Resolving GIA in response to modern and future ice loss at marine grounding lines in West Antarctica

Jeannette Xiu Wen Wan

Department of Earth and Planetary Sciences

McGill University
Montréal, Quebec
October 2021

A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of Master of Science

© Jeannette Xiu Wen Wan, 2021
Table of Contents

Abstract ... 4
Résumé .. 6
Acknowledgements .. 8
Contribution of Authors ... 9
List of Figures .. 10
List of Tables ... 11

1 Introduction .. 12

2 Constructing a High-Resolution 3-D Mantle Viscosity Model in Antarctica 15

2.1 Antarctic continent ... 15

2.2 Introduction to GIA Models and Importance of Earth Structure Inputs 16
 2.2.1 Sea Level Theory .. 17
 2.2.2 Components of Earth Structure in GIA Models ... 19

2.3 Construction of a New 3-D Mantle Viscosity Model for Antarctica 20
 2.3.1 Mantle Viscosity Model Inputs .. 20
 2.3.2 Obtaining Mantle Viscosity Estimates from Seismic Tomography 21
 2.3.3 Integration of regional seismic tomography model (ANT-20) into a global model (S362ANI) ... 22

3 Resolving GIA in response to modern and future ice loss at marine grounding lines in West Antarctica .. 23

3.1 Introduction .. 24

3.2 Methods ... 27
 3.2.1 3-D GIA Model .. 28
 3.2.2 Computational model grid: regional grid refinement ... 28
 3.2.3 Earth rheological model ... 30

3.2.4 Ice model and topography ... 31

3.3 Idealized experiments: sensitivity of elastic uplift predictions to grid resolution .. 33
 3.3.1 Idealized experiment results ... 34
3.4 Results with realistic modern and future ice loss in the Amundsen Sea

3.4.1 Influence of grid resolution on predictions of elastic deformation

3.4.2 Contribution of viscous Earth deformation to sea level predictions

3.4.3 Influence of resolution on viscoelastic sea level predictions

3.4.4 Earth model uncertainty

3.4.5 Time evolution of influence of grid resolution and viscous effects

3.5 Discussion

3.5.1 Influence of grid resolution

3.5.2 Influence of viscous deformation and Earth model uncertainty

3.5.3 On GIA model setup

3.6 Conclusion

3.7 Manuscript Details and Code/Data Availability

3.8 Supplementary Material

3.8.1 GIA modelling setup considerations

3.8.2 Supplementary Figures

4 Conclusions

References
Abstract

Assessments of future ice sheet and sea-level change require accurate predictions of glacial isostatic adjustment (GIA). This is particularly true in the vicinity of marine ice sheets, where bedrock uplift and sea level fall along ice-sheet grounding lines may have a significant negative feedback on future ice sheet dynamics (e.g. Gomez et al. 2015; Larour et al., 2019). Assessing GIA in areas of active ice loss in West Antarctica is challenging because the ice is underlain by laterally varying mantle viscosities that are up to several orders of magnitude lower than the global average, leading to a faster and more localized response of the solid Earth to ongoing and future ice sheet retreat and necessitating GIA models that incorporate 3-D viscoelastic Earth structure. The goal of this thesis is to explore the importance of high-resolution GIA modelling by assessing the magnitude and nature of the model error that results from various GIA model setup choices. We focus on investigating the effects of model grid resolution using a GIA model with a high resolution 3-D Earth structure. The influence of grid resolution on GIA predictions is increasingly important to investigate considering the rapid improvements in GIA models capable of km to sub-km scale grids and the need for accurate GIA modelling for future sea-level predictions over the coming few centuries.

Chapter 1 provides an overview of GIA physics and modelling and highlights the importance of accurately constraining ongoing and future GIA in Antarctica, particularly in the West Antarctic where large variabilities in the Earth’s rheology can contribute to significant uncertainties in sea-level predictions. Chapter 2 describes the construction of a high resolution 3-D (laterally and radially varying) Earth rheology model for Antarctica starting from global and Antarctic seismic tomography datasets.

In Chapter 3, we present a manuscript in review with the open access journal The Cryosphere, in which co-authors and I explore the sensitivity of predictions of GIA in response to modern and future ice loss to spatial resolution, focussing on the Amundsen Sea Embayment (ASE) where low viscosity mantle underlays an area of active ice loss. To assess what model resolution is adequate for capturing GIA predictions in the vicinity of ice cover changes, we first conduct sensitivity tests with a suite of numerical grids progressively refined near the load using a finite-volume 3-D GIA model (Latychev et al., 2005) and find that a grid resolution of ~3 times the radius of the load is required to accurately capture the elastic response of the Earth. We then focus on assessing the model grid resolution required to accurately capture both the
elastic and viscous GIA process due to modern and future ice-sheet changes in the ASE. We perform a suite of simulations at grid resolutions of 1.9-15km and find that errors of less than 5% along the grounding line can be achieved with a 7.5 km grid, and less than 2% with a 3.75 km grid, even when the input ice model is on a 1 km grid. Lastly, we demonstrate that low mantle viscosities beneath the ASE lead to viscous deformation that contributes to modelled corrections of instrumental record on decadal timescales and equals or dominates over elastic effects by the end of the 21st century. Our findings suggest that for the range of resolutions of 1.9-15 km that we considered, the error due to adopting a coarser grid in this region is negligible compared to the effect of neglecting viscous effects and the uncertainty in the adopted mantle viscosity structure.
Résumé

Les évaluations de l’évolution future de calotte glaciaire et du niveau de la mer nécessitent des prédictions précises de l’ajustement isostatique glaciaire (GIA). Ceci est particulièrement vrai à proximité des secteurs marins des calottes glaciaires, où le soulèvement de la terre et la baisse du niveau de la mer le long des lignes d’échouage de la calotte glaciaire peuvent avoir une rétroaction négative importante sur la dynamique future de la calotte glaciaire (par exemple Gomez et al. 2015; Larour et al., 2019). Il est difficile d’évaluer le GIA dans les zones de perte de glace active dans l’ouest de l’Antarctique car la glace repose sur des viscosités du manteau variant latéralement qui sont jusqu’à plusieurs ordres de grandeur inférieures à la moyenne mondiale, menant à une réponse plus rapide et plus localisée de la Terre solide au recul actuel et futur de la calotte glaciaire, nécessitant alors des modèles GIA qui incorporent la structure de la Terre viscoélastique en 3D. Cette thèse vise à explorer l’importance de la modélisation GIA à haute résolution en évaluant l’ampleur et la nature de l’erreur de modèle résultant de divers choix de configuration de modèle GIA. Nous nous concentrerons sur l’étude des effets de la résolution de la grille du modèle à l’aide d’un modèle GIA avec une structure terrestre en 3D à haute résolution. L’influence de la résolution de la grille sur les prédictions GIA est de plus en plus importante à étudier étant données les améliorations rapides des modèles GIA capables de grilles à l’échelle du km au sous-km, et le besoin d’une modélisation GIA précise pour les futures prévisions du niveau de la mer au cours des prochains siècles.

Le chapitre 1 donne un aperçu de la physique et de la modélisation des GIA et souligne l’importance de contraindre avec précision la GIA présente et future en Antarctique, en particulier dans l’ouest de l’Antarctique, où les grandes variabilités de la rhéologie de la Terre peuvent contribuer à des incertitudes importantes dans les prévisions du niveau de la mer. Le chapitre 2 décrit la construction d’un modèle de rhéologie terrestre en 3D à haute résolution (variant latéralement et radialement) pour l’Antarctique à partir d’ensembles de données de tomographie sismique globale et antarctique.

Dans le chapitre 3, nous présentons un manuscrit dans lequel les co-auteurs et moi-même explorons la sensibilité des prédictions du GIA à la résolution spatiale en réponse à la perte de glace moderne et future, en nous concentrant sur la baie d’Amundsen (ASE) où un manteau à basse viscosité demeure en dessous d’une zone de perte de glace active. Pour évaluer quelle résolution du modèle est adéquate pour capturer les prédictions GIA à proximité des
changements de couverture de glace, nous effectuons d’abord des tests de sensibilité avec une suite de grilles numériques progressivement affinées près de la charge en utilisant un modèle GIA 3-D à volume fini (Latychev et al., 2005) et constatons qu’une résolution de grille d’environ 3 fois le rayon de la charge est nécessaire pour capturer avec précision la réponse élastique de la Terre.

Nous nous concentrons ensuite sur l’évaluation de la résolution de la grille du modèle requise pour capturer avec précision le processus GIA élastique et visqueux entraîné par les changements modernes et futurs de la calotte glaciaire dans l’ASE. Nous effectuons une série de simulations à des résolutions de grille de 1,9 à 15 km et constatons que des erreurs de moins de 5 % le long de la ligne de mise à la terre peuvent être atteintes avec une grille de 7,5 km et de moins de 2 % avec une grille de 3,75 km, même lorsque le modèle de glace est sur une grille de 1 km. Enfin, nous démontrons que les basses viscosités du manteau sous l’ASE conduisent à une déformation visqueuse qui contribue aux données instrumentales sur des échelles de temps décennales et qui égale ou domine les effets élastiques d’ici la fin du 21e siècle. Nos résultats suggèrent que pour les résolutions de 1,9 à 15 km que nous avons considérée, l’erreur due à l’adoption d’une grille plus grossière dans cette région est négligeable par rapport à l’effet de négliger les effets visqueux et l’incertitude dans la structure de viscosité du manteau adoptée.
Acknowledgements

The process of writing this thesis has been an amazing and formative journey. I am so grateful for the opportunity to work with my advisor Natalya Gomez whose kind support and intellectual supervision have encouraged my passion as a scientist. Thank you for allowing me to finally work on studying ice and sea level, and for always having my wellbeing in mind. Your passion, kindness and deep knowledge has inspired me to do my best.

I am especially grateful for my collaborators Konstantin Latychev and Holly Han who helped guide my research in invaluable ways. I am grateful for the opportunity to work with Konstantin who developed the 3-D GIA model and the processes used in this study, and whom I could always count on for thoughtful solutions. Holly, our weekly calls during the lockdown was a constant source of inspiration, rejuvenating my work and motivating me to keep on striving. Without your keen insight, I would not have been able to go so far.

I would also like to thank Dave Purnell, Maryam Yousefi, Erik Ngai Ham-Chan, Anna-Mireilla Hayden, Thomas Navarro, Julia Morales, Jeremy Roffman, Linda Pan and all other members of past and present GGG for the constant support and creating an environment where scientific discussions were always encouraged. The opportunities for collaboration and your patient guidance have allowed me to learn so much about the field. When it was still possible, our daily lunches, laughs and occasional feasting provided warmth to my heart and mind. To all my new friends in and outside the department, your support and hugs always brightened my day – thank you for making Montreal a place I miss dearly.

To my friends and family in Singapore, thank you for being my strong foundation and helping me through the times of struggle. The past two years have not been easy, and your support went a long way in giving me the energy to persevere.
Contribution of Authors

The following thesis presents original research conducted by the author (J.X.W.W.) at the Department of Earth and Planetary Sciences at McGill University, under the supervision of Dr. Natalya Gomez. The thesis is presented as a manuscript submitted for publication in the peer-reviewed journal Cryosphere, for which the author is the primary contributor to the development of ideas and experiments conducted in the study and writing and is listed as first author. The manuscript is titled “Resolving GIA in response to modern and future ice loss at marine grounding lines in West Antarctica” and is co-authored by Natalya Gomez (N.G.), Konstantin Latychev (K.L.) and Holly Han (H.H.). J.X.W.W. and N.G. developed the ideas and experiments in the study with input from K.L. and H.K.H.. K.L. contributed to designing the experimental set up. J.X.W.W. performed the simulations and analysis. J.X.W.W. and N.G. wrote the original text and all authors contributed to revisions.
List of Figures

Figure 1. Schematic Illustration of GIA processes in response to ice loss from a) before to b) after ice melt. ... 12
Figure 2. Lithospheric thickness map of Antarctica with key regions labelled 15
Figure 3. Grid and Earth model configuration .. 29
Figure 4. Ice loading scenarios and corresponding elastic sea level predictions in the ASE... 32
Figure 5. Idealized sensitivity experiment of the effect of surface grid resolution on GIA model calculations with elastic bedrock deformation due to instantaneous removal of cylindrical ice loads .. 35
Figure 6. Influence of grid resolution on elastic sea level predictions in ASE................ 38
Figure 7. Evolution of error in elastic sea level predictions due to grid resolution from 1950 to 2100 with the 1km input resolution ICE-RD ice model ... 40
Figure 8. Influence of incorporating viscous behaviour and uncertainty in viscoelastic Earth structure on sea level predictions ... 42
Figure 9. Influence of grid resolution on viscoelastic sea level predictions in ASE. 43
Figure 10. Evolution of site-specific sea level in simulations adopting a range of model resolutions and Earth models ... 45
Figure 11. Comparison of factors contributing to differences in sea-level predictions in this study ... 46

Figure S 1. Earth Model Summary. ... 55
Figure S 2. ASE_1km and ANT_10km ice model load change between 1950 to 2100, and resulting sea level change due to elastic GIA response ... 56
Figure S 3. Difference in predicted sea level change (m) between 1950 to 2100 from elastic GIA runs of various ice load configurations .. 56
List of Tables

Table S 1. Overview of the various GIA model setups ...54
1 Introduction

Accurate modelling of glacial isostatic adjustment (GIA) is crucial to understanding the past and forecasting of future sea-level condition in response to ice-mass loss. GIA signals can be detected in modern-day observations of GPS displacement, GRACE mass balance, as well as in paleo sea level and ice sheet records. Accordingly, applications for GIA modelling include predictions of future sea level hazard in response to ice melt (e.g. Gomez et al., 2018), corrections of modern instrumental records (e.g. van der Wal, 2015; Shepherd et al., 2018), and interpreting geological records including of paleo ice-sheet history and sea-level fluctuations (e.g. Khan et al., 2019). This thesis seeks to investigate the influence of factors influencing the accuracy of GIA modelling.

