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Abstract 
 
 Body weight is, ultimately, a reflection of eating behaviour, which is, in turn, governed 

by multiple aspects of personality and decision-making which are themselves governed by 

multiple aspects of brain structure and function. The traits which put people at increased risk for 

weight gain later in life begin developing very early during childhood and adolescence (Casey et 

al., 2011). Impulsivity and sensation-seeking, and the neural networks associated with them, 

have been previously associated with increased weight and increased risk of future weight gain 

over time (Duckworth et al., 2010; Schlam et al., 2012; Vainik et al., 2013). Impulsivity typically 

increases during adolescence (Collado et al., 2014). While this is a normal feature of brain 

development, possibly arising from an asymmetrical development of sub-cortical and cortical 

regions, adolescents who score more highly on tests of impulsivity and sensation-seeking are still 

at increased risk of multiple poor outcomes, including greater weight gain and risk for 

overweight and obesity (Batterink et al., 2010; Delgado-Rico et al., 2012). 

 This thesis examined the relationship between body weight, impulsivity and sensation-

seeking and several aspects of brain structure and function in two developing populations, to 

develop our understanding of which systems are involved with both impulsivity and sensation-

seeking and body weight during childhood and early adolescence. 

 Our initial research found that cortical thickness, which is commonly found to be reduced 

in overweight and obese adults, was not correlated with weight in children (Sharkey et al., 2015). 

This finding guided the development of our next two studies which both measured correlates of 

resting state connectivity in a sample of young adolescents. Firstly, we used a multivariate 

analysis to examine the relationship between the connectivity of the striatum and midbrain, and 

body weight, impulsivity and sensation-seeking. This analysis identified the connectivity of the 

limbic system to the striatum and midbrain, rather than the expected regions in the prefrontal 

cortex as a system involved with all three behavioural factors (Sharkey et al., 2019). Secondly, 

we used independent component analysis to define the large scale intrinsic resting state networks 

in our sample and identify relationships between internetwork connectivity and body weight 

(Allen et al., 2011; Smith et al., 2009). This study identified a set of network interactions 

involved in weight which were only weakly associated with impulsivity and sensation-seeking. 
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 These studies add support to the idea of body weight control as a multi-network 

phenomenon, and emphasizes the role of subcortical networks, specifically the limbic system, in 

both weight and impulsivity. 
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Résumé 
 

Le poids est ultimement une réflexion des habitudes alimentaires, lesquelles sont 

gouvernées par de multiples aspects de la personnalité et de la prise de décision qui sont eux-

mêmes régis par différentes fonctions et structures du cerveau. Les traits qui augmentent les risques 

de prise de poids plus tard dans la vie commencent à se développer très tôt pendant l’enfance et 

l’adolescence (Casey et al., 2011). L’impulsivité et la recherche de sensations ainsi que les réseaux 

neuronaux associés à ces traits ont étés précédemment associés à un gain de poids et à un risque 

plus élevé de prise de poids avec le temps (Duckworth et al., 2010; Schlam et al., 2012; Vainik et 

al., 2013). L’impulsivité augmente généralement pendant l’adolescence (Collado et al., 2014). 

Bien que ce soit normal lors du développement du cerveau, cette augmentation est possiblement 

causée par une asymétrie du développement des régions corticales et sous-corticales. Les 

adolescents qui ont des résultats plus élevés aux tests d’impulsivité et de recherche de sensations 

ont également un risque plus important de développer différents maux, notamment d’avoir une 

prise de poids plus importante ainsi que de souffrir d’embonpoint et d’obésité (Batterink et al., 

2010; Delgado-Rico et al., 2012).   

 Cette thèse a examiné les relations entre la prise de poids, l’impulsivité et la recherche de 

sensations ainsi que plusieurs aspects de la structure et des fonctions du cerveau dans deux 

populations en développement afin de développer notre compréhension des systèmes impliqués à 

la fois dans l’impulsivité, la recherche de sensations et le gain de poids pendant l’enfance et au 

début de l’adolescence.  

Notre première étude a démontré que l’épaisseur corticale, communément reportée 

comment étant réduite chez les adultes obèses ou avec de l’embonpoint, n’était pas 

significativement corrélée avec le poids des enfants (Sharkey et al., 2015). Ce résultat a guidé la 

réalisation de nos deux études subséquentes démontrant que ces deux mesures sont corrélées 

significativement avec la connectivité cérébrale au repos dans un groupe de jeunes adolescents. 

Premièrement, nous avons utilisé une analyse multivariée pour examiner la relation entre la 

connectivité du striatum et du mésencéphale avec le gain de poids, l’impulsivité et la recherche 

de sensations. Cette analyse a identifié le réseau impliquant le système limbique et ses 

connections avec le striatum et le mésencéphale, plutôt que les régions attendues du cortex 

préfrontal, en tant que système impliqué dans ces trois facteurs comportementaux (Sharkey et al., 

2019). Deuxièmement, nous avons utilisé une analyse en composantes indépendantes 



 viii 

(independent component analysis) afin de définir le réseau intrinsèque à grande échelle au repos 

dans notre échantillon et d’identifier les relations entre la connectivité inter-réseau et le gain de 

poids (Allen et al., 2011; Smith et al., 2009). Cette étude a identifié un ensemble d’interactions 

entre les réseaux impliqués dans le gain de poids, lesquels étaient seulement faiblement associés 

à l’impulsivité et à la recherche de sensations.  

Ces études supportent l’idée que le contrôle du poids corporel serait un phénomène 

impliquant plusieurs réseaux et elles mettent l’emphase sur le rôle des réseaux sous-corticaux, 

spécifiquement du système limbique, dans l’impulsivité et le poids.  
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Introduction and Literature Review 
 
Literature Review 

 

Impulsivity, the tendency to favour short-term goals, or to act quickly without thinking is a 

facet of normal personality variation. However, people who demonstrate greater impulsivity are 

known to be at risk of a range of poor outcomes including greater weight gain and greater risk 

for overweight and obesity (Appelhans et al., 2012; Jokela et al., 2013; Vainik et al., 2013). 

 In addition to variation between individuals in the adult population, trait impulsivity is also 

known to vary over the lifespan within individuals. This variation typically demonstrates an 

inverse U-shaped time course. Impulsivity increases as children enter adolescence, peaks in 

middle adolescence and then decreases into adulthood. This increase in impulsivity is generally 

understood to be a typical feature of normal adolescent development (Casey et al., 2016; Collado 

et al., 2014).  

Impulsivity is a complex, multifactorial trait which relates to the function of multiple neural 

systems, including the limbic and temporoparietal regions and the dopaminergic midbrain-

striato-cortical system. The developmental increases in impulsivity which occur during 

adolescence are believed to arise from differences in the developmental trajectories of those 

regions (Buckholtz et al., 2010; Casey, 2014; Christakou et al., 2011, 2009; Moreno-Lopez et al., 

2016; Tomasi and Volkow, 2014, 2013). 

However, increased impulsivity also predisposes adolescents to engage in more risky 

behaviours than adults. Additionally, like adults, adolescents who demonstrate higher levels of 

impulsivity relative to their peers are at greater risk for poor outcomes including greater weight 

gain, and higher risk of obesity (Appelhans et al., 2012; Duckworth et al., 2010; Moreno-López 

et al., 2012; Schlam et al., 2012). 

Impulsivity and weight regulation are behaviourally related. More impulsive individuals 

make more food choices which put them at risk for weight gain, for example, but they also share 

neural underpinnings. The same circuits which are known to be related to impulsive decision-

making in general are also known to affect decisions about food and eating behaviour, which 

affects body mass index (BMI) and weight gain across the lifespan (Horstmann et al., 2011; 

Moreno-López et al., 2012; Stevenson and Francis, 2017). 
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Brain Development During Childhood and Adolescence 
 

Structural Development of the Cortex during Childhood and Adolescence 

Synaptogenesis in the brain peaks near age two and most increases in brain volume are 

complete after age five. In general, after twelve, there is a decrease in grey matter/increase in 

white matter but the rates, timeframes and trajectory are region dependent and subject to 

modulation by sex hormones during puberty (Casey et al., 2000).   

Overall, cortical thickness, a measure of the total amount of cortical grey matter, follows an 

inverse U-shaped trajectory during development, but the exact timing and peaks varies 

regionally. The exact shape of this curve is at least partly dependent on the type of measurement. 

Measures of grey matter based on surface area tend to demonstrate more linear decreases over 

the same period of time, while grey matter density has been found to increase during adolescence  

(Gennatas et al., 2017; Sowell et al., 2004; Tamnes et al., 2017).  Alterations to this trajectory 

may be involved in a range of neuropsychiatric disorders including attention-deficit disorder 

(Giedd and Rapoport, 2010).  Overall, the cortex matures in a caudal to rostral pattern (Giedd 

and Rapoport, 2010). The prefrontal cortex is one of the latest developing areas of the brain and 

is associated with three major groups of cognitive functions: response inhibition, working 

memory and selective attention (Casey et al., 2000). 

Changes in the brain during puberty and adolescence result in the development of adult 

cognitive abilities, including overall reductions in cortical thickness and strengthened prefrontal 

cortico-limbic connections. These changes are believed to be affected by sex hormones, which 

can exert an immediate activational effect or a longer-term organizational effect on the brain 

(Vigil et al., 2011). 

There is some degree of sexual dimorphism in human brain development and performance on 

cognitive tasks, which emerge during puberty when physical sexual dimorphism develops (Giedd 

et al., 1997; Raznahan et al., 2010).  Ventricular volume increases more in males with age than 

females.  Males show a decrease in the size of the globus pallidus, which females do not.  Males 

show an increase in amygdala volume which females do not, but females show an increase in the 

size of the hippocampus, which males do not.  Males also have an average overall larger cerebral 

volume (Giedd et al., 1997). Sex differences in the amygdala and hippocampus may be related to 

the concentration of androgen and estrogen receptors in those structures (Giedd et al., 1997).  

Frontal and parietal grey matter peaks in width earlier in girls, and temporal cortex peaks very 
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slightly earlier in boys and girls tend to have higher overall grey matter density (Gennatas et al., 

2017; Giedd et al., 2006). 

Cortical thinning during development is driven by multiple mechanisms, including synaptic 

pruning in the grey matter, but also increased myelination and increases in white matter volume 

(Østby et al., 2009; Paus, 2010; Petanjek et al., 2011; Sowell et al., 2004, 2002). During 

adolescence white matter gets more organized and bigger and both axons and myelin get thicker 

(Paus, 2010).  These changes are widespread between 6-19, especially in the corpus callosum, 

basal ganglia and the striatothalamic and ventral visual and prefrontal areas.  The white matter 

gain and associated grey matter loss spreads from the sensorimotor areas (Barnea-Goraly et al., 

2005). Increases in white matter are steeper in boys than girls during adolescence.  This is 

thought to be due to the effects of testosterone and is modulated by receptor types that affect 

testosterone availability. Differences in white matter volume could be explained by increases in 

g-ratio/axon calibre as well as increases in myelin and it is possible that g-ratio might increase in 

males but not females which would explain the differences in volume and density (Paus, 2010; 

Perrin et al., 2008). White matter density also increases (measured from 4 to 17) but it is denser 

in females. Changes in density are reflected in fractional anisotropy and mean diffusivity, 

measures of white matter density and integrity which are usually (Paus, 2010). 

Structural Development of the Subcortical Regions during Childhood and Adolescence 

The subcortical grey matter in the subcortical structures in the basal ganglia, hippocampus 

and amygdala have their own developmental trajectories, which are regionally heterogeneous 

and distinct from the cortical grey matter (Gogtay et al., 2006; Murty et al., 2016; Østby et al., 

2009; Sowell et al., 2002; Sussman et al., 2016). Studies of the developmental trajectory of the 

hippocampus and amygdala in general have mixed findings about the overall trajectory of 

hippocampal volume. Most studies find an upside-down U trajectory, with some resulting in a 

slight increase in volume and others a slight decrease (Gogtay et al., 2006; Murty et al., 2016; 

Østby et al., 2009; Sussman et al., 2016). This may simply reflect slightly different study end-

points, but the same set of studies also find that the anterior and posterior segments of the 

hippocampus have distinct trajectories, generally with posterior increases and inverse U 

development resulting in an overall decrease in the anterior segments  which complicates 

measurements of overall hippocampal development (Gogtay et al., 2006; Sussman et al., 2016).  

At the same time, the major white matter tract connecting the hippocampal regions to the 
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prefrontal cortex, the uncinate fasciculus also develops along the same upward trajectory as most 

cortical white matter, and this is accompanied by increased prefrontal-hippocampal functional 

connectivity over the same time frame (Murty et al., 2016).  

The different nuclei in the basal ganglia also have distinct developmental trajectories, but 

they all generally show a decrease in size, relative to the rest of the brain over the course of 

adolescence, while the thalamus stays proportionally a similar size or increases slightly (Østby et 

al., 2009; Sowell et al., 2002; Sussman et al., 2016). 

Functional Development of the Brain  

The structural development of the adolescent brain is accompanied by changes in functional 

connectivity and activity during specific tasks and notable differences from both adults and 

children in task performance. 

Studies of the overall connectivity of the large-scale connections of the brain have found that 

children have similar reliably identifiable brain networks as adults. However, as children age the 

networks become more clearly spatial defined, and internetwork connectivity between task and 

default mode networks decrease, while connectivity between motor and executive networks 

increase (Krafft et al., 2014; Muetzel et al., 2016; Stevens et al., 2009; Thomason et al., 2011). 

Studies of alterations in network connectivity in adults have found that internetwork 

connectivity more generally increases during aging while efficiency decreases and multistep 

networks become more common (Allen et al., 2011; Betzel et al., 2014; La et al., 2015). This 

suggest an overall inverted U shape to network efficiency over time, peaking in young 

adulthood.  

Impulsivity and the Adolescent Brain 

One of the most notable behavioural features of adolescence is an increase in impulsive and 

risk-taking behaviour. Adolescence is a complex phenomenon, with physical, cognitive and 

social components. Adolescence is generally understood to begin at the onset of puberty and end 

once adulthood has been reached. But while the onset of puberty is a relatively well-defined, the 

exact boundary between the end of late adolescence, and the true start of adulthood is more 

complex. The attainment of the legal status of adulthood, the social standing and privileges 

associated with adulthood, the physical, and the neurological developmental markers of 

adulthood may all be attained at different times (Cohen et al., 2016). 
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Neurological development extends from birth past adolescence, into the mid-twenties, and 

contribute to the specific neurology and behaviour characteristic of adolescence (Petanjek et al., 

2011). 

Definition of Impulsivity 

The five-factor model of personality is one of the most frequently used personality 

instruments in neuroscience research. The five-factor personality inventory was originally 

developed based on a linguistic inventory of personality description, subjected to factor analysis, 

revealing the five factors termed Neuroticism, Extroversion, Conscientiousness, Openness to 

Experience and Agreeableness (Costa and McCrae, 1997; McCrae and John, 1992). This five 

factor structure has been replicated across age, gender and culture (Costa et al., 2001). Each of 

the five broad factors has been subdivided into six sub-categories, called facets. The facets are 

not mathematically derived but are widely used (Costa and McCrae, 1995). 

Neuroticism, is generally understood to relate to a person’s overall vulnerability, or 

sensitivity to negative stimuli, while Extraversion relates to a person’s reactivity to positive 

stimuli. Conscientiousness is an overall measurement of a person’s ability to work towards long 

term goals, and suppress impulses. Openness to Experience measures a willingness to investigate 

and experience new things, and the different facets of Openness to Experience assess openness to 

multiple different types or domains or experience. Agreeableness measures an individual’s 

overall tendency towards pro-social, cooperative behaviour (Costa and McCrae, 1995, 1997; 

Deyoung and Gray, 2009; McCrae and John, 1992). 

Impulsivity is a facet of the Neuroticism factor of the five factor model but it can also be 

approached as the opposite of, or the low-scoring end of the Conscientiousness scale (Costa and 

McCrae, 1995; Whiteside and Lynam, 2001). However, impulsivity is, itself, also a complex, 

multifactorial trait which can be assessed in multiple ways  (Duckworth and Kern, 2012). 

Typically, impulsivity is most broadly defined as a tendency to favor short-term goals and 

rewards. However, more specific forms of impulsivity are defined, including motor impulsivity, 

struggling to repress motor actions, delay discounting, over-valuing small short-term rewards as 

compared to more distant, larger rewards or cognitive impulsivity, acting without considering 

longer-term consequences (Duckworth and Kern, 2012; Whiteside and Lynam, 2001). 

Impulsivity is generally measured through either laboratory tasks assessing a specific type of 

impulsivity, or through questionnaires aimed at assessing overall trait impulsivity. Commonly 
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used impulsivity tasks include the delay discounting task or the marshmallow task, which assess 

how much an individual will devalue a larger delayed reward as compared to a smaller, 

immediate one (Duckworth and Kern, 2012; Mischel et al., 1989, 1972; Myerson et al., 2001). 

The stop signal task, which assesses the ability to suppress an already initiated motor response, 

the balloon analogue risk task, which assesses risk tolerance for a reward (Bar, 2010; Duckworth 

and Kern, 2012; Mischel et al., 1989, 1972). More general measures of cognitive control, like the 

Stroop task are also often included along with more specific tests of impulsivity (Duckworth and 

Kern, 2012). 

Commonly used impulsivity scales including the Impulsive Behaviour Scale, the Behavioural 

Activation and Behavioural Inhibition Questionnaire, and the Substance Use Risk Profile Scale 

(SURPS) among others aim to assess multiple aspects of impulsive thought and behaviour to 

create what is, in essence, a combined score (Carver and White, 1994; Krank et al., 2011; 

Whiteside and Lynam, 2001; Woicik et al., 2009). Questionnaire-based assessment of 

impulsivity may or may not break impulsivity into finer sub-scales. 

While impulsivity is coherently constructed as a single trait, overall, an individual’s score on 

multiple impulsivity questionnaires will correlate, but intra-subject correlations between tasks 

and questionnaires are much lower, as are the correlations between scores on specific tasks 

(Braams et al., 2015; Duckworth and Kern, 2012; Whiteside and Lynam, 2001). 

A related but somewhat different construct is sensation-seeking. An individual’s propensity 

for sensation-seeking is usually defined as their degree of desire for novel or intense sensations, 

or their willingness to take risks, to get them. Within the framework of the five factor model, 

sensation-seeking is considered to be a facet of Extraversion. Large-scale meta-analysis of 

concordance between measures of self-control and impulsivity have found that sensation-seeking 

could be distinguished from impulsivity, although the two were correlated (Duckworth and Kern, 

2012). However, while sensation-seeking can coherently be approached as an independent trait, 

or an aspect of Extraversion, it is most often considered a sub-trait of impulsivity. As a result the 

literature on the effects and neural correlates on sensation-seeking specifically is relatively 

sparse. 

Studies dissociating impulsivity and sensation-seeking have found that increased sensation-

seeking, specifically, is related to increased bingeing behaviour, but not to the other externalizing 
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behaviours like conduct problems, aggression, or drug use, which have been associated with 

increased impulsivity (Castellanos-Ryan et al., 2011).  

The SURPS, which is the personality instrument used in this thesis, is a more focused test of 

personality. While the five-factor model aims to capture as complete a picture of personality as 

possible, the SURPS focuses on four traits specifically linked to increased risk for substance 

abuse (Jurk et al., 2015; Krank et al., 2011; Woicik et al., 2009). The SURPS is comprised of 

four subscales capturing overall measures of four separate personality traits: impulsivity, 

sensation-seeking, negative-thinking and anxiety sensitivity. Each of the four subscales is made 

of a combination of items from earlier tests, including the NEO-five factor inventory, a short 

form measure of the five-factor model personality traits (Jurk et al., 2015; Krank et al., 2011; 

Woicik et al., 2009). The SURPS has been adapted for both adult and adolescent populations, 

specifically (Jurk et al., 2015). 

Trajectory of Impulsivity in Adolescence 

Although impulsivity, like most personality traits is generally considered to be fixed in 

adulthood, impulsivity and sensation-seeking, along with related measures of risk-taking change 

over the course of adolescence, with an inverted-U trajectory, typically peaking between early 

and mid-adolescence (ages 13-16) (Collado et al., 2014; Crone et al., 2016; Defoe et al., 2015; 

Steinberg, 2010). Adolescent impulsivity, in most studies, peaks at around 14 years of age, but 

impulsivity measured in laboratory studies peaks earlier than ecological measurements, like rates 

of accidents, which peak later, around 16 – 18 years (Chick, 2015). Interventions to reduce 

impulsivity and sensation-seeking traits have been found to reduce subsequent problematic drug 

use (Conrod et al., 2011, 2010, 2008). 

Sensation-seeking and impulsivity are correlated across the age range, with r = 0.34-0.41, 

suggesting that these personality traits share a common neural substrate.  Sensation-seeking and 

impulsivity are related to the Extraversion and the Conscientiousness and Neuroticism factors 

respectively of the Five-Factor Model (Collado et al., 2014; MacPherson et al., 2010).   

Neural Correlates of Impulsivity 

Impulsivity and sensation-seeking are linked to the function of multiple systems within the 

brain, and different aspects of impulsivity are correlated with different regions.  

Variation in activity in the ventral striatum has been associated with impulsivity and reward 

responsiveness in prior studies, using a variety of impulsivity measures (Braams et al., 2015; 
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Buckholtz et al., 2010).  Despite being a comparatively small brain region, the striatum is 

densely connected to other regions throughout the brain and fulfills a wide range of functions.  

The striatum can be broadly divided into dorsal and ventral regions.  The ventral region is more 

heavily involved in emotion and reward processing, and the dorsal region in cognitive and motor 

functions (Di Martino et al., 2008; Postuma and Dagher, 2006).  

Based on anatomical tracing studies in animals, the striatum is connected to the frontal cortex 

through a series of reciprocal cortico-striatal loops (Haber, 2003; Haber et al., 2000; Postuma 

and Dagher, 2006). A 2006 meta-analysis found that the ventral striatum was functionally 

connected predominantly to the amygdala and hippocampus and to the ventral midbrain 

structures (Postuma and Dagher, 2006).  A resting state functional magnetic resonance imaging 

(fMRI) study in 2008, however, found that activity in  the ventral striatum also covaried with the 

orbitofrontal cortex, as well as the dorsolateral and inferior frontal cortex, the anterior and 

posterior cingulate cortex and the parahippocampal gyrus (Di Martino et al., 2008).  Another 

study in 2012 based on cerebral seed regions found that the ventral striatum activity covaried 

with the fMRI signal in orbitofrontal and temporal poles (Choi et al., 2012).  This may be the 

result of differing techniques, or of different parcellation schemes.   

Motivated, goal-directed behaviour, in general, is generated through the function of the 

corticostriatal system, innervated by the dopaminergic midbrain. This system progresses in a 

rostral to caudal direction (in the cortex) and a ventral to dorsal direction (in the striatum), which 

corresponds functionally to a progression from motivation, to decision-making, to specific motor 

behaviour (Haber et al., 2000). Different aspects of impulsivity can be mapped to the function of 

different anatomical regions of the corticostriatal system. The more cognitive and emotional 

aspects of impulsivity relate to the reward circuits between the ventral striatum, especially the 

nucleus accumbens, and the orbitofrontal and ventromedial prefrontal cortex. These regions are 

involved in the calculation of the reward value of various stimuli in the environment, using 

information from a larger network involved in the calculation of value including the prefrontal 

cortex, anterior cingulate cortex, the dopaminergic midbrain and the limbic system (Bar, 2010). 

These value calculations are also influenced by the more dorsal/caudal loops connecting to the 

lateral and dorsolateral prefrontal cortex which modulates value and exerts top-down control in 

favour of longer-term goals with less immediate reward (Christakou et al., 2011; Haber et al., 

2000; van den Bos et al., 2015). 
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Connectivity within the corticostriatal reward system, including the ventral striatum, and 

ventromedial prefrontal cortex and orbitofrontal cortex is generally associated with increased 

delay discounting (i.e. greater impulsivity), while greater connectivity to more lateral parts of the 

prefrontal cortex  is associated with reduced delay discounting (Kishinevsky et al., 2012; Lawyer 

et al., 2015; Li et al., 2013; Sripada et al., 2011; Weygandt et al., 2013). 

The motivational and motor functions of the corticostriatal system are heavily dopaminergic, 

and innervated by two midbrain dopaminergic nuclei, the ventral tegmental area, and the 

substantia nigra pars compacta. The motivational and emotional (i.e. ventral) regions of the 

corticostriatal system are more heavily innervated by the ventral tegmental area, while the 

substantia nigra pars compacta primarily innervates the associative and motor elements of the 

striatum (Murty et al., 2014). 

Dopamine plays a variety of roles in the corticostriatal system during tests of impulsivity.  

The dopaminergic midbrain, along with the ventral striatum, also exhibits a reward signal 

response and its connections to both the ventral striatum and orbitofrontal cortex relates to 

reinforcement and learning (Aron et al., 2004; Braams et al., 2015). Performance on the stop 

signal task has been found to be correlated with levels of dopaminergic release in the 

orbitofrontal and prefrontal cortex, and negatively correlated with its release into the anterior 

cingulate cortex, as well as release and autoreceptor response within the dopaminergic midbrain 

itself (Albrecht et al., 2014; Buckholtz et al., 2010). However, not every impulsivity task relates 

to dopamine in the same way: performance on the delay discounting task has been found to have 

a U-shaped relationship to striatal dopamine release (Joutsa et al., 2015). 

