontal

displacements of the pixels based on the depth of the objects in the scene. Another

method used by film creators is using a stereo camera set-up to acquire a pair of

images from slightly different viewpoints. There are different ways in which the

stereo cameras are set-up for such a purpose but the goal for these set-ups is to use

a pair of lenses to simultaneously capture the same scene with a slight variation.

Once the image pair is obtained a variety of display methods, such as anaglyph,

polarization, etc. can be utilized to present these images to the viewer’s eyes.

Even with the most artistic renderings, the perception of depth created using

stereoscopy is still only a fake replication of the human visual system. This makes

it all the more important to ensure the process is done as well as possible. A variety

of artefacts can arise while creating stereoscopic content that generate stimuli not
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usually experienced by the human visual system. Some of these have been known

for a while as can be seen in the paper of Woods et al. [59]. Most of the problems

mentioned in that work can be adjusted for by choosing the right parameters for

the camera and display. Parameters include quantities like distance between the

cameras, their alignment, etc. This will be explored further in the following sections.

However, even with the perfect set-up, there are still possibilities of shooting scenes

that are difficult for humans to comprehend. This will only deteriorate the viewer’s

interest in watching 3D movies instead of creating a new and more enjoyable movie

watching experience. Development of computer vision techniques for detecting and

identifying the latter type of problems is the core focus of this thesis.

Computer vision can be broken down to a variety of sub-fields focusing on per-

forming tasks such as object recognition, object detection, motion estimation, pattern

recognition, etc. All of these sub-tasks aim to achieve, at various levels of complexity,

some of the functionalities of the human vision. Moreover, the solutions generated

from the various sub-fields can be extended to a variety of real world applications,

both independently as well as in conjunction with other solutions. For example, a

robot with an object recognition capability can be made to follow a certain path

or another object while motion estimation capabilities can help it understand how

much it has travelled and its relative location with respect to its starting position.

The typical human vision utilizes the pair of eyes to obtain slightly different

views of the same scene. The differences are generally a horizontal displacement

of objects from one eye to another. These horizontal displacements are processed

in our visual cortex to create a perception of depth [14]. Depth perception allows
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us to perceive a three-dimensional view of our world. This is something that film-

makers aim to provide. They aim to create a perception of depth to allow for a

more immersive experience of movie watching and making the experience even more

enjoyable. Although traditional movies contain a variety of depth cues such as depth

of focus, relative sizes, motion parallax, etc. they do not always provide an immersive

experience.

Stereo vision is a field within computer vision which focuses on developing al-

gorithms that duplicate the stereopsis capabilities of human vision. Techniques in

stereo vision lend themselves quite well to analysing the pairs of images obtained

through stereoscopy. Using these methods we can develop understanding of the

scenes by estimating the perceived depth of a particular scene or decide if the scene

composition is likely to be a poor viewing experience for the viewers. Additionally it

can allow us to build systems to analyse and assist production of stereoscopic content

on-scene as well as during post-production.

Some of the specific problems that will be looked at, in this thesis, are stereo

window violations, conflicting depth cues and pseudoscopy. Stereo window violation

is a problem that causes the depth perception to break. It creates sudden jumps in

the perceived depth and sometimes an inability to fuse a pair of images into a single

3D image. This problem occurs with objects that appear to be floating in front of

the movie screen. As these objects cross the edge of the screen the depth perception

breaks. Details of the problem are discussed in Chapter 3. Stereoscopy generates the

depth perception through the horizontal displacement in a pair of images. However,

that is not the only cue that our visual system uses to perceive depth. There are
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a variety of ways to create stereoscopic content. Stereoscopic content is sometimes

created using 2D-3D image conversion as well as compositing. These methods aim

to introduce stereo depth cues into the images, however if not done properly these

artificially created depth cues may conflict with other monocular depth cues such as

occlusions and shadows. Pseudoscopy is a type of content where a stereo image pair

gets swapped and is presented to opposite eyes than the ones originally intended.

This process reverse the depth perception and introduces conflicting depth cues. This

is explored in later chapters.

1.2 Thesis Overview

This section discusses the structure of the thesis. Chapter 2 contains a literature

review on relevant topics following the introduction in Chapter 1. The thesis itself is

motivated by the usage of computer vision to help create better stereoscopic content.

Therefore, the literature review first covers the processes used to create such content.

Native stereo content creation through stereo camera set-ups as well as 2D-to-3D

conversions are shortly discussed in the review. Reviewing the methods of creating

the content itself gives us a better understanding on how to analyse them. Following

that we look into some of the current work that has been done to solve or explore

some of the problems in stereo movies. Stereo window violations as well as various

conflicting cues are part of this review. From this we move on to topics within

computer vision. Stereo correspondence is introduced and state of the art methods

in the literature are explored. This is followed by the exploration of half occlusions,

which are also an integral part of the computational stereo literature. They are not

only present in all stereo content but they prove to be useful features in the analysis
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of certain problems. Chapter 3 contains the detailed description of our proposed

framework for detecting stereo window violations. The chapter begins with a formal

description of the problem itself. An overview of our framework is discussed to gain

an insight to the process. Each component of our process is then thoroughly discussed

with contributions highlighted within. A small discussion follows the methodology

to introduce the dataset that was created to test this methodology. The results are

presented along with a discussion. Chapter 4 focuses on the topic of half occlusions.

We begin with definitions of half occlusions follow by an overview of how they may

be detected. The solution is tested on the Middlebury Stereo Dataset to make it

comparable to other methods in literature. The discussion of the results explore the

value of half occlusion in analysing other stereo problems. Instead of focusing purely

on detecting half occlusions we explore the usefulness of half occlusions as a feature.

Chapter 5 summarises all of the contributions made throughout along with closing

statements to indicate future work.
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CHAPTER 2
Literature Review

The aim of this thesis is to assist in the creation of stereo movies by providing

tools to assess the quality of these movies during production or post-production. To

do so, an understanding of the 3D film making process as well as an understand-

ing of possible viewer experience is required. The proposed methods to achieve the

objective of the thesis are based on computer vision techniques. Thus it is equally

important to revisit previous work done in computer vision, specifically stereo vision,

and obtain an understanding of that as well. This chapter of the thesis will review

previous work on stereo movie creation, quality assessment of stereo movies, rectifi-

cation and correspondence in stereo vision and half occlusions in stereo imagery.

2.1 Stereo content creation

Stereoscopic content can be created for a variety of purposes. Ranging from

short films in amusement parks to broadcasting sports and other TV content in 3D

using stereoscopy. Regardless of the domain, the processes of creating stereoscopic

content is very similar.

The most natural way of creating stereoscopic content is by shooting using a

stereoscopic camera set-up. This involves capturing two sets of images as done by

the human eyes. However, in practice the camera set-up is not an exact replication

of the eyes. Not all set-ups are based on two cameras set up side-by-side to emulate

the human eyes. Other common set-ups for filming 3D movies, as discussed in [32],
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include having a single sensor with lens attachments to get different views, using

a pair of lens mounted at 90 degrees to each other with the incoming light going

through a half-silvered mirror angled at 45 degrees. Each set-up has its own pros

and cons but the half-silvered mirror set-up, similarly to Figure 2–1 (a) is more

popular for feature films. The single sensor configuration, as seen in Figure 2–1 (b)

is not viable for the movie industry as image resolution is lost by attempting to create

two view from a single sensor. The side-by-side setup, like the one in Figure 2–1 (c),

works well for wide landscape shots. A parameter to take into consideration while

filming a stereoscopic content is the interocular distance between the cameras, also

referred to as baseline or interaxial distance. The interocular distance represents the

separation between the two fields of view. A greater interocular distance creates a

greater 3D effect, especially for close up scenes. Wide lenses allow capturing of more

light and a wider field of view which can be valuable for visual and artistic purposes.

Using a side-by-side arrangement with wide lenses typically results in too large of

an interocular distance, limiting the artistic freedom to take close up shots. Along

with the camera setup, a variety of other mechanisms go into commercial stereo-rigs

with half-silvered mirrors, which allow for video stabilization, proper alignment and

changing the interocular distance and convergence [33]. The ability to use wide lenses

as well as being able to control all these parameters justifies its popularity.

Shooting with a stereo camera rig is not the only way of creating 3D movies.

A film can be shot using a conventional 2D camera and then converted to a 3D

movie. This is done by manually painting in the depth of a scene and then using it

to shift the objects in an image to create a second view. It is not always necessary
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(a) A half-silvered mirror camera

(b) A stereo lens attachment on a single sensor camera (c) A side by side camera

Figure 2–1: Examples of different stereo camera setups [33]

to fully paint in the depth as a lot of work has been done to assist the process such

as providing sparse representations of depth as seen in [57]. Other methods aim

to make the process even more convenient by allowing automatic conversion of 2D

footage into 3D films. The work of Zhang et al. [61] shows one such endeavour that

utilizes cues other than stereopsis to estimate the depth of a scene. Monocular cues

8



for estimating depth include geometric constraints, relative size, perspective, focus,

etc. For videos, as is common for 2D to 3D conversions, motion parallax provides

a strong cue for depth estimation. Once these monocular cues are used to get an

estimate of the scenes depth then a similar process of shifting objects in the scene

can be used to obtain a stereo pair. The conversion process introduces a problem

of its own, which is the need to fill in the newly exposed background after shifting

the foreground objects to create the stereo pair. Converted movies are still prone

to the problems that occur in a movie natively shot using a stereo rig. Hence the

discussions in this and the following sections of the thesis that address these issues

apply to both forms of stereo content.

Understanding the geometry of the scene being shot will help our analysis of

the potential problems. The simplest way to do so would be to start with a simple

configurations of two cameras with a fixed interocular distance. The two cameras

can either be parallel or converged depending on the axis of the camera from its

optical centre to the focal point. The convergence determines the distance at which

the fields of view of the two cameras align. Objects at this distance from the camera

have zero parallax. Cinematographers often prefer to coincide the screen to match

zero parallax. This makes it easier to frame scenes and monitor the depth budget.

Any object nearer to the camera, compared to this point, will appear in front of the

screen. Objects further than that point will appear behind the screen [33]. Therefore,

convergence plays a key role in determining how the 3D effect will look to viewers

alongside the interocular distance. Figure 2–2 (a) shows a simple representation of

a scene being shot using a pair of cameras.
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(a) Scene representation of a converged camera setup(b) Scene representation after image rectification
(equivalent to a parallel setup)

Figure 2–2: Stereo scene geometry

Regardless of the cameras convergence, the images are put through a post-

processing step that performs image rectification. This rectification process provides
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many benefits to good content creation, details of which are further discussed in

Section 2.3. However, it is important to note that the geometry of the image

formation process, after the rectification, is equivalent to that of images acquired

using a parallel camera setup. A parallel setup essentially has a point of convergence

at infinity. Therefore, everything being shot in a scene would appear floating in front

of the screen. This could be a painful experience as well as a poor choice artistically.

For this purpose a technique known as Horizontal Image Translation (HIT) is used

in post-production to alter the point of convergence for parallel setup and also for

a variety of other purposes [8]. Figure 2–2 (b) shows a simplified representation of

the scene after rectification.

2.2 Problems in stereo

2.2.1 Stereo Window Violation

Window violations are one problem that is very common to stereo cinematog-

raphy. It occurs when an object appears hovering in front of the screen and moves

in a way such that it crosses the boundary of the screen. When such an event takes

place, the depth perception of this object is distorted. The distortion takes place in

the form of sudden jump in depth perception as well as an inability to properly fuse

a 3D image in the boundary regions. The depth jump causes the object crossing

the boundary to appear pushed back to the depth of the screen. The problem itself

is caused by the limitation of having a screen and its boundary at a fixed depth.

When the object crosses the screen, it is cut-off due to the occluding boundary.

This can be seen in Figure 2–3 (a). The occlusion cue is stronger and eventually

forces the depth perception of the object to be pushed back to the screen level. The
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boundary, itself, and regions beyond it do not have any disparities and that is the

reason why the depth perception is pushed back to screen level where there are no

disparities. Without careful consideration of scene structuring it is very easy to gen-

erate a violation. Repeated occurrences of this violation is neither comfortable for

viewing nor is aesthetically pleasing. Therefore, cinematographers work constantly

on fixing occurrences of window violations or altering scene structuring to avoid such

violations.

Figure 2–3: (a) Scene with a stereo window violation where the border cuts off an
object in front of the screen. (b) Example of using a dynamic floating window to add
disparity to the borders and shift it forward in depth. Stereo window violation is
avoided by matching the border’s depth to that of the foreground object or making
the border appear even closer to the audience than the foreground object.[18]

In literature, a common solution to solving the stereo window violation problem

is to use a floating stereoscopic window [32, 18, 36]. Stereo window violations are also

related to half occlusions as they are caused by monoscopic regions near the edges of
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the screen. A portion of the image can been seen only on one view but not the other.

