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ABSTRACT 

The present thesis tackles the problem of on-line steady 
, 

state security assessment in electric power transmission 

networks. The .contingencies examined include generation 
\ 

'~ 

shift as weIl ,as line (transformer) outages. 
\ 

The methodology developed is Pattern Recognition-motivated 

although not entirely within the frame of 'traditional 

statistical Pat,tern Recognition. 

Due to the fact that training,samples are rather expenslve 

to obtain in electric power engineering, our f irst concern 

was to develop and implement algorithms carrying out the 

task of intelligently acquiring training points. It is found 

that these algorithms, permit to substantially reduce the 

amount of off-line computational effort while, at the same 

t ime, the coherency and impart iali ty of the informat i on 

contained in the training sets is enhanced. 

A new scheme for security assessment (equally applicable 

for real t ime sec uri ty screen i ng) was developed based on the 

concept 1 of the hyperellipsoids of confidence. It is shown . ' . 

that by proper utilization 

confidence, uncertainty in 

(directIy related to the 

ci rcumvented. The results 

of the 'hyper~llipsoids 1 of 

real time dec ision making 

mise lassi ficat~\ erro)") . i 5 

of the new methodology were 
\ 

verified by full scale ac simulations. 

Finally, the usefulness and potential applicability of the 
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new scheme is demonstrated for EHV equivalents. l ts merfts 1 

are simplicity and reh'êibi:lity in real<time environment. 
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RESUME 

, \ 

~a présente thèse s~ a-ttaque aU,probl.ème de l'évaluation 

des cOIJ t i ngenc'e 5 en temps réel dans les réseaux de 

:transmission .9' électr'icité., Les contingences examinées 
,1,1 

incluent les vq.riation, des génération" ainsi que les pannes 
\ 

de lignes et d~\s transformateurs. 

La méthodologie développée est basée sur la méthode de la 

reconnai ssance des formes, b,ien qu ~_ e Ile ne s~ si tuè pas 

ent i èrement dans le ,cadre" t:. ra'di t i onel de cette disc i pline. 

Comme les échantillons d'apprentissage sont dispendieux à 

.obtênir dans 'le domaine de l'ingénierie des systèmes de 

pU,i ssanee, notre premier soue i a été de développer et 

implanter des 

. intelligente de 

algori t,hmes permettant 

tels },échantillons. 

l' 

Ces 

acquisi t i on 

algori thmes 

entrainent une réduction substantielle des calculs en temps 

dif féré, tout en ameliorant la coherence et 1 t impartiali té 

de l'information c'ontenue dans l t échantill.onage. 
~' 

. Une nouvelle méthode d' évaiuat ion de la sécur i té 

(applicable également al' évaluation des coptingences en "1). 
o 

temps réel) a été developpée cl' après le concept des 

hyperellipsoides de confiance. Il· est démontré que 1 ' 

utilisation adequate de ces hyperellipsoides permet de 

cont~'~rner le problème de l' °inc~rtitude7associé à' la prise 

des d,é'cz i s~on en 
'. 

temps réel: cet te incert idute est -

di rectemen t rel iée a 1 J ~rreur de class ~ Bcat ion. Les 
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résultats de cette nou~elle m6thodologie ont êté verifiês ~ 

" ' l' aide ge simulations de reseaux. 
., -

, Nous avons 'finalement démontré l' utili té et l' 

, applicab i li té de la nouvelle" methoàe dans le .- cas des 

équivalents-reseaux a très haute tension. Ses principaux 

avantages sont la simpl ici té et la fiabili té dans un 

environnement de calculs en temps réel. 
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CLAIN OF QRIGINALITY 

Ta the best of the author's knowledge, the following 

contributions presented in this thesis are original. 

,1. Development and imp1ementation of algorit~ms for training 

point selection based on the grounds of both selectivity 

and off-1ine computationa1 effort economization. 

2. Indirect, identification of the steady state stability d'o-

m~in of electric power systems utilizing the newly deve-

loped algorithms. 

3. Development of techniques for constructing hyperellipso­

id(s) of confidence. 

4. Development of techniques for reliable,' real-time, stea-. 
dy state stability and load variabi1ity assessment in 

electric power systems, based on the concept of the hy­

perellipsoid(s) of confidence. 

5. Development of techniques for reliab1e, real-time, 

steady state security assessment (for bath generation 

shift and line outages) based on the concept of the hy­

perellipsoid(s} of ~onfidence. 

15 -.. 
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6. Deve10pment of a technique for steady state security 

screening purposes with direct extensions to contingency , 

ranking, di,rect1y app1 icable for real-t ime opera t ion.-

7. Development of techniques anp methodo1ogies to: 

- Free e~ectric power engineers and control strategies, 

from the limitations of the concept of the misclassi-

fication error.· 

- Acguire and uti1ize training sets va1id for decision 

making under variable ~ower system topo1ogy. 

(' 
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CHAPTER ONE 

INTRODUCTION 

1.1. Background 

By the term . "e1e6tric power system" we mean "a network of 

one or more e1ectrical generating units, loads and/or 

transmission lines, includin~ the associated equipment 

electrically or mechanically connected to the network"(l). 

Power systems 1eft their regional character long ago and 

became larger and larger with numerous interconnections. 

Since then, power system engineers familiarized themselves 

with th€ unavoidable fact that the disturbance free mode of 

opera t ion for a large elect r lc power system is the most, 

rare1y encountered one. 

However, this fact is of no importance to the customers 

who se main concern is uninterrupted supply of electrical 

energy, characterized by high quality,voltage and frequency 

margins. The engineering 

str i ngent demands for 

justifying the result. 

cha1lenge then, is to meet those 

service reliability at a cost 

The various disturbances a power system can experience 

during operation, range from simple load demand variations 

(smooth or abrupt), to the very severe cases of repeated 

17 
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,. equipment outages (creating" islands" in the power system 

topological structure). The various events that, eventuall~, 

have ~o be analyzed are call~d "contingenc ies". 

'The ultimate" result of any contingency analysi5 is to' 

determine whether, or not, the system can withstand the 

impact of the contingency and rnaintain service continuity. 

If thi sis the case, we say that the system i s "secure" 

against the given contingency. 

Depending however on the sever i ty of the incoming 

contingency, the system will invar iah1y experience 

"transients" unti1 it reaches (if it does 50) a new 

operating point. When the system 1S able to withstand such 

trans i ents, we say tha t tt i s "transi ently sec ure wi th 

respect to the 9i ven contingency". An assessment of the post 

transient state of the system i5 the object of the "steady 

state security ana1ysis". 

One very impor tant c 1ass of system c ont ingenc ies tha t 

attracted much attention over the years, is the one which 

contains "equipment outages", i.e. 10ss of generating units, 
., 

transmission lines or transformers. More specifical.ly, much 

effort has been devoted to predicting the state of the 

system (post transient) following a contingency of thi s 

nature. The research that follows pertains to steady state 

security evaluation . 
• 

However, a single contingency is rarely, if ever, to be 

taken into accoun t. The fact that power systems are large, 

and have been built gradually for many decades, accounts for 

18 



large amount,s of diversity in both the existing equipment 

and its reliability. Mainteflance i5 ma~datory on an everyday 

basi 5 and thi sis the source of the 50 called" scheduled 

outages" • Unexpec ted fa i lures, of course, do occur and 

"forced outages" also have to be considered. l t shoulG be 

mentioned at this point that, associated with any, potential 

forced outage, i si a measure of the 1 i ke1ehood of i ts 

occurrence. 

As a consequence, at any operat i ng in stance, a set of 

cont i ngenc i e 5 is put forward, against which system 

robustness is t-o-be tested. They can ei ther be considered 
, 

one at a time (single contingency securi ty analysis) or, if 

of interest, more than one concur rently (mul tiple 

contingency ana1ysis). It i5 the opinion of the researcher 

that the proposed methodology for security analysis is best 

sui ted for single contingency analysis under the 

contemplateà assumptions. 

1.2. Contingency selection. 

How those contingenc'y lists are prepared i 5 a very 

important problem by i tself. Scheduled out ages are the first 

entri es, but w·hen i t comes to forced outages many factors 

have to be considered. 

Climatological condi tions, for instance, existing in the 

various areas of the' system can be of great help. 

19 



Unsuccesful reclosing of faulted lines or severe permanent 

damages to the towers (55,56) are, almost invariably, the 

resul ts of ~evere storms . '-
Load demand variations, occuring on a local basis du!ing 

peak hours, will give a good picture of the power flow paths 

and help spot possible overloads. The lines most li kely' to 

\' _ be tripped are also included in the contingency list. Of 

course the ever present "system troublespots" cannot be " 

omitted either. 

It is obvious that, in preparing a list of contingencies, a 

good amount of off-line work is necessary. We have, 

furthermore, t~citly assumed the availabiiity of both 

reliable and guickly implementable weather forecast and 

short term 10ad forecast schemes (the later also assumes 

sharp state estimation). A good and 'experienced operator, 

familiar with the system, is also indispensable. 

It is obvious, from the above short discussion, that 

cont ingency li sts are liable to changes and hierarchical 
.-

updatin~ at the beginning of every monitoring interval. 

Research towarqis automating cont ingency selection is in 
, 

progress and ,ideas have been reported (2,3,69,70,71,'72, 

73,74,75,76,77,78(79) • -------­( 

This research assumes that a contingency list i5 available 

and, furthermore, i t i s not concerne~ at aIl wi th real t ime 

automatic contingency selection. ) 

20 



, 
1.3. Approaches te steady state security assessment. State-, \ 

ment of the problem. 

The ste~dy state security assessment problem is' considered 

as a d1fficult one in t~~' discipline' of power system 

operation. The main difficulty lies in the fact that 

electric power systems are higly nonlinear. 

Under given loading conditions and system topology, the 

so~ption of a nonlinear system of equations (named the load 

flow equa t ions) i s necessary in order to dete rmi'ne the power ______ 
--------------------

flow pattern and the voltage profile of th~ system. The 

problem is further complicated by the' fàct that 
.. 

reactive 

.power limits, interchange capability limitations for the tie 
1 

J 

lines, and off-no~inal transformer taps ,have to be included 

in order to come up with a real~stic model for the system. 

Simulating a contingency l 'simply means considering a 

different system configuration which will ,reflect the effec·t 

of the simulated outage. Due to the nonlinearity of the 

response of the system to such changes, (assuming that the 

load deinand remains unaltered) a new full scale simulation 

seems necessary if we are to reveal possible violations of 

the operating standards. 

Gi ven the mon"i~tori ng interval, to exhaust a gi ven li st of 

contingencies and, t~erefore, claim tha t the chosen 

o~rating .poi~t is "secure"~ can be a formidaQle 

th~ above obvious approach is adopted. 

task, if 

The unfeasibility of such an approach is demonstrated by 
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the fact that, neither the enormous computat'ional power l 

needed i s ava ilable, nor will a'ny operator ever be able to 

implement and screen the results of the voluminous printouts 

of '1:ul! scale simulations. 

During the early sixt ies, only marg i nal computa t ion'al power 

was available, despite the pressing needs for securi ty 

assessment. However, the popular; and quite successful for 

many systems, method of precalculated "di stribut ion factors n., ' 

was presented (4) •• The method uses superposition of power 

flows on basic normal power flow studies D by means of 

distribution factors. Two 
1 4 ~, 

types of such "distribution 

f Il 
( f 

} . 
açtors one type or generatlon shift and one for ci rcui t 

outages) are precalculated and then used t~ pr,~dict the post 

contingency power flow profile .. 

this method is, aod has iong 
Lo, 

" ' ,\ 

The obvious s~ortcoming of 

ago been recOgni~ as such, 

the rigid linearity ;;assuIIJPtions that it imposes on the 

network. 

1.4. Approaches to steady state secL..:ity assessment. Linear 

non iterative methods. 

During the early sixties, the recognition of the fact that 

the digital computer would be of paramount importance in the 

future, gave birth to a great deal of research efforts to 

modernize the electric power systems engineers arsenal with 

good software packages. The modeling had to be suitable for 
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digital simulations and emphasfs was given in employing 

linear algebra, diakoptics and network matrices oriented. 

techniques. 

As a byproduct of the extensive research concerning the 

solution of the load flow-equations, the d-c 10ao f~ow idea 

emerged (5) for approximate load flow studies. Considerable 

simpli~ication of the load flow equations can be aèhieved 

f r..om the fact tha t the react ive component" of the ser ies 

impedance of the transmission lines is dominant ovèr the 

resistive one, and that power Ili,nes normally operate under 

rather low angle difference (duel) to - stability 

considerations) • This modified form of the load flow 

equations was us~d for securi ty calculations, i ts main me ri t 
. 

being this very simplicity. Still used by many utilities, 

und~r ~riOUS 

detection of 

over)oadings. 

philisophies, this method permi ts 

possible post contingency 
~ 

real .power 

the 

line 

The usefulness of the im~nc~trix (Z matrix) in ----~~ , 

comput i ng "changes of sta te" as a_ppl ied to short ci rcui t 

analysis was demonstrated. The idea of utilizing the Z 

matrix for security analysis was conceived (6), and aIl 
'< 

methods proposed 50 far, based on this concept, require the 

availability of a weIl solved load flow, called the "base 

case", as a starting point. The post contingency system 

profile is predicted by superimposi~g the incremental 

changes (in both line flows and bus voltages) t,o the­

precontingency "base case" one. 
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Several variations of the z~matrix methods are available 

today (7,8,9) .. Techniques for increasing their efficiency 

for on-line computations, both in speed and storage 

requirements, were developed (7,B~9). These improvements 

work on th~ assumption that the so called "system 

troublespots"(lines, transformers, and generally pieces of 

equipment that are more likely to be overloaded as a result 

of a eontingency) are knQwn to the operator. Those me~p~J 

present an attractive and high speed alternative. 

The backbone of those methods is .the utilization of the 

entries of the Z matrix to predict changes in the network, 

an idea emanating from Thevenin theorem in linear network 

theory. 'The model then i s st i Il linear. However, in spi,te of 

the network linearity assumption, the results are more 

reliabl,e than the ones gi ven by e i ther the "di str i bution 

" factor" method or the "d-c load flow". .- -

The techniques described 50 far have a common qualitative 

charaeteristic from a methodology point, of view. They are 
('---

aIl non iterative. This inherent feature makes them fast, 

easily implementable and suitable for on line applications. 

The fact that their results often show considerable 

discrepancy when compared with the results of elaborate ae 

analysis 1s offset in practice by their simplicity. 

\ 

l, 1" l' , ' 

(, 

--.., 
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1.5. Apptoaches to steady state security assessment. Linear 

iterative methods. 

Another category of methods which al~o gained widespread 

acceptance are the 50 called linear iterative methods. They 

emerged from the high degree of sophistication ac load flow 

solution techniques had reached during the early seventies. 

In solving the load flow problem, the 50 called "elimination 

methods" , based on the Newton-Raphson formulation of the 

nonlinear load f low equa t ions (linearizat~on of the 

equations around the initial guess of the desired solution), 

replaced the previously used Gauss (11) oriented technique~ 

(base,d"on iterating on bus voltages ,until voltage mismatches 

meet prescribed tolerances). The reason for this is that 

e1iminat ion methods were found to be more reliable from a 

convergence point of view and, most important of aIl, 

"system proof ri
• After computational difficulties (need for . 

inverting the Ja~obian at every iteratlon, and storage 

problems arising when working with the full inverse of the 

sparse Jacobian) 

decompositions and 

were fully endorsed. 

were bypassed (12) via 

optimal bus reordering, the 

t r iangular 

N-R schemes .. 

A concept that has been put forward from the early sixties 
" 

(13) is the "decoupled" load flow. The main idea is to 

facilitate computations of the N-R schemes (making the 

Jacobian block-diagonal) by assuming independence between 

the\fe,al and ,reactive power flow channels. This kind of 
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mod.ling is ba.sèd on the fact that the transmi ssion of 6.al 

power is higly sensitive to voltage angle variations, and 

that reactive power flow is mainly dictated by the bus 
• 

voltage magnitudes. Relative initial inaccuracies "were 

bypaSS~~~d faster versions became aveilable (16). 

In sec~rity analys~the idea of decoupling the real and 

,reactive power models was applied to give a fast iterative 

method for d~tage 'simulation. Efficiency was achieved by 
, 

simulating the outage via the matrix inversion lemma and by 
\ 

avoiding retriangularization of the characteristic matrices 

of the two power mode1s (17). 

The most âttractive feature of the method is its higher 

accuracy over the Z-matrix methods. However, it is 
" 

c'onsiderably slower for real time computations and requires 

much more coding. 

Another approach to the . S~rity 
the lnverse of 

prob1em, via 

Newton-Raphsoti, is to utilize the Jacobian 

and look at the system from a sensitivity point of view 

( 18 ) • The contingency is simulated by varying the 

injections at the buses where the outaged e1ement i~ 

connected, in such a way that the post contingency voltages 

,are genera ted . w i th the precont ingency system topo1ogy. 

Adopting this approach, vol tages of the system., have to be 

iterated upon, because the entries of the Jacobian are to be 

computed at the post contingency operating point. 

Apart from its accuracy, iterative ae cpntingency analysis 

-has th~ major, advantage, that a complete post contingency 
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profile of the system is available, while with the z'-màtrix fI>ï:' 

'methods (the higly efficient versions) only the selected 

"troublespots" are check~d. As a result, they can be a great 
r 
" " 

help when the analyst has lost its "feel" for the system or 

is still "debugging" it in the pl.anning stage. 

Th~ immediate adverse ~esult of equipment out age is usually 

the overloading of a certain portion (or portions) of the 

remaining transmission network, depending on the severity of 

othe outage (i f the precontingency load i s to be met). Many 
~ 

of the methods existing for assessing the post contingency 

system profile stress this aspect of the problem.(6,7,B) 

However, there are cases where the system is not 50 robust 

when it cornes to retaining its precontingency voltage 

profile. This is a situation encountered in many systems 

still under expansion (mainly in under-developed countries) 

and assessing the post contingency voltage profile of the 

system may be imperati ve {9). 

1.6. Approaches to steady state security assessment. Recent 

trends. Pattern recognition-oriented methods. 

A good security monitoring scheme must be able to assess 

both overloading and voltage changes: That goal gives 

a~other extra credit to linear iterative methods against the 

,Z-matrix oriented ones. 

AS a rule in today's power system operation practice, the 
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longer the monitoring inte(val, the better the contingency 

analysis. This is due to' the fact that,-oR the one hand, 

more contingencies can be eKamined (exhausting, if possible, 

the contingency list) and, on the other hand, (if not many 

contingencies are being put forward) there is time for 

uti1ization of methods of higher accuracy. 
~ ~ 

The trend today is to operate with shorter and shorter 

monito~ing interva1s. As a consequence, time unavailability 

'h ' 1 . (4 • h h lS t e crUC1a extra operatlng constralnt t e operator as 

to cope with. 

It is to ~e mentioned here that not on1y security 

considerations are to be taken into account when choosing 
1 

the operating point at the beginning of every monitoring 

interva1. Norma11y, more than one operating point will have 

to be considered, and selecting the appropriate one will be 

a" compromise between économies and future system robustness. 

The choise of the operating point is, guite often, dictated 
1 

by guesswork and policy rather than by optimization of 
,~ 

operating indices, because a countless number of factors has 
.' 

to"be considered. 

~uite frequently, choosing a specifie operating ~oint can 

be a very poor decision if the short term load forecast is 

found to be inaccurate or, if the miscalçulation of the 
'" . 

probability of occurrence of a given contingency le~s the 

operator to decide to "take chances". 

A shift in the operating point requires preventive control 

to be put into effect, and a quick answer to the question of 
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security must be provided by t~security monitoring scheme, 
.. , 

if we are to endorse the new operating point (mo~t likely 

suggested by economics). 

From the above discussion it: can' be seen that there is a 

pressing need for both fast and' at the same time, reliable 

security monitoring schemes. What one class of methods seems 

to offer in accuracy lacks in speed and ealse of 

implementation. Reasearch has been directed towards bridging 

those conflicting but desirable features. Conside(able help 

emerged from the availabilty of high gua1ity hardware which 

increased considerably the much needed on-1ine computational 

power. 

At the same time though, the cost of off-line computations 

has been reduced and this fact gave engineers the idea to 

look at methods relying on a fair amount of off-1ine 

computations. The idea of applying "Pattern Recognition" for 

power system security analysis was born (19,2Û,21,22). 

