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SUMMARY 

To develop an accurate and time-saving numerical scheme for 
, 

imploding shock waves, the methods of characteristics, both of stan-

dard scheme and Hartree's scheme, and the method of finite difference 

are applied for the energy-driven shock Modele The starting conditions 

for numerical calculations are determined from exact analytical third-

ordei.' solutions. 

The results clearly show that Hartree's scheme is very accurate, 

and the analytical solutions are excellent for determining the starting 

conditions. 

Close study of the local energy distribution, singularity, simi-

larity, limiting characteristic and geometrical effects clearly 

exhibits the emergence of the self-·amplifying mechanism, the property 

of "forgetfulness" and the existence of the self-similar solution. 
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ABSTRACT 

It is the aim of the present work first, to develop a numerical 

scheme which is both accurate and time-saving in achieving an exact 

solution for imploding shock waves and second, to investigate the 

peculiar property of "forgetfulness" exhibited by collaps lng shock 

waves, a property which leads to self-propagation of such waves. This 

self-propagating mechanism for converging shock waves fs apparent in 

the existence of the limiting self-similar solution which is indepen­

dent of initial conditions. 

The theoretical model chosen in this work is that of a collapsing 

shock wave generated instantaneously by an impulsive release of energy 

at some finite initial radius. The governing equations of motion 

together with the appropriate boundary conditions are then integrated 

numerically using the method of characteristics both in the conven­

tional manner and with Rartree's constant time line scheme. A set of 

exact numerical solutions is thereby achieved for the entire range of 

collapse of such a shock wave. 

Through recent work on analytical description for the initial 

phases of collapse on the same model, Bach and Lee (1967) provided an 

excellent method for determining the starting conditions for numerical 

calculations. The third order solutions were found to be extremely 

good for the early stage of strong initiation. Rence, the initial 

starting data on the first time line, which usually is one of the 
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difficulties to carry on numerical calculation with this model, were 

calculated in the present work from this third order solution. In 

this manner tremendous time-saving of the order of several minutes of 

computation time could be achieved for the whole range of collapse. 

The results of the present work clearly show the very early deve­

lopment of the limiting characteristic, singularities, very narrow 

positive pressure gradient at the shock wave and surprisingly rapid 

correction of the error which imposed by the third order solution on 

the first time line in the weak initiation. The narrow positive pres­

sure gradients at the shock wave suggest Hartree's scheme is more 

accurate and applicable in this case than the standard scheme. The 

rapid correction of the error of initial data indicates rapid '~orget­

fulness" in this early s·tage and so the third order solution provides 

excellent initial data even for weak initiation. 

Close study of the local energy distributions and of the energy 

gradients on the shock front, singularity line and limiting character­

istic line clearly exhibit the emergence of the self-amplifying 

mechanism and the property of "forgetfulness" of initial conditions 

for converging shock waves. The solutions, in fact, recover the power 

law exponent for the shock trajectory as obtained in Guderley's 

limiting similarity solution. 



- 3 -

ACKNOWLEDGEMENTS 

The Author would like to express his gratitude to Professors G. G. 

Bach and J. H. S. Lee for suggesting the problem and for the guidance 

and encouragement generously given throughout the course of the work. 

The Author also wishes to thank Professor J. H. T. Wu for his 

continuous encouragement and support. 

Special thanks are due to Dr. R. Knystautas for proofreading the 

paper and to Miss N. E. Boyce for typing the manuscript. 

The support of the National Research Council of Canada under 

Grant No. A-llB of the work is gratefully acknowledged. 



- 4 -

CHAPTER! 

INTRODUCTION 

1.1 Historical Statement of Previous Work 

For a description of the motion of a converging cylindrical or 

spherical shock wave one may divide its whole range of collapse into 

three different regimes; namely, the ear1y stage where approximate 

analytica1 solutions or sometimes planar strong blast wave solutions 

are applicable, the late stage in the vicinity of the center of conver­

gence where a similarity solution exists and the intermediate stage of 

moderate shock strength. 

It is well-known that a converging symmetrical shock wave in a 

compressible fluid becomes extremely strong as it converges towards 

the center and in theory can resu1t in infinite pressure and tempera­

ture at the center. For this 1ate stage, mainly due to the are a dimin­

ishing effect, the shock becomes so strong that the counterpressure 

effect can be neglected and the so-called similarity solutions exist. 

The first results for this late stage were given by Guderley 

(1942), Butler (1954) and Stanyukovich (1955), and the nature of the 

motion has already been extensively investigated. Through other prob­

lems having great similarity to that of converging shocks, for example, 

cavitation in water, climbing a bore on a beach, the existence of simi­

larity solution has been discussed. 
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The simi1arity solution, however, cannot be app1ied for interme­

diate regions where the shock has moderate strength and characteristic 

1ength. Many non-simi1ar techniques were deve10ped and app1ied to 

solve for this region. Lee (1966) app1ied Oshima's quasi-simi1arity 

method, Sakurai's perturbation method and Porze1-Zaker's power 1aw 

density method as in explosion prob1ems, and Welsh (1966) perturbed 

the simi1arity solution obtaining first order corrections in inverse 

shock ve10city squared. Both succeeded in accounting for non-simi1ar 

effects due to finite shock strength, but the va1idity of their solu­

tions is still very confined to the center of convergence. 

Neg1ecting a11 the other effects but considering on1y area dimin­

ishing effect, Chester (1954)--Chisne11 (1955)--Whitham (1958) exten-. 

ded the solution to account for non-simi1ar effects without using the 

simi1arity solution and got fair1y good resu1ts for the shock front 

properties. A1though these approximate solutions determine the simi-

1arity exponent for the shock trajectory quite we11, they cannot 

yie1d any estimate of f1uid properties. 

For the ear1y stage, however, severa1 approximate ana1ytica1 

solutions can be readi1y app1ied. In particu1ar, Bach and Lee (1967) 

provided an accurate and complete description for the ear1y stage of 

co11apse. For strong initiation, the shock was shown to be simi1ar 

to a strong p1anar b1ast wave. For finite energy initiation, the 

perturbation solution is an asymptotic series and diverges very rapid1y. 

Thus the range of va1idity is extreme1y 1imited again and the existence 

of the asymptotic nature of the solution can be observed qua1itative1y • 
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Therefore, in general, similar or non-similar analytical solu­

tions can describe the motion in part for extremely limited regions 

but can hardly give the solution for the whole range of collapse under 

arbitrary initial conditions. For a complete description of imploding 

shock waves, one has to resort to a numerical scheme exploiting the 

advantages of high speed electronic digital computers. 

Payne (1957) was the first to attempt a numerical solution for 

cylindrical imploding shocks based on the diaphragm rnodel of initia­

tions using Laxis original finite difference method. His solution 

gives general features which resemble those of Guderley solutions but 

greatly underestirnates the shock properties and the thermodynamic 

states of the flow field. 

Laxis finite difference scheme introduccs an artificial viscosity 

effect which tends to smooth out the shock discontinuity over several 

mesh points. It seems reasonable to state that the method cannot give 

suitable accuracy especially at the shock front, nor can it detect the 

extremely narrow pressure peak irnmediately behind the shock in the 

implosion problem. Moreover, the scheme is extremely time consuming, 

taking typically 16 hours for a calculation. 