The part not visible occluded by the border of the screen. For content appearing in

front of the screen, as in the case of stereo window violations, the left view would

have the monoscopic regions near the left boundary and the right view would have its

monoscopic regions near its right boundary. By introducing the floating stereoscopic

window, we change the depth of the screen borders by adding extra black pixels

to these monoscopic regions. By doing so, there are no mismatches between the

objects in front of the screen. The border itself is given some disparity resulting

in a change in its depth perception. The objects in front will now be occluded by

a border which is at the same depth or nearer than them in appearance. Figure

2–3 (b) shows an example of using floating windows to correct for stereo window

violation. There are variations in how the floating window is defined. It could be

established in advance where a fixed portion is cropped out to make the borders to

be the nearest object in the scene. Alternatively, it can be dynamically adjusted

for different scenes based on the scene structure and geometry. Even though there

are ways of solving the problem in literature, there is little work on detecting stereo

window violations without manual input. The floating windows themselves would

need input from a stereographer to be properly established. The cropping introduces

a loss of content that may be vital to the storyline of the movie. Therefore having

an automated detection system would add to the capabilities of producing quality

stereo movies with greater ease.
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2.2.2 Conflicting Depth Cues

A major issue when creating stereoscopic content is ensuring there are no con-

flicts with other cues related to depth perception. Monocular cues such as colour,

occlusions, texture, focus, etc. can create a strong depth perception [31, 38, 37, 53].

Even if our brain is able to fuse the stereo pair, having conflicting cues will hinder its

ability to perceive depth properly. A common manifestation of occlusion-stereopsis

conflict can be observed in the case of stereo pair reversal (pseudoscopy). This hap-

pens when the left and the right views of the stereo pair get swapped for one another.

The situation can be mimicked by swapping the lenses in 3D glasses during viewing.

Swapping a stereo pair that has been compensated for distortions and ensured to

have an acceptable disparity range will still allow us to fuse the pair into a single 3D

image. However, our ability to perceive depth will be hindered as the brain receives

conflicting signals. The swapped parallax of objects that are supposed to be all the

way in the back would now indicate that they are to be perceived hovering in front

of the screen. Similarly, objects in front will have a parallax that will force them all

the way behind the screen. However, the object, that is originally supposed to be

in front, still occludes the background. This creates a confusion in our brain which

jumps back and forth between different cues. The confusion can lead to fatigue for

our visual system and worse lead to a wrong perception of depth. Since, the depth

perception still exists users may be unable to tell that the stereo content is faulty.

But long exposure to such content will not yield an enjoyable experience as the fa-

tigue may lead to nausea or headaches. A similar conflict may arise when performing
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conversions. In a reversal, the entire image is at risk of the occlusion-stereopsis con-

flict but in the case of conversion only a portion of the image may be affected. Some

conversions are done manually while the depth is hand painted in. This is an expen-

sive and time consuming operation and not usually done unless the highest quality

is required. With the lack of true 3D content availability, 3D television vendors may

opt to use some of the available real time conversion techniques to create content and

generate popularity for the televisions. These real time conversions are usually not

of the highest quality and the depths across the entire image may not be estimated

accurately leading to conflicts. Such a risk also exists when doing compositing for

3D scenes. Compositing is the process of adding new elements to an existing scene.

This can include adding a different background on an existing scene or adding a

character into the scene using computer generated imagery. Both of these processes

are also prone to conflicts in colour cues from the two views. Through the con-

version and compositing processes, features such as shadows may not be recreated

perfectly in both images leading to difference in colour for stereo correspondences.

The mismatches can make depth perception more difficult.

2.3 Computational Stereo Vision

Computational stereo vision concerns itself with the analysis and extraction of

information from binocular pairs of images (obtained by stereo cameras or conver-

sion). In the literature, the pairs are usually referred to as left and right images

(because they are captured by left and right cameras).A lot of the techniques can be

extended to more than two images (multi-view stereo), but this thesis focuses only

on binocular stereo only due to the nature of our target problem. There are two
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main problems in the domain of stereo vision. One is the problem of stereo corre-

spondence. Since we have a pair of images of a scene acquited from two different

viewpoints, it is of interest to be able to match points from one image to another.

The second problem under stereo vision is that of reconstruction. The reconstruction

problem aims to resolve the 3D structure of a scene given correspondences and the

geometry of the stereo system used to obtain the stereo pair. This means being able

to generate a 3D map of a viewed scene. For our purpose, solving the correspondence

problem is of primary interest and is explored further in this literature review [54].

The primary difference between the pair of stereo images is the shift in location,

of objects, from one image to another. This shift is commonly referred to as disparity

in computer vision literature and as parallax in 3D cinematography literature. The

two terms might be used interchangeably across this thesis with disparity being used

for computer vision techniques and parallax being used for cinematic/perceptual

contexts. Estimating the disparity map of a scene allows us to interpret the depth

of objects. Solving the correspondence problem is not a simple task, with much of

current research being done to improve the accuracy and efficiency of the solutions.

Issues such as regions being present in one view and not the other, lack of textures

making matching difficult and other factors make solving the correspondence problem

challenging. However, a variety of solutions exist in the current literature to form

the foundation of our solutions to the target problems in 3D movies.

2.3.1 Overview of the Stereo Correspondence Problem

The literature consists of a variety of methods that address the correspondence

problem. Even though the specific implementations vary greatly, the broad structure

16



for each of these methods remain similar. The final goal of the solutions is to estimate

a binocular disparity map.The first step in the process is to perform rectification. To

establish these correspondences, each pixel in the right image has to be matched with

a pixel in the left image. The matching can be done by leveraging local appearance

information such as color, texture, etc. However, for each pixel in the left image,

searching for a corresponding match across the two dimensions of the right image is

a computationally taxing process. However, leveraging the properties of the epipolar

geometry, guiding the stereo setup, we can reduce the search space to one dimension

[49].

Figure 2–4: Epipolar geometry for binocular stereo [49].

The projection of points in 3D space onto the image plane lies along the epipolar

line. This is referred to as the epipolar constraint. In order to match pixels from the

left image to the right, we need to search only along the epipolar lines. The epipolar

geometry is defined relative to the camera pose and calibrations. This geometry can

be estimated from seven or more corresponding points and with the use of the funda-

mental matrix. The fundamental matrix is a 3× 3 matrix that encodes the extrinsic
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and intrinsic information of the cameras. The extrinsic parameters contain infor-

mation about the transformation from the 3D world coordinates to the 3D camera

coordinates. These parameters are the rotation matrix and translation vector. The

intrinsic parameters encode information such as focal length, pixel size of the sensor

[54]. Rectification is the process of warping the pair of images such that the epipolar

lines align with the horizontal axis of the image. It is ideal to perform rectification on

images obtained using cameras whose extrinsic and intrinsic parameters are known.

In order to obtain these parameters a calibration is performed. Multiple views of

a known pattern type are captured which can be used to estimate the required pa-

rameters. The outcome of the process also provides the coefficients of radial and

tangential distortions which are used to model the effect of distortions in real lenses.

Using all the parameters from the calibration, the effects of distortion are removed

and the images are warped to ensure the stereo pair differ only in horizontal dispar-

ity. Popular toolboxes exist in Matlab, as well as in OpenCV, that perform accurate

and efficient calibration [4]. The work in [17] and [47] discuss in further detail the

process of rectification using images obtained by calibrated cameras. Rectification

can also be performed on uncalibrated images but the process is more complicated

[29]. Since the calibration is a one time process it would be ideal to perform the

calibration before setting up the scene for shooting and then performing rectification

on the calibrated images. The geometry of images obtained, after rectification, is

equivalent to that of images acquired with a parallel camera setup. This is a property

that will be explored later in the thesis. Calibration and rectification forms the first

step for all correspondence algorithms. It also helps define the relationship between
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the disparity and scene depth quite easily as seen in Equation 2.1.

d = f
B

Z
(2.1)

From Equation 2.1, d is the disparity, f is the focal point of the camera, B is the

baseline distance or the interocular distance mentioned in previous sections and Z

is the depth. Hence we can see there is a inverse relationship between the disparity

and the depth. Because of this very simple relationship the depth map and disparity

map are often used interchangeably in the literature when finding the solution to the

correspondence problem.

Assuming we have a pair of rectified images, the next step would be to estab-

lish a cost function. The cost function captures how well the corresponding points

match each other. The final step involves minimizing the cost function to obtain

the disparity estimate. Scharstein and Szeliski explore the general structure of such

algorithms in their work [42]. Based on their work we learn how the computation, as

well as optimization, of the cost function can be local or global. The quality of the

solution depends on the specifics of defining the cost and its optimization to obtain

the disparity. The following subsection explores some specific stereo correspondence

algorithms.

2.3.2 Local Stereo Correspondence

Local stereo algorithms make use of pixel-based matching costs. The nature

of the cost functions either form a similarity or difference measure around a local

window. The simplest functions utilized in these local window based approaches

include Sum of Squared Differences (SSD), Absolute Difference (AD), Normalized
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Cross-Correlation (NCC) as seen in [22, 27, 40]. The three measures discussed are

dependent on the color information in the pair of the images. The varying gains in

the two cameras might cause differences in local color appearance, hence there exists

similarity measures that aim to match the gradients of the images[41].

Regardless of the measure being used, we want the cost function to represent the

cost of assigning a disparity d to a pixel p in an image. Hence, the cost function is

defined over all pixels in an image across the range of possible disparity values. Equa-

tion 2.2 shows the definition of a cost function using the sum of squared differences

over a local window.

C(x, y, d) =
∑

x,y∈N
[IL(x, y)− IR(x, y − d)]2 (2.2)

The cost is calculated over a neighborhood N around the pixel location (x, y). The

size of the neighborhood is determined by the window size and the neighborhood

is typically a rectangle centered on the pixel in question. The squared difference

is calculated using a pixel in the left image and the pixel in the right image that is

horizontally shifted by d pixels from the left pixel’s location. If the range of disparity

includes positive and negative values the horizontal search can be on either side of the

pixel location (x, y). The significance of the sign of disparity is discussed in Section

3.1. By calculating the cost over this local window, this method implicitly performs

an aggregation of the costs. Some methods do the aggregation step separately where

the cost is calculated over pixels only and then aggregated based on some required

criteria. The aggregation step or cost computation over a window helps reduce the

effect of high frequency noise and produces smoother cost volumes. Once this cost
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volume is calculated the disparity map can be obtained by following a Winner-takes-

all(WTA) scheme. In such a scheme, for each pixel location, the disparity value

d that has the lowest cost is assigned to that pixel. If the cost function were to

use normalized cross correlation as a measure then the disparity with the high cost

(similarity in this case) would be assigned to the pixel. Using bigger window sizes

leads to smoother results while sacrificing the resolution of the disparity estimates.

Local methods are simple to implement and optimize. Hence, they can produce

disparity estimates quickly. The usage of multiple simple operations in computing

cost and optimization allows for parallelization of the process.

2.3.3 Global Stereo Correspondence Algorithms

Even though local stereo algorithms are simple and quick to implement they

have certain disadvantages that results in less accurate estimates. The window is

generally rectangular in shape around the pixel. The size of the window is decided

upon at the beginning and remains fixed across every pixel location. Windows that

are too large may fail to capture finer details in the images, while windows that

are too small will have difficulty matching larger structures in the scene. Hence an

alternate approach to stereo correspondence arose in the form of global algorithms.

Global algorithms differ from local methods in terms of their definition of cost

functions as well the optimization. The correspondence problem is formulated as a

labelling problem in the global framework. The goal is to assign a label to each pixel

in the image, the label in this case being a disparity value. We have a discrete set

of points that need to be assigned a label from a discrete set as well. A Markov

Random Field (MRF) is ideal to model such a scenario. When using an MRF, the
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cost function is represented using an energy function. The energy function consists of

a data consistency term (which is similar to cost functions defined in local methods)

along with a smoothness term. The smoothness term is what sets the global approach

apart as it ensures neighbouring pixels have similar labelling even if noise inflates

the data cost at certain pixels. It is also not restricted within a square region around

the pixel. A general energy function for such an MRF can be seen in Equation 2.3.

Etotal = Edata + λEsmooth (2.3)

A regularizing parameter,λ, governs the contribution of the data consistency term

versus the smoothness term in establishing the label. Once the energy function

has been established minimizing this function would yield the optimum labelling

(disparity map).