The main <reason for pursuing development of "Pattern 

Recognition", and genera1ly simulation oriented techniques, 

is the fact that information gathered via off-line 

computations can be used, very quick1y, for on line 

decisions. T~is way, the real time unavailability constraint 

is circumvented. 

As the term "Pattern recognition" suggests, those met~ods 

consist in. discriminating a secure from an insecure 

operating point by simp~y taking a glance at the operating 

state of the system. There are "system configurations under 
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specifie load" or "system loads under given configurations" 

that will constitute safe or unsafe operating points. 

The operator then understands the word "~~ttern" as: "a set 

of morphological and parametrie characteristics of the power 

system, which contains the necessary information to predict 

a certain outcome." 

This dissertation proposes a security monitoring scheme 

whioch is "Pattern Recogni t ion" mot i vated. 

The rnethodology and the philosophy of utilizatiQn ~f 

Pattern Recognition, as well as how it can be applied to 

electric power system security evaluation are treated in 

detail in chapter II. 
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CHAPTER 'l'WO 

METHOOOLOGY AND OBdECTI VES 

/) 

2.1. On the engineering methodology 

Generally speaking, when a specifie problem is to be 

tackled, in any engineering field, th~ mathernatics necessary 

for facins it will always be a direct consequence of both 

the physical picture and of the extent of modeling required 

to meet certain operational or design standards. 
, 

However, the rnethodology used is not only a function of how 

refined the solution will be. This is certainly the 

objective, but, very often, we are faced with problems that 

are hard both to forrnulate and solve. 

Either the complexity of tbe problern is such that modeling 

is formidable (if not impossible in realistic terrns), or the 

mathematicpl models that have been sug~ested are such that 

they either distort or obscure the problern in such a way as 

to render any potential solution invalid. 

Before the explosion in comput~r capability, during the 

seventies and eighties, the trend in devising engineering 

rnathematicaL rnodels was to' get a clear physical 

understanding of the problem and then to construct a good 

analytical model describing thé phenomenon in question. The 
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basic mot'i:vation was, and still is, to obtain quic,k, exact, 

elegant a~d easy- to~use results. 

The computer, over the years, fami liari zed engineers wi th 

numerical analysis, converging iterative techniques, and 

with the availability of considerable, and still growing, 

computational power. 

Under the circumstances, simulation methods, which up to 

now have been put aside due to the lack of both hardware and 

software availability, become more and more popular. 

Their validity both in the exploratory stage of many hard 

problems, and in design has been repeatedly proven. 

However, analytical methods are always more preferable. As 

a rule, when one resorts to simulation methods, he simply 

confesses his inability to f.ace the problem analytically. 

A drawbac k of the simulat i on methods i s that they can be 

lengthy, and require a lot of coding and computational 

power. Their greater advantage lies in the facJt that a , 

reasonably good physical understanding of the problem can 

lead t'o very useful resul t,s. 

Analog simulation served electric power engineers for 

decades for power flow studies, economic dispatch, transient 

and steady state security assessment. 

From the early 5 ixt ies, digi tal s imulat i on /rece i~d a lot 

of attention and today power engineers are equipped with a 

good variety of reliable software to accomodate their needs 

for planning and off-line studies. 

Problems encountered in power system operation are best 
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suited for simulation-based techniques because, on the one 

hand, they are v'ery hard and compÙcated to model 

extensively, and, on the other hand, accumulated e~perience 

over the years is available. 

Patter~ Recognition methods are classified as simulation 

oriented methods because, firstly, they require considerable 

computational effort and, secQndly, they base, their 

conclusion on "raw" data processing. 

\ 
\ 

2.2. Context of Pattern Recognition. 

Attempting to define the term "Pattern recognition" in a 

generally accepted way is not easy at aIl. Many authors 

refrai~ from giving formaI definitions and rather resort to 

examples suggesting the type of problems that are usually 
t . 

tackled by Pattern Recognition. ,Others doubt that a 

deftnition even exists, because they support the opinion 

that Pattern Recognition is not a field of discipline but is 

eV?lving into a multidiscipline, due to the diversity of its 

applications and the variety of developed methods by ~any 
, 

scientists working on specifie problems in virtually every 

domain. 

In (23) Watanabe suggests that: "Pattern-Recognition iSI a 

vast and explicit endeavour at mechanization of the most 

fundamental human function of perception and concept 

formation."~ 
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Probably, the ,difficulty resides' in the fact that neither 

the term "pattern" nor the term "rebognition" are formally 

defined and generally understood. Sayre(23) stresses the 

fact that: "We simply do not understand what recognition is. 

And if we do not understand the behav i our we are t ry ing to 

s,imulate, we cannot reasonably hold high hopes of beirug 

successful ln our attempts to sirnulate it." And he adds "to! 

recognize an object is to perceive it, or have perceived it, 

and in addition to be able to identify it". 

M~isel(23) defines a "pattern" as follows: WIn their widest 

sense patterns are the rneans by which we interpet the 

world. " 

Atternpting to ~efine ~he term "pattern" in a rigid 

axiomatic way often leads to obscurity and one < feels not 

cornfortable (if not a mathematician) to pur~ue further 

mathematical modeling. On the other hand, verbal,definitions 

trying t~ achieve generality, even skilfully, often tend 

towa rds vagueness. 

The context of Pattern Rec9gnition i5 50 vast that, as Nagy 

points out (24) it is relatively easy for the experienced 

pattern recognizer to describe almost any field of 

scientific and humanistic activity in terms of Pattern 

Recogn i t i on" . 

Nowadays we are not surpr ised to assess the fact th~t, 

Pattern Recognition motivated techniques found applications 

in countless fields, ranging from simple differential 

diagnosis in medicine to most sophisticated target 
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recognition systems for modern missile guidance technology. 

Working with Pattern-Recognition provides a certain 

framework for both terminology and rnethodology, and 

researchers in various' fields fpce essentially the same 

problems, but almost always greatly intensified or 

simplified by the peculiarities of the situation. 

This is the seat of another difficulty. One rnethod that 

seems to be working very weIl for a specifie application can 

bi very misleading for another, in spite of the fact that 

both problems can be perfectly formulated as problems 

solvable by Pattern Recognition. 

A direct conclusion of the above fact, for anyone who tries 

to approach a specific problem using P.R, is that first of 

aIl he should be very reluctant in transposing techniques 

from other fields that gave spectacular results. The 

philosophy of the ùtilization of the method, the basic 

motivations behind i ts dynamics and mathematical 
-, . 

! 
arsenal, 

should always be weighted against the particular situation 

the analyst has in mind. If this i5 not done the best he 

can hope for is meaningle5s results. 

2.2.1. General Methodology of Pattern Recognition. 

The ultimate objective of any P.R. technique is 

classification. By classification we mean the assignment of 

specific samples to ~ategories possessing distinct 
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qualitative attributes. In the terminology of P.R those 

categories are called "classes". 
.. 

The way to achieve mecianization in classifying, is to 

accumulate enough o"experience'~.&nd finally use i t to make 

decisions concerning class membership. The amount of data 

that play the role of accumulated experience are ca~led 

"training sets". 

The criterion by which classification is achieved is called 

the "decision rule" or the "classifier". The process of 

developing the "decision "rule", taking into account the 

"training sets", is called "classifier design" and is 

accompli shed during the "training stage" of any P. R. 

process. In other words, "classifier design", usually, 

consists in developing a method for condensing the 

intelligence scattered in the "training sets" and presenting 

it in a form convenient for future reference. 

From the above short discussion, it is obvious that, since 

the classifier is designed with direct referenc;e to the 

"training sets", the degree of relevance JoL the information 

co.ntained in the training set will be the crucial factor 

governing future classifier performance. To achieve data 

relevance in the training set, means must be found for 

extractiÏ1g the most prominen t inf ormat i on out of the mass of 

collected measurements or observations. This task by itself 

is the objective of the 50 called "feature extraction" stage 

of any Pattern Recognition problem. 
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2.2.2. Feature Extraction. 

It has a1ready been pointed out that the stage of "feature 

extraction" is a very important" one. Usually, "raw" data are 

collected and the "feature extraction" process task is to 

"f il ter out" the use fuI information, di scarding the rest. 

The reason for doing this is to avoid hand1ing redundant 

data bases that render the prQcess cumbersome and 

uneconornïcal. In many cases, redundant information can mask 

the importance of sensi tive factors ~ and lead to erroneous 

resu1ts. The "feature extr~ctionn prob1em is sometimes a 

formidable task for the pattern recognizer and many ways of 

tack1ing it have been proposep. 
, ' 

When we have two or more classes, feature selection becomes 

the choosing of those fea tures which are most e f fect i ve for 

• showing class separabi 1 i ty. The strategy for succeeding in 

this activity lies in mathematically expressing indices of 

class separability, and implementing them via optimization 

methods (25). Statistical analysis, based on the correlati~n 
'.~ 

of fea tures, can also provide insight concerning the 

possible redundancy of the entries of the originally 

se,lected pat tern vector. 

If terminology from state space system analysis is used,· 

feature extraction can consist in lowering_ the 

dimensionalityof the '~riginal pattern vector, by retaining 

the most ef fecti ve var iab1es. It can a1so be viewed as a 

mapping procedure to a \ lower -dimens ional space. Thi s new 
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space of reduced d~mensionality is called "feature space". 

In applying Pattern Recognition to engineering, however, 

familiarity of the analyst with the system, the existence of 

good mathematical models, or simply \ intuition can be of 

great assistance. 

2.2.3 . Classifier, classifier design and performance.' 

. The cl,assifi,ers cjl-n either ta,ke the form of direct criteria 

for deducing thé class membership of a candidate pattern 
, '/ 

from ~imple ,/îÎIetric considerations (nearest neighbor rules 

26,27',28) or can consist in arriving at expression 

describing analytically the border lines between classes in 

the feature space (25~. 

One should distinguish between probabi li st ie and 

deterministie decision making. If the probabilty densities 

of the populations constituting the classes are known, the 

problem can be formulated in terms of statistical decision 

making (29). In case the densities are not known, we can 

either resort, to techniques of density estimation (and , 

reduce the problem to statistical hypothesi~ a9ain), or 

apply th~ so-called non parametric decision making, where 

distriQution-free classification criteria have to be invoked 

(30,31,32,33,34). 

In deterministic decision making, no probability densities 

. govern the class populations (there is no overlapping 
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between them) and we enjoy complete class separability. 
( 

However, the separatrix (or separatrices), i.e the curve (or 

surface in higher dimensions) expressing analytically the 

class borders~ can be quite complex 
, 

and have a higly . 
irregular shape. Fitting schemes, based on either least 

squares, or penalty factors aspects, have been utilized in 

applications of this sort but the main difficulty resides in 

the fact that an "a priori" assumption has to be made for 

the mathematical expression of the separatrix. As a 

consequence, any accuracy claimed in training the classifier 

will simply refer to tts paràmeters while the mathematical 

expression by itself still remains questionable. 

Once a classifier is designed, the main concern of both the. 

designer and, especially, 'of any potential user, is its 

degree of correctness (35,36,37). Criteria have to be 

selected that characte~ize impartially the performance of 

tge classifier. Obviously, if something i5 to be avoided as 

muclf as poss ible,' i t i s wrong dec i sion making caused by 
\ 

• ~é • f' . m1sc \551 1cat10n. 

A "t~5t set" i5 used to assess classifier performance. The 

analy(t prov ides\ the c lassi fier wi th a set of patterns 

(nOrma~d during training) and lets the classifier 

decide their class membership. The true class membership of 

the elements of the "test set" has already been determined 

by simulation or other means. The number of 'improper ly 
~ 

assigned elements of the "test set" when compared to its 
1 

cardinal number, gives a measure of the "misclassification 

"- 39 



( 

error" which is to be expected in the application field. 

The "misclassification error" is a widely recognized 

performance index for classifier performance. Research 

indicates that both the impartiality of "test set" selection 

and its cardinal number are of significant importance. 

The above mentioned "Monte Carlo" motivated way is still 

the widely applied simulation alternative to the formidable 

problem of determining analytically the misclassification 

error. 50 far, analytical expressions giving the 

misclassification error exist ,but, unfortunately, refer to a 

very small numbers of 

decision making (25,29). 

cases related to probabilistic 

Misclassification will always occur, and the goal is its 

minimization rather than its elimination. Good classifiers 

result in small misclassification-errors, but optimalones 

give the minimum possible. 

Simplicity in classifier desig~ is a very desirable 
q 

property and, very often, analysts are more than willing-to 

trade ultimate accuracy in exchange with inexpensive, simple 

and fast decision rules. 

2.3. Pattern Recognition and Power Systems. Methodologies 

and modeling. 

Assume that there exist in the state s~ace of an electric 

power system one or several surfaces having the property of 
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separating the states of ~the system possessing a certain 

attribute (being steady state stable,- transiently stable, 

etc) from the states that do not.,This surface can be,called 
~ 

a "separatrix" because it separates those two classes of 

system states. (''-
Assume, furtber, that an analytical expression for the 

.separatrix is avaifable (the variables being the coordinates . 

of the chosen space). If such an analytical expression is 

available, any, state can be checked for its location with 

respect~to the separatrix by simple substitution in the 

given surface equation. Negative, positive or zero values. -

will imply that the given state is located in the interior, 

exterior or on the separatrix. 

The .enor"mous potential applications of the availabili ty' of 

such separation surfaces is obvious. Decision maKing is done 

with the negligible cost of simple function evaluation and, 

most i~portant of aIl, extremely quickly. 
\ 

. In transient stability studies, for - instance, it is weU 

·.kno~n that assessÏ'ng the stability of a rnultimachine system 

wi th respect to a 'spec i fic di sturbance, f requently requires 

t,he' numerical ~ntegra t ion of a system of di fferent ial 

equa~ion~ for a period of 2-3 minutes. Real time numerical 

integration is, of course, out of the qu.estion and Pattern 

Recognition is an attractive alternative. 

The relévance of the methodology has been pointed out 

(38,39,40) and results from the industry (41) indicated the 

feasibility of the approach. Direct extensions of those 
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methods to the problem of steady state security evaluation 

became available concurrentl~ (39,40). 

It ls to be mentioned here that the separation surface 

aspect was also used for identifying, via simulation 

methods, steady state and transien~~bility domains and 

for control purposes ( 42,43,44,45,46). 

Howev~r, tackling operation and control problems in power 

systems via P-R is not as straightforward as it may seem 

from the above discussion. 
" 

Be~ng forced to work and make decisions in astate space, 

questions concerning the dimensionality of such a space are 

the first to arise. Any power system has a large,number of 

yariables the exact knowledge of which is vital (bus voltage . 
magnitudes, angles, active loads of' the buses, reactive 

loads, reactive source capability for compensation, active 

source power limits, etc.) in deciding whether or not a 

given load demand pattern is feasible. If ~.transients are 

analyzed, other var4ables such as, generator reactances, 

parameters representing voltage regulators etc, have also to 

be considered • 

. Generally, the original pattern vector can turn out to have 

nurnerous entries.·' If aIl' of the variables initially 

considered arë kept, the dimensionality of the feature space 

~ecomes very la~ge and, same time, the number of 

t.r a i n i n 9 po i nt s decent classifier design 

becomes prohibi t i vely large. ' Implementi ng J a good feat ure 

extraction scheme (38,39,40) .is not always a cure to this ., 
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problem because power systems are large and a good number of 

variables is needed for proper representation. As a result, 

the variables selected are often application oriented and 

engineering judgement as weIl as knowledge of ~ystems 

peculiarities are of great assistance. In our case, for a 
given system configuration, the load -'demand will be the 

determining factor for the voltage profile. As a 

c9nsequence, tqe bus voltages are not included in the 

feature vector (being considered dependent variables). 

Another reason for not considering the precontingency bus 

voltages as features is the fact that, in today's systems, 

transmission bus voltage magnitudes are controlled (by 

either static or rotating devices) and do not experience 

appreciable variations. In a further effort to reduce the 

number of features the buses were assumed to have constant 

load power factors. This rneans that the pattern of variation 

of the reactive component of the Ioad, for a specifie bus, 

follows the one of the active component by a proportionality 

constant. This assumption has been successf~ly utilized~in 

the past by the author and others (47,48,49) under similar 

mOdeling circumstances . 

• 
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2.3.1. Pattern Recognition in power systems. Classifier 

considerations. 

The training points are obtained)frorn actual simulations 

(load flows) and labeled accordingly. If the load flow 

converges the operational point under consideration is 

considered to be steady state stable, if not it is 

considered to be st~ady state unstable and located in the 

exterior of the sought separatrix. 

The classifier itself is a very interesting aspect of the 

problem of Pattern Recognition application in power systems. 

Our problem, being a two class problem, consists in 

'discriminating between, say, steady state stable and steady 

state unstable states in the feature space. Membership in 

either of those two classes is not deterrnined by 

.probabilistic arguments, but by actual operating constraints 

uniquely determiriing the state 

stable or not. What the analyst 

under cbnsideration as being 
.~ 
1S forced to do, at first, 

is to guess the analytical form the separatrix could take 

and then, secondly, to train it. predicting the analytical 

expression of the separatrix in a high dimensional space is 

a very daring undertaking since often the very existence of 

such a separatrix will not have been proved. 

Linear classifiers were at first examined (38,39,40) but at 

the same time the higher accuracy of second order 

classifiers was pointed out. Linear classifiers have also 

been used for identification and control purposes but, 
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again, their performance was found to be inferior ta ,the one 

higher order functions exhibited (44,45). 

However, increasing the order of the classifier does not 

necessarily mean better accur~cy (i.e further reduction of 

the misclassification error). problems caused by overfit~ing 

may render the classifier useless and unreliable for points 

located near the surface it anal~tically represents. In 

spite of the initial appeal of polynomial discriminant 

functions (51), experie~ce shows that they can be quite 

misleading. ' A wide variety of fitting schemes was also 

examined (least squares, generalized least squares, etc) as 

weIl as potential function methods (50). The latter approach 

is based on the idea that the separatrix can be expressed as 

the equilibrium border between stable and unstable points, 

each exerting an influence (in the gravitational sense) 

around its vicinity. Although promising, this method relies 

heavily on the 50 called "Smoothing parameters" of the 

potential function, parameters which are determined by 

experience and are very much application oriented. 

From the above discussion, it is obvious that 

classification will be poor in the vicinity of the 

separatrix although good results are to be expected 

(irrespective of classifier choice) for points located in 

no,nsens i t ive areas of the sta te space. As already po inted 

out (52), it pays to know exactly the sets used for testing 

purposes when high classifier accuracy is claimed (one may 

pick up a testing set in which the secure and insecure 
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points, say, are 50 far apart that artificial discrimination 
, 

is easy). 

The quest for reasonably good classifiers did not omit 

nearest neigh~or rules either. The experience of the author 

is in ~a~cordanc~ with the results obtained by other 

researchers ( 52) • Nearest rules pe r f 0 r1ne'd 

spectacularly well (in a5sessing the steady state stability . 
region) for a 3-bus system, but very poorly in higher 

dimen~ions in spite of the fact that generous quantities of 

training points were provided. 

2.3.2. Pattern Recognition in power systems. Tentative 

application for security screening. 

Early recognition of the above capital difficulties led the 
--- --------------- ---

industry to ~e rather pessimistic when evaluating the 

performance of such methodologies (52). 

It is of interest to mention that efforts in employing 

Pattern Recognition for security analysis were concentrated 

in determining directly, with the aid of the separatrix, 

whether a given system state is sec ure or insecure. To the-

author's knowledge, no breakthrough i5 forthcoming in 

circurnventing the inherent difficulties associated with this 

line of approach and, accordingly, our expectations from 

Patt~rn-Recognitioh were far too great~ 
.' 

It is the objective of this dissertation ta propose another 
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use of Pattern Recognition when tackling the problem of 

steady stat~ security of ~ower systems. This dissertation is 

not concerned with any sort of security function evaluation 

but it, rathei, introduces a Pattern-Recognition motivated 

security screening technique. 

It is generally recognized that comprehensive security 

analysis should include equipment overload computations as 

weIl as the effectê of contingencies on bus voltages. Those 

tasks can be accomplished concurrently on the condition that 

ac power flow analysis be- used~ Those methads, however, are 

still too time consuming for real time computations in spite 

of the degree of sophistication they have reached due to the 

development of the decoupled load flqw technique (17). 

The dilemma can be solved in several ways. One very popular 

approach among uti!ities is tô limit the number of cases put 

forward for investigation by the contingency list. This is 

called secur i ty screen i ng. The cases "which, as shown by 

preliminary calculations, require special attention are 
-'-

referred to more elaborate ac analysis, while the ones whose 

effect on the system is obvious enjoy no special treatment 

(53). This screening procedure i5 initiated at the beginning 

of every monitoring inter~al. 