It seems that, up to the present, no complete numerical descrip­

tion has been given for tbis problem. Thus it is one of the fundamen­

tal motivations of this paper to develop a suitable numerical scherne 

which will cover the whole range of collapse with suitable accuracy 

and reasonable computer times. 

On the other hand, the self-amplifying nature of imploding shock 



• 

• 

- 7 -

waves was first observed experimentally by Kantrowitz (1953). Zeldo-

vich and Rayzer (1965) have indicated that the form of limiting solu-

tion does not depend on the initial conditions nor on the initial shock 

generating mechanism, and there always occurs forgetfulness of initial 

conditions. It was also suggested that the limiting solution does not 

forget completely about the initial conditions, but selects the memory 

through A and keeps a constant value of N irrespective of initial con­

N ditions in the power law shock trajectory R = A(t - t) • 
s c 

In many other problems of analogous nature to that of imploding shock 

motion, forgetfulness was also observed. For example, Meyer and Ho (1962), 

Keller, Levine and Whitham (1960) observed this effect in the problem of 

the climb of a bore onto a sloping beach, and Hunter (1960, 1963), Akinsete 

(1968) in the problem of collapse of spherical bubbles in water. 

Then to what extent does a limiting solution forget the initial 

conditions, where and how does the self-amplifying mechanism start and 

finally emerge into a limiting self-similar solution? What is the 

overall picture of the imploding shock motion? An attempt to answer 

these questions constitutes another motivation of this paper. 

1.2 ~ Motivation 2f selecting ~ Numerical Schemes 

Among the three numerical methods of solving the set of non-linear 

partial differential equations widely used in this field, namely, the 

method of finite differences, the method of characteristics and the 

method of integral relations, the first two of them were considered for 

this problem • 
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Selecting the scheme, in addition to easy control and time-saving, 

stability and starting data, particular attention was placed on the 

possibility of clear definition of the shock discontinuity due to the 

importance of determining the correct shock trajectory in the implosion 

problem. 

As it is possible to impose exact shock relationships on the shock 

discontinuity in the finite difference method, if we use non-dimension­

alized basic equations by specially defined variables as in Bach and 

Lee (1967), one may set up a suitable finite difference scheme which 

needs no artificial viscosity terme A set of calculations was carried 

out by applying a semi-implicit scheme with second order accuracy. 

However, the attempt was not successful due to the insensitivity of the 

energy Integral, through which we can determine the shock decay coeffi­

cient e (defined as Eq. 2.18) on each successive time step. 

To avoid this difficulty of determining e, one can drop out the 

parameter e from the basic equations using original variables. Then 

it leads to introducing the artificial viscosity term in the method of 

finite differences which naturally results in a lack of accuracy. At 

the same time, it cannot give an exact treatment of the centered rare­

faction wave nor of the contact surface in the propagation of converg­

ing shock waves generated by other means, such as the diaphragm which 

is seen in payne's (1957) paper. 

Meanwhile, the method of characteristics can assure the clear 

definition of the shock wave and is suitable to treat rarefaction waves 

and contact surfaces. It admits of considerable mathematical rigor 
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(uniqueness and convergence have been proved). Both numerica1 techni-

ques using the method of characteristics with standard or constant time 

1ine schemes, were recent1y proven to be superior to the finite differ-

ence method with the artificia1 viscosity term by Chou (1965, 1966, 

1967, 1968) in explosion prob1ems. It was a1so shown that both schemes 

give the same order of accuracy and are very accurate provided the 

region with extreme1y high speed of sound is exc1uded. Thus, it is 

quite natura1 to expect that both of two methods will yie1d accurate 

resu1ts when app1ied to the implosion prob1ems. 

From ca1cu1ations in this paper, however, it becomes apparent 

that the standard scheme of the method of characteristics considerab1y 

underestimates states at the shock front due to the difficu1ty of 

detecting the narrow positive pressure gradient in the implosion prob-

lem, which is quite the opposite to the situation in the explosion 

prob1em. 

1.3 ~ Out1ine of ~ Present Work 

The initial starting data on the first time 1ine are ca1cu1ated 

following the analytical method of Bach and Lee (1967). The governing 

equations are then integrated numerica11y first by Hartree's constant 

time 1ine scheme, second by the standard characteristic method on the 

mode1 of the impu1sive1y generated energy-driven shock. 

The f1uid properties on each time line inc1uding the shock trajec-

tories are determined by Hartree's scheme setting the back boundary on 

r/R = 0.72 (R IR). Pressure and sound speed are interpo1ated quad-o s 0 
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ratically throughout the region, but the particle velocity is inter­

polated linearly. 

To check the results on the shock front and to determine location 

of the limiting characteristic, the standard scherne is used without 

setting the back boundary but choosing the last limit on each step to 

lay within the domain of dependence of the solution already determined. 

Due to the complexity of two-dimensional interpolation in this scheme, 

the re-evaluation of the properties on each constant time line is 

omitted. 

As the exact third order solutions diverge very rapidly for weak 

initiation, attention was first placed on the range of validity of the 

. third order solution as the initial data. It was first believed that 

the starting distance from the chamber wall would have to be correspon­

dingly small. It was, however, subsequently found that the nurnerical 

results quickly converged to the same unique solution even though 

large starting distances, that is regions where the third order solution 

is not valid, were employed. 

The accuracy of both characteristic methods, i.e. standard and 

Hartree constant time line, were also investigated with respect to 

space and tirne mesh size. 

From the nurnerical solutions, shock trajectory, the limiting char­

acteristic, the limiting similarity line and two kinds of singularity 

lines were evaluated. Also pressure and density gradient variation on 

the shock front, local energy distributions and values of e on each 

shock radius were determined. Three important mathernatical points were 
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also determinedj namely, the point where the limiting characteristic 

develops, the point on the shock trajectory where the shock accelera­

tion becomes zero, and the point where the limiting characteristic, 

singularity line and the limiting similarity line join together to 

initiate a similarity zone. From those and energy considerations, the 

self-amplifying mechanisms and "forgetfulness" of initial conditions 

were investigated. 

By a "least squares fit" along the trajectory where the similarity 

solution is supposed to be satisfied, the index of the power law tra­

jectory and the factor A were determined fOL sevèral different initial 

conditions. 
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CHAPTER !l 

FORMULATION 

2.1 Model, Basic Equations ~ Boundary Conditions 

Among three basic shock generating mechanisms: namely, the energy-

driven fixed-wall model, the piston-driven shock model and the pressure-

driven diaphragm model, the first model of impulsively generated energy-

driven shock is considered neglecting the effects of any confining walls 

as weIl as effects of viscosity and heat transfer. 

Consider a spherical or cyl indri cal wall of radius R containing 
o 

perfect gas with constant specifie heat ratio , constant initial 

pressure Po and density po. Releasing energy E instantaneously at 
o 

the wall (time t = 0, radius r = R ), a strong shock is generated 
o 

which collapses towards the center of symmetry through the gas origi-

nally at rest, where E is the total released energy fer the spherical 
o 

case, per unit length for the cylindrical case. 

Since the energy is released instantaneously in a vanishingly thin 

cylindrical ring or spherical shell, the energy density at the first 

moment i~ always infinite so that a strong shock is generated irrespec-

tive of E • The weaker the initial energy, the faster the shock strength 
o 

dies out. 

The governing conservation equations for the motion of the shocked 

gas are: 
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= 0 

+ _'_~.- 0 f ra,.... 