The formulation of energy functions for problems and details about its imple-

mentations are discussed in [5, 28, 50]. The pixels in the image are represented as

nodes of a graph that are connected to each other in a grid form. A range of possible

disparities are chosen as the set of labels. The data term correspond to the likelihood

and it is the cost of assigning a disparity to a pixel. This cost measure is often similar

to costs used in local methods as can be seen in Equation 2.4.

Edata =
∑
p

Dp(lp) =
∑
p

[IL(x, y)− IR(x, y − d)]2 (2.4)

The data cost is represented in the graphical MRF by a link from the label to the

node. The smoothness cost is represented by the links between neighbouring pixels

in the regular grid lattice that forms the MRF. The smoothness cost, Vpq(lp, lq)
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is defined for the label of pixel p at location (i, j) and pixel q at location (s, t)

that is a horizontal/vertical neighbour of the pixel p. The neighbourhood around

p is represented by N . The authors in [50] show the Potts model as a useful way

(especially for stereo) to represent the smoothness cost as it penalizes any different

pairs of labels uniformly. The smoothness cost using the Potts model is shown in

Equation 2.5.

Edata =
∑

p,q∈N
V (Δl) =

∑
p,q∈N

min(|Δl|k, Vmax) (2.5)

with k = 1or2 and Vmax = 1. There are a variety of optimization techniques that

allow us to minimize the energy function of these models and lead to solutions quite

close to the global minimum. Boykov et al. [6] mention some of these techniques in

their work before introducing their own contribution of using the graph cut method.

One approach for achieving local minimum of the energy function is the Iterated

Conditional Modes (ICM). This is a greedy technique where each pixel is assigned

a label that results in the largest reduction in energy until a convergence to a local

minimum is achieved. Simulated annealing is another method for minimizing the

energy. It gained popularity due to its ease of implementation as well as its ability to

minimize any arbitrary energy function. However, it takes exponential time to run

and hence is too slow to be used for practical implementations. When implementing

a faster annealing for practical applications, the resulting minimization turn out to

be very far from the global optimum. Boykov et al. proposed two algorithms based

on graph cuts that provide a faster minimization of the energy and achieve results

closer to the global optimum.
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The two main algorithms introduced in [6] are the α expansion and the α − β

swap. The α-expansion and the α − β swap allow a large number of pixels to

update their labels simultaneously contrary to the previous methods mentioned. In

an α-expansion step, any set of image pixels can change their label to be α. In an

α− β swap, pixels previously labeled α are assigned a new label β or the reverse in

some cases. These two basic steps form the core of the α-expansion and the α − β

swap optimization algorithms. Given a MRF configuration, there is an exponential

number of possible expansion and swap moves, therefore a naive implementation of

the algorithm would require exponential time. An efficient method of choosing the

appropriate expansion and swap moves can be found by the graph cut method. The

MRF graph is connected to source-sink terminals. Each pixel is connected to a label

in the source and a label in the sink. The weights between these connections represent

the cost of assigning a particular label for that site (imposing data consistency).

The pixels are also connected to each of its neighbours and the cost of assigning

different labels to adjacent sites forms the weights for these connections (imposing

smoothness). For the α-expansion algorithm the source label is chosen as α while

the sink represents all labels that are not α. For α − β swap, the source label is

α while the sink is β. By finding the minimum-cut/max-flow [5] of this graph, the

energy function is reduced. This cut breaks the graph into two disjoint sets with

sites connected either to the source or the sink. The labels of the pixels are updated

based on which label (source or sink) they are connected to. Pixels connected to the

not-α label retain their old labels instead of being assigned a new one. This process is

repeated for each α label or each α−β pairs respectively until a minimum cut cannot
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be found that results in a minimization of the energy. The advantage of using such

graph cut methods, for global optimization, is that the αexpansion can be performed

in linear time and the α − β swap in quadratic time (in practical implementations

can often be done in linear time). The drawback for these optimization algorithms

is that they do not work as well for other generalized priors that exert a piece-wise

smoothness assumption.

2.4 Half Occlusion

As mentioned earlier stereo correspondence can be a difficult problem. Difficul-

ties in correspondence can be due to a lack of texture or the presence of significant

blurring. This loss of detail makes it difficult to match one view to another. Other

factors such as varying gains among cameras, existence of specularities in one view

or another or vertical alignment problems can all make correspondence difficult.

However, sometimes correspondence is not only difficult but impossible because a

matching does not exist. This is the case in the presence of half occlusions. The

presence of half occlusions cannot be avoided as it is inherent to the stereoscopic

content creation process. Occlusion is usually caused by an object appearing in front

of another and thus making it hidden from view. In a stereo setup, there are two

views with different perspective and so the portion of the image which gets hidden is

different in each of the view. Therefore, one image contains a portion of the occluded

object which does not appear on the other. Since these regions appear exclusively,

they do not have any matching to the other view, making correspondence impossible.

With this realization, we can understand that certain pixels will not have true corre-

spondences and leverage the knowledge of half occlusion to yield other information
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such as object boundaries, depth discontinuities, etc. The following sections provide

a review of work done on detecting half occlusions.

2.4.1 Metrics to assess half occlusions

As mentioned before, half occlusions lead to poor stereo correspondences around

those regions. A range of approaches have been used in literature to address the

issue of half occlusion. Some methods aim to find the goodness of match from

the correspondence. The quality of match is then used to make a decision on the

presence of half occlusion. These methods aim to evaluate the quality of the matches

by looking at each pixel, of an estimated disparity map, and its neighbours. Most

of these methods begin by first evaluating the disparity map with the existence of

noisy estimates around the half occlusion regions. Egnal and Wildes [15] compiled

and compared a few methods that try to estimate half occlusions. One such way

involves evaluating the quality of the disparity map by looking at the modality

of the disparity histograms in a horizontal line around a pixel [30]. The method

proposes that around regions of a half-occlusion boundary we would have disparities

of the occluding surface and the occluded surface. This would lead to a bimodal

distribution of the horizontal disparity. The measure for bimodality was computed

as the ratio of the two local peaks [45]. The ratio is defined as

Bimodality =
maxD1

maxD2

(2.6)

where D1 and D2 represent the largest and second largest peak in the disparity

histogram.
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Another method looks at adjacent regions of good matches and bad matches to

detect the presence of half occlusions. The goodness in match is going to be high

until a half occlusion is encountered where the measure will fall. This jump in match

goodness can be a useful metric in finding half occlusions [44]. The error to check

for Match Goodness Jump is defined as

Error = max
(
C̄x − C̄x+w, C̄x − C̄x−w

)
(2.7)

where x is the horizontal coordinate of the pixel, C̄ is the summed(aggregated)

matching cost within a window size w.

The previous two metrics are a quality assessment of the disparity estimate.

Finding half occlusions using those metrics alone would not be ideal as the quality of

the disparity may be influenced by factors other than half occlusions. They do not

incorporate any specific knowledge about the nature of the half occlusion problem.

The two views of a stereo pair only have a slightly varying perspective where most

parts are similar, except the half occlusion regions. Therefore, the disparity estimate

in the left image (left to right matching) should be negatives of the disparity estimate

in the right image (right to left matching). The left/right checking [58, 10, 52] utilizes

this information to check the left and right disparity estimates. Pixels failing this

checking are to be labelled as half occlusion. The error criteria to check if the left

and right disparity estimates have matchings is as follows

Error = xR − (x′
L + dLx′

L
) (2.8)
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In Equation 2.8, xR is a pixel in the right image that matches x′
L = xR + dRxR′ , x′

L

being the estimated matching location in the left image based on the right horizontal

disparity dRxR′ . Using the knowledge of the half occlusions we can constrain our

solution. Half occlusion regions do not have a true match but regions with true

matches must follow their respective ordering. A pixel to the left of a point in the

left image would also appear to the left of the same point in the right image. The

false matching caused by half occlusions can cause this constraint to be violated [60].

The ordering constraint can be quantified as

Error = max(0, dRxR − dRx”R) (2.9)

where x” represents the rightmost match acquired thus far. The final metric is

the occlusion constraint [26, 19]. The principle behind this method is that near

object boundaries the disparity jumps from the occluder to the background. This

jump leads to a jump in the matching point in the opposite image as well leading

to a group of unmatched pixels in between which can be labeled as half occluded

pixels. This measure is similar in concept to the match goodness jump but instead

of considering the cost, we look at jumps in the disparity estimates instead. The

occlusion constraint can be enforced by using the following error function

Error = max(0, dLxL+1 − dLxL) (2.10)

where dLxL+1 is the disparity of the pixel to the right of dLxL in the left image. Each

of these metrics are simple low level methods of identifying possible half occlusions
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regions. One or more of these quantities may be incorporated together to form high

level solutions and make final decisions on half occlusion.

2.4.2 Bayesian approach to Half Occlusion Detection

Many stereo correspondence algorithms operate without using any information

on half occlusions. Some of them, utilize metrics similar to those seen in Section 2.4.1

to perform post-processing corrections. However, Belhumeur and Mumford [3] in-

corporate half occlusions into their process of finding stereo correspondences. Their

algorithm is designed with a global optimization in mind. They take a Bayesian

approach to the problem by defining probabilities for the data term and prior prob-

abilities for smoothness. The data term represents the costs of matching pixels from

the left to right. The probabilities are then converted to an energy function similar

to what we have seen in Section 2.3.3. However, their formulation of the final energy

function is different from the one previously discussed. The major distinction is the

inclusion of half occlusions into the energy function. Two boundary energy functions

implemented via line functions in horizontal and vertical direction are also introduced

into the overall energy function to better define object boundaries. Edge informa-

tion is used to guide these boundary energy functions. The half occlusion is not only

included as a new term in the energy function but it also influences the data term

of the energy function. An initial estimation of the possible half occlusion regions is

obtained using one of the metrics seen from 2.4.1. Belhumeur and Mumford utilize

the ordering constraint to obtain their estimate of the half occlusion. The number of

half occlusion pixels are counted as a cost towards the occlusion energy term. Addi-

tionally, the half occlusion pixels are not included when computing the cost for the
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data term. Since, half occlusions do not allow for proper matching, avoiding them

in the data matching term would allow for more accurate cost representations. The

smoothness and boundary functions are extended to two dimensions including both

the horizontal and vertical directions. The energy function is then minimized using

a combination of dynamic programming and simulated annealing.
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CHAPTER 3
Detection of Stereo Window Violation in 3D Movies

This chapter of the thesis formally defines the problem of stereo window violation

in 3D movies. It is followed by the proposed framework and detailed discussion

of each component that allows us to detect such problems in 3D movies. Lastly,

the experimental setup used to test out framework and validate its performance is

discussed.

3.1 Stereo Window Violation

To understand the problem of stereo window violation we must first discuss the

concept of a stereo window. The stereo window, as used in the context of 3D cine-

matography, corresponds to the binocular stereo window that is formed when using

two cameras. A similar concept applies to movies that are converted from 2D to 3D

since a pair of images are created for that purpose to simulate shooting using two

cameras. In a two camera setup each camera has its own field of view. Regardless of

whether we use a side-by-side configuration or a mirror-rig configuration the cameras

each capture a different viewpoint of the scene. However, these fields have overlap-

ping regions. Within this overlapping region is a plane where the two camera’s fields

of view converge. This point of convergence can vary based on how the cameras were

setup (converged versus parallel) and by the usage of horizontal image translation

to alter the convergence. The plane of convergence defines the stereo window where

the disparity or parallax is zero. This stereo window plane is made to coincide with
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the movie screen in a theatre [32, 33]. Figure 3–1 illustrates the stereo window for

a simple two camera setup with a slight toe-in for convergence.

Figure 3–1: Two cameras with a slight toe-in with their fields’ of view and conver-
gence plane defining the stereo window

To tackle stereo window violation we also need to understand how objects appear

in the theatre space. The parallax in the scene dictates where each object will appear

with respect to the screen. This effect is purely perceptual as all of the content

is being displayed on the screen itself. The perceptual effect may alter slightly

based on the seating location of the viewer. However, we analyze the problem from

the perspective of a viewer seated at a location for best viewing experience. As

the content is displayed on the screen our eyes focus (this process is also called

accommodation) upon it while it retains the ability to independently converge on

something else. This ability to decouple the focus and convergence is inherent in
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most humans, without which 3D movies as we know it today would not be possible.

As mentioned earlier, the movie screen coinciding with the stereo window has zero

parallax. Therefore for objects appearing at the screen depth, the pixel location (x, y)

in the left image IL is matches to the pixel location (x, y) in the right image IR. But

when the parallax is negative, the pixel location (x, y) in left image IL matches to

the pixel location (x− |d|, y) in the right image IR, where |d| represents the amount

of parallax or horizontal disparity. Similarly, for positive parallax, the pixel location

(x, y) in left image IL matches to the pixel location (x+ |d|, y) in the right image IR.