The proposed screening method classifies a given state in 

one of the following classes. 

- Definitely sec ure 

Definitely insecure 

- Ambiguous 
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Cases classified as ambiguous are referred to more 

elaborate ac analysis. The advantages of such a scheme are 

obvious: . ' 
- The operator does not have to be concerned with any sor~ 

of misclassification error~ a quantity on the one hand 

practically impossible to compute accurately and pn the 

other hand of virtually no use whatsoever, when assessing 
• 

the correctness of a decision. 

The scheme is faster than today's screening methods 

because it is P-R based. 

- Decisions as to whether the state under consideration is 

secure or not are based o~ data obtained by real, accurate 

system simulation studies. In todays schemes, however, in 

order to achieve speed we have to rely on linear non 

iterative methods whose accuracy has long ago been 

recognized to be questionable (see chapter 1). 

2.4. The proposed security screening scheme. 

The system i5 considered in its precontingency topology. 

The state space of the system is defined as the space of 

real power injections of the buses experiencing significant 

load variations. The steady state stability region (load 

flow equations fe,asibility region) is identified indirectly 

via two sets of points, one containing steady state stable 

training points an~ the other containing steady state 

48 

.~. 



unstable training points. This is accompli shed via special 

selection algorithms (see chapter III). 

- 1. A hyp~rellipsoid i5 constructed containing as many 

steady state .stable tra~ning points, as possible but no 

unstable ones. This set will henceforth be called 

"confidence hyperellipsoid of the stable states". 

- 2. A second hyperellipsoid is constructed enclosing aIl 

steady state stable points but as few unstabl~ training 

points as possible. This set will henceforth be called 

"confidence hyperellipsoid of the unstable states". The 

motivation behind ~uch definitions is the following: Astate 

falling in the interior of the "confidence hyperellipsoid of 

the stable states" is definitely stable, while astate 

located in the exterior of the "confidence hyperellipsoid of 

the unstable states" is unstable. Any state found in the 

zone located between the two hyperellipsoids, is 

characterized as ambiguous. 

-3. A contingency (line or transformer outage) is simulated 

as a change in the injections of the power system without 

altering its precontingency topology (18,54). The location 

of thé new state, as defined by the new injections to , 
reflect the outage, is simply checked wi th respect 'to the 

two above mentioned hyperellipsoids, already determined for 

the, system at precontingency topology. Thus, with this 

technique, the load flow feasibility region of the base case 

system is used to evaluate the effects of the outage. 
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CHAPTER THREE 

r 
ALGORITHMIC PROCEDURES FOR TRAINING POINT SELECTION. 

\ 

3.1. Introduction. Objectives of the selection scheme. 

As pointed out in the previous chapter, the implernentation 

of the proposed security screening scheme relies heavily on 

the knowledge of the feas ibi li ty region of the 

precontingency transmission system. For reasons explained 

ear lier (chapter 2), the ~ f Mt, when ident i fying the load 

flow feasibility region, has not, in this study, been 

directed towards deriving an analytical expression for the 

separatrix in the space of injections. Rather, two sets of 

points have been selected to characterize indirectly the 

sought feasibility region. One set contains steady state 

stable training points (points that represent feasible 

injections for the power system). These points are, 

obviously, located in the interior of the feasibili)ty 

region. The other set of points contains steady state 

unst?ble training points (points that represent injections 

which either cause the load flow not to converge, or impose 

violations of the operating constraints). These points are 

located outside the feasibility region. 

When such an approach is to - be adopted the following 
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questions are in order: 

- How are those points to be selected in order for them to , 
" , -

provide a fair out look of the region under investigatio~ ? 

- How many ,of those points are needed for proper region 

identification? 

The second of the above questions is not only a very hard 

one to answer but, also, one that a power system analyst 

regards with special interest. This i5 because t~aining 

samples are expensive to obtain. A training point, in our 

case, is the result of a full scale ac load flow analys~s, 

which requires a substantial amount of effort. There are 

cases where the problem of costly training sets can become 

much more acute. For instance, training points needed for 

transient stability region identification, in" the case of a 

multimachine system, would be far more costly because 

numerieal integration of the equations deseribing the rotor 

oscillations requires far more eomputational effort, than 

solving a set of nonlinear load flow equations. 

The fact that tr9ining samples are costly to obtain is one 

of the peeuliaritie~ of P-R when applied to power systems. 

It beeomes obvious that, sinee power engineers do not enjoy 

the privilege of training 'point availability (taken for 

granted in virtually every other domain of scientific 

research), training point economization i5 imperative. It is 

very interesting to mention that, this fact has not 

attraeted the 
o • 

attentlon it deserves, and, to ,the author's 
. 

knowledge, very little has been done to come .up with 
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cost-sensitive algorithms for training sample selection. 

Redundancy in training point availability would render any 

1. region identification scheme uneconomic'al and cumbersome. On 

,r. the other hand, if fewer training points than needed are 

available, reduced accuracy renders the scheme useless. 

Proper eng i neeri ng, consists in f inding the best compromi se 

between accuracy and cost, a question v,ery difficult to 

tackle especially when the number of dimensions is high. 

The scheme proposed herein for training point selection 

provides a performance index OI this kind. As explained, the 

number of t(~ining points needed (the minimum required) is 
, 

reached when the orien tation of the confidence 

hypèrellipsoids is not likely to chang~ in any appreciable 

manner when additional training points are ~uded in thé 

training sets (see Appendix II). l, 

3.2. Algorithm design 9uidelines. 

o 

When selecting points for region identification it pays to 

" bear in mind that: 

-~ The points should be as close as possible to the 

separatrix. As a matter of implernentation, the distance 
-

(consider any metric) between a stab~e and its corresponding 

unstable point (the algorithms provide the training points 

by pairs, i.e one stable one unstable) should be kept within 

specified lirnits (thus minimizing the zone of uncertainty 
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for the location bf the separatrix). 

- The fewer unexplored areas the surface pyrssesses the more 

complete our knowledge ~bout it will ~ As a consequence, 

it i5 imperative that the selection algorithm, supplies the 

training sets with elements representing every area of the 

separatrix. Overidentification of a region will provide, 

perhaps, better results locally but, if the operating point 

is shifted towards least identified areas, the results will 

be very misleading. 

Obviously, the same considèrations apply equally weIl in 

the case where an analytical expression for the separatrix 

is sought. The basic motivation behind this line of research 

is to design classifiers with a certain touch of optimality. 

By optimality we do not mean the minimization of any 

statistically rnotivated performance index of any kind. What 

the researcher is actually seeking, in tQ 
;. 

the paragraphs 

follow, is training sets that make th~ most out of the least 

possible number of training samples, thus minimizing th~ 

design cost of any potential classifier, with the least 

comp'romi se concerning i ts accuracy. 

The above brief assessment constitutes the design 

guidelines for the selection algorithms derived and 

implemented by the author. Accorpingly we will be looking 

at: 

1) Developing algorithms for the selection of "training 

samples. 

2) Testing those algorithrns: aS5essment of steady state 
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stabili ty will be att.empted for simple power transmission 
o 

systems using the training sets resulting from the selection 

algori thms . 

. ' Two algori thrns for training sample select ion have been 

devised and irnplemented. They are examined in detail in the 

paragraphs' to follow. 

3.3. Algorithm 1. Description. 

This algorithrn is a Monte Carlo based "random walk" scherne. 

It consists in tracking the separat i on surface and 

collecting stable and' unstable training points in the rnost 

interest ing part of the state space, i. e in_the v ici ni ty of 

the separation surface. The algorithm reads as follows: 

1. Start with a stable (s) and an unstable 
(u) po int. 

2. Generate randomly a "knee" point (a) having 
coordinates such that: 

The ith coordinate of the point (a) lies in 
- the interval spanned by the ith coordinates 

of (s) and (u). 

3. Generate a second "knee" point (b) as'above. 
The "knee" points (a) and (bl define two (2) 
trajectories. 

4. For the first trajectory: 
Examine the "knee" point (a) as to whether is 
stable or note 
-If stable exit with a pair of training points 

one stable (the knee point) and one unstable 
(u). De fine a' =a. ;, 

-If unstable bisect the segment sa and define 
the new point a'. 
Exit with a pair of training points, one sta­
ble (5) and one unstable (the "knee" point). 

-Store the training pair in data sets. 
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5. Define point h' for the second' trajector.y 
exactly as a' • 

..' 

6. Points a' and b' a~e stable, by construction, 
a~d uniquely, alttlough randomly, defined. 
Conduct a search first a10n9 direction i'b' and 
then a10ng b'a'. Let the step for the search be 
mod(a 1 b 1 ) • 

Two pairs of points resu1t from the searches: 
- s' ,u' (s' stable, u f unstable) ·from the 

search a10ng a'b'. 
- sn, u"(s" stable, u" unstable) from the 

search a10ng 6' a' . 

7. Select the pair which is the more remote from~ 
say 1 a'. Assume tha t pa i!:" is (s', U 1 ) • 

~ 8. Replace 5 and u with s'and u' respectively .. 
Return to step 2." ' 

It is appar'ent that this algorithm proviqes training points 

by pairs (2 pairs per iteration, one. pair per trajectory). 

Each. pair contains one st~ble and one unstable point. 

Fig.3.l illustrates the' algorithm in two' dimensions. 

Fig.3.l: Random walk "Monte Carlo" scheme illustrated 

in two dimensions. 
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3.4. Testing algorithm 1. Results • 

The algorithm has, at first,_been tested in two and~ 

later, in higher dimensions. In two dimensions two testing 

procedures were used. At first, the tracking capability of 

the algorithm has been tested on given geometrical figures 

(known separation surfaces). 
, 

A circle of a certain radius, and an ellipse were used. 

Fig.3.2, shows the circle which was to be tracked.' The 

"dots~ represent the "steady state stable" train~ng points 
~\ 

(in :this 'parti-éu~:~r case they are sirnply points located in 

the interior of the geometrical figure) and ~he 'crosses" 

represent the "steady s'tate unstable" training points, as 

produced by the two dimensional version of the proposed 

algorithme The plots were performed in the ZETA plot~er at 

McGill (IBM AMHDAL). Fig.3.3 illustrates the e'llipse wh,ich 

was to be tracked. The "dots" and "crosses" bear the 

previou~ interpr~tation. 

Th~ second testing procedure in two dimensions was to 

generate meaningful test sets.(the testing points had to be 

located close to the training points) and assess the 

'" relevance of the selected training samples. The test points 

a're also indicated in fig.3.2, and fig',3.3 (shaded 

triangles). The bounding squares indicate the area inside 

which random generation of the test points was restricted. 
, 

The classifier used for the prelabeled test points was the 

~nearest neighbor ruie. Many reasons contributed towards that 
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selection. At first, since testing procedures were under 

implementation, simplicity was a very desirable factor. 

However, reliability was als0 attained at the same time, 

because the separatrices under consideration complied with 

the conditions for admissibility of the decision rule. To be 

more specifie, the surfaces (curves in our case) under 

identification were smooth and the two classes enjoyed 

complete separability (26). 

The misclassification error for the generated test sets is 

a1so indicated in figs.3.2 and 3.3 and, as seen, is q~ite 

low. 

As 'a final test for the two dimensional case, the actual 

feasibility region of a 3-bus system was identified. The 

data for the system ar~ given in Appendix l • The two axes 

representing the two variables of the state space refer to 

the real pO.wer i nje,9t ions at buses 2 and 3 • Bus 1 is 

considered to be the slack bus. Buses 2 and 3 were assumed 

to be voltage controlled buses (unlimited capability of 

reactive-compensation) 

Fig.3.4 illustrates the training points that resulted after 

applying algorithm l (the "dots" represent feasible 

injections and the "crosses" correspond to non-feasible 

injections) as weIl as the test points generated for 

misclassification error assessment. The decision rule used 

was again the single nearest neighbor rule. The 

misclassification error was, again, found to be quite 

acceptable in spi te of the fact that, \ the region under 
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identification somewhat violates the , admissibility 

requirements of the chosen decision. rule (there is no 

guarantee what~oever that the feasibility regibn will be 

smoothly shaped, especially when the system consists of 
, 

transmission lines with rather diverse electrical parameters 

and lengths)~ 

" 

L 

\ 

( 

58 

" \ 
-----~,,:'.',' 



( 

• 

• 

'. 

• -la. -8. -6. -•. 

1 -fi 

1 

~ 

1 
!'I 

t'A -r .. Ddl 
X ~------~--------~---t.~~~--------~----~ 

. 
• 

MISCLRSSIFltATION 

ERAOR IN PERCENT 

O. 04 

. . 

Fig.3.2 Algorithm 

" - ""-,_ .. _---------

. . 
• 

• 
• 

l applied 

-(JI 

~ 

~ 

-fi 

to 

59 

./ 

• 
• 

• 

15 
2. (. 6. 8. la. 

1 1 1 

1 

• 

cirele ident i fiea tion. 

--: _________ .. _",f>T<~-



T / 

( 

; 

-la. -8. -2. 

'\ " li . 
.. . . 

.MISClASSIFICRTI~N 

ERR~R IN PERCENT , 

0.02 

d -

en 

0:9] 
;(..A 

• • 

,. 

.. . ~ 
1 . 
.. 
1 

«i 
1 

d 
ï 

.. . . 
• 

• .. " li 

6. 
IS . .. 

• 
• 

" 

. . . 

F i 9·3.3 Algorithm l applied to ellipse identification. 

60 

8. 10 



'-' 

• 
• 

N 
• • • .. 

• • " ... 
• 

" • ' . • • - Il " 1 ." ..... '. , .. .,.. ai " • •• " " "II .' .. . " .-.. • •• " • " • • • " ~ ~ " •• ... • • • • " . " ••• .. .v 
llÎ ." • • " • •• • 

" • • 
• " • " • • 

JI • • ~ 0 •• • .. • " • • "lit • • • 1 , ••• • • 
• • . " " ... 

Cf) , • .. - • 
• 

~1 S. -12. ~g. -6. -3. 3. 6. 9. 12. 1 S. 
IS " 

.. 
" • • " • • •• " ." . • " 0. 1 ... 

li 

" • • .. • •• • 
• .. 

" • li • 
li 

.. 

" • • • 

MIS C LAS 5 l FIC (1, T l ~ N 

ai 
• , 

• • 
",. ... 

" " 

, , -
• ." • .- 'II 

• • -"" • !II" • • * • .. • . " ..... ",. .. • o • c " • • • .: -'- N " - " " " 1 

" " " .. 
" " / " 

, • 
\ • .. 

iii 

ERRClR • IN PERCENT li li " 
.. .. " . " • 

" 
i 

• • '( 0.02 
• • 

" 

( 
~igo3.4: Algorithm 1 applied in the case of a 3-bus system. 

61 



3.5. Improving the misclassification error. Condensation. 

When nearest neighbor decision . rules are employed metric 

considerations are ultimately used for decision making 

concerning class membership. In our case, for instance, the 

usual Euclidian metric was used. 

By construction, as can be seen from figs.3.2, 3.3 and 3.4, 

there is a zone of uncertainty between the set of stable and 

unstable training points. Any test point located in this 

zone of uncertainty runs a higher risk of being 

mi sc 1 a s si fie d because, unfortunately, the previously 

described algorithm cannat tell which point fr'om a specifie 

pair (the stable or the unstable) is. eloser to 1J the 
" 

separation surface. 

Any remedial measure to minimize thi's 'zone . of uneertainty 
o 

will eventually reduee the misclassification error. As a 

matter of implementation, ~condensationn of the training 

sets was introduced before computing the miselassification 

rate. 

The condensation procedure cons i sts in reducing the 

distance (below a prespecified threshold) between the stable 
'0 

and .the unstable point of every pair. The condensation 

procedure; as implemented here, reads as- follows: 

1. Consider the first stable (s) as we1l as the 
first unstable (u) training point from the 
already available uncondensed training data sets. '1' 

2. Compute the Euclidian distance between them." 
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3. If the computed distance is less_than the prespecifi­

ed threshold go to 5. Otherwise continue to 4. 

4. Bisect the line defined by the points of the pair. 
Let the new point resulting from the bisection be 
the' point (n). 

If point (n) i5 found stable replace point (s) 
wi th point (n). Return to step 2. 
If point (n) i5 found unstable replace point (u') 
with point (n). Return to step 2. 

5. Store the ~ew stable and un5tpble training points 
in new data sets. 

6. Move to the next pair of points in the data sets. 

(. 

The conden~ation procedure has been implemented and applied 

in aIl the above mentioned test cases. Fig.3.5 refers to 

circ}e identification after the data sets pictured in 

fig.3.2 have been condensed. Fig.3.6 refers to ellipse 

identification with th~;~ data sets pictured in fig.3.3 

condensed. Fi nally, fig. 3 • 7 i Il ustra tes the condensation 

procedure in the case of the actual 3-bus 'system (compare 

with fig.3.4). Computation of the misclassification error 

(with the same test sets) using as training sets the 

condensed data sets, indicates an improvement in the case of 

the circle. In fact fot' t.his part icular case the 

misclassification error has been halved. However, in the 

remaining cases the condensatio~ procedure had no immediate 

effect, in the sense that the - misclassification error 

remained unaltered. In spite of the fact, though, that the 

condensa t ion procedure has not affected the 

misclassification error, simple inspection indicates that 

the condensed training sets are superior candidates for any 

potentially applicable fitting scheme. 
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3.6 .• Algorithm 1. Numerical experience. Shortcomings and. 

limitations. Search direction triviality. 

\,J' 

It is -apparent from the déscription of the algorithm 

that the "knee'" points are randomly generated. After 
, 

identifying a' and b~ the searches proceed with a steplength 

of mod(~'b'). Numerical experience in two and higher 
. , 

dimensi.ons demonstr'ates that, frequently enough, the points 
~. 

, a' and b' end up being located very close to each other. 
~ # 

This c~uses difficulties during the searches because the 

search direction itself is ill-defined. 
, 

In the event of such a situa~ion, one is forced to generate 

new "knee" points that will, in turn, produce points'a' and 

b ' positioned in a well-conditioned manner. It has been 

observed that this phenomenon is encountered when the 

distance between the initially chosen points sand u is not 

substantial. 

If one wants to avoid excessive condensation, it pays to 

cho.os,e the ini t ial ppints (s) and (u) close to each other. 

Such a choice, however, increases the risk of encountering 

"search direction triviality". On the other hand, trying to 

avoid the above mentioned numerical degeneracy, 'excessive 

condensation may be 1mperative increasing the cost of the 

selection scheme • 

As a matter of implementation, when cpding algorithm 1, 

special sentinels (mod(a'b')< threshold) were used to detect 

"search direction triviality". 
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3.7. Algorithm 1. Numerical Experience. Shortcomings and 
-

limitations. Subspace restriction. 

Assume that points a' and h' share 
, 

one common coordinate • 

.. In two .dimensions, this simply means that" the two points are 

located on a line parallel to either one of the coordinate 

axes. (Shar ing one common coordinate in higher dimensions 

means that the two points lie on a hyperplane of similar 

attributes). 

If pôints a' and b ' have one common coordinate, points s' 

and u 1 will. share tl1e very same coordinate. Entering the 

next iteration, the newly generated "knee" points will, by 
'" 

construction, share the same coordinate as weIl. 

Thus, the algorithm will keep providing training 'points 

located in a subset of the space of interest (8 straight 

line in two dimensions, a plane in three, a 
\ 

hyperplane in 

higher than three) • Fig.3.B illustrates the "subspace 

restriction" degeneracy as portrayed in the two dimensional 

case. 

If points a' and h' share one common ~oordinate, we are 

forced to generate new "knee" points defining new 

trajectories until the resulting points a' and b ' enjoy 

complete coordinate independence. Numerical experience 

shows that "subspace restriction" occurs, frequently enough, 

in higher than'two dimensions. 
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3.8. Algorithm 1. Numerical Experience. Shortcomings and 

limitations. Proximity effect. 

It is very probable, due te the nature of 'ran'domly . . 
conducted searches, that point:s ' i5 extremely clo~e'~o the 

separation surface. Assume that this is the case. Then, 

points a' and b ' will be found to'be'located even closer. 

A simple glance at th~ algorithm. reveals,that, traini~g 

points will continue to be p~ovided' but, they will be 

collected from a very restricted region of the s~paration 

surface, i • e the reg i on in the neighporhood of s'. . The 
'. 

