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SUMMARY

To develop an accurate and time-saving numerical scheme for
imploding shock waves, the methods of characterlstics, both of stan-
dard scheme and Hartree's scheme, and the method of finite difference
are applied for the energy-driven shock model. The starting conditions
for numerical calculations are determined from exact analytical third-
order solutions,

The results clearly show that Hartree's scheme is very accurate,
and the analytical solutions are excellent for determining the starting
conditions.

Close study of the local energy distribution, singularity, simi-
larity, limiting characteristic and geometrical effects clearly
exhibits the emergence of the self-amplifying mechanism, the property

of "forgetfulness" and the existence of the self-similar solution.
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ABSTRACT

It is the aim of the present work first, to develop a numerical
scheme which is both accurate and time-saving in achieving an exact
solution for imploding shock waves and second, to investigate the
peculiar property of '"forgetfulness' exhibited by ;ollapsing shock
waves, a property which leads to self-propagation of such waves. This
self-propagating mechanism for converging shock waves is apparent in
the existence of the limiting self-similar solution which is indepen-
dent of initial conditions.

The theoretical model chosen in this work is that of a collapsing
shock wave generated instantaneously by an impulsive release of energy
at some finite initial radius. The governing equations of motion
together with the appropriate boundary conditions are then integrated
numerically using the method of characteristics both in the conven-
tional manner and with Hartree's constant time line scheme. A set of
exact numerical solutions is thereby achieved for the entire range of
collapse of such a shock wave,

Through recent work on analytical description for the initial
phases of collapse on the same model, Bach and Lee (1967) provided an
excellent method for determining the starting conditions for numerical
calculations. The third order solutions were found to be extremely
good for the early stage of strong initiation. Hence, the initial

starting data on the first time line, which usually is one of the



difficulties to carry on numerical calculation with this model, were
calculated in the present work from this third order solution. 1In
this manner tremendous time-saving of the order of several minutes of
computation time could be achieved for the whole range of collapse.

The results of the present work clearly show the very early deve-
lopment of the limiting characteristic, singularities, very narrow
positive pressure gradient at the shock wave and surprisingly rapid
correction of the error which imposed by the third order solution on
the first time line in the weak initiation. The narrow positive pres-
sure gradients at the shock wave suggest Hartree's scheme is more
accurate and applicable in this case than the standard scheme. The
rapid correction of the error of initial data indicates rapid '"forget-
fulness" in this early stage and so the third order solution provides
excellent initial data even for weak initiation.

Close study of the local energy distributions and of the energy
gradients on the shock front, singularity line and limiting character-
istic line clearly exhibit the emergence of the self-amplifying
mechanism and the property of '"forgetfulness" of initial conditions
for converging shock waves. The solutions, in fact, recover the power
law exponent for the shock trajectory as obtained in Guderley's

limiting similarity solution.
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CHAPTER I

INTRODUCTION

1.1 Historical Statement of Previous Work

For a description of the motion of a converging cylindrical or
spherical shock wave one may divide its whole range of collapse into
three different regimes; namely, the early stage where approximate
analytical solutions or sometimes planar strong blast wave solutions
are applicable, the late stage in the vicinity of the center of conver-
gence where a similarity solution exists and the intermediate stage of
moderate shock strength.

It is well-known that a converging symmetrical shock wave in a
compressible fluid becomes extremely strong as it converges towards
the center and in theory can result in infinite pressure and tempera-
ture at the center. For this late stage, mainly due to the area dimin-
ishing effect, the shock becomes so strong that the counterpressure
effect can be neglected and the so-called similarity solutions exist.

The first results for this late stage were given by Guderley
(1942), Butler (1954) and Stanyukovich (1955), and the nature of the
motion has already been extensively investigated. Through other prob-
lems having great similarity to that of converging shocks, for example,
cavitation in water, climbing a bore on a beach, the existence of simi-

larity solution has been discussed.



The similarity solution, however, cannot be applied for interme-
diate regions where the shock hés moderate strength and characteristic
length, Many non-similar techniques were developed and applied to
solve for this region. Lee (1966) applied Oshima's quasi-similarity
method, Sakurai's perturbation method and Porzel-Zaker's power law
density method as in explosion problems, and Weish (1966) perturbed
the similarity solution obtaining first order corrections in inverse
shock velocity squared. Both succeeded in accounting for non-similar
effects due to finite shock strength, but the validity of their solu-
tions is still very confined to the center of convergence.

Neglecting all the other effects but considering only area dimin-
ishing effect, Chester (1954)--Chisnell (1955)--Whitham (1958) exten-
ded the solution to account for non-similar effects without using the
similarity solution and got fairly good results for the shock front
properties. Although these approximate solutions determine the simi-
larity exponent for the shock trajectory quite well, they cannot
yield any estimate of fluid properties.

For the early stage, however, several approximate analytical
solutions can be readily applied. 1In particular, Bach and Lee (1967)
provided an accurate and complete description for the early stage of
collapse. For strong initiation, the shock was shown to be similar
to a strong planar blast wave. For finite energy initiation, the
perturbation solution is an asymptotic series and diverges very rapidly.
Thus the range of validity is extremely limited again and the existence

of the asymptotic nature of the solution can be observed qualitatively.



Therefore, in general, similar or non-similar anmalytical solu-
tions can describe the motion in part for extremely limited regions
but can hardly give the solution for the whole range of collapse under
arbitrary initial conditions. For a complete description of imploding
shock waves, one has to resort to a numerical scheme exploiting the
advantages of high speed electronic digital computers.

Payne (1957) was the first to attempt a numerical solution for
cylindrical imploding shocks based on the diaphragm model of initia-
tions using Lax's original finite difference method. His solution
gives general featuyres which resemble those of Guderley solutions but
greatly underestimates the shock properties and the thermodynamic
states of the flow field.

Lax's finite difference scheme introduces an artificial viscosity
effect which tends to smooth out the shock discontinuity over several
mesh points. It seems reasonable to state that the method cannot give
suitable accuracy especially at the shock front, nor can it detect the
extremely narrow pressure peak immediately behind the shock in the
implosion problem. Moreover, the scheme is extremely time consuming,
taking typically 16 hours for a calculation.

It seems that, up to the present, no complete numerical descrip-
tion has been given for this problem. Thus it is one of the fundamen-
tal motivations of this paper to develop a suitable numerical scheme
which will cover the whole range of collapse with suitable accuracy
and reasonable computer times.