The majority of current theatres use polarization techniques to superimpose both

images on the screen which are then filtered through glasses providing individual

views to each of our eyes. For negative parallax, matching points in the right image

occur to the left of the point in the left image. Our right eye looks at the right

image and our left eye looks at the left image. For images with negative parallax,

our eyes converge in front of the screen creating the perception of objects floating in

the theatre space. The same concept applies for positive parallax, making objects

look like they are behind the screen. Figure 3–2 shows a schematic illustration of

objects with positive and negative parallax and how they would appear perceptually

in the theatre space.

Looking back at Figure 3–1, we can see there are some regions where the

fields of views for the cameras do not intersect at all. Any object falling within

those regions are only visible to one of the two eyes. This mismatch causes our

perception to alternate between the stimulus from the left image and the right image

leading to difficulties in inferring depth and forming a 3D image. This effect is called
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Figure 3–2: Different types of parallax and their perception with respect to the screen
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retinal rivalry in literature [48]. Retinal rivalry is undesirable in general, but even

more so when it occurs in regions in front of the screen. Stereo window violation is

linked to retinal rivalry for objects appearing in front of the screen. When an object

having negative parallax, appearing in front of the screen, moves in way such that it

crosses the boundary of the stereo window (the screen) it results in a stereo window

violation. An illustration of this situation is given in Figure 3–3. As the object

crosses the screen a portion of it is lost to one eye. This effect can also happen

to objects appearing behind the screen as well. However, for the former case an

additional issue is the fact that the object in front of the screen gets occluded by the

screen boundary. This is an unnatural effect for the human visual system and makes

it difficult for the brain to reconcile this information leading to an uncomfortable

viewing experience. Our eyes are unable to fuse the two images together, resulting

in a sudden depth jump. This jump is caused by a stronger conflicting occlusion

cue of the screen boundary, resulting in the object appearing at screen depth [2].

These sudden depth changes can be taxing for the visual system and also ruin the

aesthetics of the scene. If the stereo window violation is caused by a moving person

this artefact may cause his arm, crossing the boundary, to appear at screen depth

whereas the rest of him appears floating in front at its original location. This artefact

would completely ruin the immersive experience of the 3D movie. To avoid visual

fatigue and to retain the visual aesthetics of the movie it is important to identify

scenes containing stereo window violation and eliminate them.
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Figure 3–3: Schematic representation of stereo window violation

3.2 Proposed framework for the detection of stereo window violation

This section of the thesis gives a broad overview of the components in our

proposed framework for detecting stereo window violation. Each component is then

discussed in detail to demonstrate how they fit together to form the detector.

3.2.1 Overview

Section 3.1 gives us a good platform to build our solution as it helps understand

the exact nature of the problem. Stereo window violation is a problem that occurs

for objects appearing in front of the screen. Our aim is to provide a detection system

that flags each frame that contains such a violation or maybe in proximity of having

such a violation. To know which objects are in front of the screen, we first need to do

estimate the depth of the scene. The first step of our solution is to compute a dense

disparity map using a binocular stereo correspondence algorithm defining disparities

over positive and negative parallaxes. After obtaining a dense disparity estimation,
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we do not want every pixel that is in front of the screen to be a candidate for causing

stereo window violation. Since our target problem is for movies, we propose using

the focus cue to find regions that could cause stereo window violation. Focus is

used as a very strong cue by cinematographers to direct the attention of viewers to

certain part of the scene. This is something movie-goers are accustomed to, as they

immerse themselves into the movie experience. So, we can ignore a character out of

focus going off screen because he is not essential to the story and is not meant to be

looked at by the viewer. Having these two independent estimates still gives us many

pixels with certain disparities and a certain amount of focus. Ideally we wish to be

tracking objects in the scene. We need to establish coherence between pixels based

on their disparity and focus estimations. Hence, the final step involves clustering the

pixels using the disparity, focus and the original image intensities as features to find

segmentations of objects. These objects can then be tracked to monitor for stereo

window violation. Figure 3–4 shows a flowchart representation of the components

in the detection process.

3.2.2 Depth estimation from binocular disparity

A variety of disparity estimation algorithms exist in the literature and they

have been categorically discussed in Section 2.3. The aim of our complete solution

is to provide on-set assistance for cinematographers or people working on 2D-to-3D

conversion. Therefore, along with providing an accurate depth map we would also

like our method to be as efficient as possible. Local methods are generally simpler

methods requiring minimal effort in the optimization phase and are generally highly

parallelizable. But the quality of their estimates are usually far off from globally
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Figure 3–4: Flowchart of our proposed methodology
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optimized methods. The results tend to be either “blocky” or “unsmooth” based

on the window size as cost functions are defined and aggregated over rectangular

windows.

An aggregation or filtering operation that does not uniformly filter across the

rectangular window is preferable. This would allow us to retain the simple and par-

allelizable approach of local methods while the results would be more accurate as the

variation within the rectangular block can be captured in a non-uniform filtering. He

et al. introduced a novel filtering operation called the guided filter in [23]. The guided

filter has a couple of useful properties. Firstly, the filter operation is edge preserving

as well as gradient preserving. The edge preservation property is derived from using

the original intensity image to guided variable weighting across the window around

a pixel. The gradient preservation makes this a more useful filtering operation than

the bilateral filter that can cause gradient reversals. The guided filter algorithm has

a running time complexity of O(N), depending only on the number of pixels in the

image. Changing the size of the filter or changing the range of image intensities does

not effect the running time of the algorithm. These properties made the guided filter

a useful tool for a variety of computer vision algorithms. In [39] this filter can be

seen applied to a range of problems such as optical flow, image segmentation and

stereo. Hosni et al. [25] further explore utilizing this filter to implement a local stereo

correspondence algorithm. Their implementation is based on GPU architecture with

the aim of achieving real-time performance. The edge preserving property allows

for smoother disparity estimates with well defined boundaries. This along with the
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real-time performance reported in [25] makes their technique the ideal tool for de-

tecting stereo window violation. The disparity estimation used for our stereo window

violation detection is based on the work of [25]. We need to compute the disparities

relative to both the left and right images to track stereo window violation. The

following section describes the steps required to compute the disparity map for the

left image. The same steps can be used to compute the disparity for the right view

by replacing the left image with the right image and vice versa in all of the equations.

A. Cost Volume Construction

As we have seen in the literature review, the first step of a stereo correspondence

algorithm is to define a cost function. The cost function is defined over a range of dis-

parities d across all the pixels in an image p. The image itself is two dimensional and

defining the cost per pixel for all possible disparities form a cost volume C(x, y, d).

In a stereo correspondence algorithm the cost is defined by the dissimilarity measure

between a pixel p at location (x, y) and pixel q at location (x − d, y). Hosni et al.

recommends using the truncated absolute difference of colours and gradients as a dis-

similarity measure. Although colour is the most intuitive feature to use for matching

pixels, it can be influenced by illumination changes and varying gains by the sensors

of the two cameras. Hence incorporating gradient into the measure makes the func-

tion robust against such problems. The absolute difference in colour, denoted as M ,

is defined in Equation 3.1

M(x, y, d) =
3∑

i=1

|I iL(x, y)− I iR(x− d, y)| (3.1)
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where I i(x, y) represents the value of the ith colour channel (for a three dimensional

colour space such as RGB) at pixel location (x, y). The absolute difference of gradi-

ents, denoted G, is express similarly in Equation 3.2.

G(x, y, d) = |δx(IL(x, y))− δx(IR(x− d, y))| (3.2)

where δx(IL(x, y)) is the horizontal gradient of the image IL at pixel location (x, y).

Combining the two differences the cost volume is defined as follows.

C(x, y, d) = αṁin(Tc,M(x, y, d)) + (1− α)ṁin(Tg, G(p, d)) (3.3)

The constant α controls the contribution of the colour dissimilarity versus the gradi-

ent dissimilarity. Tc and Tg are the constants for truncating the dissimilarity measure

of the colour and gradient respectively to define the overall truncated absolute dif-

ference. Figure 3–5 b) shows a sample cost volume computed using this method.

B. Cost Volume Filtering

Figure 3–5: Stages of disparity estimation using the guided filter
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The cost volume, as seen in Equation 3.3, is defined locally on a per pixel basis.

Such a definition, can lead to noisy estimates in disparity as it fails to capture bigger

structures in the image. Thus a cost aggregation over a window around these pixels is

necessary. Instead of using a uniform aggregation over a rectangular window, Hosni

et al. utlizes the guided filter to perform the aggregation. Using the guided filter

allows us to utilize rectangular windows while preserving the edges using non-uniform

weighting. The output of the guided filter as defined by [23] is seen in Equation 3.4.

I ′i =
∑
j

Wij(I)gj (3.4)

In the above equation, i and j represent the indices of the pixels instead of their

coordinates. I ′ represents the filtered image, g being the guiding image and I the

image to be filtered. The variable weights Wij are computed around the pixel index

i and the product is summed over the window and assigned to pixel index i in the

filtered image I ′. In the stereo correspondence problem, the guided filter is to be

used for filtering the cost volume. The cost volume is filtered one slice at a time for

each disparity value. The filtered cost volume is computed as follows

C ′(p, d) =
∑
q

Wpq(I)C(q, d) (3.5)

C ′(d) is a slice of the filtered cost volume, guided by the image I (left image when

computing the left disparity and the right image when computing the right disparity)

for disparity value d. In order to compute the weights, we look back at [23] where

the guidance image I is used to filter the guided image f (cost volume slices in our

case). When using the image as the guide, we have the option of choosing either
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the colour image or the grayscale image. The colour image produces better results

although computationally more expensive. The weights Wij is defined for a colour

guiding image as follows

Wij =
1

|ω|2
∑

k:(i,j)

(
1 + (Ii − μk)

T (Σk + εU)−1(Ij − μk)
)

(3.6)

In equation 3.6, the mean μk and covariance matrix Σk are computed within a

window ωk with dimensions r × r centred at pixel k of the guiding image I. Other

parameters include ε, which is a smoothness parameter and |ω| is the number of

pixels in the window. Ii, Ij and μk are vectors of size 3 × 1 as each pixel contain

information for the three colour channels. Explicitly computing the weights for the

guided filter is computationally expensive. Instead the following linear operations

can be performed to obtain the filtered output with greater efficiency.

ak = (σk + εU)−1

⎛
⎝ 1

|ω|
∑
i∈ωk

Iifi − μkf̄k

⎞
⎠ (3.7)

bk = f̄k − aTk μk (3.8)

qi = āTi Ii + b̄i (3.9)

In Equations 3.7,3.8 and 3.9, fi represents pixel i of the guided image f (cost slice

in the stereo problem), f̄k = 1/|ω|∑i∈ωk
bk is the mean of the guided image in the

window ωk. The filtered output is represented by qi. These set of operations are used

to filter each slice of the cost volume to produce the filtered cost volume. Figure 3–5

c) shows the result of filtering the cost volume.
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C. Disparity Map Estimation

The advantage of using a local method for stereo correspondence is the ease of

optimization. The cost volume was initially computed over a range of disparities

and then filtered using the guided filter. The Winner-Takes-All strategy can then be

used to get the disparity estimate for each pixel. This is a common strategy utilized

in other local stereo methods as well. The disparity for each pixel p is obtained as

shown in Equation 3.10

dp = argmin
d∈D

C ′(p, d) (3.10)

D is the set containing all possible disparity values, which depends on the initial

range of disparity chosen. Figure 3–6 shows the final disparity estimate obtained

using this method along with comparisons from methods mentioned in Section 2.3.