Changes in sea level in response to ice-mass loss are spatially variable due to GIA, which is the Earth’s deformational, gravitational, and rotational responses to changes in surface ice and water distribution (see schematic in Fig. 1, further details in Chapter 2.2). In response to ice load changes, the solid Earth deforms viscoelastically, with an instantaneous elastic response and a longer timescale viscous response associated with the mass redistribution of the viscous mantle towards isostatic equilibrium. In this thesis, we define GIA models as those that produce predictions of changes in the height of the sea surface equipotential and solid Earth surface (i.e. sea-level changes) in response to surface ice loading changes.

Figure 1. Schematic Illustration of GIA processes in response to ice loss from a) before to b) after ice melt. Deformational Effect: Ice-loading causes the elastic deformation of the lithosphere, and viscous deformation of the mantle. In (a), under ice loading the solid Earth flexes and subsides, and underlying mantle material is redistributed to the periphery of the load, creating a forebulge adjacent to the ice load. In (b), the elastic lithosphere rebounds due to the removal of the ice load, and the return flow of mantle material causes the forebulges to collapse. This results in the uplift of the land formerly under the ice-mass, and subsidence of the peripheral near-field regions. Note that viscous deformation effects start to dominate over a long time scale (~10^5-10^6 yr) compared to the elastic deformation effects, which are instantaneous. Gravitational Effect: In (a), the large ice mass results in a gravitational
attraction of the sea-surface close to the ice sheet. In (b), a fall in gravitational attraction due to ice mass loss results in a fall in sea-level close to the ice sheet. These effects act on a shorter \(\sim 10^2 \) yr time scales.

The Antarctic Ice Sheet (AIS) has the potential to make a significant contribution to future sea level rise as the climate warms (e.g. Seroussi et al., 2020; DeConto et al., 2021) and present-day mass balance estimates indicate that AIS melt rates have tripled over the past 5 years (Shepherd et al., 2018). Over the coming decades, the main concern regarding AIS-induced sea-level rise involves the possible collapse of marine sectors of the WAIS (Thomas, 1979; Weertman, 1974) which are grounded on bedrock below sea level, and make up a large portion of the WAIS (Fretwell et al., 2013). Whilst past estimates of WAIS collapse often cite a \(\sim 3-4 \) m global mean sea level (GMSL) contribution (e.g. Bamber et al., 2009; Gomez et al., 2010), a recent estimate by Pan et al. (2021) suggests an additional \(\sim 1 \) m contribution. This amplification of GMSL estimates is a consequence of the unique geological setting of the WAIS, which is underlain by a significantly low-viscosity mantle and thin lithosphere, resulting in much more rapid viscoelastic postglacial rebound that would amplify a water outflux mechanism in marine-based WAIS. On the other hand, studies have found that postglacial rebound and drawdown of the sea surface post ice loss can act as a negative feedback to stabilise the retreat of marine-grounded ice-sheets (e.g. Gomez et al., 2010; 2013; 2015; De Boer et al., 2014; Konrad et al., 2015; Larour et al., 2019). To fully capture the complex interaction of these mechanisms, accurate GIA modelling that incorporates robust representations of Earth structure is particularly important in the AIS, which is characterised by strong lateral variability in lithospheric thickness (Fig. 2) and upper mantle viscosity, with low viscosities in the West and high viscosities in the East (e.g. An et al., 2015a; Heeszel et al., 2016; Lloyd et al., 2020).

In the past, GIA modelling was typically performed using 1-D (radially varying) Earth viscosity models, which typically have thick lithospheres (\(\sim 100 \) km) and upper mantle viscosities in the range of \(\sim 10^{20-21} \) Pa s (Mitrovica and Forte, 2004) that typify cratonic lithospheres (e.g. Bamber et al., 2009; Gomez et al., 2010). However, recent advances in seismic tomography and geodetic and geologic constraints in the WAIS reveal upper mantle viscosities that vary by several orders of magnitude (e.g. Lloyd et al., 2020) and reaching scales as low as \(\sim 10^{18} \) Pa s in the Amundsen Sea Embayment (ASE; see Fig. 2 for location) (Nield et al., 2014; Barletta et al., 2018). Such anomalously low underlying mantle viscosities can result in an accelerated GIA signal that can become significant on annual to decadal timescales (Hay
et al., 2017). In this thesis, we focus our investigation on the particularly low viscosity ASE, which has been estimated to contribute metre-scale GMSL rise resulting from collapse of its marine sectors (Cornford et al., 2015) and is hence a region where accurate assessments of the GIA signal will be significant.

With the increasing availability and quality of datasets revealing the Earth’s complex structure, development of new modelling techniques and increasing computational power, studies exploring the effect of 3-D Earth structure in GIA modelling have garnered significant traction, and have demonstrated its significance particularly in regions of low mantle viscosity. Past studies have used other seismic models to derive 3-D mantle viscosity structure (e.g. Milne et al., 2018; van der Wal et al., 2015). A recent study using a coupled 3-D GIA and ice sheet model by Gomez et al. (2018) found that incorporating a 3-D Earth structure results in up to approximately ±1000 m differences in modelled local ice thickness and that results are particularly sensitive to low mantle viscosity regions in the WAIS. It is evident that to improve our understanding of AIS evolution, the complexities of Earth structure must be more deliberately considered. In this regard, recent advances in data availability in Antarctica have shed more light on the viscosity structure of the underlying Antarctic mantle. In Chapter 2, we describe the creation of a new 3-D global mantle viscosity model EM1 with a high-resolution grid over Antarctica to incorporate new empirical constraints on Earth structure from a recent Antarctic seismic tomography model, ANT-20, developed by Lloyd et al., 2020, which provide the first regional-resolution constraints to cover all of Antarctica down to 800 km depth.

GIA models capable of km- to sub-km-resolution have been developed (e.g. the 1-D GIA model by Adhikhari et al., 2016; the 3-D GIA model by Latychev, et al. 2005 with updates described in supplementary materials of Gomez et al., 2018), which allow for GIA models to capture short-wavelength bedrock deformation and input ice loading changes at unprecedented detail, but at heavy computational expense, particularly for global 3-D GIA models. As computational efficiencies and algorithms improve, the spatial resolution possible has also increased, raising the question as to the resolution necessary to maximise the accuracy of GIA predictions. Surface resolution would influence the geometry of grounded ice cover captured at the surface, whilst sub-surface resolution would influence the ability to capture variability in Earth structure. For the former, a recent study by Larour et al. (2019) suggests that models need km-scale surface resolution to accurately capture short wavelength elastic deformation. Characterising the influence of surface resolution in GIA model predictions, which incorporate
a 3-D Earth structure factors is the core goal of this thesis. In Chapter 3, we present a manuscript in submission detailing the assessment of the sensitivity of predictions of GIA in response to modern and future ice loss to spatial resolution of 1.9 – 15 km in the rheologically complex, marine sectors of the WAIS. Our simulations leverage upon the 3-D Earth model constructed in Chapter 2 and focus on the modelled response to observed modern ice loss over the present to coming century in the Amundsen Sea Embayment of West Antarctica.

2 Constructing a High-Resolution 3-D Mantle Viscosity Model in Antarctica

2.1 Antarctic continent

At present, the Antarctic continent contains the largest contiguous ice sheet with less than 2% of its land exposed. The thick ice sheet impedes the ease of geological sampling through drilling, contributing to an incomplete understanding of the geology and geophysical structure of Antarctica. Our understanding of Antarctic geology relies mainly on indirect geophysical methods of seismology, remote sensing, and modelling. Seismology is currently the best method to estimate the thermal structure of the Antarctic mantle and is used to construct models of lithospheric thickness and mantle viscosity.

![Lithospheric thickness map of Antarctica with key regions labelled.](image)

Figure 2. Lithospheric thickness map of Antarctica with key regions labelled. Elastic lithospheric thickness across Antarctica is based on model An et al. 2015a, scaled to produce a regional average.
lithospheric thickness of 96 km. The chosen colour scheme has regions with lithospheric thickness of 90-100 km as white, regions with thinner than average thickness as pink, and regions with thicker than average thickness as brown. Note that the minimum lithospheric thickness in Antarctica is 40 km. Main regions listed in text are labelled and the following is a list of abbreviations used. GSM: Gamburtsev Subglacial Mountains; DML: Dronning Maud Land; AP: Antarctic Peninsula; MBL: Marie Byrd Land; Ronne: Ronne Ice Shelf; Amery: Amery Ice Shelf. Light gray lines indicate plate boundaries. The black line delimits the Antarctic coast line including the extent of marine-based ice, and the dark red line indicates the location of the grounding line (bedrock topography contour at 0 m) from Bedmap2 (Fretwell et al., 2013).

A combination of geologic studies and geophysical techniques have been used to uncover the structure of the continent. The general consensus from these studies is that Antarctica’s interior Earth structure is highly complex, with a bimodal pattern of weak structure in the West, and a more rigid structure in the East (Fig. 2) (e.g. An et al., 2015b; Heeszel et al., 2016; Lloyd et al., 2020). Antarctica can be divided into East and West subcontinents separated by the Transantarctic Mountains. East Antarctica is characterised by an older, thick shield; and West Antarctica by a younger, tectonically active lithosphere.

Observations of Antarctic topography reveal that a significant fraction of the AIS is marine-based ice, which sits atop bedrock below sea level and is in contact with the ocean. Marine-based ice in the AIS can be kilometres thick and sit on bedrock deeper than 1 km below the sea level (Fretwell et al., 2013). Marine-based ice sheets in the WAIS are found in Ronne-Fischner Ice Shelf, Ross Ice Shelf and along the Amundsen Sea Embayment (ASE). It was first proposed in the 1970s that marine-based ice can be highly unstable and at risk of a runaway retreat in the event that the underlying bedrock slopes downwards towards the ice interior, leading to a rapid and irreversible inland migration of the ice sheet grounding line (Thomas, 1979; Weertman, 1974). In the coming century, the instability of marine-based WAIS will be a dominant source of uncertainty for sea-level rise predictions (Stocker et al., 2013; Seroussi et al., 2020; DeConto et al., 2021). In particular, models indicate that the Thwaites Glacier on the ASE contributes the greatest source of variability over the next few centuries, and the retreat of the Thwaites Glacier could triple the rate of eustatic sea level rise (Cornford et al., 2015).

2.2 Introduction to GIA Models and Importance of Earth Structure Inputs
To appreciate why spatially variable sea level occurs due to ice sheet loss (Clark & Lingle, 1977; Mitrovica et al., 2001), and the importance of Earth structure in influencing these patterns, this section first introduces the physics of sea level change and the components of Earth structure.

2.2.1 Sea Level Theory

GIA models compute viscoelastic deformation in response to change in surface loading and is constructed to solve the sea level equation. In this section, we describe the generalised sea level equation derived in Kendall et al., (2005). Further improvements in the sea level equation solved have been made to incorporate migrating shorelines, which is derived in Gomez et al., (2010).

We start by establishing the definition of relative sea level, SL:

$$SL(\theta, \phi, t_j) = G(\theta, \phi, t_j) - R(\theta, \phi, t_j)$$

which is the global field calculated by the difference between the radial height of the sea surface, or geoid, G, and the solid Earth surface, R, defined on the whole globe as colatitude θ, east-longitude ϕ, and time t_j.

We now define ocean height, $S(\theta, \phi, t_j)$, which refers to the sea level over oceans and is calculated by projecting global sea level onto the ocean function $C^*(\theta, \phi, t_j)$:

$$S(\theta, \phi, t_j) = SL(\theta, \phi, t_j) \cdot C^*(\theta, \phi, t_j)$$

$$C^*(\theta, \phi, t_j) = \begin{cases} 1 & \text{if } SL(\theta, \phi, t_j) > 0 \text{ and there is no grounded ice} \\ 0 & \text{elsewhere} \end{cases}$$

Calculating $S(\theta, \phi, t_j) > 0$ only where there is physical ocean filling is important to differentiate between the changing ocean load $\Delta S(\theta, \phi, t_j)$ and ice load that acts on the planet.
To derive a generalized sea level equation to calculate $\Delta S(\theta, \phi, t_j)$, we define changes in distribution of ice and water by the perturbations they generate to the radial position of the bounding surfaces that define sea level. Hence, the perturbation of global sea level at time t_j is defined as:

$$\Delta SL(\theta, \phi, t_j) = \Delta G(\theta, \phi, t_j) - \Delta R(\theta, \phi, t_j)$$

Now, the geoid, which is the equipotential surface of the Earth’s gravity field where the sea surface would lie in the absence of perturbing forces, is not static. To account for a changing G, the convention is to separate it into spatially varying and spatially uniform components.

$$\Delta G(\theta, \phi, t_j) = \Delta G(\theta, \phi, t_j) + \frac{\Delta \Phi(t_j)}{g}$$

$\Delta G(\theta, \phi, t_j)$ is the spatially variable component of the geoid and refers to the perturbation of the original equipotential surface that lies on the same valued equipotential surface as $SL(\theta, \phi, t_0)$, but with a different spatial distribution. $\frac{\Delta \Phi(t_j)}{g}$ is the corresponding spatial uniform component, referring to a globally uniform shift due to change in definition of equipotential surfaces.

