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Abstract

The 2-D spatio-temporal epidemic-type aftershock sequence (ETAS) model is used to

decluster earthquake data catalogs as well as to make short-term forecasts of future seis-

mic events. Usually, the calculation of standard errors of the ETAS model parameter

estimates is based on the Hessian matrix derived from the log-likelihood function of the

associated ETAS model. However, when an ETAS model is fitted to a local data set, the

standard errors based on the Hessian matrix may be inaccurate. In this thesis, the ETAS

model was fitted to a coastal earthquake data set for British Columbia. A parametric

bootstrap procedure was used to assess the accuracy of the estimates’ asymptotic stan-

dard errors. It was found that the finite-sample distribution of some of these parameter

estimators is not Gaussian and that, as a result, the asymptotic standard errors are not

reliable. To show that the bootstrap procedure provides a reliable standard error estimate

and confidence interval for each model parameter, a Monte Carlo simulation study was

performed using known parameter values in the same range as those corresponding to

the real data. Edge effects were found to be important both in time and space, both in

the bootstrap method and in the simulation study. After modifying the procedure to take

these effects into account, a retrospective forecasting experiment was carried out to pre-

dict earthquakes west of Vancouver Island before and after the magnitude 6.1 earthquake

that occurred on October 22, 2018. Finally, the asymptotic and bootstrap standard errors

were further compared, along with the asymptotic and bootstrap confidence intervals

obtained from empirical quantiles, by applying repeatedly the bootstrap procedure with

1000 bootstrap simulations for 40 Monte Carlo simulations.
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Résumé

La version spatio-temporelle 2-D du modèle ETAS des répliques épidémiques est un

outil de désagrégration des catalogues de données sur les séismes et de prévision des

répliques à court terme. Le calcul de l’écart-type des estimations des paramètres de ce

modèle est généralement fondé sur la matrice hessienne déduite de la log-vraisemblance.

Lorsqu’un modèle ETAS est ajusté à des données locales, les écarts-types ainsi obtenus

peuvent parfois s’avérer imprécis. Dans ce mémoire, le modèle ETAS a été ajusté à des

données sismiques au large de la Colombie-Britannique. Une procédure de bootstrap

paramétrique a été utilisée pour évaluer l’exactitude de l’écart-type des estimations. Il ap-

pert que la loi à taille finie de ces estimations n’est pas gaussienne et que, par conséquent,

les écarts-types asymptotiques ne sont pas fiables. Pour montrer que la procédure boot-

strap fournit des estimations d’écart-type et des intervalles de confiance fiables pour tous

les paramètres du modèle, une étude de Monte-Carlo a été réalisée pour des valeurs de

paramètres connues semblables à celles correspondant aux données réelles. Les effets de

bord se sont avérés importants dans le temps et dans l’espace, tant pour la méthode boot-

strap que dans l’étude de simulation. Après avoir modifié la procédure pour tenir compte

de ces effets, une expérience de prévision rétrospective a été réalisée afin de prédire

les répliques au large de l’ı̂le de Vancouver avant et après le séisme de magnitude 6.1

survenu le 22 octobre 2018. Finalement, les écarts-types asymptotique et bootstrap ont

aussi été comparés, de même que les intervalles de confiance asymptotique et bootstrap

(déduit des quantiles empiriques dans le second cas), en appliquant de façon répétitive la

procédure bootstrap 1000 fois pour 40 simulations de type Monte-Carlo.
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Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

2 Manuscript 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Self-exciting spatio-temporal point processes . . . . . . . . . . . . . . . . . . 6

2.2.1 Temporal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Spatio-temporal form . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Marked self-exciting point processes . . . . . . . . . . . . . . . . . . . 8

2.3 The ETAS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 2-D spatio-temporal ETAS model . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 ETAS model terminology . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Stochastic declustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Parameter estimation and model fitting . . . . . . . . . . . . . . . . . 14

2.4 Earthquake data catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Completeness of the earthquake data catalog . . . . . . . . . . . . . . 18

2.4.2 Stationarity in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



2.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 The ETAS model fitting procedure . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 A bootstrap procedure to build confidence intervals for the ETAS model

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 Bootstrap simulation procedure . . . . . . . . . . . . . . . . . . . . . 25

2.6.2 Analysis based on the parametric bootstrap simulation . . . . . . . . 27

2.7 A Monte Carlo simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8.1 Simulation-based forecasting procedure . . . . . . . . . . . . . . . . . 37

2.8.2 A retrospective forecasting experiment . . . . . . . . . . . . . . . . . 39

2.9 Discussion: Use of the bootstrap procedure for Monte Carlo simulations . . 44

3 Conclusion 47

References 50

A 53

B 67

C 70

vi



List of Figures

2.1 A geographic map of the region of interest in this study. . . . . . . . . . . . . 19

2.2 Plots of log10(Nmag) versus mag (magnitude) by increments of 0.1 from 0,

2.5, 3.5, and 4 in panels (a), (b), (c), and (d), respectively. . . . . . . . . . . . . 20

2.3 Plot of the number of earthquakes in the catalog before time t versus time

t. The x-axis represents the lag (day) from the start time of the earthquake

catalog, 2000/01/01 00:00:00. The left red dashed vertical line marks the

2008/04/27 00:00:00, and the right red dashed vertical line marks the end

of the study period 2018/04/27 00:00:00. . . . . . . . . . . . . . . . . . . . . . 21

2.4 Map of the earthquakes used in the ETAS model fitting. The red frame

delineates the study space window. The blue circles represent the target

events while the grey circles represent the complementary events. The size

of each circle is proportional to the magnitude of the corresponding earth-

quake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Boxplots derived from 1000 estimates (including the three extremely large

outliers) obtained for seven of the ETAS model parameters by bootstrap

simulation. In each boxplot, the red line represents the putative value of

the corresponding parameter, the blue line marks the mean of the 1000 es-

timates, and the two green lines are the 2.5% and 97.5% empirical quantiles

of the distribution of of the estimates, respectively. . . . . . . . . . . . . . . . 28

2.6 Space-time plots of the latitudes (left) and longitudes (right) against the

times of occurrence of earthquakes in the simulated data set 573. . . . . . . . 30

vii



2.7 Space-time plots of the latitudes (left) and longitudes (right) against the

times of occurrence of earthquakes in the simulated data set 672. . . . . . . . 30

2.8 Space-time plots of the latitudes (left) and longitudes (right) against the

times of occurrence of earthquakes in the simulated data set 823. . . . . . . . 30

2.9 Space-time plots of the latitudes (left) and longitudes (right) against the

times of occurrence of earthquakes in the real earthquake data catalog. . . . 31

2.10 Boxplots derived from 1000 estimates (excluding the three extremely large

outliers) obtained for seven of the ETAS model parameters by bootstrap

simulation. In each boxplot, the red line represents the putative value of

the corresponding parameter, the blue line marks the mean of the 1000 es-

timates, and the two green lines are the 2.5% and 97.5% empirical quantiles

of the distribution of of the estimates, respectively. . . . . . . . . . . . . . . . 32

2.11 Boxplots of asymptotic standard errors of the estimates for each parameter

from the 1000 simulated data sets. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.12 Map of earthquakes in the earthquake data catalog of interest. The blue

circles represent the events in the space-time window built by space win-

dow (longitude: 126.75�W–130.5�W, latitude: 48.25�N–49.75�N) and time

interval ([2008/04/27 00:00:00, 2018/11/21 00:00:00]), while the grey cir-

cles indicate the complementary events in the catalog. The size of each

circle is proportional to the magnitude of the corresponding earthquake. . . 40

2.13 Left: Plot of log10(Nmag) versus mag (magnitude) by increments of 0.1 from

3.5. Right: Plot of Nt, the number of earthquakes (magnitude � 3.5) in

the catalog before time t (day), versus time t (day). The x-axis represents

the lag (day) from the start time of the studied earthquake data catalog,

2000/01/01 00:00:00. The left red dashed vertical line indicates 2008/04/27

00:00:00, and the right red dashed vertical line, 2018/11/21 00:00:00, which

is the last day in the earthquake data catalog. . . . . . . . . . . . . . . . . . . 41

viii



2.14 Plot against time (half-day) of the estimated half-day number of earth-

quakes (circles in black) in the study space window (longitude: 126.75�W–

130.5�W, latitude: 48.25�N–49.75�N) during the time window of interest

2018/10/21 00:00:00 to 2018/11/21 00:00:00. The hexagrams indicate ob-

served numbers of earthquakes in the corresponding half days. The lower

and upper green dashed lines represent the 5% and 95% empirical quan-

tiles of the distribution of numbers of simulated earthquakes, respectively.

Integer j 2 {1, . . . , 62} on the x-axis indicates that the forecast is for the jth

half day after 2018/10/21 00:00:00. . . . . . . . . . . . . . . . . . . . . . . . . 42

2.15 Examples of mapping the estimated intensity function (unit: events/(half-

day⇥deg2)) over the corresponding time intervals in the study space win-

dow to predict the location (epicenter) of earthquakes. In some panels,

green circles point to the locations of earthquakes (mag � 3.5) observed.

The three red circles in the left graph on the second row indicate the three

large earthquakes (mag � 6.0). . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



List of Tables

2.1 Estimates and corresponding asymptotic standard errors (SE) of the ETAS

model parameters, obtained with the classical fitting procedure for the

earthquake data catalog used as an example. . . . . . . . . . . . . . . . . . . 23

2.2 Three data sets with extremely large outliers obtained in bootstrap simula-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Observed statistic values and probabilities of significance of the Shapiro–

Wilk test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 The standard deviation (std) of the asymptotic standard errors calculated

for the 1000 simulated data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 The estimate, the asymptotic standard error (SE), the bootstrap standard

error (bootstrap SE), and the 95% bootstrap confidence interval for seven

parameters of the ETAS model. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Three earthquakes with magnitude above 6 on the same date. . . . . . . . . 40

2.7 Ratios of the mean length of 95% asymptotic confidence intervals (Table C.3)

against the mean length of 95% bootstrap confidence intervals (Table C.4)

for each of the seven ETAS model parameters studied. . . . . . . . . . . . . . 45

A.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.4 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.5 Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



A.6 Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.7 Case 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.8 Case 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.9 Case 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.10 Case 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.11 Case 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.12 Case 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.13 Case 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.14 Case 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.15 Case 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.16 Case 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.17 Case 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.18 Case 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.19 Case 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.20 Case 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.21 Case 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.22 Case 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.23 Case 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.24 Case 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.25 Case 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.26 Case 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.27 Case 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.1 Estimates of the ETAS model parameters, and the corresponding end of the

study time interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



C.1 Asymptotic standard errors for the estimators of seven parameters of the

ETAS model obtained with 40 Monte Carlo simulations using the param-

eter values reported in Table 2.1 as targets, and their mean value for each

parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

C.2 Bootstrap standard errors for the estimators of seven parameters of the

ETAS model obtained with 1000 bootstrap simulations for each of the 40

Monte Carlo simulations in Table C.1, and their mean value for each pa-

rameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

C.3 Length of the 95% asymptotic confidence intervals for seven parameters of

the ETAS model, obtained with 40 Monte Carlo simulations (i.e., the same

40 Monte Carlo simulations as for Table C.1 ), and the mean length of these

intervals for each parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C.4 Length of the 95% bootstrap confidence intervals (derived from the 2.5%

and 97.5% empirical quantiles) for seven parameters of the ETAS model,

obtained for the 40 Monte Carlo simulations, and the mean length of these

intervals for each parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xii



Chapter 1

Introduction

Earthquakes are one of the most destructive natural causes of danger (Oluwafemi

et al., 2018). Due to the potential impact of earthquakes on human life, property and even

the economy of a country, the global occurrence of earthquakes is a major concern. Thus,

it is crucial to develop models to study the occurrence time and location of earthquakes

and assess their frequency accurately.

Space-time models for the time of earthquakes and location of their epicenters were

developed for analyzing historical data. Hawkes (1971) introduced the self-exciting point

process and first applied it to earthquake data in Hawkes and Adamopoulos (1973).

Thereafter, Ogata (1988) proposed the ETAS model and examined its likelihood. Ogata

(1998) expanded the ETAS model to include both spatial and temporal components, which

was later found to be a powerful tool in short-term forecasting of aftershocks (Zhuang,

2011). In this thesis, the 2-D spatio-temporal ETAS model will be studied.

Earthquakes usually appear to be clustered not only in time but also in space. Zhuang

et al. (2002) noted that classifying earthquakes as background events or cluster members

is important for forecasting the location of large earthquakes. There are different ways

of removing the aftershocks from a cluster of earthquakes. In some methods, a space-

time window centered at the large earthquake is drawn and the small earthquakes inside

are deleted; see, e.g., Utsu (1970) or Gardner and Knopoff (1974). Instead of imposing a
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window, link methods based on the spatial distance and time lag between earthquakes

were developed to study association among earthquakes; see Reasenberg (1985) or Davis

and Frohlich (1991), among others.

The strategies mentioned above require that researchers call on their experience to

decide on some parameter values in relation to the size of the window or critical values

for the spatial distance and time lag, and the optimum choice is hard to make. Instead,

Zhuang et al. (2002) proposed a stochastic declustering method, in which the ETAS model

is used to overcome these issues. In this thesis, the method of Zhuang et al. (2002) is used

to decluster an earthquakes catalog; it will be introduced in detail in Subsection 2.3.3.

The parameters of the ETAS model have a physical interpretation. When the ETAS

model is fitted to different local data sets, the differences in the model parameter esti-

mates reflect the different focal processes that generate earthquakes and the various local

stress conditions in these places (Kagan et al., 2010). The standard errors of the estimates

are critical in judging whether discrepancies in parameter estimates between areas are

significant or not. Wang et al. (2010) stated that when the observable space-time window

is narrow, the asymptotic standard errors of the ETAS model parameter estimates based

on the Hessian matrix are often inaccurate. Wang et al. (2010) used a simulation method

to study the effects of errors in recording the magnitude of earthquakes and the finite size

of the time window on the asymptotic standard errors of parameter estimates of the 2-D

spatio-temporal ETAS model, which is parameterized differently from the one studied in

this thesis. However, these authors did not provide a way to verify the performance of

the ETAS model parameter estimates when the corresponding asymptotic standard errors

are unreliable.

In this thesis, a new procedure using simulation is developed to study the finite-

sample properties of the estimators of the ETAS model parameters and provide an alter-

native confidence interval for each parameter when the asymptotic standard errors based

on the Hessian matrix are deemed to be unreliable. More specifically, the ETAS model is

fitted to a coastal earthquake data set for British Columbia, Canada, and the estimates of
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model parameters are recorded. These estimates are set as putative values of the corre-

sponding parameters in the ETAS model when the parametric bootstrap (Efron, 1979) is

used to simulate the data repeatedly. Estimates of the ETAS model parameters from the

simulated data sets are used to approximate the finite-sample distribution of the corre-

sponding parameter estimators. The Shapiro–Wilk test (Shapiro and Wilk, 1965) is used

to show that the finite-sample distribution of some parameter estimators is not Gaussian

and that, as a result, the corresponding asymptotic standard errors are not reliable. A

bootstrap procedure provides a solution to this issue. Then, a Monte Carlo simulation

analysis is performed using known parameter values in the same range as those corre-

sponding to the actual data, to verify the performance of estimation and the confidence

intervals built with the bootstrap procedure.

Care also needs to be taken to minimize the edge effects when analyzing earthquake

data with the 2-D spatio-temporal ETAS model. Because the earthquake data catalog

is about a collection of events from a given region and a specified time period, the edge

effects cannot be ignored (Zhuang et al., 2004). Otherwise, a bias may be introduced in the

parameter estimates of the ETAS model. In particular, missed events in the past history

or around the specified regions may induce a downward bias in the number of triggered

events when the bootstrap or Monte Carlo simulation is applied.

The rest of this thesis is structured as follows. Chapter 2, which forms the main body

of this thesis, consists of a manuscript that describes how the new bootstrap procedure

that is proposed can be used to study the finite-sample properties of the ETAS model

parameter estimates and to assess the accuracy of their asymptotic standard errors com-

puted from the Hessian matrix. It is also shown therein how a reliable confidence interval

for each model parameter can be built, and why the new confidence intervals based on

the bootstrap procedure are reliable. At the end of Chapter 2, a retrospective forecasting

experiment is carried out to show how the ETAS model can be applied to make an accu-

rate earthquake forecast. Various ways in which this work could be extended are briefly

described in Chapter 3, which serves as the Conclusion.



Chapter 2

Manuscript

2.1 Introduction

The 2-D ETAS model is a well-developed instance of a self-exciting spatio-temporal

point process that is broadly used to decluster earthquake data catalogs and, to a lower

degree, make short-term forecasts of the occurrence time of aftershocks and the location

of their epicenter. The temporal version of the ETAS model was proposed by Ogata (1988)

and was expanded to a spatio-temporal version by the same author 10 years later (Ogata,

1998). Based on the 2-D spatio-temporal ETAS model, Zhuang et al. (2002) proposed a

stochastic declustering method to identify main shocks and aftershocks in earthquake

data catalogs. Thereafter, Zhuang (2011) described how the ETAS model can be used to

forecast short-term aftershocks based on simulations.

Kagan et al. (2010) stated that the parameters of the ETAS model have a physical in-

terpretation. When the ETAS model is fitted to different local data catalogs, differences

in the model parameter estimates imply that different focal processes generated earth-

quakes and various local stress conditions. It is thus important to study the accuracy of

the parameter estimates and the reliability of the corresponding standard errors.