3.2.3 Focus Estimation

The next phase of our proposed method to detect stereo window violations is to

find the areas of focus in the image. Focus is a means by which cinematographers

draw attention of the viewers to different parts of the scene. It has been and continues

to be used to add to the storytelling aspect of a movie. The study in [9] provides a

perceptual reasoning behind utilizing focus in our method. Brown et al. note that

regions that have higher spatial frequency, especially with adjacent regions with lower

spatial frequency, appear closer in depth. Higher spatial frequency can be attributed

to higher texture from focused imagery with lower spatial frequency coinciding with

the out of focus areas. The conclusion of their study also indicate that the cue from

spatial frequencies can create a stronger perception of depth than the stereopsis cue.
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Figure 3–6: Disparity estimation comparison of different methods. Local Sum of
Squared Differences (SSD) (2nd Row), Graph Cut (3rd Row) and Guided Filter (4th

Row). Column (a)-(c) are images from Middlebury Stereo Dataset and column is an
image from our experimental data

This makes it important for us to identify the areas of focus to detect the presence

of stereo window violations. Our proposed methodology works with just a pair of

stereo images and no external parameters supplied. Hence, no measure or indication

of the scene focus is provided along with the images. We must explore the literature

to determine ways of estimating focus from images.
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The problem of finding the area of focus can be reformulated as finding the blurry

(out of focus) regions in the image. By determining the regions that are blurry and

the extent of that blur, we essentially have an estimation of focus areas as well. Some

methods explored in literature aim to classify an overall image as blurry. Along with

the classification an extent of the blur is also stated. Such methods are seen in [51]

and [35]. Each paper follows its own approach, [35] taking a probabilistic approach

to blur detection whereas [51] analyses the edges in the image using the Haar wavelet

transform. The reported results indicate that the method works well in determining

whether the image is blurry or not. However, classifying an entire image as being

blurred or sharp along with a measure to report the extent of this blur is not useful

for our purpose. This does not allow us to determine which regions within the image

are out of focus and which regions are in focus. Su et al. [46] looks at blur detection

from this context and identifies amount of blur in regions of the image. They are able

to achieve this by performing a singular value decomposition (SVD) analysis of the

image. An image I can be decomposed using SVD and represented as I = UΛDT ,

where U ,V are orthogonal matrices and Λ is a diagonal matrix. The original image

I can also be represented as a summation of multiple rank 1 matrices commonly

referred to as eigen-images.

I =
n∑

i=1

uiλiv
T
i (3.11)

In Equation 3.11, ui, vi are the column vectors of U , V and the λi are the diagonal

terms of Λ (also called singular values). This decomposition is utilised in image

compression where the compressed image Ik is formed by summing the first k eigen

images. The Image I is represented as a weighted summation of the eigen images,
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where the singular values represent the weights. The singular values of an SVD

operation are arranged from largest to smallest. So by using the first k weights, the

small weights at the end are discarded and an approximation is obtained without

losing too much detail. This is similar to what happens during image blurring. The

large scale details of an image are retained (such as rough shapes) while smaller scale

details are discarded. Interpreting this in terms of eigen-images, the smaller singular

values that relate to small scale details bear smaller weights for blurred images. This

leads to the conclusion that the first few most significant eigen-images therefore have

higher weight for a blurry image compared to those of a clear image. This can be

extended to finding the amount of blur in regions of a single image. The image can

be analysed in local patches around each pixel and SVD is used to calculate the

singular value for the patches. The amount of blur for a pixel can be expressed by

the following ratio

βk =

∑k
i=1 λi∑n
j=1 λj

(3.12)

In Equation 3.12, λi represents the ith singular value calculated within a local

patch ωb × ωb for each pixel. Therefore, the measure of blur is the ratio between the

first k most significant singular values and all n singular values. The choice of k,

depends on the size of window. When SVD is performed on the patch of size ωb×ωb,

the total number of singular values is also equal to ωb. Thus, k has to be less than the

window size. In our experiments, it was noticed that the first two singular value (for

a window of size 9) contained more than 90 percent of the information required to

represent the shape/structure in patches that are blurry. Incorporating more singular

values would cause somewhat textured and sharper regions to be classified as blurry.
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High values of k would reduce the variation in the computed metric and make it

difficult to distinguish blurred versus focused regions. A low value for k was chosen

based on these observations. This methods allows us to measure the amount of blur

within the regions of the image for each image being analysed. A slight modification

to Equation 3.12 will allow us to estimate the areas of focus instead of blur. This is

shown in Equation 3.13.

Fp = 1−
∑k

i=1 λi∑n
j=1 λj

(3.13)

Both the Equations 3.12, 3.13 are calculations for a single pixel only. These equa-

tions have to be used for each pixel in the image to obtain pixel-wise dense estimates

of blur or focus. Figure 3–7 shows the results of estimating the focus in an image

using this method.

3.2.4 Stereo Window Violation Detection

Our final goal in this solution is to be able to track objects that appear in front

of the screen and are in focus. From the previous sections, we obtained pixel-wise

estimates of the disparity as well as focus. But the pixels themselves do not represent

objects and tracking each individual pixel for a potential window violation does not

make sense. Even if fifty pixels were causing a window violation it would be hardly

noticeable among the large number of pixels in the screen. Therefore, for our final

step we find segmentations of meaningful objects that can be tracked. The segments

are found by clustering pixels together.

The clustering technique used in our method is the mean shift clustering [12].

Mean shift is a very popular non-parametric clustering technique that has been used

for segmentation, clustering, tracking, space analysis and other applications. Unlike
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(a) Original Image (b) Regions of focus

(c) Original Image (d) Regions of focus

Figure 3–7: Focus estimation Results

some other clustering techniques, the mean shift method does not require us to

supply the number of clusters. The technique analyses an image in feature space.

For example, when segmenting a grayscale image, the intensity values would serve

as a one-dimensional feature space. Similarly, for a colour image each colour channel

serves as a feature forming a three dimensional feature space. The technique can

perform clustering using a variety of relevant feature dimensions. For our purpose,

we used a three dimensional feature space to form our clusters, but the features for
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our clustering were not the colour channels. The first two features were the disparity

and focus estimates. Disparity is a useful feature to direct the segmentation. We

threshold the disparity to remove pixels that appear behind the screen. Objects in

real-life are piecewise smooth and points on an object are expected to have similar

disparities. Grouping together pixels based on their disparity value alone is not

sufficient. One reason is that the quality of the disparity map may be degraded due

to the issues such as half occlusion, low texture, repetitive features, etc. Additionally

we want our objects, for tracking, to be both in front of the screen as well as in focus.

Hence the focus estimates are also utilized as a feature for clustering as well. Along

with those two, the third feature that was utilized is the grayscale intensity values

of the image (left image for left disparity map and vice versa). This feature is

useful for guiding the boundaries of the segments by incorporating intensity based

edge information into the clustering process. All three colour channels could have

been utilized instead of just the grayscale intensities but they add computational

complexity and provide minimal improvement from using just the grayscale values.

The following steps were used in our implementation of the the mean shift clustering

algorithm to produce object segmentations:

1. A random point is chosen as the centre of the searching window and its feature

vector is chosen as the mean.

2. A new mean is calculated using all points within a distance defined by the

bandwidth bw.

3. The new centre for search is moved to the newly computed mean.
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4. Steps 2-3 are repeated until the shift of the mean is very small (e.g. 0.1% of

bandwidth)

5. All points traversed by the searching window are set to be of the same cluster.

6. A new random point is picked from the remaining points and steps 2-3 are

repeated again while avoiding points already assigned to a cluster.

7. Clusters with centre distance less than half the bandwidth are merged.

The bandwidth is the only parameter that affects the result of the clustering.

The bandwidth is essentially a threshold for the distance from the centre of the

searching window to the points around it. The distance is measured in feature

space and is usually as an absolute difference or squared difference. If the feature

spaces are normalized a single bandwidth is sufficient for clustering, otherwise varying

bandwidth for each feature space may be needed for better results. Choosing a larger

bandwidth reduces the number of clusters and a smaller bandwidth increases number

of clusters. Our choice of feature space allows objects that have a high disparity and

are in focus (less blur) to be formed into a cluster. This is ideal to track objects that

may cause stereo window violation. The clusters were used to create binary masks

and segment the objects. The contours of the segmented object were determined

and a bounding box was calculated which was used to track the objects from frame

to frame. For the problem of stereo window violation, the size of the object being

tracked is also important. Small objects such as flying birds, floating leaves, balls,

etc. would not be an issue for audiences and raising a flag for these items would

be an unnecessary hindrance to stereo content generation. Objects smaller than a

given size thresholds are thus exempted from being tracked. Due to the nature of
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the disparity, stereo window violations occur when objects in the left image cross the

right screen edge or when the objects in the right image cross the left screen edge.

Our detection system issues a warning message when an object is approaching either

of these edges and issues a window violation message as soon as a significant portion

has crossed the edge. The system is also able to track multiple objects that are in

front of the screen and monitor them for potential violations.

3.3 Experimental Setup and Results

The individual components of our framework were first tested individually be-

fore testing the overall system as a stereo window violation detector. The stereo

correspondence techniques used to extract disparity were first tested on the Middle-

bury Stereo Dataset [42, 43, 24]. The dataset consists of a variety of stereo images,

usually with indoor scenes and controlled lighting. Utilizing this dataset gave us an

early indication as to which of the stereo correspondence techniques from literature

would be useful for our purpose. For testing focus estimation, images were obtained

from the Flickr website. The images were chosen to all have some objects in focus.

However, the scenarios in these images are limited and do not exactly emulate the

cases of stereo window violation. To test different variations of stereo window vio-

lations we created our own dataset. A pair of Microsoft LifeCam Cinema cameras

were fixed together to form a stereo rig. The cameras were placed in a parallel, side

by side, configuration with a interaxial distance of 3 cm and a slight toe-in. Prior

to filming our test scenes, the cameras were calibrated. The calibration process al-

lows us to estimate the coefficients for radial and tangential distortions caused by
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the lenses. These coefficients can be used to eliminate (minimize as much as pos-

sible) the effect of distortions in each of the cameras. The process was done using

existing tools in OpenCV for calibration [7]. The images obtained using this stereo

rig also underwent the stereo rectification process using tools from OpenCV. This

ensures that the epipolar lines are along the horizontal scanline, allowing to search

for stereo correspondences along a single dimension. The resolution of our camera

setup supports 720p videos. However, rectification leads to a loss of pixels as some

portions of the image are cropped as part of the process. Small clips depicting various

occurrences of stereo window violation were recorded using this setup.

To recreate scenes with stereo window violation we need to have objects that

would perceptually appear in front of the screen. Horizontal image translation were

used to control the zero disparity plane and the location of the stereo window in the

depth dimension. The first short sequences depicts a figurine that appears in front of

the stereo window. The figure is then slowly moved across the screen and it exits the

screen from the right border. It comes back into the screen, is moved across and then

exits via the left border. Both of the situations as it cross the edges triggers a window

violation in the left and right views respectively. This scene had a somewhat static

background with one prominent object, in front of the stereo window, moving across

the screen. The next scenario introduces another character into the scene which is

also in focus. One character starts of in front of the stereo window while another

one is behind. The character in front moves across the screen whereas the character

behind approaches the screen and crosses it to appear in front of it. Our system

successfully tracks the character in front of the screen on its own, and as soon as
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the second character cross the window threshold a second tracker is applied keeping

track of both for possible window violations. Other scenes included introducing focus

on characters only, and a character starting at a position of window violation instead

of just moving across and triggering it. Overall, a test set consisting of 2234 frames

was used to validate our system with various conditions. The output of our system

is represented by a bounding box around any objects that appear in front of the

screen. The boxes have a colour associated with them to indicate the status. The

statuses are as follows:

1. Red = Violation: Object, being tracked in front of the screen, is causing a

stereo window violation.

2. Green = Clear: No stereo window violation by objects being tracked inside the

bounding box.

3. Orange = Warning: Object being tracked is approaching the edge and there is

a possibility of a stereo window violation.

Along with the clear indicator and the alert for a violation, a warning is introduced to

indicate approaching violations. Each of the frames being tested were hand labeled

and the outputs from our method was compared against them. The numerical results

behind the detections are seen in Table 3–1. The numbers indicate that our system

does very well at detecting violations and its absence. The test cases for the warning

status were few and being a borderline condition made its accuracy fall a bit more

compared to the other two. Figure 3–8 and 3–9 show sample results of our window

violation detector for a couple of scenarios. Overall, this method is a reliable indicator

for stereo window violations.
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(a) No Violations.

(b) Violation on the right edge found of the left view.

(c) Warning for approaching violation on the left edge of the right view

Figure 3–8: Stereo window violation detection with single object appearing in front
of the screen.
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(a) No Violations. Only one object being tracked as the other is still behind the screen.

(b) Violation on the left edge is found in the right view by one object while the other object is
clear of violation as it appears in front of screen.

(c) Warning for an object in front of the screen approaching the right edge.

Figure 3–9: Stereo window violation detection with multiple objects.
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True Condition
Violation Clear Warning

Detection
from

algorithm

Violation 535 16 13
Clear 12 1627 1

Warning 3 1 26
Total Test Frames 550 1644 40

Hit Rate 97.27% 98.26% 65%
False Positive Rate 1.72% 2.26% 0.19%

Table 3–1: Results of SVW

3.4 Target Application in 3D movies industry

The ability to create 3D movies has existed for quite a long time. However,

content of such nature was not very popular during its early days. Very few movies

were made using stereoscopic technology, even fewer in the case of feature films. The

prevelance of 3D was retained through shorter films or video sequences to induce

thrills as a novelty item. A major factor behind the failure of this technology to

catch on with the viewing public was the inability to create high quality 3D con-

tent. Without quality stereo production “3D” was reduced to a gimmick rather

than being a component of storytelling that creates a more immersive experience.