The limbic system, specifically, the hippocampus, amygdala and parahippocampal cortex are 

involved in both the assessment of value of environmental stimuli, the modulation of that signal 

based on contextual cues, and the inhibition of responses. Hippocampal function specifically, has 

been linked to multiple aspects of self-control and impulsivity (Johnson et al., 2007; Mizumori 

and Tryon, 2015). The ability to imagine the acquisition of a future reward, which is needed for 

tasks involving delayed gratification, like the delay discounting task, relies in part on memories 

about similar rewards, and contextual cues from the hippocampus and its connectivity to the 

ventral striatum and prefrontal and cingulate cortex (Bar, 2010; Peters and Büchel, 2010). The 

limbic system, especially the amygdala, is also related to reward based learning, and specifically, 
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the processing of cue-based learning, in concert with the striatum (Averbeck and Costa, 2017; 

Johnson et al., 2007). 

However, recently, a third circuit involved in self-control has been identified. Studies by 

Soutschek et al (2016) found that disruption of the right temporoparietal junction using 

transcranial magnetic stimulation impairs participants’ performance on a delay discounting task 

(Soutschek et al., 2016). The function of the temporoparietal junction has been previously 

primarily associated with perspective taking tasks, which were also impaired by transcranial 

magnetic stimulation in the same study (Soutschek et al., 2016). Further fMRI studies of the 

same system have supported the finding that the activity of the right temporoparietal junction and 

its connectivity to the ventromedial prefrontal cortex correlate with reduced delay discounting. 

They have also found that the corticostriatal networks more typically associated with delay 

discounting are likewise involved in the social and perspective taking tasks usually associated 

with the right temporoparietal junction (Connell et al., 2018; Hill et al., 2017; Soutschek et al., 

2016).   

This relatively recent identification of new elements to a well-established system also raises 

the question of how complete our understanding of the extended self-control system is, and if 

further elaborations remain to be discovered. 

Neural Correlates of Impulsivity Specific to Adolescence 

The Corticostriatal System and Dual Systems Model 

Adolescents demonstrate, overall, a heightened reward response and greater reward learning 

compared to either adults or children (Davidow et al., 2016; Galvan et al., 2006; Geier et al., 

2010). This goes along with an increased reward prediction error signal in the ventral striatum  

and orbitofrontal cortex in response to a given stimulus (Galvan et al., 2006). The prefrontal 

cortex is one of the latest maturing structures of the brain, and so, remains relatively immature in 

early and mid-adolescence compared to other regions, as do the white matter tracts connecting 

the prefrontal cortex to other regions (Adleman et al., 2002). The activation of the prefrontal 

cortex in tasks of self-control, and executive function more generally, similarly develop 

throughout adolescence and into adulthood (Adleman et al., 2002). 

The dual systems model characterizes the increase in impulsive and risk-taking behaviour 

which occurs during adolescence as a result of the interaction between the developmental 

trajectories of the striatal and prefrontal systems (Steinberg, 2010). In general, decisions about 
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risk versus reward, or short versus long-term goals are driven by the interactions between the 

striatum, which calculates and processes reward, and the prefrontal cortex, which is involved in 

the formation and maintenance of long-term goals, self-regulation, and contextual information. 

During adolescence, the combination of the increase in striatal response to reward without a 

concomitant increase in response from the prefrontal structures which are still relatively 

underdeveloped and under-connected, alters value calculations in favour of higher risk and 

shorter term outcomes (Hofmann et al., 2009; Shulman et al., 2016; Steinberg, 2010; Strang et 

al., 2013).  

The dual systems model can be used to make predictions across multiple tests of impulsive 

behaviour and multiple measures of neurological structure and function (Casey et al., 2016). A 

simplified model of a distinct striatal region processing motivation and an inhibitory frontal 

region can be used successfully to make predictions under this model. However, the 

corticostriatal system is an integrated system with a complex developmental trajectory which 

interacts with the other systems of the brain and body. The predictions of the dual systems model 

also reflect the more complete function and development of the integrated corticostriatal system 

(Braams et al., 2015; Casey et al., 2016; Ernst, 2014; Haber et al., 2000). 

Since the methodological and statistical constraints on imaging studies, especially functional 

imaging studies, often limit the number of regions or connections which can be examined in a 

single study the dual systems model allows the generation of a priori hypotheses for studying the 

neurobiology of adolescence, especially in a neuroimaging context.  

Adolescents tend to underperform on tasks of self-control, and behavioural inhibition, and 

demonstrate a steeper discounting curve on the delay discounting task compared to adults. 

Behavioural inhibition performance improves with age, not only between adolescence and early 

adulthood, but during the third decade of life (Christakou et al., 2011, 2009; Cohen et al., 2016). 

The behavioural improvements in task performance which occur with age are accompanied by 

increased activation in dorsolateral and ventromedial prefrontal regions, as well as insula, 

temporal and anterior cingulate cortical regions, decreased activation within the ventral striatum, 

and connectivity changes between the ventral striatum and ventromedial prefrontal cortex 

(Bunge and Wright, 2007; Christakou et al., 2011, 2009; Cohen et al., 2016; Rubia et al., 2007, 

2006; Van Den Bos et al., 2012). Corticostriatal connectivity and task performance are also less 
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finely modulated in response to varying sizes of rewards in adolescents as compared to adults 

(Insel et al., 2017). 

Similarly, a relationship between behavioural performance and the activation and 

connectivity of the corticostriatal system can be seen within samples of adolescents. Younger 

adolescents who are more impulsive or sensation-seeking show higher volume of the ventral 

striatum, decreased response to anticipation, and are more likely to develop problematic drug use 

behaviours later in adolescence (Büchel et al., 2017). Adolescent subjects who scored higher on 

sensation-seeking, or performed worse on a delay discounting task, showed increased striatal 

response to anticipation and increased striatal response to reward and decreased reward 

anticipation and connectivity between the ventral striatum and prefrontal regions (Bjork et al., 

2008; van den Bos et al., 2015). This relationship can also be replicated in studies using real 

world measures of impulsive behaviour, or risk for the same. Adolescents with greater 

connectivity between the ventral striatum and the amygdala and orbitofrontal cortex smoke at 

higher rates than those with greater connectivity with the inferior frontal gyrus and medial 

prefrontal cortex and similar findings differentiate adolescents with family histories of alcohol 

use disorder from those who do not (Cservenka et al., 2014; Jollans et al., 2016).  

Corticostriatal activity in adolescents also varies with sensation-seeking: those with greater 

trait sensation-seeking have been found to have greater reward response in the insular and lateral 

prefrontal cortex, but lower activation to reward in the nucleus accumbens (Cservenka et al., 

2013; Hawes et al., 2016). The relationship between reward response in the nucleus accumbens 

and sensation-seeking, however, was also found to be non-linear with age. Adults show the 

opposite relationship (Hawes et al., 2016). 

The Limbic System, the Triadic Model and Other Extensions of the Dual Systems Model 

The triadic model of adolescence is an elaboration on the dual systems model, which 

includes the input from the limbic system, specifically evaluation of aversive stimuli by the 

amygdala in the evaluation of goals by the corticostriatal system which contribute to increased 

risk taking in adolescence (Ernst, 2014; Ernst et al., 2006). The original triadic model, as 

proposed by Ernst et al (2006), emphasizes the role of the amygdala in avoidance of negative 

stimuli as an additional element in adolescent impulsivity. However, in this model,  the 

hippocampus and parahippocampal cortex also contribute to impulsivity and self-control 

(Johnson et al., 2007). The overall connectivity between the ventral striatum and limbic regions 
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are correlated with reward responsivity and decrease with age. The degree to which inputs to the 

ventral striatum from the limbic regions, and those from the frontal cortex are overlap spatially is 

similarly correlated (Larsen et al., 2017).  

The hippocampus is also involved in the greater reward responsivity seen in adolescents. 

Improved reward learning seen in adolescents is related to both greater responsivity in the 

hippocampus during reward learning, and greater connectivity between the hippocampus and 

ventral striatum. This is believed to be related to increased use of experience via hippocampally 

mediated memory in decision making (Davidow et al., 2016; Murty et al., 2016). It is possible 

that altered use of memory, or reduced experience contributes to impulsivity in adolescence. 

Both the corticostriatal and limbic systems are innervated by dopaminergic fibres from the 

substantia nigra and ventral tegmental area in the midbrain. The connectivity between the 

dopaminergic midbrain, cortex, striatum and limbic system has been found to develop over time, 

with adolescents showing higher levels of limbic, insula, orbitofrontal cortex and basal ganglia 

connectivity with the ventral tegmental area and substantia nigra compared to adults (Tomasi and 

Volkow, 2014). Functional imaging studies of the midbrain are still relatively rare, so these 

connectivity changes have not been linked directly to changes in impulsivity, but the systems 

involved in adolescent impulsivity are known to be dopaminergic, and variation in the function 

of the dopaminergic midbrain has been linked to variation in impulsivity in adults, suggesting 

that this is a relevant consideration in adolescent behaviour (Buckholtz et al., 2010; Casey et al., 

2016; Murty et al., 2014; Tomasi and Volkow, 2014). 

Weight Regulation as a Neurological Property 

Regulation of appetite in the brain is typically divided into homeostatic regulation, based on 

nutritional and energy balance inputs, and hedonic regulation, based on the reward value of 

various food items (Tregellas et al., 2011). Homeostatic control of BMI is regulated by the 

circuits of the hypothalamus, which receives neuroendocrine input, as well as input from the 

viscera via the autonomic nervous system. Homeostatic control of BMI implicates hunger and 

satiety, and is based on ongoing regulation of intake of calories and nutrients, and inhibition of 

food intake in response to caloric excess (Tregellas et al., 2011). 

The hedonic circuits governing eating behaviour evaluate food cues and drive food related 

decisions based on their perceived rewarding values, including not only perceived nutrition or 

calories, but also taste, and social or emotional properties. The evaluation of the hedonic 
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properties of food and related decisions about food choice involves the insular cortex, multiple 

regions of the corticostriatal system, and the limbic system (Batterink et al., 2010; Gautier et al., 

2001; Kanoski and Grill, 2017; Tregellas et al., 2011).  

There is also a growing amount of evidence that the neurological circuits controlling BMI are 

lateralized, with imbalances or injuries which increase the influence of the left over the right 

hemisphere contributing to reduced exercise and increased food intake and BMI (Alonso-Alonso 

and Pascual-Leone, 2007; Vainik et al., 2017). 

Increased BMI has been associated with widespread structural changes in both grey and 

white matter of the brain. Higher BMI has been associated with global reductions in cortical 

thickness or grey matter volume in the cortex and subcortical structures, which becomes more 

marked in older adults (Ho et al., 2010; Pannacciulli et al., 2006; Ronan et al., 2016; Veit et al., 

2014). This reduction in grey matter is observed earliest, in older adolescents and young adults, 

in the prefrontal and orbitofrontal cortex, and alterations in prefrontal grey and white matter have 

been associated with worse performance on self-control tasks, and altered food choice (Maayan 

et al., 2012; Marqués-Iturria et al., 2013; Yau et al., 2011; Yokum et al., 2012). This is also 

lateralized. Increased volume or cortical thickness in the left prefrontal cortex and reductions on 

the right contribute to increased weight gain and obesity (Alonso-Alonso and Pascual-Leone, 

2007; Vainik et al., 2017). Along with the reductions in grey matter volume, obesity has also 

been found to decrease efficiency of connections globally, and locally within the basal ganglia. 

These changes are both also associated with aging, suggesting that obesity exacerbates brain 

aging (Baek et al., 2017; Betzel et al., 2014; Ronan et al., 2016). Obesity is also associated with 

morphometric changes in the white matter, seen by changes in fractional anisotropy, which 

reflects white matter integrity (Medic et al., 2018). 

Increased BMI is also associated with reduced volume in the hippocampus and other limbic 

structures. Reduced hippocampal volume has, similarly been associated with altered eating 

behaviour, and increased consumption of calorically dense food (Francis and Susman, 2009; 

Kanoski and Grill, 2017; Stevenson and Francis, 2017). Changes in brain morphometry 

correlated with BMI may be bidirectional. In older adults especially, reduced cortical thickness 

and hippocampal volume may result from inflammatory and cerebrovascular damage related to 

obesity (Hargrave et al., 2016; Ho et al., 2010). 
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Impulsivity as a Predictor of Body Mass Index 

Higher BMI, and greater weight gain, have been correlated with higher levels of impulsivity, 

based on multiple different impulsivity measures. Adults with higher BMI have been found to 

show higher rates of delay discounting, and poorer performance on the stop signal task of motor 

impulsivity (Appelhans et al., 2012; Lawyer et al., 2015; Nederkoorn et al., 2010). Task-based 

impulsivity has also been related to increased risk for obesity.  Obese women who demonstrated 

higher delay discounting have been found to eat more and higher calorie snack food (Appelhans 

et al., 2012; Daniel et al., 2013).  Reduced capacity for response inhibition, a related task, has 

also been shown to be associated with increased rates of weight gain (Nederkoorn et al., 2010).  

Obese women have also been found to demonstrate impulsive choice on the Iowa Gambling 

Task, as compared to lean ones (Horstmann et al., 2011). It has also been found that increased 

impulsivity in childhood is correlated with obesity in adulthood (Schlam et al., 2012).  In sum, 

impulsivity is related to higher caloric intake and the consumption of more rewarding high 

calorie food. 

Obese women who exhibit increased delay discounting were found, specifically, to consume 

higher caloric density pre-prepared food, and less food prepared at home, but, since women still 

perform the majority of food preparation in most households, it is not known how well this 

generalizes to men (Appelhans et al., 2012). Obese subjects have been found to have increased 

habitual and impulsive behaviour towards food specifically, even when their overall level of 

habit-driven or impulsive responses to other stimuli are not correlated with their BMI. However, 

general levels of sensation-seeking have been correlated with BMI (Dietrich et al., 2016). Higher 

BMI, or greater weight gain over time, have also been associated with neuroticism and 

negatively associated with concientiousness, the more general personality trait of which 

impulsivity is a facet, and with Extraversion, the factor which contains sensation-seeking, 

although not as robustly  (Gerlach et al., 2015; Jokela et al., 2013; Lunn et al., 2014; Vainik et 

al., 2013). 

Shared Neural Correlates of Impulsivity and Weight in Adults 

Neuroimaging of BMI and food response specifically is typically conducted by either by 

examining changes in activation or connectivity in response to food related cues, or by 

comparing neuroimaging findings on a non-food tasks, between subjects with differing BMI 

(Carnell et al., 2012). Multiple circuits are associated in control of BMI, but two of the most 
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commonly involved are the corticostriatal system, and the limbic system, especially the 

hippocampus and parahippocampal gyrus. 

A 2013 meta-analysis of food response tasks during fMRI found that obese subjects had an 

increased response in the right inferior, superior and precentral frontal gyri, and left dorsomedial 

prefrontal cortex, as well as the right parahippocampal cortex, and decreased insular and 

dorsolateral prefrontal cortex (Brooks et al., 2013). Other studies with differing methods have 

found similar regional associations. A positron emission tomography study found an overall 

reduced level of change in cerebral blood flow in response to satiety in an obese group compared 

to lean controls, which included both a blunted increase in frontal regions, and a blunted 

decrease in limbic regions (Gautier et al., 2001). A similar resting-state study found that regional 

homogeneity within the parahippocampal gyrus, a measure of local synchronicity, was 

associated with a greater degree of food craving as a trait, while dorsal striatal regional 

homogeneity was negatively correlated with impulsive food choices (Chen et al., 2017; Gao et 

al., 2018). 

Impairment of hippocampal function has also been associated with increased food intake and 

impaired self-control. Alterations in hippocampal function have been found to impair 

performance on both food-related and general tests of self-control. The hippocampus and 

parahippocampal gyri are involved in multiple aspects of appetite including: altering food 

response during satiety or other contextual factors, and memory for prior meals. Impairment of 

those functions in obesity can result in increased food intake (Gautier et al., 2001; Hargrave et 

al., 2016; Kanoski and Grill, 2017; Stevenson and Francis, 2017). This has been found to be a 

bidirectional relationship. Increased BMI has also been found to impair hippocampal function, 

most likely mediated by inflammatory or hormonal signalling (Hargrave et al., 2016). 

Connectivity at rest between the ventral striatum and the medial prefrontal cortex has been 

associated with performance on a delay discounting task (Calluso et al., 2015). Occipitoparietal 

resting-state connectivity with the ventral striatum has been associated with reduced trait risk 

taking (Cox et al., 2010). Performance on the stop signal task has been simultaneously linked to 

the function of multiple frontal and frontoparietal networks (Fuentes-Claramonte et al., 2016). 

Thus, the same frontostriatal system has been simultaneously implicated in impaired delay 

discounting, greater BMI and weight gain over time, and reduced impact of weight loss 

interventions (Kishinevsky et al., 2012; Lawyer et al., 2015; Weygandt et al., 2013). 
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Neuroticism, the broader personality trait of which impulsivity is a sub-factor, has also been 

associated with greater connectivity between the amygdala and ventromedial prefrontal cortex, 

and reduced connectivity between it and the anterior cingulate cortex. Neuroticism is also one of 

the personality traits most often associated with higher BMI or greater weight gain over time 

(Gerlach et al., 2015; Jokela et al., 2013; Lunn et al., 2014; Vainik et al., 2013). 

The dopaminergic midbrain, composed of the substantia nigra and ventral tegmental area has 

also been independently associated with both BMI and impulsivity (Buckholtz et al., 2010; Dang 

et al., 2016; Forbes et al., 2009). Greater dopamine availability measured using a fallypride 

tracer with positron emission tomography has been associated independently with both increased 

body mass (although only above the age of thirty, not in younger adults or adolescents) and with 

trait impulsivity. (Buckholtz et al., 2010; Dang et al., 2016). Genes associated with greater 

dopamine availability in the midbrain, but not the cortex including the DRD2-141C, DAT1-9 

repeat and DRD4-7 repeat genotypes, have been associated with greater trait impulsivity as well 

as increased reward response in the striatum, while lower dopaminergic tone (e.g. with 

medications) has been associated with weight gain (Forbes et al., 2009; Lee et al., 2018). While 

these studies were all conducted independently, and so, cannot conclusively demonstrate a link 

between impulsivity, sensation-seeking and weight, taken as a group they do show that these 

traits, which are behaviourally correlated, also correlate with similar neural endophenotypes. 

Impulsivity and its Neural Correlates and Weight in Adolescents 

The relationship between BMI and impulsivity in adolescence begins before puberty. 

Children begin to show meaningful variation in self-control in very early childhood. 

Performance on the marshmallow task, the measure most commonly used to assess early-

childhood self-control at three or four years of age can predict degree of weight gain over the 

lifespan. A poor marshmallow test performance at three or four is associated with a higher BMI 

midlife (Schlam et al., 2012). These effects are also seen on much shorter time scales between 

childhood and early to mid-adolescence (Duckworth et al., 2010; Francis and Susman, 2009; 

Tsukayama et al., 2010). The effects of increased BMI can also be seen in younger children. 

Overweight children have been found to have greater connectivity between the orbitofrontal and 

ventromedial prefrontal cortex and middle frontal gyri, the frontal regions most associated with 

reward stimuli, and central adiposity specifically has been associated with impairments in 

hippocampally mediated memory (Black et al., 2015; Haber et al., 1995; Khan et al., 2015; 
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Krombholz, 2013). Separate studies have also independently found greater overlap between the 

default mode network, and task networks in impulsive children, and overweight and sedentary 

children. In overweight children, the default mode and task networks become more independent 

in response to increased exercise, similar to findings in overweight adults (Doucet et al., 2017; 

Inuggi et al., 2014; Krafft et al., 2014; Legget et al., 2016; McFadden et al., 2013). BMI is also 

correlated with overall reductions in global connectivity in adolescents, similar to what is seen in 

adults, and these changes are especially large in the connectivity between insular and 

frontotemporal regions (Baek et al., 2017; Moreno-Lopez et al., 2016). 

Adolescents with higher body mass index have been found to be more impulsive than their 

lean peers according to multiple measures of impulsivity including delay discounting and the 

UPPS questionnaire. They also underperform on more general measures of self-control including 

the Stroop task (Batterink et al., 2010; Delgado-Rico et al., 2012). Higher body mass index in 

adolescents has been correlated with a greater degree of impulsivity on a delay discounting task 

which is accompanied by reduced activation during the task across multiple prefrontal regions 

(Batterink et al., 2010).  

Structurally, overweight and obese adolescents have reduced volume or thickness in the 

orbitofrontal cortex, superior and dorsolateral prefrontal cortex and diencephalon, and these 

reductions in thickness are correlated with increased food related disinhibition and impulsivity, 

and worse Stroop performance. Higher BMI has also been associated with increased 

hippocampal volume (Maayan et al., 2012; Moreno-López et al., 2012). Increased hippocampal 

volume specifically could reflect a number of different processes. Hippocampal function is 

related to multiple aspects of self-control, but normal hippocampal development of multiple 

hippocampal subregions involves increases in volume until late childhood or early adolescence, 

and so this could reflect an immature phenotype, which has also been implicated in higher BMI 

in functional studies (Gogtay et al., 2006; Krafft et al., 2014; Murty et al., 2016). 

Prefrontal, orbitofrontal and anterior cingulate regions, all of which have also been found to 

be reduced in volume or thickness in adolescent overweight and obesity, are also separately 

established as part of the corticostriatal system related to adolescent impulsivity (Casey et al., 

2016; Yau et al., 2011; Yokum et al., 2012). 

Overall, there is substantial evidence that greater impulsivity is behaviourally associated with 

higher BMI and greater risk for weight gain across the lifespan (Appelhans et al., 2012; 
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Duckworth et al., 2010; Moreno-López et al., 2012; Schlam et al., 2012). Studies of the neural 

correlates of food-related impulsivity or of impulsivity in overweight populations have identified 

a set of networks including the corticostriatal system and limbic system involved in both 

impulsivity and BMI (Horstmann et al., 2011; Moreno-López et al., 2012; Stevenson and 

Francis, 2017). This is further substantiated by the fact that separate studies investigating the 

neural correlates of weight regulation and the neural correlates of impulsivity in general, identify 

similar networks in both adult and adolescent populations (Buckholtz et al., 2010; Christakou et 

al., 2011, 2009; Moreno-Lopez et al., 2016; Tomasi and Volkow, 2014, 2013). 

 

Methods  

Body Mass Index 

Body mass index is equal to weight divided by height squared. Based on population 

averages standardized cut-offs differentiating healthy weight, overweight and obesity have been 

established. In children and adolescents normal body mass index is calculated based on age 

specific ranges, but cut offs for overweight and obesity are calculated based on percentile on a 

standardized growth curve, and expressed as a body mass index percentile for age, or, a body 

mass index z-score for age (Flegal et al., 2002; Kuczmarski et al., 2002). Increased body mass 

index is widely used as a proxy for adiposity, but does not measure it directly, and one of the 

major limitations of body mass index as a tool is that increased muscle or bone mass will also 

increase body mass index. Studies of children comparing body mass index to a more precise 

measure of body composition have found that it corresponds with adiposity more closely as 

weight increases (Freedman et al., 2005). Extra weight in overweight, and, especially in obese 

subjects, was found to be predominantly from adipose tissue, while in the normal range subjects 

with similar body mass indices exhibited a wide range of lean to adipose tissue ratios (Freedman 

et al., 2005).  

Magnetic Resonance Imaging 

Magnetic resonance imaging is a tool based on the nuclear magnetic resonance properties of 

hydrogen atoms in biological tissues. When placed in a strong, static magnetic field, the spin-

states of hydrogen atoms will align, with a stronger field producing a more complete state of 

alignment (Filippi, 2016). When aligned hydrogen atoms gain energy, their alignment will 

become perturbed, and when the energy source is removed, they will lose that energy and return 
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to their previous state of alignment. Magnetic resonance imaging briefly applies energy, in the 

form of radio waves, to tissue in a static magnetic field and then detects the signal that results 

when energy is released as the hydrogen atoms in that tissue return to alignment within the static 

field (Filippi, 2016). 

To allow for three dimensional imaging the exact strength of the static field is modified by 

the addition of gradient fields, which vary continuously in strength along a spatial axis, giving 

each spatial location a distinct field strength. The frequency of the signal is determined by the 

strength of the static field, and using reverse Fourier transformation the frequency composition 

of the detected signal can be reconstructed to identify the original spatial location of the varying 

parts of the signal to create an image of the tissue. The units of resolution the signals are mapped 

onto form points in a three dimensional grid, called voxels (Filippi, 2016). 

Structural Magnetic Resonance Imaging 

Different tissues have different magnetic resonance properties, as a result of their differing 

chemical composition, especially varying water content, since the majority of the hydrogen 

atoms used in magnetic resonance imaging in biological tissues are within water molecules 

(Alexander et al., 2008; Filippi, 2016). In the brain, specifically, the three primary tissue types 

which can be differentiated with magnetic resonance imaging are cerebrospinal fluid, which is 

mostly free water, grey matter, which consists primarily of cell bodies, where most water is in 

the form of cellular cytoplasm or extracellular fluid, and white matter, consisting of myelinated 

axons, which has a relatively low water content which is largely compartmentalized (Alexander 

et al., 2008; Filippi, 2016).  

Functional Magnetic Resonance Imaging 

Functional magnetic resonance imaging also utilizes the magnetic resonance properties of 

brain tissue, but uses those properties to infer the timing and location of neural activation. The 

most commonly used form of functional magnetic resonance imaging is called blood oxygen 

level dependent imaging. Blood oxygen level dependent imaging uses neurovascular coupling, 

the relationship between blood flow and neural activity, and the magnetic properties of 

hemoglobin to generate an image based on neural activity (Filippi, 2016). 