On the other hand, the self-amplifying nature of imploding shock



waves was first observed experimentally by Kantrowitz (1953). Zeldo-
vich and Rayzer (1965) have indicated that the form of limiting solu-
tion does not depend on the initial conditions nor on the initial shock
generating mechanism, and there always occurs forgetfulness of initial
conditions. It was also suggested that the limiting solution does not
forget completely about the initial conditions, but selects the memory
through A and keeps a constant value of N irrespective of initial con=-
ditions in the power law shock trajectory Rs = A(tc - t)N.

In many other problems of analogous nature to that of imploding shock
motion, forgetfulness was also observed. For example, Meyer and Ho (1962),
Keller, Levine and Whitham (1960) observed this effect in the problem of
the climb of a bore onto a sloping beach, and Hunter (1960, 1963), Akinsete
(1968) in the problem of collapse of spherical bubbles in water. -

Then to what extent does a limiting solution forget the initial
conditions, where and how does the self-amplifying mechanism start and
finally emerge into a limiting self-similar solution? What is the

overall picture of the imploding shock motion? An attempt to answer J

these questions constitutes another motivation of this paper.

1.2 The Motivation of Selecting the Numerical Schemes

Among the three numerical methods of solving the set of non-linear
partial differential equations widely used in this field, namely, the
method of finite differences, the method of characteristics and the
method of integral relations, the first two of them were considered for

this problem.
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Selecting the scheme, in addition to easy control and time-saving,
stability and starting data, particular attention was placed on the
possibility of clear definition of the shock discontinuity due to the
importance of determining the correct shock trajectory in the implosion
problem,

As it is possible to impose exact shock relationships on the shock
discontinuity in the finite difference method, if we use non-dimension-
alized basic equations by specially defined variables as in Bach and
Lee (1967), one may set up a suitable finite difference scheme which
needs no artificial viscosity term. A set of calculations was carried
out by applying a semi-implicit scheme with second order accuracy.
However, the attempt was not successful due to the insensitivity of the
energy integral, through which we can determine the shock decay coeffi-
cient 6 (defined as Eq. 2.18) on each successive time step.

To avoid this difficulty of determining €, one can drop out the
parameter 6 from the basic equations using original variables. Then
it leads to introducing the artificial viscosity term in the method of
finite differences which naturally results in a lack of accuracy. At
the same time, it cannot give an exact treatment of the centered rare-
faction wave nor of the contact surface in the propagation of converg-
ing shock waves generated by other means, such as the diaphragm which
is seen in Payne's (1957) paper.

Meanwhile, the method of characteristics can assure the clear
definition of the shock wave and is suitable to treat rarefaction waves

and contact surfaces. It admits of considerable mathematical rigor



(uniqueness and convergence have been proved). Both numerical techni-
ques using the method of characteristics with standard or constant time
line schemes, were recently proven to be superior to the finite differ-
ence method with the artificial viscosity term by Chou (1965, 1966,
1967, 1968) in explosion problems, It was also shown that both schemes
give the same order of accuracy and are very accurate provided the
region with extremely high speed of sound is excluded. Thus, it is
quite natural to expect that both of two methods will yield accurate
results when applied to the implosion problems.

From calculations in this paper, however, it becomes apparent
that the standard scheme of the method of characteristics considerably
underestimates states at the shock front due to the difficulty of
detecting the narrow positive pressure gradient in the implosion prob-
lem, which is quite the opposite to the situation in the explosion

problem.

1.3 The OQutline of the Present Work

The initial starting data on the first time line are calculated
following the analytical metbod of Bach and Lee (1967). The governing
equations are then integrated numerically first by Hartree's constant
time line scheme, second by the standard characteristic method on the
model of the impulsively generated energy-driven shock.

The fluid properties on each time line including the shock trajec-
tories are determined by Hartree's scheme setting the back boundary on

r/RO = 0.72 (Rs/Ro)' Pressure and sound speed are interpolated quad-
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ratically throughout the region, but the particle velocity is inter-
polated linearly.

To check the results on the shock front and to determine location
of the limiting characteristic, the standard scheme is used without
setting the back boundary but choosing the last limit on each step to
lay within the domain of dependence of the solution already determined.
Due to the complexity of two-dimensional interpolation in this scheme,
the re-evaluation of the properties on each constant time line is
omitted.

As the exact third order solutions diverge very rapidly for weak
initiation, attention was first placed on the range of validity of thel
-third order solution as the initial data. It was first believed that
the starting distance from the chamber wall would have to be correspon-
dingly small. It was, however, subsequently found that the numerical
results quickly converged to the same unique solution even though
large starting distances, that is regions where the third order solution
is not valid, were employed.

The accuracy of both characteristic methods, i.e. standard and
Hartree constant time line, were also investigated with respect to
space and time mesh size.

From the numerical solutions, shock trajectory, the limiting char-
acteristic, the limiting similarity line and two kinds of singularity
lines were evaluated. Also pressure and density gradient variation on
the shock front, local energy distributions and values of 6 on each

shock radius were determined. Three important mathematical points were
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also determined; namely, the point where the limiting characteristic
develops, the point on the shock trajectory where the shock accelera-
tion becomes zero, and the point where the limiting characteristic,
singularity line and the limiting similarity line join together to
initiate a similarity zone. From those and energy considerations, the
self-amplifying mechanisms and '"forgetfulness' of initial conditions
were investigated.

By a "least squares fit' along the trajectory where the similarity
solution is supposed to be satisfied, the index of the power law tra-
jectory and the factor A were determined for several different initial

conditions.
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CHAPTER II

FORMULATION

2.1 Model, Basic Equations and Boundary Conditions

Among three basic shock generating mechanisms: namely, the energy-
driven fixed-wall model, the piston-driven shock model and the pressure-
driven diaphragm model, the first model of impulsively generated energy-
driven shock is considered neglecting the effects of any confining walls
as well as effects of viscosity and heat transfer,

Consider a spherical or cylindrical wall of radius Ro containing
perfect gas with constant specific heat ratio , constant initial
pressure p_ and density Po* Releasing energy Eo instantaneously at
the wall (time t = O, radius r = Ro)’ a strong shock is generated
which collapses towards the center of symmetry through the gas origi-
nally at rest, where Eo is the total released energy fcr the spherical
case, per unit length for the cylindrical case.