" 
algorithm will not b~ able oto transfer the search to other 

areas of the state space and t!le resul t wi Il be 

overidentifiçation of the specifie part. After exhausting 

the predetermined number of iterations, the training sets 

will contain redundant information, to say the, least. The 

seriousness of the "proximity effect is further enhanced by 

the.fact that is very hard te detect. One effective and 

easy to implement method te deal with the problem was found 

to be "bactracking". If "proximity effect" is detected point 

~;-l is replaced by point s". Point Sil is located on the line 
,~1 

defined by 5' and u ' in Fhe ~irection of the stable trarning 

samples and mod (5 ~ 5" ) ;,,'mod (s' u 1 ) • Fig.3.9 illustrates the 

effectiveness of this "backtracking" manoeuvre in two 

dimensions. 

Early detection of the "proximity effect" i5 imperative 

because, this degeneracy, literally neutrali zes a 
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considerable number ~f iterations, rendering the procedure 

both' inefficient and incomplete. Detection rests on the 

'fact that ~n immedfate consequence pf t~e "proximity effect" 

-Îs that pOInts a' and b' ,will be located extremely close to 

point 5'. This can ~e revealed by direct comparison of both 
, ' 

m'od(s"a') and mod(s'b') with prespecified thresholds. 

l nc reasing, the threshold values, 't,he scheme wi Il 5 imply 

become mo~e, conservative wit~~ more "backtrackings" than 

~eeded~ But this was ,found to have no impHèations' 

whatsoever .' 

As' a final comment ',on .. the Ifproximity effe~t", let us 

mention that, it appears ~ith v~rious degrees of sev~rity, 

an6.it was found to be a)mojt unavoidabie in higher than two 

dimensions. Se~ere vers~ons of it can render the al~orithm 

. virtually useless.-

\ , 

, , 

, " 
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Fig.3.B: "Subspace Restriction" in two dimensions. 

Fig.3.9: "Backtracking" and "proximity effect" as appear 

'in a two dimensional space. 
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3.9. Algorithm 1. Overall Assessment. 

When conceived, this algorithm seemed simple and easily 

implementable. That was the reason the author pursued 4ts 

performance to a considerable detail. unfortunately, the 

complications associated with the algorithm make the author 

reluctant to apply it to real life, power system 

applications. 

It can be seen from the description of the algorithm that 

the essential step is the transfer of searches to less known 

parts of the separation surface (step 6). The main 

motivation behind, search selectivity was to ach,ieve 

impartiality in training point s~lection. l t has been 

observed, however, that such impartiality i5 not always 

achieved, espec ially in the case where the region' under 

idèntification portrays ill-conditioned 

To be more spec i f ic, tiTf one omi ts the ra ther 

compl icat ions , surface arising sep~ration 

irregularity, the alg~rithm haè a tendency to overidentify 

certain regions • 

One extra reason for unattractiveness, when evaluating 

~lgorithm l, is the fact that a considerable number of 

simulations could be lost if any of the above mentioned 

degeneracies are repeatedly encountered during the course of 

training point selection. 

Under the circumstances, the author was more than motivated 

to explore other algorithms for training point selectio~. 
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Algorithm Ivwas simply a reference pole for further research 
.' 

and as such should be viewed hereinafter. 

3.10. Algorithm 2. Potential functions. 

The concept of potential function in the context of Pattern 

Recognition engineering has assumed different meanings over 
.{\ .> 

the past two ~ecades. The idea can perhaps be beit traced to 
1 

Parzen (59) and his ~ttempts to construct probability 

density functions from the so-called "ke~nel" functions. 

Later, the term was used in conjuction with "stochastic 
1 

approx ima t i on" techniques for regression functions 

(55,56,57,58). It is inter.èsting to mention that, in aIl the 

above works, there seems to be no direct relevance of the 

term "potential function" with its intuitive meaning. 

c In Pattern Recognition engineering, when designing 

discriminant functions, one popular approach consists in 

emphasizing the differences ~etween classes, and thus obtain 

characteristic discriminant functions. Such methods are, 
) 

often, called "error correctLon" methods. Another proposed 

methodology to approach the di sc r iminant function 

identification problem consists in utilizing only samples 

from one class and, then, yield discriminant functions for 

that class utilizing only "interclass" information. The 

later approach gave another dimension to the applicability 

of "potential functions" in Pattern Recognition. Generally, 
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the techniques emerged from this research orientation ca~ be 

viewed "as 
). ,-i, 

as.pects of the' more general problem of 

reconstructing a probability density from samples of the 

process, ,q:d, of constructing a characterist~c function from 

a fuzzy set. 

-, In the presen~ dissertation, however, "potential functions" 

will be used to mathematically exp~ess the decreasing 

relevance of a sample point! upon point! as the distance 

d (.1,.1) increases. 

Certain properties are desirable for the "potential 

functién" it it is to be used in the above mentioned sense. 

These properties can be mathematically phrased as follows: 

- f (A,X) should be maximum when .1=1. 

- f(X,Y) s~ould be approaching zero for X distant 
from-y and in the region of interest. 

f (l,X) should be a smooth (cont inuous) function 
and tend to decrease in a monotonous fashion with 
the distance between X and Y. - -

if f(~,!)=f(l,I) where X is a sample point, then 
the patterns ~ and Z should have approximately the 
same "degree of s imi lar i ty" to 1.. 

\T 
- (~-:n\ (~-X) 

The function selected here is f(K,!)= e 
where T stands for "transpose". 

3.11. Algorithm 2. Princip1e. 

! 

The potential at point ~ due to the presence of poi t '~i 

i s , as dè fin ed : 
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T 
- (,~.-~i) [C] (l:1-l,i ) 

= e ( 3 • 1 ) 

where [cl is the identity matrix of order n (no smoothing 

parameter considered), and !:1 and IL are viewed as 

n-dimensional vectors (n=dimension of the state space). 

With r points in, the vicinity of 1:1, the potential evaluated 

at 1:1 becomes: 

T 
r r -O:1-A~) O:1-~i) 

P{H) = ! Pi(M) = r e 
i=l - i=l 

, 

where l denotes summation over the total 

!i, i=1,2 ... r. Expanding eq.{3..2) gives: 

r 
P(M) = t Pi (M) 

- i=l 

r Q 
= t e 

i=l 

n 
Q=-t(Mj-Xij) ;z 

j=l 

number of points 

( 3 • 3 ) 

where the outer sum is defined over the total number of 

points r and, the inner sum i 5 def i ned· over the 

dimensionali ty of the state space. Mj represents the jth 

component of vector 1:1, and Xij thé jth component of vector 

Evaluating the gradient at M give5: ..., 

àP àP T 
'il P (f;i) = [ ...... -] 

aM 1 c}M n 

where the gradient i5 an nX1 column yector 

clP r 
:: 2 ! e 

1t=1 

Lit 
(Xlti-Mi) , i=1,2, .•• ,n 

clMi 
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where: 
the sum ris def i ned over the- total numbet of points." 

n 
- LK = -r (XKj-Mj)2 , n= number of dimensions. 

j=l 

Note that LK can al~o be viewed as: LK=' -d 2 (!! ,Ji) 

The orientation of the gradient vector indicates the 

steepest ascent direction for the scalar potential function 

at. a gi ven point. Reca1ling the meaning behind the 

mathematical definition of the "potential function" as used 

here, it i5 concluded that the \gradient vector points 
\ , 

towards areas of the state space \which contain training 

points. Accordingly, the negative graà~ent direction will be 

directed towards areas which contain\ very few training 

J points, or ,.El0ne at aIl. Those areas of t'he state space are 
\ 

the least explored and, consequently, of h~gh interest. Any 
\ 

other search direction, but the gradient, is suooptimal . 

3.12. Algoritbm 2. Description. 

The initial form of the algorithm implemented by th a~thor 

reads as follows: 

1. Find a stable (5) and an unstable (u) point. 

2. Randomly generate n directions.(n=dimensio­
nality of ~he state space). 

3. Conduct searches along the n-randomly genera­
ted directions with point (5) as a starting 
point. Obtain l stable and 1 unstable trai­
ning point for every search. 
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4. Find the gradient of the potential function 
generated by the training poiots at (5). 

5. Generate n random directions in the state 
space. 

6. Select, among the n randomly generated di­
rections, the one with the largest inner 
product with the gradient vector. 

7. Conduct a search a10ng this direction with 
( s) a sas ta r ti n 9 po i nt. 

8. Return to step 4. 

Steps 1,2 and 3 are considered to be the initialization 

steps of the procedure. At starting, when no training po~nts 

are available at all, any search direction i5 acceptable and 

no special selectivity'criteria have to be invoked. 

In step 6 the selection of a random vector close to the 

negat ive gradient rather than the gradient i tself was found 

to prevent an otherwise ~scillatory behaviour of the 

algorithme 

Step 4 deals with the evaluation of the negative gradient 

vect~r at (5). Due to the-nature of the "potential functioh ft 

used, it is obvious that, \oints distant from (5) will have 

a negligible contribution to the evaluated potential. As a 

consequence, poi nt s in more remote areas of the state space 

will be of minor importance. 

At first, the use of "weighting factors" was considered to 

increase bhe relative influence of distant points. Thi s. 

approach however was found to have two major shortcomings: 

- The choice of the "weight--ing .fa'ctors" had to he, more 
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or less empirical and, rather, application oriented. 

- The scheme became computationally less attractive. 

Instead, evaluating the potential at the mean value of the 

available stable training points, was ,(ound to be a simple 

and complication-free solut~on to the previously mentioned 

problem. What follows, is the final version of algorlthm 2. 

1. Find a stable (s) and an unstable (u) training point. 

2. Randomly,generate n directions in the state space of 
the system (n= dimensional i ty of the state space). ,1 

3. Conduct n searches along the randomly generated 
ditections with (s) as a starting point, until n 
unstable points are found. 

4. Find the mean value of the available stable trainiog 
points and evalua~e the negative gradient vector at 
the mean. 

5. Generate n directions, randomly, in the state space. 

6. Select as search direction the one, that gives the 
the largest internaI product with the direction of 
the negative gradient. 

7. Search along the selected direction with (m) as a 
starting point, until an unstable point is found. 

8. Return to step 4. 

3.13. Algor i thm 2. Test Resul t's. 

The test procedure and data sets adopted for algorithm 2 

are identical to the ones useè- -for _ algori thm 1. -The 
'-

motivation~ehind such an approach is obvious. 
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At first, the algorithm has been tested on simple two 

dimensional geornetr ic figures with weIl determined 

boundaries, in order to assess the impartiality of the 

training point selection scheme. Fig.3.l0 demonstrates the 

results in the case of a circle of radius of 5 units. Dots 
1 

'represent points loca ted in the inter i or of the ci rcle and 

crosses represent points located out of the circle. Shaded 

triangles represent the test points used. It is seen that 

the impartiality of the tra in i ng -point select ion i s 

,undisputable (no particular'area near the separation surface 

ls overidentified) while, at the same time,' a fairly low 

misclassification error has been achiev~d. Fig.3.11 pictures 

the same data sets after the condensation procedure has been 

applied. Observe that the misclassiÙcation error has been 

hal ved. 

Fig.3.12 represents the results for the case of an ellipse. 

"Dots" "crosses" and "shaded triangles" bear the same ,1 

interpretation as before. ' Note, that in fig.3.l2 

condensation has already taken place. 1 t i s se e n t ha t , 

again, the misclassification rate is low. If instead "of 

adopting the final version of algorithm 2, the initially 

proposed one is applied, the results are as in fig.3.13. It 

is seen. that, in spite of the condensation effort, the 

misclassification error is doubled and, furthermore, local 

overidentification is more pronounced. 

Finally, the --exper imental 3-bus system wa-s used for 

comparison purposes again. Fig.3.l4 indicates the training 
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sets as resulting from the application of algorithm 2. 

Condensation has also been carr ied out. "J~ot 5" represent ; ............ 

steady state stable in jections, "crosses" represent 

unfeasible injections and "shaded triangles" represent the 

test set. It i 5 seen tha t, a1: first, very low 

mi sc 1ass if icat i on error ,has been achieved (on1y one out of 

50 test points used was misc1assified) and, at second, 

impartial i ty of the selected tra ining sa'mples i s a t tained. 

Compare Fig.3.14 
p 

w i th Fig. 3.7 ( identification of theJ 

feasibili ty region via the ini tially considered "random 

wal k" scheme) .. 
o 

A1though the misclassification errqr is not altered (for 

"the gi ven test set) i t i 5 seen that the tra inilng samples 

obtained via the "potential function" approach (Fig.3.l4) 

are far more preferable than the ones portrayed in Fig. 3.7."" 

: 
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CHAP'I'ER FOUR 

CONSTRUCTION OF THE HYPERELLIPSOIDS OF CONFIDENCE. 

4.1. Introduction. Statement of the problem. 

In the previous chapter, algorithms for trainin9 point 

selection have been presented and examined under the 

criterion that they satisfy two major requirements: 
\ 

- Training point economization. 

Training point impartiality for global indirect region 

identif ic;ation. 

Algorithm 2, employing "potential functions", was found to 

be the best compromise among the selection sch~mes the 

author has been experimenting with. Applying algorithm 2, 

two sets of training points resulted. One set containing as 

elements points located in the interior and, another set 

containing as elements points located in the exterior of the 

region of interest. It is, again, emphasized that it is not 
<l 

the intention of the author to seek analytical expression 

for the separatrix but, rather, to establish regions of 

error free decision making, whi le a t the same time 

minimizing regions of ambiguity. 

Consider a hyperellipsoid (ellipsoid in three and ellipse 

in two dimensions) having the property (~hat every point 
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located in the interior of the hyperellipsoid i5 aIso a 

point located in the interior of the region under 

identification. Obviously, such, a hy~érel1ipsoid has to be 

inscribed in the region of interest. The ~otivation behind· 

choosing a hyperellipsoid is rather apparent. A 

hyperellipsoid has a very simple analytical expression and 

yet reta ins a flaveur ef genèrali ty • l tenables one to 

approximate a gener"al region without resorting either to 

oversimplif ica t ion (by assuming tha t the regi on can be 

approx imated by a hypersphere) or to unnecessary and 

arbitrary complicating assumptions by assuming a form of 

higher degree. 

However, if such a hyperellipsoid is to be contemp1ated, 

one needs to know its center, the orientations of its axes 

in the state space as well as their lengths. 1 Such an 
,...-/ 

information will, obviously, be obtained from the available 

training samp1es. The,method of principal component analysis 

was ut i,1 ized to infer the necessary information, as 

explained in the paragraphs to follow. r. 

4.2. Hyperellipsoid Identification. 

The method that follows is closely re1ated to a v~ry 

popular technique used in feature e~traction when samples 

from one probability distribution are avai1able (60,61,62). 

In this case, the problem of feature extraction is reduced 
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to the one of eHiciently representing the already available 

samples, in a space of lower dimensional i ty. The main 

attractiveness of the inethodology lies in the f.act that the 

effective features representing the data can be obtained by 

a linear transformation of the original variables. The 

technique is com'llonly known as the "discrete Karhunen-Loeve 
, ( 

expansion" (25) 1 and is the basis for numerous variations af 

feature extraction schemes. 

Assume that a given random vector ~ is represented with 

respect to a certain basis in the state space. Assume that 

the matrix [L] has as co1umns the vectors chosen a's basis 

v~tors (11' .•• ,1.n) and, furthermore, that the basis vectors 

form an orthonormal set e-f vectors. Let y= (y l' •••• , y n) be 

) the coordinate (row) vec tor of the random vector X with 

respect to the above chosen basis. 

Consider that from the sum 1. = r (Yi .!!i) i=1,2, ••• ,.,n 

a certa i n number of terms, say m, are omi t teà. In thi s case r • 

an error is intr-oduced in properly representing the random 

vector X wi th reference te the chosen bas i s. The prob1em i 5 

te choÇ>se the orthonormal set of vectors in such a way that, 

omitting a certain number of terms, minimum mean square 

error i s achi eved. It is proven (25) that, the set of 

orthonormal vectors required lS the one cantaining the 

eigenvectors of the covariance matrix [s1 of !.. The terms 

tha tare omi tted from the summa t ion are the terms perta ining 

to the eigenvectors corresponding to eigenvalues of [S] with 

the smaller magni-tude. If no eigenvalue is omitted, then 
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the corresponding eigenvectors will give a complete and 

accurate representation of the random vector.! in a new 

coordinate system. Howeve r , the eigenvectors of the 

covariance matrix (s] ~bear a part icular geometrical 

interpretation. They d~note the direction of data point 

concentration in the state space. In other words, the 

e igenvectors of [S 1 i ndica te the direct ions along which the 

bu1k of the available training points are to be found. Thus, 

detecting the modes of the previously non-structur~d data 

can be done by eigenanalysis of their covariance matrix. 

Thi s reasoning i s val id in any numb'er of dimens ions. 

,Among the di rec t ions indica ted by the eigenvectors of (S J 

0!1e may dist i nguish among the ones indicat i ng ma j or data 

concentration modes and the cnes indicat ing rather minor and 
, 

unimportant ones. The eigenvectors associated with major 

modes are the ones corresponding to large eigenvalues. 

Similarly, minor modes are indicated by eigenvectors 

corresponding to sma11 in magnitude eigenvalues. In fact, it 

i s proven (25) tha t the larger the eigenvalue the more 
, 

importan t i 5 the mode assoc iated wi th i t • 

In our case, no mapping of data to a loweJ:' dimens iona1 i ty 

space, with prescribed mean square error tolerance, is 

attempted. However, the principle behind the methodology of 

the discrete Karhunen-Loeve expansion has been fruitfully 

used to determine the' orientation of the axes of the 

hyperellipsoid we, ultimately, seek ta construct. 
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4.3. Hyperellipsoid of confidence of the feasible states. 

This hyperellipsoid is required to contain as many feasible 

(in our case steady state stable) points as possible in the 

state of injections while, at the same time, containing no 

non-feasible points at aIl. At first (bearing in mind the 

reasoning outlined in the previous paragraph) an 

eigenanalysis of ·the covariance matrix of th~ feasible 

states is carried out. The eigenvectors denote the data 

modes and will be used as the directions of the axes of the 

hyperellipsoid. Furthermore, we shall consider the square 

roots of the eigenvalues, as lengths of the semiaKes of a 

hyperellipsoid. The equation of such an ellipsoid reads: 

[Xl J 2 

-+ •••••• + 
~l 

or in matrix form 

T 
X {L J X = 

where IL] lis the 

[L] = 

[Xn ] 2 - = 
>"n 

H 

diagonal 

.n 
,n >..j 
j=l 
j;O!l , 

1 

matrix: 

• n 
n >..j 

j=l 
j'l!!n 

(4 .1) 

Eq.{4.1) describes a hyperellipsoid of a given size which 
I~ 

is centered at the origin and whose principal axe~ are 

aligned with the axes of 
\ 

the coordinate system with respect 

to which the training samples are represented. 
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Eigenanalysis of the covariance matri~, however, provided 

the eigenvectors which, in turn,suggest the orientation of 

the axes of the ellipsoid. As a consequence, a rotation is 

in order to align the axes of the originally centered 

ellipsoid with the directions suggested by the set of the 

found eigenvectors. At this stage note that during the 

e igenanalys i s of the covar iance matrix, i t i s phy5 icaI1y 

\ sound to expect distinct (real va1ued) eigenva1ues equal in 
\ 

number to the dimension of the state space. On the other 
,.~ 

hand, the fact that eigenvectors corresponding to distinct 

eigenvalues are orthogonal to each other (for the case of a 

symmetric matrix) reduces the problem to that of al i9ning 

two orthogonal systems of coordinates via a rotation matrix. 

Let (1&1' •• ,Xn) be the old coordinate system, Oh " •. ,!n ' ) 

the new systellfof coordinates as the eigenvectors of the 

covar iance matr ix suggest. If [p 1 is the sought rotati on 

matrix then: 

Ob, .•.• ,x n )= [pl (~l', •••• '~n") 

Assume, further, that both systems have been normalized. 

Then, 

(lh, ... ,.en) = [1], [1] being the n-order uni t matrix 

where: 
.' 