Neurovascular coupling is a mechanism by which increased blood flow can be directed to 

active neurons, which require increased oxygen and glucose to fuel increased metabolic activity, 
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in a spatially specific manner. This reliably results in an increase in the amount of oxygenated 

haemoglobin in active regions shortly after neuronal firing (Filippi, 2016).  

Haemoglobin, the oxygen carrying molecule in red blood cells, is diamagnetic when oxygen 

is bound to it, but paramagnetic when it is unbound. This means that deoxygenated haemoglobin 

molecules will create small disturbances in the magnetic field during magnetic resonance 

imaging resulting in signal loss, while oxygenated haemoglobin will not. The increased levels of 

oxygenated blood that immediately follow neuronal firing due to neurovascular coupling 

therefore result in an increase in signal that is localized to regions with active neurons. This 

signal is detected in blood oxygen level dependent imaging and used as a proxy for neural 

activity (Filippi, 2016). 

Resting State Functional Magnetic Resonance Imaging 

Blood oxygen level dependent imaging can be used to measure neural responses to specific 

tasks or stimuli, but it can also measure the random baseline activity which occurs in the brain at 

rest. In task based functional imaging, the time course of activity as compared to the timing of 

stimuli or specific responses. In resting state functional imaging, the specific time courses are 

typically non-informative, but the time course correlations between different regions and the 

amplitude and power of the signal reflect alterations in neural function referred to as functional 

connectivity (Biswal et al., 1995).   

Intrinsic Resting State Networks 

Time course correlations between brain regions in resting state functional imaging provides 

a measure of neural functional connectivity (Biswal et al., 1995). Regions which are known to be 

coactivated during task performance, tend to be functionally connected at rest. It possible to 

extract and analyze networks of coactivated regions that have a known relationship to neural 

function and that can be reliably elicited between subjects and sessions within a single subject 

(Laird et al., 2011; Smith et al., 2009). These intrinsic resting state networks have been identified 

in children as well as adults and alterations in intrinsic network activity and connectivity reflect 

age and gender as well as behavioural measures (Allen et al., 2011; Laird et al., 2011; Smith et 

al., 2009; Thomason et al., 2011). 
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Statistical Modelling of the Brain 

Independent Component Analysis 

Independent components analysis (ICA) is a data driven methodology for identifying 

underlying patterns of covariation in a dataset. ICA allows the separation of the multivariate 

fMRI signal into statistically independent subcomponents. ICA has become a widely used 

method for identifying functional networks within the brain.  When applied to functional 

imaging data ICA can be used to identify independent spatial signal sources within imaging data.  

Since ICA works without a model it does not require a hemodynamic response function, or other 

external model, making it a useful method for analyzing resting state data specifically (Shi and 

Guo, 2014; Calhoun et al., 2001, 2009; Allen et al., 2012; Calhoun et al., 2012; Meier et al., 

2012; Liu et al., 2012; Sala-Llonch et al., 2012). 

Multiple methodologies for extracting components from imaging data exist.  When ICA 

is applied separately to each individual’s resting state fMRI data, the resulting components are 

not easily comparable; therefore, components are usually generated at a group level (group or 

GICA) and then reconstructed at an individual level.  The information from multiple subjects is 

most commonly combined using by temporal concatenation, which involves concatenating the 

scans into a single time course (TC-GICA) (Beckmann et al., 2009; Calhoun et al., 2009).    

Reconstruction of subject level components is most commonly done using either dual regression 

or back reconstruction.  Dual regression works by first regressing the spatial maps extracted from 

the GICA onto subjects to extract subject-specific time courses, and then regressing those time 

courses back onto the original dataset to extract subject-specific spatial maps (Beckmann et al., 

2009).  During back-reconstruction, the GICA is carried out on a combined matrix which is 

partitioned by subject.  The partitions of the resulting sources can then be isolated to give subject 

specific sources (Calhoun et al., 2001).  Inter-group comparisons can then take place based on 

multiple elements of each component, including differences in time course, spatial source, or in 

differences between inter-network correlation. Subject level components can be used in between-

group comparisons or correlated against behavioural measures.  

Multiple prior studies have found that the components identified by ICA are spatially similar 

to the networks identified in task-based studies and that variation in the resting state networks 

identified by ICA is correlated with variation in behaviour (Calhoun et al., 2012; Allen et al., 

2012; Meier et al., 2012; Sala-Llonch et al., 2012; Lin et al., 2010). 
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Components extracted using ICA can be used in multiple ways. A set of biologically 

relevant intrinsic networks are reliably elicited using ICA the connectivity, time course or signal 

properties of which can be directly related to aspects of cognitive performance. Another 

application of ICA is the removal of physiological and motion related noise, which have distinct 

spatial and signal properties that can be isolated and removed (Pruim et al., 2015; Smith et al., 

2009). 

Mass Univariate Versus Multivariate Modelling 

The majority of neuroimaging studies utilize some form of correlation or regression model, 

relating some aspect of brain structure or function to behavioural, or other physiological 

measures (Pernet et al., 2015). Most commonly, especially in older studies, this is done using a 

mass univariate approach, where a model, usually a variation of the general linear model, is 

constructed, applied repeatedly to either a set of regions of interest or voxel-wise across the 

brain, and then significance tested (Pernet et al., 2015). 

Mass univariate modelling results must be subjected to some form of multiple comparisons 

correction to reduce the risk of false positives before they can be interpreted reliably (Pernet et 

al., 2015). While there are many forms of multiple comparisons procedures, all have the shared 

effect of reducing the statistical power of an analysis, creating a constant trade-off between type 

one and type two statistical errors (Pernet et al., 2015). 

There are two primary ways of avoiding the problems with mass univariate testing. Firstly, 

experiments with well-defined anatomical hypotheses can be designed to include only a very 

limited number of pre-defined tests of those regions, reducing the need for stringent multiple 

comparisons correction. However, the sort of thoroughly developed anatomically based 

information this requires is not always available and the level of specificity this entails is not 

always desirable (Pernet et al., 2015). 

Secondly, experimenters can employ multivariate statistical tests. Multivariate analyses 

employ a single statistical test across larger groups of data, which reduces or obviates the need 

for multiple comparisons corrections, while still allowing analyses to cover the whole brain, 

including regions without a specifically hypothesized association with the model (Abdi, 2010; 

Krishnan et al., 2011; Sawatsky et al., 2015). However, multivariate analyses lack the specificity 

of univariate models. Because the statistical test in a multivariate analysis is conducted at the 

level of the pattern (often the whole brain or a large part of it) it becomes much harder to draw 
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firm conclusions about the specific connections or associations which make up the parts of that 

pattern (Abdi, 2010; Krishnan et al., 2011; Sawatsky et al., 2015). 

 

Introduction and Rationale 
This previous literature has established that weight regulation is related to structural and 

functional endophenotypes within the brain, especially the structure, task-related activation of 

the dopaminergic midbrain and ventral striatal structures in the basal ganglia and their 

connectivity with the prefrontal cortex (Dang et al., 2016; Forbes et al., 2009; Kishinevsky et al., 

2012; Lee et al., 2018; Maayan et al., 2012; Weygandt et al., 2013). It has also been established 

that phenotypes related to impulsivity and sensation-seeking have been identified in similar 

systems and that impulsivity and sensation-seeking traits change during adolescent development 

as the result of maturational changes within the same corticostriatal structures. It has also been 

found that adolescents who display a higher level of impulsivity are at increased risk for being 

overweight and gaining weight later in life. However, BMI, impulsivity and neurological 

development during adolescence are all complex, multifactorial phenomena which have different 

internal subtypes and relate to the function of multiple interacting neurological systems. 

 This thesis, therefore, aimed to refine our understanding of which systems implicated in 

adult obesity are relevant to the regulation of BMI in children and how those same systems may 

relate to the impulsive endophenotype which has been previously found to increase risk for 

obesity. 

 In the first study we established that neither a phenotype commonly associated with adult 

obesity, reduced cortical thickness, nor the more restricted version of the same phenotype, 

reduced prefrontal cortical thickness, which has been previously identified in older adolescents, 

are present in children. This established that they neural endophenotypes associated with obesity 

vary with age. 

In the second study we examined the relationship between BMI, impulsivity and 

sensation-seeking and the connectivity of the basal ganglia and dopaminergic midbrain in a 

population of young adolescents. However, we identified connections with the limbic system, 

rather than the expected prefrontal cortical regions, as primarily involved.  

In the third study we performed a data-driven, exploratory analysis of the relationship 

between the connectivity of the brain’s large scale intrinsic, resting-state networks and BMI, 
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impulsivity and sensation-seeking. We identified a pattern of network connectivity related to 

BMI which encompassed not only subcortical, limbic, and prefrontal regions but also more 

extensive cortical networks. However, we found that this pattern of network connectivity did not 

correlate well with impulsivity and sensation-seeking.  

In combination, this work firstly expands our understanding of network involvement in 

the control of body weight in adolescent populations and secondly the relationship between 

network involvement in body weight and network involvement in the obesity related personality 

phenotypes of impulsivity and sensation-seeking. It specifically emphasizes the role of 

subcortical regions in weight and impulsivity in this age group. 
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Preface 
 

This initial study served two purposes. Firstly, it filled a gap in the literature of the 

structural neural correlates of obesity, and, secondly, it aimed to provide a basis from which to 

select appropriate ages, regions of interest and modalities for the following two research studies. 

Prior to starting this study, there was significant evidence in the literature that increased body 

weight and adiposity was correlated with a global reduction in cortical thickness in adults, which 

was most marked in older adulthood (Brooks et al., 2013; Hassenstab et al., 2012; Ho et al., 

2010; Maayan et al., 2012; Marqués-Iturria et al., 2013; Pannacciulli et al., 2007, 2006; Taki et 

al., 2008; Yokum et al., 2012; Horstmann et al., 2011, 2013); however, the evidence pointed to 

more localized reductions in cortical thickness in emerging adults and older teens (Maayan et al., 

2012; Yokum et al., 2012; Yau et al., 2011, 2012). 

At the time of the study this latter finding had not been replicated in younger teens or 

children, and that was the primary aim of the study, based on cortical thickness data taken from 

the National Institute of Health Study of Normal Brain Development Data Repository (Evans, 

2006). This included 716 T1-weighted structural MRI scans from 378 different participants. We 

extracted cortical thickness across the cortex using CIVET and constructed a multi-level model 

of the relationship between cortical thickness and BMI Z-score for age (Ad-Dab’bagh et al., 

2006; Kuczmarski et al., 2002). Based on this comprehensive sample we produced a very robust 

negative finding which, based on high statistical power, allowed us to conclude that the 

relationship between BMI and cortical thickness was not present in children. This was thought to 

suggest that weight and cortical thickness were not yet associated in younger children. We 

hypothesized that brain effects on weight in adults might reflect poor control over food choices, 

and that since children generally do not plan and select their meals, these effects might simply 

not have appeared by age 18. Conversely, satiety and hunger might be more linked to weight and 

eating in children, and these might depend on homeostatic control mechanisms  not reflected in 

neocortical anatomy or function.  
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Abstract 
 
Introduction 

Several studies report an association between body mass index (BMI) and cortical 

thickness in adults. Some studies demonstrate diffuse cortical thinning in obesity, while others 

report effects in areas that are associated with self-regulation, such as lateral prefrontal cortex.  

Methods 

This study used multilevel modelling of data from the NIH Pediatric MRI Data 

Repository, a mixed longitudinal and cross-sectional database, to examine the relationship 

between cortical thickness and body weight in children. Cortical thickness was computed at 

81,942 vertices of 716 MRI scans from 378 children aged between 4 and 18 years. Body mass 

index Z score for age was computed for each participant. We preformed vertex-wise statistical 

analysis of the relationship between cortical thickness and BMI, accounting for age and gender. 

In addition, cortical thickness was extracted from regions of interest in prefrontal cortex and 

insula. 

Results 

No significant association between cortical thickness and BMI was found, either by 

statistical parametric mapping or by region of interest analysis. Results remained negative when 

the analysis was restricted to children aged 12-18. 

Conclusions 

The correlation between BMI and cortical thickness was not found in this large pediatric 

sample. The association between BMI and cortical thinning develops after adolescence. This has 

implications for the nature of the relationship between brain anatomy and weight gain. 
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Introduction 
 

Cortical Thickness is both a marker of neurological development and a reflection of 

cortical function (Giedd et al., 1999b, 1999a; Jernigan et al., 1991; Pfefferbaum et al., 1994; 

Reiss et al., 1996).   Body weight is one factor which has been associated with alterations in 

cortical thickness.  Obesity and overweight has been associated with reduced global gray matter 

volume in young adults, healthy older adults, and older adults with Alzheimer’s disease (Brooks 

et al., 2013; Hassenstab et al., 2012; Ho et al., 2010; Maayan et al., 2012; Marqués-Iturria et al., 

2013; Pannacciulli et al., 2007, 2006; Taki et al., 2008; Yokum et al., 2012; Horstmann et al., 

2013, 2011).  While some studies report diffuse cortical thinning in obese individuals, others 

have found reduced cortical thickness specifically in regions associated with self-control and 

reward (Maayan et al., 2012; Marqués-Iturria et al., 2013; Pannacciulli et al., 2006; Yokum et al., 

2012; Hassenstab et al., 2012).  These regions include the prefrontal cortex (Ho et al., 2010; 

Marqués-Iturria et al., 2013), specifically the dorsolateral prefrontal cortex (Brooks et al., 2013), 

the orbitofrontal cortex (OFC) (Maayan et al., 2012), and the dorsal anterior cingulate cortex 

(Hassenstab et al., 2012).  

The direction of the causal relationship between cortical thickness and body weight is 

not, however, entirely clear. Thinner gray matter in areas related to self-regulation and 

motivation could result in excess food intake, but it is also possible that metabolic factors related 

to excess weight could lead to reduced cortical thickness.  A study by Taki et al found that body 

weight was negatively correlated with brain volume in men, but not women.  Since women tend 

to have more subcutaneous fat while men tend to store visceral fat, this would be in line with the 

hypothesis that increased inflammatory proteins associated with visceral fat play a role in 

decreased cortical thickness in obesity and overweight (Taki et al., 2008).  Alternatively, 

dysregulation of insulin and leptin, both of which act as neurotrophic factors, has also been 

associated with reduced frontal cortical thickness in both humans and animal models 

(Pannacciulli et al., 2006).  Humans and animals with leptin mutations have also been found to 

have reduced cortical thickness, which can be reversed with exogenous leptin treatment 

(Pannacciulli et al., 2007).  

The relationship between obesity and brain volume in older adolescents is less well 

established.  In one study, obese adolescents (ages 14-21) were found to have reduced 

orbitofrontal cortex volume, high scores on all domains of the Three Factor Eating Questionnaire 
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and impaired cognitive task performance, notably on tests of inhibitory control.  This was 

hypothesized to reflect a relationship between body weight, OFC function and a tendency to 

disinhibited eating (Maayan et al., 2012).  A second study in women with an average age of 18 

years, however, found a global decrease in gray matter in obese individuals, as compared to 

those classified as lean or overweight (Yokum et al., 2012).  The same study, however, found no 

significant local differences in gray matter volume in a series of regions of interest including the 

insula, post-central gyrus, caudate , putamen and frontal gyri, between obese, overweight and 

lean individuals (Yokum et al., 2012).    

Cortical thickness in children has been found, overall, to decrease with age, peaking 

around 4, and decreasing until as late as 30 years of age (Jernigan et al., 1991; Pfefferbaum et al., 

1994; Reiss et al., 1996).  Different brain regions mature at different rates, but, overall the brain 

matures from back to front, with the prefrontal cortex being one of the last areas to develop.   

Finally, there is limited information on the relationship between BMI and brain volume 

or cortical thickness in children.  The main goal of this study is to assess the relationship between 

body weight and cortical thickness in children using data from the NIH Pediatric MRI Data 

Repository, a mixed cross-sectional and longitudinal database of brain development in healthy, 

normally developing children (Evans, 2006).   

 

Methods 

 Sampling and Dataset Selection 

Data were taken from the NIH Pediatric MRI Data Repository (Evans, 2006).  The 

Repository contains data from the NIH MRI Study of Normal Brain Development.  Objective 

One of this study consisted of 431 children between the ages of 4 and 18 years.  Recruitment and 

scanning occurred at six sites in the United States (US).  The institutional review boards at each 

institution approved the study protocol and both parental consent and participant assent were 

obtained before testing.  Participants were recruited by geocoded mailed survey to reflect the 

demographic distribution of the US population to prevent any bias and ensure that the sample 

was representative of the distribution of age, sex, race and socioeconomic status of the zip codes 

where recruitment occurred (according to 2000 US Census Data). Participants were screened to 

rule out neurological illness or trauma, axis I psychiatric illness or a family history of the same, 

language disorders or substance abuse disorders as well as prematurity, exposure to toxins in 
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utero, or most birth complications.  Participants with IQ scores below 70 or Child Behaviour 

Checklist (CBCL) subscale score of over 70 were also excluded.  The complete recruitment 

protocol for the NIH MRI Study of Normal Brain Development can be found at 

http://pediatricmri.nih.gov/nihpd/info.  Each participant was scanned three times, two years 

apart.  Following collection, imaging and behavioural data was stored on a customized database 

at the Montreal Neurological Institute (MNI).    

For this study, only timepoints where age, gender, height and weight (used to calculate 

BMI) were available and where cortical thickness data passed quality control, were used. This 

resulted in 378 subjects and 716 datapoints (395 female, 109 overweight, 95 obese according to 

the CDC guidelines for children and adolescents).  Racial distribution in the original sample was 

11% Black or African American, 12% Hispanic, 72% White and 5% Other (Evans, 2006).  At 

time point one racial distribution in the subset used in this study was  9.9% Black or African 

American, 12.5% Hispanic, 76.0% White and 14% Other.  At the second time point racial 

distribution was 10.5% Black or African American, 10.5% Hispanic, 75.7% White and 13.8% 

Other.  At the third time point the distribution was 10.1% Black or African American, 13% 

Hispanic, 74.5% White and 15.4% Other.   

MRI Acquisition and Image Processing Protocol  

 The full MRI Acquisition protocol for the NIH MRI Study of Normal Brain 

Development can be found at http://pediatricmri.nih.gov/nihpd.info.  Briefly, subjects underwent 

a sagittal T1 weighted 3D RF-spoiled gradient echo sequence covering the entire head with slice 

thickness of between 1 and 1.5mm.  Shorter alternate sequences with 3mm slice thickness were 

used for subjects who had difficulty holding still for the scan but none of these were used for the 

current analyses as the lower spatial resolution is deemed inadequate for precise cortical 

thickness estimation.   

The T1 weighted image was then processed using the CIVET (version 1.1.12) image 

processing pipeline (Ad-Dab’bagh et al., 2006) to compute gray and white matter boundaries and 

surfaces, which were then used to calculate cortical thickness.  Images were first linearly 

registered to MNI space based on the ICBM152 template.  N3 was used to correct for non-

uniformity and INSECT, a neural net classifier, was used to classify all voxels into gray matter, 

white matter and cerebrospinal fluid.  CLASP was used to generate 2D inner and outer cortical 

surfaces, which are formed from deformable polygon meshes with 81942 vertices (where the 
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cortical thickness is calculated).  The meshes were then registered to the ICBM152 template to 

ensure the vertices line up between participants. Data were smoothed using a surface based 

20mm Gaussian kernel.  The full details of the CIVET pipeline can be found at 

http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET.  

BMI Calculations 

Healthy BMI in children varies substantially with age, meaning that BMI cannot be 

compared directly between subjects in our database.  Instead a percentile for age was calculated 

based on a standardized growth curve.  BMI, BMI Percentile for age and BMI Z-Score for age 

were calculated by inputting height, weight and age data into EpiInfo 7 from the Centers for 

Disease Control (CDC) and Prevention (http://wwwn.cdc.gov/epiinfo/7/).  The Z-Scores and 

percentiles were calculated based on the official CDC growth curves. 

Cortical Thickness Analysis 

Statistical analysis of the cortical thickness data was conducted using SurfStat (Worsley 

et al, 2004), a statistical toolbox running in Matlab R2012b (The Mathworks, Inc).  A mixed-

effects model of the effects on cortical thickness of age, gender, BMI Z-Score for age and 

scanner, as fixed effects, and subject identity as a random effect, was created using the following 

model: 

 

Y = ϐ0 + ϐ1BMI Z-Score for age + ϐ2Age + ϐ3Gender + ϐ4Scanner + random (subject) + ε   (1) 

 

Where Y is cortical thickness, ϐ0 represents the y-intercept, ϐ1-4 are the regression 

coefficients of the variables and ε is an error term.  The regression was run at each of the 81924 

vertices. A 0.05 false discovery rate (FDR) was used to account for multiple comparisons. This 

model was run on the full dataset and also on a subset of all subjects older than age twelve. 

Two interaction models were also run. In the first, an interaction term between age and 

BMI Z Score was added to the original model to account for differing effects of BMI on cortical 

thickness at different ages: 

 

Y = ϐ0 + ϐ1BMI Z-Score for age + ϐ2Age + ϐ3Gender + ϐ4Scanner + ϐ5BMI Z-Score for age*Age 

+ random(subject) + ε    (2) 
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 In the second interaction model, the three way interaction between BMI Z Score, age and 

gender was tested using the following model: 

 

Y = ϐ0 + ϐ1BMI Z-Score for age + ϐ2Age + ϐ3Gender + ϐ4Scanner + ϐ5BMI Z-Score for 

Age*Age + ϐ6Age*Gender + ϐ7BMI Z-Score for age*Gender + ϐ8Age*BMI Z-Score for 

Age*Gender + random(subject) + ε    (3) 

 

 This model sought to account for both potential differences in the effect of BMI on 

cortical thickness with age, and how the effect might change with gender.   

 Mean cortical thickness was also calculated for each timepoint and a correlation between 

mean cortical thickness and BMI Z Score for Age was run. 

Region of Interest Analysis 

Average cortical thickness values for each participant at each time point were extracted 

for five regions of interest (ROI) thought to be involved in appetite control. The areas, defined by 

the AAL atlas (Tzourio-Mazoyer et al., 2002), were the left and right insula, the left and right 

superior frontal dorsolateral region, the left and right superior orbital frontal region, the left and 

right middle frontal orbital region and the left and right inferior orbital frontal region.  These 

regions were chosen because their gray matter volume has been previously identified as 

predicting both BMI (Horstmann et al., 2013, 2011) and personality measures that are predictive 

of BMI (Vainik et al., 2013; Deyoung et al., 2010) in young adults. 

The simple, interaction-free multilevel model used earlier (equation 1) was evaluated 

using SPSS Version 20 (IBM Corp. Armonk, NY) for each ROI independently. 

Analysis of Behavioural Effects 

Separate multilevel models of cognitive and demographic effects on BMI Z-Score for age 

were conducted in SPSS 20.  All models accounted for the effects of age and gender.  Models 

were created for the Wechsler Abbreviated Scale of Intelligence IQ score, CBCL attention 

subscale score, Cambridge Neuropsychological Test Automated Battery Intra-Extra Dimensional 

(IED) Set Shift score and household income.  Household income data in the NIH Pediatric Data 

Repository was binned into brackets, each of which was assigned an ordinal number.  For this 

analysis the household income data was treated as pseudocontinuous. IED was included as a 
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measure of executive function, different aspects of which have been shown to predict obesity in 

adults (Vainik et al., 2013). 

 

Y = ϐ0 + ϐ1Behavioural Variable + ε     (4) 

 

Here Y represents BMI Z-Score for Age, ϐ0 represents the y-intercept, ϐ1 is the regression 

coefficient of the variable and ε is the error term. WASI and IED were found to be redundant in 

the individual models and were removed, so they were not included in the complete model.  

Based on the results of the single variable analysis a complete model of all the non-redundant 

variables was created. 

 

Y = ϐ0 + ϐ1Age + ϐ2Gender + ϐ3Household Income  + ϐ4CBCL + ε     (5) 

 

Results 
No significant correlations were found between cortical thickness and BMI Z Score using 

FDR multiple comparison correction (Figure 1).  A strong negative correlation between age and 

cortical thickness was found across the entire brain (Figure 2).  Males had significantly thicker 

cortex than females across large portions of the temporal and parietal lobes and the anterior 

cingulate cortex (Figure 3).  No significant interactions were found in either of the interaction 

models (equations 2 and 3).   

When the FDR threshold was lowered to q = 0.3 for exploratory purposes there were four 

regions of correlation between BMI and cortical thickness in the temporal pole, precuneus, 

occipital lobe and primary sensory cortex.  No negative correlations were found (Figure 4).  No 

correlation between mean cortical thickness and BMI Z Score was found. When only children 

over twelve (n = 183, 291 time points) were included in the analysis there were still no 

significant effects of BMI found on cortical thickness.  

No significant results were found in the ROI analysis.  The lowest p-value was p = 0.60, 

and was found in the left insula.  

