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ABSTRACT

The present thesis E?ckles the problem of on-line steady
state security assessment in electric povwer trangmission
Petworks. The .contingencies examined include generation
shi}t as well as line (transformer) outages.

The methodology developed is Pattern Recognition-motivated
although not entirely within thé frame of 'traditional
statistical Pattern Recognition. g

Due to the fact that training samples are rather expensive
to obtain in electric power engineering, our first concern
was tﬁ) develop and implement algorithms carrying out the
task of intelligently acquiring training pecints. It is found
that these algorithms, permit to substantially reduce the
amount of off-line computational effort while, at the same
time, the coherency and {mpartiality ofﬁfhe information
contained in the training sets is enhanced.

A new scheme for security assessment (equally applicable
for real time security screening) was developed based on the
concept’of Ehe hyperellipsoids of confidencé. It 1is shown
that by proper utilizatioﬁ of the ‘hyperellipsoids’  of
confidence, uncertainty in real time decision making
(directly related to the misclassifiqathul\ error) is
circumvented. The results of the new methodology were
verified by full scale ac simulations,

Finally, the usefulness and potential applicability of the
2



new scheme is

are simplicity and reliability in real time environment.

demonstrated for EHV equivalents.

‘

s
°
.

v

3

y

Its merits

oo vm o



™\ e e e e

B
8

h v
-

v \
fL.a présente thése s!'

'3

attaque au:probiéme de 1' évaluation
des cogtingencbs en( temps réel dans les réseaux de
transmission g' électricité. Les contingences examinées
\ \
incluent 1les Qériafkon\des génération, ainsi gue les pannes
de lignes et des traqsfofmateurs. °
' La méthodologie développée est basée sur la méthode de la
reconnaissance des formes, bien qﬁL,elle ne se situe pas
entiérement dans le,cadrevgraditionel de cette discipline.
Comme les échanéillons d' apprentissage sont dispendieux a
obténir dans le domaine de 1' ingénierie des systémes de
puissance, notre premier souci a été de développer et
implanterl des algorithmes permettant 1' acquisitién
_intelligente de tels »échantillons. Ces algorithmes
entrainent une réduction substantielle des calcul§ en temps
différé, tout en améliorant 1la coherence et 1' impartialité
Qg 1' information contenue dans 1' échantillonage.
_ Une nouvelle méthode 4d' évaluation de la sécurité
(applicable également a 1' évaluation des contingences en
temps réel) a été developpée d' aprés le concept des
hyperellipsoides de confiance. Il-est démontré que 1'
’utilifation aaequate de ces hyperellipsoides~ permet de
contodrner le probléme de 1' "incertitude associé‘é'la prise
des déci§éon en temps réel: cette incertidute est
directgmen£ reliée a 1' erreur de cla§sification. Les
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. . ‘.
résultats de cette nouvelle méthodologie ont été verifiés a

13 . . L ¢ :
1' aide de simulations de reseaux.

-y

. Nous avons ‘finalement démontré 1’ utilité et 1'

: I

‘épplicabillteb de la nouvelle  methode dans le cas des

équivalents-reseaux a trés haute tension. Ses principaux

avantages ‘sont la simplicité et 1la fiabilité dans un

~

environnement de calculs en temps réel.
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CLAIM OF ORIGINALITY

o

To the best of the author's knowledge, the following

contributions presented in this thesis are original.

. Development and implementation of algorithms for training

point selection based on the grounds of both selectivity
and off-line computational effort economization.

(
Indirect identification of the steady state stability do-
main of electric power systems utilizing the newly deve-

loped algorithms.

Development of techniques for constructing hyperellipso-~

id(s) of confidence.

Development of techniques for reliable, real-time, stea-
dy state stability and load variability assessment in
electric power systems, based on the concept of the hy-

perellipsoid(s) of confidence.

Development of techniques for reliable, real-time,
steady state security assessment (for both generation
shift and line outages) based on the concept of the hy-

perellipsoid(s) of confidence.

15
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6. Development of a technique for steady state security
screening purposes wit@ direct extensions to contingency

ranking, directly applicable for real-time operation.

7. Development of techniques and methodologies to:
- Free electric power engineers and control strategies,
from the limitations of the concept of the misclassi-
ficat}on error, .

- Acquire and utilize training sets valid for decision

making under variable power system topology.

16
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CHAPTER ONE

INTRODUCTION

1.1. Background

By the term "electric power system" we mean "a network of
one or more electrical generating units, loads and/or
transmission lines, 1including the associated equipment
electrically or mechanically connected to the net@ork"(l).

Power systems left their regional character long ago and
became larger and larger with numerous interconnections.
Since then, power system engineers familiarized themselves
with the unavéidable fact that the disturbance free mode of
operation for a large electric power system 1is the most .
rarely encountered one.

However, this fact is of no importance to the customers
vhose main concern 1is uninterrupted supply of electrical
energy, characterized by high quality voltage and frequency
margins. The engineering cﬁallengg then, is to meet those
stringent demands for service reliability at a cost
justifying the result.

The various disturbances a power system can experience
during operation, range from simple load demand variations
(s&ooth or abrupt), to the very severe cases of repeated

17



" equipment outages (creating "islands"™ in the power syétem

topological structure). The various events that, eventually,
have to be analyzed are called "contingencies".

fhe Dultimate'result of Eny contingency analysis is to
determine whether, or not, the system can withstand the
impact of the contingency and maintain service continuity.
If this 1is the case, we say that the system 1is "secure"
against the given contingency.

Depending however on the severity of the incoming
contingency, the system  will invariabfy experience
"transients" wuntil it reaches (if it does so0) a new
operating point. When the system is able to withstand such
transients, we say that it 1is "transiently secure with
respect to the given contingency". An assessment of the post
transient state of the system is the object of the "steady
state security analysis".

One wvery important class of system contingencies that
at£racted much attention over the years, is the one which
contains "equipment outages", i.e. loss of generating units,
t;ansmission lines or transformers. More specifically, much
effort has been devoted to predicting the state of the
system (post transient) following a contingency of this
nature. The research thét follows pertains to steady state
security evaluation,

Howevé}, a éingle‘Eontingency is rarely, if ever, to be
taken into account. The fact that power systems are large,

and have been built gradually for many decades, accounts for

18



large amounts of diversity in both the existing equipment
and its reliability. Maintehance is magdatory on an everyday
basis and this is the source of the so called "scheduled
outages". Unexpected failures, of course, do occur and
"forced outages" also have to be considered, It should be
mentioned at this point that, associated with any potential
forced outége, is( a measure of the likelehood of its
_occurrence,

As a consequence, at any operating instance, a set of
contingencies is put forward, against which system
robustness is to—be tested. They can either be considered
one at a time (singie contingency securfty analysis) or, if
of interest, more than one concurrently (multiple
contingency analysis). It is the opinion of the researcher
that the proposed methodology for security analysis is best
suited for single contingency analysis under the

contemplated assumptions.

1.2. Contingency selection,

How those contingency lists are prepared 1is a very
important problem by itself, Scheduled outages are the first
entries, but when it comes to forced outages many factors
have to be considered.

Climatological conditions, for instance, existing in the
various areas of the - system can be of great help.

19
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Unsuccesful reclosing of faulted lines or severe permanent
damages to the towers (55,56) are, almost invariably, the
results of severe storms , ——

Load demand variations, occuring on a local basis during
peak hours, will give a good picture of the pover flow paths

and help spot pdssible over loads. The lines most likely to

_be tripped are also included in the contingency list. Of

course the ever present "system troublespots” cannot be
omitted either.

It is obvious that, in preparing a list of contingenciesﬂ a
good amount of off-line work is necessary. We -have,

furthermore, tacitly assumed the availabifity cf both

reliable and quickly implementable weather forecast and

short term load forecast schemes (the later also assumes
sh;rp state estimation). A good and ‘experienced operator,
familiar with the system, is also indispensable.

It 1is obvious, from the above short discussion, that

contingency lists are liable to changes and hierarchical

updating at the beginning of every monitoring interval,

Research towards automating contingency selection 1is in’

progress and .ideas have been reeggggg (2,3,69,70,71,72,
73,74,75,76,77,78,79). ’

This research assumes that a contingency list is available
and, furthermore, it is not concerné%> at all with real time

automatic contingency selection,

20
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1.3. Approaches to steady state security assessment. State-

©

ment of the problem.

The steady state security assessment problem i§ considered
as a difficult one in gyé discipline: of power system
operation. The main difficulty lies in the fact that

‘

electric power systems are higly nonlinear.

Under given loading conditions and system topology, the
solution of a nonlinear system of equations (named the load
flow equations) is necessary in order to determine the pQEEE,u;//
flow ’pattern and the voltage profile of the system. The
" problem is further complicated by the fact that reactive
.power limits, interchange caéabiligy limitations for the tie
lines, and off-nominal transformer taps ,have to be included
in order to come up with a realjstic model for the system.

Simulating a contingency, ~simply means considering a
different system configuration which will reflect the effect
of the simulated outage. Due to the nonlinearity of the
response of the system to such changes, (assuming that the
load demand remains unaltered) a new full scale simulation
seems necessary if we are to reveal -possible violations of
the operating standards.

Given the moniitoring interval, to exhaust a given list of
contingencies and, therefore, claim that the chosen

o%irating point 1is "secure", can be a formidable task, if

the above obvious approach is adopted.

[

The unfeasibility of such an approach is demonstrated by

21
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fhe fact that, neither the enormous computational power'
needed is available, nor will any operator ever be able to
implement and screen the results of the voluminous printouts
of %full scale simulations. .

Dur?ng the early sixties, only marginal computational power
was available, despite the pressing needs for security
assessment, However, the popular, and gquite successful for
many systems, method of precalculated "distribution factors"- -
was presented (4%: The method uses superposition of power:
flows on basic normal power flow studies »by means of
distribution factors. Two typé%» of such "distribution
factors" (one type for gener%tion sﬁift and one for circuit
outages) are precalculated and then used t? prgdict the post
contingency powernflow profile. The obvious shortcoming of
this methéd is, aqd has gong ago been recogniféa‘ as suéh,
the rigid linearify ;hssﬁ%ptions that it imposes on the

network.

l.4. Approaches to steady state secL.ity assegssment. Linear

non iterative methods.

During the early sixties, the recognition of the fact that
the digital computer would be of paramount importance in the

future, gave birth to a great deal of research efforts to

°

modernize the electric power systems engineers arsenal with

~good software packages. The modeling had to be suitable for

-
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digital simulations and emphasis was given in employing

linear algebra, diakoptics and 4ngtwork_matrices oriented,

[d —

techniqﬁes.

As a bybroduct of the extensive} research concerning the
solution of the load flpw'equations,l the d-c load flow igeé- X
emerged (5) for approximate load flow studies. Considerable
simplification of the load flow equations ca; be achieved “
from the fact that the reactive component * of the series :
impedance of the transmission 1lines is dominant'ovér the
resistive one, and that power’lipes normally operate under
rather io; angle difference (dueo to " stability
consiéerations). This ,modifiéd form of the load flow
eqguations was uséd for security calculations, it;.main meri; o
being this very siﬁplicity. Still wused by many utilitfes,
under défiods philisophies, this method peémits the
detection of possible post contingency rea1A~power line 1
overloadings. ’ ‘ ///;;/”7’//”,,,f—/’-”””’#

The wusefulness of thg/impgdancef’ﬁgirix (i matrix) in
computing "changes of state" as applied to short circuit
analysis was demonstrated. The idea of utilizing the 2
matrix for security analysis was conceived (6),Qa6d all
methods proposed so far, based on this concept, reéuire the
availability of a well solved load flow, called the "base °
case", as a starting point, The post contingency system
profile is predicted by superimposing the incremental
‘changes (in both 1line flows and bus voltages) to the-

' precontingency "base case" one. -

23
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Several variations of the Zﬁkmatrixomethzds are available
today.(7,8,9)._ Techniques for increasing their effiéiency
for on-line computations, both in speed and storage
requirem%nts, ‘were developed f7,8,9). These improvements
work on thé"assumption "that the so called "system
troublespots™(lines, transformers, and generally pieces of
equipmeqt that are more likely to be overloaded as a result
of a contingency) are known to the operator. Those methods _
present an attractive and high speed aiternative. '

The backbone of those methods is .the utilization of the
entries of the Z matrix to predict changes 1in the network,
an idea emanating from Thevenin theorem in linear network
theory. 'The model then is still linear. Howeveér, in spite of
the networg) linearity assumption, the resuits are more
reliable than the ones given by either tﬁé "distribution

- factor™ method or the "d-c load flow". .-

The techniques described so far have a common qualitative
characteristic from a methodology point, of view. They are
all non iterat&ve. Té;;‘inherent feature makes them fast,
easily implementable and suitable for on line applications.
The fact that their results often show considerable
discrepancy when compared with the results of elaborate ac

8
analysis is offset in practice by their simplicity.

ll \ / N Q
Vo B
- -
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1.5. Approaches to steady state security assessment. Linear

iterative methods.

Another category of methods which also gained widespread
acceptance are the so called linear iterative methods. They
eme;ged from the high degree of sophistication ac load flow
solution techniques had reached during the early seventies,
In solving the load flow problem, the so called "elimination
methods”, based on the Newton-Raphson formulation of the
nonlinear 1load flow equations (linearization of the
equations around the initial guess of the desired solution),
replaced the previously used Gaﬁss (11) orientéd technigues
(basedmon iterating on bus voltages$ until voltage mismatches
meet prescribed tolerances). The reason for this is that
elimination methods were found to be more reliable from a
convergence point of view and, most important of ali,
"system proof™. After computational difficulties (need for
inverting the Jacobian at every iteraéion, and storage
problems arising when working with the full inverse of the
sparse Jacobian) were bypgssed (12) via triangular
decompositions and optimal bus reordering, tye N-R schémes
were fully endorsed.

A concept that has been put forward from the early sixties

(13) is the "decoupled" load flow. The main idea is to

facilitate computations of the N-R schemes (making the
Jacobian block-diagonal) by assuming independence between
the\pqal and reactive power flow channels. This kind of
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modeling is baséd on the fact that the transmission of(?eal
power is higly sensitive to voltage angle variations, and
that reactive power flow 1is mainly dictated by the bus
voltagf .magnitudes. Relative | initial inaccuracies -were
bypassed 15) and faster versions became available (16).

In security analysisr\\;he idea of decoupling the real and
reactive power models was applied to give a fast iterative
method for outage simulation. Efficiency was achieved by
simulating the outage'via the matrix inversion lemma and by
avoiding retriangularization of the characteristic matrices
of the two power models (17). ‘
" The most Aattractive feature of the method is its higher
accuracy 6ver the Z-matrix methods. However, it is
considerably slower for real time computatibns and requires
much more coding. o

Another  &approach ‘to the segdrity problem, via
Newton-Raphson,(is to utilize the 1iInverse of the Jacobian
and look at the system from a sensitivity point of view

(18). The contingeﬁcy is simulated by ‘varying the

injections at the buses where the outaged element is

‘conhected, in such a way that the post contingency voltages
.are generated °*with the p;econtingency system topology.
Adopting this approach, voltages of the system have to be
iterated ubon, because the entries of the Jacobian are to be
computed at the post contingency operating point.

Apart from its accuracy, iterative ac contingency analysis
-has the major,advantag;, that a complete post conyingency
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profile of the system is available, while with the Z-matrix
\methods (the higly efficient versions) oniy the selected

"troublespots" are checked. As a resultf‘they can be a g;gat
help when the analyst has lost its "feel" for the systeﬁ*or
is still "debuggiﬁé" it in the planning stage.

The immediate adverse result of equipment outage is usually
the overloading of a certain portion (or portions) of the
remaining transmission network, depending on the severity of

- the outage (if the precontingency load is to be met). Many
of the methods exigking for assessing the post contingency
system profile stress this aspect of the problem.(6,7,8)

However, there are cases where the system is not so robust
when it comes to retaining its precontingency voltage
profile. This is a situation encountered in many systems
still under expansio; (mainly 1in under-developed countries)
and assessing the post contingency voltage profile of the

system may be imperative (9).

7

1.6. Approaches to steady statevsecurity asgsessment. Recent

trends. Pattern recognition-oriented methods.

A good security monitoring scheme must be able to assess
both overloading and voltage changes: That goal gives
another extra credit to linear iterative methods agéinst the
.Z-matrix oriented ones.

As a rule 1in today's power system operation practice, the
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longer the monitoring interval, the better the contingency
analysis. This is due to- the fact that,--om the one hand,
more contingencies can be examined (exhausting, if possible,
the contingency list) and, on the other hand, (if not many
contingencies are being put forward) there is time for
utilization of methods of higher accuracy.

The trend téday is to operate with short;r and shorter
monitoring intervals. As a consequence, time unavailability
is the crucial extra operating consté%int the operator has
to cope with.

It is to be mentioned here that not only secur{ty
considefations are to be taken into accouqt when choosing
the operating point at the beginning of every monitoring
interval. Normally, more than one operating point will have
to be considered, and selecting the appropriate one will be
a- compromise between économics and future system robustness.

The choise of the operating point is, quite often, dictated

by guesswork and policy rather than by optimization of
2

operating indices, because a countless number of factors has

to be considered.

Quite frequently, choosing a specific operatigé ‘point can
be a very 'poor decision if the short term load forecast is
found to be inaccurate or, if the miscaliplation of the
probability of occurrence of a given contingency leaég the
operator to decide to "take chances".

A shift in the operating point reguires preventive control
to be put into effect, and a quick answer to the question of
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security must be provided by the security monitoring scheme,
if we are to endorse the ne; oberatinglboint (most likely
suggested by economics).

From the above discussion it can be seen that there 1is a
pressing need for both fast and "at the same time reliable
security monitoring schemes. What one class of methods seems
tol offer in accuracy lacks in speed and eaée of
implementation. Reasearch has been directed towards bridging
those conflicting but desirable features. Considerable help
emerged from the availabilty of high quality hardware which
increased coAsiderably the much needed on-line computational
pover. ’

At the same time though, the cost of off-line computations
has been reduced and this fact gave engineers the idea to
look at methods relying on a fair amount of off-kine
computations. The idea of applying "Pattern Recognition" for
power system security analysis was born (19,20,21,22).

The main -reason for pursuing development of “Pattern
Recognition”, and generally simulation oriented techniques,
is the fact that information gathered via off-line
computations can be used, very quickly, for on line
decisions. This way, the real time unavailability constraint
is circumventeq.