Since the energy is released instantaneously in a vanishingly thin
cylindrical ring or spherical shell, the energy density at the first
moment iz always infinite so that a strong shock is generated irrespec-
tive of Eo' The weaker the initial energy, the faster the shock strength
dies out,

The governing conservation equations for the motion of the shocked

gas are:



The boundary conditions at the normal shock front are:
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U 2 (
—_ = |~ 1 :)
z r+ ] /M (2.6)
S - 2 _ r=1
e R2 v+ Y(v+1) M2 2.7
. dRS
where R, = it is shock velocity,
c p_are sound speed, density and pressure of the
o’ Por Py ’ y
undisturbed medium,
€.s YU, Py, Py are sound speed, particle velocity, density
and pressure immediately behind the shock front,
respectively,
and
R R
Mg = —%— = —==2— (2.8)

is the shock Mach number.
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The only boundary condition on the wall is:

u(Ro, t) = 0 for all t,.

2,2 Initial Starting Data

For the pressure-driven diaphragm model or the piston-driven
shock wave model, one may carry out the numerical calculations
throughout the collapse from the starting point singularity to the
end of collapse without resorting to the use of special starting
data. This is due to the existence of the moving physical back boun-
dary, that is, the contact surfaces in the diaphragm model, piston
trajectory in the piston-driven model, which assure proper magnitude
.of density or sound speed to guarantee suitable stability for the
early stage before developing the limiting characteristic,

For the energy-driven shock model, however, it is difficult to
determine accurate initial starting data by the characteristic method
since near the fixed wall the density goes to zero, and thus the
sourid speed tends to infinity so that the numerical calculations are
unstable regardless of time mesh size.

To avoid this difficulty, one may set an arbitrary back boundary
neglecting the effect of fluid properties near the wall. This kind
of effect may be neglected if calculation starts when the limiting
characteristic develops. It is quite clear that one cannot neglect
the effect of fluid properties near the wall at the early stage since

the magnitude of fluid properties are all very large.
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Thus in the present calculation, analytical third order solutions
are used to determine initial data.
To achieve analytical third order solutions, the variables are

non-dimensionalized following Bach and Lee as:

g = ( r"Ro)/(Rs“Ro) (2.9)
Xs = Rs = R (2.10)
X, = Xs/R, = (Rs~ Re) /Ro (2.11)

and the functions are defined as:

\y(gix-"}

C’(l”, t)/ﬁ, (2.12)

n

b (5, x) M(r‘,’f)/)'(s(t) (2.13)
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F(5, %) = p(r.t) /X (t)

( g) § \P E ;+I_s§ 5'215
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where

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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and X _, ¥  denote first and second derivatives of X with respect to

time to

Non-dimensionalizing time t as:

T= v/t (2.19)

*
vhere energy-reduced characteristic time t. which can be interpreted

as an order of magnitude of the total collapsing time, defined as:

;= (@K-R“" 2

t. N0y he 2.20)
J (j+) E, ¢
where kj = 2x for j =1
kj = 4x for j = 2 .

Then the shock wave velocity and sound speed can be written,

respectively, as:

. dR . . - R dx - RD v
s=gp =X =K ~—E?_5’_Z£ ot %) e

.2 2 t-na
¢ =Gt /R, (2.22)
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and the energy integral can be written as:

)+
= .- X2 (2)(j*1)- - ?2("‘("*15)J )
b= X () (1) T(xs) = € Smh =t 3 (2.23)

where

0 2 J
Ixy =fl( z,:f, - wch ) (1+x58) d§ (2.24)

*

The value of cj2 represents the inverse of the intensity of ini-
tial energy release. The larger the initiation energy, the smaller
*2 * *2
c, becomes. If Eo——m , then tj —= 0, thus ey > 0, the strong
shock is maintained throughout the collapse. For example, an initiation

* - *

of 10 joules energy gives a value of t2 =12.5 x 10 6 sec and c22 =
0.0196 in a spherical chamber of radius 3 cm. containing air at 10 mm
Hg of initial pressure.

As the early phases of collapse ,xsj & 1, one may seek the solu-

tion in the following power series:

S YT(8) xg

n=0

i

W (8§, x)

(2.25)

> ™M(g) X

Nn=0

¢ (S, %)
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$(§, x5) = i $M (%) DC:L (2.25)

n=0

From the energy integral (2.23), one can see that is(’Z) should

satisfy:

' L= F, xr (2.26)
.xs(’?) = ‘I—s Lo ' TS '
and so can readily determine 6 as:
x (m) _n
O(x) = 2 & X (2.27)

N=0

where the coefficients G(n) are given as:

9(0) = - 1/2

e(’) FJ/QFO

2 a
6(2) - FQ / Fo - F_, / 2 FD
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(3

3
07 = = ((R/F,) - 3RFR/F} + 3F,/F,)

i
2
Substituting the perturbation expressions obtained from Equations
(2.25) to (2.27) into the conservation equations (2.15) to (2.17), one
can obtain nth order solution with boundary conditions at the shock

E =1. (For the detailed derivation see Bach and Lee, 1967.)

2.3 Characteristic Equations

For the convenience of the numerical calculation and to drop out
the parameter 6 from the governing equations, space variable and func-

tions are redefined as:

r'= r/Re (2.28)
Ry = Rs/R, (2.29)
R, (1) = a‘l_t(ie,/k,) = % (2) 2.30)

e'(r, Ty = ety /e, = WIS ) oy,
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w(r, )= u.(",t)/(f_o) = X(2) P(E, x,)
t”
J
—lo’(r',’t)z P("t)/ﬁ, (%): j::(?) fcg,x,)
V)

¢ (r,)=dvp e

Then the basic conservation equations can be written as:

9el . ? ela'/ . J'e u: _ O

27T ar’ r’
?u-, ’ gu'/ + L—ﬂ-? ’ = O
27T 2 ¢ or’

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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and normal shock relations become:

e’ T+ |
§ -1+ 2/M

or C/ - /R2K_(U‘|)VM:)(F_I+2/M§)
* v + |

’ 2 s
W =b’+l ("‘ '/Mzs) Is(T)

r_o (2 _x= . (7
R Sy v(rﬂ)M?) s (T

where

2 e 2 . 2 ? =2
M‘ = RS /C: = xé( )/CJ

From the hyperbolic conservation equations we can obtain the

following characteristic equationms:

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)



Physical Characteristic Equations

t
K
+
O\

ar
d

dr’ w - c
dT

dr
at

State Characteristic Equations

du’ = — dp’ — —Jii-an
«P
duw = d«F JLLC de
,P
’ —L-l
¢ - (L2-)

characteristic

characteristic

particle path

along C+

along c

along c®

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

Equations (2.43) to (2.48) consist of the basic equations for the
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. further numerical calculations in the method of characteristics.
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CHAPTER II

NUMERICAL ANALYSIS

In the method of characteristics the six basic characteristic

equations are put into finite difference forms, such as:

+
along positive characteristics C ,

ar’= (w + C)a= (3.1)

’ | El 7 * -'61
sz—T(_,Fl_)A/F—J(_u?T)A’? (3.2)

along negative characteristics C-,

Ar = (& -C) az (3.3)
% | E’ / ) -,al A
AL = T( > )A—P + ( = )A'Z (3.4)
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y-1

———

c’ _4P ’ 2
< (2 (3.6)
c To )

where ;', ;', 5' and c' represent arithmetic means betwsen two points
along the particular characteristic line.