[Z] i5 the matrix who se columns are 

the normalized eigenvectors of the 

covariance matrix of the data. 
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We immediately conclude that: 

") Equation (4.1) then, becomes: 

T 

T 
[pl = [z] 

T' T 
[z 1&'] [L] [Z A'] = H 

Let: \ T 
[zJ [L] [Z] = [B] , 

and eq.(4.1) becomes: 

T 
K' [B).!' = H (4.2) 

This equation, is the equation of an el1 iP50id whose size 

is identical to the 'one ~epresented by equation (4.1) but of 

different orientation. Note, however, ,that the new ellipsoid 

is still centered at the origin 

coordinates. 

of the Originr system of 

As a final step t~ center of the 50ught ellipsoid ~s to be 

found. The' rnean va~f the data used to construct the 

samp1e covar iance matrix i5 considered to be the center of 

the sought ellipsoid. In genera1, the sample mean of the 

data will not coincide wi'th the origin of the original 

system of coordinate5. Accordingly, a translation is to be 

carried out, in order to achieve the 'proper positioning. 

Denote by 1&." the coordina tes of a point after the 

translation has been carried out, and by l' its initial 

coordinates. Then: 

!' = Kil - T, 1: vecto~ of the sample mean coordinates. 

" Accordingly, eq.(4.2) becomes: 

T 
(X"-:V [B] (X"-l) = H 
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or 

T T T 
1" [B] A." - 2 1: [B] !o" = H - 1. [B] T 

T T T 
Let: A. = -2 .I. [B] ana R = H - T [B] T - -
The Onal 'equation then, for the hyperellipsoid reads:' 

T , T 
!," [B] K" + .2. ~" = R (4.3 ) 

( J There i s no guarantee, however, that the hyperellipsoid 

constructed using the eigenvalues of the covariance matrix 

of the data will satisfy the joint requirements of not 

con tain ing uns table train i ng states and con ta-ining as many 

feasible states as possible. It has been the experience of 

the author that, while the first requirement is:.always met, 

the second falls short from being fulfilled. This is due, in 

our opinion, to the fact the data set used to construct the 
" 

covariance matrix is "hollow'!' (Recall that th,.e a1gorithms 

providing the training points provide points located in the 

viciryity of the separation surface). Fig 4.1 ill'ustrates 

such a hyperellipsoid for the case of the data pertaining to 

the 3-bus exper imental system. 

At this point we conclude that, although both the center 

and the orientation of the seeked el1ipsoid 

weIl determined i ts volume still remains an 

are reasonably 
, 

open quest l on. 

An algori thmic procedure dealing with the expansion of the 
1 

avai1able ellip50id i5 needed. T~e author has tried several 

computerized expansion' schemes. The finall"y adopt'ed one i5 
" ~.~{ .1 • 

illustrated in the flow'chart of fig. 4.2. 

T,he flQwchart pertains 
" ~I. 

" 

to the i tera t ive proce,dure 
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eigenvalue. The procedure i1lustrated 'in the fl..owc'b'a,rt of 
, 

fig.4.2 is repeated for aIl the eigenvalues. The already 

determined eigenvalues are 'utilized in the iterative 
, 

pr~cedure for the computation of ~he subsequent eigenval~es. 

The scheme i5 based on the .e11'recognized fact that the 
(-\" . 

~ vol ume of 'the ell ipsoid given by equation ( 4 • 3) i5 
, 

\umeri~al critical1y dependent on the values of the ., 
eigenvalues' utilÎ2ed in equation (4.1). ln fact, any 

ancrease in the magni tude of an eigenvalue will cause the 
• 1 

res,l;lltifl9 elUpsoiQ tQ. expand~in,the·~direction of the 

" cor respo~d i ng e i genvec tor • 

f The prese~ted flow chart shows thàt the mechanism of 
"'--" 

, \ 

expan~ion is ba5ed on the fact that one should assess one 

principal direction at a time until a barrier of unstable 

states is fourld 'towards that direction. This mechanism 

'al1ows more f1exibility in manipulating the volume of thé ~ 
\ 

sought e11ipsoid, and results indicate that the ellipsoids 

found are super ior candidates when compared to others found 

from schemes adopting concurrent expansion of more than orie , 

principal direction. The reason is that the axts of the 

sought ellipsoid will not necessarily be comparaple in 

, magni tude. Such an assumpt ion i s obv iously arbi trary and 

cannot be to1erated. Any computerized scheme based on 

concurrent expansion will eventually , stop short towards one 

principal direction (where further expansion could be 

possible) ~imply because a barr ier of unstable states was 

found towards a rather minor mode. The undesirable 
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consequence is that the resulting ellipsoid will turn out to 

be rather undersized. In 'ch~,Pter V the consequences of 

operating wi'th such a result are fully explained. Fig.4.3 

pictures the ell ipsoid of conf idence of the stable states 

(ellipsoid 'of type 1) as dedude~ applying ~the algori thmic. 

procedur~ illustrated in the flow chart of Fig.4.2. "Dots" 
, 

:1 , 
1 

represent feasible- states and "crosses" repres.nt unstable Q , 

states. The coordinate axes represent the real power 
. 

~njections for buses 2 and 3 of the 3 bus experimental 

system utilized in chapter III. 

The equation of the hyperellipsoid (ellipse in ~his 
/' 

particular case) i s of the form: 

T T 
1 [A] .1 + .È ! + C '" 0 

FI 
f' 
1 

1 

1 

where: ! is the two-dimensional vector, having as ,entri~s 

the real power in je ct ions at buses 2 and 3. 

, 
!A] is the matrix for the quadratic terme In this 

particular case 

[

83.87392 

35.85168 

the matrix (2 by 2) 

35.85168] 

69.83078 

reads: 

T' 
bis' the coefficient for the linear term:'fit- this 

.- par;ticular case (1 by 2) i t reads: 

[-89.24890 '33.75565} 
~ 

C. a scalar. In this patticular .situation it reads: 
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-4524.18359 

, 
'.4. Hyperellipsold of confidence of the non feasib1e 

states. 

The nec~,ssary requirements this ellipsoid has to meet are, 
~I-' 

as stated in ~he beginning .of this chapter, the foll~ing: ' 

- The ellipsoid should contain a1l the 5tabl~ning 

points in the space of~ injections • 
. .. 

- The ellipsoid should ',contain as few unstab'le training _ 

poin t s as possible in the space of in je ct ions. 

The techniques and the .ideas used to 
IJ 

construct the 

ellipsoid are, essentiall~, based on the already 

contemplated arguments used for the construction of the 

ell ipsoid of type 1. More spec if ically, princ ipal componen-t 

analysis (via eigenanalysis of the covariance matrix o-f the 

data) is used here as weIl to determine the orientation of 

the axes of the ellipsoid and, finally, the sample mean 
, 

value of the data is, again, assumed to be t,he center of the 

~sought ellipsoid. 

One should recall. at this point that, for reasons already 
. 

~ stated, tbe ellipsoid resulting from eigenanalysis of the 
,)' 

covariance matrix af the data is rather undersized and, as a " 

rule, needs to be expanded. Accordingly, an algorithmic 

pr9cedure to determine the size of the ellipsoid has to be 

implemented as previously •. 
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Nevertheless; the strategy adopted in the case of,elli~soid 

of type l cannot be used here because the requirements the 

~llt~so{d has to comply with are râther different. 

As far as the first requirement is'concerned, any-ellipsoid 

containing all the,.slable training points 'is a potential 
\ 
candidate'for the one we seek. However, the size of the 

el1ipsoid which is to be fina11y adopted is of great 

importance ( see chapter V) • To state the prob1em 

differently, one looks for the ellipsoid of the minimum size 
J 

among the ones containing the stable training points. It is 
• 

in prder to note at this point however thai both 
1 

the 
, 

~irecfions of' the axes as weIl as othe ce~ter of the 

ellipsoid are predetermined • . 
The first question that arises is whether,an .e~pansion 

sC,heme based on the idea of concurrent eigenva1JJe incr,ease 

(see paragraph 4.2) is to be adopted, or whether one shou1d 

resort once more to expansion sçhemes re1ying on the conce~t 

of modifying on1y one'eigenva1ue at a time "(Le, exerting . , 
i~fluence on the size of the ellipsoid tow~rds one axis at a 

t ime) • 

The alte~native of concurrent expansion (expanding the 

ellipsoid towards more than one eigendirection at the t ime 

by adjusting the size of the 'corresponding eigenva1ues) will 

invariably 1ead to suboptimal solutions. This was verified 

by n~merica1 experience; and is due to the fact that while 

_one may still have stable training points along one.of the 

eigendirections (fact implying that iurther expansion is 
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possible towards that directioq), the stable training points 

'towards one (or more) of the remaining eigendirections may 

have been exbausted. Conseque~~~y, any further expansion 

along the dominant eigendirectjon (during the course of the 

attempt to include aIl the stable training points as 

initially requested) will cause unnecessary expansion along 
, 

the remaining on~s. Thus, the suboptimality of the resulting , , 

soluti o,n. 

It ~s apparent, therefore, tnat ~onê should,rather restrict 

himself in exploring the remaining alternative, i.e, to 

devise an expansion scheme that is based on the strategy of 

adjusting the magnitudé of only one eigenvalue at a time. 

The next question one is faced with, is to determine which 
\... 

'axis, should be adjusted at every iteration. The criterion 
• 

for selecting the appropriate axis must be such that, on the 

one hand, the resulting hyperellipsoid possesses the 

required properties and, on the other hand, for the sake of 

efficiency, the smallest possible number of iterations be 

required. 

The criterion applied for axis selection reads a,s follows: 

- Expand a10ng the axis whose length modification, by a 

specified increment, 'will cause the resulting ellipsoid ta 

contain the rnjnimum number of unstable ~raining points, 

among the num~er of unstable training point's. 
\ 

,The above criteriori is to be applied during every iteration 

of the procedure. The next iteration will be performed on 

the condition that not aIl of the stable training points 
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~ been included in 

current iteration. 

) 

the ellipsoid resulting from the 

• " Nevertheless, the criterion listed above will, almost 

" 

" 

. " invariably, cause the algorithm not to converge in a finite 

number of steps, in spite of the fact tha titi s an 
, ,-- .-' 
excellent guideline to follow in search for ellipsoid size 

optimali ty. 

Failure to converge occurs because the criterion does-not 

require that the number of included stable training points 

be definitely increased from iteration to iteration. Such a 

provision would guarantee convergence in a finite number of 

steps. If no preventive action is taken and the algorithm is 

designed wit~ only the above listed criterion ih mind, the 

resulting ellipsoid (if any) will be of such size as to have 

no practical importance whatsoever. Numerical experience . 
showed that in many cases, no convergence at aIl was 

attained while in the cases a result was obtained, the 

resul ted ell ipsoid was unnaturally disto,rted along the more 

dominant eigendirection. 

In an attempt to avoid such continuous ellipsoid expansion 

along algorithm-preferred directions, the construction of a 
". "sentinel" ellipso~d was found tri be a very satisfactory, 

and simple, solution. Before entering the procedure for 

ellipsoid expansion, a "sentinel" e~lipsoid, is oonstructed 
" which will act as a safeguard agains~ the previously 

mentioned ill-situation. The "sentinel" ellipsoid ~as as 

center tne center used -cfor the s~ught ell ipsoid and i ts axes 
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will have the same orientation ~s 13 thé ones of the ellipsoid , 

whieh ultimately is to be eonst~ueted (eigenvectors of the 

~ covariance matrix of the da~a). It is constructed using the 

simple philosophy to implement concurrent 
l 

àxis expansion 

(aIl eigenvalues are increased at every iteration by a 

specifie inerement till aIl the stable training c points are 

contained in it). Qbviously, no ~llipsoid with an axis 

larger than the corresponding 
\, 

ax is of the "sent ine-l " 

. ellipsoid ls acceptable. 

Fig.4.5 pictures the ellipsoid of type II in the case of 
'7 

the 3-bus sy~tem aft~r the algorithmic procedure illustrated 

in fig.4.4 was applied. Note that in this particular case, 

the covariance, matrix of thè unstable training points w~s 
, ) 

. utilized. 

The parameters for the equation of the hyperellipsoid 

(ellipse here) read as follows: 

[A) the matrix for the quadratic,term (2 by· 2 here) 

J:~ :::: -~~~::::J 
T 

b, the eoe.fficient' vector for the linear' terme 
- (1 by 2 in this case) 

[-276.986 196.4831 

C'a scalar,the constant term~of the.~quation. 

- 2 B 1~ B • 4844 
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Fig.4.6 pic tores ~he el~ips~,id of type II that would result 
l', 

(for the data sets per~~:dnin~'1 a'gain t.o the 3-bus system) if 

the covariance matrix of the stable training points were 

used instead. As expeê-:eed, no substanti&l difference was 
\ 

lB 
founa (due 

-. . 
to the f.àct that the data' set'S have been, 

condensedh Note though that,the ellipsoid pictured i rI' 
~. 

fig.4.7 is slight1y reduced i~\ size if compared with the one 

of fig.4.6. 
,ri ~ 

The param~ters for 'the ell~psoid in que~tion read as 

fol1ows: 

> 

, 'r· 4< 

" , 

-,. 
,\ 

[A] the matrix for 
, ~ 

the guadratic 

r62:236 
31.116 

31.U6J 
'150.0~8 

.. 

T 
b the vector coef fic ient for th~ 
- (1, by 2 in this case) 

term (2 

linear 

[-223.071 147.291] 

by 2 here). 

terme . 

//~ 

C a scalar-;fhe constant term of the équation • . -----
23235.7539 

j 

It is our: opinion that the stricter the condensation, the .... 

'more resemblence will be achieved in the two el1ipsoids. 
0...; 

However, the covariance matrix of the stable training points 

is recommended for use. 

" An equally appealling criterion for ellipsoid expansion is 

the following: 
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~ Expand a10ng thè ax'is who se lengt,h modification, by-a 

~spécific in~rement, will ~ause' the resulting ellipsoid to " 
~. "6 l • ' .... 

c~'ntain the maximum number of stable training points, whe.~ "; - -, 

compared" with the nvmber of stable. ~raining points other, 

,llip,soids would contain ~ad the expansion taken place alo~g 

~ /any ;ther eigeridi rect ion. 

The ell i psoid found by adopting the above g2 ven c ri ter ion 

is pktured in fig.4.7."Note that, no substantial difference 

i5 found if this ellipsoid is compared with the one shown 

in fig.4'.6, -apart from the fact ,that it is slightly 

increased in size. Again the covariance matrix of the stable 

tr~ining poipts was utilized. 

The parameters of th~ eguation of the ell ipsoid 
( 

in this ' 

case read: 

.. 

Q 

In 

[A'1 : the matrix for 

[176.320 
14. 007 

the guadrat ic 

14.007] 
170.833 

'- . 
• 

t'Él rm (2 by 2 

, T 

~l 

aIl 

b 'the vector coefficient for the linear term.' 
- (1 by 2 in this particular si tuation) , , -

[-268.569 202.564J 

egufion •• a scalar" 
,",' 

tèrm 
1 

C the constant of the 
- 0 

2974~.9766 

the abov~ consider'éd algor i thmic variations 
" 

here) " 

~ 

' the 

eigenvalue increment was taken to be egual to one half of: 
, " 
\ 102 
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-. 
the ,sqùare root of the smallest in magnit'ude eigenvalue of 

the covariance matrix of the data. If smaller increments < 

. 
for the e'genvalues ar~ us~d in t~e procedures for ellipsoid 

l ' 
expansion, more i:ined solu:tions will be obtained.' 

Naturally, more 'ite'ations are needed to reach the solution • 

• For large data se ~ this may require excessive computational 

effort. 
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-\ 
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all stable ~tates ?'~ 

Fig'.4.4: Flowchart for hyperellipsoid' of type II. 
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CHAP'l'BR PI VI 

APLLICATIONS TC POWBR'SYSTBM OPERATION. 

5.1. Introduction. 

The main objective power system control of a 
'-

real time 

system is to assure that, at any instant, the system 

operates in a secure and economical manner. Load demand not 
-

,only ios to be accommodated but the cost of power generation 

has to be minimized as weIl (96). 

The.first problem therefore one has to cope with is "load 

variability". There is' no guarantee whatsoever that the , 
load demand pattern will remain unchanged'throughout thè day 

and, in fact~ it doés'not. It is a weIl known fact that the 

'load demand pattern can'sharply change from one instant to 

the next, especially during the so called "peak hours" of 

the daily load demand curve. As a consequence, the first 
D 

question to be answered is whether or noe the system will be 

able to satîsfy the load demand whîle retaîning certain 

pteset operating standards. Should the system be found 

capable of supplying the load, optimization considerations 

enter the scene such as minimization of transmission losses . 
and generating costsJ considerations whi~h will to a great 

degree determine the operating point for the system during 
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the next time.period of the monitoring interval. 

Tak ing i nto aCGount, on the one hand, that there_ i s a trend 

towards shorter monitoring intervals and; on the other hand, 
.II 1 \'li 

~hat ambiguity in system capability can lead to incorrect 

decision making and' possibole violation of the operating 

standards, it becomes rather apparent that a fast and 

accurate method for assessing load flow feasibility i5 

needed~ In fact the faster the better because more time is 

allowed for equally vi tal tasks such as cont i"ngency analysis 

and economic dispatch. 

One other problem for the operator is that he has to 

account for "syste~ va~iabilit,"_ The ~opology of the system 

varies due to both scheduled and forced equipment outages. 

When it çomes to predicting load variations one may come up 

with a load forecast, schemes that utilize feasible 

statis~ical mOdeling and turn out to be satisfactorily 

accurate. Unfortunately the sarne cannot be said for the case 

of contingency analysis because a large number_ of factors . 
have to be considered if one is to identify and list thern 

aIl to begin with. Furtpermore, as explained in greater 

detail in chapter I, rnethods 
,\ 

,for cont i ngency' analysis are 

ra~her tirne consuming if accuracy is to be retained. Despite 

the inherent difficulties associated with contingency 

analysis~t aIl levéls (for every monitoring interval the 

problem repeats itself to the full extent) time limitation 

is also a very severe constraint to the quality of decision 

rnaking needed for proper real time control. One therefore 
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has to be both fast and accurate·on ~ll fronts at aIl times. 

The problem is further enhanced in cases where sequential 

decision making is~ needed. Experience shows that being 

"fast" and "accurate" are rather conflicting goals. One 

therefore settles for efficient "screening". The fewer cases 
o 

are referred to more time consuming methods for resolution, 

'the better. 

The previous chapter of this dissertation was devoted to 

develop the concept of the hyperellipsoids of confidence 1n~ 

the state space of injections of &he power system. Met~ods 

for constructing these hyperellipsoids were devised with 

emphasis on "training point economization", an aspect not 

meticulously treated in the pasto 

, This, chapter indicates how the hyperellipsoids (, Qf 

confidence can be used for both ~oad variabi;ity as weIl as 

~steady state contingency analysis. If is dem6nstrated that 

" they can chiefly be used for screening purp0ses, in the 

quest for speed and accuracy in power system operation. 

It is of importance to emphasize that the ideas presented 

in the paragraphs to follow have been centered, from a 

methodologicai point of view, on the recognition of the fact 

that the concept of misclassification error introduces an 

uncertainty in real time power system operation. As a 

consequence i t -has been the intention of the author to 

develop methodologies freed from this concept. 
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5.2. Load Vâriability ~sse8sment. 
(' . \ 

The fastest, yet most approximat-e, method avai1ab1e so far 
1- • 

'for load f10w studies is the D.C. load f10w. The simp1ified 

mathematica1 model and ,the computational ease associated 

with it made it very attractive. Nevertheless, its accuracy 

limitations have long ago been recognized. 

Assume that in the space of injections of a given power 

system, the two hyperellipsoids of confidence (of type land 

. type II) are available. By construction, the states located 

in the interior of the hyp~re11ipsoid of type l represent 

steady state stable states, i.e states which constitute a 

feasible loading condition for the system in question. 

Similarly, any state not located in the interior of the 

Hypere1lipso.id of type Il represents, by construction again, • 
1 • 

a,n unfeasible load'ing for the system. Any point of the state 

space located in the exterior of the hyperellipsoid of type 

l while at the same.time is found to be located in the 

interior of the hyperel~ipsoid of type II is said to 
\ 

represent an "ambiguous" loading state for the system. Such 

a point, is said to'-be located in the "uncertainty region" 

if one is to utilize decision making terminology. , 

Accordingly, in order to assess the feasibi1ity ot a 

specifie 10ad pattern, one need not necess~rily resort to 

full sc~le simulation if the two hyperellipsoids of 

confidence are availab1e. 

,For thè various loading conditions the system may encounter 

114 

" '. 

1 

J -



i 

[ 
t 

! 
i' 

, 
'! 

( 

only three mutually exclysive cases are possible. 