As the term "Pattern recognition" suggests, those methods
consist in, discriminating a secure from an insecure
operating point by simply taking a glance at the operating
state of the system. There are "system configurations under
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specific load" or "system loads under given configurations”
that will constitute safe or unsafe operating points.

The operator then understands the word "pattern"” as: "a set
of morpholdgical and parametric characteristics of‘the power
system, which contains the necessary information to predict
a certain outcome."

This dissertation proposes a secufity monitoring scheme |
which is "Pattern Recognition” motivated.

The methodology and the bhilosophy of uFilization of
Pattern Recognition, as well as how it can be apﬁlied to
electric power system security evaluation are treated in

detail in chapter II.
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, | CHAPTER TWO

METHODOLOGY AND OBJECTIVES

2.1. On the engineering methodology

Generally speaking, when a specific problem is to be

tackled, in any engineering field, the mathematics necessary
for facinc it will always be a direct consequence of both
the physical pictu;e and of the extent of modeling required
to meet certain operational or design standards.

Ho@ever, the methodology used is not only a function of how
refined the solution will be., This is certainly the
objective, but, very often, we are faced with préblems that
are hard both to formulate and solve.

Either the complexity of the problem is such that modeling
ig formidable (if not impossible in realistic terms), or the
mathematical models that have been suggested are such that

they either distort or obscure the problem in such a way as

. to render any potential solution invalid.

Before the explosion in computer capability, during the
seventies and eighties, the trend in devising engineering
mathematical. models was to’ get a clear physical
understanding of the problem and then to construct a good
analytical modelidescribing thé phenomenon in question. The
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bas{c motivation was, and still 1is, to obtain gquick, exact,
elegant and easy- to‘use results.

The computer, over the years, familiarized engineers with
numerical analysis, converging iterative techniques, and
with the availability of considerable, and still growing,
computational power.

Under the circumstances, simulation methods, which up to
now have been put aside due to the lack of both hardware and
software ayailability, become more and more popular.'

Their validity both in the exploratory stage of many hard
problems, and in design has been repeatedly proven.

However, analytical methods are always more preferable. As
a rule, when one resorts to simulation methods, he simply
confesses his inability to face the problem analytically.

A drawback of the simulation methods is that they can be
lengthy, and requife a lot of coding and computational
power. Their greater advantage 1lies in the fact that a
reasonably good physical understanding of the problem can
lead to very useful results. *

Analog simulation served electric power engineers for
decades for power flow studies, economic dispatch, transient
and steady state security assessment.

From the early sixties, digital simulation/}ecengd a lot
of attention and today power engineers are equipped with a
good variety of reliable software to accomodate their needs
%or planning and off-line studies.

Problems encountered in power system operation are best
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suited for simulation-based technigues because, on the one
hand, they are very hard and complicated to model
extensively, and, on the other hand, accumulated experience

over the years is available.

Pattern Recognition methods are classified as simulation

oriented methods because, firstly, they require considerable

computétional effort and, secondly, they base. their

conclusion on "raw" data processing,

9

{

2.2. Context of Pattern Recoqgnition,

Attempting to define the term "Pattern recognition" 1in a
generally accepted way is not easy at all. Many authors
refrain from giving formal definitions and rathér resort to
examples suggesting the type of problems that are usually
tackled by Pattern Recognition. \Others doubtp that a
definition even exists, because they support the opinion
that Pattern Recognition is not a field of discipline but is
evolving into a multidiscipline, due to the diversity of its
applications and the variety of developed methods by many
scientists working on specific problems in virtuaily every
domain. .
éIn (23) Watanabe suggests that: " Pattern—-Recognition ig a
vast and explicit endeavour at mechanization of the most
fundamental human function of perception and concept
formation.",
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Probably, tﬁe,difficulty resi@es‘in the fact that neither
the term "pattern” nor the term "recognition” are formally
defined and generally understood. Sayre(23) stresses the
fact that: "We simply do not understand what recognition is.
And if we do not understand the behaviour we are trying to

simulate, we cannot reasonably hold high hopes of being

.

successful in our attempts to simulate it." And he adds "to’

recognize an object is to perceive it, or have perceived it,
and in addition to be able to identify it".

Meisel(23) defines a "pattern" as follows: "In their widest
sense patferns are the means by which we interpet the
world."

Attempting to .efine ‘the term "pattern™ in a rigid
axiomatic way often leads to obscurity and one . feels not\
comfortable (if not a mathematician) to pﬁrsue further
mathematical modeling. On the other hand, verbal definitions
trying t9,achieve generality, even skilfully, often tend
towards vagueness.

The context of Pattern Recognition is so vast that, as Nagy
points out (24) it is relatively easy for the experienced
pattern recogriizer to describe almost any field of
scientific and humanistic activity in terms of Pattern
Recognition”.

Nowadays we are not surprised to assess the fact that,
Pattern Recognition motivated techniques found applications
in countless fields, ranging from simple differential

diagnosis in medicine to most sophisticated target
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recognition systems for modern missile guidance technology.

Working with Pattern-Recognition provides a certain
framework for both terminology and methodology, and
researchers in various fields face essentially the same
problems, ‘but almost always greatly intensified or
simplified by the peculiarities of the situation. ‘

This is the seat of another difficulty. One method that
seems to be working very well for a specific application can
be very misleading for another, in spit; of the fact that
both problems can be perfectly gormulated as problems
solvable by Pattern Recognition,

A direct conclusion of the above fact, for anyone who tfies
to approach a specific problem using P.R, is that first of
all he should be very reluctant in transposing techniques
from other fields that gave spectacular results. The
philosophy of the utilization of the method, the basic
motivations behind its dynamics and mathematical “Efsenal,
should alwéys be weighted against the particular situation
the analyst has in mind. If this is not done the best he

s .
can hope for is meaningless results.

2,2.1. General Methodology of Pattern Recognition,

The ultimate objective of any P.R. technigque is
classification, By classification we mean the assignment of
specific samples to ’J}ategories possessing distinct
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gqualitative attributés. In the terhinology of P.R those
categories are called "classes". ’

The way to ’achieve mecﬂénization in classifying, is to
accumulate enough ™Mexperience".&nd finally wuse it to make
decisions concerning class membership. The amount of éata
that play the role of accumulated experience are called
"training sets".

The criterion by which classification is achieved is called
the "decision rule" or the "classifier", The process of
developing the "decision rule", taking into account the
"training sets", 1is called "classifier design" and is
accomplished during the "training stage" of any P.R.
process. In other words, '"classifier design”, |usually,
consists in developing. a method for condensing the
intelligence scattered in the "training sets" and presenting
it in a form convenient for future reference.

From the above short discussion, it is obvious that, since
the classifier is designed with direct re%erence to the
-"training sets", the degree of relevance'of the information
contained in the training set will be the crucial factor
governing future classifier performance. To achieve data
relevance in the training set, means must be found for
extracting the most prominent information out of the mass of
collected measurements or observations, This task by itself
is the objective of the so called "feature extraction" stage
of any Pattern Recognition problem.

o
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2.2.2. Feature Extraction.

It has already been pointed out that the stage of "feature
extractionf is a very important one. Usually, "raw" data are
collected and the "feature extraction" process task 1is to
"filter out"™ the useful information, discarding the rest.
The reason for doing this is to avoid handling redundant
data bases that render the process cumbersome and
uneconomi&al. In many cases, redundant information can mask
the importance of sensitive factors . and lead to erroneéous
results. The "feature extraction” problem is sometimes a
formidable task for the pattern recognizer and many ways of
tackling it pave been proposed.

When we have two or more classes, feature selection becomes
the choosing of those features which afe most effective for
showing Slass separability. The strategy for succeeding in
this activity lies in mathematically expressing indices éf
class separability, and implementing them via optimization
methods (25). Statistical analysis, based oﬁ the correlation
of features, <can also provide insight concerning tﬂ;
possible redundancy of the entries of the originally
selected pattern vector.

If termiﬁology from state space systém analysis 1is used,
feature extraction can consist in lowéring_ the
dimensionality of the'ariginal pattern vector, by retaining
the most effective variables. 'IE can also be viewed as a

mapping procedure to a*lower "dimensional space. This new
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space of reduced dimensionality is called "feature space".
In applying Pattern ﬁecdgnition to engineering, however,
familiarity of the analyst with the system, the existence of
good mathematical mode;s, or simply . intuition can be of

great assistance.

[

2,2.3. Classifier, classifier design and performance.:

The classifiers can either take the form of direct criteria

" for deducing EpélclaSS membership of a candidate pattern

from simplef/ﬁetric considerations (nearest neighbor rules

26,27,28) or can consist in arriving at expression

. describing analytically the border 1lines between classes in

the feature space (25).

One  should dispinguish between probabilistic and
deterministic decision maki?g. 1f the probabilty densities
of the populations constituting the classes are known, the
problem can be formulated in terms of statistical decision
making (29). 1In case the densities are notwknown, we can
either resort. to techpiques of density estimation (and
reduce the problem to statistical hypothesis again), or
apply the so-called non parametric decision making, where
distrihution-free classification criteria have to be invoked |
(30,31,32,33,34).

In deterministic decision making, no probability densities

- govern the class populations (there 1is no overlapping

v 8
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between them) and we enjoy complete class separability.
However, the separatrix (or separatfices), i.e the curve (or
surface in higher dimensions) expressing analytically the
claés bordérs) can be quite complex and Lhave a higly
irregular shape. Fftting schemes, based on eithér least
squares, or penalty factors aspects, have been wutilized in
applications of this sort but the main difficulty resides in
the fact that an "a priori" assumption has to be made for
the mathematical expression of the separatrix. As a
conseguence, any acéuracy claimed in training the classifier
will simply refer to its parémeéers while the mathematical

expression by itself still remains guestionable.

Once a classifier is designed, the main concern of both the,

designer and, especially, ‘of any potential user, is its
\'degree of correctness (35,36;37). Criteria have to be
selected that characterize impartially the performance of
the classifier. Obviously, if something is to be avoided as
much as possible,- it\is wrong decision making caused by
misé{sssification.
A "tast set" is used to assess classifier performance. The

analys} provides\the classifier with a set of patterns

(normai??‘nﬁf’ﬁggg during training) and lets the classifier

decide their class membership. The true class membership of

the elements of the "test set" has already been determined -

by simg}ation or other means. The number of ‘improperly

assigned elements of the "test set"™ when compared to its
, ‘ ,

cardinal number, gives a measure of the "misclassification

~ . ' 39
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error” which is to be expected in the application field.

The "miselassification error" is a ﬁidely recognized
performance index for classifier performance. Research
indicates that both»the impartiality of "test setﬁ selection
and its cardinal number are of significant importance.

The above mentioned "Monte Carlo" motivated way is still
the widely applied simulation alternative to the formidable
problem of determining analytically the misclassification
error. So far, analytical expressions giving the
misclassification error exist -but, unfortunately, refer to a
very small numbers of cases related to probabilistic
decision making (25,29), v

Misclassification will always occur, and the goal 1is its
minimization rather than its elimination, Good classifiers
result in small misclassification-errors, but optimal ones
give the minimum possible.

Simplicity in classifier design is a wvery desirable
' property‘%nd{ very often, analysts are more than willing-to

trade ultimate accuracy in exchange with inexpensive, simple

and fast decision rules.

2.3, Pattern Recognition and Power Systems., Methodologies

and modeling.

Assume that there exist in the state space of an electric
power system one or several surfaces having the property of
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separating the states of “the system possessing a certain.
attribute (being steady state stable,-transiently stable,
etc) from the states that do not..This surface can begcalled

A}

a "separatrix" because it separates those two classes of

El

system states. (\\

Assume, further, that an analytical expression for the

.separatrix is available (the variables being the coordinates *

of the chosen space). If such an analytical expression is
available, any state can be checked for its location with
respect .to the separatrix by simple substitution in the
given surface equation. Negative, positive or zero values
will imply that the given state 1is located in the interior,
exterior or on the separatrix. N ‘
The enormous potential applications of the availability’ of
such separation surfaces is obvious. Decision making is done
with the negligible cost of simple function evaluation and,
most important of all, extremely quickly.

1y
-In transient stability studies, for_'instance, it is well

’ﬁnown that assessing the stability of a multimachine system

with respect to a ‘sbedific disfurbance, frequently requires
the ' numerical integration of a systém of differential
equations for a period of 2-3 minutes. Real time numerical
intégfaéion is, of course, out of the question and Pattern
Recognition is an attractive alternative.

\

The relevance of the methodology has been pointed out

~

(38,39,40) and results from the industry (41) indicated the

feasibility of the approach. Direct extensions of those
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methods to the problem of steady state security evéluation
became available concurrently (39,40).

It is to be mentioned here that the separation surface
aspect was also used for identifying, via simulation
methods, steady state and transienHNQprility domains and
for control purposes ( 42,43,44,45,46).

However, tackling operation and control problems in power

systems via P-R is not as straightforward as it may seem

from the above discussion:

Being forced to work and make decisions in a state space,
questions concerning the dimensionality of such a space are
the first to arise. Any power system has a large number of

B 7 '

variables the exact knowledge of which is vital (bus Yoltage
magnitudes, angles, active loads of' the buses, reactive
loads, reactive source capability for compensation, active
source power limits, etc.) in deciding whether or not a
given load demand pattern is feasibie.\‘lf»transients are
analyzed, other variables such as, generator reactances,
parameters representing voltage requlators etc, have also to
be considered.

’

. Generally, the original pattern vector can turn out to have

" numerous entries:‘ “1f all " of the variables initially
considered are kept, the dimedéionality of the feature space
becomes very large and, same time, the number of
training points required decent classifier\ design
becomes prohibitively large. . Implementing, a good feature
extraction scheme y(38,39,g0),is not always a cure to this
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problem because power systems are large and a good number of
variables is needed for proper representation. As a result,
the variables selected are often application oriented and
engineering judgement as well as knowledge of $ystems
peculiarities are of great assistance. In our case, for a
given system configuration, the load "demand will be the
determiniqg factor for the voltage profile. As a
consequence, the bus voltages are not included in the
feature vector (being <considered dependent variables).
Another reason for not <considering the precontingency bus
voltages as features is the fact that, 1in today's systems,
transmission bus voltage magnitudes are controlled (by
either static or rotating devices) and do not Jexperience
appreciable variations. In a further effort to reduce the
number of features the buses were assumed to have constant
load power factors. This means that the pattern of variation
of‘the reactive component of the load, for a specific bus,
follows the one of the active component by a proportionality

constant. This assumption has been successfuly utilized in

the past by the author and others (47,48,49) under similar

modeling circumstances.
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2.3.1. Pattern Recdgnition in power systems, Classifier

considerations.

The training points are obtained’/from actual simulations

(load flows) and labeled accordingly. If the 1load flow

converges the operational point wunder consideration is
considered to be steady state stable, if not it is
considered to be steady state unstable and located in the
exterior of the sought separatrix.
The classifier itself is a very interesting aspect of the
problem of Pattern Recognition application in power systems.
Our prqblem, being a two class problem, consists in

discriminating between, say, steady state stable and steady

state unstable states in the feature space. Membership in

either of those two classes 1is not determined by

.probabilistic arguments, but by actual operating constraints

. _— Lo . .
uniquely determining the state under consideration as being .

sﬁable or not. What the analyst i? forced to do, at first,
is to guess the analytical form the separatrix could take
and then, secondly, to train it, Predicting the analytical
expression of the separatrix in a high dimensional space is
a very daring undert&king since often tﬁe very existence of
such a separatrix will not have been proved.

Linear classifiers were at first examined (38,39,40) but at
the same time the higher accuracy of second order
classifiers was pointed out. Linear classifiers have also
been wused for identification and control purposes but,
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again, theirlperformance was found to be inferior to the one
higher order functions exhibited (44,45).

However, increasing the order of the classifier does not
necessarily mean better accuracy (i.e further reduction of
the misclassification error). Problems caused by overfitting
may render the classifier useless and unreliable for points
located near the surface it analytically represents. In
spite of the 1initial appeal of polynomial discriminant
functions (51), experience shows that they can be quite
misleading. ' A wide variety of fitting schemes was also
examined (least squares, generalized least squares, etc) as
well as potential function methods (50). The latter approach
is based on the idea that the separatrix can be expressed as
the equilibrium border between stable and wunstable points,
each exerting an influence (in the gravitational sense)
around its vicini;y. Although promising, this method relies
heavily on the so called "sSmoothing parameters” of the
potential function, parameters which are determined by
experience and are very much application oriented.

From the above discussion,_ it is obvious that
classiffcation will Dbe poor in the wvicinity of the
separatrix although good results are to be expected
(irrespective of classifier choice) for points located in
nonsensitive areas of the state space. As already pointed
out (52), it pays to know exactly the sets used for testing
purposes when high classifier accuracy is claimed (one may

pick up a testing set in which the secure and insecure
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points, say, are so far apart that artificial discrimination
is easy). ' '

The quest for reasonably good classifiers did not omit
nearest neighbor rules either. The experience of the author
is in ‘accordance, with the results obtained Sy other

researchers (52). Nearest neighbor rules perforhmed

spectacularly well (in assessing the steady state stability

region) for a 3-bus system, but very poorly in higher
dimensions in spite of the fact that generous quantities of

training points were provided.

N

2.3.2, Pattern Recognition in power systems. Tentative

application for security screening.

4
Early recognition of tﬁeygggggwcapital difficulties led the

’

industry to be rather pessimistic when evaluating the
performance of such methodologies (52). i
‘It is of interest to mention that efforts in employing
Pattern Recognition for security analysis were concentrated

in determining directly, with the aid of the separatrix,

whether a given system state is secure or insecure. To the-

N

author's knowledge, no breakthrough is forthcoming 1in
circumventing the inherent difficulties associated with this
line of approach and, accordingly, our expectations from

Pattern-Recognition were far too great,

It is the objective of this dissertation to propose another
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use bf Patt;;B Recognition when tackling the problem of
steady state security of power systems. This dissertation is
not concerned with any sort of security function evaluation
but it, rather, introduces a Pattern-Recognition motivated
security screening technique.

It 1is genérally recognized that comprehénsive security
analysis should include equipment overload computations as

well as the effects of contingencies on bus voltages. Those

tasks can be accomplished éoncurrently on the condition that

ac power flow analysis be’ used. Those methads, however, are

still too time consuming for real time computations in spite
of the degree of sophistication they have reached due to the
development of the decoupled load flow technique (17).