The same treatment can be applied for the spatially variable component of global sea level as:

$$\Delta SL(\theta, \phi, t_j) = \Delta SL(\theta, \phi, t_j) - \frac{\Delta \Phi(t_j)}{g}$$

which is affected by the rheology of the solid planet and how it deforms and how the gravity changes in step. It depends on changes in grounded ice (ΔI), changes in ocean height (ΔS), and changes in rotational potential, or the angular velocity of Earth ($\Delta \omega$).

$$\Delta SL(\theta, \phi, t_j) = \Delta SL(\Delta I, \Delta S, \Delta \omega)$$

The spatial pattern of changes over time as mass is transferred from ice to ocean, and as the Earth deforms and redistributes its mass as a result. To solve for $\Delta SL(\theta, \phi, t_j)$, GIA models require the ice model, which contains the changes in ice location and thickness over time as a
forcing, and the Earth model, which contains the Earth structure and characterizes the rheological response to this forcing.

Three effects dominate the spatial variability of sea level rise and fall in response to ice sheet change: gravitational, deformational, and rotational effects. The effect of gravitational and deformational change near an ice sheet after a melt event is illustrated in Fig. 1, whilst the rotational effects relate to the movement in Earth’s rotational axis in response to redistribution of mass. The gravitational effect occurs because of the large gravitational attraction ice sheet mass exerts on the surrounding water, leading to a higher sea level closer to the ice sheet and lower sea level further away. In situations of ice loss a fall in gravitational attraction results in a fall in sea-level close to the ice sheet. Gravitational effects act on \(~10^2\) yr time scales.

The deformational effect occurs as Earth’s lithosphere continually deformed through flexure in response to surface loading. Earth’s crustal structure can be generalized as an elastic lithosphere overlying a viscous mantle. Mass redistributions due to ice melt have sufficiently large wavelength to cause this flexural response known as isostatic deformation of the solid Earth, which behaves visco-elastically. In response to loading, the elastic lithosphere flexes and subsides whilst mantle material is viscously distributed to the periphery, to create features like flexural depressions close to the point of loading and ‘peripheral bulges’ further away from the load. Correspondingly, unloading results in elastic uplift of the lithosphere and viscous subsidence of the mantle material resulting in collapse of the peripheral bulges. The rate at which the viscous response occurs start to be significant (\(~10^2\)-\(10^6\) yr) depends on the viscosity of the mantle material, and the Earth structural properties in general.

2.2.2 Components of Earth Structure in GIA Models

To quantify Earth’s structure in GIA modelling, it is broken down into a selection of parameters: (1) elastic and density, (2) lithospheric thickness and (3) mantle viscosity. At a global scale, the Earth’s elastic and density structure is largely spherically symmetric, and is well approximated using a radially-varying (1-D) profile that has been defined in seismic reference models such as STW105 (Kustowski et al., 2008) and PREM (Dziewonski and Anderson, 1981). For the components of lithospheric thickness and mantle viscosity, past limitations of high computational expense and lack of data constraining absolute values for
these parameters have restricted many GIA modelling efforts to using 1-D profiles to represent them. However, assumptions of 1-D lithospheric thickness and upper mantle viscosity in Antarctica may be a poor representation in this region, which has been demonstrated to be characterised by significant lateral heterogeneity (Fig. 2, 3c). 1-D GIA models simulating deglaciation postdating the Last Glacial Maximum (LGM) may be less pressed to consider lateral heterogeneity in Earth structure because of the relatively uniform mantle viscosities across North America. For example, Wahr and Zhong (2012) and Kaufmann et al. (2005) conclude that the effects of 3-D mantle viscosity on GRACE mass balance estimates of Antarctic ice loss are smaller than the effect of uncertainties Antarctic ice history. However, the emergence of Antarctica as a major driver of contemporary sea-level change has increased interest in incorporating 3-D Earth structure in Antarctic GIA studies to recreate the past Antarctic ice sheet configurations and to predict future sea level changes.

2.3 Construction of a New 3-D Mantle Viscosity Model for Antarctica

In this section we outline the methodology used to construct a new 3-D mantle viscosity model based on seismic tomography, EM1, for use as a vital input into the 3-D GIA model by Latychev et al., 2005. This involves: (1) processing data from a global seismic tomography model S362ANI (Kustowski et al., 2008) and regional Antarctic seismic tomography model ANT-20 (Lloyd et al., 2020); (2) converting seismic velocity to mantle viscosity estimates; and (3) merging the regional and global models.

2.3.1 Mantle Viscosity Model Inputs

ANT-20 is a high-resolution 3-D adjoint tomographic model for isotropic seismic velocities beneath the Antarctic and southern mid-latitude ocean (Lloyd et al., 2020). The model covers south of 45°S and extends from the upper mantle to the transition zone, with a radial resolution of 5 km and a lateral resolution of 25 km on the surface. The model provides newly resolved estimates of the geological and structural features of the Antarctic upper mantle model. Previous models have achieved regional-scale resolution only in targeted regions like Central and West Antarctica (e.g. Heeszel et al., 2016) and mostly probe upper mantle structure. It is only now with increased density of seismic datasets in Antarctica that such resolutions can be achieved throughout the Antarctic upper mantle and transition zone.
S362ANI is a 3-D global anisotropic shear wave velocity model for the whole mantle, extending from 25 km depth to the core-mantle-boundary defined at 2891 km depth, and providing a 2° grid resolution (source: http://ds.iris.edu/ds/products/emc-s362ani/). Some S362ANI features that are consistent with other seismic models include slow-velocity plumes beneath the Pacific and Africa, and an upper-lower mantle boundary around 650 km due to low long-wavelength heterogeneity below these depths. It is the starting model for the construction of the ANT-20.

2.3.2 Obtaining Mantle Viscosity Estimates from Seismic Tomography

Mantle viscosity is estimated from seismic velocity models by scaling isotropic seismic shear wave velocity anomalies to a viscosity variability term using the method developed by Ivins and Sammis (1995) as described in Latychev et al. (2005). The following is a summary of the sequence of steps taken:

\[
\delta \ln \rho(r, \theta, \phi) = \frac{\partial \ln \rho}{\partial \ln v_s}(r) \cdot \delta \ln v_s(r, \theta, \phi) \quad [1]
\]

\[
\delta \ln T(r, \theta, \phi) = \frac{1}{\alpha(r)} \cdot \delta \ln \rho(r, \theta, \phi) \quad [2]
\]

\[
\eta(r, \theta, \phi) = \eta_0(r) \cdot e^{-\epsilon \cdot \delta T(r, \theta, \phi)} \quad [3]
\]

where \(\rho, T, \text{ and } \eta\) are density, temperature, and viscosity; \(r, \theta, \phi\) represent the coordinates in three-dimensional space radius, co-latitude and east longitude respectively; \(v_s\) represents isotropic shear wave velocity; and \(\epsilon\) is the free exponential scaling factor to convert temperature perturbations to viscosity perturbations using an exponential dependence. The radially varying terms are: \(\alpha(r)\), the coefficient of thermal expansion; \(\eta_0(r)\), the reference values of mantle viscosity (Section 4); and \(\frac{\partial \ln \rho}{\partial \ln v_s}(r)\), the velocity to density scaling profile.

We first converted 3-D relative variations in seismic wave speeds, \(\delta \ln v_s(r, \theta, \phi)\), from ANT-20 and S362ANI to a 3-D model of relative density variation, \(\delta \ln \rho(r, \theta, \phi)\) using a \(\frac{\partial \ln \rho}{\partial \ln v_s}(r)\) profile based on convection-related geodynamic modelling and constrained by mineral physics developed by Forte and Woodward (1997). This density variation is then converted to a temperature variation field using \(\alpha(r)\) estimated by Chopelas and Boehler (1992). Assuming an exponential dependence on temperature we then convert the temperature field to a 3-D viscosity field. The free scaling factor, \(\epsilon\), can be chosen to scale
the dependence of viscosity to temperature variations, determining the peak-to-peak lateral variation in viscosity. We assume ϵ is independent of depth. This scaling factor to convert temperature perturbations to viscosity perturbations is varied to account for the amplitude differences between different seismic velocity models. To ensure that the average $\eta(r, \theta, \phi)$ at any radial layer is the same as that of the radial reference model, a scaling factor was also employed on the RHS of eq. 3. Based on mantle viscosity constraints available, the parameters described above need to be adjusted to produce mantle viscosities that fit the observed ranges.

2.3.3 Integration of regional seismic tomography model (ANT-20) into a global model (S362ANI)

To combine regional and global seismic data into a composite 3-D mantle viscosity model, we patch the globally defined model, S362ANI, with an Antarctic regional model, ANT-20, over region R shown in Fig. S1(f). Region R is assumed to contain as much of the regional-resolution data from ANT-20 whilst minimising boundary misfits between regional and global models. Details of the algorithm to perform this patching are described in Gomez et al. (2018, Supplemental Material). Both models are first projected onto a common auxiliary triangular grid, and a boundary value Poisson problem with Dirichlet boundary conditions is set for a 200 km transition zone (T) along the boundaries within region R. This allows for a smoothened transition between global and regional model features. The adjustment algorithm iterates the process until the convergence of boundary corrections is reached. Along T, there exist structural features in the composite model that are artifacts of the patching and smoothening process (Fig. S1). We expect these boundary zone artifacts to have negligible effects on the resulting model predictions as they are located over the ocean at a distance from any post-LGM ice loads.

In section 3.2.3, we describe the details of two resulting 3-D mantle viscosity models for Antarctica: EM1_L and EM1_M, which were constructed based on specific parameter choices designed to match the observed mantle viscosity constraints in the AIS and used as a crucial input for the study in Chapter 3.
3 Resolving GIA in response to modern and future ice loss at marine grounding lines in West Antarctica

Jeannette Xiu Wen Wan¹, Natalya Gomez¹, Konstantin Latychev², Holly Han¹

¹McGill University, Department of Earth and Planetary Sciences, Montreal, Canada
²Harvard University, Department of Earth and Planetary Sciences, Cambridge, Massachusetts

Correspondence to: Natalya Gomez (natalya.gomez@mcgill.ca)

Abstract. Accurate glacial isostatic adjustment (GIA) modeling in the cryosphere is required for interpreting satellite, geophysical and geological records and to assess the feedbacks of Earth deformation and sea level change on marine ice-sheet grounding lines. Assessing GIA in areas of active ice loss in West Antarctica is particularly challenging because the ice is underlain by laterally varying mantle viscosities that are up to several orders of magnitude lower than the global average, leading to a faster and more localized response of the solid Earth to ongoing and future ice sheet retreat and necessitating GIA models that incorporate 3-D viscoelastic Earth structure. Improvements to GIA models allow for computation of the viscoelastic response of the Earth to surface ice loading at sub-kilometre resolution and ice-sheet models and observational products now provide the inputs to GIA models at comparably unprecedented detail. However, the resolution required to capture GIA in models remains poorly understood, and high-resolution calculations come at heavy computational expense. We adopt a 3-D GIA model with a range of Earth structure models based on recent seismic tomography and geodetic data to perform a comprehensive analysis of the influence of grid resolution on predictions of GIA in the Amundsen Sea Embayment (ASE) in West Antarctica. Through idealized sensitivity testing down to sub-kilometer resolution with spatially isolated ice loading changes, we find that a grid resolution of ~3 times the radius of the load is required to accurately capture the elastic response of the Earth. However, when we consider more realistic, spatially coherent ice loss scenarios based on modern observational records and future ice sheet model projections and adopt a viscoelastic Earth, we find that errors of less than 5% along the grounding line can be achieved with a 7.5 km grid, and less than 2% with a 3.75 km grid, even when the input ice model is on a 1 km grid. Furthermore, we show that low mantle viscosities beneath the ASE lead to viscous deformation that contributes to the instrumental record on decadal timescales and equals or dominates over elastic effects by the end of the 21st
our findings suggest that for the range of resolutions of 1.9-15 km that we considered, the error due to adopting a coarser grid in this region is negligible compared to the effect of neglecting viscous effects and the uncertainty in the adopted mantle viscosity structure.

3.1 Introduction

Changes in sea level in response to ice-mass loss are spatially variable because of glacial isostatic adjustment (GIA), which is the deformational, gravitational, and rotational response of the viscoelastic solid Earth to changes in surface ice and water distribution. The response of the bedrock consists of an instantaneous elastic response of the solid planet’s lithosphere and mantle, and a longer timescale viscous relaxation of the mantle towards isostatic equilibrium. GIA models produce predictions of changes in the height of the sea surface equipotential and solid Earth surface (i.e. sea-level changes) in response to surface ice loading changes, which are in turn used to interpret satellite, geophysical and geological records and serve as input to models of ice-sheet dynamics.