In the individual behavioural and cognitive models, IED and WASI were redundant, and 

no variables showed a significant correlation with BMI Z-score.  The lowest p-value was p = 

0.061, found for the effect of household income.  When the remaining variables were entered 
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into a model together, a significant negative effect of household income was found (F= -0.071, 

df=417.785, p=0.038). 
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Figure 1. A) Unthresholded correlations between BMI Z-Score for age and cortical thickness 

across the entire brain, shown here for comparison.  Typically T-values of around 4 or greater are 

needed to reach significance.  B) Positive correlations between BMI Z-Score for age and cortical 

thickness across the entire brain corrected for multiple comparisons with FDR q = 0.05  C) 

Negative correlations between BMI Z-Score for age and cortical corrected for multiple 

comparisons with FDR q = 0.05 

 

 

 

 

 

Figure 2. A) Unthresholded correlations between age and cortical thickness across the entire 

brain, shown here for comparison.  B) Positive correlations between age and cortical thickness 

across the entire brain corrected for multiple comparisons with FDR q = 0.05.  C) Negative 

correlations between age and cortical thickness across the entire brain corrected for multiple 

comparisons with FDR q = 0.05 
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Figure 3. A) Unthresholded correlations between gender (male - female) and cortical thickness 

across the entire brain, shown here for comparison.  B) Positive correlations (male - female) 

between gender and cortical thickness across the entire brain corrected for multiple comparisons 

with FDR q = 0.05.  C) Negative correlations (female - male) between gender and cortical 

thickness across the entire brain corrected for multiple comparisons with FDR q = 0.05 

 

 

 

 

 

 

 

Figure 4. A) Unthresholded correlations between BMI Z-Score for age and cortical thickness 

across the entire brain, shown here for comparison.  Typically T-values of around 4 or greater are 

needed to reach significance. B) Positive correlations between BMI Z-Score for age and cortical 

thickness across the entire brain corrected for multiple comparisons with FDR q = 0.3 C) 

Negative correlations between BMI Z-Score for age and cortical corrected for multiple 

comparisons with FDR q = 0.3 
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Discussion 
Although there is substantial support for cortical thinning for obese adults and some for 

older teenagers, we found no association between BMI and cortical thickness in children in this 

study.  A comprehensive power analysis of cortical thickness studies conducted by Pardoe et al 

has found that a sample size of n = 50 is sufficient to detect small cortical thickness differences 

(less than 0.25mm) (Pardoe et al., 2013).  Since our sample is much larger than this, our dataset 

is likely more at risk of yielding spurious effects than failing to detect real differences. We 

protected against false positive results by using a false discovery rate of 0.05. The ROI analyses 

in areas implicated in appetite control failed to detect an effect of BMI on cortical thickness, 

even when uncorrected for multiple comparisons. The age and gender correlations with cortical 

thickness identified in this study are also in line with prior research, which supports the overall 

reliability of our sample and findings (Nguyen et al., 2013; Giedd et al., 1999b, 2006; 

Pfefferbaum et al., 1994; Jernigan et al., 1991).    

The relationship between cortical thickness in prefrontal areas and BMI or weight gain is 

thought to result from a combination of increased incentive drive and reduced self-control 

leading to maladaptive decision making with respect to food choices (Horstmann et al., 2011; 

Vainik et al., 2013). It is most likely the case that, in younger children, other factors are 

responsible for determining body weight. It could be that both homeostatic satiety mechanisms 

and parental food choices and meal planning have more influence on food intake. For example, 

parental control of diet is known to be positively correlated with body weight, and it is 

hypothesized that rigid external control of meal timing, amount and content by parents may 

prevent children from learning to attend to internal hunger cues and developing appetite 

regulation skills.  This idea has received some support from existing studies (Birch and Davison, 

2001; Crossman et al., 2006; Gray et al., 2007). Differences in satiety between lean and 

overweight children may also be genetic.  Polymorphisms in the FTO gene, which are linked to 

obesity, have been found to be linked to reduced sensitivity to satiety, which leads to overeating 

(Wardle et al., 2008).  Parental food choices as an environmental factor can also be a major 

influence on children’s weight.  Parental choice determines which foods young children have 

access to, which can cause weight gain when children have reduced access to low energy density 

foods.  Early food access also plays a role in which food children prefer as they develop the 

ability to make their own food choices (Savage et al., 2008; Scaglioni et al., 2011).   Other 



 39 

environmental factors which have been associated with overweight and obesity in children 

include high parental weight, low parental education and income and, in girls, low self-

esteem(Birch and Davison, 2001; Crossman et al., 2006).   One major determinant of weight 

status for both children and adults is socioeconomic status (SES) (McLaren, 2007).  In developed 

nations, lower SES is associated with higher rates of overweight and obesity due, presumably, to 

a combination of reduced access to healthy food and fewer opportunities for exercise (McLaren, 

2007).  Our study replicated this finding.  

Impulsivity, and behaviours related to impulsivity are known to be predictive of obesity.  

Obese adults, especially women, have been shown to exhibit more delay discounting than their 

lean peers, and increased delay discounting in childhood was correlated with increased BMI as 

an adult in the Stanford nursery cohort (Schlam et al., 2012; Appelhans et al., 2012; Daniel et al., 

2013).  A major meta-analysis of neurobehavioural correlates of BMI found that body weight is 

most strongly influenced by the combined activity of the lateral prefrontal systems mediating 

executive function and self-control and the striatal network which reacts to novel and rewarding 

stimuli (Vainik et al., 2013).  Obese women, but not obese men, have been show to exhibit a 

positive correlation between gray matter volume in the putamen and right dorsolateral prefrontal 

cortex (Horstmann et al., 2011).  A study of genetic correlates of body weight found that, in 

women, a polymorphism near the melanocortin-4-receptor associated with increased body 

weight was also associated with increased gray matter volume in the amygdala, hippocampus, 

orbitofrontal cortex and prefrontal cortex, all areas associated with the control of eating and food 

choice, and with increased scores on the disinhibition scale of the three factor eating 

questionnaire, and its emotional eating subscale.  The same association was not found in men 

(Horstmann et al., 2013).  These endophenotypes may be present in children but may not exert 

an influence on body weight until late adolescence or early adulthood, when children begin 

making major food choices for themselves. 

If children’s weight is determined primarily by external factors then the established 

cortical thickness effect, which is known to occur in adults, should appear over time as subjects 

age and develop.  This could indicate that as the brain develops, variation in cortical thickness 

results in variation in regulation of eating behaviour, that different patterns of food consumption 

affect cortical thickness development, or that both are altered by one or more other factors. A 

study following children through the transitional period from adolescence to early adulthood, 
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rather than one which focuses on either period, would be better suited to identifying how 

associations between weight and cortical thickness emerge during development.   

While the age range and diversity of the NIHPD sample allows for very robust 

conclusions about the population as a whole, it is also possible that the sample’s diversity is 

obscuring associations that are specific to certain demographics.  Follow-up studies in selective 

age groups may reveal specific relationships that are not seen in the general population.  Another 

limitation of this study is that BMI-for-age was used as a measure of obesity.  However, BMI 

does not capture individual variation in fat distribution nor does it differentiate between fat and 

non-fat mass.  In children and adolescents BMI-for-age has been found to have a non-linear 

relationship with fat mass.  BMI was specifically found to be less strongly correlated with fat 

mass in children with lower body weights (Freedman et al., 2005).  Future studies using detailed 

analyses of body composition such as MR imaging of viscera, which were not available in this 

dataset, could be used to address the relationship between cortical thickness and fat mass and fat 

distribution more specifically (Shen et al., 2005).  Determining exactly how and when the 

cortical thickness-obesity relationship emerges could also confirm or disprove our results more 

robustly, since there is still a chance, despite our high level of statistical power, that an 

undetectably small effect is present.    
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Preface 

 
Based on the negative findings of the first study early adolescence was identified as a 

promising age for studying early neural correlates of weight. Early adolescence is a period 

where, in addition to the developmental changes that accompany puberty, children also undergo 

rapid social and neurological development, which includes greatly increased independence, 

including independent food choices.  

During adolescence, there is also a well characterized increase in impulsive behaviour 

and decision making (Collado et al., 2014). This is understood to be a normal aspect of 

development, however, increased impulsivity puts adolescents at an increased risk of weight gain 

and becoming overweight and obese (Duckworth et al., 2010; Kelly et al., 2016; Maayan et al., 

2012). Increased impulsivity and sensation-seeking, and reduced conscientiousness have been 

previously established to be related to obesity in earlier studies (Vainik et al., 2013). 

 The most popular model for explaining increased impulsivity in adolescents, the Dual 

Systems Model, relates increased impulsivity and sensation-seeking to an imbalance in responses 

from the early-maturing, and so, relatively fully-developed midbrain and striatum, and the later 

maturing prefrontal cortex, as well as the white matter tracts that connect the two (Shulman et 

al., 2016; Steinberg, 2010). This corticostriatal network has also been independently associated 

with control of appetite and food consumption (Maayan et al., 2012; Ulrich et al., 2016). 

This study involved resting state functional MRI from 116 young adolescents, 

oversampled for impulsive and sensation-seeking traits based on scores on the Substance Use 

Risk Profile Scale. We used a multivariate technique, partial least squares correlation, to identify 

relationships between impulsivity, sensation-seeking and body weight and resting state 

connectivity of two regions from the basal ganglia (the ventral striatum and sub-thalamic 

nucleus) and two dopaminergic nuclei from the midbrain (the ventral tegmental area and the 

substantia nigra), with the hypothesis that the weight and personality variables would be related 

to changes in connectivity between the regions of interest and regions in the prefrontal cortex. 

However, the results did not support the original corticostriatal analysis and instead 

identified a network centered around the connectivity between the midbrain, basal ganglia and 

the limbic system, primarily the hippocampus, amygdala and parahippocampal cortex. This 
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network was differentially associated with sensation-seeking, as compared to impulsivity and 

body mass index. 

The limbic system has also been previously implicated in both impulsivity and control of 

appetite and body weight, and there is previous literature associating it specifically with 

impulsivity in the context of adolescent development (Ernst, 2014; Stevenson and Francis, 

2017). These findings seem to support a more complex view of the neuroscience of adolescent 

impulsivity and emphasize the role of the limbic system in both increased impulsivity and 

increased weight.  
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Abstract 
 

Across age groups, differences in connectivity of the mesolimbic and the prefrontal 

cortex co-vary with trait impulsivity and sensation-seeking. Impulsivity and sensation-seeking 

are also known to increase during early adolescence as maturation of subcortical structures 

outpaces that of the prefrontal cortex. While an imbalance between the striatum and prefrontal 

cortex is considered a normal developmental process, higher levels of adolescent impulsivity and 

sensation-seeking are associated with an increased risk for diverse problems, including obesity.  

To determine how the relationship between sensation-seeking, impulsivity and body mass 

index (BMI) is related to shared neural correlates we measured their relationships with the 

connectivity of nuclei in the striatum and dopaminergic midbrain in young adolescents. Data 

were collected from 116 children between the ages of 12 and 14, and included resting state 

functional magnetic resonance imaging, personality measures from the Substance Use Risk 

Profile Scale, and BMI Z-score for age. The shared variance for the connectivity of regions of 

interest in the substantia nigra, ventral tegmental area, ventral striatum and sub-thalamic nucleus, 

personality measures and BMI Z-score for age, were analyzed using partial least squares 

correlation.  

This analysis identified a single significant striato-limbic network that was connected 

with the substatia nigra, ventral tegmental area and sub-thalamic nuclei (p = 0.002). Connectivity 

within this network which included the hippocampi, amygdalae, parahippocampal gyri and the 

regions of interest, correlated positively with impulsivity and BMI Z-score for age and 

negatively with sensation-seeking. Together, these findings emphasize that, in addition to the 

well-established role that frontostriatal circuits play in the development of adolescent personality 

traits, connectivity of limbic regions with the striatum and midbrain also impact impulsivity, 

sensation-seeking and BMI Z-score in adolescents.  
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Introduction 

 
 Adolescence is a developmental period that is characterized, in part, by an increased 

propensity towards impulsivity (IMP)1 and sensation-seeking (SS). IMP can be defined as an 

increased tendency to prioritize short-term rewards over long-term goals, and to act without 

considering consequences. SS is defined as the desire to seek out new experiences and intense 

sensations (Christakou et al., 2011; Collado et al., 2014; Duckworth and Kern, 2012; Galvan et 

al., 2006; Liston et al., 2006; Rubia et al., 2007, 2006; Woicik et al., 2009).  

During adolescence, the subcortical and limbic systems develop an adult-like response to 

task stimuli earlier than the frontal lobes (Braams et al., 2015; Casey et al., 2016; Chick, 2015; 

Christakou et al., 2011; Collado et al., 2014; Shulman et al., 2016; Steinberg, 2010, 2004; Strang 

et al., 2013). Subcortical systems, innervated by mesolimbic dopamine projections, include the 

striatum, amygdala and hippocampus, and their interconnected cortical areas, and are involved in 

the neural and behavioral response to reward predicting cues. Reward-related tasks provoke 

greater BOLD response in the faster-maturing mesolimbic regions, as compared to the prefrontal 

system, possibly creating an imbalance in reward evaluation, which correlates with higher levels 

of SS and IMP (Braams et al., 2015; van Duijvenvoorde et al., 2016). It is hypothesized that 

immaturity of prefrontal regions and their white matter connections is associated with a relative 

inability of these regions to modulate cue responses in mesolimbic areas is associated with 

impulsive responding, compared to the adult brain. This is referred to as the dual systems model 

of adolescent development (Collado et al., 2014; Shulman et al., 2016; Steinberg, 2010; Strang et 

al., 2013).  It has been suggested that the reduction in impulsivity that occurs during the 

transition from adolescence to adulthood may be due in part to maturation of the frontostriatal 

and frontolimbic white matter connections (Christakou et al., 2011, 2009).  

                                                        
1 Abbreviations: Impulsivity (IMP), Sensation-Seeking (SS), Substantia Nigra (SN), Ventral 

tegmental area (VTA), Ventral Striatum (VS), Sub-Thalamic Nucleus (STN), Substance Use 

Risk Profile Scale (SURPS), Anxiety Sensitivity (AS), BMI Z-Score for Age (BMIZ), Family 

Affluence Scale (FAS), resting state functional MRI (rsfMRI), FMRIB’s Software Library 

(FSL), Independent Component Analysis (ICA), Partial Least Squares (PLS) 
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The mesolimbic and mesostriatal systems originate in two dopaminergic midbrain nuclei, 

the substantia nigra (SN) and ventral tegmental area (VTA) (Gaspar et al., 1992). The SN and 

VTA have direct connections with the striatum, amygdala, and hippocampus, among other 

regions (Mizumori and Tryon, 2015). The dopaminergic midbrain, along with the ventral 

striatum (VS), ventral prefrontal regions and anterior cingulate cortex are involved in reward 

prediction error and salience processing (Aron et al., 2004; Lohani et al., 2016; Menon, 2015; 

Zhang et al., 2015). The degree of dopamine signalling from the midbrain to the VS has been 

previously correlated with trait IMP (Buckholtz et al., 2010). The human SN and VTA are 

difficult to dissociate structurally in anatomical MRI scans due to their small size and proximity, 

and are both involved in reward processing and IMP. However, they have also been found to 

connect to different parts of the frontal-subcortical network (Düzel et al., 2009; Murty et al., 

2014). The functional connectivity patterns of the VTA and SN have also been found to change 

over the course of adolescence, with the prefrontal connectivity of the VTA increasing, and the 

overall connectivity of the SN decreasing with age (Tomasi and Volkow, 2014).  

The sub-thalamic nucleus (STN) is another subcortical nucleus involved, more 

specifically, in the motor inhibition component of IMP. Lesions of the STN have been found to 

cause motor IMP (Jahanshahi et al., 2015). The STN is connected to both the supplementary 

motor cortex, the VS and anterior cingulate cortex. Resting-state connectivity between the STN 

and the VS-anterior cingulate cortex network has been found to be negatively correlated with 

IMP and to be reduced in patients with alcohol use disorders (Morris et al., 2015). 

 The increase in IMP and SS that commonly occurs during early adolescence is believed 

to be a normal part of development (Shulman et al., 2016; Steinberg, 2010, 2004). However, 

IMP is also associated with a number of poor outcomes, including increased risk of excessive 

weight gain and obesity. This association has been seen in in both directions: children and 

adolescents who demonstrate a high level of IMP are at greater risk for obesity during 

adolescence and adulthood, and obese patients have higher levels of IMP (Appelhans et al., 

2012; Casey et al., 2011; Conrod et al., 2011, 2008; Duckworth et al., 2010; Eigsti et al., 2006; 

Francis and Susman, 2009; MacPherson et al., 2010; Mischel et al., 1989, 1988; Mitchell and 

Potenza, 2014; Schlam et al., 2012; Steinberg, 2004; Tsukayama et al., 2010).  

Structural and functional fronto-subcortical and mesolimbic connectivity have been 

negatively correlated with both increased BMI and increased IMP (Black et al., 2015; Calluso et 
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al., 2015; Casey et al., 2011; Christakou et al., 2011, 2009; Fuentes-Claramonte et al., 2016; 

Krmpotich et al., 2013; Leong et al., 2016; Morris et al., 2015; Park et al., 2015; Somerville et 

al., 2011; van den Bos et al., 2015; Whelan et al., 2012; Zhang and Li, 2013). Increased fronto-

striatal connectivity is also correlated with age in studies comparing adolescents and young 

adults (Adleman et al., 2002; Christakou et al., 2011, 2009; Liston et al., 2006; Somerville et al., 

2011; Van Den Bos et al., 2012).   

  This study aimed to identify neural correlates shared between IMP, SS and BMI in early 

adolescence. Their resting-state functional connectivity correlates were investigated in a sample 

of healthy young adolescents which is enriched for IMP and SS, using seeds placed in the VS the 

STN, the SN and the VTA. While the connections of the ventral striatum have been previously 

fairly well-studied, the addition of the other regions of interest will provide a more complete 

model of this system. It was hypothesized that, in accordance with the dual-systems model of 

adolescent IMP and existing connectivity studies, connectivity of dopaminergic nuclei would 

correlate with IMP and BMI Z-score for age. 

 

Methods 

Participants 

Neuroventure 

Neuroventure is an ongoing longitudinal study of the neurological development of 

adolescents in relation to IMP, SS, and alcohol use. It is an imaging add-on to the larger 

Coventure trial, which is testing the effects of a personality trait-specific psychological 

intervention on reducing the incidence of alcohol use problems in adolescents (Bourque et al., 

2016; Conrod et al., 2008; O’Leary-Barrett et al., 2017). The Neuroventure cohort consists of 

151 adolescents aged 12 to 14 at entry, free of neurological or psychiatric illness. Participants 

were selected from three groups: high SS participants and high IMP participants who had a IMP 

and/or SS score on the Substance Use Risk Profile Scale (SURPS) greater than 1 SD above the 

mean for their school, and control participants who scored within 1 SD of their school mean on 

both IMP and SS scores. These participants will be imaged a total of three times and followed for 

five years. The present paper reports imaging results from the 1st time point and BMI Z-score for 

age results from the 1st and 2nd , which was collected 24 months later (Bourque et al., 2016).   
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Final sample 

The final sample included in this study consists of 116 participants. Six participants were 

excluded from the entire sample due to incidental findings on MRI including enlarged ventricles 

or arachnoid cysts, five were excluded due to missing BMI data, and nine did not complete the 

full imaging session. Of the remaining 116 participants, 55 were male, 61 were female, with an 

average age of 13.6 years (163.1±7.8 months) at time point 1. For the following analysis, the 

whole sample was treated as single group enriched for the variables of interest.  

Demographic and behavioural data 

Substance Use Risk Profile Scale 

Each participant completed the Substance Use Risk Profile Scale (SURPS), which consists of 

4 subscales, each measuring one aspect of personality related to risk for drug and alcohol use 

problems: hopelessness, anxiety sensitivity, SS and IMP (Krank et al., 2011; Woicik et al., 

2009). IMP and SS are features more closely related to the causes of adolescent drinking and to 

excessive weight gain and were the subscales used in the current study (Bourque et al., 2016; 

Jurk et al., 2015; MacPherson et al., 2010; Moreno-Lopez et al., 2016).  

Body mass index and z-score for age  

Height and weight were measured before scanning and used to calculate BMI.  Participants 

self-reported their date of birth. 

BMI was converted into an age-related z-score based on the standardized CDC growth 

curves for each subject using EpiInfo (http://www.cdc.gov/epiinfo/7/). The use of BMI Z-score 

for age (BMIZ) allows comparisons between children of different ages (Kuczmarski et al., 2002). 

For each of the participants in the final sample who completed the first follow-up time point 

at 24 months, BMI and BMIZ were calculated as above. The change in BMI and BMIZ were 

calculated by subtracting the first time point from the second. The rate of change in BMI and 

BMIZ were calculated by dividing the difference values by the number of days between the two 

measurements. 

Parental body mass index 

The height and weight of the parent who accompanied the subject to the MRI scanning 

session was available for 74 of the participants at the first time point and 93 at the second. 70% 

of the accompanying parents were female at the first time point, and 67% were female at the 

second time point. Height and weight were used to calculate parental BMI. 
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Family Affluence Scale 

The family affluence scale (FAS) assesses the family socio-economic status of teenagers, 

based on items such as the number of cars and computers the family possesses, the amount of 

pocket money the teenager has access to and if they have their own bedroom. The FAS has been 

validated as an accurate measure of socioeconomic status (Boyce et al., 2006; Currie et al., 

2008). It was administered to all participants in the Coventure trial. Complete FAS data was 

available in 113 of the 116 Neuroventure participants included in this analysis.  

MRI Data collection 

Resting state functional magnetic resonance imaging (rsfMRI) data from Neuroventure was 

collected as one of a series of MRI acquisitions in a single session. All scans were collected on a 

Siemens Trio 3.0T scanner. RsfMRI was collected in a single 6-minute run of 152 volumes of 40 

axial slices with 3.5mm isotropic voxels in a 224mm FOV (TE = 30ms, TR = 2340ms). 

Participants were instructed to close their eyes. Acquisition order of the resting state data was 

changed over the course of the study to improve compliance. The resting state acquisition was 

initially placed last in the acquisition sequence following to task based fMRI acquisitions and a 

diffusion tensor acquisition. Due to issues with participants falling asleep, it was later moved to 

before the diffusion tensor acquisition. Five participants had their resting state acquisition 

performed before both the task based fMRI and diffusion tensor acquisitions due to an error in 

the acquisition. There is no relationship between group assignment and scan order. 

Also, a high-resolution T1-weighted anatomical image was collected using a MPRAGE 

sequence (192 sagittal slices, 1.0mm isotropic voxel, 256mm FOV, TE = 2.96ms, TR = 2300 

ms).  

MRI Data preprocessing 

FEAT Preprocessing 

Basic rsfMRI data preprocessing was carried out using FEAT (FMRI Expert Analysis Tool) 

Version 6.00, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). The following 

pre-statistics processing was applied; motion correction using the MCFLIRT tool (Jenkinson et 

al., 2002); slice-timing correction using Fourier-space time-series phase-shifting; non-brain 

removal using the BET tool (Smith, 2000); grand-mean intensity normalization of the entire 4D 

dataset by a single multiplicative factor.   
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Registration 

Registration to high-resolution structural and standard space images was carried out using 

FLIRT, also part of the FEAT toolbox (Jenkinson et al., 2002; Jenkinson and Beckmann, 2001). 

Band-pass filtering 

Deobliquing and bandpass filtration between 0.1 and 0.01 Hz were carried out using the 

AFNI 3drefit and 3dFourier tools (Cox, 1996; Cox and Hyde, 1997).   

Smoothing 

Smoothing was done using a 6mm kernel using fslmaths, part of FSL 

(www.fmrib.ox.ac.uk/fsl). This degree of smoothing has been previously used by studies 

focusing on midbrain regions of interest (Tomasi & Volkow, 2014; Murty et. al., 2014; Zhang et. 

al., 2015). 

Detrending 

Data for each subject were demeaned. The mean for each subject was calculated using 

fslmaths, part of FSL. The mean trend was subtracted voxelwise from the image using the AFNI 

3dDetrend tool, and the mean value was added back to the data using the AFNI 3dcalc tool, to 

restore the original mean value (Cox, 1996; Cox and Hyde, 1997). 

Nuisance regression of white matter and CSF signals 

Seeds for the ventricles and white matter were taken from the avg152T1 SPM canonical 

template resized to 2mm voxels and eroded using a spherical voxel of 0.1mm to reduce the risk 

of overlap with non-ventricle or non-white matter voxels. The mean timeseries for each of the 

two seeds was extracted for each subject using the ‘fslmeants’ command from FSL 

(www.fmrib.ox.ac.uk/fsl). Time-series statistical analysis was carried out using FILM, part of 

FSL (www.fmrib.ox.ac.uk/fsl) with local autocorrelation correction (Woolrich et al., 2001). The 

white matter and ventricular time-series were both entered as regressors. The residuals image 

from this regression was used in subsequent analyses. 

 Independent component analysis based denoising 

Independent component analysis (ICA) based denoising was carried out using the ICA based 

Automatic Removal of Motion Artifacts (ICA-AROMA) toolbox, which is part of the FSL 

library. ICA-AROMA uses a predetermined set of conservative criteria to classify component 

networks as noise, which are regressed out of the final image (Pruim et al., 2014a, 2014b). 
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Analysis was carried out using Probabilistic ICA (Beckmann and Smith, 2004) as 

implemented in Multivariate Exploratory Linear Decomposition into Independent Components 

Version 3.14, part of FSL. The following data pre-processing was applied to the input data; 

masking of non-brain voxels; voxel-wise de-meaning of the data; normalization of the voxel-

wise variance. Probabilistic ICA generates a set of spatial independent components (brain maps) 

and their associated time-courses and power spectra.(Beckmann and Smith, 2004).    

ICA-AROMA then identifies the independent components that represent motion artifacts 

using a predetermined classifier. The classifier applies the following rules: high edge fraction 

(signal near tissue boundaries in the brain), correlation with head realignment parameters from 

motion correction, large signal in CSF (> 10%), and high-frequency content (> 35%). Motion-

associated components are then removed via linear regression (Pruim et al., 2014b). 

Seed selection 

Ventral Striatum Seed 

The VS seed was taken from the 17-network version of the Choi functional connectivity atlas 

of the human striatum (Choi et al., 2012). This atlas assigns each striatal voxel based on its 

functional connectivity with frontal networks. The VS is defined by functional connectivity to 

limbic regions, especially the orbitofrontal cortex. 