The dilemma can be sslved in several ways. One very popular
approach among utilities is to limit the number of cases put
forward for investigation by the contingency list. This is
called security screening. The cases -which, as shown by

preliminary calculations, require special attention are

-
-

referred to more elaborate ac analysis, while the ones whose
effect on the system is obvious enjoy no special treatment
(53). This screening procedure is initiated at the beginning
of every monitoring interval.

The proposed screening method classifies a given state in
one of the following classes.

- Definitely secure %

- Definitely insecure

- Ambiguous

47§

- a5



Cases classified as ambiguous are referred to more
elaborate ac analysis. The advantages ;f such a scheme are
opvious: )

- The operator does not have to be concerned with any sort
of misclassification error, a quantity on the one hand
practically impossible to compute accurately and on the
other hand of virtually no use whétsoevera when assessing
the correctness of a decision, ™

- The scheme 1is faster than today's screening methods
because it is P-R based.

- Decisiéns as to whether the state\under consideration is
secure or not are based on data obtained by real, acéurate
system simulation studies. In todays schemes,' however, in
order to achieve speed we have to rely on“ linear non

iterative methods whose accuracy has long ago been

recognized to be guestionable (see chapter 1),

2.4. The proposed security screening scheme,

¢

The system is considered in its precontingency topology.
The state space of the system is defined as the space of
real power injections of the buses experiencing significant
load variations. The steady state stability region (load
flow equations feasibility region) is identified indirectly
via two sets of points, one containing steady state stable
training points and the other containing steady state
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unstable training points. This is accomplished wvia special
selection algorithms (see chapter III).

- 1. A hyperellipsoid 1is constructed containing as many
steady state;stéble tra}ning points- as possible but no
unstable ones. This set will henceforth be called
"confidence hyperellipsoid of the stable states".

- 2., A second hyperellipséid is constructed enclosing all
steady state stable points but as few unstable training
points as possible. This set will henceforth be called
"confidence hyperellipsoid of the unstable states”. The
motivation behind 'such definitions is the following: A state
falling in the interior of the "confidence hyperellipsoid of
the stable states" is definitely stable, while a state
located in the exterior of the "confidence hyperellipsoid of
the unstable states” is unstable. Any state found 1in the
zone located Dbetween the two hyperellipsoids, is
characterized as ambiguous. /

-3, A contingency (line or tr;nsformer outage) is simulated
,as a change in the injections of the power system without
altering its precontingency topology (18,54). The location
of the new state, as defined by the new injections to
;eflect the outage, is simply checked with respect 'to the
two above mentioned Hyperelligéoids, already determined for
the  system at precontingency topology. Thus, with this

technique, the load flow feasibility region of the base case

system is used to evaluate the effects of the outage.
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CHAPTER THREE

In
ALéORITHMIC PROCEDURES FOR TRAINING POINT SELECTION.

\\

~

|

3.1. Introduction. Objectives of the selection scheme,

—

As pointed out in the previous chapter, the implementation
of the proposed security scréening scheme relies heavily on
the knowledge Of the feasibility region of the
precontingency transmission system. For reasons explained
earlier (chapter 2), the éf}bft, when identifying the locad
flow feasibility region, has not, in this study, been
directed towards deriving an analytical expression for the
separatrix in the space of ihjections. Rather, two sets of
points have been selected to characterize indirectly the
sought feasibility region. One set contains steady state
stable training points (points that represent feasible
injections for the power system). These points are,
obviously, located 1in the interior of the feasibility
region. The other set of points contains steady state
unstable training points (points that represent injections
which either cause the load flow not to converge, or impose
violations of the operating constraints). These points are
located outside the feasibility regqgion.

When such an approach is to - be adopted the following

50 i

e e < e s ety £ pren e



questions are in order:

- How are those points to be selected in order for gpem to
provide a fair outlook of the region under investigati&ﬁ ?

- How many of those points are needed for proper region
identification ?

The second of the above questions is not only a very hard
one to answer but, also, one that a powver sjstem analysf
regards with special interest. This 1is because training
samples are expensive to obtain. A training point; in our
case, is the result of a full scale ac 1load flow analyéjs,J
which requires a substantial amount of effort. There are
cases where the problem of costly training sets can become
much more acute. For instance, training points needed for
transient stgbility region identification, in " the case of a
multimachine system, would be far more costly because
numerical integration of the eqguations describing the rotor
oscillations requires far more computational effort, than
solving a set of nonlinear load flow equations. -

The fact that training samples are costly to obtain is one
of the peculiarities of P-R when applied to power sysfems.
It becomes obvious that, since power engineers do not enjoy
the privilege of training 'point availability (taken for
granted in virtually every other domain of scientific
research), training point economization is imperative. It is
very interesting to mention that, this fact has not
attracted the attention it deserves, and, to _the author's
knowledge, very 1little has been done to come .up with
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cost—-sensitive algorithms for training sample selection.

Redundancy in training point availability would render any
region identification scheme uneconomidél and cuﬁbersome. 6n
the other hand, if fewer training points than needed are
available, reduced ‘accuracy renders the scheme useless.
Proper engineering, consists in finding the best compromise
between accuracy and cost, a question very difficult to
tackle especially when the nqmber of dimensions is high,

The scheme proposed herein for training point selection
provides a performance index of this kind. As explained, the
number of training points needed (the minimum required) is

reached when the orientation of the confidencé

hyperellipsoids is not likely to change in any appreciable

manner when additional - training points are kgg}uded in the

training sets (see Appendix I1I). /.

3.2. Algorithm design quidelines, : .

¢

3

When selectipg points for region identification it pays to
bear in mind tﬁat:

-~ The points should be as close as possible to the
separatrix. As a matter of implementation, the distance
(consider any metric) between a stable and its corresponding
unstable point (the algorithms provide the training points

by pairs, i.e one stable one unstable) should be kept within

specified limits (thus minimizing the zone of uncertainty
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for the location of the separatrix).

- The fewer unexplored areas the surface pgssesses the more
complete our knowledge about it will be(//il a consequence,
if is imperative that the selection algorithm, supplies the
training sets with elements rep;esenting every area of the
separagfix. Overidentification of a region will provide,
perhaps, better results locally but, if the operating point
is shifted towards least identified areas, the results will
be very misleading.
the case where an analytical expression for the separatrix
is sought. The basic motivation behind this line of research
is to design classifi;rs with a certain touch of optipality.
By optimality we do not mean the minimization of any
statistically motivated performance index of any kind. What
the researcher 1is actually seeking, in the paragraphs tgq
follow, is training sets that make the most ouf df the least
possible number of training samples, thus minimizing the—
design cost of any potential c%assifier, with the least
compromise concerning its accuracy.

The above brief assessment constitutes the design
guidelines for the selection algorithms derived and
implemented by the author. Accordingly we will be looking
at:

1) Developing algorithms for the selection of "training
samples.

2) Testing those algorithms: assessment of steady state

53 .
N



[

stability will be attempted for simple power transmission
systems using the training sets resulting from the selection
algorithms,

"Two algorithms for training sample selection have been
devised and implemented. They are examined in detail in the

paragraphs to follow. » -

3.3. Algorithm 1. Description, \

-

This algorithm is a Monte Carlo based "random walk" scheme.
It consists in tracking the separation surface .and
collecting stable and ~ unstable training points in the most
interesting part of the state space, i.e in the vicinity of
the separation surface. The algorithm reads as follows:

1, Start with a stable (s) and an unstable
(u) point.

2. Generate randomly a "knee" point (a) having
coordinates such that:
The ith coordinate of the point (a) lies in
the interval spanned by the ith coordinates
of (s) and (u).

3. Generate a second "knee" point (b) as-above.
The "knee" points (a) and (b) define two (2)
trajectories.

4, For the first trajectory:

Examine the "knee" point (a) as to whether is

stable or not.

-1f stable exit with a pair of training points
one stable (the knee p01nt) and one unstable
(u). Define a'=a. ¢

-If unstable blsect the segment sa and define
the new point a'

Exit with a pair of tra1n1ng points, one sta-
ble (s) and one unstable (the "knee" point).

-Store the training pair in data sets.
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5. Define p01nt b' for the second trajectory
* exactly as a' ,

6. Points a' and b' are stable, by construction,
and uniquely, altHough randomly, defined.
Conduct a search first along direction a'b' and

/;///// then along b'a', Let the step for the search be

mod(a'b').
Two pairs of points result from the searches:
- s',u' (s' stable, u' unstable) ‘from the
search along a'b'., |
- s", u"(s" stable, u" unstable) from the
search along b'a’'

7. Select the pair which is the more remote from;
say, a'. Assume that pair is (s',u').

" 8. Replace s and u with s' and u' respectively.
Return to step 2., :
It is apparent that this algorithm provides training points
by pairs (2 pairs per iteration, one. pair per trajectory).
Each. pair contains one stable and one unstable point.

Fig.3.1 illustrates the algorithm in two-dimensions.

o

Fig.3.1: Random walk "Monte Carlo" scheme illustrated

in two dimensions.
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3.4, Testing algorithm 1. Results.

The algorithm has,' at first,.been teéted in.two and,
later, in higher dimensions. In two dimensions two testing
procedures were used. At first, the tracking capability of
the algorithm has been tested on given geometrical figures

(known separation surfaces).

A circle of a certain radius, and an ellipse were used.

Fig.3.2, shows the circle which was to be tracked. The
"dots" represent the "steady state stable" training points

. A
(in this particular case they are simply points located in

" the interior of the geometrical figure) and +the "crosses"

represent the "steady state unstable"” training points, as
produced \by the two dimensional version of the proposed

algorithm. The plots were performed in the ZETA plotter at

' McGill (IBM AMHDAL). Fig.3.3 illustrates the ellipse which

~

.was to be tracked., The "dots" and T"crosses" bear the

previous interpretation.
The second testing procedure in two dimensions was to
generate meaningful test sets.(the testing points had to be

located close to the training points) and assess the
%

‘relevance of the selected training samples. The test points

are also indicated in fig.3.2 - and fig.3.3 (shaded
triangleé). The bounding squares indicate the area inside
which random generation of the test points was restricted.

The classifier used for the prelabeled test points was the

/

~ ‘nearest neighbor rule. Many reasons contributed towards that
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selection, At first, since testing procedures were under
implementation, simplicity was a very desirable factor,
However, reiia$ility was also attained at the same time,
because the separatrices under consideration complied with
the conditions for admissibility of the decision rule. To be
ﬁore specific, the surfaces (curves in our case) under
identification were smooth and the two classes enjoyed
complete separability (26).

The misclassification error for the generated test sets is
also indicated in figs.3.2 and 3.3 and, as seen, is qgite
low,

, .

As ‘a final test for the two dimensional case, the actual
feasibility region of a 3-bus system was identified. The
data for the system are given in Appendix I. The two axes
representing the two variables of the state space refer to
the real power injegctions at buses 2 and 3. Bus 1 |is
considered to be the slack bus. Buses 2 and 3 were assumed
to be voltage controlled buses (unlimited capability of
reactive-compensation) ‘

Fig.3.4 illustrates the training points that resulted after
applying algorithm 1 (the "dots" represent feasible
injections and the "crosses" correspond to non-feasible
injections) as well as the test points generated for
misclassification error assessment. The decision rule used
was again the single nearest neighbor rule. The
misclassification error was, again, found to be quite
acceptable in spite of the fact that, the region wunder
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identification somewhat violates the . admissibility
requirements of the chosen decision. rule (there 1is no
guarantee whatsoever that the feasibility regién will be

smoothly shapéd, especially when the system consists of

transmission lines with rather diverse electrical parameters -

and lengths).

58

—-



—

0 S

b N

MISCLASSIFICATION
ERROR IN PERCENT

0. 04
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Fig.3.4: Algorithm 1 applied in the case of a 3-bus system.
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3.5. Improving the misclassification error. Condensation.

When nearest neighbor decision "rules are employed metric
considerations are ultimately used for decision making
concerning class membership. In our case, for instance, the
usual Euclidian metric was used.

By construcpion, as can be seen from figs.3.2, 3.3 and 3.4,
there is a zone of uncertainty between the set of stable and
unstable training points. Any test point located in this
zone of uncertainty runs a higher risk of being
misclgssified because, unfortunately, the previously
described algorithm cannot tell which point from a specific
pair (the stable or the unstable) 1is. closer tb‘ﬁthe
separatioﬂ surface.

Any remedial measure to minimize this zone ° of uncertainty
will evéntually reduce tﬁe misclassification error. As a
matter of implementation, "condensation" of the training
sets was introduced before computing the misclassification
rate,

The condensation procedure consists in reducing the
distance (below a prespecified threshold) between the stable
and -.the unstéble point of every pair. The condensation
procedure, as implemented here, reads as follows:

]

1, Consider the first stable (s) as well as the
first unstable (u) training point from the

already available uncondensed training data sets. v

9 -

2, Compute the Euclidian distance between them.
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3. If the computed distance is less_than the prespecifi-
ed threshold go to 5. Otherwise continue to 4.

4, Bisect the line defined by the points of the pair.
Let the new point resulting from the bisection be
the  point (n),

- If point (n) is found stable replace point (s)
with point (n). Return to step 2.

- If point (n) is found unstable replace point (u)
with point (n). Return to step 2.

5. Store the new stable and unstgble training points
in new data sets.

6. Move to the next pair of points in the data sets.

it

The condensation procedure has been implemented and applied
in all the above mentioned test cases. Fig.3.5 refers to
circte identification after the data seté pictured in
fig.3.2 have been condensed. Fig.3.6 refers to ellipse
identification with they. data sets pictured in fig.3.3
condensed. Finally, fig.3.7 illustrates the condensation
procedure in the case of the actual 3-bus -system (compare
with fig.3.4). Computation of the misclassificétion error
(yith the same test sets) using as training sets the
c&ndensed data sets, indicates an improvement in the case of
the circle. In fact for this particular case the
misclassificatioﬁ error has been halved. However, in the
remaining cases the condensation procedure had no immediate
effect, in the sense that the - misclassification error
remained unaltered. In spite of the fact, though, that the
condensation procedure has not affected the
misclassification error, simple inspection indicates that
the condensed training sets are superio} candidates for any

potentially applicable fitting scheme.
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Fig.3.5: Circle identification. Condensed training sets.
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Fig.3.6: Ellipse identification. Condensed training sets.
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3.6. Algorithm 1. Numerical experience. Shortcomings and.

limitations. Search direction triviality.

L

1t is "apparent from the déscription of the algorithm
that éhe "knee™ points are randomly generated. After
identifying a' and b' the searches proceed with a steplength
of mod(a'b'). Numerical experience in two and higher

dimensions demonstrates that, freguently enough, the points

— o .
~a' and b' end up being located very close to each other.

Thﬁs cgﬁses difficultiesdgduring the searches because the
search direction itself is ill-defined.

In the event of such a situation, one is forced to generate
new "knee" points that will, in turn, produce points‘a' and
b’ positiPned in a well-conditioned@ manner. It has been
observed that this phenomenon is encountered when the
distance between the initially chosen points s and u is not
substantial.

If one wants to avoid excessive condensation, it pays to
choose the initial peints (s) and (u) close to each other.
Such‘a choice, however, increases the risk of encountering
"search direction triviality". Oon the other hand, trying to
avoid the above mentioned numerical degeneracy, -excessive
condensation may be ‘imperative increasing the cost of the
selection scheme ., -

As a matter of implementation, when cpding algorithm 1,
special sentinels (mod(a'b')< threshold) were used to detect
"search direction triviality".
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3.7. Algorithm 1. Numerical Experience. Shortcomings and

limitations. Subspace restriction,

Assume that points a' and b' share one common coordinate.
:Inltwé dimensions, this simply means that the two points are
located on a line parallel to either one of thevcoo;dinate
axes, (Sharing one common coordinate in higher dimensions
means that the two points lie on a hyperplane of similar
attributes).

I1f points a' and b' have one common coordinate, points s’
and u' will share the very same coordinate. Entering the
next\iteration, the newly generated "knee" points will, by
construction, share the same coordinate as well.

Thué, the algorithm will keep providing training ‘points
located in a subset of the space of interest (a straight
line in iwo dimensions, a plane in three, a hyperplané in
higher than three). Fig.3.8 illustrates the "subspace
restriction" degeneracy as portrayed in the two dimensional
case.

If points a' and b' share one common coordinate, we are
forced to generate new "knee" points defining new
trajectories until the ‘resulting points a' and b’ enjoy
complete coordinate independence. Numerical experience
shows that "subspace restriction" occurs, frequently enough,

in higher than two dimensions.



3

3.8. Algorithm 1, Numerical Experience, Shortcomings and

limitations. Proximity effect,

It 1is very probable, due to the nature of 'rapﬂoﬁiy‘A
conducted searches, that point:'s' is extrémélf close to the
separation sukface. Assume fhét this 1is the case. Then;
points a' 4nd b' will be found to be’ located even clésér.‘r

A simple glance at the algorithm. reveals that, training
points will continue to be provided’ but, they will be
collected from a véry restriéted region of the separation
surface, i:e the region in the neighborhood of s'. ' The
algorithm w{ll not be ablélto transfer the ‘search to other
areas of the state space and the result will be
overidehtifiqation of the specific part. After exhausting ’
the predetermined number of iterations, the training sets
will contain redundant information, fo say the . least. The
geriousness of the "prgximityﬂeffect is further enhanced by
the .fact that is very ha;d to detect. One effective and-
easy to implement méthod t9 deal with the problem was found
tb be "bactracking". If "proximity effect" is detected point
sL;is replaced by point s". Point s" is located on the line
d;fined by s' and u' in the direction of the stable(trafning
samples and mod(s's")=mod(s'u'). Fig.3.9 illustrates - the
effectiveness of this "backtracking" manoeuvre in two

-

dimensions,
Early detection of the "proximity effect" is imperative
because, this degeneracy, literally neutralizes a
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ednsiQerable number of iterations, rendering the procedure
both "~ inefficient and incomplete. Detection rests on the
'feet that an immediate consequence of the "proximity effect”
is thet ﬁointsla‘ and b’ .will be located extremely close to
point s'; Th1s can be revealed by direct comparison of both
mod(s'a') and mod(s b') w1th prespec1f1ed thresholds,
Increasing, the threshold values,’the scheme will simpl&b
become more. coﬁeerQative wita; more "backtrackings" than
needed. But :this was ,found to have no /impliéations'
yhatsbeverp '

As' a  final comhent on..the "proximity effect", let us

mention that, it appears with various degrees of severlty,

and.it was found to be almost unavoidable in hlgher than two

. dimensions. Severe versions of it can render the algorlthm

"virtually useless..
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3.9. Algorithm 1. Overall Assessment, -

When conceived, this algorithm seemed simple and easily
implementable. That was the reasoﬁ the author pursued its
performance to a considerable detail. Unfortunately, the
complications associated with the algorithm make the author
reluctant to apply it to real life. power system
applications.