The parameters of the ETAS model are usually estimated by the method of maximum

likelihood. The log-likelihood function of the spatio-temporal ETAS model was intro-

4
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duced by Ogata (1998), and the corresponding standard errors are calculated based on

the Hessian matrix derived from this log-likelihood function. Rathbun (1996) stated that

the maximum likelihood estimators for spatio-temporal self-exciting point processes are

consistent and asymptotically normally distributed as the length of the time span T tends

to infinity. However, the time span in local data sets is generally short and limited, and

Wang et al. (2010) noted that when the observation space-time window is narrow, the

asymptotic standard errors associated with the ETAS model parameter estimates based

on the Hessian matrix are often inaccurate.

Therefore, a newly developed bootstrap procedure is presented in this thesis to study

the finite-sample properties of the estimators of the ETAS model parameters and provide

alternative confidence intervals for parameters when the asymptotic standard errors as-

sociated with estimates based on the Hessian matrix are deemed to be unreliable. The

proposed procedure is applied to an earthquake data catalog, which contains records on

earthquakes in the space frame from 126.25�W to 131�W longitude and from 48�N and

50�N latitude, over the time span from 2000-01-01 00:00:00 to 2019-12-31 23:59:59 (UTC).

A short review of the literature on self-exciting spatio-temporal point processes is

given in Section 2.2. The specific 2-D spatio-temporal ETAS model considered here is

introduced in Section 2.3, along with the stochastic declustering method based on the

ETAS model and the procedure used to fit the ETAS model. The earthquake data cata-

log of interest in this study is presented in Section 2.4. After fitting the ETAS model, the

parameter estimates and the corresponding asymptotic standard errors from the Hessian

matrix are reported in Section 2.5. Then, a bootstrap procedure is proposed in Section 2.6

to study the finite-sample properties of the estimators and provide an alternative way of

building confidence intervals. In Section 2.7, a Monte Carlo simulation analysis is per-

formed using known parameter values in the same range as those corresponding to the

estimates for the real earthquake data catalog to verify the performance of estimation and

the confidence intervals built with the bootstrap procedure. A retrospective forecasting
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experiment is conducted in Section 2.8. Additional discussion and closing comments are

provided in Section 2.9.

2.2 Self-exciting spatio-temporal point processes

Self-exciting spatio-temporal point process models are designed to assess the risk of

events, whose occurrence rate depends on location, time, and historical events. This type

of model has been widely applied to study earthquakes, the dynamic trend of crime,

the spread of infectious diseases, and so on. For the reader’s convenience, this section

provides a short introduction to this type of model, based on references such as the review

papers by Reinhart (2018) and González et al. (2016).

2.2.1 Temporal form

Consider a sequence of events that occurred in the time period [0, T ) ✓ [0,1), where

0 represents the beginning of the time period, and the times of occurrence are recorded as

t1 < · · · < tn, where n is the number of events that occurred in the time period [0, T ). The

set of events that occurred before time t is defined as history Ht. If the occurrence rate of

posterior events is assumed to be independent of the historical events Ht, the behavior of

the point process for which t1, . . . , tn form a partial realization can be characterized by a

conditional intensity function as follows

�(t|Ht) = lim
�t!0

E[N{[t, t+�t)} | Ht]

�t
,

where N is a right-continuous counting measure for the number of events that occurred

in the given time interval. If the occurrence rate of events is shown to be affected by

the prior events, then a ”self-exciting” component should be added to the conditional

intensity function.
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The temporal self-exciting point process was first proposed by Hawkes (1971). The

intensity function is then defined as

�(t | Ht) = ⌫ +

Z t

0

g(t� u)dN(u) = ⌫ +
X

i:ti<t

g(t� ti).

Here, ⌫ is a constant representing the rate at which an event occurs independently and is

called the background rate of the events. The triggering function g describes the effect of

the historical events on the occurrence rate of the posterior events; it is a function of the

time lag between the occurrence time ti of the ith historical event and time t. Generally,

g is a decreasing function, which means that the larger the time lag, the less the effect of

the ith event before time t on the occurrence rate at time t. Thus, if the function g decays

fast, only the recent events have an effect. Given that the conditional intensity function is

nonnegative, the triggering function is always required to be nonnegative.

2.2.2 Spatio-temporal form

If the location of events is important to the occurrence rate of events, the temporal

point process can be extended to a spatio-temporal point process. The location of the

events is assumed to be described by the longitude and latitude. The rate of events around

location s = (x, y) 2 X ✓ [�180�, 180�] ⇥ [�90�, 90�] and at time t 2 [0, T ) ✓ [0,1) can be

characterized by the following conditional intensity function

�(s, t | Ht) = lim
�s,�t!0

E[N{D(s,�s)⇥ [t, t+�t)} | Ht]

|D(s,�s)|�t
,

where D(s,�s) is the disk, centered at s 2 X, with radius �s, and N{D(s,�s)⇥[t, t+�t)}

denotes the number of events that occurred in the disk D(s,�s) and over the time interval

[t, t+�t).

A self-exciting component can be added similarly, and the corresponding conditional

intensity function of the point process for which (s1, t1), . . . , (sn, tn) form a partial realiza-
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tion can be written as

�(s, t | Ht) = µ(s) +
X

i:ti<t

g(s� si, t� ti),

where Ht is the set of events that occurred before time t, the background rate of events

is represented by µ, a function of location only, and the triggering function g describes

the effect of the ith event before time t on the occurrence rate of events at (s, t). For

convenience, the triggering function g is often written as the product of a function of

location only and a function of time only, i.e., g(s � si, t � ti) = q(s � si)h(t � ti). Given

that the conditional intensity function is nonnegative, the triggering function g is set to be

nonnegative as well; for example, it may be a kernel function.

2.2.3 Marked self-exciting point processes

Besides location and time, other features of events can be equally important for cer-

tain kinds of events. For earthquakes, in addition to epicenters and times, the magni-

tude of events is also important, as an earthquake with a larger magnitude is expected

to trigger more aftershocks. Moreover, the locations of aftershocks may also be related

to the magnitude of the main shock. In such a case, a marked point process can be ap-

plied, and the corresponding observations are of the form {(si, ti,mi), i = 1, 2, . . . }, where

si = (xi, yi) 2 X ✓ [�180�, 180�]⇥ [�90�, 90�] and ti 2 [0, T ) ✓ [0,1) represent the location

and time of the ith event, respectively, and mi 2 M is the magnitude of the ith event.

Here, M is called the mark space and is a set of earthquake magnitudes of a given type.

The conditional intensity function of a marked spatio-temporal point process can be

written as

�(s, t,m | Ht) = �g(s, t | Ht)f(m | s, t, Ht),
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where �g is the conditional intensity function of the ”ground process”, which is the point

process of times and locations of events without their marks, and f(m | s, t, Ht) is the

conditional density function of the mark at time t, around location s, and given the his-

tory Ht. If the locations and times of the posterior events are affected by the history Ht,

a self-exciting component can be similarly added to the conditional intensity function of

the ground process �g.

In this study, a marked self-exciting spatio-temporal point process will be used to

analyze earthquakes, and is introduced in the following section.

2.3 The ETAS model

2.3.1 2-D spatio-temporal ETAS model

Following the first application of a self-exciting point process to an earthquake data

catalog by Hawkes and Adamopoulos (1973), Ogata (1988) proposed the simple epidemic-

type aftershock sequence (ETAS) model. Later, Ogata (1998) proposed the 2-D spatio-

temporal ETAS model, which is now widely used to decluster earthquake catalogs and,

to a lesser extent, make short-term forecasts. The papers by Zhuang et al. (2002) and

Zhuang (2011) are key references on the subject, and the parametrization of the 2-D spatio-

temporal ETAS model proposed in the latter one is adopted here.

An earthquake data catalog includes records on the time, location (longitude, lati-

tude), and magnitude of seismic events over a certain period, in a given region, and above

a magnitude threshold m0. If we denote the time (decimal day), longitude (degree), lati-

tude (degree), and magnitude of the ith earthquake in the catalog by ti, xi, yi, and mi for

i 2 {1, . . . , n}, the earthquake events reported in the catalog can be considered as a partial

realization of a point process on R+ ⇥ R2 ⇥ [m0,1), where n represents the total number

of earthquakes in the catalog (Ogata, 1998).

In the 2-D spatio-temporal ETAS model, the behavior of the point process for which

{(ti, xi, yi,mi), i = 1, . . . , n} is a partial realization is characterized by the conditional in-
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tensity function

��,✓(t, x, y,m | Ht) = s�(m)�✓(t, x, y | Ht), (2.1)

where � and ✓ = (⌫, A,↵, c, p, q,D, �) are the model parameters. As explained by Zhuang

et al. (2002), the intensity function ��,✓(t, x, y,m | Ht) can be interpreted as the rate at

which ’new’ earthquakes (after time t) will occur given Ht, where Ht denotes the space-

time magnitude occurrence history of the earthquakes up to time t. The same authors

emphasized that Ht includes not only the earthquakes that occurred during the study

time interval and in the study space window but also those that occurred before the study

time interval and outside the study space window. The study time interval and the study

space window are specified in Subsection 2.3.2.

In Eq. (2.1), s� is the probability density function (pdf) associated with the distribution

of earthquake magnitudes. It is assumed that the distribution of the magnitude of earth-

quakes is independent of the distributions of the occurrence time of earthquakes and the

2-D spatial location of their epicenters. It can be expressed, for arbitrary � 2 (0,1) as

s�(m) = � exp{��(m�m0)}, (2.2)

where m and m0 represent the magnitude of the earthquake and the magnitude threshold,

respectively.

In Eq. (2.1), �✓(t, x, y | Ht) represents the rate of observation of earthquakes in time

and space, given the information on earthquakes prior to time t. This rate is expressed as

the sum of two terms and is defined as

�✓(t, x, y | Ht) = µ(x, y) +
X

i:ti<t

k(mi)g(t� ti)f(x� xi, y � yi | mi), (2.3)
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with

µ(x, y) = ⌫u(x, y), (2.4)

where ⌫ 2 (0,1). The term µ(x, y) is usually called “background seismicity rate” and

represents the rate at which earthquakes independently occur around longitude x and

latitude y. The ith term of the summation in Eq. (2.3), namely

k(mi)g(t� ti)f(x� xi, y � yi | mi) (2.5)

represents the effect of the ith earthquake before time t on the occurrence rate of earth-

quakes that would occur at time t, with an epicenter around (x, y). Thus,

X

i:ti<t

k(mi)g(t� ti)f(x� xi, y � yi | mi)

describes the total effect of all the earthquakes that occurred prior to time t, on the rate at

which earthquakes would occur with an epicenter around (x, y) at time t.

The expressions of k, g, and f are discussed individually as follows. First,

k(m) = Ae
↵(m�m0), m � m0, (2.6)

can be interpreted as the expected number of earthquakes triggered by a previous earth-

quake with magnitude m, where A 2 (0,1) and ↵ 2 (0,1). Second, for all t 2 (ti,1),

g(t� ti) =
p� 1

c

✓
1 +

t� ti

c

◆�p

, (2.7)
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is the pdf for the occurrence time of an earthquake triggered by the ith earthquake in the

catalog, which occurred at time ti, where c 2 (0,1) and p 2 (1,1). Third,

f(x� xi, y � yi | mi) =
q � 1

⇡De�(mi�m0)

⇢
1 +

(x� xi)2 + (y � yi)2

De�(mi�m0)

��q

(2.8)

is the pdf for the occurrence location (epicenter) of an earthquake triggered by the ith

earthquake in the catalog, which occurred with magnitude mi and an epicenter at (xi, yi),

where D 2 (0,1), � 2 (0,1), and q 2 (1,1).

In the ETAS model, the earthquake is assumed to be either a background event, which

occurs independently of previous earthquakes, or an event triggered by a previous event

(Ogata, 1998). Irrespective of whether an earthquake is a background event or triggered

event, it is thought to generate a non-stationary Poisson process with the intensity func-

tion defined by Eq. (2.5); see Zhuang (2011).

To simulate earthquake data from an ETAS model and make accurate forecasts, it is

important to understand and capture the spatial and/or temporal clustering of earth-

quakes in the catalog. Therefore, a method of declustering, which requires a modeling

of the clusters, is introduced in Subsection 2.3.3. Before that, the relevant terminology is

defined in Subsection 2.3.2.

2.3.2 ETAS model terminology

Because of edge effects, it is highly recommended to study earthquakes based on a

wider space-time window [0, T ⇤) ⇥ S⇤, where t = 0 corresponds to a specific time origin,

which is also called the ’time begin’ (tbegin). The space-time window of interest is the

study space-time window [tstart, tend) ⇥ S ✓ [0, T ⇤) ⇥ S⇤, where the study start (tstart) and

the study end (tend) draw the limits of the study time interval, and S represents the study

region.

After specifying the study space-time window, the earthquakes in the catalog can be

classified as target events and complementary events (Zhuang et al., 2006). The target
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events are earthquakes that occurred inside the study region S and over the study interval

[tstart, tstart+T ), where T = tend� tstart. If there are other earthquakes in the catalog, which

occurred before tstart or outside the study region S, these are classified as complemen-

tary events. Let N 0 denote the number of target events in the catalog. For convenience

in the following subsections, the target events will be represented by the point pattern

{(t0i, x0
i, y

0
i,m

0
i), i = 1, . . . , N 0}.

2.3.3 Stochastic declustering

Consider the earthquake catalog {(ti, xi, yi,mi), i = 1, . . . , N}. To remove the triggered

events from such an earthquake catalog, Zhuang et al. (2002) introduced a stochastic ap-

proach to declustering earthquakes based on the 2-D spatio-temporal ETAS model, and

their approach is followed in this study.

Specifically, Zhuang et al. (2002) proposed that for all i < j,

⇢i,j =
k(mi)g(tj � ti)f(xj � xi, yj � yi | mi)

�✓(tj, xj, yj | Htj)

represents the probability that the jth earthquake is triggered by the ith event (ti < tj),

and

⇢j = ⇢1,j + · · ·+ ⇢j�1,j (2.9)

represents the probability that the jth earthquake is a triggered event, which is usually

called the ”triggered probability”.

Then, the ”background probability” of the jth earthquake can be easily defined as

'j = 1� ⇢j =
µ(xj, yj)

�✓(tj, xj, yj | Htj)
. (2.10)

From Eq. (2.3), it is immediate that the range of values for both the triggered probabil-

ity and the background probability is [0, 1] for each event. If each event in the catalog
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is removed randomly with the corresponding triggered probability, then the remaining

events are called the ”background events” and can be considered as a point pattern gen-

erated from a point process with intensity function µ(x, y) (Zhuang et al., 2002). Triggered

probabilities are unknown and need to be estimated. Thus, before applying the stochastic

declustering, the conditional intensity function must be estimated, and the fitting proce-

dure for the ETAS model is described below.

2.3.4 Parameter estimation and model fitting

The 2-D spatio-temporal ETAS model is a semi-parametric model with parameters

�, ✓, and a nonparametric component u(x, y). Consider again the earthquake catalog

{(ti, xi, yi,mi), i = 1, . . . , N}, where N is the number of earthquakes in the catalog. The

log-likelihood function for the 2-D spatio-temporal ETAS model is

lnL(�, ✓) =
NX

i=1

1i ln{��,✓(ti, xi, yi,mi | Hti)}

�
Z 1

m0

Z tstart+T

tstart

ZZ

S

��,✓(t, x, y,m | Ht)dxdydtdm,

where 1i = 1 if the ith event is in the study space-time window and 0 otherwise (Ogata,

1998).

It can be deduced from Eq. (2.1) and the underlying assumptions, that the maximum

likelihood estimate (MLE) of � has the closed-form expression

�̂ =
N

0
PN

i=1 1i(mi �m0)
, (2.11)

where N
0 = 1 + · · ·+ N is the number of target events.

The MLE of other parameters in ✓ cannot be calculated analytically. Zhuang et al.

(2002) proposed an iterative algorithm to estimate the background seismicity rate µ and

the model parameters simultaneously. Zhuang (2011) adapted it to his needs for the ETAS

model studied.
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2.3.4.1 Estimating the nonparametric component

Zhuang et al. (2002) proposed to estimate µ(x, y) using a variable weighted kernel

based on the total spatial intensity function.

Under the conditions of stationarity and ergodicity, the total spatial intensity function

is defined as

⇤(x, y) = lim
T0!1

1

T0

Z T0

0

�✓(t, x, y | Ht)dt,

where T0 is the length of the observation period. In practice, a finite approximation is

used to replace the limit and substitute Eq. (2.3) in the above equation (Zhuang et al.,

2002), so that

⇤(x, y) ⇡ 1

T0

Z T0

0

�✓(t, x, y | Ht)dt

= µ(x, y) +
1

T0

X

i:ti<T0

k(mi)f(x� xi, y � yi | mi).

It follows that the background seismicity rate µ(x, y) can be approximated by

µ(x, y) ⇡ ⇤(x, y)� 1

T0

X

i:ti<T0

k(mi)f(x� xi, y � yi | mi). (2.12)

For convenience, we set

�(x, y) =
1

T0

X

i:ti<T0

k(mi)f(x� xi, y � yi | mi).

In view of Eq. (2.12), the difference between an estimate of ⇤(x, y) and an estimate of

�(x, y) is a natural estimate of µ(x, y).
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Given the observations in the time interval [0, T0], Zhuang et al. (2002) suggested using

the variable kernel method to estimate ⇤, viz.