Case 1. The state in question is found ~o be in the 

lnterior of' the hyperellipsoid of type 1. This i s 
mathemati~ally manifested as: 

'\ . 
where: 

T T 
! [A J X + ~! ,+ C < 0 (5.1 ) 

X represents the load pattern of the system 
. 

(Every entry pertains to a bus loading) 

[A] 1 B, C are the parameters of the equation of , 
the hype,rell ipsoid of type 1 •. 

Case 2. The state in question is found to be located in the 
"'i • 

exterior of the hyperellipsoid of type II. The situatidn ls 

mathematically manifested as : 

where: 

T T 
! [Al] X + Èl! + Cl'> 0 (5.2) 

X bears the same interpretation as before. 

[Al]' bl' Cl represent the parameters of the - . 
hyperellipsoid of confidence type Il. 

Case 3. The state in question lS found to be located in the 

"uncertainty region". This is mathematically manifested as: ' 

T T 
X [A] X + b X + C > 0 (5.3a) - -

and 

T T 
X [Al J X + !?l!. + Cl !. 0 (5.3b) 

For the first two cas~s de.cision making is carried out 
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with6ut an~ difficulty. Jn the fiF~t'case#tor in~tance, the 

operator knows that the giv~n - state is perlnissible" for 

operation. Similar1y, in the second case the operator ,- is" 
, , 

. . 
defini tely ,to avoid such an operat i onal point. .1 n therthi rd ~ 

case however, no imme,diate. dec i[5ion making' is ,Possible wi th 

absolute cerfainty. 'The st'ate in question may -represent il 

feasible !oading· condition for the ,system br may not. In .,. 

t~is case one has to resort to a.mor~ detai1ed analysis if 
l', 

o 

t~e decision making (concerning load f10w feasibility) is to , 

l;>e error free. Viewed from 
! 

this perspective, the.method of 
o 

the hyperellipsoids presents interestin~ potential 

capabilitie5 for "5creening" purpo5es. 

Out of a very ~arge number of probable system loadings 

(provided by short term load forecast) actual simulations 

are needed on1y for the states that find themselves located 

in the "uncertainty region". The behaviou~ of any other 

loading state is clear and, 

predictable in rea1 time. 

most of aIl, accurat~ly 

5.3. Examples of Load Var iabi li t'y Aaseaament. , 

\ 
At first \ the~ rather simp,le 3-bus' system utilized in 

previous chapters (III and IV) i5 used to illustrate the 

above presented ideas. The data as .well as the topology-of 

the system are given ~n Appendix l. Bus 1 is considered t~' 

be the slack bus, . and the on1y source Qf ·real power in the 
( 
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1 ~ystem. Note tfiat no generators were assumed to be connecte~ . \ . 
',to buses 2 and 3. This would simply increase the loading 

capability of each bus (jnflating the hyperellipsoid of type 

I). The argument, however, can still be lucidly presented 

withQut this extra complication. Buses 2 and 3 are" 

considered to be -both typ'e 12 buses (voltage magnitude 

restrained) with infinite~reactive compensating'capability 

.( recall that· the technique is intended f,or ~works of 

primary transmission where voltage profile control is very, 

robust). As a c9nsequence, the real power injections at the 

buses represent the vari~bles of interest and, in fact, 

constitute the state,variables. The results are ~resented in 
.r~/ 

table 5.1. - -Tén (10) representative loading conditions 

(positive load means'power flowing out of the system) are 
, 

examined. The loading,conditions s'can the of table 
" , 5.1. 

loadability range'of the system from CGncurrent light load 

to concurrent heavy l?ading of both buses. The second col~mn 

of the table indica tes the i:esul t ,of an actual load flow 
... 

study for the load under consid~ration ( the Gauss-Seidel .. , 

iterative procedure was used). \ The 
1 

thi r--d column of the 

table indicates the result one l will arrive at if the 

screening technique of the hyperellipsoids is used. 

The pr'oposed methodology for- steady sta te stabil i ty 
1 assessment 

assessment, 

can be directly utjlized v ~ generation shift 

on the condition that the b~ wh~ch experi,nces 
,-

the change in generation is included in the state spac~ ·foor 

the grid. For the state spaces discussed in this study~ 
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'only real generation shitt can be- , accommodated with thé 

proposed technique. Generator outages' (1055 of tie lines 
" .. 

transmitting power into the grid) 0 can be modeled as 
1 

subsequent, load increase for the bus in q~estion " 
" 

Similarly: generation surpl~s can be modeled as a subsequent 

load reduction experienced by tne bus in questiQn. 

-.,.,J 
. , 

LOADING'CONDITION , 

POR 'l'HB'SYSTBM LOAD FLOW SCREENING TECHNI QUE 
'i . ,1 

+1. (), +1.0 Feasible Feasible 

+2.,0 +3.0 Feasible Feasi,ble 

+3.0 +3.0 Feasible ~e~sible 

+3.5 +3.5 Feasible~ Feasible 
, 

.. 

'+4.0 +3.0 Feasible Feasible 
J . 

" +4.0 +4.0 Feasible Feasible 

+3.0 +5.0 Feasible ~Feasible 

+1.5 +6.5 Feasible 
, 

Feasibl'e 
~ 

+5.5 +3.0 Feasible Feasible 
\. 

+6.0 +6.0 Unfeas i}Hè. .Ambiguous . 
n 

Table 5.1: 3-bus system. Load Variabilty Assessmen-t. 

- As can be .seen in table 5.1, the only ambiguous cSse 

detected by the screening tech~ique is for the heaviest 

loading. If the suggested simulation is carried out, the 
~, 

result will be that the state under consideration represents 

aQ un~~asible load pattern for the sys~em. It becomes 

apparent fhat if hea~ier loads are considered the method of 
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the hyp~rellipsoids will still 'demand full scale simulation 

for their resolution. This is -due- to the size of v the 

.hyperellipsoid of type II which, in turn, is dependent upon 

the criteria adopted for its construction. Since the 

construction criteria were inte'ntionally conservative (the 

goal of the construction being error free ,decision making) 

the hyperellipsoid of type II wfll, as' a rule, be oversized. 

;~e is, to encounter loading patterns which will be 

loca/ed outside of the hyperellipsoid of type JI,. the system 

has to work with its lines loaded either very clo~e or weIl 

above th~ir steady state stability ~imits. The later' 

pract ice i s, of course, a technical impossibil i ty the- former 

is a practice never followed. In ~ither case the conclusion 

i5 ~hat 'practical load patterns will invariably find 

themselves located "either within the boundary 'of the 

hyperellipsoid of type 1 or in the zone of uncertainty. The 

end result i5 that the term "ambiguous" in Table 5.1 can 

just as weIl be replaeed by the term "unfeasib~e", for first 

. hand dec i sion makin,g . The reasoning presented above 

suggests ~hat sinee only one' hyperellipsoid is rea,lly. needed 

th~ second hyperellipsoid need not be computed at aIl. 

Nevertheless, the lighter eomputational burd~n associated 
/ j 

wit~ such an approach seems, at first, not to pro~ide the 

analyst wi th a tool for di ser imina t ing which 
o 

loading 

patterns loeated ~utside of the \ bbundary of the 

hyperellipsoid of ,type 1 need further investiogation and 

which ones do note , 
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It is seen ~rom table"S.l that no case classifie~ as steadj -

state feasible by the method of the hyperellipsoids is found 
'> -

./ ' ' 

,Ito be non feasible by the corresponding' a.c simulation 

analysis. Ne~ertheless, case~ classified by the screening 

technique as unfeasible can in reality'be feasible. In this 

particular case no such state was found, among the ones 

examined. This is due to the fact that the hyperellipsoid 

constructed turns out to. be surprisingly close to the actual 
• 

separation surface (see fig.4.16) for first quadrant states 

(note that aIl injections consi~~red were assumed to be 

fi rst quadrant in ject ions, i. e real loads whi,ch are supposed 

to be supplied by the ~ystem via real power flowing out of 

the grid). 

This is a very desirable coincid~nce because accurate 
1 

decision making (for load variab~lity assessme~t purposes) 

can be extended to rather heavy Ioadings. Nevertheless, in 

practice, heavy Ioadings which are considered to be 

mathematically acceptable 
t 

conform with everyday 

(the load flow converges) do not 

opera t ional practicc::. Lines are 

normally loaded weIl below their steady state stability 

limit,their loading being dictated by transient stability 

considerations more than anything else. For more complex 

syst.ems, the region encompassed by the hypetellipsoid of 

confidence of the type l, does not bear the ambition to 

approximate the separation surface itself at aIl. Instead, 

it . rather represents a "core of confidence" of the 

feasibility re,gion, close ta the' real life aperating 

120 

~-------~-------;~" ~~-~----~--

... 



, , 

...... _ ....... ~ '"""l"'1'~ ~ -~"'f ,. -~... " 
• 

• 
conditions (see comment above). 

o ". 
To further illustrate this, a'more complex power Syste"\WBs 

considered next. The system was taken to be a 5-bus system • 

. The network data a~ weJl as its topology are given in 

r--...-:... . .-~, Appendix 1. One slack bus was again considered. This bus, in 
:...J 

. , this casa as well, is supposed to be the only source of real 
~, '1 

pow~r in ~~e system. All four remaining buses are taken to 
'-

be. voltage èô~olled b'bses;," their reactive compensating 
-"-

capability is cpnsidered infinite. Table 5.2 contains the 

results of the' Load "Variabi li ty assesSment . technique 

utilizing the method of the hyperellipsoid'of type l (see 

commen.ts in previous sect ion on 
1 

only one hyperellipso'~d). 

the philosophy of utilizing 

J 
~ t 
j 

1 



J( 
y 
<. 

t 
'. 

1 
~ , 
; 

" v 

, 
t , , 
l. 
~, 

.. : CI 

.-, 

f -,. 

( 

, 

LOADING or T.HB SYSTEM, LOAD FLOW SCUBNING MBTHOD 

"'+0.2 +0.2 +0.2 +0.2 Feasible Feasib1e 

+0.2 +0.3 +0.35 +0.4 Feasible Feasib1e 

+0.4 +0.4 +0.4 +0.5 Feasible Feasib1e 
. 

+0.6 +0.6 +0.6 +0.6 Feasible Feasib1e 

+1.0 +1.0 +1.0 +1.0 Feasible Feasib1e 
, 

+1·.0" +2.0 +2.0 +2.0 Feasible • Feasib1e 

+1.0 +3.0 +2.0 +2.0 Feasible Feasib1e , 

+1.0 +4.0 +3.0 +3.0 Feasible Unfeasible "-
. 

+1.0 +4.5 +3.5 +3.5 Feasible Unfeasible 

+1.0 +4.0 +4.0 +4.0 Feasible Unfeasible 

+1.0 +5.0 +4.0 +5.0 Unfeasible Unfeasible 

+1.0 +6.0 +5.0 +4.5 Unfeasible Unfeasible 
---. 

-

+1.5 +6.5 +5.5 +4.5 Unfeasible Unfeasible 

+2.0 +7.0 +6.0 +4.5 Unfeasible .Unfeasible 

+2.5 +6.5 +5.5 +5.5 Unfeasible Unfeasible 

Table 5.2: 5 bus system. Laad variability a,sessment. 

AS seen in the results disp1ayed in table 5.2, ca~e~ -. 
c1assi fied as nonfeas ible by the method af the 

hypere11 ipsoid, are found ta be feasible, ~ by the 

corresponding ac simulation ana1ysis. Those cases pertain, 

as expected, ta medium loading. Heavy loading as weIl as 

~ light loading are characterized by consistent decision 

making. 
• 0 

122 

"' ... "'" ... , .,"'., '" .. ,} -~- -· .... ,,'-·· .. ,.....,.......,.-·-----.,--·.-.------_4_~ 



... 

( 
, . 

1 : . 

The philosophy of utilization of the method should be clear 

by- now. By not attempting to . produce an analytic~l 

expression for the separation surface, we have bypassed (at 

a cost) thé questions re1ated 
1 

to the' mjsclassificat~on 
. 

error. Apart from the fact that a reasonable estimatibn, of 
\ • comput~ionally such a quantity is bard to obtain (and a 

real challenge to model maryemâtically), ·the 

misclassificatioD error is of no practical significance to 

real time decision making' • 
. 

The potential of' the method presented is crucially 

dependent on the volume of the hypere1lipsoid utilized. For. 

rather i rregula.rly shaped feasibi 1 i ty regions, i t may be of 

a size not lendi~g itself to appl~cations (accommodating 
, 

only. very light loading for the system). Ir! that case, 

(apart from the fact that such a syst,em will have acute 

operating problems no matt~r what t,ec~ique is used) the 

ana1yst may have to resort to techniqu(; different
l
' from the 

ones presented here. 

" 

1 

- \ . 

ë.'. St.ad! atate Conting.ne! Anal!818~Line outagea. 
a 

\ 
It is weIl known that associated with any equipment outage, . 

..... 
there is a transient which has . to be investigated whén 

. " 

.overall system performance i5 assessed. Nevertheless, even J 
fi before the transient and dyvamic responses of the system are 

investigated, it is advantageous to know whether or not the . 
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system will be st~ble from steady state consid.ration~ 

alon,. This kind ot' analysis 

~ontingency analysis. 

is knowh as ~teady state 

Generally speaking, changes in the system can be of various , 

kinds. One may, for instance" consider generation shifts 

(changes in generating capability at. various buses or at' . , 
interconqecting nodes) or actual line (transformer) outages. 

These outages, al ter the" topology of the system, and th i s 
al teration i s the seat '"'"of ;the di f ficul ty for fast .post 

contingency power t'low a!lsessment. 

• 

The question which is frequen~ly of prime concern for~power " 
,.' , ,~ 

~ . 
there eXlsts such a post c.. ~ 

system operators is whether or not 

cont ingency power f low in the fi r~lt place. Present ing i t in 
.( ;> 

greater detai lis a quest iol1 which i s, resol ved by âpplying 
! 

any of the ava i 1able lo&d f low mèthods _ (so long .as "" the 
, ' 

feasibility of the undertaking is assured). 

The methods available so 

concurrrent ly. 
,,' 

In fact, they 
;' 

far answer' those questions 

conjecture the feasibility of 
<-

the post contingency case after having obtained the detailed 

power flow pattern indirectly. They can therefore be 

considered as indirect methods. What this dissertatio~ 

proposes is a direct method based on the ~oncept of the 

hyperellipsoids of confidence. In the examples to follow 

line and transformer outages have been treated. 

The approach is based on the' recognition of the fact that 

steady state contingency analysis is essentially a load flow 

analysis applied to a different, system. But load flow cases 
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can be accommodated, as shown previously, via the method of 

hyperellipsoids on the condition the hypere11ipsoids 

ut il i zed perta in to the current system topo1ogy •. 

An obvious w~y of imp1ementing such an approach wou1d be 

the f 01 ~ow i ng: 

l} For every line outage (single or multiple) the 
\) 

hypere11i~soids are constructed and their-equations 

are stored in a manner suitab1e for fast on line 

retrieva1. 

2) For any,contingency examined from thè co~tingency 

list of the current monit~ring interva1 a simple 

function evaluation answers the question of the 

load (low feasibility for the post contingency 
r 

system status. 

In the case security screening 

immediately (for a11 contingencies) 

referred for resolution to ~re 

schemes. Furthermore, the level of 

is desired 

which cases 

elaborate ac 

accuracy for 

one knows 
'. 

are to be 

analysis 

securi ty 

screening 15 brought up to the level of loa,d variability 
1 

assessment. 

Thus, it is seen that a feasible approach to the steady 

state contingency analysis (security screening) problem c~n 

be implemented using the hyperellipsoid of confidence 

pertinent to various 
o 

post cont ingency topological 

structures. Naturally, one neeâs to construct as many 
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hyperel1ipsoids, as there are contingencies to be examined. 
~ 

This seems rather cumbersome ana' discouraging from a 

computational point of view. Indee~, for many systems (even 

at the level of reduced traI1smission equivalents, 

equivalents thi.s study assumes for the techniques presented 

hereinafter) the amount of off-line work needed to obtain 

the hype\ellipsoi~s pertaining to the contingencies put) 

forward may be prohibitevely large. 

A tempting question is ,whether or ,not precontinge~cy 

hyperellipsoids can be used for post contingency load flow 

feasibilitr' thus circumventi1:lg the need to obtain new"ones. 

We emphasize, again, that a giv~n hyperellipsoid pertains to 

a given topological structure •. Accordingly, if one is to 
Il 

utilize the precontingency hyperellipsoids; precontingency 

topology has also to be retained. Exploring this 

possibility, we are forced to conclude that the only . 
remaining option is to simulate the line outage, while 

retaining precontingency topology. 

5.5. Outage simulation Retaining Precontingency topologIe 

It is proposed that the outage of a line be simulated by 

changing the power injected into the system at the buses 

connected by this line. The concept has been put forward in 

the past ,by severa1 authors (18,54,89,90,91,92,93). One of 
( 

its latest manifestations has been the efficient simulation 
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_ of line and transformer outages when assessing steady state 

security via the sensitivity approach (18,54,91,96) ... The 

argument is that the post contingency voltages will not 

change if precontingency topology is retained and power 

equal to the one flowing into either end of the line (as the 

post contingency voltage profile dictateGl is injected at 

the end buses. The situation is pictured in figs. 5.1, 5~f 

and 5.3. Fig.5.1 depicts the system at its precontingency 

state, Fig:5.2 depicts the system at its post contingency 

state and,· finally, Fig.5.3 illustrates the simulation 

procedure (post contingency vol tage profile under 

precontingency topology is achieved by appr9priately varying 

, the power injections at the line ends). 

m 

m 

'if 
Pm+jQm 

Vn 

,II 

Pn+iQn 

Fig. 5.1: Line mn in precontingency state. 

v~ Ia~ _..,.. ...... -n 

0------------------------0 

Pm+jQm 

Fig. 5.2: Line mn in post contingency state. 
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Pmn+jOmn Pt,m+janm 
1 ï 
1 J;. 1 

I~ /a~ : III V~ {, Vm am ,[, 
m 

1 
n 

\ 

Pmn+jOmn Pnm+iOnm 
, '" 

, 

" Pm+iam Pn+jQn , 

o 

,Fig.5.3: Simulation of the post contingency case. 

~ 

Assuming. that the line mn is to be outaged, one has 'for~h~ 

needed power injections at the end buses (see Fig:5.3): 

" 

~Pm+j~Qm = Vm' .Iinm and ~Pn+j~Qn = Vn' .Iinn (5.4) . 

Similarly f.or the power flowing in the line l'nn t.-. 

~Pm+j~Qm = Vm'.lm and ~Pn+j~Qn = ~n' .In (5.5) 

where: ~Pm/~Pn and ~Qm, ~Qn are the real and reactive 

components of the power injections needed (and 
~ 

by constraint the real and reactive components 

of the power at the line ends). 

Vfm, V'n vector quantities denoting bus voltages 

Iinm, linn vectors for the current injections 

at the buses m and n respe~tively. 
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~m, In·vectcrs denotihg the currents at the line 
\ 

f-~t. 
~,/ 

ends • 
..... / ~ . " -, 

It f(l)llows that: .. 
'I 

• 1 
~ 

.D 1m < 
""\. 

< and 
"-

Iinm Iinn :II In (5.6),· 

Fig.5.4 illustrates the above expres.sion. Approximat~ng: 

'" In = - lm = l (5.7)' 

the si tua tien becomes the one depicted in Fig. 5.5
0

• 

v{.,-;a~ , V~ ~ m * 
1 1 

* n 
Im 

~< ~ In 1 
1 
1 

1 1 
1 J 

Iinm Ii"" 
... 

" , " Ji 

Fi9.5.4: Current injectio~s needed tor the simulation. 

/ 
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V:' ~ n * 1 

1 
1 
1 
1 ,-r 

-v~~ 
m î ~l2?~-~--~I=:~)--________________ ~ 

Il 

}' 

,Fig.S-.S: Final form of the needed current injections. 
" 

considering\the precontingency as "base case" the change in 

the injections of the buses m and n respectively (due to the 

outage simulation) will have an effect on the precontingency 

voltage profile which can be found
t 

with thé aid of the base 

case (precontingency) Z 

on the voltages are: 

matrix'of the network. 
f 

... -

· . ~ , ....... . 
· .. , ....... . 

...................... , 

· .......... . 
· .......... . 