It can be seen from the description of the algorithm that
the essential step is the transfer of searches to less known
parts of the separation surface (step 6). The main
motivation behind, search selectivity was to achieve
impartiality in training point selection, ‘ ft has been

observed, however, that such impartiality 1is not always

achieved, especially in the case where the region under

identification portrays ill-conditioned characteristics
To be more specific, L'if one omits the rather obviou
complicatéons arising from _Yocal separation surface
irregularity, the algqrithm has a tendency to overidentify
certain regions. |

One extra reason for unattractiveness, when evaluating
algorithm 1, is the fact that a considerable number of
simulations could be 1lost if any of the ab?ve“ mentioned
degeneracies are repeatedly encountered during the course of
training point selection.

Under the circumstances, the author was more than motivated

to explore other algorithms for training point selection.
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Algorithm lrwas simply a reference pole for further research

and as‘such éhould be viewed hereinafter,

3.10. Algorithm 2, Potential functions.

The concept of potential function in the context of Pattern

/

Recognition engineering has assumed different meanings over
‘{‘r} f

the past two decades. The idea can perhaps be best traced to

Parzen (59) and his atteﬁpts to construct probability

density functions from the so-called "kernel"™ functions.

Later, the term was used im conjuction with "stochastic

i
A

approximation"” techniques for regression functions
(55,56,57,58). It is interesting to mention that, in all the
above works, there seems to be no direct relevance of the

term "potential function™ with its intuitive meaning.

- In Pattern Recognition engineering, when designing

discriminant functions, one popglar approach consists in
emphasizing the differences between classes, ahd thus obtain
characteristic discriminant funcfions. Such methods are,
often, called "error correction" methods. Another proposed
methodology to approach the discriminant function
identification problem consists in wutilizing only samples
from one class and, then, yield discriminant functions for
that class utilizing only "interclass" information. The

later approach gdave another dimension to the applicability

1

of "potential functions" in Pattern Recognition. Generally,
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the techniques emerged from this research orientation can be
viewed ggs aspects of the more general problem of
reconstru;ting a probability density from samples of the
process, or, of constructing a characterist%c function from
a fuzzy set. )

In the presen: dissertation, however, "potential functions"
will be wused to mathematically express the decreasing
relevance of a sample point Y upon point X as the distance
d(Y,X) increases.

Certain properties are desirable for the "potential
functidn™ if it is to be wused in the above mentioned sense.
These properties can be mathematically phrased as follows:

- £(%,X) should be maximum when X=Y.

) - £(X,Y¥) should be approaching zero for X distant
- * from Y and in the region of interest.

- f(X,X) should be a smooth (continuous) function
and tend to decrease in a monotonous fashion with
the distance between X and Y. .

v : - if £(X,¥)=£(2Z,¥) where ¥ is a sample point, then
‘ the patterns X and Z should have approximately the
same "degree of similarity" to Y.

— ey
. -(%-I\
The function selected here is f(X,Y)= e
where T stands for "transpose”.
3,11. Algorithm 2. Principle,
The potential at point M due to the presence of point Xi
P is, as defined:
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-(M-Xi) [C](M-Xi)
Pi(f&) =€ (3.1)

vhere [C] is the identity matrix of order n (no smoothing
parameter considered), and M and Xi. are viewed as
n-dimensional vectors (n=dimension of the state space).

With r points in the vicinity qf.ﬂ, the potential evaluated

at M becomes:
'—\
T \\_/

-(M-Zi) (M-ZXi) -
e (3.2)
1 ,

LI o R |

r
P(M) = £ Pi(M) =
i=1 i

where I denotes summation over the total number of points

Xi, i=1,2...r. Expanding eq.(3.2) gives:

A

Q n
e , Q=-L(Mj-Xij)? (3.3)

P(M) =
1 j=1

i

Pi(M) =
1 i

U ern

[ e B §

where the outer sum 1is defined over the total number of
points r and, the inner sum is defined - over the
dimensionality of the state space. Mj represents the jth
component of vector M, and Xij thée jth component of vector
Xi. |

Evaluating the gradient at M gives:

i 3P 3P T ¢
VP(M) =[ ~— ...... —]
M, _ M,

where the gradient is an nXl column vector with

L
(Xei-Mi) , i=1,2,...,n

i
()
hMme
o
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Yhigg.sum I is defined over the total number of pointé.“
- Lk = -2 (Xxj-Mj)2? , n= number of dimensions, ‘
j=1
Note that Lx can also be viewed as: Lk= -d2(Xx,M)

The orientation of the “gradient yector indicates the
steepest ascent direction for the scalar potential function
at, a given point. Recalling the meaning behind the
mathematical definition of the "potential function" as used
here, it |is ;oncluded that the \gradient vector points
towards areas of the state space \yhich contain trainihg
points. Accordingly, the negative graééent direction will be
directed towards areas which contaia\ very few training

#points, or none aé all, Those areas of EQe state space a;e

the least explored and, consequently, of hjgh interest. Any

other search direction, but the gradient, is\suboptimal .

3.12. Algorithm 2, Description,

The initial form of the algorithm implemented by th a%thor

s

reads as follows:

, 1., Find a stable (s) and an unstable (u) point.

2. Randomly generate n directions.(n=dimensio-
nality of the state space).

3. Conduct searches along the n-randomly genera-
ted directions with point (s) as a starting
point. Obtain 1 stable and 1 unstable trai-
ning point for every search. ‘
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4, Find the gradient of the potential function
generated by the training points at (s).

5. Generate n random directions in the state
space. :

6. Select, among the n randomly generated di-
. rections, the one with the largest inner
product with the gradient vector,

7. Conduct a search along this direction with
(s) as a starting point.

8. Return to step 4,

Steps 1,2 and 3 are considered to be the initialization
steps of the procedure. At starting, when no training points
are available at all, any search direction is acceptable and
no special selectivity criteria have to be invoked.

In step 6 the selection of a random vector close’ to the
negative gradient rather than the gradient itself was found
to prevent an otherwise .oscillatory behaviour of the
algorithm,

Step 4 deals with the evaluation of the negative gradient
vector at (s). Due to the nature of the "potential function”
used, it is obvious that, points distant from (s) will have
a negligible contribution to the evaluated potential. As a
conseguence, points in more remote areas of the state space
will be of minor importance.

At first, the use of "weighting factors" was considered to
increase the relative influence of distant points. This
approach however was found to have two major shortcomings:

- The choice of the "weighting—factors™ had to be. more
77



or less empirical and, rather, application oriented.
- The scheme became computationally less attractive,

Instead, evaluating the potential at _the mean value of the

available stable training points, was iouﬁd to be a simple

®

and complication-free solution to the previously mentioned

problem. What follows, is the final version of algorithm 2.

hd f

1. Find a stable (s) and an unstable (uj training point.

2. Randomly. generate n directions in the state space of
the system (n= dimensionality of the state space). ,

3. Conduct n searches along the randomly generated
ditections with (s) as a starting point, until n
unstable points are found.

4. Find the mean value of the available stable training
points and evaluate the negative gradient vector at
the mean.

5. Generate n directions, randomly, in the state space.

6. Select as search direction the one, that gives the
the largest internal product with the direction of
the negative gradient.

7. Search along the selected direction with (m) as a
starting point, until an unstable point is found.

8. Return to step 4.

3.13. Algorithm 2. Test Results.

The test procedure and data sets adopted for algorithm 2
are identical to the ones used—for algorithm 1. ~The
—motivation behind such an approach is obvious.
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At first, the algorithm has been tested on simple two
dimensional geometric figures vith well determined

boundaries, in order to assess the impartiality of the

training point selection scheme. Fig.3.10 demonstrates the

results in the case of a circle of radius of 5 units. Dots
|

represent points located in the interior of the circle and

crosses represent points located out of the circle. Shaded |

triangles represent the test points used. It 1is seen that
the impartiality of the trainiﬁg -point selection is
undisputable (no particular area near the separation surface
?s overiden%ified) while, at the same time, a fairly low
misclassification error has been achieved, Fig.3.11l pictures
the same data sets after the condensition procedure has been
applied. Observe that the misclassification error has been
halved.

Fig.3.12 represents the results for the case of an ellipse.
"Dots", ‘"crosses" and "shaded triangles" bear the same
interpretation as before. * Note, that in fig.3.12
condensation has already taken place. It 1is seen that,

again, the misclassification rate is low, If instead . of

adopting the final version of algorifhm 2, the initially’

proposed one is applied, the results are as in fig.3.13. It
is seen that, in spite of the condensation effort, the
misclassification error 1is doLbled and, furthermoreﬁ local
overidentification is more pronounced.

Finally, the —experimental 3-bus system was used for
comparison burposes again., Fig.3.14 indicates the training
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sets as resulting from the application ofl algorithm 2.
Condensation has also been carried out. tég&s" represent
steady state stable injections, "crosses" represent
unfeasible injections and "shaded triangles" represent the
test set. It is seen that, at first, very low
misclassification error -has been achieyed (only one out of
50 test points wused was misclassified) and, at second,
impartiality of the selected training samples 1is attained.
~Compare Fig.3.%4 with Fig.3.7 (identification of the*J
feasibility region via the initially considered "random
walk" scheme).

‘ Al though the misclassification error is not altered (for
~the given test set) it is seen that the training samples
obtained via the "potential) function" approach (Fig.3.14)

are far more preferable than the ones portrayed in Fig.3.7.

o
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Fig.3.1l: Algorithm 2 . Circle of radius 5. Condensed sets.
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Fig.3.12: Algorithm 2. Ellipse in two dimensions.

Condensation of the training sets applied.
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Fig.3.13: A‘lgofithm 2 initial version. Ellipse in two

y dimensions. Training set condensation applied.
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CHAPTER FOUR

CONSTRUCTION OF THE HYPERELLIPSOIDS OF CONFIDENCE.

4.1, Introduction. Statement of the problem.

In the previous chaptér, algorithms for training point
selection have been presented and examined under the
qriterioﬁ that they satisfy two major requirements:

- Training point economization.

- Training point impartiality for global indirect region

identification. v

Algorithm 2, employing "potential functions", was found to
be the best compromise among the selection échemes the
author has been experimenting with. Applying algorithm 2,
two sets of training points resulted. One set containing as
elements points located in the interior and, another set
containing as elements points located in the exterior of the
region of inte;est. It is, again, emphasized that it is not
the inténtion dof the author to seek analytical expression
for the separatrix but, rather, to &establish regions of
error free decision making, while at the same time
minimizing regions of ambiguity.

Consider a hyperellipsoid (ellipsoid in three and ellipse
in two dimensions) having the property ﬁfhat every point
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located in the interior of the hyperellipsoid 1is also a
point located in the' interior of the region wunder
identification. Obviously, such a hybérellipsoid has to be
inscribed in the regéon of interesg.nThe fnotivation behind.
choosing a hyperellipsoid is rather apparent. A
hyperellipsoid has a very simple analytical expression and
yet retains a flavour of generality. It enables one to
;pproximate a general region without resorting either to
oversimplification (by assuming that the region can be
approximated by a hypersphere) or to unnecessary and
arbitrary complicating assumptions by assuming a form of
higher degree.

However, if such a hyperellipsoid 1is to be contemplated,
one needs to know its center, the orientations of its axes
in the state space as well as their léngths.' Such an
information wfil, obviously, be obtained from the available
training samples. The method of principal component analysis

was utilized to infer the necessary information, as

explained in the paragraphs to follow. g

4.2, Hyperellipsoid Identification.

The method that follows is closely relaged to a very
popular technique wused in feature extraction when samples
from one probability distribution are available (60,61,62),
In this case, the problem of feature extraction is reduced

e
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to the one of efficiently representing the already available
samples, in a space of lower dimensionality. The m§in
attractiveness of the methodology lies in the fact that lhe
effective features representing the data can be obtained by
a linear transformation of the original variables., The
technigue is commonly known as the "discrete Karhunen-Loeve
expansion" (25),[;nd is the basis for numerous variations of
feature extraction schemes. o

Assume that a given random vector X is represented with
respect to a certain basis in the state space. Assume that
the matrix ([L] has as columns the vectors chosen as basis
vectors (L,,...,L.) and, furthermore, that the basis vectors
form an orthonormal set of vectors., Let Y¥=(Y¥;,,....,Y.) be
the coordinate (row) vector of the random vector X with
respect to the above chosen basis.

Consider that from the sum X =TI (¥Yi.Li) , 1=1,2,....,n
a certain number of terms, say m, are omitted. In this case,-:
an error is introduced in properly representing the random
vector X with reference to the chosen basis. The problem is
to choose the orthonormal set of vectors in such a way that,
omitting a certain number of terms, minimum meén sguare
error 1is achieved. It is proven (25) that, the set of
orthonormal vectors reqguired 1is the one containing the
eigenvectors of the covariance matrix [S] of X. The terms
that are omitted from the summation are the terms pertaining
to the eigenvectors corresponding to eigenvalues of [S] with

the smaller magnitude. If no eigenvalue is omitted, then
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the corresponding eigenvectors will give a complete and
accurate representation of the random vector X in a new
coordinate system.,. However, the —eigenvectors of the
covariance matrix [S] bear a particular geometrical

interpretation. They denote the direction of data point

" concentration in the state space. In other words, the

eigenvectors of [S] indicate the directions along which the
bulk of tﬁe available training points are to be found. Thus,
detecting the modes of the previously non-structured data
can be done by eigenanalysis of their covariance matrix.
This reasoning is valid in any number of dimensions.

Among the directions indicated by the eigenvectors of [S]
one may distinguish among the ones indicating major data
concentration modes and the ones indicating rather minor and
unimportant ones. Thexeigenvectors associated with major
modes are the ones corresponding to large -eigenvalues.
Similarly, minor modes are 1indicated by eigenvectors
corresponding to small in magnitude eigenvalues. In fact, it
is proven (25) that tﬁe larger the eigenvalue the more
important is the mode associated with it.

In our case, no mapping of data to a._ lower dimensionality
space, with prescribed mean square error tolerance, is
attempted. However, the principle behind the methodology of
the discrete Karhunen-Loeve expansion has been fruitfully
used to determine the "orientation of the axes of the

hyperellipsoid we, ultimately, seek to construct.



4.3. Hyperellipsoid of confidence of the feasible states.

This hyperellipsoid is required to contain as many feasible
(in our case steadf state stable) points as possible in the
state of injections while, at the same time, containing no~
non-feasible points at all. At first (bearing in mind the
reasoning outlined in the ©previous ©paragraph) an
eigenanalysis of ‘the covariance matrix of thE‘ feasible
states 1is carried out. The eigenvectors denote the data
modes and will be used as the directions of the axes of the
hyperellipsoid. Furthermore, we shall consider the squaré
roots of the eigenvalues, as lengths of the semiaxes of a

hyperellipsoid. The equation of such an ellipsoid reads:

[KJ.]z [xn]2
— et = =]
) Y o

or in matrix form

T
X [L] X = H (4.1)

where [L] 'is the diagonal matrix: -

[0 j

n
mj
j=1
j#n -

oo L

Eg.(4.1) describes a hyperellipsoid of a given size which

o

' £
is centered at the origin and whose principal axes are

aligned with the axes of the coordinate system with reépect
to which the training samples are represented.
90 ‘
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Eigenanalysis of the covariance matrix, however, provided
the eigenvectors which, in turn,suggest the orientation of
the axes of the ellipsoid. As a consequence, a rotation is
in order to align the axes of the originally centered
ellipsoid with the directions suggested by the set of the
found eigenvectors. At this stage note that during the
eigenanalysis of the covariance matrix, it is physically
sound to expect distinct (real valued) eigenvalues equal in
number to the dimension of the state space. On the other
hand, the fact that eigeﬁ%ectors corresponding to distinct
eigenvalues are orthogonal to each other (for the case of a
symmetric matrix) reduces the problem to that of aligning
two orthogonal systems of coordinates via a rotation matrix.

Let (X;,..,X.) be the old coordinate system, (X,',..,%X.')
the new systEM‘of coordinates as the eigenvectors of the

covariance matrix suggest. If [P] is the sought rotation

matrix then:

()_{1"-°°r_x_n)= [P] (él'l""-l&n'\)
Assume, further, that both systems have been normalized.

Then,

(Xy,+0.,80) = [I], [1] being the n-order unit matrix
and
(X1 'yeee Xa') =[2]
. where: [2] is the matrix whose columns are
» the normalized eigenvectors of the

covariance matrix of the data.
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We jimmediately conclude that: [P] = [2]
Equation (4.1) then, becomes:

T T T .
(z '] [L] {2z X']=*H

A T

Let: [z] [L] [z] = [B])'
and eq.(4.1) becomes:

T
X' [B) X' = H (4.2)

This equation, is the equation of an ellipsoid whose size
is identical to the one represented by equation (4.1) but of
different orie;tation. Note, waever,tthat the new ellipsoid
is still centered at the origin of the origin7i system of
coordinates.

As a final step thg\center of the sought ellipsoid is to be
found. The - mean vaiﬁé\\?f the data used to construct the
sample covariance matrix 1is considered to be the center of
the sought ellipsoid. 1In general, the sample mean of the
data will not coincide with the origin of the original
system of coordinates. Accordingly, a translétion is to be
carried out, in order to achieve the ‘proper positioning.

Denote by X" the coordinates of‘ a point after the

translation has been carried out, and by X' its initial

coordinates, Then:

X' = X" - T, T vector of the sample mean coordinates.
Accordingly, eg.(4.2) becomes:

T
(¥"-T) [B] (X"-I) = H
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or

T T T
£ (Blx - 27 (Bl X" =H-1(8]2
T T | T
Let: a =-27([B] and R=H -T [B] T

The final ‘equation then, for the ﬁyperellipsoid reads:

T | T .
X" [B)] X" +a X" =R (4.3)

There 1is no guarantee, however, that the hyperellipsoid

constructed using the eigenvalues of the covariance matrix
of the data will satisfy the joint requirements of not
containing unstable training states and containing as maﬁ?
feasible states as possible. It has been the experience of
tﬁé author that,/whiie the first requirement i;ialways met,
the second falls short from being fulfilled. This is due, in
our op;nion, to the fact the data set used to construct‘the
covariance matrix is "hollow" (Recall éhat the aiéorithms
providing the training points provide points located in the
viciqity of the separation surface). Fig 4.1 1llustrates
such a hyperellipscid for the case of the data pertaining to
the 3-bus experimental system, (

At this ©point we conclude that, although both the center
and’the orientation of the seeked ellipsoid are reasonably
well determined its wvolume still remains an open question.
An algorithmic procedure deﬁling with the expansion of(the
available’ellipsoid is needed. The author has tried several
computerized expansion"schemes. The finally adopted one is
illustrated in the flow'chart of fig. 4.2. "t

The flowchart pertains to the iterative procedure for one
. , 93 .
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eigenvalue. The procedure illustrated 'in the flowchart of

[}

fig.4.2 is repeatéd for all the eigenvalues. The already

determined eigenvalues are ‘utilized in the iterative
pfocedure for the computation of ghe subsequent eigenvalues.