⇤̂(x, y) =
1

T0

X

i:ti2[0,T0]

Zdi(x� xi, y � yi),

where Zdi(x � xi, y � yi) is the bivariate Gaussian Kernel function, which can be written

as

Zdi(x� xi, y � yi) =
1

2⇡d2i
exp

⇢
�(x� xi)2 + (y � yi)2

2d2i

�
. (2.13)

Above, di represents the varying bandwidth, which is calculated for each event i as fol-

lows: for a given integer np and a threshold value ✏, di = max(hi, ✏), where hi is the spatial

distance between the ith earthquake and its npth closed neighbor in space. The presence

of threshold ✏ is to avoid that some earthquakes overlap. Zhuang (2011) suggested 0.05

(degree) as a threshold, because 0.05 (degree) is close to the earthquake location error.

Using the same kernel function, �(x, y) can be estimated by

�̂(x, y) =
1

T0

X

i:ti<T0

⇢izdi(x� xi, y � yi),

where ⇢i is the triggered probability defined in Eq. (2.9).

Following Eq. (2.12),

µ̂(x, y) =
1

T0

X

i:ti2[0,T0]

'iZdi(x� xi, y � yi) (2.14)

where 'i is the background probability defined in Eq. (2.10).

The estimates of � and µ above are called the “variable weighted kernel estimates”

(Zhuang et al., 2002).
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2.3.4.2 Iteration algorithm

The iterative algorithm proposed by Zhuang (2011) to jointly estimate the model pa-

rameters and the background seismicity rate in the ETAS model is written as Algorithm 1

below.

Algorithm 1
1: Initialization with given np and ✏, where ✏ is a small positive number.
2: Calculate the bandwidth hi of the earthquake characterized by the data vector

(ti, xi, yi,mi) in the catalog, for each i 2 {1, . . . , N}.
3: Set ` 0 and u

(0)(x, y) 1.
4: Using the maximum likelihood procedure (Ogata, 1998), fit the ETAS model with

conditional intensity function

�✓(t, x, y | Ht) = ⌫u
(`)(x, y) +

X

i:ti<t

k(mi)g(t� ti)f(x� xi, y � yi | mi)

to the earthquake data catalog, where k, g, and f are defined in Eqs. (2.6)–(2.8). The
model parameters are ✓ = (⌫, A,↵, c, p, q,D, �), where parameter ⌫ is aimed to accel-
erate the convergence of the algorithm.

5: Use Eq. (2.10) to calculate 'i for each i 2 {1, . . . , N}.
6: Calculate µ̂(x, y) from Eq. (2.14) and record as u(`+1)(x, y).
7: If max |u(`+1)(x, y)�u

(`)(x, y)| > ✏, then set ` `+1 and go to Step 4. Otherwise, save
⌫u

(`+1)(x, y) as the estimate of µ and stop.

Small values of np and ✏ can help Algorithm 1 to converge (Zhuang, 2011), and in this

study, the values of np and ✏ are set to be 5 and 1⇥ 10�6, respectively.

2.4 Earthquake data catalog

After carefully comparing existing catalogs of Canadian earthquake data, the National

Earthquake Database (NEDB) was found to be the most complete, especially for earth-

quakes with small magnitudes (unit: moment magnitude). The NEDB collates informa-

tion from the Canadian National Seismograph Network (CNSN), the Yellowknife Seis-

mological Array (YKA), previous regional telemetered networks in eastern and western

Canada (ECTN, WCTN), local telemetered networks (CLTN, SLTN), the Regional Ana-
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logue Network, and the former Standard Seismograph Network (CSN). The earthquake

data used for analysis in this study were downloaded from NEDB via the Earthquakes

Search (On-line Bulletin) at http://earthquakescanada.nrcan.gc.ca/stndon/

NEDB-BNDS/bulletin-en.php.

In this study, the region of interest is a space frame with longitude ranging from

126.75�W to 130.5�W and latitude ranging from 48.25�N to 49.75�N. This region is one of

the most earthquake-prone areas in Canada, near Vancouver Island (British Columbia).

Figure 2.1 is a geographic map of the region from Google Earth. One can see that most of

this region lies in the sea.

The earthquake data catalog comes from NEDB with the space-time window cover-

ing longitude from 126.25�W to 131�W and latitude from 48�N to 50�N spatially and the

period from 2000-01-01 00:00:00 to 2019-12-31 23:59:59 (UTC) temporally. Note that the

depth of earthquakes of interest is from �5 km to 1000 km. In this study, the magni-

tude threshold is set to 3.5, and the study space-time window is constructed by the space

frame: latitude from 48.25�N to 49.75�N and longitude from 126.75�W to 130.5�W, and the

time period from 2008/04/27 00:00:00 to 2018/04/27 00:00:00, in which the assumptions

of the ETAS model are satisfied.

The application of the ETAS model in this study presupposes that the earthquake data

catalog is complete (Zhuang, 2011). It is also assumed that the stochastic process under-

lying the events is stationary, or at the least there is no evidence to the contrary. As stated,

e.g., by Jalilian (2019), the incompleteness of the catalog and the departure from stationar-

ity in time could cause issues in the statistical analysis, leading to unreliable results based

on the fitted model. The assessment of these assumptions is reported on in the following

subsections.

2.4.1 Completeness of the earthquake data catalog

Jalilian (2019) stated that when the earthquake data catalog is complete, the plot of

log10(Nmag) versus magnitude mag should exhibit a linear relationship, where Nmag is the

http://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bulletin-en.php
http://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bulletin-en.php
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Figure 2.1: A geographic map of the region of interest in this study.

total number of earthquakes with magnitude mag or larger, and the minimum magnitude

that makes this linear relationship hold can be used as magnitude threshold in the model

fitting.

The plots in Figure 2.2 (a)–(d) are constructed from the subsets of earthquakes with

a magnitude larger than or equal to 0, 2.5, 3.5, and 4, respectively. The expected linear

pattern can be observed if mag � 2.5. This suggests that the subset of earthquakes is

likely to be complete when the magnitude threshold is set to 2.5 or any larger value.

Typically, the smaller the magnitude of an earthquake, the smaller the damage caused by

it. Accordingly, more attention is paid to large earthquakes. Furthermore, Algorithm 1 is

time consuming and takes longer to converge when a lower magnitude threshold is used.

Thus, the magnitude threshold is set to be 3.5 in this study.
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(a) (b)

(c) (d)

Figure 2.2: Plots of log10(Nmag) versus mag (magnitude) by increments of 0.1 from 0, 2.5,

3.5, and 4 in panels (a), (b), (c), and (d), respectively.

2.4.2 Stationarity in time

If the stochastic process underlying the events is stationary, the number of earthquakes

that occurred in a given time span should only be proportional to the length of this time

span. Jalilian (2019) proposed to plot the number of earthquakes in the catalog before time

t versus time t in order to assess the stationarity in time. By convention, t = 0 corresponds

to the start time in the catalog, i.e., 2000-01-01 00:00:00 here. When the assumption of

stationarity in time holds, a linear relationship should be observed, and the beginning of

the linear pattern can be used as the start of the study time interval. Note that the plot is

based on the subset of earthquakes with a magnitude of 3.5 or larger, after the magnitude

threshold has been determined and set to 3.5.

The resulting plot is shown in Figure 2.3, from which an approximate linear relation-

ship between Nt and t (time) is observed over the time span defined by the two red dashed
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Figure 2.3: Plot of the number of earthquakes in the catalog before time t versus time

t. The x-axis represents the lag (day) from the start time of the earthquake catalog,

2000/01/01 00:00:00. The left red dashed vertical line marks the 2008/04/27 00:00:00, and

the right red dashed vertical line marks the end of the study period 2018/04/27 00:00:00.

vertical lines. Thus, the assumption of stationarity in time seems to be satisfied over the

proposed study time interval. There is a jump in the number Nt of earthquakes just before

the left red dashed vertical line, due to an earthquake with magnitude 5.1 that occurred

on 2008/4/27 at 21:17:59.

2.4.3 Summary

The original earthquake data catalog was downloaded from the NEDB website. It

covers the time interval from 2000-01-01 00:00:00 to 2019-12-31 23:59:59 (UTC) and the

space frame from 48�N to 50�N in latitude and from 126.25�W to 131�W in longitude,

with hypocenter depth from �5 km to 1000 km. The study space-time window combines

the time period from 2008/04/27 00:00:00 to 2018/04/27 00:00:00 with the space frame:

latitude from 48.25�N to 49.75�N; longitude from 126.75�W to 130.5�W. The magnitude

threshold is set to 3.5. The resulting earthquake data catalog appears to be reasonably

complete, and the stochastic process underlying the events seems stationary in the study

time interval. The number of events in the study space-time window with a magnitude of
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Figure 2.4: Map of the earthquakes used in the ETAS model fitting. The red frame delin-

eates the study space window. The blue circles represent the target events while the grey

circles represent the complementary events. The size of each circle is proportional to the

magnitude of the corresponding earthquake.

3.5 and above is 768, including 335 target events and 433 complementary events. The ge-

ographical location of the epicenters of earthquakes with a magnitude equal to or greater

than 3.5 in the catalog is shown in Figure 2.4.

2.5 The ETAS model fitting procedure

In this section, the ETAS model is fitted to the earthquake data catalog described in

Section 2.4. Besides the magnitude threshold and the study space-time window, an initial

value for ✓ = (⌫, A,↵, c, p, q,D, �) needs to be selected carefully to start the iterative Algo-

rithm 1. Ogata (1998) and Jalilian (2019) suggested that initially, ⌫ = N/(4T |S|), A = 0.01,

c = 0.01, ↵ = 1, p = 1.3, D = 0.01, q = 2 and � = 1, where N is the number of events

in the catalog, T is the length of the study time interval, and |S| represents the projected
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area (deg2) of the study space window. The initial value of ⌫ is calculated as 0.0142464 in

this study.

It is worth emphasizing that the initial value of ✓ suggested by Ogata (1998) and Jalil-

ian (2019) is a rough estimation and does not ensure that Algorithm 1 will converge.

Alternatively, the ETAS model can be fitted with a higher magnitude threshold first and

then, the parameter estimates thus obtained can be used as the initial values to fit the

ETAS model with a lower magnitude threshold.

The ETAS model parameter estimates and their corresponding asymptotic standard

errors derived from the Hessian matrix are reported in Table 2.1. Clearly, the asymptotic

standard errors for parameters c, D, and � are much larger than their respective estimates.

In particular, the asymptotic standard error for parameter D is about 45 times larger than

the estimate. If this large-sample approximation and the resulting estimate are deemed

reliable, the parameters c, D, and � in this ETAS model should be considered as 0 at the

↵ = 5% significance level.

Rathbun (1996) proved that the maximum likelihood estimators of parameters for

spatio-temporal self-exciting point processes are consistent and asymptotically follow a

normal distribution if the length of the time span T tends to infinity. However, for a lo-

cal data set, the value of T is usually small. Wang et al. (2010) observed that when the

space-time window of the earthquake data catalog is small, there may be a bias in the

asymptotic standard errors of the ETAS model parameter estimates.

Here, the length of the study time interval is ten years (3652 days), which is relatively

short in earthquake studies. Therefore, the finite-sample properties of the ETAS model’s

Table 2.1: Estimates and corresponding asymptotic standard errors (SE) of the ETAS

model parameters, obtained with the classical fitting procedure for the earthquake data

catalog used as an example.

� ⌫ A c ↵ p D q �

Estimate 2.8632 0.6588 0.2424 0.0068 0.9771 1.2200 0.0033 2.4778 0.1718
SE 0.0245 0.0191 0.0408 0.1324 0.0341 0.0123 0.1510 0.0560 0.2713
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parameter estimators and the accuracy of these asymptotic standard errors are studied

by bootstrap simulation in the next section. We focus on the parameters in ✓ instead of

parameter � because the ETAS model has a closed-form solution for the estimation of

parameter �, as shown in Eq. (2.11).

2.6 A bootstrap procedure to build confidence intervals for

the ETAS model parameters

Efron (1979) proposed the bootstrap as a computer-intensive method for approximat-

ing the sampling distribution of any statistic derived from a random sample. There exist

parametric, nonparametric, and semiparametric versions of the bootstrap. The paramet-

ric bootstrap assumes that the probability distribution generating the data is known, but

the probability distribution parameters are unknown. The parameters can be estimated

from the data, e.g., by maximum likelihood. Then, each parameter in the probability dis-

tribution is replaced with the corresponding estimate, and the estimated distribution is

used to simulate new data.

The parameter estimates obtained by fitting the ETAS model to the earthquake data

catalog of interest were reported in Section 2.5. To study the finite-sample properties

of the estimators of the ETAS model parameters and further assess the reliability of their

asymptotic standard errors, the fitted ETAS model is used to generate 1000 simulated data

sets. Then, an ETAS model is fitted to each simulated data set, and 1000 sets of parameter

estimates and their corresponding asymptotic standard errors are thus recorded. An ap-

proximation of the finite-sample distribution of each parameter estimator is provided by

the corresponding estimates from the 1000 simulated data sets, and the normality of the

distribution can be assessed with the Shapiro–Wilk test.

The bootstrap procedure simulating earthquake data under the ETAS model is intro-

duced in Subsection 2.6.1, and the bootstrap simulations are discussed in Subsection 2.6.2.
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2.6.1 Bootstrap simulation procedure

Algorithm 2 is proposed to simulate earthquake data under the ETAS model, using es-

timated intensity functions in a given space-time window. It is adapted from Algorithm C

of Zhuang et al. (2004), who took advantage of the availability of a real data set to which

the ETAS model is fitted to make the simulated data sets more realistic.

In Algorithm 2, the magnitude of simulated events is generated from ŝ� . However, the

support of the Exponential distribution is [0,1), and the lack of an upper bound in the

magnitude of simulated events can cause the resulting simulation to be unstable (Wang

et al., 2010). If one simulated event has a very large magnitude, it will tend to trigger

a multitude of aftershocks, which will cause the size of the simulated earthquake data

catalog to be unrealistically large. Kagan and Schoenberg (2001) introduced the tapered

Exponential distribution to avoid such an issue. Alternatively, Zhuang et al. (2004) sug-

gested that the magnitude of simulated earthquakes can be resampled from the collection

of the magnitudes of the target events in the real earthquake data catalog, and their idea

is applied in this study.

Algorithm 2
1: Fit the ETAS model to the studied earthquake data catalog {(ti, xi, yi,mi), i =

1, . . . , N}.
2: Generate the background catalog with the estimated background seismicity rate

µ̂(x, y), recorded as generation 0, namely, E0.
3: Set ` = 0.
4: For each event j represented by (t`j, x`j, y`j,m`j) in the catalog E` =

{(t`i, x`i, y`i,m`i), i = 1, . . . , N`}, generate N
(`)
j offspring E

(j)
`+1 = {(t(j)k , x

(j)
k , y

(j)
k ,m

(j)
k ),

k = 1, . . . , N (`)
j }, where N

(`)
j is a random number from the Poisson distribution with

expected value k̂(m`j) with function k defined by Eq. (2.6), and t
(j)
k , (x(j)

k , y
(j)
k ), and

m
(j)
k are simulated from the estimated functions ĝ(t� t`j), f̂(x� x`j, y� y`j | m`j), and

ŝ�(m), respectively, where g, f , and s� are defined by Eq. (2.7), Eq. (2.8) and Eq. (2.2),
respectively.

5: Set E`+1 = [j2E`
E

(j)
`+1.

6: If E`+1 is not empty, set ` = `+ 1 and go to Step 4, otherwise return E0 [ · · · [ E`.
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At Step 2 of Algorithm 2, background events are simulated from the estimate µ̂(x, y),

which is semiparametric. Zhuang et al. (2004) stated that simulating background events

directly from the estimate µ̂(x, y) is difficult. In contrast, background events can be sim-

ulated from the real earthquake data catalog by applying the stochastic declustering

method introduced in Subsection 2.3.3. As stated by Zhuang et al. (2004), using this

declustering method to simulate background events can minimize the differences be-

tween the real earthquake data catalog and the simulated data set, even if the observed

catalog is not stationary in time. To ensure that the spatial occurrence rate for the simu-

lated background process is the same as µ̂(x, y) in Eq. (2.14), a Gaussian deviation with

zero mean and standard deviation dj is added to the location (longitude and latitude of

the epicenter) of each simulated background event j (Zhuang et al., 2004). The quantity

dj appears in Eq. (2.13) and is computed when the ETAS model is fitted. Moreover, the

ETAS model assumes that the location of the background events is independent of the

time of occurrence. To ensure that the assumption holds, the locations of the simulated

background events are randomly reordered while keeping the order of the corresponding

times.

Edge effects must be considered with great care whenever the simulation is made over

a finite space-time window. When the study space-time window has been identified,

the simulation needs to be made over a wider space-time region. Failure to take into

account large earthquakes that occurred before the starting time of the study time interval

or outside the study space window may cause the size of the simulated data catalog to be

smaller than it should.

Zhuang et al. (2004) classified earthquakes outside the study space-time window as

boundary events. Thereafter, the simulation was applied over the study space-time win-

dow by recording the union of boundary events and the simulated background events as

generation 0, i.e., E0 in Algorithm 2. After a new generation of earthquakes is simulated,

only events inside the study space-time window are kept and used to simulate the next
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generation. The aim of removing the simulated earthquakes outside the study space-time

window is to avoid counting the edge effects twice (Zhuang et al., 2004).