For the energy-driven shock model the starting data on the first
constant time line were calculated from the analytical third order
solutions. It was found, using various starting points, that RS/R0 =
.90 yielded satisfactory results for a great variety of energy release
and was therefore used in all of the numerical calculations.

The starting condition taken at Rs/Ro = 0.8 was applied for strong
initiation (c?2 = 0) in the standard scheme, and the results are com-
pared with that of the main starting condition (Rs/Ro = 0.9) in Fig. 15.
Considering the close agreement between them, one can assume that the
starting data taken at Rs/Ro = 0.9 will give agreeable results for
strong initiation. For the weak initiation, the perturbation solution
is an asymptotic series on X, and diverges rapidly. Hence two numeri-
cal calculations were first carried out for ¢§2 = 1 with the starting
point at RS/R.o = 0.9 and R_/R = 0.97. Both results, as we see from
Figs. 13 and 14, coincide surprisingly well in several time steps of
numerical calculation in spite of such big errors which were initially
imposed on the shock front by the third order solution taken at Rs/Ro
= 0.9. The foregoing converging process may be one of the surprising

properties of imploding shock problems, Through the analysis one can



- 28 -

therefore expect fairly good results taking initial starting data at
*
R,/R = 0.9, even for the weak initiation of cj2 =1,
In Hartree's scheme, one of the merits is comparatively accurate

and easy interpolation. The stability criterion of the method can be

assured by the Courant condition (Courant and Friedrichs, 1948).

AT < ar’/c’ 3.7)

This criterion gives maximum time mesh size which guarantees both
feet of the characteristics drop in a zone of neighbouring mesh points
(between points 1 and 2 in Fig. 3.1). The time mesh size A7 is
evaiuated for each new time line at the back boundary of the old time
line. Near the wall, due to the large values of sound speed, it is
difficult to evaluate the fluid properties under the above stability
criterion. However, the particle velocity is zero at the wall; the
pressure has zero gradient there; the evaluation of the variables near
the wall is not too important.

In addition, in the implosion problem, the limiting characteristic
has already developed and is present in the initial data at Rs/Ro = 0.9.
This limiting characteristic rapidiy approaches the shock front after
several time steps of calculation and so the evaluation of the region
close to the wall has no effect at all on the subsequent shock motion
although it has a small effect in the region behind this characteristic
line. Therefore, we can set arbitrary back boundary without losing any

accuracy to carry on the whole calculation so long as the back boundary
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is set outside the limiting characteristic.
Thus the back boundary is introduced near the wall by the rela-

tions:

ré = 0.72 (1 - R;) (3.8)
It covers three-quarters of the whole range of shocked gas on each
time line. It also gives fairly good distance which closes enough to
keep the advantage of using the boundary condition u' = 0 at the wall
for later interpolation, since>£ﬁe correct boundary condition requires
one of the three dependent variables be specified on the back boundary.
The back boundary is located outside the limiting characteristic which
assures the accuracy of numerical results for the dependent domain.
Thus the main calculations are carried on from the shock front to the
back boundary on each successive time line starting from Rs/Ro = 0.9

(Fig. 16).
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. 3.1 Hartree's Constant Time Line Scheme

4

1T A
\
AT 7 C°\ o
J. a—L \- - 2 old
;| A 2 B 3

Fig. 3.1

T new

In Hartree's scheme numerical calculations are carried on along
each particle path c® on the successive constant time line. Therefore,
all the variables can be determined through one-dimensional interpola-
tion.

The numerical calculation is carried out in such a way that; first,
from each mesh point (say pt. 2 in Fig. 3.1) on the known old time line
build a particle path and determine pt. 4 on the new time line; second,
from pt. 4 build both C+ and C characteristics back to the old time
line and find points A and B on the old time line; third, iterate till
all the variables and functions on the pts. 4, A and B satisfy the six
basic characteristic equations and interpolation relationships. One
always has to establish the same number of independent equations as the
number of unknowns on those points. Thus the problem is analogous to
solve n simultaneous algebraic equations with n unknowns.

In general, there are five different cases to carry on the calcu-
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’ lations for:

i) the interior flow mesh points,

ii) the points on the shock front,

iii) the mesh points built immediately behind the shock by the
new particle path which originated newly from the shock
front on the old time line,

iv) the points on the back boundary, and

V) the mesh points just in front of the back boundary.

For the interior flow mesh points (Fig. 3.1), one has to determine

r;, u&, pA and ci which should satisfy the six basic characteristic

equations (3.1) to (3.6). To solve the basic equations, we have to

evaluate r', u', p' and c¢', i.e. Xy, Upy Pas Cp

B

Since we are given all the variables on the mesh pts. 1, 2 and 3, we

and ré, ul, pé and ¢

L
B’
can interpolate those variables from pts. 1, 2 and 3.

Particle velocities u! and u!

A B

pressures and sound speeds are interpolated quadratically in such a

are interpolated linearly, but

way that:
’ 3 ‘ ’
G -6, = a(r=-rn) + b(r-ra) 3.9
where G represents u', p' and ¢' to be interpolated,
G, represents ué, pé and cé which are known,

a, b are constants which must be determined on each mesh

point from the variables of the pts. 1, 2 and 3.
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Thus we have twelve independent equations, i.e. six basic charac-
teristic equations and six interpolation formulae to solve twelve
unknowns .

Assuming trial values of the unknowns, first approximation can be
carried out, and with repeated iterations we mhy find exact solutions,
Iterations are repeated until the differences of u&, p& and c& from
two successive values are below a desired 1limit. Throughout the calcu-
lation it was found that three iterations were sufficient to keep this

difference less than .00005.