= 0 

where j = 1 for cylindrical symmetry, 

j = 2 for spherica1 symmetry. 

The boundary conditions at the normal shock front are: 

or 
)(2l- (15-1). YM!)(J-I + ..2/M.1) 

~ .,. 1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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-r-+-.2.-,- ( , - I/M~) 

2. T - 1 
l"+/ 

dR 
where Rs = dt

S 
is shock ve1ocity, 

and 

Co' Po' Po are sound speed, density and pressure of the 

undisturbed medium, 

Cs' us' Ps' Ps are sound speed, partic1e velocity, density 

and pressure immediately behind the shock front, 

respectively, 

is the shock Mach number. 

(2.6) 

I? "7) \<G.o .1 

(2.8) 
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The on1y boundary condition on the wall is: 

u(R , t) = 0 for a11 t. o 

2.2 Initial Starting ~ 

For the pressure-driven diaphragm mode1 or the piston-driven 

shock wave mode1, one may carry out the numerica1 ca1cu1ations 

throughout the co11apse from the starting point singu1arity to the 

end of co11apse without resorting to the use of special starting 

data. This is due to the existence of the moving physica1 back boun-

dary, that is, the contact surfaces in the diaphragm mode1, piston 

trajectory in the piston-driven mode1, which assure proper magnitude 

. of density or sound speed to guarantee suitab1e stabi1ity for the 

ear1y stage before deve10ping the 1imiting characteristic. 

For the energy-driven shock mode1, however, it is difficu1t to 

determine accurate initial starting data by the characteristic method 

since near the fixed wall the density goes to zero, and thus the 

sound speed tends to infinity so that the numerica1 ca1cu1ations are 

uns table regard1ess of time mesh size. 

To avoid this difficu1ty, one may set an arbitrary back boundary 

neg1ecting the effect of f1uid properties near the wall. This kind 

of effect may be neg1ected if ca1cu1ation starts when the 1imiting 

characteristic deve10ps. It is quite c1ear that one cannot neg1ect 

the effect of f1uid properties near the wall at the ear1y stage since 

the magnitude of f1uid properties are a11 very large • 
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Thus in the present ca1cu1ation, ana1ytica1 third order solutions 

are used to determine initial data. 

To achieve ana1ytica1 third order solutions, the variables are 
; >, 

non-dimensiona1ized fo11owing Bach and Lee as: 

s = ( r - Ro) / (Rs - Ro ) (2.9) 

(2.10) 

(2.11) 

and the functions are defined as: 

(2.12) 

(2.13) 
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dX • s· 
where X = --- = R s dt s 

Then the basic governing equations (2.1) to (2.3) become: 

where 

e = x x lx 2 
s s s 

(2.14 ) 

(2.15) 

(2.16) 

(2.18) 
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and X , X denote first and second derivatives of x with respect to 
s s s 

time t. 

Non-dimensionalizing time tas: 

"Z. = t / t~ 
J (2.19) 

* where energy-reduced characteristic time t. which can be interpreted 
J 

as an order of magnitude of the total co11apsing time, defined as: 

... 
t. :::: 
,J 

where k. = 2n for j = 1 
J 

k. = 4n for j = 2 
J 

Then the shock wave ve10city and sound speed can be written, 

respective1y, as: 

.. a. 
t. /0 

..J "'0 

(2.20) 

(2.21) 

(2.22) 
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and the energy integra1 can be written as: 

where 

o 

l (Xs) = r ( "U! 1 
1 

Jof-' ) 
C~ ~ i..! - ( 1 + ;Xs ) 

J rCo-l) 
(2.23) 

(2.24) 

*2 The value of c j represents the inverse of the intensity of ini-

tial energy re1ease. The 1arger the initiation energy, the sma11er 

*2 c. becomes. 
J 

* *2 If E - tXJ , then t. - 0, thus c. - 0, the strong 
o J J 

shock is maintained throughout the co11apse. For examp1e, an initiation 

* -6 *2 of 10 joules energy gives a value of t 2 = 12.5 x 10 sec and c2 = 

0.0196 in a spherica1 chamber of radius 3 cm. containing air at 10 mm 

Hg of initial pressure. 

As the ear1y phases of co11apse /xsl« 1, one may seek the solu­

tion in the fo11owing power series: 

." .. 0 

(2.25) 
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(2.25) 

From the energy integral (2.23), one can see that x (?) should 
s 

satisfy: 

(2.26) 

and so can readily determine e as: 

(2.27) 

where the coefficients e(n) are given as: 

(1) e ~ F, / 2Fo , 

(1) 

e :. 
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(3) 1 ( . J _ ~ e ::: -:2 (F, /Fo ) - 3 F,F.l /Fa -+-

Substituting the perturbation expressions obtained from Equations 

(2.25) to (2.27) into the conservation equations (2.15) to (2.17), one 

can obtain nth order solution with boundary conditions at the shock 

5 = 1. (For the detai1ed derivation see Bach and Lee, 1967.) 

2.3 Characteristic Equations 

For the convenience of the numerica1 ca1cu1ation and to drop out 

the parameter e from the governing equations, space variable and func-

tions are redefined as: 

r' = r / Ra (2.28) 

(2.29) 

k; (~) (2.30) 

(2.31) 
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Lé ( r, ê) : U (r', t) 1:~.) = ::i::jn) cp (L x. ) (2.32) 

J 

t~ ( r', 1) = fC r., tVeo (~r::: XS2(() f (!) xs) (2.33) 
.J 

(2.34 ) 

Then the basic conservation equations can be written as: 

'ô e' iL 
+ + (2.35 ) 

l'ô r.l 

.1 

+ U' _'à_Lt._/ + -'-~ = 0 
-a r' ('() r' 

(2.36) 

- 0 (2.37 ) 



- 23 -

and normal shock relations become: 

= 

or 

where 

'lr + 1 

2 
't: ---

t+/ 

.2 
&+1 

• .2. / ::. Rs c ~ 
o 

_....::.T_-_'--:;,_) i: (1) 
oCr+ 1 ) M~ 

= 
• .a /.2 

X.,s Cl) C~ 
.J 

From the hyperbolic conservation equations we can obtain the 

following characteristic equations: 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 
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Physical Characteristic Equations 

d r' 
dl 

dr' 
cll 

dr' 
d7 

U,' + c: 

= u: - C' 

::. 

State Characteristic E~uations 

/ 

du.'::. - _C_ d..b' 
of" r 

. , , 
JtLv 

r" 

, J u.:c/ dU: CaF' + :. 

J f' 1'" 

, .1:.!. 
c ( l' ) ~r 

= C' 10' 0 

dl 

d'l 

+ C characteristic (2.43) 

C characteristic (2.44) 

particle pa th (2.45) 

along C+ (2.46) 

-along C (2.47) 

along CO (2.48) 

Equations (2.43) to (2.48) consist of the basic equations for the 
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further numerical calculations in the method of characteristics. 
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CHAPTER lli 

NUMERlCAL ANAL YS IS 

In the method of characteristics the six basic characteristic 

equations are put into finite difference forms, such as: 

+ a10ng positive characteristics C , 

" .6. u.. = 

~ r" = (ü.' + ë' ) A '1 

1 

1 
( C' /. ( /..(.' c' ) -_- ) ~.-b - J _ ~ ê 

l' r r' 

a10ng negative characteristics C , 

~ r' = ( Ü,' - ë' ) ~ l 

.::. ( 

a10ng partic1e paths co, 

, 
Llr 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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c' 
c' o 

= (3.6) 

where r', ~', p' and ~, represent arithmetic means betw,een two points 

along the particular characteristic line. 