The aforementioned method introduced by Zhuang is only suitable in the parametric

version of the bootstrap but not in Monte Carlo simulation applied in Section 2.7. This

is because the boundary earthquake data catalog contains triggered events, which can be

treated as being simulated from the estimated intensity function, and the bootstrap uses

exactly the estimated intensity function to simulate earthquake catalogs. However, in

Monte Carlo simulation, earthquake events are simulated under the control of an inten-

sity function with parameter values set by the user. In such a case, the triggered events

in the boundary earthquake data catalog should no longer be treated as events generated

from the intensity function of interest. For this reason, doing simulations over a wider

space-time window (space frame: 48�N–50�N, 126.25�W–131�W; time span: 2000-01-01

00:00:00 to 2018/04/27 00:00:00 (UTC)) is preferred in this study.

2.6.2 Analysis based on the parametric bootstrap simulation

In this subsection, Algorithm 2 is applied 1000 times to generate 1000 simulated data

sets, and the 1000 sets of parameter estimates obtained with the simulated data sets are

denoted by {�̂i, ⌫̂i, Âi, ĉi, ↵̂i, p̂i, D̂i, q̂i, �̂i : i = 1, . . . , 1000}.

As per Eq. (2.1), the ETAS model pertains to the time and location of earthquakes

and assumes that the probability density function of the magnitude of earthquakes does

not change in space or time. Thus, in this study, more attention is paid to parameters in

Eq. (2.3). As shown in Eq. (2.4), the product of parameters ⌫ and u(x, y) can be considered

as a function µ(x, y), which is the background seismicity rate. Thus, the parameters of

interest in this study are A, c, ↵, p, D, q, �, whose estimates, for simulated data set i 2

{1, . . . , 1000}, are denoted by Âi, ĉi, ↵̂i, p̂i, D̂i, q̂i, �̂i, and their corresponding asymptotic

standard errors are denoted by �̂Ai , �̂ci , �̂↵i , �̂pi , �̂Di , �̂qi , �̂�i .

To study the finite-sample distribution of the estimators of ETAS model parameters,

boxplots were drawn from the parameter estimates obtained with the 1000 simulated
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Figure 2.5: Boxplots derived from 1000 estimates (including the three extremely large

outliers) obtained for seven of the ETAS model parameters by bootstrap simulation. In

each boxplot, the red line represents the putative value of the corresponding parameter,

the blue line marks the mean of the 1000 estimates, and the two green lines are the 2.5%

and 97.5% empirical quantiles of the distribution of of the estimates, respectively.

data sets (Figure 2.5). Clearly, there are several extremely large values in the boxplots of

estimates for parameters c, p, D, and q. These outliers do not affect the precision of the

bootstrap confidence intervals because the latter are constructed from the 2.5% and 97.5%
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Table 2.2: Three data sets with extremely large outliers obtained in bootstrap simulation.

Data set A c ↵ p D q �

573 0.130 9031.001 0.358 425.812 7.232⇥ 10�14 0.003106281 0.1603218
672 0.218 0.009 0.889 1.179 16076.52 4465327 0.288
823 0.212 0.006 1.063 1.228 4605246.56 1821736871 0.380

empirical quantiles. Nevertheless, these outliers make it difficult to assess the perfor-

mance of the parameter estimation. It would be informative to identify the characteristics

of the simulated data sets that lead to outliers. To this end, the parameter values of three

problematic simulated data sets are reported in Table 2.2.

Among the seven parameters, more attention needs to be paid to parameters p and

q in Eq. (2.7) and Eq. (2.8). It is straightforward to check that the function g is close to

0 when parameter p is very large. It means that the probability density function of the

time of occurrence of triggered earthquakes nearly vanishes and the earthquakes are not

clustered in time. Similarly, the function f takes tiny values when the parameter q is very

large. This means that the probability density function of the geographical location of the

epicenter of triggered earthquakes is approximately 0. Thus, simulated earthquakes are

not clustered in space.

By comparing Figure 2.6 (simulated data set 573), Figure 2.7 (simulated data set 672),

and Figure 2.8 (simulated data set 823) with Figure 2.9 (the real earthquake data catalog),

one can see clearly that the earthquakes from these three simulated data sets are not clus-

tered, whereas there are clusters of linearly aligned events in both plots at the same time

for the real earthquake data catalog. This characteristic is consistent with the above dis-

cussion of the effects of large p and q, and can be used to remove extremely large outliers.
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Figure 2.6: Space-time plots of the latitudes (left) and longitudes (right) against the times

of occurrence of earthquakes in the simulated data set 573.

Figure 2.7: Space-time plots of the latitudes (left) and longitudes (right) against the times

of occurrence of earthquakes in the simulated data set 672.

Figure 2.8: Space-time plots of the latitudes (left) and longitudes (right) against the times

of occurrence of earthquakes in the simulated data set 823.
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Figure 2.9: Space-time plots of the latitudes (left) and longitudes (right) against the times

of occurrence of earthquakes in the real earthquake data catalog.

From Figure 2.10, it appears that the finite-sample distributions of the estimators of

ETAS model parameters c, p, D, q, and � are very skewed. Beyond these graphical obser-

vations, the Shapiro–Wilk test of normality indicates that the finite-sample distribution

of these parameter estimators is not Gaussian at any reasonable level of significance; see

Table 2.3. It follows that the study time interval, from 2008/04/27 to 2018/04/27 (3652

days), is not large enough for asymptotic theory to kick in, if at all.

Besides the 1000 estimates, the corresponding 1000 asymptotic standard errors were

also recorded when the ETAS model was fitted to the simulated data sets. In Figure 2.11,

the scale of the y-axis is as expected in the boxplots of asymptotic standard errors for

parameters A, c, ↵, p, D, and q, whereas the scale of the y-axis of the boxplot for � is ex-

tremely large, due to an extremely large outlier. The standard deviation of these asymp-

totic standard errors is also extremely large, of the order of 9.8⇥1011 (Table 2.4). To explain

this, the number of asymptotic standard errors greater than 10 was counted; there are 222

such asymptotic standard errors in total. This suggests that the variation of the asymp-

Table 2.3: Observed statistic values and probabilities of significance of the Shapiro–Wilk

test

A c ↵ p D q �

W 0.99494 0.90379 0.99251 0.97337 0.54577 0.5893 0.91249
p-value 0.002021 < 2.2⇥ 10�16 6.031⇥ 10�5 1.416⇥ 10�12

< 2.2⇥ 10�16
< 2.2⇥ 10�16

< 2.2⇥ 10�16
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Figure 2.10: Boxplots derived from 1000 estimates (excluding the three extremely large

outliers) obtained for seven of the ETAS model parameters by bootstrap simulation. In

each boxplot, the red line represents the putative value of the corresponding parameter,

the blue line marks the mean of the 1000 estimates, and the two green lines are the 2.5%

and 97.5% empirical quantiles of the distribution of of the estimates, respectively.

totic standard error of parameter � is large and supports that the asymptotic standard

error for it is not reliable.
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Figure 2.11: Boxplots of asymptotic standard errors of the estimates for each parameter

from the 1000 simulated data sets.

Table 2.4: The standard deviation (std) of the asymptotic standard errors calculated for

the 1000 simulated data sets.

A c ↵ p D q �

Std 0.0046 0.0130 0.0094 0.0025 0.0493 0.0477 981028508310
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Combining the lack of normality of the finite-sample distribution and the large varia-

tion in the asymptotic standard errors of the estimates of parameter �, it has been shown

that the asymptotic standard errors associated with the parameter estimates of a fitted

ETAS model are not reliable. It follows that the asymptotic confidence interval for each

parameter is also unreliable.

The standard error of a parameter estimate in the ETAS model can be approximated by

the sample deviation of the 1000 parameter estimates from the simulated data sets, which

is called the bootstrap standard error. Moreover, instead of the asymptotic confidence

interval, the 2.5% and 97.5% empirical quantiles of the distribution of estimates from the

1000 simulated data sets lead to the 95% bootstrap confidence interval. Both bootstrap

standard errors and bootstrap confidence intervals are reported in Table 2.5.

The estimate (obtained by fitting the ETAS model to the real earthquake data catalog)

of each of the seven parameters is located in the corresponding 95% bootstrap confidence

interval which does not contain 0. This means that the estimate of each of these param-

eters is different from 0 at the 5% significance level. It is also clear from Figure 2.10 that

the red line is between the two green lines in each boxplot.

Table 2.5: The estimate, the asymptotic standard error (SE), the bootstrap standard error

(bootstrap SE), and the 95% bootstrap confidence interval for seven parameters of the

ETAS model.

A c ↵ p D q �

Estimate 0.2424 0.0068 0.9771 1.2200 0.0033 2.4778 0.1718
SE 0.0408 0.1324 0.0341 0.0123 0.1510 0.0560 0.2713
Bootstrap SE 0.0368 0.0046 0.1324 0.0684 0.0044 1.2571 0.1678
2.5% 0.1543 0.0036 0.7098 1.1749 0.0014 1.9026 1.18⇥ 10�22

97.5% 0.2996 0.0210 1.2337 1.4505 0.0141 6.0613 0.5543
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2.7 A Monte Carlo simulation study

To further scrutinize the performance of the estimation procedure and confidence in-

tervals built with the bootstrap procedure proposed in Section 2.6, a Monte Carlo simula-

tion study is undertaken in this section.

2.7.1 Methodology

A major difference between the parametric version of the bootstrap introduced in Sec-

tion 2.6 and a Monte Carlo simulation is the setting of the parameter values in the func-

tions k, g, and f in Step 4 of Algorithm 2. For a bootstrap simulation, the parameters in k,

g, and f are replaced by the corresponding estimates obtained with the real earthquake

data catalog. For a Monte Carlo simulation, the target values of the parameters in k, g,

and f are set by the user. Note that the same earthquake data catalog is of interest in both

studies in Section 2.6 and Section 2.7, and the study space-time windows and magnitude

thresholds are also the same.

For the Monte Carlo study presented in this section, the target values of parameters

used to simulate earthquake data are in the same range as the parameter estimates ob-

tained with the actual data. When the ETAS model is fitted to the real earthquake data

catalog, the asymptotic standard errors of the estimates of parameters c, D, and � are

particularly large. Therefore, more attention is paid to these three parameters, and three

different target values are chosen for each of them: 0.001, 0.005, and 0.01 for c; 0.001, 0.005,

and 0.01 for D; and 0.1, 0.15, and 0.2 for �.

The target values of the other parameters are set to be approximately equal to the

corresponding estimates obtained with the real earthquake data catalog, for which A =

0.25, ↵ = 1, p = 1.25, and q = 2.5. In total, 27 combinations of simulation parameter values

are considered. For each combination, Algorithm 2 is applied 1000 times to generate

1000 simulated earthquake data catalogs, and the ETAS model is fitted to each simulated
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earthquake data catalog. The parameter estimates and their asymptotic standard errors

are recorded.

2.7.2 Results

For the 27 combinations of target values of the model parameters, the following sim-

ulation results are reported in Tables A.1–A.27:

a) the 2.5%, 25%, 50%, 75%, and 97.5% empirical quantiles of the distributions of pa-

rameter estimates, the mean values (Mean), and the standard deviations (Std);

b) the observed values of statistic W of the Shapiro–Wilk test of normality and corre-

sponding p-values;

c) the means of asymptotic standard errors of parameter estimates (Mean of �̂), the

standard deviations of asymptotic standard errors of the parameter estimates (Std

of �̂), and the number of asymptotic standard errors of estimates of � that are greater

than 10 (Number of �̂� > 10) .

The goal of performing the Shapiro–Wilk test is to assess the normality of the finite-

sample distribution of each parameter estimator applied with Monte Carlo simulations.

The corresponding p-values for parameters c, p, D, q, and � are very small in all the 27

cases, which indicates that at any proper significance level, the finite-sample distributions

of the estimators of parameters c, p, D, q, and � in the ETAS model are not Gaussian and,

as a result, that the corresponding asymptotic standard errors are not reliable. Moreover,

in each case, the standard deviation of the asymptotic standard errors of the estimates of

parameter � is extremely large, and more than 100 asymptotic standard errors are greater

than 10. The large variation in the asymptotic standard errors of the estimates of param-

eter � indicates that the asymptotic standard error for it is not reliable. Eventually, the

asymptotic confidence interval for � also is unreliable.

Alternatively, the 95% confidence intervals deduced from the 2.5% and 97.5% quan-

tiles or from the standard errors estimated by the standard deviations of the estimates
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can be calculated and reported. Clearly, 95% confidence intervals based on the empiri-

cal 2.5% and 97.5% quantiles vary with the changing target values of parameters c, D,

or � and precisely capture the corresponding target values with no exception. Because

the target values are known in each case, these results indicate that the performance of

confidence intervals based on quantiles is reliable.

Furthermore, in the first nine cases, the target values of parameters are located be-

tween the empirical 25% and 75% quantiles, and are close to the 50% quantiles (medians).

It implies that when the target value of parameter c is as small as 0.001, the estimation

of each of the seven parameters of interest is precise. From Case 10 to Case 27, the target

values of parameter p are close to, but smaller than, the corresponding 25% quantiles.

This result suggests that parameter p is slightly overestimated when the target value of

parameter c equals 0.005 or 0.01. Overall, the performance of the estimation procedure

for the parameters of the spatio-temporal ETAS model and confidence intervals built with

the proposed bootstrap procedure is reliable.

2.8 Forecasting

After verifying the performance of the estimation procedure in Section 2.7, this sec-

tion aims to show how the ETAS model can be applied to make short-term forecasts of

the occurrence time of aftershocks and the location of their epicenter. The forecasting

is based on a simulation procedure introduced in Subsection 2.8.1, and the results of a

retrospective forecasting experiment are presented in Subsection 2.8.2.

2.8.1 Simulation-based forecasting procedure

Without loss of generality, the start time of the earthquake data catalog of interest

is assumed to be 0 below. For a given magnitude threshold, the data in the catalog

for the n earthquakes that occurred in the space-time window [0, t) ⇥ S are denoted as

{(ti, xi, yi,mi), i = 1, . . . , N}. Zhuang (2011) proposed an algorithm to simulate earth-
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Algorithm 3
1: Fit the ETAS model to the earthquake data catalog {(ti, xi, yi,mi), i = 1, . . . , N}.
2: Simulate the background events in the space-time window [t, t + �t) ⇥ S with the

estimated background intensity µ̂(x, y), and record the union of these new simu-
lated events and the events represented by {(ti, xi, yi,mi), i = 1, . . . , N} as E0 =
{(t0i, x0i, y0i,m0i), i = 1, . . . , N0}, where N0 is the number of events in the union.

3: Set ` = 0.
4: For each event j represented by (t`j, x`j, y`j,m`j) in the earthquake data cata-

log E` = {(t`i, x`i, y`i,m`i), i = 1, . . . , N`}, generate its N
(`)
j offspring E

(j)
`+1 =

{(t(j)k , x
(j)
k , y

(j)
k ,m

(j)
k ), k = 1, . . . , N (`)

j }, where N
(`)
j is a random number from a Pois-

son distribution with expected value k̂(m`j), where k is defined in Eq. (2.6), and
t
(j)
k , (x(j)

k , y
(j)
k ), and m

(j)
k are simulated from the estimated functions ĝ(t � t`j), f̂(x �

x`j, y � y`j|m`j), and ŝ�(m), where g, f , and s� are defined through Eq. (2.7), Eq. (2.8)
and Eq. (2.2), respectively. Let E

0(j)
`+1 = {(tk, xk, yk,mk), tk 2 [t, t + �t), (xk, yk) 2

S and (tk, xk, yk,mk) 2 E
(j)
`+1}.

5: Set E`+1 = [j2E`
E

0(j)
`+1.

6: If E`+1 is not empty, set ` = `+ 1 and go to Step 4; otherwise return E0 [ · · · [ E`.

quakes in the space-time window [t, t + �t) ⇥ S, based on the information about the

earthquakes in the space-time window [0, t)⇥ S. Algorithm 3 here is adapted from Algo-

rithm B of Zhuang (2011) and is applied in this study to simulate future earthquakes.

Step 2 of Algorithm 3 can be simplified, and the method is similar to that introduced in

Subsection 2.6.1. First, the stochastic declustering method introduced in Subsection 2.3.3

is applied to identify the background events in the observed earthquake data catalog. For

each background event i thus obtained, Ui is a random variable uniformly distributed in

[0, 1] and event i is kept if Ui < �t/t; otherwise, event i is removed. For each remaining

background event, the time of occurrence is replaced by a new time, which is uniformly

distributed in the interval [t, t + �t), and the location is updated by adding a Gaussian

deviation with zero mean and standard deviation di, which is the corresponding spatial

bandwidth of the event. Remember that the application of the ETAS model assumes that

the occurrence of earthquakes is stationary in time. That is why the value of �t/t above

is used as a criterion to thin the obtained background events.
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A bias may be introduced in the estimation of the ETAS model parameters if the edge

effects are ignored. One way to reduce edge effects is to simulate earthquakes on a space

frame broader than S. The simulated events in S are then separated and studied after

applying Algorithm 3. This idea is implemented in this study.

To forecast earthquakes and predict their occurrence time and location (epicenter) in

the space-time window [t, t+�t)⇥ S, Algorithm 3 is repeatedly applied 1000 times, and

1000 simulated earthquake data catalogs are recorded. The formula for the estimated

number of events in the space-time window [t, t+�t)⇥ S is given by Zhuang (2011) as

Ê{N([t, t+�t)⇥ S)|observations before t}

=
total number of events in [t, t+�t)⇥ S in all the simulated catalogs

number of runs of Algorithm 3
.

As for the estimation of the total spatial intensity function ⇤ (Subsection 2.3.4.1), the vari-

able kernel method can be applied to estimate the intensity function of a point process,

of which the simulated earthquake data catalogs in [t, t+�t)⇥ S are partial realizations.