The scheme 1is based on the well:recognized fact that the

&

.volume of ‘the ellipsoid given by equation (4.3) is

critically dependent on the \humegiéalh values of the
eigenvalues’ utilized in gquation (4.1). In fact, any
dncrease in the magnitude of aﬁ éigenvalue will cause the
resulting ellipsoig tq expand.in. the-idirectién of the
corresﬁodﬁing eigenvector.

/ The presented flow chart shows éhét the mechanism of
expén;ion is\'based on the fact that one should assess one
principal direction at a time wuntil a barrier of unstable
states is fourd "towards that direction. This mechanisﬁ

"allows more flexiBil}ty in manipulating the volume of the
sought ellipsoid, apd results indicate that the ellipsoids
found are superior candidates wvhen compared to others found

]

from schemes adopting concurrent expansion of more than one

+

principal direction. The reason is that the axgs of the

sought ellipsoid will not necessarily be comparable in -

. magnitude. Such an assumption is obviously arbitrary and

cannot be tolerated. Any computeri;ed scheme based on
concurrent expansion wil} eventuaily ~stop short tOW3ras one
principal direction (where further expansion could be
possible) simply because a barrier of unstable sfafes was

found towards a rather minor mode. The undesirable
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conseguence is that the resulting ellipsoid will turn out to
be rather undersized. In -chapter V the consequences of
operating with such a result are fully explained.“ Fig.4.3

pictures the ellipsoid of confidence of the stable states

(ellipsoid ‘of type 1) as deduded applying .the algorithmic.

procedure illustrated in the flow chart of Fig.4.2., "Dots"
represént feasible” states and "crosses" represent unstable

states. The coordinate axes represent the real power

-

injections for buses 2 and 3 of the 3 bus experimental
syStem utilized in chapte; III. ‘

The equation of the hyperell@psoid (ellipse in ’qhis
particular éﬁse) is of the form: P\

'l'
T T l
L[A]§+2§.+C=0 ‘

\ . |
where: X is the two-dimensional vector, having as entries

the real powver injections at buses 2 and 3. ‘

[A] is the matrix for the quadratic term. In this
particular case the matrix (2 by 2) reads:
83.87392 35.85168
35.85168 , 69.83078

. ! < : -7
T 9

b is the coefficient for the linear term. In this
particular case (1 by 2) it reads:

-

[-89.24890 »33,75565]
. ®

-~

-

C.a scalar. In this particular situation it reads:
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-4524,18359
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4,4, H rellipsoid of confidence of the non feasible

4

states.

»

The necgésary reéuir;ments this ellipsoid has to meet are,
as stat;d in the beginning of this chapter, tﬂe following: °
- The ellipéoid should contain all the stable\Lpdfﬁ:ng
points in the space of:injections.
- The ellipsoid should contain as few unstable training . .
point; as possible in the space of injections.

The techniques and the .ideas used to construct the
ellipsoid are, essentially, based on the already
contemplated argument§ used for the construction of the
ellipsoid of type I. More specifically,'principal component
analysis (via eigenanalysis of the cqyariance matrix of the
data) is used here as well to determine the orientation of
the axes of the ellipsocid and, finaliy, the sample mean
value of the data is, again, assuméd to be the center‘of the

~sought ellipsoid.

" One should recall. at this point that, for reasons already

~» Stated, tﬁe ellipsoid resulting from eigenanalysis of the

covariance matrix of the data is rather undersized and, as a
rule, needs to be expanded. Accordingly, an algorithmic
procedure to determine the size of the ellipsoid has to be

implemented as previously. .
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Nevertheless, the strategy adopted in the case of-ellipsoid
of type I cannot be used here because the requirements the
ellibso{d has to comply with are rather different.

As far as the first requirement is concerned, any-ellipsoid

" containing all the,sfable training points 'is a potential

\ .
candidate for the one we seek., However, the size of the

ellipsoid which 1is to be finally adopted is of great °’
importance (see chapter V). To state the problem
differently, one looks for the ellipsoid of the minimim size

amohg the ones containing the stable training points. It is
? ¢ 2 a
in order to note at this point however that both the

a

directions of ' the axes as well as ‘the center of the

*

. ellipsoid are predetermined.

The first guestion that arises is whether an .expansion
scheme baéed on the idea of concurrent efgenvalpe increase
(see paragféph 4,2) is to be adopted, or whether one should
resort once more to expansion schemes relying on the cdﬁcept

a 4 ¥ A J
of modifying only one eigenvalue at a time (i.e, exerting
influence on the size of the ellipsoid towards oneqaxis at a -
time).

The alternative of concurrent expansfén (expan;ing the
eilipsoid towards more than one eigendirection at the giﬁé
by adjusting the size of the corresponding eigenvalues) will

invariably lead to suboptimal solutions, This was verified

by numerical experience, and is due to the fact that while

.one may still have stable training points along one .of the

eigendirections (fact implying that further expansion ' is
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possible towards that direction), the stable training points
‘towards one (or
$

more) of the remaining eigendirections may
have

been exhausted. Consequently, any further expansion
aloﬁg the dominant eigendirection (during the course of the
attempt to include all the stable training points as
initiallf requested) will cause unnecessary expansion along

the remaining ongs. Thus, the suboptimality of the resulting
t
. solution. -

1t is apparent, therefore, that -oné should rather restrict
himself

in exploring the remaining alternative, i.e, to
devise an expansion scheme that is

based on the strategy of
adjusting the magnitudé of only one eigenvalue at a time.

The next quest{?n one is faced with, is to determine which
axis, should be adjusted at

every iteration. The criterion
for selecting the appropriate axis must be such that, on the
one hand, the

resulting hyperellipsoid

possesses the
required properties and, on the other hand, for the sake of
efficiency, the

smallest possible number of iterations be
required.

7

.

The criterion applied for axis selection reads as follows:
- Expand along the axis whose length modification, by a
specified increment, "will cause the }esulting ellipsoid to
contain the minimum number of

unstable training points,
among the number of unstable training points,

.The above criterion is to be applied during ever§ iteration
of the procedure. The next iteration will be

performed on
the condition that not all of the stable training points

[P
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/“—;;:;\\been included in the ellipsoid resulting from the

)

current iteration.
" Nevertheless, the criterion listed above will, almost

invariably, cause the algorithm not to converge in a finite

3

number of steps, in spite of the fact that it 1is an

- =7

excellent guideline to follow in search for ellipsoid size
optimality.

Failure to converge occurs because the criterion does: not

require that the number of included stable training points

" be definitely increased from iteration to iteration. Such a

provision would guarantee convergence in a finite number Bf
steps. If no preventive action is taken and the algorithm is
designed with only the above listed criterion in mind, the
resulting ellipsoid (if any) will be of such size as to have
no practical importgnce vhatsoever. Numerical experience
showed that in many cases, no convergence at all was
attained while in the <cases a result was obtained, the

resulted ellipsoid was unnaturally distorted along the more

‘a

dominant eigendirection.

In an attempt to avoid such continuous ellipsoid expansion
along algorithm-preferred directions, the construction of a
"sentinel” ellipso®d was found to be a very satisfactory,

gnd simple, solution, Before entering the procedure for
ellipsoid expansion, é "sentinel” ellipsoid is consgructed
which will act as a safeguard against the previousf&
mentioned 1ill-situation. The "sentinel" ellipsoid has as
center the center used-for t@e sought ellipsoid and its axes
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will have the same ogientation as the ones of the ellipsoid
which ultimately is to be constructed (eigenvectors of the
. covariance matrix of the data). It is constructed using the
simple to implement concurqént dxis expansion philosophy
(all eigenvalues are increased at -every iteration by ’a
specific increment till all the stable training points ;re
contained .in it). Qbviously, no ellipsoid with an axis
larger Ehan the cogrespondiné axis of the T"sentinel"
. ellipsoid is acceptable. H
Fig.4.5 pictures the ellipso;d of type 11 in the case of
the 3-bus system after the algorithmic procedure illustrated
in fig.4.4 was applied. Note that in this particular ca;e,
“the covériance‘ matrix~of the unstable training points was
. utilized. |
The parameters for the equation of the hyper;ilipsoid

(ellipse here) tead as follows:

[A] the matrix for the quadratic, term (2 by 2 here)

'

. - 173.646 17,565

| 17.565 165,018

T
b the coefficient vector for the linear term.
(1 by 2 in this case)

[-276.986 . 196.483]

.
o

C.a scalar,the constant term®f the.equation,
~ -28158.4844
' 100
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. Fig.4.6 pictures the ellipsbid of type II that would result
I
(for the data sets perta1n1ng{aga1n to the 3-bus system) if
the covariance matrix of the stable training points were

used instead. As expecfed, no substantial differencé was

.o® .. .
found (due to the fact that the data” sets have been,

condensed)s Note though that,the ellipsoid‘ pictured im

- T8, _
fig.4.7 is slightly reduced in} size if compared with the one
of fig.4.6. |
The parameters for 'the ellipsoid im question read as

<

follows:

162.236 31,116
31.116 150.048

¢
T
b the vector coefficient for the llnear term.
(1 by 2 in this case)

[-223.071 147.291]

o
-

/“ . .
C a scalar;the constant term of the equation.
»

——

oo 23235.7539

. It is our opinion that the stricter ‘the condensation, the

‘more resemblence will be achieved in the two _gllipsoids.'

However, the covariance matrix of the stable tréining points
is recommended for use.
An equally appealling criterion for ellipsoid expansﬁon is
the following:

101 ’
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Z Expand along the axis whose length modification, by-a

" «specific increment, will cause’ the resulting ellipsoid to -
] e 5 °

~

contain the maximum number of stable training points, when .

compared” with the nymber of stable. training points other-

ellipsoids would contain had the expansion taken place along
/any other eigendirection.
The ellipsoid found by adopting the above given criterion
is pictured in fig.4.7.™Note that no subsfantigl difference
is found if this ellipsoid is.compared with the one shown
in fig.4.6, -apart from the fact .that it is slightly
‘increased in size. Again the covariance matrix of the stable
training poipts was utilized. - S .

The parameters of the egquation of the ellip?oid in this"

case read: . - ' R
.~ . . et

q 3

. =

[A], the matrix for the quadratic term (2 by 2 herej. -
176.320 14.007 | o -
, 14,007 170.833 , , ' /

' - " " / X
v‘T »
b the vector coefficient for the linear term.
(1 by 2 in this particular situation)

»
[

, <
*

. . [-268.569 202.564) - -

A

1
© L4

';C.p scalar, the constant térm of "the equé&ioﬁ.a 4
’ | 29748.9766 B - )

In ‘all the above consideréd algorithmic variations . the.
eigenvalue increment was taken to be equal éo one ﬁalf of .
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the‘sédare root of the smallest in magnitude eigenvalue of

the covariance matrix of the data. If smaller increments -

for the efgenvalues are used in the procedures for ellipsoid
/.
expansion, more refined solutions will be obtained.-

Naturally, more-itefations are needed to reach the solution.

.

-For large data sets this may require excessive computational
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Given Eigenvalue

{, ;

| set iteration counter = 0
2 <
OLD = Eigenvalue
INCR = 0.5x(Eigenvalue)
g ]
NEW = OLD + INCR
; . ¥
iteration = iteration + 1
counter counter

Number of iterations’
> set-limit?,

:BXIT

No

Construct Equation with the new
value of the eigenvalue

/Unstable points\ No
misclassified? )

<

< B
Yes =
OLD = NEW [=»=

INCR = ( OLD + NEW)/2

-
f ?

4

1 +
® »

Pig.4.2: Flowchart for hyperellipsoid of “type I.
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f this eigenvalue.
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Formulate Egquation. Record number of

included unstable states.
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1
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!

Apply criterion to select axis
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all stable states ?'
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EXIT .

Fig.4.4: Flowchart for hyperellipsoid of type II.
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_—— K CHAPTER FIVE ,
¥ ; /
P ) . A
- ' APLLICATIONS TO POWER SYSTEM OPERATION.
5.1. Introduction. . (:

The main objective of a real time power system control
; X system is to assure that, at any instant, the system
i ' operates in a secure and economical manner. Load demand not
§ .‘only is to be accommodated but the ;ost of power generation
s has'to be minimized as weal (96).
Lo ‘ The .first problem therefore one has to cope with is "load
; variability". There is' no guarantee whatsoever that the
load demand pattern will remain unchanged throughout thé day
-and, in fact, it dbés‘nft. It is a well known fact that the
“ load demand pattern can sharply change from one instant to
i the next, especially during the so called "peak hours" of
; tPe daily 1load démand curve. As, a consequence, the first
q;estion to b; answered is whether or not the system will be
able to satisfy the load demand while retaining certain

. "qﬁl. i
- preset operating standards. Should the system be found

R B Y T v
-

enter the scene such as minimization of transmission losses
and generating costs, considerations which will to a great
(” L degree determine the operating point for the system during

i - . 111 ¢

capable of supplying the load, optimization considérations
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/ .
that ambiquity in system capability can lead to incorrect

e

;
the next time period of the monitoring interval,
Taking into account, on the one hand, that there is altrend
towards shorter monitoring intervals and, on the other hand,
®
decision making and’ poésib}e violation of the operating
standards, it’ becomes rather apparent that a fést and
accurate method for assessing load flow feasibility 1is
needed., In fact the faster the better because more time is
allowed for equally vital tasks such as contingency analysis
and economic dispatch. o H
One other problem for the operator is that lhe has to
account for "system vagiabilitj", The topology of the system
varies due to both scheduled and forced equipment outages.
When it gomes to predicting load variations one may come up
with a load forecast, schemes that wutilize feasible
statistical modeling and turn out to be satisfactorily
accurate. Unfortunately the same cannot be said for the case
of contingency aﬁalysis because a large number of factors
have to be considered if one 1is to identify and 1list tﬂem
all to begin with. Furthermore, as explained in greater
detail in chapker I, methods .for contingencf' analysis are
rather time consuming if accuracy is to be retained. Despite
the inherent difficulties associated with contingency
analysisfft all levels (for every monitoring interval the
problem repeats itself to the full extent) time limitation
is also a very severe constraint to thé quality of dgcision
making needed for properlreal time control. One therefore

L
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has to be both fast and accurate.on all fronts at all times.
The problem is further enhanced 1in cases where seqﬁentiai
decision making 1is:’ needed. Experience shows that beiné

"fast" and "accurate" are rather conflicting goals. One
therefore settles for efficient "screening”". The fewer cases
are referred to more time consuming methods for resolution,
"the better.

The previous chapter‘of this dissertation was devoted to
develop the concept of the hyperellipsoids of confidence in
the state space of injections of .the power system, Methods
for constructing these hyperellipsoids were devised with

- emphasis on "training point economization", an aspect not
meticulously treated in'the past. .
. This. chapter indicates how the hyperellipsoids ¢ of
confidence can be used for both 1load variability as well as
“steady state cpntingenc§ analysis. It is deﬁénstrated tﬁat
they can chiefly be used for screening pu;p@ses, in the
quest for speed and accuracy in power syséem operétion.

It is of importance to emphasize that the ideas presented
in the paragraphs to féllow have been centered, from a
hethodological point of view, on the recognition of the fact
that the concept of misclassification error introduces an
uncertainty in real time power system operation. As a

consequence it ‘has been the intention of the author to

develop methodologies freed from this concept.
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5.2, Load Variability -Assessment. o o

The fastest, yet most approximate, method available so far

‘for load flow studies is the D.C. load flow. The simplified

mathematical model and .the computational ease associated
with it made it very attractive. Nevertheless,aits accuracy
limitations have long ago been recognized.

Assume that 1in the space of injections of a given power
system, thg two hyperellipsoids of confidence (of type 1 and
type II) are available. By construction, the states located
in the 1interior of\the hyperellipsoid of type I represent
steady state stable states, i.e states which constitute a
feasible 1loading condition for the system in question.
Similarly, any state not located 1in the Linterior of the
Hyperellipsgid of type II representé, by construcgion ag;in,

g i .
an unfeasible loading for the system. Any point of the state

space located in the exterior of the hyperellipsoid of type'

I while at the same.time 1is found to be located in the
interior of the hyperellipsoid of type I1 is said to
represent an "ambiguous" loading state for the system. Such
a point, is said to‘be located in the "uncertainty regfon"
if one is to utilizé decision making terminology. .
Accordingly, in order to assess ther feasibility of a
specific load pattern, one need not necessarily resort to
full scale simulation if the two hyperellipsoids of
confidence are available,. | a
For the various loading conditions the éystem may encounter
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only three mutually exclusive cases are possible,

Case 1, The state in question is found to be in the

interior of the hyperellipsoid of type I. . This is

mathematically manifested as:

\
-

T T
N X[A]X+bx+C< 0" (5.1)
where: X represents the load pattern of the system

(Every entry pertains to a bus loading)
[A], b, C are the parameters of ‘the equation of

‘the hyperellipsoid of type I.. :

’

Case 2. The state in gquestion i§ found to be located in the
exterior of the hyperellipsoid of type II. The situatidn is

mathematically manifested as : .

T T

X[a,] X2+ DbX+C.>0 (5.2)
where: X bears the same interpretation as before.

f

[A,], by, C, represent the parameters of the
hyperellipsoid of confidence type II.