For the energy-driven shock model the starting data on the first 

constant time line were calculated from the analytical third order 

solutions. It was found, using various starting points, that R IR = s 0 

.90 yielded satisfactory results for a great variety of energy release 

and was therefore used in all of the numerical calculations. 

The starting condition taken at R IR s 0 
= 0.8 was applied for strong 

initiation *2 0) in the standard scheme, and the results (c j = are com-

pared with that of the main starting condition (R IR = 0.9) in Fig. s 0 

Considering the close agreement between them, one can assume that the 

starting data taken at R IR = 0.9 will give agreeable results for 
s 0 

15. 

strong initiation. For the weak initiation, the perturbation solution 

is an asymptotic series on x and diverges rapidly. Hence two numeri­
s 

*2 cal calculations were first carried out for c. = 1 with the starting . J 

point at R IR = 0.9 and R IR = 0.97. Both results, as we see from sos 0 

Figs. 13 and 14, coincide surprisingly weIl in several time steps of 

numerical calculation in spite of such big errors which were initially 

imposed on the shock front by the third order solution taken at R IR 
s 0 

= 0.9. The foregoing converging process may be one of the surprising 

properties of imploding shock problems. Through the analysis one can 
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therefore expect fairly good results taking initial starting data at 

*2 R IR = 0.9, even for the weak initiation of c. = 1. 
s 0 J 

In Hartree's scheme, one of the merits is comparatively accurate 

and easy interpolation. The stability criterion of the method can be 

assured by the Courant condition (Courant and Friedrichs, 1948). 

< (3.7) 

This criterion gives maximum time mesh size which guarantees both 

feet of the characteristics drop in a zone of neighbouring mesh points 

(between points 1 and 2 in Fig. 3.1). The Ume mesh size A'l is 

evaluated for each new time line at the back boundary of the old time 

line. Near the wall, due to the large values of sound speed, it is 

difficult to evaluate the fluid properties under the above stability 

criterion. However, the particle velocity is zero at the wall; the 

pressure has zero gradient there; the evaluation of the variables near 

the wall is not too important. 

In addition, in the implosion problem, the limiting characteristic 

has already developed and is present in the initial data at R IR = 0.9. 
s 0 

This limiting characteristic rapidly approaches the shock front after 

several time steps of calculation and so the evaluation of the region 

close to the wall has no effect at a11 on the subsequent shock motion 

although it has a small effect in the region behind this characteristic 

line. Therefore, we can set arbitrary back boundary without losing any 

accuracy to carry on the whole calculation so long as the back boundary 
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is set outside the limiting characteristic. 

Thus the back boundary i8 introduced near the wall by the rela-

tions: 

r b = 0.72 (1 - R~) (3.8) 

It covers three-quarters of the whole range of shocked gas on each 

time line. It also gives fair1y good distance which closes enough to 

keep the advantage of using the boundary condition u' = 0 at the wall 

for later interpolation, since the correct boundary condition requires 

one of the three dependent variables be specified on the back boundary. 

The back boundary is located outside the limiting characteristic which 

assures the accuracy of numerical results for the dependent domain. 

Thus the main calculations are carried on from the shock front to the 

back boundary on each successive time line starting from R IR = 0.9 
s 0 

(Fig. 16). 
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3.1 Hartree's Constant ~ Line Scheme 

l 
l 

3 

Fig. 3.1 

In HartI'ee's scheme numerical ca1cu1ations are carried on a10ng 

o each partic1e path C on the successive constant time 1ine. Therefore, 

a11 the variables can be determined through one-dimensiona1 interpo1a-

tion. 

The numerical ca1cu1ation is carried out in such a way that; first, 

from each mesh point (say pt. 2 in Fig. 3.1) on the known old time 1ine 

bui1d a partic1e path and determine pt. 4 on the new time 1ine; second, 

+ -from pt. 4 bui1d both C and C characteristics back to the old time 

line and find points A and B on the old time 1ine; third, iterate til1 

a11 the variables and functions on the pts. 4, A and B satisfy the six 

basic characteristic equations and interpolation re1ationships. One 

a1ways has to estab1ish the same number of independent equations as the 

number of unknowns on those points. Thus the problem is ana10gous to 

solve n simu1taneous a1gebraic equations with n unknowns. 

In genera1, there are five different cases to carry on the ca1cu-
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lations for: 

i) the interior flow mesh points, 

ii) the points on the shock front, 

iii) the mesh points built immediately behind the shock by the 

new particle path which originated newly from the shock 

front on the old time line, 

iv) the points on the back boundary, and 

v) the mesh points just in front of the back boundary. 

For the interior flow mesh points (Fig. 3.1), one has to determine 

r~, u4, P4 and c4 which should satisfy the six basic characteristic 

equations (3.1) to (3.6). To solve the basic equations, we have to 

Since we are given all the variables on the mesh pts. l, 2 and 3, we 

can interpolate those variables from pts. l, 2 and 3. 

Particle velocities u~ and u~ are interpolated linearly, but 

pressures and sound speeds are interpolated quadratically in such a 

way that: 

2-

6- - $-2 = Q.. (r '- ,..~) + b (r" - r~ ) (3.9) 

where G represents u l pl and - 1 to be interpolated, , '" 
G2 

represents 1 pl and Cl which are known, u2, 
2 2 

a, b are constants which must be determined on each mesh 

point from the variables of the pts. 1, 2 and 3. 
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Thus we have twe1ve independent equations, i.e. six basic charac-

teristic equations and six interpolation formu1ae to solve twe1ve 

unknowns. 

Assuming trial values of the unknowns, first approximation can be 

carried out, and with repeated iterations we may find exact solutions. 

Iterations are repeated until the differences of u4, P4 and c4 from 

two successive values are below a desired limit. Throughout the ca1cu-

lation it was found that three iterations were sufficient to keep this 

difference less than .00005. 

4\'c-----

2 

(a) 

Fig. 3.2 

4~---

B 

(b) 

3 

For the points on a shûck front, one bas to determine RI, X ("'l), 
s s 

u4, P4 and c4. Two characteristic equations a10ng C- characteristic 

and four normal shock relations, i.e. (2.39), (2.40), (2.41) and 

.6 R~ = :(5 ('1) A '1 (3.9' ) 

can be used to solve the prob1em. 
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To evaluate mean value terms, we have to know four additional 

unknowns r~, u~, p~ and c~ of pt. B (Fig. 3.2). Now we have nine 

unknowns with nine equations including three more interpolation 

formulae. 

There are two possible cases (a) and (b) in Fig. 3.2. For the 

case (a) linear interpolations are adopted and for the case (b) quadra­

tic interpolations are used for aIl three functions u~, p~ and c~. 

5~~---------

2 3 

Fig. 3.3 

To keep approximately the same number of mesh points on each 

successive time line, new particle paths are set from the shock front 

on the old time line whenever the condition Iri - ril ~ jr; - ril is 

observed. As will be seen in Chapter IV, this procedure gives the 

most important merit for Hartree's scheme in the implosion problem. 