The VS region (region 10 in the Choi atlas) was extracted, resized to 2mm resolution and 

eroded using an 0.1mm spherical kernel using tools from the fslmaths toolbox 

(www.fmrib.ox.ac.uk/fsl).  The left and right VS regions were separated using the FSLView 

toolbox (Figure 1).  

Substantia Nigra and Sub-Thalamic Nucleus Seeds 

The SN and STN seeds were taken from a probabilistic structural atlas created by Keuken 

and Forstmann based on 7T MRI scans (Keuken and Forstmann, 2015). The very high resolution 

of the 7T scans allow for the delineation of structures that are difficult to identify in standard 

atlases. Based on structural MRI scans from thirty 24-year olds, the nuclei of the basal ganglia 

were manually segmented by two raters for each scan independently. The scans were combined 

in standard space to create a probabilistic map of each of the nuclei. 

The SN and STN seeds at a 33% threshold were both resized to 2mm resolution and 

binarized. The SN seed was eroded using an 0.1mm spherical kernel using tools from the 

fslmaths toolbox (www.fmrib.ox.ac.uk/fsl). The STN Seed was not eroded as the size and shape 
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of the seed meant that all voxels would have been removed by spherical erosion. Voxels 

overlapping between the SN and STN were masked out of the STN seed. The left and right 

halves of the resulting masks were separated using FSLView (Figure 1).  

Ventral Tegmental Area Seed 

The VTA seed was derived from the histological images of the BigBrain Project based on 

midbrain anatomy in the right hemisphere. The BigBrain is a 3D cytoarchitectonic dataset 

created from histological data from a sliced and stained brain which was then registered to MNI 

ICBM 152 space (Amunts et al., 2013).	
The VTA is composed of five subnuclei; the parabrachial pigmented, the paranigral nucleus, 

the interfascicular nucleus, the rostral linear nucleus and central linear nucleus (Halliday and 

Törk, 1986; Oades and Halliday, 1987; Olszewski and Baxter, 1954; Swanson, 1982). We 

defined VTA borders using neighboring structures and we included all five VTA subnuclei. The 

borders were drawn by experienced neuroanatomists familiar with this region using display 

(https://mcin-cnim.ca/technology/visualization/display/) and Atelier3D (https://mcin-

cnim.ca/technology/visualization/atelier3d/).	
The image was resized to 2mm resolution. The FSL T1 standard image was used as a mask to 

remove voxels overlapping with CSF. To remove overlap between the VTA and SN a mask of 

overlapping voxels between the VTA and SN seeds was created and those voxels were 

subtracted from the VTA mask using the fslmaths toolbox. To generate a left VTA seed, the 

orientation of the seed was inversed in the X direction (Figure 1).  
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Figure 1. Location of the four regions of interest. The substantia nigra is indicated in blue. 

The ventral tegmental area is indicated in green. The sub-thalamic nucleus is indicated in 

yellow. The ventral striatum is indicated in red.  
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Masking 

A whole-brain, standard-space mask based on the output from the CIVET pipeline (Ad-

Dab’bagh et al., 2006) was generated for each subject using fslmaths (www.fmrib.ox.ac.uk/fsl) 

and summed to create a minimal mask for all participants.  The minimal mask was applied to 

each subject in order to include only voxels present in every subject in the analysis.   

Subject level analysis 

For each subject, the average time-course of each of the four seeds (SN, VTA, VS and STN) 

was extracted for each hemisphere using tools from the fslmaths toolbox 

(www.fmrib.ox.ac.uk/fsl). A whole-brain functional connectivity map was generated for each 

seed region by calculating Pearson correlation coefficients between each seed-timecourse and 

every grey matter voxel in the residualized maps following motion correction and CSF and white 

matter regression, based on the ICBM152 atlas. The resultant 3D correlation coefficient maps 

were converted into Z-scores using Fisher z-transformation. These z-score maps were used in 

subsequent analyses. 

Group level analysis 

Personality and Demographic Correlations 

A Pearson correlation was run in Matlab between SURPS-IMP, SURPS-SS, BMIZ, FAS 

Score, age in months and gender, dummy coded as a binary variable.  

Regression Analysis 

 Group level regression analysis of the data was carried out using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm). The details of the regression analysis, and the results can be 

found in the supplementary data.  

Partial Least Squares Correlation 

Focused Partial Least Squares Correlation 

A partial least squares (PLS) correlation was conducted using the seed-voxel correlations 

and the three personality and BMI variables of interest, IMP, SS, and BMI Z-score for age. PLS 

correlations extract latent variables which explain the covariance between two sets of data. 

Unlike a linear regression PLS is robust to collinearity, allowing for the correlated personality 

and BMI variables of interest, and the closely related seed regions, to be considered together 

(Krishnan et al., 2011; Sawatsky et al., 2015). The PLS analysis was performed using the 

Baycrest Lab PLS package in MATLAB (Mathworks Inc; https://www.rotman-
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baycrest.on.ca/index.php). The PLS correlation was performed as a regular behaviour PLS 

(option 3 in the Baycrest software), with 10,000 permutations and 2,000 bootstrapping samples. 

PLS creates a dimensionally reduced regression test of the shared variance between two 

sets of data, in the form of the correlation between two matrices, one containing the brain 

connectivity data and the other the BMIZ and personality data, which is subjected to singular 

value decomposition. This results in set of singular values, ranked proportionally to the amount 

of variance they explain, and a pair of orthogonal matrices representing the contributions of the 

original two tables.  

The permutation testing was conducted by randomly permuting the data in the 

connectivity table, and recalculating the singular value decomposition. The significance 

represents the proportion of singular values which are greater than the original.  

Bootstrapping tests the reliability of the contributions of the connectivity and BMI and 

personality values. Rows from the original tables were resampled with replacement and the 

correlation table and singular value decompositions were repeated on the resampled tables. The 

ratio of the original weight and its bootstrap standard error (called the bootstrap ratio) indicate 

the strength and stability of each contribution. For a more detailed explanation of PLS 

correlations refer to Misic et al 2016. 

PLS was initially performed with one matrix composed of the three personality and BMI 

variables from the regression analysis (BMIZ, SURPS-IMP and SURPS-SS scores for each 

subject) and one matrix composed of the concatenated seed-voxel correlation z-maps for each 

seed. To reduce the computational demands of the analysis the voxel-wise results were fitted to a 

composite atlas (Zeighami et al., 2015). The atlas is comprised of cerebral regions from the 

Hammers atlas, cerebellar segmentation from the Diedrichsen atlas, and manual segmentation of 

the SN, STN and red nucleus based on the BigBrain, the subject high-resolution T1 scan and the 

Duvernoy brainstem atlas (Amunts et al., 2013; Diedrichsen et al., 2009; Hammers et al., 2003; 

Zeighami et al., 2015). The voxels inside each atlas region were averaged using fslmaths 

(www.fmrib.ox.ac.uk/fsl) to produce a single correlation value with each seed for each of the 133 

atlas regions.  

PLS was initially performed using all 8 seed regions in the matrix. The resulting singular 

value decomposition identified a single significant latent variable. The pattern of correlations in 

the weight matrix between the latent variable and the seed-region correlations with the VTA, SN 
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and STN seeds were found to be very similar, while the VS connectivity pattern was dissimilar 

from the other 6 and non-significant. To confirm the analysis of the weight matrix the same 

analysis was repeated with the VS seed correlations removed, as well as with each pair of seeds 

separately. A highly similar latent variable was identified in the independent SN, VTA and STN 

analyses. No significant latent variables were identified when only the VS seed was analyzed. On 

the basis of these two findings the VS was removed from the model to reduce the overall noise 

and improve the specificity. Only the results for the combined SN/VTA/STN analysis are 

reported.  

Because the majority of the correlations were negatively associated with the resulting 

latent variable all the results were multipled by -1 for ease of interpretation. 

Extended Partial Least Squares Correlation 

To explore the potential effects of some confounding variables, the PLS analysis was 

repeated using the larger personality, BMI and demographic table including SURPS-IMP, 

SURPS-SS, BMIZ, FAS, age and gender. FAS was included because of a large and growing 

body of literature which suggests that socioeconomic status impacts both BMI and impulsive 

behaviour in teenagers (Jansen et al., 2013; Kidd et al., 2013; Shrewsbury and Wardle, 2008; 

Watts et al, 2018). Three participants were excluded from this analysis because of a lack of FAS 

score. All the data were mean-centred, as previously. All eight seed regions of interest were 

retained in the analysis. Because the majority of the correlations were negatively associated with 

the resulting latent variable all the results were again multipled by -1 for ease of interpretation. 

PLS Loading Correlations 

To assess the predictive power of the focused PLS, the subject level loadings onto the 

latent variable were correlated with parental BMI, BMIZ at the 24 month follow-up, the change 

in BMI and BMIZ and the rate of the change in BMI and BMIZ between the two time points in 

MATLAB, with pairwise exclusion of missing data. All the data were mean-centred. 

 

Results 

BMI, Personality and Demographics  

Significant positive correlations were identified between SURPS-SS and BMIZ (r = 0.2374, 

p = 0.0114) as well as between SURPS-SS and SURPS-IMP (r = 0.2005, p = 0.0332). The 

complete set of Pearson correlations are displayed in Table 1.  
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Table 1. Pearson correlation values between personality, body mass index and demographic 

variables. *Indicates p < 0.05. 

  

 Age 

(Months) 

Gender BMI Z-

Score for 

Age 

SURPS 

Impulsivity 

SURPS 

Sensation-

Seeking 

Family 

Affluence 

Scale 

Age 

(Months) 

 

--      

Gender 0.1030 --     

BMI Z-

Score for 

Age 

0.1366 0.0272 --    

 

SURPS 

Impulsivity 

0.0363 -0.1725 0.1259 --   

 

SURPS 

Sensation-

Seeking 

-0.0451 0.0546 0.2374* 0.2005* --  

 

Family 

Affluence 

Scale 

0.0611 -0.1074 -0.0837 0.0062 0.1727 -- 
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Voxel-Wise Regression Results 

The results of the voxel-wise regressions can be found in the supplementary data. The 

average correlation between the fMRI timecourses of the 8 regions of interest are displayed in 

the supplementary data. 

Partial Least Squares Correlation 

Focused Partial Least Squares Correlation 

The focused PLS analysis which was designed to test the relationship between resting state 

connectivity of our brain regions of interest and our three demographic variables of interest, 

SURPS-SS, SURPS-IMP and BMIZ, identified a single significant latent variable (p = 0.0075, s 

= 4.5166). This variable showed a positive relationship with SURPS-IMP and BMIZ scores and 

a negative relationship with SURPS-SS (Figure 2A).  

Three of the four regions of interest, the SN, VTA and STN (bilaterally) loaded significantly 

onto the latent variable when entered into separate PLS analyses and so were retained in the final 

analysis. To identify the most relevant brain regions, the bootstrap ratios for the brain regions 

were thresholded at z = 3 (Table 2). This is equivalent to including data at least 3 standard 

deviations above the mean and contains data which was both strongly associated with the 

singular values, and stable across bootstrap resampling. This identified a striato-midbrain-limbic 

network which had connectivity to the seeds positively correlated with BMIZ and SURPS-IMP, 

including correlations to each seed from the bilateral hippocampus and amygdala and a set of 

thalamic, cerebellar and midbrain nuclei, and the temporal and anterior cingulate regions. The 

network had a higher degree of connectivity both in terms of extent and bootstrap values, to the 

left hemisphere seeds than the right (Figure 2B, 2C). The full, unthresholded maps of bootstrap 

ratios for each seed for both the focused and extended PLS correlations can be found at 

https://neurovault.org/collections/3456/.  
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Figure 2. A) Correlations of the three behavioural variables included in the focused PLS 

correlation with the significant latent variable. B) Bootstrap ratios of the associations of 

regional connectivity with the left VTA with the significant latent variable in the focused 

PLS correlation, thresholded at z = 3. C) Bootstrap ratios of the associations of regional 

connectivity with the right VTA with the significant latent variable in the focused PLS 

correlation, thresholded at z = 3. All the bootstrap and correlation values were multiplied by 

-1 during analysis for ease of viewing. 
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Table 2. Regions which had connectivity with at least one of the regions of interest included in the focused PLS correlation, which was 
associated with the latent variable, with a bootstrap value of greater than 3. The names and centres of mass for each connected region 
are listed, and the thresholded bootstrap value of the connectivity with each seed. Empty cells indicate a sub-threshold bootstrap value. 

Region Name Hemisphere Regional Centre of Mass (mm) Bootstrap Value of Seed Connectivity 
X Y Z Left 

VTA 
Right 
VTA 

Left  
SN 

Right  
SN 

Left 
STN 

Right 
STN 

Pontine Nucleus 
 

Right 6 -26 -34   3.69 3.06 3.05  

Pontine Nucleus Left -6 
 

-26 -36    3.32   

Red Nucleus Left -6 
 

-20 -10 3.04  3.50 3.44 3.77 3.32 

Red Nucleus Right 6 
 

-20 -8   3.45 3.64 4.29 3.55 

Substantia Nigra 
 

Right 10 -16 -12     3.00  

Substantia Nigra 
 

Left -10 -16 -12 3.62  4.03  4.20  

Thalamus Left -12 
 

-18 6   3.44  3.22  

Thalamus Right 12 
 

-18 6   3.44  3.45  

Sub-Thalamic 
Nucleus 

Left -12 -14 -6 4.37 3.48 3.95 3.70   

Hippocampus Left -28 
 

-18 -18 4.03 3.05 4.53 3.73 4.14 3.24 

Parahippocampal 
and Ambient Gyri 

Left -24 -18 -28 4.10 3.90 5.72 4.36 5.07 4.26 

Parahippocampal 
and Ambient Gyri 

Right 24 -16 -28 3.20  3.58  3.43 3.13 

Hippocampus Right 28 
 

-16 -18 3.77 3.03 4.32 3.27 4.11 3.31 
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Amygdala Left -24 
 

-4 -22 3.62 3.10 3.44  3.15 3.01 

Amygdala Right 22 
 

-4 -22 3.44 3.08 3.40  3.36 3.11 

Posterior Temporal 
Lobe 

Left -48 -48 -4 3.23 3.01     

Posterior Cingulate 
 

Left -4 -28 36 3.25    3.15  

Posterior Cingulate Right 6 -28 36     3.05  

Fusiform Gyrus Left -36 
 

-16 -32 4.60 3.56 4.95 4.17 4.65 3.89 

Fusiform Gyrus Right 34 -14 -34   3.22  3.13 3.29 

Anterior Inferior 
Lateral Temporal 

Lobe 

Left -52 6 -34 3.09      

Anterior Medial 
Temporal Lobe 

Left -32 8 -38 4.08 3.38 3.73 3.37 3.49  

Anterior Medial 
Temporal Lobe 

Right 30 8 -38 -3.80 3.62 3.29  3.48 3.38 

Anterior Inferior 
Lateral Temporal 

Lobe 

Right 48 10 -38 3.24      

Anterior Superior 
Temporal Lobe 

Right 48 14 -20 3.58 3.77     

Subgenual Anterior 
Cingulate 

Right 4 26 -8 3.47    3.97  

Cerebellar Vermis 
Crus II 

 0 -76 -34 
  

4.01 
   

Cerebellar Vermis 
VI 

 0 -72 -22 
  

3.35 
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Cerebellar Lobe VI  Right 24 -60 -24 3.06 
 

3.63 3.03 
  

Fastigial Nucleus  Left -2 -54 -28 
    

3.19 
 

Cerebellar Lobe I IV  Left -6 -46 -16 
  

3.16 
 

3.85 3.10 
Cerebellar Lobe I IV  Right 8 -46 -16 

  
3.00 

 
3.21 
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Extended Partial Least Squares Correlation 

The extended PLS analysis was intended to test the effect of known confounds age, gender 

and FAS on the model. This extended analysis also identified a single latent variable (p = 0.0046, 

s = 5.7897). The identified variable had the same relationship with SURPS-IMP, SURPS-SS and 

BMIZ as the original analysis above. FAS score and age were both negatively related to the 

latent variable, while gender was weakly positively associated (Figure 3A).  

All four of the regions of interest (bilaterally) loaded significantly onto the latent variable 

when entered into separate PLS analyses, and so were retained in the final analysis. To identify 

the most relevant brain regions, the bootstrap ratios for the brain regions were thresholded at z = 

3 to match the previous analysis. For regions connecting to the SN, VTA and STN the left-

lateralized striato-midbrain-limbic network was again identified although the parahippocampal 

gyri rather than the hippocampus and amygdalae were the most significant regions. There were 

also a more right lateralized series of regions identified in the frontoparietal cortex. No regions 

connecting to the VS passed the threshold. The identified regions had connectivity which was 

positively correlated with BMIZ and SURPS-IMP (Figure 3B, 3C, Table 3). There were also two 

regions with negative bootstrap ratios of less than -3: the connectivity between the left inferior 

olivary nucleus and the right VTA and right STN respectively. 

The regional bootstrap values for regional connectivity to the SN, VTA and SN from this 

extended analysis were positively correlated with the same values from the focused PLS 

correlation (r = 0.7213, p < 0.001) (Figure 4), indicating that the same latent variable was 

identified in both analyses. 
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Figure 3. A) Correlations of the six behavioural variables included in the extended PLS 
correlation with the significant latent variable. B) Bootstrap ratios of the associations of 
regional connectivity with the left VTA with the significant latent variable in the extended 
PLS correlation, thresholded at z = 3. C) Bootstrap ratios of the association of regional 
connectivity with the right VTA with the significant latent variable in the extended PLS 
correlation thresholded at z = 3. All the bootstrap and correlation values were multiplied by -1 
during the analysis for ease of viewing.  
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Figure 4. Correlation between the regional bootstrap values of the focused and 
extended PLS analyses. Points representing the bootstrap values of the 
connectivity of each region with the seed indicated in the legend. All the 
bootstrap and correlation values were multiplied by -1 during the analysis for 
ease of viewing.  
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24-month follow-up 

PLS results at entry were correlated with several variables from the 24 month follow-up, to 

test the predictive power of the analysis. Subject loadings of regional connectivity onto the first 

latent variable, prior to being multiplied by -1, of the focused PLS correlation were significantly 

negatively correlated with BMIZ of the subjects two years later (r = -0.2280, p = 0.0166) but this 

does not survive a Bonferroni correction and is almost certainly not independent from BMIZ at 

timepoint one, which was involved in generating the subject-loadings. Subject loadings were not 

correlated with either the change in weight (r = -0.0340, p = 0.7247) or the rate of change (r = -

0.0558, p = 0.5623). When a partial correlation, controlling for the effects of BMIZ at the first 

time point was run, the relationship between regional connectivity at the first time point, and 

BMIZ at the 24 month follow-up was no longer significant (rho = -0.1225, p = 0.2045). It was 

also not significantly correlated with parental BMI (r = -0.0618, p = 0.5908). 
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Table 3. Regions which had connectivity with at least one of the regions of interest included in the extended PLS correlation, which 
was associated with the latent variable, with a bootstrap value of greater than 3. The names and centres of mass for each connected 
region are listed, and the thresholded bootstrap value of the connectivity with each seed. Empty cells indicate a sub-threshold 
bootstrap value. 

Region Name Hemisphere Regional Centre of 
Mass (mm) 

Bootstrap Value of Seed Connectivity 

X Y Z Left 
VTA 

Right 
VTA 

Left 
SN 

Right 
SN 

Left 
VS 

Right 
VS 

Left 
STN 

Right 
STN 

Superior Colliculus  Left -6 -30 -4 
  

3.10 
     

Pontine Nucleus  Right 6 -26 -34 3.20 
       

Red Nucleus  Left -6 -20 -10 3.90 3.42 4.40 4.40 
  

4.73 3.55 
Red Nucleus  Right 6 -20 -8 3.85 3.21 3.29 3.34 

  
4.08 3.29 

Thalamus  Left -12 -18 6 3.09 3.00 
 

3.37 
    

Substantia Nigra  Right 10 -16 -12 3.61 3.05 
    

3.09 
 

Substantia Nigra  Left -10 -16 -12 3.81 
 

3.37 
   

3.82 
 

Sub-Thalamic 
Nucleus 

Right 14 -14 -6 
 

3.15 
      

Sub-Thalamic 
Nucleus 

Left -12 -14 -6 4.42 3.71 3.21 3.65 
    

Pallidum  Left -20 -4 -0 3.05 3.28 
      

Pallidum  Right 20 -2 -0 3.16 3.19 
      

Putamen  Left -28 0 2 
 

3.10 
 

3.21 
    

Putamen  Right 26 2 2 
 

3.10 
 

3.05 
    

Parahippocampal and 
Ambient Gryi 

Left -24 -18 -28 4.33 3.78 3.17 
    

3.32 

Parahippocampal and 
Ambient Gryi 

Right 24 -16 -28 3.74 3.32 
      

Hippocampus  Right 28 -16 -18 3.04 
       

Lateral Occipital Lobe  Left -30 -82 10 
   

3.23 
    

Cuneus  Left -6 -82 18 
 

3.14 
      

Lateral Occipital Lobe  Right 32 -80 10 
   

3.21 
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Cuneus  Right 10 -78 22 
 

3.16 
      

Lingual Gyrus  Left -12 -72 -4 
 

3.09 
      

Superior Parietal 
Gyrus 

Right 18 -56 50 3.01 3.24 
 

3.43 
    

Superior Parietal 
Gyrus 

Left -16 -54 50 3.10 3.35 
 

3.50 
    

Posterior Temporal 
Lobe 

Left -48 -48 -4 3.44 3.85 
 

3.38 
   

3.09 

Posterior Temporal 
Lobe 

Right 48 -46 -4 3.00 3.28 
      

Inferior Lateral 
Parietal Lobe 

Left -50 -46 36 3.66 4.01 
 

3.64 
   

3.09 

Inferior Lateral 
Parietal Lobe 

Right 52 -44 38 3.43 3.77 
 

3.08 
    

Posterior Cingulate 
Gyrus 

Left -4 -28 36 3.58 3.82 
 

3.64 
    

Posterior Cingulate 
Gyrus 

Right 6 -28 36 3.11 3.45 
 

3.20 
    

Postcentral Gyrus  Right 40 -22 46 
 

3.32 
      

Postcentral Gyrus  Left -40 -22 46 3.11 3.78 
 

3.35 
   

3.15 
Fusiform Gyrus  Left -36 -16 -32 3.60 

       

Central Superior 
Temporal Gyrus 

Left -54 -14 -0 
 

3.27 
      

Precentral Gyrus  Left -34 -8 48 3.01 3.49 
 

3.28 
    

Precentral Gyrus  Right 36 -8 48 
 

3.27 
 

3.19 
    

Insula  Left -36 2 -0 
 

3.14 
      

Inferior Lateral 
Anterior Temporal 

Lobe 

Left -52 6 -34 3.01 
  

3.01 
    

Inferior Lateral 
Anterior Temporal 

Lobe 

Right 48 10 -38 3.62 3.50 
 

3.16 
   

3.62 
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Superior Anterior 
Temporal Gyrus 

Right 48 14 -20 
 

3.28 
      

Posterior Orbital 
Gyrus 

Left -28 22 -18 3.54 3.30 
      

Posterior Orbital 
Gyrus 

Right 26 24 -18 3.41 3.58 
     

3.06 

Inferior Frontal Gyrus  Right 48 24 8 
 

3.11 
      

Inferior Frontal Gyrus  Left -48 24 8 3.23 3.43 
 

3.50 
   

3.02 
Anterior Cingulate 

Gyrus 
Left -6 32 22 3.02 3.17 

      

Superior Frontal 
Gyrus 

Left -12 32 40 3.11 3.09 
 

3.70 
    

Middle Frontal Gyrus  Left -36 34 30 3.03 3.08 
 

3.68 
    

Presubgenual Frontal 
Gyrus 

Left -5 40 -6 3.19 3.22 
      

Fastigial Nucleus  Right 4 -54 -28 
      

3.03 
 

Fastigial Nucleus  Left -2 -54 -28 
      

3.35 
 

Cerebellar Lobe I IV  Left -8 -46 -16 
   

3.06 
  

3.48 3.28 
Cerebellar Lobe I IV  Right 8 -46 -16 

   
3.25 

  
3.24 3.37 
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Discussion 
The present study’s PLS correlation analysis of resting-state connectivity of the SN, VTA 

and STN with IMP, SS and BMIZ identified a single significant factor consisting of primarily 

mesolimbic regions connected with the subcortical nuclei of interest. The connectivity of this 

network was positively correlated with IMP and BMI Z-score for age and negatively correlated 

with SS (Figure 2). A similar factor was identified in a more complex demographic model, 

including age, gender, and family income (Figure 3, 4). The network identified in the more 

complex extended model was more extensive, including a set of primarily frontoparietal cortical 

regions. It is difficult to draw conclusions about the specific contributions of each element of the 

PLS analyses but the inverse correlation of the main latent variable with age is consistent with 

the theory that connectivity changes with maturation are associated with reduced impulsivity. 

Reduced mesolimbic connectivity and reduced impulsivity have been hypothesized to reflect 

maturation of prefronto-mesolimbic pathways (Casey et al., 2016; Christakou et al., 2011, 2009). 

Note however that the age range in the current study was restricted by design. Voxel-wise 

regression analyses using the same seed regions of interest found peaks in concordant areas 

(Supplementary Data).  