@

Case 3. The state in question is found to be located in the

"uncertainty region". This is mathematically manifested as:

T . T
X [A] X +bX+C2>0 (5.3a)
and .
i
T T
X [A] X+ b8 +Cy <0 (5.3b)

For the first two cases decision making 1is carried out
115 ‘ :
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first case,for instance, the

1

without any, d{EEicﬁlty. In the
operator gnows that the given state is permissible* for
operation. Simiiarly, in the second case the operator .'is '
definitely .to avoid guch an operational poiht.'In the~third- \
ctase however, no immediatevdecagion making'is'possibie with
absolute certainty. The state in question may -represent a
feasible ;oadingf-condition {or' the system or may not. In

this case one bhas to fesort to a more detailed analysis if

v
N

lhe aecision making (conc¢erning load flow feasibility) is to
be efror free. Viewed frém thig perspective, the, method of
the hyperellipsoids presents interesting thential
capabilities for "s;reening" purposes., ' o \

Out of a wvery large number éf probable system loadings
(provided by Qhort term load forecast) actual simulations

are needed only for the states that find themselves locdted

~in the "uncertainty region". The behaviout of any other

loading state is clear and, most of all, accuratgly'

bredictable in real time.

5.3. PExamplés of Load Variability Assessment. .

At first\ the. rather simple 3-bus *s&stem utilized in
previous chapters {III and 1V) is wused to illustrate the
above presented ideas. The data as well as the topoloéi“bf
the system are given #n Appendix I. Bus 1 is considered to" - .
be the slack bus,';and the only source of real power in the
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' 'system. Note that no generators were assumed to be connected

"

..to buses 2 and 3. This would simply increase the loading

capability of each bus (inflating thg hyperellipsoid of type
1). Thehargument, however, can still be lucidly'g}esented
without this extra complication. Buses 2' and 3 are
considered to be -both type 2 buses (voltage magnitude
restrained) with infinite%r;active compensating‘capabiliéy
‘(recall that the technique 1is 1intended for tworks of

primary transmission where voltage profile control 1is very

. robust). As a consequence, the real power injections at the

buses represent the variables of interest and, in fact,

¢ -

" gonstitute the state variables. The results are presented in

table 5.1, .Tén (10) representative loading conditions
(positive load means'powef flowing out of the system) are

.

examined. The loading conditions of table 5.1. scan the
loadability range-of the system froé concurrent light load
.to‘concurreni heavy loading of both buses. The second coipmn
of the table indicates the result pft an actual load flow
study for the load under consideration ( the Gauss-Seidel
iterative procedure was used). XThe third colﬂmn of the
table 1indicates the result one'will arrive at if the
screening technique of the hyperellipso}ds is used. |

'The proposed methodology for- steady state btability
assessment can be diregtly"utilized *fot generation shift
assessment, on the condition that the bug which experiences
the change in generation is included in the state spécglﬁor

the grid. For the state spaces discussed in this studyhi
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\only/ real generation shift can be- . accommodated with thé -

proposed technique. Generator outages (loss of tie lines

transmitting power into the grid) ° can ~be modeled as

a

subsequent, load increase for the bus in gquestion,

«

Similarly, geheration surplus can be mocdeled as a subsequent '

-

load reduction experienced by thHe bus in questien.

]
[ e ————— - 4“0

LQADING'GO&S&TION X ‘
FOR THE SYSTEM LOAD FLOW | SCREENING TECHNIQUE
4.0 +1.0 Feasible Feasible - &
+2.0 +3.0 Feasible Feasible \J,
+3.0 +3.0 Feasible Feasible
+3.5  +3.5 Feasible: Feasible
+4.0 +§.0 Feasible Feasible
+4.0  +4.0 Feasible ° Feasible
+3.0 +5.0 Feasible vFeasible
+1.,5 +6.5 Feasible ' Feasible ]
+5.5 +3.0 Feasible Feasible
+6.0 +6.0 Unfeasi”fal\& . Ambiguous
e

Table 5.1: 3~bus system. Load Variabilty Assessment,

' o

As can be .seen 1in table 5.1, the only ambiguous case

detected by the screening techhique is for the heaviest

loading. 1f the suggested simulation 1is carried out, the

result will be that the state under consideration represents .

an U:Eeasible load pattern for the system, It becomes

apparent fhat if heavier loads are considered the meihod of

3
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the hyperellipsoids will still -demand full scale simulation

for their resolution. This is "due" to the size of “the

o

hyperellipsoid of type II which, in turn, is dependent upon

the criteria adopted for its construction. Since the

construction criteria were intentionally conservative (the
goal of the construction being error free :decision making)

the hyperellipsoid of type II will, as a rule, be oversized.

e

Iff\jre is,to encounter loading patterns which will be

[

locaﬁ%d outside of the hyperellipsoid of type I1I, the system

has to work with its lines loaded either very cldse or well

4

above their steady state stability 1limits. The later-

practice is, of course, a technical impossibility the- former
is a practice never followed. In -either case the conclusion
is that practical load patterns will invariably find
themselves located ‘either within the boundary of the
hyperellipsoid of type I or in the zone of uncertainty. The

end result is that the term "ambiguoué" in Table 5.1 can

just as well be replaced by the term "unfeasible", for first

= N

"hand decision makfﬁg. The reasoning presented above

suggests that since only one hyperellipsoid is really needed

the second hyperellipsoid need not be computed at all.

Nevertheleds, the 1ight;r“ computational burden associated
with such an approach seems, at first,'%oé to provide the
analyst with a tool for discriminaiin@ whgci loading
patterns  located outside of the ' boundary of the

hyperellipsoid of type I need further investigation and

e
3

yhich ones do not.

v
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It is seen from table 5.1 that no case classified as steady
staté feasiblewby the method of the hyperel{ipsoids is found
to be non feasible by the correspondinéﬁ‘a.c simulation
analysis. Nevertheless, cases classified by the screening

technique as unfeasible can in reality be feasible. 1In this

¢

particular case no such state was found, among the ones’

examined. This is due to the fact that the hyperellipsoid

>

constructed turns out tos be surprisingly close to tPe actual
separation surface (see fig.4.16) for first quadrant states
(note that all 1injections considered were assumed to be
first quadrant injections, i.e real loads which are supposed

'

to be supplied by the system via real power flowing out of

the grid). ‘ 8 -

This 1s a very desirable coincidence because accurate
|
decision making (for load variability assessment purposes)

can be extended to rather heavy loadings. Nevertheless, in

practice, heavy loadings which are considered to be

mathematically acceptable (the load flow converges) do not :

conform with everdey operational practice. Lines are
normally loaded well\ belo& their “steady state stability
limit,théir loading being dictated by transient stability
considerations more than anything else. For more complex
systems, the region encompasse@ by the hypetrellipsoid of
confidence of the type I, does not bear the ambition to
approximate the separation surface itself a£ all. Instead,
it . rather represents a "core of confidence" of the
feasibility region, close to the" real 1i£e operating
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conditions (see comment above). o

. - g
To further illustrate this, a more complex power systeibwas

considered next. The system was taken to be a 5-bus system.

_The network data as well as its topology are given in

T Appeﬁdix I. One slack bus was again considered. This bus, in

thi§ case as well, is supposed to be the only source of real

powér in ;Ae system. All four remaining buses are taken to

\'.
be voltage controlled buses; * their reactive compensating

Table 5.2 contains the

capability is considered infinite.

results of the Load -Variability assessment ' technigque

utilizing the method of the hyperellipsoid of type I (see

comments in previous section on the philosophy of utilizing
’ : |
only one hyperellipsoid). .

]
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LOADING OF THE SYSTEM | LOAD PLOW | SCREENING METHOD |
rL_w’-t-0.2 +0.2 +0.2 +0.2 Feasible Feasible
? +0.2 +0,3 +0.35 +0.4 Feasible Feasible

+0.4 +0.4 +0.4 +0.5 Feasible Feasible

+0.6 +0.6 +0.6 +0.6 Feasible Feasible

+1.0 +1.0 +1.0 +1.0 Feasible Feasible

+1.0- 42,0 +2.0 +2.0 Feasible Feasible

+1.0 +3.0 +2.0 +2.0 Feasible Feasible 1.

+1.0 +4.0 +3.0 +3.0 | Feasible Unfeasible -

+1.0 +4.5 +3.5 +3.5 Feasible Unfeasible

+1.0 +4.0 +4.0 +4.0 Feasible Unfeasible

+1.0 +5.0 +4.0 +5.0 Unfeasible Unfeasible

+1,0 +6.0 +5.0 +4.5 Unfeasible&u Unfeasible

+1,5 +6.5 +5.5 +4.5 Unfeasible Unfeasible

+2.0 +7.0 +6.0 +4.5 Unfeasible .Unfeasible

+2.5 +6.5 +5,5 +5.5 Unfeasible Unfeasible

Table 5.2: 5 bus system. Load variability assessment.

% . N

e

As seen in the results displayed in table 5.2, cages

0

classified as nonfeasible by the method of the

hyperellipsoid, are found to be feasible. by the

corresponding ac simulation analysis. Those cases pertain,
as expected, to medium loading. Heavy loading as well as
light loading are characterized by consistent decigion

making.
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The philosbphy of utilization of the method should be clear
by—now, By not attempting to produce an analytical
expression for the separation surface, we have bypassed (at
a cost) thé questiéns related to the’ misclassification
error, Apart from the fact that a re;sonable estimation of
such a quantity is hard to obtain compué}yionally (and a

real challenge to  model mif?emétically), “the

misclassification error is of no practical significance to

real time decision making.

The ﬁotential of' the method presented is cruciaily

dependent on the volume of the hyperellipsoid utilized. For.

rather irregularly shaped feasibility regions, it may be of
a size not lending itself to applications (accommodéting
only. very light loading for the system), In that case,
(apart from the fact that such a systém will have acute
operating problems no méttgr what teckhnique 1is used) the
analyst may have to resort to technigues differentrfrom the

ones presented here.

|

i

5.4, Stéhdz state Contingency Analxsii?xbine outages.

5

1t is éell known that associatéd with any equipment outage,
there is a transient which hasﬂfto be investigaééd when
overall system performance is assessed. Nevertheless, even
before the transient and dypamic responses o{ the system are
investigated, it is a@vantégeous to know whether or not the
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system will be stable from steady “state considefationé
alon?. This kind of:aanalysis is knowh as \steady state
dontingency analysis. . e ‘

Generally speaking, changes in the system can be of various

kinds. One may, for instance, consider generation shifts

(changes in generating capability at various buses or at:

¢ ¥

interconnecting nodes) or actual line (transformer) outages.
These outages, alter the.topology of the system, and this
alteration is the seat ~of ithe difficulty for fast .post
contingency power flow assessment. '

The questioﬁ which is frequengly'of priﬁeucogFern for power
system opefators is whether orﬂnot thife é¥ist§ such a post

contingency power flow in the first place. Presenting it in

£ x
greater detail is a questioii which is. resolved by applying

any of the available 1o$d flov methods.(so long.as.the

feasibility of the undertaking is assured).

»

The methods available so far answer ' those questions

concurrrently. In fact, they conjecture the feasibility of

i

the post contingency case after having obtained the detailed

power flow pattern indirectly. They can therefore be

. considered as indirect methods. What this dissertation

proposes is a direct method based on the éancept of the
hyperellipsoids of confidence. In the examples to follow
line and transformer outages have been treated.

The approach is based onkthe'recognition of the fact that
steady.state contingency analysis is essentially a load flow
analysis applied to a different system. But load flow cases

¢
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i
can be accommodated, as shown previou;ly, via the method of
hyperellipsoids on the cond{tion the hyperellipsoids
utilized pértain to the current system topology. -

An obvious way of implementing such an approach would be
theofol}owing: o \
c 1) For every line outage (single or multiﬁle) the

hyperelli%soids are constructed and their“equations
are stored in a manner suitable for fast on line
retrieval. ' 3 .

2) For any contingency examined from thé contingency

. . list of the current monitoring interval a simple

load flow feasibility for the post contingency

’ system status.

o ~

In. the case security screening 1is desired one knows
immediately (for all contingencies) which cases are. to be
referred for resolution to flore elaborate ac analy;is
schemes, Furthermore, the level of accuracy for security
screening is brought up to the level of load variability
assessment.

Thus, it is seen that a feasible approach to the steady
state contingency analysis (security screening) problem c3n
be implemented wusing the  hyperellipsoid of confideﬁce
pertinent to various post contingency topological
structures. Naturally, one needs to construct as many

-
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hyperellipsoids, as there are’contindencies to be examined.

Thi; seems rather cumbersome and ' discouraging from a
computational point of view, Indeéd, for many systems (even
at the level of reduced transmission  equivalents,
equivalents this study assumes for the techniques presented

hereinafter) the amount of off-line work needed to obtain

the hypegellipsoids pertaining to the contingencies pug/

forward may be prohiBitevely large.

A tempting question 1is .whether or \not precontingency
hyperellipsoids can be wused for post contingency load flow
feasibilité, thus circumventing the need to obtain new -ones.
We emphasize, again, that a given hyperellipsoid pertains to
a given topol%gical structure. . Accordingly, if one 1is to
utilize the precontingency hyperellipscids, precontingency
topology has also to be retained. Exploring this
possibility, we are forced to conclude that the only
remafning option is to simulate the line outage, while

retaining precontingency topology. . ’

5.5. Outage simulation Retaining Precontingency topology.

It is proposed that the outage of a line be simulated by
changing the power {njected into the system at the buses
connected by this line. The concept has been put forward in
the past by several authors (%?,54,89,90,91,92,93). One of
its latest ﬁanifestations has been the efficient simulation

.
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.of line and transformer oﬁtages when éssessing steady state

security via the sensitivity apprﬁach (18,54,91,96)., The
argument is that the post contingency voltages will not
change if precontingency topology 1is retained and power
equal to the one flowing into either end of the line (as the
post contingency voltage profile dictates) is injected at
the end buses. The situation is pictured in £figs. 5.1, 5§@
and 5.3, Fig.5.1 depicts the system at 1its precontingency
state, Fig:5.2 depicts the system at its post contingency
state and,- finally, Fig.5.3 i%lustrates the simulation
procedure (post contingency “voltage profile under
precontingency topology is achieved by appropriately varying

<

the power injections at the line ends).

Pm+i{Qm . Pn+iQn

»
)

/ / an
mVm am Vn n
: 0— —0
. V.
PmZiQm - Pn+iQn

"Fig. 5.2: Line mn in post contingency state.
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Assuming that the line mn is to be outaged, one has for the

5.3: Simulation of the postacontingency case.

<

needed power injections at the end buses (see Fig:5.3):

<3

APm+jAQm = Vm’'.Iinm and aPn+jaQn = Vn',linn (5.4)

Similarly for the power flowing in the line mn

L

APm+jaQm = Vm'.Im and  APn+jaQn = Vn'.In (5.5)

where:

a

APm,APn and AQm, AQn are the real and reactive

components of the power injections needed (and
A
by constraint the real and reactive components

of the power at the line ends).

A~

5

V'm, V'n vector quantities denoting bus voltages

¢

linm, Iinn vectors for the current injections
at the buses m and n respectively.
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© Im, In- vectors denotihg the currents at the line
. \ o
ends. - ' '
~ Ve p
% .
It fellows that: . -
. . + ®
Iinm ="Im- = . and Iinn = In - . (5.6)-

Fig.5.4 illustrates the above efpression. Approximating:

'

In=-Im=1_ (5.7)

m- ' n
[ I
I Im 5 ° n :
{
. G
| ) i
Iinm Iinn
O & : '

t
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Fig.5.5: Final form of the needed current injections.

Con51der1ng\the precontlngency as "base case" the change in
the injections of the buses m and n respectively (due to the.
outage simulation) will have an effect on the precontingency
voltage profile which can be found’ with thé aid of the base
case (brecontingency) Z matrix-of the network. The changes

£y

on the voltages are: K

'

- ' | - - -
{ * . 211 zlz o..uoo-aan.-n zl,. r‘.0 rAvl
sz‘ Z,z oon.ooaal.o;---ZZ,\ 0 sz )
' -|'o¢on-.--u.oonocoroon Zmn I = AVm (5.8)
L2 A M R S N IS

It is seen from (5.8) that:

e

AVm = (Zmm-Zmn),I and. aVn = (Zmn-Znn):I (5.9).

L]
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But Vm' = Vm + éVm .and Vn' = Vn + AVA "(5.10)
Since: vm'-Vn' = Zline-mn .I , w; have that:
Vm'-Vn' = Zline-mn.I = (Vm-Vn)+(AVm-AVn) (5.11)
But Vm-Vn = Zline-mn.Imn (5.12)
bwhere{ Imn is t?e precbntingency line curr;nt.
agd | ' AVm-AVn = (Zmm+Znn-2Zmn).I ‘ (5.13)

Solving (5.11) with respect to 1 we obtain:

. ) Imn.Z2line-mn -
I - v — (5.14)

N Zline-mn + 2Z2mn -Zmm -~Znn

Equation (5/14) is rather important because it expresses
the current injection needed to simulate the outage using
: !

"base case" network quantities.

If one wants to find the power injection needed 1in order
I3

for the outage to be simulated:

Sinm = Vv'm.I " and Sinn = v'n.(~1) (5.15)

.

where: Sinm and Sinn are the complex power injections

needed at buses m and n respectively.
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V'm and Vzp are the post éontingenéy voltages
at buse; m and n”respectivély. h

It is desired however that the system retains its
precontingency voltages in magnitude. %his means that if the
post contingency case is to be feasi;%e the voltages at the
buses will differ only 1in angle and not in magnitude.

Accordingly, one can. approximate Sinm and Sinn in (5.15) as

follows: .
, N
: ' . AN
Sinm = vm, (1) and Sinn = vn.(-1) (5.16)
where: Vm and Vn are the precontingency voltages at
,bdses m and n respectively (vectors).

Let 2 = Zline-mn + 2Zmn - Zmm - Znn,

If eq(5.16) is decomposed into real and reactive components

one has:
r . .
Pmn Zline-mn Pnm Zline-mn
Pinm = == < , Pinn = (5.17) °
A Z
Qmn Zline-mn : Qnm Zline-mn ¢
Qinm = * , Qinn = (5.18)
Z A

wvhere: Pmn and Pnm precontingency power flows in line mn

from end m to end n, and vice versa, respectively.

A
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It can be seen that any discrepancy between the qugntities
computed via (5.15) and the ones computed via (5.16) if due
to the difference in the angles of the voltages.,
Nevertheless, the great advantage of (5.16) is that it gives

a rather fair indication (under the assumptions it has been

derived under) of the injections needed utilizing known

-"base case" quantities available from any "base case" load

%
flow.

Those injections superimposed to the bus loads reduce the
problem to the problem of load variability assessment since

the topology of the system is retained.’

s
“

5.6. Steady State Contingencx-hnalxsis. Examples.,

S

At first the small experimental 3-bus system will be used
to demonstrate the feasibility of the approach. The 1line
outage to be considered is line 2-3. A couple of case
studies will be treated with relative detail at first, in
order to illustrate the proposed method. |

9

Case study l: Heavy Precontingency loading.