As the new particle path set a mesh point so close to the shock front 

on the new time line, this new mesh point may never fail to detect 

positive pressure gradients behind the shock, however narrow it is, 

without paying any additional machine time. For this new pt. 4, the 

calculations are the same as the one for the interior points except to 
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interpolate r~, u~, p~ and c~ from two shock front points 5 and 1 on 

the new and old time lines. Therefore, the calculation of this point 

must he carried on after the variables on pt. 5 are evaluated. In 

this case, we have additional unknown~A. 

To solve the problem for the points on the back boundary, one of 

the dependent variables, in addition to the locus of the boundary, 

must be defined beforehand. 

(a) (b) (c) 

Fig. 3.4 

3 

r~ can be evaluated exactly from Equation (3.8). u~ can be deter­

mined interpolating quadratically from pts. l, 2 for which variables 

are already evaluated and pt. 3 (Fig. 3.4, a) where u3 = 0 from boun­

dary conditions. 

Therefore, for the mesh points on the back boundary, we have only 

two main unknowns Pb and cb in addition to eight temporary unknowns rA' 

u~, p~, c~, r~, u~, P~ and c~ (Fig. 3.4a, b). On the other hand, as 

we have four basic characteristic equations along C+ o and C , and six 

interpolation formulae from the points l, 2 and 3, the problem can be 
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solved. 

3 3 

(a) (b) ~) 

Fig. 3.5 

When we evaluate variables for the mesh points just in front of 

the back boundary, we have three different cases. Case (a) corresponds 

to the usual interior flow mesh point and can be evaluated in the 

usual way. Case (c), where pt. 4 appears behind the back boundary, we 

just cancel the calculations. The canceled mesh point at this bacK 

boundary may be compensated at the shock front so that the scheme can 

keep approxirnately the same number of mesh points on successive time 

lines. Case (b), we have to interpolate r~, ~B' u~, p~ and c~ from the 

variables of pts. band 3 on the back boundary. Therefore, the calcula­

tion for this case should be proceeded after the variables of pt. b are 

evaluated. 
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3.2 Standard Characteristic Method 

Applying the standard scheme rnainly to check the accuracy of 

Hartree's results especially on the shock front and to deterrnine the 

limiting characteristic line, the nurnerical calculations are carried 

on from the shock front to the last characteristic, which was initiated 

on the wall at the initial starting time line. The total nurnber of 

mesh points, therefore, decreases one in every other time step (Fig. 

16). This saves considerable machine time without losing any accuracy 

of the shock wave properties, since the last characteristic is located 

behind the limiting characteristic. 

There are two different cases for the numerical calculation: for 

the interior flow mesh points and for the points on the shock front. 

3 

(b) 

Fig. 3.6 

+ In the standard scheme, we issue bath C and C characteristics 

fram pt. 1 and pt. 2 ta deterrnine pt. 3 (Fig. 3.6a) and then draw 

backwards a particle path fram pt. 3 ta determine pt. A. Therefare, 
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h t k t"", t' , , , d 't b we ave en un nowns, 3' r 3, u3' P3' c3 ' A' rA' uA' PA an cA 0 e 

determined. On the other hand, we have ten equations, i.e. six basic 

characteristic equations, (3.1) to (3.6), and four linear interpola-

tion formulae. 

For the points on the shock front, the evaluation is carried on 

in every other time step. We have six quantities t 3 , r 3, u3 , P3' c3 

and xs (?) to be determined, and exactly six equations can be used, 

namely, two characteristic equations (3.3) and (3.4), three normal 

shock relationships (2.39) to (2.41), and the definition of shock wave 
, 

velocity (3.9). 

In the standard scheme, all the new points are evaluated from the 

known points within the exact domain of dependence. In this sense, 

one may expect more accurate results in this scheme than Hartree's. 

However, due to the complexity of two-dimensional interpolation, only 

linear interpolation can be applicable, consuming much more time than 

that of Hartree's quadratic interpolations. Considering these merits 

and shortages in both schemes, one may expect the same order of accu-

racy, and Chou (1966, 1967) has shown the fact from his numerical cal-

culation in explosion problems. 

3.3 Similarity Conditions 

For similarity solutions to exist, in general, the following con-

ditions should be satisfied for the basic governing equations, boundary 

conditions, initial conditions and thermodynamic conditions. 

i) The basic partial differential equations can be reduced to 
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a set of ordinary differentia1 equations with respect to a 

simi1arity variable: 

~s = (3.10) 

It 1eads us to have the first condition, the so-cal1ed 

power 1aw trajectory. 

N 

Rs = A (tG - 1;) 

or A' (t~ - 1;') 
N , 

Rs ::: (3.11) 

H 

or 
, 

Rs = A'~ (7c - ~) 

where t' = t Ct) / Ro • 

From this we have the second condition • 

.. 
e = 

Rs Rs N-I = constant (3.12) ::: • 2 
Rs Rs N 

or 

.. 
,;..:t.s e = 

eRs = 1 -+- .:x:.s . ~~ :t:~ = constant 
Xs 

• .z. 'Xs X s ::ts 
(3.13) 
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where A; A' 1 Ali and N are constants and t , t' or ~ are 
ccc 

the total collapsing time. 

Guderleyand Butler evaluated this value, for 0 = 1.4, 

j =2, as: 

N = 0.717173 (3.14) 

e = - 0.394 (3.15 ) 

Since x = - 1 at the center, for e we have: 
s x s 

e - Q:) x , if x - - 1 s s (3.16 ) 

ii) The boundary conditions on the shock front give us the 

third condition: 

M -- 00 s 

iii) For the initial condition, the counterpressure effect 

(3.17) 

should be negligible and it leads to the condition (3.17) 

in implosion problems. 

iv) From the thermodynamic similarity condition, the equation 

of state should have the form: 

e = -t'F(r) (3.18) 



- 40 -

If we can assume the similarity variable as: 

~s = t' / R; = constant 

then Equation (3.18) is satisfied as: 

e = y-
l' 
f (3.19) 

For l = 1.4, j = 2, the limiting similarity variable was 

calculated as: 

e'* = ., 5 1.1 .. 
S 

(3.20) 

It leads to the fourth condition to have the similarity 

solution. 

3.4 Singularity Analysis 

With aIl the requirements for the similarity solution satisfied, 

the basic conservation equations cali be written in ordinary differential 

equations as: 

( cf:> - S5) eRS ljJ <P - 2 eRs] - j (c:p- S.s)~CP ~ hs 
(4) - ~s) [(CP- 5:;)2-- è1-J /~ ] 

(3.21) 
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- (cp - gs) eRs cp + 29BsJ/4' ..,. j lf j cp /f.s tp 
(ci> - Ss )~ - ~j/lf' 

f [- (cp- Ss) (2 eRs -t- J rc.p/~.s) + r SIlS cp J 
(q:, - 5.s )~ - T j/\}I 

(3.22) 

(3.23) 

By now, there is no difference between implosion and explosion. 