It is seen from ~5.8) that: 

Zmn 

o 

o 

l 

-I 

= 

AVm • ( Zmm- Zmn ) • l and, AVn = (Zmn-Znn) ~ l' 
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AVrn (5.8) 

AV" 

'. 
(5.9), 
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But Vm' • Vm + AVm and Vn' * Vn + AVn (S.lO) 

Sinee: Vm'~Vn' = Zline-mn .1 we have that: 

Vm'-Vn' • Zline-mn.l • (Vm-Vn)+(AVm-~vn) ~S.ll) 

But Vm-Vn = Zline-mn.lmn (5.12) 

.. 
where: lmn is the precontingency line current. 

and \ AVm-/:.Vn • (Zmm»Znn-2Zmn). 1 (5.13) 

Solving (5.11) with respect to 1 we obtain: 

l • 
~ 

lmn.Zline-mn 
l' 

p 

Zline-mn + 2Zmn -Zmm -Znn 
(5.14) 

Equat ion (5/14) i s rather important because i t expresses 

the current injection needed to simu1ate the out age using 

~base case" network quantities. 

If one wants to find the power injection needed in order 

for the outage to be simulated: 

Sinm ~ V' m. l and 5 i nn = V' n • ( - l ) (5.15) 

where: Sinm and Sinn are the comp1ex 'power injections 

needed at buses m and n respeetively. 
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. 
V'm and V'n are the post contingency voltages 

at buses m and n respectivèly. 

It is desired however that the system retains its 
, . 

precontinge~cy voltages in magnitude.~his means that if the 

post contingency case is to be feasible the voltages at the 

buses will differ only in angle and not in magnitude. 

Accordingly, one can.approximate Sinm and Sinn in (5.15) as 

follow~; 

Sinm = Vm. (I) and Sinn = Vn.(-l) (5.16) 
'. 

where: Vm and Vn are the precontingency voltages at 
, 

buses m and n respectively (vectors). 

Let Z = Zline~mn + 2Zmn - zmm - Znn. 

If eq(5.16) is decomposed into real and reactive components 
" 

one has: 

" Pmn Zline-mn Pnm Zline-mn 
Pinm = ~inn = (5.17) !I 

Z Z 

Qmn Zline-mn Qnm Zline-mn 
Qinm' = 0' Qinn = (5.18) 

Z Z 

where: pmn and Pnm precontingency power flows in line mn 

from end m to end ni and vice versa, respectively. 

A 
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---It can be seen that any discrepancy between the quantities 

computed vi,a (5.15) and the ones computed via (5.16) is due 

to the differenc'e in the angles of the voltages. 

Nevertheless, the grea t advantage of (5.16) i s that i t gi ves 

a rather fair indication (under' the assumptions it, has been 

derived under) of the injections needed utilizing known 

-"base ~ase" quantities available from any "base case" load 
'\ 

f~ow. 

Those injections superimposed to the bus loads reduce the 

problem to the problem of load variability assessment sinee 

the topology of the system is retained.' 

5.6. Steady St.te Contingency,Anal~si8. Bxamples. 

At first the small experimental 3-bus system will be used 

to demonstrate the feasibility of the approach. The lihe 

outage to be considered is line 2-3. A couple of case 

studies will be treated with relative detail at firs't, in 

order to illustrate the proposed method. 

Case study 1: Heavy precontingency loading. 

Assume the. system at precontingency topology with loads 

(real compon~ts) at buses 4 and 3, of 1.5 and' 6.5 p.u •. 

Sinee those demands represent actual powers flowing out of 

the grid they are represented as negative injections in the 

load flow equations. Therefore from a lOad f10w point of 
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view the load pattern is -1.5 and -6.S' for buses 2 and 3 

respêct i vely. Thi s is considered· the base case and a load 

f low analys i s is carried out to determine both the voltage 

profile as weIl as the line flows in the system. It is found 

that power is transferred from bus 2 to, b~s 3. At the 

sendi ng end 2 the power sent to end 3 (via the 1 ink 2- 3) i s 

2.0573 p.u and the similar qu'antity at end 3 has a value of 

-1.9674 p.u. 

The [ z J matr i x of the system is constructed 

(80,81,82,83,84,85,86) and it is found to bel 

[z] = [jO.l~33 jo.,06,66J 

jO.0666· ~jO.1333 
l 0 

(for the sake of simplicity 

the resisti ve components of the t;-ansmission 'line impedances were 
1 

omitted) 

Applying directIy (S.17) and (5.18) one has~ 

Pin2 = "2.0S73x3.058104 = 6.2912522 p.u (rea1 pow;r). 

Pin3 = -1.9674x3.058104 = -6.0163367 p.u (real powe"r) 

l ' 

where: 

3 • 058104 = j 0 • 2/ j ( 0 • 2 + 2 x 0 • 06 &6 - 0 • 1333 - 0 .133 3 ) 

jO.2 = reactance of line 2:""3 

Superimposing the Injections needed to simulate the outage 

to the bus loads we obta in: 

P (at bus 2) = 6.2912522-1.5 = 4.7912522 (generation) 
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P (at 

The 

\. 

~ 
\ 

bus 3) = -6.5-6.0~63367c-l2.516337 
.:J 

(load) 

values just found for . the. compound powers are 

substituted into the equation of the hyperellipsoid of type 

1 for the- 3-bus system. 

constructing the equation of 
f" 

system loa~s (being modeled as 

-One has to note that' in 

the hyperellipsoids, actual 

negative i~jections for load 

flow purposes) were considered to be positive. Accordingly 

the state ~ reads: 

'/=. [ -4.7912522 h.51633'21 

Substituting in (5.1) we obtain f(~} = 4890.9688 f(I»O.) r, 
Thi~ denotes that the state' is located outside of the . 
hyperellipsoid and· therefore i t is considered to be 

unfeasibl~. But, '<un'feasibil i ty for the compo.und inje~tions 
.... 
~eans that the system will not survive the outage. A load 

, flow stuqy with post contin'.gency n;etwork configuration and 

'1'" precontingency bus loads .led us to the Si:e conclusion. 

() 

Case 2. System Heavily Loaded 

ConsiQer this time the pre~ontingency real loads to be -5.5 

and -3.0 p.u for buses 2 and 3 respectively (in network 

, convention negative loads at'the buses denote power flowing 

. ~ 

out of the grid). The base case load flow gives that the 

power flow in line 2-3 i5: 

'P2':'3 = -1.0239 p. u and P3-2 = 1.0469 ~~U 

Utilizing (5.16) again we obtain as before: 
oP 

Pin2,= -1.0239x3.058104 = 3.1311927 p~u 

and 
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,Pin3 = 1.0467x3.0S8104 .. 3.201529 p.u 

Supe~imposing the required injecti~ns found to the 

precontirlgency loads we obtain as compound injections: 

> P2 = -3.1311927 + (-5.5) = -8.6312 p.u 

and 

P3· 3.201529 + (-3.0) = 0.201529 p.u 

Note ,that' the signs pertain to network conven .. tions. The 

opposite signs will be used for the space 

representation and th~~state becomes: 

T 
! = 8.6312 -0.201529 

Substituting !n (5.1) we obtain f(l) = 1088.24871 (f(~»O.) 

The method of the hyperellipsoids thus suggests that the 

system will not be in a position ta withstand theoutage of 

line 2-3 urider the prescribed lo~din~ pattern~ A detailed" 
, 

load flow analysis with post contingency data gave the same 

result. 

Case 3: Light Loading for the system. 

Let us suppose that the load pattern for this case is -2.0 

p.~ and -3.0 p.u at buses 2 and 3 respectively. The 

precontingency base case gives th~t P2~3=O.3508 p.u ,and 
- / 

/",~3-2=-O.348~" p.u Application of (S".16) gives for this 
, i.~~ 

particular'case: 

P,in2" O. 3-!08x3. OS8104 .. ' 1. 0727829 p. u 

and 

Pin3 = -O.3482x3.0S8104 = -1.0648318 p~u 

Superimposing we have: 
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P2 = -2.0 + 1.0727829 = 0~9272171 p.u 

'and 

, P3 ~ -3.0.- 1.0648318 = -4.0648318 p.u 
~ 

T­
For X = - -0.9272171 +4.0648318 ],.~equàtion~ (5.1) gives 

f (1) '" -4265.3,667 (f (!) <O. ) .• Thi 5 suggest~ that according 

to the methods of the hypere1lipsoids the system will 
, 

wi thstand the outage.. Thi s indeed has been conf i rmed, 

again, with a full scale ac analysis. 

In the context of security assessment via the method of the 

hyperellipsoids only th~ hyperellipsoid of confidence of 

type 1 can be used with good enougH results '(see section 

5.3.) 

In other words one function evaluation (eq.5.1) will 

suffice. If the state of the compound injections is found to 

be in the exter ior' of the hypere11ipsoid of type l, it is 

considered to represent a 'fatal contingency. This 

consideration stems from the fact that due to the rather 

conserva t ive cri teda D estabtished for the construct ion of 

the hyperellipsoid of type II one rarely finds astate 

outside its boundary. This means that the vast majority of 

, the cases will be classified as "ambiguous", in reality 

being unfeasible. On an automated scheme this can lead to 

redundant ac simulation cases. On the other hand, if on1y 

the hyperellipsoid of type 1 is used for decision making 
"-

there may be case~where the operating point is considered 

nonsecure, while being in fact secure. Table 5.3 lists (in 

its first two columns) the results of full scale ac 
137 

• 



( ,-

, 

simulations with precontingen~ topology. The outage to be 

investigated is the outage of line 2-3. The third column of 

the same table provides the results of a Gauss-Seidel load 
1 

\, 

flow algorithm with post contingency network topology. The 

fourth co1umn gives the results one shou1d arrive at, if the 

~ethod of the hyper~llipsoid(s) is used. 

" 

SYSTBM LOAIlS AC I.OAD rI.OW METROD or TH! 

BOS 2 BOS 3 SIMULATION 
, 

HYP!RBLLIPSOID . 

+1.0 +1.0 Feasible Feasib1e 

+2.0 +3.0 Feasible Feasible , 

+3.0 +3.0 Feasible Feasib1e 

+4.0 +4~0 Feasib1e Feasib1e . 
+4.0 +3.0 Feasib1e Feasible 

+3.5 +3.5 Feasib1e Feasib1e 

+3.0 +5.0 Feasible Unfeasible 

+1.5 +6.5 Unfeasi~e Unfeasible 
L 

+6.0 +6.0 Un'f ea s i ble Unfeasible 

+5.5 +3.0 Unfeasible Unfeasible 

Table 5.3: 3-bus' system. Line 2-3 outaged. 

1 t is seen from the resu1 ts di splayed in ta,bIe 5.3 that no 

case classified as feasible by the screening, technique is 

c1assified as unfeasible by the corresponding ac, simulation. 

Nevertheless, sorne remarks are in order. This specifie 
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example, illustrates one ·limitation of the p.roposed 

end buses to methodology. The injections needed at the 

~ simulate the outage are given by eqs(5.16). These equations 

are approximate ~ecause ~hey utilize the precontingency bus 

angles (recall that the system was assumed ta be voltage 
~ 

robust) and not the post contingency ones. 

Accordingly, the error introduced in estimating the needed 

injections is transferred directly to the compound 

injections, which are estimated by direct superposition of 

~ the needed injections with the~ precontingency bus loads. 

Suppose that the point suggested by the computed compound 

injections happens to be located near the separation surface 

of the feasibility region.~ Assume, furthermore, that the ~ 

surface of the hyperellipsoid, in the neighborhood of the 

compound state, happens to be virtually identical with the 

separation surface itself. In the case of the load 

variability' assessment this coincidence was highly 

beneficial but, for secu~ity assessment it may very weIl 

lead to wrong decision making. In other words, the total 

absence of the uncertainty zone may cause the state (which 
~ 

1 " otherwise woud be c lass i fied as unfeasible) to be 

classified, wrongly, ~s feasible. 

It is exactly this of the uncertainty zone 

that,' in our opinion, more ensates for the error 

introduced by using the eqs n this specifie example, 

as illustrated in fig.4.16, the zone of uncertainty is 

vfrtually non existent for first quadrant states. AS a 
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consequence, èrratie decision making is probable for certain 
1 

load patterns under the concurrent influence of the 

condit~ns stated. 

As a f~ illustration of the technique the more complex 
" 

5-bus system will be used for the cases ta follow. The 
" 

procedure ls the same as the one used for the 3-bus system. 

Only single outages are examined. Table 5.4. pertains to the 
. 

case where line 2-3 is considered to be out of commission. 

Assuming the same precontingency loading as in table 5.3 the 

system's response (steady state) is assessed with both full 

seale ac simulations (column 2) as weIl as with the method 

of the hyperellipsoid (column 3) 
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OOTAGBD LIME 2-3 
) 

LOADING OP 'l'HE SYSTEM 1 

LOAn PLOW l SCREBNING METHOD 

+0.2 +0.2 +0.2 +0.2 Feasible Feasible. 

+0.2 +0.3 +0.35 +0.4 Feasible Feasible 

+0.4 +0.4 +0.4 +0.5 Feasible Feasible 

+0.6 +0.6 +0.6 +0.6 Feasible Feasible 

+1.0 +1.0 +1 .. 0 +1.0 Feasible Feasible 

+1.0 +2.0 +2.0 +2.0 Feasible Feasible 

+];.0 +3.0 +2.0 +2.0 Feasible Feasible 

+1.0 +4.0 +3.0 +3.0 Feasible Onfeasible 

+1.0 +4.5 +3.5 +3.5 Feasible Onfeasible 
. 

+1.0 +4.0 +4.0 +4.0 Feasible Onfeasible 

+1.0 +5.0 +4.0 +ffi.O Unfeasible Unfeasible 

+1.0 +6.0 +5.0 +4.5 Unfeasible 43 Unfeasible 

+1.5 +6.5 +5.5 +4.5 Unfeasible Onfeasible 

+2.0 +7.0 +6.0 +4.5 Unfeasible· Unfeasible 1 

""1 

+2.5 +6.5 +5.5 +5.5 Unfeasible Unfeasible 

Table 5.4: 5-bus system. Line 2-3 outaged. 
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LOADING or THE SYSTEM Otl'l'AGED LINZ z 3"4 
, 1 SCREENING METHOD LOAD FLOW 

+0.2 +0.2 +0.2 +0.2 Feasible '\.fea s ib1e 

+0.2 +0.3 +0.35 +0.4 Feasible Feasible 

+0.4 +0.4 +0.4 +0.5 Feasible Feasib1e 
-

+0.6 +0.6 +0.6 +0.6 Feasible Feasib1e 
-./ 

+1.0 +1.0 +1.0 +1.0 Feasib1e Feasib1e 

+1.0 +2.0 +2.0 +2.0 Feasible Feasib1e 

+1.0 +3.0 +2.0 +2.0 Feasible Feasible 

+1.0 +4.0 +3.0 +3.0 Feasible Unfeasible 

+1.0 +4.5 +3.5 +3.5 Feasible Unfeasible 

+1.0 +4.0 +4.0 +4.0 Feasib1e Unfeë;!.sible 
\ , " 

+1.0 +5.0 +4.0 +5.0 Unfeasible Unfeasible , 

+1.0 +6.0 ,+5. a +4.5 Unfeasible Unfeasible -
+1.5 +6.5 +5.5 +4.5 Unfeasible Unfeasible 

+2.0 +7.0 +6.0 +4.5 Unf~asible Unfeasible .. 
, 

+2.5 +6.5 +5.5 +5.5 0 Unfeasible Unfeasible 

Table 5.5: 5-bus system. Line 3-4 outaged. 
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LOADING OF 'l'HB SYSTEM OOTAGBD LIN! 1 4~5 

/ LOAD P'Loi 1 SCRBBNING METHOD . Qi' 

+0.2 +0.2 +0.2 +0.2 Feasible Feasible . 
+0.2 +0.3 +0.35 +0.4 ..Feasible Feasible 

+0.4 +0.4 +0.4 +0.5 Feasible Feasible 

+0.6 +0.6 +0.6 +0.6 Feasible Feasible 

+1.0 +1.0 +1.0 +1.0 Feasib1e Feasible 

_ +1.0 +2.0 +2.0 +2.0 Feasible Feasible 

+1.0' +3.0 +2.0 +2.0 Feasib1e Feasible 

+1.0 +4.0 +3.0 +3.0 Feasib1e Unfeasible 

+1.0 +4.5 +3.5 +3.5 Feasible Unfeasible 

+1.0 +4.0 +4.0 ,+4.0 Feasible Unfeasib1e 
1 

+1.0 +5.0 +4~0 +5.0 Unfeasible Unfeasible / 

. 
+1.0 +6.0 +5.0 +4.5 Unfeasible Unfeasible 

+1.5 +6.5 +5.5 +4.5 {) Unfeasible Unfeasib1e 
-

+2.0 +7.0 +6.0 +4.5 Unfeasible Unfeasible 

+2.5 +6.5 +5.5 +5.5 Unfeasible Unfeasible 
, 

Table 5.6: 5-bus system. Line 4-5 outaged. 
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LOADING or THE SYSTEM . OOTAGE]) LINS 1 2-5 

LOAD l'LOW '1 SCRUNING ,MBTHOD 

+0,2 +0.2 +0.2 +0.2 Feasible Feasible 

+0.2 +0.3 +0.35 +0.4 Feasible Feasible 
" +0.4 +0.4 +Q.4 +0.5 Feasible Feasible 

+0.6 +0.6 +0.6 +0.6 Feasib1e Feasible . 
+1.0 +1.0 +1.0 +1.0 Feasib1e Feasible 

+1.0 +2.0 +2.0 +2.0 Feasib1e Feasib1e 
il' 

+1.0 +3.0 +2.0 +2.0 Feasible Feasible 

+1;0 +4.0 +3.0 +3.0 Feasib1e Unfeasib1e 

+1.0 +4.5 +3.5 +3.5 Feasible Unfeasible 

+1.0 +4.0 +4.0 +4.0 Feasible Unfeasible 

+1.0 +5.0 +4.0 +5.0 Unfeasible Unfeasib1e 
" 

+1.0 +6.0 +5.0 +4.5 Unfeasible Unfeasib1e 

+1.5 +6.5 +5.5 +4.5 Unfeasible Unfeasible 
0 

+2.0 +7.0 +6.0 +4.5 Unfeasible Unfeasible 

+2.5 +6.5 +5.5 +5.5 Unfeasible Unfeasible 

Table 5.7: 5-bus system. Line 2-5 outaged. 
, , 
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CHAPTBR VI 

CONCLUSIONS AND RlC~ATIONS. 

6.1. CONCLUSIONS. 

The problem of the determination ,of operating regions has 

been of considerable interest during the past years. The 

luse~ness and potential of the 

oper~in9 regions for real time 

long ago been recognized. 

exact ~nowledge of such 

operation a~d control has 

Nevertheless, the difliculties associated with analytica1 

approaches are formidable, due to the fact that the 

equations governing the performance of power systems are 

nonlinear. Trading computationa1 power for analytical 

elegance seems, for the moment, to be the only attainable 

engineeri~g means, for implementing practical control and 

operating s~rategies in the real time power system 

environment. 

This dissertation approached the problems of steady state 

feasibili ty region identification and steady state 

contingency analysis from a simulation-based, Pattern 

Recognition-motivated, point of view. 
, 

The following concluding remark~ apply for chapters II-V. 
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i) Direct transposition of Statistical Pattern Recognition 

methodology to Power Systems·engineering is not recommended: 

Methodologies, for ~oth formulating and solving power system 

problems, are to be developed on an independent basis. 

Concepts applicable and extensively used in a statistical 

envfronment (such as the co~cept of \ 
\ 

the misclassification 

err~r) should be addressed from an fntirely new point of 

view in the strive for reliability in real time operational 

practice. 

1 

ii) Training point selectivity as weIl as training point 

economization are i perative attributes of the training sets 

user in power sys em region identification. Random selection 

of training sam les is to be avoided and the fact that 

training point' are very costly to power system engineers 
--.... 

has to be proper~y accounted for. 

With the algorithme presented for training point selection, 

the desired attributes of selectivity and economization have 

concurrently been achieved, thus substantially reducing the 

amount of "off-line" computations needed. The superiority of 

thos'e b algor i thlllS, over random selection schemes was 

demonstrated. --

ii/i) Training points' should be located in the immediate 

vicinity of th'e separation surface. As a consequence, data 

set condensation is rather imperat i ve if realistic 

hyperellipsoids are to be obtained. It was also shown that 
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even for classification purposes (in the traditional Pattern, 

Recognition context) the misclassification error is, as a . 

rule, reduced whenever condensed data sets are used. r 
Algorithms for data set condensation were presented and 

the i r ~l idi ty tested. , 1 

iv} An error free method has been developed for state 
, 

identification based on the concept of the hyperellipsoid of 

confidence. Methods fo~ constructing the hyperellipsoids 

needed were also developed, and, criteria for optimizing 

'their size were given. The method, makes no use of the 

concept of the misclassification error, concept which is 

rather hard to cope with 

making is desired. 

if real~me, error- free decision 
\ 

v) Direct applications of the method of the hyperellipsoid 

,in the real time power system environment were suggested . 