Assume the system at precontingency topology with loads
(real compongnts) at buses 2 and 3, of 1.5 and 6.5 p.u..
Since those demands represent actual powers flowing out of
the grid they are represented as negative injections in the
load flow equations., Therefore from a load flow point of

-
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view the load pattern is -1.5 and -6.5 for buses 2 and 3
respectively. This is considered.-the base case and a load
flow analysis is carried out to determine both the voltage
profile as well as the line flows in the system. It is found
that power is transferfed from bus 2 to. bys 3, At the
sending end 2 the power sent to end 3 (via the link 2-3) is
2.0573 p.u and the similar quantity at end 3 has a value of
-1.9674 p.u.
The (2] éatrix of the system is  constructed
(80,81,82,83,84,85,86) and it is found to be:
j0.1333 30,0666
2= j0.066§’ 'j0.1533

(for the sake of simplicity -

\

the resistive components of the transmission ‘line impedances were
L

omitted)

Applying directly (5.17) and (5.18) one has:

Pin2 = °2.0573x3.058104 = 6.2912522 p.u (real power),
Pin3 = -1.9674x3.058104 = -6.0163367 p.u (real power)
where: h

’ 3.058104 = j0.2/5(0.2+2x0.0666-0.1333-0,1333)

30.2

reactance of line 2-3

2

Superimposing the injections needed to simulate the outage

to the bus loads we obtain:

P (at bus 2) = 6.2912522-1.5 = 4,791252 (generation)

Ay .
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P (at bus 3) = -6.5-6.0163367=-12.516337 (load)
/ The values just found for ‘the. coﬁpound powers are
sybstituted into the equation of thelhyperellipéoid of type
1 for ther 3-bus system. One has to note that' in
constructing Ehe equation of the hypere%}ipsoidé, actual
system loads (being modeled as negative iﬁjections for load
flow purposes) were considered to be positive. Accordingly

the state X reads:

T ‘
= [ -4,7912522 §§.516332] .

Substituting in {(5.1) we gptain f(X) = 4890.9688 ( £(X)>0,)
This: denotes _that the state ‘ig located outside of the

hyperellipsoid and therefore it 1is considered to be

unfeasible. But, ‘unfeasibility for the compound injebtions

L

jmeans that the system will not survive the outage. A load
flow study with post contingency metwork configuration and
%ﬂ? precontingency bus loads led us to the safe conclusion.

V] M
L

Case 2, System Heavily Loaded

Consider this time the precontingency real loads to be -5.5

and -3.0 p.u for buses 2 and 3 respectively (in network

v convention negative léads at 'the buses denote power.flowingn

out of the grid). The base case 1load flpw gives that the

power flow in line 2-3 is: "
P2-3 = -1.0239 p.u r a;d P3-2 = 1.0469 p.ou

Utilizing (5.16) again we obtain as before: |
Pin2 = -1.0239x3.05810¢ = 3,1311927 p.u

' Y and
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 Pin3 = 1.0467x3.058104 = 3,201529 p.u

Superimposing the required injections found to the
precontirnigency loads we obtain as compound injections:
. P2 = -3.,1311927 + (-5.5) = ;8.6312 p.u .
and ’ ' ‘
P3 = 3.201529 + (-3.0) = 0.201529 p.u :
Note #Pat' the signs pertain to network conventions. The
opposite | signs will be used ‘for the sta e space

representation and the state becomes:

o
X =[ 8.6312 -0.201529 ]

Substituting in (5.1) we obtain f(X) = 1088.24871 (£(Z)>0.)
The method of the hyperellipsoids thus suggeéts that the
system will not be in a position to withstand the outage of
line 2-3 udder’the prescribed ioading,patternu A detailed-
load flow analysis wiéh post contingency data gave the same

result,

Case 3: Light Loading for the system.

Let us suppose that the load pattern for this case is -2.0
p.u and -3.0 p.u at buses 2 and 3 respectively. The
p;econtingency base case gives that P23§=0.3508 p.u . and

/:%%3-2=-0.348g‘ p.u Application of (5.16) gives for tbis
particular case: N
Pin2 = 0.3%508x3.05810¢ =-1.0727829 p.u
and | ‘

Pin3 = -0.3482x3.058104 = -1.0648318 p.u

Superimposing we have:
136
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-2,0 + 1.0727829

P2 = = 0.9272171 p.u
"and ) ' o ' u
P3 = -3,0 - 1.0648318 = -4.0648318 p.u

For §?= [ -0.9272171 +4.,0648318 }, equation-(5.1) gives
£(X) = -4265,3667 (£(%)<0.). This suggests that according
to Fhe methods of the hyperellipsoids the system w}ll
withstand the outage. £ This indeed has been cpnfirmed,

again, with a full scale ac.analysis.

In the context of security assessment via the method of the

hyperellipsoids only the hyperellipsoid of confidence of

type I can be wused with good enough results '(see section

-

5.3.) ¢

In other words one function evaluation (eg.5.l) will

suffice. If the state of the compound injections is found to

be in ‘the exterior’oﬁ the hyperellipsoid of type I, Zit is
considered to represent a - fatal contingency. This
consideration stems from the fact that due to the rather
conservative criteria’ estabfished for the construction of
the hyperellipsoid of type II one rarely finds a state
outside its boundary. This means that the vast majority of
the cases will be classified as T"ambiguous”, in reality
being uﬁfeasible. On an automated scheme this can lead to
redundant ac simulation cases. On the other hand, if only
the hyperellipsoig of type I is wused for decision making
there may be case;3where the operating point is considered
nonsecure, while being in fact secure. Table 5.3 lists (%n

its first two columns) the results of full scale ac
137
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simulations with precontingency topology. The outage to be
investigated is éhe outage of line 2-3. The third column of
the same table provides the results of a Gauss-Seidel laad
flow algorithm with posg'contingency network topology. The
fourth column gives the resulté one should arrive at, if the

imethod of the hyperellipsoid(s) is used.

p—
SYSTEM LOADS AC LOAD PFLOW METHOD OF THE
BUS 2 BUS 3 $I MULATION ° HYPERELLIPSOID
— ’ - L
+1.0 +1.0 Feasible Feasible
+2.,0 +3.0 Feasible Feasible
+3.0 +3.0 " Feasible - Feasible
f4‘0 +4.,0 Feasible Feasible
+4.0 +3.0 Feasible Feasible
+3.,5 +3.5 Feasible \Feasible
+3.0 +5.0 Feasible Unfeasible
+1.5 +6.5 Unfeasible ~ Unfeasible
6.0 +6.0 Unfeasible Unfeasible
+5.5 +3.0 Unfeasible Unfeasible
-

Table 5.3: 3-bus system. Line 2-3 outaged.

It is seen from the results displayed in table 5.3 that no
case classified as feasible by the screening technique is
classified as unfeasible by the corresponding ac. simulation.

gevertheless, some remarks are in order, This specific
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example, illustrates one -limitation of the proposed
;ethodology. . The injections needed at the end buses to
simulate the outage are given by eqs(5.16). These equations
are approximate'because‘they utilize the precontingency bus

angles (recall that the system was assumed to be voltage

~

‘robust) and not the post contingency ones.

[}

Accordingly, the error introduced in estimating the needed
injections is transferred directly to the compound
injections, which are estimated by direct superposition of
the needéed injections with théuprecontingency bus loads.

Suppose that the point suggested by the computed compound
injections happens to be located near the separation surface

* Assume, furthermore, that the

of the feasibility region;
surface of the hyperellipsoid, in the neighborhood of the
compound state, happens to be virtually identical with the
separation surface itself. In the case of the load
variability © assessment this coincidence was highly
beneficial but, for security assessment it may very well
lead to wrong decision making. In other words, the total
absence of the uncertainty zone may cause the state (which
otherwise woud be classified as unfeasible) to bbe

classified, wrongly, &s feasible. ~

It is exactly this very exjistence of the uncertainty zone

that, in our opinion, more ensates for the error

introdiced by using the egs n this specific example,
as illustrated in fig.4.16, the =zone of uncertainty is
virtually non existent for first quadrant states. As a

o
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consequence, erratic decision making is’probable for ée;tain
load patterns under the concurrent influence of the
condit{gns stated.

As a fgxbhqg illustration of the technigue the more compl?x
5-bus  system will be used for the cases to follow. The
procedu;g is the same as the one used for the 3-bus system.
Only single outages are examined. Table 5.4. pertains to the
caﬁé where line 2-3 is considered to be out of commission.
Assumiﬁg the same precontingency loading as in table 5.3 the
system's response (steady state) is assessed with both full

scale ac simulations (column 2) as well as with the method

of the hyperellipsoid (column 3)
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LOADING OF THE SYSTEM

OUTAGED LINE : 2-3

-7LOAD FLOW SCREENING METHOD
+0.2 +0.2 +0.2 +0.2 Feasible Feasible
+0.2 +0.3 +0.35 +0.4 Feasible Feasible
+0.4 +0.4 +0.4 +0.5 Feasible Feasible
+0.6 +0.6 +0.6 +0.6 Feasible Feasible
+1.0 +1,0 +1,0 +1.0 Feasible Feasible
+l;0 +2,0 +2.0 +2.0 Feasible Feasible
+k,0 +3.0 +2,0 +2.0 Feasible Feasible
+1.0 +4.0 +3.0 +3.0 Feasible Unfeasible
+1.0 +4.5 +3.5 +3.5 Feasible Unfeasible
+1.,0 +4.,0 +4.,0 +4.0 Feasible Unfeasible
+1,0 +5,0 +4,0 +5.0 Unfeasible Unfeasible
+1.0 +6.0 +5.0 +4.5 Unfeasible @ Unfeasible
+1.5 +6.5 +5,5 +4.5 Unfeasible Unfeasible
+2.0 +7.0 +6.0 +4.5 Unfeasible. Unfeasible
+2.5 +6.5 +5,5 +5.5 Unfeasible Unfeasible

L ,
Table 5.4: 5-bus

system. Line 2-3 outaged.
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LOADING OF THE SYSTEM

OUTAGED LINE : 3-4

LOAD FLOW SCREENING METHODAgT
+0.2 +0.2 +0.2 +0.2 Feasible ngasible
+0.2 +0.3 +0.35 +0.4 Feasible Feasible
+0.4 +0.4 +p.4 +0.5 Feasible Feasible
+0.6 +0.6 +0.6 +0:6 Feasible Feasible
+1.0 +1.0 +1.0 +1.0 Feasible Feasible
+1.0 +2.0 +2.0 +2.0 Feasible Feasible
+1.0 +3.0 +2.0 +2.0 Feasible Feasible
+1.0 +4.0 +3.0 +3.0 Feasible Unfeasible
+1.0 +4.5 +3.5 +3.5 Feasible Unfeasible
+1.0 +4.0 +4.0 +4.0 Feasible Unfeasible
+1.0 +5.0 +4.0 +5.0 Unfeasible\ Unfeasible
+1.0 +6.0 +5.0 +4.5 Uqugsible Unfeasible
+1.5 +6.5 +5.5 +4.5 Unfeasible Unfeasible
+2.0 +7.0 +6.0 +4.5 Unfeasible Unfeasible
+2.5 +6.5 +5.5 +5.5°| Unfeasible Unfeasible

5.5: 5-bus system. Line 3-4 outaged.

Table

142

Ao b

B IR



Hh—“1’.-04\1'3111(5 OF THE SYSTEM ’ OUTAGED LINE : 4-5
/ [ zoan FLOW | SCREENING METHCD

+0.2 +0.2 +0.2 +0.2 Feasible Feasible
+0.2 +0.3 +0.35 +0.4 Feasible Feasible
+0.4 +0.4 +0.4 +0.5 Feasible Feasible
+0.6 +0.6 +0.6 +0.6 Feasible Feasible
+1.0 +1.0 +1.0 +1.0 Feasible Feasible

- +1,0 +2.,0 +2.0 +2.0 Feasible Feasible
+1.0 +3.0 +2,0 +2.0 Feasible Feasible
+1.0 +4.0 +3.0 +3.0 Fea;ible Unfeasible
+1,0 +4.5 +3.5 +3.5 Feasible Unfeasible
+1.0 +4.0 +4.0 +4.0 Feasible Unfeasible
+1.0 +5.0 +4.0 +5.0 Unfeasible Unfeasible
+1.0 +6.0 +5.0 +4.5 Unfeasible Unfeasible
+1.5 +6.5 +5.5 +4;5 | Unfeasible Unfeasible
+2,0 +7.0 +6.0 +4.5 | Unfeasible  Unfeasible
+2.5 +6.5 +5,5 +5.5 Unfeasible Unfeasible

Table 5.6: 5-bus

system, Line 4-5 outaged.
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LOADING OF THE SYSTEM

LOAD PLOW

OUTAGED LINE : 2-5

SCREENING METHOD

+0,2 +0.2 +0.2 +0.2 Feasible Feasible
+0.2 +0.3 +0.35 +0.4 Feasiblé Feasible
+0.4 +0.4 +0.4 +0.5 | Feasible Feasible
+0.6 +0.6 +0.6 +0.6 Feasi?}e Feasible
#1.0 +1.0 +1.0 +1.0 | Feasible Feasible
+1.0 +2.0 2.0 +2.0 Feasible Feasible
+1.0 +3.0 +2.,0 ,fZ.O Feasible . Feasible
+1.0 +4.0 +3.0 +3.0 Feasible Unfeasible
fl.o +4.; +3.5 +3.5 Feasible Unfeasible
+1.0 +4.0 +4.0 +4.,0 Feasible Unfeasible
+1,0 +5.0 +4,0 +5.0 Unfeasible Unfeasible
+1.0 +6.0 +5.0 +4.5 Unfeasible Unfeasible
+1.5 +6.5 +5.5 +4.5 | Unfeasible Unfeasible
+2.0 +7.0 +6.0 +4.5 Unfeasible Unfeasible
+2.5 +6.5 +5.5 +5.5 Unfeasible Unfeadible

Table 5.7: 5-bus

Lo
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system. Line 2-5 outaged.
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CHAPTER VI °

CONCLUSIONS AND RECOMMENDATIONS.

6.1. CONCLUSIONS.

The problem of the determination of operating regions has
been of considerable interest during the past years. The

Jusef lness and potential of the exact knowledgg of such
opegggﬁng regions for real time operation and control has
long ago been recognized.

Nevertheless, the difficulties associated with analytical
approaches are formidable, "due to the fact that the
equations governing the performance of power systems are
nonlinear. Trading computational power for analytical
elegaﬁce seems, for thé moment, to be the only attainable
engineering means, for ?mplementing practical control and
operating strategies in the real time power system
environment .

This dissertation approached the problems of steady state
feasibility region identification and sfeady skate
contingency analysis from a simulation-based, Pattern
Recognition-motivated, point of view.

The following concluding remafks apply for chapteré 11 - V.
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i) Direct transposition of Statistical Pattern Recognition

L4

methodology to Power Systems'engineering is not recommended.

Methodologies, for both formulating and solving power system

problems, are to be developed on an independent basis.

Concepts applicable and extensively used in a statistical

LY

environment (such as the concept of the misc}assification
error) should be addressed f£from an \kntirely new point of
view in the strive for reliability in real time operational
practice.
-
ii) Training point selectivit& as well as training point
economization are imperative attributes of the training sets

usegfin power system region identification. Random selection

of training samples is to be avoided and the fact that

training pointg are very costly to power system engineers
has/to be pfgﬁer;y accounted for.

With the algorithms presented for training point selection,
the desired attributes of selectivity and economization have
concurrently been achieved, thus substantially reducing the
amount of "off-line" computations needed. The superiority of

those ' algorithms over random selection schemes was

demonstrated.

iii) Training points should be located in the immediate
vicinity of the separation surface. As a consequence, data
set condensation is rather imperative if realistic
hyperellipsoids are to be obtained. It was also shown that
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even for classification purposes (in the traditional Pattern

i;ﬁ Recognition context) the misclassification error is, as a.

’ . rule, reduced whenever condensed data sets are used.

&

Algorithms for data set condensation were presented and

¢ g

their walidity tested. o

iv) An error free method has been developed for state
identification based on the concept of the hyperellipsoid of
confidence. Methods for constructing the hyperellipsoids
needed were also developed, and. criteria for optimizing
'their~ size were given. The method, makes no use of the

\
concept of the misclassification error, concept which is
rather hard to cope with 1if realngme, error- free decision

making is desired. b

v) Direct applications of the method o% the hyperellipsoid
o in the real time power system environment were suggeéted.

* Load flow feasibility can be assessed on line. By utilizing

the hyperellipsoids for screening purposes, the amount of ac

- simulations needed for error free decisionﬂmaking is greatly
reduced. The applicability of the approach was demonstrated

i ‘ for actual power grids.
]

N

vi) A method for steady state contingency analysis was

developed based on the concept of the hyperellipsoids of

'+ confidence of the precontingency feasibility region of the

. ( power grid. The method relies on the Z matrix concept and
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poses the following advantages, as demonstrated by the cases

" examined. : ) . .

- Being Pattern Reéognition motivated it vretains the
advéntage shared by those methods, i.e, it is very fast and
particularly suitable for on line applications.

- The method is very reliable because it relies on the
hyperellipsoid of confidence idea. The unceftaint&,
assoc}ated with the misclassification . error, which 1is the
main weakness of any potentially applicable Pattern
Recognition based operatﬂng strategy, has been circumvented.
Reliability in real time power systems operation and control
is, now, within reach in the context of the proposed

v

methodology.

- The method utilizes the precontingency training data sets

to conjecture post contingency system behaviour. As a

consequence, once the training sets for the feasibility

region of the precontingency power grid are available, one

may examine a good variety of potential out&ges_ without

having to resort to different training sets 1in order to

construct the much needed hyperellipsoids of confidence.

vii) Stability and security indices bearing a definite
quantitative and physically explainable meaning were
suggested. Quantitative indicators of the degree of
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uncertainty for the operating environment can be directly

contemplated,

viii) The method developed for contingency analysis

‘circumvents one of "the major (perhaps the most severe)

1

drawbﬁcks of Pattern Recoghition methods as applied so far
in Power system engineering: the fact éhay the slightest
modifiéation;;in' network topology usually renders the
acquired data sets combletely useless, This is no ionéer a

limitation with the suggested methodology.
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. 6.2, RECOMMENDATIONS FOR FURTHER RESEARCH.
iiié’ ' —_—

: It is the opinion of the author that ‘Pattern Recognition
based methodologies can be fruitfully applieé in power-:
system engineering, especially in r;al time environment.
Nevertheless, a necessary bresupposition is that methods to
be used are. freed from concepts and methodologies which may
suit very well others but present serious limitations in

Power System engineering.