The above equations satisfy for both cases. Singularity occurs usually 

at singular points of the governing differential equations. From the 

above equations we have three kinds of singular points: 

(3.24) 

However, in implosion problems, we have: 

(3.25) 
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and 

Therefore, the only singularity in this case is: 

~ _ rt-. - )~f/~ 
~.s ...,.... = 

On the other hand, from the similarity condition, we have: 

Q R/ ::: cons tant· Rs' 5,s oS 

(3.26) 

(3.27) 

Differentiating Equation (3.27) with respect to ? and substituting 

singularity condition (3.26), we get: 

::. u..' - C' 

i.e. U-' - C' (3.28) 

This simply means that for the similarity solution to exist, the 

~~ . limiting similarity line ~s ::: 1.12 should coincide with a s1ngularity 

line, and the line should be a characteristic. We call this particular 

characteristic the limiting characteristic line. 
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Therefore, we have four conditions to deterrnine the similarity 

i) A similarity solution starts at time ~5 (Fig. 7) where 

the singularity line, the similarity line and the limiting 

characteristic line join together and merge into the 

center of collapse as a line hereafter. 

ii) From "Z 5 to 'Z c,eRS = - 0.394 (Eq. 3.15) should be satis­

fied. 

i11) 

iv) 

Strong shock condition should be held, i.e. M - ex> • 
S 

The shock trajectory should follow the power law (Eq. 3.11). 

To determine the similarity parameters N, A' or Ali and t'or"? , 
c c 

steepest des cent method is applied on the points along the shock tra-

jectory where the similarity solution is valid. 

To investigate the property of forgetfulness and the self-

amplifying mechanism, other singular points: 

= S.s = 

or 
u..' - C" = ::C.s (? ) 

(3.29) 

are considered. As the energy consideration May give physical inter-

pretation on the mechanism, the pressure and density gradients and 

kinetic thermal-pressure energy density distributions are evaluated 
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on each time step. The energy distributions on each particular line 

and energy peak are plotted and compared (Figs. 8 and 9). Local 

energy density may be written by: 

= 
j-

(f-I 
(3.30) 

where 

€T thermal-pressure energy 

6~ kinetic energy. 
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CHAPTER li 

RESULTS ~ DISCUSSION 

4.1 On the Numerical Schemes - - ===;.;;..;;;-. .;;.==.;;..;.. 

i) Starting Data 

For strong initiation (0 ~ 
-)(-2 

c .. :S 
J 

(l.i), the analytical third 

order solution provides sufficiently a.ccurate initial data at R IR 
s 0 

== 0.9 in magnitude and profile. Two sets of numerical results using 

initial data at R IR == 0.8 and R IR ~ 0.9 were plotted in Fig. 15. 
sos 0 

The figure shows almost perfect coincidence between them. 

The third order solution itself can explain the motion fairly 

well in the early stage for about (IOe third of the total range. The 

shock trajectory until R IR ;::: 0.-4, the sbock v~locity until R IR sos 0 

0.5 (Fig. 1), and the various proflles until Rs/Ro == 0.7 (Figs. 3, 4 

and 5) agree very closely witb numerical solutions. 
ito"" 

For weak initiation (1 ~. c. ... ')~ however, the perturbation solu­
.! 

tions diverge very rapidly, and the range of validity seems to be 

highly limited. The third o(-der sülution gives excessive va.lues as a 

whole at R IR == 0.9, the partiel .. , velocity and the density are nega­
s 0 

tive (cp == - 5.49, 'fI:= = 0.198 )( 104) on the shock front. EveIl at 

R IR == 0.97, densityat the .shod front has a large error (FIg .. 14). 
s 0 

High pressure and density peake beilind the shock were observed ,.te a 

very early stage. Profiles look like usual profile~ in tb~ sbrunk 
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space coordinate. 

Two sets of numerical results using initial data at R IR = 0.9 
s 0 

and 0.97 are plotted in Figs. 13 and 14. In spite of such a large 

difference in initial data, both results match surprisingly well only 

after several runs of numerical calculation. 

This rapid correction of the error of the initial data seems to 

be due to the rapid re-distribution of the local energy through proper 

treatment of the motion, which is characterized by the self-amplification 

and forgetfulness of the initial condition by the numerical procedure. 

* * Between Ro - Rl (Fig. 14), the motion. temporarily becomes a highly 

self-propagating due to the poorly evaluated local energy peak behind 

the shock front which is initially imposed by the perturbation solution 

* (at RI the energy gradient of the shock 'Decornes [t.er'Ü), At this moment, 

as the area effect (at the shock surface) :l . .s i'iLUl 8ma.1l comparing to 

the volume {between shod( and. the ·(..,;:;J.l) e.f.fet:t in th\?; '",eal motion (Fig. 

itself cannat treat the motion properly at the very earjy stage for 

provide fairly g00d initial 

calculations 0 Thus· one m&y note (chIs :f.,.'1(~t ,\i'" a. )p€culiar but convenient 

nature of the implosion pl"oblel11 in rn.mterieal calculations. 
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ii) ~~ 

To check the mesh size effect, three different mesh sizes were 

used on the first time line, 4 (r/R ) = 0.001 and 0.0002 for the stan­
o 

dard scheme, ~ (r/R ) = 0.001 and 0.0016 for Hartree's scheme,and the 
o 

*2 results were plotted for c. = 0 in Fig. 1. It took 90 minutes for a 
J 

calculation when mesh size ~ (r/R ) = 0.0002 was used and 10 minutes 
o 

for the other cases. 

The figure indicates, however, that each result within the same 

scheme coincides perfectly. Therefore, one may assure the accuracy by 

taking the mesh size A (r/R ) = 0.001. 
o 

Iii) Comparison 2t Numerical Schemes 

Quite contrary to the coincidence of the results between different 

mesh sizes in the same scheme, there are rather large discrepancies 

observed between the results of Hartree and standard schemes (Figs. l 

and 2). 

Though both results agree qualitatively, such as the infinite tra-

jectory slope at the center, the asymptotic nature of the profiles near 

the center, the shapes of the curves and complete coincidence at the 

early stage, quantitative discrepancy beginsto appear at R IR = 0.55 
s 0 

in shock property profiles (Fig. 2), at Rs/Ra = 0.65 in the shock velo­

city and at R IR = 0.25 in the shock trajectory (Fig. 1). As the s 0 

waves converge to the center, the differences increase except near the 

center. 

Throughout the cases, the standard scheme gives small magnitudes 
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of shock properties as compared with Hartree's predictions. AlI these 

underestimations in the standard scheme are directly connected with the 

self-amplifying mechanism of the implosion motion which may be explained 

by the early development of positive pressure and density gradients at 

the shock (Figs. 8 and 9). That is, the standard scheme has no way of 

detecting these positive gradients even with a finer mesh size of 0.0002 

when they are in a narrow zone (R IR = 0.25 - 0.05), and this leads to s 0 

underestimation. Near the center, however, the positive gradient zone 

becomes wider, and so the standard scheme can also account for this 

effect, so the discrepancy decreases again. 

While Hartree's scheme issues new particle paths at the shock 

front, it is usually close enough to the shock front on the next time 

line to detect the pressure gradients at the shock front however 

narrow. 

Then how can it be explained the fact that in spite of the early 

development of the positive pressure gradient (R IR = 0.65, Fig. 9), 
s 0 

the shock trajectories agree weIl up to R IR = 0.3? It is simply due s a 

to the fact that the pressure variable f does not change much at the 

shock front irrespective of the pressure gradient (Figs. 9 and 2). 

Therefore, it seems that Hartree's scheme is absolutely recommen-

dable and accurate for the numerical calculation in the implosion prob-

lem, apart from one-dimensionality, satisfactory treatment of a contact 

surface and rarefaction fan in other means of shock-generating models. 