. Load flow feasibility can be assessed on line. By utilizing 

the hype'rellipsoids for screening purposes, the amount of ac 
'. 

simulations needed for error free decision making is greatly 

reduced. The applicability of the approach was demonstrated 

for actual powergrids. 

l 
vi} A method for steady state contingencyanalysis was 

developed based on the concept of the hyperellipsoids of 

, confidence of the precontingency feasibility region of the 

power grid. The method relies on the Z matrix concept and 
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poses the following advantages, as demonstrated by the cases 

examined. 

Being Pattern Recognition moti~ated it retains the 

advantage shared by those method6, i.e, it i6 very fast and 

particularly suitable for on line applications. 

- The method is very rel iable because it relies on the 

hyperell ipsoid of confidence idea. The uncertainty, 

associated with the misclassification ' error, which is the 

main weaknes6 of any potentially applicable Pattern 

Recognition based operat~ng strategy, has been circumvented. 

Reliability in real time power systems operation and control 

i.s, now, wi thin rêach in the context of the proposed 

methodolo"gy. 

- The method utilizes the precontingency training data sets 

to conjecture post contingency system behaviour. As a 

consequence, once the training sets for the feasibi1ity 

region of the precontingency power grid are avai1able, o~e 

may examine a good variety of potential Ou~~ge5 without . , 
having to re60rt to'different training sets in order to 

construct the much needed hypere11ipsoids of confidence. 

~ vii) Stability and security indices bearing a definite . 
quant i tati ve and .physically explainable meaning were 

, 
suggested. Quantitative indicators of t~ degree of 
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uncertainty for the operating environment can be directly .. 
contemplated. 

. ,(.. 

'. 
viii) The method developed for contingency analysis 

,circum~ents one of . \t,he major (perhaps the most severe) 

drawoacks of Pattern Recognition methods as applied so far 

in Power system engineering: the fact tha~ the slightest 

'- modi f ication..;;;,J,n' network topology usually . / render; the 

....... 

acquired data sets complete1y useless. This is no longer a 

limitation with the suggested methodology • 
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fi.2. RBCOMMBNDATIONS POR P'URTHBR RBSIWlCH. 

"-----' 
It is the opinion of the author that 'Pattern Recognition 

based methodologies can be fruitfully apPlie' in power· 

system engineering, especially in real time environment. 

Nevertheless, a necessary presupposition is that methods to 

bé used are. freed from concepts and methodologies which may 

suit very well others but present serious limitations in 

Power System engineering. 

Training point Selectivity and Bconomization. J 

Training points in Power 'system engineering are-very costly 

to obtain ànd selectivity as weIl as their economization 

must be the guidelines on which procedures for their 

acquisition should be based. Accordingly, research is 

needed to provide answers, of ever increased sophistication, 

to the question: n' Where should oQe seek the next best 

training sample?". 

Increaaing the volume of error free decision making region. 

For many practical power systems, the hyperellipsoid of 

confidence of type 1 may represent but a small subset of the 

• 1 actual feasibil i ty region. It would be very useful if 

techniques for utili 4(hg the unused parts of the feasibility 

region were developed~ New hyperellipsoids of confidence 
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(especially use fui 

emerge o( they can 

for load variability assessment) wouid 

be very weIl viewed' as satell i te 

hyperellipsoids) which weuld complement our global knowl~dge 

for the feasibility region. One promising methodological 

possibility for such an undertaking would be to apply 

"clustering techniques" to the states not enclesed by the 

a~readj existing"hyperellipsoids. 

\ 

Improvinq the accuracy of the method for outagl simula~ion. 

The need for more accurate determination of the required 

injections at the line ends for proper simulation of the 

considered outage has alreaQY been pointed out. Any effort 

towards iricreasing the volume of the regions of error free 

decision making, leads te 
~ 

an uncertainty 'region 

characterized by an ever decreasing volume. Accordingly, it 

can no longer compensate for computational discrepancies 

when est'imating the needed injeçtions. ' , 

Multiple line outages. 

Only single contingencies have been examined in this 

dissertation. It is the opinion of the author that the 

methods pres.nted here are best suited for single outage 

analysis. Nevertheless, it would be benefici~ if an 

assessment of the limi ta,tions of the method were car'r~d out 
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Power .!I~e. planning. 

Our numerical experience 

.. '\' , 

. -

suggests ,that . the more 

interconnecting links a power grid possesses the more 

unrestricted the power flow becomes. This indic~tes to ~. 

certain extend, that the buses of such a 'grid can withstand 

a maximum loading of ,the < same 'order of magni tude. This 

attribute, incidentally, is a very desirable property of EHV 

backbone networks (the equivalents of which this 

dissertation mairily addresses). If uniform maxfmum loading 
, , ) . 

'can be accommodated, the hyperellippoid o~ type 1 will be a 

fair a.pproximation of' ~he feasibility region itself. If the 

" relative volumes of the hyperell~soid of confidence, on the 

one hand, and the feasibility region itself are compared, 

t-he ir rat io ( in conjuct. ion w i th 'the 'gr id bus loading 

1 imi tat ions for the' currently considered topology) could 

lead to, specifie recommendatiolls 'for branch addition or 

deletion) .' 
/ 
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APPBNDIZ 1 î' 

r.nœ AND BUS' DATA POR Ta D'l'ILI ZBD POWER 'SYSTEMs. 

Table I.l.' presents the line data of the 3-bus system 

utilized, while fig.l.l depicts its topology. It is assumed, 

that the slack bus is b~s 1. Buses 2 and 3 are both 

considered to b~ voltage controlled nodes (type 2) with 
\ 

infinite reactive' compensating capability. 
...... \ 

Thelr 'nominal 

voltage are assumed to be 1.00 p.u. The voltage a:t the slack 

bus' was takend to be 1.05 p.u. Bus l has been assumed to 

be the oQly source of real power. in the 'system.' 

BOS BOS SERIIS IMPEDANCI SHUNT ADN! 'l"l'ANCI 

1 2 O.02l0+jO.200 o • 000 + j 0 • 00'0 

l 3 O.0210+jO.200 O.OOO+jO.OOO 

2 ~ 0.0210+jO.2l0 O.OOO+jO.OOO 

'" Table LI: Line data for the 3-bus system. 
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Fig 1.1: 3-bus system. 

5 .......... - ........... _4 

2 ........... ........... _3 

Fig.I.2: 5-b~s test system. 

Table I.2 presents the line data for the 5-bus test system 

utilized in the last chapter of this dissertation. Bus 1 is 

considered to be slack bus. Buses 2, 3, 4, 5 are considered 

to, be type 2 (voltage controlled) buses with infinite 

reactive compensating capability. Thejr voltage magnitudes 

are held at the level of 1.00 p.u. The voltage of the slack 

bus was assumed to be 1.05 p.u. 
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BOS BOS SERIIS IMPIDANCE SHUNT ADMI 'l"I'ANCI . 
, 

1 3 O.0208+jO.l367 O.OOO+jO.OOO 
...... 

l 4 O.0237+jO~l823 O.OOO+jO.OOO 

1 5 0.0309+jO.2372 O.OOO+jO.OOO 

2 3 o . 0574 + j,O. 4397 O.OOO+jO.OOO 

2 5 0.0419+jO.3212 Q.OOO+jO.OOO 

3 4 O.0366+jO.2806 O.OOO+jO.OOO 

4 5 0.0410+jO.3149 O.OOO+jO.OOO 

Table 1.2: tine data of the 5-bus test system. 

The impedance matrix for the 5-bus test system with the 

above presented data is found to be as ·follows ( the 

resisti ve component of the impedance of the tra~smission 

lines has not been takeri into account): ,.. 

\ 

Bus3 Bus4 Bus5 Bus2 

Bus3 jO.0950750· jO.0347386 j 0.0270268 jO.0557513 ('. 
.1 

~-' 1 
1 
! 
1 « 

Bus4 jO.0347386 jO.1030S43 j 0.0428355 jO.0394l68 

BusS jO.0.270068 jO.0428355 jO.134572~jO.0891729 
1 
! 
l 

jO.089l729 jO.2606760 
l 

Bus2 jO.0557513 jO.0394168 \ 
( i 

" \ 
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APPBNDII 1 l • 

ON ALGORITHMIC PERFORMANCE INDICES. 

~ 

In chapter III, "cost éoncious" algorithms were presented 

for training point selection, the objective. being indirec,t 

region identification." The question one has to face, is, 
t 

how many points are actually needed'for reasonably accurate 
\ 

indirect region identification. The next \immediate question 
\ 

would be how the ,dimensionali ty of the state space affects . 
the training, point requirements. Generally, if structure of 

any sort is not assumed (for the surface to be identified) 

questions of this sort are very difficult to tackle. Any 

assumption concerning structure (especially in higher than 

three dimensions) in order for the mathematical modeling ~o 

become simpler have to be well founded" from a physical po~t' 
of view if simplification of the .problem i5 not to lead to 

(, , 

i ts di stortion •• 

In this di,ssertation 
, 

our interest has been focused on the 

steady state feasibility region of power systems. 

.. 

It is in order to mention here that, in spite of the fact ' !' 

ihat, eventually, the effort of acqUlrlng the training 

points will be crowned with h{~erel1iPsoi9 construction, the 
1 • 

problem is not reduced to hyperellipsoid identification. To 

our knowledge, there is no evidence whâtsoever for the 
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. 
feas'ibi.li, ty I\/reg ion having any affinity for spec ial 

structure.- Any"," a" pr iori" . assumpt ion-, therefore~, on the 

matter will rather be misleading than helpful. Furthermore, 

i t is a well known' fact that the number of the buses 

(directly related to the dimensionaHty of the state space) 

in a power system i5 only one of the complicating factors. 

The steady state feasibility regibn is k.nown, f rom 

experience, ta be far more sensitive to other factors such 
, 

as, syst~m tqpology and system parameters. Recognizing the 
, " 

fact that,various systems with the.same number of nodes, can 

have radically di f ferent fe'asibï 1 i\ty region~ (due ta the i r 

different topologieal structure) . we eonclude that, 

attèmpting ta establish a performance "index based solely on 

the number of the buses (dimensionality) is oot really 
\ 

-. meaningful. 
\ 

In practiee, however, the problem i5 put more mildlyo The 

power system i~ given and the dimensionality of the state 

'" spaee known. The analyst, therefore, faces the problem of 

the "a priori" determinatio~ of the number of iterations 

needed for its computer runso 

To\be sure~ after a $U i table (but still undetermined) '> 

number of iterations no more training points will be needed. 

At that stage the hyperellipsoid resulting from the 

covariance matrix of the data will have reaehed its "final 

form"" In other words, tnere will be a point beyond which 

acquisition of more training points will have no appreciable 

effect on the resulting hyperellipsoid( s) 0-
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cl M~nor , var iations in size are to be e~pected for the 

hyperellipsoid(s) but its oriéntation (and its locatio~) in 
, 

spa~e should be fairly weIl known. An eigenanalysis of the 

covariance matrix .pt the available, to that point, data can 

im!1lediately reveal such variations. 1 f changes in the 

directions of the eigenvectors are observed, when more 

training points énter the data sets,'then, b~ing still in 
o 

the fOL"mati ve stage, more training points are needed., If, 

, on the contrary, a pattern of convergence is observed one , 

feels confident enough to stop. 
-l----~-. 

A direct consequence of such a reaspning is, that, being not 

able to specify "a priori" the number of iterations needed, 
< 

does not necessarily mean that no stopping criteria are 

available. 

What wei accordingly, propos~ is a sentinel procedure which 

if put in effect periodically (every prespecified number of 

iterations) can prevent redundancy"in the data set contents. 

The scheme relies on the fact that, the eigenquantities of 

the covariance matrix of the data (utilized for 

hyperellipsoid construct ion) 1 will not exper~ence 

substantial variation if redundant information is addéd ta 

For the 
) 

table II.1 shows the results of such~a 

procedure. The covariance\ matrix utilized for the .. 
eigencomputations pertains to the one obtained by utilizing 

the. stable tr-aining points. Column 1 of the table depicts 

the training points collected. Column 2 depicts the 
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eigenvectors of the covariance matrix of the data (in column 

form) and, finally, column 3 the corresponding eigenvalues • 

. 
HtlMBBR OP '!'RAI NI NG EIGBNVEC'l'ORS EIGBNVALoBS 

POINTS OTILI ZBD 1 2 1 2 

-0.856 -0.517 
30 -0.517 0.256 19.78 55.33 

-0.85'6 -0.517 
. 

,60 -0.516 0.856 23.98 ·49.61 . 
. 

-0.845 -0.535 ' 
90 -0.535 0.845 25.30 44.66 

-0.838 -0.546 
120 -0.546 0.838 25.97 47.56 , 

, , -0.833 -0.553 
150 -0.553 0.833 23.80 5b.82 

-0.791 -0.623 
180 -0.623 0.791 24.76 52.40 

. -0.772 -0.636 . 
200 -0.636 0.772 24.68 53.10 

0 

Table II.1: 3-bus system. Variation of eigenquantities. 

It is seen that, very rapidly, not appreciable changes are 

- introduced in the eigendirect ions. Phys i cally, thi s means 

that the algorithm utilized ta acquire the training points 

(putential function' concept) achieves the desired training 

point eoonomization. Furthermore, the same facts lead us to 

the conclusion that the quality of the tra,ining -points 

collected at the early stages is rather high, and therefore 

the algorithm is characterized by high selectivity. In this 

specifie example, 200, training points were, in total, 
, 

obtained. Nevertheless, one could as weIl collect 100 only 
,159 
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and still feel confiaent enough. • 

Thè colu~n 3 of table II.1. displays similar tendencies for 

the eigenvalues. One, however, should bear in mind that 

while eigenvectors a~e very indicative for the orientation 
1 

of the hyperellipsoid(s)' in space, the eigenvalues account 

for the actual lengths of the semiaxes. Taking into account 

the fact that, the square root of the eigenvalue (and not 

the eigenvalue it5elf) is a measure of·of the length of the 

semiaxes, one sees' that convergence 15 a t tained here as 

weIl. 

Table II.2 is similar in significance to table II.1 but it 

refers to the 
\ 

5-bus test system utilized in chapter 5. 

Column 1 indicates the number of available training. points 

---and column 2 shows the eigenvectors of the covariance matrix 
)/' 

of the data (stable training points). The eigenvectors 

(normalized) are sorted in such a way as to correspond one 

to one _w i th the eigenvalues of the covariance ma tr i-x sorted 

in ascending arder. S imi lar ly, table 1 1.3 shows the 

variability of the eigenvalues with respect to the number of 

available training points. 

.-
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NtJMBBR OF TRAINING BIGBNVBCTORS 
POIN'l'S O'l'ILIZBD . 1 2 3 " 

-0.945 0.321 -0.051 0."'026 . 
0.202 0.613 -0.260 -0.718 

200 -0.074 -0.038 0.919 -0.386 
-0.245 -0.721 -0.293 -0.579 

0.970 -0.210 -0.040 -0.113 
-0.043 -0.627 O." 454 0.638 

[ 400 -0.024 -0.184 -0.876 0.445 . 
0.236 -0.685 0.774 0.625 

'. 

\ -0.959 -0.247 -O. 034 0.136 . 
0.096 -0.742 0.291 [0.596 

600 0.003 -0.081 ':0.932 0.353 
-0.267 0.618 0.214 0.708 

-0.963 0.201 0.080 0.162 
0.058 0.775 0.029 -0.6"29 

700 -0.054 -0.319 0.876 -0.358 
-0.258 -0.508 -0.475. -0.671 

• .. .. -0.956 0.224 -0.006 0.189 
0.051 0.760 0.113 -0.638 

800 -0.044 -0.153 a . 987 -O. 01l 
-0.285 -0.591 -0.113 -0.746 

-0.947 0.256 -0.020 0.194 
" 0.051 0.717 0.012 -0.695 

900 -0.062 -0.091 0.-991 -0.082 .. 
-0.312 -0.642 -0.135 -0.687 

-0.948 -0.256 -0.044 -0.184 
0.028 -0.660 0.121 0.741 

1000 -0.045 0.068 0:992 -0.100 
-0.314 0.703 0.002 o • 638 0 

Table II.2: 5-bus test system. Variation of eigenvectors. 
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NCMBER OP TRAINING El GENVALOES 
POINTS U'l'ILIZED 1 2 3 4 

200 14.73 17.14 19.45 27.07 . 

400 15.15 19.95 22.48 29.24 
, 

600 15.19 22.05 24.16 28.20 

-
700 14.86 22.67 26.42 29.13 

800 15.04 22.90 26.49 28.53 
G 

900 15.15 22.73 26.10 28.70 

1000 15.33 22.75 26.26 28.23 

" Table II.3: 5-bus system. Variabi1ity of the eigenvalues.. 

In· the tables presented above the. fact that rather fast , 
\ 

conver'g,ence is attained for . both eigenquantiti~s, in both 

cases, su'ggests that indeed h~gh se1ectivity is achieved 
, 

when cellecting points. As a further 

substantiation ef this c1aim the 3-bùs experimental system 

was chosen te i1lustrate the effectïveness of the adopted 
\ 

algor i thmic pI;'ocedure. Fig II.I, Fig II.2, Fig.Il.3, 

Fig. II. 4, depict the two tra ining sets for the system but 

"for. various numbers of training points. Dc;,YS tepresent 

stable states crosses represent unfeasible stat:es and shaded 

tringles randomly generated test states. 

It ls seen that (Fig.IL1) for very few training points 

the misclassification error is very low and that selectivity 
• 0 

is achieved. For ever increasing numbers of wanted training , \ 

points, (ffg.II.2, Fig.II.3, Fig.II.4) the misc1assification 

error i5, again, kept at very low levels. Nevertheless, the 

feas ibili ty region is m9re and more ident i fiable. 
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The actual"number of training points one should obtainois, 
, 

naturally, strictly dependent on the degree of acc~racy 

desired. Every system is to be treated separately since it 

presents an entirely new case. 
" 

The criteri~n presente4 

here, is rather heuristic and definêtely not objective. The 

stricter the criteria for convergence tpe large~ the 

required effort will he. 1· 
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APPBNDIZ III 

STABILITY AND SBCURITY MARGINS. 

A by product of the concept of the llyperel'lipsoids of, 

confidence, as utilized here for both steady state stability 

assessment as well '~s for steady state contingency analysis, 

are quantitative indices concerning the degree of stability 

and security for the system under the considered operating 

conditions. 

Recall that in the detailed analysis of the three sample 

case studies in art.5.6, the value of eq.(5.l) (~or the 

state vector of 'the compound injections) has bee~ found to 

be monotonously dependent 

precontingency load • 
• 

on the degree of , séverity of the 

On the other hand, the value eq.(5.1) assumes for a given 

state, i& a direct measure of the location of the state with 

respect to the surface, eq.(5.1) analytically represents. 

For a given system is a matter of scaling, to assess any 

proximity of a given state and the surface of the 

hyperellipsoid. This fact in conjuction with-the fact that 

the hyperellipsoid represents but a subset of the actual 

feasibility 

strategies. 

region, may lead to various operating 

Assume, for instance, that assessing the effect of an 
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outage' ( or 9'eneration shift) via the presented techniques, 

one finds the state of the system to be. located to the 

exterior of the region of the hyperellipsoid. Assume, 

furthermore, that numerical acquaintance with the equation 

o~ the hyperellipsoid (for the given grid), suggests that 

the given state, falls just short from being loca~ed in the 

interior of the region. 

In this case the operator has every right to decide to 

endorse the analyzed contingency as a nonfatal one. It 

should, nevertheless, be mentioned that decision making of 

ohis kind is purely 
-i~-~· 

justif~able. l'n this 

subjective and, 

di sserta t ion, 

generally, not 

no "confidence 

intervals" were suggested for the grids analyzed. For actual 

power grids; however, one could assess such margins 
. 
on a 

empirical basis, if operating in a slightl~, uncertain 

environment is acceptable. 

\ 
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