Fig. 3.2

For the points on a shock front, one has to determine R, is('Z),

u&, p& and cL. Two characteristic equations along C~ characteristic

and four normal shock relations, i.e. (2.39), (2.40), (2.41) and

AR, = X (T) AT (3.9')

can be used to solve the problem.
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To evaluate mean value terms, we have to know four additional
unknowns rﬁ, ué, pé and cé of pt. B (Fig. 3.2). Now we have nine
unknowns with nine equations including three more interpolation
formulae. -

There are two possible cases (a) and (b) in Fig. 3.2. For the

case (a) linear interpolations are adopted and for the case (b) quadra-

! and c!.

tic interpolations are used for all three functions Ups pé B

MY
)

Fig. 3.3

To keep approximately the same number of mesh points on each
successive time line, new particle paths are set from the shock front
' )
3T, is

observed. As will be seen in Chapter IV, this procedure gives the

on the old time line whenever the condition ‘ré - rﬂ ;!r

most important merit for Hartree's scheme in the implosion problem.
As the new particle path set a mesh point so close to the shock front
on the new time line, this new mesh point may never fail to detect
positive pressure gradients behind the shock, however narrow it is,
without paying any additional machine time. For this new pt. 4, the

calculations are the same as the one for the interior points except to
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interpolate rA, uA, pA and cA from two shock front points 5 and 1 on
the new and old time lines. Therefore, the calculation of this point
must be carried on after the variables on pt. 5 are evaluated. 1In
this case, we have additional unknown T,.

To solve the problem for the points on the back boundary, one of

the dependent variables, in addition to the locus of the boundary,

must be defined beforehand.

ba.ck boun ary

wo.ll
(a) (b)

Fig. 3.4

ré can be evaluated exactly from Equation (3.8). ué can be deter-
mined interpolating quadratically from pts. 1, 2 for which variables
are already evaluated and pt. 3 (Fig. 3.4, a) where ué = 0 from boun-
dary conditions.

Therefore, for the mesh points on the back boundary, we have only
two main unknowns pé and cé in addition to eight temporary unknowns rA,
Ups Pas Cp» ré, ué, pé and cé (Fig. 3.4a, b). On the other hand, as
we have four basic characteristic equations along C+ and Co, and six

interpolation formulae from the points 1, 2 and 3, the problem can be
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solved.
& b b\ 4
\ c
\

¢t/ c\ ¢

x \

A 2 8 13 ] 2\3

(a) (b) (©)

Fig. 3.5

When we evaluate variables for the mesh points just in front of
the back boundary, we have three different cases, Case (a) corresponds
to the usual interior flow mesh point and can be evaluated in the
usual way. Case (c), where pt. 4 appears behind the back boundary, we
just cancel the calculations. The canceled mesh point at this back
boundary may be compensated at the shock front so that the scheme can
keep approximately the same number of mesh points on successive time

lines. Case (b), we have to interpolate r!, ¢

3 Cpo ué, pé and cé from the

variables of pts. b and 3 on the back boundary. Therefore, the calcula-
tion for this case should be proceeded after the variables of pt. b are

evaluated.
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3.2 Standard Characteristic Method

Applying the standard scheme mainly to check the accuracy of
Hartree's results especially on the shock front and to determine the
limiting characteristic line, the numerical calculations are carried
on from the shock front to the last characteristic, which was initiated
on the wall at the initial starting time line. The total number of
mesh points, therefore, decreases one in every other time step (Fig.
16). This saves considerable machine time without losing any accuracy
of the shock wave properties, since the last characteristic is located
behind the limiting characteristic.

There are two different cases for the numerical calculation: for

the interior flow mesh points and for the points on the shock front.

Shock 2

() (b)
Fig. 3.6

+ -
In the standard scheme, we issue both C and C characteristics
from pt. 1 and pt. 2 to determine pt. 3 (Fig. 3.6a) and then draw

backwards a particle path from pt. 3 to determine pt. A. Therefore,
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we have ten unknowns, té, ré, ué, pé, cé, tA, vy U, pA and ¢, to be

Tar VA A
determined. On the other hand, we have ten equations, i.e. six basic
characteristic equations, (3.1) to (3.6), and four linear interpola-

tion formulae.

For the points on the shock front, the evaluation is carried on

€3

in every other time step. We have six quantities té, ré, ué, pé,
and *s(’?) to be determined, and exactly six equations can be used,
namely, two characteristic equations (3.3) and (3.4), three normal
shock relationships (2.39) to (2.41), and the definition of shock wave
velocity (3.55.

In the standard scheme, all the new points are evaluated from the
known points within the exact domain of dependence. In this sense,
one may expect more accurate results in this scheme than Hartree's.
However, due to the complexity of two-dimensional interpolation, only
linear interpolation can be applicable, consuming much more time than
that of Hartree's quadratic interpolations. Considering these merits
and shortages in both schemes, one may expect the same order of accu-

racy, and Chou (1966, 1967) has shown the fact from his numerical cal-

culation in explosion problems.

3.3 Similarity Conditions

For similarity solutions to exist, in general, the following con-
ditions should be satisfied for the basic governing equations, boundary

conditions, initial conditions and thermodynamic conditions.

i) The basic partial differential equations can be reduced to
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a set of ordinary differential equations with respect to a

similarity variable:
€, = r/rR, = /&g (3.10)

It leads us to have the first condition, the so-called

power law trajectory.

N
A(tc - t)

Rs =
/ ’ 4 ’ N
or Rs = A (tc - (3.11)
/ p) N
or RS = A/ (’ZC - 2 )
where t’= tco/Ro,

From this we have the second condition.

8, = Rs 55 = N-| = constant (3.12)

or

) + Xg Xs is [+ Xs e
= = = constant
O T T TEm

(3.13)



ii)

1i1)

iv)

-39 -

where A; A'; A" and N are constants and t. té or 7% are
the total collapsing time.
Guderley and Butler evaluated this value, for ¥ = 1.4,

ji=2, as:

-4
H

0.717173 (3.14)

[+
1]

- 0.39 (3.15)

Since x = - 1 at the center, for ex we have:
s

x , if x —» -1 (3.16)

The boundary conditions on the shock front give us the

third condition:
M - 0 (3.17)

For the initial condition, the counterpressure effect
should be negligible and it leads to the condition (3.17)

in implosion problems.