Specifically, the intensity function is estimated by applying the variable kernel method to

the union of earthquakes in all the 1000 simulated earthquake data catalogs, each with a

weight of 1/1000. The mapping of the resulting estimated intensity function is used to

predict the location (epicenter) of earthquakes in [t, t+�t)⇥ S.

2.8.2 A retrospective forecasting experiment

An earthquake data catalog was downloaded from the NEDB in the ranges of longi-

tude 126.25�W to 131�W, latitude 48�N to 50�N, time spanning from 2000/01/01 00:00:00

to 2018/11/21 00:00:00, magnitude mag � 3.5, and depth from �5 km to 1000 km. Con-

sidering the edge effects, Algorithm 3 was applied based on the space window above first,

and then, the simulated earthquakes in the study space window (longitude: 126.75�W–

130.5�W, latitude: 48.25�N–49.75�N) were separated and studied. A red rectangle depicts

the study space window in Figure 2.12.
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Figure 2.12: Map of earthquakes in the earthquake data catalog of interest. The blue

circles represent the events in the space-time window built by space window (longitude:

126.75�W–130.5�W, latitude: 48.25�N–49.75�N) and time interval ([2008/04/27 00:00:00,

2018/11/21 00:00:00]), while the grey circles indicate the complementary events in the

catalog. The size of each circle is proportional to the magnitude of the corresponding

earthquake.

The earthquake data catalog of interest contains three large earthquakes with mag-

nitudes above 6 on 2018/10/22. Specific spatio-temporal information about these three

earthquakes is reported in Table 2.6. The retrospective forecasting experiment was per-

formed to forecast earthquakes that occurred in the month following these large earth-

quakes.

Before fitting, two assumptions of the ETAS model, completeness and stationarity in

time, need to be assessed on the studied earthquake data catalog. In the left graph of

Table 2.6: Three earthquakes with magnitude above 6 on the same date.

Date Time Longitude Latitude Magnitude
2018/10/22 5:39:35 �129.8310 48.9272 6.1
2018/10/22 6:16:22 �129.8540 48.9767 6.5
2018/10/22 6:22:45 �129.8831 49.0510 6.5
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Fig. 2.13, the clear linear pattern after magnitude 3.5 means that the earthquake data

catalog of interest can be considered complete over that range of magnitudes. In the right

graph of Fig. 2.13, the relationship between Nt and time t is approximately linear over the

time interval between the two red dashed vertical lines. Thus, by setting the start of the

study time interval as 2008/04/27, for whatever posterior end of the study time interval,

the assumption of stationarity in time is satisfied.

Zhuang (2011) stated that forecasts are better when forecasting is performed shortly

after a main shock. Thus, �t in Algorithm 3 equals 0.5 (day) and the month of interest

is split into 62 half days. The first ETAS model fitted to the earthquakes that occurred

prior to 2018/10/21 00:00:00 is used to forecast the earthquakes in the time span from

2018/10/21 00:00:00 to 2018/10/21 12:00:00. After completion of the first half-day fore-

casting, the ETAS model is fitted to the earthquakes prior to 2018/10/21 12:00:00, and

the updated ETAS model is used to forecast earthquakes over the time interval spanning

from 2018/10/21 12:00:00 to 2018/10/22 00:00:00. This procedure is repeated until earth-

quakes are forecast one month after the earthquake with magnitude 6.1 on 2018/10/22

5:39:35. The parameter estimates of each fitted ETAS model are reported in Table B.1.

Figure 2.13: Left: Plot of log10(Nmag) versus mag (magnitude) by increments of 0.1 from

3.5. Right: Plot of Nt, the number of earthquakes (magnitude � 3.5) in the catalog before

time t (day), versus time t (day). The x-axis represents the lag (day) from the start time

of the studied earthquake data catalog, 2000/01/01 00:00:00. The left red dashed vertical

line indicates 2008/04/27 00:00:00, and the right red dashed vertical line, 2018/11/21

00:00:00, which is the last day in the earthquake data catalog.
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Figure 2.14: Plot against time (half-day) of the estimated half-day number of earthquakes

(circles in black) in the study space window (longitude: 126.75�W–130.5�W, latitude:

48.25�N–49.75�N) during the time window of interest 2018/10/21 00:00:00 to 2018/11/21

00:00:00. The hexagrams indicate observed numbers of earthquakes in the corresponding

half days. The lower and upper green dashed lines represent the 5% and 95% empirical

quantiles of the distribution of numbers of simulated earthquakes, respectively. Inte-

ger j 2 {1, . . . , 62} on the x-axis indicates that the forecast is for the jth half day after

2018/10/21 00:00:00.

From Figure 2.14, it is clear that the forecast can accurately estimate the number of

earthquakes in the one month after the three large earthquakes, excluding the time in-

tervals [2018/10/23 12:00:00, 2018/10/24 00:00:00), [2018/10/26 00:00:00, 2018/10/26

12:00:00), and [2018/11/01 00:00:00, 2018/11/01 12:00:00). The forecast undercount may

be due to some other spontaneously occurred earthquakes in these time intervals.

From Figure 2.15, it appears that the location of earthquakes after the three large earth-

quakes has been well forecast, especially over the time interval [2018/10/22 12:00:00,

2018/10/24 00:00:00).
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Figure 2.15: Examples of mapping the estimated intensity function (unit: events/(half-

day⇥deg2)) over the corresponding time intervals in the study space window to predict

the location (epicenter) of earthquakes. In some panels, green circles point to the locations

of earthquakes (mag � 3.5) observed. The three red circles in the left graph on the second

row indicate the three large earthquakes (mag � 6.0).

2.9 Discussion: Use of the bootstrap procedure for Monte

Carlo simulations

This section aims to further compare: (i) the asymptotic standard errors and boot-

strap standard errors of the estimators of the ETAS model parameters; (ii) the confidence

intervals built using the asymptotic standard errors and bootstrap confidence intervals

obtained from the 2.5% and 97.5% empirical quantiles. The real earthquake data cata-

log (Section 2.4) continues to be used, with all the related settings, including the study

space-time window and magnitude threshold.

Algorithm 2 is applied to generate 40 Monte Carlo simulations, using the ETAS model

parameter estimates reported in Table 2.1 as target values. Then, the ETAS model is fitted

to each of the 40 Monte Carlo simulations, and the new parameter estimates and cor-

responding asymptotic standard errors are recorded. For each Monte Carlo simulation,

1000 bootstrap simulations are made with Algorithm 2, using the parameter estimates

of the ETAS model fitted to the current Monte Carlo simulation as putative values. An

ETAS model is fitted to each bootstrap simulation, and 1000 estimates are thus recorded
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for each parameter. Eventually, one bootstrap standard error per parameter is obtained

for the current Monte Carlo simulation.

From the comparison of Tables C.1 and C.2, it appears that the asymptotic standard

error associated with the estimate of parameter � is extremely large for 9 of the 40 Monte

Carlo simulations, while all the bootstrap standard errors computed for parameter � are

several orders of magnitude smaller; in contrast, the bootstrap standard errors for pa-

rameters D and q are excessively large for a majority of the 40 Monte Carlo simulations.

Such atypical values for standard errors are due to the presence of outliers, as already

discussed in Sections 2.6 and 2.7. Fortunately for the bootstrap procedure (see below),

bootstrap confidence intervals can be obtained from empirical quantiles.

Under the assumption that the asymptotic distribution of the estimators of parameters

in the ETAS model is Gaussian, the lengths of 95% asymptotic confidence intervals for the

seven parameters studied are calculated and reported in Table C.3. As in Section 2.6, 95%

bootstrap confidence intervals are built from the 2.5% and 97.5% empirical quantiles of

the distributions of parameter estimates and the lengths (40 values and one mean per

parameter) are reported in Table C.4.

Table 2.7 provides a summary and the basis for a final discussion. From the compari-

son of Tables C.3 and C.4, it is clear that the bootstrap procedure has solved the problem

of unreliable asymptotic confidence intervals for �. In view of Tables C.4 and 2.7, there

is no apparent problem with the length of the 95% bootstrap confidence intervals for

D; only the 95% bootstrap confidence intervals for q are wider than the 95% asymptotic

confidence intervals, overall and on average, for this parameter. For the remaining four

Table 2.7: Ratios of the mean length of 95% asymptotic confidence intervals (Table C.3)

against the mean length of 95% bootstrap confidence intervals (Table C.4) for each of the

seven ETAS model parameters studied.

A c ↵ p D q �

Ratio 1.2599 20.6635 0.2396 0.1629 20.9693 0.0250 9358636018
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parameters, the length ratio is smaller for bootstrap with c, shows little difference with A,

and is smaller for asymptotic with ↵ and p (Table 2.7).

In closing, though limited, this last simulation study showed variability in the re-

sults of the bootstrap procedure, but its confirmed flexibility, through the use of empirical

quantiles to build confidence intervals for parameters, makes it an even more recom-

mendable procedure in future studies involving the fitting of ETAS models to earthquake

data catalogs, real or simulated.
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Conclusion

As mentioned in Chapter 2, self-exciting spatio-temporal point processes have been

well-developed and used to study the occurrence of earthquakes, the dynamic trend of

crime, the spread of infectious diseases, and so on. The object of this thesis is the 2-D

spatio-temporal ETAS model, which has been widely applied to decluster earthquake

data catalogs and, to a lesser degree, assess the risk of the occurrence of aftershocks.

In this thesis, an earthquake data catalog with records of earthquakes that occurred in

the time span from 2000-01-01 00:00:00 to 2019-12-31 23:59:59 (UTC), in the space window:

latitude from 48�N to 50�N, and longitude from 126.25�W to 131�W, and in depth from�5

km to 1000 km, was analyzed using the ETAS model. After fitting the ETAS model to the

earthquake data catalog, the asymptotic standard errors for parameters c, D, and � were

found to be much larger than the corresponding estimates. From a theoretical perspec-

tive, the maximum likelihood estimators of parameters for spatio-temporal self-exciting

point processes have been proved by Rathbun (1996) to be consistent and asymptotically

normally distributed as the length of the time span tends to infinity. However, the time

interval of the local earthquake data catalogs is usually short and limited.

Thus, a bootstrap procedure was proposed in this thesis to study the sampling behav-

ior of the estimators of the parameters in the ETAS model. Using this new procedure,

the hypothesis that the finite-sample distributions of the estimators of the parameters c,

47
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↵, p, D, q, and � are Gaussian was rejected at any reasonable significance level and, as

a result, the asymptotic standard errors are not reliable. In such a case, the proposed

procedure provides an alternative way to compute bootstrap confidence intervals and

bootstrap standard errors for the parameters in the ETAS model.

The performance of the proposed bootstrap confidence intervals and the estimation

procedures was shown to be good through a study based on Monte Carlo simulations.

Then, a retrospective forecasting experiment was carried out to show how the ETAS

model can be used to forecast short-term aftershocks using subsets of the real earthquake

data catalog, with bootstrap results in support. In the last part of the thesis, repetitions of

the bootstrap procedure with 1000 bootstrap simulations for 40 Monte Carlo simulations

were used to compare the asymptotic standard errors and the bootstrap standard errors,

as well as the asymptotic confidence intervals and the bootstrap confidence intervals ob-

tained from empirical quantiles.

As introduced in Section 2.3, the conditional intensity function of the 2-D spatio-

temporal ETAS model can be expressed as

��,✓(t, x, y,m | Ht) = s�(m)�✓(t, x, y | Ht),

where

�✓(t, x, y | Ht) = µ(x, y) +
X

i:ti<t

k(mi)g(t� ti)f(x� xi, y � yi | mi).

The formulas that are used for s� , k, g, and f in this thesis were proposed by Zhuang

(2011), and the function f is taken to be an inverse-power density. In fact, the ETAS model

may take various parametric forms to represent earthquakes with different features. In

contrast, Zhuang et al. (2002) used the light-tail Gaussian density for f , which is defined
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as

f(x, y | m) =
1

2⇡�(m)
exp

⇢
�x

2 + y
2

2�(m)

�
,

where �(m) = D exp{�(m�m0)}, in which m0 is the magnitude threshold. Adjusting the

procedures presented in this thesis to this case is straightforward.

With the development of the ETAS model, researchers have come to replace earth-

quake aftershocks with other events to develop self-exciting spatio-temporal point pro-

cess models in other fields. For example, Mohler (2014) developed a self-exciting point

process model to study homicides and gun crimes in Chicago. The bootstrap procedure

proposed in this thesis could be applied in such contexts to study the finite-sample prop-

erties of the parameter estimators and provide alternative confidence intervals.
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Appendix A

Table A.1: Case 1

A c ↵ p D q �

Target value 0.25 0.001 1 1.25 0.001 2.5 0.1

2.5% 0.1831 5⇥ 10�4 0.7748 1.192 5⇥ 10�4 1.995 2.59⇥ 10�23

25% 0.2205 9⇥ 10�4 0.9233 1.2447 8⇥ 10�4 2.3215 1.48⇥ 10�17

50% 0.2446 0.0011 0.9981 1.2744 0.001 2.5534 0.0953

75% 0.2661 0.0015 1.0744 1.3098 0.0014 2.9261 0.2048

97.5% 0.3052 0.0022 1.2373 1.3846 0.0028 4.4466 0.4167

Mean 0.2439 0.0012 0.9992 1.2792 0.0012 2.7146 0.1231

Std 0.0324 4⇥ 10�4 0.1166 0.0496 6⇥ 10�4 0.6596 0.1252

W 0.99774 0.95518 0.99698 0.98705 0.76236 0.77095 0.87841

p-value 0.1895 < 2.2⇥ 10�16 0.05506 9.958⇥ 10�8
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0334 0.0935 0.0286 0.01 0.1064 0.0449 32373556581

Std of �̂ 0.0029 0.0010 0.0062 0.0014 0.02110 0.0192 418803922058

Number of �̂� > 10 299
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Table A.2: Case 2

A c ↵ p D q �

Target value 0.25 0.001 1 1.25 0.001 2.5 0.15

2.5% 0.1824 6⇥ 10�4 0.7531 1.1919 5⇥ 10�4 1.9882 2.9485⇥ 10�23

25% 0.2258 9⇥ 10�4 0.9209 1.2446 8⇥ 10�4 2.2909 0.0193

50% 0.2466 0.0011 1.0003 1.2755 0.001 2.5549 0.1395

75% 0.2686 0.0014 1.0664 1.3086 0.0014 2.8784 0.2555

97.5% 0.3096 0.0024 1.216 1.3881 0.0029 4.3624 0.473

Mean 0.2466 0.0012 0.9937 1.279 0.0012 2.7115 0.1610

Std 0.0322 5⇥ 10�4 0.1160 0.0495 8⇥ 10�4 0.7709 0.1433

W 0.99909 0.92899 0.9938 0.98269 0.62945 0.63419 0.9172

p-value 0.9158 < 2.2⇥ 10�16 0.0003686 1.621⇥ 10�9
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0332 0.0933 0.0288 0.0099 0.1075 0.0456 47288022580

Std of �̂ 0.0028 0.0010 0.0066 0.0015 0.02650 0.0248 617296912336

Number of �̂� > 10 227

Table A.3: Case 3

A c ↵ p D q �

Target value 0.25 0.001 1 1.25 0.001 2.5 0.2

2.5% 0.1802 5⇥ 10�4 0.7538 1.1972 5⇥ 10�4 1.9967 2.1098⇥ 10�22

25% 0.2226 9⇥ 10�4 0.9186 1.2446 8⇥ 10�4 2.3109 0.0613

50% 0.2433 0.0011 0.9951 1.2755 0.001 2.5446 0.1944

75% 0.2663 0.0015 1.0654 1.3064 0.0014 2.9266 0.3088

97.5% 0.3074 0.0024 1.2318 1.3762 0.0032 4.4546 0.5714

Mean 0.2445 0.0012 0.9935 1.2782 0.0012 2.7267 0.2021656

Std 0.0325 5⇥ 10�4 0.1163 0.0482 9⇥ 10�4 0.8655 0.1588

W 0.9975 0.90772 0.99583 0.98164 0.565 0.53732 0.94384

p-value 0.1289 < 2.2⇥ 10�16 0.008366 6.577⇥ 10�10
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0334 0.0943 0.0289 0.01 0.1088 0.0464 18295566644

Std of �̂ 0.0029 0.0103 0.0064 0.0014 0.0290 0.0273 408386644591

Number of �̂� > 10 155
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Table A.4: Case 4

A c ↵ p D q �

Target value 0.25 0.001 1 1.25 0.005 2.5 0.1

2.5% 0.1843 6⇥ 10�4 0.7714 1.1989 0.0022 1.9496 1.0133⇥ 10�23

25% 0.2198 9⇥ 10�4 0.9226 1.2525 0.0039 2.2729 7.8021⇥ 10�18

50% 0.2415 0.0012 1.0012 1.2822 0.0051 2.5277 0.0827

75% 0.2638 0.0015 1.0741 1.3216 0.0069 2.9209 0.1965

97.5% 0.3078 0.0025 1.2023 1.4179 0.0136 4.3106 0.4489

Mean 0.242 0.0013 0.9971 1.2889 0.006 2.7145 0.1184

Std 0.0319 5⇥ 10�4 0.1115 0.0543 0.004 0.8602 0.132

W 0.99753 0.92191 0.99547 0.9776 0.61079 0.59105 0.84637

p-value 0.1368 < 2.2⇥ 10�16 0.00465 2.724⇥ 10�11
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0345 0.0963 0.0291 0.0112 0.1126 0.0487 105306470173