Training Point Selectivity and Economization.’

Trainiﬁg points in Power system engineering are-very costly
to obtain and selectivity as well as their economization
must be the guidelines on which procedures for their
acquisition should be based. Accofdingly, research 1is
needed to provide ansvers, of ever increased sophistication,
to the question: " Where should one éeek the next best

]
training sample?”. . ,

Increasing the volume of error free decision making region.

For many practical power systems, the hyperellipsoid of
confidence of type I may répresent but a small subset of the
actual feasibility regionf It would be very useful if
techniques for utilithg the unused parts of the feasibility
( AR region wvere developedﬁ New hyperellipsoids of confidence
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(especiaily useful for load variability assessment) would
emerge (they can be very well viewed® as satellite
hyperellipsoids) which would complement our global knowledge
for the feasibility region. One promising methodological
possibility fér such an undertaking ;ould be to apply

"clustering techniques" to the states not enclosed by the

already existing hyperellipsoids.

.

Improving the accuracy of the method for outage simulation.

The need for more accurate determination of the required
injections at the line ends for proper simulation of the
considered outage has already been pointed out. Any effort
towards increasing the volume of the regions of error free
decision making, leads to *an uncertainty " region
characterized by an ever decreasing volume. Accordingly, it

can no longer compensate for computational discrepancies

when estimating the needed injections. '

Multiple line outages.

Only single contingencies have been examingd in this
dissertation, It is the opinion of the author that the
methods presented here are best suited for single outage
analysis. Nevertheless, it would be benefici;\\ if an
assessment of the limitations of _the method were carr#ed out

for multiple contingencies. . ;>
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Our numerical experience suggests . that + the more

%
<
b
b

interconnecting 1links a power grid possesses the more
unrestricted the power flow becomes. This indicates to =a.

certain extend, that the buses of such agrid can withstand
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~ a maximum loading of the.same ‘order of magnitude. This e

attribute, incidentally, is a very desirable property of EHV
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backbone networks  (the equivalents of which this

dissertation mainly addressgs). ;f uniform maximum loading

e

‘can be accommodated, the hyperellipsoid of type I will be a

>« hibeate gr

fair approximation of the feasibility‘ f;gionfitself. If the .o
° relative volumes of the hyperellé@soid of confidence, on the
one hand, dnd the feasibility region itself are'compared,

their ratio (in conjuction with the grid bus loading

LR PV,

limitations for the currently considered topology) could .

e I

Tt - lead to specific recommendations for branch addition or

deletion , ' o
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Table I.1l - presents the line data of the 3-~bus system

utilized, while fig.,I.1l depicts its topology. It is assumed .
that the slack bus

APPENDIX I : .y

ﬁINE AND BUS DATA FOR THE UTILIZED POWER‘SYSTEHS. .

~

-

is bus 1. Buses 2 and 3 are both

considered to be voltage controlled nodes (type 2) with
.

infinite

reactive

compensating capability. Their ‘nominal

voltage are assumed to be 1.00 p.u. The voltage at the slack

bus' was takend to be 1.05 p.u.

Bus 1 has been assumed to

be the only source of real power in the system.’

BUS ﬁfnus SERIES IMPEDANCE | SHUNT ADMITTANCE
b
1 2 0.0210+30.200 0.000+50.000
1 3 0.0210+50.200 0.000+30.000
2 3 0.0210+50.210 0.000+30.000
’ -

. %
Table I.1: Line data for the 3-bus system.
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Fig I.1l: 3-bus system.

Fig.1.2: 5-bus test system,

Table 1.2 presents the line data for the 5-bus test system

" . utilized in the last chapter of this dissertation. Eus 1 is

considered to be slack bus. Buses 2, 3, 4, 5 are considered
to, be type 2 (voltage contrclled) buses with infinite
reactive compensating capability. Their voltage magnitudes
;re held at the level of 1.00 p.u. The voltage of the slack
§us was assumed to be 1,05 p.u. '
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BUS BUS | SERIES IMPEDANCE | SHUNT ADMITTANCE
R ’ —
f - 1 3 0.0208+3j0.1367 0.000+30.000
1 & | 0.0237+30.1823 | 0.000+30.000
1 5 0.0309+30.2372 | 0.000+30.000
2 3 0.0574+30.4397 | 0.000+30.000
2 5 0.0419+30.3212 | 0.000+30.000
3 4 0.0366+30.2806 | 0.000+30.000 .
L 4 5 0.0410+30.3149 | 0.,000+30.000

Table 1.2: Line data of the 5~bus test system.

The impedance matrix for the 5-bus test system with the
above presented data 1is found to be as follows (the
resistive component of the impedance of the transmission

lines has not been taken into account):

Bus3  Busé BusS Bus2

Bus3 r30.0950750'j0.0347386 j0.0270268 j0.0557513

<

Bus4 j0.0347386 j0.1030543 j0.0428355 j0.0394168

Bus5 |3j0.0270068 j0.0428355 j0.134572;)j0.0891729

Bus2 j0.0557513 j0.0394168 3j0,0891729 j0.2606760
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APPENDIX II. '
. “ L e

ON ALGORITHMIC PERFORMANCE INDICES.

In chapter 1II, "cost éoncious"b;lgorithms were presented
for training point selectior, the objective . being indirect
region identification., The question one has to face, 1is,
how many points are actually needeé°for reasonably accurate
indirect region identification. The next\emmediate question
would be how the dimensionality of the state space affects
the training'péint requirements. Generally, if structure of
any sort is not assumed (for the surfaée to be identified)
questions of this sort are very difficﬁlt to tackle. Any

assumption concerning structure (especially in higher than

three dimensions) in order for the mathematical modeling to

become simpler have to be well founded from a physical poi t'

of view if simplification of the .problem is not to lead to
e

its distortion., R

In this diﬁsértation our interest has been focused on the
steady state feasibility region of power systems.

It is in order to mention here that, in spite of the fact
that, eventually, the effort of acquiring the training
pPints will be crowned with h%perellipsoid construction, the
probIempis not reduced to hyperéllipsoid identification. To

our knowledge, there is no evidence whatsoever for the

. 156
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“meaningful.
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feaéibi};ty N/teéion having any a}finity for special
structure. Any "a, priori" ‘assumption, therefore, on the
matter will father be misleading than helpful. %urthermore,
it is a well known -  fact that the number of the buses
(directly related to the dimensionaldty of the state space)

in a power system is only one of the complicating factors.

bhe steady state feasibility region 1is  known, from

experience, to be far more sensitive to other factors‘such
as, system tqpbibgy and system parameters. R;cognizing the
fact th;t,various syétems with the same number of nodes, can
have radically different feasibility regions (due to their
different topological structure) A we conclude that,
attempting to establish a performanée index based solely on

the number of the buses (dimensionality) ig not really
\

- i

In practice, hoﬁeéer, the problem is put more mildly. The
power system is given and the dimensionality of the state
space known. The analyst, therefore, tfaces the problem of
the "a priori" determinatiop of the number of iterations
needed for its computer runs. '
To,\be sure, after a suitable (but still undetermined)
number of iterations no more t;aining points will be needed.
At that stage the hyperellipsoid resulting from the
covariance matrix of the data will have reached its "final
form". In other words, there will be a point beyond which
acquisition of more training points will have noc appreciable

effect on the resulting hyperellipsoid(s).-
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Minor , variations in size are to be expected for the

hyperellipsoﬁd(s) but its oriéntation (and its location) in

space should be fairly well known. An eigenanalysfs of the
covariance matrix of the available, to that point, data can
impediately reveal such variations. 1f changes in the
diréctions of the €eigeny¢ctors are observed, vwhen more
training points enter the data sets,'then, beéing still in
theoformative stage, more training points are needed. B If,
6n the contrary, a pattern of converqence is. observed one

-

feels confident enough to stop.

R R

A direct consequence of such a reasoning is,thaf} being not
ablg to specify "a priori" the number of iterations needed,
does not neéessarily mean that no stopping criteria are
available. )

Wh;t ve, accordipgly, propose is a sentinel procedure which
if put in effect periodically ,(every prespecified nuﬁber of
iterations) can prevent redundancy in the data set contents.
The scheme relies ‘on the fact that, the eigenquantitie§ of
the covariance matrix of the data (utilized for
hyperellipsoid construction), will  not experience
substantial variation if redundant information is addéd to
the trainimg sets.

For the 3-bus system téble I1.1 shows the results of such a
procedure. The covariance} matrix utilized for the
eigencomputations pertains to the one obtéined By utilizing
the.stable training points. Column 1 of the table depicts
the training points collected. Column 2 dep}ct; the

a
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eigenvectors of the covariance matrix of the data (in column

form) and, finally, column 3 the corresponding eigenvalues.

\ .

]
NUMBER OF TRAINING | EBIGENVECTORS EIGENVALUES
POINTS UTILIZED 1 2 1 2
e
- -0.856 -0.517
30 -0.517 0.256 | 19.78 55,33
-0.85% -0.517 _
60 -0.516 0.856 | 23.98 49.61
\ : -0.845 -0.535
90, -0.535 0.845 | 25.30 44.66
-0.838 -0.546
120 -0.546 0.838 | 25.97 47.56
S : -0.833 ~0.553
150 -0.553 0.833 | 23.80 50.82
-0.791 -0.623 '
180 -0.623 0.791 | 24.76 52.40 N
-0.772 -0.636 ‘
-0,636 0.772 | 24.68 53.10
A

Table II.l: 3-bus system. Variation of eigenquantities.

It is seen that, very rapidly, not appreciable changes are
introduced in the eigendirections. Physically, this means
that the algorithm utilized to acquire the training points
(potential function concept) achieves the desired training
point economization. Furthermore, the same facts lead us to
the conclusion that the quality of the training -points
coilected at the early stages 1is rather high, and therefore
the algorithm is characterized by high seleétivity. In this
specific example, 200 .training points were, in total,

obtained. Nevertheless, one could as well collect 100 only
.159
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and still feel confident enough. . -

The column 3 of table II.1l., displays similér tendencies for
the eigenvalues. One, however/ should bear in mind that
while eigenvectors are very indicative for lthe orientation
of the hyperellipsoid(s)'in spac;, the eigenvalues account
for the actual lengths of the semiaxes. Taking into account
the fact that, the square root of the eigenvalue (and not
thg eigenvalue itself) is a measure of ‘of the length of the
semiaxes, one sees that convergence is attained here as
well,

Table I1.2 is similar in significance to table II.l but it
refers to the S—Q%s test system utilized in chapter 5.
Column 1 indicates the number of available training points
and column 2 shows the eigenvectors of the covariance matrix
of the data (stable trainigg points). The eigenvectors
(normalized) aré sorted in such a way as to correspond one
to one with the eigenvalues of the covariance matrix sorted

in ascending order. Similarly, table 1II.3 shows the

variability of the eigenvalues with respect to the number of

available training points,
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NUMBER OF TRAINING
POINTS UTILIZED .

T

1

EIGENVECTORS

2

3

4

p—

200

-0.945

0.202
-0.074
-0.245

0.321
0.613
-0.038
-0.721

-0.051
-0.260

0.919
-0.293

] "
0.026
-0.718
-0.386
-0.579

' 400

0.970
-0.043
-0.024

0.236

-0.210
-0.627
-0.184
-0.685

-0.040
0.454
~-0.876
0.774

-0.113
0.638
0.445
0.625

600

-0.958
0.096
0.003

-0.267

-0.247
-0.742
-0.081

0.618

-0.034
0.291
-0.932

0.214

0.136
~0,.596
£0.353

0.708

700

-0.963

0.058
-0.054
-0.258

0.201
0.775
-0.319
-0.508

0.080
0.029
0.876

-0.475,

0.162
-0.629
-0.358
-0.671

800

-0.956

0.051
-0.044
-0.285

0.224

0.760
-0.153
-0.591

-0.006
0.113
0.987

-0.113

0.189
-0.638
-0.011
-0.746

900

-0.947

0.051
-0.062
-0.312

0.256
0.717
-0.091
-0. 642

-0.020
0.012
0.991

-0.135

0.194
-0.695
-0.082
-0.687

1000

-0.948

0.028
-0.045
-0.314

-0.256
-0.660
0.068
0.703

-0.044
0.121
0,992
0.002

~-0.184
0.741
-0.100
0.638 &

el

Table II.2: 5-bus test system. Variation

161
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NUMBER OF TRAINING EIGENVALUES
POINTS UTILIZED 1 2 3 4
—
200 14.73 17.14 19.45 27.07
400 15.15 19.95 22.48 29,24
600 , 15.19 22.05 24.16 28.20
700 14.86 22.67 26.42 29.13 )
800 15.04 22.90 26.49 28.53
900 ‘ 15.15 22.73 26.10 28,70 .
1000 15.33 22.75 26.26 28.23

Table II.3: 5-bus system., Variability of the eigenvalues.

Ed

In. the tables presented above Ehe~\fact that rather fast
convergence is attained for " both eig;nquantitiqs, in both
cases, suggests that yindeed high selectivity is aéhieved
when collecting training points. As a further

substantiation of this claim the 3-bus experimental system

was chosen to illustrate‘;he effectiveness of the adopted

algorithmic procedure. Fig 1I.1, Fig 1I1.2, Fig.II.3,
Fig.II.4, depict the two training sets for the system but

» for. wvarious numbers of training points. Dogs represent
stable states crosses represent unfeasible Qtates and shaded
tringlesurandomly generated test states.

It is seen that ( Fig.II.l) for very few training points
the misclassification error is very low and that selectivity
is.achieved. For ever :'mc:reasingI numbers of wanﬂted training
points, (fig.l11.2, Fig.I1,3, Fig.II.4) the‘misclassification

error is, again, kept at very low levels. Nevertheless, the

feasibility region is more and more identifiable.
162
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The actual number of training points one should obtain.is,
naturally, strictly dependent on the degree of accuracy

desired. Every system 1is to be tredated separately since it

presents "an entirely new case.
here, is rather heuristic and definetely not objective, The
the

stricter the criteria for convergence the larger

required effort will be.
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Fig.II.l: 3-bus system. 10 training points collected.

-

R 5
N N T L
N T el
. I

o Laktee g

S et et i A« o




T e % 4w

D

U -

L

ey

M e e AT g ¢ RS 1 e ek

MISCLASSIFICATION

ERROR IN PERCENT %

0.02

LB b

I

R T

.

JPRT

-8, -6,

Fig.I1.2: 3-bus system. 30

~F

training points collected,

165




Ca el

oy

RS

B PR L U R S TR, . . . ',,

Lof . )
7

MISCLASSIFICATION

ERROR IN PERCENT .

166

~

v

a

R R S

R

P

U s

.
- - -
o ot R e A A B N e ppmm e b e



LT AP

FrAE Vs

B ey

BT eyt b B WO

oy, b
R T R et Sy vy i~ <

5

At A AR e e e
. kS

ERROR IN PERCENT

; [, [
- A, .
A . —
! :
5 . o . )
. Rl .
- e ‘ - »
s =~ L A, .
, - ]
- = = - d
- [ ™ “ " N @
an . ..an x . . o * - s
- x . . L « ® % O
- I » 3 . * Pt « " nm“
» L4 )
\ N P 3
.- . « - - » o
. w R K s Y - £ 8 )
- - -
™ - i L] «* 4 b ‘ Co l. “ ”n
. oL ey ° -o =x " L
. " e* . b = [=d
n vo . e h ao *n . .m
n e '
. *xy " e o - O
. . S - PO < . e ® [ I o
L] - - Vs ] * " cm
v s [ =1
5 . . — ) R S -
S : )
. .y L ¥ ¥ . =] iy . ©
zt, 5§ 9 e H.ua” e, <+ ‘- _ ‘6 e _-Tl- ‘g1~ b
. . SINY .4 . ] - »
LY ) - e .
I PR % ¢ x ® . o
* L m .. a e
\ ‘e - . ™y ’ . - —
- ' - e
. . N b
: e S &
“ . . = Q
. - ] -
- . N hd - T ."“ i
N . . =1 - d - - [
,I M *w L] * ~ ?
] = - N n
- - b * r.n . - ) - «w
. tai . : N 7
L . o ! an - - - ™
x . » n‘ M - * Al
[ . M ° t ..
x ® . " <
" ® n " o ~ H 5
L] b — . - -
L] ¢ ] ¢ - : I
' . .
O . — o
- . ‘1
(o , ) [
w
L, ~ nd - T '
-
St S TR A Mo b werle e T, | 1 o BB s bt o s B L e s b i S e B e e e e - e V!

167




N o Tty
APPENDIX III '

.

" STABILITY AND SECURITY MARGINS.

A by product of the concept of the Hyperellipsoids of

confidence, as utili;ed here for both steady state stability
assessment as well as for steady state contingency analysis,
are guantitative indices concerning the degree of stability
and security for the system under the considered operating
conditions. . ?

Recall that 1in the detailed analysis of the three sample
case studies in art.5.6, the value of eq.(5.1) (for the
state vector of "the compound injections) has been found to
be monotonously dependent on ths degree of severity of the
precoqtingency load.

On the other hand, the value eq.,(5.1) assumes for a given
state, is a direct measure of the location of the state with
respect to the surface, eqg.(5.1) analytically represents.
For a given system is a matter of scaling, to assess any
proximity of a given state and the surface of the
hyperellipsoid. This fact in conjuction with*t?e fact that
the hype;ellipsoid represents but a subset of the actual
feasibility region, may lead to various operating
strategies. ‘

Assume, for instance, that assessing the effect of an

' 168
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outage ( or deneration shift) via the presented techniques,
one finds the state of the system to be. located to the
exterior of the region of the hyperellipsoid. Assume,

furthermore, that numerical acquaintance with the equation

of the hyperellipsoid (for the given grid), suggests that
the given state, falls just short from being 1located in the
interior of the region.

In this case the operator has every right to decide to
endorse the analyzed contingency as a nonfatal one. It
should, nevertheless, be mentioned that decision making of
‘éhis kind is purely subjective and, generally, not
justifgzble. In this dissertation, no "confidence
intervals"” were suggestéd for the grids analyzed. For actual

power grids; however, one could assess such margins on a

empirical basis, if operating in a slightly uncertain

environment is acceptable.
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