Accurate GIA modelling is required to constrain the sea level and solid Earth feedbacks on ice dynamics in the coming centuries, especially along unstable marine-grounded ice fronts in Antarctica where bedrock uplift and gravitational drawdown of the sea surface due to ice loss act as a negative feedback to stabilise the retreat of marine-grounded ice-sheet grounding lines (e.g. Gomez et al., 2010; 2013; 2015; De Boer et al., 2014; Konrad et al., 2015; Larour et al., 2019). Furthermore, the GIA response to past and modern ice cover changes makes a significant contribution to satellite records of modern mass changes in marine sectors of the West Antarctica that are actively experiencing ice loss (e.g. King et al., 2012; the IMBIE team, 2018).

GIA modelling in Antarctica is complicated by the fact that the continent is characterised by strong lateral variability in lithospheric thickness and upper mantle viscosity, with low viscosities in the west and high viscosities in the east (e.g. An et al., 2015a; Heeszel et al., 2016; Lloyd et al., 2020). In particular, the low-viscosity mantle and thin lithosphere observed under the West Antarctic Ice Sheet (WAIS) identified from increasingly resolved seismic tomography and geodetic and geologic constraints (Ritzwoller et al., 2001; Morelli and Danesi, 2004; Kaufmann et al., 2005; Nield et al., 2014; Heeszel et al., 2016; Barletta et al., 2018; Shen et al., 2018; Lloyd et al., 2020) leads to a more spatially localised (short wavelength) and faster viscoelastic response to surface loading than cratonic regions covered by Late Pleistocene ice.
sheets (e.g. Hay et al., 2017; Powell et al., 2020). Over West Antarctica, upper mantle viscosities are thought to vary by several orders of magnitude over short spatial scales (~100s of km) reaching as low as 10^{18} Pa s in the Amundsen Sea Embayment (ASE) beneath areas of active marine ice loss (e.g. Nield et al., 2014; Barletta et al., 2018). This implies that viscous effects due to 20th century and more recent ice loss will become significant on annual to decadal timescales and accelerate during the timeframe of instrumental records (Barletta et al., 2018; Powell et al., 2020). Viscous effects due to ongoing ice loss also have the potential to influence ice sheet grounding lines in the coming centuries (Gomez et al., 2015) but have not been included in recent high resolution coupled projections (Larour et al., 2019). In recent years, studies coupling Antarctic ice dynamics to the viscoelastic solid Earth response capable of high resolutions up to 500-m along the grounding line (e.g. Kachuck et al., 2020) and 1-km resolution Antarctic-wide (e.g. De Conto et al., 2021) have been conducted.

To accurately capture the timing and wavelength of GIA effects across Antarctica, models must be capable of both accounting for 3-D Earth structure (i.e., 3-D GIA models such as Latychev et al., 2005 or van der Wal et al., 2015), and be of sufficient spatiotemporal resolution to capture the geometry of grounded ice cover. Commonly, GIA, ice-sheet and coupled ice-sheet – GIA modelling (e.g. Gomez et al., 2015; Konrad et al. 2015) studies of the sea level change in response to modern and future ice loss have been performed with only 1-D (radially varying) Earth structure models (e.g., Kendall et al., 2005; Spada and Stocchi, 2007; Adhikhari et al., 2016), or with coarse spatial resolutions of > 20 km due to the computational expense. GIA models capable of km- to sub-km-resolution have also been developed (e.g. the 1-D GIA model by Adhikhari et al., 2016; the 3-D GIA model by Latychev, et al. 2005 with updates described in supplementary materials of Gomez et al., 2018). For computational efficiency, some of these models implement regional grid refinement techniques which allow for a higher resolution along ice retreat margins. Alongside this, improvements in ice-sheet models (e.g. Nowicki et al., 2016; Seroussi et al., 2020; DeConto et al., 2021) and observational products (e.g. Studinger, 2014; Bamber et al., 2020; Smith et al., 2020; Morlinghem et al., 2020) allow similarly high-resolution km- to sub-km- ice thickness and bedrock topography datasets that serve as input to GIA models. These advancements allow for GIA models to capture short-wavelength bedrock deformation and input ice loading changes at unprecedented detail, but at heavy computational expense, particularly for global 3-D GIA models.
It is well-established that dynamic ice-sheet models are sensitive to the chosen grid resolution (e.g. Durand et al., 2009; Van den Berg & Van de Wal, 2006), requiring km to sub-km resolution to accurately represent ice dynamics and grounding line migration in some applications (e.g. Gladstone et al., 2012; Pattyn et al., 2013; Cornford et al., 2016). It has also been suggested that as fine as 1-km resolution bedrock topography may be needed to capture the influence of fine-scale topographic features on the ice-sheet evolution (Durand et al., 2009) and high resolution may also be needed to represent some embayment walls and pinning points that act to slow down retreat (e.g. Favier et al., 2012; Joughin et al., 2014; Berger et al., 2016).

While topographic features themselves can be very fine scale, the changes in bedrock elevation and sea level in response to ice cover changes tend to be longer wavelength, and the corresponding spatial resolution required to accurately resolve these changes in GIA models and their influence on ice dynamics remains poorly understood. Larour et al. (2019) suggested that kilometer-scale resolution may be required to capture the elastic component of deformation in response to ice loss. However, the idealized tests they performed considered an isolated, and increasingly localized load, and their conclusion may not hold for more realistic, spatially coherent ice loss scenarios. Furthermore, their model did not include viscous deformation in response to ongoing ice loss during the simulation, or account for lateral variations in Earth structure. There have been limited studies assessing the length scale of realistic viscoelastic bedrock response beneath the structurally complex WAIS, though a recent high-resolution bedrock deformation modelling study by Zwinger et al. (2020) suggests a convergence in modelled deformation at resolutions finer than 5 km. The broad spatial nature of bedrock deformation and the spatially coherent nature of ice-sheet retreat, which becomes less localised over longer timescales, suggest that sub-km to km grid resolution, which comes at great computational cost, may not be necessary for accurate GIA model calculations.

The aim of this study is to assess the sensitivity of predictions of GIA in response to modern and future ice loss to spatial resolution in the rheologically complex, marine sectors of the WAIS. We build a 3-D viscosity model based on the most recent Antarctic-wide seismic tomography model (Lloyd et al., 2020) to serve as input to a 3-D finite volume, global sea level model (Latychev et al., 2005) to assess the performance of 3-D GIA model predictions across surface grid resolutions of 1.9-15 km. We repeat calculations with a range of Earth models, considering the contribution from elastic and viscous deformation separately. We focus on the response to observed modern ice loss over the last two decades (Shepherd et al., 2019) and
projected future ice sheet retreat in the coming century (Golledge et al., 2019; DeConto et al., 2021) in the Amundsen Sea Embayment of West Antarctica. Our study is motivated by the following questions: What 3-D grid resolution is necessary to adequately capture the elastic and viscous uplift and associated gravitational and rotational effects in response ice loading changes? How significant is the effect of grid resolution compared to sources of uncertainty and simplifications made in some previous modelling, in particular the neglect of viscous deformation.

3.2 Methods

To investigate the influence of GIA model grid resolution, we first conduct idealized load sensitivity tests over a range of surface grid resolutions from 7.5 to 0.5 km, for the instantaneous removal of cylindrical loads from 0.5 to 16 km in radius (Section 3). We then widen our “aperture” to assess the model grid resolution required to accurately capture GIA due to modern ice-sheet cover changes from satellite observations (Shepherd et al., 2019) and future ice loss from ice-sheet model projections (Golledge et al., 2019; DeConto et al., 2021) in the rapidly evolving Amundsen Sea Embayment of West Antarctica (Section 4). We choose to locate our study region (light blue square in Fig. 5a) on the ASE both because of the ongoing ice loss and vulnerability to large-scale future marine ice-sheet retreat in the region, and because the region is characterized by low upper mantle viscosities and a thinned lithosphere (e.g. Barletta et al., 2018) making the ice there sensitive to solid-Earth ice-sheet feedbacks. In the ASE, the Pine Island and Thwaites Glaciers together contributed 95 Gt/year of the 159 ± 8 Gt/year total WAIS mass flux in 2017 (Rignot et al., 2019), with studies estimating that collapse of Thwaites Glacier is already underway (Joughin et al., 2014). Accurate GIA predictions are critical to assess rates of future ice-sheet retreat and associated sea level changes making it an ideal location to study the effects of grid resolution on modelled GIA. To represent the radially and laterally variable Earth rheology in this region, we use a viscoelastic Earth rheology and a range of 3-D viscosity structure models in Antarctica derived from seismic tomography (An et al., 2015a; Heeszel et al., 2016; Lloyd et al., 2020). We adopt a range of 3-D Earth model grids with surface resolutions from 1.9-15 km and compare results to first assess the resolution required to capture the elastic deformation associated with ice loss. Lastly, we repeat these experiments with viscoelastic effects and compare results to the elastic calculations to assess the contribution of viscous effects to modern and future sea level, and the model resolution required to capture these effects. In the sections that follow, we describe the adopted
3-D GIA model, computational grids, Earth rheological models, and adopted modern and future ice loss scenarios.

3.2.1 3-D GIA Model

We compute GIA predictions with a global 3-D finite volume sea level and Earth deformation model (Latychev et al., 2005) capable of regional grid refinement (Gomez et al., 2018). The model solves the sea level equation (Kendall et al., 2005) over a 3-D global spherical tetrahedral grid defined from the surface to the core-mantle boundary (CMB) that allows us to resolve the laterally and radially varying Earth structure which are a strong feature in Antarctica. We also adopt this 3-D GIA model because it is capable of regional grid refinement to achieve regional resolution at sub-km scale in regions of interest within a lower resolution globe (Section 2.2). The model computes gravitationally self-consistent solutions for the sea level equation, incorporating effects of time-varying shorelines, Earth rotation changes and viscoelastic deformation of the Earth assuming an elastically compressible Maxwell viscoelastic rheology. The GIA model requires two main inputs, a 3-D Earth model of viscoelastic rheological properties and a time series of ice thickness changes. These components are described in the following sections. The model also requires global topography as an initial boundary condition, including the elevation of the bedrock beneath the ice. Topography globally outside of Antarctica is set to etopo2 (NOAA National Geophysical Data Centre, 2006) in all experiments with a realistic loading scenario, and the Antarctic bedrock elevation for each of the experiments is described below. Note that we adopt a stand alone GIA model throughout this study. The purpose of this study is to inform the set-up of coupled ice sheet - sea level modeling studies, and we do not model the feedback of GIA on ice sheet dynamics.

3.2.2 Computational model grid: regional grid refinement

To compute GIA model predictions, we construct model grids of various surface resolutions (Fig. 3) with the regional grid refinement process detailed in the supplementary material of Gomez et al. (2018). Grid refinement is achieved by incrementally bisecting grid edges in the selected region to achieve a desired resolution, and a final smoothing operation along the region boundary to ensure a well-behaved transition. We perform calculations on a base grid with a global surface resolution of 15-km, which consists of 20 million nodes and 70 radial layers between the core-mantle boundary and the Earth’s surface. The radial layers are defined to respect the unconformities in the radially varying (1-D) seismic reference model STW105
(Kustowski et al., 2008), with the shallowest layers at 12, 25 and 43 km depth. Eight regionally refined grids are constructed from this base grid: five for the idealized load sensitivity tests at 7.5, 3.75, 1.75, 1 to 0.5 km surface grid resolution over a minimum 0.3-degree radius region around the test load, and three for the more realistic calculations from observed modern and future model projected ice loss, at 7.5, 3.75 and 1.9 km surface resolution in incrementally smaller regions converging over the ASE (Fig. 3). The highest-resolution 1.9 km grid over the ASE has ~ 29 million nodes. As our study focusses on surface grid resolution, the grid refinement is limited to the surface few layers down to ~10 km. Testing with deeper grid refinement during experiment design process indicated that this was sufficient, and our results indicate that km-scale model resolution is only needed at the surface to accurately capture the geometry of surface loading.

Figure 3. Grid and Earth model configuration. (a-b) Configuration of the tetrahedral grid in the finite-volume 3-D GIA model with regional refinement, used for observational and modelled ice loading scenarios. (a) shows a cross-sectional view of the regional refinement along ASE. (b) indicates areas of grid refinement across Antarctica with a surface grid resolution of 7.5 km over all Antarctica in black, 3.75 km over a section of the West Antarctica in magenta and 1.9 km in the ASE (light blue square). (c-d) Logarithmic viscosity perturbation map at depth 200 km for low upper mantle viscosity model EM1_L over (c) Antarctica and (d) our study region in the Amundsen Sea Embayment. Values are relative to reference 1-D model with upper mantle viscosity of 1×10^{20} Pa s, and lower mantle viscosity of 5×10^{21} Pa s. The black line delimits the Antarctic grounding line, and the dark green line shows the bedrock topography contour at 0 m from Bedmap2 (Fretwell et al., 2013) highlighting...
marine-based sectors of ice. Transparent patch in (c) contains no data on mantle viscosity as it the region contains lithosphere at 200 km depth.