The activity of the limbic system and the connectivity between the hippocampus and the 

midbrain and striatum has been previously associated with the control of multiple aspects of 

eating behaviour (Johnson et al., 2007; Mizumori and Tryon, 2015; Ross et al., 2011; Stevenson 

and Francis, 2017). The hippocampus is responsible for integrating contextual information from 

memories of earlier food intake, interoceptive information, and environmental information in the 

calculation of value of food or food cues (Kanoski and Grill, 2017; Stevenson and Francis, 

2017). Disruptions to any of these functions can result in increased body weight. 

The hippocampus plays a role in behavioural inhibition and altered connectivity or activity 

can reduce overall capacity for inhibition, as well as food related inhibition specifically. In 

animal studies most hippocampal outputs are inhibitory and hippocampal lesions have been 

found to increase response to food cues (Stevenson and Francis, 2017). Alterations to the activity 

of the hippocampus and limbic system and their connections to the midbrain and striatum have 

been associated with both general IMP and obesity; so have connections between the 

hippocampus and prefrontal cortex, which is also implicated in behavioural control (Mizumori 

and Tryon, 2015; Ross et al., 2011).  



 76 

The positive correlation between IMP, BMIZ and the connectivity of the limbic-midbrain 

circuit identified in this study could therefore reflect a number of mechanisms including 

increased response to food cues, reduced efficiency of inhibition or altered calculation of the 

value and relevance of food information. The presence of this increased connection could also 

reflect a single underlying change (increased connectivity) which could ultimately affect 

multiple mechanisms of food response or of general impulsivity. This would be in keeping with 

the more general idea of personality predicting behaviour because it reflects underlying 

properties of brain function (Deyoung and Gray, 2009). A greater response to food cues by the 

striatum and midbrain has been previously identified in obese and overweight patients 

(Murdaugh et al., 2012; Stoeckel et al., 2008; Vainik et al., 2013). A greater response to reward 

stimuli in general has also been identified as a feature of both impulsivity and adolescent 

development (Christakou et al., 2011; Rubia et al., 2006).  

Obesity related changes in the hippocampus can be bidirectional. Alterations in hippocampal 

function can increase risk for obesity, but inflammatory and metabolic changes associated with 

obesity can also further modify hippocampal function increasing the risk for further weight gain. 

This phenomenon has been identified in both overweight and obese adults and adolescent 

populations with and without metabolic dysfunction (Hargrave et al., 2016; Moreno-Lopez et al., 

2016; Yau et al., 2012, 2011).  

The parahippocampal gyrus was identified in both our focused and extended PLS analyses. 

The activity and connectivity of the parahippocampal gyrus has also been found to be altered in 

obesity. The activity of the parahippocampal gyrus has been specifically associated with 

appetitive response to food, and to food cravings (Brooks et al., 2013; Chen et al., 2017). The 

parahippocampal region is also more generally involved in processing the contextual information 

related to specific stimuli or memories. Increased connectivity between the parahippocampal 

regions and the dopaminergic midbrain could reflect alterations in how rewarding stimuli, 

whether food specific or not, are contextualized. Adolescents are also known to utilize contextual 

information differently than adults in reward tasks. That difference, which was not assessed 

directly in this study, could be explained by the increased connectivity between parahippocampal 

and mesolimbic regions (Aminoff et al., 2013; Haddad et al., 2014; Telzer et al., 2013). The 

amygdala, another region implicated in our analysis, is also known to be involved in determining 

the salience of different stimuli and rewards based on context, and is also involved in calculating 
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and responding to risk and reward. The amygdala and its connections are also known to develop 

substantially over the course of adolescence (Ernst, 2014; Scherf et al., 2013). 

We hypothesized that connectivity between frontal regions and mesolimbic nuclei would 

vary with impulsivity and/or sensation-seeking. Adolescent impulsivity arising from 

corticostriatal connectivity changes is part of the dual-system hypothesis of adolescent 

development (Hofmann et al., 2009). Our findings instead identified a mesolimbic network as 

primarily related to impulsivity and obesity. The data driven nature of the PLS analysis makes it 

impossible to draw direct conclusions about networks that were not identified by the analysis. 

However, this finding is not in conflict with the dual-systems hypothesis but it more closely 

supports the triadic theory of development. The triadic hypothesis is an elaboration on the dual-

systems hypothesis, which states that reduced prefrontal control of both the striatum and the 

limbic system, especially the amygdala is responsible for adolescent impulsivity (Ernst et al., 

2006). It is also possible that reduced top-down influence from the prefrontal cortex could result 

in increased connectivity between the midbrain, striatum and limbic systems, although this has 

not been investigated previously to the best of our knowledge.  

Our data found that SS was differentially associated with our latent variable than IMP. There 

are few studies which examine SS as an independent trait, rather than as a facet of IMP. 

However, there is previous research identifying impulsivity and sensation-seeking as being 

associated with different brain networks, which would support our findings (Castellanos-Ryan et 

al., 2011). Additionally, Hawes et al. found that the relationship between activity in the striatum 

during a reward task and SS changed over the course of development. SS was negatively 

correlated with activity in teens and positively correlated in adults (Hawes et al., 2016). This is 

difficult to generalize directly to connectivity data, but the negative correlation between midbrain 

and striatal connectivity identified in our study and sensation-seeking score is consistent with 

this finding. While the IMP and SS subscale scores are positively correlated with each other, 

how the midbrain-limbic connectivity relates to each score can still vary.  Differential 

associations at the network level could explain why IMP and SS are negatively associated in the 

PLS analysis (Figures 2A, 3A), despite being correlated with one another (Table 1).  

The findings of this study are limited by the network identified by the PLS correlation. Since 

our data did not identify a prefrontal network we cannot tell specifically how prefrontal 

connectivity is correlated with personality or with weight in this sample. The size of our nuclei 



 78 

of interest relative to the resolution of the data may have impacted the ability of our model to 

identify multiple latent variables in the PLS analysis. The post-hoc removal of the VS seed from 

the analysis might also have biased the analysis in favour of the midbrain (SN and VTA) and 

obscured prefrontal contributions. It is reasonable to assume that other networks, not identified 

by this study do contribute to both impulsivity and weight. A cortico-striatal network implicating 

the VS seed would be one likely candidate. It is also not possible based on this set of results to 

determine the directionality of the obesity related results. Alterations to the limbic-midbrain 

system have been shown to predict future obesity in previous studies, but have also been shown 

to be exacerbated by obesity, and reversed by weight loss (Hargrave et al., 2016), although the 

young age of our sample may favor the first interpretation. This study also did not have data 

about body composition or exact Tanner stage of pubertal development available. 
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Supplementary Data 

Voxel-Wise Regression Analysis 

Methods 

We used SPM8 (Wellcome Department of Imaging Neuroscience, London, UK) to 

generate voxel-wise connectivity maps with each subcortical seed. The change from FSL to 

SPM8 was made because we found it easier to use SPM8 to analyze group data that has already 

been normalized into standard space. No group level analysis was performed on other software. 

The analyses were corrected for multiple comparisons using familywise error rate of p < 0.05 

with a cluster defining threshold of threshold of p = 0.001 for cluster based correction (Pernet et 

al., 2015). 

For each of the four seeds per hemisphere, three voxel-wise multiple regressions were 

carried out, each with a demographic variable of interest (BMIZ, SURPS-SS and SURPS-IMP), 

and variables controlling for age, gender and scan order along with an intercept variable. All 

variables were mean-centred. Each behavioural variable of interest was analyzed in a set of 

separate regressions to control for the effects of the collinearity between SURPS-SS and BMIZ 

for age and between SURPS-SS and SURPS-IMP detected in the behavioural correlations 

(section 8.1). 

Results 

We performed a regression between the voxel-wise connectivity of each region of interest 

(left and right SN, VTA, VS and STN) and each of the SURPS-IMP, SURPS-SS and BMIZ for a 

total of 24 comparisons. These results were significant under the original family wise error rate 

corrected to p = 0.05 but not significant when subsequently Bonferroni corrected to p=0.002. 

However, they do show distinct patterns of significance for each comparison. 

Connectivity between the left VS and right ventromedial prefrontal cortex (p = 0.01), the 

connectivity between the left STN and the right temporal cortex (p = 0.03) and left medial 

parietal cortex (p = 0.02) were all positively correlated with IMP. 

Connectivity between the right VTA and the right dorsal anterior cingulate cortex (p = 0.005) 

and the left temporoparietal junction (p = 0.016) and the connectivity between the left VTA and 

the left dorsal anterior cingulate cortex (p = 0.006) were negatively correlated with SS. 

Connectivity between the right SN and the left entorhinal cortex (p = 0.055), the connectivity 

between the left VTA and the cerebellar vermis (p = 0.036), the connectivity between the left 



 91 

STN and the left entorhinal cortex (p = 0.003) and the right parahippocampal gyrus (p = 0.02) 

and the connectivity between the right STN and the left parahippocampal gyrus (p = 0.034) were 

all positively correlated with BMIZ. The peak coordinates for each correlation can be found in 

Table S1. 

Region of Interest Correlations 

The mean correlations between the eight regions of interest (left and right, VTA, SN, VS, 

STN) can be found in Table S2. 
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Table S1. A complete list of significant voxel-wise regression results, based on a threshold of family wise error rate (FWE) = 
0.05 per individual analysis  

Regional Connectivity Peak Coordinates (mm) Significance 
Impulsivity Left VS – Right ventromedial 

prefrontal cortex 
12 26 -8 0.01 FWE Peak corrected 

Left STN – Right temporal lobe 66 -12 -20 0.03 FWE Peak corrected 

Left STN – Left medial parietal 
cortex 

-8 -52 18 0.02 FWE Cluster corrected 

Sensation-Seeking Right VTA – Right dorsal anterior 
cingulate cortex 

4 -14 44 0.005 FWE Cluster corrected 

Right VTA – Left temporoparietal 
junction 

-50 -56 4 0.016 FWE Cluster corrected 

Left VTA – Left dorsal anterior 
cingulate cortex 

-4 -16 36 0.006 FWE Cluster corrected 

BMI Z-Score for Age Right SN – Left entorhinal cortex -26 -2 -36 0.055 FWE Peak corrected 
Left VTA – Cerebellar vermis 0 -56 -16 0.036 FWE Cluster corrected 
Left STN – Left entorhinal cortex -22 -2 -34 0.003 FWE Cluster corrected 
Left STN – Right parahippocampal 
gyrus 

32 -34 -20 0.02 FWE Cluster corrected 
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Right  STN – Left parahippocampal 
gyrus 

-34 -32 -24 0.034 FWE Cluster corrected 

 
 
 

Table S2. Mean Pearson correlation values between the timecourses of the eight regions of 
interest. 

 Left 
VTA 

Right 
VTA 

Left  
SN 

Right  
SN 

Left  
VS 

Right 
VS 

Left 
STN 

Right 
STN 

Left  
VTA --        

Right  
VTA 0.88 --       

Left  
SN 0.77 0.64 --      

Right  
SN 0.61 0.67 0.71 --     

Left  
VS 0.31 0.31 0.39 0.39 --    

Right 
VS 0.30 0.29 0.37 0.37 0.80 --   

Left  
STN 0.74 0.66 0.80 0.63 0.36 0.36 --  

Right  
STN 0.72 0.79 0.66 0.76 0.38 036 0.76 -- 
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Preface 

The findings of the initial study of seed-based connectivity correlates of weight and 

impulsivity support the model that both impulsivity and body mass index relate to the function of 

multiple networks in the brain, and that analysis of single networks will, therefore, yield an 

incomplete picture of how brain function relates to both personality and weight. This is 

supported by the overall literature that demonstrates the association between the regions 

identified in the second study, the midbrain and hippocampus, as well as the regions we initially 

hypothesized would be involved, the corticostriatal network, and other networks entirely, 

including the temporoparietal junction. 

 On that basis we decided to follow up our analysis of seed-based connectivity with a 

more global, exploratory study of how the large-scale networks of the brain relate to impulsivity 

and body mass index.  

 To examine the global connectivity of the brain we used independent component analysis 

to identify the intrinsic, large-scale networks, and used partial least squares correlation to 

examine the relationship between internetwork connectivity and body mass index (Allen et al., 

2012; Emerson et al., 2015; La et al., 2015; Smith et al., 2009; Thomason et al., 2011). We 

identified different significant latent variables, depending on whether baseline internetwork 

connectivity, or change in internetwork connectivity over twenty-four months was considered. 

The specific network pairs that were most strongly associated with body weight were, 

individually, either connections, or networks that have been previously associated with 

impulsivity, with increased weight or obesity, or both (Cole et al., 2013; Coveleskie et al., 2015; 

Fuentes-Claramonte et al., 2016; Gupta et al., 2018; Inuggi et al., 2014; Krafft et al., 2014; 

Krmpotich et al., 2013; Kullmann et al., 2012; Lee and Telzer, 2016; Lips et al., 2014; B. Park et 

al., 2016; Tregellas et al., 2011; Wijngaarden et al., 2015). Different sets of networks seemed to 

be related to body weight at the first time point and changing weight. These network findings 

were accompanied by alterations in network efficiency across the cortex and limbic system, but 

not with significant changes in grey matter density. 

 This study fills a gap in the literature about the relationship between intrinsic networks 

and body weight. The previous literature has identified multiple intrinsic network correlates with 

body weight, spread across multiple methodologies, including not only multiple intrinsic 

network properties, but also region of interest based connectivity correlated with both resting and 
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task based fMRI, and graph theory based analyses. To our knowledge this is the first time the full 

set of intrinsic networks have been considered in the same analysis in a study of neural 

underpinnings of obesity. This data will provide the basis for future testing, either in the 

completed Neuroventure dataset or in future cohorts. 
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Abstract 

The regulation of body weight by the brain is a neurologically and behavioural complex 

phenomenon associated with the activity of multiple networks within the brain. Impulsivity and 

sensation-seeking are both personality traits associated with weight regulation which are 

themselves, complex and associated with the function of multiple neurological networks, 

independently of their connection with weight. Very few existing studies, however, examine 

more than one or two of these networks concurrently, when studying the neurological control of 

weight. 

This study extracted fifteen canonical independent components from resting state fMRI 

of a sample of 98 adolescents assessed twice in 24 months. Internetwork connectivity between 

the canonical networks was calculated using unthresholded Pearson correlation, as a measure of 

overall interaction between the brain’s large scale intrinsic networks. Partial least squares 

correlation was used to explore the relationship first between the intrinsic internetwork 

connectivity and body mass index, impulsivity and sensation-seeking; between internetwork 

connectivity and body mass index in isolation and internetwork connectivity; and between body 

mass index and change in internetwork connectivity over time.  

A single latent variable related to the combination of impulsivity, sensation-seeking and 

body weight was identified (p = 0.005), that was correlated strongly with body weight (r = 0.37) 

but relatively weakly with impulsivity (r = 0.15) and sensation-seeking (r = 0.05). A latent 

variable relating only to weight as similarly identified (p = 0.004), but correlations with between 

weight and change in internetwork connectivity over time were non-significant. 

These results support the idea that weight is neurologically controlled by the combined 

activity of multiple different networks, encompassing both cortical and subcortical elements. It 

also finds that while impulsivity, sensation-seeking and body weight share networks in common, 

they are neurologically distinct, with numerous networks that are not related to impulsivity or 

sensation-seeking contributing to regulation of body weight. 
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Introduction 

 Global intrinsic connectivity networks are a well-established feature of resting-state 

functional magnetic resonance imaging (fMRI). They make up a relatively reproducible set of 

networks which resemble those elicited during task performance, suggesting that they represent 

groups of brain areas that co-activate during specific cognitive events or tasks  (Biswal et al., 

1995; Laird et al., 2011; Smith et al., 2009). Canonical resting-state intrinsic networks have been 

identified both in adults and children and are stable over repeated scanning sessions (Geerligs et 

al., 2015; Muetzel et al., 2016; Shehzad et al., 2009; Thomason et al., 2011). Group Independent 

Component Analysis (ICA) is one common method for identifying intrinsic networks in the 

brain, that allows for networks to be spatially matched between subjects and scan sessions. 

Multiple properties of ICA derived networks can be related to individual variation in behaviour 

or task performance (Allen et al., 2012, 2011; Calhoun et al., 2001). Internetwork connectivity in 

resting state fMRI uses correlation between the time courses of blood oxygen level dependent 

(BOLD) signal in ICA-based networks as a measure of connectivity on a global level. 

Internetwork connectivity has been shown to vary with age, gender and task training (Allen et 

al., 2012; Doll et al., 2015; Emerson et al., 2015; La et al., 2015).  

Resting state connectivity has been previously associated with personality, with different 

traits having different relationships to various intrinsic networks (Adelstein et al., 2011). 

Connectivity has also, independently, been related to obesity and increased body weight using 

multiple connectivity metrics, including connectivity within or between specific regions of 

interest, graph theory metrics and ICA measures (Baek et al., 2017; Coveleskie et al., 2015; 

Krafft et al., 2014; B. Park et al., 2016; Tregellas et al., 2011). Body weight regulation is a 

complex phenomenon which has been linked to the functions of multiple networks including 

those governing homeostatic regulation, reward, executive control and the default mode network, 

which is associated with interoception (Coveleskie et al., 2015; Krafft et al., 2014; B. Park et al., 

2016; Tregellas et al., 2011).  

Impulsivity (IMP), a tendency to favour short-term goals and rewards, and sensation-

seeking (SS), a desire for novel or intense sensations, are two personality traits that have been 

associated with higher weight and risk for weight gain (Gerlach et al., 2015; Vainik et al., 2013). 

Variation in IMP and SS have also, in separate studies, been associated with variation in many of 
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the same resting-state networks that have been separately associated with variation in body 

weight (Lee and Telzer, 2016; B.-Y. Park et al., 2016; B. Park et al., 2016). 

 However, these studies are currently fragmented, with findings coming from multiple 

methodologies, age groups, and weight groups (obese vs non-obese, healthy weight, continuous 

samples, etc) and with most studies of the relationship between personality and weight being 

conducted separately form the neural correlates of personality. This study therefore aimed to 

examine the relationship between body weight and internetwork connectivity in a data-driven, 

exploratory manner by analyzing the correlates between body weight and internetwork 

connectivity in an unbiased set of ICA networks. 

 

Methods 

Participants 

Neuroventure 

Neuroventure is an ongoing longitudinal study of the neurological development of 

adolescents in relation to IMP, SS and risk for alcohol misuse. It is an imaging add-on to the 

larger Coventure trial, which is testing the effects of a personality trait-specific psychological 

intervention on reducing the incidence of alcohol use problems in adolescents (Bourque et al., 

2016; Conrod et al., 2008; O’Leary-Barrett et al., 2017). The Neuroventure cohort consists of 

151 healthy adolescents imaged during seventh grade (age 12 - 14) during the first data 

collection. Participants were selected who either had a IMP and/or SS score on the Substance 

Use Risk Profile Scale (SURPS) greater than 1 SD above the mean for their school, classified as 

either impulsive or sensation-seeking, and control participants who scored within 1 SD of their 

school mean on both IMP and SS scores. These participants will be imaged a total of three times 

across five years. The present paper reports imaging and BMI Z-score for age (BMIZ) results 

from the first time point and the 24 month follow up (Bourque et al., 2016). 

Final Sample 

The final sample included in this study consists of 98 participants. Only those with complete 

resting state MRI scans and BMI data at both time points were included. Six participants from 

the entire study were excluded due to incidental findings of enlarged ventricles or arachnoid 

cysts on MRI. Another 47 were missing either imaging or BMI data. Of the remaining 98 

participants, 46 were male, 52 were female, with an average age of 163.5 ± 7.7 months at the 
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first time point and 178.1 ± 5.9 at the second. For the following analysis the Neuroventure 

sample was treated as a single group enriched for IMP and SS. 65 of the subjects had entered 

puberty at time point one (assessed based on menarche for females, and voice-breaking for 

males), and 89 by the second time point. 

Demographic and behavioural Data 

Substance Use Risk Profile Scale 

Each participant completed the SURPS, which assesses four personality traits known to 

increase risk for drug or alcohol abuse: hopelessness, anxiety sensitivity, SS and IMP (Krank et 

al., 2011; Woicik et al., 2009). IMP and SS subscale scores were used in this study as they are 

features thought to be most strongly associated with excessive weight gain (Bourque et al., 2016; 

Jurk et al., 2015; MacPherson et al., 2010; Moreno-Lopez et al., 2016).  

Body Mass Index and Z-Score for Age 

Height and weight were measured before scanning at each session and used to calculate BMI.  

BMI was converted into an age-related z-score based on the standardized CDC growth curves for 

each subject using EpiInfo (http://www.cdc.gov/epiinfo/7/) and self-reported date of birth. The 

use of BMIZ allows comparisons between children of different ages (Kuczmarski et al., 2002). 

The changes in BMI and BMIZ were calculated by subtracting the first time point from the 

second (Figure 1). 
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Figure 1. Distribution of BMI Z-score for age in the subset of the Neuroventure cohort used in the 

present study, at the first and second time points, and the distribution in change over 24 months 
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MRI Data Collection 

At each time point, resting state functional magnetic resonance imaging (rsfMRI) data was 

collected as one of a series of MRI acquisitions in a single session. All scans were collected on a 

Siemens Trio 3.0T scanner. BOLD data was collected in the resting state in a single 6-minute run 

of 152 volumes of 40 axial slices with 3.5mm isotropic voxels in a 224mm FOV (TE = 30ms, 

TR = 2340ms). Participants were instructed to close their eyes. Acquisition order of the resting 

state data was changed over the course of the study to improve compliance. The resting state 

acquisition was initially placed last in the acquisition sequence following task-based fMRI 

acquisitions and a diffusion tensor acquisition. Due to issues with participants falling asleep, it 

was later moved to before the diffusion tensor acquisition. Five participants had their resting 

state acquisition performed before both the task based fMRI and diffusion tensor acquisitions 

due to an error in the acquisition.  

Also, a high-resolution T1-weighted anatomical image was collected using a MPRAGE 

sequence (192 sagittal slices, 1.0mm isotropic voxel, 256mm FOV, TE = 2.96ms, TR = 2300 

ms).   

MRI Data Preprocessing 

Preprocessing for this study was based on the pipeline previously used by Sharkey et al 

(2019), on the Neuroventure dataset. Note that previous studies on appropriate denoising for 

Group ICA data have found that group ICA results are less sensitive to variation in preprocessing 

than the seed based methods used in Chapter 3 (Andronache et al., 2013; Sharkey et al., 2019). 

FEAT Preprocessing 

Basic rsfMRI data preprocessing was carried out using FEAT (FMRI Expert Analysis Tool) 

Version 6.00, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). This included; 

motion correction using the MCFLIRT tool; slice-timing correction using Fourier-space time-

series phase shifting; non-brain removal using the BET tool and grand mean intensity 

normalization (Jenkinson et al., 2002; Smith, 2000).  

Independent Component Analysis Based Denoising 

Independent component analysis (ICA) based denoising was carried out using the ICA based 

Automatic Removal of Motion Artifacts (ICA-AROMA) toolbox, from the FSL library.  

Analysis was carried out using Probabilistic ICA as implemented in Multivariate Exploratory 

Linear Decomposition into Independent Components Version 3.14, part of FSL. Probabilistic 
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ICA generates a set of spatial independent components (brain maps) and their associated time-

courses and power spectra.(Beckmann and Smith, 2004).    

ICA-AROMA then identifies the independent components that represent motion artifacts 

using a predetermined classifier. The classifier applies the following rules: high edge fraction 

(signal near tissue boundaries in the brain), correlation with head realignment parameters from 

motion correction, large signal in CSF (> 10%), and high-frequency content (> 35%). Motion-

associated components are then removed via linear regression (Pruim et al., 2015b). 

Registration 

Registration to high-resolution structural and standard space images was carried out using 

FLIRT, also part of the FEAT toolbox (Jenkinson et al., 2002; Jenkinson and Beckmann, 2001). 

Band Pass Filtering 

Deobliquing and bandpass filtration between 0.1 and 0.01 Hz were carried out using the 

AFNI 3drefit and 3dFourier tools (Cox, 1996; Cox and Hyde, 1997). 

Smoothing 

Spatial smoothing was done using a 6mm Full Width Half Maximum Gaussian kernel using 

fslmaths, part of FSL (www.fmrib.ox.ac.uk/fsl). 

Group Independent Component Analysis 

Group-ICA 

Group ICA to identify intrinsic networks was performed once including all participants at 

both time points. This method ensures matching components in all scans, using the Group ICA 

of fMRI Toolbox (GIFT) (http://mialab.mrn.org/software/gift/). GIFT is a Matlab based toolbox 

that utilizes functions from SPM (Wellcome Department of Imaging Neuroscience, London, 

UK). These analyses were done in GIFT v4.0 and Matlab 2017b (Mathworks Inc.). Minimum 

description length (MDL) estimated 72 components in the dataset. Because the excessive 

computing requirements using the MDL estimated number made subsequent analyses unfeasible, 

a fixed number of 34 components was estimated. This number was chosen to match the number 

of SCANLab templates of intrinsic resting state components used here (Thomason et al., 2011; 

www.brainnexus.com/resting-state-fmri-templates). 

Spatial Template Selection 

Template matching is a method of identifying which components generated using ICA in a 

given study best reflect previously identified canonical components. This is done by comparing 
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the spatial distribution of the components to an existing template, derived either from another 

study, from the aggregate of several studies, or from anatomically derived masks. Generally, 

correlation between the voxel-wise z-scores of each component and the mask values give a 

degree of similarity and the template with the highest correlation is used to label the component. 

Several sets of ICA templates exist, based on different datasets. 13 canonical templates from two 

sets were combined in this study. 

SCANLab Templates 

The SCANLab templates are a set of ICA templates of the canonical resting state network 

components based on a sample of young adolescents. These templates, therefore, reflect a spatial 

distribution of components that is age-appropriate. 