Early stereo movies were created using analog technology. Many common issues or

pitfalls regarding stereo content were not fully appreciateed at that time and the

analog format made post processing a difficult proposition. Hence, the quality of

the content produced was not high and more often created a strenuous experience

for viewers than an enjoyable one. All of these factors contributed to the falling

popularity of 3D content in mainstream media. However, stereoscopic content has

been rejuvenated with the emergence of digital technology and 3D movies have made
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a return to mainstream media. Many feature films in recent times have adopted this

3D technology. Much 3D content is being created through filming using stereo rigs

as well as conversion methods. Specialists in stereography can look at the digital

footage of scenes being shot on set or during post production. Their expertise can be

used to judge if the content has any artefact that will make the viewing experience

uncomfortable. The motivation behind the work in this thesis is to provide tools that

help such specialists or help production crews that lack such a specialist the ability

to detect a major problem such as stereo window violation. Having such a tool on set

will make it easier to ensure proper framing is done. This can avoid actions such as

cropping in post production to ensure stereo defect correction and instead preserve

pixels from the original shot. Early access to the quality analysis of the scenes can

avoid having to bring actors back in for shooting a scene that was not correctable

in post production. With this realization our contribution in this thesis is aimed at

developing tools to assist the production of stereo content. This chapter addresses

the specific problem of stereo window violation which is a very prevalent problem

while creating stereoscopic content. The results indicate that our methodology can

serve as an excellent tool to avoid the problem.
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CHAPTER 4
Half occlusion and its application to stereo defect analysis

This chapter of the thesis discusses the issue of half occlusion. Half Occlusion is

formally defined and its relationship to stereo movies is established. The proposed

solution to finding half occlusions in a pair of stereo images is discussed. We also

look at how half occlusions can help identify certain problems in stereo movies and

improve stereo correspondence accuracy.

4.1 Half Occlusion

Half occlusion is a feature that is present in most stereo image pairs, regardless

of the type of setup being used to create the content. Although half occlusions lead to

difficulties in stereo correspondence, they can be regarded as more of a feature than

an artefact. This is because half occlusions can help define depth discontinuities

resulting in improved segmentation of objects. Half occlusions can also provide

cues to help identify where we should look for other stereo artefacts such as pseudo

stereoscopy or occlusion-stereopsis conflicts. Further into this chapter we explore

why half occlusions, once indentified, can be a blessing rather than a hindrance.

Half occlusions can be considered an extension of occlusions to stereo imagery. Any

object that appears in front of another object and hides it from view creates an

occlusion. The occluding object in front hides the occluded object in the background.

Occlusions are present in each of the individual images in a stereo pair. Each of

the stereo images represent a slightly different perspective of the same scene. The
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location of objects is shifted in each view based on the disparity. Objects that are

closer will have a higher disparity than the ones further away. Since the larger

disparity creates a larger shift, the occluding object will occlude a different portion

of the background in each view. As a consequence of the same effect, a different

portion of the background is revealed in each view which does not have a matching

to the other view. This region is only occluded in one of the images hence it is

referred to as half occlusion. Half occlusion is similarly defined in many of the works

throughout literature [34, 3, 21, 15]. In order to find these half occlusions we need

to identify these regions that appear in only one of the views. Figure 4–1 shows half

occlusion regions highlighted in the stereo image pair.

(a) Left image (b) Right image

(c) Left image with annotated half occlusion (d) Right image with annotated half occlu-
sion

Figure 4–1: Example of Half Occlusion regions from composite images
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The geometry of the camera setup with respect to the scene plays a key role in

determining the half occlusion regions. The illustration in Figure 4–2 shows how the

geometry dictates the constraints on half occlusion. The left camera, capturing the

left stereo image, has a greater view of the background to the left of the occluding

object. Greater view in this context means more of the background is seen by the

left view at this location compared to the right view. Hence, regions without valid

matchings, due to half occlusion, appear to the left of the occluding object in the

left stereo image. Similarly, in the right stereo image, these regions would appear

to the right of the occluding object. This constraint holds for a converged camera

setup or a parallel setup. The parallel setup may be by choice to begin with or could

be from the result of image rectification. The width of the half occlusion region is

determined by the relative depth of the occluding object and the background. A

greater difference in depth would mean a greater shift of the occluding object in

front leading to larger regions of half occlusions. These properties are core to the

definition of half occlusion. We see how they are utilized for detecting half occlusions

in the following section.

4.2 Proposed Framework for detecting half occlusions

Half occlusions are very highly dependant on the depth of a scene. Hence most

of the approaches in the literature that are directed towards finding half occlusions

also require the depth of a scene to be computed. Finding half occlusions can be

treated as a post processing step after computing the depth map. Alternatively, half

occlusions can be incorporated into the process of estimating the depth by treating it

as one of the possible labels. The search space for the number of possible occluding
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Figure 4–2: Geometry of half occlusion [56]. The distance between the near and far
objects influence the size of the half occlusion.

pixels is as large as the disparity range and this can add to the complexity of the

solution. Another viable approach is to utilize an iterative algorithm that computes

half occlusion as a post processing step but then utilizes it for improving the disparity

estimate.

4.2.1 Overview

The dependency between depth and half occlusions makes an iterative technique

very useful. If we are given fully accurate depth maps, for both views, it is simple

to obtain a perfect estimation of the half occlusions. Our analysis is based on the

usage of only stereo vision techniques. There is no access to depth information from

other sources such as lasers, Kinect sensors, etc. The depth estimate obtained by

the most sophisticated of stereo correspondence algorithms (especially those that do

not account for half occlusions) are still far from perfect. There could be mismatches

caused by slight illumination variances, lack of textures, specularities, etc. Even if

we assume that a filming crew can monitor the factors behind these problems and
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control them such that their effects are minimized, the presence of half occlusions

will still create inaccuracies. The half occlusions will always leave regions that do not

have true stereo correspondences. By knowing the location of the half occlusions, we

can compute better disparity maps with sharper boundaries. However, to determine

the half occlusions we need to have good quality disparity maps. This serves as the

motivation for choosing an iterative approach. We can first estimate the depth of

a scene from an initial disparity map and then use it to obtain our half occlusion

regions. These half occlusions can reinforce our disparity maps and then lead to

better estimates of half occlusion in subsequent iterations. Figure 4–3 shows the

components in our framework for detecting half occlusions.

4.2.2 Half Occlusion Estimation

The first step of finding half occlusions would be to determine the depth of the

scene. In computer vision, we do this by estimating the binocular disparity map.

In order to find half occlusions we need to compute the disparity map for both

sides, doing the left to right stereo correspondence as well as the right to left stereo

correspondence. By definition, the left disparity map represents the correspondences

to points in the right view of the stereo pair. The disparity is the horizontal shift in

the pixel location required to find the matching pixel in the other view. Hence, by

performing this shift we should be able to reconstruct the one of the views using the

disparity map of another. Figure 4–4 shows that such a process would not produce

a complete reconstruction. There would be gaps in the reconstruction because some

pixels do not have matches in the other view. These hollow gaps are due to half
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Figure 4–3: Flowchart outlining the process of half occlusion detection

occlusions creating regions with no correspondences.

I ′L(x+ dR(x, y), y) = IR(x, y) (4.1)

I ′R(x+ dL(x, y), y) = IL(x, y) (4.2)

In Equations 4.1 and 4.2, I ′L and I ′R represent the reconstructed images created

using the disparity estimates dR and dL respectively. The reconstructed images are

64



initialised to zeros in each of the color channel. Hence, this form of reconstruction

results in the creation of hollow regions. The half occlusions estimates are represented

by boolean values as follows

OL(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if I ′L(x, y) = 0;

0 otherwise.
(4.3)

OR(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if I ′R(x, y) = 0;

0 otherwise.
(4.4)

Through equations 4.1 - 4.4 all three colour channels are used for the reconstruction

and checking for hollow regions of half occlusion. This process only utilises the infor-

mation about regions with no matching and identifies them. With a perfect disparity

map, this would have been sufficient to determine the half occlusions. However, since

we do not have access to error free disparity maps we need to utilize other proper-

ties of half occlusions. A small deviation in disparity estimation may lead to many

small hollow pixels. But before confirming these as half occlusion we can utilize the

property that being a half occluded point means there has to be a corresponding

occluding object. Some of these properties are incorporated as constraints to allow

for better disparity estimation which in turn improves half occlusion estimation.

4.2.3 Incorporating Occlusion Constraints to disparity estimation

Our approach to applying occlusion constraints is based on the work in [62].

Zhanget al. utilize an MRF based approach for stereo correspondence. On top of

that, they perform oversegmentation on the source images to form super pixels. The
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(a) Original left image (b) Original right image

(c) Reconstructed left image (d) Reconstructed right image

Figure 4–4: Reconstructing images from disparity estimation to reveal half occlusions

MRF with its data and smoothness terms are then defined in terms of these super-

pixels. The advantage of using superpixels over the traditional pixels is the reduction

of computational complexity when performing the optimization. When applying the

occlusion constraints, their energy functions are modified to incorporate that infor-

mation. We have mentioned how computing the disparity map is an important first

step of determining half occlusions without elaborating on how this disparity map is

to be computed. We can follow the approach of Zhang et al. and construct an MRF
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and incorporate the occlusion constraints to the energy function. However, the main

motivation of this thesis is to provide tools to analyse stereo content. To that end,

it is more practical to extend the work from the previous chapter instead of starting

from scratch with a completely new approach. It will be more efficient to use the

intermediate information from the stereo window violation detector to estimate our

half occlusions.

Looking at equations 4.3 and 4.4 we can see that pixels that are visible to both

views would be marked as not occluded. However, for each half occlusion there has to

be a corresponding pixel on the other view that occludes this pixel. This occluding

pixel has to be one that is visible to both views. Another key factor is that the

occluding pixel has to have a larger disparity than the half occlusions regions. Only

a closer pixel should be able to occlude a pixel that is further away while the opposite

is completely invalid. Based on these rulings, we evaluate the validity of our boolean

occlusion estimates and apply constraints to our depth estimate. Given a pixel (x, y)

in the right image is regarded as a half occlusion, the disparity is constrained based

on which of the following criteria it falls under[62]:

G1 = {L|OL(x+ L, y) = 0, dL(x+ L, y) > L)} (4.5)

G2 = {L|OL(x+ L, y) = 0, dL(x+ L, y) < L)} (4.6)

G3 = {L|OL(x+ L, y) = 1} (4.7)

Equation 4.5 shows a case for a valid half occlusion where the corresponding point

of half occluded pixel in the right image is a visible pixel in the left image that has
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a greater disparity than the pixel in the right image. Equation 4.6 is similar except

that the corresponding point in the left image has a smaller disparity than the half

occluded point in the right image. This is a case of invalid half occlusion as having a

smaller disparity would mean the occluding pixel is behind the occluded pixel which

is not possible. Equation 4.7 shows a scenario where the corresponding point in the

left image also has no matching. Both of the pixels in the left and right cannot be

without matching, as an unmatched point must be occluded by a visible pixel in the

other view. Therefore, the labels have to be adjusted to account for this situation. In

[62], the energy functions of the MRF are modified with these scenarios in mind. In

our case, we can follow a similar approach but instead modify the cost volume that

was calculated in Equation 3.3. This is where our approach deviates from Zhang et

al.. Instead of working at a superpixel level we apply the constraint and adjust the

cost volume at a pixel level. The following equations show the modification to the

cost volume:

C ′(x, y, d) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
d∈G1

C(x, y, d) if d ∈ G1;

+∞ if d ∈ G2;

C(x, y, d) d ∈ G3.

(4.8)

We obtained the half occlusions from our initial estimation of the disparity map.

Using the constraints in Equation 4.8 we can adjust the cost volume and then obtain

an updated disparity map that accounts for the half occlusions. We iteratively update

the disparity estimates and the half occlusion estimates until the change becomes

minimal. Even with the iterative approach the half occlusion estimation will not

always be perfect due to the presence of noise in the disparity estimate. Therefore
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three post processing steps were applied to the half occlusion estimates from the

iterative process. The first post processing step involves applying a morphological

operator to the estimate. Specifically a morphological closing (dilation followed by

an erosion) operation is performed to close up holes in the estimates of half occlusion.

Following this, a size filter is applied to the output to remove small noisy specks in

the estimate. The last step of post processing involves utilizing some information

regarding half occlusions as opposed to general image processing techniques. Half

occlusions are guided by the location of the camera and the difference in depth

between the occluding and occluded surfaces. The width of the half occlusion region

is dictated by these factors. We can utilize these information to enforce the width

of the half occlusion in terms of pixels in our own estimate and improve the results.