Thus it may be noted as a further important point in the implosion 

problem that one should pay particular attention so as to detect the 
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narrow positive pressure and density gradients at the shock in the 

numerical calculation, whatever method is used. 

4.2 Numerical Solutions 

Ail the results presented here are based on ca1cu1ations ~sing 

Hartree's scheme, taking initial starting data at R IR = 0.9 and 
s 0 

first mesh size with .A (r/R ) = .001. 
o 

i) Shock Properties 

The early stage trajectories are quite analogous to the p1anar 

blast wave. The weaker the initial energy re1ease, the sooner the 

shock strength decrease. Approximately half the region with e = 0 at 

its center the shock trajectories are 1inear, and e = 0 occurs approxi-

mate1y at R IR = .53 irrespective of the initiation condition (Table 
s 0 

1). At the center of convergence the infinite slope can be observed. 

The weaker the initial energy, the larger the rate of changing 

shock ve10city (Figs. 11 and 12). Curvatures of all the shock property 

curves are larger if the initiation energy is small (Figs. 2, 10 and 1.2). 

lt seems that magnitudes are smalI, but rates of changing are al",ays 

larger if initiation energy is small 50 that they assure the asymptotic 

nature for the similarity solution sooner or later. 

ii) Profiles at Different Shock Radii 

The positive pressure gradient st the shock appears at R IR = 0.66 
S 0 

irrespective of initiation conditions and k~eps tt within a very narrow 
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zone. It increases very slowly until R IR = 0.25 and after that very 
s 0 

rapidly up to infinity in the similarity zone (Figs. 3, 8 and 9). 

On the singularity line, however, the magnitude of pressure 

steadily increases to the shock front value at R IR = 0.165 and then 
s 0 

follows the similarity law (Fig. 8). One may see that, in this period, 

the area convergence smoothes the pressure profile especially in the 

zone enclosed by the shock front and singularity line while keeping 

the positive pressure gradient zone immediately behind the shock almost 

constant and narrow so that the curvature of the shock trajectory 

remains nearly zero. 

The density peak appears rather late at R IR = 0.45 but steadily 
s 0 

increases from the beginning to the limiting value of 21.6 at the 

center of convergence irrespective of the initiation condition (Fig. 9). 

Contrary to the pressure peak, the density peak spreads into a 

wide zone from the beginning. It leads to rapid increase of the local 

kinetic energy in the zone enclosed by the shock front and the singula-

rit y line (Figs. 5 and 8). This is the reaSOll that even the third 

order solution can predict the density peak but not the pressure peak 

greater than that of the shock front comparatively early at R IR 
s 0 

0.6. 

There are no positive particle velocity gradients. There is, 

however, a distinction between the two zones where e is positive and 

negative. In the zone where e < 0 (i.e. decelerating shock regime, 

expanding nature of the initial motion dominates), the peak profile 

becornes gradually less ôteep and reaches a maximum at e = O. In the 
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zone where e ~ 0 (i.e. acce1erating ahock regime, where the self-

amp1ifying effect ia dominant), the profile becomes ste~per again. 

4.3 Self-Amplifying Mechanism, Initial Condition Forgetfulness 

~ ~-Similarity 

The essential difference between imp10ding and exploding snack 

waves may be represented by the early development of the limiting char-

acteristic. The self-amplifying mechanism, forgetfulness and self= 

similarity may be partially explained through snergy considerations. 

The limiting characteristic develops very early between R IR = s 1.) 

0.9 - 0.92 in most cases; the weaker the initiation energy, the earlier 

in radius, the later in physical tirr.:e. Once:tLt has developed, it 

approaches the singularity line very l'apidly and] finaUy coincides ",Hi:!. 

the limit:l.ng s imilarity Une st tbe point where dmilarity 19 attained, 

There are three main factors to be considered in forgetfulness, 

namely, the form of the initiation motion, the ilffitensity of the initi= 

ation energy and the gas substance which. bears the in.:lîd.al condition, 

At 7
1

, the limiting characteristic develops and forms witb the 

shock front the self-governing domain, Between ~ 0 - '71' the expandiKl,g 

motion dominates and the area convergencp. effect is so small tbat the 

motion can be approximated by planar strong blast waves (Fig, n, At 

the very moment when the shock wave is generated, the snack strength 

is infinite irrespective of the initiation energy, but the power source 

is limited by the initial condition and instantaneously loses most of 

the energy as the initiation energy ls being distributed over an 
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increasing mass of gas. It leads to forget the majorit.y part of the 

intensity of the initial condition. At the satne ttime, fi f:ixed percen­

tage of the initiation energy 1.s retained in a sUla].!. regio'J.1 1I1ear the 

shock whose surface area is shrinking with time. Th.is resultS'> in thre 

shock separating itself in a way f.rom the. main flow and forgetting as 

it were the actua1. details of inH::i.a.tion but only lrtlitaining m,emo1Cy as 

to its original magnitude. 

The time '? l' where limiting characte,ristic starts, !l18y be ~hlilrëJ.~­

terized as the line where th€~ a:t"ea ,effect starts to ll'lay an iml?Qrt~r&t 

roie. At this Ume a regiofi i5 formed 'wb:i.ch l :sÎle.l1 caU the se:U", 

governing domain, and frOID here on the deta.Ll.s .of the initial IcQY:ldi .... 

tions are becoming somewhat forgott1en, J'he rde{:re",lsing ait'E:<ffi eff~~t ImC~' 

causes increasing ene!l:'gy densfty near. the sb.ock INhi.cb l"cstrain2> (che 

dece1eration of the snack wave ~ whir.~b. ,..roula othe:r:"W1se dt1cay ag ~1: p18li';Iar 

blast wave. 

At the time 7: 2' the f:Lcst si.ngular point ü: 'ob!i~r'!ed 0 B·G::t"Ji~en 

'? l. - 't 2 one can note three distind: h~h~wiOQ:r.'s 0 F:f,J:'tH" the l:tmiting 

characteristic rapirlly appr()~t:nef' the shock fronr.and tco '" dl;.!fll.nite 

distance uear "Z ~-= 1
2 

and thel'eafte:c approach~s tbe sho(~k \1IC.>:I:Ü slowly. 

This has 'the effect of pro.jlld.n~ a sJ.milarity nature to the Hv\J' l~ehind 

the shock quite quickly. '~e<:nnd" the dist:ance betw'een the iimH,ing 

character1stic and the UmiCing sim:i.larity Une ( i~#o?t ~ ~~ ) ls 

a maximum at time ? 2" This d:tstancrè can be interpr,eted in a loose 

way as a barometer of similarity; it may aIse méan that the time ? 2 

separates the zone where the similarity formation starts in qualitatively, 
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and thus analytical approximation for the s'imilarity solution (of 

Guderley) would be expected to break down at this point. Third, the 

local energy distribution near the limiting characteristic has a mini­

mum (Fig. 8). 

At the Ume 'ê.3 the second kind of singu1arity first appears. At 

this point there develops the first physical characteristic which has 

a smal1er slope than that of the shock trajectory. One may see bow 

fast tbe region which :shares lessenergy enlarges (area "lcs2si, Fig. 

7) and bow the initiationenergy is most1y concentrated into the self­

governing zone nearthe shock. This leads to a formation of ca positive 

pressure gradient on the shock. near '? 3. 