3.2.3 Earth rheological model

The spatial pattern and amplitude of surface deformation in response to ice loading is dependent on the underlying Earth structure. For the idealized sensitivity tests in section 3, we adopt a purely elastic Earth model with a 1-D elastic and density structure. In section 4, we move to a set of realistic simulations using observed or modelled AIS ice loading, adopting 3-D viscoelastic Earth models with a range of viscosity structures constrained by seismic tomography (An et al., 2015a,b; Lloyd et al., 2020) and informed by GNSS-inferences of local mantle structure. The elastic and density structure for these models are based on seismic reference model STW105 (Kustowski et al., 2008). Laterally varying lithospheric thickness (Fig. S1(d)) in all simulations is a composite of a regional lithospheric thickness model by An et al. (2015a) over Antarctica, and a global lithospheric thickness model by Conrad and Lithgow-Bertelloni (2006) everywhere else. Over Antarctica, lithospheric thickness is scaled to have an average of 96 km, resulting in a minimum of 40 km, as was done in Hay et al. (2017).

3-D mantle viscosity variability is estimated from seismic velocity models by scaling isotropic seismic shear wave velocity anomalies to a viscosity variability term using the method developed by Ivins and Sammis (1995). This term defines the variability of mantle viscosity with reference to a chosen 1-D viscosity profile. We follow the same procedure as described in Latychev et al. (2005), Austermann et al. (2013) and Gomez et al. (2018), whereby lateral variations in mantle viscosity are established by sequentially converting the field of relative variations in isotropic shear wave velocity to density, temperature and eventually viscosity anomalies. The final conversion adopts a factor that scales the dependence of viscosity to temperature variations, determining the peak-to-peak lateral variation in viscosity. A different scaling factor is applied to regional and global seismic velocity models to account for the amplitude differences between the different seismic velocity models.

To address the substantial uncertainty in Earth structure, we repeat our simulations with three different 3-D viscosity models: EM1_L (Figs. 1c, d, S1), EM1_M, and EM2. EM1_M and EM1_L adopt the latest high-resolution 25 km Antarctic seismic tomography model by Lloyd
et al. (2020) (ANT-20) in the region south of 45°S and extending from the surface down to the transition zone, and S362ANI (Kustowski et al., 2008) for the rest of the globe. The two variations EM1_M and EM1_L were scaled to represent a moderate range of viscosities across Antarctica that match regional averages, and a lower-viscosity endmember adjusted to match GPS-derived inferences of minimum viscosity beneath WAIS (Nield et al., 2014; Zhao et al., 2017; Barletta et al., 2018).

The viscosity variations in EM1_M are more moderate with scaling factors of 0.0263 for ANT-20 and 0.035 for S362ANI, both close to the preferred value in Kaufmann et al. (2005). These viscosity variations are superimposed on a 1-D viscosity profile of 5×10^{20} Pa s in the upper mantle and 5×10^{21} Pa s in the lower mantle typical in most GIA-based inferences of mantle viscosity (e.g., Mitrovica and Forte, 2004). As noted, the viscosity variations in EM1_L (Figs. 1c, d, S1) are of higher amplitude with lower viscosities under WAIS and the ASE. EM1_L adopts larger scaling factors of 0.033 for ANT-20 and 0.04 for S362ANI and an accompanying 1-D viscosity profile of 1×10^{20} Pa s in the upper mantle, which is aligned with Lambeck et al., (2014) estimates of 1-D upper mantle viscosity using far-field sea-level proxy records, and 5×10^{21} Pa s in the lower mantle. The larger scaling factors applied in EM1_L were calibrated to best reflect the absolute upper mantle viscosity estimates from dynamically derived GPS bedrock uplift rates in the WAIS at three locations: $\sim 6 \times 10^{17}$ to 2×10^{18} Pa s at the northern Antarctic Peninsula (Nield et al., 2014), $\sim 2 \times 10^{19}$ to 2×10^{20} Pa s at the Fleming Glacier in central Antarctic Peninsula (Zhao et al., 2017), and $\sim 2.5 \times 10^{18}$ to 4×10^{19} Pa s at the Amundsen Sea Embayment (Barletta et al., 2018). Figures 1c, d and S1 shows the resulting low viscosity Earth model structure (EM1_L), which has the lowest viscosity at Marie Byrd land of $\sim 9 \times 10^{17}$ to 7×10^{18} Pa s in the upper mantle.

Lastly, the EM2 model, also adopted in Hay et al. (2017), Gomez et al. (2018) and Powell et al. (2020), is a combination of three seismic models: S40RTS (Ritsema et al., 2011) globally, a model by An et al. (2015a) in the East Antarctica and Antarctic Peninsula, and the model by Heeszel et al (2016) for West and Central Antarctica. The full construction of EM2 is detailed in Hay et al. (2017).

3.2.4 Ice model and topography

We consider three ice melt scenarios with resolution ranging from 1- to 5 km in the ASE. The total ice thickness change from start to end of each scenario is shown in Figs. 2a-c.
Figure 4. Ice loading scenarios and corresponding elastic sea level predictions in the ASE. (a - c) Total ice thickness change in meters predicted from (a) 1997 to 2017 in the observation-based ICE-SH ice model (Shepherd et al., 2019), and from 2000 to 2100 in the (b) ICE-GOL (Golledge et al., 2019) and ICE-RD (DeConto et al., 2021) ice model projections. (d – f) show the predicted sea level change in meters with an elastic Earth model associated with the ice cover changes shown in (a-c). (g–i) as in (d-f) but adopting 3-D viscoelastic Earth model EM1_L. The black and blue line indicates final and initial grounding lines, respectively, for each simulation. Each frame is annotated with the maximum and minimum value within the frame. Note that the colour bars change across each frame.

For observations of modern ice loss, we adopted a reconstruction we term ICE-SH from Shepherd et al. (2019) of surface elevation change (Δh) from 25 years (1992-2017) of multi-mission satellite altimetry data resolved over a 5-km grid at 5-year intervals. We treat Δh as a proxy for ice thickness change (Carrivick et al., 2019), apply the Bedmap2 (Fretwell et al., 2013) grounded ice mask and saturate ice thickness change > 20 m/yr to control against spurious data points. Initial ice thickness is given by Bedmap2. Observations of ice surface elevation changes in Antarctica are continuously improving in resolution, and currently range from metre-scale resolution over short observational tracks (e.g. Studinger et al., 2014), to sub-
km to km-scale resolution at the regional scale (e.g. Bamber et al., 2020), to ~5 to 35 km from radar and laser satellite altimetry derived records over the whole Antarctic (e.g. Martin Español et al., 2016; Schröder et al., 2019; Shepherd et al., 2019; Smith et al., 2020). ICE-SH was selected from the available observational datasets due to the 5-km resolution being the highest of its class of available satellite altimetry derived-records providing decadal time span surface elevation change records covering the whole Antarctic.

For Antarctic evolution over the next century, we apply modelled ice thickness changes from two Antarctic-wide ice-sheet model projections: (1) ICE-GOL, which predicts AIS evolution under RCP 8.5 and including meltwater feedbacks from 2000 to 2100 at 5-km resolution over 5-year intervals (Golledge et al., 2019), and (2) ICE-RD, which predicts AIS evolution from 1950 to 2100 at 10-km resolution over the whole AIS with a nested 1-km resolution simulation over ASE at annual resolution (Extended Data Fig. 7 from DeConto et al., 2021). For ICE-RD, we ran simulations at yearly intervals from 1950-2100 but the interval from 1950-2000 is a period of ice model initialization and we therefore focus on the period between 2000 and 2100 in our results. We also take initial Antarctic bedrock topography from the ice models. Further information of each model can be found in the corresponding references. In selecting these scenarios, the goal is to provide a representative sample of spatially coherent ice-sheet retreat scenarios at high resolution from the literature, rather than to capture all possible projected future ice loss scenarios.

3.3 Idealized experiments: sensitivity of elastic uplift predictions to grid resolution

Our main goal in this analysis is to assess the relationship between grid resolution and elastic GIA predictions, and to identify, for a given load dimension, the grid resolution required to accurately model the associated GIA response. Realistic ice retreat has complex geometry, making it difficult to pinpoint the cause of GIA inaccuracies due to resolution, which may be due to poor representation of the ice load, or numerical errors in representation of the response to Earth loading. To isolate the effect of changing grid resolution on GIA predictions, we first perform a suite of idealized sensitivity tests modelling the instantaneous elastic deformation from unloading of an isolated cylindrical ice load with differing surface grid resolutions that are iteratively bisected from 7.5 km down to 0.5 km. We chose to perform the test with short wavelength, spatially isolated ice loading changes because these would be most poorly represented by a coarse grid compared to coherent ice loss over a broader area. Furthermore, these tests with idealized loads are less computationally costly and enable a systematic
assessment reaching higher spatial resolution. In total, 85 GIA simulations were run using 17 ice cylinders of height 100 m and radii ranging from 0.5 to 16 km (0.5, 1, 2,…,15, 16), across five different grid surface resolutions: 0.5, 1, 1.75, 3.75 and 7.5 km.

The simulations are performed with the purely elastic 1-D Earth model (Sect. 2.3), and an idealized topography of 3800 m south of 24.5 °S and - 835 m everywhere else to reflect the 30:70 land to sea ratio on Earth. A radially symmetric ice sheet with steady-state Antarctic ice dome profile (Paterson and Colbeck, 1980) sits on top of this topography extending from the south pole to 69°S, with a maximum height of 3500 m. We also consistently place the centre of the cylindrical load on an arbitrary model grid node in the ASE (76°S 150°W).

3.3.1 Idealized experiment results

Figure 5 summarises the error in predicted elastic GIA response with varying load radius and grid resolution. Figure 5a shows the bedrock deformation along a transect from the centre of the load for ice cylinders of 2, 5 and 10 km radius, with maximum bedrock uplift predicted on the finest 0.5 km grid of 48, 120 and 185 mm, respectively. Figure 5b indicates whether the grid over- (blue) or under- (red) represents the mass of the load within the model. Errors in the GIA prediction compared to the result for the finest resolution 0.5 km grid (yellow lines) are typically the largest at the load centre where they underestimate the magnitude of peak displacement. Although a coarser grid may either under- or over-estimate the mass of loading represented in our model (Fig. 5b), it will always dampen the magnitude (effective height) of the load by spreading the load area over a larger grid region. For example, a 5 km radius load will be represented by 3 grid points on a 7.5 km grid, resulting in an overestimated 11.25 km radius loading footprint. For certain radius and grid combinations, the wider load footprint on a coarser grid leads to another zone of peak error occurring outside the load edge (e.g., compare dashed black line to yellow line in Fig. 5a). Even further from the load, the magnitude of deformation decreases and the results from various grid resolutions begin to converge.
Figure 5. Idealized sensitivity experiment of the effect of surface grid resolution on GIA model calculations with elastic bedrock deformation due to instantaneous removal of cylindrical ice loads. Cylinders are all of unit height 100 m, and radius from 0.5 to 16 km. Five grid resolutions applied within an area of minimum 40 km width were tested: 0.5, 1, 1.75 km, 3.75 and 7.5 km (Figure S1). (a) Transect of bedrock deformation for removal of ice cylinders with unit height and radii of 2 km (solid lines), 5 km (dotted) and 10 km (dashed lines). (b)–(e) Results of a suite of simulations adopting ranges of ice cylinder radii and grid resolutions. (b) Colors indicate 1 minus the Mass Factor, [1 – Mass Factor], where the Mass Factor is the ratio of the theoretical mass of the load and the mass of the load represented on the given model grid. 0 represents a scenario where the model grid perfectly represents the mass of the idealized load, whilst positive (blue) and negative (red) values indicate the load mass is over- and under-represented by model grid resolution, respectively. (c) Root mean square error across the suite of simulations (mm). (d) Average absolute percentage error (%). (e) Standard deviation of the absolute percentage error (%) of the given test from the finest 0.5 km resolution model result, calculated within 2 km of the loaded region. Dashed black lines represent the 1:3 ratio between idealized load cylinder radius and surface grid resolution whereby average absolute percentage error becomes < 7 ± 3 (σ) % for all scenarios.

These sensitivity test results highlight that the accuracy of predictions depends on the placement of the edge of the load relative to grid nodes and find that the load will be best captured if its edge lies sufficiently close to a grid node (e.g., in Fig. 5b the 1.75 km grid more closely captures the 2 km radius load than the 3 km radius load). Finally, the grid is unable to resolve the load when the grid resolution is more than approximately three times the radius of the load. This is illustrated, e.g., in the black solid line in Fig. 5a, where unloading a 2 km
radius load on a 7.5 km grid resulted in no deformation, whereas a 3 km radius load is captured with a 7.5 km grid.

To quantify grid-related error, we calculate the difference between a given simulation and the corresponding simulation with the finest (0.5 km) resolution. We plot the root mean square error (RMSE; Fig. 5c) as an absolute measure of error and the average and standard deviation of the absolute percentage error (Figs. 3d, e) as a relative measure of error, beneath and within 2-km of the loaded region. Fig. 5c shows that the magnitude of RMSE remains relatively constant. This RMSE remained between ~10-20 mm for a 3.75 km grid, and ~ 20-40 mm for a 7.5 km grid, for example. As the load radius increases, the magnitude of deformation increases as well. However, the error due to grid resolution becomes less significant relative to the total deformation (i.e. the percentage error in Figs. 3d, e decreases).