The stereo rectification process yields a pair of images that mimic the geometry

of images captured using parallel configuration whereas the disparity serves as a

representation of the depth. Hence, the width of the half occlusions, in terms of

pixels, can be represented by the disparity difference between the occluding surface

and the occluded surface. But the occluded surfaces do not have a reliable disparity

estimate as they do not have any matching points. The closest pixel that is not a

half occlusion is used to compute this disparity difference. Using a single pixel is

sensitive to noise. To solve this issue, an average over 3 consecutive reliable pixels

is used instead of the single pixel. In the left half occlusion regions, this search for

reliable pixels is conducted to the left of the half occlusion region and to the right of

the half occlusion regions in the right image. This is because half occlusions exists

on the left side of depth boundaries on the left image and on the right side of the
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depth boundaries in the right image as has been touched upon previously. Utilizing

these final steps we obtain our estimation for half occlusion regions in both the left

and right images, while obtaining a refined disparity estimate in the process.

4.3 Experiment

Testing for half occlusions detection also requires access to stereo image pairs.

Therefore, similar to Chapter 3 we utilize the Middlebury Stereo Dataset for testing.

This dataset contains ground truth disparity values that can be used to obtain ground

truth values for half occlusions. Many methods in the literature use images from

this dataset allowing possible comparisons in results to existing methods. Figure

4–5 shows the results of half occlusion estimation for stereo image pairs from the

Middlebury Dataset.

Along with this standard dataset we utilized our stereo camera setup discussed

in Chapter 3 to record a small sequence in front of a white screen. Using the white

screen allowed us to perform compositing and add our own background to the image.

Using horizontal image translations the background was shifted backwards to ensure

it would always be the occluded surface in the scene. As the object captured in our

video moves through the scene, it covers a different portion of the background allow-

ing us to establish a test set with known half occlusions. The results of estimation

on that data is shown in Figure 4–6.

4.4 Motivation and usage

Half occlusions are usually present in stereo imagery. Their presence will affect

the quality of stereo correspondence in a negative manner. Therefore it is vital to not

ignore them and instead make an effort to detect these regions. The first immediate
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4–5: Half occlusion results on Middlebury Dataset. First column shows left
view of the stereo pair. Second column shows the estimation of half occlusions on
the left view using the proposed method. The third column shows the ground truth
half occlusions for these images.

benefit of identifying half occlusions would be the reinforcement to the disparity

estimation. Blurry and poorly defined edges can be made sharper if half occlusions

are known. Sharper depth boundaries would be beneficial to a variety of stereo
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(a) (b) (c)

(d) (e) (f)

Figure 4–6: Half occlusion results from composited images created using our stereo
rig set-up. First column shows left view of the stereo pair. Second column shows the
estimation of half occlusions on the left view using the proposed method. The third
column shows the ground truth half occlusions for these images.

related issues. It will allow better object segmentation and tracking. Moreover, a

few stereo problems manifest themselves on these depth boundaries. Utilizing the

knowledge of half occlusions and depth boundaries can help avoid problems of pseudo-

stereoscopy. Pseudo-sterescopy can be defined as a form of faulty stereo content that

contains conflicting depth cues, incorrect calibration, etc. Depth perception from

such content is not completely lost, however its faulty nature can lead to incorrect

interpretations. Such content creates strain on the users and may eventually break

the depth perception as the problems get worse. The simplest example of pseudo-

stereoscopy is when the left and right views are swapped. Similarly the left and

right lens of the 3D glasses used when viewing 3D content can also be swapped.

Doing so does not completely destroy the depth perception but it creates a strong
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occlusion-stereopsis conflict in the depth cue. Objects that are in front are supposed

to be at the back according to stereopsis cues, whereas its occlusion cue tells the

brain that it should be in front. The brain might swap back and forth trying to

decide how to properly perceive the scene. The process will put the brain under

stress while continuously breaking the depth perception of 3D movies. Even without

the swapping of the left right views, pseudo-stereoscopy can manifest when elements

within the scene are not at the right depth. This problem can originate during 2D

to 3D conversions or similarly in 3D compositing. During these processes, artists

insert new elements into a scene that has already been shot. Creating proper stereo

cues for the composited object is vital to avoiding pseudo-stereoscopy. This chapter

of the thesis is motivated by the need to detect such problems. We identify half

occlusions regions as a vital feature in determining depth boundaries and hence

identifying regions that need to be analysed to detect faults such as stereo reversals,

occlusion-steropsis conflicts, etc.

4.4.1 Detecting Pseudoscopy using Half Occlusions

In this section we explore the detection of pseudoscopic videos, where the left

and right stereo pairs are reversed when presented to the viewer’s eyes. Our solu-

tion to detecting pseudoscopy is based on using half occlusions. We have defined

half-occlusions as regions that are visible to only one eye and not to the other.

These regions create difficulty for stereo vision as they do not have any matches or

corresponding points in the other view, making it impossible to compute binocular

disparities. However, they prove to be very useful when used to detect if an image is

presented stereoscopically or pseudoscopically. Figure 4–7 shows the location of half
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occluded regions in a simple scene consisting of a flat object in front of a back-plane.

In a stereoscopic presentation the left eye sees the left-half-occlusion region (which

is the region which the left eye can see but the right cannot) at the left edge of the

front object. The right eye sees the right-half-occlusion region (which is the region

which the right eye can see but the left eye cannot) at the right edge of the front

object.

Figure 4–7: The left and right half-occluded regions in a simple scene of a small
planar object in front of a planar background. Shown at the bottom are depictions
of the left and right images in stereoscopic (top) and pseudoscopic (bottom) display.
The black regions correspond to images of the background and the gray regions to the
images of the foreground object. The red regions correspond to the half-occlusions.
The disparity levels for the image regions are also shown. The disparity of the near
object are higher than that of the background. There is no disparity defined in the
half-occlusion regions.
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In the case shown in Figure 4–7 of an object in front of the background, it

can be seen that, in the case of stereoscopic display, the left half-occlusions are to

the left side of the foreground object, while the right half-occlusions are to the right

side. This pattern is reversed in the pseudoscopic display. If we knew we were

looking at this type of a simple scene then we could determine whether the display is

stereoscopic or pseudoscopic just by taking the difference of the x-coordinate of the

left-half-occlusions and the right half-occlusions. If this difference is negative then

the display is stereoscopic. If it is positive then the display is pseudoscopic. However,

one could have a scene such as that shown in Figure 4–8, in which the background

plane is being viewed through a small hole in the foreground plane. In this case the

locations of the left and right half occlusions are reversed from what they were in

the case of the foreground object occluding the background. Thus it would seem

that a simple differencing of the left and right half occlusion locations would not

help in detecting pseudoscopy. But, in most scenes encountered in practice during

the filming of 3D movies, the number of foreground objects occluding background

objects is generally much higher than the number of holes in the foreground objects.

Thus, the situation in Figure 4–7 dominates over that of Figure 4–8, and we can

reliably use the left-right occlusion location differences to determine whether the

imagery is presented normally or pseudoscopically. In practice we would compute

the centroids of all of the left and right half-occlusion pixels in the imagery and use

the difference of the centroids in deciding whether the display is pseudoscopic. It

is interesting to note that, when a scene is viewed pseudoscopically, the occluding

foreground objects appear to be background objects viewed through holes that are
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the exact shape of these objects. It may be the unnatural preponderance of such

holes perceived in pseudoscopic imagery that leads to the feeling on the part of the

viewer that something is wrong with the imagery.

Figure 4–8: The left and right half-occluded regions in a simple scene of a planar
background being viewed through a hole in the foreground plane. Shown at the bot-
tom are depictions of the left and right images in stereoscopic (top) and pseudoscopic
(bottom) display. The disparity levels for the image regions are also shown.

Even in naturally occurring scenes, there may be roughly equal numbers of holes

and occluding objects. In this case our left-right occlusion difference method will not

work. This type of situation would reveal itself by a relatively low difference value.

For such cases we need to use another approach. One such approach suggested by

Akimov et al. [1] is to observe the appearance (say of the intensity, or of the texture)
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of the visible part of the half-occlusion regions as compared with the foreground

and background regions. While it is true that we cannot compute a meaningful

disparity value for the half-occlusion regions, we can see that the visible half of the

half-occluded region generally looks similar to the background region rather than to

the foreground region. This is because it is the background that is being occluded

and hence not visible in the other image. In the pseudoscopic display this effect is

reversed and the visible part of the half-occluded regions appears similar to that of

the nearer object (the one with higher disparity). This is the case no matter whether

we have the situation of a foreground occluding object or that of a hole. Thus, this

method of pseudoscopy detection will work in situations where we have an equal

preponderance of occluding objects and holes. The computational complexity of

texture similarity that is needed for the half-occlusion texture comparison method is

generally much greater than that of the left-right half occlusion difference method.

When real-time operation is required our method would be more useful over the

texture matching method.

Our method of detecting pseudoscopy is similar to Akimov et al. in terms

of using half occlusions. However, we utilize a centroid based approach, which is

computationally simpler, instead of computing edge maps and weighted distance.

The first step of our method begins with the computation of disparity estimates.

Following this we compute the left and right half occlusion regions of the image

pair. The computation is performed following the same process as in Section4.2.

Disparity estimation itself is a difficult problem to solve accurately and this dataset

contains a lot of videos with regions of low textures which make the process even more
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difficult. The poor estimation of disparity would carry over to the estimates of half

occlusion which would worsen our ability to detect pseudoscopy. Therefore, we use

the method discussed in Section 3.2.3 to identify regions with low texture and mask

out those regions. This helps us to remove areas of poor disparity estimation from

our consideration. Low textured regions are usually part of continuous surfaces or

areas without depth discontinuities. Therefore, this masking process helps eliminate

many false half occlusion detections as well. We used 52 videos over 5 different

datasets [11, 13, 16, 20, 55] to test our methodology. Figure 4–9 shows the effect of

masking out half occlusions to retain more reliable estimates from a single pair in

our test set.

(a) Left image (b) Right image

(c) Half occlusion (Original) (d) Half occlusion (Filtered)

Figure 4–9: A single frame of a stereo pair and the effect of filtering half occlusion
estimates using a blur mask. In (c) and (d) the black pixels are the left half occlusions
and the white pixels are the right half occlusions.
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The results of masked half occlusions are then used to form a histogram of the

horizontal coordinates of the pixels marked as half occlusions. Using the histograms

we can compute the centroids of the left and right half occlusions for each stereo

pair. As mentioned before, if the difference of the left and right centroids is negative

then the image pair is classified as stereo. For a positive difference the pair would be

classified as pseudo. Figure 4–10 shows an example of such a histogram. The his-

togram was computed from a stereo image pair and we can see that the difference of

the centroids would be negative indicating that the pair is presented stereoscopically.

Figure 4–10: Histogram of half occlusion locations on the horizontal axis

The centroids are quite well separated in the histogram making the decision

more obvious. However, in some cases, especially when the number of holes and

foreground objects are similar the difference of the centroids would be smaller. The

Recall/Precision curve in Figure 4–11 shows the effect of a threshold on the centroid

differences on the performance of pseudoscopy detection.

It is important to note that even with the use of masking for half occlusions, the

quality of initial disparity estimates still carry over to the half occlusion estimates.
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Figure 4–11: Recall vs. Precision of the pseudoscopy detection using the centroid
method as a function of the centroid difference. The curve shown is computed over
all the frames from each of the 52 videos.

Issues such as illumination changes, lack of texture, high frequency noises are present

on certain videos within the dataset. For such videos, detection of pseudoscopy is

poor for all frames over the video sequence. This accounts for the low precision

range of 58%-61% seen in the curve. If we ignore some of the extreme cases of poor

half occlusion detections our precision range improves significantly to 74%-81% as

seen in Figure 4–12 and a smaller threshold is sufficient to make the decision. The

videos with poor half occlusions were determined through qualitative assessment as

well as looking at looking at precision-recall values that were lower than 5%. For

some of these extreme cases, both precision and recall were 0% throughout the video.

Approximately 10 videos out of 52 were considered to have very poor estimates of

half occlusion.
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Figure 4–12: Recall vs. Precision after eliminating videos with a smaller video set.
The curve shown is computed over all the frames from 42 different videos.

4.4.2 Detecting Depth Cue Conflict using Half Occlusions

Current movies generally contain significant amounts of Computer Generated

Imagery (CGI). Introducing CGI requires careful work as the addition of new items

into a scene will cause interactions with other items such as shadows and occlusion.