The complete details of the creation of the SCANLab ICA templates are available, along 

with the templates and associated demographic information from the sample, at the SCANLab 

website (www.brainnexus.com/resting-state-fmri-templates). These templates were generated 

from a sample of 62 children and adolescents ranging in age from 9 to 15 years (mean 12.5 ± 

2.0). Thirty-Four Group ICA components were extracted using GIFT and were back-

reconstructed to the individual scans. The components that most closely corresponded to 

canonical networks based on automatic template matching were used to form 12 templates 

corresponding to the default mode, left and right executive, salience, visual, auditory, motor, 

anterior cingulate/precuneus, parietal association, supplementary motor, posterior default and 

inferior frontal gyrus (IFG)/middle temporal networks (Thomason et al., 2011; 

www.brainnexus.com/resting-state-fmri-templates).  

Laird Templates 

Based on previous research using the Neuroventure cohort the midbrain and limbic systems 

were thought to be related to impulsivity, sensation-seeking and BMI Z-score for age. To ensure 

that these regions were well represented in this study, specific midbrain and limbic components 

from a second set of templates were added. 

Refer to Laird et al., 2011, for the complete details of the creation of these templates. Briefly, 

20 ICA components were extracted from fMRI meta-analysis data from the brainmap database 

using the FSL MELODIC toolbox and those components were matched to the behavioural data 

from the same dataset using hierarchical clustering (Laird et al., 2011). The Laird templates have 

been previously used in analysis of adolescent resting-state dataset (Lee and Telzer, 2016). 
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Component Identification 

Eleven of the twelve SCANLab templates were used in the study. Only a single default 

component was used. A previous study done in our lab identified the connectivity between the 

limbic system and the midbrain as specifically relevant to BMI in the Neuroventure population. 

Therefore, to ensure good coverage of these regions, two additional templates, specifically 

identified as Limbic (ICA component 1) and Midbrain (ICA component 5) from the Laird dataset 

downloaded from the brainmap.org database (www.brainmap.org/icns/) were added to the 

SCANLab template set.  

The spatial correlation between the ICA components identified by GIFT for each session and 

the selected SCANLab and Laird templates was calculated using the component sorting, spatial 

correlation tool in the GIFT toolbox. For each template, the maximum spatial correlation was 

calculated with each of the mean components for session one, session two, and the combined 

mean. In cases where different components were most strongly associated with a template at the 

two time points, both were included to maximize the amount of variation over time captured by 

the data.  

Behavioural Correlations 

Unadjusted Pearson correlations were performed between age, gender, BMI Z-score for age, 

impulsivity and sensation seeking at each time point to examine the internal structure of the data. 

Motion Correlation 

The absolute root mean square displacement is automatically calculated by MCFLIRT, part 

of the FEAT Preprocessing pipeline (section 4.1). The mean displacement for each subject was 

calculated, and for each session, it was correlated with the BMI Z-score for age for each subject. 

Partial Least Squares Correlation 

Impulsivity, Sensation-Seeking, BMI Z-Score for Age and Internetwork Connectivity at Time 

Point One 

To examine the relationships between network features and behavioral measures in the 

initial dataset a partial least squares (PLS) correlation was conducted using the internetwork 

connectivity based on component time course correlations and three personality and 

demographic variables: the impulsivity and sensation-seeking sub-scales from the SURPS IMP, 

SS and BMI Z-score for age at the first time point. PLS correlations extract latent variables from 

the covariance between two sets of data. PLS is robust to collinearity and relatively small sample 
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sizes (Krishnan et al., 2011; Sawatsky et al., 2015). The PLS analysis was performed using the 

Baycrest Lab PLS package in MATLAB as a behavioural PLS (option 3) with 20,000 

permutations and bootstrapping samples (Mathworks Inc; https://www.rotman-

baycrest.on.ca/index.php).  

PLS creates a dimensionally reduced regression test of the shared variance between two 

sets of data, in the form of the correlation between two matrices (the brain connectivity and the 

BMIZ and personality data) that is subjected to singular value decomposition. This results in a 

set of singular values, ranked proportionally to the amount of variance they explain.  

The permutation testing was conducted by randomly permuting the data in the 

connectivity table. The significance represents the proportion of singular values which are 

greater than the original.  

Bootstrapping tests the reliability of the contributions of the connectivity and BMI and 

personality values. Rows from the original tables were resampled with replacement and the 

correlation table and singular value decompositions were repeated on the resampled tables. The 

ratio of the original weight and its bootstrap standard error (called the bootstrap ratio) indicate 

the strength and stability of each contribution. For a more detailed explanation of PLS 

correlations refer to (Mišić et al., 2016).  

BMI Z-Score for Age and Internetwork Connectivity at Time Point One 

Based on the results of the first PLS correlation, a second PLS correlation was run using only 

BMI Z-score for age at time point one in one matrix, and the internetwork correlation values in 

the second (i.e. IMP and SS were omitted). The same PLS parameters were otherwise used. 

BMI Z-Score for Age and Internetwork Connectivity at Time Point Two 

The second PLS correlation was repeated with the BMI Z-score for age and internetwork 

connectivity at the second time point, to retest the relationship at twenty-four month follow-up. 

BMI Z-Score for Age at Time Point One and Change in Internetwork Connectivity over 24 

Months 

To examine the relationship between initial weight and changes in intrinsic networks a third 

PLS correlation, with the same parameters as the first and second, was conducted with BMI Z-

score for age at the first time point and the residuals of the internetwork connectivity values at 

time point two, once the values at time point one had been regressed out. 
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Change in BMI Z-Score for Age and Internetwork Connectivity over 24 Months 

The relationship between change in weight and change in internetwork connectivity a four 

PLS correlation was conducted including the residuals of BMI Z-score for age at time point two, 

once BMI Z-score for age at time point one was regressed out, and the residuals of internetwork 

connectivity at time point two once connectivity at time point one was regressed out. 

Grey Matter Density Correlations 

CIVET Grey Matter Density Extraction 

The T1 weighted image was processed using the CIVET (version 2.0.0) image processing 

pipeline (Ad-Dab’bagh et al., 2006) to compute gray and white matter boundaries and surfaces.  

Images were first linearly registered to MNI space based on the ICBM152 template.  N3 was 

used to correct for non-uniformity and INSECT, a neural net classifier, was used to classify all 

voxels into gray matter, white matter and cerebrospinal fluid. Data were smoothed using a 

surface based 20mm Gaussian kernel.  On the basis of the classification, grey and white matter 

density maps were calculated for each subject. The complete details of the CIVET pipeline can 

be found at  http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET.  

The mean components from each of the original group ICA analysis were binarized using the 

fslmaths tool to create component masks and the mean grey matter density of the components 

was extracted from the grey matter density maps for each subject at each time point. 

Grey Matter Density Correlation 

The grey matter density of three components, the limbic, auditory and first midbrain 

components were correlated with the PLS brainscores for each of the significant PLS analyses 

using the corrcoef command in Matlab (Mathworks Inc.). 

Graph Theory Analysis 

Brainnetome Atlas  

The Brainnetome Atlas is a parcellation of the brain designed for connectivity studies. The 

current version of the atlas has 246 cortical and subcortical regions which were defined based on 

a combination of multimodal anatomical and connectivity variation. The complete details of the 

Brainnetome Atlas can be found at atlas.brainnetome.org/index.html.  

Regional Data Extraction 

For each subject at each of the two study times the BOLD time course of each Brainnetome 

atlas region was extracted, and a correlation table of complete inter-regional correlations was 
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calculated in Matlab (Mathworks Inc). The resulting correlation tables were used as connections 

in a graph for the calculation of the following graph properties. 

Global Efficiency 

Global efficiency is an average measure of how quickly information can be moved between 

two nodes of the brain. The weighted efficiency script from the Brain Connectivity Toolbox 

(https://sites.google.com/site/bctnet/), was used to calculate the global efficiency of each subject, 

at each time point, along with the change in global efficiency between the two time points. The 

Brain Connectivity Toolbox is a Matlab based toolbox for applying graph-theory measures to 

functional brain imaging data. Three correlations between the global efficiency and the BMI Z-

score for age data were conducted. Global efficiency and BMI Z-score for age at time point one 

were correlated, change in global efficiency over 24 months was correlated with BMI Z-score for 

age at time point one, and change in global efficiency over 24 months was correlated with 

change in BMI Z-score for age over 24 months.  

Local Efficiency 

Local efficiency is a measure of how efficiently information can be moved within the 

immediate neighbourhood of a given node. The local efficiency of each node (brainnetome 

region) for each subject at each time point was calculated using the brain connectivity toolbox 

weighted efficiency script. Three correlations between the local efficiency and the BMI Z-score 

for age data were conducted. Local efficiency and BMI Z-score for age at time point one were 

correlated, change in local efficiency over 24 months was correlated with BMI Z-score for age at 

time point one, and change in local efficiency over 24 months was correlated with change in 

BMI Z-score for age over 24 months. To control the false positive rate, the results were  

corrected for multiple comparisons using the fdr_bh toolbox, a Matlab toolbox for performing 

Benjamini & Hochberg false discovery rate correction. The fdr_bh toolbox offers two forms of 

false discovery rate correction; the more rigorous fully-dependent form was used for all 

corrections in this study (https://www.mathworks.com/matlabcentral/fileexchange/27418-

fdr_bh).  

Betweenness Centrality 

Betweenness centrality is a measurement of how densely connected a given node is, based on 

how many of the most efficient connections in a network involve that node. The betweenness 

centrality of each node for each subject at each data collection was calculated using the brain 
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connectivity toolbox weighted betweenness centrality script. Three correlations between the 

betweenness centrality and the BMI Z-score for age data were conducted. Betweenness centrality 

and BMI Z-score for age at time point one were correlated, change in betweenness centrality 

over 24 months was correlated with BMI Z-score for age at time point one, and change in 

betweeness centrality over 24 months was correlated with change in BMI Z-score for age over 

24 months. To control the false positive rate, the resulting data was corrected for multiple 

comparisons using the fdr_bh toolbox, a Matlab toolbox for performing Benjamini & Hochberg 

false discovery rate correction. The more rigorous fully-dependent form of correction was used 

for all corrections in this study (https://www.mathworks.com/matlabcentral/fileexchange/27418-

fdr_bh). 

 

Results 

Component Identification 

Eight of the templates were maximally correlated to a single resting-state component, 

indicated by a number in brackets at both study time points: the auditory (1), left executive (9), 

motor (10), limbic (16), default (18), parietal association (19), right executive (23) and visual 

(33) networks. 

Three templates were maximally correlated to different components at study time point one 

versus time point two: the supplementary motor (27 and 5), IFG/middle temporal (8 and 22) and 

midbrain (31 and 25). While these numbers are arbitrary, the use of a single group ICA analysis 

means that the numbers do identify different and specific networks. 

Two of the templates, the anterior cingulate/precuneus and the salience templates both 

maximally matched to the same component (29) so a single composite label, salience, was used 

in the following studies. 

The spatial maps of all of the components used to generate the internetwork connectivity 

maps are included in the supplementary material (Figures 2 – 16). 

Behavioural correlations 

The correlations between the behavioural variables at the first study time point can be seen in 

Table 1, the correlations between variables at the second time point can be seen in Table 2. SS 

and BMIZ were significantly correlated at the first study time point, but not at the second. 
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Table 1. Behavioural correlations between age, gender impulsivity score, sensation-seeking 

score and BMI Z-score for age, at time point one. *Indicates p < 0.05 uncorrected. 

 

 Age (months) Gender 
SURPS 

Impulsivity 

SURPS 

Sensation-

Seeking 

BMI Z-Score 

for Age 

Age (months) 

 
--     

Gender 

 
0.064 --    

SURPS 

Impulsivity 
0.059 -0.073 --   

SURPS 

Sensation-

Seeking 

-0.004 0.085 0.176 --  

BMI Z-Score 

for Age 
0.130 0.060 0.100 0.215* -- 

 
 
 
 

Table 2. Behavioural correlations between age, gender, impulsivity score, sensation-seeking 

score and BMI Z-score for age, at time point two *Indicates p < 0.05 uncorrected. 

 

 Age (months) Gender 
SURPS 

Impulsivity 

SURPS 

Sensation-

Seeking 

BMI Z-Score 

for Age 

Age (months) 

 
--     

Gender 

 
0.036 --    

SURPS 

Impulsivity 
0.039 -0.073 --   

SURPS 

Sensation-

Seeking 

-0.077 0.085 0.176 --  

BMI Z-Score 

for Age 
0.100 0.024 0.145 0.014 -- 
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Figure 2. Component 1, which was matched to the auditory template in this dataset. 
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  Figure 3. Component 5, which was matched to the supplementary motor template in this 

dataset. 
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Figure 4. Component 8, which was matched to the IFG/middle temporal template in this 

dataset. 
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Figure 5. Component 9 which was matched to the left executive template in this dataset. 
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Figure 6. Component 10, which was matched to the motor template in this dataset. 
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Figure 7. Component 16, which was matched to the limbic template in this dataset. 
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Figure 8. Component 18, which was matched to the default template in this dataset. 
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  Figure 9. Component 19, which was matched to the parietal association template in this 

dataset. 
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  Figure 10. Component 22, which was matched to the IFG/middle temporal template in this 

dataset. 
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  Figure 11. Component 23, which was matched to the right executive template in this dataset. 
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  Figure 12. Component 25, which was matched to the midbrain template in this dataset. 
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Figure 13. Component 27, which was matched to the supplementary motor template in this 

dataset. 
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  Figure 14. Component 29, which was matched to both the anterior cingulate and salience 

templates in this dataset. This component has been referred to as the salience component for 

simplicity. 
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  Figure 15. Component 31, which was matched to the midbrain template in this dataset. 
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Figure 16. Component 33, which was matched to the visual template in this dataset. 
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Motion Correlation 

Motion was not significantly correlated with BMI Z-score for age at the first (r = 0.07, p = 

0.46) session, but there was evidence of a relationship between the two at the second session (r = 

0.18, p = 0.07). This trend towards significance supports the removal of motion artifacts with 

AROMA. 

Partial Least Squares Correlations 

Impulsivity, Sensation-Seeking and BMI Z-Score for Age and Internetwork Connectivity at 

Time Point One 

The first PLS correlation was intended to test the relationship between the internetwork 

connectivity and BMI Z-score for age, IMP and SS. The analysis identified a single significant 

latent variable (p = 0.005, s = 1.78) (Figure 17A). There were positive correlations between all 

three behavioural variables and the latent variable (Figure 17B). The correlation between the 

latent variable and BMI Z-score for age was much stronger, 0.37, than the correlations with 

impulsivity and sensation-seeking, 0.15 and 0.05 respectively (Figure 17B).  

To identify the most relevant internetwork correlations, the network pairs were thresholded at 

a bootstrap ratio of greater than 3 or less than -3, which can be treated equivalently to a similar Z 

score. This identified the network pairs which were strongly associated with the singular value, 

and with an association that was stable across bootstrap testing. 

Seven network pairs had bootstrap values greater than the chosen threshold, all of which had 

positive correlations with each other. The connections between the auditory and default and 

auditory and limbic networks, the limbic and left-executive networks, the right executive and 

motor networks, the second IFG-Middle Temporal network and the default network, the first 

supplementary motor network and the right executive network, and the visual and salience 

networks (Table 3). 
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Figure 17. Results of the partial least squares correlation between impulsivity, sensation-

seeking and BMI Z-score for age, and internetwork connectivity all at the first time point. 

A) Bootstrap ratios of the internetwork connectivity values onto the latent variable. B) 

Correlations with the latent variable and the behavioural variables.  
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Table 3. The most strongly involved network pairs with the latent variable generated from the 

partial least squares correlation between impulsivity, sensation-seeking, BMI Z-score for age 

and internetwork connectivity at time point one, with bootstrap ratios. 

 

Limbic – Auditory 

 

3.33 

 

Default – Auditory 

 

3.08 

 

Limbic – Left Executive 

 

3.02 

 

Right Executive – Motor 

 

3.34 

 

IFG/Middle Temporal (T2) – Default 

 

3.14 

 

Supplementary Motor (T1) – Right Executive 

 

3.67 

 

Visual – Salience 

 

4.04 
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BMI Z-Score for Age and Internetwork Connectivity at Time Point One 

Because the PLS results above were dominated by BMI, we performed a second PLS 

correlation that tested the relationship between internetwork connectivity and BMI Z-score for 

age in isolation at time point one. The analysis identified a single significant latent variable (p = 

0.004, s = 1.68) (Figure 18A), which was positively associated with BMI Z-score for age (Figure 

18B).  

To identify the most relevant internetwork correlations, the network pairs were again 

thresholded at a bootstrap ratio of greater than 3 or less than -3, which can be treated 

equivalently to a similar Z score. This identified the network pairs which were strongly 

associated with the singular value, and with an association that was stable across bootstrap 

testing. 

Six network pairs had bootstrap values of greater than the threshold all of which were 

positively correlated with each other. The connections between the limbic and auditory networks, 

the limbic and left executive networks, the right executive and the motor networks, the second 

IFG/middle temporal network and default mode networks, the supplementary motor and the right 

executive networks and the visual and salience networks (Table 4). All of these correlations were 

also present in the earlier PLS containing the personality variables, but one of the networks most 

strongly related in the first analysis, the correlation between the default and auditory 

components, was less strongly related to the variable identified in this one. 
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Figure 18. Results of the partial least squares correlation between BMI Z-score for age, 

and internetwork connectivity all at the first time point. A) Bootstrap ratios of the 

internetwork connectivity values onto the latent variable. B) Correlations with the latent 

variable and the behavioural variable.  
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Table 4. The most strongly involved network pairs with the latent variable generated from the 

partial least squares correlation between BMI Z-score for age and internetwork connectivity at 

time point one. 

 

Limbic – Auditory 

 

 

3.15 

 

Limbic – Left Executive 

 

 

3.01 

 

Right Executive – Motor 

 

 

3.29 

 

IFG/Middle Temporal (T2) – Default 

 

 

3.03 

 

Supplementary Motor (T1) – Right Executive 

 

 

3.39 

 

Visual – Salience 

 

 

4.66 
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BMI Z-Score for Age and Internetwork Connectivity at Time Point Two  

The third PLS correlation was intended to test the relationship between internetwork 

connectivity and BMI Z-score for age at time point two. The partial least squares correlation did 

not identify any significant latent variables in this dataset (p = 0.51, s = 1.02).  

BMI Z-Score for Age at Time Point One and Change in Internetwork Connectivity over 24 

Months 

The fourth PLS correlation tested the relationship between BMI Z-score for age at the first 

time point, and the residualized internetwork connectivity at the first time point, controlling for 

the second time point. This analysis did not identify any significant latent variables in this dataset 

(p = 0.12, s = 1.18). 

Change in BMI Z-Score for Age and Internetwork Connectivity over 24 Months 

The fifth PLS correlation tested the relationship between residualized BMI Z-score for age at 

the second time point controlling for the first time point, and residualized internetwork 

connectivity at the second time point controlling for the first time point. It did not identify any 

significant latent variables in this dataset (p = 0.17. s = 1.15). 

Grey Matter Density Correlation 

None of the PLS brainscores, the relationship of individual subject’s internetwork correlation 

values to the model were significantly correlated with grey matter density in the limbic, auditory 

or midbrain components. 

Graph Theory Analysis 

Global Efficiency 

BMI Z-score for age at time point one was positively correlated with global efficiency at 

time point one (r = 0.22, p = 0.029) and negatively correlated with change in global efficiency 

over 24 months (r = -0.32, p = 0.001). Change in BMI Z-score for age and change in global 

efficiency over 24 months were not significantly correlated (r = -0.009, p = 0.93). 

Local Efficiency 

Only correlations between change in local efficiency over 24 months and BMI Z-score for 

age at time point one were significant following multiple comparisons correction. All the 

significant regional correlations were negative, indicating that higher initial BMI Z-score for age 

correlated with reduced change. Significant regions included portions of the frontal, parietal, 
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temporal and occipital cortex, the limbic system and the globus pallidus (Supplementary Table 

1). 

Betweenness Centrality 

None of the three correlations between measures of betweenness centrality or change in 

betweenness centrality and BMI Z-score for age or change in BMI Z-score for age remained 

significant following multiple comparisons correction.  

 

Discussion 

This study examined the global internetwork connectivity correlates of BMIZ, and 

impulsivity and sensation-seeking in a population of young adolescents across 24 months. PLS 

identified a single significant latent variable, composed of a pattern of connectivity between 

large-scale intrinsic networks that was strongly correlated with BMIZ, but only weakly 

correlated with impulsivity and sensation-seeking (Figure 17). A similar latent variable was 

identified when BMIZ was considered in the absence of personality factors (Figure 18). BMIZ 

was also found to be positively correlated with global efficiency, and negatively correlated with 

change in global efficiency over 24 months. BMIZ was also correlated with local efficiency in 

several cortical and subcortical regions (Supplementary Table 1). 

There is a substantial body of research that has previously found degree of impulsivity and 

sensation-seeking to be correlated with higher body weight (Gerlach et al., 2015; Vainik et al., 

2013). There is also evidence that variation in impulsivity is correlated with variation in function 

or connectivity of networks that are also related to variation in body weight, including previous 

research on the Neuroventure cohort that identified a limbic-midbrain network using similar PLS 

methods, which related to both impulsivity and body weight (Sharkey et al., 2019). Body-weight 

and impulsivity are both multifaceted traits that have been independently related to the function 

of multiple networks within the brain (Duckworth and Kern, 2012; Vainik et al., 2017, 2013). 

Our previous study using the Neuroventure cohort focused specifically only on connectivity of 

subcortical basal ganglia nuclei. The simultaneous examination of a set of large-scale networks 

in this study aimed to capture a wider scope of the neural relationship between body-weight, 

impulsivity and sensation-seeking, than is available in more hypothesis driven studies. 

The current study identified a pattern of internetwork connectivity that was predominantly 

related to variation in body-weight, and only weakly associated with impulsivity or sensation-
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seeking. PLS, is a multivariate technique meaning that the strength of association presented in 

this paper reflects a pattern of covariance between internetwork connectivity and BMI that 

makes up the latent variable as a whole, and does not allow us to assign relative importance to 

each specific implicated network. Note also that the weak association with impulsivity and 

sensation-seeking in this study is therefore not reflective of overall relationships between these 

personality dimensions and function or connectivity of brain networks, many of which have been 

previously associated with impulsive traits. Instead, it more likely that the network connectivity 

pattern contains some overlapping elements associated with both body weight and impulsivity 

and others that reflect some of the other factors known to contribute to weight such as stress 

vulnerability or emotional eating (Crossman et al., 2006; Kelly et al., 2016). 

The most strongly involved set of network connections related to the latent variable, in 

both analyses, were all positive correlations, reflecting an increase in connectivity between the 

brain’s large-scale networks with increasing weight. This is in line with previous findings which 

have identified reduced network segregation in overweight adolescents and adults (Doucet et al., 

2017; Garcia-Casares et al., 2017; Krafft et al., 2014; Legget et al., 2016; McFadden et al., 2013; 

Sadler et al., 2018).   

The specific networks involved also reflect previous findings in the literature. Increased 

interactions between the default network and the sensory and task-oriented networks have been 

previously found in overweight adolescents, and adults. This high level of internetwork 

connectivity has been found to be reduced by both weight-loss and exercise, also in both 

adolescent and adult populations (Doucet et al., 2017; Garcia-Casares et al., 2017; Krafft et al., 

2014; Legget et al., 2016; McFadden et al., 2013; Sadler et al., 2018).  However, increased 

between network connectivity is a somewhat non-specific finding which has also been found in 

younger children (which may reflect immaturity), or with other, less related findings, like 

increased positive mood, suggesting that the exact nature of this finding may be more complex 

(Krafft et al., 2014; Mirchi et al., 2018; Stevens et al., 2009).  

Connectivity between both the limbic and the executive regions, and the limbic and 

temporal and insular regions (overlapping with the auditory network in this study) as well as 

alterations in activity in these regions have both been associated with increased weight. Limbic-

executive connectivity is also associated with weight and impulsivity in separate studies (Brooks 

et al., 2013; Lee and Telzer, 2016; Sharkey et al., 2019; Stice and Yokum, 2016). Increased, 
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relationship between BMI and the activation or responsivity of the right executive network 

compared to the left has been similarly, previously associated with the right brain theory of 

obesity (Alonso-Alonso and Pascual-Leone, 2007; Vainik et al., 2017). Similarly, the executive, 

motor and default networks are also more generally involved in self-regulation (Fuentes-

Claramonte et al., 2016). Alterations in regional connectivity within networks including both the 

default mode network, and temporal networks similar (although not identical to) the IFG/middle 

temporal networks identified here have also been described. This also, relates to findings of 

altered within network connectivity of nodes within the large-scale networks (Kullmann et al., 

2012). How the between-network connectivity changes identified in this study relate to potential 

parallel changes in within-network connectivity is a possible avenue for follow-up research. 

The IFG/middle-temporal, limbic and left and right executive networks, which are all 

involved in our study, overlap with the set of regions that have been previously implicated in 

multiple forms of regulation in the perception-valuation-action (PVA) model, related to both 

weight and general emotional responses (Etkin et al., 2015; Han et al., 2018).  

Under the PVA  model, external stimuli are evaluated, and assigned a value, which results 

in an action in response. There are two major ways in which self-control mechanisms influence 

the PVA response. Top-down control can inhibit actions based on changing the valuations of 

perceived stimuli and modulation of the response to these stimuli. Both of these represent forms 

of self-control associated with dissociable but overlapping networks (Etkin et al., 2015; Langner 

et al., 2018).  