While the dependence of grid performance on load position relative to grid nodes complicates matters, in order to arrive at an approximate relationship between grid resolution and load size, we assume a linear relationship between the two, which allows us to estimate, for this GIA model, a threshold beyond which grid-related error becomes sufficiently low to no longer merit a further refinement in grid resolution (Figs. 3d, e). For example, in the cross-sectional view of deformation in Fig. 5a, the 10 km radius load deformation is equally well represented by grid resolutions between 0.5 to 1.75 km. Considering the average absolute percentage error (Figs. 3d, e), we found that a 3:1 ratio (represented visually on Figs. 3b-e in the form of a black dashed line) between load radius and grid resolution (6:1 ratio between load diameter and grid resolution) brings the error to < 7 ± 3 % (where 3% represents one standard deviation of the absolute percentage error calculated within 2 km of the load region).

These results provide a rough estimate of the magnitude of error one can expect from a given model resolution and loading scenario, and can serve as a guide for selecting the appropriate grid resolution for a given problem. For example, for an input load with significant isolated locations of ice loss ~ 3 km in radius (or a ~ 6 km in diameter), a grid resolution of 1 km should be adopted. However, these idealized cylindrical load experiments are unlikely to capture the sensitivity of GIA predictions to grid resolution when realistic ice loss geometries are adopted. Such geometries are rarely characterized by spatially localized loads. Furthermore, these experiments capture only elastic deformation and neglect viscous effects, which can be significant on short timescales in low viscosity zones of the West Antarctic. In the following
sections we explore how the dependence on grid resolution of GIA model predictions identified here changes when more realistic ice loss geometries and 3-D viscoelastic Earth structure are adopted.

3.4 Results with realistic modern and future ice loss in the Amundsen Sea

In this section, we consider the importance of grid resolution error for more realistic, spatially coherent modern and future ice loss scenarios. We begin with a consideration of the influence of grid resolution on sea level change in simulations adopting a purely elastic Earth model in section 4.1. Following this, we adopt 3-D viscoelastic Earth models to consider the contribution to sea level change from viscous deformation.

3.4.1 Influence of grid resolution on predictions of elastic deformation

Figures 2d-f show predicted sea level change in the Amundsen Sea Embayment of West Antarctica adopting an elastic Earth model for three different ice retreat scenarios: one observationally constrained from 20 years of satellite altimetry data from 1997 to 2017 (ICE-SH; Fig. 4a), and two projected from dynamic ice sheet models for the coming century (ICE-GOL and ICE-RD; Figs. 2b-c). Sea level fall is predicted in the entire study region in all scenarios associated with the combination of sea surface subsidence and elastic bedrock uplift due to ice loss – the latter being the dominant signal. Earth rotational effects are included in the predictions but are negligible compared to the other effects in the vicinity of the ice loss. For the modern, the maximum sea level fall from 1992 – 2017 reaches 0.68 m (Fig. 4d), while for future ice loss projections, the sea level fall reaches up to 9.06 m and up to 12.8 m from 2000 – 2100 for ICE-GOL and ICE-RD respectively. Note that in addition to signal coming from local ice loss in the ASE, ice outside this region of interest also contributes a broad signal of smaller magnitude (see Supplementary Section S1).

To explore the resolution dependence of sea level predictions that adopt an elastic Earth model, we repeat the calculations in Figs. 2d-f with a surface grid resolution ranging between 1.9 and 15 km. Fig. 6a-i, shows the difference between results for simulations performed at 1.9 km grid resolution relative to coarser resolutions. The coarser grid simulations tend to underestimate the magnitude of ice unloading and associated sea level fall in most of the domain (red regions in Fig. 6).
Figure 6. Influence of grid resolution on elastic sea level predictions in ASE. Difference in predicted sea level change in meters between (a-c) 1.9 and 15 km, (d-f) 1.9 and 7.5 km; and (g-i) 1.9 and 3.75 km resolution GIA model simulations with a purely elastic Earth model across the times indicated at the top of the column for ice loading scenarios (from left – right) ICE-SH ICE-GOL and ICE-RD. For each ice retreat scenario there is a different colour bar since the magnitude of error due to grid resolution differs. In some panels, the colour bar is saturated. The black and blue line indicates final and initial grounding lines, respectively, for each simulation, and each frame is annotated with the maximum and minimum values within the frame.

The highest grid resolution error occurs at the periphery of the load within a few kilometres of the final grounding line position rather than at the location of maximum deformation (compare Fig. 6 to Fig. 4). This suggests that high resolution is necessary for better representation of the load at the grounding line, rather than for representation of the smoother response of the solid
Earth. For example, for the ICE-GOL ice loss scenario, the greatest difference between 1.9 and 15 km grid simulations ranges occurs along the entire final grounding line (Fig. 6b), but the maximum sea level fall of over 9 meters occurs only on a concentrated region ~ 2 km away from the grounding line (Fig. 4e).

The error decreases with increasing resolution, with minimal differences between the 1.9 km and 3.75 km grid resolutions. The maximum absolute error in the case of a 15 km grid (i.e. the maximum difference between the 15 km and 1.9 km resolution cases) is 44 cm at 2100 in ICE-RD (Fig. 6c), 47 cm at 2100 in ICE-GOL (Fig. 6b) and 9.1 cm after 25 years of modern melt in ICE-SH (Fig. 6a). That is 3.4%, 5.2% and 13% of the peak elastic sea level fall predicted at that time for each respective scenario. The errors are approximately an order of magnitude smaller when a grid resolution of 3.75 km is adopted: 9 cm for ICE-RD, 5 cm for ICE-GOL and 0.7 cm for ICE-SH, or 0.7%, 0.4% and 1.0% of the peak elastic sea level fall respectively.

Since maximum grid resolution error is concentrated along the grounding line for elastic runs, in Fig. 7 we explore how the error evolves during the ICE-RD simulation along a 10-km region bounding the grounding line. The error increases in absolute magnitude with increasing ice loss (“Error” in Fig. 7) but the relative error decreases across the same runs (“Percentage Error” in Fig. 7). In the case of 15 / 7.5 / 3.75 km grid resolutions, the peak error is ~10 / 5 / 1 cm at the 25 year mark of the simulations, and ~50 / 15 / 5 cm at the 150 year mark (whiskers in Fig. 7a top row). In contrast, the percentage, peaks at 20 / 6 / 1.5% of the signal at 25 years and drops to < 5 / < 2 / < 0.3% after 150 years (Fig. 7). This decrease in percent error with time reflects that the ice geometry changes become broader in wavelength and can therefore be resolved by a coarser grid compared to the more spatially isolated changes occurring earlier in the simulation. Given the uncertainty in modelled and observed ice loss and bedrock elevation in Antarctica (e.g. Morlinghem et al., 2020), we suggest that for most applications, errors of less than 5% can be achieved with a 7.5 km grid, and errors of less than 2% with a 3.75 km grid.
Figure 7. Evolution of error in elastic sea level predictions due to grid resolution from 1950 to 2100 with the 1km input resolution ICE-RD ice model. (a) Box-whisker plots of the error and percent error (see methods) calculated from the difference in predicted sea level changes from the start of the simulation to the indicated time within 10 km of the grounding line at that time between a simulation with 1.9 km resolution and simulations adopting 15 km (light pink), 7.5 km (medium pink) and 3.75 km (dark pink) grid resolutions. The box represents (from left to right) the 25th percentile, median and 75th percentile of the distribution, whilst the whiskers represent the "minimum" (25th percentile – 1.5 x the interquartile range) and "maximum (75th percentile – 1.5 x the interquartile range). Error (m) is the difference between sea-level predictions from the higher - lower resolution run. Percentage Error (%) is calculated as 100* (SL_{1.9km} – SL_{lowres})/SL_{1.9km} for each grid point.

3.4.2 Contribution of viscous Earth deformation to sea level predictions

So far we have focused on the resolution dependence of the contribution to sea level change from elastic Earth deformation, as this has been a focus of recent literature (Larour et al., 2019). However, the Antarctic Ice Sheet is underlain by strongly laterally varying viscosity structure, and the Amundsen Sea region in particular is underlain by a low viscosity zone and thinned lithosphere (e.g. Barletta et al., 2018; Lloyd et al., 2020). Viscous deformation associated with ongoing ice loss is neglected in Larour et al. (2019) but is expected to be significant on decadal to centennial timescales in this region. In Figs. 2g-i the calculations of sea level change associated with the three ice loss scenarios shown in Figs. 2d-f are repeated with the 3-D
viscoelastic Earth EM1_L described earlier. As with the elastic case, sea level falls beneath regions that experience ice loss in all three cases, but the magnitude of the sea level fall is significantly larger than predictions based on an elastic Earth model (compare Figs. 2g-i to Figs. 2d-f). In particular, peak sea level fall in this case reaches -0.79 m over 25 years in the ICE-SH ice loss scenario, and -14.9 m and -29.1 m from 2000 to 2100 for ice loss scenarios ICE-GOL and ICE-RD, respectively. The latter (Fig. 4i) is more than double the sea level calculated with the elastic Earth model (Fig. 4f).

Figure 8a-c shows the contribution of viscous Earth deformation to the sea level predictions, calculated by taking the difference between the full viscoelastic calculation shown in Figs. 3g-i and the calculation with an elastic Earth model shown in Figs. 3d-f. Over the 25 year modern ice loss scenario (Fig. 8a), viscous effects contribute up to 12 cm, or 15% of the peak viscoelastic prediction. In the future projections, the viscous contribution reaches up to 6 m of sea level fall, 41% of the peak prediction, within 100 years in predictions based on ICE-GOL and up to -17.7 m, or 61% of the peak viscoelastic signal for ICE-RD, making viscous effects the dominant contributor over elastic effects in this latter case. For the future projections, compared with the elastic signal (Figs. 3e-f), the zones of maximum viscous uplift and sea level fall (i.e. zones of intense red in Figs. 6b-c) are centered farther out beneath regions that experienced ice mass loss sooner in the simulation and have had more time for viscous deformation to occur (Figs. 6a-e), but as we highlight below, substantial viscous deformation still occurs along the current grounding line in the simulation. This is less evident in the modern because migration of the location of maximum ice mass loss is minimal. Faint blue areas further from the region of ice retreat in Fig. 8b indicate a sea level rise due to peripheral bulge subsidence, a viscous process.
3.4.3 Influence of resolution on viscoelastic sea level predictions

In Fig. 9, we repeat the assessment of grid resolution error in Fig. 6, but with a viscoelastic rheology based on the 3-D Earth model EM1_L. With the inclusion of viscous behaviour, the magnitude of the grid resolution error is similar to the elastic case (compare the range of errors on Figs. 7 and 4) but the spatial pattern of the error becomes more complex. The maximum error is no longer solely concentrated along the current grounding line since the solid Earth continues to respond viscously to the poorly resolved loading changes along previous locations of the grounding line. This is particularly evident in the ICE-RD simulations where the grounding line retreats across a large area. In this case, the grid resolution error over the region of past ice loss and grounding line migration is equal to or larger than the error along the active...
grounding line (Figs. 7b,c). The error increases during the simulation as viscous deformation builds, and thus it also has a dependence on the 3D viscosity structure.

Figure 9. Influence of grid resolution on viscoelastic sea level predictions in ASE. As in Figure 6 but adopting 3-D viscoelastic Earth model EM1_L.

Note that in the blue region of Fig. 9c, the sign of the error is not the same as in Fig. 9f because ice retreat is not consistent within this particular region in ICE-RD. Specifically, between the years ~2020 to 2050 in ICE-RD, the grounding line in this blue region stays relatively fixed, experiencing multiple episodes of localized ice retreat and re-advance (unloading and loading). Situations of re-advance tend to occur at lateral scales < 15 km, such that these sub-grid scale
movements were not adequately captured with a coarser, 15 km grid. Along the final grounding line for ICE-RD, the coarser grids consistently result in a lower magnitude sea level fall as in the elastic case.

3.4.4 Earth model uncertainty

To investigate the influence of uncertainty in prescribed mantle viscosity structure, we compare simulations adopting four different Earth model configurations: an average 1-D viscoelastic Earth model and three 3-D mantle viscosity configurations derived from seismic tomography models (EM1_L; EM1_M; EM2; see Methods Sect. 2.3). Figs. 6d-f shows the difference in sea level predicted using the EM1_L and EM1_M models, which are based on the same underlying 3-D seismic velocity models but with a varying viscosity scaling factor. EM1_L (shown in Figs. 6a-c and 2g-i) has the lowest viscosity upper mantle beneath the ASE. Red regions in Fig. 8d-f indicate locations of higher predicted sea-level fall due to lower mantle viscosity in EM1_L, which results in shorter time scale viscous response. Differences reach up to 5 cm after 25-years with ICE-SH, and up to 2.3 m and 5.8 m between 2000 and 2100 relative for ice loss scenarios ICE-GOL and ICE-RD, respectively, the simulation with EM2, a 3-D mantle viscosity model built from a different seismic tomography dataset, produced deformation with magnitudes intermediate to the simulations with EM1_L and EM1_M. We note that the rheological model for this area is uncertain, and our experiments do not comprehensively capture the full range of this uncertainty (see Whitehouse et al., 2020 for a more detailed discussion).