Doing this for stereo content is even more challenging as these influences have to

be correctly replicated in both views. Compositing can leave the content prone to

the introduction of conflicting depth cues especially conflicts between occlusion and

stereo cues. Figure 4–13 (a) shows a scene with a character in front of a background.

Through compositing we wish to introduce another character which would be behind

this original character but in front of the background. The composited image is scene

in Figure 4–13 (b). The original character in the scene occludes the new one which

in turn occludes the background. The composite image in Figure 4–13 (b) does not

have any conflicts between occlusion and stereo cues at that point. However, if the
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character from behind were to move up in the depth plane as part of the movie

sequence while the character in front stayed at the same depth location it could

create problems. The same problem could occur when inserting the new character

with only the monoscopic occlusion cue in mind and not taking care of the stereo

cue. Figure 4–14 shows a case of wrong insertion or character moving in front with

the occlusion cue not adjusted to match that of the stereo cue. Based on the stereo

disparity the object being occluded should appear in front of the character that is

occluding it. This will create a occlusion-stereopsis conflict that ruins the depth

perception and creates fatigue or discomfort.

(a) Original scene

(b) Scene with compositing

Figure 4–13: An example of stereo compositing without conflicts in stereo and oc-
clusion cues.
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Figure 4–14: Occlusion-Stereopsis conflict introduced in compositing

Half occlusions can provide useful information to detect these situations. Half

occlusions themselves define object boundaries and hence exploring near those regions

can identify conflicts. We compute the half occlusions in the original scene before

doing any compositing. After inserting the new object, the disparity of the new scene

is estimated. Following this we look in the regions of half occlusions from the original

scene and check if there are updates to the depth estimates in those regions. If there

are updates in those regions caused by the insertion we can compare its depth to

that of the character in the original scene. This can help identify potential conflicts

in depth cue. Figure 4–15 shows the analysis of this hypothesis on the left view of

the images from Figures 4–13 and 4–14. Figure 4–15 (d) and 4–15 (f) represents

the half occlusion regions fused on top of the depth map of the composite image.

The pink regions highlight the half occlusions. Half occlusions regions are meant to

be at a greater depth than the objects whose boundary they form. However, if we

look at the pink regions in the image, we can see in Figure 4–15 (d) the depth being

greater. Thus there is no conflict between the occlusion and the stereo cue. But

the same cannot be said for the pink regions in 4–15 (f) where the depth in the half
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occlusion regions is closer than the occluding character. A conflict is created between

the occlusion and the depth cue for this particular image. From these images we can

see that half occlusions can be a useful tool for locating such possible conflicts.
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(a) Disparity of scene from Figure 4–13(a) (b) Half occlusion of scene from Figure 4–
13(a)

(c) Disparity of scene from Figure 4–13(b) (d) Half occlusions overlayed on disparity of
composite image

(e) Disparity of scene from Figure 4–14 (f) Half occlusions overlayed on disparity of
composite image

Figure 4–15: Half occlusions to indicate possible conflict in depth cues (Only the left
view of the images are shown here)
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CHAPTER 5
Conclusion

This thesis is focused on applying the knowledge from the field of computer

vision to the production of good quality stereo movies. Stereo movies have made a

recent comeback to the spotlight and although quite a few good movies have been

released, there have also been ones that were not always up to the mark. Our

motivation extends towards utilizing the computer vision techniques to automate

some of the analysis of these stereo content. Additionally, we expect the techniques

for analysis will also reveal important guidelines for producing better quality stereo

movies. Therefore in the early part of the thesis we focused on the area of stereo

vision which is most relevant for analysing stereo content. Along with the exploration

of stereo vision, we also touch on the existing knowledge on stereo cinematography.

This allowed us to identify common problems and ones which can be addressed using

computer vision.

Our first contribution in the thesis is developing a method for detecting stereo

window violation, which is one of the most common problems in stereo movies. It

is caused by objects that appear in front of the screen and cross the borders of

the screen. Most approaches attempt to correct stereo window violation at post

production by utilizing techniques such as floating windows. Using such a method

involves cropping which may not be favourable at all times for aesthetic reasons.

Alternative to cropping would be shooting the scene again to accommodate necessary
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objects or characters within proper boundaries. However, conflicts in schedules may

prevent re-shooting a scene while the film is in post production and undergoing

corrective measures. Moreover, current methodology requires input from trained

and expert stereographers to identify such problems. This process itself may also

be slow, expensive, and such experts are low in availability. Therefore we propose

a method that automates the detection of stereo window violation. The proposed

methodology is based on computer vision techniques as it begins by estimating the

depth in a scene using binocular disparity. Areas of focus are also computed to

determine regions of interest for viewers. The mean shift clustering technique is used

to combine the previous computations to obtain segmentation of objects to track.

By tracking objects that are in front of the viewing screen, we can automate the

alert for stereo window violations. Although the contribution is aimed at 3D movies

as its target application, the methodology can also be applied to other applications

that require depth based segmentation or tracking. The results obtained showed very

high reliability in detecting violations even with multiple objects being tracked.

Ideally we would like our solution for detecting stereo window violations to be

available as a tool on the set of 3D movie shootings. For this purpose, our process

must produce real-time performance in terms of its speed. Processing pairs of high

definition frames and obtaining disparity estimates of sufficient quality is computa-

tionally expensive. The clustering and focus detection further adds to the complexity

of the computation. The high complexity presents itself as a challenge against achiev-

ing real-time performance. This is one area of focus for future work. Some complexity

can be reduced by down-sampling the input frames. Down-sampling would sacrifice
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the resolution of the disparity estimation but the reduction in the size of the stereo

pairs will greatly reduce computational burden. For this particular application, too

great of a resolution is not required. Objects that are very close to the screen (with

disparities of 1 or 2 pixels) would not cause huge depth jumps in the presence of

stereo window violation. The break in depth perception would not be as significant

as something which is much further inside the theatre space. Therefore, trading

off a slight amount of disparity resolution to obtain greater speed would be useful.

Additionally, the down-sampling process can help reduce some high-frequency noise

in the images and lead to better disparity estimates. A further boost in speed can

be achieved by utilizing a GPU based implementation on platforms such as CUDA.

Some of our early attempts have shown great potential for speed up using such an

approach.

Another major hindrance to good quality stereo content is the occurrence of

conflicting depth cues. Stereo content can be created in a variety of ways all of

which try to mimic our visual system and attempt to create a perception of depth.

However, this depth perception is merely an illusion attempting to emulate the vi-

sual system as much as possible. With the focus mainly on stereo cues during the

creation of 3D movies, some content may conflict with other cues such as occlusion,

saturation, shadows, etc. Such problems are more likely to happen when 3D movies

are created using 2D-to-3D conversion techniques or when compositing is required

in 3D movies. The thesis also considered the presence of half occlusions which are

present in all stereo content. We explore its role as a deterrent to obtaining more

accurate disparity estimation. We also examined its usefulness in determining object
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boundaries. Knowing object boundaries can help improve the disparity estimates as

well as provide useful information for analysing other issues with stereo content. The

half occlusion regions are identified using an iterative approach that estimates the

disparity first and then the half occlusions. The estimates of half occlusion are then

used to constrain the cost function used to compute the disparity. This constrained

cost function yields , better results for disparity, which in turn is used to obtain bet-

ter estimates for half occlusions. We proposed that half occlusions may be a useful

feature for identifying occlusion and stereo cue conflict when performing compositing

in stereo. We analysed this by creating test data to replicate such problems and ini-

tial testing indicates half occlusion may be useful for analysing the quality of stereo

content. Knowing the half occlusions allowed us to identify if there was a conflict

and also identify which regions to look into. There is room to explore this further, to

understand if half occlusions can be leveraged to identify other problems or narrow

the regions of interest to search for defects.

Pseudoscopy is another big defect in 3D movies that is not always easy to spot

especially for those without much experience. However, it still causes strain to our

eyes and visual system. Pseudoscopy is the presentation of stereo content where

the left and right image pairs get swapped when being presented to the viewer’s

eyes. This causes the depth perception to be altered in a way that is not natural,

introducing various conflicting cues as well. In our study we observed that half

occlusions were a great feature in identifying this problem as well. For stereo content

half occlusions maintain an ordering that is broken when the image pair is swapped.
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We presented an approach that utilizes this property to identify whether a video is

being presented pseudoscopically or stereoscopically.

Within this thesis we have seen how useful half occlusions can be. Half oc-

clusion regions have been used to identify possible regions of conflicting depth cues

as well as determine whether a video is being shown pseudoscopically. However,

what we also encountered how difficult it is to obtain accurate half occlusion esti-

mations. The poor half occlusion estimates have a significant effect on our results

for finding pseudoscopy. Therefore, this is an issue that must be addressed in future

work. The difficulty in obtaining good half occlusion estimates originates from the

disambiguities in the matching process of disparity estimation. One issue that has

repeatedly come up in this thesis is the lack of texture in images and videos. Low

textures make it very difficult for most disparity estimation algorithms to perform

reliable matching. Future work is needed to address this issue in stereo matching.

The measure of texture should be included in the stereo matching process as a sort

of weighting. This weighting can be used to influence whether the focus should be

more on matching pixels across different views to estimate the disparity or instead

utilize the disparity estimates of neighbouring pixels with good texture.

This thesis has focused on some of the issues related to stereo content creation

for cinemas. Our aim was to provide the tools to detect such issues and generate

knowledge that would allow for the creation of high quality stereo content. Doing

so is vital to increasing the acceptance and the prevalence of 3D movies in cinemas.

However, there are a variety of other problems related to stereo content creation that

have not been addressed in this work. Some of which are known but lack proper tools

90



for automated detection. Future work in this area can focus on developing tools for

identifying if the content contains excessive depth budget. The depth budget refers

to the difference between maximum and minimum disparity in a scene defined by the

furthest and closest object to the viewer. Too much depth either in front of the screen

or behind the screen makes viewing uncomfortable. A big separation of objects in

the depth plane due to high depth budget would make viewing uncomfortable. This

is due to the big depth jump created as the viewer shift their attention between the

objects. It is also important to avoid having big depth changes when there are scene

transitions in a movie. Developing tools to detect and control these parameters

would help the creation of good 3D movies. Future effort should also focus on

ensuring each of these tools perform as close to real-time operation as possible. Real-

time operations would enable the use of such tools on set. It would also encourage

more cinematographers to make 3D movies especially those who were previously

comfortable with and stuck to making 2D movies.
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[52] R. Trapp, S. Drüe, and G. Hartmann. Stereo matching with implicit detection
of occlusions. In Computer Vision-ECCV98, pages 17–33. Springer, 1998.

[53] T. Troscianko, R. Montagnon, J. Le Clerc, E. Malbert, and P. Chanteau. The
role of colour as a monocular depth cue. Vision Research, 31(11):1923–1929,
1991.

96



[54] E. Trucco and A. Verri. Introductory techniques for 3-D computer vision, volume
201. Prentice Hall Englewood Cliffs, 1998.

[55] M. Urvoy, M. Barkowsky, R. Cousseau, Y. Koudota, V. Ricorde, P. Le Callet,
J. Gutierrez, and N. Garcia. Nama3ds1-cospad1: Subjective video quality as-
sessment database on coding conditions introducing freely available high quality
3d stereoscopic sequences. In Quality of Multimedia Experience (QoMEX), 2012
Fourth International Workshop on, pages 109–114, July 2012.

[56] B. A. Wandell. Foundations of vision, volume 8. Sinauer Associates Sunderland,
MA, 1995.

[57] O. Wang, M. Lang, M. Frei, A. Hornung, A. Smolic, and M. Gross. Stereobrush:
Interactive 2d to 3d conversion using discontinuous warps. In Proceedings of
the Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling,
SBIM ’11, pages 47–54, New York, NY, USA, 2011. ACM.

[58] J. Weng, N. Ahuja, and T. S. Huang. Two-view matching. In ICCV, volume 88,
pages 64–73, 1988.

[59] A. J. Woods, T. Docherty, and R. Koch. Image distortions in stereoscopic
video systems. In IS&T/SPIE’s Symposium on Electronic Imaging: Science
and Technology, pages 36–48. International Society for Optics and Photonics,
1993.

[60] A. L. Yuille and T. Poggio. A generalized ordering constraint for stereo corre-
spondence. Technical report, Massachusetts Institute of Technology, 1984.

[61] L. Zhang, C. Vazquez, and S. Knorr. 3d-tv content creation: Automatic 2d-to-
3d video conversion. Broadcasting, IEEE Transactions on, 57(2):372–383, June
2011.

[62] Y. Zhang, R. Hartley, J. Mashford, and S. Burn. Superpixels, occlusion and
stereo. In Digital Image Computing Techniques and Applications (DICTA),
2011 International Conference on, pages 84–91, Dec 2011.

97