Previous research has identified interactions between the visual and salience networks, like 

those found in this study, to be involved in valuation modulation of visual food cues, with 

increased valuation of food cues being associated with higher body weight (Doucet et al., 2017; 

Han et al., 2018; Kullmann et al., 2013; Sadler et al., 2018). 

The increased global efficiency which was also identified in this study is a finding that, 

reflects, using a different method of analysis, the positive associations between weight and the 

most heavily involved network pairs, as identified by bootstrap analysis. The overall increase in 

positive internetwork correlations and the overall increased efficiency both reflect greater 

information transfer between the large-scale regions and networks of the brain. 

However, the finding of increased global efficiency corresponds more strongly to findings 

related to impulsivity, and the more general trait of neuroticism to which impulsivity is related. 
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Neuroticism has been previously associated with greater global efficiency (Servaas et al., 2014). 

Obesity has been previously associated with reduced global efficiency, although that finding may 

not relate to the more varied weights present in the largely healthy Neuroventure sample (Baek et 

al., 2017). The age of the sample may also have affected both these findings and the lack of 

association found in this study between the identified weight related changes in functional 

connectivity and any differences in grey matter density. Note that previous studies examining 

structural changes in the brain related to obesity found that findings from adult populations do 

not necessarily extend to children (Sharkey et al., 2015).  

There are two major limitations in this data that merit further follow-up. Firstly, while 

motion was not significantly correlated with body weight at either time point, there is a 

pronounced trend towards greater motion at higher weights especially in the second time point. 

This trend may have affected the data, especially the loss of significance in the second time-point 

data and the negative correlations with changes in local efficiency seen in the graph theory 

analysis. It should be noted however that we used a well-validated method to remove BOLD 

artifacts related to head motion (Pruim et al., 2015b, 2015a). 

The Neuroventure dataset also lacks detailed data about pubertal status. Puberty could have 

potentially influenced the relationship between weight and brain development (since puberty is 

associated with weight gain) (Ahmed et al., 2009). The effects of puberty on weight are partially 

accounted for by the use of the BMIZ measure, but only in-so-far as the rate of puberty and 

amount of weight gained is typical for the subject’s age. Neuroventure participants only have a 

single, binary measure of pubertal status, menarche for female participants and voice-breaking 

for males, and the majority of subjects had already entered puberty, based on these measures, by 

the time the initial data was collected, leaving very little variability within the pubertal data. 

Future work with more detailed data about hormonal and physical maturation will be necessary 

to further elucidate the role of puberty in adolescent weight changes. 

While the sample size of the Neuroventure cohort, 98 people, is large enough to be suitable 

for this exploratory analysis of neural correlates of weight, it does not have the statistical power 

to test the multiple specific relationships suggested by the boot-strapping ratios of the latent 

variables, while accommodating the need for multiple comparisons correction that would entail. 

However, measuring these relationships simultaneously in a single population provides a 
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framework for follow-up in subsequent studies that is more comprehensive than previous 

hypothesis driven findings. 
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Supplementary Data  
 

Supplementary Table 1. Regions, defined by the brainnetome atlas label, where change in local 

efficiency over 24 months was significantly negatively correlated with initial BMI Z-Score for 

age, with FDR corrected p values.  

Superior Frontal Gyrus A8m, medial area 8 0.04 

Superior Frontal Gyrus A8m, medial area 8 0.05 

Superior Frontal Gyrus A9l, lateral area 9 0.04 

Superior Frontal Gyrus A6m, medial area 6 0.02 

Superior Frontal Gyrus A6m, medial area 6 0.03 

Superior Frontal Gyrus A10m, medial area 10 0.03 

Superior Frontal Gyrus A10m, medial area 10 0.04 

Middle Frontal Gyrus IFJ, inferior frontal junction 0.05 

Middle Frontal Gyrus IFJ, inferior frontal junction 0.04 

Middle Frontal Gyrus A9/46v, vental area 9/46 0.04 

Middle Frontal Gyrus A8vl, ventrolateral area 8 0.04 

Middle Frontal Gyrus A8vl, ventrolateral area 8 0.01 

Middle Frontal Gyrus A10l, lateral area 10 0.009 

Inferior Frontal Gyrus A44d, dorsal area 44 0.03 

Inferior Frontal Gyrus IFS, inferior frontal sulcus 0.04 

Inferior Frontal Gyrus A45c, caudal area 45 0.05 

Orbital Gyrus A14m, medial area 14 0.01 

Orbital Gyrus A14m, medial area 14 0.01 

Orbital Gyrus A12/47o, orbital area 12/47 0.02 

Orbital Gyrus A12/47o, orbital area 12/47 0.02 

Orbital Gyrus A11l, lateral area  11 0.04 

Orbital Gyrus A11l, lateral area  11 0.04 

Orbital Gyrus A11m, medial area 11 0.001 

Orbital Gyrus A11m, medial area 11 0.04 

Orbital Gyrus A13, area 13 0.03 

Orbital Gyrus A13, area 13 0.02 

Orbital Gyrus A12/47l, lateral area 12/47 0.05 

Precentral Gyrus A4hg, area 4 (head and face region) 0.03 

Precentral Gyrus A6cdl, caudal dorsolateral area 6 0.03 

Precentral Gyrus A4ul, area 4 (upper limb region) 0.01 

Precentral Gyrus A4tl, area 4 (tongue and larynx region) 0.05 

Precentral Gyrus A6cvl, caudal ventrolateral area 6 0.03 

Paracentral Lobule, A1/2/3ll, area 1/2/3 (lower limb region) 0.02 

Paracentral Lobule A4ll, area 4 (lower limb region) 0.04 

Superior Temporal Gyrus A38m, medial area 38 0.04 
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Superior Temporal Gyrus A41/42, area 41/42 0.03 

Superior Temporal Gyrus TE1.0 and TE1.2 0.03 

Superior Temporal Gyrus A22c, caudal area 22 0.02 

Superior Temporal Gyrus A22c, caudal area 22 0.04 

Superior Temporal Gyrus A38l, lateral area 38 0.03 

Superior Temporal Gyrus A38l, lateral area 38 0.02 

Superior Temporal Gyrus A22r, rostral area 22 0.02 

Superior Temporal Gyrus A22r, rostral area 22 0.03 

Middle Temporal Gyrus A21c, caudal area 21 0.03 

Middle Temporal Gyrus A21r, rostral area 21 0.02 

Middle Temporal Gyrus A21r, rostral area 21 0.05 

Middle Temporal Gyrus A37dl, dorsolateral area 37 0.02 

Middle Temporal Gyrus aSTS, anterior superior temporal 

sulcus 
0.01 

Middle Temporal Gyrus aSTS, anterior superior temporal 

sulcus 
0.02 

Inferior Temporal Gyrus A20iv, intermediate ventral area 20 0.02 

Inferior Temporal Gyrus A37elv, extreme lateroventral area 

37 
0.04 

Inferior Temporal Gyrus A37elv, extreme lateroventral area 

37 
0.04 

Inferior Temporal Gyrus A20r, rostral area 20 0.04 

Inferior Temporal Gyrus A20il, intermediate lateral area 20 0.04 

Inferior Temporal Gyrus A20cl, caudolateral of area 20 0.03 

Inferior Temporal Gyrus A20cv, caudoventral of area 20 0.02 

Fusiform Gyrus A20rv, rostroventral area 20 0.001 

Fusiform Gyrus A37mv, medioventral area 37 0.03 

Fusiform Gyrus A37mv, medioventral area 37 0.01 

Fusiform Gyrus A37lv, lateroventral area 37 0.04 

Fusiform Gyrus A37lv, lateroventral area 37 0.02 

Parahippocampal Gyrus A35/36r rostral area 35/36 0.001 

Parahippocampal Gyrus A35/36c caudal area 35/36 0.004 

Parahippocampal Gyrus A35/36c caudal area 35/36 0.01 

Parahippocampal Gyrus TL area TL (PPHC lateral posterior 

parahippocampal gyrus) 
0.003 

Parahippocampal Gyrus TL area TL (PPHC lateral posterior 

parahippocampal gyrus) 
0.03 

Parahippocampal Gyrus A28/34 area 28/34 (EC, entorhinal 

cortex) 
0.009 

Parahippocampal Gyrus A28/34 area 28/34 (EC, entorhinal 

cortex) 
0.04 

Parahippocampal Gyrus TH area TH (medial PPHC) 0.03 
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Superior Parietal Lobule A7r, rostral area 7 0.03 

Superior Parietal Lobule A5l, lateral area 5 0.01 

Superior Parietal Lobule A5l, lateral area 5 0.05 

Superior Parietal Lobule A7pc, postcentral area 7 0.03 

Superior Parietal Lobule A7ip, intraparietal area 7(hIP3) 0.03 

Superior Parietal Lobule A7ip, intraparietal area 7(hIP3) 0.02 

Inferior Parietal Lobule, A39c, caudal area 39(PGp) 0.009 

Inferior Parietal Lobule A39rd, rostrodorsal area 39(Hip3) 0.05 

Inferior Parietal Lobule A40rd rostodorsal area 40(PFt) 0.03 

Inferior Parietal Lobule A39rv rostroventral area 39(PGa) 0.02 

Inferior Parietal Lobule A40rv rostroventral area 40(PFop) 0.03 

Precuneus A7m, medial area 7 (PEp) 0.05 

Precuneus A5m, medial area  5 (PEm) 0.01 

Precuneus A5m, medial area  5 (PEm) 0.03 

Precuneus dmPOS, dorsomedial parietooccipital sulcus (PEr) 0.01 

Precuneus dmPOS, dorsomedial parietooccipital sulcus (PEr) 0.03 

Precuneus A31 area 31 (Lc1) 0.01 

Precuneus A31 area 31 (Lc1) 0.005 

Postcentral Gyrus A1/2/3 ulhf, area 1/2/3 (upper limb, head 

and face) 
0.04 

Postcentral Gyrus A1/2/3 ulhf, area 1/2/3 (upper limb, head 

and face) 
0.03 

Postcentral Gyrus A1/2/3tonIa area 1/2/3 (tongue and larynx 

region) 
0.04 

Postcentral Gyrus A2 area 3 0.04 

Cingulate Gyrus, A23d, dorsal area 23 0.004 

Cingulate Gyrus, A23d, dorsal area 23 0.006 

Cingulate Gyrus, A24rv rostroventral area 24 0.04 

Cingulate Gyrus, A24rv rostroventral area 24 0.03 

Cingulate Gyrus A32p, pregenual area 32 0.04 

Cingulate Gyrus A32p, pregenual area 32 0.03 

Cingulate Gyrus A23v, ventral area 23 0.01 

Cingulate Gyrus A23v, ventral area 23 0.01 

Cingulate Gyrus A24cd, caudodorsal area 24 0.01 

Cingulate Gyrus A24cd, caudodorsal area 24 0.04 

Cingulate Gyrus A23c, caudal area 23 0.01 

Cingulate Gyrus A23c, caudal area 23 0.04 

Cingulate Gyrus A32sg, subgenual area 32 0.02 

Cingulate Gyrus A32sg, subgenual area 32 0.02 

MedioVentral Occipital Cortex, cLinG, caudal lingual gyrus 0.006 

MedioVentral Occipital Cortex, cLinG, caudal lingual gyrus 0.006 
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MedioVentral Occipital Cortex, rCunG, rostral cuneus gyrus 0.009 

MedioVentral Occipital Cortex, rCunG, rostral cuneus gyrus 0.01 

MedioVentral Occipital Cortex, cCunG, caudal cuneus gyrus 0.02 

MedioVentral Occipital Cortex, cCunG, caudal cuneus gyrus 0.02 

MedioVentral Occipital Cortex, rLinG, rostral lingual gyrus 0.01 

MedioVentral Occipital Cortex, rLinG, rostral lingual gyrus 0.03 

MedioVentral Occipital Cortex, vmPOS, ventromedial 

parietoocipital sulcus 
0.01 

MedioVentral Occipital Cortex, vmPOS, ventromedial 

parietoocipital sulcus 
0.01 

Lateral Occipital Cortex, mOccG, middle occipital gyrus 0.03 

Lateral Occipital Cortex, mOccG, middle occipital gyrus 0.03 

Lateral Occipital Cortex, V5/MT+, area V5/MT+ 0.03 

Lateral Occipital Cortex, iOccG, inferior occipital gyrus 0.04 

Lateral Occipital Cortex, iOccG, inferior occipital gyrus 0.03 

Lateral Occipital Cortex, msOccG, medial superior occipital 

gyrus 
0.02 

Lateral Occipital Cortex, msOccG, medial superior occipital 

gyrus 
0.02 

Lateral Occipital Cortex, lsOccG, lateral superior occipital 

gyrus 
0.01 

Lateral Occipital Cortex, lsOccG, lateral superior occipital 

gyrus 
0.02 

Amygdala, lAmyg, lateral amygdala 0.03 

Hippocampus, rHipp, rostral hippocampus 0.02 

Hippocampus, cHipp, caudal hippocampus 0.03 

Basal Ganglia, GP, globus pallidus 0.05 
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Comprehensive Discussion 

 
Discussion 
 

The overall goal of this thesis is to examine the neural correlates of weight in healthy 

adolescents and the relationship between those systems and measures of impulsivity and 

sensation-seeking. There is substantial prior evidence both that impulsivity and sensation-

seeking are behavioural risk factors for increased body mass index (BMI) and that this 

relationship might be reflected in the structural and functional variation in the brain (Delgado-

Rico et al., 2012; Gerlach et al., 2015; Jokela et al., 2013; Sutin et al., 2011; Taki et al., 2008; 

Vainik et al., 2013). 

This thesis is comprised of three studies. The first study found that a commonly identified 

adult phenotype of reduced cortical thickness with increased weight was not replicated in a 

sample of children (Sharkey et al., 2015). The second study identified the functional connectivity 

of a midbrain-striato-limbic network related to both weight and impulsivity and sensation-

seeking in a population of adolescents (Sharkey et al., 2019). It also found that while sensation-

seeking was positively correlated with both weight and impulsivity, it was negatively correlated 

with the network we identified, while weight and impulsivity were positively correlated (Sharkey 

et al., 2019). The third study found that interactions between multiple large-scale intrinsic 

networks involving both cortical and subcortical regions, including the left and right executive 

networks, the default and limbic networks, and the visual and salience networks, that were 

related to weight, but that the same, large-scale pattern was only weakly associated with 

impulsivity and sensation-seeking. 

 The second two of these findings emphasize the multi-network nature of the neural 

endophenotype of body weight. The third study identifies multiple networks related to weight 

directly. Greater BMI was associated with greater interactions between the auditory network and 

the limbic and default networks, between limbic and left executive networks, the right executive 

and motor and supplementary motor networks, the default and the IFG/middle temporal network 

and the visual and salience networks. Greater fronto-occipital connectivity, and increased 

between-network connectivity in general, but especially between default and task networks have 

all been previously associated with greater BMI in previous studies, as have alterations to 
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connectivity between the right executive and temporal and limbic networks (Alonso-Alonso and 

Pascual-Leone, 2007; Doucet et al., 2017; García-García et al., 2013; Han et al., 2018; Hargrave 

et al., 2016; Kullmann et al., 2013; Vainik et al., 2017). The work presented here identifies this 

range of findings in a single population. 

The second study was premised around the well-supported role of a frontal corticostriatal 

network in weight and impulsivity, but instead identified a midbrain striato-limbic network. 

There is sufficient evidence for the role of the prefrontal cortex in weight and adolescent 

impulsivity that it is unlikely that our finding genuinely contradicts it, but more likely that we 

have identified a second network which is simultaneously involved (Sharkey et al., 2019).  

Both the second and third study found evidence of subcortical involvement in weight in 

adolescence and these findings also suggests that the first study, which examined only the cortex 

and omitted subcortical regions may have overlooked subcortical and limbic associations with 

weight in this age group. Subcortical and limbic associations with weight may develop earlier 

than the cortical associations which were hypothesized to be involved. However, greater 

attention to the role of the limbic system in adult weight may also be valuable (Sharkey et al., 

2019, 2015). 

The heavily limbic findings of the second study and the involvement of the default mode 

network, and the connectivity between visual and salience networks identified in the third study, 

also suggest that value modulation, as a specific mode of self-control, may be particularly 

relevant to adolescent populations (Braams et al., 2015; Etkin et al., 2015; Langner et al., 2018; 

Murty et al., 2016). Mechanisms of self-control in response to a specific desirable cue or 

stimulus can be broadly divided into two categories. Value modulation strategies alter the 

perceived value of the stimulus which alters how desirable it is perceived to be, while 

behavioural inhibition strategies inhibit actions in response to the value of a stimulus. The 

hippocampus and other limbic regions, fronto-occipital networks and the default mode network 

have all previously been implicated in value and emotional modulation (Etkin et al., 2015; Han 

et al., 2018; Mirchi et al., 2018). There is also prior evidence that adolescent impulsivity relates 

to greater response to rewarding stimuli (Braams et al., 2015; Davidow et al., 2016; Geier et al., 

2010). In sum, there may be neuroanatomical evidence for greater valuation of food cues in 

adolescents with obesity. 
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The second two studies of this thesis also both examine the overlap between neural 

endophenotypes of weight, and neural endophenotypes of impulsivity and sensation-seeking. All 

three of these traits have been found to be correlated with each other behaviourally, a finding 

which was mostly replicated in our second study. However, the second study found that while 

weight and impulsivity were not directly correlated behaviourally, they did correlate similarly 

with midbrain-striato-limbic connectivity and that sensation-seeking, despite being correlated 

with both of them, was negatively correlated with the same network (Sharkey et al., 2019). The 

third study expanded on this by identifying a pattern of network connectivity which correlated 

well with weight but only weakly with either sensation-seeking or impulsivity. This strongly 

suggests that while these traits do relate to each other both behaviourally and neurologically, the 

networks that make up their neural endophenotypes overlap, rather than reflecting a single 

underlying neural endophenotype. This likely reflects the range of other factors known to 

contribute to variation in body weight, which includes genetic and parental influences on food 

choice and preference, the influence of stress or negative mood, and exercise levels, which were 

not assessed in these studies (Benton, 2004; Birch and Davison, 2001; Clarke et al., 2015; Krafft 

et al., 2014; McFadden et al., 2013; Vainik et al., 2013). 

 

Limitations and Future Directions   
 

 The three studies which make up this thesis present the opportunity for multiple follow-

up investigations. Here we briefly present some of the ways the conclusions of this thesis could 

be used to guide future studies, but also some of the major limitations of research with this 

dataset and methods, which could similarly generate questions to be answered in the future.     

Comparison Between Adolescent and Adult Populations 

 All three of the studies in this thesis were conducted on populations of children and 

adolescents, and so our conclusions are only valid for that age group. There is some prior 

research which suggests that the degree to which different networks are involved in impulsivity, 

and  weight regulation differ across age groups (Galvan et al., 2006; Tomasi and Volkow, 2014). 

Future research on the network correlations identified in the studies in this thesis could further 

develop these lines of inquiry by attempting to replicate these findings in adult populations.  
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Maturational Curves 

Similarly, up to now we have only been able to follow the Neuroventure cohort up to the 

24 month time point. A subsequent time point two years later is still being collected. Once three 

data points are available for each subject it will be possible to examine the trajectories of 

development in brain, personality, and body weight using a richer dataset than is currently 

possible.  

Structure and Function Relationships 

While the studies in this thesis examined both structural and functional neural correlates 

of weight, there is only a single analysis examining the relationship between the two. While 

some structural mechanism must necessarily underlie functional connectivity the statistical 

relationships identified between functional connectivity and structure changes detectable with 

magnetic resonance imaging methods are more complex. For instance, functional connectivity 

measures are able to detect relationships between indirectly connected regions, which are hard to 

establish using structural measures (Damoiseaux and Greicius, 2009). 

The Neuroventure dataset, which contains multiple structural and functional measures is 

well designed for examining relationships between brain structure and function and future 

studies using this population will hopefully be able to shed more light on this question. 

Impacts of Puberty 

 The Neuroventure dataset measures the onset of puberty in a severely limited manner 

with a single, binary variable, based on menarche in females and voice-breaking in males. This 

seriously limits the ability to study the impact of puberty with Neuroventure data (Bourque et al., 

2016). Puberty naturally involves an increase in both weight and body mass index (Ahmed et al., 

2009; Kuczmarski et al., 2002). The age-matching carried out by converting body mass index to 

BMI Z-score for age will partly account for that effect, but not for variability in the onset of 

puberty and puberty associated weight gain. 

 However, the impact of puberty on weight, impulsivity and brain development is 

complex. Higher weight is associated bidirectionally with an earlier onset of puberty. Obesity 

can trigger earlier onset of puberty, but children who enter puberty earlier will tend to gain 

weight earlier than their peers (Ahmed et al., 2009). But conversely, overweight and obese 

children and adolescents have been found to have less mature neural phenotypes, which resemble 
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those of younger subjects than their contemporaries, and to be more impulsive (Braams et al., 

2015; Delgado-Rico et al., 2012; Krafft et al., 2014). 

Social Influences on Impulsivity and Weight 

 While adolescent impulsivity and risk-taking behaviour are understood to be normal 

developmental processes, they are also known to be impacted by external social influences. 

Adolescents and children of lower socio-economic status show increased levels of impulsivity in 

comparison to their more affluent peers (Hackman et al., 2010; Ng-Knight and Schoon, 2016). 

This is at least in part now known to be a reaction to unreliable physical and social environments. 

Strong positive social relationships, especially family environments, have also been found to 

reduce adolescent risk-taking, even in the context of low socio-economic status (McCormick et 

al., 2016; Qu et al., 2015; Telzer et al., 2013). Lower socio-economic status is also independently 

associated with higher body weight both in children and adolescents. This is partly mediated 

through socio-economic influences on impulsivity but also partly a reflection of differing access 

to energy-dense food in lower socio-economic groups. 

 However, this study considered the impact of social influences in only a very limited 

fashion in the second study (Chapter 3). Future follow-up either using the Family Affluence 

Scale data in the Neuroventure cohort, or in other data-sets which include more detailed data 

about socio-economic status and social relationships, may be able to shed more light both on 

how these factors relate to impulsivity and weight, but also which neural networks, specifically, 

are involved in that relationship during different stages of development. 

Specific Elements of Impulsivity 

 The Substance Use Risk Profile Scale, which was the measure of impulsivity used in 

these studies, is a questionnaire based measure which considers impulsivity as a complete trait 

(Jurk et al., 2015; Woicik et al., 2009). However, sub-types of impulsivity are not perfectly 

correlated, and the specific details of how different types of impulsivity differentially relate to 

different networks could be delineated based on scores on tasks measuring specific aspects of 

impulsivity (Duckworth and Kern, 2012). The Balloon Analogue Risk Task, the Stop Signal 

Task, and the Stroop tasks included in the Neuroventure dataset could all be used to more clearly 

define the neural correlates of specific aspects of impulsivity (Bourque et al., 2016).  

This could be a way to clarify the different relationships between sensation-seeking and 

impulsivity and the midbrain-limbic network identified in the second study (Chapter 3). It could 
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also help to clarify which of the network contributions to weight identified in the third study 

(Chapter 4) are also related to impulsivity.  

Atlas Choice 

The second and third studies of this thesis both use brain atlases for some proportion of 

the data. This is a major feature of the second study (Chapter 3) and a more minor contributor in 

the third study (Chapter 4). In both studies, measuring connectivity averaged within atlas regions 

rather than voxel-wise was used as a method of data reduction (Sharkey et al., 2019). This 

method of data reduction serves two purposes; firstly it reduces the computational power needed 

for the analysis, but secondly, and more importantly, it increases the interpretability of the data, 

by fitting it to a framework which has already been defined. However, the use of an atlas 

inevitably involves the loss of detail, both from homogenizing neuronal signals which may exist 

within atlas regions, and from the exclusion of tissue not covered by the atlas. Three of the 

atlases used in the second study (Chapter 3) were anatomically based atlases, where regions were 

delineated by anatomical boundaries (Amunts et al., 2013; Choi et al., 2012; Keuken and 

Forstmann, 2015). However, this can be limiting in studies of connectivity since it can collapse 

differentially connected sub-regions which can result in overall connectivity being lost. The 

Brainnetome atlas used in the third study (Chapter 4) and the Choi atlas used to define the 

ventral striatum in the second study (Chapter 3), were connectivity based atlases, where regional 

delineation was partly based on voxel-wise connectivity, which reduces the homogenization of 

sub-regions, although it cannot completely avoid it. However, the Brainnetome is a much more 

anatomically restricted atlas, which does not cover the midbrain and cerebellum, which means 

data from those regions was excluded from the graph theoretical analysis (Fan et al., 2016). 

The creation of a specialized atlas balancing all of these concerns would be time-

consuming, difficult and ideally require access to a reference population not included in the 

studies the atlas is applied to. The creation of a specialist atlas to suit the needs of a single study 

is unfeasible in most cases, including the studies in this thesis. It is also an important 

consideration in any atlas-based study that the idea of an ideal atlas is somewhat misleading. The 

brain functions simultaneously on multiple levels, and a single atlas, no matter how accurate, 

confines analysis to a single one of those levels.  
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Final Conclusions 

Taken as a whole, the three studies of this thesis support the model of weight as a 

phenotype arising from the function and interaction of multiple functional brain networks. The 

three studies, using two child and adolescent populations, identified relationships between body 

weight and neural function which were related to but also distinct from earlier findings in adults, 

and also related to but distinct from networks related to impulsivity and sensation-seeking, 

personality traits which are known to be related to increased weight. These findings also 

emphasize the importance of subcortical and limbic networks in the regulation of adolescent 

weight and personality.  
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