3.4.5 Time evolution of influence of grid resolution and viscous effects

To compare the relative contributions of grid resolution and Earth model differences over time, we extract predicted sea level time series from all simulations with the ICE-RD ice loading scenario and elastic and viscoelastic Earth models at two locations in Fig. 10: (A) the region experiencing the largest viscous uplift by 2100 (blue star), and (B) the location of maximum ice loss at the 2100 grounding line (red star). Note that the shaded grey region from 1950-2000 in Figs. 8b and c represents a spin up time in the model rather than a realistic representation of the ice cover changes in this region over this time period. In the case of the average 1-D viscoelastic Earth model, the sea level response is similar to the elastic case (Fig. 10, compare red and black lines) because the upper mantle viscosity is set to 10^{20} Pa s and thus a significantly longer timescale is required for viscous effects to become significant. Differences between these two simulations and any of the simulations adopting 3-D Earth structure is larger. For
example, the differences between simulations using EM1_L and the 1-D viscoelastic Earth model, reach up to 16.5 m and 12.7 m at the sites shown in Figs. 8b and c, respectively, by 2100.

Figure 10. Evolution of site-specific sea level in simulations adopting a range of model resolutions and Earth models. (a) ice thickness change from 2000 to 2100 predicted in the ICE-RD simulation. This frame is identical to Figure 5c. (b) colored lines show predicted sea level change, in meters, at the site that experiences the maximum viscous uplift in the 1.9 km resolution simulation, shown by the blue star in frame (a) in the simulations with a purely elastic solid Earth response (black lines), viscoelastic solid Earth response based on a 1-D Earth model (red lines), a low viscosity 3-D Earth model EM1_L (dark green lines), a moderate viscosity 3-D Earth model EM1_M (light green lines) and 3-D viscosity Earth model EM2 (blue lines). Solid lines are for simulations performed at 1.9 km resolution, and dashed lines adopt a 15 km resolution. (c) is as in frame (b) but for the site along the final grounding line position at 2100 that experiences the greatest ice thickness change, labeled by the red star in frame (a).

Starting early in the century, the influence of grid resolution becomes smaller than the effect of adopting different Earth models (compare the differences between the dashed and solid lines to differences between different colored lines in Fig. 10). Using the 1-D average Earth model (Fig. 10 red lines), viscous effects start to emerge after 50 years and reach only 4% of the peak signal by the end of the run at year 2100. Nevertheless, this signal is more significant than the error incurred by using 15 km grid resolution versus of 1.9 km grid resolution by 2040. With a 3-D Earth rheology and low viscosities beneath the ASE, viscous effects are pronounced within decades in the simulation (blue and green lines in Fig. 10) and become larger than the difference in predictions based on 15 km and 1.9 km grid resolutions within 25-30 years and before substantial ice loss has occurred in the simulation.

Figure 11 provides a more detailed picture along the grounding line of the contributions to differences in predicted sea level described in the preceding sections. We consider the impact
of each factor on the predicted sea level signal at the end of the simulations, plotting the distribution of differences between simulations across all grid points within 10-km of the final grounding line. In interpreting Fig. 11, note once again that in viscoelastic runs, the region of maximum grid-resolution error does not necessarily occur near the grounding line (e.g. Figs. 7c, f). To visualise the distribution, we plot a classic box-whisker diagram where the boxes represent (from left to right) the 25th percentile, median and 75th percentile of the distribution, whilst the whiskers represent the “minimum” and “maximum” (25th and 75th percentiles minus 1.5 times the interquartile range), overlain by a density curve. A box-whisker plot was chosen to mitigate against the effect of outlier points, which we plot as hollow diamonds.

Figure 11. Comparison of factors contributing to differences in sea-level predictions in this study. Each distribution represents the influence of the specific factor across points within 10-km of the grounding line at the specified year of the model run, as a percentage of the total sea-level change at that time for a) ICE-SH ice model from 1992 to 2017; b) ICE-RD ice model from 1950 to 2050; c) ICE-RD ice model from 1950 to 2100. Six factors are compared in this figure, as labelled on the right. To visualise the distribution, we plot a classic box-whisker diagram overlain with a density curve. The box represents (from left to right) the 25th percentile, median and 75th percentile of the distribution, whilst the whiskers represent the “minimum” (25th percentile – 1.5 x the interquartile range) and “maximum” (75th percentile – 1.5 x the interquartile range). The diamonds outside the whiskers represent outliers.

Note that the error due to grid resolution consistently has a unimodal distribution that peaks at ~0-1% near the grounding line across a range of durations from 25-years of ICE-SH, to 100 and 150 years (starting from 1950) of ICE-RD. The hollow diamonds show that a significant number of points are statistical outliers, which is likely due to the fact that predicted sea-level change is low in magnitude at some regions along the grounding line that experience less ice-loss, causing even a small magnitude of error to contribute a large percentage error. Inclusive of these outliers, the range of percent error due to a 15-km grid peaks at ~20% after 25-years of the ICE-SH simulation, but decreases to less than ±8% by 100-years of the ICE-RD simulation as the magnitude of predicted sea level fall becomes larger across the entire region.
and the spread of outlier points diminishes. We conclude that the range denoted by the box-whisker plot likely provides a more accurate assessment of the error contributed by each factor in Fig. 11 in zones of active grounding line migration. However, in the following paragraphs we continue to describe the range of errors inclusive of outlier points so as to not under-estimate the possible spread.

Our results indicate that the differences due to the choice of adopted Earth model equals and, in most cases, exceeds the size of the error due to grid resolution near the grounding line by the end of all our simulations. Over the 25-year modern observed ice loss scenario, the difference in predictions associated with Earth model configuration lies between ~2-10% within 10-km of the grounding line, which is within the range of error due to insufficient grid resolution in a viscoelastic run, which ranges from ±20% with a 15 km grid, ±6% with a 7.5 km grid, and < 3% with a 3.75 km grid at all grid points (range of the diamonds outside the shaded distributions in Fig. 11a, though noting the discussion above, the percent error is substantially smaller than these end member values at most points). However, with more ice loss over longer timescales, the difference due to adopted Earth model far exceeds the grid resolution error (Figs 9b, c).

If we look beyond the grounding line and consider the difference in predicted sea level between different adopted 3-D viscosity models in the entire study region (difference in results with EM1_L and EM1_M, plotted in Fig. 8 d-f at 2100), the lower viscosity model results in additional viscous deformation that is up to 10.2 %, 21.4% and 20.9 % of the total signal after 25-years of ICE-SH, 100-years of ICE-RD and 150-years of ICE-RD respectively. In all cases, the error due to neglecting viscous effects far surpasses the error due to grid resolution with a 15-km grid (compare the bottom rows to top 3 rows of Figs 9b and c), with the lower viscosity EM1_L model resulting in an additional viscous deformation that is up to 23.8 %, 58.9 %, 62.4 % of the elastic signal near the grounding line after 25-years of ICE-SH, and 100-years of ICE-RD and 150-years of ICE-RD respectively.

3.5 Discussion

Our study provides an assessment of the model grid resolution needed to capture decadal to centennial-scale GIA in the vicinity of active ice loss. We targeted the ASE in West Antarctica as our study location as it is a region with ongoing and projected marine ice sheet retreat and where low mantle viscosity and thin lithosphere result in a rapid and localised GIA response
to ice loading. We adopted a 3-D GIA model to accurately capture the viscoelastic response at high resolution, including the complexity introduced by laterally varying Earth rheology in the region. Accurate assessments of solid Earth deformation from past and present ice evolution are important for constraining the negative sea level - solid Earth feedback on ice sheet retreat, and more accurate interpretation of geophysical observables. For the former, our study focusses on the sensitivity of GIA predictions along the ice sheet grounding line where this feedback occurs.

3.5.1 Influence of grid resolution

For our suite of simulations with elastic and viscoelastic Earth models, modern and 21st century ice loss scenarios, and surface grid resolution ranging between 15 and 1.9 km, we found that improvements in the accuracy of model predictions with increasing grid resolution was limited, remaining within centimetres to decimetres at most at the grounding line. Furthermore, our results converged at higher resolutions, with errors from a 3.75 km grid resolution reaching at most 6 cm within 10 km of the grounding line in all simulations, even when the input ice sheet model results were available at 1 km resolution in the case of ICE-RD. The error introduced in assuming an elastic Earth model and neglecting viscous deformation in the ASE builds to an order of magnitude or more larger than the grid resolution error within three to four decades, and up to tens of meters by the end of the century. In addition, predictions adopting different 3-D Earth models that reflecting the uncertainty in viscoelastic Earth structure in the region diverge by up to 1 meter within 50 years and upwards of 2-3 meters after 100 years in the simulation.

For coupled ice-sheet - GIA model applications, our results suggest that adopting high resolution in the ice sheet model does not require a similarly high-resolution GIA model. In our simulations, a 3.75 km grid was sufficient to bring errors to < 2% along the grounding line for all scenarios (Fig. 11). Furthermore, this percentage decreased over time our simulations, and would continue to decrease multi-century and millennial simulations as the magnitude of viscous deformation and the scale of the ice loss continue to grow. While bedrock topography has smaller scale features (Morlingh et al., 2020), our results suggest that the GIA signal is less localized and may be computed at lower resolution relative to the ice sheet dynamics and then interpolated and added to the initial topography on the higher resolution ice sheet model grid, as is done in, e.g., Gomez et al. (2015) and DeConto et al. (2021).
Our results showing that the location of maximum error consistently lies along the load edge for elastic model runs (Fig. 6a-c) suggest that the error due to coarse model resolution is predominantly a result of poor representation of surface ice cover changes rather than representation of the solid Earth response. For the latter, we would expect the error to occur instead at the location of maximum GIA response (compare differing spatial patterns in Fig. 4e, f to 4b, c). When the viscous response is incorporated, the time-evolving nature of viscous deformation leads to an additional peak in grid resolution error at locations past the grounding line due to inaccurate representation of past loading (Fig. 9). This additional zone of error will not affect active ice sheet grounding lines (though it may be important for interpretation of modern records), and while the spatial pattern of the error differs, the magnitude of the error due to grid resolution was similar across both elastic and viscoelastic simulations.

Our findings on the size and source of resolution error are in contrast to recent work by Larour et al., (2019), who suggested that kilometre resolution was required to capture elastic deformation. This discrepancy may be due in part to Larour et al. (2019) considering only point loads in their idealized resolution experiment, while our conclusions are based on more realistic, spatially coherent ice loss scenarios. Differences may also arise due to the nature of the computational grid and processing of inputs (see section 5.3), which should be explored in more detail in future GIA model inter comparison efforts. Nevertheless, our predictions based on an elastic Earth model converge to theirs for more spatially broad loads.

One possible limitation in this study is we do not reach sub-km grid resolution in our GIA model, and our highest resolution ice model is 1 km. In sensitivity tests with idealized loading scenarios in Section 3 we adopted a grid resolution as low as 0.5 km grid and found that a minimum 1:3 ratio between grid resolution and load radius was required for results to incur an error of $< 5\pm 3 (\sigma) \%$ along the load edge, suggesting that a 3.75km grid would be unable to capture a spatially isolated, < 1 km radius ice unloading event. That we did not see significant error at this resolution in the realistic simulations indicates that the ice cover changes are spatially coherent and there are no significant spatially isolated ice unloading events (i.e. no ice thickness changes occurring over only a few grid points) predicted in the 1-km resolution ICE-RD ice model simulation (Fig. 7).
To further investigate if short-wavelength, spatially isolated ice loss scenarios exist over Antarctica, we assessed the surface elevation change observables from 40 and 25 years of multi-mission satellite altimetry data by Schröder et al., (2019) and Shepherd et al. (2019) respectively, and 15 years of airborne laser altimetry from Operation IceBridge (OIB ATM L4; Studinger, 2014 (Updated 2018)). While a more detailed investigation is merited, in our initial analysis of these datasets we observed that spatially isolated ice loss events have a lower magnitude, only persist over short timescales, and found no evidence of high magnitude, short-wavelength ice loss occurring with spatial scales < 5 km. Thus, we expect that spatially isolated ice unloading occurs rarely and will not have a significant impact on the overall accuracy of GIA model results in a given region. Nonetheless, with improving observational products and ice sheet model resolutions, we expect to obtain regional-scale ice loading grids of sub-km resolution that may warrant further study with a sub-km GIA model grid (e.g. Durkin et al., 2020).

3.5.2 Influence of viscous deformation and Earth model uncertainty

Within decades in the ASE, viscous deformation is a significant contributor to the GIA signal (Hay et al., 2017; Barletta et al., 2018; Powell et al., 2020; Kachuck et al., 2020). The GIA response can be decomposed into the following: perturbation of the sea surface equipotential, elastic deformation and viscous deformation of the solid Earth surface. Previous studies have isolated the GIA signals from each of these components to assess the relative importance of each factor on ice sheet dynamics. Over decadal to centennial timescales, Larour et al. (2019) show that purely elastic deformation was more significant than the sea surface perturbation on continental-scales, while Kachuck et al. (2020) found that viscous deformation is more significant than either elastic deformation or the perturbation to the sea surface. In this study, we have confirmed that viscous deformation effects are significant within decades, particularly in the low viscosity region of the ASE, where the viscous component of deformation can reach multi-metre scales by the end of the century. This body of work highlights the importance of incorporating viscous behaviour in GIA modelling applications in regions of low mantle viscosity.