From the thermodynamic similarity condition, the equation

of state should have the form:

e = pF(E) (3.18)
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If we can assume the similarity variable as:

§5 = "'/Rs' = constant

then Equation (3.18) is satisfied as:

(3.19)

For y=1.4, j = 2, the limiting similarity variable was

calculated as:

3 (3.20)

It leads to the fourth condition to have the similarity

solution.

3.4 Singularity Analysis

With all the requirements for the similarity solution satisfied,

the basic conservation equations can be written in ordinary differential

equations as:

dwy _ (p-Es) Bgs v - 26953‘ —j(q:—gs)acb(,()/fs (3.21)
dgs (¢~ &) [(P-8r~ 3/ ]
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db _ —(P-5)6 P + 20 f /W +ivdP LW (3.22)
ds, (b-5) - ¥&/y

$[-(e-5)(26* J¥P/5) + 76 P] (3.23)
(¢-5)" - 73/y |

Q
T

Q
J

By now, there is no difference between implosion and explosion.

The above equations satisfy for both cases. Singularity occurs usually

at singular points of the governing differential equations. From the
above equations we have three kinds of singular points:

§ = O

g = P (3.24)

b * A5 /y

5s

However, in implosion problems, we have:

I <€ & s o© (3.25)
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and §; % P

Therefore, the only singularity in this case is:

§ = P $/v = (W-CD /&) (3.26)

On the other hand, from the similarity condition, we have:

Id

r’o = €, R, = constant- R 3.27)

Differentiating Equation (3.27) with respect to 7 and substituting

singularity condition (3.26), we get:

4

f‘ ./ * 4 ’
L= S R(7)=§ % (2) =u'-0
i.e. _gjra: = w -’ (3.28)

This simply means that for the similarity solution to exist, the

€% - 1.12 should coincide with a singularity

limiting similarity line s

line, and the line should be a characteristic. We call this particular

characteristic the limiting characteristic line.
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Therefore, we have four conditions to determine the similarity

zone.

i) A similarity solution starts at time ’25 (Fig. 7) where
the singularity line, the similarity line and the limiting
characteristic line join together and merge into the

center of collapse as a line hereafter.

ii) From ’25 to ‘Zc’eRS = = 0.394 (Eq. 3.15) should be satis-

fied.
iii) Strong shock condition should be held, i.e. M, — .
iv) The shock trajectory should follow the power law (Eq. 3.11).

To determine the similarity parameters N, A' or A" and té or‘?c,
steepest descent method is applied on the points along the shock tra-
jectory where the similarity solution is valid.

To investigate the property of forgetfulness and the self-

amplifying mechanism, other singular points:

¢ —_ ’B-:f_/w = gS = |

or

‘e = x. (7)
w-c s (3.29)

are considered. As the energy consideration may give physical inter-
pretation on the mechanism, the pressure and density gradients and

kinetic thermal-pressure energy density distributions are evaluated
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. on each time step. The energy distributions on each particular line
and energy peak are plotted and compared (Figs. 8 and 9). Local

energy density may be written by:

2
8=8T+£x=£7——wi?— (3.30)

where
€, : thermal-pressure energy

& ¢ kinetic energy.
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 On the Numerical Schemes

i) Starting Data

*
For strong initiation (0 £ cj2 € C,l), the analytical third

order solution provides sufficiently accurate initfal data at RS/Ro
= 0.9 in magnitude and profile. Two sets of numerical results using
initjal data at Rs/Ro = 0.8 and Rs/Ro = 0.9 were plotted in Fig. 15.
The figure shows almost perfect coincidence between them.

The third order solution itself can explain the motion fairly
well in the early stage for about oone third of the total range. The
shock trajectory until RS/R0 = 0.4, the shock velocity until RS/RO =
0.5 (Fig. 1), and the various precfiles until RS/Ro = 0.7 (Figs. 3, 4
and 5) agree very closely with numerical solutions.

For weak initiation (I & c:z), bowever, the perturbaticn solu-~
tions diverge very rapidly, and ;he range of validity seems to be
highly limited. The third order solution gives excessive values as a
whole at RS/Ro = 0.9, the particle velocity and the density are nega-
tive (¢ = - 5.49, Y = - {10198 % 104) on the shock front. Even at
Rs/Ro = 0.97, density at the shock front has a large error (Fig. 14),.
High pressure and density peaks heunind the shock were observed at a

very early stage, Profiles look like usual profiles in the shrunk
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space coordinate,

Two sets of numerical results using initial data at Rs/Ro = 0.9
and 0.97 are plotted in Figs. 13 and 14. 1In spite of such a large
difference in initial data, both results match surprisingly well only
after several runs of numerical calculation.

This rapid correction of the error of the initial data seems to

be due to the rapid re-distribution of the local energy through proper

treatment of the motion, which is characterized by the self-amplification

and forgetfulness of the initial condition by the numerical procedure.
Between R: ~ R: (Fig. 14), the motion temporarily becomes a highly
self-propagating due to the poorly evaluated incal energy peak behind
the shock front which is initially imposed by tbe perturbation solution
(at R: the energy gradient of the shock becomes zerp). At this moment,
as the area effect (at the shock surface} is ztill swmall comparing to
the volume (between shock aud the wail} effect in the real motion (Fig.

17), the corrected motion becomes ¢ and the local

energy distribution becomes close to the proper ons.

¢ order solution

Therefore, iu spite of the fact
itself cannotl treat the metion peopesrly at the very saviy stage for
weak loitiation, sc¢ loang as the total energy is consevved, it may
provide failrly gond {nitiasl dats at B /R = 0.9 for further numerical

calculations. Thus one may note this fagt ag & pecuyllar but convenient

nature of the implosion problem in nunerical calculations.
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ii) Mesh Size

To check the mesh size effect, three different mesh sizes were
used on the first time line, A.(r/Ro) = 0,001 and 0.0002 for the stan-
dard scheme, a (r/Ro) = 0.001 and 0.0016 for Hartree's scheme,and the
results were plotted for c?z = 0 in Fig. 1. It took 90 minutes for a
calculation when mesh size A:(r/Ro) = 0,0002 was used and 10 minutes
for the other cases.

The figure indicates, however, that each result within the same
scheme coincides perfectly. Therefore, one may assure the accuracy by

taking the mesh size A (r/Ro) = 0.001.

iii) Comparison of Numerical Schemes

Quite contrary to the coincidence of the results between different
mesh sizes in the same scheme, there are rather large discrepancies
observed between the results of Hartree and standard schemes (Figs. 1
and 2).