Std of �̂ 0.0030 0.0108 0.0064 0.0018 0.0373 0.0354 1.6705⇥ 1012

Number of �̂� > 10 155

Table A.5: Case 5

A c ↵ p D q �

Target value 0.25 0.001 1 1.25 0.005 2.5 0.15

2.5% 0.1787 5⇥ 10�4 0.7442 1.1968 0.0022 1.944 1.5862⇥ 10�22

25% 0.2188 9⇥ 10�4 0.9287 1.252 0.004 2.307 0.0183

50% 0.2404 0.0012 1.0065 1.284 0.0053 2.5753 0.1391

75% 0.2623 0.0015 1.0735 1.3186 0.0073 2.9537 0.259

97.5% 0.3087 0.0025 1.2135 1.4012 0.0148 4.5193 0.4662

Mean 0.2414 0.0013 0.9981 1.288 0.0062 2.7447 0.1589

Std 0.0331 5⇥ 10�4 0.1169 0.0528 0.0042 0.8433 0.1439

W 0.99501 0.9328 0.99092 0.98484 0.60393 0.61207 0.91191

p-value 0.002265 < 2.2⇥ 10�16 7.706⇥ 10�6 1.124⇥ 10�8
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0347 0.0965 0.0293 0.0112 0.1135 0.0492 177927615958

Std of �̂ 0.0030 0.0104 0.0071 0.0017 0.0251 0.0240 5.1689⇥ 1012

Number of �̂� > 10 223



APPENDIX A. 56

Table A.6: Case 6

A c ↵ p D q �

Target value 0.25 0.001 1 1.25 0.005 2.5 0.2

2.5% 0.1785 5⇥ 10�4 0.7525 1.1862 0.0024 1.9648 1.309⇥ 10�21

25% 0.2199 9⇥ 10�4 0.9155 1.2441 0.004 2.322 0.0696

50% 0.2433 0.0011 0.9869 1.2808 0.0053 2.5723 0.1925

75% 0.2673 0.0015 1.0669 1.3198 0.0074 2.9615 0.3165

97.5% 0.3151 0.0023 1.2014 1.4131 0.0154 4.4641 0.5364

Mean 0.2441 0.0012 0.9876 1.2857 0.0063 2.7539 0.2061

Std 0.0347 5⇥ 10�4 0.1136 0.059 0.004 0.8206 0.1584

W 0.99848 0.93536 0.9978 0.98129 0.70082 0.64553 0.94894

p-value 0.5428 < 2.2⇥ 10�16 0.2098 4.934⇥ 10�10
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0347 0.0973 0.0295 0.0112 0.1144 0.0495 15259318200

Std of �̂ 0.0031 0.0110 0.0063 0.0019 0.0255 0.0247 328275056037

Number of �̂� > 10 140

Table A.7: Case 7

A c ↵ p D q �

Target value 0.25 0.001 1 1.25 0.01 2.5 0.1

2.5% 0.1765 5⇥ 10�4 0.778 1.1877 0.0046 1.9605 3.888⇥ 10�23

25% 0.2195 9⇥ 10�4 0.9157 1.2478 0.0078 2.3179 9.41⇥ 10�18

50% 0.2413 0.0012 0.993 1.2867 0.0105 2.5821 0.0879

75% 0.2635 0.0015 1.0732 1.3287 0.0144 2.9665 0.2113

97.5% 0.3086 0.0025 1.2198 1.418 0.0308 4.6803 0.4219

Mean 0.2415 0.0012 0.9959 1.2918 0.0125 2.7715 0.1225

Std 0.0334 5⇥ 10�4 0.1144 0.0603 0.0086 0.8467 0.1305

W 0.99839 0.93256 0.99805 0.98527 0.65168 0.67378 0.86366

p-value 0.4838 < 2.2⇥ 10�16 0.306 1.696⇥ 10�8
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0353 0.0977 0.0294 0.0117 0.1182 0.0525 13605665162

Std of �̂ 0.0033 0.0110 0.0061 0.0020 0.0285 0.0268 155951812811

Number of �̂� > 10 312
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Table A.8: Case 8

A c ↵ p D q �

Target value 0.25 0.001 1 1.25 0.01 2.5 0.15

2.5% 0.1773 5⇥ 10�4 0.7628 1.1879 0.0046 1.9621 1.10675⇥ 10�22

25% 0.2211 9⇥ 10�4 0.9173 1.2498 0.008 2.3098 0.01983

50% 0.2411 0.0012 1.0034 1.2862 0.0109 2.6112 0.1426

75% 0.2643 0.0016 1.0746 1.3238 0.0151 3.034 0.2597

97.5% 0.3094 0.0024 1.2294 1.4189 0.0334 4.7263 0.4915

Mean 0.2424 0.0013 0.9968 1.2896 0.0129 2.7979 0.1641

Std 0.0336 5⇥ 10�4 0.1187 0.058 0.0084 0.8666 0.1495

W 0.99717 0.9578 0.99752 0.98814 0.71566 0.67839 0.91122

p-value 0.07565 < 2.2⇥ 10�16 0.1329 3.119⇥ 10�7
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0354 0.0982 0.0295 0.0117 0.1199 0.0535 21378356193

Std of �̂ 0.0033 0.0107 0.0066 0.0019 0.0278 0.0263 448346805622

Number of �̂� > 10 312

Table A.9: Case 9

A c ↵ p D q �

Target value 0.25 0.001 1 1.25 0.01 2.5 0.2

2.5% 0.1802 5⇥ 10�4 0.7531 1.19 0.0047 1.9306 2.3058⇥ 10�22

25% 0.2186 9⇥ 10�4 0.9123 1.2516 0.0077 2.2734 0.0794

50% 0.2414 0.0012 1.0019 1.2852 0.0104 2.5451 0.1919

75% 0.2657 0.0015 1.0788 1.3276 0.015 2.9953 0.3143

97.5% 0.3174 0.0026 1.2254 1.4266 0.0338 5.3555 0.5566

Mean 0.2435 0.0013 0.9952 1.2914 0.0126 2.7759 0.2074

Std 0.035 5⇥ 10�4 0.1210 0.0596 0.0084 0.925 0.1588

W 0.99523 0.92047 0.99742 0.97825 0.70733 0.65368 0.94875

p-value 0.003206 < 2.2⇥ 10�16 0.1142 4.438⇥ 10�11
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0352 0.0977 0.0295 0.0117 0.1202 0.0533 29068230383

Std of �̂ 0.0033 0.0104 0.0064 0.0019 0.0335 0.0322 6.4025⇥ 1011

Number of �̂� > 10 149
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Table A.10: Case 10

A c ↵ p D q �

Target value 0.25 0.005 1 1.25 0.001 2.5 0.1

2.5% 0.1781 0.0026 0.7612 1.194 5⇥ 10�4 2.0015 3.7395⇥ 10�23

25% 0.2173 0.0045 0.9275 1.2547 8⇥ 10�4 2.3364 1.0175⇥ 10�17

50% 0.2389 0.0058 1.0046 1.2858 0.001 2.5715 0.0941

75% 0.2632 0.0075 1.0851 1.3261 0.0014 2.9305 0.2034

97.5% 0.3054 0.013 1.2367 1.4266 0.0033 4.7497 0.429

Mean 0.2403 0.0063 1.0026 1.2924 0.0013 2.7848 0.1204

Std 0.0333 0.0026 0.1188 0.0585 9⇥ 10�4 0.921 0.1267

W 0.99817 0.92158 0.9974 0.97624 0.59071 0.58092 0.86641

p-value 0.3621 < 2.2⇥ 10�16 0.1095 1.018⇥ 10�11
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0349 0.0976 0.0291 0.0116 0.1131 0.0499 42714516523

Std of �̂ 0.0033 0.0110 0.0065 0.0018 0.0286 0.0273 6.8393⇥ 1011

Number of �̂� > 10 149

Table A.11: Case 11

A c ↵ p D q �

Target value 0.25 0.005 1 1.25 0.001 2.5 0.15

2.5% 0.1767 0.0028 0.7511 1.1923 5⇥ 10�4 1.978 1.4773⇥ 10�22

25% 0.2182 0.0046 0.9231 1.2534 8⇥ 10�4 2.2782 0.0357

50% 0.2395 0.0059 0.9945 1.2877 0.001 2.5736 0.1540

75% 0.2619 0.0076 1.0755 1.3266 0.0014 2.9599 0.2640

97.5% 0.3109 0.013 1.2196 1.4199 0.0033 4.9545 0.4648

Mean 0.2408 0.0064 0.9959 1.293 0.0012 2.7626 0.1667

Std 0.0335 0.0026 0.1198 0.0576 8⇥ 10�4 0.8732 0.1411

W 0.9959 0.92048 0.99664 0.98054 0.65143 0.64948 0.92903

p-value 0.009382 < 2.2⇥ 10�16 0.03132 2.667⇥ 10�10
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0349 0.0978 0.0293 0.0117 0.1152 0.0506 7285108672

Std of �̂ 0.0031 0.0105 0.0067 0.0018 0.0307 0.0292 123729085558

Number of �̂� > 10 198
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Table A.12: Case 12

A c ↵ p D q �

Target value 0.25 0.005 1 1.25 0.001 2.5 0.2

2.5% 0.1764 0.0027 0.7717 1.1908 5⇥ 10�4 1.9822 1.029⇥ 10�21

25% 0.2168 0.0046 0.9285 1.2539 8⇥ 10�4 2.3499 0.0738

50% 0.239 0.0059 1.0046 1.2888 0.0011 2.5853 0.2004

75% 0.2615 0.0078 1.0776 1.3298 0.0015 2.9664 0.3173

97.5% 0.2983 0.0128 1.2359 1.4276 0.0036 5.3554 0.5374

Mean 0.2386 0.0064 1.0038 1.295 0.0013 2.8158 0.2085

Std 0.0324 0.0027 0.1155 0.0597 9⇥ 10�4 0.9487 0.1585

W 0.99814 0.89488 0.99682 0.97794 0.61308 0.62151 0.95155

p-value 0.3464 < 2.2⇥ 10�16 0.04233 3.512⇥ 10�11
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0351 0.0979 0.029 0.0117 0.1159 0.0515 4438568515

Std of �̂ 0.0032 0.0105 0.0062 0.0018 0.0317 0.0306 61465795105

Number of �̂� > 10 145

Table A.13: Case 13

A c ↵ p D q �

Target value 0.25 0.005 1 1.25 0.005 2.5 0.1

2.5% 0.1724 0.0027 0.7383 1.1916 0.0023 1.9212 4.8638⇥ 10�23

25% 0.2154 0.0047 0.9199 1.2611 0.004 2.2923 1.17⇥ 10�17

50% 0.2379 0.0065 1.001 1.3031 0.0052 2.5766 0.0793

75% 0.2603 0.0082 1.0802 1.3477 0.0074 3.0132 0.1951

97.5% 0.3089 0.0133 1.233 1.4543 0.015 4.8457 0.4481

Mean 0.2388 0.0067 0.9977 1.3077 0.0063 2.7769 0.1191

Std 0.0342 0.0027 0.1227 0.068 0.0041 0.8438 0.134

W 0.99818 0.94976 0.99671 0.98273 0.66676 0.70619 0.84301

p-value 0.3652 < 2.2⇥ 10�16 0.03538 1.673⇥ 10�9
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0367 0.1004 0.0299 0.0132 0.1208 0.0543 4741693232

Std of �̂ 0.0038 0.0113 0.0067 0.0022 0.0314 0.0290 40749325303

Number of �̂� > 10 338
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Table A.14: Case 14

A c ↵ p D q �

Target value 0.25 0.005 1 1.25 0.005 2.5 0.15

2.5% 0.172 0.0028 0.7429 1.1974 0.0023 1.933 9.6668⇥ 10�23

25% 0.214 0.0048 0.9216 1.2608 0.004 2.2982 0.0182

50% 0.2356 0.0062 1.0049 1.3037 0.0054 2.6128 0.1469

75% 0.2587 0.008 1.0793 1.3525 0.0076 3.0356 0.2512

97.5% 0.3035 0.0135 1.2308 1.4558 0.0204 5.3615 0.4593

Mean 0.2368 0.0067 0.9988 1.3098 0.0067 2.8541 0.1587

Std 0.0334 0.0029 0.1211 0.0689 0.0057 1.1276 0.1397

W 0.99806 0.86675 0.99666 0.97859 0.54753 0.56054 0.92001

p-value 0.3077 < 2.2⇥ 10�16 0.03251 5.733⇥ 10�11
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0369 0.1012 0.03 0.0134 0.1242 0.0571 6601357031

Std of �̂ 0.0039 0.0116 0.0069 0.0026 0.0408 0.0398 67373198841

Number of �̂� > 10 219

Table A.15: Case 15

A c ↵ p D q �

Target value 0.25 0.005 1 1.25 0.005 2.5 0.2

2.5% 0.1701 0.0028 0.739 1.1987 0.0023 1.9318 5.6155⇥ 10�22

25% 0.2143 0.0049 0.9099 1.2645 0.0039 2.2651 0.0562

50% 0.2372 0.0064 0.9915 1.3059 0.0054 2.5787 0.1807

75% 0.261 0.0083 1.0688 1.3537 0.0073 2.9649 0.2979

97.5% 0.3048 0.0134 1.2328 1.4613 0.0178 5.0659 0.5240

Mean 0.2382 0.0069 0.9896 1.3129 0.0064 2.7765 0.1965

Std 0.0345 0.0028 0.119 0.0691 0.0044 0.9298 0.1592

W 0.99861 0.93664 0.99843 0.97494 0.68134 0.64855 0.93918

p-value 0.6258 < 2.2⇥ 10�16 0.5127 4.073⇥ 10�12
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0366 0.101 0.0301 0.0135 0.1226 0.0546 9110180630

Std of �̂ 0.0037 0.0114 0.0066 0.0023 0.0329 0.0316 174709931464

Number of �̂� > 10 165



APPENDIX A. 61

Table A.16: Case 16

A c ↵ p D q �

Target value 0.25 0.005 1 1.25 0.01 2.5 0.1

2.5% 0.1716 0.0028 0.7611 1.2014 0.0046 1.9105 3.6498⇥ 10�23

25% 0.2119 0.0048 0.9196 1.2667 0.0079 2.3073 1.6725⇥ 10�17

50% 0.2321 0.0063 1.0041 1.3082 0.0109 2.6502 0.0910

75% 0.257 0.0083 1.0853 1.3546 0.0159 3.115 0.2136

97.5% 0.3041 0.0136 1.2212 1.4831 0.0436 5.9823 0.4402

Mean 0.2342 0.0069 1.0014 1.3159 0.0143 2.9696 0.1262

Std 0.0337 0.0029 0.1207 0.0712 0.0199 1.7732 0.1375

W 0.99628 0.92826 0.99681 0.97162 0.28335 0.36042 0.85416

p-value 0.01729 < 2.2⇥ 10�16 0.0418 4.533⇥ 10�13
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0378 0.1033 0.0303 0.0142 0.1317 0.0623 14601363856

Std of �̂ 0.0038 0.0110 0.0069 0.0025 0.0416 0.0403 266858479911

Number of �̂� > 10 327

Table A.17: Case 17

A c ↵ p D q �

Target value 0.25 0.005 1 1.25 0.01 2.5 0.15

2.5% 0.1737 0.0028 0.7411 1.2003 0.0042 1.8788 2.7875⇥ 10�22

25% 0.2154 0.0049 0.9156 1.2673 0.0077 2.2481 0.0133

50% 0.2358 0.0064 0.9918 1.3102 0.0102 2.5322 0.1357

75% 0.2596 0.0084 1.0734 1.3545 0.0146 3.0057 0.26

97.5% 0.3112 0.0139 1.2058 1.4737 0.0334 4.9858 0.5248

Mean 0.2383 0.0069 0.9894 1.3162 0.0126 2.7734 0.1642

Std 0.0353 0.0029 0.1204 0.0711 0.0094 0.9334 0.1517

W 0.99479 0.9314 0.99459 0.95938 0.64662 0.68558 0.90729

p-value 0.001417 < 2.2⇥ 10�16 0.001052 3.426⇥ 10�16
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0375 0.1024 0.0306 0.0142 0.1265 0.0572 12601151375

Std of �̂ 0.0037 0.0113 0.0070 0.0026 0.0320 0.0312 230088375740

Number of �̂� > 10 245
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Table A.18: Case 18

A c ↵ p D q �

Target value 0.25 0.005 1 1.25 0.01 2.5 0.2

2.5% 0.172 0.003 0.7574 1.1982 0.0044 1.8924 1.4763⇥ 10�21

25% 0.2126 0.0049 0.911 1.2702 0.0078 2.2808 0.0543

50% 0.237 0.0064 0.9953 1.3107 0.0105 2.5653 0.1806

75% 0.259 0.0083 1.0769 1.3608 0.0152 3.0289 0.3184

97.5% 0.3051 0.0159 1.2302 1.4931 0.0372 5.0654 0.5433

Mean 0.2365 0.0071 0.9931 1.3211 0.0128 2.7928 0.1994

Std 0.035 0.0032 0.122 0.0771 0.0088 0.8765 0.1621

W 0.99829 0.88083 0.99866 0.94191 0.7212 0.75927 0.93815

p-value 0.4257 < 2.2⇥ 10�16 0.6614 < 2.2⇥ 10�16
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0377 0.1029 0.0306 0.0144 0.1283 0.0581 10190614485