At the time '7 ~J e ::: '0 J the shock wave begins to accelerate wbicb 

means the self,-amplifytngmechanism :Ls dominant. At this point the 

form of the inItial me,tloo is forgotr:en complete ly. It 1s mainly due 

to the accumulated pccss'U:I:'e ,energy just. behind the shoc:k. Forgetful­

ness of details of the initial conditions 15 also cornpleted and selected 

memory may be represenced by the ",hock properties, such as, pressure 

and Mach number at "4 (Figs, 10 and 12)" 

The increasing rate oft.he self-arnplifying mechanism may be meas­

ured by the energy gradient on the shock but not by shock strength 

1.tself. Therefore, however the selected memories are different by 

initial conditions, the energy gradients are almost the same irrespec­

tive of the initial condition. lt leads to the possibility of simila­

rit y motion later and forgetfulness in qualitative nature of the 

starting conditions. 
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Thus the coefficient Ali, total collapsing time ê will have 
c 

direct relationships with the shock intensities at ~4 and the simi­

larity index N will approach a constant irrespective of initiation 

energy sinee it relates to the energy gradient. The numerical results 

were shown in Table 1. 

After ?4' the first positive density gradient at the shock front 

is always observed. This positive gradient spreads into a wider zone 

of the self-governing domain as time goes on. The kinetic energy con-

tributes to self-amplification of the shock indi~ectly through rapid 

energy increase within the self-governing zone. One may see the con-

tinuous energy increase on the singularity line which is mainly due to 

this kinetic energy from 7 2 to 75 , 

At the time 7
5 

the similarity domain finally starts. Here the 

singularity line and the limiting characteristic line join with the 

limiting similarity line. From 72, both thermal and kinetic energies 

steadily increase on the limiting characteristic Une and at time ? 5 

the energy densities at the shock and limiting characteristics are 

equal (Fig. 7). 

Therefore, through energy Interpretations, the similarity region 

may be characterized as starting when the flow within the self-governing 

domain has sufficient energy to keep the self-amplifying mechanism in 

operation. 

4.4 Geometrical Effects 

One can analyze the purely geometric effects into three parts; 
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namely, area convergence effects on the shock surface which leads to 

increasing the energy or pressure density on the shock wave, volumetrie 

effect which leads to decreasing the mean energy density of the shocked 

gas in volume or mass and curvature effects. 

If we assume that the shock surface keeps constant total initiation 

energy E atevery moment, then the shock surface energy density 
o 

increases in the following manner: 

Es. o. = = 

where E total initiation energy 
0 

S initial surface at R = R 
0 s 0 

S = instant shock surface at R R s s 

(4.1) 

On the other hand, if we assume mean energy, density and pressure 

profiles in the shocked gas region, then the mean energy density will 

decrease in the following manner: 

where 

Eo / Ea E = 
~D. V Va 

v = 

= (4.2) 
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We calI this a volumetric effect. Then the effects of these volumetric 

energy densities per shock surface can be written as: 

E v. D • .5. 
(4.3) 

We calI this a volumetrie effect per ares. 

The variations of those three effects with respect to shock 

radius are plotted in Fig. 17. We can see how the volumetric effects 

are stronger than area convergence effects at the early stage. There-

fore, the shock initially decelerates very fast as the initiation 

energy is being distributed over an increasing mass of gas engulfed by 

the shock. 

The assumption of constant energy density st the shock may be 

*2 applied for the case of infinite initiation energy, i.e. c. = O. 
J 

Since the volumetric effect per area decelerates the shock wave, but 

the area effect accelerates it, the intersection of these two curves 

may give the point where shock acceleration is zero, i.e. e = O. From 

Fig. 17 we have R IR = 0.53 for this point, and the result coincides s 0 . 

surprisingly weIl with the numerical result (Table 1). 

Since pressure is area phenomena, both area effects and volumet-

ric effects per area can be applied for the pressure immediately behind 

the shock as weIl as the energy density at the shock front. Thus, 

another characteristic point where the area effect and the relative 

volumetric effect per area with respect to pressure are equal in magni-
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tudes ean be found. This point may give the location where the pres-

sure gradient at the shoek front beeomes zero. Graphieal estimation 

of Fig. 17 gives R IR = 0.665 for this point, and one may see close s 0 

agreement with the numerical reault (Fig. 9) where the positive pres-

sure gradient was first observed. 

From this simple analysis one may see how the motion of a eonver-

ging shock wave is strongly affected by purely geometrical effeets. 
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Fig. 14 Density, Pressure and particle Velo Profiles on the 

Shock Wave for Different Starting Time Lines 



N 
~ 

.~ 

00 _1 C) C) r · ~ , , , 
1 ~ · 1 

00 · 

~ · 
~ N . . 
C) C) 

~ · " 
~ ~ 

~ ~ 

C) 

t 
1 
1 U1 " ~ · 

~ 1 
*N 1 0 

~ 

~ · 

~ · 

L-____ ~L_ ______ ~ ______ ~ ______ ~ ______ ~ ______ _L ______ ~ ______ ~C) 

00 . ~ ~ U1 ~ ~ N . . . . . . 
Fig. 15 Shock Trajectory ~nd Wave Ve10city for Different 

Starting Time Lines (Standard Scheme) 

~ . 

0 
~ 

" ~ 
~ 



e 

c 
.10 

l'Zj .... 
()Q 

..... 
0\ 

(") 
I:T' 
III 
1'1 
III 
(') 
l''t 
/1) 
1'1 .... 
CIl :r .05 
(') SHOCK TRAJECTORY 
t"' .... 
::s 
/1) 
CIl 

0.0 

.82 .84 .86 .88 

LIMITING CHARACTERISTIC 

.90 

r/R 
o 

.92 

\ 

.94 

e 

. 

\ 

.96 .98 1.00 



tt 

l'Zj .... 
OQ 

..... 
-...J 

(j) 
fi) 

~ 
rt 
li .... 
(') 

III ..... 
t%j 
Hl 
Hl 
fi) 
(') 
rt 
rn 

13 

11 1_ 

Es.D. 

Ev.D. 

9 
Ev.D .S 

7 

5 

3 1 

11 
0 

1 1 J 
.1 .2 .3 

_________ Area Effeets, Es.D. 

~ Volumetrie Effeets, Ev.D. 

_. - Volumetrie Effeets Per Area, 

Ev.D.S. 

Il ~ "" / 
1-- t--j- t-~ 

.ll R IR .5 
s 0 

.6 .7 .8 .9 

e 

1.0 



e 

*2 c. 
J 

0.0 

0.005 

0.010 

A' 

00 

7.13818 

5.56004 

0.00 

t' 
c 

0.0496017 

0.0698226 

A" ?c 

1.06585 0.705375 

1.06780 0.701535 

1.06825 0.698226 

R IR = A'(t' - t,)N t' = tC IR 
soc ' 0 0 

R IR = A" ( ? - 'Z ) N soc 

* 

N 

0.717173 

0.717166 

0.716386 

M 2 
s 

00 

481.236 

443.516 

(R IR ) 
s 0 

The point where simi1arity solution starts. 

~l 

VARIATION OF N WITIl c ~2 FOR SPHERICAL SHOCK WAVES ( Cf = 1.4) . ----J--

e 

* (R IR ) s 0 

0.184968. 

0.174950 

0.083869 