Though both results agree qualitatively, such as the infinite tra-
jectory slope at the center, the asymptotic nature of the profiles near
the center, the shapes of the curves and complete coincidence at the
early stage, quantitative discrepancy beginsto appear at RS/R0 = 0.55
in shock property profiles (Fig. 2), at RS/Ro = 0.65 in the shock velo-
city and at RS/Ro = 0,25 in the shock trajectory (Fig. l1). As the
waves converge to the center, the differences increase except near the
center.

Throughout the cases, the standard scheme gives small magnitudes
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of shock properties as compared with Hartree's predictions. All these
underestimations in the standard scheme are directly comnnected with the
self-amplifying mechanism of the implosion motion which may be explained
by the early development of positive pressure and density gradients at
the shock (Figs. 8 and 9). That is, the standard scheme has no way of
detecting these positive gradients even with a finer mesh size of 0.0002
when they are in a narrow zone (Rs/Ro = 0,25 - 0.05), and this leads to
underestimation. Near the center, however, the positive gradient zone
becomes wider, and so the standard scheme can also account for this
effect, so the discrepancy decreases again.

While Hartree's scheme issues new particle paths at the shock
front, it is usually close enough to the shock front on the next time
line to detect the pressure gradients at the shock front however
narrow.

Then how can it be explained the fact that in spite of the early
development of the positive pressure gradient (RS/Ro = 0.65, Fig. 9),
the shock trajectories agree well up to Rs/Ro =0.3? It is simply due
to the fact that the pressure variable f does not change much at the
shock front irrespective of the pressure gradient (Figs. 9 and 2).

Therefore, it seems that Hartree's scheme is absolutely recommen-
dable and accurate for the numerical calculation in the implosioun prob-
lem, apart from one-dimensionality, satisfactory treatment of a contact
surface and rarefaction fan in other means of shock-generating wmodels,

Thus it may be noted as a further important point in the implosion

problem that one should pay particular attention so as to detect the
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narrow positive pressure and density gradients at the shock in the

numerical calculation, whatever method is used.

4,2 Numerical Solutions

All the results presented here are based on calculations using
Hartree's scheme, taking initial starting data at R_/R = 0.9 and

first mesh size with c:(r/Ro) = .001.

i) Shock Properties

The early stage trajectories are quite analogous to the planar
blast wave. The weaker the initial energy release, the sooner the
shock strength decrease. Approximately half the region with 6 = 0 at
its center the shock trajectories are linear, and 6 = 0 occurs approxi-
mately at RS/R0 = .53 irrespective of the initiation condition (Table
1). At the center of convergence the infinite slope can be observed.

The weaker the initial energy, the larger the rate of changing
shock velocity (Figs. 11 and 12). Curvatures of all the shock property
curves are larger if the initiation energy is small (Figs. 2, 10 and 12),
It seems that maguitudes are small, but rates of changing are always
larger if initiation energy is small so that they assure the asymptotic

nature for the similiarity solution sooner or later,

ii) Profiles at Different Shock Radii

The positive pressure gradient at the shock appears at Rq/Ro = 0.66

irrespective of initiation conditions and keeps it within a very narrow
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zone., It increases very slowly until Rs/Ro = 0.25 and after that very
rapidly up to infinity in the similarity zone (Figs. 3, 8 and 9).

On the singularity line, however, the magnitude of pressure
steadily increases to the shock front value at Rs/Ro = 0,165 and then
follows the similarity law (Fig. 8). One may see that, in this period,
the area convergence smoothes the pressure profile especially in the
zone enclosed by the shock front and singularity line while keeping
the positive pressure gradient zone immediately behind the shock almost
constant and narrow so that the curvature of the shock trajectory
remains nearly zero.

The density peak appears rather late at Rs/Ro = 0.45 but steadily
increases from the beginning to the limiting value of 21.6 at the
center of convergence irrespective of the initiation condition (Fig. 9).

Contrary to the pressure peak, the density peak spreads into a
wide zone from the beginning. It leads to rapid increase of the local
kinetic energy in the zone enclosed by the éhock front and the singula-
rity line (Figs. 5 and 8). This is the reason that even the third
order solution can predict the density peak but not the pressure peak
greater than that of the shock front comparatively early at RS/Ro =
0.6.

There are no positive particle velocity gradients. There is,
however, a distinction between the two zones where 6 is positive and
negative. In the zone where 6 < 0 (i.e. decelerating shock regime,
expanding nature of the initial motion dominates), the peak profile

becomes gradually less steep and reaches a maximum at 6 = 0. 1In the
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zone where 8 2 0 (i.e. accelerating shock regime, where the self-

amplifying effect is dominant), the profile becomes steeper again.

4.3 Self-Amplifying Mechanism, Initial Condition Forgetfulness

and Self-Similarity

The essential difference between imploding and exploding shock
waves may be represented by the early development of the limitimg char-
acteristic. The self-amplifying mechanism, f@rgetfulness and self-
similarity may be partially explained through energy consideratioms.

The limiting characteristic develops very early between RS/RO =
0.9 - 0.92 in most cases; the weaker the initiation emergy, the earlier
in radius, the later in physical time, Once it has developed, it
approaches the singularity line very rapﬁdly and finally coincldes with
the limiting similarity line at the point where similarity is attaimed.

There are three main factors to be considered in forgetfulness,
namely, the form of the initiation motion, the intensity of the initi-
ation energy and the gas substance which bears the initial condition.

At ’?1, the limiting characteristic develops and forms with the
shock front the self-governing domain. Between ‘20-’21, the expanding
motion dominates and the area convergence effect is so small that the
motion can be approximated by planar strong blast waves (Fig. 7). At
the very moment when the shock wave is generated, the shock strength
is infinite irrespective of the initiation energy, but the power source
is limited by the initial condition and instantaneously loses most of

the energy as the initiation energy is being distributed over an
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increasing mass of gas. It leads to forget the majority part of the
intensity of the initial condition. At the same time, a fixed percen-
tage of the initiation energy is retained in a small regionr near the
shock whose surface area is shrinking with time. This results in the
shock separating itself in a way from the wain f£low and forgetting as
it were the actual details of init3ation but only retaining memory as
to its original magnitude.