Std of �̂ 0.0040 0.0118 0.0070 0.0028 0.0292 0.0284 153910761896

Number of �̂� > 10 181

Table A.19: Case 19

A c ↵ p D q �

Target value 0.25 0.01 1 1.25 0.001 2.5 0.1

2.5% 0.173 0.0053 0.7688 1.1953 5⇥ 10�4 1.9409 2.5525⇥ 10�23

25% 0.2143 0.0092 0.9328 1.2551 8⇥ 10�4 2.28 4.4425⇥ 10�17

50% 0.2375 0.0119 1.0065 1.2943 0.001 2.5551 0.0902

75% 0.2593 0.0152 1.0837 1.3392 0.0014 2.9354 0.2161

97.5% 0.3 0.0262 1.2322 1.4612 0.0033 4.9831 0.4511

Mean 0.2369 0.0128 1.0083 1.3003 0.0012 2.7753 0.1289781

Std 0.0337 0.0053 0.1167 0.0647 0.001 1.0377 0.1366

W 0.99903 0.91705 0.99863 0.97837 0.56276 0.54308 0.86598

p-value 0.8874 < 2.2⇥ 10�16 0.6403 4.866⇥ 10�11
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0359 0.0996 0.0292 0.0125 0.1189 0.0536 20686130382

Std of �̂ 0.0037 0.0117 0.0063 0.0020 0.0496 0.0474 317962206389

Number of �̂� > 10 305
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Table A.20: Case 20

A c ↵ p D q �

Target value 0.25 0.01 1 1.25 0.001 2.5 0.15

2.5% 0.1744 0.0055 0.7676 1.1919 5⇥ 10�4 1.9594 2.139⇥ 10�22

25% 0.2139 0.0091 0.9296 1.2566 8⇥ 10�4 2.3247 0.0248

50% 0.2342 0.0118 1.0124 1.2939 0.0011 2.6038 0.1397

75% 0.2587 0.016 1.086 1.3384 0.0015 2.9808 0.2649

97.5% 0.3051 0.0292 1.2239 1.4559 0.0033 4.8827 0.4758

Mean 0.2367 0.0132 1.0067 1.3024 0.0013 2.823 0.1634

Std 0.0338 0.006 0.1202 0.0663 0.0011 1.1845 0.147

W 0.99537 0.88538 0.99788 0.9659 0.4779 0.45543 0.91456

p-value 0.003981 < 2.2⇥ 10�16 0.2374 1.495⇥ 10�14
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.036 0.0999 0.0292 0.0126 0.1191 0.0537 5601037538

Std of �̂ 0.0035 0.0111 0.0066 0.0021 0.0408 0.0395 98440638759

Number of �̂� > 10 212

Table A.21: Case 21

A c ↵ p D q �

Target value 0.25 0.01 1 1.25 0.001 2.5 0.2

2.5% 0.1681 0.0057 0.7649 1.194 5⇥ 10�4 1.9673 2.362⇥ 10�21

25% 0.2134 0.0094 0.9285 1.2601 8⇥ 10�4 2.2843 0.0714

50% 0.2379 0.0123 0.9956 1.3003 0.001 2.5772 0.1983

75% 0.2608 0.0159 1.0744 1.3423 0.0015 2.9693 0.313

97.5% 0.3083 0.0262 1.2335 1.4441 0.0035 5.1072 0.5362

Mean 0.2378 0.0134 1.0012 1.3051 0.0013 2.7864 0.2075

Std 0.035 0.0058 0.117 0.0653 8⇥ 10�4 0.9212 0.159

W 0.99895 0.88409 0.99403 0.96044 0.69848 0.6587 0.95035

p-value 0.8445 < 2.2⇥ 10�16 0.0005167 8.18⇥ 10�16
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0359 0.1004 0.0296 0.0128 0.1188 0.0528 1210379274

Std of �̂ 0.0036 0.0116 0.0064 0.0022 0.0314 0.0299 12056890816

Number of �̂� > 10 137
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Table A.22: Case 22

A c ↵ p D q �

Target value 0.25 0.01 1 1.25 0.005 2.5 0.1

2.5% 0.17 0.0055 0.7608 1.2003 0.0025 1.9499 3.2468⇥ 10�23

25% 0.2088 0.0097 0.9245 1.2666 0.0039 2.3134 8.395⇥ 10�18

50% 0.2315 0.013 0.9994 1.3149 0.0053 2.5918 0.0775

75% 0.2531 0.0177 1.0904 1.3698 0.0074 3.0475 0.2048

97.5% 0.3059 0.0305 1.222 1.504 0.0165 5.2881 0.4468

Mean 0.2325 0.0143 1.0015 1.3227 0.0064 2.8275 0.1221

Std 0.0342 0.0065 0.1205 0.0771 0.0041 0.8875 0.1373

W 0.99586 0.91887 0.99596 0.97649 0.72212 0.72611 0.84453

p-value 0.008731 < 2.2⇥ 10�16 0.01034 1.215⇥ 10�11
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0381 0.1042 0.0304 0.0147 0.1272 0.0587 13727565619

Std of �̂ 0.0039 0.0120 0.0070 0.0027 0.0320 0.0305 171710279884

Number of �̂� > 10 334

Table A.23: Case 23

A c ↵ p D q �

Target value 0.25 0.01 1 1.25 0.005 2.5 0.15

2.5% 0.1731 0.0054 0.7399 1.1979 0.0023 1.9278 3.348⇥ 10�22

25% 0.2135 0.0098 0.9196 1.2715 0.004 2.3041 3.5975⇥ 10�15

50% 0.2348 0.0129 0.9871 1.3136 0.0055 2.6216 0.1367312

75% 0.2563 0.0169 1.063 1.3601 0.0078 3.0832 0.2622592

97.5% 0.304 0.0281 1.2152 1.5071 0.0172 5.053 0.5008

Mean 0.2355 0.014 0.9885 1.3222 0.0066 2.8445 0.1614346

Std 0.0338 0.0063 0.119 0.0767 0.0048 0.9893 0.1524

W 0.99651 0.89021 0.99319 0.95127 0.62384 0.65579 0.90175

p-value 0.02518 < 2.2⇥ 10�16 0.000154 < 2.2⇥ 10�16
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0379 0.1042 0.0309 0.0147 0.131 0.0622 3340203824

Std of �̂ 0.0039 0.0121 0.0076 0.0027 0.0727 0.0723 55586874625

Number of �̂� > 10 264
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Table A.24: Case 24

A c ↵ p D q �

Target value 0.25 0.01 1 1.25 0.005 2.5 0.2

2.5% 0.1704 0.006 0.7471 1.2026 0.0022 1.9298 9.9918⇥ 10�22

25% 0.211 0.0098 0.9101 1.2727 0.0039 2.2868 0.0622

50% 0.2331 0.0131 0.9988 1.3173 0.0053 2.5564 0.1939

75% 0.256 0.0173 1.0749 1.3678 0.0076 3.0109 0.3138

97.5% 0.3031 0.0309 1.2275 1.4956 0.0186 5.5108 0.5678

Mean 0.2343 0.0144 0.9919 1.3255 0.0065 2.8393 0.2052

Std 0.0347 0.0066 0.122 0.0771 0.0049 1.1235 0.1646

W 0.99701 0.89515 0.99848 0.96905 0.64367 0.58172 0.94124

p-value 0.05816 < 2.2⇥ 10�16 0.5424 9.327⇥ 10�14
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0381 0.1045 0.0309 0.0149 0.129 0.0595 22297421807

Std of �̂ 0.0041 0.0119 0.0070 0.0028 0.0418 0.0410 4.2881⇥ 1011

Number of �̂� > 10 171

Table A.25: Case 25

A c ↵ p D q �

Target value 0.25 0.01 1 1.25 0.01 2.5 0.1

2.5% 0.1641 0.0062 0.7565 1.201 0.0048 1.9353 4.837⇥ 10�23

25% 0.2077 0.0103 0.9248 1.28 0.008 2.3073 5.54⇥ 10�18

50% 0.2296 0.0133 1.0073 1.3234 0.011 2.6219 0.0831

75% 0.2556 0.0177 1.0839 1.3811 0.0154 3.1307 0.2133

97.5% 0.305 0.031 1.2465 1.5179 0.0377 5.2652 0.4426

Mean 0.2313 0.0148 1.0053 1.3352 0.0135 2.9007 0.1244

Std 0.0356 0.0066 0.1227 0.0811 0.01 1.1036 0.136

W 0.99812 0.90153 0.99778 0.96105 0.65581 0.64381 0.85454

p-value 0.3256 < 2.2⇥ 10�16 0.1947 8.538⇥ 10�16
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.039 0.105 0.0306 0.0157 0.1361 0.066 12458750513

Std of �̂ 0.0042 0.0118 0.0070 0.0031 0.0588 0.0580 139724100630

Number of �̂� > 10 342
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Table A.26: Case 26

A c ↵ p D q �

Target value 0.25 0.01 1 1.25 0.01 2.5 0.15

2.5% 0.1666 0.0058 0.7265 1.203 0.0041 1.8517 2.28⇥ 10�22

25% 0.2073 0.0102 0.9183 1.2839 0.0076 2.2777 8.6075⇥ 10�16

50% 0.2298 0.0134 1.0008 1.3294 0.0107 2.593 0.1282

75% 0.2544 0.0181 1.073 1.386 0.0154 3.0237 0.2498

97.5% 0.3048 0.0308 1.2372 1.5336 0.039 5.5144 0.4603

Mean 0.2315 0.0146 0.9931 1.3389 0.0131 2.829 0.1515

Std 0.0351 0.0064 0.1243 0.0816 0.0094 0.985 0.1435

W 0.99523 0.93077 0.99356 0.9706 0.71488 0.7088 0.90016

p-value 0.003206 < 2.2⇥ 10�16 0.0002608 2.393⇥ 10�13
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.0389 0.1054 0.0312 0.0159 0.1343 0.0627 6207769583

Std of �̂ 0.0042 0.0116 0.0077 0.0031 0.0385 0.0369 75094278693

Number of �̂� > 10 275

Table A.27: Case 27

A c ↵ p D q �

Target value 0.25 0.01 1 1.25 0.01 2.5 0.2

2.5% 0.1677 0.0058 0.7357 1.2055 0.0042 1.8622 5.871⇥ 10�22

25% 0.2087 0.01 0.9121 1.2803 0.008 2.2866 0.0323

50% 0.2314 0.0135 0.9918 1.3271 0.0109 2.6032 0.1681

75% 0.2537 0.0176 1.0767 1.3849 0.0156 3.0843 0.3040

97.5% 0.3043 0.03 1.2207 1.5076 0.0414 5.5123 0.5511

Mean 0.2326 0.0144 0.9909 1.3354 0.0139 2.8946 0.1886

Std 0.0347 0.0062 0.1237 0.081 0.0116 1.1753 0.1645

W 0.99604 0.91837 0.99607 0.97039 0.60906 0.62947 0.922

p-value 0.01165 < 2.2⇥ 10�16 0.01232 2.102⇥ 10�13
< 2.2⇥ 10�16

< 2.2⇥ 10�16
< 2.2⇥ 10�16

Mean of �̂ 0.039 0.1057 0.0313 0.0158 0.1363 0.0647 2447544332

Std of �̂ 0.0040 0.0117 0.0074 0.0029 0.0433 0.0426 30620164505

Number of �̂� > 10 198
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Table B.1: Estimates of the ETAS model parameters, and the corresponding end of the

study time interval.

Ending time ⌫̂ Â ĉ ↵̂ p̂ D̂ q̂ �̂

2018/10/21 00:00:00 0.663 0.240 0.007 0.987 1.217 0.003 2.479 0.170

2018/10/21 12:00:00 0.663 0.240 0.007 0.987 1.218 0.003 2.477 0.172

2018/10/22 00:00:00 0.663 0.238 0.007 0.990 1.218 0.003 2.481 0.175

2018/10/22 12:000 0.667 0.212 0.013 1.186 1.295 0.001 1.736 0.542

2018/10/23 00:000 0.666 0.215 0.012 1.177 1.297 0.001 1.773 0.506

2018/10/23 12:000 0.666 0.213 0.013 1.190 1.294 0.001 1.775 0.467

2018/10/24 00:000 0.668 0.228 0.014 1.182 1.289 0.001 1.724 0.450

2018/10/24 12:000 0.666 0.239 0.013 1.153 1.284 0.001 1.739 0.423

2018/10/25 00:000 0.667 0.238 0.013 1.156 1.284 0.001 1.742 0.425

2018/10/25 12:000 0.668 0.237 0.013 1.164 1.282 0.001 1.748 0.417

2018/10/26 00:000 0.667 0.238 0.013 1.174 1.275 0.001 1.722 0.442

2018/10/26 12:000 0.669 0.251 0.013 1.158 1.275 0.001 1.656 0.433

2018/10/27 00:000 0.669 0.252 0.014 1.156 1.276 0.001 1.633 0.422

2018/10/27 12:000 0.667 0.250 0.013 1.157 1.278 0.001 1.641 0.416

2018/10/28 00:000 0.669 0.254 0.013 1.150 1.275 0.001 1.631 0.410

2018/10/28 12:000 0.670 0.254 0.013 1.150 1.273 0.001 1.646 0.400
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Ending time ⌫̂ Â ĉ ↵̂ p̂ D̂ q̂ �̂

2018/10/29 00:000 0.669 0.254 0.013 1.151 1.273 0.001 1.641 0.404

2018/10/29 12:000 0.669 0.259 0.013 1.138 1.271 0.001 1.655 0.388

2018/10/30 00:000 0.669 0.258 0.013 1.139 1.272 0.001 1.649 0.392

2018/10/30 12:000 0.669 0.260 0.013 1.141 1.267 0.001 1.641 0.399

2018/10/31 00:000 0.668 0.259 0.013 1.141 1.268 0.001 1.644 0.394

2018/10/31 12:000 0.670 0.257 0.013 1.143 1.271 0.001 1.644 0.393

2018/11/01 00:000 0.669 0.259 0.013 1.139 1.271 0.001 1.644 0.391

2018/11/01 12:000 0.669 0.258 0.014 1.151 1.264 0.001 1.652 0.385

2018/11/02 00:000 0.669 0.258 0.013 1.151 1.265 0.001 1.651 0.384

2018/11/02 12:000 0.669 0.257 0.013 1.151 1.265 0.001 1.656 0.383

2018/11/03 00:000 0.669 0.257 0.013 1.150 1.266 0.001 1.651 0.381

2018/11/03 12:000 0.671 0.256 0.014 1.151 1.267 0.001 1.650 0.385

2018/11/04 00:000 0.669 0.256 0.014 1.149 1.267 0.001 1.652 0.385

2018/11/04 12:000 0.671 0.255 0.014 1.150 1.270 0.001 1.650 0.381

2018/11/05 00:000 0.670 0.255 0.014 1.151 1.269 0.001 1.651 0.384

2018/11/05 12:000 0.669 0.256 0.014 1.148 1.269 0.001 1.652 0.383

2018/11/06 00:000 0.669 0.256 0.013 1.153 1.263 0.001 1.650 0.370

2018/11/06 12:000 0.669 0.256 0.013 1.153 1.263 0.001 1.642 0.373

2018/11/07 00:000 0.670 0.254 0.013 1.155 1.265 0.001 1.650 0.374

2018/11/07 12:000 0.670 0.254 0.013 1.156 1.265 0.001 1.650 0.374

2018/11/08 00:000 0.669 0.256 0.013 1.151 1.265 0.001 1.645 0.372

2018/11/08 12:000 0.669 0.255 0.013 1.151 1.265 0.001 1.644 0.371

2018/11/09 00:000 0.669 0.255 0.014 1.152 1.267 0.001 1.649 0.370

2018/11/09 12:000 0.670 0.253 0.014 1.154 1.268 0.001 1.652 0.374

2018/11/10 00:000 0.669 0.255 0.014 1.151 1.268 0.001 1.645 0.374

2018/11/10 12:000 0.669 0.254 0.014 1.151 1.268 0.001 1.647 0.375

2018/11/11 00:000 0.670 0.253 0.014 1.154 1.269 0.001 1.645 0.374
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Ending time ⌫̂ Â ĉ ↵̂ p̂ D̂ q̂ �̂

2018/11/11 12:000 0.669 0.254 0.014 1.150 1.270 0.001 1.645 0.369

2018/11/12 00:000 0.671 0.253 0.014 1.152 1.270 0.001 1.646 0.372

2018/11/12 12:000 0.669 0.254 0.014 1.150 1.270 0.001 1.641 0.376

2018/11/13 00:000 0.669 0.254 0.014 1.148 1.271 0.001 1.647 0.368

2018/11/13 12:000 0.669 0.254 0.014 1.148 1.271 0.001 1.650 0.364

2018/11/14 00:000 0.668 0.254 0.014 1.149 1.271 0.001 1.650 0.371

2018/11/14 12:000 0.669 0.254 0.014 1.148 1.272 0.001 1.647 0.369

2018/11/15 00:000 0.668 0.254 0.014 1.148 1.272 0.001 1.650 0.366

2018/11/15 12:000 0.668 0.253 0.014 1.150 1.272 0.001 1.645 0.373

2018/11/16 00:000 0.669 0.254 0.014 1.147 1.273 0.001 1.651 0.365

2018/11/16 12:000 0.668 0.254 0.013 1.157 1.265 0.001 1.650 0.366

2018/11/17 00:000 0.670 0.252 0.013 1.160 1.265 0.001 1.652 0.372

2018/11/17 12:000 0.669 0.254 0.013 1.157 1.265 0.001 1.647 0.369

2018/11/18 00:00:00 0.670 0.254 0.014 1.156 1.266 0.001 1.646 0.367

2018/11/18 12:00:00 0.669 0.253 0.014 1.157 1.267 0.001 1.648 0.371

2018/11/19 00:00:00 0.668 0.252 0.014 1.158 1.268 0.001 1.649 0.372

2018/11/19 12:00:00 0.668 0.253 0.014 1.156 1.266 0.001 1.653 0.369

2018/11/20 00:00:00 0.670 0.251 0.014 1.159 1.268 0.001 1.653 0.370

2018/11/20 12:00:00 0.670 0.251 0.014 1.158 1.269 0.001 1.653 0.366
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Table C.1: Asymptotic standard errors for the estimators of seven parameters of the ETAS

model obtained with 40 Monte Carlo simulations using the parameter values reported in

Table 2.1 as targets, and their mean value for each parameter.