Complicating efforts to accurately characterise the viscous deformation behaviour is the uncertainty in Earth's viscosity structure. The timescale of viscous solid-Earth deformation on ice sheet dynamics is strongly dependent on the assumed Earth rheology. The global average mantle viscosity of ~ 10^{21} Pa s (Forte and Mitrovica, 1996) corresponds to response times from
centuries to millennia, whilst recent seismic (Lloyd et al., 2020) and GPS observations suggest an upper mantle viscosity under the ASE as low as $\sim 10^{18}$ Pa s (Barletta et al., 2018). Rapid viscous uplift response was similarly identified in Kachuck et al. (2020) which used a 2-D GIA model of mantle viscoelastic deformation and found that sea level fall associated with viscoelastic mantle deformation led to a 30% reduction in modelled ice sheet volume loss by 2150. Our study compares results generated with three 3-D Earth rheology models; EM1_M and EM2 have a comparable viscosity range, while EM1_L has the lowest viscosity values under the ASE. These results demonstrate that uncertainties regarding the effective mantle viscosity are significant and can contribute up to multiple metres of uncertainty by the end of a 100-year simulation (Fig. 8). Furthermore, additional uncertainty arises from the model of viscoelastic behaviour. We adopt a viscous Maxwell rheology, but studies suggest that incorporating a short-term transient component of deformation may result in even faster viscous deformation (e.g. Pollitz, 2019).

Furthermore, the influence of resolution of the seismic model will have an impact on the influence of grid resolution. Currently we adopt a 25-km resolution Earth model for Antarctica but as further improvements in resolution of seismic tomography emerge at km to sub-km scale, significant variations in Earth properties at even shorter spatial scales (10s of km) may be resolved. This may require higher grid resolution to accurately resolve. Accordingly, we recommend future efforts to assess the influence of Earth model resolution on GIA model predictions in tandem with efforts to resolve Antarctic Earth structure at greater detail.

3.5.3 On GIA model setup

In choosing a method for representing a finer resolution load grid onto a coarser model grid, we found that it is important to consider how the model itself discretizes the load, and the input load interpolation schemes. Here, it is worth noting that our GIA model grid is a tetrahedral grid (triangular grid on surface), and these findings may not translate perfectly to other model grid compositions. Our GIA model grid consists of a uniform global tetrahedral grid that allows for regional patches of refined resolution (also uniform) but does not permit matching of model grid nodes to the input grid. For our experiments, by comparing the volumes of the input ice calculated on the input and GIA model grids, we found that the in-built Poisson interpolation scheme (Latychev et al., 2005) performed better in interpolating the finest resolution load grid onto the model grid compared to other tested schemes, suggesting that an understanding of the method in which the load in mapped onto the model grid nodes is
important. Additionally, we note that considerations such as the resolution of the input ice sheet model and treatment of the ice cover outside the region of interest also have an influence on the final GIA model predictions (see Supplementary Section S1) and should be explored further in future studies.

3.6 Conclusion

In this study, we present a comprehensive analysis of the influence of grid resolution on modelled GIA effects in response to ice cover changes over the modern satellite era and through the 21st century. We adopt a range of Earth models including models that capture lateral variations in Earth structure based on seismic tomography and GNSS analyses. These experiments showed that: (1) the grid resolution error introduced through adopting a 15 km grid relative to a 1.9 km model grid remains within centimetres to decimetres throughout our simulations; (2) the grid resolution error is the highest along load edges for purely elastic deformation cases, and along past and current grounding line positions for viscoelastic Earth models, and is primarily associated with the representation of the surface load; (3) results with grid refinement beyond 3.75 km converged in our simulations, even when adopting a 1 km resolution input load, and this likely represents a conservative lower bound since the next coarser grid we considered was 7.5 km. The errors associated with the choice of grid resolution will decrease with time for longer simulations as the extent and magnitude of ice loss and associated GIA response increase. Furthermore, comparison of simulations adopting elastic and 3-D viscoelastic Earth models demonstrate that the contribution of viscous deformation can be up to tens of metres over the 21st century, or > 50% of the total deformation signal. Additionally, uncertainties in Earth properties can contribute up to several metres of error. This indicates the importance of considering viscous uplift when modelling GIA over decadal to centennial timescales in the ASE. In comparison, the error due to grid resolution is negligible for grids of spacing of 3.75 km and less.

To supplement these findings with realistic loading, we conducted a sensitivity test with cylindrical loads with radii from 16 km to 0.5 km and grid resolutions from 7.5 to 0.5 km. These indicate a minimum 1:3 ratio between the required grid resolution and the load radius (or 1:6 with load diameter) to minimise grid resolution error. However, no significant spatially isolated loads occur in our adopted observation- and model-based ice loss scenarios, and a preliminary examination of other ice observation and modelled products suggest that significant ice loss with < 5 km wavelength is rare in the ASE. These results, taken together,
support the conclusion that km-scale resolution in GIA modelling is generally not necessary. However, as higher resolution sub-km ice observational and dynamic ice model grid products are released, this guidance may have to be revisited.

3.7 Manuscript Details and Code/Data Availability

This manuscript is in pre-print under review with the open access journal The Cryosphere at https://doi.org/10.5194/tc-2021-232.

We will make all model output from the sensitivity tests and more realistic simulations available on a public repository. The 3-D GIA model adopted here has been used in numerous previous studies, questions regarding the model or requests for additional output can be discussed with the corresponding author and K.L., the developer of the code. Additional data related to this paper may be requested from the authors.

3.8 Supplementary Material

3.8.1 GIA modelling setup considerations

Here we briefly explore the influence of model setup factors that impact the predicted GIA, namely: input load resolution, GIA model resolution, and loading changes outside the region of interest. We use the ICE-RD model to explore these issues, which provides ice thickness at 10 km across Antarctica with a region at 1 km resolution over the ASE. From this, we produce an ice model on the GIA model grid in a variety of ways summarised in Table S1. ANT_10km is the 10 km AIS-wide ice sheet model run and ASE_1km is the nested 1km ice sheet model run conducted under the same model forcing and receiving boundary conditions from the continental run. Figure S2.1 shows the ice models ASE_1km and ANT_10km, and corresponding modelled sea level change due to a purely elastic GIA response across the 150-years of ice loss from 1950 to 2100. Figure S3 provides an overview of the errors due to different GIA model setup methods (Fig. S3 a,b,c) relative to the error from GIA model resolution (Fig. S3d).

<table>
<thead>
<tr>
<th>Ice Model ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASE_1km</td>
<td>1 km resolution regional ice sheet model run in ASE</td>
</tr>
<tr>
<td>ANT_10km</td>
<td>10 km resolution continental-scale ice sheet model run over all Antarctica</td>
</tr>
<tr>
<td>ASE_5km</td>
<td>ASE_1km, downsampled by a factor of 0.2 to achieve a resolution of ~ 5 km</td>
</tr>
<tr>
<td>ASE_10km</td>
<td>ANT_10km cropped over region of ASE_1km</td>
</tr>
<tr>
<td>ASE_ANT</td>
<td>ASE_1km over ASE, and ANT_10km over rest of Antarctica</td>
</tr>
</tbody>
</table>
Table S 1. Overview of the various GIA model setups

Since ASE_1km only covers our region of interest (ROI) the Amundsen Sea Embayment, we first explore the importance of adding the loading pattern outside the ROI using ASE_ANT and ASE_1km (Fig. S3a). Comparing simulations with fixed and evolving ice outside the ASE indicate that deformation due to mass changes outside domain of interest result in a broad, superimposed signal of uplift or subsidence. Not considering mass changes outside the region of interest (e.g. Kachuck et al., 2020) can result in a difference in predicted deformation of at least 6% (and up to 50% at the ROI edge) of the overall signal in the region. The implication of this result is that when modelling regional GIA, we must input the surrounding load changes beyond the ROI. The exact bounding region required is outside the scope of this study.

To isolate the effect of using different ice sheet model resolutions, we compared the results of ASE_10km and ASE_1km (Fig. S3b). We also explored the effect of using the same load at different resolutions, by resampling the ASE_1km load grid by a factor of 0.2 to result in a 5 km resolution load grid (ASE_5km). We compute the effect of instantaneous removal of the ice load change from 1950 to 2100 and find that calculations of the resulting elastic GIA response are influenced by:

- Resolution of Dynamic Ice Sheet Model (Fig S3.b): Improving the ice sheet model resolution from 10 km to 2 km (i.e. ANT_10km – ASE_1km) produces SL predictions with up to 40 cm difference. This has the largest effect, because a different ice sheet model resolution will result in different realisations of the ice sheet dynamics (i.e. a different load in the GIA model).
- Load Resolution (Fig. S3c): Between a 1 km and 5 km resolution load grid of the same forcings (i.e. ASE_1km – ASE_5km) we find up to 14 cm difference in SL predictions, with the largest error along the load edge (i.e. grounding line).
- GIA Model Grid Resolution (Fig. S3d): For the ice model ASE_1km, improving the GIA model resolution from 7.5 km to 1.9 km produces SL predictions with up to 16 cm difference.

Results from Figure S3 indicate that refining the GIA model grid resolution from 7.5 to 1.9 km has a similar effect as refining of the input ice load resolution. The effect of load and GIA
model resolution both have a predictable pattern whereby the largest error occurs along the load edges. Accordingly, we recommend efforts in improvements in GIA model accuracy go towards constraining the wavelength of ice cover changes, and improving the resolution of the ice model (i.e. ice sheet observations and models) accordingly. The load set up, including interpolation techniques and consideration of the load outside the ROI are also important.

3.8.2 Supplementary Figures

Figure S1. Earth Model Summary. Logarithmic viscosity perturbation map of at depths 96, 160, 200, and 300 km for low Earth mantle viscosity model EM1_L over (a) Antarctica; (b) study region in the Amundsen Sea Embayment. Values are relative to reference 1-D model with upper mantle viscosity of 1 x 1020 Pa s, and lower mantle viscosity of 5 x 1021 Pa s. The black line delimits the Antarctic coast line including the extent of marine-based ice, and the dark red line shows the location of grounding line (bedrock topography contour at 0 m) from Bedmap2 (Fretwell et al., 2013). (c) Regions in the mantle viscosity model. Green region is where regional seismic model ANT20 (Lloyd et al., 2020) data is used; Blue region (global) is where global seismic tomography model S362ANI (Kustowski et al., 2018) data is used. (d) Elastic lithospheric thickness (km) across Antarctica based on the model by An et al. 2015, scaled to produce a regional average lithospheric thickness of 96 km.
Figure S 2. ASE_1km and ANT_10km ice model load change between 1950 to 2100, and resulting sea level change due to elastic GIA response.

Figure S 3. Difference in predicted sea level change (m) between 1950 to 2100 from elastic GIA runs of various ice load configurations (Table S1). Each frame represents the difference in GIA predictions due to a) out of region ice loading, b) ice sheet model resolution, c) load resolution and d) GIA model resolution.
4 Conclusions

The goal of this thesis was to investigate the factors that affect the accuracy of GIA model predictions in the vicinity of ongoing ice loss and in regions of complex Earth structure. I focussed in particular on the effect of spatial resolution of the model grid, an area that has not yet been investigated rigorously for 3-D GIA models. We found that even in areas of extreme low mantle viscosity like the ASE, km-scale surface resolution in GIA model grids is not necessary in realistic ice-loss scenarios. Furthermore, our study demonstrates that other factors such as incorporation of viscous effects, 3-D Earth structure and the accuracy of the input Earth structure estimates are more important considerations in GIA modelling. Our results suggest these other factors should be the focus of efforts to improve prediction accuracy once GIA models reach a certain in resolution, roughly estimated to be ~3-5 km for regional GIA modelling studies in the ASE for ice evolution over centennial timescales. Notwithstanding, we acknowledge that the required resolution will depend on the problem at hand and what factors are at play, and may require preliminary tests to ascertain for the specific modelling context. For example, the effect of incorporating viscous effects may be less significant over the next few centuries in regions of thicker lithosphere and higher mantle viscosity, though in this case we expect that the model resolution necessary may be lower due to the broader wavelength nature of the deformational GIA response. Our preliminary tests also suggest that model setup decisions such as assessing whether to incorporate ice loading outside the region of interest, and the necessary input ice sheet model resolution are more pressing areas to focus on when setting up a GIA model run.

To reach these conclusions, we first had to construct a high-resolution 3-D Earth model for Antarctica that was able to capture observed low viscosity mantle constraints, as described in Chapter 2 and 3.2.3. The EM1 Antarctic 3-D Earth model can be used beyond this study for subsequent 3-D GIA modelling efforts in the WAIS. Another area that requires further investigation is the necessary resolution for Earth models constraining viscosity structure. The ANT-20 mantle viscosity model adopted in EM1 has ~25 km surface resolution (Lloyd et al., 2020) but as Earth structure models under the WAIS become increasingly resolved (e.g. Lucas et al., 2021) the timing and magnitude of the resultant modelled GIA response may change in a significant manner, and may also influence the grid resolution required.
This work focusses on a specific 3-D GIA model, and a specific region and short-term time frame. Though necessary to focus on where constraints are most pressing for near-future predictions, future avenues of research can investigate the influence of grid resolution over other regions and timescales. This study benefitted from the rapid technical improvements in 3-D GIA modelling algorithms and computational efficiency. Once practical, inter-model comparisons will be crucial to test our conclusions across other GIA model formulations, which have various treatments of surface loading, interpolation methods for model inputs, and other numerical nuances, all of which may demonstrate a different sensitivity to model resolution compared to this study. A further technical study into the effect of various interpolation methods and grid types could also be beneficial to our understanding of the most accurate model “settings” required.
References

Studinger, M.: IceBridge ATM L4 surface elevation rate of change, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, 10, 2014.