The time ¢ where limiting characteristic starts, way be charace-

1’
terized as the line where the srea effect starts to play an iwportant
role, At this time a region 1s formed wbick Y shail call the self-
governing domain, and from here on the details of the lnitial comdi«
tions are becoming somewhat forgotten. The decreasing areca effect now
causes increasing energy density near tue sbock which rvestraias the

deceleration of the shock wave, which would otherwise decay ag & planar

blast wave.

-
0]

singular

S

s

At the time ’229 the firs oiac i3 observed. Baslween
T, ~ Ry One can note three distinet behaviours. Fivsc, the Vimiting

characteristic rapidly approaches the shock Eronr and to a4 definite

distance near ‘7= 7. ané thereafter approaches the shock more slowly.

(g

This has the effect of producing a similarity aatuwre to the flow behind
the shock quite quickly. BSecond, the distance between the limiting
characteristic and the limiting similarity line ( £ = P <Jj¥A ) is

a maximum at time 7 This distance can be interpreted in a loose

2°

way as a barometer of similarity; it may alsc mean that the time ’?2

separates the zone where the similarity formation starts in qualitatively,
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and thus analytical approximation for the similarity solution (of
Guderley) would be expected to break down at this point., Third, the
local energy distribution near the limiting characteristic has a mini-
mum (Fig. 8).

At the time ‘?3 the second kind of singularity first appears. At
this point there develops the first physical characteristic thch has
a smaller slope than that of the shock trajectory. One may see how

fast the region which shares less energy enlarges (area 'zcs Fig.

2522
7) and bow the initiation energy is mostly concentrated into the self-
governing zone near the shock. 7This leads to a formation of a positive
pressure gradient on the shock near ’?3.

At the time 7, ,, 9 =0, the shock wave begins to accelerate which
means the self-amplifying mechanism is dominant, At this point the
form of the initial metion is forgottem completely. It is mainly due
to the accumulated pressure energy just behind the shock., Forgetful-
ness of details of the initial conditions is also completed and selected
memory may be represenced by the shock properties, such as, pressure
and Mach number at '?a(Figs‘ 10 and 12).

The increasing rate of the self-amplifying mechanism may be meas-
ured by the energy gradieat on the shock but not by shock strength
jtself. Therefore, however the selected memories are different by
initial conditions, the energy gradients are almost the same irrespec-
tive of the initial condition. It leads to the possibility of simila-

rity motion later and forgetfulness in qualitative nature of the

starting conditions.
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Thus the coefficient A", total collapsing time ’?c will have
direct relationships with the shock intensities at ?4 and the simi-
larity index N will approach a constant irrespective of initiation
energy since it relates to the energy gradient. The numerical results
were shown in Table 1.

After ?4, the first positive density gradient at the shock front
is always observed. This positive gradient spreads into a wider zone
of the self-governing domain as time goes on. The kinetic energy con-
tributes to self-amplification of the shock indirectly through rapid
energy increase within the self-governing zone. One may see the con-
tinuous energy increase on the singularity line which is mainly due to
this kinetic energy from ?2 to ?5.

At the time 7. the similarity domain finally starts. Here the

5
singularity line and the limiting characteristic line join with the
limiting similarity line. From ?2, both thermal and kinetic energies
steadily increase cn the limiting characteristic line and at time ‘?5
the energy densities at the shock and limiting characteristics are
equal (Fig. 7).

Therefore, through energy interpretations, the similarity region
may be characterized as starting when the flow within the self-governing

domain has sufficient energy to keep the self-amplifying mechanism in

operation.

4.4 Geometrical Effects

One can analyze the purely geometric effects into three parts;
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namely, area convergence effects on the shock surface which leads to
increasing the energy or pressure density on the shock wave, volumetric
effect which leads to decreasing the mean enerxgy density of the shocked
gas in volume or mass and curvature effects.

If we assume that the shock surface keeps comstant total initiation
energy Eo at every moment, then the shock surface energy density

increases in the following manmer:

- Eo Eo = i RS 2
Eso = —3 /—S: /( Ro) (4.1)

where E = total initiation energy

wn
1

initial surface at RS= Ro

wn
i

instant shock surface at RS = RS

On the other hand, if we assume mean energy, density and pressure
profiles in the shocked gas region, then the mean energy density will

decrease in the following manner:

E, =, Rs y3) :
Evop, = —= / \E/ = 1/~ (32)) «“-2)

where vV = -;—- T R
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We call this a volumetric effect. Then the effects of these volumetric

energy densities per shock surface can be written as:

3 Ev.o. = 3 /(’ —(_%i')s) (4.3)

Evos.

We call this a volumetric effect per area.

The variations of those three effects with respect to shock
radius are plotted'in Fig. 17. We can see how the volumetric effects
are stronger than area convergence effects at the early stage. There-
fore, the shock initially decelerates very fast as the initiation
energy is being distributed over an increasing mass of gas engulfed by
the shock.

The assumption of constant energy density at the shock may be
applied for the case of infinite initiation energy, i.e. c§2 =0,
Since the volumetric effect per area decelerates the shock wave, but
the area effect accelerates it, the intersection of these two curves
may give the point where shock acceleration is zero, i.e. 6 = 0. From
Fig. 17 we have RS/R0 = 0.53 for this point, and the result coincides
surprisingly well with the numerical result (Table 1).

Since pressure is area phenomena, both area effects and volumet-
ric effects per area can be applied for the pressure immediately behind
the shock as well as the energy demsity at the shock front. Thus,
another characteristic point where the area effect and the relative

volumetric effect per area with respect to pressure are equal in magni-
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tudes can be found. This point may give the location where the pres-
sure gradient at the shock front becomes zero. Graphical estimation
of Fig. 17 gives Rs/Ro = 0.665 for this point, and one may see close
agreement with the numerical result (Fig. 9) where the positive pres-
sure gradient was first observed.

From this simple analysis one may see how the motion of a conver-

ging shock wave is strongly affected by purely geometrical effects.
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*2 1 ] " 2 *
e, A t A (A N M, (RS/RO)
0.0 0 0.00 1.06585 0.705375 0.717173 oo 0.184968
0.005 7.13818 0.0496017 1.06780 0.701535 0.717166 481.236 0.174950
0.010 5.56004 0.0698226 1.06825 0.698226 0.716386 443,516 0.083869
R/R = A'(t' - t')N t' = tC /R
s o c ’ o' o

R /R = A™(? -1 )N
S (o} (o4

(RS/RO)* : The point where similarity solution starts.

TABLE 1

2

*
VARIATION OF N WITH ;- FOR SPHERICAL SHOCK WAVES (_ ¥ =1.4) .