A c ↵ p D q �

1 0.0408 0.1062 0.0234 0.0114 0.1353 0.0730 0.1910

2 0.0348 0.0959 0.0303 0.0144 0.1032 0.0470 946158694.0600

3 0.0380 0.1039 0.0258 0.0121 0.1155 0.0262 0.2032

4 0.0392 0.1108 0.0310 0.0125 0.1213 0.0466 0.3473

5 0.0457 0.1191 0.0364 0.0180 0.1634 0.0686 25403780640.9007

6 0.0384 0.1117 0.0231 0.0133 0.1563 0.0911 0.0607

7 0.0408 0.1052 0.0200 0.0131 0.1248 0.0679 39694308.9377

8 0.0410 0.0990 0.0238 0.0151 0.1139 0.0493 0.0898

9 0.0379 0.1036 0.0255 0.0151 0.1260 0.0603 0.0918

10 0.0416 0.1270 0.0366 0.0154 0.1381 0.0653 390295337.4351

11 0.0418 0.0938 0.0219 0.0111 0.1008 0.0299 0.2691

12 0.0500 0.1553 0.0310 0.0210 0.1420 0.0541 1.1122

13 0.0364 0.1046 0.0283 0.0128 0.1058 0.0477 0.2020

14 0.0542 0.1230 0.0248 0.0121 0.1350 0.0607 0.1918

15 0.0389 0.1074 0.0252 0.0118 0.1145 0.0367 0.7691
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A c ↵ p D q �

16 0.0379 0.1009 0.0286 0.0138 0.1108 0.0377 47096081.6904

17 0.0435 0.1143 0.0271 0.0133 0.1264 0.0455 0.1322

18 0.0325 0.0976 0.0340 0.0131 0.1194 0.0594 0.2851

19 0.0378 0.1112 0.0363 0.0128 0.1218 0.0479 0.1857

20 0.0342 0.1111 0.0307 0.0150 0.1168 0.0453 0.0946

21 0.0459 0.1157 0.0559 0.0137 0.1273 0.0536 0.1006

22 0.0421 0.1075 0.0577 0.0122 0.1191 0.0528 1717423847.1487

23 0.0379 0.0974 0.0250 0.0135 0.1017 0.0416 0.1782

24 0.0378 0.1028 0.0260 0.0128 0.1163 0.0390 0.2119

25 0.0353 0.0990 0.0271 0.0138 0.1252 0.0529 0.0574

26 0.0402 0.1138 0.0232 0.0153 0.1172 0.0372 0.1421

27 0.0407 0.1254 0.0510 0.0146 0.1207 0.0411 0.5699

28 0.0428 0.1127 0.0365 0.0143 0.1175 0.0515 0.0810

29 0.0375 0.0911 0.0260 0.0115 0.1055 0.0432 0.3501

30 0.0364 0.1143 0.0255 0.0163 0.1094 0.0335 0.2275

31 0.0428 0.1196 0.0476 0.0129 0.1429 0.0521 0.2097

32 0.0438 0.1169 0.0279 0.0118 0.1011 0.0289 0.1934

33 0.0390 0.1100 0.0293 0.0131 0.1131 0.0286 0.1679

34 0.0378 0.1091 0.0326 0.0122 0.1140 0.0469 0.5630

35 0.0428 0.1127 0.0240 0.0132 0.0949 0.0349 5478599168.7306

36 0.0588 0.1329 0.0328 0.0115 0.1410 0.0583 0.4877

37 0.0391 0.1215 0.0285 0.0160 0.1284 0.0533 20218150844.4800

38 0.0383 0.1127 0.0246 0.0130 0.1092 0.0394 0.0845

39 0.0381 0.1098 0.0347 0.0127 0.1453 0.0763 564119550.4884

40 0.0453 0.1221 0.0272 0.0141 0.1379 0.0464 0.6624

Mean 0.0407 0.1112 0.0307 0.0136 0.1220 0.0493 1370132962.0536
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Table C.2: Bootstrap standard errors for the estimators of seven parameters of the ETAS

model obtained with 1000 bootstrap simulations for each of the 40 Monte Carlo simula-

tions in Table C.1, and their mean value for each parameter.

A c ↵ p D q �

1 0.0296 0.0055 0.1201 0.0806 10471036.5119 2874264170.3823 0.1463

2 0.0324 0.0078 0.1118 0.0834 923072.4674 199930332.0212 0.0945

3 0.0334 0.0051 0.1241 0.0711 0.0007 0.2655 0.2054

4 0.0362 0.0043 0.1232 0.0794 1361446.7307 368699010.1716 0.1541

5 0.0439 0.0117 0.2104 0.1688 359158.1503 215270782.8930 0.1359

6 0.0295 0.0055 0.1166 0.0808 43256.7508 24106792.8614 0.1560

7 0.0272 0.0062 0.1059 0.0753 1913188.0907 481032747.6321 0.0858

8 0.0270 0.0042 0.1262 0.1013 2775232.5815 1605023408.0711 0.1951

9 0.0278 0.0065 0.1174 0.0944 207061.7423 74268771.8311 0.1755

10 0.0339 0.0078 0.1414 0.0982 7024417.2642 2390797474.9694 0.1131

11 0.0316 0.0085 0.1064 0.0761 0.0014 0.3623 0.1538

12 0.0267 0.0096 0.1369 0.1296 16618308.1069 3507012694.6398 0.1440

13 0.0334 0.0063 0.1222 0.0812 58608.9587 17264840.1127 0.1624

14 0.0306 0.0035 0.1240 0.0695 2179913.7431 594990989.6612 0.1627

15 0.0327 0.0058 0.1058 0.0672 0.0049 1.6560 0.1254

16 0.0325 0.0079 0.1146 0.0852 0.0054 2.3947 0.1097

17 0.0318 0.0043 0.1411 0.0834 16020.4047 6795390.4113 0.2054

18 0.0347 0.0055 0.1377 0.0798 1183.3510 448374.6315 0.1508

19 0.0351 0.0054 0.1324 0.0796 2701.0438 791613.2227 0.1901

20 0.0309 0.0025 0.1221 0.0850 73947.2832 41542514.6503 0.1907

21 0.0394 0.0042 0.1577 0.0817 4837663.4675 1832880825.6835 0.2463

22 0.0413 0.0035 0.1525 0.0713 278169.3481 69117560.0081 0.1285

23 0.0301 0.0035 0.1189 0.0759 7738.6759 3076688.0594 0.1689
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A c ↵ p D q �

24 0.0325 0.0061 0.1160 0.0858 0.0028 0.7453 0.1679

25 0.0306 0.0040 0.1207 0.0901 3373788.9710 1560528318.6360 0.1837

26 0.0283 0.0060 0.1174 0.1018 0.0031 1.3259 0.1924

27 0.0355 0.0034 0.1548 0.0850 4168.4380 1737987.7027 0.1866

28 0.0332 0.0048 0.1290 0.0790 1357451.0473 855275483.6616 0.2116

29 0.0316 0.0027 0.1115 0.0615 0.0082 1.7677 0.1302

30 0.0319 0.0093 0.1171 0.0970 0.0014 0.5659 0.1695

31 0.0370 0.0080 0.1487 0.0918 102894.8256 70750269.0467 0.2062

32 0.0353 0.0046 0.1220 0.0685 0.0030 1.5594 0.1984

33 0.0327 0.0039 0.1268 0.0738 0.0010 0.3637 0.1981

34 0.0340 0.0043 0.1164 0.0661 7742.4898 2915153.2898 0.1246

35 0.0309 0.0050 0.1334 0.0777 4461400.2022 1243860235.0405 0.1303

36 0.0412 0.0028 0.1337 0.0613 831597.0915 185305064.1067 0.1422

37 0.0289 0.0076 0.1263 0.0958 77229508.7904 21959971320.3446 0.1006

38 0.0309 0.0043 0.1300 0.0805 1278.1098 531671.2748 0.2016

39 0.0350 0.0032 0.1245 0.0732 1668913.2557 528788713.8063 0.0972

40 0.0338 0.0069 0.1359 0.0869 0.0042 0.9052 0.1478

Mean 0.0329 0.0056 0.1283 0.0844 3454771.6983 1017924480.2666 0.1597

Table C.3: Length of the 95% asymptotic confidence intervals for seven parameters of the

ETAS model, obtained with 40 Monte Carlo simulations (i.e., the same 40 Monte Carlo

simulations as for Table C.1 ), and the mean length of these intervals for each parameter.

A c ↵ p D q �

1 0.1599 0.4163 0.0917 0.0447 0.5304 0.2862 0.7487

2 0.1364 0.3759 0.1188 0.0564 0.4045 0.1842 3708942081

3 0.149 0.4073 0.1011 0.0474 0.4528 0.1027 0.7965



APPENDIX C. 74

A c ↵ p D q �

4 0.1537 0.4343 0.1215 0.049 0.4755 0.1827 1.3614

5 0.1791 0.4669 0.1427 0.0706 0.6405 0.2689 99582820113

6 0.1505 0.4379 0.0906 0.0521 0.6127 0.3571 0.2379

7 0.1599 0.4124 0.0784 0.0514 0.4892 0.2662 155601691

8 0.1607 0.3881 0.0933 0.0592 0.4465 0.1933 0.352

9 0.1486 0.4061 0.1 0.0592 0.4939 0.2364 0.3599

10 0.1631 0.4978 0.1435 0.0604 0.5414 0.256 1529957723

11 0.1639 0.3677 0.0858 0.0435 0.3951 0.1172 1.0549

12 0.196 0.6088 0.1215 0.0823 0.5566 0.2121 4.3598

13 0.1427 0.41 0.1109 0.0502 0.4147 0.187 0.7918

14 0.2125 0.4822 0.0972 0.0474 0.5292 0.2379 0.7519

15 0.1525 0.421 0.0988 0.0463 0.4488 0.1439 3.0149

16 0.1486 0.3955 0.1121 0.0541 0.4343 0.1478 184616640.2

17 0.1705 0.4481 0.1062 0.0521 0.4955 0.1784 0.5182

18 0.1274 0.3826 0.1333 0.0514 0.468 0.2328 1.1176

19 0.1482 0.4359 0.1423 0.0502 0.4775 0.1878 0.7279

20 0.1341 0.4355 0.1203 0.0588 0.4579 0.1776 0.3708

21 0.1799 0.4535 0.2191 0.0537 0.499 0.2101 0.3944

22 0.165 0.4214 0.2262 0.0478 0.4669 0.207 6732301480

23 0.1486 0.3818 0.098 0.0529 0.3987 0.1631 0.6985

24 0.1482 0.403 0.1019 0.0502 0.4559 0.1529 0.8306

25 0.1384 0.3881 0.1062 0.0541 0.4908 0.2074 0.225

26 0.1576 0.4461 0.0909 0.06 0.4594 0.1458 0.557

27 0.1595 0.4916 0.1999 0.0572 0.4731 0.1611 2.234

28 0.1678 0.4418 0.1431 0.0561 0.4606 0.2019 0.3175

29 0.147 0.3571 0.1019 0.0451 0.4136 0.1693 1.3724

30 0.1427 0.4481 0.1 0.0639 0.4288 0.1313 0.8918
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A c ↵ p D q �

31 0.1678 0.4688 0.1866 0.0506 0.5602 0.2042 0.822

32 0.1717 0.4582 0.1094 0.0463 0.3963 0.1133 0.7581

33 0.1529 0.4312 0.1149 0.0514 0.4434 0.1121 0.6582

34 0.1482 0.4277 0.1278 0.0478 0.4469 0.1838 2.207

35 0.1678 0.4418 0.0941 0.0517 0.372 0.1368 21476108742

36 0.2305 0.521 0.1286 0.0451 0.5527 0.2285 1.9118

37 0.1533 0.4763 0.1117 0.0627 0.5033 0.2089 79255151308

38 0.1501 0.4418 0.0964 0.051 0.4281 0.1544 0.3312

39 0.1494 0.4304 0.136 0.0498 0.5696 0.2991 2211348638

40 0.1776 0.4786 0.1066 0.0553 0.5406 0.1819 2.5966

Mean 0.1595 0.436 0.1202 0.0535 0.4781 0.1932 5370921211

Table C.4: Length of the 95% bootstrap confidence intervals (derived from the 2.5% and

97.5% empirical quantiles) for seven parameters of the ETAS model, obtained for the 40

Monte Carlo simulations, and the mean length of these intervals for each parameter.

A c ↵ p D q �

1 0.0548 0.0211 0.4836 0.3137 0.1128 39.1872 0.5180

2 0.1259 0.0299 0.4526 0.3228 0.0172 5.0844 0.3274

3 0.1358 0.0201 0.4816 0.2922 0.0022 1.0256 0.7182

4 0.1429 0.0161 0.4761 0.3079 0.0135 3.4667 0.5208

5 0.1195 0.0374 0.6282 0.5210 0.0235 9.8750 0.4548

6 0.1170 0.0168 0.4658 0.3014 0.0943 42.6481 0.6373

7 0.1125 0.0257 0.4145 0.2988 0.0655 18.9656 0.2939

8 0.1075 0.0162 0.5065 0.4122 0.0167 7.1181 0.8362

9 0.1112 0.0251 0.4512 0.3713 0.0112 4.7898 0.7041

10 0.1346 0.0301 0.5452 0.3778 0.0724 25.4620 0.3592
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A c ↵ p D q �

11 0.1232 0.0336 0.4346 0.3052 0.0055 1.3517 0.5010

12 0.1027 0.0380 0.5530 0.5158 0.0809 18.6251 0.4776

13 0.1307 0.0242 0.4840 0.3222 0.0169 5.8331 0.5601

14 0.1181 0.0129 0.4897 0.2656 0.0578 22.2254 0.5660

15 0.1247 0.0232 0.4154 0.2699 0.0066 1.9060 0.4186

16 0.1265 0.0318 0.472 0.3431 0.0065 2.0274 0.3814

17 0.1261 0.0168 0.5494 0.3138 0.0098 4.0845 0.7601

18 0.1342 0.0200 0.5545 0.3083 0.0188 6.4915 0.5328

19 0.1361 0.0210 0.5192 0.3185 0.0077 2.7584 0.6889

20 0.1232 0.0094 0.4818 0.3315 0.0082 3.3808 0.7682

21 0.1497 0.0158 0.6119 0.3352 0.0164 7.4731 0.9777

22 0.1619 0.0125 0.5952 0.2731 0.0238 6.3125 0.4518

23 0.1208 0.0132 0.4784 0.3046 0.0105 2.9628 0.5930

24 0.1273 0.0224 0.4370 0.3533 0.0073 1.9880 0.5798

25 0.1219 0.0155 0.4821 0.3384 0.0145 6.4311 0.7292

26 0.1138 0.0231 0.4526 0.4016 0.0059 2.1749 0.7015

27 0.1419 0.0135 0.6160 0.3510 0.0070 2.2481 0.6093

28 0.1329 0.0182 0.4997 0.3019 0.0128 6.7667 0.8397

29 0.1246 0.0106 0.4478 0.2449 0.0140 3.1429 0.4245

30 0.1271 0.0372 0.4527 0.3752 0.0042 1.8057 0.5709

31 0.1449 0.0278 0.5861 0.3581 0.0076 3.5413 0.7079

32 0.1386 0.0181 0.4886 0.2727 0.0039 1.3773 0.7277

33 0.1294 0.0153 0.4894 0.2884 0.0036 1.2803 0.6852

34 0.1321 0.0164 0.4517 0.2657 0.0124 4.1034 0.4181

35 0.1217 0.0190 0.5281 0.3125 0.0097 2.3168 0.4371

36 0.1596 0.0103 0.5372 0.2322 0.0497 10.4965 0.4788

37 0.1124 0.0286 0.4845 0.3782 0.0117 3.8683 0.3358
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A c ↵ p D q �

38 0.1214 0.0165 0.5143 0.3069 0.0114 3.4700 0.8259

39 0.1342 0.0125 0.5000 0.2801 0.0250 8.1648 0.3337

40 0.1405 0.0280 0.5521 0.3482 0.0107 2.6838 0.5027

Mean 0.1266 0.0211 0.5016 0.3284 0.0228 7.7229 0.5739


	Acknowledgements
	Abstract
	Résumé
	List of Figures
	List of Tables
	Introduction
	Manuscript
	Introduction
	Self-exciting spatio-temporal point processes
	Temporal form
	Spatio-temporal form
	Marked self-exciting point processes

	The ETAS model
	2-D spatio-temporal ETAS model
	ETAS model terminology
	Stochastic declustering
	Parameter estimation and model fitting

	Earthquake data catalog
	Completeness of the earthquake data catalog
	Stationarity in time
	Summary

	The ETAS model fitting procedure
	A bootstrap procedure to build confidence intervals for the ETAS model parameters
	Bootstrap simulation procedure
	Analysis based on the parametric bootstrap simulation

	A Monte Carlo simulation study
	Methodology
	Results

	Forecasting
	Simulation-based forecasting procedure
	A retrospective forecasting experiment

	Discussion: Use of the bootstrap procedure for Monte Carlo simulations

	Conclusion
	References
	
	
	

